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Abstract

Manual development of large subcategorised lexicons has proved di�cult because
predicates changebehaviour betweensublanguages,domains and over time. Yet ac-
cessto a comprehensive subcategorization lexicon is vital for successfulparsing capa-
ble of recovering predicate-argument relations, and probabilistic parserswould greatly
bene�t from accurate information concerning the relative likelihood of di�eren t sub-
categorisation frames (scf s) of a given predicate. Acquisition of subcategorization
lexicons from textual corpora has recently becomeincreasingly popular. Although
this work has met with somesuccess,resulting lexicons indicate a need for greater
accuracy. One signi�cant sourceof error lies in the statistical �ltering used for hy-
pothesisselection, i.e. for removing noisefrom automatically acquired scf s.

This thesis builds on earlier work in verbal subcategorization acquisition, taking as
a starting point the problem with statistical �ltering. Our investigation shows that
statistical �lters tend to work poorly becausenot only is the underlying distribution
zip�an, but there is also very little correlation between conditional distribution of
scf s speci�c to a verb and unconditional distribution regardlessof the verb. More
accurate back-o� estimates are neededfor scf acquisition than those provided by
unconditional distribution.

We explore whether more accurate estimates could be obtained by basing them on
linguistic verb classes. Experiments are reported which show that in terms of scf
distributions, individual verbs correlate more closely with syntactically similar verbs
and even more closelywith semantically similar verbs, than with all verbs in general.
On the basis of this result, we suggestclassifying verbs according to their semantic
classesand obtaining back-o� estimatesspeci�c to theseclasses.

We proposea method for obtaining such semantically basedback-o� estimates, and
a novel approach to hypothesis selection which makes use of these estimates. This
approach involves automatically identifying the semantic classof a predicate, using
subcategorization acquisition machinery to hypothesiseconditional scf distribution
for the predicate, smoothing the conditional distribution with the back-o� estimates
of the respective semantic verb class, and employing a simple method for �ltering,
which uses a threshold on the estimates from smoothing. Adopting Briscoe and
Carroll's (1997) systemasa framework, we demonstrate that this semantically-driv en
approach to hypothesisselectioncan signi�cantly improve the accuracyof large-scale
subcategorization acquisition.
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Chapter 1

In tro duction

Research into the automatic acquisition of subcategorization frames(scf s) from cor-
pora is starting to produce large-scalecomputational lexiconswhich include valuable
frequency information. However, resulting lexicons indicate a need for greater accu-
racy. One signi�cant sourceof error lies in the statistical �ltering usedfor `hypothesis
selection' i.e. for removing noise from automatically acquired scf s. Although this
problem has beenwidely recognized,it has not beenaddressed.This thesis builds on
earlier work in subcategorization acquisition, taking as a starting point the problem
of statistical �ltering. Our investigations show that �ltering performance is limited
by lack of accurate back-o� estimates for scf s. We proposea method of obtaining
more accurate, semantically motivated back-o� estimates, and a novel approach to
hypothesis selection which makes use of these estimates. We demonstrate that this
semantically-driv en approach can signi�cantly improve large-scaleacquisition of scf s.

This intro ductory chapter �rst identi�es the needfor lexical acquisition (section 1.1).
It then intro duces the phenomenonof verb subcategorization (section 1.2), estab-
lishesits importance for natural languageprocessing(nlp ) and linguistic theory (sec-
tion 1.3), and discussesacquisition of this information automatically from corpusdata
(section1.4). Section1.5summarisesour contribution to the �eld of subcategorization
acquisition. The list of external resourcesusedin our research is given in section 1.6.
Section 1.7 includes an overview of the organization of this thesis.

1.1 Automatic Lexical Acquisition

In recent years,the importance of the lexicon has increasedin both nlp and linguistic
theory. Within nlp , much of the early research focusedon isolated `toy' tasks, treat-
ing the lexicon as a peripheral component. These days, the focus is on constructing
systemssuitable for the treatment of large, naturally-o ccurring texts. Rich lexical
knowledgesourceshave becomecrucial for nlp systemsdealing with real-world appli-
cations. At the sametime, the importance of the lexicon has increasedfor theoretical
reasonsas within linguistic theory, it has taken on an increasingly central role in the
description of both idiosyncratic and regular properties of language.

Obtaining large, explicit lexicons rich enough for computational linguistic use has,
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18 CHAPTER 1. INTRODUCTION

however, proved di�cult. Manual construction of a large-scalelexicon is a major task
involving many yearsof lexicographic work. The advent of computers has alleviated
the work, but the lexicon has correspondingly grown in size. Much of the early
work on computational lexicography exploited the information in existing machine-
readable dictionaries (mrd s) to solve the acquisition bottleneck. However, as mrd s
werewritten with a human readerin mind, converting theseresourcesinto satisfactory
computational lexicons proved di�cult. Manually built lexicons are prone to errors
of omission and commission which are hard or impossible to detect automatically
(e.g. Boguraev and Briscoe, 1989). It is also costly to extend theseresourcesto cover
neologismsand other information not currently encoded.

Recently , there hasdeveloped a growing trend to acquire lexical information automat-
ically from corpus data. This approach avoids the above-mentioned problems, gives
accessto previously lacking frequency information and enablesacquisition of lexical
information speci�c to di�eren t sub-languagesand domains. Methods for automatic
lexical acquisition have beendeveloped for many areasand include syntactic category
(Finch and Chater, 1991;Sch•utze, 1993), collocations (Dunning, 1993;Justesonand
Katz, 1995), word senses(Pereira et al., 1993; Sch•utze, 1992), prepositional phrase
attachment ambiguit y (Hindle and Rooth, 1993; Lauer 1995), word semantic classes
(Zernik, 1989), selectional preferences(Resnik, 1993; Ribas, 1995; Poznanski and
San�lipp o, 1995), diathesis alternations (McCarth y and Korhonen, 1998; Schulte im
Walde, 2000; Lapata, 1999, 2000; Stevensonand Merlo, 1999; McCarthy, 2001) and
scf s (e.g. Brent, 1991, 1993; Ushioda et al., 1993; Briscoe and Carroll, 1997; Man-
ning, 1993;Ersan and Charniak, 1996;Carroll and Rooth, 1998;Gahl, 1998;Lapata,
1999;Sarkar and Zeman, 2000). Many of thesemethods are still under development
and need further re�nement before they can successfullybe applied to large scale
lexical acquisition. However, they open up the important possibility of automatically
constructing or updating lexicons from textual corpora.

Early methods of lexical acquisition tended to favour purely statistical methods, with
the aim of deriving all information from corpus data. Recently there has developed
a trend towards use of sourcesof a priori knowledge that can constrain the process
of lexical acquisition (e.g. Gazdar, 1996; Klavans and Resnik, 1996). Although the
use of such knowledge may intro duce human error it can, if accurate, reduce the
overall noise level. A priori knowledgecan be probabilistic, when, for example, prior
distributions usedin lexical acquisition are derived from external sources.It can also
be discrete, when it meansusing prede�ned categories,such as scf s, parts-of-speech
(pos), or semantic networks to guide the acquisition process.Given that the current
conception of a computational lexicon has a �rm foundation in linguistic theory, one
of the challengesand currently underusedapproaches in this area is to constrain the
acquisition processusing linguistic insights (Boguraev and Pustejovsky, 1995).

1.2 Verb Subcategorization

To produce a sentence, it is not enough simply to select the appropriate words and
string them together in the order that conveys the meaning relations among them.
Not all verbs can appear in all sentences,even when the combinations make sense:
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(1) a Sam put the book on the table

b *Sam put the book

c *Sam put on the table

d *Sam put

The diversebehaviour of verbscan be explained in terms of subcategorization. Di�er-
ent subcategoriesof verbs make di�eren t demandson their arguments. For example,
put takes a np-pp complement (1a), but does not permit np (1b) or pp (1c) com-
plements, nor an intransitiv e variant (1d). To be grammatical, put requires no fewer
than three syntactic arguments: a subject, object and an oblique object.

Subcategorization structures are frequently characterized in terms of syntactic frames
called `subcategorization frames'. Theseprovide generalizationover various syntactic
contexts required by verbs associated with the same syntactic behaviour. For ex-
ample, we can use the frame np-pp to characterize the subcategorization structure
in (1a), as well as those in Sam put the book on the table yesterday and John flew
the plane to Rome. More or lessspeci�c scf classi�cations can be made, depending
e.g. on whether the frames are parameterized for lexically-governed particles and
prepositions, whether any semantic knowledgeis incorporated, and so forth 1.

Fully to de�ne the association betweena particular subcategorization structure and a
given predicate, however, onemust go beyond listing of syntactic frames. Full account
of subcategorization requires specifying the number and type of arguments that a
particular predicate requires, predicate sensein question, semantic representation
of the particular predicate-argument structure, mapping between the syntactic and
semantic levels of representation, semantic selectional restrictions or preferenceson
arguments, control of understood arguments in predicative complements, diathesis
alternations, and possibly also further details of predicate-argument structure. We
shall intro duce in detail this range of phenomenain chapter 2.

1.3 Uses of Subcategorization Information

Multidimensional in nature, verb subcategorization is one of the most complex type
of information that a computational lexicon should provide. However, it is arguably
also one of the most important type of information. Most recent syntactic theories
\pro ject" syntactic structure from the lexicon; thus, accessto a comprehensive and
accuratesubcategorization lexicon is crucial whenconstraining analysisof natural lan-
guage. Subcategorization information is essential for the development of robust and
accurate parsing technology capable of recovering predicate-argument relations and
logical forms. Without it, resolving most phrasal attachment ambiguities or distigu-
ishing arguments from adjuncts is di�cult. For parsersusing statistical methods to
rank analyses,information about relative frequenciesof di�eren t subcategorizations

1Different scf classifications are discussed and exemplified in chapter 2. In this thesis, we de-
scribe scfs using the labels from Briscoe’s classification (2000) (included in Appendix A). Most of
these labels (e.g. np-pp mentioned here) essentially describe the complementation pattern of a verb,
assuming that subject is obligatory and, by default, an np. Where this is not the case, it is explicitly
stated.
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for a given predicate is also vital. It is required e.g. for lexicalising a probabilistic
parser with the aim of improving accuracy of disambiguation (Briscoe and Carroll,
1997;Collins, 1997;Carroll, Minnen and Briscoe, 1998).

Besidesparsing, accessto accurate subcategorization information can also bene�t
other domains of nlp , as well as linguistic research. For example, subcategorization
(frequency) information can be integrated into dictionaries (e.g. Evansand Kilgarri�,
1995;Gahl, 1998)or annotated corpora (Sarkar and Zeman,2000)in order to improve
their content. It can also be usedin psycholinguistic research on sentence processing
for approximating lexical preferences(Lapata and Keller, 1998;Lapata et al., 2001).
In addition, such information could potentially be usedto expand the empirical basis
of linguistic theory and increaseits predictive power (Levin, 1993).

Knowledge of associations between speci�c scf s and predicates can, moreover, aid
lexical acquisition. For example, if we identify associations, we can gather informa-
tion from corpus data about head lemmaswhich occur in argument slots in scf s and
usethe information as input to selectionalpreferenceacquisition (Schulte im Walde,
2000; McCarthy, 2001). Selectional preferencesare an important part of subcatego-
rization speci�cation, since they can be used to aid anaphora resolution (Ge et al.,
1998), speech understanding (Price, 1996), word sensedisambiguation (wsd ) (Ribas,
1995;Resnik, 1997;Kilgarri� and Rosenzweig, 2000) and automatic identi�cation of
diathesis alternations from corpus data (Schulte im Walde, 2000; McCarthy, 2001;
Lapata, 1999;Stevensonand Merlo, 1999). Diathesis alternations are in turn impor-
tant. In recent years they have inspired research in lexicalist grammar theories and
lexical representation (e.g. San�lipp o, 1994; Briscoe and Copestake, 1999), machine
translation (Dorr, 1997), natural languagegeneration (Stede, 1998), cross-linguistic
studies (Pirrelli et al., 1994), dictionary construction (Dang et al., 1998), verb classi-
�cation (Dorr, 1997), and lexical acquisition (Ribas, 1995;Poznanskiand San�lipp o,
1995;Korhonen, 1998).

1.4 Subcategorization Acquisition

The �rst systemscapableof automatically learning associations betweenverbs and a
small number of scf s from corpus data emergedroughly a decadeago (Brent, 1991;
1993). Sincethen research hastaken a big step forward. Subsequent systemstargeted
a larger set of scf s and/or collected data on the relative frequenciesof di�eren t scf
and verb combinations (Ushioda et al., 1993;Manning, 1993;Gahl, 1998;Ersan and
Charniak, 1996; Carroll and Rooth, 1998; Lapata, 1999). More ambitious systems
have recently been proposed which are capable of detecting comprehensive sets of
scf s and producing large-scalelexiconswith appropriate scf frequencydata (Briscoe
and Carroll, 1997; Sarkar and Zeman, 2000). The di�eren t systems vary greatly
according to methods used2. Regardlessof this, they perform similarly. They mostly
gather information about syntactic aspects of subcategorization; do not distinguish
between various predicate senses,and have a ceiling on performanceat around 80%

2We shall in chapter 2 survey the various methods.
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token recall3. Resulting lexicons thus indicate a needfor greater accuracy.

Errors arise in automatic subcategorization acquisition for several reasons. Due to
ungrammaticalities of natural language, some noise occurs already in input data.
Further errors arise when processingthe data, typically in two phases: (i) generat-
ing hypothesesfor scf s and (ii) selecting reliable hypothesesfor the �nal lexicon.
Analysis of error revealsproblems common to di�eren t systems. Although it is clear
that hypothesisgeneration requires further improvement, the weakest link of current
systemsappears to be hypothesisselection.

Hypothesisselectionis usually madewith a hypothesistest and frequently with a vari-
ation of the binomial �lter intro ducedby Brent (1993). The binomial hypothesistest
is reported to be particularly unreliable for low frequency associations (Brent, 1993;
Manning, 1993; Ersan and Charniak, 1996; Briscoe and Carroll, 1997; Manning and
Sch•utze, 1999). Briscoe and Carroll, for example,note that the performanceof their
�lter for scf s with lessthan 10 exemplarsis inconclusive. The high number of missing
low frequencyassociations directly a�ects recall, resulting in poor performance.

This problem with hypothesisselectionmay overturn bene�ts gainedwhen increasing
the data potential in the hope of detecting a higher number of rare scf s. Similarly,
it may overturn bene�ts gained from re�ning hypothesis generation. The problem
concernsmost subcategorization acquisition systems,sincenearly all of them perform
hypothesisselectionusing statistical hypothesistests. For thesereasons,when aiming
to improve subcategorization extraction, addressingthis problem is critical.

1.5 Our Contribution

The aim of the present thesis is to improve the accuracyof subcategorization acquisi-
tion by improving the accuracyof hypothesisselection. All the work reported in this
thesis is done using Briscoe and Carroll's (1997) system as a framework for subcate-
gorization acquisition. This systemrepresents the latest phasein the development of
scf acquisition technology. Capableof categorizingover 160scf types,it is the most
comprehensive systemavailable. We justify our choice further in chapter 2, where we
describe this system in detail.

1.5.1 Hyp othesis Testing

Although statistical �lters have beenwidely recognizedasproblematic, the reasonsfor
their poor performancehave not beeninvestigated. In this thesis we perform a series
of experiments to examine why hypothesis testing in subcategorization acquisition
fails to perform as expected. We compare three di�eren t approaches to �ltering out
spurious hypotheses. Two hypothesis tests perform poorly, compared with a simple
method which �lters scf s on the basisof their maximum likelihood estimates(mle s).
Our investigation reveals that the reason hypothesis testing does not perform well
in this task is that not only is the underlying distribution zip�an, but there also is

3Where token recall is the percentage of scf tokens in a sample of manually analysed text that
were correctly acquired by the system. For further explanation, see section 2.5.2.
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very little correlation betweenthe conditional distribution of scf s given the predicate
and the unconditional distribution independent of speci�c predicates. Accordingly,
any method for hypothesisselection(whether or not basedon a hypothesistest) that
involvesreferenceto the unconditional distribution, will perform badly.

1.5.2 Back-o� Estimates

Assuming that the unconditional distribution provides accurate back-o� estimates4

for any verbs is roughly equivalent to assuming that all verbs behave similarly in
terms of subcategorization. This assumption is challenged by simple observation of
verb behaviour. For example, a verb like believe occurs mostly with a sentential
complement, but the sentential complement frame, in general, is rare. Linguistic
research has shown that verbs fall into syntactically and semantically basedclasses
distinctiv e in terms of subcategorization (e.g. Levin, 1993). More accurate back-o�
estimatesmight be obtained by constructing them as speci�c to such classes.

Semantic verb classessuch as Levin's are based, however, on associations between
speci�c scf s and verb senses. Subcategorization acquisition systemsare so far capa-
ble of associating scf s with verb forms only. We perform experiments with a set of
scf distributions speci�c to verb form, which show that in terms of scf distributions,
individual verbs correlate more closely with syntactically similar verbs and clearly
more closelywith semantically similar verbs, than with all verbs in general. The best
scf correlation is observed when verbs are classi�ed semantically according to their
predominant sense.On the basisof this result, we suggestclassifying verbs semanti-
cally accordingto their predominant senseand obtaining back-o� estimatesspeci�c to
semantic classes.In general terms, we proposeusing a priori discrete and probabilis-
tic knowledge about (generalizations of) verb semantics to guide subcategorization
acquisition.

1.5.3 Semantically Driv en Hyp othesis Selection

We demonstrate the utilit y of our proposal by presenting a novel approach to hy-
pothesisselection. We composesemantic verb classesbasedon Levin classesand im-
plement a technique capableof automatically associating verbs with their respective
�rst senseclassesvia WordNet (Miller et al., 1993). We choosea few representativ e
verbs from the samesemantic classand merge their conditional (verb form speci�c)
scf distributions to obtain class-speci�c back-o� estimates. Subcategorization acqui-
sition machinery is �rst used for hypothesisgeneration and the resulting conditional
scf distribution for a predicate is then smoothed with the back-o� estimates of the
respective semantic class. A simple method is used for �ltering, which sets an em-
pirically de�ned threshold on the probabilit y estimates from smoothing. This allows
examination of the potential of back-o� estimateswithout intro ducing any problems
related to hypothesis tests. We demonstrate that the approach provides an e�ectiv e
way of dealing with low frequencyassociations and a meansof predicting thoseunseen

4By back-off estimates, we refer to scf “prior” probability estimates used for guiding scf acqui-
sition is some way.
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in corpusdata. We demonstrate further that the approach is applicable to large-scale
subcategorization acquisition and, when applied to this purpose, it results in signif-
icant improvement in performance. Overall, our results show that at the level of
hypothesis selection, verb semantic generalizationscan successfullybe used to guide
and structure the acquisition of scf s from corpus data, which so far has beenmerely
syntax driven.

1.6 External Resources

� Software For subcategorization acquisition, we employed Briscoe and Carroll's
system with a probabilistic chart parser (Chitrao and Grishman, 1990).

� Corpora For subcategorization acquisition experiments, we used 20 million
words of the written part of the British National Corpus (bnc ) (Leech, 1992).
Somegold standardsusedfor evaluation in theseexperiments werealsoobtained
from 1.2 million word data from the SusanneCorpus (susanne ) (Sampson,
1995),SpokenEnglish Corpus (sec) (Taylor and Knowles,1988),and Lancaster-
Oslo-BergenCorpus (lob ) (Garside et al., 1987).

� Lexical Resources For syntactic verb classes,we employed the Alvey nl
Tools dictionary (anl t ) (Boguraev et al., 1987). For semantic verb classes,
we employed Levin's verb classi�cation (1993). This resourcewas used along
with the verb hierarchy of WordNet (Miller et al., 1993) version 1.6, Longman
Dictionary of Contemporary English (ldoce ) (Procter, 1978),and Dorr's (1997)
source of ldoce codes for Levin classesas aid when associating verbs with
semantic classes.

1.7 Overview of Subsequent Chapters

The remaining chapters of this thesis are organizedas follows:

Chapter 2 (Background to Subcategorization Acquisition) intro ducesthe background
and motivation for our work. We discussthe phenomenonand theory of verb sub-
categorization and the task of constructing a subcategorization lexicon. We review
attempts to obtain subcategorization lexicons manually and semi-automatically, and
establish why automatic acquisition is needed. We then survey approaches to au-
tomatic subcategorization acquisition, discussthe state-of-art performance and the
problems which need to be addressed.Finally, we de�ne the scope of our work and
intro duce the subcategorization acquisition system we employ in our research.

Chapter 3 (Hypothesis Testing for Subcategorization Acquisition) examines why
hypothesis tests do not perform as expected in subcategorization acquisition. We
provide theoretical background on hypothesis testing, review the tests used so far,
and discussthe problems reported with them. Experiments are then reported where
we compare three di�eren t methods of hypothesis selection. Two hypothesis tests
perform poorly, comparedwith a simple method of �ltering scf s on the basisof their
mle s. We discussreasonsfor this and note that the lack of accurateback-o� estimates
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for scf s restricts the performanceof hypothesistests aswell as that of other methods
of hypothesisselectionwhich rely on theseestimates.

Chapter 4 (Back-off Estimates for Subcategorization Acquisition) addressesthe
problem that the unconditional scf distribution provides poor back-o� estimatesfor
scf acquisition. It investigateswhether more accurateestimatescould be obtained by
basing them on semantic or syntactic verb classes.Experiments are reported which
show that in terms of verb form speci�c scf distributions, individual verbs correlate
morecloselywith other semantically and syntactically similar verbsthan with all verbs
in general. The closestcorrelation is observed betweensemantically similar verbs. On
the basis of this result, we suggestclassifying verbs semantically according to their
predominant senseand obtaining back-o� estimatesspeci�c to semantic classes.

Chapter 5 (A New Approach to Hypothesis Selection) proposesa method for con-
structing verb classspeci�c back-o� estimatesand presents a new semantically moti-
vated approach to hypothesisselection. The latter involvessmoothing the conditional
scf distribution for a predicatewith back-o� estimatesof the respectivesemantic class
(i.e. the classcorresponding to the predominant senseof the predicate), and using
a simple method for �ltering which placesa threshold on estimates from smoothing.
We report experiments which demonstrate that the method can signi�cantly improve
the accuracyof scf acquisition.

Chapter 6 (Semantically Motivated Subcategorization Acquisition) re�nes the novel
approach to hypothesisselectionoutlined in chapter 5 further and applies it to large-
scale scf acquisition. We �rst relate our work to earlier research on semantically
motivated lexical acquisition. We then present the revised approach to hypothesis
selectionalongwith a new technique capableof automatically identifying the semantic
class of a predicate. The overall approach is evaluated with unknown test verbs.
Direct evaluation of the acquiredlexiconsshows that the semantically-driv enapproach
improves the accuracy of scf acquisition well beyond that of the baselineapproach.
Task-basedevaluation in the context of parsing shows that the subcategorization
probabilities acquiredusing our approach can improve the performanceof a statistical
parser. Finally, we discusspossiblefurther work.

Chapter 7 (Conclusions) summarisesthe achievements of our work and suggests
directions for future research.



Chapter 2

Background to
Subcategorization Acquisition

2.1 Introduction

In this chapter, we discussthe background and motivation for our work. We shall
start by describing the linguistic phenomenonof verb subcategorization (section 2.2)
and considering its account within linguistic theory (section 2.3). We shall then dis-
cusssubcategorization lexicons (section 2.4). We establish the requirements of such
resourcesand survey attempts to obtain them manually and semi-automatically. On
the basis of this discussion,we argue that when aiming for an adequatelexicon, au-
tomatic acquisition is the avenue to pursue. In section 2.5, we focus on automatic
acquisition of subcategorization lexicons. We survey various subcategorization acqui-
sition systems,discusstheir performanceand highlight the problems which need to
be addressedto improve performance. After de�ning the scope of our work, we end
the chapter by intro ducing the subcategorization system usedas a framework in our
research.

2.2 The Linguistic Phenomenon of Verb Subcategoriza-

tion

Subcategorization concernsarguments of a predicate. Thesemay be either obligatory
or optional, in which casethey should be separatedfrom adjuncts. While arguments
are closely associated with the predicate and understood to complete its meaning
(2a), adjuncts are understood to complete the meaning of the central predication as
a whole (2b).

(2) a He ate chocolate

b He sat eating chocolate

25
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A correct and consistent characterization of the argument-adjunct distinction is cru-
cial both for de�ning and identifying subcategorization. A variety of criteria havebeen
proposedin linguistic literature to help make the distinction. One well-known crite-
rion is the so-called`elimination' test (e.g. Somers,1984), which involveseliminating
an element from a sentence and observing whether the remaining sentence is still
grammatical. If it is grammatical, the element is classi�ed as an adjunct (or in some
cases,an optional argument). Otherwise it is classi�ed as an obligatory argument, as
e.g. in his bag in (3a).

(3) a He put the apple in his bag

b *He put the apple

Other frequently employed tests involve examining passive, theta roles, selectional
restrictions, diathesis alternations, island constraints, linear order of phrasesand so
forth (see e.g. Matthews, 1981; Somers, 1984; Pollard and Sag, 1987). Many of
the standard criteria are, however, subject to exceptions: few cover all casesand
some are in conict with each other. Somers(1984) points out, for example, that
the elimination test is complicated by the distinction betweensyntactic and semantic
obligatoriness. A semantically obligatory element may in di�eren t circumstances,at
the syntactic level, be obligatory (4a), optional (4b) or even necessarilyrealized by
zero (4c):

(4) a He met somebody vs. *He met

b Don’t disturb him, he is reading (something)

c Our boy can already read vs. *Our boy can already read something

In fact, there is a grey areaof caseswhich fall outside traditional classi�cation. Some
linguists haveaddressedthis problem by proposing�ner-grained distinctions along the
argument-adjunct scale(Matthews, 1981;Somers,1984). Somers(1984), for example,
proposesdistinguishing betweensix categories.Theseinclude (i) `obligatory comple-
ments' (i.e. arguments), (ii) `adjuncts' and (iii) `optional complements', exempli�ed
in (3a), (2b) and (2a) respectively, lexically determined and strongly compulsory (iv)
`integral complements' (e.g. he doesn’t have a chanc e), (v) `middles' (e.g. he smashed
the vase with a hammer ), which lie betweenobligatory complements and adjuncts,
and the extreme type of adjuncts called (vi) `extraperipherals' (e.g. he can cook, as
you know ), which modify an entire proposition, adjuncts included. Separatecriteria
are proposedfor identi�cation of these six categories. Although approaches such as
this explain somepreviously unclear constructions, they still leave fuzzy boundaries
betweenthe di�eren t categories.

comlex Syntax lexicographers(Meyers et al., 1994) have demonstrated that despite
theseproblems, arguments can be distinguished fairly accurately from adjuncts using
�v e criteria and �v e heuristics for argument-hood and six criteria and two heuristics
for adjunct-hood1. These criteria and heuristics are culled mostly from the linguis-

1Meyers et al. conducted an informal experiment where two human judges made substantially the
same argument-adjunct distinctions for a set of 154 phrases using the proposed criteria and heuristics.
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tics literature and supplemented with rough generalizations. For example, they state
that nps, pps headedby to, and �nite clauseswithout gaps tend to be arguments,
while purpose clauses,pps and advps expressingplace, time and manner are usu-
ally adjuncts. They also advise that an argument usually occurs with the verb at
signi�cantly higher frequency than with most other verbs, while an adjunct occurs
with a large variety of verbswith roughly the samefrequencyand meaning. Conicts
betweenthe criteria are resolved in various ways. For example, the complement-hood
criteria override the adjunct-hood criteria in all but a few well-de�ned cases,a single
complement-hood criterion warrants argument analysis, and so forth.

Given the argument-adjunct distinction, subcategorization concerns the speci�ca-
tion, for a predicate, the number and type of arguments which it requires for well-
formedness.For example,someverbs take np complements (e.g. kill and build), while
others do not (die and smile). Someverbs permit a following whether-complement
clause(enquire, wonder), others permit a following that-complement clause,while oth-
ers permit neither (kill, die) and others permit both (consider). Such speci�cation
is sensitive to `grammatical functions' i.e. the speci�c grammatical roles the argu-
ments can bear when present. For instance, (5) shows (with traditional labels) the
grammatical functions involved with the arguments of give.

(5) Tim SUBJECT gave us OBJECT a house SECOND OBJECT

Semantically , arguments correspond to participants involved in the event described
by the verb. The relationship betweena particular participant and an event is char-
acterizedby a `thematic role' (i.e. a `semantic role'). Thematic rolesare traditionally
described using a discreteset of labels called, for example, `theta roles' (e.g. Fillmore
1968, Gruber 1976). The following list includes some of the most frequently used
theta roles and the properties usually associated with them:

� agent a participant assertedas either doing or causing something, often with
volition.

� patient a participant being a�ected.

� experiencer a participant assertedas being aware of something.

� theme a participant assertedas changing a position or state, or being in a
particular position or state.

� source/goal/location a participant or location assertedasthe starting (source)
or ending (goal) point of motion, or place (location) of event.

� recipient/beneficiary/maleficiary a participant assertedasreceiving (recip-
ient), bene�ting from (bene�ciary) or being hurt by (male�ciary) something.

� instrument a participant assertedas being usedfor somepurpose.

See Meyers et al. (1994) for details of this experiment.
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According to this classi�cation, give has three participants in (5): the agent realized
by the subject Tim, the recipient realized by the object us, and the theme realized
by the secondobject a house. The task of associating syntactic arguments of a verb
with semantic roles (in the manner just indicated) is called `linking'.

The ways predicatesselecttheir arguments is determined by semantic tendenciesthey
have for these arguments, i.e. `selectionalpreferences'(Wilks, 1986) or `restrictions'
(Katz and Fodor, 1964). For example, the two sentences in (6) are syntactically
identical, but (6b) is semantically unacceptableasit violates the selectionalrestriction
holding betweenthe verb wrap and its object.

(6) a Mary wrapped the box of chocolates in tissue paper

b *Mary wrapped the orbit of Neptune in tissue paper

Although subcategorization usually involves reference to semantic arguments of a
predicate, semantic selection is not a necessaryrequirement. Subcategorization can
alsoconcernphraseswhoseoccurrenceis obligatory in the local phrasal context of the
predicate but are not semantically selectedby it. Examples of verbs subcategorising
for such phrasesare `subject' and `object raising' verbs. For instance, the subject of
the raising verb seem can be either contentful (7a) or pleonastic (7b). Raising verbs
contrast with super�cially similar `equi' verbs. While one subcategorizeddependent
of a raising verb is not assigneda semantic role, all subcategorizeddependents of an
equi verb are assigneda semantic role. Seem is thus a one-placepredicate (i.e. subject
raising verb), while try (7c,d) is a two-place predicate (i.e. subject equi verb). This
di�erence is illustrated in (7e,f). An account of these two verb types falls under the
rubric of `control'.

(7) a John seems to drive a Ferrari

b It seems to annoy Tim that John drives a Ferrari

c John tries to drive a Ferrari

d *It tries to annoy Tim that John drives a Ferrari

e seem0 (driv e0 John0 Ferrari0)

f try 0 (John0 (driv e0 John0 Ferrari0))

The sameverb may appear with a variety of arguments related to oneanother through
`diathesis alternations'. Sentencesin (8) exemplify the causative-inchoative alterna-
tion, wherethe sameargument slot �ller can be associated with di�eren t grammatical
functions, either with the direct object of the transitiv e reading (8a) or the subject of
the intransitiv e reading (8b).

(8) a Robert rolled the bal l

b The bal l rolled
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Alternations may involve adding, deleting or subtly changing entailments licencedin
a particular construction. This can be illustrated with the dative alternation 2:

(9) a John gave champagne to Diana $ John gave Diana champagne

b Joe brought a book to Mary $ Joe brought Mary a book

c Bob promised a new bike for Bill $ Bob promised Bill a new bike

d *He charged ten pounds for/to Tom $ He charged Tom ten pounds

e *Sarah gave a smile to Tony $ Sarah gave Tony a smile

f David brought a Mercedes to the race $ *David brought the race a Mercedes

(9a) shows the core caseof the dative alternation where a volitional agent causesa
willing recipient to receive an object. In (9b,c) the meaning is slightly di�eren t: the
agent intends to give recipient the object which the recipient may or may not receive.
In (9c), the intendedact of transfer refersto the future. (9d,e) aredativeconstructions
without oblique counterparts. (9e) is, in addition, a metaphorical/idiomatic extension
to the construction. (9f) shows a dative construction without the ditransitiv e variant.

Theseexamplesillustrate that similar verbswith slightly di�eren t entailments, or the
sameverb used in di�eren t ways or contexts (accompaniedby di�eren t arguments),
can give rise to di�eren t alternation variations. Rather than fully productive, alter-
nations appear semi-productive, as exempli�ed by numerous exceptions to the core
constructions, e.g. (9d,e,f).

What we understand as subcategorization in this thesis thus comprisesvarious facts
related to the syntax and semantics of predicate-argument structure. Full account of
this linguistic phenomenonrequires referenceto the syntactic and semantic represen-
tation of predicate-argument structure, and to the mapping betweenthe two levelsof
representation. We shall in the present thesis mainly concentrate on syntactic char-
acterization of subcategorization. In this we shall, however, exploit the closelink that
exists betweenthe syntactic and semantic characterizations.

2.3 Verb Subcategorization in Linguistic Theory

The theoretical account of verb subcategorization haschangeddramatically over time
due to the trend of \lexicalism", which has a�ected both semantic and syntactic
theory. In what follows, we will provide a generaloverview to the account of subcat-
egorization �rst within semantic and then within syntactic theory3.

2These examples are adapted from Briscoe and Copestake (1999) which provides detailed discus-
sion on dative constructions.

3Due to the vast amount of research in these areas and the limited scope of our enquiry, we shall
be able to provide a very general overview only and shall have to restrict our discussion to certain
theoretical frameworks. See the references given in this section for a fuller picture.
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[Event GOLoc

([Thing TIM],
[Path TOLoc

([Thing TIM],
[Position ATLoc ([Thing TIM], [Thing HOME])])])]

Figure 2.1: A sample lcs

2.3.1 The Semantic Basis of Subcategorization

Linking

Much semantic research has studied subcategorization from the perspective of link-
ing. Establishing linking between the syntactic and semantic levels of the predicate-
argument structure is not always straightforward. The task is especially complicated
by diathesisalternations. In the causative-inchoative alternation, for example,the re-
lation betweenarguments and roles is not transparent. In the causative variant (8a),
the subject is an agent and the object is usually a patient. When no explicit cause
is present, however, the patient surfacesas subject (8b), despite its apparent lack of
agentiv e behaviour. In contrast, the soldiers in (10b) seemperfectly acceptable as
agents on their own, but in the causative reading are relegatedto object status. Thus
no simple solution of assigningagents to subject and patients to object will su�ce.

(10) a The general marched the soldiers down the road

b The soldiers marched down the road

Examples such as this suggest the need for a �ne-grained semantic representation.
Essentially , to provide a full account of the semantic basis of predicate-argument
structure, a theoretical framework is required which allows for identi�cation of the
subtle meaningcomponents involved in verb behaviour, and a sophisticated meansof
linking these with corresponding syntactic realizations. Recent proposals for such a
framework include e.g. those of Jackendo� (1990), Pinker (1989), Dowty (1991) and
Levin and Rappaport Hovav (1996).

Jackendo� (1990) and Pinker (1989) adopt a compositional semantics perspective4.
Jackendo� views semantic representation as a subset of conceptual structure, and
proposesdecomposition of verbs into `lexical conceptual structures' (lcs s). lcs s em-
body `types', such as Event, Thing and State, and `primitiv es', such as cause,
go and be. Thematic roles tie the argument positions in a lcs to the nps in the
syntactic structure. Linking is thus establishedbetweenthe lcs s and syntactic struc-
tures. Semantically similar verbs take similar lcs s, and alternations are determined
as mappings betweenalternating lcs s. Figure 2.1 shows a simple lcs for Tim went
to home5.

4In compositional semantics, the idea is to construct sentence meaning from the meaning of con-
stituent words and phrases.

5This lcs is adapted from (Dorr, 1997).
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Pinker proposesdecomposingpredicatesinto structures with dominancerelationships.
Semantic structures embody the primitiv esgo , be, act and have. Syntactic struc-
tures are projected from the underlying semantic structures via linking rules. For
example, Pinker provides a structure for transfer predicates like give in which the
transfer event (go ) is embedded under the giving event (act ). The dative version
of give, on the other hand, has an embedded causedownership event (have). Thus
alternations apply to semantic structures in predictable ways, and linking rules gov-
ern whether the resulting alternation structures are acceptably realised. Similar be-
haviour of a group of verbs is explained in terms of a shared semantic component
called `thematic core'.

Dowty (1991) adopts a di�eren t approach, not based on predicate decomposition,
but on limiting the number of thematic roles to two `thematic-role-like concepts':
proto-agent (p-agt) and proto-patient (p-pat) roles. These are protot ypical clusters
of entailments that act as semantic defaults. P-agts tend to be volitional, sentient
or perceptive, often causingevents or movement. P-pats may be incremental themes
or stationary, or undergo a change of state or be otherwise causally a�ected. With
individual predicates,particular participants take on p-agt, p-pat or oblique role sta-
tus basedon the number of contributing entailments they share. The argument with
the most proto-agent entailments becomesp-agt (and subject), that with the most
proto-patient entailments becomesp-pat (and object), and the remaining participants
get oblique status. Thus oncethe proto rolesare assigned,linking follows trivially . In
this approach, verb meaning is simply expressedas the combination of a predicate-
speci�c relation with the set of valid entailments for each role. Phenomenasuch as
alternations are sensitive to the distinctions in licencedentailments.

Levin and Rappaport Hovav (1996) intro duce yet another type of approach, based
on further re�nement of the nature of the causation factor. According to the Un-
accusative Hypothesis, two classesof intransitiv e verbs exist, the `unaccusative' and
`unergative', each associated with a di�eren t underlying syntactic con�guration. This
distinction is said to account for various syntactic phenomena.Levin and Rappaport
Hovav argue that unaccusativity is syntactically encoded (in terms of internal and
external arguments) but semantically determined (for example, in terms of internal
and external causation). It results from the application of linking rules sensitive to
internal/external causation. Restrictions on various realizations of causative alter-
nations, for example, are attributable to a distinction between internal and external
causation. For instance, verbs amenableboth to inchoative and causative forms are
verbs of external causation that do not require a volitional agent (e.g. Robert broke
the vase $ The vase broke). In contrast, non-alternating verbs are verbs of internal
causation that do require a volitional agent (e.g. Robert broke the promise $ *The
promise broke). This approach is not representational: rather, it is compatible e.g.
with predicate decomposition6.

6For other proposals on linking see e.g. Grimshaw, 1990; Guerssel, 1986; Hale and Keyser; 1993.
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Lexical Semantic Perspective

In recent years, there has beenrenewed interest and research within semantic theory
on the meaning of words themselves, i.e. how lexical semantic properties a�ect both
syntactic behaviour and (compositional) semantic interpretation. We shall discuss
here just two examples,Pustejovsky (1991) and Levin (1993)7.

Pustejovsky discussesexamplessuch as those in (11a,b) whereenjoy conveysan iden-
tical relation of pleasurableexperiencebetweenthe experiencersubject and the event
denoted by the verb's object of which the experiencer is agent. In (11a), we needto
explain the manner in which the implicit agent of the event-denoting np book-writing
is associated with Wodehouse,while in (11b), weneedto explain the mechanismwhich
allows that book to denote an event of Wodehousewriting or John reading the book.
According to Pustejovsky, enjoy coercesits artifact-denoting np object into an event
of sometype, while the lexical semantic representation of the np itself determinesthe
broad nature of understood event. For example, the nature of event in (11b) di�ers
from that in Wodehouse enjoyed the scene.

(11) a Wodehouse enjoys book-writing

b Wodehouse / John enjoyed that book

Positing separatelexical entries for the di�eren t syntactic realisationsof enjoy fails to
capture the semantic relatednessof theseexamples.Pustejovsky proposesa theory of
lexical semantics called `the generative lexicon' the better to account for such phenom-
ena. In his generative model compositionalit y is assumedand lexical entries contain a
rangeof representativ e aspectsof lexical meaningat di�eren t levels: `argument struc-
ture', `event structure', `qualia structure' and `lexical inheritance structure'. Event
structure, for instance, identi�es the event type involved with a verb or phrase,while
lexical inheritance structure determines the relation between words in the lexicon.
The levels of representation can be connectede.g. via type coercion, and the oper-
ation of `co-composition' is used to perform specialisedinference in prede�ned ways
which control the composition of knowledgestructures of words in context. The over-
all model thus captures subtle meaning variations without attempting to enumerate
them.

Levin (1993), on the other hand, arguesthat alternate syntactic realizations are partly
predictable on a semantic basis and may have semantic consequences.For instance,
verbsparticipating in the dative alternation exempli�ed in (9) are typically changeof
possessionverbs. Changeof position verbs,however, can only undergothe alternation
if they can be interpreted as conveying a changeof possession(e.g. John slid the beer
to the table edge vs. *John slid the table edge a beer)8.

Levin points out that although studiesof verb semantics have generallyacknowledged
7See for further related research especially Goldberg (1994). Goldberg has argued, within her

theory of the Construction Grammar (Goldberg, 1994), that constructions have meanings independent
of lexical items. The subcategorization (frame) itself or the construction is said to contribute aspects
of the overall meaning. Thus restrictions on realizations of the dative alternation, for instance, arise
because of conflicts between the semantics of the dative construction and that of particular arguments.

8This example is from Briscoe (1991), p. 43. See the reference for further discussion.
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the link between the syntax and semantics of verbs, their continued successwill de-
pend partly on extensive exploration of verbs' syntactic behaviour. This, sheargues,
involves looking at verbs' scf s, their participation in various diathesis alternations,
their morphological properties, as well as extended meanings. Drawing on previous
research on verb semantics and her own investigation, Levin identi�es 79 alternations
involving np and pp complements and classi�es over 3200verbs as members of these
alternations. Moreover, shegroups the verbs into 191 semantic classesbasedon their
participation in various setsof alternations. Levin's account of verb semantics is thus
descriptive, rather than representational (lik ee.g. Pustejovsky's account). The result-
ing sourceis attractiv e in providing a summary of the variety of theoretical research
done and a referencework extensive enoughfor practical nlp use. We shall describe
Levin's work in detail in section 4.2.1 and discussits relevance for nlp and lexical
acquisition later in this thesis (seeespecially sections6.2 and 7.2.2).

2.3.2 Subcategorization in Syntactic Theory

Subcategorization and the Development of Lexical Grammar

In early days of syntactic theory, the entire lexicon wastreated asa peripheral compo-
nent, merely asan appendix to a grammar, or a list of basic irregularities (Bloom�eld,
1933). Subcategorization was more or lessequated with the number and category of
arguments related by a predicate. The lexicon would, for example, encode that do-
nate in English means'X causesY to have Z' and is a ditransitiv e verb with regular
morphology. However, most other facts - such as that the subject of donate typi-
cally appearsbefore it - wereunderstood as predictable and fairly generalstatements
about English syntax and were stated independently of the lexicon. Over the past
decades,however, the lexicon has taken on an increasingly central role in the descrip-
tion of idiosyncratic, subregular and regular properties of language. Consequently ,
the importance of subcategorization has increased. In recent syntactic theories, sub-
categorization represents a complex of information critical to the syntactic behaviour
of a lexical item.

The development of \lexicalist grammar" was initiated by Chomsky (1970), who pro-
posedthat similarities in the structure of deverbal noun phrasesand sentencescould
be expressedin terms of a lexical relationship between the verb and its nominaliza-
tion. In this new theory of grammar, lexical redundancy rules were used to express
the relationship between a verb and a nominal (e.g. revolve, revolution). Bresnan
(1976, 1982) characterized further lexical regularities within the syntactic framework
called Lexical Functional Grammar (lf g). Central grammatical phenomena(such
as passivization) were explained within the lexicon. Overall, the role of the lexicon
was considerably larger when compared with other approaches at the time, e.g. the
Government and Binding Theory (gb) (Chomsky, 1981). The lexical entries were
elaborate, with every inected form given its own lexical entry .

Gazdar et al. (1985) continued the line of work with GeneralizedPhrase Structure
Grammar (gpsg). This syntactic framework provided a novel treatment of subcatego-
rization. Simplifying somewhat, subcategorization is speci�ed in gpsg via a feature
which indexes lexical items to speci�c phrase structure (ps) rules, which intro duce



34 CHAPTER 2. BACKGROUND TO SUBCATEGORIZATION ACQUISITION





A : boolean 1

B : f

C : 1





Figure 2.2: A samplefeature structure

their appropriate syntactic arguments as phrasal sisters. Verbs of di�eren t type are
listed in the lexicon with appropriate values for the Subcat(egorization) feature. For
example, we could have the rule 'VP ↔ V[Subcat 7] NP' which intro duces a simple
transitiv e structure (e.g. Mary ate the apple) with the Subcat feature 7 on the v
node, and every verb in the lexicon which can appear in that structure carries the
feature 7 as part of its lexical entry . Operations which a�ect bounded dependencies
(such as passive) are expressedin gpsg in terms of metarules which systematically
manipulate vp rules.

Building on the work of gpsg , Pollard and Sag (1987, 1994) proposeda more rad-
ically lexicalist syntactic framework called Head-driven Phrase Structure Grammar
(hpsg). In this framework, the syntactic component has been drastically reduced.
The construction-speci�c ps rules are abandonedin favour of a small number of more
general rules interacting with a richer lexicon to capture syntactic generalizations.
This generalps schema builds constituents according to the speci�cations of Subcat
lists projected from lexical entries. Operations which a�ect bounded dependencies
are expressedin terms of lexical operations (rules) which manipulate Subcat values.
We shall take a closer look at the treatment of subcategorization within hpsg later
in this section.

Further developments of syntactic theory have likewise continued to relocate infor-
mation in the lexicon: Categorial Grammar (cg ) (e.g. Zeevat et al., 1987), Tree-
Adjoining Grammar (t ag) (Joshi et al., 1975), and so forth. As the importance of
the lexicon has increasedwithin syntactic theory, the role of other components of
grammar has declined. In radically lexicalist theories, the syntactic component is
reduced to a few general principles concerning the combination of constituents and
all the information about categorial indentit y and mode of combination of thesecon-
stituents is projected from individual lexical entries. Thus these theories, instead
of building subcategorization requirements in syntax, do exactly the opposite; they
locate virtually all syntactic information into the subcategorization requirements of
lexical items.

As more information is located in the lexicon, the questionof how the lexiconshouldbe
represented hasbecomecritical. Most lexicalist theoriesof grammar (e.g. lf g, gpsg ,
hpsg, cg ) use uni�cation- or constraint-based formalisms (e.g. Shieber, 1986) for
lexical representation. These formalisms treat syntactic categoriesas feature struc-
tures (fs s). fs s are formally equivalent to directed acyclic graphs (dags) and are
displayed in attribute-v alue-matrix (avm) notation, as shown in �gure 2.2. In avm
notation, featuresare indicated in upper case type, typesin lowercaseboldface and
dag reentrancy is indicated by coindexing. The information in fs s is combined using
uni�cation. Uni�cation of two fs producesa new fs in which the information from
both fs s is monotonically combined.
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RESULT : cat
DIRECTION : direction
ACTIVE : sign







Figure 2.3: A sampletype: a verb category
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Figure 2.4: A type hierarchy fragment: verb category types

When applying constraint-based formalisms to the lexicon, it is natural to think in
terms of typed feature structures (Carpenter, 1992), rather than untyped fs s. The
type systemmay be usedto represent the lexicon asan inheritance hierarchy in which
information common to a classof lexical items is inherited by all its subclasses.For
example, the properties common to all verbs (e.g. pos, presenceof a subject) can be
de�ned asa category type which subsumesall membersof the verb class. The various
subcategoriesspecify di�eren t verb types(e.g. intransitiv e vs. transitiv e). Figure 2.3
displays a verb category type common to all verbs, and �gure 2.4 shows a partial
inheritance hierarchy for the sub-typesof this type9. Although inheritance basedon
typing is formally attractiv e, there are linguistic phenomenawhich involve patterns of
regularities and subregularities which cannot be insightfully characterized according
to a monotonic inheritance system (Briscoe et al., 1993). Many recent proposals
therefore focus on the incorporation of nonmonotonicity i.e. default inheritance (e.g.
Carpenter, 1993;Lascarideset al., 1996).

A standard feature of inheritance-basedlexicons is the use of lexical rules, i.e. the
mappings from one fs to another related one. Lexical rules state conditional implica-
tions about the presenceof derived lexical entries, given other entries. The rules are
usede.g. to represent diathesis alternations. They have taken a variety of forms: see
e.g. Shieber (1984), Briscoe and Copestake (1999) and Bresnan and Kanerva (1989).

9These examples are taken from Sanfilippo (1993) whose lexical representation is compatible with
Unification Categorial Grammar (ucg).
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The Grammatical Account of Subcategorization

Grammar theories10 di�er largely in their approach to the argument-adjunct distinc-
tion. Various distinctions along the argument-adjunct scale are assumed,and the
treatment of the elements classi�ed to the categoriesadopted varies. Similarly, the
number of scf s assumedand the amount of information provided in them is subject
to variation. This is mostly due to diverging dispositions to use syntactic rules and
principles to expresssyntactic generalizations, with a consequent shift of emphasis
away from or towards lexical speci�cation. For example, non-lexicalist grammars,
such as gb, handle the phenomenonof control in terms of syntactic principles or
rules, while lexicalist grammars, such as lf g, hpsg, and cg , encode control in the
lexicon, in scf s of the relevant predicate.

The theoriesalsovary in how they represent the semantics of subcategorization. Some
theories employ only one level of syntactic representation and associate a semantic
representation with each syntactic constituent in some fashion (e.g. gb, lf g and
gpsg). In thesetheories,argument structure is de�ned asa level of syntactic descrip-
tion. One such theory is (the early version of) gpsg . It pairs a semantic rule with
each syntactic ps rule, which builds the semantics of the left-hand mother category
out of the semantics of each right-hand daughter category. Other, more radically lexi-
calist theories, relocate the semantics directly in the lexicon (e.g. hpsg, cg ). In these
theories, argument structure is part of the semantic description of the predicates.
For example, the lexical entry for a transitiv e verb includes the information that the
semantics of the subject and object syntactic arguments function as the semantic ar-
guments of the predicate associated with the verb. Locating this information (which
generalizesto all transitiv e verbs) in the lexicon allows the semantic representation
to build up in tandem with the syntactic representation.

Most syntactic theories approach semantics in compositional manner. The details of
the semantic representation, however, vary. Sometheories usetheta role annotations
to rank participants in order to determine their syntactic function. Classifying ar-
gument positions into theta roles may be done in terms of traditional classi�cations
of the type intro duced in section 2.2. Alternativ ely, more primitiv e components of
meaningmay be assumed,such asthoseproposedby Pinker (1989) and Dowty (1991)
(discussedin section2.3.1). For example,lf g assumesa hierarchy of traditional theta
roles, while ucg makes partial use of Dowty's protot ypical roles. gb, instead, uses
internal/external argument distinction to determine the structural realization of se-
mantic roles. This distinction is not semantically motivated, but simply assumedas
a lexical speci�cation.

Syntactic theories also di�er in how they approach linking. Firstly , they vary in how
they de�ne and represent grammatical functions. Many currect theories view gram-
matical functions as links betweentheta roles and syntactically selectedconstituents,
representing them at the level of lexicon or syntax. San�lipp o (1990) distinguishes
three main orientations according to whether grammatical functions are (i) reduced
to constituency relations between phrase markers (as in gb), (ii) de�ned as primi-
tiv e elements of the grammar (as in early versionsof lf g), or (iii) derived from the

10See the previous section for references of grammar theories we discuss in this section.
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semantic constituency of predicates (as in cg and hpsg). Secondly, these theories
vary in how linking proceeds. For example, in gb, the thematic functionalit y of ar-
gument structure participants is directly projected in syntactic structure. Subjects,
objects and other grammatical functions are expressedaspredication and government
relations between nodes in the tree structures. lf g, instead, usesLexical Mapping
Principles to govern the linking of thematic roles to grammatical function features in
lexical forms. In hpsg and cg , arguments are syntactically ranked according to the
obliquenesshierarchy which reproposesthe grammatical functions in terms of relative
position in the Subcat list.

To illustrate the discussionso far, let us consider - as an example - the treatment of
subcategorization in (the standard) hpsg. hpsg is a radically lexicalist theory which
makes heavy use of uni�cation and where categoriesincorporate information about
the categoriesthey combine with, including subcategorization information. Very few
rules are necessary:rather, all important syntactic and semantic processesare driven
by information in lexical entries. Much of the ps rules in theories like gpsg are
replacedby constraints on the combination (uni�cation) of phrasal and lexical signs.
A sign is a fs which encodesphon ology, syn tax and semantic attributes. hpsg makes
use of typed signs, organizing the lexicon as an inheritance hierarchy. Distinct verb
types (e.g. intransitiv e and transitiv e) are characterized by distinct typed signs and
subcategorization of verb (sub-)types is encoded in terms of list of categorieson the
attribute subcat . In lexical entries, the feature subcat is used to encode various
dependenciesthat hold between a lexical head and its complements. The values of
this feature contain functional, formal and semantic information, providing uniform
treatment of each. Lexical entries can thereforeexert restrictions on categoryselection
and government, as well as caseand role assignment.

Figure 2.5 shows a simple hpsg style lexical entry for give11. As illustrated in this
entry , the feature subcat takes as its value a list of partially speci�ed synsems,
which bear local valuesfor the attributes categor y and content . categor y con-
tains information about pos, subcategorization requirements and possible markers,
while content provides information about argument structure. The feature subcat
speci�es the correspondencebetween grammatical categoriesand the semantic roles
present at the event described by the verb. The variables associated with the ele-
ments of the subcat list unify with the corresponding variables of the semantic roles
in the attribute content . For example, the subject variable (the �rst element of the
subcat list) uni�es with the variable �lling the `giver' role.

The o w of subcategorization information up projection paths is handled by the Sub-
categorization Principle. This principle establishesthat the subcat value of a phrase
is the subcat value of the lexical headminus thosespeci�cations already satis�ed by
someconstituent in the phrase.

hpsg assumesa hierarchy of grammatical categories. Syntactic functions (with the
exceptionof the subject in someversionsof hpsg) are de�ned in terms of the order of
corresponding elements on the head's subcat list. The order of this list corresponds
to the traditional notion of obliqueness.

11The entry is taken from eagles (1996), p. 14.
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Figure 2.5: hpsg lexical entry for give

Operations which involve boundeddependencies(such as passive) or semi-productive
diathesis alternations, are expressedin hpsg using lexical operations which manip-
ulate subcat values. They can be captured using lexical rules which map between
verb types. For example, to specify passive, a lexical rule may be intro duced which
removes the �rst element of a subcat list. Or, to specify an alternation such as the
causative-inchoative a lexical rule can be de�ned which establishesa mapping from
the verb type intrans-verb to the verb type trans-causative-verb, stating a con-
ditional implication about the presenceof the `derived' lexical entry given the basic
entry .

In sum, the treatment of subcategorization varies largely from one theoretical frame-
work to another. Within semantic theory there is no consensusregarding the ex-
act meaning components that determine various aspects of verb subcategorization.
Rather than being clear, these components appear subtle and elusive. Similarly
within syntactic theory, there is no uniform account of this complex phenomenon.
However, there is a common trend towards lexicalism, both within semantic and syn-
tactic theory. The importance of the lexicon has increasedand at the sametime, the
importance of subcategorization within the lexicon.

2.4 Subcategorization Lexicon

Given the highly structured conceptionof the lexicon emergingfrom linguistic theory,
the central role of subcategorization within the theory, the requirements of various
theoretical frameworks and the needsof the current (statistical) nlp applications,
the question of how to obtain formal, explicit lexicons of su�cien tly rich subcatego-
rization has becomecritical. In what follows, we shall �rst consider requirements of
subcategorization lexiconsand then discussthe task of their construction.

2.4.1 Requiremen ts

The design, content and speci�cation of a lexicon for any nlp system is inevitably
tied to the purposefor which the nlp system has beenconstructed, to the inuence
of prevailing theories and to the current requirements of computational tractabilit y.
The lexical knowledge required by di�eren t nlp systemsranges from a shallow list
of morphological forms to a highly structured and �ne-grained lexicon which derives
from the linguistic theory adopted. To be practical and useful, however, most nlp
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systemsneeda substantial and comprehensive lexicon which covers an adequatevo-
cabulary and encodesthe type of qualitativ e and quantitativ e knowledgerequired by
the application. A �ne-grained lexicon is neededin the increasing number of tasks
that require rigorous interpretation of meaning. Somegeneral statements regarding
the content of such a lexicon can be found, for example,in Hudson (1995) and Ide and
Veronis (1995). In general, the conception of a richer lexicon leads to a combination
of morphological, collocational, syntactic, semantic, pragmatic and, for applications
involving speech, phonological and phonetic information.

A comprehensive subcategorization lexicon suitable for various nlp usesshould �rstly
distinguish between arguments and adjuncts. This is essential e.g. for a parser, to
distinguish between multiple parsesof utterances and represent di�erences in pred-
icate argument structure. Consequencesof errors in making this distinction include
e.g. generating too few or spurious parses,missing preferencesbetween parsesand
misinterpreting the predicate argument structure (Meyers et al., 1994).

Given that the argument-adjunct distinction can be established,a subcategorization
lexicon must, at the very least, encode the number and category of syntactic ar-
guments associated with di�eren t predicates. This information is typically encoded
in terms of scf s. More or less speci�c scf classi�cations have been proposed, de-
pending e.g. on the requirements of a particular syntactic framework assumed.scf s
may e.g. incorporate only syntactic or also semantic information; they may abstract
over lexically governed items (such as prepositions and particles) or parameterizefor
them, and so forth. The fairly detailed classi�cation proposedby Briscoe (2000) (in-
cluded in Appendix A), for example, incorporatesasmany as163scf distinctions. It
abstracts over speci�c lexically-governed particles and prepositions and speci�c pred-
icate selectionalpreferences,but includessomesemi-productive boundeddependency
constructions, such as particle and dative movement.

To be compatible with current linguistic theories and guarantee full recovery of log-
ical forms, a subcategorization lexicon should ideally also specify predicate senses,
the mapping from syntactic arguments to semantic representation of argument struc-
ture, control on predicative arguments, semantic selectionalpreferenceson argument
heads,and diathesis alternation possibilities. In addition, it would be important to
encode quantitativ e information, such as the relative frequency of distinct scf s for
each predicate and the probabilit y (or productivit y) of various diathesis alternations.
This information would be particularly useful to current statistical nlp applications.
Knowledgeof verb semantic classesor further details of argument structure, such as
morphosyntactic properties of arguments, may be useful as well, depending on the
intended useof the lexicon.

Both the content and form of a subcategorization lexicon require consideration. As
discussedin the previous section, many contemporary grammar theories assumea
highly structured organization of a lexicon, which shows convergenceof lexical the-
ory and lexicographic practice. This contrasts with the traditional organization of
a (subcategorization) lexicon as a list of unrelated lexical entries. The traditional
organization lacks generalization and unnecessarilyexpands lexical representation.
In addition, it fails to capture the semantic interrelation between the di�eren t verb
sensesand their corresponding scf s. According to Levin (1993,p. 1), an ideal lexicon
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would \pro vide linguistically motivated lexical entries for verbs which incorporate a
representation of verb meaningand which allow the meaningsof verbs to be properly
associated with the syntactic expressionsof their arguments". If a subcategoriza-
tion lexicon encodes information about alternations and verb semantic classes,this
would allow its organization in a compact and linguistically motivated manner (e.g.
San�lipp o, 1994;Briscoe and Copestake, 1999).

Attempts to obtain subcategorization lexicons may be divided into dictionary and
corpus-basedapproaches. Weshall discussthesetwo typesof approach in the following
sections.

2.4.2 The Dictionary-Based Approac h

Several substantial, static subcategorization lexicons exist for English, built either
manually by (computational) linguists or largely automatically from machine-readable
versionsof conventional learners' dictionaries.

Manual construction of lexiconswaspopular in early stagesof nlp . When the systems
becamemore sophisticated and lexicons grew in size, this approach was not entirely
abandoned. In the early 1990's,large lexiconsor lexical databases(ldb s) were devel-
oped, mostly manually, within several projects, e.g. genelex , Esprit (Normier and
Nossin,1990); mul tilex , Esprit (McNaught, 1990). One such substantial subcatego-
rization lexicon is the comlex Syntax (Grishman et al., 1994). However, the task of
manually developing a large-scalecomputational lexicon is equivalent to that of devel-
oping a conventional advanced learners'sdictionary from scratch. It is a major task
involving hundreds of years of speci�cation, design, data collection and information
structuring - even when assistedby corpus analysis and software support. Not only
labour-intensive, manual construction of lexiconsleadseasily to problemsof inconsis-
tency and errors of omission,which are di�cult or impossibleto detect automatically
(Boguraev and Briscoe, 1989).

Since the resourcesrequired for manual development of lexicons are typically not
available, an alternativ e approach has,sincethe 1980's,beento make useof machine-
readabledictionaries (mrd s). Theseinclude information already categorized,indexed
and available in machine readable form. This information may be used to automat-
ically construct a substantial portion of a lexicon, which saves much of the e�ort
involved in manual work. The ideal mrd for this purposewould be a comprehensive
advanced learner's dictionary organized as a database. Such a sourcesupplies more
grammatical and other information than an ordinary dictionary, as it assumesless
linguistic competenceon the part of the user (Briscoe, 1991).

Available mrd s, such as ldoce , cobuild , the Oxford AdvancedLearner's Dictionary
(oald ) (Hornby, 1989) or the Cambridge International Dictionary of English (cide )
(cup editor, 1995)only, however, approach the ideal. Much e�ort hasbeeninvestedin
recognizingand compensating for errors and inadequaciesin mrd s and/or converting
one or several mrd s into a single ldb (e.g. Byrd et al., 1987; Boguraev et al., 1991;
Poznanski and San�lipp o, 1995). This work has been applied to monolingual and
bilingual dictionaries, sometimesintegrated with languagecorpora and morphological
processing. An example of a substantial subcategorization lexicon constructed from
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the mrd of ldoce via somemanual intervention is the anl t dictionary 12.

While work on mrd s hasmet with somesuccess,it hasnot resulted in knowledge-rich
lexical resources.Basedon manual work and originally written with a human readerin
mind, the information included in mrd s is often unsystematic. Evenafter considerable
manipulation, customisation and supplementation, these dictionaries contain errors,
inconsistenciesand circularities di�cult to recogniseand compensatefor.

Briscoe (2001) notesthat (semi-)manually developed lexiconstend to show high preci-
sionbut disappointing recall. When an open-classvocabulary of 35,000words (Briscoe
and Carroll, 1997) was analysedmanually for scf and predicate associations and the
result was comparedagainst associations in anl t and comlex , type precision13 was
around 95% for anl t and comlex , while type recall was only around 76% for anl t
and 85%for comlex . Thus despite the large volume of lexicographical and linguistic
resourcesdeployed, 16-24%of associations betweenpredicatesand scf s wereomitted
in these lexicons. Briscoe reports that many of the omitted associations are quite
unremarkable. For example, when the associations from anl t and comlex were
combined, this still left the following sentence typeswith the verb seem unanalyzed:

(12) a It seemed to Kim insane that Sandy should divorce

b That Sandy should divorce seemed insane to Kim

c It seemed as though Sandy would divorce

d Kim seemed to me (to be) quite clever / a prodigy

e (For Kim) to leave seemed to be silly

f The issue now seems resolved

In addition, there are other shortcomings in the content of the lexicons obtained via
dictionary-based work. For example, subcategorization lexicons such as anl t and
comlex only associate predicate forms (not predicate senses)with scf s. Although
they encode relatively well the syntactic speci�cation of subcategorization, semantic
facts and facts at the boundary between syntax and semantics are poorly encoded.
Although e.g. information about lexical selection (i.e. the speci�c lexical require-
ments that a verb imposeson its subcategorized content, such as details of bound
prepositions, particles and complementizers) is included, information about semantic
selectional restrictions/preferencesis lacking. Similarly, the encoding of diathesis al-
ternations is inadequate. Only information about oneor two well-known alternations,
such as the dative construction, is included, and information about verb semantic
classesis absent. In addition, the mapping from syntactic arguments to semantic
argument structure is not fully speci�ed, and quantitativ e information, e.g. about
relative frequencyof scf s given words, is altogether absent.

The organization of current static lexicons does not meet the ideal discussedin the
previous section. Although de�nition of a lexical entry varies from one lexicon to
another (e.g. a lexical entry in anl t associates a particular verb with one scf only,
while comlex gathers under one entry all scf s taken by a particular verb), lexicons

12We will introduce anlt further in section 4.2.2.
13See section 2.5.2 for definition of type precision and type recall.
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are generally built in the traditional manner, as lists of unrelated lexical entries. A
linguistically versatile lexicon design, e.g. that compatible with current grammar
theories would require, again, a more thorough encoding of semantic and syntactic-
semantic properties of subcategorization than current lexicons employ.

The general problem with both manually developed lexicons and those developed
from mrd s is that the information encoded in them is by de�nition �nite. Adding
information currently missing in theseresourcesis possible,although costly and time
consuming. However, it will not solve the problem inherent in the dictionary-based
approach: given that languagevaries acrosssub-languages,domains and over time, a
fully accuratestatic lexicon is unattainable in any case.Subcategorization frequencies
have beenshown to vary acrosscorpus type (written vs. spoken), corpus genre (e.g.
�nancial news text vs. balanced text), and discoursetype (single sentencesvs. con-
necteddiscourse)(Carroll and Rooth, 1998;Roland et al., 2000;Roland and Jurafsky,
1998,2001). Roland and Jurafsky (2001) have showed that much of this variation is
causedby the e�ects of di�eren t corpus genreson verb senseand the e�ect of verb
senseon subcategorization. For example, the attack and bill sensesof charge have
each di�eren t set of scf probabilities. Moreover, the bill senseis much more common
in e.g. a newswire corpus than a balancedcorpus, while the attack senseis frequent
in a balancedcorpus and rare in a newswirecorpus. In consequence,charge will have
di�eren t overall scf frequenciesin thesetwo corpora. Thus the relative frequencyof
a scf variesdepending on the relative frequencyof the senseof a word and often scf s
are di�eren t under senseextensions. For example, in she smiled herself an upgrade,
the entire scf is only available under the extendedsense(Briscoe, 2001).

2.4.3 The Corpus-Based Approac h

Thus it seemsthat a once-and-for-all`universal' lexical resourceis a deadweight, and
that lexicons should rather be produced on a case-by-casebasis. The problems with
dictionary-based lexicons have led to attempts to acquire lexical information from
corpus data. This approach has becomepossibleduring the past decadeor so, when
su�cien tly cheapcomputation and large enoughcorpora have becomeavailable. Text
corpora are a useful sourceboth of qualitativ e and quantitativ e lexical information.
Frequency information is crucial for many nlp applications and essential to statisti-
cal approaches. Along with linguistic information, it is also relevant to the corpus
data from which it is acquired. The latter makes it possible to acquire lexical in-
formation speci�c to di�eren t sub-languages,eliminating the necessity of viewing the
lexicon asstatic. In the next sectionwe survey attempts to acquire subcategorization
information automatically from corpus data.

2.5 Automatic Subcategorization Acquisition

During the past decade,several works have emergeddescribingmethods of automatic
subcategorizationacquisition (Brent, 1991,1993;Ushioda et al., 1993;Manning, 1993;
Ersan and Charniak, 1996;Briscoe and Carroll, 1997;Carroll and Rooth, 1998;Gahl,
1998; Lapata, 1999; Sarkar and Zeman, 2000). These methods have so far concen-
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trated on the acquisition of very basic subcategorization information: subcategoriza-
tion frames (scf s) and their relative frequenciesgiven speci�c predicates. Although
this work has met with somesuccess,more work is neededbefore large-scalelexicons
encoding accurate and comprehensive subcategorization information can be obtained
automatically. The research presented in this thesis builds directly on the work al-
ready done on subcategorization acquisition. In particular, the problems it addresses
stem directly from earlier research. In what follows, we shall accordingly provide a
fairly detailed survey of previous research in the topic. We organize our survey as
follows: Section 2.5.1 reviews the di�eren t methods used for scf acquisition. Sec-
tion 2.5.2 looks into evaluation of these methods and describes the performance of
existing scf acquisition systems. It also discussesthe problems that need to be ad-
dressedwhen aiming to improve state-of-art performance,and de�nes the particular
problem we address in this thesis. Finally, section 2.5.3 intro duces the system we
employ in our research as a framework for scf acquisition.

2.5.1 Metho ds

All methods of subcategorization acquisition sharea commonobjective: given corpus
data, to identify verbal predicatesin this data and record the type and/or number of
scf s taken by thesepredicates. Typically, they proceedin two steps,by (i) generating
hypothesesfor scf s and (ii) selectingreliable hypothesesfor the �nal lexicon. Giving
a more detailed description of a \t ypical" learning processis di�cult, as the proposed
methods vary in di�eren t respects. Firstly , they vary in goal. Somesystems learn
only scf s, while others also learn relative frequencyof scf s given speci�c predicates.
Secondly, the methods vary as to whether the scf s are pre-speci�ed or learned, how
many scf s are targeted or learned,and how they are de�ned. Further, approachesto
hypothesis generation vary, depending on whether raw, partially parsed or interme-
diately parsed corpus data are used as input to the learning process,and how cues
for hypothesesare de�ned and identi�ed. Hypothesisselectionis similarly subject to
variation. Some systems treat hypothesisedscf s as absolute scf indicators, while
others treat them as probabilistic indicators. The latter systems typically employ
a separate �ltering component, with �ltering frequently performed using statistical
hypothesis tests. However, di�eren t hypothesis tests and versionsof these tests are
in use.

We divide the various methods into three groups which we discussin the subsequent
sections. This grouping reects chronological development from preliminary systems
capable of acquiring only a small number of scf s towards more ambitious systems
suitable for large-scalesubcategorization acquisition. It alsoshows how methods have
developed with respect to the di�eren t factors listed above14.

14This section serves as an overview: the particularly relevant aspects of the scf acquisition process
and those of individual studies will be discussed more thoroughly in the corresponding chapters to
follow.
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Preliminary Work

Work on automatic subcategorization extraction was initiated by Brent (1991, 1993)
who proposeda preliminary method for acquiring just six scf s from corpusdata. The
setof scf s targeted wasmanually composedand restricted to thoseinvolving basicnp,
sentential and in�nitiv al phrases. Brent's purposewas only to exploit unambiguous
and determinate information in raw (un-tagged) corpora. A number of lexical cues
was de�ned, mostly involving closedclassitems, which reliably cue verbs and scf s.

In Brent's system, hypothesis generation proceeds�rstly by �nding the verbs in the
input, and secondlyby �nding phrasesthat represent arguments of the verb. Potential
verbs are identi�ed by searching the corpus for pairs of words which occur both with
and without the su�x -ing. A potential verb is assumeda verb unless it follows a
determiner or a preposition other than to. For example,was walking would be taken
as a verb, but a talk would not. To obtain unambiguous data, verbs occurring in
morphological forms other than the stem form and the -ing form are ignored. The
resulting data are usedas input to scf identi�cation. First, syntactic phrasesnear a
putativ e verb occurrenceare examined and likely verbal arguments indenti�ed using
lexical cues.For example,the clausebeginningwith that the is identi�ed asa potential
argument of the verb tell in I want to tell him that the idea won’t fly on the basisthat
pronouns like him rarely take relative clauses. Next, putativ e argument phrasesare
classi�ed as scf s. For instance, a phrase is classi�ed as in�nitiv e complement if the
string of words immediately right of the verb matches the cue [to v ] (e.g. I hope to
attend).

Although Brent useshighly reliable cues,the correspondencebetweencuesand syn-
tactic structure is still not perfect, and the output of the hypothesisgeneratorcontains
somenoise. For example, using Brent's cues, the verb refer is wrongly classi�ed as
taking an in�nitiv ecomplement in a sentencesuch asI referred to changes made under
military occupation. Brent (1993) addressesthe problem by treating the hypotheses
asprobabilistic rather than absolute indicators of scf s. He employs a statistical �lter
for hypothesis selection, which aims to determine when a verb occurs with a par-
ticular scf often enough that all those occurrencesare unlikely to be errors. This
�lter is basedon the binomial hypothesis test (bht ) (Kalbeisc h, 1985). It usesthe
overall error probabilit y that a particular scf will be hypothesisedand the amount
of evidencefor an association of that scf with the verb in question to decidewhich
hypothesesare reliable enoughto warrant a conclusion15.

The main problem with Brent's approach is that it generateshigh accuracyhypotheses
at the expenseof coverage. Reliant on raw corpus data, the method is dependent on
lexical cues. However, for many verbs and scf s, no such cues exist. For example,
some verbs subcategorize for the preposition in (e.g. They assist the police in the
investigation), but the majorit y of occurrencesof in after a verb are np modi�ers or
non-subcategorizedlocative phrases(e.g. He built a house in the woods). Thus the
approach is not extendableto all scf s and at any rate leadsto ignoring a great deal of
information potentially available. Use of only unambiguous data meansthat corpus
analysis will be incomplete and no accurate frequency information can be gathered.

15A detailed account of this test and its versions is given in chapter 3.
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Further Developments

Given the problemsof Brent's method, subsequent approachesto scf acquisition have
opted to seekevidencefrom all examplesin corpusdata. This hasnecessitatedthe use
of annotated input data. The approach hasbeento extract pos tags from corpora and
chunk (Abney, 1991) the pos tagged data into non-recursive coresof major phrases,
e.g. verb groups,bare unpostmodi�ed nps, pps and soforth. Chunks extend from the
beginning of the constituent to its head,but do not include the post-headdependents,
such as complements and trailing adjuncts. For instance, a verbal chunk generally
endswith the head lexical verb, so that complements following the verb are excluded.
This is illustrated in the following sentence, chunked into np and vp chunks:

(13) [NP We] [VP lack] [NP the means][VP to do] [NP that]

Essentially , chunking allows factoring data into those piecesof structure which can
be recovered without knowledgeof the phenomenathat we are trying to acquire (i.e.
scf s).

Ushioda et al. (1993), Manning (1993), Gahl (1998) and Lapata (1999) represent the
�rst phaseof chunking-basedscf acquisition. They all opt for partial parsingvia �nite
state regular expressionpattern matching. Parsing is deterministic, and ambiguities
in analysis are typically solved using the longest match heuristic: if there are two
possibleparsesthat can be produced for the samesubstring, the parser choosesthe
longer match. scf recognition is usually aided by the useof a small number of lexical
cues.

Ushioda et al. (1993) adopt a pos tagged version of the Wall Street Journal corpus
(wsj ) (Marcus et al., 1993) and a �nite-state np parser, which yields information
about minimal noun phrases. Their system is capableof recognizingand calculating
the relative frequency of six scf s, the same set as used by Brent. The hypothesis
generator �rst extracts each sentence containing a verb from the tagged corpus. It
then chunks the noun phrasesusing the np parser and the rest of the words using a
set of 16 symbols and phrasal categories(such as vp, pp, sentence initial and �nal
marker, and so forth). A set of nine scf extraction rules is then applied to the
processedsentences. Theserules written as regular expressionsare obtained through
examination of occurrencesof verbs in a training text. For instance, the verb follow
would be assigneda np complement in the chunked sentence [NP John] [VP followed]
[NP him] via a rule which states that np chunks immediately following the target verb
are np complements, unlessthemselves immediately followed by a modal, �nite verb
or baseverb.

The output from the hypothesis generator is fairly noisy. The most frequent source
of error is in noun boundary detection causedby the simple np parser (e.g. give
*[NP government officials rights] against the press vs. give [NP government officials]
[NP rights] against the press). The secondmost frequent sourceis error in argument-
adjunct distinction. Ushioda et al. address this problem by using an additional
statistical method for hypothesis selection, which enablestheir system to learn pat-
terns of errors and substantially increase the accuracy of estimated scf s. It uses
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regular expressionsas �lters for detecting speci�c featuresof occurrencesof verbsand
employs multi-dimensional analysis of these features basedon log-linear models and
Bayestheorem.

Manning (1993) proposesa similar but more ambitious systemcapableof recognizing
19 distinct scf s. Thesescf s, someof which are parameterizedfor a preposition, com-
prise standard frames occurring e.g. in the oald , ldoce and cobuild dictionaries.
Corpus data is �rst tagged using a stochastic pos tagger and a �nite state parser is
run on the output of the tagger. It parsescomplements following a verb until a ter-
minator of a subcategorizedargument (e.g. a full stop or subordinating conjunction)
is reached. The parser includes an np recogniserand a set of simple rules for scf
identi�cation. It outputs a list of elements occurring after the verb, putativ e scf s
and statistics on the appearanceof the verb in various contexts.

Due to parser mistakes (e.g., the parser invariably records adjuncts as arguments)
and skipping (the parser e.g. skips relative clausesand conjunctions whose scope
is ambiguous), the resulting hypothesesare noisy. In fact, the hypothesis generator
returns nothing or a wrong scf in the majorit y of cases. Instead of re�ning the
hypothesisgenerator further, Manning placesmore emphasison hypothesisselection.
Hypothesesare evaluated and �ltered, following Brent, by bht . As the hypotheses
are more noisy than those generatedby Brent's system, Manning re�nes the bht by
empirically setting higher bounds on the probabilit y of cues being false for certain
scf s. The resulting lexicon encodes information only about scf s, not their relative
frequencies.

Gahl's (1998) and Lapata's (1999) work di�ers from Ushioda's and Manning's in that
they perform scf acquisition in the context of corpus query systems. Gahl presents
an extraction tool for use with the British National Corpus (bnc ) (Leech, 1992)
which she usesto create subcorpora containing di�eren t scf s for verbs, nouns and
adjectives, given the frames expected for each predicate. Gahl's tool is essentially a
macroprocessorfor usewith the Corpus Query Processor(cqp ) (Christ, 1994). In the
latter, corpusqueriesarewritten in the cqp corpusquery language,which usesregular
expressionsover pos tags, lemmas, morphosyntactic tags and sentence boundaries,
essentially simulating a chunk parser. Gahl's macroprocessorallows a user to specify
which subcorpora are to be created. A user has the choice of 27 searchable scf s,
basedon a selection of those occurring in the comlex syntax dictionary. One can,
for example,search the corpusfor the scf pattern [verb np vp ing]. This query returns
correct subcategorizations (e.g. I kept them laughing) but also gerunds that are not
subcategorized.

Gahl identi�es several typesof error in output, most of which werecausedby the par-
tial parser (e.g. unrecognisednull or empty categories,ambiguities in pp attachment
and so forth). Despite this, sheusesno �ltering for hypothesisselection. Nor is any
experimental evaluation provided which would show how this systemperforms. Gahl
concentrates only on extracting instancesof potential scf s. She mentions that the
subcorpora produced by the tool can be usedto determine the relative frequenciesof
scf s, but reports no work on this.

Lapata (1999) proposesa method similar to Gahl's. She usesthe pos tagged and
lemmatized version of bnc as an input to Gsearch (Keller et al., 1999), a tool which
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allows the search for pos tagged corpora for shallow syntactic patterns based on
a user-speci�ed grammar and syntactic query. Gsearch combines a parser with a
regular expressionmatcher. In Lapata's approach, a chunk grammar was speci�ed
for recognizing the verbal complex and nps. The aim was to acquire just three scf s
characteristic of the dative and benefactive alternations. The tool wasusedto extract
corpus tokensmatching the scf patterns [verb np np], [verb np to np] and [verb np
for np]. pos tags were retained in the parser's output which was postprocessedto
remove adverbials and interjections.

Lapata reports a high level of noisein the output of the hypothesisgenerator, mostly
resulting from the parser, especially, from the useof the longest match heuristic. For
example, the parser wrongly identi�es instances of the double object frame tokens
containing compounds. It also fails with bare relative clauses,nps in apposition and
often with the argument-adjunct distinction. Lapata addressesthis problem by post-
processingthe data. She employs e.g. linguistic heuristics to aid compound noun
detection and disambiguation to reduce errors with pp attachment. After postpro-
cessing,the resulting data is still �ltered for hypothesisselection. Lapata experiments
with a bht and a �lter basedon a simple relative frequency cuto�. The latter com-
pares the verb's acquired scf frequencywith its overall frequency in the bnc . Verbs
whosescf relative frequency is lower than an empirically established threshold are
disregarded. The scf (not verb) speci�c threshold was determined by taking into
account for each frame its overall frequency in the comlex dictionary.

The approachessurveyed above represent a clear improvement over Brent's approach.
Extracting scf information from chunked data increasesthe number of cuesavailable
and allows also for low reliabilit y cues. Running in linear time, partial parsing is
a quick way to seed the scf acquisition processwith some a priori grammatical
knowledge. The disadvantage, however, is the high level of noisein output, causedby
the limitations of partial parsing and the inadequacyof the longest match heuristic.
Most approachesdiscussedabove employ �ltering for hypothesisselectionand rely on
its abilit y to remove noise. This is questionable,however, sincethe �lters applied are
not particularly good at handling noise,much of which getscarried over to the system
output. Brent e.g. reports poor performance with his bht �lter for low frequency
scf s. Manning and Lapata make the sameobservation with their bht �lters.

Towards Large-Scale Subcategorization Acquisition

Subsequent work on scf acquisition has opted for more knowledge-basedhypothesis
generation. Instead of acquiring scf s from partially parseddata, recent systemshave
acquired this information from data parsed using an `intermediate' parser. Rather
than simply chunking the input (as a partial parser does), an intermediate parser
�nds singly rooted trees:

(14) [S [NP He] [VP [VP has remained] [AP very sick]]]

Although such structures are typically built only using pos tag information, they
require global coherencefrom syntax and therefore imposegreater grammatical con-
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straint on analysis. An intermediate parser would e.g. detect that the only verb in
a sentence must be a vp and does not misanalyse it as part of an np, as might a
partial parser. The intermediate parsersused have beenprobabilistic. As statistical
parsersallow weighting analyseson the basisof training data, they are likely to yield
more reliable outcomethan the longestmatch approach usedin earlier scf acquisition
work.

Ersan and Charniak (1996) start this era of work by describing a program which
gathers statistical information on word-usage and uses these statistics to perform
syntactic disambiguation. Learning verbal scf s, as well as prepositional preferences
for nouns and adjectives, is a byproduct of this program. It �rst collects statistics on
individual words in corpus data, then augments a probabilistic context-free grammar
(pcf g) with the lexical statistics and �nally usesthis version of pcf g to parse new
data. The resulting data areexaminedfor scf detection by observingthe vp grammar
rules which have applied during parsing. The pcf g contains 1,209rules for expanding
verb phrases,which are mapped into the 16 scf s employed by the system. The scf s
are the sameasemployed by Manning, but abstract over prepositions. The hypothesis
generator proceedsby examining input data and for each verb, recording the vp rule
which hasapplied and the corresponding scf . For example,if the rule vp � ! v pr on
np hasapplied during parsing, this is mapped to the rule vp � ! v np np and further
to the ditransitiv e scf np-np , which is hypothesisedfor the verb in question. Ersan
and Charniak report that the data from the hypothesisgeneratorare fairly noisy due
to tagger and parser errors, but provide no qualitativ e analysis of these errors. To
handle the noise,they employ �ltering for hypothesisselection. The data, which also
encode scf frequency information, are �ltered using bht . Ersan and Charniak apply
this hypothesis test following Manning, with empirically set values for the falsity of
certain scf cues.

Carroll and Rooth (1998) intro duce a di�eren t approach, a technique based on a
robust statistical parser and automatic tuning of the probabilit y parameters of the
grammar. They usean iterativ e approach to estimate the distribution of scf s given
head words, starting from a hand-written headedcontext-free grammar (cf g) whose
core is a grammar of chunks and phraseswhich includes complementation rules and
a large set of n-gram rules. The latter strings phrasal categoriestogether, modeling a
�nite state machine. A probabilistic versionof this grammar is �rst trained from a pos
tagged corpus using the expectation-maximisation (em) algorithm, an unsupervised
machine learning technique (Baum, 1972). Lexicalised event counts (frequency of a
head word accompaniedby a scf ) are collected, pcf g is lexicalised on rule heads,
after which the em algorithm is run again. The calculation of expectations usesa
probabilistic lexicalisedweighting of alternativ e analyses.This allows iteration of the
procedurefor an improved model. A training schemeis usedwhere the event counts
are collectedover a segment of corpus,parametersare re-computedand the procedure
is repeated on the next segment of corpus. Finally, results from all iterations are
pooled to form a singlemodel. This yields the �nal probabilit y estimatesfor verb and
scf combinations.

Carroll and Rooth usethe scf classi�cation of the oald dictionary. Merging it with
the scf s of their grammar, they end up with 15 scf s. The hypothesis generator
outputs information about scf s and their relative frequencies. Carroll and Rooth
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report several typesof error in the output, most of which are causedby the inabilit y
of the chunk/phrase grammar to deal with the argument-adjunct distinction or with
constructions where verbs are not directly linked to their complements becauseof
complex conjunctions, ellipsesand so forth. Theseconstructs are resolved as intran-
sitivesby the robust parser, which leads to their designation as the largest sourceof
error. Despite the noise, Carroll and Rooth do not employ �ltering for hypothesis
selection,but include all hypothesesgeneratedin the �nal lexicon (they employ bht
only when obtaining a lexicon for evaluation purposes). An open question is how
useful their fairly noisy lexicon would be when used, for example, to aid parsing.

Two large-scalesystemstargeting a high number of scf s have beenrecently proposed
by Briscoe and Carroll (1997) and Sarkar and Zeman (2000). Briscoe and Carroll
describe a system capableof categorizing 161 di�eren t scf s. This comprehensive set
of scf s was obtained by merging the scf classi�cations of the anl t and comlex
dictionaries and manually adding into this set new scf s discovered from the corpus
data. While the previous approaches to scf acquisition employ only syntactic scf s,
Briscoeand Carroll's framesalsoincorporate semantic information (e.g. about control
of predicative arguments).

The system takes as input raw corpus data, which it tags, lemmatises and parses
with a robust statistical parser which usesa feature-baseduni�cation grammar for-
malism. This yields intermediate phrase structure analyses. Local syntactic frames
are then extracted from the parseddata (including the syntactic categoriesand head
lemmas of constituents) from sentence subanalyseswhich begin/end at the bound-
aries of speci�ed predicates. The resulting extracted subcategorization patterns are
then classi�ed as scf s or rejected as unclassi�able on the basis of the feature values
of syntactic categoriesand the head lemmas in each pattern. Although unclassi�-
able patterns are �ltered out, the output from the hypothesisgenerator is still noisy,
mostly due again to parser error. As the parser has no accessto lexical information
and ranks analysesusing a purely structural probabilistic model, there are errors with
the argument-adjunct distinction and with certain scf s, especially those involving se-
mantic distinctions. Briscoe and Carroll employ bht for hypothesisselection,re�ning
it with a priori estimatesof the probabilit y of membership in di�eren t scf s. The re-
sulting lexicon incorporates information both on scf s and their relative frequencies16.

The scf extraction method proposedby Sarkar and Zeman(2000) di�ers from previ-
ouswork in several respects. It dealswith Czech, learnspreviously unknown (i.e. not
prede�ned) scf s, and usesa manually derived dependencytreebank (Prague Depen-
dency Treebank, pdt ; Haji �c, 1998) as input data. The system works by reading in
the treebank data and consideringeach tree containing a verb. Within a tree, the set
of all dependents of a verb comprisesthe `observed frame', while a scf is the subset
of this observed frame. The task of the learning algorithm is to selectthe subsetmost
likely to be the scf for a verb, given its observed frame. Essentially , its aim is to
identify arguments from among the adjuncts. The hypothesis generator records the
frequency of all subsetsof each observed frame in treebank data. The subsetsare
consideredfrom larger to smaller. Large infrequent subsetsare suspected to contain

16The work we report in this thesis was done using Briscoe and Carroll’s system as a framework
for scf acquisition. A more detailed description of this system is given in section 2.5.3.
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adjuncts, so they are replaced by more frequent smaller subsets. Small infrequent
subsetsmay have elided somearguments and are rejected. The resulting frequency
data serve as input to hypothesisselection.

Sarkar and Zemanusethree alternativ e hypothesistests: bht , log likelihood ratio test
(Dunning, 1993) and t-score(Kalbeisc h, 1985). They apply the tests \recursively".
During the �rst run, only the observed frames are considered. If an observed frame
is not selected,one of its subsetsis likely to be the scf . The subsetwhoselength is
onemember lessis selectedassuccessorof the rejected observed frame and it inherits
its frequency. Gradually, frequenciesaccumulate and frames becomemore likely to
survive. The resulting set of frames is classi�ed as scf s on the basis of pos labels.
Sarkar and Zeman report that, with their experiment, the method learned 137 scf s
from corpus data. No further details of these scf s are given. Sarkar and Zeman do
not de�ne their concept of a scf anyhow, nor specify the distinctions assumedby
their classi�cation.

It is clear that manually derived data provide more accurate input to scf acquisition
than automatically parseddata. The useof manually parsedtext is, however, not an
optimal solution to the knowledge acquisition problem. Treebanksare expensive to
build and parsingtext manually is arguably more laborious than collecting information
on scf s.

For reasonsgiven earlier, employing intermediate probabilistic parsing in scf acquisi-
tion is an improvement over the useof partial parsing and the longestmatch heuristic.
In sum, we may say that, while the early work minimised noise at the expenseof
coverage(both in terms of scf s and data) (Brent, 1991; 1993), the follow-up work
maximised coverageat the expenseof accuracy(Ushioda et al., 1993;Manning, 1993;
Gahl, 1998;Lapata, 1999),and recent work hasaimed to maximiseboth coverageand
accuracy. However, at the present state of development, most intermediate parsers
still yield fairly noisy output, mainly due to the lack of lexical and semantic informa-
tion during parsing. As the output from the hypothesis generator is noisy, �ltering
is neededwhen aiming for a high accuracy lexicon. Hypothesis selection techniques
adopted by recent approachesare similar to those selectedin early work. Ersan and
Charniak (1996), Briscoe and Carroll (1997), and Sarkar and Zeman (2000) e.g. all
employ bht as originally intro duced by Brent (1993) and subsequently followed by
Manning (1993) and Lapata (1999). Although di�eren t modi�cations to this test
have beenproposed,both early and recent approachesreport unreliable performance,
especially with low frequency scf s.

In this section, while surveying scf acquisition systems, we have mentioned errors
typical to di�eren t systems. In the next section, we turn to quantitativ e evaluation
and consider the overall performanceof thesesystems.

2.5.2 Evaluation and Performance

Methods for Evaluation

scf acquisition systemsare typically evaluated in terms of `types' or `tokens' (e.g.
Briscoe and Carroll, 1997; McCarthy, 2001). `Types' are the set of scf s acquired.
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Type-basedevaluation involves assessment of the lexical entries in a lexicon. It is
usually performedon unseentest data, with a number of randomly selectedtest verbs.
The scf typesacquired are comparedwith those found in somegold standard. The
gold standard is usually obtained either through manual analysis of corpus data, or
from lexical entries in a large dictionary. Both approacheshave their advantagesand
disadvantages. Manual construction of a gold standard is time-consuming, but yields
an accurate measurewhen obtained from the data that the system used to acquire
the entries. Meanwhile, obtaining a gold standard from a dictionary is quick, but the
resulting standard may not be relevant to the test data. This is becausedictionaries
may contain scf s absent from the corpusdata or missscf s present in the corpusdata.
For example, by merging the lexical entries from the anl t and comlex dictionaries
for the verb add, we would get nine gold standard scf types. Not all may be attested
in the corpus data: the relatively low frequency scf par t-np-pp (he added in the
wine with the herbs) e.g. could well be missing. On the other hand, the gold standard
does not exhaust all the scf possibilities. For example, the scf wha t-s (he adds
what he thinks is right) is not included, although it is a sound scf type for add and
may occur in the corpus data.

`Tokens' are the individual occurrencesof scf s in corpus data. They are evaluated
against manually analysedcorpustokens. Evaluation may be performedon the corpus
data from which the acquired scf s were obtained, to estimate the coverage of the
training data, i.e. the coverageof the lexicon the system has learned. This indicates
e.g. an estimate of the parsing performancethat would result from providing a parser
with the scf s acquired. Alternativ ely, token-basedevaluation may be performed on
a di�eren t corpus to examinehow well the acquired information generalizes.

Evaluation is frequently performed using `precision' and `recall' (e.g. Briscoe and
Carroll, 1997). Obtaining thesemeasuresrequires recording the number of

� true positives (tp s) - correct scf typesor tokensproposedby the system

� false positives (fp s) - incorrect scf typesor tokensproposedby the system

� false negatives (fn s) - correct scf typesor tokensnot proposedby the system

When evaluating scf information, precisionand recall areusually reported over types.
`Type precision' is the percentage of scf s that the systemproposeswhich are correct
(in the gold standard), while `typerecall' is the percentageof scf s in the gold standard
that the system proposes:

Type precision =
number of tp s

number of tp s + number of fp s
(2.1)

Type recall =
number of tp s

number of tp s + number of fn s
(2.2)

Onecantrade o� precisionand recall to compromisebetweenmaking a smallernumber
of sureguesses(high precision) and a bigger number of noisy guesses(high recall). To
make mutual comparisonof di�eren t systemseasier,it may be convenient to combine
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precision and recall in a single measure of overall performance using e.g. the `F
measure':

F =
2 � precision � recall

precision + recall
(2.3)

With scf information, recall is sometimesalsoreported over scf tokens. `Tokenrecall'
givesthe percentage of scf tokensin entire test data which are assignedcorrect scf s
by the system.

Token recall =
number of tp s

total number of test tokens
(2.4)

The systemsthat record relative frequenciesof di�eren t verb and scf combinations
often evaluate the accuracy of the resulting probabilit y distributions as well. This
is done by comparing the acquired distribution against a gold standard distribution
obtained from manual analysis of corpus data. In this, no established evaluation
method exists.

The ranking of scf s within distributions has beencompared, �rstly , by using a sim-
ple method proposed by Briscoe and Carroll (1997). This involves calculating the
percentage of pairs of classesat positions (n, m) such that n < m in the acquired
ranking that are ordered the same in the correct ranking. Briscoe and Carroll call
this measure`ranking accuracy'. Secondly, the ranking has been evaluated using a
Spearman rank correlation coe�cien t (r c) (Spearman, 1904). This involves (i) cal-
culating the ranks for each of the scf variables separately, using averagedranks for
tied values, and (ii) �nding r c by calculating the Pearsoncorrelation coe�cien t for
the ranks. The Pearson correlation coe�cien t r is calculated from bivariate data
(x1, y1), (x2, y2) , ..., (xn, yn) where the meansof the x-valuesand y-valuesare �x and
�y and their standard deviations are sX and sY :

r =
1

n � 1

n
∑

i=1

xi � �x
sX

yi � �y
sY

(2.5)

r c takesvaluesbetween-1 and 1, with valuesnear 0 denoting a low degreeof associ-
ation and valuesnear -1 and 1 denoting strong association.

Meanwhile, the similarity betweenacquired and gold standard scf distributions has
beenevaluated usingcrossentropy, a measurefamiliar from information theory (Cover
and Thomas, 1991). The crossentropy of the acquired distribution q with the gold
standard distribution p obeys the identit y

CE(p, q) = H(p) + D(pkq) (2.6)

whereH is the usual entropy function and D the relative entropy, or Kullback-Leibler
distance (kl ). While entropy measuresthe complexity of the acquired scf distribu-
tion, kl indicates the dissimilarit y of the two distributions.
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D(pkq) =
∑

x

p(x) ln
p(x)
q(x)

(2.7)

kl is always � 0 and reaches0 only when the two distributions are identical.

The methods discussedso far are usedfor evaluating scf acquisition in its own con-
text. However, it is generally agreed that the ultimate demonstration of successis
improvedperformanceon an application task. Task-basedevaluation may bedone,for
instance,by examining application performancewith and without integrating the scf
information, and seeinghow much the integrated information improvesperformance.
With scf acquisition, task-basedevaluation hassofar beencarried out in the context
of parsing and psycholinguistic experiment. We shall describe these experiments in
the following section.

Performance

When examining the performanceof the scf acquisition systemswe have surveyed,
one must remember that they di�er in many ways. Variation in the number of target
scf s, test verbs, gold standards, and in the sizeof test data make direct comparison
of di�eren t results di�cult. However, examining the di�eren t results is useful as it
reveals the upper limits of performanceof the various state-of-art systems.

Table 2.2 shows type precision, type recall and token recall obtained by the current
systems, for those systemswhich report them. F-measure is calculated and shown
as well. The secondcolumn indicates the number of (target) scf s; the third shows
the number of test verbs employed; the fourth lists the corpus used for learning and
testing (table 2.1 provides further information about the di�eren t corpora used), and
the �fth column givesthe sizeof the test data from which the test verb instanceswere
extracted. The gold standard adopted is listed in the sixth column.

From the approaches listed in table 2.2, those most comparableare Manning (1993),
Ersan and Charniak (1996) and Carroll and Rooth (1998). They each target a similar
number of scf s and evaluate the resulting lexiconsagainst entries obtained from the
oald dictionary. When comparedby F-measure,Carroll and Rooth outperform the
two other approaches, with Ersan and Charniak in turn outperforming Manning's
approach. This is not surprising, given that the hypothesis generator employed by
Manning is not as sophisticated as those employed by the two other approaches.
Manning extracts scf s from partially parsed data, while the other two approaches
opt for intermediate parsing.

The other approachesand results included in this table cannot be compareddirectly.
Brent's (1993) 85 F-measuree.g. was obtained by classifying sentential-complement
taking verbs as members of one of the 6 scf s, while Briscoe and Carroll's (1997) 55
F-measurewas obtained by classifying random verbs as members of one of the 161
scf s. Also, Sarkar and Zeman's (2000) 88% token recall indicates the percentage
of scf tokens assigneda correct argument-adjunct analysis, not a correct scf type
analysis, as with all other approaches. In addition, their result is obtained from
manually parseddata (while others useautomatically parseddata), which givesthem
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Corpus Size Corpus Reference
in Words Type

Brown Corpus (bc) 1M balanced Francis and Kučera, 1989
Wall Street Journal Corpus (wsj) 1M newswire Marcus et al., 1993
New York Times Corpus (nyt) 173M newswire Marcus et al., 1993
Susanne Corpus (susanne) 128K balanced Sampson, 1995
Spoken English Corpus (sec) 52K balanced Taylor and Knowles, 1988
Lancaster-Oslo-Bergen Corpus (lob) 1M balanced Garside et al., 1987
British National Corpus (bnc) 100M balanced Leech, 1992
Prague Dependency Treebank (pdt) 457K balanced Hajič, 1998

Table 2.1: Corpora usedin scf acquisition for learning, training and evaluation

Metho d No. of No. of Corpus Data Gold T yp e T yp e F T ok en
SCFs V erbs Size Standard Precision Recall Recall

Brent 6 63 bc 1.2M manual 96% 76% 85 -
(1993) analysis

Ushioda 6 33 wsj 300K manual - - - 86%
et al. analysis
(1993)

19 40 nyt 4.1M oald 90% 43% 58 -
Manning
(1993) 19 200 nyt 4.1M manual - - - 82%

analysis
Ersan & 16 30 wsj 36M oald 87% 58% 70 -
Charniak
(1996)
Carroll & 15 100 bnc 30M oald 79% 75% 77 -
Rooth
(1998)
Briscoe & 161 7 susanne , 1.2M manual 77% 43% 55 81%
Carroll sec, lob analysis
(1997) 161 14 susanne , 1.2M anl t 66% 36% 47 -

sec, lob comlex
Sarkar & 137 914 pdt 300K manual - - - 88%
Zeman analysis
(2000)

Table 2.2: Type precision, type recall, F-measureand token recall evaluation of ex-
isting scf acquisition systems
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an advantagein evaluation. Examining the di�eren t resultswemay, however, conclude
that, regardlessof method, there is a ceiling on scf acquisition performancearound
85 F-measureand 88% token recall.

The results achieved when evaluating the accuracyof scf frequencydistributions are
even more di�cult to compare,as each system is evaluated using a di�eren t method.
Ushioda et al. (1993) do not provide evaluation of scf frequencies,but simply state
that their acquired and gold standard scf distributions seem very close. Lapata
and Keller (1998) evaluate the scf extraction method described in Lapata (1999).
With 20 scf s and 42 test verbs extracted from 10M words of bnc they report a
high correlation of 0.9 with Spearman correlation co-e�cien t betweentheir acquired
scf ranking and that obtained through manual analysis of corpus data. Briscoe and
Carroll (1997) report 81% ranking accuracy with their 7 test verbs (seesection 2.5.2
for their evaluation method). Carroll and Rooth (1998)usecrossentropy to determine
the similarit y betweenscf distributions acquired by their systemand those obtained
through manual analysis of corpus data. They perform no large-scaleevaluation but
report encouragingresults with three individual test verbs, whosescf distributions
show an averageof 0.36 Kullback-Leibler distance to the gold standard distributions.

Only two approachesperform task-basedevaluation. Lapata and Keller (1998) eval-
uate automatically acquired scf frequenciesobtained using the method described in
Lapata (1999) in the context of psycholinguistic experiments on sentence processing.
They examine how well the verb biasesobtained from completion studies can be ap-
proximated by automatically acquiredscf frequencies.The experiments donewith 90
test verbsusing Garnseyet al.'s (1997) metric show that the acquired scf frequencies
classify verbscorrectly either asnp-biasedor s-biased58%of the time, asopposedto
their 33% baselineand 76% upper bound. A similar but larger experiment reported
by Lapata et al. (2001) shows comparableresults on this binary ranking task.

Briscoe and Carroll (1997) examinewhether the scf frequency information acquired
using their system can improve the accuracy of statistical parsing. They report an
experiment wherethey integrate scf frequencyinformation in a robust statistical non-
lexicalised parser. The experiment is performed using a test corpus of 250 sentences
from the susanne treebank, and evaluated with the standard geig bracket precision,
recall and crossingmeasures(Grishman et al., 1992). While the bracket precisionand
recall stayed virtually unchanged,the crossingbracket scorefor the lexicalisedparser
showed a 7% improvement, which yet turned out not to be statistically signi�cant
at the 95% level. However, a di�eren t and larger experiment reported by Carroll,
Minnen and Briscoe (1998) yields di�eren t results. They use a larger test corpus,
acquire scf data from 10 million words of bnc and usea grammatical relation-based
(gr ) annotation schemefor evaluation (Carroll, Briscoe and San�lipp o, 1998) which
is more sensitive to argument-adjunct and attachment distinctions. The experiment
shows that gr recall of the lexicalisedparser drops by 0.5% comparedwith baseline,
while precision increasesby 9.0%. While the drop in recall provesnot to be statisti-
cally signi�cant, the increasein precision does. This shows that the scf frequencies
acquired using Briscoe and Carroll's systemcan signi�cantly improve parseaccuracy.
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Discussion

While the results achieved with current systemsare generally encouraging,the accu-
racy of the resulting lexiconsshows room for improvement. Errors arise in automatic
scf acquisition for several reasons. Due to ungrammaticalities of natural language,
some noise already occurs in input data. Further errors arise when processingthe
data through di�eren t phasesof hypothesisgenerationand selection. In section2.5.1,
we mentioned qualitativ e errors typical to more and lesssophisticatedscf acquisition
systems. Someof these errors are common to all extant systems,regardlessof their
sophistication.

With hypothesis generation, the most frequently reported error is the inabilit y of a
system properly to distinguish between arguments and adjuncts (e.g. Brent, 1991,
1993; Manning, 1993; Ushioda et al., 1993; Lapata, 1999; Carroll and Rooth, 1998).
This makesdetection of scf s involving prepositional phrasesespecially di�cult. Al-
though one can make simple assumptions, for instance, that arguments of speci�c
verbs tend to occur with greater frequency in potential argument positions than ad-
juncts, problems arise when the judgments of argument-adjunct distinction require
a deeper analysis. Many argument-adjunct tests cannot yet be exploited automati-
cally sincethey rest on semantic judgments that cannot yet be madeautomatically 17.
One example is the syntactic tests involving diathesis alternation possibilities which
require recognition that the same argument occurs in di�eren t argument positions.
Recognizingidentical or similar arguments requires considerablequantities of lexical
data or the abilit y to back-o� to lexical semantic classes.

In fact, there is a limit to how far we can get with subcategorization acquisition
merely by exploiting syntactic information. As Briscoe and Carroll (1997) point out,
the abilit y to recognizethat argument slots of di�eren t scf s for the samepredicate
share selectional restrictions/preferences would assist recognition that the predicate
undergoes speci�c diathesis alternations. This in turn would assist inferencesabout
control, equi, and raising, enabling �ner-grained scf classi�cations and yielding a
more comprehensive subcategorization dictionary (Boguraev and Briscoe, 1987). In
the end, any adequate subcategorization dictionary needsto be supplemented with
information on semantic selectionalpreferences/restrictionsand diathesisalternations
to provide a full account of subcategorization and to be useful as a lexical resource.

With hypothesisselection, the largest sourceof errors is the poor performanceof the
statistical test often employed for �ltering out the noisefrom the systemoutput. The
binomial hypothesistest widely usedin early aswell as recent scf acquisition work is
reported to be particularly unreliable for low frequency scf s (Brent, 1993;Manning,
1993; Ersan and Charniak, 1996; Briscoe and Carroll, 1997; Manning and Sch•utze,
1999). Manning, for instance,notes that bht seemsonly to selectscf s which are well
attested and conversely, does not select scf s which are rare. Similarly, Ersan and
Charniak note that a large number of scf s only observed onceor a few times in data
wererejected by their bht �lter. Briscoe and Carroll note that with their system,the
majorit y of errors in scf acquisition arise becauseof the statistical �ltering process.
The performanceof their �lter for scf s with lessthan 10 exemplarsis around chance,

17Recall our discussion on the argument-adjunct distinction earlier in section 2.2.
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and a simple heuristic of accepting all scf s with more than 10 exemplarswould have
produced broadly similar results to those generated by use of the �lter. The high
number of missing low frequencyscf s has a direct impact on recall, resulting in poor
performance.

This problem with hypothesisselectionmay overturn bene�ts gainedwhen e.g. allow-
ing for large data or low-reliabilit y scf cuesin the hope of detecting a higher number
of rare scf s. Similarly, it may overturn bene�ts gained from re�ning hypothesisgen-
eration. The problem concernsmost scf acquisition systems,sincenearly all perform
hypothesisselectionusing statistical hypothesistests. For thesereasons,the problem
of hypothesis selection remains critical to any attempt to improve subcategorization
extraction.

In this thesis we report work on improving the hypothesis selection phase of scf
acquisition. All the work reported is done using Briscoe and Carroll's (1997) system
as a framework for scf acquisition. Capable of categorizing over 160 scf types,
which also incorporate semantic information, this system is the most comprehensive
scf extraction systemavailable. By exploiting a robust statistical intermediate parser
and a comprehensive scf classi�er, it represents the latest phasein the development
of scf acquisition technology. The evaluation discussedin this sectionshows that the
system performs with accuracy comparable to that of lessambitious extant systems,
most of which are limited to a highly restricted set of syntactically basedscf s. Before
proceedingfurther, we shall describe this system in more detail.

2.5.3 Framew ork for SCF Acquisition

Briscoe and Carroll's (1997) verbal acquisition system consistsof six overall compo-
nents which are applied in sequenceto sentences containing a speci�c predicate in
order to retrieve a set of scf s for that predicate:

1. A tagger, a �rst-order Hidden Markov Model (hmm) pos and punctuation
tag disambiguator (Elworthy, 1994). It assignsand ranks tags for each word
and punctuation token in sequencesof sentences using the cla ws-2 tagset18

(Garside et al., 1987).

2. A lemmatizer, an enhancedversionof the GeneralArchitecture for Text Engi-
neering(gate ) project stemmer(Cunningham et al., 1995). It replacesword-tag
pairs with lemma-tag pairs, where a lemma is the morphological baseor dictio-
nary headword form appropriate for the word, given the pos assignment made
by the tagger.

3. A probabilistic LR parser, trained on a tree-bank derivedsemi-automatically
from the susanne corpus, returns ranked analyses(Briscoe and Carroll, 1993;
Carroll, 1993, 1994) using a grammar written in a feature-baseduni�cation
grammar formalism which assignsintermediate phrasestructure analysesto tag
networks returned by the tagger (Briscoe and Carroll, 1995;Carroll and Briscoe,
1996).

18
claws = The Consistent Likelihood Automatic Word Tagging System.
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4. A pattern extractor extracts subcategorization patterns, i.e. local syntactic
frames, including the syntactic categories and head lemmas of constituents,
from sentence subanalyseswhich begin and end at the boundaries of speci�ed
predicates.

5. A pattern classifier which assignspatterns to scf s or rejects them as un-
classi�able on the basis of the feature values of syntactic categoriesand head
lemmasin each pattern.

6. A SCF filter which evaluates sets of scf s gathered for a predicate. It con-
structs putativ e scf entries and �lters them on the basisof their reliabilit y and
likelihood.

At the �rst stageof the scf acquisition process,corpusdata is taggedusing the tagger
basedon hmm. The hmm model incorporates transition probabilities (the probabilit y
that a tag follows the precedingone) and the lexical probabilities (the probabilit y that
a word arisesfor a particular tag). The tagger hypothesisesa non-zeroprobabilit y tag
for each word and givesthe most probable sequenceof tags, given that the sequenceof
words is determined from the probabilities. It doesthis using the Forwards-Backward
algorithm (e.g. Manning and Sch•utze, 1999). The cla ws-2 tagset usedby the tagger
includesa total of 166 tags for words and punctuation marks. The tagger may return
more than one ranked tag per token. The acquisition system �lters out all but the
highest-ranked tag, trading a small lossin coverageand accuracyfor improvedruntime
spacerequirements and e�ciency , sothat large amounts of text can be processedmore
easily.

At the secondstage,the data output by the tagger is lemmatized. During this process,
the words are assigned lemmas, their morphological base or dictionary headword
forms, basedon their pos assignment. In addition to producing a stem or root form
for each token, the lemmatizer also producesa normalised a�x (e.g. -ed for all past
participle forms, both regular and known irregulars).

For example, assumingthat we build lexical entries for attribute and that one of the
sentencesin our data is (15), the tagger returns (16) and the lemmatizer returns (17).

(15) He attributed his failure, he said, to no-one buying his books.

(16) he_PPHS1attributed_VVD his_APP$ failure_NN1 ,_, he_PPHS1said_VVD ,_,
to_II no-one_PN buying_VVG his_APP$ books_NN2

(17) he_PPHS1attribute_VVD his_APP$ failure_NN1 ,_, he_PPHS1say_VVD,_,
to_II no-one_PN buy_VVGhis_APP$ book_NN2

At the third stage of the scf acquisition process,the tagged and lemmatized data
are parsed. The probabilistic parser employed by the system usesa grammar which
consistsof a 455 phrase structure rule schemata. This grammar is a syntactic vari-
ant of a De�nite Clause Grammar (dcg ; Pereira and Warren, 1980) with iterativ e
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Kleeneoperators. It is shallow, which meansthat no attempt is madefully to analyse
unbounded dependencies.However, the distinction betweenarguments and adjuncts
is expressed,following X-bar theory (e.g. Jackendo�, 1977) by Chomsky-adjunction
to maximal projections of adjuncts (xp ! xp Adjunct ) as opposedto government of
arguments (i.e. arguments are sisterswithin X1 projections; X1 ! X0 Arg1... ArgN).
All analysesare rooted in S so the grammar assignsglobal, intermediate and often
`spurious' analysesto many sentences. There are 29 di�eren t values for vsubca t
and 10 for psubcat 19 , which are later analysedalong with speci�c closed-classhead
lemmasof arguments (e.g. it for dummy subjects) to classify patterns as evidencefor
oneof the scf s. Currently , the coverageof this grammar, the proportion of sentences
for which at least one analysis is found, is 79% when applied to the susanne corpus.
Wide coverageis important herebecauseinformation is acquired only from successful
parses.

The parser ranks analysesusing a purely structural probabilistic model, which makes
training the parseron realistic amounts of data and using it in a domain-independent
fashionfeasible. The model is a re�nement of pcf g conditioning context freebackbone
application on left-to-righ t (lr ) state and lookaheaditem. Probabilities are assigned
to transitions in the lr action table via a processof supervisedtraining. The latter is
basedon computing the frequencywith which transitions are traversedin a corpus of
parse histories. The parser is capable of probabilistically discriminating derivations
which di�er only in terms of order of application of the sameset of cf backbonerules,
due to the parsecontext de�ned by the lr table.

(18) illustrates the highest ranked analysisthe parserwould return for the lemmatized
sentence exempli�ed in (17).

(18) (Tp
(V2 (N2 he_PPHS1)
(V1 (V0 attribute_VVD))

(N2 (DT his_APP$)
(N1

(N0 (N0 failure_NN1)
(Ta (Pu ,_,)

(V2 (N2 he_PPHS1)
(V1 (V0 say_VVD))) (Pu ,_,)))))

(P2
(P1 (P0 to_II)

(N2 no-one_PN)
(V1 (V0 buy_VVG)

(N2 (DT his_APP$) (N1 (N0 book_NN2)))))))))

Quite often the parser has no mechanism for choosing the correct analysisand hence
the output is noisy. This is illustrated in example(19), where the correct analysis for
(19a) is shown in (19c) and the correct analysis for (19b) in (19d) (Briscoe, 2001).

19
vsubcat stands for ‘verbal’ subcategorization and psubcat for ‘prepositional’.



60 CHAPTER 2. BACKGROUND TO SUBCATEGORIZATION ACQUISITION

(19) a He looked up the word

b He looked up the hill

c (Tp (V2 (N2 he_PPHS1)(V1 (V0 (V0 look_VVD) (P0 up_RP)) (N2 (DT the_AT)
(N1 (N0 word_NN1)))))

d (Tp (V2 (N2 he_PPHS1)(V1 (V0 look_VVD) (P2 (P1 (P0 up_RP) (N2 (DT the_AT)
(N1 (N0 hill_NN1)))))))

The parser cannot reliably selectbetween(19c) and (19d) becauseit has no accessto
any lexical information. In this caseit hasno information about the likelihood of look
up being a phrasal verb nor the di�ering selectional restrictions on the np as either
pp or verbal argument.

At the fourth processingstage,the extractor takesas input analysesfrom the parser.
It extracts subcategorization patterns by locating the subanalysesaround the pred-
icate and �nding the constituents identi�ed as complements inside each subanalysis
and the subject preceding it. Passive constructions are treated speci�cally . The ex-
tractor returns the predicate, the vsubca t value and the headsof the complements.
In caseof pps, it returns the psubcat value, the preposition head and the headsof
the pp's complements.

For example, taking as input the analysis shown in (18), the extractor would yield
the subcategorization pattern exempli�ed in (20).

(20) ((((he:1 PPHS1)) (VSUBCATNP_PP)((attribute:6 VVD) ((failure:8 NN1))
((PSUBCATSING) ((to:9 II)) ((no-one:10 PN)) ((buy:11 VVG)))))

At the �fth stage, the extracted subcategorization patterns are fed into the pattern
classi�er, which assignsthe patterns into scf s. The scf s usedin the systemwerecon-
structed by manually merging the scf s of the anl t and comlex syntax dictionaries
and adding around 30 scf s found by examining unclassi�able patterns of corpus
examples. These consisted of some extra patterns for phrasal verbs with complex
complementation and exible ordering of the preposition or particle, somefor non-
passivizablepatterns with a surfacedirect object, and somefor rarer combinations of
governedpreposition and complementizer combinations. The resulting set of scf s ab-
stract over speci�c lexically-governedparticles and prepositions and speci�c predicate
selectionalpreferences.However, they include somederived semi-predictablebounded
dependencyconstructions, such asparticle and dative movement. The current version
of the classi�cation comprises163 scf s (Briscoe, 2000) and is included in Appendix
A of this thesis.

The classi�er providestranslation betweenextracted scf patterns and the two existing
dictionaries and a de�nition of the target subcategorization dictionary. It assigns
subcategorization patterns into classeson the basis of the vsubca t and psubcat
valuesand sometimesalso the lexical information included in patterns. For example,
the subcategorization pattern exempli�ed in (20) is classi�able as the scf np-p-np-
ing (transitiv e plus pp with non-�nite clausal complement) with additional lexical
information, such as the preposition and the headsof the np arguments and of the
np and vp arguments of the pp. Each scf is represented as a scf classnumber. In
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this casethe classi�er returns two scf s, 43 and 44. (21) shows the entries for these
scf s in the classi�cation. The �rst line of an entry shows the comlex scf name,
the secondgivesthe frame speci�cation according to anl t , the third shows a tagged
examplesentencewherethe frame occurs,and the �nal line givesthe scf speci�cation
according to the grammar employed by the system20.

(21) 43. NP-P-NP-ING/ ??
ANLTgap (SUBCATNP_PP_SING)

he_PPHS1attributed_VVD his_AT failure_NN1 to_II no-one_NP1 buying_VVG
his_AT books_NN2

(VSUBCATNP_PP)to (PSUBCATSING)

44. NP-P-POSSING/ ??
ANLTgap (SUBCATNP_PP_SING)

They_PPHS2asked_VVDhim_PPHO1about_II his_PPHO1participating_VVG
in_II the_AT conference_NN1

(VSUBCATNP_PP)about (PSUBCATSING)

More than one scf is returned by the classi�er when it cannot tell which of the scf s
is the correct one. In this case,scf 43 provides the correct analysis,but the classi�er
cannot distinguish it from the similar scf 44, due to the parser problems discussed
above.

The classi�er also �lters out as unclassi�able around 15% of patterns. These are
spurious analysesoutput by the extractor which do not conform to the known scf s
for English. Additionally , as the parseroutput is noisy, many classi�able patterns are
still incorrect and hypothesisselection is needed.

At the �nal processingstage,the systememploys a �lter for hypothesisselection. The
�lter �rst builds putativ e lexical entries speci�c to the verb and scf combinations. It
takes the patterns for a given predicate built from successfulparsesand records the
number of observations with each scf . Patterns provide several typesof information
which can be used to rank or select between them, such as the ranking of the parse
from which it was extracted or the proportion of subanalysessupporting a speci�c
pattern. Currently , the system simply selectsthe pattern supported by the highest
ranked parse. The resulting putativ e scf entries for a predicate are �ltered using the
binomial hypothesis test.

bht attempts to determine whether one can be con�dent that there is a genuine
association between a hypothesisedverb and scf combination. The test uses the
overall error probabilit y that a particular scf (scfi) will be hypothesised,and the
amount of evidencefor an association of scfi with the predicate form in question.
The error probabilit y for a given scfi is estimated by

pe =
(

1 �
jverbs in scfij

jverbsj

)

jpatterns for scfij
jpatternsj

(2.8)

20See Appendix A for full details of these entries.
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where the counts for scf s were obtained by running the system's pattern extractor
on the entire susanne corpus and the counts for verbs associated with scf s were
obtained from the anl t dictionary. The probabilit y of an event with probabilit y p

happening exactly m out of n attempts is given by the binomial distribution:

P (m, n, p) =
n!

m!(n � m)!
pm(1 � p)n� m (2.9)

The probabilit y of the event happening m or more times is:

P (m+ , n, p) =
n
∑

k=m

P (k, n, p) (2.10)

SoP (m+ , n, pe) is the probabilit y that m or more occurrencesscfi will be associated
with a predicate occurring n times. A threshold on this probabilit y is set at 0.05,
yielding a 95% con�dence that a high enough proportion of patterns for scfi have
beenseenfor the verb to be assignedscfi.

The resulting lexicon is organized by verb form with sub-entries for each scf . (22)
shows a putativ e lexical entry built for attribute, given the subcategorization pattern
shown earlier in (20) and the scf assignment in (21). The entry , displayed as output
by the system, includes several types of information. In addition to specifying the
verb and scf combination in question and its frequency in corpus data, it speci�es
the syntax of detected arguments, the reliabilit y of the entry according to the parser
and the value assignedto it by bht . It also gathers information about the pos
tags of the predicate tokens, the argument headsin di�eren t argument positions and
the frequency of possible lexical rules applied. The di�eren t �elds of the entry are
explainedin the legendbelow it. For example,the entry in (22) indicates that attribute
was observed in the data only oncewith the scf 43 44 (:freqcnt 1), and therefore
the entry gathers information from only one scf pattern. It also indicates that the
entry wasrejectedby the bht . The valueof :freqscore is 0.25778344,which is larger
than the con�dence threshold of 0.05. Another, successfullexical entry for attribute
is shown in �gure 2.6. This entry for the scf 56 49 (e.g. She attributes her success to
hard work) is large, gathering information from 36 distinct subcategorizationpatterns.
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(22) scf entry:

#S(EPATTERN:TARGET|attribute| :SUBCAT(VSUBCATNP_PP)
:CLASSES((43 44) 2)
:RELIABILITY 0 :FREQSCORE0.25778344
:FREQCNT1
:TLTL (VVD)
:SLTL
((|he| PPHS1))
:OLT1L
((|failure| NN1))
:OLT2L
((PSUBCATSING)
((|to| II)) ((|no-one| PN)) ((|buy| VVG)))
:OLT3L NIL :LRL 0)

Legend:

#S(EPATTERN:TARGET|verb| :SUBCAT(syntax of arguments for SCF)
:CLASSES((SCF number code(s)) frequency of SCFin ANLT)
:RELIABILITY parse reliability threshold :FREQSCOREscore assigned by BHT
:FREQCNTnumber of observations in data
:TLTL (POS tags for the verb)
:SLTL (POS tags for argument heads in subject position)
:OLT1L (POS tags for argument heads in first argument position)
:OLT2L (POS tags for argument heads in second argument position)
:OLT3L (POS tags for argument heads in third argument position)
:LRL number of lexical rules applied)

In sum, Briscoe and Carroll's approach to acquiring scf s assumesthe following:

� Most sentences will not allow the application of all possible rules of English
complementation.

� Somesentenceswill be unambiguouseven given the indeterminacy of the gram-
mar.

� Many incorrect analyseswill yield patterns which are unclassi�able and are thus
�ltered out.

� Arguments of a speci�c verb will occur with greater frequencythan adjuncts in
potential argument positions.

� The hypothesisgeneratorwill incorrectly output patterns for certain scf classes
more often than others.

� Even a highest ranked pattern for scfi is only a probabilistic cueto membership
of scfi, so membership should only be inferred if there are enoughoccurrences
of patterns for scfi in the data to outweigh the error probabilit y for scfi.

The overall performanceof this system was discussedearlier in section 2.5.2, where
the systemwasreported to perform similarly with lessambitious extant systems.The
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#S(EPATTERN:TARGET|attribute| :SUBCAT(VSUBCATNP_PP)
:CLASSES((56 49) 2115)
:RELIABILITY 0 :FREQSCORE2.6752692e-25
:FREQCNT36
:TLTL
(VVZ VVZ VVZ VVZ VVZ VVZ VVZ VVZ VVNVVGVVGVVGVVGVVG
VVGVVGVVGVVGVVGVVDVVDVVDVVDVVDVVDVV0 VV0 VV0
VV0 VV0 VV0 VV0 VV0 VV0 VV0 VV0)

:SLTL
(((|text| NN1)) ((|literature| NN1)) ((|he| PPHS1))
((|he| PPHS1)) ((|account| NN1)) ((|He| PPHS1))
(((|text| NN1)) ((|literature| NN1)) ((|he| PPHS1))
((|he| PPHS1)) ((|account| NN1)) ((|He| PPHS1))
((|He| PPHS1)) ((|He| PPHS1)) ((|medicine| NN1))
((|what| DDQ)) ((|serve| VV0)) ((|prefer| VV0))
((|laid| VVD)) ((|it| PPH1)) ((|audience| NN))
((|People| NN)) ((|It| PPH1)) ((|Attributing| VVG))
((|Aristotle| NP)) ((|she| PPHS1)) ((|occupation| NN1))
((|institutions| NN2)) ((|government| NN))
((|Prentice| NP)) ((|He| PPHS1)) ((|which| DDQ))
((|study| NN1)) ((|reports| NN2)) ((|one| PN1))
((|it| PPH1)) ((|attribute| VV0)) ((|We| PPIS2))
((|We| PPIS2)) ((|We| PPIS2)) ((|This| DD1))
((|It| PPH1))

:OLT1L
(((|validity| NN1)) ((|effect| NN1)) ((|ideas| NN2))
((|ideas| NN2)) ((|role| NN1)) ((|this| DD1))
((|success| NN1)) ((|succession| NN1))
((|inferiority| NN1)) ((|content| NN1))
((|characteristics| NN2)) ((|it| PPH1))
((|situation| NN1)) ((|properties| NN2))
((|beliefs| NN2)) ((|disturbances| NN2)) ((|work| NN1))
((|value| NN1)) ((|ideas| NN2)) ((|lack| NN1))
((|it| PPH1)) ((|failure| NN1)) ((|crash| NN1))
((|value| NN1)) ((|ideas| NN2)) ((|lack| NN1))
((|it| PPH1)) ((|failure| NN1)) ((|crash| NN1))
((|win| NN1)) ((|role| NN1)) ((|difficulties| NN2))
((|contribution| NN1)) ((|number| NN1))
((|variability| NN1)) ((|success| NN1)) ((|this| DD1))
((|reality| NN1)) ((|grasp| NN1)) ((|effect| NN1))
((|weight| NN1)) ((|whole| NN1))

:OLT2L
((PSUBCATNP)
(((|to| |to| |to| |to| |to| |to| |to| |to| |to| |to| |to| |to| |to|

|to| |to| |to| |to| |to| |to| |to| |to| |to| |to| |to| |to| |to|
|to| |to| |to| |to| |to| |to| |to| |to| |to| . |to| )II))

((|intention| NN1) (|variables| NN2) (|characters| NN2)
(|characters| NN2) (|processes| NN2) (|methods| NN2)
(|allusions| NN2) (|sort| NN1) (|being| NN1) (|it| PPH1)
(|them| PPHO2)(|childhood| NN1) (|error| NN1)
(|systems| NN2) (|ancients| NN2) (|group| NN)
(|hand| NN1) (|first| MD) (|thinker| NN1)
(|indulgences| NN2) (|machinations| NN2)
(|conditions| NN2) (|fault| NN1) (|collapse| NN1)
(|vanguard| NN1) (|nature| NN1) (|dismissal| NN1)
(|conditions| NN2) (|fault| NN1) (|collapse| NN1)
(|vanguard| NN1) (|nature| NN1) (|dismissal| NN1)
(|them| PPHO2)(|mind| NN1) (|asset| NN1)
(|process| NN1) (|objects| NN2) (|Fido| NP)
(|combination| NN1) (|principle| NN1) (|this| DD1)

:OLT3L NIL :LRL 0)

Figure 2.6: A samplescf entry
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experimental evaluation reported in Briscoe and Carroll (1997) showed that both the
hypothesisgeneration and hypothesisselectionphasesneedre�nement. The weakest
link in the system proved, however, to be hypothesis selection. The entire approach
to �ltering needsimprovement the better to deal with low frequencyscf s and to yield
better overall performance.

2.6 Summary

In this chapter, we have discussedthe background and motivation for our work. We
�rst described the phenomenonof verb subcategorization and the account of this
phenomenon in linguistic theory, establishing why subcategorization is one of the
most important type of information a computational lexicon should provide. We
then discussedsubcategorization lexicons; the requirements of these resourcesand
attempts to obtain them (semi-)manually. After explaining why (semi-)manual work
hasnot yielded adequateenoughlexicons,wearguedthat automatic subcategorization
acquisition is the avenue to pursue.

We surveyed various approaches to automatic subcategorization acquisition. Within
a decade,the systemshave developed from those capableof learning a small number
of scf s automatically from corpus data, to those capableof detecting a comprehen-
sive set of scf s and producing large-scalelexicons containing data on the relative
frequenciesof di�eren t scf s and verb combinations.

Although this is an encouragingdevelopment, our review of evaluation indicated that
the accuracy of resulting lexicons shows room for improvement. Analysis of error
reveals problems common to di�eren t systems,arising during hypothesis generation
and selection. We pointed out that, while analysis of corpus data has developed
signi�cantly during the past decade,the samecannot be said of the �ltering methods
usedfor hypothesisselection,which are reported to perform especially poorly. When
aiming to improve scf acquisition, improving hypothesisselectionis thus critical. We
establishedthis asthe scope of our research. We concludedthe sectionby intro ducing
the systememployed as framework for scf acquisition in all the work reported in this
thesis.
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Chapter 3

Hyp othesis Testing for
Subcategorization Acquisition

3.1 Introduction

As discussedin chapter 2, nearly all subcategorization acquisition approaches pro-
ceedin two steps: generating hypothesesfor scf s and deciding which hypothesesare
reliable. The latter step is neededto remove the noisewhich inevitably arisesin scf
acquisition. Most approachesemploy statistical hypothesistests for this purpose(e.g.
Brent, 1993; Manning, 1993; Ersan and Charniak, 1996; Lapata, 1999; Briscoe and
Carroll, 1997; Sarkar and Zeman, 2000). Despite the popularit y of these tests, they
have beenreported to be inaccurate. As a consequence,hypothesisselectionappears
to be the weak link in many scf acquisition systems. The aim of this chapter is
to addressthis problem by examining why hypothesis tests do not perform in scf
acquisition as expected.

In section 3.2, we �rst provide some theoretical background on hypothesis testing
in general. Then in section 3.3, we consider hypothesis testing in the context of
subcategorization acquisition, reviewing the tests used and discussingthe problems
reported with them. In section 3.4, a more detailed examination is provided of the
performanceof hypothesis testing. We report experiments we conducted to compare
three di�eren t �ltering methods within the framework of Briscoe and Carroll's (1997)
scf acquisition system. Our results show that two hypothesis tests perform poorly,
compared with a simple method of �ltering scf s on the basis of their mle s. We
discuss reasonsfor this, point out a number of problems with hypothesis testing
for scf acquisition, and consider possible directions for further research. Finally,
section 3.5 summarisesour discussion.

3.2 Background on Hypothesis Testing

Hypothesistesting, asusedin scf acquisition, involvesmaking decisions.In statistics,
decision making belongsto the study of inferenceproblems called `decisiontheory'.

67
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Generally speaking, decision theory involves formally de�ning all elements of the
decision-makingprocess,including the desiredoptimalit y criteria. Thesecriteria are
then usedto comparealternativ e decisionprocedures.

One element of a decision problem is the `data' described by a random vector X
with sample spaceX . Another element is a `model', a set of possible probabilit y
distributions for X, indexedby a parameterθ. This parameter is the true but unknown
state of nature about which we wish to make an inference. The set of possiblevalues
for θ is called the parameter space(�). Thus the model is a set f f (xjθ) : θ 2 � g
where each f (xjθ) is a probabilit y mass function or probabilit y density function on
X . After the data X = x is observed, a decisionregarding the parameter θ is made.
The set of allowable decisionsis the `action space',denotedby (A). The action space
determinesthe type of inferenceproblem with which we are concerned.

When the decision problem is a hypothesis testing problem, the goal is to decide,
from a sampleof the population, which of the two complementary hypothesesis true:
the `null hypothesis' H0 or the `alternative hypothesis' H1. Hypothesis testing is
performed by formulating H0, which is assumedtrue unlessthere is evidenceto the
contrary . If there is evidence to the contrary , H0 is rejected and H1 is accepted.
Essentially , a hypothesis test is a rule that speci�es

i For which samplevaluesthe decision is made to accept H0 as true

ii For which samplevaluesH0 is rejected and H1 is acceptedas true

The subset of the sample space for which H0 will be rejected is called the `rejec-
tion region' or `critical region'. The complement of the rejection region is called the
`acceptanceregion'.

Thus in terms of decisiontheory, only two actions are allowable in hypothesistesting,
either \accept H0" or \reject H0". When denoting these two actions a0 and a1,
respectively, the action spacein hypothesis testing is the two point set A = f a0, a1g.
A decisionrule (δ(x)) is a rule that speci�es, for each x 2 X , what action a 2 A will
be taken if X = x is observed. In hypothesis testing we have

δ(x) = a0 for all x that are in the acceptanceregion of the test

δ(x) = a1 for all x that are in the rejection region of the test

In deciding to accept or reject H0, we may make a mistake. Two typesof error may
be distinguished:

Type I Error The hypothesis test incorrectly rejects H0

Type II Error The hypothesis test incorrectly acceptsH0

These two di�eren t situations are depicted in �gure 3.1. Supposing R denotes the
rejection region for a test, the probabilit y of Type I Error is P (X 2 RjH0) and
the probabilit y of the Type I I error is P (X 2 RC jH1). Hypothesis tests are often
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Accept H0 Reject H0

H0 Correct Type I
decision error

H1 Type II Correct
error decision

Figure 3.1: Two typesof error in hypothesis testing

evaluated and compared through their error probabilities. When doing so, Type I I
error is frequently minimised subject to a pre-speci�ed value for Type I error. That
value is the `signi�cance' of the test. The signi�cance is often set at 0.05, in which
casewe have a `con�dence' of 95% in accepting H0.

The hypothesis tested may refer to a certain parameter of the distribution of the
data. For example, we may have a hypothesis about the population mean. Tests of
such hypothesesare called `parametric' tests, and they assumesomedistribution for
the data (e.g. the binomial, normal, t distribution). Examples of parametric tests
are the binomial hypothesis test, the log likelihood ratio test and the t test which
we shall discussfurther in section 3.3. Sometests, on the other hand, are designed
for hypothesesabout other characteristics of the distribution, such as the similarit y
betweenthe distributions of two samples.Such tests are called `non-parametric' (e.g.
the Chi-Square test) or `distribution-free', when they do not assumeany distribution
for the data (e.g. the Fisher's exact test).

Typically, a parametric hypothesis test is speci�ed in terms of a `test statistic', a
function of the sample W (X). A test might, for example, specify that H0 is to be
rejected if X, the sample mean, is greater than 3. In this case,W (X) = X is the
test statistic and the rejection region is f (x1, ..., xn) : x > 3g. Di�eren t test statistics
(e.g. likelihood ratio tests, invariant tests, Bayesian tests) and rejection regions can
be de�ned. The choicedependsupon what sort of departures from the hypothesiswe
wish to detect1.

3.3 Hypothesis Testing in Subcategorization Acquisition

When applying hypothesistesting to scf acquisition, the task is to examinewhether,
on the basisof accumulated evidence,there is a genuine association betweena partic-
ular verb (verbj) and a scf (scfi). As the input data to statistical �ltering is noisy,
each occurrenceof verbj has somenon-zeroprobabilit y of being followed by a cue for
scfi, even if it cannot in fact occur with scfi. The more often verbj occurs, the more
likely it is to occur at least once with a cue for scfi. Hypothesis testing considers
each occurrenceof verbj without a cue for scfi as a small item of evidenceagainst

1For a more detailed account of decision theory and hypothesis testing, see e.g. Casella and Berger
(1990) and Kalbfleisch (1985).
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verbj occurring with scfi. The aim is to determine when verbj occurs with cuesfor
scfi often enoughto indicate that all those occurrencesare unlikely to be errors.

Given this, the null hypothesisH0 is that there is no association betweenverbj and
scfi. Meanwhile, the alternativ e hypothesis H1 is that there is such an association.
The test is `one-tailed' since H1 states the direction of the association, which is a
positivecorrelation betweenverbj and scfi. The expectedprobabilit y of scfi occurring
with verbj if H0 is true is compared with the observed probabilit y of co-occurrence
obtained from the corpusdata. If the observedprobabilit y is greater than the expected
probabilit y, we reject H0 and accept H1, and if not, we retain H0.

Sofar, three hypothesistests have beenusedin scf acquisition: the binomial hypoth-
esistest, the log likelihood ratio test, and the t test. We discussthesetests and their
performancein following three sections.

3.3.1 Binomial Hyp othesis Test

The most frequently employed statistical test in scf acquisition is the binomial hy-
pothesistest (bht ), originally intro duced for the purposeby Brent (1993) and subse-
quently usedby Manning (1993), Ersan and Charniak (1996), Lapata (1999), Briscoe
and Carroll (1997), and Sarkar and Zeman (2000). In section 2.5.3, we intro duced
Briscoe and Carroll's version of bht . We shall now look at the test and its di�eren t
versionsin more detail.

Applying this test to scf acquisition requires recording the total number of scf cues
(n) found for verbj , and the number of these cuesfor scfi (m). It also requires an
estimate of the error probabilit y (pe) that a cue for a scfi occurs with a verb which
doesnot take scfi. Occurrencesof verbs with di�eren t putativ e scf s are regardedas
independent Bernoulli trials. The probabilit y of an event with probabilit y p happening
exactly m times out of n such trials is given by the following binomial distribution:

P (m, n, p) =
n!

m!(n � m)!
pm(1 � p)n� m (3.1)

The probabilit y of the event happening m or more times is:

P (m+ , n, p) =
n
∑

k=m

P (k, n, p) (3.2)

Finally, P (m+ , n, pe) is the probabilit y that m or more occurrencesof cuesfor scfi

will occur with a verb which is not a member of scfi, givenn occurrencesof that verb.
A threshold on this probabilit y, P (m+ , n, pe), is usually set at lessthan or equal to
0.05. This yields a 95% or greater con�dence that a high enoughproportion of cues
for scfi have beenobserved for the verb legitimately to be assignedscfi.

Approachesto scf acquisition which usea binomial hypothesistest typically di�er in
respect of the calculation of error probabilit y. Brent (1993) estimatespe for each scf
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experimentally from the behaviour of his scf extractor. Let N be a lower limit on the
number of verb occurrencesin the sample. For each scfi, we can build a histogram
where the height of the mth bin is the number of verbs that cue for scfi exactly
m times out of their �rst N occurrences. Assume that there is some 1 � j0 � N

such that most verbs not taking scfi are seenwith cues for scfi j0 times or fewer
and, conversely, that most verbs seenwith cues for scfi j0 times or fewer do not
take scfi. The distribution for m � j0 occurrencesshould be roughly binomial, i.e.
proportional to P (m, N, p̂e), where p̂e denotes an estimate of pe for scfi. Brent's
procedureexamineseach possibleestimate j of j0. For each j, he estimates p̂e as the
average rate among the �rst N occurrencesat which verbs in bins up to j cue for
scfi. The plausibilit y of j is evaluated by normalizing the �rst j bins, setting the rest
to zero, comparing with P (m, N, p̂e), and taking the sum of the squareddi�erences
betweenthe two distributions. The estimate giving the closest�t betweenpredicted
and observed distributions is chosenas the best estimate of pe.

Brent's calculation of error probabilit y was presumably adopted without changesby
Lapata (1999) and Sarkar and Zeman (2000). Manning (1993), however, found that
for somescf s, this method leads to unnecessarylow estimates for pe. SinceBrent's
cuesweresparsebut unlikely to be false, the best performancewas found with values
of the order of 2� 8. This wasnot the casewith Manning's approach, wherethe number
of available cueswas increasedat the expenseof reliabilit y of thesecues. To maintain
high levels of accuracy, Manning applied empirically determined2 higher bounds on
the error probabilities for certain scf s. The high bound values ranged from 0.25 to
0.02. This approach was also employed by Ersan and Charniak (1996).

When estimating pe in the manner of Brent or Manning, one makes the assumption
that the error probabilities for scf s are uniform acrossverbs. This assumption is
false, as noted by Brent (1993). Most verbs can, for example, take an np argument,
while very few can take an np followed by a tensed clause. Assuming uniform error
probabilit y results in too few verbsbeing classi�ed as taking an np argument and too
many taking an np followed by a tensedclause. This suggeststhat in calculation of
pe, a better approach would be to take into account variation on the percentage of
verbs that can appear in each frame. Briscoe and Carroll (1997) take a step in this
direction by estimating pe as follows:

pe =
(

1 �
jverbs in scfij

jverbsj

)

jpatterns for scfij
jpatternsj

(3.3)

Briscoe and Carroll extract the number of verb types which are members of the
target scf in the anl t dictionary. They then convert this number to a probabilit y of
frame membership by dividing by the total number of verb types in the dictionary.
The complement of this probabilit y provides an estimate for the probabilit y of a
verb not taking scfi. Secondly, this probabilit y is multiplied by an estimate for the
probabilit y of observing the cue for scfi. This is estimated using the number of
patterns for i extracted from the susanne corpus, divided by the total number of
patterns. According to this estimation, if the probabilit y of observingthe cuefor scfi

2Manning provides no further details of the empirical estimation.
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is 0.5 and the probabilit y of frame membership is only 0.1, the error probabilit y of
associating verbs with scfi is 0.45. However, if the probabilit y of frame membership
is 0.5 instead, the error probabilit y is only 0.25.

As shown above, Briscoe and Carroll's estimation of pe takes into account the rela-
tiv e frequency of verb types that appear in each frame. However, since basedon a
dictionary, it does not consider the relative frequency of tokens of verb types. It is
probable that to obtain more accurate estimates, the number of verb types in anl t
scfi should be weighted by the frequency of these verbs. It is also possiblethat the
patterns extracted from the susanne corpus are not representativ e enough to yield
fully accurate estimation.

Briscoe, Carroll and Korhonen (1997) apply a method which iterativ ely optimizes
the error probabilities obtained using Briscoe and Carroll's estimation. The idea is
similar to that of Manning (1993), i.e. to set high bounds on the error probabilities.
The method is based on automatically adjusting the pattern frequenciesshown in
equation 3.3 on the basis of the errors (false positives and false negatives) the scf
acquisition system makes. First, the errors the system has made are analysed. Then
an `optimal' con�dence threshold is calculated such that if the bht �lter had applied
it instead of the actual con�dence threshold of 0.05, the errors with scf s would have
been minimised. This is done by initially setting a threshold between each pair of
scf occurrencesin system output, and then choosing the threshold which yields the
minimum number of errors as the optimal con�dence threshold. Let pscfi

be the
probabilit y assignedto scfi by the binomial hypothesis test and n the total number
of scf s in system output. The number of incorrect scf s for each possiblethreshold
is calculated as follows:

Errorsi =











pscfi
+ pscfi+1

2 , i=1,..,n� 1

lim j! i+ pscfj
, i=0

lim j! i� pscfj
, i=n

(3.4)

The threshold which yields the smallest number of incorrect scf s is chosen as the
optimal threshold popt. Next, the distance between the optimal threshold and the
actual con�dence threshold (pthr) is calculated by dividing the latter by the former.
The resulting value is multiplied with the pattern frequency of scfi. This gives an
optimised pattern frequency:

jpatterns for scfijopt = jpatterns for scfij

(

pthr

popt

)

(3.5)

Correcting errors in the above manner will generatesomenew errors. Accordingly,
the whole processis repeated until the pattern frequenciesand hencethe error prob-
abilities are optimised to give the optimum system results with type precision and
recall.

Briscoe, Carroll and Korhonen (1997) report an experiment using this method, where
the error probabilities were �rst iterativ ely optimised with held-out training data
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covering 10 verbs and then evaluated with test data covering 20 verbs3. Using the
optimised error probabilities improved scf acquisition performance by 8.8% with
type precision, 20.7%with type recall and 10.9%with ranking accuracy, ascompared
with the performancewith original error probabilities. This result demonstratesthat
Briscoe and Carroll's estimation of pe is not optimal. However, the optimization
method yields only 70%type precision, 62%type recall and 77%ranking accuracyat
its best, which also leaves for room improvement. Closer analysis of results revealed
that the method was su�cien t only to improving the performanceof medium-to-high
frequency scf s.

Nearly all approaches using bht report that the test is unreliable for scf s with a
frequency of less than 10 (Brent, 1993; Manning, 1993; Ersan and Charniak, 1996;
Briscoe and Carroll, 1997). In practice, the poor performanceof bht with low fre-
quency scf s results in low recall, as many correct scf s are missedand wrong ones
selected.

3.3.2 Log Lik eliho od Ratio

The binomial log-likelihood ratio (llr ) test (Dunning, 1993)seemstheoretically more
promising than bht for low frequency data. The test has been recommendedfor
use in nlp since it does not assumea normal distribution, which invalidates many
other parametric tests for use with natural language phenomena. Moreover, it is
used in a form (� 2logλ) which is asymptotically χ2 distributed. This asymptote is
appropriate at quite low frequencies,which renders the hypothesis test potentially
useful when dealing with natural languagephenomena,where low frequency events
are commonplace. Dunning (1993) demonstratesthe bene�ts of the llr statistic in
practice, compared with Pearson'schi-squared, on the task of ranking bigram data.
The (llr ) test (Dunning, 1993) has been used in scf acquisition by Sarkar and
Zeman(2000) and by Gorrell (1999), who applies it to the scf acquisition framework
of Briscoe and Carroll (1997). Both Sarkar and Zemanand Gorrell usethe test in the
sameway.

To calculate the binomial log-likelihood ratio test, four counts are required for each
verb and scf combination. Theseare the number of times that:

1. the target verb occurs with the target scf (k1)

2. the target verb occurs with any other scf (n1 � k1)

3. any other verb occurs with the target scf (k2)

4. any other verb occurs with any other scf (n2 � k2)

These are the counts from a contingency table, such as that shown below, where
the rows indicate the presenceor absenceof the verb and the columns indicate the
presenceor absenceof the scf :

3The corpus data and method used for evaluation were identical to those used by Briscoe and
Carroll (1997), see chapter 2 for details.
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scf ¬ scf Totals

verb scf & verb (k1) ¬ scf & verb n1

¬ verb scf & ¬ verb (k2) ¬ scf & ¬ verb n2

The statistic � 2logλ is calculated as follows:

log-likelihood = 2[logL(p1, k1, n1)

+ logL(p2, k2, n2)

� logL(p, k1, n1)

� logL(p, k2, n2) ] (3.6)

where

logL(p, n, k) = k � logp + (n � k) � log(1 � p)

and

p1 =
k1

n1
, p2 =

k2

n2
, p =

k1 + k2

n1 + n2

The llr statistic provides a scorethat reects the di�erence in (i) the number of bits
it takesto describe the observed data, using p1 = p(scf jverb) and p2 = p(scf j: verb),
and (ii) the number of bits it takesto describe the expecteddata using the probabilit y
p = p(scf jany verb).

The llr statistic detects di�erences betweenp1 and p2. The di�erence could poten-
tially be in either direction, but with scf acquisition, one is interested in llr s where
p1 > p2, i.e. where there is a positive association betweenthe scf and the verb. For
these cases,the value of � 2logλ is compared to the threshold value obtained from
Pearson'sChi-Squared table, to seeif it is signi�cant at the 95% level.

Surprisingly, both Gorrell (1999) and Sarkar and Zeman (2000) report that with scf
acquisition, llr yields worse overall performance than bht . Gorrell reports that
when compared to bht , llr shows a 12% decline in system performancewith type
precision, 3% with type recall, and 7% with ranking accuracy. Sarkar and Zeman
report a 6% decline in token recall with llr , as compared with bht . Gorrell, who
provides more detailed analysisof errors, doesnot �nd evidencethat llr would even
perform better on low frequencyclassesthan bht .

3.3.3 The t test

The t test is applied to scf acquisition only by Sarkar and Zeman(2000). It is derived
from the log likelihood ratio test for the normal distribution. Relying on the normal
approximation, it is only reliable for largeenoughscf samples(ni �pi > 5, ni �(1� pi) >

5) and therefore not theoretically as promising for the useof scf acquisition as llr .
Given a samplefrom a normal distribution with unknown meanand variance, the test
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is used to make hypothesesabout the mean. It examinesthe di�erence between the
observed and expected means,scaledby the variance of the data, and indicates how
likely it is to get a sample of that (or more extreme) mean and variance, assuming
that the sample is drawn from a normal distribution with mean µ.

When applied to scf acquisition, the value of the t test is usedto measurethe asso-
ciation between verbj and scfi. Using the de�nitions from section 3.3.2, the test is
computed as follows:

T =
p1 � p2

√

σ1(n1, p1)2 + σ2(n2, p2)2
(3.7)

where

σ(n, p) =

√

p(1 � p)
n

(3.8)

The value of T has the t distribution with n1 + n2 � 2 degreesof freedom (which is
about normal for large samples). The larger that value is, the more con�dent we can
be that p1 is greater than p2 and thus that null hypothesisshould be rejected.

Sarkar and Zeman report that the t test performs similarly with llr , showing only
0.5%improvement over llr with tokenrecall. No further analysisof errors is provided.

3.4 Comparison of Three Methods

Noneof the hypothesistests usedin scf acquisition sofar yields accurateenoughper-
formance. Although they have beenwidely reported as problematic, especially with
low frequencyscf s, the reasonsfor poor performancehave not beeninvestigated. To
examine why these tests perform poorly in scf acquisition, we performed a seriesof
experiments within the framework of the Briscoe and Carroll's scf acquisition sys-
tem4. In theseexperiments, we comparedthe performanceof the Brent style binomial
�lter of Briscoe and Carroll and the llr �lter of Gorrell (1999) with the performance
of a simple method which usesa threshold on the mle s of scf s. This section reviews
these experiments, discussesthe results obtained and considersdirections for future
work. The three �lters are described in section 3.4.1. The details of the experimental
evaluation are supplied in section 3.4.2. Our �ndings are discussedin section 3.4.3
and future work in section 3.4.4.

3.4.1 Metho ds

When investigating the �ltering performance,we usedBriscoe and Carroll's scf sys-
tem asa framework (seesection2.5.3). In theseexperiments, the hypothesisgenerator

4The research reported in this section was undertaken in collaboration with Genevieve Gorrell and
Diana McCarthy. Full report of our joint work can be found in Korhonen, Gorrell and McCarthy
(2000).
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of the system (the tagger, lemmatizer, parser, pattern extractor and classi�er) was
held constant, the only di�erence being that a parser was used di�eren t from that
selectedby Briscoe and Carroll 5. While they employed a probabilistic lr parser,
our data was parsedusing a probabilistic chart parser (pcp) (Chitrao and Grishman,
1990)6. Otherwise, the �lter was the only component we experimented with. We
comparedthe performanceof the system with three di�eren t �lters:

� The bht �lter of Briscoe and Carroll (1997)

� The llr �lter of Gorrell (1999)

� A new �lter which usesa threshold on mle s of scf s

The two statistical �lters have beendescribed in detail earlier. Section2.5.3described
the version of bht used by Briscoe and Carroll, while section 3.3.2 provided details
of Gorrell's llr �lter. The new �ltering method was applied in order to examine the
baselineperformanceof the system without employing any notion of the signi�cance
of the observations. The method involves extracting scf s classi�ed by the system's
classi�er, and ranking them in the order of probabilit y of their occurrencewith the
verb (p(scfijverbj)). Probabilities are estimated simply by using a maximum likeli-
hood estimate (mle ) from observed relative frequencies.This is the ratio of count for
scfi + verbj over the count for verbj . A threshold, determined empirically, is applied
to these probabilit y estimates to �lter out the low probabilit y entries for each verb.
We determined the threshold using held-out training data: such value was chosen
which gave optimum average �ltering results (according to F measure) for a set of
verbs. This yielded a threshold value of 0.02, which was used in the experiments
reported below.

3.4.2 Exp erimen tal Evaluation

Method

To evaluate the di�eren t �lters, we took a sample of 10 million words of the bnc
corpus. We extracted all sentencescontaining an occurrenceof one of the following
fourteen verbs: ask, begin, believe, cause, expect, find, give, help, like, move, produce,
provide, seem, swing. Theseverbs originally usedby Briscoe and Carroll (1997) were
chosenat random, subject to the constraint that they exhibited multiple complemen-
tation patterns. After the extraction process,we retained 3000citations, on average,
for each verb. The sentencescontaining these verbs were processedby the hypoth-
esis generator of the scf acquisition system, and then the three �ltering methods
described above were applied. We also obtained results for a baselinewithout any
�ltering.

5We are indebted to John Carroll for providing us with extracted patterns used in these and other
experiments reported in this thesis.

6See McCarthy (2001, p. 136) for evaluation of the pcp we employed and the lr parser Briscoe
and Carroll (1997) employed. In this evaluation, the lr parser proved slightly more accurate than
the pcp, but the differences were not statistically significant.
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Method High Freq Medium Freq Low Freq Totals
tp fp fn tp fp fn tp fp fn tp fp fn

bht 75 29 23 11 37 31 4 23 15 90 89 69
llr 66 30 32 9 52 33 2 23 17 77 105 82
mle 92 31 6 0 0 42 0 0 19 92 31 67

Table 3.1: Raw results for 14 test verbs

Method Type Precision % Type Recall % F measure

bht 50.3 56.6 53.3
llr 42.3 48.4 45.1
mle 74.8 57.8 65.2
baseline 24.3 83.5 37.6

Table 3.2: Precision, recall and F measure

The results wereevaluated against a manual analysisof corpusdata, the samemanual
analysisasemployed by Briscoe and Carroll. It wasobtained by analysingaround 300
occurrencesfor each of the 14 test verbs in lob (Garside et al., 1987), susanne and
sec (Taylor and Knowles, 1988) corpora. A manual analysis of the bnc data might
produce better results. However, since the bnc is a balanced and heterogeneous
corpus, we felt it was reasonableto test the data on a di�eren t corpus which is also
balancedand heterogeneous.

Following Briscoe and Carroll (1997), we calculated type precision (percentage of
scf s acquired which were also exempli�ed in the manual analysis) and type recall
(percentage of the scf s exempli�ed in the manual analysis which were acquired au-
tomatically). We also combined precision and recall into a single measureof overall
performanceusing the F measure.

Results

Table3.1givesthe raw results for the 14verbsusingeach method. It showsthe number
of true positives(tp ), falsepositives(fp ), and falsenegatives(fn ), as determined by
manual analysis. The results for high frequencyscf s (above 0.01 relative frequency),
medium frequency (between 0.01 and 0.001) and low frequency (below 0.001) scf s
are listed respectively in the second,third and fourth columns. Thesethree frequency
ranges were de�ned so that a roughly similar number of scf s would occur in each
range. The �nal column includes the total results for all frequency ranges.

Table 3.2 shows type precision, type recall and the F measurefor the 14 verbs. We
also provide the baselineresults, if all scf s were accepted.

From the results given in tables 3.1 and 3.2, it is apparent that the mle approach
outperformed both hypothesis tests. For both bht and llr there was an increasein
fn s at high frequencies,and an increasein fp s at medium and low frequencies,when
comparedwith mle . The number of errors wastypically larger for llr than bht . The
hypothesis tests reducedthe number of fn s at medium and low frequencies,but this
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Method Type Precision % Type Recall % F measure

bht 62.5 55.1 58.6
llr 50.9 47.0 48.9

Table 3.3: Results with small bnc data

was countered by the substantial increasein fp s that they gave. While bht nearly
always acquired the three most frequent scf s of verbs correctly, llr tended to reject
these.

While the high number of fn s can be explained by reports which have shown llr
to be over-conservative (Ribas, 1995; Pedersen,1996), the high number of fp s is
surprising. Although theoretically the strength of llr lies in its suitabilit y for low
frequency data, the results displayed in table 3.1 do not suggest that the method
performs better than bht on low frequency frames.

mle thresholding producedbetter results than the two statistical tests used. Precision
improvedconsiderably, showing that scf soccurring in the data with highest frequency
are often correct. Also recall showed slight improvement as comparedwith bht and
llr . Although mle thresholding clearly makes no attempt to solve the sparsedata
problem, it performs better than bht or llr overall. mle is not adept at �nding low
frequency scf s: the other methods are, however, problematic in that they wrongly
accept more than they correctly reject. The baseline,of accepting all scf s, obtained
a high recall at the expenseof precision. It performed 7.5 worse according to the F
measurethan llr , showing that even a poor �ltering method yields better overall
performancethan no �ltering at all.

Interestingly, we have some further results which suggest that both bht and llr
perform better when less data is used. When we run the same experiment using
only an averageof 1000 citations of each verb from the sample of 10 million words
of the bnc , precision and recall are improved, as seenin table 3.3. This is surprising
sincestatistical tests take samplesizeinto account and should be more reliable as the
samplesizeincreases.We performed cross-validation which con�rmed that this e�ect
holds acrossdi�eren t subsetsof bnc . Each of the three subsetsexamined showed
better performancewith smaller sample.

3.4.3 Discussion

Our results indicate that mle outperforms both hypothesis tests. We found two
explanations for this, which we believe are jointly responsible.

Firstly , the scf distribution is approximately zip�an, as are many distributions con-
cernedwith natural language(Manning and Sch•utze, 1999). In a zipf-likedistribution,
the product of rank order (r) and frequency(f ) is constant. According to Zipf 's law:

f /
1
r

(3.9)
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Figure 3.2: Hypothesisedscf distribution for find

Figure 3.3: Hypothesisedunconditional scf distribution
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In other words, there is a constant k such that f � r = k.

Figures 3.2 and 3.3 display two zipf plots. The former shows the conditional scf
distribution for the verb find, while the latter shows the unconditional distribution
of scf s for all verbs. Theseun�ltered scf probabilit y distributions were obtained by
running the pattern classi�er of Briscoe and Carroll's system on 20 million words of
bnc . The �gures show scf rank on the X-axis versusscf relative frequency on the
Y-axis, using logarithmic scales.The line indicates the closestZipf-lik e power law �t
to the data. These �gures illustrate typical zip�an skewed distributions where the
few very high frequencyscf s have several ordersof magnitude more occurrencesthan
most others. There is a middling number of medium frequency scf s and a long tail
of low frequency scf s.

Secondly, the hypothesistests make the falseassumption (H0) that the unconditional
and conditional distributions are correlated. The fact that a signi�cant improvement
in performanceis madeby optimizing the prior probabilities for scf s accordingto the
performance of the system (Briscoe, Carroll and Korhonen, 1997; seesection 3.3.1)
suggeststhe discrepancybetweenunconditional and conditional distributions.

We examined the correlation between the manual analysis for the 14 verbs and the
unconditional distribution of verb typesover all scf s estimated from anl t using the
Kullback-Leibler Distance(kl ) and SpearmanRank Correlation Coe�cien t (r c). The
results included in table 3.4 show that the distributions comparedare fairly dissimilar
and that only a moderate to poor rank correlation was found averagedover all verb
types7. Manual inspection of scf s taken by individual verbs shows that this result
is not surprising. For example, the highest ranked scf type with the verb believe is
a sentential complement. This scf type is not as common, however, with verbs in
general, ranked only as 12th among the scf types in anl t . Furthermore, while the
mle for sentential complement is 0.48 with believe, it is only 0.012with verb typesin
general.

Both llr and bht work by comparing the observed value of p(scfijverbj) with that
expected by chance. They both use the observed value for p(scfijverbj) from the
system's output, and they both use an estimate for the unconditional probabilit y
distribution (p(scf )) for estimating expected probabilit y. They di�er in the way in
which the estimate for unconditional probabilit y is obtained and the way that it is
usedin hypothesis testing.

For bht , the null hypothesis is that the observed value of p(scfijverbj) arose by
chance, becauseof noise in the data. We estimate the probabilit y that the value
observed could have arisen by chanceusing p(m+ , n, pe). pe is calculated using:

� the scf acquisition system's raw (un�ltered) estimate for the unconditional
distribution, which is obtained from the susanne corpus and

� the anl t estimate of the unconditional distribution of a verb not taking scfi,
acrossall scf s

7Note that kl ≥ 0, with kl near to 0 denoting strong association, and −1 ≤ rc ≤ 1, with rc near
to 0 denoting a low degree of association and rc near to -1 and 1 denoting strong association. See
section 2.5.2 for full account of both kl and rc.
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Verb kl rc

ask 1.25 0.10
begin 2.55 0.83
believe 1.94 0.77
cause 0.85 0.19
expect 1.76 0.45
find 1.29 0.33
give 2.28 0.06
help 1.59 0.43
like 1.39 0.56
move 0.78 0.53
produce 0.53 0.95
provide 0.44 0.65
seem 3.32 0.16
swing 0.79 0.50

Average 1.48 0.47

Table 3.4: Kullback-Leibler distance and Spearman rank correlation between the
conditional scf distributions of the test verbs and unconditional distribution

For llr , both conditional (p1) and unconditional (p2) estimates are obtained from
the bnc data. The unconditional probabilit y distribution usesthe occurrenceof scfi

with any verb other than our target.

The binomial tests look at one point in the scf distribution at a time, for a given
verb. The expected value is determined using the unconditional distribution, on the
assumption that if the null hypothesis is true then this distribution will correlate
with the conditional distribution. However, this is rarely the case. Moreover, given
the zip�an nature of the distributions, the frequency di�erences at any point can be
substantial. In these experiments, we used one-tailed tests becausewe were looking
for caseswhere there was a positive association between the scf and verb, however,
in a two-tailed test the null hypothesis would rarely be accepted, becauseof the
substantial di�erences in the conditional and unconditional distributions.

A large number of falsenegativesoccurred for high frequencyscf s becausethe prob-
abilit y with which we compared them was too high. This probabilit y was estimated
from the combination of many verbs genuinely occurring with the frame in question,
rather than from an estimate of background noise from verbs which did not occur
with the frame. We did not use an estimate from verbs which do not take the scf ,
since this would require a priori knowledge about the phenomenathat we were en-
deavouring to acquire automatically. For llr the unconditional probabilit y estimate
(p2) was high, simply becausethis scf was common, rather than becausethe data
wasparticularly noisy. For bht , pe was likewisetoo high as the scf wasalsocommon
in the susanne data. The anl t estimate went someway to compensating for this;
thus we obtained fewer false negativeswith bht than llr .

A large number of falsepositivesoccurred for low frequencyscf s becausethe estimate
for p(scfi) was low. This estimate was more readily exceededby the conditional
estimate. For bht false positives arosebecauseof the low estimate of p(scfi) (from
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susanne ) and becausethe estimateof p(: scfi) from anl t did not compensateenough
for this. For llr , there was no meansto compensatefor the fact that p2 was lower
than p1.

In contrast, mle did not compare two distributions. Simply rejecting the low fre-
quency data produced better results overall by avoiding false positives with the low
frequencydata, and false negativeswith the high frequencydata.

3.4.4 Conclusion

Further work on handling low frequency data in scf acquisition is warranted. With
hypothesistests, onepossibility is to put moree�ort into estimation of pe, and to avoid
use of the unconditional distribution for this. For example, Manning and Sch•utze
(1999) proposesupplementing bht with prior knowledge about a verb's scf s. This
could bedoneby stipulating a higher prior for scf s listed for a verb in somedictionary.
In somefurther experiments with bht , we optimised the estimates for pe depending
on the performanceof the system for the target scf , using the method proposedby
Briscoe, Carroll and Korhonen (1997) (seesection 3.3.1). The estimates of pe were
obtained from a held-out training set separate from the bnc data used for testing.
Results using the new estimates for pe showed no improvement with low frequency
scf s. They gave an overall improvement of 10% type precision and 6% type recall,
comparedto the bht results reported here8. Nevertheless,the result was 14% worse
for precision than mle , though there was a 4% improvement in recall, making the
overall performance3.9 worsethan mle according to the F measure.

Methods basedon optimising estimatesfor pe are likely to represent an upper bound
to bht 's accuracy. bht and other hypothesis tests applied in scf acquisition so far
assumethat the di�eren t scf s takenby verbj occur independently . Several researchers
have questioned this assumption (Carroll and Rooth, 1998; Manning and Sch•utze,
1999;Sarkar and Zeman, 2000). Manning and Sch•utze (1999) and Sarkar and Zeman
(2000) propose modeling the dependencebetween di�eren t scf s for verbj using a
multinomial distribution. To our knowledgethis method hasyet not beentried. While
we agreethat the independenceassumptionis arguably questionable,it is unclear how
this method would addressthe problems we have identi�ed with bht and llr .

A non-parametric or distribution-free statistical test, such asFisher'sexact test recom-
mendedby Pedersen(1996), might improve on the results obtained using parametric
tests. The computation for this test, however, can quickly becomecumbersomeas
a calculation is required for every possiblecon�guration of the contigency table that
results in the observed marginal totals. Moreover, Pedersen'sresults did not appear
to demonstratea signi�cant advantage comparedwith llr . On the task of identifying
bigrams, the ranks assignedby the llr and Fisher's exact test are identical.

As known from other areasof nlp , the zip�an nature of data alone remains a chal-
8This improvement obtained using the optimization method is smaller than that reported in

section 3.3.1. This is due to the optimization method’s being dependent on the accuracy of the
baseline results. As the baseline bht results reported in this section were not as accurate as those
reported in section 3.3.1 (e.g. due to the differences in test data) the improvement gained was smaller.
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lenge for both parametric and non-parametric statistical tests9. The frequent and
infrequent rangesof a zip�an distribution exhibit very di�eren t statistical behaviour.
It is possiblethat no statistic can be found that would work well for both high and
medium-to-low frequencyevents and thus allow direct comparisonof the signi�cance
of both rare and commonphenomena.Also, asBriscoe (2001) points out, zip�an data
is by nature inadequate from the statistical learning point of view, regardlessof the
amount and accuracy of the data used. Becausethe power law is scaling invariant,
no �nite sample will be representativ e in the statistical sense. In addition, power
law distributions often indicate that we sample from a non-stationary rather than a
stationary source(Casti, 1994). This partly explains why statistical models of learn-
ing, which rely on representativ e samplesfrom stationary sources,do not perform
optimally .

The better result obtained using mle is to someextent supported by Lapata (1999)
who reported that a threshold on the relative frequenciesproduced slightly better
results than those achieved with a Brent-style binomial �lter when establishing scf s
for diathesis alternation detection. However, Lapata's approach di�ers from ours in
that she determined thresholds for each scf (independently from verbs) using the
frequency of the scf in bnc and comlex . The method fails to account for the fact
that scf probabilities are not uniform across the verbs. Better results would be
obtained if the variation on the percentage of tokensof verb typesthat can appear in
each frame was taken into account.

To improve the performanceof mle , it would be worth investigating ways of handling
low frequencydata for integration with this method. Any statistical test would work
better at low frequenciesthan the mle , sincethis simply disregardsall low frequency
scf s. If in our experiments, we had usedmle only for high frequencydata, and bht
for medium and low, then overall we should have had 54% precision and 67% recall.
For integration with mle , it seemsworth employing hypothesis tests which do not
rely on the unconditional distribution for low frequency scf s. Another option would
be to integrate mle with smoothing. This approach would avoid altogether the use
of statistical tests. However, more sophisticated smoothing methods, which back-o�
to an unconditional distribution, will also su�er from the lack of correlation between
conditional and unconditional scf distributions. In other words, only if the uncondi-
tional scf distribution provided accurateback-o� estimatesfor scf s, could it be used
to smooth the conditional distributions to compensatefor the poor performanceon
rare scf s and to detect scf s unseen.

3.5 Summary

In this chapter, we have discussedthe problem of statistical �ltering in subcategoriza-
tion acquisition. After providing theoretical background on the theory of hypothesis
testing, we reviewed hypothesis tests applied in scf acquisition and described the
problemsassociated with them. We then reported experiments with Briscoe and Car-

9For example, Manning and Schütze (1999) discuss the performance of various hypothesis tests
on the task of identifying collocations, and Kilgarriff (2001) evaluates different statistical tests used
for comparing corpora. They both report poor performance with these tests on zipfian data.
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roll's scf acquisition system, where we explored three possibilities for �ltering scf
entries produced by the system. These were (i) a version of the binomial hypothe-
sis test �lter, (ii) a version of the binomial log-likelihood ratio test �lter and (iii) a
simple method using a threshold on the mle s of the scf s hypothesised.Surprisingly,
the simple mle thresholding method worked best. The bht and llr both produced
an astounding number of fp s, particularly at low frequencies. Our investigation
showed that hypothesistesting doesnot work well becausenot only is the underlying
distribution zip�an but also there is very little correlation between conditional and
unconditional scf distributions. bht and llr wrongly assumedsuch a correlation for
H0 and thus weresusceptibleto error. The lack of correlation betweenthe conditional
and unconditional scf distributions will, however, alsoa�ect re�nements of mle such
assmoothing or Bayesianestimation. Sophisticatedmethods for handling sparsedata
would bene�t from more accurate back-o� estimatesfor scf s than the unconditional
scf distribution can provide.



Chapter 4

Back-o� Estimates for
Subcategorization Acquisition

4.1 Introduction

In chapter 3, we discussedthe poor performance of statistical tests frequently em-
ployed for hypothesisselectionin scf acquisition. Our investigation showed that one
substantial source of error lies in the lack of accurate back-o� estimates1 for scf s,
delimiting the �ltering performance. However, accessto more accurate back-o� esti-
mateswould not only bene�t widely-usedstatistical �lters, but any method employed
for hypothesis selection which relies on such estimates. It would also help e.g. the
simple �lter basedon mle thresholding (intro duced in chapter 3) which requires re-
�nement the better to deal with sparsedata.

In this chapter we shall considerways of obtaining more accurate back-o� estimates
for scf acquisition. The poor correlation between the unconditional (p(scf )) and
conditional scf distributions (p(scf jverb)) suggeststhat no single set of back-o� es-
timates is applicable to all verbs. Rather, it is likely that verbs of di�eren t subcate-
gorization behaviour require di�eren t estimates. In the following sectionswe consider
linguistic resourceswhich classify verbs according to their distinctiv e subcategoriza-
tion behaviour. We examine whether back-o� estimates could be basedon the verb
classestheseresourcesprovide (p(scf jclass)).

We start by intro ducing the linguistic verb classi�cations we plan to explore (sec-
tion 4.2). We then report experiments where we compare how well verbs grouped
similarly in theseclassi�cations correlate in terms of scf distributions (section 4.3).
The outcome from theseexperiments is summarized in section 4.42.

1We use the term ‘back-off estimates’ in a broad sense to refer to the scf probability estimates used
for guiding scf acquisition is some way. We make no reference to the particular method employed
(e.g. hypothesis testing, smoothing, Bayesian estimation, etc.).

2See Korhonen (2000) for a summary of the central experimental findings presented this and the
following chapter.
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4.2 Methods of Verb Classification

In the previouschapter, poor correlation wasreported betweenunconditional (p(scf ))
and conditional scf distributions (p(scf jverb)). Unlike approachesto scf acquisition
have sofar generallyassumed,p(scf ) doesnot provide accurateback-o� estimatesfor
p(scf jverb). This is not actually surprising, considering that individual verbs di�er
largely in terms of the number and type of scf s they take. For instance, a verb like
ignore takesonly one scf (np), while a verb like believe takesmultiple scf s (e.g. np,
par t-np , np-pp, pp, par t-np-pp , intrans , par t , np-adjp , np-pp-pp ). Given this,
a single set of back-o� estimates is unlikely to fully account for the scf variations
the di�eren t verbs pose. Instead, it is likely that verbs of di�eren t subcategorization
behaviour require di�eren t back-o� estimates. A verb like clip, for instance, which
intuitiv ely takes near identical set of scf s with cut (e.g. np, par t-np , np-pp, pp,
par t-np-pp , intrans , par t , par t-pp , np-pp-pp ) should require similar back-o�
estimates to cut.

An alternativ e is thus to classify verbs into classesdistinctiv e in terms of subcatego-
rization and obtain back-o� estimates speci�c to these classes(p(scf jclass)). Some
lexical resourcesexist which associate verbs with classesthat capture subcategoriza-
tion behaviour characteristic to their members. These classi�cations have been ob-
tained on both semantic and syntactic grounds. In the following, we shall �rst de-
scribe the semantically and then the syntactically-driv en verb classi�cations used in
our work.

4.2.1 Semantic Verb Classi�cation

Two current approaches to semantically-driv en verb classi�cation, both widely used
within nlp research, are the Levin classes(Levin, 1993) and WordNet (Miller et al.,
1993). Levin's taxonomy of verbs and their classesis based on diathesis alterna-
tions. Verbs which display the samealternations in the realization of their argument
structure are assumedto share certain meaning components and are organized into
a semantically coherent class. WordNet, on the other hand, is a semantic network
basedon paradigmatic relations which structure the di�eren t sensesof verbs. Of the
two sources,Levin classesare more interesting to us, since they provide setsof scf s
associated with individual classes.WordNet classi�es verbs on a purely semantic ba-
sis without regard to their syntactic properties. Although the syntactic regularities
studied by Levin are to someextent reected by semantic relatednessas it is repre-
sented by WordNet's particular structure (Dorr, 1997; Fellbaum, 1999), WordNet's
semantic organization doesnot always go hand in hand with a syntactic organization.
Levin classesthus give us a better starting point. WordNet provides, however, useful
information not included in Levin classes,for example, information about di�eren t
semantic relations between verbs and the frequency of verb senses. Unlike Levin's
taxonomy, it is also a comprehensive lexical database. We thus use WordNet as a
sourceof additional information. We shall next intro duce thesetwo classi�cations in
more detail.
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Levin’s Semantic Verb Classes

Levin verb classes(Levin, 1993) are basedon the abilit y of a verb to occur in speci�c
diathesis alternations, i.e. speci�c pairs of syntactic frames which are assumedto
be meaning retentiv e. Levin's central thesis is that \the behaviour of a verb, par-
ticularly with respect to the expressionand interpretation of its arguments, is to a
large extent determined by its meaning" (Levin, 1993, p. 1). Thus, according to
Levin, the semantics of a verb and its syntactic behaviour are predictably related.
The syntactic framesare understood as a direct reection of the underlying semantic
components that constrain allowable arguments. For instance, (23) exempli�es the
substance/sourcealternation. Verbs undergoing this alternation expresssubstance
emission. They take two arguments, which Levin characterizesas (i) a source(emit-
ter) (e.g. sun) and (ii) the substance emitted from this source (e.g. heat). The
semantic role of the subject of the intransitiv e use(23a) of the verb is the sameas the
semantic role of the object of the transitiv e use(23b). Similarly the semantic roles of
the oblique object of the intransitiv e useand the subject of the transitiv e usematch.

(23) a Heat radiates from the sun

b The sun radiates heat

Drawing on previous research on diathesisalternations (e.g. Jackendo�, 1990;Pinker,
1989) and her own investigations, Levin de�nes 79 alternations for English. These
alternations concernchangesin verbs' transitivit y or within the arguments of vp, or
involve the intro duction of oblique complements, reexiv es,passives, there-insertion,
di�eren t forms of inversions or speci�c words. They are mainly restricted to verbs
taking np and pp complements.

Levin analysesover 3200verbs according to alternations, associating each verb with
the alternation(s) it undergoes. She argues that verbs which behave similarly with
respect to alternations sharecertain meaningcomponent(s), and can thus be grouped
together to form a semantically coherent class. Levin puts this idea into practice by
proposing 48 semantically motivated classesof verbs whosemembers pattern in the
sameway with respect to diathesis alternations and other properties:

\The classi�catory distinctions... involve the expressionof arguments of
verbs, including alternate expressionsof arguments and special interpreta-
tions associated with particular expressionsof arguments of the type that
are characteristic of diathesis alternations. Certain morphological prop-
erties of verbs, such as the existenceof various types of related nominals
and adjectives, have been used as well, since they are also tied to the
argument-taking properties of verbs". (Levin, 1993,p. 17)

Some of the classessplit further into more distinctiv e subclasses,making the total
number of classes191. For each verb class,Levin provides key syntactic and seman-
tic characteristics. She does not provide in-depth analysis of meaning components
involved in various classes,nor does she attempt to formulate verb semantic repre-
sentation of the type discussede.g. with most linking approaches in section 2.3.1.
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Rather, her aim is to better set the stage for such future work. According to Levin,
examination of classesof verbs de�ned by shared behaviour can play an important
role in identi�cation of meaning components.

Let us consider,as an example, the broad Levin classof \V erbs of Changeof State".
This classdivides into six di�eren t subclasses,each of which relatesto changesof state
in distinguishing ways. For instance, \ Break Verbs" refer to actions that bring about a
changein the material integrit y of someentit y, while \ Bend Verbs" relate to a change
in the shape of an entit y that doesnot disrupt its material integrit y. Each subclassis
characterized by its participation or non-participation in speci�c alternations and/or
constructions. \ Break Verbs" (e.g. break, chip, fracture, rip, smash, split, tear) are
characterized by six alternations, three of which they permit (24a-c) and three of
which they do not permit (24d-f), and by further constructions, as shown in (24g-i).

(24) a Causative/inchoative alternation:
Tony broke the window $ The window broke

b Middle alternation:
Tony broke the window $ The window broke easily

c Instrument subject alternation:
Tony broke the window with the hammer $ The hammer broke the window

d *With/against alternation:
Tony broke the cup against the wall $ *Tony broke the wall with the cup

e *Conative alternation:
Tony broke the window $ *Tony broke at the window

f *Body-Part possessor ascension alternation:
*Tony broke herself on the arm $ Tony broke her arm

g Unintentional interpretation available (some verbs):
Reexiv e object: *Tony broke himself
Body-part object: Tony broke his finger

h Resultative phrase:
Tony broke the piggy bank open, Tony broke the glass to pieces

i Zero-related Nominal:
a break, a break in the window, *the break of a window

Membership in speci�c alternations and constructions yields the syntactic description
of this verb class. For instance, the speci�cation in (24) shows that the \ Break Verbs"
take (at least) the intrans , np, np-pp and np-adjp frames.

Levin classi�cation is not exhaustive in terms of breadth or depth of coverage. More
work is neededto cover a larger set of diathesis alternations and further to extend
and re�ne verb classi�cation. Also, as Levin mentions, there is a sensein which
the whole notion of a verb class is arti�cial. As most verbs are characterized by
several meaning components, there is potential for cross-classi�cation, which in turn
means that other, equally viable classi�cation schemescan be identi�ed instead of
that proposed. Nevertheless,the current sourceis unique in providing useful coresets
of verbswith speci�c setsof properties and in beingextensiveenoughfor practical nlp
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f bundle,..g f nap, catnap, catch a winkg

f snooze, drowse, dozeg

f sleep late,..g f hibernate,..gf estivate,..g

Figure 4.1: A WordNet hierarchy fragment: trop onymy relations

use. The particular interest to us is that it links the syntax and semantics of verbs,
providing semantically motivated setsof scf s associated with individual classes.

WordNet

WordNet (Miller et al., 1993)(version1.6) is an online lexical databaseof English con-
taining over 120,000conceptsexpressedby nouns, verbs, adjectives,and adverbs. In
contrast to Levin's classi�cation, WordNet organizeswords on a purely semantic basis
without regard to their scf s. As a semantic source,it concentrates on paradigmatic
relations and whole lexical items rather than atomic meaning units. The design of
WordNet is inspired by psycholinguistic and computational theories of human lexical
memory. Its organization is that of a network of interlink ed nodesrepresenting word
meanings. The nodes are sets of unordered synonym sets (`synsets'), which consist
of all the word forms that can expressa given concept. For example, the synset con-
taining the verb forms put, place, set, pose, position and lay stands for the concept,
which can be referred to by any oneof its members. The membersof a synsetare not
absolute but rough synonyms, so that they can be substituted for each other in most
but not all contexts. Word forms and synsetsare linked to one another by means
of lexical and conceptual-semantic relations. While synonymy links individual words
within synsets,the super-/subordinate relation (e.g. `troponymy' relation with verbs)
links entire synsets. The latter relation builds hierarchical structures linking generic
to more speci�c concepts.

We used the verb hierarchy of WordNet version 1.6. It contains 10,319 distinct
word forms whose 22,066 sensesare organized into 12,127 synsets, representing an
equal number of distinct verb meanings. The verb hierarchy consists of 15 mostly
semantically-driv en subhierarchies each of which accommodates appropriate synsets:
\v erbsof motion", \p erception", \contact", \communication", \competition", \change",
\cognition", \consumption", \creation", \emotion", \p ossession",\stativ e", \w eather",
\b odily careand functions" and \social behaviour and interaction". Most verb synsets
in thesehierarchies are interrelated by a pointer standing for a manner relation tro-
ponymy. For example, the synset f snooze, drowse, dozeg belonging to the subhier-
archy of \v erbs of bodily care and functions" is represented as one of the trop onyms
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(subordinates) of the hypernym (superordinate) synset f rest, reposeg, since snooze,
drowse or doze mean to rest or repose in a particular manner. Figure 4.1 illustrates
the part of the WordNet verb hierarchy where these synsets appear among other
synsetsarranged according to trop onymy. Other conceptual-semantic relations link-
ing both entire synsetsand individual verb forms are cause,entailment and semantic
opposition.

Each verb synsetcontains, besidesall the word forms that can refer to a givenconcept,
a de�nitional gloss,and - in most cases- an examplesentence. Using WordNet search
facilities, one can obtain further information about a single word form, e.g. about
its di�eren t WordNet sensesand their frequencies,its synonym(s), hypernym(s), tro-
ponym(s), antonym(s) and so forth. Someinformation about scf s is also available
(for example, basic information about transitivit y and argument type) but this in-
formation is neither comprehensive nor detailed. The four sensesof lend e.g. are
described in WordNet with the following sentence frames:

(25) Somebody is | ing pp
Somebody | something
Something | something
Somebody | something to somebody
Somebody | somebody pp
Somebody | something pp

These translate into scf s np, np-pp, np-to-np and pp, while it is known that lend
can also take (at least) the scf s np-np , intrans , par t-np , par t-pp and pp-pp.

4.2.2 Syntactic Verb Classi�cation

A possiblesourceof syntactic verb classi�cation is a large syntax dictionary. Verbs
encoded with similar scf possibilities in a comprehensive dictionary may be assumed
to demonstratesimilar syntactic behaviour. Verbs can thus be grouped into syntacti-
cally coherent classesaccording to the particular setsof scf s assignedto them. This
approach was previously taken e.g. by Carter (1989). He intro duced a lexical acqui-
sition tool for the sri Core LanguageEngine (cle ), which allows the creation of cle
lexicon entries using templates basedon expected setsof scf s already exempli�ed in
the cle lexicon. Carter calls such sets of scf s `paradigms'. He de�nes a paradigm
as \any maximal set of categories(i.e. scf s) with the samedistribution among (lex-
ical) entries" (Carter, 1989, p. 4). We adopt here Carter's term and de�nition of a
paradigm.

To obtain syntactic verb classi�cation basedon paradigms, we usedthe anl t dictio-
nary. (Boguraev et al., 1987). anl t includes 63,000lexicon entries in total, 23,273
of which are verbal entries. A verbal entry comprisesa certain verb form and sub-
categorization combination. Separateargument structures are thus listed in separate
entries, as illustrated by appear in �gure 4.2. The treatment of subcategorization
is fairly thorough, with phrasal, prepositional and phrasal-prepositional verbs also
encoded with subcategorization possibilities. Control is encoded and the distinction
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(appear ”” (V (AGR IT) (ARITY 1) (LAT -) (SUBCAT SFIN)) APPEAR ())
(appear ”” (V (AGR IT) (ARITY 1) (LAT -) (SUBCAT WHS) (SUBTYPE ASIF)) APPEAR ())
(appear ”” (V (AGR IT) (ARITY 2) (LAT -) (PFORM TO) (SUBCAT PP SFIN)) APPEAR ())
(appear ”” (V (ARITY 1) (LAT -) (SUBCAT NULL)) APPEAR ())
(appear ”” (V (ARITY 1) (LAT -) (SUBCAT SC AP) (SUBTYPE RAIS)) APPEAR ())
(appear ”” (V (ARITY 1) (LAT -) (SUBCAT SC INF) (SUBTYPE RAIS)) APPEAR ())
(appear ”” (V (ARITY 1) (LAT -) (SUBCAT SC NP) (SUBTYPE RAIS)) APPEAR ())
(appear ”” (V (ARITY 2) (LAT -) (PFORM BEFORE) (SUBCAT PP)) APPEAR ())
(appear ”” (V (ARITY 2) (LAT -) (PFORM FOR) (SUBCAT PP)) APPEAR ())
(appear ”” (V (ARITY 2) (LAT -) (PFORM TO) (SUBCAT SC PP INF) (SUBTYPE RAIS)) APPEAR ())
(appear ”” (V (ARITY 2) (LAT -) (SUBCAT LOC)) APPEAR ())

Figure 4.2: anl t lexical entries for appear

made betweenobject and subject control, as well as equi and raising. Somealterna-
tions are included, such as the dative alternation.

anl t de�nes subcategorization using feature value pairs. The main featuresare sub-
cat which describes the arguments a verb subcategorizesfor; subtype , which pro-
vides further information about a particular subcategorization; arity , which lists the
number of logical arguments; and pf orm and pr t , which indicate subcategorizations
concerning prepositions and particles of a particular type. More or lessspeci�c scf
classi�cations canbeobtained, dependingon which featuresand valuesare taken to be
distinctiv e. Briscoe's (2000) scf classi�cation in Appendix A, for example, includes
127 scf distinctions from anl t . The scf s abstract over speci�c lexically-governed
particles and prepositions, but make useof most other distinctions provided in anl t 3.

The lexical entry in (26) e.g. could beusedto describesubcategorization in He appears
crazy. In this case,appear is a subject control verb which subcategorizesfor adjectival
phrase (subcat sc ap). It is also a raising verb (subtype rais ) of latinate origin
(la t -), and takesonly one logical argument (arity 1).

(26) (appear ”” (V (ARITY 1) (LAT -) (SUBCAT SC AP) (SUBTYPE RAIS)) APPEAR)

Weextracted from anl t all possibleparadigms,i.e. all di�eren t setsof scf sassociated
with verbs, assumingthe classi�cation of 127 scf s by Briscoe (2000). 742 di�eren t
paradigms were identi�ed, ranging from those including only one scf (e.g. np) to
those including over 30 scf s. After this, all verbs in anl t were grouped according
to the paradigms they take. Each verb was classi�ed as a member of one paradigm
only, that whosescf s include all and only the scf s associated with the verb in anl t .
Relative frequency for di�eren t paradigms was also calculated, basedon the number
of anl t verb typesassociated with them. (27) exempli�es an anl t paradigm which
comprisessix scf s4:

3See Briscoe (2000) for further details.
4Instead of using the anlt feature value pairs to indicate different scfs, we use here simple abbre-

viations from the scf classification included in Appendix A. See this classification for the mapping
between the abbreviations and the anlt feature value pairs.
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(27) a intrans : The ship loaded

b np: They loaded the ship

c np-pp : They loaded the ship with oranges

d par t : The ship loaded up

e par t-np : They loaded up the ship

f par t-np-pp : They loaded up the ship with oranges

This particular paradigm is associated in anl t with six di�eren t verbs: drum, flood,
flush, load, marry and shut. Thus according to anl t , these verbs exhibit identical
syntactic behaviour. (28) shows the entry for this paradigm in our syntactic verb
classi�cation.

(28) anl t paradigm: intrans , np, np-pp, par t , par t-np , par t-np-pp
Relative frequency: 0.0009
Members: drum, flood, flush, load, marry, shut

4.3 Experiments with Subcategorization Distributions

We conducted experiments to investigate whether the verb classi�cations intro duced
above are in practice distinctiv e enough in terms of subcategorization to provide
an adequate basis for back-o� estimates. This was done by examining the degree
of correlation between conditional scf distributions for individual verbs classi�ed
similarly in these resources.Section 4.3.1 gives details of the scf distributions used
in theseexperiments and section 4.3.2 describesthe measuresusedfor examining the
degreeof correlation between the distributions. The experiments with semantically
similar verbs are reported in section 4.3.3, and those with syntactically similar verbs
in section 4.3.4.

4.3.1 SCF Distributions

We used two methods for obtaining the scf distributions used in our experiments.
The �rst wasto acquirean un�ltered subcategorization lexicon for 20 million words of
bnc using Briscoe and Carroll's system. This givesus the \observed" distribution of
scf s for individual verbs and that for all verbs in the bnc data. The secondmethod
wasmanually to analysearound 300occurrences5 of each individual verb examinedin
the bnc data. The scf s wereanalysedaccordingto Briscoeand Carroll's classi�cation
(App endix A). This gives us an estimate of the \correct" scf distributions for the
individual verbs. The estimate for the correct distribution of scf s over all English
verbswasobtained by extracting the number of verbswhich are membersof each scf
in the anl t dictionary. In this, we assumedBriscoe's (2000) de�nition of an anl t
scf .

5Manual analysis of around 300 occurrences was discovered by Briscoe and Carroll (1997) sufficient
to obtain an adequate scf distribution for gold standard.
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Both the observed and correct estimatesare speci�c to verb form rather than sense.
The observed estimatesfor scf s are noisy, but they are all reported over verb tokens.
The correct estimates are more accurate, but only those for individual verbs are
reported over verb tokens. The correct estimates for all English verbs are over verb
types since, due to the lack of comprehensive manual analysis for all English verbs,
they wereobtained from the anl t dictionary. As neither the observed nor the correct
estimatesare ideal, weusedboth in our experiments to verify that the results obtained
with one generalizeto the other.

4.3.2 Measuring Similarit y between Distributions

The degreeof scf correlation was examinedby calculating the Kullback-Leibler dis-
tance (kl ) and the Spearman rank correlation coe�cien t (r c) between the di�eren t
distributions. The details of thesemeasureswere were given in section 2.5.2. Let us
recall now that while kl measuresthe dissimilarit y betweenthe distributions (kl � 0,
with kl near to 0 denoting strong association), r c measuresthe similarit y in ranking
of scf s between the distributions (� 1 � r c � 1, with r c near to 0 denoting a low
degreeof association and r c near to -1 and 1 denoting strong association).

4.3.3 SCF Correlation between Semantically Similar Verbs

To examinethe degreeof scf correlation betweensemantically similar verbs,we took
Levin's verb classi�cation as a starting point. Levin classesare based on associa-
tions between speci�c scf s and verb senses. However, subcategorization acquisition
systemsare so far capable of associating scf s with verb forms only, as no wsd is
employed. Thus while Levin has shown that verbs from the samesemantic classare
similar in terms of verb sensespeci�c subcategorization, our aim was to investigate
whether verbs from the same class are also similar in terms of verb form speci�c
subcategorization. In addition, we are not only interested in intersectionsof scf s be-
tweenverbsbut also in the degreeof correlation betweenscf distributions and in the
ranking of scf s in thesedistributions. The Levin classesneverthelessprovide us with
a useful starting point. We examined (i) to what extent verbs from the sameLevin
classcorrelate in terms of scf distributions speci�c to verb form and (ii) whether the
factors of sensefrequency (i.e. predominant vs. non-predominant sense),polysemy
(i.e. the number of sensestaken by a verb), semantic relations (i.e. hypernym vs.
hyponym6), and the speci�cit y of Levin classassumed(broad classvs. subclass)a�ect
this correlation.

Focusing on �v e broad Levin classes- \V erbs of Changeof Possession",\Assessment
Verbs", \V erbs of Killing", \V erbs of Motion", and \ Destroy Verbs" - we chose�v e
test verbs from each class. Theseverbswerechosensothat one is a generichypernym
of the other four verbs. We usedWordNet for de�ning and recognisingthis semantic
relation. We de�ned a hypernym as a test verb's hypernym in WordNet, and a
hyponym as a verb which, in WordNet, sharesthis samehypernym with a test verb.

6We do not differentiate between hyponymy and troponymy relations but for the rest of this thesis
use the term hyponym to refer either to troponym or hyponym.
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13. Verbs of Change of Possession Test Verbs No. of wn Senses

13.1 Give Verbs give 45
13.2 Contribute Verbs contribute 4
13.3 Verbs of Future Having offer 13
13.4 Verbs of Providing provide 4
13.6 Verbs of Exchange change 10

43. Verbs of Assessment Test Verbs No. of wn Senses

analyse 3
explore 4
investigate 2
survey 6
observe 9

42. Verbs of Killing Test Verbs No. of wn Senses

42.1 Murder Verbs kill 14
42.1 Murder Verbs murder 2
42.1 Murder Verbs slaughter 2
42.2 Poison Verbs strangle 1
42.1 Murder Verbs execute 7

44. Destroy Verbs Test Verbs No. of wn Senses

destroy 4
ruin 2
demolish 2
waste 1
devastate 7

51. Verbs of Motion Test Verbs No. of wn Senses

51.3 Manner of Motion verbs move 16
51.1 Verbs of Inherently Directed Motion arrive 2
51.4 Verbs of Motion Using a Vehicle fly 14
51.4 Verbs of Motion Using a Vehicle sail 4
51.2 Leave Verbs abandon 2

Table 4.1: Levin test verbs

Three of the four hyponyms were required to have their predominant senseinvolved
in the Levin classexamined,while one of them was required to have its predominant
sensein someother verb class. Predominant sensewasde�ned by manually examining
the most frequent senseof a verb in WordNet and by comparing this with the Levin
sensein question7.

Table 4.1 shows the test verbs employed. The �rst column lists the number and
nameof each broad Levin classand speci�es the possibleLevin subclassan individual
verb belongs to8. The secondcolumn lists, for each Levin class, the �v e individual
test verbs. The hypernym verb for the other verbs in the sameclassis indicated in
bold font. The three hyponyms whosepredominant senseis involved with the Levin
class in question are indicated in italic font. The one hyponym whosepredominant

7We acknowledge that WordNet sense frequency information was obtained from the Brown corpus
and therefore cannot be taken as definite but rather instructive.

8We only consider subclasses, ignoring possible further divisions into sub-subclasses. Where no
subclass is given, the broad Levin class does not divide further.
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senseis not involved with the Levin classin question is listed last, using normal font.
The third and �nal column shows the number of sensesassignedto each test verb in
WordNet. This indicates the degreeof polysemy.

For instance, table 4.1 lists �v e \Change of Possession"verbs: give, contribute, offer,
provide and change. The hypernym of the four other verbs is give. Contribute, offer,
provide and change are its hyponyms; the predominant senseof change, however, is
not with this verb class (rather, with the Levin \V erbs of Change of State"). The
classof \Change of Possession"verbs consistsof several subclasses. The �v e verbs
each belong to a di�eren t subclass. The degreeof polysemy between these verbs
varies largely. The hypernym give e.g. is highly polysemic with 45 distinct sensesin
WordNet, while contribute and provide each have only four WordNet senses.

All other test verbsare listed in Levin (1993)with the verb classindicated in this table,
except explore, investigate, survey and observe, which are listed with \ Investigate
Verbs". We re-assignedtheseverbs to \Assessment Verbs", since they also ful�l the
characteristics of that class. In addition, their predominant sensein WordNet is
associated with \Assessment", rather than with \ Investigate Verbs".

In these experiments, we took from each verb class the three hyponyms whosepre-
dominant sensebelongsto the verb classin questionand examinedthe degreeto which
the scf distribution for each of these verbs correlates with the scf distributions for
three other verbs from the sameLevin class. The latter verbs were chosenso that
one is the hypernym of a test verb, while the two others are hyponyms - one with
predominant sensein the relevant verb classand the other with someother verb class.
For comparison,we also examinedhow well the scf distribution for the di�eren t test
verbscorrelateswith the scf distribution of all English verbs in generaland with that
of a semantically di�eren t verb (i.e. a verb belonging to a di�eren t Levin class).

The results given in tables 4.2 and 4.3 were obtained by correlating the \observed"
scf distributions from the bnc data. Table 4.2 shows an example of correlating the
scf distribution of the \Motion" verb fly against that of (i) its hypernym move, (ii)
hyponym sail, (iii) hyponym abandon, whosepredominant senseis not with motion
verbs, (iv) all verbs in general,and (v) agree, which is not related semantically . The
results show that the scf distribution for fly clearly correlatesmore closely with the
scf distribution for move, sail and abandon than that for all verbs and agree.

The average results for all test verbs given in table 4.3 indicate that, according to
both kl and r c, the degreeof scf correlation is closest with semantically similar
verbs. Hypernym and hyponym relations are nearly as good, the majorit y of verbs
showing slightly better scf correlation with hypernyms. As one might expect, sense
frequency a�ects the degreeof scf correlation. Of the two hyponym groups, that
whosepredominant senseis involved with the Levin classexamined show closer scf
correlation. The correlation between individual verbs and verbs in general, is poor,
but still better than with semantically unrelated verbs.

These�ndings for observed scf distributions hold as well for \correct" scf distribu-
tions, as seenin tables 4.4 and 4.5. The averageresults given in table 4.4 are closely
similar to thosegiven in table 4.3. Table 4.5 shows that in terms of scf distributions,
verbs in all classesexamined correlate more closely with their hypernym verbs than
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kl rc

fly move 0.25 0.83
fly sail 0.62 0.61
fly abandon 0.82 0.59
fly all verbs 2.13 0.51
fly agree 2.27 0.12

Table 4.2: Correlating the scf distribution of fly against other scf distributions

kl rc

hypernym 0.65 0.71
hyponym (predominant sense) 0.71 0.66
hyponym (non-predominant) 1.07 0.63
all verbs 1.59 0.41
semantically different verb 1.74 0.38

Table 4.3: Overall correlation results with observed distributions

kl rc

hypernym 0.44 0.66
hyponym (predominant sense) 0.76 0.59
hyponym (non-predominant) 0.89 0.54
all verbs 1.19 0.39
semantically different verb 1.62 0.27

Table 4.4: Overall correlation results with correct distributions

Hypernym All Verbs
Verb Class kl rc kl rc

change of possession 0.61 0.64 1.16 0.38
assessment 0.28 0.71 0.73 0.48
killing 0.70 0.63 1.14 0.37
destroy 0.30 0.60 1.19 0.29
motion 0.29 0.73 1.72 0.42
average 0.44 0.66 1.19 0.39

Table 4.5: Correlation results for �v e verb classeswith correct distributions
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with all verbs in general. However, there are di�erences betweenthe verb classessuch
that verbs in oneclassshow closerscf correlation with the hypernym verb than those
in another class. According to our results, thesedi�erences are not attributable to the
degreeof polysemy. The highly polysemic\Change of Possession"verbs, for instance,
show the secondpoorest correlation (among the �v e verb classes),while the closest
occurs between \V erbs of Motion" which are also fairly polysemic. \ Destroy Verbs"
which all have under 10 WordNet senses,show averageresults. Detailed comparison
of results for individual verbs supports these observations. It seemsthat the degree
of polysemy does not a�ect the scf correlation as much as sensefrequency (i.e. the
predominant sense).

Similarly, the speci�cit y of the Levin classassumeddoesnot seemto a�ect the results.
\Motion" verbsexaminedare mostly from di�eren t subclasses,but they still correlate
more closely with their hypernym verb than \ Destroy Verbs", which are all from the
samebroad class,which does not divide into subclasses.Arguably, there should be
better scf correlation betweenverbsfrom an indivisible verb class. On the other hand,
Levin (1993) produced her classi�cation according to verb sense,while we extracted
scf distributions speci�c to verb form. Our polysemic distributions involve a wider
rangeof scf s than Levin's singlesenseclasses.In addition, Levin's classi�cation is not
fully comprehensive and several verb classesrequire further work before su�cien tly
clear distinctions can be made.

Overall, theseresults show that verbsfrom the sameLevin classcorrelate more closely
with other verbs from the sameclass(especially when classi�ed semantically accord-
ing to their predominant sense)than with all verbs in general or with semantically
di�eren t verbs.

4.3.4 SCF Correlation between Syntactically Similar Verbs

To investigate the degreeof scf correlation between syntactically similar verbs, we
examinedthe extent to which verbs taking the sameparadigm in the anl t dictionary
correlate in terms of scf distributions.

In theseexperiments, we focusedon four di�eren t anl t paradigms. The �rst consists
simply of an np frame. This is the most frequent paradigm in anl t , with roughly
30%of verb typestaking only an np frame. The secondparadigm comprisesintrans
and np frames. This is the secondmost common paradigm in anl t , taken by 12%
of the verb types. The third paradigm comprisesintrans and pp frames, and the
fourth intrans , np, pp, and np-pp frames. These two paradigms are lessfrequent,
with 4% of anl t verb typestaking the former, and 1.7% the latter.

From each of the four paradigms, we chose four anl t verbs as our test verbs. To
ensurethat we examine purely syntactic similarit y, we required that the verbs from
the sameparadigm are semantically di�eren t. This wasveri�ed by manually checking
that their sensesbelong to di�eren t Levin classes. Table 4.6 shows the test verbs
employed. The �rst column speci�es the verbal paradigm in question and below it
the four individual test verbs. The secondcolumn lists, for each verb, the anl t scf s
included in our correct scf distributions obtained from the manual analysis of bnc
data.
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anlt Paradigm: Paradigm from Corpus
np

acquire np, np-pp
analyse np, np-pp, intrans, np-as-np, wh-s
complete np, np-pp, pp

ignore np

anlt Paradigm: Paradigm from Corpus
intrans, np

destroy intrans, np

hide intrans, np, pp, np-pp, adjp, advp, np-advp, part

part-np, part-np-pp, part-pp
produce np, np-pp, np-pp-pred, np-to-inf-sc
slide intrans, np, pp, np-pp, np-advp, part, part-np,

part-pp, pp-pp, np-part-pp, np-adl

anlt Paradigm: Paradigm from Corpus
intrans, pp

arise intrans, pp

arrive intrans, pp, np-pp, advp, part-pp, pp-pp
differ intrans, pp, p-wh-s
react intrans, pp, np-pp, advp, pp-pp, p-ing-sc,

advp-pp

anlt Paradigm: Paradigm from Corpus
intrans, np, pp, np-pp

remove intrans, np, pp, np-pp, np-pp-pp, p-possing

contribute intrans, np, pp, np-to-np

distinguish np, pp, np-pp, np-pp-pp, np-as-np, wh-s
visit intrans, np, pp, np-pp

Table 4.6: Paradigm test verbs
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Paradigm All Verbs
anlt Paradigm kl rc kl rc

np 0.40 0.80 0.61 0.75
intrans, np 0.76 0.50 0.88 0.48
intrans, pp 0.79 0.41 1.34 0.37
intrans, np, pp, np-pp 1.21 0.31 1.10 0.29
average 0.79 0.51 0.98 0.47

Table 4.7: Correlation results for syntactically similar verbs

According to anl t , the verbs acquire, analyse, complete and ignore take only an np
frame. Manual analysis of a corpus reveals, however, that all these verbs, except
ignore, also permit additional scf s. For instance, analyse can take also np-pp (We
analysed words into phonemes), intrans (He analysed and analysed), np-as-np (Bill
analysed the words as nouns), and wh -s (John analysed what had gone wrong) frames.

By just manually comparing the anl t and corpusparadigmsshown in table 4.6wecan
seethat the paradigms provided by anl t are not comprehensive. This is due to the
nature of static dictionaries: they tend to have high type precision but disappointing
type recall. Only 3 of the 16 test verbs do not occur in corpus data with a scf
assignedto them by anl t . Only 4 of the verbs occurred in corpus data with a
paradigm identical with that predicted by anl t . As many as 12 take additional scf s
not predicted by anl t , 4 per verb on average.

To examinethe scf correlation, we took from each anl t paradigm the four individual
test verbs and examined the degreeto which the scf distribution for each of these
verbs correlates with those for all the other verbs taking the sameparadigm. Thus
for each paradigm, six pairs of scf distributions were compared. For comparison,
we also examinedhow well the scf distribution for the di�eren t test verbs correlates
with the scf distribution of all English verbs in general.

Weobtained the resultsgiven in table 4.7by correlating the observedscf distributions
from the bnc data. The average results for all paradigms show that, according to
both kl and r c, the degreeof scf correlation is closer with syntactically similar
verbs than with all verbs in general. However, this di�erence is smaller than with
the semantically similar verbs, especially with rank correlation. Nor does it apply
to all the paradigms examined. The verbs taking the anl t paradigm intrans , np,
pp, np-pp show poorer correlation with each other than with all verbs in general.
From these results, it would seemthat verbs from a more frequent paradigm, which
contains fewer scf s, show closer mutual scf correlation. This e�ect is, however,
partly due to our evaluation. The fewer scf s there are to consider, the less noise
enters the evaluation. For this reason we did not use the correct distributions in
these experiments. The correct distributions contain fewer scf s than the observed
distributions. All verbs tested for semantic similarit y took enough scf s to yield an
adequatetest using these distributions, but this was not the casewith all the verbs
tested for syntactic similarit y.

Since,as noted above, dictionaries tend to have low type recall, more comprehensive
verbal paradigmscould be obtained by combining the syntactic information in several
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dictionaries. However, it is unclear whether this would give better results for scf
correlation. In our experiment, the test verbs which, according to manual analysisof
corpus data, took near-identical sets of scf s (e.g. remove and distinguish) did not
show noticeably better scf correlation than the other test verbs examined.

4.4 Summary

In this chapter, we have addressedthe problem that the unconditional scf distribu-
tion provides poor back-o� estimates for scf acquisition. We investigated whether
more accurate back-o� estimatescould be obtained by basing them on linguistically-
driven verb classes.Employing Levin's semantic verb classi�cation and the syntactic
classi�cation obtained from the anl t dictionary, we examined whether verbs clas-
si�ed similarly in these resourcescorrelate well in terms of their verb form speci�c
scf distributions. The results showed that the degreeof scf correlation was closer
with semantically and syntactically similar verbs than with all verbs in general, and
that the correlation betweensemantically similar verbs was better than that between
syntactically similar verbs. The closestscf correlation wasobserved when verbswere
classi�ed semantically according to their predominant sense. These results suggest
that more accurate back-o� estimatesmay be obtained for scf acquisition by classi-
fying verbssemantically accordingto their predominant senseand obtaining estimates
speci�c to semantic classes.



Chapter 5

A New Approac h to Hyp othesis
Selection

5.1 Introduction

The experiments reported in chapter 4 suggestthat more accurate back-o� estimates
could be obtained for scf acquisition by basing them on semantic verb classes. In
this chapter, we propose a method for constructing semantically motivated back-
o� estimates (section 5.2). In addition, we propose a new method for hypothesis
selection, which makes use of these estimates (section 5.3). This involves combining
the mle thresholding and smoothing with back-o� estimates, allowing us to avoid
any problemsbasedon hypothesistesting. To evaluate the back-o� estimatesand the
method for hypothesisselection,we report a seriesof experiments to examinewhether
this approach can, in practice, improve the accuracyof subcategorization acquisition
(section 5.4). Finally, weconsiderfurther work (section 5.5) and summarisediscussion
(section 5.6).

5.2 Back-off Estimates

In chapter 4, fairly closescf correlation was reported betweenpairs of semantically
similar verbs. A simple way of obtaining back-o� estimateswould be to selecta single
verb from a semantic classand use its conditional scf distribution as estimates for
the other verbs in the sameverb class. We proposeanother method, however, which
involvestaking the conditional scf distributions of a few verbs in the sameclassand
merging them to obtain the back-o� estimates for the class (p(scf jclass)). Using
several conditional scf distributions - as opposedto only one - helps to minimise the
problem of sparsedata and cover the scf variations within verb classesand variations
due to polysemy.

Our method involves constructing back-o� estimates speci�c to broad Levin classes.
First, 4-5 representativ e verbs are chosenfrom a class,subject to the following con-
straints, which we verify manually:

101
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1. To reducethe e�ect of sensefrequency, the predominant WordNet senseof each
verb must correspond to the Levin classin question.

2. To obtain representativ e estimates, when possible, the verbs should represent
di�eren t Levin subclasses.

3. To make useof the bene�t that verbs correlate well with their hypernym verb,
when possible, one of the verbs should be a hypernym of the other verbs in
WordNet.

For the verbs chosen, we obtain correct scf distributions by manually analysing
around 300 occurrencesof each verb in the bnc data. The scf s are analysedaccord-
ing to Briscoe's classi�cation (App endix A). Finally, the resulting scf distributions
are mergedautomatically to construct the back-o� estimates for the verb class.

Using this method, we obtained the back-o� estimatesfor the Levin classof \V erbsof
Motion", for example, by choosing �v e representativ e verbs from this class- march,
move, fly, slide and sail - and by merging the scf distributions of these verbs. Ta-
ble 5.1 shows, in the �rst �v e columns, the scf s and their relative frequenciesfor the
�v e individual \Motion" verbs. The scf s are indicated using the number codes of
the scf classi�cation. They are listed in order of their relative frequency, starting
from the highest ranked scf (e.g. 87 for slide) and ending in the lowest ranked scf (s)
(e.g. 24, 120,155,and 3 for slide). The sixth column shows the back-o� estimatesfor
the classof \Motion" verbs, obtained by merging the conditional distributions shown
in the �rst �v e columns. The bene�ts of using several conditional scf distributions
for obtaining the back-o� estimates are visible in this table. The back-o� estimates
include a wider range of scf s than any of the conditional distributions alone and
embody the averageranking of scf s, given the �v e conditional distributions.

5.3 Hypothesis Selection

In chapter 3, a simple method was proposedfor �ltering scf s on the basis of their
mle s (mle thresholding; seesection3.4.1). Experiments were reported which showed
that this method outperforms two statistical tests frequently employed for hypothesis
selection in scf acquisition. Given the poor performanceof the statistical tests and
the problems related to them1, we decided not to pursue them further. Instead, we
choseto re�ne mle thresholding. Although the method shows good performancewith
high frequency scf s, it requires augmentation the better to deal with low frequency
scf s. A way of addressingthis problem is to smooth the mle s.

Smoothing is frequently used in nlp to deal with problems of sparsedata, caused
by the inherent zip�an nature of language. It addressesthe problem that even for
a very large data collection, ml estimation doesnot allow us adequately to estimate
probabilities of rare but neverthelesspossibleevents. Smoothing enablesthe detec-
tion of these events by assigning them some non-zero probabilit y. It does this by
making the probabilit y distribution \closer" to someother probabilit y distribution.

1Recall the discussion in sections 3.4.3 and 3.4.4.
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slide fly march sail move Verbs of Motion
scf r.f. scf r.f. scf r.f scf r.f scf r.f scf b. estimates

87 0.297 22 0.286 87 0.415 87 0.388 22 0.300 87 0.303
74 0.222 87 0.236 22 0.193 22 0.355 87 0.180 22 0.240
76 0.157 24 0.187 76 0.111 24 0.080 74 0.127 74 0.113
49 0.093 78 0.074 78 0.104 74 0.064 24 0.106 24 0.081
78 0.083 74 0.064 74 0.089 78 0.048 119 0.067 76 0.073
22 0.065 49 0.044 95 0.037 76 0.048 78 0.049 78 0.072
95 0.046 3 0.039 24 0.022 95 0.016 3 0.047 49 0.035
24 0.009 95 0.029 49 0.015 95 0.042 95 0.034
120 0.009 76 0.020 27 0.014 76 0.028 3 0.019
155 0.009 160 0.020 49 0.022 119 0.013
3 0.009 77 0.017 160 0.004

122 0.007 27 0.003
27 0.007 77 0.003

120 0.002
155 0.002
122 0.001

Table 5.1: scf s and their relative frequenciesin (i) conditional distributions for �v e
individual \Motion" verbs and in (ii) back-o� estimates for \V erbs of Motion"

Most smoothing methods work by discounting probabilit y estimatesgiven by ml es-
timation applied to the observed frequenciesand redistributing the freed probabilit y
massamong the events which never (or rarely) occurred in data. This can be done
simply by assigninga uniform prior to all events, or by employing a more sophisti-
cated method, such as backing-o�. The latter method estimates the probabilit y of
unseenor low frequencyevents by backing-o� to another probabilit y distribution. In-
stead of employing discounting, somesmoothing methods work by simply combining
multiple probabilit y estimates. For example, one can make a linear combination of
two probabilit y distributions in the hope of producing a better overall model. Various
smoothing techniques have been proposedand applied in the �eld of nlp . Compre-
hensive reviews of these techniques can be found e.g. in Jurafsky and Martin (2000)
and Manning and Sch•utze (1999).

Integrating the mle method with a sophisticated smoothing method allows us to use
the semantically motivated back-o� estimates before �ltering. Speci�cally , it allows
us to classify verbs according to their semantic class and smooth the conditional
scf distributions for these verbs using the back-o� estimates of the respective verb
class. The following two sectionsdescribe how this is done. Section 5.3.1 provides
details of the method adopted for hypothesis selection and section 5.3.2 intro duces
the smoothing methods employed.

5.3.1 Pro cedure for Hyp othesis Selection

The method adopted for hypothesis selection is essentially mle thresholding (sec-
tion 3.4.1), with the additional step of smoothing added. It involves extracting the
scf s classi�ed by the classi�er of Briscoe and Carroll's system, and ranking them in
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order of probabilit y of their occurrencewith the verb (p(scfijverbj)). Probabilities
are estimated by using a mle from the observed relative frequencies,which is the
ratio of count for scfi + verbj over the count for verbj . The resulting conditional scf
distribution for a verb is then smoothed before �ltering the scf s, using the back-o�
estimatesof the semantic classto which the verb belongs. The details of the smooth-
ing algorithms employed are provided in section 5.3.2. After smoothing, �ltering is
performed by applying a threshold to the resulting set of probabilit y estimates. Held-
out training data is used to establish an optimal threshold for each semantic verb
class examined2. For each class, such a threshold value is chosenwhich maximises
the averagescf �ltering performance(according to F measure)for verbs in a class.
A threshold is establishedon smoothed estimates i.e. it is determined speci�c to a
smoothing method.

5.3.2 Smoothing Metho ds

Three di�eren t smoothing methods were integrated with the overall procedure de-
scribed above: add-one,Katz backing-o� and linear interpolation.

Add One Smoothing

Add-one smoothing (Laplance, 1995) has the e�ect of giving someof the probabil-
it y spaceto the scf s unseenin the conditional distribution. Unlike the two other
smoothing methods employed, it makesno useof back-o� estimates. Rather, it pro-
videsa baselinesmoothing method against which the more sophisticatedmethods can
be compared. Let c(scfi) be the frequencyof a scf given a verb, N the total number
of scf tokensfor this verb in the conditional distribution, and C the total number of
scf types. The estimated probabilit y of the scf is:

P (scfi) =
c(scfi) + 1

N + C
(5.1)

Instead of assigning each unseenscf a frequency of 1, any other small value (λ)
could in principle be used. We used held-out training data to con�rm that λ = 1
achieves optimal averagesmoothing results for test verbs: the scf distributions ob-
tained using this value correlate best on averagewith the corresponding gold standard
distributions 3 (according to both kl and r c).

Katz Backing-off

Katz backing-o� (Katz, 1987)usesback-o� estimates. It givessomeof the probabilit y
spaceto the scf s unseenor of low frequency in the conditional distribution. It does

2Verb class specific thresholds were used as they gave better results than a uniform threshold.
This is not surprising since verb classes differ with respect to the number of scfs typically taken by
their member verbs.

3See section 5.4.2 for the gold standard employed.
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this by backing-o� to another distribution. Let p1(scfi) be a probabilit y of a scf
in the observed distribution, and p2(scfi) its probabilit y in the back-o� distribution.
The estimated probabilit y of the scf is calculated as follows:

P (scfi) =

{

(1 � d) � p1(scfi) if c(scfi) > c1

α � p2(scfi) otherwise
(5.2)

The cut o� frequency c1 is an empirically de�ned threshold determining whether to
back-o� or not. When counts are lower than c1 they are held too low to give an
accurate estimate, and we back-o� to a seconddistribution. In this case,we discount
p1(scfi) a certain amount to reserve someof the probabilit y spacefor unseenand very
low frequencyscf s. The discount (d) is de�ned empirically, and α is a normalization
constant which ensuresthat the probabilities of the resulting distribution sum to 1.
Held-out training data wasusedto determine optimal valuesfor both c1 and d. These
valuesweredetermined speci�c to a verb class. Such valueswerechosenfor a classas
yield scf distributions which correlate the most closely with the corresponding gold
standard distributions (according to both kl and r c) for member verbs on average.

Linear Interpolation

Like Katz-backing o�, linear interpolation (Chen and Goodman, 1996) makes use
of back-o� estimates. While Katz backing-o� consults di�eren t estimatesdepending
on their speci�cit y, linear interpolation makes a linear combination of them. The
method is usedhere for the simple task of combining a conditional with the back-o�
distribution. The estimated probabilit y of the scf is given by

P (scfi) = λ1(p1(scfi)) + λ2(p2(scfi)) (5.3)

where the λj denotesweights for the di�eren t distributions and sum to 1. The value
for λj wasobtained by optimising the smoothing performanceon the held-out training
data for all scfi. It was determined speci�c to a verb class, by choosing the value
that yields the optimal average smoothing performance for verbs in a class4. This
was determined by comparing the correlation (according to kl and r c) betweenscf
distributions obtained using di�eren t values for λj to corresponding gold standard
distributions.

5.4 Experiments

To evaluate the back-o� estimates and the new approach of hypothesis selection,
we performed experiments which we report below. Section 5.4.1 intro ducesthe test

4Note that in all experiments reported in this thesis, the minimum value for λ2 was set to 0.2. As
we used linear interpolation for examining the accuracy of back-off estimates, this minimum value
allowed us to examine whether (inaccurate) back-off estimates can also decrease performance.
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data and the back-o� estimates used in these experiments. Section 5.4.2 describes
the evaluation method adopted. Section 5.4.3 reviewsevaluation of smoothing, while
evaluation of back-o� estimates is reported in section 5.4.4.

5.4.1 Data and Back-o� Estimates

Testdata consistedof a total of 60verbsfrom 11broad Levin classes,listed in table 5.2.
One Levin classwas collapsed together with another similar Levin class (\V erbs of
Sendingand Carrying" and \V erbs of Exerting Force"), making the total number of
verb classes10. The test verbs were chosenat random, subject to the constraint that
they occurred frequently enough in corpus data5 and that their most frequent sense
in WordNet belongedto the Levin classin question. All the other test verbs, except
three \Assessment Verbs" (explore, investigate, survey) were listed by Levin (1993)
as members of the respective verb class.

From each class,4-5 suitable test verbs were chosenby hand to construct the back-
o� estimates for the class. These verbs are indicated in table 5.2 using normal font.
Each test verb used in obtaining the estimates was excluded when testing the verb
itself. For example, when testing the \Motion" verb travel, we used the back-o�
estimatesconstructed from the verbs march, move, fly, slide and sail. When testing
fly, however, we usedthe back-o� estimatesconstructed from the verbsmarch, move,
slide and sail only.

5.4.2 Metho d of Evaluation

We took a sample of 20 million words of the bnc for evaluation and extracted all
sentencescontaining an occurrenceof one of the 60 test verbs, a maximum of 3000
citations of each. The sentences containing these verbs were processedby the scf
acquisition system. The hypothesis generator of the system was held constant, the
exceptionbeing that the data for theseexperiments wereparsedusing a pcp (Chitrao
and Grishman, 1990). For hypothesisselection,we employed the new method which
applied the di�eren t smoothing methods before�ltering. We alsoobtained results for
the baselinemle thresholding method without any smoothing.

The results were evaluated against a manual analysis of the corpus data. This was
obtained by analysing a maximum of 300 occurrencesfor each test verb in the bnc
corpora. We calculated type precision, type recall, F measureand ranking accuracy.
In addition to the system results, we calculated kl and r c between the acquired
un�ltered scf distributions and the distributions obtained from manual analysis. We
alsorecordedthe total number of scf s unseenin acquiredun�ltered scf distributions
which occurred in gold standard distributions. This was to investigate how well the
approach tackles the sparsedata problem, i.e. the extent to which it is capable of
detecting the scf s altogether missing in the data output by the hypothesisgenerator.

5This restriction was set merely for test purposes. As we evaluated our results against manual
analysis of corpus data, we required at least 300 occurrences for each verb to guarantee sufficiently
accurate evaluation.
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9. Verbs of Putting

9.1 Put Verbs place
9.2 Verbs of Putting in a Spatial Configuration lay
9.4 Verbs of Putting with a Specified Direction drop
9.5 Pour Verbs pour
9.7 Spray/Load Verbs load
9.8 Fill Verbs fill

11. Verbs of Sending and Carrying, 12. Verbs of Exerting Force

11.1 Send Verbs send, ship, transport
11.3 Bring and Take bring
11.4 Carry Verbs carry
12. Verbs of Exerting Force pull, push

13. Verbs of Change of Possession

13.1 Give Verbs give, lend
13.2 Contribute Verbs contribute, donate
13.3 Verbs of Future Having offer
13.4 Verbs of Providing provide, supply
13.5 Verbs of Obtaining acquire, buy

34. Verbs of Assessment

analyse, explore,
investigate, survey

36. Verbs of Social Interaction

36.1 Correspond Verbs agree, communicate, struggle
36.2 Marry Verbs marry
36.3 Meet Verbs meet, visit

42. Verbs of Killing

42.1 Murder Verbs kill, murder, slaughter
42.2 Poison Verbs strangle

44. Destroy Verbs

demolish, destroy,
ruin, devastate

48. Verbs of Appearance, Disappearance and Occurrence

48.1 Verbs of Appearance arise, emerge
48.2 Verbs of Disappearance disappear, vanish

51. Verbs of Motion

51.1 Verbs of Inherently Directed Motion arrive, depart
51.3 Manner of Motion Verbs march, move, slide, swing, travel, walk
51.4 Verbs of Motion Using a Vehicle fly, sail
51.5 Walz Verbs dance

55. Aspectual Verbs

55.1 Begin Verbs begin, start
55.2 Complete verbs end, complete, terminate

Table 5.2: Test data
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System results Unseen
Method kl rc Rank A. (%) Precision (%) Recall (%) F scfs
Baseline 1.41 0.50 33.3 60.0 33.3 42.8 4
Add-one 1.67 0.27 33.3 60.0 33.3 42.8 0
Katz b. 1.58 0.58 33.3 60.0 33.3 42.8 0
Linear i. 0.97 0.70 57.1 100.0 77.8 87.5 0

Table 5.3: Smoothing results for march

5.4.3 Evaluation of Smoothing

We shall �rst illustrate smoothing performancewith the single test verb march, and
then look at the overall performancewith the 60 test verbs.

Table 5.3 shows the baseline, add-one, Katz backing-o� and linear interpolation
smoothing results for march. For each method it lists the kl , r c and system results,
and the number of correct unseenscf s, as comparedto the gold standard. Table 5.4
shows the ranking of correct (gold standard) scf s for march in the unfiltered distri-
butions obtained using the baselinemethod and the three smoothing methods6. The
�fth column includes, for comparison, the correct scf ranking for march in the gold
standard. The highest ranked scf s are listed �rst, the lowest last. scf s missing in
the baselinedistribution which occur in the gold standard distribution are indicated
using bold font.

As these results illustrate, add-one smoothing preserves the ranking of scf s which
appear in the baseline distribution. It therefore has little or no impact on system
performance. With march, the kl and r c scoresworsen. This is due to the method
assigningall missing scf s a uniform probabilit y. Thus although add-one detects all
scf s unseenin data from the hypothesisgenerator, it may not improve results for low
frequency scf s.

Katz backing-o� preservesthe ranking of the most frequent scf s. As a consequence,
results for high frequency scf s are rarely a�ected and there is little change in the
systemperformance. With march, kl worsensslightly , while r c shows improvement.
The reason is apparent in table 5.4. After smoothing with Katz backing-o�, the
newly-detected scf s 74, 78 and 76 are correctly ranked higher than scf 28, which
is also newly detected. In addition, scf 49 appears, correctly, lower in the ranking
scale. Unlike add-one smoothing, Katz backing-o� can thus correct the ranking of
low frequency scf s, depending on the accuracyof the back-o� estimates.

Unlike add-onesmoothing and Katz backing-o�, linear interpolation also a�ects high
frequency scf s. With march, system results, as well as kl and r c, improve sig-
ni�can tly . As illustrated in table 5.4, linear interpolation correctly lowers the high
frequencyscf 24 in the ranking list, while raising 87 higher. It alsogetsthe ranking of
the lower frequencyscf s 49 and 28 right. Thus when back-o� estimatesare accurate,
one may expect good overall results with linear interpolation.

Table 5.5 givesaverageresults for all the 60 test verbs using each smoothing method.
6Note that all incorrect scfs are omitted in this table, as these do not occur in the gold standard.
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Baseline Add-one Katz b. Linear i. Correct

22 22 22 22 87
24 24 24 87 22
87 87 87 24 76
95 95 74 74 78
49 49 78 78 74

27, 76, 78, 74 95 95 95
76 76 24
27 49 49
49 27 27

Table 5.4: Ranking of correct gold standard scf s for march in acquired unfiltered
distributions. (Note that all incorrect scf s are omitted in this table).

System results Unseen
Method kl rc Rank A. (%) Precision (%) Recall (%) F scfs
Baseline 0.63 0.72 79.2 78.5 63.3 70.1 151
Add-one 0.64 0.74 79.0 79.1 64.8 71.2 0
Katz b. 0.61 0.75 79.0 76.4 67.6 71.7 3
Linear i. 0.51 0.82 84.4 87.8 68.7 77.1 3

Table 5.5: Averageresults with di�eren t methods using semantically motivated back-
o� estimates for smoothing

These results indicate that both add-one smoothing and Katz backing-o� improve
the baselineperformanceonly slightly . Katz backing-o� shows clearer improvement,
demonstrating that it is advantageousto useback-o� estimatesto obtain the likelihood
of low and zero frequencyscf s. However, linear interpolation outperforms both these
methods, achieving better results on all measures.The improvedkl measureindicates
that the method improvesthe overall accuracyof scf distributions. The results with
r c and systemaccuracyshow that it helps to correct the ranking of scf s. That both
precision and recall show clear improvement over baselineresults demonstratesthat
linear interpolation can successfullybe combined with the �ltering (i.e. thresholding)
method employed. These results seemto suggest that a smoothing method which
a�ects both highly ranked scf s and those of low frequency is pro�table for this task.

For comparison,we re-ran theseexperiments using the unconditional scf distribution
of all verbs as back-o� estimates for smoothing. These estimates were obtained by
extracting the number of verbswhich are membersof each scf in the anl t dictionary.
Averageresults for the 60 test verbsgiven in table 5.6 show that, with theseestimates,
we obtain worse results than with the baselinemethod. Thus while such estimates
provide an easysolution to the sparsedata problem, they can actually degradethe
accuracyof verbal acquisition. This is in agreement with the well-known view of Gale
and Church (1990): poor estimatesof context are worsethan none.
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System results Unseen
Method kl rc Rank A. (%) Precision (%) Recall (%) F scfs
Baseline 0.63 0.72 79.2 78.5 63.3 70.1 151
Katz b. 0.68 0.69 77.2 75.2 61.7 67.8 0
Linear i. 0.79 0.64 76.7 71.4 64.1 67.6 0

Table 5.6: Averageresults using the unconditional distribution as back-o� estimates
for smoothing

KL RC

Verb Class bl li % bl li %

9. Verbs of Putting 0.70 0.66 +6 0.68 0.70 +3

11. Verbs of Sending and Carrying 0.64 0.50 +22 0.72 0.96 +33
12. Verbs of Exerting Force

13. Verbs of Change of Possession 0.61 0.60 +2 0.61 0.75 +23

34. Verbs of Assessment 0.81 0.62 +23 0.61 0.70 +15

36. Verbs of Social Interaction 0.65 0.58 +11 0.72 0.80 +11

42. Verbs of Killing 0.69 0.67 +3 0.91 0.95 +4

44. Destroy Verbs 0.95 0.20 +79 0.70 0.97 +39

48. Verbs of Appearance, 0.14 0.17 -21 0.91 0.83 -9
Disappearance and Occurrence

51. Verbs of Motion 0.66 0.58 +12 0.56 0.66 +18

55. Aspectual Verbs 0.48 0.54 -13 0.86 0.89 +3

Table 5.7: Baselineand linear interpolation results for the verb classes

5.4.4 Evaluation of Back-o� Estimates

Table 5.5 shows that, in the above experiment, the semantically motivated back-o�
estimateshelped signi�cantly to reducethe sparsedata problem. While a total of 151
gold standard scf s wereunseenin the data from the hypothesisgenerator,only three
were unseenafter smoothing with Katz backing-o� or linear interpolation. Table 5.7
displays individual results for the di�eren t verb classes.It lists the results obtained
with kl and r c using the baselinemethod (bl ) and linear interpolation (li ) (with
the semantically motivated back-o� estimates). It also gives the percentage linear
interpolation improved (+) or worsened(-) the baselinekl and r c scores.As linear
interpolation is highly sensitive to accuracy of back-o� estimates, examining these
results allows us to considerthe accuracyof the back-o� estimatesfor each verb class.

Out of ten verb classes,eight show improvement with linear interpolation, with both
kl and r c. \ Destroy Verbs" show the biggest improvement over baseline results,
while \ Verbs of Killing" show the smallest improvement. From the 51 individual
test verbs included in theseeight classes,only two show worseresults after smoothing
with linear interpolation. The �rst is the \Putting" verb place, which takesnoticeably
fewer scf s than the other \Putting" verbsexamined. Back-o� estimatesfor this verb
class include high-ranking scf s not taken by place. This results in false positives,
degrading performanceslightly . The secondverb is the \Motion" verb dance. Dance
takes scf s typical to \V erbs of Motion", but the ranking of these scf s di�ers from
the ranking of those in back-o� estimates. One reasonfor this is that dance occurs
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in the corpusdata analysedexceptionally frequently in idiomatic expressions,such as
we danced the night away.

Two verb classes- \Asp ectual Verbs", and \V erbs of Appearance, Disappearance
and Occurrence" - show worseresults when linear interpolation is used. The problem
with \Asp ectual Verbs" is that the classcontains verbstaking sentential complements.
Two verbs examined (begin and start) occur frequently with sentential complements,
while three others (end, terminate and complete) do not take them at all. According
to Levin (1993), thesetwo verb classesneedfurther classi�cation beforefull semantic
account can be given. As Levin doesnot classify verbs on the basisof their sentential
complement-taking properties, further classi�cation is required before we can obtain
accurate scf estimates for this type of verb.

The problem with \V erbs of Appearance,Disappearanceand Occurrence" is more
speci�c to the verb class. For example,\Disapp earanceVerbs" (disappear and vanish)
take noticeably fewer scf s than \App earanceVerbs" (arise and emerge). In addition,
verbs belonging to the di�eren t (and even same) subclassesseemto di�er greatly in
terms of scf s they take. For example, from the scf s taken by arise and emerge, less
than half are sharedby both, although the verbs belong to the samesubclass. Levin
remarks that the de�nition of this verb classmay be too loose,which may explain the
poor results.

The poor results with the two verb classessuggest that it is worth examining the
degreeof scf correlation betweenverbs from di�eren t subclassesbefore deciding on
the �nal (sub-)classfor which to obtain the estimates. As seenwith the eight other
verb classesexamined, more often than not, back-o� estimates can successfullybe
basedon a broad Levin class. As seenwith the combined verb class(Levin classes11
and 12), estimatescan alsobe built using verbs from di�eren t Levin classes,provided
that the classesare similar enough. Examination of the degreeof scf correlation
beforehandwould, however, be a useful precaution to guarantee the accuracyof back-
o� estimates.

Interestingly, for the eight verb classeswhich show improvement with linear interpo-
lation, the averageoptimal value of λ2 used in smoothing was 0.5 (the values for λj

were obtained by optimisation, seesection 5.3.2). Thus when back-o� estimateswere
accurate, best results (on average) were obtained by giving conditional and back-o�
distributions equal weight. The fact that valueshigher than 0.5 for λ2 generally did
not further improve (but gradually degraded) performancedemonstrates that auto-
matic scf acquisition is vital and that we could not obtain an accurate lexicon merely
by using back-o� estimates. Conversely, the fact that the averageoptimal value for
λ2 was as high as 0.5 demonstrates the utilit y of semantically motivated back-o�
estimates in guiding scf acquisition.

5.5 Discussion

The experimental evaluation reported in the abovesectionshows that the newmethod
of hypothesis selection outperforms the baselinemle method, addressingthe sparse
data problem e�ectiv ely and producing better overall results. Smoothing with lin-
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ear interpolation, which gives more emphasison back-o� estimates than the other
smoothing methods, producesespecially good results. This is a direct indication of
the accuracyof the verb classspeci�c estimatesemployed.

The proposedmethod seemspromising but could it be applied to bene�t large-scale
scf acquisition? This would require (a) de�ning the set of semantic verb classes
acrossthe entire lexicon, (b) obtaining back-o� estimatesfor each verb class,and (c)
implementing a method capableof automatically assigningverbs to semantic classes.

Verbs could be assignedto semantic classesvia WordNet, using a method similar to
that employed by Dorr (1997). De�ning a comprehensive set of verb classesis realistic
as well, given that Levin's classi�cation provides a good starting point and that work
on re�ning and extending this classi�cation is already available (e.g. Dang et al., 1998;
Dorr, 1997). The manual e�ort neededto obtain the back-o� estimateswasquite high
for this preliminary experiment, yet, our investigation7 shows that the total number
of semantic classesacrossthe whole lexicon is unlikely to exceed50. Although some
broad Levin classesmust be broken down into subclasses,many are similar enoughin
terms of scf distributions to be combined. The additional e�ort required to apply the
method to bene�t large-scalescf acquisition thus seemsjusti�ed, given the accuracy
enhancement reported.

5.6 Summary

In this chapter, we proposed a method for constructing verb class speci�c back-o�
estimates for scf acquisition and a new semantically motivated approach for hy-
pothesisselectionwhich combines mle thresholding and smoothing with the back-o�
estimates. We reported experiments which demonstrated that the back-o� estimates
can be used to signi�cantly improve scf acquisition through the approach employed
for hypothesis selection, when linear interpolation is employed for smoothing. Fi-
nally, we consideredthe work required for extending this method to large-scalescf
acquisition. We concluded that, despite the manual e�ort involved in constructing
the back-o� estimates, the task seemsjusti�ed, given the improvements reported.

7See section 6.3.1 for the method of investigation.



Chapter 6

Semantically Motiv ated
Subcategorization Acquisition

6.1 Introduction

This chapter concernssemantically motivated lexical acquisition: speci�cally , the use
of a priori knowledge about verb semantics in guiding the processof automatic scf
acquisition. We shall start by looking at somerelated work on this topic (section 6.2).
In section 6.3, we outline our own approach. This involves describing how the novel
approach for hypothesisselectionintro duced in the previous chapter was re�ned fur-
ther and integrated as part of automatic large-scalescf acquisition. Experiments for
evaluation of the approach re�ned are reported in section 6.4. Section 6.5 discusses
further work and section 6.6 contains a summary and our conclusions.

6.2 Related Work

Our work on semantically motivated scf acquisition relates to the (computational)
linguistic research (Fillmore, 1968; Grimshaw, 1990; Hale and Keyser, 1993; Jack-
endo�, 1990; Levin, 1993; Levin and Rappaport Hovav, 1996; Pinker, 1989) which
suggeststhat there is a closerelation between the underlying lexical-semantic struc-
tures and their associated syntactic behaviour. While lexical-semantic structures may
fall short of providing full semantic inference,they can provide a robust basis for the
development of language-processingfunctions and an analysis more useful than the
merely syntactic (Dorr, 1997). That somesemantic components can be identi�ed with
syntactic behaviour opens up the possibility of inferring semantics of a word on the
basisof its syntactic behaviour, and the syntax of a word on the basisof its semantic
behaviour. This possibility is of special interest for lexical acquisition. In this section,
we discusshow information about diathesis alternations and verb semantic classes
has so far beenusedto aid the processof lexical acquisition (Ribas, 1995;Poznanski
and San�lipp o, 1995;Korhonen, 1998). In chapter 7 (section 7.2.2), we will consider
further ways of exploiting the syntax-semantics link in subcategorization acquisition.

113
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Ribas (1995) useddiathesis alternations to aid acquisition of selectionalpreferences.
He did this by combining the argument headdata which occur in the argument slots of
the alternating variants involved in a diathesisalternation, and by acquiring the selec-
tional preferencesfrom the combined data. Ribas experimented with one alternation
only, the passive alternation with the verb present:

(29) a She presents great risks

b The challenge being presented to us by Tim

Selectionalrestrictions for the subject and object slots of present were acquired from
the wsj corpus data. Three di�eren t methods were then applied to assessthe ben-
e�t of alternation information. Method 1 involved acquiring selectional restrictions
speci�c to di�eren t argument slots, regardlessof the passive alternation. Method 2
involved detecting the passive alternation and acquiring selectional restrictions spe-
ci�c to argument slots with the samesemantic role. Method 3 involved detecting the
passive alternation, combining argument head data from the alternating slots, and
acquiring selectional restrictions speci�c to the combined data. The latter method
would, for example,combine she in (29a) and Tim in (29b) beforeacquiring selectional
restrictions.

Ribas evaluated the three methods on a wsd task. Method 3 achieved the best results,
outperforming the others both in precision and recall. While this is an encouraging
result, Ribas mentions two problemsthat would needto be tackled if the method were
to be extended beyond the passive alternation: the low frequency of diathesis alter-
nation patterns in the wsj data, and the di�cult y of detecting alternation patterns
on purely syntactic grounds.

Poznanski and San�lipp o (1995) used semantic class information to aid wsd . They
presented a systemcapableof individuating dependenciesbetweenthe verb semantic
classesand their associated scf s. The system extracts scf tokens from the Penn
Treebank,supplements the scf tokenswith semantic tags from the lloce thesaurus
(McArth ur, 1981), and converts the scf tokens into scf types. A scf type consists
of a verb stem associated with oneor more lloce semantic tags. Semantic ambiguit y
arising from multiple tag assignments is removed by using the lloce collocational
information. The codes of word stems, which according to the collocational infor-
mation are incompatible with the type of scf in which they occur, are �ltered out.
(30a) shows the scf token for deny aliens state benefits. The scf type for this token
is shown in (30b), wheredeny is associated with two potential semantic tags: \ C193"-
refuseand \ G127"-reject. The disambiguator choosesthe latter (30c) as, according to
the lloce collocational information, deny can only take ditransitiv e scf in the refuse
sense.
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(30) a SCFtoken: ((DENY)
(NP (ALIENS NNS))
(NP (*COMPOUNDNOUN*(STATENN) (BENEFITSNNS))))

b SCFtype: (("deny" ("C193"-refuse "G127"-reject))
((*NP* ("C"-people_and_family))
(*NP* ("N"-general_and_abstract_terms"))))

c Disambiguated SCFtype: (("deny" ("C193"))
((*NP* ("C"))
(*NP* ("N"))))

This approach was evaluated on a set of 1335scf tokens which were converted into
817 scf types. The system managed to reduce ambiguit y in over half of the scf
types and totally disambiguate over 16%, providing unique correspondencebetween
a semantic classand a scf in 346 cases. This demonstrates the utilit y of semantic
class information in aiding lexical disambiguation. In addition, preliminary results
were reported which showed that verbs associated with similar semantic codes took
similar scf s. For instance, the verbs associated with putting and taking, and pulling
and pushing sensesshowed a higher than averagetendency for scf np-pp. Poznanski
and San�lipp o discussedthe possibility of using semantic classinformation to predict
unseenscf options, but reported no work on this.

Korhonen (1998) used alternations to improve automatic scf acquisition. The ap-
proach involved correcting the performance of the statistical �lter of Briscoe and
Carroll's scf acquisition system1 by addition of information about likely diathesis
alternations. The basic idea was to make use of likely correlations between pairs of
scf s. For example,an English verb which takesa np-s complement (It bothered John
that Bill was so clever) is unlikely also to take a s complement (*It bothered that Bill
was so clever). If a hypothesisgenerator proposesthese two scf s for the sameverb,
one is likely to be wrong and should be dropped during hypothesisselection.

Korhonen examined the errors with scf s in system output and arrived at nine alter-
nations which could aid correction of theseerrors. In addition, a large set of alterna-
tions was constructed automatically by considering correlations betweenall possible
scf typesin the anl t dictionary. The alternations wereexpressedasdirectional rules
of the form:

(31) scf A � ! scf B

Each rule was assigneda probabilit y by calculating the number of anl t verb types
in both scf A and scf B, and dividing this by the number of verb types in scf A.

The alternation rules wereapplied at the �ltering phaseof the scf acquisition process.
The systems hypothesis generator was run as usual, and the bht �lter was used
to build scf entries and assign each entry a probabilit y2. However, no con�dence

1See section 2.5.3 for the system description and details of the statistical filter.
2
bht assigns each verb and scf combination P (m+, n, pe), which is the probability that m or more

occurrences of cues for scfi will occur with a verb which is not a member of scfi, given n occurrences
of that verb. See section 2.5.3 for details of this calculation.
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threshold was set on the probabilities, but instead, the alternation probabilities were
applied. This was done according to the following principle:

Given an alternation rule scf A � ! scf B, if both scf A and scf B are hypothesised
for a verb, the probabilit y assignedto scf A by bht is improved by the probabilit y
of the alternation rule. However, if scf A is hypothesisedfor a verb but scf B is
not, the probabilit y assignedto scf A by bht is lowered by the probabilit y of the
alternation rule.

Let pscfA
be the probabilit y of scf A given a verb according to bht and p(A � ! B)

the probabilit y of an alternation rule. If scf B is also hypothesisedfor the verb, the
revised probabilit y of scf A is

PscfA
= pscfA

� w((pscfA
) � p(A � ! B)) (6.1)

If scf B is not hypothesisedfor the verb, the revised probabilit y of scf A is

PscfA
= pscfA

+ w((pscfA
) � p(A � ! B)) (6.2)

wherew is de�ned empirically. After revising the probabilities assignedby bht in the
above way, entries are �ltered using a con�dence threshold of 0.05.

Supposethen we have the alternation rule3 scf 49 � ! scf 24 with probabilit y .38.
If bht assignsscf 49 the probabilit y of 0.08, this scf would normally be rejected, as
0.08 � 0.05. Using the method described above, however, the scf would be accepted
if scf 24 were also hypothesisedfor the verb:

0.0496= 0.08� 1(0.08� 0.38)

Korhonen evaluated this approach with 23 unseentest verbs, using the sameevalua-
tion method and corpusdata asBriscoe and Carroll (1997), described in section2.5.2.
The large set of automatically derived alternation rules from anl t improved the sys-
tem's ranking accuracy and type precision by 4%, and type recall by 5% over the
baselineresults obtained with the original system.

As our review indicates, little work exists on using verb semantic information for
guiding automatic lexical acquisition. Our approach most closely resembles that of
Korhonen (1998) in that we also usesemantic knowledgeto aid scf acquisition, and
do this at the hypothesisselectionphaseof the process.Our approach here is, how-
ever, more knowledge-driven. Instead of using empirical information about likely
alternations, we classify verbs into semantic classesand useprobabilistic information
related to theseclasses.We alsoemploy a more accuratemethod for hypothesisselec-
tion which usesverb classspeci�c back-o� estimates,enabling us to exploit semantic
class information to detect unseenscf s. The idea of detecting scf s on the basis of
semantic information was earlier raised by San�lipp o (1994) and Poznanskiand San-
�lipp o (1995), but to our knowledge, it has not yet been applied to automatic scf
acquisition.

3According to the scf classification used, scf 49 is equivalent to np-pp frame and 24 to np frame.
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6.3 Method for Semantically Motivated SCF Acquisition

In chapter 5, we proposeda new approach for semantically motivated hypothesisse-
lection. In this section,we describe how the method wasfurther re�ned and extended
to suit large-scaleautomatic scf acquisition.

The basicidea of the method, asoutlined in chapter 5, is to identify the semantic class
of a verb, usethe scf acquisition systemto hypothesisea conditional scf distribution
for the verb, smooth this distribution with the back-o� estimates of the respective
semantic class,and use a simple technique for �ltering scf s which applies a thresh-
old to the resulting set of probabilit y estimates. This method requires (a) semantic
verb classes,(b) verb classspeci�c back-o� estimates, (c) a technique for identifying
semantic classesof verbs, and (d) a �ltering method which employs the back-o� esti-
mates. In chapter 5, we proposedmethods for (a), (b) and (d). In this chapter, we
shall proposemodi�cations to the methods for (a) and (b), but adopt the method for
(d) as it stands. In other words, we shall employ the �ltering approach intro duced
in section 5.3.2 as it stands, and use it primarily with the smoothing technique that
proved best (i.e. linear interpolation). In chapter 5, no method was proposed for
(c). Rather, verbal participation in semantic classeswas identi�ed manually. In this
section, we proposea technique which doesthis automatically.

The following sectionsdescribethesechangesand extensionsmadeto the basicmethod.
Section 6.3.1 describes(a) our approach with semantic classesand section 6.3.2 gives
details of (b) the technique usedfor obtaining back-o� estimatesfor the classes.Sec-
tion 6.3.3 intro duces(c) the method capable of automatically assigningverbs to se-
mantic classes. Finally, section 6.3.4 describes the application of methods reported
in the three previous sections. It reports the work completed on semantic classes,
back-o� estimatesand semantic classi�cation of verbs.

6.3.1 Semantic Classes

In section 5.2, we proposed basing our semantic classeson Levin classes. The lat-
ter provided us with a good starting point for large-scalescf acquisition as well.
Although not comprehensive in breadth or depth of coverage,the classescover a sub-
stantial number of diathesis alternations occurring in English. In addition, work on
re�ning and extending this classi�cation is under way (Dang et al., 1998;Dorr, 1997;
Korhonen, Appendix C).

Dang et al. (1998) have re�ned someLevin classesinto intersective classes.To remove
the overlap betweenthe extant classes,they have createdintersective classesfor those
Levin verbs which sharemembership of more than one Levin class. For example, an
intersective classwas formed for the verbs pull, tug, show and push that are triple-
listed in the Levin classesof \ Split", \ Push/Pull" and \ Carry Verbs". These verbs
show characteristic syntactic and semantic behaviour not typical of their original verb
classes. Although Dang et al. report only preliminary work on a few verb classes,
it seemspromising: the intersective classesprovide a �ner-grained classi�cation with
more coherent setsof scf s and associated semantic components.

Dorr (1997) has created new semantic classesfor verbs whose syntactic behaviour
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di�ers from the syntactic description of existing Levin classes.The creation of new
classesis a by-product of her verb classi�cation algorithm which assignsunknown
verbs into Levin classes.We shall discussthis algorithm in detail in section6.3.3. Es-
sentially , the syntactic description of Levin classes,which corresponds roughly to the
alternation pairs from Levin (1993), is represented by setsof codesadopted from the
ldoce dictionary. If no Levin classis found to match the ldoce syntactic descrip-
tion of the unknown verb, a new semantic classis created,and each verb matching its
syntactic description is classi�ed as a member. Using this method, Dorr has arrived
at 26 novel classes.The majorit y of theseclassesconcernverb typesnot covered by
Levin, e.g. those taking sentential complements.

We have, in addition, proposed new diathesis alternations not included in Levin
(1993), particularly those involving sentential complements. We did this work while
collaborating with Diana McCarthy on automatic diathesisalternation detection (see
section 7.2.3 for details of this work). The new alternations are discussedbriey in
Appendix C of this thesis. They were obtained by manually examining the classi�ca-
tion of 163 scf s employed by Briscoe and Carroll's system and considering possible
alternations betweenpairs of scf s in this classi�cation. Novel alternations could be
usedfurther to re�ne Levin verb classesand to create new classesfor verb typesnot
covered by Levin.

The above work demonstratesthat extending Levin's classi�cation to obtain a com-
prehensive set of verb classesacrossthe entire lexicon is a realistic goal. In the work
reported in this chapter, however, we restrict ourselves to employing existing Levin
classes.

In chapter 5, we took the broad Levin classesas a starting point. Assuming a broad
class whenever possible makes sense,as it minimises the manual e�ort required in
constructing the back-o� estimates for each class: obtaining back-o� estimates for
a broad classis lesslaborious than obtaining separateestimates for each of its sub-
classes.The experiments reported in section 5.4.4 showed, however, that while many
of the broad classesare distinctiv e enough in terms of subcategorization, and while
somecan successfullybe combined, others need to be broken down into subclasses.
This suggeststhat we should examine the distinctiv enessof Levin classesin terms of
subcategorization prior to deciding on the grouping of these classes.We did this in
two steps,by examining the

� syntactic similarit y betweenLevin classes(Step 1)

� subcategorization similarit y betweenverbs in Levin classes(Step 2)

Step 1 gives us an indication of whether the verb sensesinvolved in the classesare
syntactically similar enough. It also helps to identify the Levin classeswhich need
further re�nement. Step 2 complements Step 1, as the syntactic information included
in Levin (1993) is not always conclusive and doesnot provide any information about
the relative frequencyof scf options. In addition, it allows us to examinethe degree
of scf correlation between the verb form speci�c scf distributions we are actually
concernedwith. The subsequent two sectionsdescribe how we proceededwith Steps
1 and 2, respectively.
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Class Syntactic Pattern LDOCE Codes

30.1 0-[np,v] I

See Verbs 0-[np,v,np,pp(for)] T1-FOR D1-FOR

0-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT

1-[np,v,np] T1 L1

1-[np,v,np,vp] V4 V4-FROM V4-WITH X4 V2

1-[np,v,np,pp(in)] D1-IN T1-IN

1-[np,v,s comp] T5 I5 X5

1-[np,v,vp] I4 T4 L4 T2 I2 WV2

30.2 0-[np,v] I

Sight Verbs 0-[np,v,s comp] T5 I5 X5

0-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT

1-[np,v,np] T1 L1

1-[np,v,np,vp] V4 V4-FROM V4-WITH X4 V2

30.3 0-[np,v,np] T1 L1

Peer Verbs 0-[np,v,s comp] T5 I5 X5

1-[np,v,pp(around)] L9 I

1-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT

1-[np,v,pp(into)] I-INTO

1-[np,v,pp(on)] I-ON L9-ON I-UPON

1-[np,v,pp(through)] I-THROUGH

1-[np,v,pp(to)] I-TO

30.4 0-[np,v] I

Stimulus Subject 1-[np,v,adjective] L7 WA4

Perception Verbs 1-[np,v,adjective,pp(to)] L7

Table 6.1: ldoce codesfor \V erbs of Perception"

Step 1: Syntactic Similarity between Levin Classes

For Step 1, we employed Dorr's sourceof ldoce codesfor Levin classes4. Dorr (1997)
extracted automatically basic syntactic patterns from all the sentences in Levin's
book. The patterns were mapped onto ldoce codes and grouped into canonical
and prohibited codes for each class. We used Dorr's ldoce codes to determine the
syntactic similarit y between Levin classes.This was done by considering the degree
of intersection betweenthe codesfor the classes.

For example, table 6.1 shows the ldoce codes for each of the four subclassesof the
broad Levin classof \V erbs of Perception". The �rst column of the table indicates
the Levin subclass in question, the secondlists a syntactic pattern extracted from
a Levin sentence and the third gives the ldoce code corresponding to the pattern.
Canonical and prohibited ldoce codes are pre�xed as \1-" and \0-", respectively.
By examining the codes, we can tell that syntactic descriptions of subclassesdi�er
signi�cantly . Firstly , no ldoce code (canonical or prohibited) is shared by all four
subclasses.The only intersection with canonicalcodesoccursbetweensubclasses30.1
and 30.2, which share two canonical codes (T1 L1 and V4 V4-FROM V4-WITH X4 V2).
Classes30.1, 30.2 and 30.4 shareone prohibited code (I), classes30.1 and 30.2 share
one (I-AT I3-AT L9-AT WV4-AT) and classes30.2 and 30.3 one (T5 I5 X5). However, a

4We are indebted to Bonnie Dorr for the use of these codes. We adopted the codes as they stand
but removed duplicate and uncertain code assignments. See Procter (1978) for a detailed description
of ldoce grammatical codes and Dorr (1997) for further information.
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Class Syn tactic Pattern LDOCE Co des

11.1 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT
Send V erbs 0-[np,v,pp(to)] I-TO

1-[np,v,np] T1 L1
1-[np,v,np,np] D1 X1
1-[np,v,np,pp(from)] D1-FROM T1-FROM
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH
1-[np,v,pp(from),pp(to)] I-FROM I-TO

11.2 0-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH
Slide V erbs 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT

1-[np,v,np] T1 L1
1-[np,v,np,np] D1 X1
1-[np,v,np,pp(across)] T1-ACROSS
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,pp(across)] L9
1-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT
1-[np,v,pp(from),pp(to)] I-FROM I-TO
1-[np,v,np,pp([away,from])] X9

11.3 0-[np,v,np,adjective] X7
Bring and Take 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT

0-[np,v,pp(to)] I-TO
1-[np,v,np,np] D1 X1
1-[np,v,np,pp(from)] D1-FROM T1-FROM
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH

11.4 0-[np,v] I
Carry V erbs 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT

0-[np,v,pp(to)] I-TO
1-[np,v,np] T1 L1
1-[np,v,np,pp(from)] D1-FROM T1-FROM
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH
1-[np,v,pp(against)] I-AGAINST
1-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT
1-[np,v,pp(from),pp(to)] I-FROM I-TO
1-[np,v,pp(to),pp(with)] I-TO I-WITH I3-WITH L9-WITH

11.5 0-[np,v] I
Drive V erbs 0-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH

0-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT
0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT
0-[np,v,pp(to)] I-TO
1-[np,v,np] T1 L1
1-[np,v,np,pp(from)] D1-FROM T1-FROM
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,pp(from),pp(to)] I-FROM I-TO

Table 6.2: ldoce codesfor \V erbs of Sendingand Carrying"
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Class Syntactic Pattern LDOCE Codes

12. 0-[np,v] I

Verbs of 1-[np,v,np] T1 L1

Exerting Force 1-[np,v,np,adjective] X7

1-[np,v,np,pp(against)] T1-AGAINST

1-[np,v,np,pp(through)] X9 T1-THROUGH

1-[np,v,np,pp([away,from])] X9

1-[np,v,pp(against)] I-AGAINST

1-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT

1-[np,v,pp(on)] I-ON L9-ON I-UPON

1-[np,v,pp(through)] I-THROUGH

1-[n] N

Table 6.3: ldoce codesfor \V erbs of Exerting Force"

canonical code for one classshows up as a prohibited code for another class,and vice
versa. Secondly, the number of codestaken by the di�eren t subclassesvaries greatly.
For example, class 30.3 takes six canonical codes, while class 30.2 takes only two.
These observations suggest that the syntactic descriptions of the subclassesare so
dissimilar as to merit our obtaining the back-o� estimatesspeci�c to the subclasses,
rather than to the broad classof \P erception" verbs.

Table 6.2 lists the ldoce codes for each of the four subclassesof Levin's \V erbs of
Sendingand Carrying". With this broad class,the syntactic descriptionsof subclasses
prove more similar. All �v e subclassesshare one canonical code (D1-TO T1-TO WV5-

TO). In addition, four subclassesshare three canonical codes (I-FROM I-TO, D1-FROM

T1-FROM and T1 L1) and three shareone (D1 X1). None of the latter are found among
the prohibited codesof the other classes.With prohibited codes, one code is shared
by all �v e subclasses(I-TO I-AT I3-AT L9-AT WV4-AT) and another by four subclasses
(I-TO). Although someprohibited codesoccur ascanonicalcodesfor other classes,the
intersection of both canonical and prohibited codes is fairly extensive. This suggests
that the broad classof \Sending and Carrying Verbs" is syntactically coherent enough
to provide an adequatebasis for back-o� estimates.

The above examples illustrate typical choices between more or less speci�c Levin
classes.In addition, somesemantically similar broad Levin classesare syntactically
similar enough to be combined. For example, \V erbs of Sendingand Carrying" and
\V erbs of Exerting Force" are semantically fairly similar: someLevin verbs are cross-
listed in thesetwo classes,as they sharethe semantic component of exertion of force.
To �nd out whether these classescould be combined, we compare their syntactic
descriptions. The ldoce codes for \V erbs of Sending and Carrying" were shown in
table 6.2, and those for \V erbs of Exerting Force" are listed in table 6.3. The two
classesshare one prohibited and four canonical codes. Only one canonical code for
class12 is found among prohibited codes for class11 (with one subclassonly). The
two broad classesseemthus syntactically similar enoughto be combined.
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Step 2: Subcategorization Similarity between Verbs in Levin Classes

For Step 2, we chose representativ e verbs from Levin's classi�cation. These were
chosenat random, subject to the constraint that they occurred frequently enoughin
corpusdata, represented di�eren t subclassesof a broad Levin class(when applicable),
and that their most frequent sensein WordNet involved the Levin classin question.
The scf distributions for these verbs were obtained by manually analysing c. 300
occurrencesof each verb in the bnc data, using the scf classi�cation in Appendix A.
After this, the resulting scf distributions were comparedin terms of

� the intersection of sharedscf s

� the dissimilarit y of distributions

� the similarit y in ranking of scf s in distributions

Table 6.4 shows the scf s as code numbers for \Sending and Carrying" verbs send,
ship, bring and carry and thosefor \Exerting Force" verbspush and pull, asobtained
from manual analysis. The di�eren t \Sending and Carrying" verbs take a total of 21
di�eren t scf s, 5 of which are sharedby all four verbs, a further 3 by three verbs and
5 by two verbs. The averageoverall kl distance between the di�eren t distributions
is 0.6 and the average r c, 0.56. The latter results are better than those obtained
when correlating the distributions against the unconditional distribution of all verbs
in English. Theseobservations support thosemadeby examining verb classsimilarit y:
the Levin classof \V erbs of Sendingand Carrying" seemdistinctiv e enoughin terms
of subcategorization.

To examinewhether this classcould be combined with the other broad class,\V erbs
of Exerting Force", the mergedscf distribution of the four \Sending and Carrying"
verbsis comparedwith the mergedscf distribution of the two \F orceExerting" verbs.
From a total of 23 di�eren t scf s occurring in the two distributions, 21 occur in both.
The averagekl distance between the distributions is 0.47 and the averager c, 0.51.
These�gures again support the observations madeearlier with Step 1: the two Levin
classesare syntactically similar enoughto be combined.

6.3.2 Constructing Back-o� Estimates

We adopted the method proposedfor constructing back-o� estimates in section 5.2
as it stands, with one exception. For some semantic classes,not enough suitable
Levin verbs were found that would occur frequently enoughin corpus data. In these
cases,instead of using the scf distributions of the ideal 4-5 verbs for constructing the
back-o� estimates,we usedas many as possible.

6.3.3 Assigning Verbs to Semantic Classes

In the work reported so far, verbs were manually assignedto semantic classes. We
shall now describe a method we used for automatic classi�cation of verbs. This in-
volvesassigningverbsto semantic classesvia WordNet. Although WordNet's semantic
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send ship bring carry pull push

49 49 76 76 76 76
56 77 56 24 49 49
37 24 24 49 24 24
76 122 120 77 78 77
77 87 27 78 77 22
24 78 31 27 87 87
53 22 49 87 22 74
27 76 122 122 74 78
122 37 74 30 27
150 56 77 74 25
87 3 69 22 53
35 95 3
29 122

112

Table 6.4: scf s for \V erbs of Sendingand Carrying" and \Exerting Force"

organization does not always go hand in hand with syntactic information, Dorr and
Jones(1996a,1996b) and Dorr (1997) have demonstrated that synonymous verbs in
WordNet exhibit syntactic behaviour similar to that characterisedin the classi�cation
system of Levin. This enablesassociation of verbs with semantic classeson the basis
of their WordNet synonyms. Our semantic verb classi�cation approach resemblesthat
previously taken by Dorr (1997). We shall begin by reviewing this related work, after
which we intro duce our own method.

Previous Work

Dorr's (1997) verb classi�cation algorithm is a re�ned version of those proposed in
Dorr and Jones (1996a, 1996b). It assignseach unknown verb to a semantic class
by examining the verb's synonyms from WordNet and selecting those whose Levin
class is associated with syntactic information matching that of the unknown verb.
The syntactic information is expressedas ldoce codes5. The classi�cation algorithm
works as follows:

Step 1: If a given verb V is in Levin's index, it is classi�ed directly.

Step 2: Otherwise, V 's WordNet synonyms are extracted.

Step 3: If noneof V 's WordNet synonyms is in Levin's index, V is set asidefor later
application of the algorithm (after one or more of its synonyms is classi�ed).

Step 4: A candidate set of semantic classes(from Levin's index) corresponding to
the synonyms in V 's synset(s) is produced.

Step 5: If V 's ldoce codesdo not match the canonicalldoce codesfor any semantic
classassociated with the WordNet synonyms, a new classis created.

5See section 6.3.1 for description of Dorr’s source of ldoce codes for Levin classes.
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Step 6: If V 's ldoce codes match the canonical ldoce codes for a semantic class
associated with the WordNet synonyms, V is included in that class.

The notion of \matc h" in this algorithm is basedon the degreeof intersection between
V 's ldoce codesand the canonical ldoce codesfor a candidate class. A preference
is given to those classeswhose prohibited ldoce codes are not among V 's ldoce
codes. A preferenceis also given to the classescontaining the highest number of
matching WordNet synonyms. The algorithm is run iterativ ely: after 100-200verbs
are classi�ed, the procedureis re-run on the remaining set of unknown verbswith the
larger databaseof semantic classes.

As an example,let us considerthe semantic classi�cation of swear accordingto Dorr's
algorithm. The ldoce speci�cation of this verb is I I-AT T1 T1-ON T1-TO T3 T5. Step
4 of the classi�cation algorithm extracts candidate Levin classesassociated with the
WordNet synonyms of this word: (1) class29.4 \ Declare Verbs", (2) class29.5 \Con-
jecture Verbs", (3) class37.7 \ Say Verbs", and (4) class48.1.2 \Reexiv e Verbs of
Appearance". The canonical ldoce codesfor each of theseclasses,respectively, are:
(1) D1 X1 D3 V3 T6 GO BE X7-TO BE X9-TO BE V3-TO BE T5 I5 X5, (2) D3 V3 T6 X1-TO BE X7-

TO BE X9-TO BE V3-TO BE T5 I5 X5, (3) D1-TO T1-TO WV5-TO D5-TO T5-TO T5 I5 X5, and (4)
D1-TO T1-TO WV5-TO T1 L1. The largest intersection with the canonical ldoce codes
occurs with class 37.7 (T5 T1-TO). Thus step 6 of the algorithm selects37.7 as the
semantic classfor swear.

Dorr evaluated this approach using a set of 95 verbs not in Levin (1993), taken from
the ldoce control vocabulary (i.e. primitiv e words used for dictionary entry de�ni-
tion). A total of 135 semantic classassignments were made with the algorithm, with
several verbs receiving more than one class assignment. Of these, 61% were hand-
veri�ed to be correct. 22%of incorrect assignments weredue to syntactic omissionsin
ldoce and Levin (1993). In such cases,the relevant WordNet synonym wasavailable,
but the canonical/prohibited codesassociated with the synonym's class(es)were not
speci�c enoughfor the class(es)to be selected.The majorit y of theseomissionswere
causedby missing syntactic codes in ldoce . Others arosewhen a relevant syntac-
tic pattern was missing in Levin's data, or when a WordNet synonym was found in
Levin's index but in a classirrelevant to the verb under consideration. The remaining
17% of incorrect assignments corresponded to caseswhere there is a semantic mis-
match between WordNet and Levin (1993). In such cases,the WordNet synonyms
for an unknown verb corresponded to word sensesthat are not available in Levin's
classi�cation.

Our aim is similar to Dorr's; we alsoaim to assignverbsto Levin classesvia WordNet.
Adopting Dorr's approach as it stands would be problematic, however. The �rst
problem hasto do with accuracy. As our method is highly dependent on accurateclass
assignments, the 61% accuracy of assigningverbs to correct classesis not adequate.
This problem is coupled with the fact that the approach allows for multiple class
assignment. Given the nature of our task, we assigneach verb to only one semantic
classand, to achieve overall improvement, this needsto be the class related to the
verb's most frequent sense.Dorr's algorithm returns no information about which of
the assignedclasses,if any, correspondsto the verb's most frequent sense.Accordingly,
we shall adopt a di�eren t approach for semantic classi�cation of verbs. This approach
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will, however, usesomeof the techniques employed in Dorr (1997).

Our Approach

While Dorr's (1997) method assignsverbs to semantic classeson the basis of their
WordNet synonyms, ours assignsentire WordNet synsetsto semantic classes.In our
approach, individual verbsreceive the semantic classassignment of their synsets.Our
objective is to build a more static sourcewhere WordNet synsetsare associated with
di�eren t Levin classes.Although static, the sourcewill allow for updating and adding
new verbs to WordNet. Verbs added to the existing synsets are classi�ed directly
via their synset and the sourcecan be updated to cover novel synsets. Rather than
proposinga Dorr-style fully automatic verb classi�cation algorithm which reliessolely
on mrd s and other lexical resources,we proposea semi-automatic approach which
partly draws on such resources. Since the accuracy of class assignments is highly
important for us, someallowancefor manual intervention is necessary.

Our method comprisestwo phaseswhich we intro duce in the following paragraphs:
annotating Levin classi�cation (Phase I) and assigningWordNet synsetsto semantic
classes(Phase II) .

Phase I A nnotating Levin 's Classi�c ation To employ Levin's verb index use-
fully and to proceedwith the present classi�cation task, we needto know which Levin
verbs are already classi�ed according to their predominant sense. As a preliminary
step, we annotated the index for the �rst senseverbs. This was done by manually
examining each Levin verb, extracting its predominant sensefrom WordNet, and com-
paring it with that/those involved with the semantic class(es)of the verb in Levin's
classi�cation. For example, Levin lists the verb convey with both \ Send Verbs" and
\ Say Verbs". According to WordNet, the most frequent senseof convey is

convey, impart -- (make known; pass on, of information)

=> communicate, intercommunicate -- (transmit thoughts or feelings)

=> interact -- (act together or towards others or with others)

=> act, move -- (perform an action)

The hypernym nodesof this senseinclude thoseof f communicate, intercommunicateg
and f interactg. The sensein question clearly corresponds to the meaning involved
with \ Say Verbs" rather than to that involved with \ Send Verbs". Thus we dropped
the verb from the latter classand preserved it in the former.

Levin associates most, but not all, verbs with a classthat corresponds to their �rst
sense.For example, Levin lists shift only with \ Send Verbs", while its predominant
sensecorresponds rather to that involved with \V erbs of Changeof State":

switch, change over, shift, turn around -- (make a shift in or exchange of)

=> change, alter

We dropped thesecasesfrom the index and set them aside to be classi�ed using the
method intro duced in the next paragraph.
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11. Verbs of Sending and Carrying

11.1 Send Verbs
airmail, (drop: convey), (drop: deliver), dispatch, (drop: express),
FedEx, forward, hand, mail, (drop: pass), port, (drop: return),
send, (drop: shift), ship, shunt, (drop: slip), smuggle, (drop: sneak),
transfer, transport, UPS
11.2 Slide Verbs
(drop: bounce, float, move, roll)
11.3 Bring and Take
bring, take
11.4 Carry Verbs
carry, (drop: drag, haul), (drop: heave, heft, hoist, kick), lug,
(drop: push, pull, schleg, shove, tow)
11.5 Drive Verbs
barge, bus, cart, (drop: drive), ferry, (drop: fly, row, shuttle),
truck, (drop: wheel, wire)

12. Verbs of Exerting Force

draw, (drop: heave), jerk, press, pull, push, shove,
thrust, tung, yank

Table 6.5: Annotated Levin classi�cation

For someother verbs, no senseeven exists in Levin (1993) which would correspond
to the predominant. The majorit y of these casesconcern verb types not properly
covered by Levin, such as verbs taking sentential complements. Thesewere dropped
from the index as well and set asidefor later examination.

The annotated classi�cation for \Sending and Carrying" and \F orce Exerting" verbs
is shown in table 6.5. The table shows all Levin verbs, thosewhosepredominant sense
is involved with the verb classeslisted, and those whose predominant senseis not,
and which are thus dropped from the classi�cation. The latter are marked as (drop:
verb).

Phase II Assigning Wor dNet Synsets to Semantic Classes WordNet 1.6
includes 10,319 verb forms whose 22,066 sensesspread over 12,127 synsets. These
latter divide into 15 subhierarchies which represent di�eren t semantic domains. The
WordNet �les which include the verbs for each subhierarchy are listed in table 6.6.
Dorr (1997)notesthat many of the top level synsetsin the hierarchiesintersectdirectly
with the Levin classes.For example, \Sending and Carrying" and \F orce Exerting"
verbs are all found under the sametop level synset f move, displaceg. Furthermore,
verbs belonging to the same Levin classesoften occur in the synsets of the same
subhierarchy. For example, the most frequent sensesof the Levin verbs of \Sending
and Carrying" and \F orce Exerting" are all found in the verb �le \38-verb.motion".

Due to this overlap betweenWordNet and Levin classes,we associated synsetswith
Levin classessubhierarchy by subhierarchy, starting from the top level synsets,and
going further down in the taxonomy when required. The basic idea wasto assigneach
synset to a semantic class by �rst assigning the majorit y of its member verbs to a
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Verb Files Contains Verbs of

29-verb.body grooming, dressing and bodily care
30-verb.change size, temperature change, intensifying, etc.
31-verb.cognition thinking, judging, analyzing, doubting
32-verb.communication telling, asking, ordering, singing
33-verb.competition fighting, athletic activities
34-verb.consumption eating and drinking
35-verb.contact touching, hitting, tying, digging
36-verb.creation sewing, baking, painting, performing
37-verb.emotion feeling
38-verb.motion walking, flying, swimming
39-verb.perception seeing, hearing, feeling
40-verb.possession buying, selling, owning
41-verb.social political and social activities and events
42-verb.stative being, having, spatial relations
43-verb.weather raining, snowing, thawing, thundering

Table 6.6: WordNet verb �les

semantic class,and then choosing the Levin classsupported by the highest number of
verbs. `Member verbs' refer hereto thosewhich are membersof the synsetin question
and of its hyponym synsets. Thus if a classi�ed synset has hyponym synsets, the
latter are classi�ed according to their classi�ed hypernym synset. Our classi�cation
algorithm considersonly thoseverbs whosemost frequent sensebelongsto the synset
in question. The algorithm proceedsas follows:

Step 1: If the majorit y of member verbs of a given synset S are Levin verbs6 from
the sameclass,classify S directly. (See Example 1 below ).

Step 2: Otherwise, classify more member verbs (according to Step 4a-d) until the
majorit y are classi�ed, and then go back to Step 1.

Step 3: If the classi�ed verbs point to di�eren t Levin classes,examine whether S
consistsof hyponym synsets(See Example 2 below ):

(a) If not, assign S to the Levin class supported by the highest number of
classi�ed verbs.

(b) If yes,go one level down in the hierarchy and classify the hyponym synsets
separately, starting again from Step 1.

Step 4: If S includes no Levin verbs, proceedas follows to classify the majorit y of
member verbs of S (See Examples 3 and 4 below ):

(a) Extract the predominant senseof a given verb V from WordNet

(b) Extract the syntactic codesfrom ldoce relevant to this sense
6For the remainder of this chapter, ‘Levin verbs’ refer to the first sense verbs in the annotated

Levin classification.
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(c) Examine whether V could be assignedto a Levin classalready associated
with the other verbs in the

1. samesynset
2. possiblehypernym synset
3. possiblesister synsets

by comparing the ldoce codesof the senseand Dorr's ldoce codesof the
respective Levin class(es). Given the hypothesisedclasses,make the �nal
classassignment manually.

(d) If no suitable class is found, re-examine the caseafter more verbs have
beenanalysed. If the classi�cation remains unsolved, set V asidefor later
examination, when it might be grouped with other unclassi�ed verbs and
assignedto a verb classnot covered by Levin7.

The above algorithm is for the most part automatic, however, identi�cation of ldoce
codesrelevant to the sensein question (Step 4b), and the �nal classassignment (part
of Step 4c) are done manually to ensureaccuracyof classi�cation.

The following examplesillustrate the useof this algorithm to assignhyponym synsets
of the top level synset f move, displaceg to Levin classes8:

Example 1: Synset 01328437has �v e �rst sensemember verbs, three of which are
Levin verbs from the same verb class. The synset is assigneddirectly to the
Levin classof \V erbs of Sendingand Carrying".

ship => Verbs of Sending and Carrying

despatch

dispatch => Verbs of Sending and Carrying

route

forward => Verbs of Sending and Carrying

Example 2: Synset 01278717includes Levin verbs which point to di�eren t classes.
Since it consistsof hyponym synsets(as indicated by the synset identi�ers be-
low), we go one level down in the taxonomy and classify the hyponym synsets
separately.

push => Verbs of exerting force

jab poke 01296169 => Poke Verbs

nudge prod 00838894 => Verbs of contact

repel 01034588

shove 01278320 => Verbs of exerting force

ram 01296169

obtrude 01279473

thrust 01296169 => Verbs of exerting force

elbow shoulder 01278320

7No work on the latter is reported in this thesis; see, however, the discussion in section 6.3.1
8As we only consider first sense verbs here, for clarity, we refer to synsets in these examples

as WordNet synset identifier codes, rather than their actual names. In addition, to simplify the
examples somewhat, we refer to all Levin classes below as broad classes. In practice, the specificity
of classification varies from class to class; see above section 6.3.1.
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Example 3: Synset 00994853includes thirteen member verbs, four of which are
Levin \V erbs of Sendingand Carrying":

carry => Verbs of sending and carrying

port

airlift

lug => Verbs of sending and carrying

tote

chariot

bring => Verbs of sending and carrying

ferry => Verbs of sending and carrying

church

tube

whisk

channel

retransmit

We needto classifymore verbsto determine classassignment. To classifywhisk,
we extract its �rst sensefrom WordNet:

whisk - (move somewhere quickly; "The president was whisked away in his limo")

=> bring, convey, take - (take somebody or someone with oneself somewhere)

=> transport, carry - (move while supporting)

=> move, displace - (cause to move)

In ldoce the verb has three senses.That corresponding to the WordNet �rst
senseis identi�ed as the secondldoce senseshown below:

1. [T1] to move (something) quickly, exp. as to brush something off:

"The horse was whisking its tail"

2. [X9 esp. OFF, AWAY] to remove

a. by brushing lightly: "She whisked the dirt off"

b. by taking suddenly: "She whisked the cups away / whisked him

(off) home"

3. [T1] to beat (esp. eggs), esp. with WHISK.

The Levin classesalready matched with the verbs in the same,hypernym and
sister synsetsare:

Verbs of putting

Verbs of removing

Verbs of sending and carrying

Verbs of exerting force

Poke verbs

Verbs of contact

Verb of cutting

Verbs of combining and attaching

Verbs of separating and disassembling

Verbs of throwing

Verbs of motion
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From theseclasses,those whosesyntactic description includes the ldoce code
X9 are:

Verbs of putting

Verbs of removing

Verbs of sending and carrying

Verbs of exerting force

Verbs of motion

After verifying these options manually, whisk is assignedto \V erbs of Sending
and Carrying".

Example 4: The synset 01527059includes around 90 member verbs related to the
transfer of messages. These spread over nearly 60 hyponym synsets. Seven
of the verbs are Levin verbs from various classeswhich include verbs taking
sentential complements. Two of them are listed by Dorr (1997) as members of
her new semantic classes.The synset is set asidefor future work.

6.3.4 Completed Work

We applied the methods described in the above sections for (a) construction of se-
mantic classes,(b) back-o� estimates, and for (c) semantic classi�cation of verbs as
follows: using the semantic verb classi�cation method described in the previous sec-
tion, we analysedasexhaustively aspossiblethree large WordNet verb �les, assigning
synsetsin these �les to semantic classes.The following three verb �les were chosen
becausethey covered most verbs usedin our previous experiments:

� 35-verb.contact. From the total of 513 synsets9, 494 were classi�ed as mem-
bers of 17 broad10 Levin classes.The classesare listed in table 6.7. 19 synsets
were set asidefor later classi�cation.

� 38-verb.motion. From the total of 888 synsets,814 were assignedto the 23
Levin classesshown in table 6.8 and 71 synsetswere left unclassi�ed.

� 40-verb.possession. From the total of 331 synsets,273 were associated with
the 10 Levin classesincluded in table 6.9. 58 synsetswere left unclassi�ed.

In addition, a small number of synsets(35) from other WordNet verb �les were as-
signed to the Levin classesalready listed in tables 6.7, 6.8, and 6.9, and to those of
\V erbsof Assessment", \V erbsof Assuminga Position", and \V erbsof Concealment".
Analysis of thesesynsetswas a by-product of developing the approach. However, no
further work was done on theseother verb �les.

From the total of 32 broad Levin classesexempli�ed among the classi�ed WordNet
synsets,22 of the most frequent werechosenfor further work. Thesewere re-grouped

9Note that the total number of synsets refers here to the total number of synsets including verbs
whose first sense belongs to the synset of question.

10Tables 6.7, 6.8 and 6.9 list only the broad Levin classes, not possible subclasses.
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Levin Classes Classified
Synsets

9. Verbs of Putting 163
10. Verbs of Removing 32
12. Verbs of Exerting Force 5
13. Verbs Of Change of Possession 19
15. Hold and Keep Verbs 4
18. Verbs of Contact by Impact 54
20. Verbs of Contact 14
22. Verbs of Combining and Attaching 115
23. Verbs of Separating and Disassembling 13
24. Verbs of Colouring 3
35. Verbs of Searching 11
36. Verbs of Social Interaction 7
42. Verbs of Killing 27
44. Destroy Verbs 10
45. Verbs of Change of State 2
46. Lodge Verbs 1
47. Verbs of Existence 14

Table 6.7: Levin classesassociated with WordNet \contact" verbs

Levin Classes Classified
Synsets

9. Verbs of Putting 66
10. Verbs of Removing 28
11. Verb of Sending and Carrying 44
12. Verbs of Exerting Force 22
17. Verbs of Throwing 39
18. Verbs of Contact by Impact 1
19. Poke Verbs 23
20. Verbs of Contact 2
21. Verbs of Cutting 53
22. Verbs of Combining and Attaching 4
23. Verbs of Separating and Disassembling 27
25. Verbs of Coloring 3
26. Verbs of Creation and Transformation 3
40. Verbs of Involving the Body 13
43. Verbs of Emission 8
44. Destroy Verbs 5
45. Verbs of Change of Possession 11
47. Verbs of Existence 51
48. Verbs of Appearance, Disappearance and Occurrence 6
49. Verbs of Body-Internal Motion 11
51. Verbs of Motion 383
53. Verbs of Lingering and Rushing 2
55. Aspectual Verbs 9

Table 6.8: Levin classesassociated with WordNet \motion" verbs
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Levin Classes Classified
Synsets

9. Verbs of Putting 8
10. Verbs of Removing 38
11. Verbs of Sending and Carrying 7
13. Verbs Of Change of Possession 156
15. Hold and Keep Verbs 8
25. Image Creation Verbs 15
29. Verbs with Predicative Complements 5
39. Verbs of Ingesting 11
47. Verbs of Existence 5
54. Measure Verbs 20

Table 6.9: Levin classesassociated with WordNet \p ossession"verbs

Class Contains Verbs for
Code Levin Verbs of Back-off Estimates

A 9. Putting place, lay, drop, load
B 10. Removing: 10.1 - 10.3, 10.5 - 10.9 remove, withdraw,

steal, peel
C 10. Removing: 10.4 wipe, brush, filter
D 11. Sending and Carrying send, ship, carry

12. Exerting Force push
E 13. Change of Possession give, lend, contribute,

donate, offer
F 15. Hold and Keep grasp, keep, store

16. Concealment block, hide
G 17. Throwing hit, throw, toss
H 18. Contact by Impact bang, knock, punch

19. Poke Verbs pierce, poke
I 20. Contact stroke, touch, kiss
J 21. Cutting cut, clip, carve, chop,

slice
K 22. Combining and Attaching: 22.1 - 22.4 add, mix, attach, lock
L 22. Combining and Attaching: 22.5 cling
M 23. Separating and Disassembling: 21.3 - 23.3 distinguish, tear, detach
N 23. Separating and Disassembling: 23.4 differ
O 34. Assessment analyse, explore, investigate, survey

35. Searching fish
P 36. Social Interaction communicate, marry,

meet, visit
Q 42. Killing kill, murder, strangle
R 44. Destroy demolish, destroy, ruin
S 47. Existence: Verbs of Spatial Configuration hang, sit

50. Assuming Position kneel, lie
T 51. Motion arrive, move, slide,

fly, sail

Table 6.10: Semantic verb classesand verbs usedfor their back-o� estimates
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Class Code Test Verbs

A cover, drop, fill, install, park, place, put, rearrange, set, space,
superimpose

B arrest, confiscate, dispel, exclude, exile, remove, rescue, save, steal
C shear
D attract, bring, carry, draw, hand, merchandise, pull, send,
E acquire, allocate, arm, contribute, credit, get, give, grant, letter, locate,

obtain, offer, owe, pay, provide, receive, score, supply, win
F keep, hide, maintain, protect, reserve, retain, withhold
G fire, hit, kick, single, throw, toss
H bump, hammer, knock, prick, rap, slam, slug, whip
I neck, pet, touch
J carve, hew, slice
K add, attach, combine, compare, hook, join, mount, rejoin
L cling
M distinguish, divide, segregate
N differ
O investigate, probe, scan, seek
P agree, argue, bargain, compete, consult, fight, jest, marry, play, secede
Q -
R destroy, eliminate
S hang, kneel, lie, lounge, orient, sit, stand
T abandon, caper, charge, chase, coast, come, dance, drive, enter, flee,

follow, go, haunt, head, hop, lead, leave, move, overhaul, pass, reach,
return, run, sail, speed, swing, toe, turn, walk

Table 6.11: Classi�ed test verbs

to our semantic classesby using the method described in section 6.3.1. This led to
the combination of �v e pairs of broad Levin classesand the division of three into
subclasses. The resulting 20 semantic classesare shown in table 6.10, labelled by
classcodesshown in the �rst column of the table. Back-o� estimatesfor theseclasses
were built using the method described in sections6.3.2 and 5.2. The verbs used for
obtaining the back-o� estimatesfor each verb classare shown in the third column of
table 6.10.

6.4 Experimental Evaluation

In this section we report the experimental evaluation of our re�ned and extended
method to semantically motivated hypothesis selection. Section 6.4.1 intro ducesthe
test verbs employed and section 6.4.2 describes the scf lexicons used in our exper-
iments. Direct evaluation of the acquired lexicons is reported in section 6.4.3, task-
basedevaluation in the context of parsing in section 6.4.4.
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6.4.1 Test Verbs

We selectedfor evaluation the sameset of 474 test verbs as usedby Carroll, Minnen
and Briscoe (1998). 140 were found in the classi�ed WordNet synsets. Our method
assignedtheseverbs to semantic classes,as shown in table 6.11. As many as 118 are
included in (Levin, 1993) and 106 in our annotated index, where they are classi�ed
according to their �rst sense.This big overlap is presumably due to both Levin's and
Carroll, Minnen and Briscoe's selecting frequently occurring verbs as example/test
verbs. This undoubtedly reducedthe number of misclassi�cations our method made,
asweassignedall 106verbs(which occurred in the annotated Levin index) to semantic
classesmanually. However, among the remaining 34 non-annotated or non-Levin
verbs, just one verb was classi�ed incorrectly by our method: locate was associated
with \Change of Possession"verbs (class E), while it should have been associated
with \V erbs of Putting" (classA). This demonstratesthat the semantic classi�cation
method is fairly accurate. The remaining 334 test verbs which were left unclassi�ed,
as they do not occur in any of the classi�ed synsets,are listed in Appendix B.

6.4.2 Lexicons

We experimented with four di�eren t scf lexicons. The data for these lexicons were
obtained from 20 million words of bnc . Sentencescontaining an occurrenceof one of
the 474 test verbs were �rst extracted, on averageof 1000citations of each, and then
processedusing the scf acquisition system's hypothesis generator. The parser em-
ployed in theseexperiments was a pcp (Chitrao and Grishman, 1990). Four di�eren t
lexicons were constructed from the resulting scf data using four di�eren t methods
for hypothesisselection11:

1. lex-a : Briscoe and Carroll's (1997) version of bht

2. lex-b : mle thresholding

3. lex-c : add-onesmoothing and thresholding on smoothed estimates

4. lex-d : linear interpolation with semantic back-o� estimates for the 140 seman-
tically classi�ed verbs, and add-one smoothing for the 334 unclassi�ed verbs,
thresholding on smoothed estimates

When �ltering the scf data for lex-d , any test verb which was usedfor constructing
the back-o� estimates was smoothed with a version of back-o� estimates where this
verb was excluded.

6.4.3 Evaluation of Acquired Lexicons

The acquired scf lexicons were evaluated against a manual analysis of corpus data.
The latter was obtained by analysing an average of 300 occurrencesfor each test

11These methods were introduced in earlier chapters. See section 2.5.3 for details of bht and
section 3.4.1 for those of mle thresholding. Add-one smoothing and linear interpolation methods
were described in section 5.3.
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System results Unseen
Lexicon kl rc Rank A. (%) Precision (%) Recall (%) F scfs
lex-a 0.55 0.67 72.4 55.3 49.4 52.2 75
lex-b 0.55 0.67 63.8 84.5 47.2 60.6 75
lex-c 0.56 0.72 65.2 86.9 51.8 64.9 0
lex-d 0.29 0.88 78.3 87.1 71.2 78.4 4

Table 6.12: Averageresults for 45 semantically classi�ed test verbs

System results Unseen
Lexicon kl rc Rank A. (%) Precision (%) Recall (%) F scfs
lex-a 0.21 0.77 88.8 50.1 55.9 52.8 44
lex-b 0.21 0.77 82.7 75.1 56.3 64.4 44
lex-c 0.31 0.71 82.9 78.2 58.7 67.1 0

Table 6.13: Averageresults for 30 unclassi�ed test verbs

verb in bnc or lob , susanne and sec corpora. This evaluation was restricted to
those test verbs for which the gold standard was readily available: 45 semantically
classi�ed and 30 unclassi�ed verbs. These verbs are indicated in table 6.11 and in
Appendix B in bold font. For these75 verbs we calculated system results using type
precision, type recall, ranking accuracyand F measure.We alsocalculated kl and r c
between acquired un�ltered scf distributions and gold standard distributions. The
total number of scf s unseenin the acquired scf distributions which occurred in the
gold standard distributions was also recorded. We did this to investigate how well
the approach tackles the sparsedata problem, i.e. the extent to which it is capable
of detecting scf s altogether missing in the data output by the hypothesisgenerator.

Table 6.12 gives averageresults for the 45 semantically classi�ed test verbs in each
lexicon. Thosefor the 30 unclassi�ed test verbs in lex-a , lex-b and lex-c are shown
in table 6.13. In both tables the system results obtained with lex-a (lexicon built
using bht ) are clearly worsethan those obtained with other lexicons. This shows on
all measuresexcept ranking accuracy. The ranking of scf s is in fact identical in lex-
a and lex-b - as indicated by r c - since for both lexicons, it is calculated using the
mle s straight from the scf acquisition system'sclassi�er. Ranking accuracyappears
worsewith lexicon lex-b , however, becauseit only considerscorrect scf s above the
�ltering threshold. With lex-b there is a higher number of correct scf s to consider
and thus ranking accuracyshows worseresults.

In both tables the systemresults obtained with lex-c are better than thoseobtained
with lexicon lex-b . kl and r c results do not improve (except r c with semantically
classi�ed test verbs). This is for reasonsdiscussedin chapter 5; add-one smoothing
assignsidentical probabilities/ranks to newly detected scf s. Where it doesso incor-
rectly, this showsonly on kl and r c measures,which considerentire scf distributions.

lex-d is evaluated with the semantically classi�ed test verbs only. The results in-
cluded in table 6.12 show that the lexicon is clearly more accurate than the others
examined. The improvement obtained with linear interpolation over the baselinemle
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Sem. Verbs KL RC F Measure Unseen
Class Tested scfs

lex-b lex-d lex-b lex-d lex-b lex-d lex-b lex-d

A 3 0.59 0.32 0.59 0.75 65.2 71.4 4 0
B 2 0.14 0.10 1.19 0.96 72.0 87.3 3 0
D 5 0.72 0.41 1.12 0.85 53.6 77.3 10 1
E 6 0.28 0.24 0.85 1.00 68.1 78.7 7 0
F 2 0.71 0.34 0.65 0.95 53.0 72.3 4 0
G 3 0.51 0.19 0.46 0.93 56.3 83.0 8 0
H 1 0.75 0.41 0.64 0.77 63.2 93.0 1 0
I 1 0.17 0.15 0.85 0.63 61.5 76.9 0 0
J 2 0.37 0.14 0.71 0.92 48.7 68.1 7 0
K 3 0.63 0.38 0.59 0.84 66.5 68.2 4 0
L 1 0.39 0.25 0.75 1.00 78.8 80.0 0 0
M 1 0.07 0.02 0.28 0.53 66.0 62.0 1 0
N 1 0.90 0.27 0.28 0.53 78.0 79.9 0 0
O 1 0.23 0.12 0.82 0.88 72.7 72.7 0 0
P 2 0.38 0.35 0.86 0.91 53.7 68.2 6 3
R 1 0.13 0.06 0.39 0.87 85.7 85.7 0 0
S 4 0.89 0.17 0.44 0.97 57.5 86.5 3 0
T 6 0.86 0.51 0.60 0.78 43.5 78.8 17 0

Table 6.14: Results for semantic classes

(lex-b ) is bigger than that reported in chapter 5. F measureimproveshere by 17.8,
while in earlier experiments it improved by 7. The improvements obtained with r c
and especially with kl are, moreover, clearly bigger with theseexperiments. Baseline
results are lower than those in chapter 5, which leaves more room for improvement.
They are worse probably becausethey use lessdata. In the earlier experiments, we
used an averageof 3000 citations of each test verb in corpus data, while here only
1000 were used. On the other hand, here we employed a re�ned method for con-
structing the semantic classesand back-o� estimatesand thus expect to seea bigger
improvement in results.

From the total of 75 gold standard scf s unseenin lex-b only 4 are unseenin lex-
d. This indicates that the back-o� estimates deal e�ectiv ely with sparsedata. Verb
classspeci�c results obtained with (i) the baselinemle and (ii) linear interpolation
methods allow us to examinethe accuracyof the back-o� estimates. Theseresults are
given in table 6.14. The table shows kl , r c and F measureresults and the number of
correct scf s missing for (i) lex-b and (ii) lex-d . The �rst column shows a semantic
verb classand the secondindicates the number of verbs tested for the class. From a
total of 20 classes,test verbs were found in 18. There are between one and six test
verbs in each class. Thus the verb classspeci�c results are not directly comparable,
but serve to give us a general idea of the estimate's accuracy for each class.

kl , r c and F measureall agreethat in 14 of the 18 verb classes,lex-d outperforms
lex-b . kl shows improvement in all the 18 classes.r c indicates that when back-o�
estimates are used, the ranking of scf s is better in all but one verb class. Class I
(Levin verbs of \Con tact") shows worse ranking with lex-d than with lex-b . This
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class is tested using one verb only: touch. This verb was used when constructing
back-o� estimates for the class. While testing, it was excluded, however, and the
back-o� estimateswere constructed using two verbs only: stroke and kiss. Although
theseverbs take similar scf options to touch, they rank them di�eren tly from touch.

With the F measure, lex-d outperforms lex-b in 15 classes. In one class, lex-b
outperforms lex-d . This is classm, which includes Levin verbs of \Separating and
Disassembling" (subclasses23.1 - 23.3). Results are obtained using one test verb
only: distinguish. Again, this verb wasusedin constructing the default set of back-o�
estimates for the verb class, but excluded when acquiring subcategorization for the
verb itself. The back-o� estimates employed here were thus constructed using only
verbs tear and detach, which both take signi�cantly fewer scf s than distinguish. With
two verb classes,the two lexicons show identical results. These are classeso and r ,
each tested with oneverb only. No improvement wasachieved becausethe empirically
set (verb classspeci�c) �ltering thresholdsappearedtoo high for thesetwo individual
verbs, resulting in too many false negatives.

All but two sets of back-o� estimates tackled the sparsedata problem e�cien tly . In
lex-d , there are gold standard scf s missing only with verb classesd and p. The
three scf s unseenfor class p (i.e. Levin verbs of \Social Interaction") occur with
agree. The one scf unseenfor classd (i.e. Levin verbs of \Sending and Carrying"
and \Exerting Force") occurswith bring. Thesetwo verbsare fairly polysemicand, in
fact, the scf s unseeninvolve sensesnot taken by the verbsusedfor back-o� estimates.

6.4.4 Task-based Evaluation

The acquired scf lexicons were also assessedusing task-basedevaluation in the con-
text of parsing12. The idea was to examine the extent to which acquired scf infor-
mation improves accuracy of statistical parsing. This was done using the method
proposedby Carroll, Minnen and Briscoe (1998). In the following, we shall �rst de-
scribe incorporation of the acquiredscf information into parsing and then give details
of the evaluation.

Incorporating Acquired SCF Information into Parsing

The baselinenon-lexicalisedparsing system comprises13:

� an hmm pos tagger (Elworthy, 1994).

� an enhancedversion of the gate project lemmatizer (Minnen et al., 2001).

� a wide-coverage uni�cation-based phrasal grammar of English pos tags and
punctuation.

12We are indebted to John Carroll for producing the parses and providing us with the gr data for
evaluation.

13The tagger and grammar employed here are the same as used by Briscoe and Carroll’s scf

acquisition system; see section 2.5.3.
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AP NP PP PP PP WHPP VPINF
NONE NP SCOMP PP WHS VPING
NP NP WHPP PP WHVP VPING PP
NP AP PP SCOMP VPPRT
NP NP PP AP SINF WHPP
NP NP SCOMP PP PP SING
NP PP PP SCOMP SING PP
NP PPOF PP VPINF VPBSE

Table 6.15: vsubca t values in the grammar

� a generalizedlr parserusing Inui et al.'s (1997) variant of Briscoe and Carroll's
(1993) statistical model, which usesthe grammar, takesthe results of the tagger
as input and performs disambiguation.

� training and test treebanks (of 4600 and 500 sentences respectively) derived
semi-automatically from the susanne corpus.

The 500-sentence test corpus consists only of in-coverage sentences and contains a
mix of written genres: newsreportage (general and sports), belles lettres, biography,
memoirs and scienti�c writing. The mean sentence length is 19.3 words (including
punctuation tokensbut excluding sentence-�nal full stop). It contains a total of 485
distinct verb lemmas and includes all verb types employed here as test verbs (see
section 6.4.1).

In the experiment we took the four lexicons(from lex-a to lex-d ) and assignedany
scf typesmissing(from the 163possible)from theselexiconsa probabilit y using add-
onesmoothing. After this, the scf probabilities in each acquiredlexicon werefactored
into the parsing processduring parse ranking at the end of the process. Complete
derivations were ranked basedon the product of (i) the (purely structural) derivation
probabilit y according to the probabilistic parsemodel and (ii) for each verb instance
in the derivation, the probabilit y of the verbal lexical entry that would be usedin the
particular analysis context. The entry was located via the vsubca t value assigned
to the verb in the analysis by the immediately dominating verbal phrase structure
rule in the grammar. This was possibleas the vsubca t valuesare alsopresent in the
lexical entries acquired automatically using the samegrammar. Table 6.15 lists the
di�eren t vsubca t values. Somevsubca t valuescorrespond to several of the 163scf s
distinguished by the acquisition system. In thesecasesthe sum of the probabilities of
the corresponding lexical entries was used.

In taking the product of the derivation and scf probabilities, someof the properties
of a statistical languagemodel are lost. The product is no longer strictly a probabilit y,
although it is not used here as such: it is used merely to rank competing analyses.
Carroll, Minnen and Briscoe (1998) note that better integration of these two sets of
probabilities is an area which requires further investigation.
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Figure 6.1: The grammatical relation hierarchy

Evaluation

Method The baselineand lexicalised parserswere evaluated against 500 test sen-
tencesmarked up in accordancewith a grammatical relation-based (gr ) annotation
scheme,described in detail by Carroll, Briscoe and San�lipp o (1998) and Briscoe and
Carroll (2000). This evaluation was chosenbecauseit was found by Carroll, Minnen
and Briscoe (1998) more sensitive to the argument/adjunct and attachment distinc-
tions than the standard parsev al bracketing evaluation they employed (Carroll et
al., 1997).

In general, grammatical relations (gr s) are viewed as specifying the syntactic de-
pendencywhich holds between a head and a dependent. The gr s form a hierarchy,
shown in �gure 6.1. The most generic relation between a head and a dependent is
dependent. Where the relationship betweenthe two is known more precisely, relations
further down the hierarchy are used. Dependent relations divide into conj (unction),
aux (iliary), arg (ument), mod (i�er) and arg mod relations. The latter relations re-
fer to a semantic argument which is syntactically realised as a modi�er (such as
the passive by-phrase). Mod (i�er) relations divide further into determiner (detmod),
non-clausal (ncmod), and clausal modi�er relations controlled from within (cmod)
or without (xmod). Arg (ument) relations divide initially into comp (lement), sub-
ject/ob ject (subj or obj) and subj (ect) relations. Subj (ect) gr s divide further into
clausal (xsubj/csubj ) and non-clausal (ncsubj ) relations. Comp (lement) gr s divide
into clausal (ccomp controlled within and xcomp controlled without) and non-clausal
obj (ect) relations. Below the latter, we still �nd the following relations: direct ob-
ject (dobj ), second(non-clausal) complement in ditransitiv e constructions (obj2 ), and
indirect object complement intro duced by a preposition (iobj ).

In general the parser returns the most speci�c (leaf) relations in the gr hierarchy,
except when it is unable to determine whether clausal subjects or objects are con-
trolled from within or without (i.e. csubj vs. xsubj, and ccomp vs. xcomp respectively),
in which caseit returns subj or clausal as appropriate. Each relation is parameterised
with a head (lemma) and a dependent (lemma), and optionally also with a type
and/or speci�cation of grammatical function. For example, the sentence (32a) would
be marked up as in (32b).
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(32) a Paul intends to leave IBM.

b ncsubj (intend,Paul, )
xcomp (to,intend,leave)
ncsubj (leave,Paul, )
dobj (leave,IBM, )

When computing matchesbetweenthe gr s produced by the parser and those in the
corpusannotation, a single level of subsumption is allowed: a relation from the parser
may be one level higher in the gr hierarchy than the correct relation. For example,
if the parser returns clausal, this is taken to match both the more speci�c xcomp and
ccomp. Also, an unspeci�ed �ller ( ) for the type slot in the iobj and clausal relations
successfullymatches any speci�ed �ller. The head slot �llers are in all casesbase
forms of single head words: so for example, `multi-component' heads, such as the
namesof people,placesor organisationsare reducedto one word.

(33) shows an examplesentence from the test corpus:

(33) They found deep pessimism in them.

The gr s returned for this sentence by the baselineand lexicalised parsersare (34a)
and (34b), respectively.

(34) a ncsubj (find, they, )
dobj (find, pessimism, )
ncmod ( , pessimism, deep)
iobj (in, find, they)

b ncsubj (find, they, )
dobj (find, pessimism, )
ncmod ( , pessimism, deep)
ncmod (in, find, they)

The latter is correct, but the former, incorrectly taking the pp to be an argument of
find, gets penalised,receiving only 75% precision and recall.

Results Table 6.16 gives the result of evaluating the baseline and the lexicalised
versionsof the parser on the gr s annotation. It shows the results for the four lexi-
calised versions,obtained using the four sets of scf probabilities from the di�eren t
lexicons. The measurescompare the set of gr s in the annotated test corpus with
thosereturned by the parser, in terms of recall (the percentage of gr s correctly found
by the parser out of all those in the treebank), precision (the percentage of gr s re-
turned by the parser that are actually correct) and F measure. On these measures,
the lexicalised versionsshow only slight improvement over the baselineparser. The
results are mainly in accordancewith those obtained with lexicon evaluation: the
results with lex-a are the worst while those with lex-d are the best. However, the
improvement obtained with lex-d over the baselineis only 0.73 with F measure.

The results in table 6.16 are for all gr s. Results for argument gr s were closely
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Method Precision (%) Recall (%) F

Baseline parser 75.59 76.48 76.03
Lexicalised, lex-a 76.06 77.14 76.59
Lexicalised, lex-b 76.20 77.24 76.72
Lexicalised, lex-c 76.18 77.26 76.71
Lexicalised, lex-d 76.20 77.32 76.76

Table 6.16: gr evaluation for all gr s, beforeand after incorporation of scf informa-
tion

Method Precision (%) Recall (%) F

Baseline parser 63.28 79.90 70.62
Lexicalised, lex-a 70.48 74.75 72.55
Lexicalised, lex-b 70.99 75.15 73.01
Lexicalised, lex-c 70.94 74.95 72.89
Lexicalised, lex-d 71.10 75.05 73.02

Table 6.17: gr evaluation for comp (lement) gr s only, beforeand after incorporation
of scf information

Method Precision (%) Recall (%) F

Baseline parser 62.4 82.2 71.0
Lexicalised, lex-d 71.7 76.4 73.9

Table 6.18: gr evaluation for comp(lement) gr s, before and after incorporation of
scf information from lex-d . Only test sentencescontaining semantically classi�ed
test verbs are considered.
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gr Type Baseline With Subcat Correct
Parser (lex-d)

mod 472 525 21
ncmod 1995 2148 2434
xmod 24 46 129
cmod 139 140 208
detmod 1113 1114 1125
arg mod 14 15 41
subj 24 22 1
ncsubj 1039 1039 1039
xsubj 0 0 5
csubj 5 6 3
obj 2 4 0
dobj 393 393 409
obj2 55 38 19
iobj 300 181 158
clausal 189 124 0
xcomp 260 262 323
ccomp 51 43 81
aux 376 370 379
conj 165 165 164

Total: 6616 6635 6539

Table 6.19: Numbers of each type of gr

similar. The lexicalisedversionsshowedclearerimprovements over the baselineparser,
however, with complement gr s. This is illustrated in table 6.17, which shows results
for complement gr s. The best results are obtained with lex-d (only slightly better
than with lex-b ), which improves2.4 with F measure.Precision improvesand recall
worsenswith each lexicalised version, as compared with the baseline results. With
lex-d , the 7.8%increasein precisionis statistically signi�cant even at the 99.9%level
(paired t-test, T=6.17, 499 df ). The 4.9% drop in recall is statistically signi�cant at
the 99% level (paired t-test, T=-3, 499 df ).

Table 6.18 shows complement gr results for the baselineparser and the version lex-
icalised with lex-d , for those 129 sentences which contain semantically classi�ed
verbs14. F measurefor lex-d now shows a 2.9 improvement over the baseline. Re-
call drops by 5.8% compared with the baseline, while precision increasesby 9.3%.
The increasein precision is again signi�cant at the 99.9%level (paired t-test, T=3.73,
128 df ). However, the drop in recall is no longer statistically signi�cant at the 99%
level, but only at the 95% level (paired t-test, T=-2.15, 128 df ).

Table 6.19 gives the number of each type of gr returned by the baselineparser and
when lexicalised with lex-d , comparedwith the correct numbers in the test corpus.
The baselineparser performs better than the lexicalised, when judged by the total
number of gr returned, asopposedto the correct number in the test corpus. However,

14Recall that when constructing lex-d, linear interpolation and semantically motivated back-off
estimates were used for these verbs, while add-one smoothing was used for all other verbs.
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the lexicalised parser is clearly better than the baseline when the total number of
argument relations is considered(2318 are returned by the baselineparser, 2112 by
the lexicalisedparser, and 2038occur in the test corpus), with complement relations
contributing nearly all of this improvement.

Overall, the above results demonstrate that the scf probabilities can yield statisti-
cally signi�cant improvements in parse accuracy. These are, however, insubstantial
and mainly concerncomplement relations. Carroll, Minnen and Briscoe (1998) used
the sameevaluation method and test sentencesto examine whether lexicalising the
parserwith scf frequenciesacquiredusing Briscoe and Carroll's system(with bht for
hypothesisselection)would improveparseaccuracy. They reported 9.0%improvement
in precisionand 0.5%decreasein recall with argument relations. The improvement in
precision was statistically signi�cant, while the decreasein recall was not. In our ex-
periment, bht (lex-a ) did not yield statistically signi�cant improvements even with
complement relations. This is presumably becausewe employed a re�ned version of
the parser and a more complete gr annotation scheme.

With this task-basedevaluation the di�erences in results between lexicons are not
as great as we would expect on the basis of the lexicon evaluation reported in the
previoussection. One reasonfor this could lie in the evaluation method: the approach
of combining the probabilities of several scf s to obtain a probabilit y for a single
vsubca t value. Essentially , this approach involves \reducing" the 163 scf s into 29
vsubca t values. Not only are many scf distinctions lost in doing this, but the
approach can alsoalter the ranking of scf s for verbs. For example, it is possiblethat
the resulting highest ranked vsubca t value for a verb may not correspond to the
vsubca t value of the highest ranked scf for this verb. For keep in our gold standard,
for example,the value np will becomethe highest ranked, although np-pp is the value
of the highest ranked scf .

To investigate this e�ect, we consideredthe 129 test sentenceswhich contain seman-
tically classi�ed verbs and for each test verb manually examinedhow much it a�ects
the parse ranking if, instead of the probabilit y of vsubca t value, we consider the
probabilit y of the vsubca t value of the scf in question. Contrary to what we had
expected, this had virtually no e�ect on results. While examining the test sentences
manually we noticed, however, that many scf s seemed\t ypical" for the verbs they
occurred with. When we consideredthe 45 test verbsfor which we had manually anal-
ysed (gold standard) corpus data, we noticed that, from the total of 77 occurrences
of these verbs in the 129 test sentences,40% were with the scf ranked the highest
in the gold standard and 37% were with the scf ranked the secondor third highest.
For instance, hit occurred twice in our test data, and both times with scf np which,
according to our gold standard, is its highest ranked frame. Thus according to the
gold standard, in 77% of casesa high frequency scf was evaluated for a verb.

As we did not have a gold standard for all the 474 test verbs employed, we could
not extend this investigation to the entire test data. On the basis of this smaller
investigation it seems,however, that the 500 sentence test data employed are not
adequatefor comparing the scf frequenciesbetweenthe lexiconsexamined. There is
very little di�erence in accuracybetweenthe various lexiconswith the highest ranked
scf s. Back in section 3.4.2 we showed, for example, that despite its poor overall per-
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formance,bht nearly always acquiresthe three most frequent scf s of verbscorrectly.
The mle , add-onesmoothing and linear interpolation methods likewiseperform well
with high frequencyscf s. Thus properly to comparethe di�eren t lexiconsusing this
evaluation method, we would needtest sentenceswhich exemplify a higher number of
medium and low frequency scf s for the verbs tested.

6.5 Discussion

Direct evaluation of acquired lexiconsshowed that the approach to semantically mo-
tivated scf acquisition can yield signi�cant improvements when applied to large-scale
lexical acquisition. At best, it achieved 78.4 F measurewith 45 test verbs. On the
sameset of verbs, Briscoe and Carroll's original bht method achieved 52.2 F mea-
sure, and the baselinemle method 60.6 F measure. Our result comparesfavourably
also with results obtained with the other equally ambitious scf acquisition systems
discussedin chapter 2.

Task-basedevaluation showed that the scf probabilities acquired using our method
can improve the parse accuracy of a statistical parser. The improvements obtained
were not considerable;however, they were statistically signi�cant when the evalua-
tion was restricted to complement gr s and to sentences which contained verbs for
which subcategorization probabilities wereacquired using the semantically motivated
method for hypothesisselection.

The semantically motivated method could be extendedand improved in several ways.
Extensionsare required beforethe approach can be usedto bene�t the entire lexicon.
Firstly , a comprehensive set of semantic classesand back-o� estimatesis needed.This
requiresre�nement and extensionof Levin classi�cation. As discussedin section6.3.1,
we can approach the task by building on previous work, e.g. on re�ned Levin classes
by Dang et al. (1998), the new semantic classesproposed by Dorr (1997) and the
new diathesis alternations by Korhonen (see Appendix C). Secondly, the semantic
classi�cation of WordNet synsetsneedsto be completed. We covered most synsetsin
three large WordNet verb �les; however, further work is required on the 148 synsets
left unclassi�ed in these �les, and on the synsetsin the remaining 12 WordNet verb
�les.

Re�nements are required in the current approach to back-o� estimates. For some
verb classes,back-o� estimates were constructed using fewer verbs than the ideal 4-
5, becausenot enough Levin verbs were found in the annotated index that would
occur frequently enoughin the corpusdata. In the lexicon evaluation, theseestimates
proved insu�cien t for sometest verbs. We could addressthis problem by using also
non-Levin verbs for back-o� estimates. For example, the verbs correctly assignedto
semantic classesby our classi�cation method could be consideredas candidates.

In lexicon evaluation, the semantic classesemployed proved fairly distinctiv e in terms
of subcategorization. Accuracy could further be improved by narrowing down the
current classesinto more speci�c (sub)classes,where possible. This would, of course,
increasethe manual e�ort involved in the approach, aseach novel classrequiresmanu-
ally constructed back-o� estimates. We could investigate the possibility of construct-
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ing back-o� estimatesautomatically or semi-automatically. One idea would be to use
the scf acquisition system to hypothesisethe scf distributions neededfor back-o�
estimates. If this were not to yield accurate enough estimates, one could manually
verify the automatically acquired distributions and remove any incorrect scf assign-
ments. Further research is neededto determine how well this approach would work
in practise.

Narrowing down the semantic classeswould be especially helpful if, instead of poly-
semicscf distributions, we wereconcernedwith verb sensespeci�c scf distributions.
In future, the system's hypothesis generator could be modi�ed to hypothesisesuch
distributions, using wsd techniqueson the predicate forms. This would reducenoise
in hypothesisselectionand in the subcategorizationacquisition processin general. For
this, the verb classi�cation algorithm would also require modi�cation. It currently
assignsverbs to semantic classesaccording to their �rst senseonly.

Currently , we deal with the problem of polysemy by assigningpredicatesto semantic
classescorresponding to their predominant sense. An easy way of improving this
approach would be to assignpredicates to classescorresponding to all their senses.
We could thus obtain back-o� estimates for a polysemic predicate by merging the
back-o� estimates of all its semantic classes. The contribution of each set of back-
o� estimatescould be weighted according to the frequency of the respective sensein
WordNet. This would allow detection of those scf s related to less frequent senses,
while still giving most weight to the back-o� estimates of the predominant sense.
Although it is clear that modifying the system'shypothesisgenerator to hypothesise
verb sensespeci�c scf distributions (as discussedabove) is a better long term solution
to the problem of polysemy, this approach would o�er a quick way of improving the
extant approach.

Lexicon evaluation showed that the semantically motivated method yields signi�cant
improvements in hypothesisselection. It is especially e�cien t in addressingthe prob-
lem of low frequency data discussedin chapter 3. With evaluation on 45 test verbs,
the method achieved 87.1% precision, while the baselinemle method also achieved
impressive 84.5%precision. The crucial di�erence between the two methods showed
up in recall. This was 71.2%for the semantically motivated method and only 47.2%
for the mle method. As �ltering in both methods is based on cutting o� the low
frequencydata, the 24%improvement in recall is due to more appropriate handling of
sparsedata. However, the approach could be further improved. Currently , the verb
classspeci�c �ltering threshold is establishedempirically, usingheld-out training data.
Our evaluation revealed that this does not deal optimally with the variations in the
number of scf s taken by individual verbs. Rather, too few/many scf s are accepted
for someverbs. A way to addressthis problem would be to weight the empirically
de�ned threshold by the number of scf options for an individual verb in a dictionary
such as anl t or comlex .
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6.6 Summary

In this chapter, we �rst discussedearlier work on semantically motivated lexical acqui-
sition and then outlined our own approach. Essentially , we adopted the new approach
to hypothesis selection proposed in chapter 5, re�ned it further and modi�ed it for
large-scalescf acquisition. The resulting overall approach involvesautomatically as-
signing verbs to semantic classeson the basis of their most frequent sense. This is
done by choosing the semantic classalready associated with the respective WordNet
synset. Hypothesis selection is conducted by ranking the hypothesisedscf s accord-
ing to their mle s, by smoothing the conditional distribution with back-o� estimates
of the respective verb class, and by setting an empirically de�ned threshold on the
resulting estimates to �lter out unreliable scf s.

We evaluated our semantically motivated approach with unknown test verbs using
two methods: direct evaluation of the acquired lexicons and task-basedevaluation
in the context of parsing. The approach was compared with three other approaches
to hypothesis selection (the bht , mle thresholding and add-one smoothing meth-
ods). Lexicon evaluation showed that our method yields subcategorization informa-
tion signi�cantly more accurate than that obtained by the other methods examined.
Task-basedevaluation showed that the subcategorization probabilities acquired by
our method can improve the performance of a statistical parser. With task-based
evaluation, there were no substantial di�erences betweenthe various methods of hy-
pothesisselection;rather, the semantically motivated approach achieved only slightly
better results than the other methods. We discussedpossiblereasonsfor this.

Finally, we discussedways in which the proposedmethod could be further re�ned.
We also consideredthe modi�cations and extensionsrequired successfullyto apply
the method acrossthe entire lexicon.
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Conclusions

In this concluding chapter, we summarisethe contributions of this thesis (section 7.1)
and outline directions for future research (section 7.2).

7.1 Contributions of this Thesis

The main contribution of this thesis was to improve the accuracy of automatic sub-
categorization acquisition. We did this by improving the critical hypothesisselection
phase of subcategorization acquisition, reported to be the weak link of many scf
acquisition systems. Our work resulted in various experimental �ndings and method-
ological proposalswhich we summariseas follows.

I Hypothesis Testing We addressedthe widely-recognizedproblem that statisti-
cal �ltering - usedby most systemsto removenoisefrom automatically acquiredscf s -
performs badly, especially with low frequencydata. We conductedexperiments where
we comparedthree di�eren t approachesto hypothesisselection. Thesewere(i) a �lter
basedon the binomial hypothesistest, (ii) a �lter basedon the binomial log-likelihood
ratio test, and (iii) a �lter which usesa threshold on mle s of scf s from the hypothe-
sis generator. Surprisingly, the simple mle thresholding �lter worked best. The bht
and llr both producedan astounding number of fp s, particularly at low frequencies.
Our investigation showed that hypothesis testing does not work well in subcatego-
rization acquisition becausenot only is the underlying distribution zip�an but nor is
there signi�cant correlation betweenconditional and unconditional scf distributions.
The lack of correlation betweenthe two distributions also a�ects re�nements of mle
thresholding such as smoothing or Bayesianestimation. Thus more accurate back-o�
estimates are neededfor scf acquisition than those assumedso far, especially if we
are to deal e�ectiv ely with low frequencydata.

II Back-off Estimates Assuming that unconditional scf distribution providesac-
curate back-o� estimatesfor all verbs is equivalent to assumingthat all verbs behave
uniformly with respect to subcategorization. We pointed out that this assumption

147
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is in contradiction with simple observations about verb behaviour, as well as with
linguistic research, which has shown that it is possibleto associate verbs with seman-
tically and syntactically motivated classesthat capture subcategorization behaviour
characteristic of their members.

We examinedexperimentally to what extent we could exploit linguistic verb classi�ca-
tions in automatic subcategorization acquisition. We did this by experimenting with
a set of scf distributions speci�c to verb form (as opposedto verb sense). Employ-
ing the semantic verb classi�cation of Levin (1993) and the syntactic classi�cation
obtained from the anl t dictionary, we examined to what extent verbs classi�ed sim-
ilarly in these resourcescorrelate in terms of scf distributions. The results showed
that the degreeof scf correlation was greater with semantically and syntactically
similar verbs than with all verbs in general,and that the correlation betweenseman-
tically similar verbs was better than that between syntactically similar verbs. The
best scf correlation was observed when verbs were classi�ed semantically according
to their predominant sense. These results suggestthat more accurate back-o� esti-
matescan be obtained for scf acquisition by exploiting generalizationsfrom linguistic
theory. On the basis of our results, we proposedassigningverbs to semantic classes
matching their predominant senseand obtaining back-o� estimates speci�c to these
classes(p(scf jclass)).

III Semantically Motivated Hypothesis Selection We presented a novel ap-
proach to hypothesis selection suitable for large scalescf acquisition which usesse-
mantically motivated back-o� estimates. This approach makes no use of statistical
hypothesis tests. Instead, it builds on mle thresholding.

� Semantic Classes Our semantic classeswere based on Levin's. As it was
important to minimise the cost involved in constructing back-o� estimates, we
did not adopt all Levin classesas they stand, although this would have al-
lowed maximal accuracy. Rather, a method was devised for determining the
speci�cit y of the Levin class(es)required for reasonabledistinctiv enessin terms
of subcategorization. This method involves examining the similarit y between
Dorr's (1997) ldoce codes for Levin classesand the scf similarit y between
verbs in theseclasses.While Levin proposedaltogether 48 broad (191 speci�c)
classesfor verbs taking np and pp complements, we estimated that not more
than 50 classesare required acrossthe entire lexicon. We applied the method
to 22 broad Levin classes,which resulted in 20 semantic classes.

� Verb Classification A technique was devised which automatically assigns
verbs to semantic classesvia WordNet (Miller et al., 1993). Levin's verb index
was annotated for verbs classi�ed according to their predominant sense,and a
semi-automatic algorithm was designedwhich assignsWordNet synsets to se-
mantic classes. This algorithm makes use of the annotated Levin index, the
ldoce dictionary and Dorr's ldoce codes for Levin classes. We applied the
algorithm to the total of 1616synsets. Given the resulting synset-classassoci-
ations, individual verbs are automatically classi�ed according to the semantic
class associated with the synset corresponding to their �rst sense. Our tech-
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nique exploits some ideas from Dorr (1997). However, it di�ers from Dorr's
technique in several ways which contribute to increasedaccuracy, classifying
verbs according to their predominant senseand building a more static lexical
resource.

� Back-off Estimates for Semantic Classes A method wasproposedfor con-
structing back-o� estimatesbasedon semantic verb classes.This involvedchoos-
ing from each class(ideally) 4-5 verbs whosepredominant sensecorresponds to
the class,manually analysing corpus data to obtain scf s distributions for these
verbs, and automatically merging the resulting distributions to obtain back-o�
estimates for the class. Using this method, we constructed back-o� estimates
for 20 semantic classes.

� Filtering The proposedsemantic verb classes,verb classi�cation technique and
back-o� estimates could be used in hypothesis selection in various ways. Our
novel approach involves(i) identifying the semantic classof a predicate, (ii) ac-
quiring a conditional scf distribution for the predicate from corpus data (using
a subcategorization acquisition system's hypothesis generator), (iii) smoothing
the conditional distribution with back-o� estimates of the semantic class of
the predicate using linear interpolation, and (vi) setting an empirically de�ned
threshold on the probabilit y estimates from smoothing to �lter out unreliable
hypotheses.

According to the evaluation reported, this semantically motivated approach to hy-
pothesisselectionprovides an e�ectiv e way of dealing with sparsedata. It yields sub-
categorization information substantially more accuratethan that obtained by baseline
mle thresholding. When we performed experiments where we smoothed the condi-
tional scf distributions of predicateswith the unconditional distribution, this yielded
subcategorization information lessaccurate than that obtained by mle thresholding.
This shows that poor back-o� estimatesare worsethan none(Gale and Church, 1990).
Overall, our result demonstrates that it is bene�cial to guide subcategorization ac-
quisition with a priori semantic knowledge. Such knowledgeallows detection of scf
information that doesnot emergefrom purely syntactic analysis.

The experimental �ndings and various methods proposedin this thesis contribute di-
rectly to the development of subcategorization acquisition and thus to obtaining more
accuratesubcategorization lexicons. The work reported in this thesis is potentially of
interest to many practical nlp applications which usesubcategorization information,
and to linguistic theory. Knowledge about novel verb and verb class associations,
and accurate scf and verb associations can also be usedto test and enrich linguistic
theory (e.g. Levin, 1993).



150 CHAPTER 7. CONCLUSIONS

7.2 Directions for Future Research

7.2.1 Hyp othesis Selection

Further work is required before the novel approach can be applied to bene�t the en-
tire lexicon. Firstly , a comprehensive set of semantic classesand back-o� estimates
is neededwhich covers the entire lexicon. This will require re�ning the Levin clas-
si�cation (e.g. Dang et al., 1998) and extending it to cover novel verb classes(e.g.
Dorr, 1997). Secondly, the semantic classi�cation of WordNet synsetsneedsto be
completed so that verbs acrossthe entire lexicon can automatically be assignedto
semantic classes.

The proposedapproach canalsobe improved in several respects. Many of the semantic
classesemployed could be narrowed down further to obtain clearer subcategorization
distinctions. We opted for fairly general classi�cation due to the high cost involved
in obtaining back-o� estimates. However, it would be worth investigating ways of
reducing this cost. Oneoption would be to obtain the conditional distributions needed
for back-o� estimatesautomatically using the subcategorizationacquisition machinery
with mle thresholding for hypothesisselection. If this doesnot yield accurateenough
estimates- which is likely, given the poor performanceof mle thresholding with low
frequency data - we could examine whether it would help manually to verify the
automatically acquired distributions and remove incorrect scf assignments.

Obviously, one could also reduce the cost involved in obtaining back-o� estimates
by reducing the number of conditional distributions used for these estimates. Our
evaluation showed, however, that when fewer distributions than the ideal 4-5 were
used (due to the lack of suitable Levin verbs), back-o� estimates did not turn out
comprehensive enough. Thus this is not an ideal solution. Rather, it seemssensible
also to consider non-Levin verbs (e.g. verbs from semantically classi�ed synsets)
as candidates to obtain the ideal number of conditional distributions for back-o�
estimates,and considerways of reducing the cost in constructing estimates.

According to our evaluation, when back-o� estimates were accurate, they helped to
deal e�ectiv ely with sparsedata. However, the bene�ts from smoothing did not al-
ways show up in the acquired lexicon becausethe empirically de�ned �ltering thresh-
old (speci�c to verb class) either accepted too many or too few scf s. It is worth
investigating ways of more accurate thresholding. One option would be to weight the
empirically de�ned threshold by the number of scf options for an individual verb in
a dictionary such as anl t or/and comlex .

Currently we deal with the problem of polysemy by assigningpredicatesto semantic
classescorresponding to their predominant sense.A better approach might be to con-
sider all sensesof predicatesand allow for multiple classassignment. For a polysemic
predicate, back-o� estimatescould be obtained by merging the back-o� estimatesof
all its semantic classes.When doing this, we could weight the contribution of each
set of back-o� estimatesaccording to the frequencyof the sensein WordNet. In other
words, the back-o� estimates of the predominant sensewould still have the biggest
e�ect, but the other estimateswould allow detection of those scf s merely related to
lessfrequent senses.
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A more e�ectiv e way to deal with polysemy would be to modify the subcategorization
acquisition system to hypothesisescf distributions speci�c to verb senseby using
wsd techniques on the predicate forms1. This would allow us to assignoccurrences
of predicates to semantic classescorresponding to their appropriate sensesand thus
reducenoise in hypothesisselectionand subcategorization acquisition in general. To
gain full bene�t from this approach, we would need to narrow down semantic verb
classi�cation, obtain back-o� estimates speci�c to �ner-grained classes,investigate
ways of reducing the cost of obtaining back-o� estimates and re�ne the verb clas-
si�cation algorithm so that it is capable of allocating predicate sensesto semantic
classes.

The starting point in this thesis was to investigate why hypothesis tests have been
reported to perform poorly in subcategorization acquisition. While we detected rea-
sonsfor this, we did not further re�ne the �lters basedon hypothesis tests. It would
be interesting to integrate semantically motivated back-o� estimates into hypothesis
tests and investigate to what extent this improvesperformance.

7.2.2 Hyp othesis Generation

The work reported in this thesis has concentrated on improving the hypothesis se-
lection phaseof subcategorization acquisition. There is, however, a limit to how far
we can get by merely re�ning hypothesis selection. To render full subcategorization
recovery possible,improvements are required in hypothesisgeneration as well.

One way of improving hypothesis generation would be to enhanceparse selection
accuracy. In this thesis, we demonstrated that using the scf s acquired by the system
to rerank analysesreturned by the parsercan improve parseraccuracy. Incrementally
integrating this and other lexical information into probabilistic parsing could help.

Current subcategorizationacquisition systemsgeneratehypothesesabout associations
of predicates with scf s. However, there is more to subcategorization than syntactic
frames; the entire range of phenomenawe discussedin chapter 2: linking between
syntactic and semantic levels of predicate-argument structure, semantic selectional
restrictions/preferenceson arguments, control of understood arguments in predicative
complements, diathesis alternations and so forth. The eventual aim is to supplement
a target lexicon with all this information. Knowledge of these further details of
subcategorization will also aid hypothesis generation. The various components of
argument structure are interrelated, so that knowledgeabout one component can aid
the automatic recovery of another.

For example, if a subcategorization acquisition system gathers from corpus data in-
formation about lemmaswhich occur as headsof arguments in scf s given predicates,
this information could be usedasinput to predicate sensedisambiguation. This would
allow hypothesising associations between verb sensesand scf s. The argument head
data could also be usedas input to selectionalpreferenceacquisition (e.g. McCarthy,
2001). Knowledge about selectional preference(s)of predicates on their arguments
would help to disambiguate argument senses(e.g. Kilgarri� and Rosenzweig, 2000).

1Some work already exists on this, see section 7.2.3.
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In addition, as Briscoe and Carroll (1997) and Boguraev and Briscoe (1987) suggest,
the abilit y to recognizethat argument slots of di�eren t scf s for the samepredicate
sharesemantic restrictions/preferenceswould assistrecognition that the predicate un-
dergoesspeci�c diathesisalternations. This in turn would assistinferencese.g. about
control, equi and raising, which again would help to narrow down somescf options.

Similarly, knowledgeabout alternations would help to distinguish e.g. betweenunerga-
tiv e, unaccusative and object-drop verb types(Levin, 1993). Theseverbs take similar
intransitiv e and transitiv e scf s, but assigndi�eren t thematic roles to their subject
and object arguments in the event described:

(35) a Unergative:
The plane flew to Rome $ Bill flew the plane to Rome
NPagent ew $ NPcauser ew NPtheme

b Unaccusative:
Snow melted in the kettle $ They melted snow in the kettle
NPtheme melted $ NPcauser melted NPtheme

c Object-drop:
Mary ate the food $ Mary ate
NPagent ate NPtheme $ NPagent ate

Furthermore, classifying verbs semantically according to their alternation behaviour
would aid prediction of unseenscf behaviour and induction of low frequency frame
associations (as demonstrated with hypothesis selection in this thesis). If frequency
of alternations wereknown, thesepredictions could be madevia statistical estimation
of the semi-productivit y of alternation rules (Briscoe and Copestake, 1999).

7.2.3 Extending the Scope

Work is under way to develop subcategorizationacquisition in the directions discussed
above. To provide an idea of the state of the art, we shall now give a brief overview of
such work undertaken recently around Briscoe and Carroll's system. We contributed
to someof this work while working on the research reported in this thesis.

McCarthy (2001) has developed a systemwhich acquiresselectionalpreferencesfrom
a scf lexicon extracted using Briscoe and Carroll's system. The systemusesthe list of
head lemmasin argument slots in scf s and the WordNet semantic noun hierarchy to
infer a probabilit y distribution on semantic classesoccurring in a given argument po-
sition in a given scf for speci�c predicates. This probabilit y distribution characterizes
the selectionalpreference(s)of the predicate on that argument.

The technique employed for selectional preferenceacquisition is basedon that pro-
posedby Li and Abe (1995). The preferencesfor a slot are represented as a tree cut
model (tcm ). This is a set of classeswhich cuts acrossthe WordNet noun hypernym
hierarchy covering all leaves disjointly . The argument head data is collected from a
slot and used to populate the WordNet hierarchy with frequency information. Each
head lemma is assigneda WordNet classwhere it occurs as a synonym. If a lemma is
ambiguous betweenclasses,then counts are evenly distributed betweentheseclasses.
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Figure 7.1: tcm for build Object slot

The frequency at each class is then propagated up the is-a links of the hierarchy
so that the frequency counts from hyponym classesare added to the count for each
hypernym class. A root node contains the total frequency count for all argument
head lemmas that were found in WordNet. The appropriate level of generalization -
the best tcm - is determined using the Minim um Description Length (mdl ) principle
(Rissanen,1978). The mdl principle �nds the set of classesthat make the best com-
promise between a good �t for the data and providing a succinct model. Figure 7.1
displays, as an example,how part of the tcm for the direct object slot of build might
look2.

McCarthy has used the selectionalpreferencedistributions for wsd on nouns occur-
ring in scf slots with results of around 70%precision(Kilgarri� and Rozenweig, 2000)
and also to identify whether a speci�c predicate participates in a diathesisalternation
(McCarth y and Korhonen, 1998;McCarthy, 2001). Identifying participation in alter-
nations on purely semantic grounds would be di�cult, as the subtle lexical-semantic
components which give rise to alternations are not easily de�ned (e.g. Levin and
Rappaport, 1996)and asalternations are semi-productive in nature (e.g. Briscoe and
Copestake,1999). Looking for near-identical selectionalpreferencedistributions on ar-
gument slotsbetweenputativ ely alternating scf s is an alternativ eoption. McCarthy's
method is suitable for detecting participation in alternations wherea particular argu-
ment type appears in slots which have di�eren t grammatical roles in the alternating
frames. One example is the causative-inchoative alternation, where the object of the
transitiv e variant can also appear as the subject of the intransitiv e variant:

(36) The boy broke the window $ The window broke

McCarthy �rst usessyntactic processingto �nd candidateverbstaking the alternating
scf s. For this, a scf lexicon acquired using Briscoe and Carroll's system is screened
for candidate verbs which occur with the scf s involved in an alternation. The latter
are obtained from a mapping which links the scf s involved in Levin alternations to
thoserecognizedby Briscoeand Carroll's system3. Selectionalpreferencesare then ac-

2The type of tcm exemplified in this figure is an Association tcm. See McCarthy and Korhonen
(1998) and McCarthy (2001) for further details of this and other tcm types employed.

3We contributed to McCarthy’s work by producing this mapping. A brief description of the
mapping is included in Appendix C.
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quired for the slots involved in an alternation using as input data the argument heads
stored in the lexical entries. Verbs which participate in alternations are expected to
show a higher degreeof similarit y between the preferencesat the target slots com-
pared with non-participating verbs. To comparepreferences,probabilit y distributions
acrossWordNet are comparedusing a measureof distributional similarit y. McCarthy
(2001) reported a signi�cant relationship betweensimilarit y of selectionalpreferences
at alternating slots, and participation in the causative and conative alternations. At
best, 72% accuracy(against 50% baseline)was obtained for the causative alternation
using euclideandistance (Lee, 1999) as the measureof distributional similarit y.

Although this is a promising result, applying the method to a wider range of alterna-
tions will largely depend on overcoming the sparsedata problem. Many alternations
involve rare verbs and for many verbs that participate in alternations, one of the
alternating forms is rare. This problem could partly be addressedby improving the
accuracyof subcategorization acquisition, e.g. by using the novel method for hypoth-
esisselectionproposedin this thesis.

Recently McCarthy has worked on disambiguating verb forms into WordNet senses
using the distribution of argument heads in argument slots4. If this work proves
successful,it should be possibleto apply the techniques discussedin this and above
sectionsto predicate sensesdirectly, and thus reducenoise in scf , selectionalprefer-
enceand alternation acquisition.

Most techniques discussedin this section require further development before they
can be integrated into subcategorization acquisition machinery to bene�t large-scale
hypothesis generation. In the meantime, the novel semantically-driv en approach to
hypothesis selection proposedin this thesis allows us to someextent to compensate
for the semantic information currently missing in hypothesisgeneration.

4This work has not yet been published.



Appendix A

SCF Classi�cation

A.1 Introduction

The below list details the 163scf s employed by Briscoe and Carroll's scf acquisition
system. The scf s were constructed by manually merging the scf s of the anl t and
comlex syntax dictionaries and adding around 30 scf s found by examining unclassi-
�able patterns of corpusexamples.Theseconsistedof someextra patterns for phrasal
verbs with complex complementation and exible ordering of the preposition or par-
ticle, somefor non-passivizablepatterns with a surface direct object, and somefor
rarer combinations of governed preposition and complementizer combinations. The
resulting scf s abstract over speci�c lexically-governed particles and prepositions and
speci�c predicate selectional preferencesbut include some derived semi-predictable
bounded dependencyconstructions, such as particle and dative movement.

(37) shows a legend for a scf entry in the classi�cation. The �rst line shows the
comlex scf name(for the �rst 116scf s which appear in comlex ). It also indicates
the frequencyof the scf in anl t . Where this is 0, the scf doesnot appear in anl t .
Casesmarked as `??' are unsure. The secondline gives the frame speci�cation using
anl t notation (for the last 47 scf s - which do not appear in comlex but only in
anl t and/or corpusdata - this speci�cation is given in the �rst line of the entry) and,
for somescf s, the mapping to an xt ag tree family. The following line shows a tagged
examplesentencefrom corpusdata where the scf occurs. The �nal line givesthe scf
speci�cation according to the grammar employed by Briscoe and Carroll's system.
It indicates the tag sequencegrammar (TSG10vs) feature values and headwords in
parse trees. For full details of the classi�cation and the mapping betweenanl t and
comlex , seeBriscoe (2000).

(37) SCFclass number. COMLEXclass name/ Frequency of the class in ANLT
(ANLT SUBCAT/SUBTYPEPFORM/PRTfeature value pairs) / XTAG:Tree-family
Example sentence with CLAWS-II/Susanne TAGS
TSG10vsPSUBCAT/VSUBCAT,PRT, PFORMand headwords/HEADWORDS| *_TAGS

155
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A.2 Classification

1. ADJP/ 93
(SUBCATSC_AP,SUBTYPEEQUI) / XTAG: Tnx0Va1

his_AT reputation_NN1 sank_VVDlow_JJ
(VSUBCATAP)

2. ADJP-PRED-RS/ 15
(SUBCATSC_AP,SUBTYPERAIS) / XTAG:Tnx0Ax1

he_NP1appears_VVZ crazy_JJ / distressed_VVN
(VSUBCATAP) / (VSUBCATVPPRT)

3. ADVP/ 64
(SUBCATADVP)

he_NP1meant_VVDwell_RP
(VSUBCATNONE,PRT+) well

4. ADVP-PRED-RS/ 0 (in vppp)
(SUBCATADVP, SUBTYPERAIS)

He_NP1seems_VVZwell_RP
(VSUBCATNONE,PRT+) well

5. AS-NP/ 0 (in vppp with PRT1 = end)
(SUBCATSC_NP,SUBTYPEEQUI, PREPas)

I_NP1 worked_VVZas_CSAan_AT1 apprentice_NN1 cook_NN1
(VSUBCATPP) as

6. EXTRAP-NP-S/ 58
(SUBCATNP_SFIN, SUBTYPEEXTRAP,AGRN2[NFORMIT])

it_PPH1 annoys_VVZthem_PPHO2that_CST she_PPHS1left_VVD
it (VSUBCATNP_SCOMP)* *_VVZ/D/G

7. S-SUBJ-NP-OBJ/ 58
(SUBCATNP_SFIN, SUBTYPEEXTRAP,AGRS[FIN +]) / XTAG:Ts0Vnx1

that_CST she_PPHS1left_VVD annoys_VVZthem_PPHO2
*_VVD/Z/G (VSUBCATNP)

8. TO-INF-SUBJ-NP-OBJ/ 56
(SUBCATOC_INF, SUBTYPEEQU_EXTRAP,AGRVP[FIN -])

to_TO read_VV0 pleases_VVZ them_PPHO2
*_VV0 (VSUBCATNP)

9. EXTRAP-TO-INF/ 4
(SUBCATVPINF, SUBTYPEEXTRAP,AGRN2[NFORMIT])

it_PPH1 remains_VVZ to_TO find_VV0 a_AT1 cure_NN1
IT (VSUBCATVPINF)

10. EXTRAP-FOR-TO-INF/ 0 (not in vppp)
(SUBCATSINF, SUBTYPEEXTRAP,AGRN2[NFORMIT])

it_PPH1 remains_VVZ for_IF us_PPHO2to_TO find_VV0 a_AT1 cure_NN1
IT (VSUBCATPP_VPINF)for (PSUBCATNP)

11. EXTRAP-NP-TO-INF/ 56
(SUBCATOC_INF, SUBTYPEEQU_EXTRAP,AGRN2[NFORMIT])

it_PPH1 pleases_VVZ them_PPHO2to_TO find_VV0 a_AT1 cure_NN1
IT (VSUBCATSINF)
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12. EXTRAP-TO-NP-S/ 5 (4 without EXTRAP)
(SUBCATPP_SFIN, SUBTYPEEXTRAP,PFORMto, AGRN2[NFORMIT])

it_PPH1 matters_VVZ to_II them_PPHO2that_CST she_PPHS1left_VVD
IT (VSUBCATPP_SCOMP)to (PSUBCATNP) *_VVZ/D/G

13. EXTRAP-TO-NP-TO-INF/ 1
(SUBCATPP_VPINF,SUBTYPEEXTRAP,PFORMto)

it_PPH1 occurred_VVD to_II them_PPHO2to_TO watch_VV0
IT (VSUBCATPP_VPINF)to (PSUBCATNP)

14. S-SUBJ-TO-NP-OBJ/ 5
(SUBCATPP_SFIN, SUBTYPEEXTRAP,AGRS[FIN +])

that_CST she_PPHS1left_VVD matters_VVZ to_II them_PPHO2
*_VVD/G/Z (VSUBCATPP) to (PSUBCATNP)

15. FOR-TO-INF/ 17
(SUBCATSINF)

I_PPHS1prefer_VV0 for_IF her_PPHO1to_TO do_VV0it_PPH1
(VSUBCATPP_VPINF)FOR(PSUBCATNP)

16. HOW-S/ 155 (combined with other wh comps)
(SUBCATWHS)

he_PPHS1asked_VVDhow_RGQshe_PPHS1did_VDD it_PPH1
(VSUBCATPP) HOW/WHY/WHERE/WHEN(PSUBCATSFIN)

17. HOW-TO-INF/ 100 (combined with other wh comps)
(SUBCATWHVP)

he_PPHS1explained_VVD how_RGQto_TO do_VV0it_PPH1
(VSUBCATPP) HOW/WHERE/WHEN(PSUBCATVPINF)

18. INF-AC / ??
ANLTgap (SUBCATVC_BSE)

he_PPHS1helped_VVD bake_VV0the_AT cake_NN1
(VSUBCATVPBSE)

19. ING-NP-OMIT/ 242
(SUBCATSC_ING, SUBTYPEEQUI)

his_AT hair_NN1 needs_VVZcombing_VVG
(VSUBCATVPING)

20. ING-SC/BE-ING-SC/ 21
(SUBCATSC_ING, SUBTYPERAIS)

she_PPHS1stopped_VVDsmoking_VVG
(VSUBCATVPING)

21. ING-AC / ??
ANLTgap (SUBCATVC_ING)

she_PPHS1discussed_VVD writing_VVG novels_NN2
(VSUBCATVPING)

22. INTRANS/ 2985
(SUBCATNULL)

he_PPHS1went_VVD
(VSUBCATNONE)

23. INTRANS-RECIP(SUBJ-PL/COORD)/ ??
(SUBCATNULL)

They_PPHS2met_VVD



158 APPENDIX A. SCF CLASSIFICATION

*_PP/NN*2 (VSUBCATNONE)
John_NP1and_CCher_AT brother_NN1 met_VVD

*_CC (VSUBCATNONE)***

24. NP / 5281
(SUBCATNP) / XTAG:Tnx0Vnx1

he_PPHS1loved_VVD her_PPHO1
(VSUBCATNP)

25. NP-ADJP/ 113
(SUBCATOC_AP,SUBTYPEEQUI)

he_PPHS1painted_VVD the_AT car_NN1 black_JJ
(VSUBCATNP_AP)

26. NP-ADJP-PRED/ 46
(SUBCATOC_AP,SUBTYPERAIS) / XTAG:Tnx0Vs1

she_PPHS1considered_VVD him_PPHO1foolish_JJ
(VSUBCATNP_AP)

27. NP-ADVP/ 9
(SUBCATNP_ADVP)

he_PPHS1put_VVD it_PPH1 there_RL
(VSUBCATNP, PRT+) * there

28. NP-ADVP-PRED/ 281 (with PPs)
(SUBCATNP_LOC) / XTAG:Tnx0Vs1

they_PPHS2mistakenly_RA thought_VVD him_PPHO1here_RL
(VSUBCATNP, PRT+) here

29. NP-AS-NP/ 3
(SUBCATSC_NP_NP,SUBTYPERAIS, PREPas)

I_PPHS1sent_VVD him_PPHO1as_CSAa_AT1 messenger_NN1
(VSUBCATNP_PP)(PFORMAS)

30. NP-AS-NP-SC/ 3
(SUBCATSC_NP_NP,SUBTYPERAIS, PREPas)

she_PPHS1served_VVD the_AT firm_NN1 as_CSAa_AT1 researcher_NN1
(VSUBCATNP_PP)(PFORMAS)

31. NP-FOR-NP/ 90
(SUBCATNP_PP,SUBTYPEDMOVT,PFORMfor)

she_PPHS1bought_VVDa_AT1 book_NN1for_IF him_PPHO1
(VSUBCATNP_PP)(PFORMFOR)

32. NP-INF / 11
(SUBCATOC_BSE,SUBTYPERAIS) / XTAG:Tnx0Vs1

he_PPHS1made_VVDher_PPHO1sing_VV0
(VSUBCATSCOMP) *_VV0

33. NP-INF-OC/ 17
(SUBCATOC_BSE,SUBTYPEEQUI)

he_PPHS1helped_VVD her_PP$ bake_VV0the_AT cake_NN1
(VSUBCATSCOMP) *_VV0

34. NP-ING / 28
(SUBCATOC_ING,SUBTYPERAIS) / XTAG:Tnx0Vs1

I_PPHS1kept_VVD them_PPHO2laughing_VVG
(VSUBCATSING)
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35. NP-ING-OC/ 45
(SUBCATOC_ING,SUBTYPEEQUI)

I_PPHS1caught_VVD him_PPHO1stealing_VVG
(VSUBCATSING)

36. NP-ING-SC/ ??
ANLTgap: real complement?

he_PPHS1combed_VVDthe_AT woods_NN2looking_VVG for_IF her_PPHO1
(VSUBCATSING)

37. NP-NP/ 231
(SUBCATNP_NP)/ XTAG:Tnx0Vnx1nx2

she_PPHS1asked_VVDhim_PPHO1his_AT name_NN1
(VSUBCATNP_NP)

38. NP-NP-PRED/ 38
(SUBCATOC_NP,SUBTYPEEQUI) / XTAG:Tnx0Vs1

they_PPHS2appointed_VVD him_PPHO1professor_NN1
(VSUBCATNP_NP)

39. NP-P-ING / 2
(SUBCATOC_PP_ING,PFORMfrom, SUBTYPEPVERB_OR,ORDERPOSTNP)

I_PPHS1prevented_VVD her_PPHO1from_II leaving_VVG
(VSUBCATNP_PP)from (PSUBCATVPING)

40. NP-P-ING-OC/ 31
(SUBCATOC_PP_ING,PFORM,SUBTYPEPVERB_OE,ORDERPOSTNP)

I_PPHS1accused_VVDher_PPHO1of_IO murdering_VVG her_AT husband_NN1
(VSUBCATSING, PRT+) of
(VSUBCATNP_PP)* (PSUBCATVPING)

41. NP-P-ING-SC/ ??
Gap in ANLTscheme, shld be: (SUBCATSC_PP_ING,PRT, ORDERPOSTNP)

he_PPHS1wasted_VVDtime_NNT1 on_II fussing_VVG with_IW his_AT hair_NN1
(VSUBCATNP_PP)on (PSUBCATVPING)

42. NP-P-ING-AC/ ??
Gap in ANLTscheme (SUBCATVC_PP_ING)

he_PPHS1told_VVD her_PPHO1about_II climbing_VVG the_AT mountain_NN1
(VSUBCATNP_PP)about (PSUBCATVPING)

43. NP-P-NP-ING/ ??
ANLTgap (SUBCATNP_PP_SING)

he_PPHS1attributed_VVD his_AT failure_NN1 to_II noone_NP1buying_VVG
his_AT books_NN2

(VSUBCATNP_PP)to (PSUBCATSING)

44. NP-P-POSSING/ ??
ANLTgap (SUBCATNP_PP_SING)

They_PPHS2asked_VVDhim_PPHO1about_II his_PPHO1participating_VVG
in_II the_AT conference_NN1

(VSUBCATNP_PP)about (PSUBCATSING)

45. NP-P-WH-S/ 0 (not in vppp, and below)
(SUBCATNP_WHS,PREP)

they_PPHS2made_VVDa_AT1 great_JJ fuss_NN1 about_II whether_CSWthey_PPHS2
should_VM participate_VV0
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(VSUBCATNP_PP)about (PSUBCATPP) whether (PSUBCATSFIN)

46. NP-P-WHAT-S/ 0
(SUBCATNP_WHS,PREP)

they_PPHS2made_VVDa_AT1 great_JJ fuss_NN1 about_II what_DDQthey_PPHS2
should_VM do_VV0

(VSUBCATNP_WHPP)about (PSUBCATWHS)

47. NP-P-WHAT-TO-INF/ 0
(SUBCATNP_WHVP,PREP)

they_PPHS2made_VVDa_AT1 great_JJ fuss_NN1 about_II what_DDQto_TO do_VV0
(VSUBCATNP_WHPP)about (PSUBCATNP)

48. NP-P-WH-TO-INF/ 0
(SUBCATNP_WHS,PREP)

they_PPHS2made_VVDa_AT1 great_JJ fuss_NN1 about_II whether_CSWto_TO go_VV0
(VSUBCATNP_PP)about (PSUBCATPP) whether (PSUBCATVPINF)

49. NP-PP/ 2010
(SUBCATNP_PP,PFORM,SUBTYPENONE/PVERB?)/ XTAG:Tnx0Vnx1pnx2

she_PPHS1added_VVDthe_AT flowers_NN2 to_II the_AT bouquet_NN1
(VSUBCATNP_PP)to

50. NP-PP-PRED/ 2010/50??
(SUBCATNP_PP,PFORMof, SUBTYPENONE,PRD+)

I_PPHS1considered_VVD that_AT problem_NN1of_IO little_JJ concern_NN1
(VSUBCATNP_PPOF)

51. NP-PRED-RS/ 12
(SUBCATSC_NP,SUBTYPERAIS)

he_PPHS1seemed_VVDa_AT1 fool_NN
(VSUBCATNP)

52. NP-S / 33
(SUBCATNP_SFIN, SUBTYPENONE)/ XTAG:Tnx0Vnx1s2

he_PPHS1told_VVD the_AT audience_NN1 that_CST he_PPHS1was_VBZleaving_VVG
(VSUBCATNP_SCOMP)* *_VVZ/D/G

53. NP-TO-INF-OC/ 189
(SUBCATOC_INF, SUBTYPEEQUI)

I_PPHS1advised_VVD Mary_NP1to_TO go_VV0
(VSUBCATSINF)

54. NP-TO-INF-SC/ 1
(SUBCATSC_NP_INF,SUBTYPEEQUI)

John_NP1promised_VVDMary_NP1to_TO resign_VV0
(VSUBCATSINF)

55. NP-TO-INF-VC/ ??
ANLTgap

they_PPHS2badgered_VVDhim_PPHO1to_TO go_VV0
(VSUBCATSINF)

56. NP-TO-NP/ 105
(SUBCATNP_PP,PFORMto, SUBTYPEDMOVT)/ XTAG:Tnx0Vnx1Pnx2

he_PPHS1gave_VVDa_AT1 big_JJ kiss_NN1 to_II his_AT mother_NN1
(VSUBCATNP_PP)to
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57. NP-TOBE/ 88
(SUBCATOC_INF, SUBTYPERAIS)

I_PPHS1found_VVDhim_PPHO1to_TO be_VB0a_AT1 good_JJ doctor_NN1
(VSUBCATSINF) BE

58. NP-VEN-NP-OMIT/ 3
(SUBCATOC_PASS,SUBTYPEEQUI/RAISING)

he_PPHS1wanted_VVDthe_AT children_NN2 found_VVN
(VSUBCATSCOMP)*_VVN

59. NP-WH-S/ 12
(SUBCATNP_WHS)

they_PPHS2asked_VVDhim_PPHO1whether_CSWhe_PPHS1was_VBZgoing_VVG
(VSUBCATNP_PP)WHETHER/IF(PSUBCATSFIN)

60. NP-WHAT-S/ 12
(SUBCATNP_WHS)

they_PPHS2asked_VVDhim_PPHO1what_DDQhe_PPHS1was_VBZdoing_VVG
(VSUBCATNP_SCOMP)S(WH+)

61. NP-WH-TO-INF/ 12
(SUBCATNP_WHVP)

he_PPHS1asked_VVDhim_PPHO1whether_CSWto_TO clean_VV0 the_AT house_NN1
(VSUBCATNP_PP)WHETHER(PSUBCATVPINF)

62. NP-WHAT-TO-INF/ 12
(SUBCATNP_WHVP)

he_PPHS1asked_VVDhim_PPHO1what_DDQto_TO do_VV0
(VSUBCATNP_NP)* WHAT/WHO/WHICH

63. P-ING-SC / 100
(SUBCATSC_ING, SUBTYPEEQUI, PREP)

they_PPHS2failed_VVD in_II attempting_VVG the_AT climb_NN1
(VSUBCATPP) in (PSUBCATVPING)

64. P-ING-AC / ??
ANLTgap (SUBCATVC_ING, PRT)

they_PPHS2disapproved_VVD of_IO attempting_VVG the_AT climb_NN1
(VSUBCATVPING, PRT+) of

they_PPHS2argued_VVDabout_II attempting_VVG the_AT climb_NN1
(VSUBCATPP) about (PSUBCATVPING)

65. P-NP-ING / 8
(SUBCATOC_PP_ING,PFORM@p, SUBTYPEPVERB_OR/OE,ORDERPRENP)

they_PPHS2worried_VVD about_II him_PPHO1drinking_VVG
(VSUBCATPP) about (PSUBCATSING)

66. P-NP-TO-INF(-SC) / 6
(SUBCATSC_PP_INF,PFORM@p, SUBTYPEEQUI)

he_PPHS1conspired_VVD with_IW them_PPHO2to_TO do_VV0it_PPH1
(VSUBCATPP_VPINF)with (PSUBCATNP)

67. P-NP-TO-INF-OC/ 29
(SUBCATOC_PP_INF,PFORM@p, SUBTYPEPVERB_OE/OR/EQUI)

he_PPHS1beckoned_VVDto_II him_PPHO1to_TO come_VV0
(VSUBCATPP_VPINF)to (PSUBCATNP)

68. P-NP-TO-INF-VC/ ??
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ANLTgap
she_PPHS1appealed_VVDto_II him_PPHO1to_TO go_VV0
she_PPHS1appealed_VVDto_II him_PPHO1to_TO be_VB0freed_JJ

(VSUBCATPP_VPINF)to (PSUBCATNP)

69. P-POSSING/ 10
(SUBCATOC_PP_ING,PFORM@p, SUBTYPEPVERB_OR,ORDERPRENP)

they_PPHS2argued_VVDabout_II his_PP$ coming_VVG
(VSUBCATPP) about (PSUBCATSING)

70. P-WH-S/ 37
(SUBCATWHS,PRT/PREP@p)

he_PPHS1thought_VVD about_II whether_CSWhe_PPHS1wanted_VVDto_TO go_VV0
(VSUBCATPP) about (PSUBCATPP) WHETHER/IF(PSUBCATSFIN)

71. P-WHAT-S/ 37
(SUBCATWHS,PRT/PREP@p)

he_PPHS1thought_VVD about_II what_DDQhe_PPHS1wanted_VVD
(VSUBCATWHPP)about (PSUBCATWHS)

72. P-WH-TO-INF/ 27
(SUBCATWHVP,PREP@p)

he_PPHS1thought_VVD about_II whether_CSWto_TO go_VV0
(VSUBCATPP) about (PSUBCATPP) whether (PSUBCATVPINF)

73. P-WHAT-TO-INF/ 27
(SUBCATWHVP,PREP@p)

he_PPHS1thought_VVD about_II what_DDQto_TO do_VV0
(VSUBCATWHPP)about

74. PART/ 3219
(SUBCATNULL, PRT) / XTAG:Tnx0Vpl

she_PPHS1gave_VVDup_RL
(VSUBCATNONE,PRT+) up

she_PPHS1gave_VVDup_II
(VSUBCATPP) up (PSUBCATNONE)

75. PART-ING-SC/ 7
(SUBCATSC_ING, SUBTYPEEQUI, PRT/PREP)

he_PPHS1ruled_VVD out_II paying_VVG her_AT debts_NN2
(VSUBCATPP) out (PSUBCATVPING)

he_PPHS1ruled_VVD out_RP paying_VVG her_AT debts_NN2
(VSUBCATVPING, PRT+) out

76. PART-NP/NP-PART/ 2134
(SUBCATNP, PRT) (ORDERFREE) / XTAG:Tnx0Vplnx1

I_PPHS1looked_VVD up_RL the_AT entry_NN1
(VSUBCATNP, PRT+) up *

I_PPHS1looked_VVD the_AT entry_NN1 up_RL
(VSUBCATNP, PRT+) * up

77. PART-NP-PP/ 312
(SUBCATNP_PP,PFORM,PRT, SUBTYPENONE/PVERB?)(ORDERFREE)

I_PPHS1separated_VVD out_II the_AT three_JJ boys_NN2from_II the_AT crowd_NN1
(VSUBCATPP_PP)out (PSUBCATNP) from (PSUBCATNP)

I_PPHS1separated_VVD out_RL the_AT three_JJ boys_NN2from_II the_AT crowd_NN1
(VSUBCATNP_PP,PRT+) out from (PSUBCATNP)
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78. PART-PP/ 234
(SUBCATPP, PFORM,PRT, SUBTYPEPVERB)

she_PPHS1looked_VVD in_II on_II her_AT friend_NN1
(VSUBCATPP) in (PSUBCATPP) on (PSUBCATNP)

she_PPHS1looked_VVD in_RL on_II her_AT friend_NN1
(VSUBCATPP, PRT+) in on (PSUBCATNP)

79. PART-WH-S/ 20
(SUBCATWHS,PRT, SUBTYPENONE)

they_PPHS2figured_VVD out_II whether_CSWshe_PPHS1had_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATPP) out (PSUBCATPP) WHETHER/IF(PSUBCATSFIN)
they_PPHS2figured_VVD out_RP whether_CSWshe_PPHS1had_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATPP, PRT+) out WHETHER/IF(PSUBCATSFIN)

80. PART-WHAT-S/ 20
(SUBCATWHS,PRT, SUBTYPENONE)

they_PPHS2figured_VVD out_II what_DDQshe_PPHS1had_VHDn't_XX done_VVD
(VSUBCATWHPP)out (PSUBCATWHS)

they_PPHS2figured_VVD out_RP what_DDQshe_PPHS1had_VHDn't_XX done_VVD
(VSUBCATSCOMP,PRT+) out S(WH+)

81. PART-WH-TO-INF/ 22
(SUBCATWHVP,PRT, SUBTYPENONE)

they_PPHS2figured_VVD out_II whether_CSWto_TO go_VV0
(VSUBCATPP) out (PSUBCATPP) whether (PSUBCATVPINF)

they_PPHS2figured_VVD out_RP whether_CSWto_TO go_VV0
(VSUBCATPP, PRT+) out whether (PSUBCATVPINF)

82. PART-WHAT-TO-INF/ 22
(SUBCATWHVP,PRT, SUBTYPENONE)

they_PPHS2figured_VVD out_II what_DDQto_TO do_VV0
(VSUBCATWHPP)out (PSUBCATNP)

they_PPHS2figured_VVD out_RP what_DDQto_TO do_VV0
(VSUBCATNP, PRT+) WHAT/WHICH/WHO

83. PART-THAT-S/ 48
(SUBCATSFIN, PRT, SUBTYPENONE)

they_PPHS2figured_VVD out_II that_CST she_PPHS1had_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATPP_SCOMP)out (PSUBCATNONE)*_VVG/Z/D
they_PPHS2figured_VVD out_RP that_CST she_PPHS1had_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATSCOMP,PRT+) out *_VVG/Z/D

84. POSSING/ 27
(SUBCATOC_ING,SUBTYPERAIS)

he_PPHS1dismissed_VVD their_PP$ writing_VVG novels_NN2
(VSUBCATSING)

85. POSSING-PP/ ??
ANLTgap (SUBCATOC_ING_PP)

she_PPHS1attributed_VVD his_PP$ drinking_VVG too_RA much_RAto_II his_AT anxiety_NN1
(VSUBCATSING_PP)to (PSUBCATNP)

86. ING-PP / ??
ANLTgap
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they_PPHS2limited_VVD smoking_VVGa_AT pipe_NN1 to_II the_AT lounge_NN1
(VSUBCATVPING_PP)to (PSUBCATNP)

87. PP / 2465 (366 LOC)
(SUBCATPP/LOC, PFORM,SUBTYPENONE/PVERB)/ XTAG:Tnx0Vpnx1

they_PPHS2apologized_VVD to_II him_PPHO1
(VSUBCATPP) to (PSUBCATNP)

88. PP-FOR-TO-INF/ 1
(SUBCATPP_SINF, PFORM)

they_PPHS2contracted_VVD with_IW him_PPHO1for_IF the_AT man_NN1to_TO go_VV0
(VSUBCATPP_PP)with (PSUBCATNP) for (PSUBCATSINF)

89. PP-HOW-S/ 7
(SUBCATPP_WHS,PFORM)

he_PPHS1explained_VVD to_II her_PPHO1how_RGQshe_PPHS1did_VDD it_PPH1
(VSUBCATPP_PP) to (PSUBCATNP) HOW/WHY/WHERE/WHEN(PSUBCATSFIN)

90. PP-HOW-TO-INF/ 3
(SUBCATPP_WHVP,PFORM)

he_PPHS1explained_VVD to_II them_PPHO2how_RGQto_TO do_VV0it_PPH1
(VSUBCATPP_PP) to (PSUBCATNP) HOW/WHERE/WHEN(PSUBCATVPINF)

91. PP-P-WH-S/ ??
Gap in ANLTscheme: (SUBCATPP_WHS,PFORM,PRT)

I_PPHS1agreed_VVDwith_IW him_PPHO1about_II whether_CSWhe_PPHS1should_VM
kill_VV0 the_AT peasants_NN2

(VSUBCATPP_PP)with (PSUBCATNP) about (PSUBCATPP) WHETHER(PSUBCATSFIN)

92. PP-P-WHAT-S/ ??
Gap in ANLTscheme

I_PPHS1agreed_VVDwith_IW him_PPHO1about_II what_DDQhe_PPHS1should_VM do_VV0
(VSUBCATPP_WHPP)with (PSUBCATNP) about (PSUBCATWHS)

93. PP-P-WHAT-TO-INF/ ??
Gap in ANLTscheme

I_PPHS1agreed_VVDwith_IW him_PPHO1about_II what_DDQto_TO do_VV0
(VSUBCATPP_WHPP)with (PSUBCATNP) about (PSUBCATNP)

94. PP-P-WH-TO-INF/ ??
Gap in ANLTscheme

I_PPHS1agreed_VVDwith_IW him_PPHO1about_II whether_CSWto_TO go_VV0
(VSUBCATPP_PP)with (PSUBCATNP) about (PSUBCATPP) whether (PSUBCATVPINF)

95. PP-PP / 64 (22 PVERB)
(SUBCATPP_PP)

they_PPHS2flew_VVD from_II London_NP1to_II Rome_NP1
(VSUBCATPP_PP) from (PSUBCATNP) to (PSUBCATNP)

96. PP-PRED-RS/ 0 (not in vppp)
(SUBCATPP, SUBTYPERAIS)

the_AT matter_NN1 seems_VVZin_II dispute_NN1
(VSUBCATPP) in (PSUBCATNP)

97. PP-THAT-S/ 22
(SUBCATPP_SFIN, SUBTYPENONE,PFORM)

they_PPHS2admitted_VVD to_II the_AT authorities_NN2 that_CST they_PPHS2
had_VHDentered_VVD illegally_RA
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(VSUBCATPP_SCOMP)to (PSUBCATNP) *_VVD/Z/G

98. PP-THAT-S-SUBJUNCT/ 2
(SUBCATPP_SBSE,PFORM,S[BSE, that])

they_PPHS2suggested_VVDto_II him_PPHO1that_CST he_PPHS1go_VV0
(VSUBCATPP_SCOMP)to (PSUBCATNP) *_VV0

99. PP-TO-INF-RS/ 1
(SUBCATSC_PP_INF,SUBTYPERAIS, PFORM,VP[to])

he_PPHS1appeared_VVDto_II her_PPHO1to_TO be_VB0ill_JJ
(VSUBCATPP_VPINF)to (PSUBCATNP) BE

100. PP-WH-S/ 7
(SUBCATPP_WHS,PFORM)

they_PPHS2asked_VVDabout_II everybody_NP1 whether_CSWthey_PPHS2
had_VHDenrolled_VVN

(VSUBCATPP_PP)about (PSUBCATNP) WHETHER/IF(PSUBCATSFIN)

101. PP-WHAT-S/ 7
(SUBCATPP_WHS,PFORM)

they_PPHS2asked_VVDabout_II everybody_NP1 what_DDQthey_PPHS2had_VHDdone_VVN
(VSUBCATPP_WHS)about (PSUBCATNP)

102. PP-WH-TO_INF/ 3
(SUBCATPP_WHVP)

they_PPHS2deduced_VVDfrom_II kim_NP1 whether_CSWto_TO go_VV0
(VSUBCATPP_PP) from (PSUBCATNP) whether (PSUBCATVPINF)

103. PP-WHAT-TO-INF/ 3
(SUBCATPP_WHVP)

they_PPHS2deduced_VVDfrom_II kim_NP1 what_DDQto_TO do_VV0
(VSUBCATPP_WHVP)from (PSUBCATNP) WHAT/WHO/WHICH

104. S / 296
(SUBCATSFIN, SUBTYPENONE)/ XTAG:Tnx0Vs1

they_PPHS2thought_VVD that_CST he_PPHS1was_VBZalways_RA late_JJ
(VSUBCATSCOMP)*_VVD/Z/G

105. S-SUBJ-S-OBJ/ 9
(SUBCATSFIN, SUBTYPEEXTRAP,AGRS[FIN -])

for_IF him_PPHO1to_TO report_VV0 the_AT theft_NN1 indicates_VVD that_CST
he_PPHS1was_VBZn't_XX guilty_JJ

*_VV0 (VSUBCATSCOMP) *_VVD/Z/G

106. S-SUBJUNCT/ 27
(SUBCATSBSE)

She_PPHS1demanded_VVDthat_CST he_PPHS1leave_VV0 immediately_RA
(VSUBCATSCOMP)*_VV0

107. SEEM-S/ 9
(SUBCATSFIN, SUBTYPEEXTRAP,AGRN2[NFORMIT])

it_PPH1 seems_VVZthat_CST they_PPHS2left_VVD
IT (VSUBCATSCOMP)*_VVD/Z/G

108. SEEM-TO-NP-S/ 1
(SUBCATPP_SFIN, SUBTYPEEXTRAP,PFORM,AGRN2[NFORMIT])

it_PPH1 seems_VVZto_II her_PPHO1that_CST they_PPHS2were_VBDRwrong_JJ
IT (VSUBCATPP_SCOMP)to (PSUBCATNP) *_VVD/Z/G
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109. THAT-S/ 296 (with 104)
(SUBCATSFIN, SUBTYPENONE)/ XTAG:Tnx0Vs1

he_PPHS1complained_VVD that_CST they_PPHS2were_VBDRcoming_VVG
(VSUBCATSCOMP)*_VVD/Z/G

110. TO-INF-AC / ??
ANLTgap (SUBCATVC_INF)

He_PPHS1helped_VVD to_TO save_VV0 the_AT child_NN1
(VSUBCATVPINF)

111. TO-INF-RS / 27
(SUBCATSC_INF, SUBTYPERAIS)

he_PPHS1seemed_VVDto_TO come_VV0
(VSUBCATVPINF) be

112. TO-INF-SC / 179
(SUBCATSC_INF, SUBTYPEEQUI)

I_PPHS1wanted_VVDto_TO come_VV0
(VSUBCATVPINF)

113.WH-S/ 133
(SUBCATWHS)/ XTAG:Tnx0Vs1

he_PPHS1asked_VVDwhether_CSWhe_PPHS1should_VM come_VV0
(VSUBCATPP) WHETHER/IF(PSUBCATSFIN)

114. WHAT-S/ 133
(SUBCATWHS)/ XTAG:Tnx0Vs1

he_PPHS1asked_VVDwhat_DDQhe_PPHS1should_VM do_VV0
(VSUBCATSCOMP)S(WH+)

115. WH-TO-INF/ 78
(SUBCATWHVP)/ XTAG:Tnx0Vs1

he_PPHS1asked_VVDwhether_CSWto_TO clean_VV0 the_AT house_NN1
(VSUBCATPP) whether (PSUBCATVPINF)

116. WHAT-TO-INF/ 78
(SUBCATWHVP)/ XTAG:Tnx0Vs1

he_PPHS1asked_VVDwhat_DDQto_TO do_VV0
(VSUBCATNP) WHAT/WHO/WHICH

117. XTAG:Tnx0Vplnx1nx2/ 45
(SUBCATNP_NP,PRT)

I_PPHS1opened_VVDhim_PPHO1up_RPa_AT new_JJ bank_NN1account_NN1
(VSUBCATNP_NP,PRT+) up

118. XTAG:Light-verbs (various classes) / ??
ANLTgaps (not a genuine class as subclasses of 49/50)

he_PPHS1made_VVDcomments_NN2on_II the_AT paper_NN1
(VSUBCATNP_PP)(make comments) on (PSUBCATNP)

119. (SUBCATPP/LOC, PFORM,PRT, SUBTYPENONE)/ 881 (LOC 45)
he_PPHS1breaks_VVZ away_RPfrom_II the_AT abbey_NN1

(VSUBCATPP, PRT+) away from (PSUBCATNP)

120. (SUBCATNP_PP,PFORM,PRT, SUBTYPEDMOVT)/ 25
he_PPHS1brought_VVD a_AT book_NN1back_RP for_IF me_PPHO1

(VSUBCATNP_PP,PRT+) back for (PSUBCATNP)
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121. (SUBCATPP_PP, PFORM,PRT) / 3
he_PPHS1came_VVDdown_RPon_II him_PPHO1for_IF his_AT bad_JJ behaviour_NN1

(VSUBCATPP_PP, PRT+) down on (PSUBCATNP) for (PSUBCATNP)

122. (SUBCATNP_PP_PP,PFORM)/ 16
he_PPHS1turned_VVD it_PPHO1 from_II a_AT disaster_NN1 into_II a_AT victory_NN1

(VSUBCATNP_PP_PP)from (PSUBCATNP) into (PSUBCATNP)

123. (SUBCATMP) / 29
it_PPHS1 cost_VVD ten_MC pounds_NNU2

(VSUBCATNP) _NNU/(NTYPEMEAS)

124. (SUBCATNP_MP)/ 6
it_PPHS1 cost_VVD him_PPHO1ten_MC pounds_NNU2

(VSUBCATNP_NP)_NNU/(NTYPEMEAS)

125. (SUBCATNP_MP,PRT) / 1
it_PPHS1 set_VVD him_PPHO1back_RP ten_MC pounds_NNU2

(VSUBCATNP_NP,PRT+) back _NNU/(NTYPEMEAS)

126. (SUBCATADL, PRT) / 13
he_PPHS1came_VVDoff_RP badly_RP

(VSUBCATNONE,PRT+) off (...PRT +) badly

127. (SUBCATADV_PP,PFORM)/ 2
things_NN2 augur_VV0 well_RP for_IF him_PPHO1

(VSUBCATPP, PRT+) well for (PSUBCATNP)

128. (SUBCATSFIN, AGRN2[NFORMIT], PRT) / 3
it_PPHS1 turns_VVZ out_RP that_CST he_PPHS1did_VVD it_PPHO1

IT (VSUBCATSCOMP,PRT+) out *_VVD/Z/G

129. (SUBCATSFIN, AGRS[FIN +], SUBTYPEEXTRAP)/ 9
that_CST he_PPHS1came_VVDmatters_VVZ

*_VVD/G/Z (VSUBCATNONE)

130. (SUBCATNP_SFIN, SUBTYPENONE,PRT) / 4
he_PPHS1had_VVDher_PPHO1on_RPthat_CST he_PPHO1attended_VVD

(VSUBCATNP_SCOMP,PRT+) on *_VVD/Z/G

131. (SUBCATPP_SFIN, SUBTYPENONE,PRT) / 4
she_PPHS1gets_VVZ through_RP to_II him_PPHO1that_CST he_PPHS1came_VVD

(VSUBCATPP_SCOMP,PRT+) through to (PSUBCATNP) *_VVD/Z/G

132. (SUBCATNP_NP_SFIN)/ 4
he_PPHS1bet_VVD her_PPHO1ten_MC pounds_NNU2that_CST he_PPHS1came_VVD

(VSUBCATNP_NP_SCOMP)_NNU*/(NTYPEMEAS)*_VVD/Z/G

133. (SUBCATNP_SBSE)/ 1
he_PPHS1petitioned_VVD them_PPHO2that_CST he_PPHS1be_VB0freed_VVN

(VSUBCATNP_SCOMP)* *_VB0

134. (SUBCATIT_WHS, SUBTYPEIF, AGRN2[NFORMIT]) / 1
I_PPHS1would_VMappreciate_VV0 it_PPHO1 if_CF he_PPHS1came_VVD

(VSUBCATNP_PP)if (PSUBCATSFIN)

135. (SUBCATPP_WHS,PFORM,AGRN2[NFORMIT]) / 1
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it_PPHS1 dawned_VVDon_II him_PPHO1what_DDQhe_PPHS1should_VM do_VV0
IT (VSUBCATPP_WHS)on (PSUBCATNP)

136. (SUBCATSC_NP,PRT, SUBTYPERAIS/EQUI, PRD+) / 2
he_PPHS1turned_VVD out_RP a_AT fool_NN1

(VSUBCATNP, PRT+) out

137. (SUBCATSC_AP,PRT, SUBTYPEEQUI/RAIS) / 22 (RAIS 3)
he_PPHS1started_VVD out_RP poor_JJ

(VSUBCATAP, PRT+) out
he_PPHS1started_VVD out_II poor_JJ

(VSUBCATPP_AP)out (PSUBCATNONE)

138. (SUBCATSC_INF, PRT, SUBTYPERAIS) / 6
he_PPHS1turned_VVD out_RP to_TO be_VB0a_AT crook_NN1

(VSUBCATVPINF, PRT+) out BE
he_PPHS1turned_VVD out_II to_TO be_VB0a_AT crook_NN1

(VSUBCATPP_VPINF)out (PSUBCATNONE)BE

139. (SUBCATSC_INF, PRT, SUBTYPEEQUI) / 12
he_PPHS1set_VVD out_RP to_TO win_VV0

(VSUBCATVPINF, PRT+) out
he_PPHS1set_VVD out_II to_TO win_VV0

(VSUBCATPP_VPINF)out (PSUBCATNONE)

140. (SUBCATSC_ING, PREP, PRT, SUBTYPEEQUI) / 32
he_PPHS1got_VVD around_RP to_II leaving_VVG

(VSUBCATPP, PRT+) around to (PSUBCATVPING)

141. (SUBCATSC_PASS,SUBTYPERAIS) / 4
he_PPHS1got_VVD given_VVN a_AT book_NN1

(VSUBCATVPPRT)

142. (SUBCATSC_BSE,SUBTYPEEQUI) / 3
he_PPHS1dared_VVDdance_VV0

(VSUBCATVPBSE)

143. (SUBCATSC_NP_AP,SUBTYPERAIS, PREPas) / 3
he_PPHS1strikes_VVZ me_PPHO1as_CSAfoolish_JJ

(VSUBCATNP_PP)AS (PSUBCATAP)

144. (SUBCATOC_NP,SUBTYPERAIS) / 35
he_PPHS1considers_VVZ Fido_NP1 a_AT fool_NN1

(VSUBCATNP_NP)

145. (SUBCATOC_AP,SUBTYPERAIS, PRT) / 3
he_PPHS1makes_VVDhim_PPHO1out_RP crazy_JJ

(VSUBCATNP_AP,PRT+) out

146. (SUBCATOC_AP,SUBTYPEEQUI, PRT) / 4
he_PPHS1sands_VVZit_PPHO1 down_RPsmooth_JJ

(VSUBCATNP_AP,PRT+) down

147. (SUBCATOC_AP,SUBTYPEEQUI, PREPas) / 5
he_PPHS1condemned_VVDhim_PPHO1as_CSAstupid_JJ

(VSUBCATNP_PP)AS (PSUBCATAP)

148. (SUBCATOC_AP,SUBTYPEEQUI, PREPas, PRT) / 6
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he_PPHS1put_VVD him_PPHO1down_RPas_CSAstupid_JJ
(VSUBCATNP_PP,PRT+) down AS (PSUBCATAP)

149. (SUBCATOC_INF, SUBTYPERAIS, PRT) / 3
he_PPHS1made_VVDhim_PPHO1out_RP to_TO be_VV0crazy_JJ

(VSUBCATSINF, PRT+) out BE

150. (SUBCATOC_INF, SUBTYPEEQUI, PRT) / 19
he_PPHS1spurred_VVD him_PPHO1on_RPto_TO try_VV0

(VSUBCATSINF, PRT+) on

151. (SUBCATOC_PP_INF,SUBTYPEPVERB_OE,PFORM,PRT) / 6
he_PPHS1kept_VVD on_RPat_II him_PPHO1to_TO join_VV0

(VSUBCATPP_VPINF,PRT+) on at (PSUBCATNP)

152. (SUBCATOC_PP_ING,SUBTYPEPVERB_OE,PFORM,PRT) / 4
he_PPHS1talked_VVD him_PPHO1around_RP into_II leaving_VVG

(VSUBCATNP_PP,PRT+) around into (PSUBCATVPING)

153. (SUBCATOC_PP_BSE,PFORM,SUBTYPEPVERB_OE)/ 1
he_PPHS1looked_VVD at_II him_PPHO1leave_VV0

(VSUBCATPP_SCOMP)at (PSUBCATNONE)*_VV0

154. (SUBCATVPINF, SUBTYPEEXTRAP,AGRVP[FIN-]) / 4
to_TO see_VV0 them_PPHO2hurts_VVZ

_VV0 (VSUBCATNONE)

155. (SUBCATNP_ADL)/ 39
he_PPHS1stood_VVD it_PPHO1 alone_RL

(VSUBCATNP, PRT+) * *_RL/A/P

156. *NP-HOW-S/ ?
he_PPHS1asked_VVDhim_PPHO1how_RGQhe_PPHS1came_VVD

(VSUBCATNP_PP)HOW/WHY/WHERE/WHEN(PSUBCATSFIN)

157. *NP-FOR-TO-INF/ ?
he_PPHS1gave_VVDmoney_NN2for_IF him_PPHO1to_TO go_VV0

(VSUBCATNP_PPFOR(PSUBCATSINF)

158. *IT-PASS-SFIN / ?
it_PPHS1 is_VBZ believed_VVN that_CST he_PPHS1came_VVD

IT PASS(VSUBCATSCOMP)

159. *AS-IF-SFIN / ?
he_PPHS1seems_VVZas_CS if_CS he_PPHS1is_VBZ clever_JJ

(VSUBCATPP) AS (PSUBCATPP) IF (PSUBCATSFIN)

160. (SUBCATADL)
it_PPHS1 carves_VVZ easily_RP

(VSUBCATNONE)*_RP/A

161. (SUBCATSC_NPSUBTYPEEQUI)
he_PPHS1felt_VVD a_AT fool_NN1

(VSUBCATNP)

162. *AS-VPPRT
he_PPHS1accepted_VVD him_PPHO1as_II/CSA associated_VVN

(VSUBCATNP_PP)AS (PSUBCATVPPRT)
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163. *AS-VPING
he_PPHS1accepted_VVD him_PPHO1as_II/CSA being_VBGnormal_JJ

(VSUBCATNP_PP)AS (PSUBCATVPING)



Appendix B

Test Verbs from Chapter 6

TablesB.1 and B.2 list the 334 unclassi�ed test verbs usedfor experiments reported
in section 6.4.

accept comfort endure infer prevail stay
accommodate compensate enforce inform prevent steer
account complement engage insist price stop
accuse complete ensure insure print strengthen
achieve compose equate intend produce stretch
acknowledge compress establish introduce promise strive
act concern exemplify invade propose study
adjust conduct exercise involve prove subject
admit confess exert issue quit succeed
advise confine exist jar raise sue
affect conform expand justify react suffer
afflict confront expect know read suggest
afford consider expire lack recognize suit
aid consist expose launch recommend support
allow constitute express learn reconvene swear
amend contain explain leer reduce take
announce contend extend let refer talk
answer contest face lighten register tangle
appear continue fail like regroup taste
apply control fascinate limit remain teach
approach converse fear list repair tell

Table B.1: Unclassi�ed test verbs I

171
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approve cool feed live repeat tempt
arise cope feel look replace tend
ask counsel figure lose reply term
aspire crack find love report terminate
assail create fit make represent test
astonish deal fix match require thank
attempt deceive flow measure rescent thicken
attend decide force meditate resemble think
back declare forsake meet resign threaten
become decry freeze melt resist time
begin depend glance metamorphose resolve toy
believe derive greet mirror respond transcend
bend design grow miss restrain transpire
bet desire guarantee mock retire treat
boom despair guard motivate revere trigger
border detail hail note review tripple
bother deteriorate handle nourish rise trust
break determine happen object rule try
brood develop hate observe say understand
build devise hear occupy schedule understate
bunch dictate help open scream urge
call die hold oppose see use
campaign disarm honour participate seem view
capture discover hope peep serve violate
care discuss hurt penalize share voice
cause disdain idolize permit shatter vote
celebrate disorder ignore persist shout wait
centralize display illuminate pipe show want
challenge dress illustrate plan sin watch
change drift impair ponder sniff wonder
characterize dwindle imply postulate solve work
choose elaborate inaugurate predict speak worship
cite elect include prepare speculate write
claim emerge increase preserve start
clothe end induce preside state

Table B.2: Unclassi�ed test verbs I I



Appendix C

Diathesis Alternation - SCF
Mapping

In Chapter 7 (section 7.2.3), we briey discussedMcCarthy's work on diathesis alter-
nation acquisition (McCarth y and Korhonen, 1998;McCarthy, 2001). We contributed
to this work by producing a mapping between scf s involved in Levin alternations
(Levin, 1993) and those recognizedby Briscoe and Carroll's system (App endix A).
This source was employed by McCarthy for selecting candidate scf s and verbs for
alternations.

In constructing this mapping, each Levin alternation was �rst assigneda shallow
syntactic description, based on example sentences given in Levin (1993). All scf s
matching this syntactic description were then extracted from the list of 163scf s (see
Appendix A). The outcome was checked manually for �nal scf assignments. The
resulting set of scf s provides in most casesmore detailed syntactic description of
an alternation than that provided by Levin. Levin's example sentencesoften exem-
plify only the most protot ypical frames involved in an alternation. In reality, many
alternations can occur with a wider range of frames.

Where possible, we supplemented the syntactic description of an alternation with
constraints or preferenceson argument slots, possible prepositions and participat-
ing verbs. We basedthese constraints/preferenceson information provided in Levin
(1993). Preferenceson argument slots were de�ned as simple descriptive labels and
WordNet conceptual classes.The latter were identi�ed manually from the noun hier-
archy of the taxonomy1. Allowable prepositions weresimply given asa list of lemmas.
Participating verbswerede�ned asLevin verb classesinvolved in an alternation. The
resulting constraints/preferencesare often vague,either becausethe description given
by Levin is inadequateor simply because,in somecases,no strong constraints exist,
due to the semi-productive and elusive nature of alternations.

Figure C.1 displays a sampleentry from the alternation-scf mapping for the instru-
ment subject alternation. It shows �rstly a pair of example sentences from Levin
(1993) where the alternation occurs and below it, a simple syntactic description for
the alternation. This is followed by description of preferences/constraints. These

1We used for this work WordNet version 1.5.
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3.3 Instrument Subject Alternation
Example David broke the window with the hammer

⇔ The hammer broke the window
Syntax NP1 V NP2 P NP3 ⇔ NP3 V NP2
Constraints NP1: (in)animate entity, WN class 100002403

NP2: breakable physical object, WN class 100009469
NP3: intermediary instrument, WN class 102009476
P: with
V: Break verbs

Alternating NP2, NP3
slot(s)
Alternating 49 ⇔ 24, 77 ⇔ 76
SCFs
Further Only Break verbs that take intermediary instruments may
description participate. These are change of state verbs which refer to actions

that bring about a change in the ‘material integrity’ of some entity.
Their meaning provides no information on how the change of state
came about.
Example verbs: break, chip, crash, crush, fracture, rip

Figure C.1: A sampleentry for instrument subject alternation

Alternation Category Example Alternation
Extraposition To read pleases them ⇔ It pleases them to read

scf 8 ⇔ scf 11
Equi I advised Mary to go ⇔ I advised Mary

scf 53 ⇔ scf 24
Raising Julie strikes me as foolish ⇔ Julie strikes me as a fool

scf 143 ⇔ scf 29
Category switch He failed in attempting to climb ⇔ He failed in the climb

scf 63 ⇔ scf 87
pp deletion Phil explained to him how to do it ⇔ Phil explained how to do it

scf 90 ⇔ scf 17
p deletion I prefer for her to do it ⇔ I prefer her to do it

scf 15 ⇔ scf 53

Table C.1: Examples of new alternations
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indicate that the alternation typically applies to Levin \ Break" verbs permitting the
preposition with and taking three noun phrasescapableof functioning as (in)animate
entit y, breakable physical object and intermediary instrument, respectively. After
this, the slots and scf s involved in the alternation are speci�ed. The latter are
given as scf numbers recognizedby Briscoe and Carroll's system. Frames 49 and
24 alternate in the example given by Levin. Frames 77 and 76 alternate in another,
phrasal/prepositional verb variant, not exempli�ed in Levin (1993), e.g. David broke
the door down with the axe , The axe broke the door down. Finally, somefurther
details of the alternation are given.

Levin's classi�cation covers mostly alternations involving np and pp complements.
Those involving control or sentential complements are largely ignored. Although in-
dividual studies are available on a few alternations or verb classestaking sentential
complements (e.g. Alexander and Kunz, 1965;Rudanko, 1989;Jackendo�, 1990), no
extensive Levin style referencework exists which would cover them. After completing
the Levin-scf part of the mapping, we screenedthrough the list of 163 scf s, consid-
ering possible further alternations between pairs of scf s, especially those involving
control and sentential complements. We used criteria similar to Levin's for recogni-
tion of alternations: the scf s alternating should preserve the sensein question, or
modify it systematically.

Several additional alternations were discovered and grouped into di�eren t categories:
alternations involving exraposition, equi, raising, category switch, pp deletion and p
deletion. Table C.1 shows an examplealternation from each category. Further work is
required on thesealternations beforewe can group them into semantically motivated
verb classes.
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