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Abstract

Manual developmert of large subcategorised lexicons has proved dicult because
predicates change behaviour between sublanguagesdomains and over time. Yet ac-
cessto a comprehensie subcategorization lexicon is vital for successfuparsing capa-
ble of recovering predicate-argumen relations, and probabilistic parserswould greatly

benet from accurate information concerningthe relative likelihood of di erent sub-
categorisation frames (scf s) of a given predicate. Acquisition of subcategorization
lexicons from textual corpora has recertly becomeincreasingly popular. Although

this work has met with some successresulting lexicons indicate a need for greater
accuracy One signi cant sourceof error lies in the statistical Itering used for hy-

pothesisselection,i.e. for removing noisefrom automatically acquired scf s.

This thesis builds on earlier work in verbal subcategorization acquisition, taking as
a starting point the problem with statistical Itering. Our investigation shows that
statistical Iters tend to work poorly becausenot only is the underlying distribution
Zip an, but there is also very little correlation between conditional distribution of
scf s speci ¢ to a verb and unconditional distribution regardlessof the verb. More
accurate back-o estimates are neededfor scf acquisition than those provided by
unconditional distribution.

We explore whether more accurate estimates could be obtained by basing them on
linguistic verb classes. Experiments are reported which show that in terms of scf
distributions, individual verbs correlate more closely with syntactically similar verbs
and even more closelywith semartically similar verbs, than with all verbsin general.
On the basis of this result, we suggestclassifying verbs according to their semartic
classesand obtaining badk-o estimatesspeci c to theseclasses.

We proposea method for obtaining such semartically basedback-o estimates,and
a novel approach to hypothesis selection which makes use of these estimates. This
approad involves automatically identifying the semaric classof a predicate, using
subcategorization acquisition machinery to hypothesiseconditional scf distribution
for the predicate, smoothing the conditional distribution with the badk-o estimates
of the respective semartic verb class, and employing a simple method for ltering,
which usesa threshold on the estimates from smoothing. Adopting Briscoe and
Carroll's (1997) systemasa framework, we demonstratethat this semartically-driv en
approad to hypothesisselectioncan signi cantly improve the accuracy of large-scale
subcategorization acquisition.
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Chapter 1

Intro duction

Researt into the automatic acquisition of subcategorization frames (scf s) from cor-
pora is starting to produce large-scalecomputational lexiconswhich include valuable
frequency information. Howewer, resulting lexiconsindicate a needfor greater accu-
racy. One signi cant sourceof error liesin the statistical Itering usedfor “hypothesis
selection'i.e. for removing noise from automatically acquired scf s. Although this
problem has beenwidely recognized,it has not beenaddressed.This thesis builds on
earlier work in subcategorization acquisition, taking as a starting point the problem
of statistical ltering. Our investigations shav that Itering performanceis limited
by lack of accurate badk-o estimatesfor scf s. We proposea method of obtaining
more accurate, semartically motivated back-o0 estimates, and a novel approad to
hypothesis selection which makes use of these estimates. We demonstrate that this
semartically-driv en approach can signi cantly improve large-scaleacquisition of scf s.

This introductory chapter rst identi es the needfor lexical acquisition (section 1.1).
It then introducesthe phenomenonof verb subcategorization (section 1.2), estab-
lishesits importance for natural languageprocessing(nlp ) and linguistic theory (sec-
tion 1.3), and discussescquisition of this information automatically from corpusdata
(section 1.4). Section1.5summarisesour cortribution to the eld of subcategorization
acquisition. The list of external resourcesusedin our researt is given in section 1.6.
Section 1.7 includes an overview of the organization of this thesis.

1.1 Automatic Lexical Acquisition

In recert years,the importance of the lexicon hasincreasedin both nlp and linguistic
theory. Within nlp , much of the early researt focusedon isolated "toy' tasks, treat-
ing the lexicon as a peripheral componert. These days, the focusis on constructing
systems suitable for the treatment of large, naturally-o ccurring texts. Rich lexical
knowledgesourceshave becomecrucial for nlp systemsdealing with real-world appli-
cations. At the sametime, the importance of the lexicon hasincreasedfor theoretical
reasonsas within linguistic theory, it hastaken on an increasingly certral role in the
description of both idiosyncratic and regular properties of language.

Obtaining large, explicit lexicons rich enough for computational linguistic use has,

17



18 CHAPTER 1. INTRODUCTION

however, proved di cult. Manual construction of a large-scalelexicon is a major task
involving many years of lexicographic work. The advert of computers has alleviated
the work, but the lexicon has correspondingly grown in size. Much of the early
work on computational lexicography exploited the information in existing machine-
readable dictionaries (mrd s) to solve the acquisition bottleneck. Howewver, as mrd s
werewritten with a human readerin mind, corverting theseresourcesnto satisfactory
computational lexicons proved dicult. Manually built lexicons are prone to errors
of omission and commission which are hard or impossible to detect automatically
(e.g. Boguraev and Briscoe, 1989). It is alsocostly to extend theseresourcesto cover
neologismsand other information not currently encaded.

Recenly, there hasdeweloped a growing trend to acquire lexical information automat-

ically from corpus data. This approad avoids the above-mertioned problems, gives
accessto previously lacking frequency information and enablesacquisition of lexical

information speci ¢ to dierent sub-languagesand domains. Methods for automatic

lexical acquisition have beendewveloped for many areasand include syntactic category
(Finch and Chater, 1991; Schutze, 1993), collocations (Dunning, 1993; Justesonand

Katz, 1995), word sensegPereira et al., 1993; Schutze, 1992), prepositional phrase
attachment ambiguity (Hindle and Rooth, 1993; Lauer 1995), word semaric classes
(Zernik, 1989), selectional preferences(Resnik, 1993; Ribas, 1995; Poznanski and

San lipp 0, 1995), diathesis alternations (McCarthy and Korhonen, 1998; Schulte im

Walde, 2000; Lapata, 1999, 2000; Stevensonand Merlo, 1999; McCarthy, 2001) and

scf s (e.g. Brent, 1991,1993; Ushioda et al., 1993; Briscoe and Carroll, 1997; Man-

ning, 1993; Ersan and Charniak, 1996; Carroll and Rooth, 1998;Gahl, 1998; Lapata,

1999; Sarkar and Zeman, 2000). Many of these methods are still under developmert

and need further re nement before they can successfullybe applied to large scale
lexical acquisition. However, they open up the important possibility of automatically

constructing or updating lexiconsfrom textual corpora.

Early methods of lexical acquisition tended to favour purely statistical methods, with

the aim of deriving all information from corpus data. Recerly there has developed
a trend towards use of sourcesof a priori knowledge that can constrain the process
of lexical acquisition (e.g. Gazdar, 1996; Klavans and Resnik, 1996). Although the
use of such knowledge may introduce human error it can, if accurate, reduce the
overall noiselevel. A priori knowledge can be probabilistic, when, for example, prior

distributions usedin lexical acquisition are derived from external sources.It can also
be discrete, when it meansusing prede ned categories,sud as scf s, parts-of-speeh

(pos), or semaric networks to guide the acquisition process.Given that the current

conception of a computational lexicon hasa rm foundation in linguistic theory, one
of the challengesand currently underusedapproadesin this areais to constrain the
acquisition processusing linguistic insights (Boguraev and Pustejovsky, 1995).

1.2 Verb Subcategorization

To produce a sertence, it is not enough simply to selectthe appropriate words and
string them together in the order that corveysthe meaning relations among them.
Not all verbs can appear in all sertences,even when the combinations make sense:
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(1) a Sam put the book on the table
b *Sam put the book
c *Sam put on the table
d *Sam put

The diversebehaviour of verbscanbe explainedin terms of subcategorization. Di er-
ent subcategoriesof verbs make di erent demandson their argumerts. For example,
put takes a np-pp complemen (1a), but doesnot permit np (1b) or pp (1c) com-
plemenrts, nor an intransitiv e variant (1d). To be grammatical, put requires no fewer
than three syntactic argumerts: a subject, object and an oblique object.

Subcategorization structures are frequertly characterizedin terms of syntactic frames
called “subcategorization frames'. Theseprovide generalization over various syrntactic
contexts required by verbs assaiated with the same syntactic behaviour. For ex-
ample, we can use the frame np-pp to characterize the subcategorization structure
in (1a), as well asthose in Sam put the book on the table yesterday and John flew
the plane to Rome. More or lessspeci c scf classi cations can be made, depending
e.g. on whether the frames are parameterized for lexically-governed particles and
prepositions, whether any semariic knowledgeis incorporated, and so forth .

Fully to de ne the assaiation betweena particular subcategorization structure and a
given predicate, however, one must go beyond listing of syntactic frames. Full accourt
of subcategorization requires specifying the number and type of argumerts that a
particular predicate requires, predicate sensein question, semaric represertation
of the particular predicate-argumert structure, mapping between the syntactic and
semartic levels of represernation, semartic selectional restrictions or preferenceson
argumerts, control of understood argumerts in predicative complemers, diathesis
alternations, and possibly also further details of predicate-argumen structure. We
shall introduce in detail this range of phenomenain chapter 2.

1.3 Uses of Subcategorization Information

Multidimensional in nature, verb subcategorization is one of the most complex type
of information that a computational lexicon should provide. Howewer, it is arguably
also one of the most important type of information. Most recert syntactic theories
\pro ject" syntactic structure from the lexicon; thus, accessto a comprehensie and
accurate subcategorization lexicon is crucial when constraining analysisof natural lan-
guage. Subcategorization information is essetial for the developmen of robust and
accurate parsing technology capable of recovering predicate-argumen relations and
logical forms. Without it, resolving most phrasal attachment ambiguities or distigu-
ishing argumerts from adjuncts is di cult. For parsersusing statistical methods to
rank analyses,information about relative frequenciesof di erent subcategorizations

!Different sCF classifications are discussed and exemplified in chapter 2. In this thesis, we de-
scribe SCFs using the labels from Briscoe’s classification (2000) (included in Appendix A). Most of
these labels (e.g. NP-PP mentioned here) essentially describe the complementation pattern of a verb,
assuming that subject is obligatory and, by default, an NP. Where this is not the case, it is explicitly
stated.
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for a given predicate is also vital. It is required e.g. for lexicalising a probabilistic
parser with the aim of improving accuracy of disambiguation (Briscoe and Carroll,
1997;Collins, 1997; Carroll, Minnen and Briscoe, 1998).

Besidesparsing, accessto accurate subcategorization information can also bene t
other domains of nlp , as well aslinguistic researd. For example, subcategorization
(frequency) information can be integrated into dictionaries (e.g. Evansand Kilgatrri ,
1995;Gahl, 1998) or annotated corpora (Sarkar and Zeman, 2000)in order to improve
their content. It can alsobe usedin psydolinguistic researt on sertence processing
for approximating lexical preferences(Lapata and Keller, 1998;Lapata et al., 2001).
In addition, sudch information could potentially be usedto expandthe empirical basis
of linguistic theory and increaseits predictive power (Levin, 1993).

Knowledge of assaiations between speci ¢ scf s and predicates can, moreover, aid
lexical acquisition. For example, if we identify assaiations, we can gather informa-
tion from corpus data about head lemmaswhich occur in argumert slots in scf sand
usethe information asinput to selectional preferenceacquisition (Schulte im Walde,
2000; McCarthy, 2001). Selectional preferencesare an important part of subcatego-
rization speci cation, sincethey can be usedto aid anaphora resolution (Ge et al.,
1998), speet understanding (Price, 1996), word sensedisambiguation (wsd) (Ribas,
1995; Resnik, 1997; Kilgarri and Rosenzveig, 2000) and automatic identi cation of
diathesis alternations from corpus data (Schulte im Walde, 2000; McCarthy, 2001;
Lapata, 1999; Stevensonand Merlo, 1999). Diathesis alternations are in turn impor-
tant. In recert yearsthey have inspired researt in lexicalist grammar theories and
lexical represenation (e.g. San lipp 0, 1994; Briscoe and Copestake, 1999), machine
translation (Dorr, 1997), natural language generation (Stede, 1998), cross-linguistic
studies (Pirrelli et al., 1994), dictionary construction (Dang et al., 1998), verb classi-
cation (Dorr, 1997), and lexical acquisition (Ribas, 1995;Poznanskiand San lipp o,
1995; Korhonen, 1998).

1.4 Subcategorization Acquisition

The rst systemscapable of automatically learning assaiations betweenverbsand a
small number of scf s from corpus data emergedroughly a decadeago (Brent, 1991;
1993). Sincethen researt hastaken a big step forward. Subsequeh systemstargeted
a larger set of scf s and/or collected data on the relative frequenciesof di erent scf

and verb combinations (Ushioda et al., 1993;Manning, 1993; Gahl, 1998; Ersan and
Charniak, 1996; Carroll and Rooth, 1998; Lapata, 1999). More ambitious systems
have recertly been proposed which are capable of detecting comprehensie sets of
scf sand producing large-scalelexiconswith appropriate scf frequencydata (Briscoe
and Carroll, 1997; Sarkar and Zeman, 2000). The dierent systemsvary greatly
accordingto methods used. Regardlessof this, they perform similarly. They mostly
gather information about syntactic aspects of subcategorization; do not distinguish
betweenvarious predicate sensesand have a ceiling on performanceat around 80%

2We shall in chapter 2 survey the various methods.
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token recall®. Resulting lexiconsthus indicate a needfor greater accuracy

Errors arise in automatic subcategorization acquisition for seweral reasons. Due to
ungrammaticalities of natural language, some noise occurs already in input data.
Further errors arise when processingthe data, typically in two phases: (i) generat-
ing hypothesesfor scf s and (ii) selecting reliable hypothesesfor the nal lexicon.
Analysis of error reveals problems commonto di erent systems. Although it is clear
that hypothesisgeneration requiresfurther improvemen, the weakest link of current
systemsappearsto be hypothesisselection.

Hypothesisselectionis usually madewith a hypothesistest and frequertly with a vari-
ation of the binomial Iter introducedby Brent (1993). The binomial hypothesistest
is reported to be particularly unreliable for low frequency assaiations (Brent, 1993;
Manning, 1993; Ersan and Charniak, 1996; Briscoe and Carroll, 1997; Manning and
Schetze, 1999). Briscoe and Carroll, for example, note that the performance of their
Iter for scf swith lessthan 10 exemplarsis inconclusive. The high number of missing
low frequency assaiations directly a ects recall, resulting in poor performance.

This problem with hypothesisselectionmay overturn bene ts gainedwhenincreasing
the data potential in the hope of detecting a higher number of rare scf s. Similarly,
it may overturn benets gained from re ning hypothesis generation. The problem
concernsmost subcategorization acquisition systems,sincenearly all of them perform
hypothesisselectionusing statistical hypothesistests. For thesereasons,when aiming
to improve subcategorization extraction, addressingthis problem is critical.

1.5 Our Contribution

The aim of the presen thesisis to improve the accuracy of subcategorization acquisi-
tion by improving the accuracy of hypothesisselection. All the work reported in this
thesis is done using Briscoe and Carroll's (1997) system as a framework for subcate-
gorization acquisition. This systemrepresens the latest phasein the dewvelopmert of
scf acquisition technology. Capable of categorizingover 160scf types,it is the most
comprehensie system available. We justify our choice further in chapter 2, where we
describe this systemin detail.

1.5.1 Hyp othesis Testing

Although statistical lters have beenwidely recognizedas problematic, the reasonsfor
their poor performancehave not beeninvestigated. In this thesis we perform a series
of experiments to examine why hypothesis testing in subcategorization acquisition
fails to perform as expected. We comparethree di erent approacesto Itering out
spurious hypotheses. Two hypothesis tests perform poorly, comparedwith a simple
method which Iters scf son the basisof their maximum likelihood estimates(mle s).
Our investigation reveals that the reason hypothesis testing does not perform well
in this task is that not only is the underlying distribution zip an, but there alsois

3Where token recall is the percentage of SCF tokens in a sample of manually analysed text that
were correctly acquired by the system. For further explanation, see section 2.5.2.
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very little correlation betweenthe conditional distribution of scf s giventhe predicate
and the unconditional distribution independert of specic predicates. Accordingly,
any method for hypothesisselection(whether or not basedon a hypothesistest) that
involvesreferenceto the unconditional distribution, will perform badly.

1.5.2 Back-o Estimates

Assuming that the unconditional distribution provides accurate badk-o estimates*
for any verbs is roughly equivalent to assumingthat all verbs behave similarly in
terms of subcategorization. This assumption is challenged by simple obsenation of
verb behaviour. For example, a verb like believe occurs mostly with a sertential
complemen, but the sertential complemen frame, in general, is rare. Linguistic
researt has shavn that verbs fall into syntactically and semartically basedclasses
distinctiv e in terms of subcategorization (e.g. Levin, 1993). More accurate badk-0
estimates might be obtained by constructing them as speci ¢ to sud classes.

Semartic verb classessud as Levin's are based, however, on assaiations between
speci ¢ scf s and verb senses. Subcategorization acquisition systemsare so far capa-
ble of assaiating scf s with verb forms only. We perform experiments with a set of
scf distributions speci c to verb form, which shaw that in terms of scf distributions,
individual verbs correlate more closely with syntactically similar verbs and clearly
more closelywith semartically similar verbs,than with all verbsin general. The best
scf correlation is obsened when verbs are classi ed semarically accordingto their
predominant sense.On the basis of this result, we suggestclassifying verbs semarti-
cally accordingto their predominant senseand obtaining badk-o estimatesspeci c to
semartic classes.In generalterms, we proposeusing a priori discrete and probabilis-
tic knowledge about (generalizations of) verb semartics to guide subcategorization
acquisition.

1.5.3 Semantically Driv en Hyp othesis Selection

We demonstrate the utilit y of our proposal by presering a novel approac to hy-
pothesis selection. We composesemartic verb classeshasedon Levin classesand im-

plement a technique capable of automatically assaiating verbs with their respective
rst senseclassesvia WordNet (Miller et al., 1993). We choosea few represertativ e
verbs from the samesemartic classand mergetheir conditional (verb form specic)

scf distributions to obtain class-sgci ¢ back-0 estimates. Subcategorization acqui-
sition machinery is rst usedfor hypothesis generation and the resulting conditional

scf distribution for a predicate is then smoothed with the badk-o0 estimates of the
respective semariic class. A simple method is usedfor Itering, which setsan em-
pirically de ned threshold on the probability estimatesfrom smoothing. This allows
examination of the potential of back-o0 estimateswithout introducing any problems
related to hypothesistests. We demonstrate that the approad provides an e ective
way of dealingwith low frequencyasscaiations and a meansof predicting thoseunseen

4By back-off estimates, we refer to SCF “prior” probability estimates used for guiding SCF acqui-
sition is some way.
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in corpusdata. We demonstrate further that the approad is applicable to large-scale
subcategorization acquisition and, when applied to this purpose,it results in signif-
icant improvemert in performance. Overall, our results showv that at the level of
hypothesis selection, verb semaric generalizationscan successfullybe usedto guide
and structure the acquisition of scf s from corpus data, which sofar hasbeenmerely
syntax driven.

1.6 External Resources

Software For subcategorization acquisition, we employed Briscoe and Carroll's
systemwith a probabilistic chart parser (Chitrao and Grishman, 1990).

Corpora For subcategorization acquisition experiments, we used 20 million
words of the written part of the British National Corpus (bnc) (Leed, 1992).
Somegold standardsusedfor evaluation in theseexperiments werealsoobtained
from 1.2 million word data from the SusanneCorpus (susanne) (Sampson,
1995), Spoken English Corpus (sec) (Taylor and Knowles, 1988),and Lancaster-
Oslo-BergenCorpus (lob ) (Garside et al., 1987).

Lexical Resources For syntactic verb classes,we employed the Alvey nl
Tools dictionary (anlt) (Boguraev et al., 1987). For semartic verb classes,
we employed Levin's verb classi cation (1993). This resourcewas used along
with the verb hierarchy of WordNet (Miller et al., 1993) version 1.6, Longman
Dictionary of Contemporary English (Idoce ) (Procter, 1978),and Dorr's (1997)
source of Idoce codes for Levin classesas aid when assaiating verbs with
semairtic classes.

1.7 Overview of Subsequent Chapters

The remaining chapters of this thesis are organizedas follows:

Chapter 2 (Background to Subcategorization Acquisition) introducesthe background
and motivation for our work. We discussthe phenomenonand theory of verb sub-
categorization and the task of constructing a subcategorization lexicon. We review
attempts to obtain subcategorization lexicons manually and semi-automatically, and
establish why automatic acquisition is needed. We then survey approacesto au-
tomatic subcategorization acquisition, discussthe state-of-art performance and the
problems which needto be addressed. Finally, we de ne the scope of our work and
intro duce the subcategorization acquisition systemwe employ in our researd.

Chapter 3 (Hypothesis Testing for Subcategorization Acquisition) examineswhy
hypothesis tests do not perform as expected in subcategorization acquisition. We
provide theoretical badkground on hypothesis testing, review the tests used so far,
and discussthe problems reported with them. Experiments are then reported where
we compare three di erent methods of hypothesis selection. Two hypothesis tests
perform poorly, comparedwith a simple method of Itering scf s on the basisof their
mle s. We discussreasonsfor this and note that the lack of accuratebadk-o estimates
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for scf srestricts the performanceof hypothesistests aswell asthat of other methods
of hypothesis selectionwhich rely on these estimates.

Chapter 4 (Back-off Estimates for Subcategorization Acquisition) addressesthe
problem that the unconditional scf distribution provides poor badk-o estimatesfor
scf acquisition. It investigateswhether more accurate estimatescould be obtained by
basing them on semartic or syntactic verb classes.Experiments are reported which
show that in terms of verb form speci c scf distributions, individual verbs correlate
more closelywith other semartically and syntactically similar verbsthan with all verbs
in general. The closestcorrelation is obsened betweensemartically similar verbs. On
the basis of this result, we suggestclassifying verbs semartically according to their
predominant senseand obtaining badk-o estimatesspeci c to semariic classes.

Chapter 5 (A New Approach to Hypothesis Selection) proposesa method for con-
structing verb classspeci ¢ badk-0 estimatesand preserns a new semairiically moti-
vated approac to hypothesisselection. The latter involvessmoothing the conditional
scf distribution for a predicatewith badk-0 estimatesof the respective semariic class
(i.e. the classcorresponding to the predominant senseof the predicate), and using
a simple method for Itering which placesa threshold on estimatesfrom smoothing.
We report experiments which demonstrate that the method can signi cantly improve
the accuracy of scf acquisition.

Chapter 6 (Semantically Motivated Subcategorization Acquisition) re nes the novel
approach to hypothesisselectionoutlined in chapter 5 further and appliesit to large-
scale scf acquisition. We rst relate our work to earlier researdr on semartically
motivated lexical acquisition. We then preser the revised approac to hypothesis
selectionalong with a newtechnique capableof automatically identifying the semartic
class of a predicate. The overall approad is evaluated with unknown test verbs.
Direct evaluation of the acquiredlexiconsshowsthat the semariically-driv enapproact
improvesthe accuracy of scf acquisition well beyond that of the baselineapproad.
Task-basedevaluation in the context of parsing shows that the subcategorization
probabilities acquired using our approac canimprove the performanceof a statistical
parser. Finally, we discusspossiblefurther work.

Chapter 7 (Conclusions) summarisesthe achievemerts of our work and suggests
directions for future researd.



Chapter 2

Background to
Sub categorization Acquisition

2.1 Introduction

In this chapter, we discussthe badkground and motivation for our work. We shall
start by describingthe linguistic phenomenonof verb subcategorization (section 2.2)
and consideringits accourt within linguistic theory (section 2.3). We shall then dis-
cusssubcategorization lexicons (section 2.4). We establish the requiremerts of such
resourcesand survey attempts to obtain them manually and semi-automatically. On
the basis of this discussion,we argue that when aiming for an adequatelexicon, au-
tomatic acquisition is the avernue to pursue. In section 2.5, we focus on automatic
acquisition of subcategorization lexicons. We survey various subcategorization acqui-
sition systems, discusstheir performance and highlight the problems which needto
be addressedto improve performance. After de ning the scope of our work, we end
the chapter by intro ducing the subcategorization system usedas a framework in our
researd.

2.2 The Linguistic Phenomenon of Verb Subcategoriza-
tion

Subcategorization concernsargumerts of a predicate. Thesemay be either obligatory
or optional, in which casethey should be separatedfrom adjuncts. While argumerts
are closely assaiated with the predicate and understood to complete its meaning
(2a), adjuncts are understood to complete the meaning of the certral predication as
a whole (2b).

(2) a He ate chocolate
b He sat eating chocolate

25
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A correct and consistert characterization of the argument-adjunct distinction is cru-
cial both for de ning and identifying subcategorization. A variety of criteria have been
proposedin linguistic literature to help make the distinction. One well-known crite-
rion is the so-called elimination' test (e.g. Somers,1984), which involves eliminating
an elemert from a sertence and observing whether the remaining sertence is still
grammatical. If it is grammatical, the elemen is classi ed as an adjunct (or in some
casesan optional argumert). Otherwise it is classi ed asan obligatory argumert, as
e.g. in his bag in (3a).

(3) a He put the apple in his bag
b * He put the apple

Other frequertly employed tests involve examining passiwe, theta roles, selectional
restrictions, diathesis alternations, island constraints, linear order of phrasesand so
forth (seee.g. Matthews, 1981; Somers, 1984; Pollard and Sag, 1987). Many of
the standard criteria are, howewver, subject to exceptions: few cover all casesand
someare in conict with ead other. Somers(1984) points out, for example, that
the elimination test is complicated by the distinction betweensyntactic and sematriic
obligatoriness. A semariically obligatory elemen may in dierent circumstances,at
the syntactic level, be obligatory (4a), optional (4b) or even necessarilyrealized by
zero (4c¢):

(4) a He met somebody vs. * He met
b Don’t disturb him, he is reading (something)

€ Our boy can already read VS. * OQur boy can already read something

In fact, there is a grey areaof caseswhich fall outside traditional classi cation. Some
linguists have addressedhis problem by proposing ner-grained distinctions alongthe
argumert-adjunct scale(Matthews, 1981;Somers,1984). Somers(1984), for example,
proposesdistinguishing betweensix categories. Theseinclude (i) "obligatory comple-
ments' (i.e. argumerts), (i) "adjuncts' and (iii) “optional complemerns', exempli ed

in (3a), (2b) and (2a) respectively, lexically determined and strongly compulsory (iv)

‘integral complemens' (e.g. he doesn’t have a chance), (v) “middles' (e.g. he smashed
the vase with a hammer ), which lie betweenobligatory complemerts and adjuncts,
and the extreme type of adjuncts called (vi) “extraperipherals' (e.g. he can cook, as
you know ), which modify an ertire proposition, adjuncts included. Separatecriteria
are proposedfor identi cation of these six categories. Although approades suc as
this explain some previously unclear constructions, they still leave fuzzy boundaries
betweenthe di erent categories.

comlex Syntax lexicographers(Meyers et al., 1994) have demonstrated that despite
theseproblems, argumerts can be distinguished fairly accurately from adjuncts using
v e criteria and v e heuristics for argumenrt-hood and six criteria and two heuristics
for adjunct-hood'. These criteria and heuristics are culled mostly from the linguis-

'Meyers et al. conducted an informal experiment where two human judges made substantially the
same argument-adjunct distinctions for a set of 154 phrases using the proposed criteria and heuristics.
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tics literature and supplemeried with rough generalizations. For example, they state
that nps, pps headedby to, and nite clauseswithout gapstend to be argumernts,
while purpose clauses,pps and advps expressingplace, time and manner are usu-
ally adjuncts. They also advise that an argumert usually occurs with the verb at
signi cantly higher frequency than with most other verbs, while an adjunct occurs
with a large variety of verbswith roughly the samefrequencyand meaning. Con icts
betweenthe criteria are resolved in various ways. For example,the complemen-hood
criteria override the adjunct-hood criteria in all but a few well-de ned cases,a single
complemern-hood criterion warrants argumert analysis, and so forth.

Given the argument-adjunct distinction, subcategorization concernsthe speci ca-
tion, for a predicate, the number and type of argumerts which it requires for well-
formedness.For example,someverbstake np complemeris (e.g. kill and build), while
others do not (die and smile). Someverbs permit a following whether-complemen
clause(enquire, wonder), others permit a following that-complemert clause,while oth-
ers permit neither (kill, die) and others permit both (consider). Sud speci cation
is sensitive to “grammatical functions' i.e. the speci ¢ grammatical roles the argu-
ments can bear when presen. For instance, (5) shaws (with traditional labels) the
grammatical functions involved with the argumerts of give.

(5) Tim supsecr gave USopyper @ hOUSE sgconp ossmeT

Semarically, argumerts correspond to participants involved in the event described
by the verb. The relationship betweena particular participant and an evert is char-
acterized by a “thematic role' (i.e. a “semartic role'). Thematic roles are traditionally

described using a discrete set of labels called, for example, ‘theta roles' (e.g. Fillmore
1968, Gruber 1976). The following list includes some of the most frequertly used
theta roles and the properties usually assaiated with them:

agent a participant assertedas either doing or causing something, often with
volition.
patient a participant being a ected.

experiencer a participant assertedas being aware of something.

theme a participant assertedas changing a position or state, or being in a
particular position or state.

source/goal/location a participant or location assertedasthe starting (source)
or ending (goal) point of motion, or place (location) of event.

recipient /beneficiary /maleficiary a participant assertedasreceiving (recip-
ient), bene ting from (bene ciary) or being hurt by (male ciary) something.

instrument a participant assertedas being usedfor somepurpose.

See Meyers et al. (1994) for details of this experiment.
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According to this classi cation, give hasthree participants in (5): the agen realized
by the subject Tim, the recipient realized by the object us, and the theme realized
by the secondobject a house. The task of assaiating syntactic argumerts of a verb
with semariic roles (in the manner just indicated) is called “linking'.

The ways predicatesselecttheir argumerts is determined by semaric tendenciesthey
have for these argumerts, i.e. “selectionalpreferences'(Wilks, 1986) or “restrictions'
(Katz and Fodor, 1964). For example, the two sertencesin (6) are syntactically
identical, but (6b) is semartically unacceptableasit violates the selectionalrestriction
holding betweenthe verb wrap and its object.

(6) a Mary wrapped the box of chocolates in tissue paper
b * Mary wrapped the orbit of Neptune in tissue paper

Although subcategorization usually involves referenceto semartic argumens of a
predicate, semartic selectionis not a necessaryrequiremert. Subcategorization can
alsoconcernphraseswhoseoccurrenceis obligatory in the local phrasal context of the
predicate but are not semairically selectedby it. Examples of verbs subcategorising
for such phrasesare “subject’ and “object raising' verbs. For instance, the subject of
the raising verb seem can be either contentful (7a) or pleonastic (7b). Raising verbs
contrast with super cially similar “equi' verbs. While one subcategorizeddependent
of a raising verb is not assigneda semartic role, all subcategorizeddependerts of an
equiverb are assigneda sematrtic role. Seem is thus a one-placepredicate (i.e. subject
raising verb), while try (7c,d) is a two-place predicate (i.e. subject equi verb). This
di erence is illustrated in (7e,f). An accourt of thesetwo verb typesfalls under the
rubric of “cortrol'.

(7) a John seems to drive a Ferrari
b It seems to annoy Tim that John drives a Ferrari
C John tries to drive a Ferrari
d *It tries to annoy Tim that John drives a Ferrari
e seen? (driv €® John° Ferrari9
f try 9 (John© (driv €® JohnP Ferrari9)

The sameverb may appearwith a variety of argumerts related to oneanother through
“diathesis alternations'. Sertencesin (8) exemplify the causative-inchoative alterna-
tion, wherethe sameargumert slot ller canbe assaiated with di erent grammatical
functions, either with the direct object of the transitiv e reading (8a) or the subject of
the intransitiv e reading (8b).

(8) a Robert rolled the ball
b The ball rolled
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Alternations may involve adding, deleting or subtly changing entailments licencedin
a particular construction. This can be illustrated with the dative alternation 2:

(9) a John gave champagne to Diana $ John gave Diana champagne
b Joe brought a book to Mary $ Joe brought Mary a book
C Bob promised a new bike for Bill$ Bob promised Bill a new bike
d *He charged ten pounds for/to Tom $ He charged Tom ten pounds
e *Sarah gave a smile to Tony $ Sarah gave Tony a smile

f David brought a Mercedes to the race $ *David brought the race a Mercedes

(9a) shows the core caseof the dative alternation where a volitional agert causesa
willing recipiert to receive an object. In (9b,c) the meaningis slightly di erent: the
agert intends to give recipient the object which the recipient may or may not receiwe.
In (9¢), the intended act of transfer refersto the future. (9d,e) are dative constructions
without oblique courterparts. (9e)is, in addition, a metaphorical/idiomatic extension
to the construction. (9f) shaws a dative construction without the ditransitiv e variant.

Theseexamplesillustrate that similar verbswith slightly di erent entailments, or the
sameverb usedin di erent ways or corntexts (accompaniedby di erent argumerts),
can give rise to di erent alternation variations. Rather than fully productive, alter-
nations appear semi-productive, as exempli ed by numerous exceptionsto the core
constructions, e.g. (9d,e,f).

What we understand as subcategorization in this thesis thus comprisesvarious facts
related to the syntax and semartics of predicate-argumen structure. Full accourt of
this linguistic phenomenonrequiresreferenceto the syntactic and semartic represen-
tation of predicate-argumen structure, and to the mapping betweenthe two levels of
represemnation. We shall in the presen thesis mainly concerrate on syntactic char-

acterization of subcategorization. In this we shall, howewver, exploit the closelink that

exists betweenthe syntactic and semartic characterizations.

2.3 Verb Subcategorization in Linguistic Theory

The theoretical accoun of verb subcategorization has changeddramatically over time
due to the trend of \lexicalism”, which has a ected both semaric and syntactic
theory. In what follows, we will provide a generaloverview to the account of subcat-
egorization rst within semaric and then within syntactic theory?.

2These examples are adapted from Briscoe and Copestake (1999) which provides detailed discus-
sion on dative constructions.

3Due to the vast amount of research in these areas and the limited scope of our enquiry, we shall
be able to provide a very general overview only and shall have to restrict our discussion to certain
theoretical frameworks. See the references given in this section for a fuller picture.
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[Event GOLOC
([Thing TIM]7
[Path TOLOC
([Thing TIM];
[Position ATLoc ([Thing TIM]7 [Thing HOME])D])}

Figure 2.1: A samplelcs

2.3.1 The Semantic Basis of Subcategorization
Linking

Much semartic researd has studied subcategorization from the perspective of link-

ing. Establishing linking betweenthe syntactic and semaric levels of the predicate-
argumert structure is not always straightforward. The task is especially complicated
by diathesisalternations. In the causative-inchoative alternation, for example,the re-
lation betweenargumerts and rolesis not transparert. In the causative variant (8a),

the subject is an agen and the object is usually a patient. When no explicit cause
is preser, however, the patient surfacesas subject (8b), despiteits apparert lack of
agertive behaviour. In contrast, the soldiers in (10b) seemperfectly acceptable as
agerts on their own, but in the causative reading are relegatedto object status. Thus
no simple solution of assigningagerts to subject and patients to object will su ce.

(10) a The general marched the soldiers down the road
b The soldiers marched down the road

Examples such as this suggestthe needfor a ne-grained semaric represenation.
Essertially, to provide a full accourt of the semaric basis of predicate-argumern
structure, a theoretical framework is required which allows for identi cation of the
subtle meaning componerts involved in verb behaviour, and a sophisticated meansof
linking thesewith corresponding syntactic realizations. Recent proposalsfor such a
framework include e.g. those of Jackendo (1990), Pinker (1989), Dowty (1991) and
Levin and Rappaport Hovav (1996).

Jackendo (1990) and Pinker (1989) adopt a compositional semartics perspective’.
Jackendo views semartic represenation as a subset of conceptual structure, and
proposesdecomposition of verbsinto “lexical conceptual structures' (Ics s). Ics s em-
body ‘types', such as Event, Thing and State, and “primitiv es', such as cause,
go and be. Thematic roles tie the argumert positions in a Ics to the npsin the
syntactic structure. Linking is thus establishedbetweenthe Ics s and syntactic struc-
tures. Semartically similar verbs take similar Ics s, and alternations are determined
as mappings betweenalternating Ics s. Figure 2.1 shaws a simple Ics for Tim went

to home®.

4In compositional semantics, the idea is to construct sentence meaning from the meaning of con-
stituent words and phrases.
®This Lcs is adapted from (Dorr, 1997).
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Pinker proposesdecomposing predicatesinto structures with dominancerelationships.
Semaric structures embody the primitiv esgo, be, act and have. Syntactic struc-
tures are projected from the underlying semartic structures via linking rules. For
example, Pinker provides a structure for transfer predicates like give in which the
transfer event (go) is embedded under the giving event (act ). The dative version
of give, on the other hand, has an enbedded causedownership event (have). Thus
alternations apply to semariic structures in predictable ways, and linking rules gov-
ern whether the resulting alternation structures are acceptably realised. Similar be-
haviour of a group of verbs is explained in terms of a shared semartic componert
called "thematic core'.

Dowty (1991) adopts a dierent approad, not based on predicate decomposition,
but on limiting the number of thematic roles to two “thematic-role-like concepts":
proto-agert (p-agt) and proto-patient (p-pat) roles. These are prototypical clusters
of entailments that act as semartic defaults. P-agts tend to be volitional, sertient
or perceptive, often causing events or movemen. P-pats may be incremertal themes
or stationary, or undergo a change of state or be otherwise causally a ected. With
individual predicates, particular participants take on p-agt, p-pat or oblique role sta-
tus basedon the number of cortributing entailments they share. The argument with
the most proto-agert entailments becomesp-agt (and subject), that with the most
proto-patient entailments becomes-pat (and object), and the remaining participants
get oblique status. Thus oncethe proto roles are assigned,linking follows trivially . In
this approad, verb meaning is simply expressedas the combination of a predicate-
speci ¢ relation with the set of valid entailments for ead role. Phenomenasud as
alternations are sensitive to the distinctions in licenced ertailments.

Levin and Rappaport Hovav (1996) introduce yet another type of approac, based
on further re nement of the nature of the causation factor. According to the Un-
accusative Hypothesis, two classesof intransitiv e verbs exist, the “unaccusatiwe' and
“unergative', eat assaiated with a di erent underlying syntactic con guration. This
distinction is said to accourt for various syntactic phenomena.Levin and Rappaport
Hovav argue that unaccusativity is syntactically encaded (in terms of internal and
external argumerts) but semarically determined (for example, in terms of internal
and external causation). It results from the application of linking rules sensitive to
internal/external causation. Restrictions on various realizations of causative alter-
nations, for example, are attributable to a distinction betweeninternal and external
causation. For instance, verbs amenableboth to inchoative and causative forms are
verbs of external causation that do not require a volitional agert (e.g. Robert broke
the vase $ The vase broke). In cortrast, non-alternating verbs are verbs of internal
causation that do require a volitional agert (e.g. Robert broke the promise $ *The
promise broke). This approac is not represetiational: rather, it is compatible e.g.
with predicate decomposition®.

SFor other proposals on linking see e.g. Grimshaw, 1990; Guerssel, 1986; Hale and Keyser; 1993.
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Lexical Semantic Perspective

In recert years,there has beenrenewed interest and resear® within sematrtic theory
on the meaning of words themselwes, i.e. how lexical semartic properties a ect both
syntactic behaviour and (compositional) semaric interpretation. We shall discuss
here just two examples,Pustejovsky (1991) and Levin (1993)'.

Pustejovsky discussesexamplessudc asthosein (11a,b) where enjoy conveysan iden-
tical relation of pleasurableexperiencebetweenthe experiencersubject and the evert
denoted by the verb's object of which the experienceris agert. In (11a), we needto
explain the mannerin which the implicit agent of the event-denoting np book-writing
is assaiated with Wodehouse while in (11b), we needto explain the mecanismwhich
allows that book to denote an event of Wodehousewriting or John reading the book.
According to Pustejovsky, enjoy coercesits artifact-denoting np object into an event
of sometype, while the lexical semaric represenation of the np itself determinesthe
broad nature of understood evert. For example, the nature of evert in (11b) diers
from that in Wodehouse enjoyed the scene.

(11) a Wodehouse enjoys book-writing
b Wodehouse / John enjoyed that book

Positing separatelexical ertries for the di erent syntactic realisations of enjoy fails to
capture the semariic relatednessof theseexamples. Pustejovsky proposesa theory of
lexical semartics called "the generative lexicon' the better to accourt for such phenom-
ena. In his generative model compositionality is assumedand lexical entries contain a
range of represenativ e aspects of lexical meaningat di erent levels: “argumert struc-
ture', “ewent structure', “qualia structure' and ‘lexical inheritance structure'. Event
structure, for instance, identi es the evert type involved with a verb or phrase,while
lexical inheritance structure determines the relation between words in the lexicon.
The levels of represenation can be connectede.g. via type coercion, and the oper-
ation of “co-compsition' is usedto perform specialisedinferencein prede ned ways
which cortrol the composition of knowledgestructures of words in context. The over-
all model thus captures subtle meaning variations without attempting to enumerate
them.

Levin (1993), on the other hand, arguesthat alternate syntactic realizations are partly
predictable on a semariic basisand may have semaric consequencesFor instance,
verbs participating in the dative alternation exempli ed in (9) are typically changeof
possessioverbs. Changeof position verbs, however, can only undergothe alternation
if they can be interpreted as conveying a changeof possession(e.q. John slid the beer
to the table edge vS. * John slid the table edge a beer)®.

Levin points out that although studies of verb semartics have generally acknowledged

"See for further related research especially Goldberg (1994). Goldberg has argued, within her
theory of the Construction Grammar (Goldberg, 1994), that constructions have meanings independent
of lexical items. The subcategorization (frame) itself or the construction is said to contribute aspects
of the overall meaning. Thus restrictions on realizations of the dative alternation, for instance, arise
because of conflicts between the semantics of the dative construction and that of particular arguments.

8This example is from Briscoe (1991), p. 43. See the reference for further discussion.
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the link betweenthe syntax and semariics of verbs, their continued successwill de-
pend partly on extensive exploration of verbs' syntactic behaviour. This, sheargues,
involveslooking at verbs' scf s, their participation in various diathesis alternations,
their morphological properties, as well as extended meanings. Drawing on previous
researd on verb semartics and her own investigation, Levin identi es 79 alternations
involving np and pp complemeris and classi es over 3200 verbs as menbers of these
alternations. Moreover, shegroupsthe verbsinto 191 semartic classeshasedon their
participation in various setsof alternations. Levin's accourt of verb sematriics is thus
descriptive, rather than represenational (lik e e.g. Pustejovsky's accourt). The result-
ing sourceis attractiv e in providing a summary of the variety of theoretical researd
done and a referencework extensive enoughfor practical nlp use. We shall describe
Levin's work in detail in section 4.2.1 and discussits relevance for nlp and lexical
acquisition later in this thesis (seeesyecially sections6.2 and 7.2.2).

2.3.2 Subcategorization in Syntactic Theory
Subcategorization and the Development of Lexical Grammar

In early days of syntactic theory, the entire lexicon wastreated asa peripheral compo-
nent, merely asan appendix to a grammar, or alist of basicirregularities (Bloom eld,
1933). Subcategorization was more or lessequated with the number and category of
argumerts related by a predicate. The lexicon would, for example, encade that do-
nate in English means'X causesY to have Z' and is a ditransitiv e verb with regular
morphology. Howewer, most other facts - sudch as that the subject of donate typi-
cally appearsbeforeit - were understood as predictable and fairly generalstatemerts
about English syntax and were stated independertly of the lexicon. Over the past
decadeshowever, the lexicon hastaken on an increasingly certral role in the descrip-
tion of idiosyncratic, subregular and regular properties of language. Consequetly,
the importance of subcategorization has increased. In recert syntactic theories, sub-
categorization represerts a complex of information critical to the syntactic behaviour
of a lexical item.

The developmert of \lexicalist grammar" wasinitiated by Chomsky (1970), who pro-
posedthat similarities in the structure of deverbal noun phrasesand sertencescould
be expressedin terms of a lexical relationship betweenthe verb and its nominaliza-
tion. In this new theory of grammar, lexical redundancy rules were usedto express
the relationship between a verb and a nominal (e.g. revolve, revolution). Bresnan
(1976, 1982) characterized further lexical regularities within the syntactic framework
called Lexical Functional Grammar (If g). Central grammatical phenomena(such
as passivization) were explained within the lexicon. Overall, the role of the lexicon
was considerably larger when comparedwith other approacesat the time, e.g. the
Governmert and Binding Theory (gb) (Chomsky, 1981). The lexical ertries were
elaborate, with every in ected form given its own lexical entry.

Gazdar et al. (1985) cortinued the line of work with Generalized Phrase Structure
Grammar (gpsg). This syntactic framework provided a novel treatment of subcatego-
rization. Simplifying somewhat, subcategorization is speci ed in gpsg via a feature
which indexes lexical items to specic phrase structure (ps) rules, which introduce
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A . boolean[]
B . f
(O

Figure 2.2: A samplefeature structure

their appropriate syntactic argumerts as phrasal sisters. Verbs of di erent type are
listed in the lexicon with appropriate valuesfor the Subcat(egorization) feature. For

example, we could have the rule 'VP < V[Subcat 7] NP' which introducesa simple
transitiv e structure (e.g. Mary ate the apple) with the Subcat feature 7 on the v

node, and every verb in the lexicon which can appear in that structure carries the

feature 7 as part of its lexical entry. Operations which a ect bounded dependencies
(such as passiwe) are expressedin gpsg in terms of metarules which systematically
manipulate vp rules.

Building on the work of gpsg, Pollard and Sag (1987, 1994) proposeda more rad-

ically lexicalist syntactic framework called Head-driven Phrase Structure Grammar

(hpsg). In this framework, the syntactic componert has been drastically reduced.
The construction-speci ¢ ps rules are abandonedin favour of a small number of more
general rules interacting with a richer lexicon to capture syntactic generalizations.
This general ps schema builds constituents according to the speci cations of Subcat

lists projected from lexical entries. Operations which a ect bounded dependencies
are expressedin terms of lexical operations (rules) which manipulate Subcat values.
We shall take a closerlook at the treatment of subcategorization within hpsg later

in this section.

Further developmernts of syntactic theory have likewise cortinued to relocate infor-
mation in the lexicon: Categorial Grammar (cg) (e.g. Zeewat et al., 1987), Tree-
Adjoining Grammar (tag) (Joshi et al., 1975), and so forth. As the importance of
the lexicon has increasedwithin syntactic theory, the role of other componerts of
grammar has declined. In radically lexicalist theories, the syntactic componert is
reducedto a few general principles concerning the combination of constituents and
all the information about categorial indentit y and mode of combination of these con-
stituents is projected from individual lexical entries. Thus these theories, instead
of building subcategorization requiremerts in syntax, do exactly the opposite; they
locate virtually all syntactic information into the subcategorization requiremerts of
lexical items.

As moreinformation is locatedin the lexicon, the questionof how the lexicon shouldbe
represerted hasbecomecritical. Most lexicalist theories of grammar (e.g. If g, gpsg,
hpsg, cg) use uni cation- or constraint-based formalisms (e.g. Shieber, 1986) for
lexical represertation. These formalisms treat syntactic categoriesas feature struc-
tures (fss). fss are formally equivalent to directed acyclic graphs (dags) and are
displayed in attribute-v alue-matrix (avm) notation, as shown in gure 2.2. In avm
notation, featuresare indicated in upper case type, typesin lowercaseboldface and
dag reertrancy is indicated by coindexing. The information in fs sis combined using
uni cation. Uni cation of two fs producesa new fs in which the information from
both fs s is monotonically combined.
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verb-cat complex-cat
RESULT . cat
DIRECTION : direction

ACTIVE -

Figure 2.3: A sampletype: a verb category

verb-cat
strict-intrans-cat x-sign-x-cat
strict-trans-cat backward-wrap-trans-cat =~ comp-cat xcomp-cat obl-cat

Figure 2.4: A type hierarchy fragment: verb category types

When applying constraint-based formalisms to the lexicon, it is natural to think in
terms of typed feature structures (Carperter, 1992), rather than untyped fss. The
type systemmay be usedto represen the lexicon asan inheritance hierarchy in which
information commonto a classof lexical items is inherited by all its subclasses.For
example, the properties commonto all verbs (e.g. pos, presenceof a subject) can be
de ned asa categorytype which subsumesall members of the verb class. The various
subcategoriesspecify di erent verb types(e.g. intransitiv e vs. transitiv e). Figure 2.3
displays a verb category type common to all verbs, and gure 2.4 shows a partial
inheritance hierarchy for the sub-typesof this type’. Although inheritance basedon
typing is formally attractiv e, there are linguistic phenomenawhich involve patterns of
regularities and subregularities which cannot be insightfully characterized according
to a monotonic inheritance system (Briscoe et al., 1993). Many recert proposals
therefore focus on the incorporation of nonmonotonicity i.e. default inheritance (e.g.
Carpenter, 1993;Lascarideset al., 1996).

A standard feature of inheritance-basedlexicons is the use of lexical rules, i.e. the
mappingsfrom onefs to another related one. Lexical rules state conditional implica-
tions about the presenceof derived lexical ertries, given other ertries. The rules are
usede.g. to represent diathesis alternations. They have taken a variety of forms: see
e.g. Shieber (1984), Briscoe and Copestake (1999) and Bresnan and Kanerva (1989).

9These examples are taken from Sanfilippo (1993) whose lexical representation is compatible with
Unification Categorial Grammar (UCG).
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The Grammatical Account of Subcategorization

Grammar theories'® dier largely in their approad to the argumert-adjunct distinc-
tion. Various distinctions along the argument-adjunct scale are assumed,and the
treatment of the elemens classi ed to the categoriesadopted varies. Similarly, the
number of scf s assumedand the amourt of information provided in them is subject
to variation. This is mostly due to diverging dispositions to use syntactic rules and
principles to expresssyntactic generalizations, with a consequenh shift of emphasis
away from or towards lexical specication. For example, non-lexicalist grammars,
such as gh, handle the phenomenonof cortrol in terms of syntactic principles or
rules, while lexicalist grammars, sud as If g, hpsg, and cg, encade cortrol in the
lexicon, in scf s of the relevant predicate.

The theoriesalsovary in how they represen the semartics of subcategorization. Some
theories employ only one level of syntactic represemnation and assaiate a semartic
represertation with ead syntactic constituent in some fashion (e.g. gb, If g and
gpsg). In thesetheories, argumert structure is de ned asa level of syntactic descrip-
tion. One sudh theory is (the early version of) gpsg. It pairs a semaric rule with
ead syntactic ps rule, which builds the semartics of the left-hand mother category
out of the semartics of eadh right-hand daughter category. Other, more radically lexi-
calist theories, relocate the semartics directly in the lexicon (e.g. hpsg, ¢g). In these
theories, argumert structure is part of the semaric description of the predicates.
For example, the lexical erntry for a transitiv e verb includes the information that the
semartics of the subject and object syntactic argumerts function asthe semariic ar-
gumerts of the predicate assaiated with the verb. Locating this information (which
generalizesto all transitiv e verbs) in the lexicon allows the semaric represertation
to build up in tandem with the syntactic represeration.

Most syntactic theories approach semairiics in compositional manner. The details of
the semartic represertation, however, vary. Sometheories usetheta role annotations
to rank participants in order to determine their syntactic function. Classifying ar-
gumert positions into theta roles may be done in terms of traditional classi cations
of the type introduced in section 2.2. Alternativ ely, more primitiv e componerts of
meaningmay be assumed,such asthose proposedby Pinker (1989) and Dowty (1991)
(discussedin section2.3.1). For example,If g assumesa hierarchy of traditional theta
roles, while ucg makes partial use of Dowty's prototypical roles. gb, instead, uses
internal/external argumert distinction to determine the structural realization of se-
mantic roles. This distinction is not semarically motivated, but simply assumedas
a lexical speci cation.

Syntactic theoriesalsodier in how they approad linking. Firstly, they vary in how
they de ne and represen grammatical functions. Many currect theories view gram-
matical functions aslinks betweentheta roles and syntactically selectedconstituents,
represerniing them at the level of lexicon or syntax. San lipp o (1990) distinguishes
three main orientations according to whether grammatical functions are (i) reduced
to constituency relations between phrase markers (as in gb), (i) de ned as primi-
tive elemens of the grammar (as in early versionsof If g), or (iii) derived from the

9See the previous section for references of grammar theories we discuss in this section.
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semartic constituency of predicates (as in cg and hpsg). Secondly these theories
vary in how linking proceeds. For example, in gb, the thematic functionality of ar-
gumert structure participants is directly projected in syntactic structure. Subjects,
objects and other grammatical functions are expressedas predication and government
relations between nodesin the tree structures. If g, instead, usesLexical Mapping
Principles to govern the linking of thematic rolesto grammatical function featuresin
lexical forms. In hpsg and cg, argumerts are syntactically ranked accordingto the
obliquenesshierarchy which reproposesthe grammatical functions in terms of relative
position in the Subcat list.

To illustrate the discussionso far, let us consider- as an example - the treatment of
subcategorization in (the standard) hpsg. hpsg is a radically lexicalist theory which
makes heavy use of uni cation and where categoriesincorporate information about
the categoriesthey combine with, including subcategorization information. Very few
rules are necessary:rather, all important syntactic and semartic processesre driven
by information in lexical entries. Much of the ps rules in theories like gpsg are
replacedby constraints on the combination (uni cation) of phrasal and lexical signs.
A signis afs which encadesphon ology, syntax and semantic attributes. hpsg makes
use of typed signs, organizing the lexicon as an inheritance hierarchy. Distinct verb
types(e.g. intransitiv e and transitiv ) are characterized by distinct typed signsand
subcategorization of verb (sub-)typesis encaded in terms of list of categorieson the
attribute subcat. In lexical entries, the feature subcat is usedto encade various
dependenciesthat hold between a lexical head and its complemens. The values of
this feature contain functional, formal and semaric information, providing uniform
treatment of eadh. Lexical entries cantherefore exert restrictions on category selection
and governmert, aswell as caseand role assignmetn.

Figure 2.5 shaws a simple hpsg style lexical ertry for give!!. As illustrated in this
entry, the feature subcat takes as its value a list of partially specied synsems,
which bear local valuesfor the attributes categor y and content . categor y con-
tains information about pos, subcategorization requiremerts and possible markers,
while content  providesinformation about argumert structure. The feature subcat
speci es the corresppndencebetween grammatical categoriesand the semaric roles
presen at the event described by the verb. The variables assaiated with the ele-
mernts of the subcat list unify with the corresponding variables of the semariic roles
in the attribute content . For example,the subject variable (the rst elemen of the
subcat list) unies with the variable lling the “giver' role.

The o w of subcategorization information up projection paths is handled by the Sub-
categorization Principle. This principle establishesthat the subcat value of a phrase
is the subcat value of the lexical head minus those speci cations already satis ed by
someconstituent in the phrase.

hpsg assumesa hierarchy of grammatical categories. Syntactic functions (with the
exception of the subject in someversionsof hpsg) are de ned in terms of the order of
corresponding elemerts on the head'ssubcat list. The order of this list correspnds
to the traditional notion of obliqueness.

"'The entry is taken from EAGLES (1996), p. 14.
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[ PHON . give
SUBCAT : ( np[g],np[g,0P[3)
RELN : give

| GIVER .
CONTENT - | RROEIVER .

GIVEN .

SYNSEM|LOC|CAT -

Figure 2.5: hpsg lexical entry for give

Operations which involve bounded dependencieg(such as passiwe) or semi-productive
diathesis alternations, are expressedin hpsg using lexical operations which manip-
ulate subcat values. They can be captured using lexical rules which map between
verb types. For example, to specify passiwe, a lexical rule may be intro duced which
removesthe rst elemen of a subcat list. Or, to specify an alternation such asthe
causative-inchoative a lexical rule can be de ned which establishesa mapping from
the verb type intrans-verb to the verb type trans-causative-verb, stating a con-
ditional implication about the presenceof the “derived' lexical entry given the basic
ertry.

In sum, the treatment of subcategorization varies largely from one theoretical frame-
work to another. Within semariic theory there is no consensusregarding the ex-
act meaning componerts that determine various aspects of verb subcategorization.
Rather than being clear, these componerts appear subtle and elusive. Similarly
within syntactic theory, there is no uniform accourt of this complex phenomenon.
Howewer, there is a commontrend towards lexicalism, both within semariic and syn-
tactic theory. The importance of the lexicon hasincreasedand at the sametime, the
importance of subcategorization within the lexicon.

2.4 Subcategorization Lexicon

Giventhe highly structured conceptionof the lexicon emergingfrom linguistic theory,
the certral role of subcategorization within the theory, the requiremerts of various
theoretical frameworks and the needsof the current (statistical) nlp applications,
the question of how to obtain formal, explicit lexicons of su cien tly rich subcatego-
rization has becomecritical. In what follows, we shall rst considerrequiremerts of
subcategorization lexicons and then discussthe task of their construction.

2.4.1 Requiremen ts

The design, content and speci cation of a lexicon for any nlp system is inevitably
tied to the purposefor which the nlp system has been constructed, to the in uence
of prevailing theories and to the current requiremerts of computational tractabilit y.
The lexical knowledge required by dierent nlp systemsrangesfrom a shallow list
of morphological forms to a highly structured and ne-grained lexicon which derives
from the linguistic theory adopted. To be practical and useful, however, most nlp
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systemsneed a substartial and comprehensiwe lexicon which covers an adequate vo-
cabulary and encadesthe type of qualitativ e and quantitativ e knowledgerequired by
the application. A ne-grained lexicon is neededin the increasing number of tasks
that require rigorous interpretation of meaning. Somegeneral statemens regarding
the content of such a lexicon can be found, for example,in Hudson (1995) and Ide and
Veronis (1995). In general,the conception of a richer lexicon leadsto a combination
of morphological, collocational, syntactic, semartic, pragmatic and, for applications
involving speed, phonological and phonetic information.

A comprehensie subcategorization lexicon suitable for various nlp usesshould rstly
distinguish between argumerts and adjuncts. This is essetial e.g. for a parser, to
distinguish between multiple parsesof utterances and represent di erences in pred-
icate argumernt structure. Consequence®f errors in making this distinction include
e.g. generating too few or spurious parses, missing preferencesbetween parsesand
misinterpreting the predicate argumert structure (Meyers et al., 1994).

Giventhat the argumert-adjunct distinction can be established,a subcategorization
lexicon must, at the very least, encade the number and category of syntactic ar-
gumerts assaiated with dierent predicates. This information is typically encaled
in terms of scfs. More or lessspecic scf classications have been proposed, de-
pending e.g. on the requiremerts of a particular syntactic framework assumed.scf s
may e.g. incorporate only syntactic or also semariic information; they may abstract
over lexically governeditems (such as prepositions and particles) or parameterize for
them, and soforth. The fairly detailed classi cation proposedby Briscoe (2000) (in-
cludedin Appendix A), for example,incorporatesasmany as 163 scf distinctions. It
abstracts over speci ¢ lexically-governed particles and prepositions and speci ¢ pred-
icate selectionalpreferencesput includes somesemi-productive bounded dependency
constructions, sud as particle and dative movemert.

To be compatible with current linguistic theories and guarantee full recovery of log-

ical forms, a subcategorization lexicon should ideally also specify predicate senses,
the mapping from syntactic argumerts to semaric represetation of argumernt struc-

ture, cortrol on predicative argumerts, semariic selectionalpreferenceson argumert

heads, and diathesis alternation possibilities. In addition, it would be important to

encade quantitativ e information, sud as the relative frequency of distinct scf s for

ead predicate and the probability (or productivit y) of various diathesis alternations.

This information would be particularly usefulto current statistical nlp applications.

Knowledge of verb semariic classesor further details of argumernt structure, such as
morphosyractic properties of argumerts, may be useful as well, depending on the

intended use of the lexicon.

Both the content and form of a subcategorization lexicon require consideration. As
discussedin the previous section, many contemporary grammar theories assumea
highly structured organization of a lexicon, which shows corvergenceof lexical the-
ory and lexicographic practice. This contrasts with the traditional organization of
a (subcategorization) lexicon as a list of unrelated lexical entries. The traditional
organization lacks generalization and unnecessarily expands lexical represenation.
In addition, it fails to capture the semariic interrelation betweenthe dierent verb
sensesand their corresponding scf s. According to Levin (1993, p. 1), an ideal lexicon
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would \pro vide linguistically motivated lexical entries for verbs which incorporate a
represenation of verb meaningand which allow the meaningsof verbsto be properly
assaiated with the syntactic expressionsof their argumens". If a subcategoriza-
tion lexicon encades information about alternations and verb semaric classes,this
would allow its organization in a compact and linguistically motivated manner (e.g.
San lipp o, 1994; Briscoe and Copestake, 1999).

Attempts to obtain subcategorization lexicons may be divided into dictionary and
corpus-basedapproades. We shall discussthesetwo typesof approach in the following
sections.

2.4.2 The Dictionary-Based Approac h

Seweral substartial, static subcategorization lexicons exist for English, built either
manually by (computational) linguists or largely automatically from machine-readable
versionsof convertional learners' dictionaries.

Manual construction of lexiconswaspopular in early stagesof nlp . When the systems
becamemore sophisticated and lexicons grew in size, this approac was not ertirely

abandoned. In the early 1990's,large lexiconsor lexical databases(ldb s) were devel-
oped, mostly manually, within seweral projects, e.g. genelex , Esprit (Normier and
Nossin, 1990); mul tilex , Esprit (McNaught, 1990). One sudc substartial subcatego-
rization lexicon is the comlex Syntax (Grishman et al., 1994). However, the task of
manually developing a large-scalecomputational lexicon is equivalent to that of devel-
oping a corvertional advanced learners'sdictionary from scratch. It is a major task
involving hundreds of years of speci cation, design, data collection and information

structuring - even when assistedby corpus analysis and software support. Not only
labour-intensive, manual construction of lexiconsleadseasily to problems of inconsis-
tency and errors of omission,which are di cult or impossibleto detect automatically

(Boguraev and Briscoe, 1989).

Since the resourcesrequired for manual developmert of lexicons are typically not
available, an alternativ e approac has, sincethe 1980's,beento make useof machine-
readabledictionaries (mrd s). Theseinclude information already categorized,indexed
and available in machine readable form. This information may be usedto automat-
ically construct a substartial portion of a lexicon, which saves much of the e ort

involved in manual work. The ideal mrd for this purposewould be a comprehensie
advanced learner's dictionary organized as a database. Sud a source supplies more
grammatical and other information than an ordinary dictionary, as it assumesless
linguistic competenceon the part of the user (Briscoe, 1991).

Available mrd s, such asldoce , cobuild , the Oxford AdvancedLearner's Dictionary
(oald ) (Hornby, 1989) or the Cambridge International Dictionary of English (cide)
(cup editor, 1995)only, however, approach the ideal. Much e ort hasbeeninvestedin
recognizingand compensating for errors and inadequaciesin mrd s and/or corverting
one or sewral mrd sinto a singleldb (e.g. Byrd et al., 1987; Boguraev et al., 1991;
Poznanski and San lipp o, 1995). This work has been applied to monolingual and
bilingual dictionaries, sometimesintegrated with languagecorpora and morphological
processing. An example of a substartial subcategorization lexicon constructed from
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the mrd of Idoce via somemanual intervertion is the anl t dictionary 2.

While work on mrd s has met with somesuccessit hasnot resulted in knowledge-rich

lexical resources.Basedon manual work and originally written with a human readerin

mind, the information included in mrd sis often unsystematic. Evenafter considerable
manipulation, customisation and supplemenation, these dictionaries cortain errors,
inconsistenciesand circularities di cult to recogniseand compensatefor.

Briscoe (2001) notesthat (semi-)manually developed lexiconstend to show high preci-
sionbut disappointing recall. When an open-classvocabulary of 35,000words (Briscoe
and Carroll, 1997)was analysedmanually for scf and predicate assaiations and the
result was compared against assaiations in anl t and comlex , type precision'®> was
around 95% for anl t and comlex , while type recall was only around 76% for anl t

and 85%for comlex . Thus despite the large volume of lexicographical and linguistic
resourcesdeployed, 16-24%of assaiations betweenpredicatesand scf s were omitted

in these lexicons. Briscoe reports that many of the omitted assaiations are quite
unremarkable. For example, when the asscaiations from anlt and comlex were
combined, this still left the following sertence typeswith the verb seem unanalyzed:

(12) a It seemed to Kim insane that Sandy should divorce
b That Sandy should divorce seemed insane to Kim
C It seemed as though Sandy would divorce
d Kim seemed to me (to be) quite clever / a prodigy
e (For Kim) to leave seemed to be silly

f The issue now seems resolved

In addition, there are other shortcomingsin the content of the lexicons obtained via
dictionary-based work. For example, subcategorization lexicons such as anlt and
comlex only assaiate predicate forms (not predicate senses)with scf s. Although
they encade relatively well the syntactic speci cation of subcategorization, semartic
facts and facts at the boundary between syntax and semartics are poorly encaled.
Although e.g. information about lexical selection (i.e. the specic lexical require-
mernts that a verb imposeson its subcategorized content, such as details of bound
prepositions, particles and complemertizers) is included, information about semartic
selectional restrictions/preferencesis lacking. Similarly, the encading of diathesis al-
ternations is inadequate. Only information about one or two well-known alternations,
such as the dative construction, is included, and information about verb semartic
classesis absent. In addition, the mapping from syntactic argumerts to semaric
argumert structure is not fully speci ed, and quartitativ e information, e.g. about
relative frequency of scf s given words, is altogether absert.

The organization of current static lexicons doesnot meet the ideal discussedin the
previous section. Although de nition of a lexical entry varies from one lexicon to
another (e.g. a lexical entry in anlt assaiates a particular verb with one scf only,
while comlex gathersunder oneertry all scf s taken by a particular verb), lexicons

12We will introduce ANLT further in section 4.2.2.
13See section 2.5.2 for definition of type precision and type recall.
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are generally built in the traditional manner, as lists of unrelated lexical erntries. A
linguistically versatile lexicon design, e.g. that compatible with current grammar
theories would require, again, a more thorough encaling of semarnic and syntactic-
semartic properties of subcategorization than current lexicons employ.

The general problem with both manually deweloped lexicons and those developed
from mrd s is that the information encaded in them is by de nition nite. Adding

information currently missingin theseresourcesis possible,although costly and time

consuming. However, it will not solve the problem inherert in the dictionary-based
approach: given that languagevaries acrosssub-languagesdomains and over time, a
fully accuratestatic lexicon is unattainable in any case.Subcategorization frequencies
have beenshaown to vary acrosscorpustype (written vs. spoken), corpus genre (e.g.
nancial newstext vs. balancedtext), and discoursetype (single sertencesvs. con-
necteddiscourse)(Carroll and Rooth, 1998;Roland et al., 2000;Roland and Jurafsky,

1998, 2001). Roland and Jurafsky (2001) have showved that much of this variation is
causedby the e ects of dierent corpus genreson verb senseand the e ect of verb
senseon subcategorization. For example, the attack and bill sensesof charge have
ead dierent setof scf probabilities. Moreover, the bill senseis much more common
in e.g. a newswire corpus than a balanced corpus, while the attack senseis frequert

in a balancedcorpusand rare in a newswire corpus. In consequencecharge will have
dierent overall scf frequenciesin thesetwo corpora. Thus the relative frequency of
a scf variesdepending on the relative frequency of the senseof a word and often scf s
are di erent under senseextensions. For example, in she smiled herself an upgrade,

the entire scf is only available under the extended sense(Briscoe, 2001).

2.4.3 The Corpus-Based Approac h

Thusit seemsthat a once-and-for-all universal' lexical resourceis a dead weight, and
that lexicons should rather be produced on a case-ly-casebasis. The problems with
dictionary-based lexicons have led to attempts to acquire lexical information from
corpusdata. This approacd has becomepossibleduring the past decadeor so, when
su cien tly cheapcomputation and large enoughcorpora have becomeavailable. Text
corpora are a useful sourceboth of qualitative and quartitativ e lexical information.
Frequencyinformation is crucial for many nlp applications and essetial to statisti-
cal approadies. Along with linguistic information, it is also relevant to the corpus
data from which it is acquired. The latter makesit possibleto acquire lexical in-
formation speci c to di erent sub-languagesgliminating the necessiy of viewing the
lexicon as static. In the next sectionwe survey attempts to acquire subcategorization
information automatically from corpus data.

2.5 Automatic Subcategorization Acquisition

During the past decade,se\eral works have emergeddescribing methods of automatic
subcategorization acquisition (Brent, 1991,1993;Ushioda et al., 1993;Manning, 1993;
Ersan and Charniak, 1996;Briscoe and Carroll, 1997;Carroll and Rooth, 1998; Gahl,
1998; Lapata, 1999; Sarkar and Zeman, 2000). These methods have so far concen-
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trated on the acquisition of very basic subcategorization information: subcategoriza-
tion frames (scf s) and their relative frequenciesgiven speci ¢ predicates. Although

this work has met with somesuccessmore work is neededbefore large-scalelexicons
encaling accurate and comprehensie subcategorization information can be obtained

automatically. The researt presered in this thesis builds directly on the work al-

ready done on subcategorization acquisition. In particular, the problemsit addresses
stem directly from earlier researt. In what follows, we shall accordingly provide a

fairly detailed survey of previous researt in the topic. We organize our survey as
follows: Section 2.5.1 reviews the di erent methods used for scf acquisition. Sec-
tion 2.5.2 looks into evaluation of these methods and describes the performance of

existing scf acquisition systems. It also discusseshe problems that needto be ad-

dressedwhen aiming to improve state-of-art performance, and de nes the particular

problem we addressin this thesis. Finally, section 2.5.3 introducesthe system we

employ in our researt as a framework for scf acquisition.

2.5.1 Metho ds

All methods of subcategorization acquisition sharea common objective: given corpus
data, to identify verbal predicatesin this data and record the type and/or number of
scf staken by thesepredicates. Typically, they proceedin two steps,by (i) generating
hypothesesfor scf s and (ii) selectingreliable hypothesesfor the nal lexicon. Giving
a more detailed description of a \t ypical" learning processis di cult, asthe proposed
methods vary in dierent respects. Firstly, they vary in goal. Some systemslearn
only scf s, while others also learn relative frequency of scf s given speci ¢ predicates.
Secondly the methods vary asto whether the scf s are pre-speci ed or learned, how
many scf s are targeted or learned, and how they are de ned. Further, approacesto
hypothesis generation vary, depending on whether raw, partially parsedor interme-
diately parsed corpus data are used as input to the learning process,and how cues
for hypothesesare de ned and identi ed. Hypothesisselectionis similarly subject to
variation. Some systemstreat hypothesisedscf s as absolute scf indicators, while
others treat them as probabilistic indicators. The latter systemstypically employ
a separate Itering component, with Itering frequerntly performed using statistical
hypothesis tests. However, di erent hypothesis tests and versionsof these tests are
in use.

We divide the various methods into three groups which we discussin the subsequen
sections. This grouping re ects chronological developmert from preliminary systems
capable of acquiring only a small nhumber of scf s towards more ambitious systems
suitable for large-scalesubcategorization acquisition. It alsoshaowvs how methods have
developed with respect to the di erent factors listed above'.

14This section serves as an overview: the particularly relevant aspects of the SCF acquisition process
and those of individual studies will be discussed more thoroughly in the corresponding chapters to
follow.
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Preliminary Work

Work on automatic subcategorization extraction was initiated by Brent (1991, 1993)
who proposeda preliminary method for acquiring just six scf sfrom corpusdata. The
setof scf stargeted wasmanually composedand restricted to thoseinvolving basicnp,
sertential and in nitiv al phrases. Brent's purposewas only to exploit unambiguous
and determinate information in raw (un-tagged) corpora. A number of lexical cues
was de ned, mostly involving closedclassitems, which reliably cue verbs and scf s.

In Brent's system, hypothesis generation proceeds rstly by nding the verbsin the
input, and secondlyby nding phrasesthat represen argumerts of the verb. Potential
verbs are identi ed by searding the corpus for pairs of words which occur both with
and without the sux -ing. A potential verb is assumeda verb unlessit follows a
determiner or a preposition other than to. For example, was walking would be taken
as a verb, but o talk would not. To obtain unambiguous data, verbs occurring in
morphological forms other than the stem form and the -ing form are ignored. The
resulting data are usedasinput to scf identi cation. First, syntactic phrasesnear a
putativ e verb occurrenceare examined and likely verbal argumerts indenti ed using
lexical cues. For example,the clausebeginningwith that the isidenti ed asa potential
argumert of the verb tell in I want to tell him that the idea won’t fly on the basisthat
pronouns like him rarely take relative clauses. Next, putative argumert phrasesare
classi ed as scf s. For instance, a phraseis classi ed asin nitiv e complemern if the
string of words immediately right of the verb matchesthe cue [to v] (e.g. | hope to
attend).

Although Brent useshighly reliable cues,the correspondencebetween cuesand syn-
tactic structure is still not perfect, and the output of the hypothesisgeneratorcontains
somenoise. For example, using Brent's cues,the verb refer is wrongly classi ed as
taking anin nitiv ecomplemen in a sertencesud as ! referred to changes made under
military occupation. Brent (1993) addresseghe problem by treating the hypotheses
asprobabilistic rather than absoluteindicators of scf s. He employs a statistical lter
for hypothesis selection, which aims to determine when a verb occurs with a par-
ticular scf often enoughthat all those occurrencesare unlikely to be errors. This
Iter is basedon the binomial hypothesistest (bht ) (Kalb eisc h, 1985). It usesthe
overall error probability that a particular scf will be hypothesisedand the amount
of evidencefor an assaiation of that scf with the verb in question to decide which
hypothesesare reliable enoughto warrant a conclusion'®.

The main problem with Brent's approad is that it generateshigh accuracyhypotheses
at the expenseof coverage. Reliant on raw corpus data, the method is dependert on
lexical cues. However, for many verbs and scf s, no sudh cuesexist. For example,
some verbs subcategorize for the preposition in (e.qg. They assist the police in the
investigation), but the majority of occurrencesof in after a verb are np modi ers or
non-subcategorizedlocative phrases(e.qg. He built a house in the woods). Thus the
approad is not extendableto all scf sand at any rate leadsto ignoring a great deal of
information potentially available. Use of only unambiguous data meansthat corpus
analysiswill be incomplete and no accurate frequency information can be gathered.

15A detailed account of this test and its versions is given in chapter 3.
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Further Developments

Giventhe problemsof Brent's method, subsequeh approachesto scf acquisition have
opted to seekevidencefrom all examplesin corpusdata. This hasnecessitatedthe use
of annotated input data. The approac hasbeento extract pos tags from corpora and
chunk (Abney, 1991) the pos tagged data into non-recursive coresof major phrases,
e.g. verb groups, bare unpostmodi ed nps, pps and soforth. Chunks extend from the
beginning of the constituent to its head, but do not include the post-headdependerts,
such as complemerns and trailing adjuncts. For instance, a verbal chunk generally
endswith the headlexical verb, sothat complemeris following the verb are excluded.
This is illustrated in the following sertence, chunked into np and vp chunks:

(13) [np We][vp lack] [np the means][yp to do] [xp that]

Essetially, chunking allows factoring data into those piecesof structure which can
be recovered without knowledge of the phenomenathat we are trying to acquire (i.e.
scf s).

Ushioda et al. (1993), Manning (1993), Gahl (1998) and Lapata (1999) represen the
rst phaseof chunking-basedscf acquisition. They all opt for partial parsingvia nite
state regular expressionpattern matching. Parsing is deterministic, and ambiguities
in analysis are typically solved using the longest match heuristic: if there are two
possible parsesthat can be produced for the same substring, the parser choosesthe
longer match. scf recognition is usually aided by the useof a small number of lexical
cues.

Ushioda et al. (1993) adopt a pos tagged version of the Wall Street Journal corpus
(wsj) (Marcus et al., 1993) and a nite-state np parser, which vyields information

about minimal noun phrases. Their systemis capable of recognizingand calculating
the relative frequency of six scf s, the same set as used by Brent. The hypothesis
generator rst extracts ead serience cortaining a verb from the tagged corpus. It

then chunks the noun phrasesusing the np parser and the rest of the words using a
set of 16 symbols and phrasal categories(such as vp, pp, sertence initial and nal

marker, and so forth). A set of nine scf extraction rules is then applied to the
processedsertences. Theserules written asregular expressionsare obtained through
examination of occurrencesof verbsin a training text. For instance, the verb follow
would be assigneda np complemert in the chunked sertence [xp John] [vp followed)
[np him] via a rule which statesthat np chunks immediately following the target verb
are np complemers, unlessthemselhesimmediately followed by a modal, nite verb
or baseverb.

The output from the hypothesis generator is fairly noisy. The most frequert source
of error is in noun boundary detection causedby the simple np parser (e.g. give
*[np government officials rights] against the press VS. give [Np government officials]
[Np rights] against the press). The secondmost frequert sourceis error in argumert-
adjunct distinction. Ushioda et al. addressthis problem by using an additional
statistical method for hypothesis selection, which enablestheir systemto learn pat-
terns of errors and substartially increasethe accuracy of estimated scfs. It uses
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regular expressionsas Iters for detecting speci ¢ featuresof occurrencesof verbsand
employs multi-dimensional analysis of these features basedon log-linear models and
Bayestheorem.

Manning (1993) proposesa similar but more ambitious system capableof recognizing
19distinct scf s. Thesescf s, someof which are parameterizedfor a preposition, com-
prise standard frames occurring e.g. in the oald , ldoce and cobuild dictionaries.
Corpus data is rst tagged using a stochastic pos tagger and a nite state parseris
run on the output of the tagger. It parsescomplemerts following a verb until a ter-
minator of a subcategorizedargumert (e.g. a full stop or subordinating conjunction)
is reached. The parser includes an np recogniserand a set of simple rules for scf
identi cation. It outputs a list of elemeris occurring after the verb, putativ e scf s
and statistics on the appearanceof the verb in various contexts.

Due to parser mistakes (e.g., the parser invariably records adjuncts as argumerts)
and skipping (the parser e.g. skips relative clausesand conjunctions whose scope
is ambiguous), the resulting hypothesesare noisy. In fact, the hypothesis generator
returns nothing or a wrong scf in the majority of cases. Instead of re ning the
hypothesisgenerator further, Manning placesmore emphasison hypothesisselection.
Hypothesesare evaluated and Itered, following Brent, by bht . As the hypotheses
are more noisy than those generatedby Brent's system, Manning re nes the bht by
empirically setting higher bounds on the probability of cuesbeing false for certain
scf s. The resulting lexicon encades information only about scf s, not their relative
frequencies.

Gahl's (1998) and Lapata's (1999) work di ers from Ushioda's and Manning's in that
they perform scf acquisition in the context of corpus query systems. Gahl presens
an extraction tool for use with the British National Corpus (bnc) (Leec, 1992)
which she usesto create subcorpora containing di erent scf s for verbs, nouns and
adjectives, given the frames expected for ead predicate. Gahl's tool is essetially a
macroprocessorfor usewith the Corpus Query Processor(cqp) (Christ, 1994). In the
latter, corpusqueriesare written in the cqp corpusquery language,which usesregular
expressionsover pos tags, lemmas, morphosyrtactic tags and sertence boundaries,
essetially simulating a chunk parser. Gahl's macroprocessorallows a userto specify
which subcorpora are to be created. A user has the choice of 27 seardable scf s,
basedon a selection of those occurring in the comlex syntax dictionary. One can,
for example,seard the corpusfor the scf pattern [verb np vping]. This query returns
correct subcategorizations (e.g. I kept them laughing) but also gerundsthat are not
subcategorized.

Gahl identi es seweral typesof error in output, most of which were causedby the par-
tial parser(e.g. unrecognisednull or empty categories,ambiguities in pp attachment
and so forth). Despite this, sheusesno Itering for hypothesisselection. Nor is any
experimental evaluation provided which would shov how this system performs. Gahl
concerrates only on extracting instances of potential scfs. She mentions that the
subcorpora produced by the tool can be usedto determine the relative frequenciesof
scf s, but reports no work on this.

Lapata (1999) proposesa method similar to Gahl's. She usesthe pos tagged and
lemmatized version of bnc asan input to Gsearth (Keller et al., 1999), a tool which
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allows the seart for pos tagged corpora for shallow syntactic patterns based on
a user-sgeci ed grammar and syntactic query. Gseard combines a parser with a
regular expressionmatcher. In Lapata's approad, a chunk grammar was speci ed
for recognizingthe verbal complex and nps. The aim wasto acquire just three scf s
characteristic of the dative and benefactive alternations. The tool wasusedto extract
corpus tokensmatching the scf patterns [verb np np], [verb np to np] and [verb np
for np]. pos tags were retained in the parser's output which was postprocessedto
remove adverbials and interjections.

Lapata reports a high level of noisein the output of the hypothesisgenerator, mostly
resulting from the parser, esgecially, from the use of the longest match heuristic. For
example, the parser wrongly identi es instances of the double object frame tokens
containing compounds. It also fails with bare relative clauses,nps in apposition and
often with the argument-adjunct distinction. Lapata addresseghis problem by post-
processingthe data. She employs e.g. linguistic heuristics to aid compound noun
detection and disambiguation to reduce errors with pp attachment. After postpro-
cessing,the resulting data is still Itered for hypothesisselection. Lapata experimerts
with a bht and a Iter basedon a simple relative frequencycuto. The latter com-
paresthe verb's acquired scf frequencywith its overall frequencyin the bnc. Verbs
whosescf relative frequency is lower than an empirically establishedthreshold are
disregarded. The scf (not verb) specic threshold was determined by taking into
accourt for ead frame its overall frequencyin the comlex dictionary.

The approachessurveyed above represen a clearimprovemert over Brent's approad.
Extracting scf information from chunked data increaseshe number of cuesavailable
and allows also for low reliability cues. Running in linear time, partial parsing is
a quick way to seedthe scf acquisition processwith some a priori grammatical
knowledge. The disadvantage, howewer, is the high level of noisein output, causedby
the limitations of partial parsing and the inadequacy of the longest match heuristic.
Most approacesdiscussedabove employ ltering for hypothesisselectionand rely on
its ability to remove noise. This is questionable,however, sincethe lters applied are
not particularly good at handling noise,much of which getscarried over to the system
output. Brent e.g. reports poor performance with his bht Iter for low frequency
scf s. Manning and Lapata make the sameobsenation with their bht Iters.

Towards Large-Scale Subcategorization Acquisition

Subsequenh work on scf acquisition has opted for more knowledge-basecdhypothesis
generation. Instead of acquiring scf s from partially parseddata, recen systemshave
acquired this information from data parsed using an “intermediate' parser. Rather
than simply chunking the input (as a partial parser does), an intermediate parser
nds singly rooted trees:

(14) [s [xp He] [vp [vp hasremained][sp Very sick]]]

Although sud structures are typically built only using pos tag information, they
require global coherencefrom syntax and therefore imposegreater grammatical con-
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straint on analysis. An intermediate parser would e.g. detect that the only verb in
a sertence must be a vp and does not misanalyseit as part of an np, as might a
partial parser. The intermediate parsersused have been probabilistic. As statistical
parsersallow weighting analyseson the basisof training data, they are likely to yield
more reliable outcomethan the longestmatch approac usedin earlier scf acquisition
work.

Ersan and Charniak (1996) start this era of work by describing a program which

gathers statistical information on word-usage and usesthese statistics to perform

syntactic disambiguation. Learning verbal scf s, as well as prepositional preferences
for nouns and adjectives,is a byproduct of this program. It rst collects statistics on

individual words in corpus data, then augmerts a probabilistic context-free grammar

(pcf g) with the lexical statistics and nally usesthis version of pcf g to parse new
data. The resulting data are examinedfor scf detection by observingthe vp grammar

rules which have applied during parsing. The pcf g contains 1,209rules for expanding
verb phrases,which are mapped into the 16 scf s employed by the system. The scf s
are the sameasemployed by Manning, but abstract over prepositions. The hypothesis
generator proceedshy examining input data and for ead verb, recording the vp rule

which hasapplied and the corresponding scf . For example,if therulevp ! v pron

np hasapplied during parsing, this is mappedto the rule vp ! v np np and further

to the ditransitiv e scf np-np, which is hypothesisedfor the verb in question. Ersan

and Charniak report that the data from the hypothesisgenerator are fairly noisy due
to tagger and parser errors, but provide no qualitativ e analysis of these errors. To

handle the noise,they employ Itering for hypothesisselection. The data, which also
encade scf frequencyinformation, are Itered using bht . Ersan and Charniak apply

this hypothesistest following Manning, with empirically set valuesfor the falsity of

certain scf cues.

Carroll and Rooth (1998) introduce a dierent approad, a technique basedon a
robust statistical parser and automatic tuning of the probability parameters of the
grammar. They usean iterativ e approac to estimate the distribution of scf s given
head words, starting from a hand-written headedcortext-free grammar (cf g) whose
coreis a grammar of chunks and phraseswhich includes complemenation rules and
a large set of n-gram rules. The latter strings phrasal categoriestogether, modeling a
nite state machine. A probabilistic versionof this grammaris rst trained from a pos
tagged corpus using the expectation-maximisation (em) algorithm, an unsupervised
madhine learning technique (Baum, 1972). Lexicalised event counts (frequency of a
head word accompaniedby a scf) are collected, pcf g is lexicalised on rule heads,
after which the em algorithm is run again. The calculation of expectations usesa
probabilistic lexicalisedweighting of alternativ e analyses. This allows iteration of the
procedurefor an improved model. A training schemeis usedwhere the event counts
are collectedover a segmem of corpus, parametersare re-computed and the procedure
is repeated on the next segmem of corpus. Finally, results from all iterations are
pooledto form a singlemodel. This yieldsthe nal probability estimatesfor verb and
scf combinations.

Carroll and Rooth usethe scf classi cation of the oald dictionary. Merging it with
the scf s of their grammar, they end up with 15 scfs. The hypothesis generator
outputs information about scf s and their relative frequencies. Carroll and Rooth
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report seweral typesof error in the output, most of which are causedby the inability
of the chunk/phrase grammar to deal with the argumen-adjunct distinction or with
constructions where verbs are not directly linked to their complemens becauseof
complex conjunctions, ellipsesand so forth. These constructs are resolved as intran-
sitivesby the robust parser, which leadsto their designation as the largest sourceof
error. Despite the noise, Carroll and Rooth do not employ ltering for hypothesis
selection, but include all hypothesesgeneratedin the nal lexicon (they employ bht

only when obtaining a lexicon for evaluation purposes). An open question is how
useful their fairly noisy lexicon would be when used, for example,to aid parsing.

Two large-scalesystemstargeting a high number of scf s have beenrecertly proposed
by Briscoe and Carroll (1997) and Sarkar and Zeman (2000). Briscoe and Carroll
describe a system capable of categorizing 161 di erent scf s. This comprehensie set
of scf s was obtained by merging the scf classi cations of the anlt and comlex
dictionaries and manually adding into this set new scf s discovered from the corpus
data. While the previous approadesto scf acquisition employ only syntactic scf s,
Briscoe and Carroll's framesalsoincorporate semartic information (e.g. about control
of predicative argumerts).

The system takes as input raw corpus data, which it tags, lemmatises and parses
with a robust statistical parser which usesa feature-baseduni cation grammar for-
malism. This yields intermediate phrase structure analyses. Local syntactic frames
are then extracted from the parseddata (including the syntactic categoriesand head
lemmas of constituents) from sertence subanalyseswhich begin/end at the bound-
aries of speci ed predicates. The resulting extracted subcategorization patterns are
then classi ed as scf s or rejected as unclassi able on the basis of the feature values
of syntactic categoriesand the head lemmasin ead pattern. Although unclassi -

able patterns are ltered out, the output from the hypothesisgeneratoris still noisy,
mostly due again to parser error. As the parser has no accessto lexical information

and ranks analysesusing a purely structural probabilistic model, there are errors with

the argument-adjunct distinction and with certain scf s, especially those involving se-
mantic distinctions. Briscoe and Carroll employ bht for hypothesisselection,re ning

it with a priori estimatesof the probability of membershipin di erent scf s. The re-
sulting lexicon incorporatesinformation both on scf s and their relative frequencies®.

The scf extraction method proposedby Sarkar and Zeman (2000) di ers from previ-
ouswork in seweral respects. It dealswith Czed, learns previously unknown (i.e. not
prede ned) scf s, and usesa manually derived dependencytreebank (Prague Depen-
dency Treebank, pdt ; Hajic, 1998) as input data. The system works by reading in
the treebank data and consideringead tree containing a verb. Within atree, the set
of all dependerts of a verb comprisesthe “obsened frame', while a scf is the subset
of this obsened frame. The task of the learning algorithm is to selectthe subsetmost
likely to be the scf for a verb, given its obsened frame. Essertially, its aim is to
identify argumerts from among the adjuncts. The hypothesis generator records the
frequency of all subsetsof eath obsened frame in treebank data. The subsetsare
consideredfrom larger to smaller. Large infrequent subsetsare suspectedto cortain

1The work we report in this thesis was done using Briscoe and Carroll’s system as a framework
for scF acquisition. A more detailed description of this system is given in section 2.5.3.
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adjuncts, so they are replaced by more frequert smaller subsets. Small infrequent
subsetsmay have elided somearguments and are rejected. The resulting frequency
data serwe asinput to hypothesisselection.

Sarkar and Zemanusethree alternativ e hypothesistests: bht , log likelihood ratio test
(Dunning, 1993) and t-score(Kalb eisc h, 1985). They apply the tests \recursively".
During the rst run, only the obsened frames are considered. If an obsened frame
is not selected,one of its subsetsis likely to be the scf. The subsetwhoselength is
onemember lessis selectedas successonf the rejected obsened frame and it inherits
its frequency Gradually, frequenciesaccumnulate and frames becomemore likely to
survive. The resulting set of frames is classi ed as scf s on the basis of pos labels.
Sarkar and Zeman report that, with their experiment, the method learned 137 scf s
from corpus data. No further details of these scf s are given. Sarkar and Zeman do
not de ne their concept of a scf anyhow, nor specify the distinctions assumedby
their classi cation.

It is clear that manually derived data provide more accurate input to scf acquisition
than automatically parseddata. The useof manually parsedtext is, howewver, not an
optimal solution to the knowledge acquisition problem. Treebanksare expensiwe to
build and parsingtext manually is arguably morelaboriousthan collecting information
on scf s.

For reasonsgiven earlier, employing intermediate probabilistic parsingin scf acquisi-
tion is animprovemert over the useof partial parsing and the longestmatch heuristic.
In sum, we may sa that, while the early work minimised noise at the expense of
coverage (both in terms of scf s and data) (Brent, 1991; 1993), the follow-up work
maximised coverageat the expenseof accuracy (Ushioda et al., 1993;Manning, 1993;
Gahl, 1998; Lapata, 1999),and recert work hasaimed to maximise both coverageand
accuracy Howewer, at the presen state of developmert, most intermediate parsers
still yield fairly noisy output, mainly due to the lack of lexical and semariic informa-
tion during parsing. As the output from the hypothesis generator is noisy, ltering
is neededwhen aiming for a high accuracy lexicon. Hypothesis selectiontechniques
adopted by recert approacesare similar to those selectedin early work. Ersan and
Charniak (1996), Briscoe and Carroll (1997), and Sarkar and Zeman (2000) e.g. all
employ bht as originally introduced by Brent (1993) and subsequetly followed by
Manning (1993) and Lapata (1999). Although dierent modi cations to this test
have beenproposed,both early and recert approadiesreport unreliable performance,
especially with low frequency scf s.

In this section, while surveying scf acquisition systems, we have mertioned errors
typical to dierent systems. In the next section, we turn to quarntitativ e evaluation
and considerthe overall performance of these systems.

2.5.2 Evaluation and Performance
Methods for Evaluation

scf acquisition systemsare typically evaluated in terms of ‘types' or “tokens' (e.g.
Briscoe and Carroll, 1997; McCarthy, 2001). "Types' are the set of scf s acquired.
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Type-basedevaluation involves assessmeanof the lexical ertries in a lexicon. It is
usually performed on unseentest data, with a number of randomly selectedtest verbs.
The scf typesacquired are comparedwith those found in somegold standard. The
gold standard is usually obtained either through manual analysis of corpus data, or
from lexical entries in a large dictionary. Both approaceshave their advantagesand
disadvantages. Manual construction of a gold standard is time-consuming, but yields
an accurate measurewhen obtained from the data that the system usedto acquire
the entries. Meanwhile, obtaining a gold standard from a dictionary is quick, but the
resulting standard may not be relevant to the test data. This is becausedictionaries
may contain scf sabsen from the corpusdata or missscf s presen in the corpusdata.
For example, by merging the lexical entries from the anlt and comlex dictionaries
for the verb add, we would get nine gold standard scf types. Not all may be attested
in the corpus data: the relatively low frequency scf par t-np-pp (he added in the
wine with the herbs) e.g. could well be missing. On the other hand, the gold standard
does not exhaust all the scf possibilities. For example, the scf what-s (he adds
what he thinks is right) is not included, although it is a sound scf type for add and
may occur in the corpus data.

"Tokens' are the individual occurrencesof scf s in corpus data. They are evaluated
againstmanually analysedcorpustokens. Evaluation may be performedon the corpus
data from which the acquired scf s were obtained, to estimate the coverage of the
training data, i.e. the coverageof the lexicon the system has learned. This indicates
e.g. an estimate of the parsing performancethat would result from providing a parser
with the scf s acquired. Alternativ ely, token-basedevaluation may be performed on
a dierent corpusto examine how well the acquired information generalizes.

Evaluation is frequertly performed using “precision' and ‘recall' (e.g. Briscoe and
Carroll, 1997). Obtaining these measuresrequiresrecording the number of
true positives (tp S) - correct scf typesor tokensproposedby the system
false positives (fp s) - incorrect scf typesor tokensproposedby the system

false negatives (fn s) - correct scf typesor tokensnot proposedby the system

When evaluating scf information, precisionand recall are usually reported over types.
"Type precision' is the percertage of scf sthat the system proposeswhich are correct
(in the gold standard), while “typerecall' is the percertage of scf sin the gold standard
that the system proposes:

number of tp s

(2.1)

T TN
Ype Preatston = - umber of tp s+ number of fp s

number of tp s

Type recall = (2.2)

number of tp s + number of fn s
Onecantrade o precisionand recallto compromisebetweenmaking a smallernumber
of sure guesseghigh precision) and a bigger number of noisy guesseghigh recall). To
make mutual comparisonof di erent systemseasier,it may be conveniert to combine
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precision and recall in a single measure of overall performance using e.g. the °F
measure":

_ 2 precision recall

F= (2.3)

precision + recall

With scf information, recallis sometimesalsoreported over scf tokens. "Tokenrecall'
givesthe percertage of scf tokensin ertire test data which are assignedcorrect scf s
by the system.

number of tp s

Token recall = (2.4)

total number of test tokens
The systemsthat record relative frequenciesof di erent verb and scf combinations
often evaluate the accuracy of the resulting probability distributions as well. This
is done by comparing the acquired distribution against a gold standard distribution
obtained from manual analysis of corpus data. In this, no established evaluation
method exists.

The ranking of scf s within distributions has beencompared, rstly , by using a sim-
ple method proposedby Briscoe and Carroll (1997). This involves calculating the
percertage of pairs of classesat positions (n,m) sud that n < m in the acquired
ranking that are ordered the samein the correct ranking. Briscoe and Carroll call
this measure ‘ranking accuracy'. Secondly the ranking has been evaluated using a
Spearman rank correlation coe cient (rc) (Spearman, 1904). This involves (i) cal-
culating the ranks for eat of the scf variables separately using averagedranks for
tied values,and (ii) nding rc by calculating the Pearsoncorrelation coe cien t for
the ranks. The Pearson correlation coe cient r is calculated from bivariate data
(z1,y1), (x2,92) , ..., (xn,yn) Where the meansof the z-valuesand y-valuesare x and
y and their standard deviations are sx and sy:

1 Kz ozy Y
r= (2.5)
n 1 = sx Sy

r c takesvaluesbetween-1 and 1, with valuesnear O denoting a low degreeof assai-
ation and valuesnear -1 and 1 denoting strong assaiation.

Meanwhile, the similarity betweenacquired and gold standard scf distributions has
beenevaluated using crosserntropy, a measurefamiliar from information theory (Cover
and Thomas, 1991). The crossentropy of the acquired distribution ¢ with the gold
standard distribution p obeysthe identity

CE(p,q) = H(p) + D(pkq) (2.6)

where H is the usual ertropy function and D the relative entropy, or Kullback-Leibler
distance (kl ). While entropy measuresthe complexity of the acquired scf distribu-
tion, kl indicates the dissimilarity of the two distributions.
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D(pka) = 3" p(x) In ’q% 2.7)

kI is always 0 and readesO only when the two distributions are identical.

The methods discussedso far are usedfor evaluating scf acquisition in its own con-
text. Howewer, it is generally agreedthat the ultimate demonstration of successs
improved performanceon an application task. Task-basedevaluation may be done, for
instance, by examining application performancewith and without integrating the scf

information, and seeinghow much the integrated information improves performance.
With scf acquisition, task-basedevaluation hassofar beencarried out in the context
of parsing and psydolinguistic experiment. We shall describe these experiments in
the following section.

Performance

When examining the performance of the scf acquisition systemswe have surveyed,
onemust remenber that they di er in many ways. Variation in the number of target
scf s, test verbs, gold standards, and in the size of test data make direct comparison
of dierent results di cult. Howewver, examining the di erent results is useful as it
revealsthe upper limits of performanceof the various state-of-art systems.

Table 2.2 shaws type precision, type recall and token recall obtained by the current
systems, for those systemswhich report them. F-measureis calculated and shown
as well. The secondcolumn indicates the number of (target) scf s; the third shows
the number of test verbs employed; the fourth lists the corpus usedfor learning and
testing (table 2.1 provides further information about the di erent corpora used), and
the fth column givesthe sizeof the test data from which the test verb instanceswere
extracted. The gold standard adopted is listed in the sixth column.

From the approadeslisted in table 2.2, those most comparable are Manning (1993),
Ersan and Charniak (1996) and Carroll and Rooth (1998). They ead target a similar
number of scf s and evaluate the resulting lexicons against entries obtained from the
oald dictionary. When comparedby F-measure,Carroll and Rooth outperform the
two other approades, with Ersan and Charniak in turn outperforming Manning's
approadh. This is not surprising, given that the hypothesis generator employed by
Manning is not as sophisticated as those employed by the two other approades.
Manning extracts scf s from partially parsed data, while the other two approadces
opt for intermediate parsing.

The other approachesand results included in this table cannot be compareddirectly.
Brent's (1993) 85 F-measuree.g. was obtained by classifying sertential-complement
taking verbs as menbers of one of the 6 scf s, while Briscoe and Carroll's (1997) 55
F-measurewas obtained by classifying random verbs as members of one of the 161
scf s. Also, Sarkar and Zeman's (2000) 88% token recall indicates the perceriage
of scf tokensassigneda correct argumert-adjunct analysis, not a correct scf type
analysis, as with all other approaces. In addition, their result is obtained from
manually parseddata (while others useautomatically parseddata), which givesthem
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Corpus Size Corpus | Reference

in Words | Type
Brown Corpus (BC) 1M balanced | Francis and Kucera, 1989
Wall Street Journal Corpus (WsJ) 1M newswire | Marcus et al., 1993
New York Times Corpus (NYT) 173M newswire | Marcus et al., 1993
Susanne Corpus (SUSANNE) 128K balanced | Sampson, 1995
Spoken English Corpus (SEC) 52K balanced | Taylor and Knowles, 1988
Lancaster-Oslo-Bergen Corpus (LOB) | 1M balanced | Garside et al., 1987
British National Corpus (BNC) 100M balanced | Leech, 1992
Prague Dependency Treebank (PDT) | 457K balanced | Haji¢, 1998

Table 2.1: Corpora usedin scf acquisition for learning, training and evaluation

Metho d No. of | No. of | Corpus Data Gold Type Type F Token

SCFs Verbs Size Standard Precision Recall Recall
Brent 6 63 bc 1.2M | manual 96% 76% 85 | -
(1993) analysis
Ushioda 6 33 wsj 300K | manual - - - 86%
et al. analysis
(1993)

19 40 nyt 4.1M oald 90% 43% 58 | -
Manning
(1993) 19 200 nyt 4.1IM | manual - - - 82%

analysis
Ersan & 16 30 wsj 36M oald 87% 58% 70 | -
Charniak
(1996)
Carroll & | 15 100 bnc 30M oald 79% 75% 7| -
Rooth
(1998)
Briscoe & | 161 7 susanne, | 1.2M | manual % 43% 55 | 81%
Carroll sec, lob analysis
(1997) 161 14 susanne, | 1.2M | anlt 66% 36% 47 | -
sec, lob comlex
Sarkar & 137 914 pdt 300K | manual - - - 88%
Zeman analysis
(2000)
Table 2.2: Type precision, type recall, F-measureand token recall evaluation of ex-

isting scf

acquisition systems
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an advantagein evaluation. Examining the di erent results we may, however, conclude
that, regardlessof method, there is a ceiling on scf acquisition performancearound
85 F-measureand 88% token recall.

The results achieved when evaluating the accuracyof scf frequencydistributions are
even more di cult to compare,as ead systemis evaluated using a di erent method.
Ushioda et al. (1993) do not provide evaluation of scf frequencies,but simply state
that their acquired and gold standard scf distributions seemvery close. Lapata
and Keller (1998) evaluate the scf extraction method described in Lapata (1999).
With 20 scf s and 42 test verbs extracted from 10M words of bnc they report a
high correlation of 0.9 with Spearman correlation co-e cient betweentheir acquired
scf ranking and that obtained through manual analysis of corpus data. Briscoe and
Carroll (1997) report 81% ranking accuracy with their 7 test verbs (seesection 2.5.2
for their evaluation method). Carroll and Rooth (1998) usecrossentropy to determine
the similarity betweenscf distributions acquired by their systemand those obtained
through manual analysis of corpus data. They perform no large-scaleevaluation but
report encouragingresults with three individual test verbs, whosescf distributions
shawv an averageof 0.36 Kullback-Leibler distance to the gold standard distributions.

Only two approades perform task-basedevaluation. Lapata and Keller (1998) eval-

uate automatically acquired scf frequenciesobtained using the method described in

Lapata (1999) in the context of psycdolinguistic experimerts on sertence processing.
They examine how well the verb biasesobtained from completion studies can be ap-
proximated by automatically acquiredscf frequencies.The experiments donewith 90
test verbsusing Garnsey et al.'s (1997) metric shaw that the acquired scf frequencies
classify verbs correctly either asnp-biasedor s-biased58% of the time, as opposedto

their 33% baselineand 76% upper bound. A similar but larger experiment reported

by Lapata et al. (2001) shonvs comparableresults on this binary ranking task.

Briscoe and Carroll (1997) examine whether the scf frequencyinformation acquired
using their system can improve the accuracy of statistical parsing. They report an
experiment wherethey integrate scf frequencyinformation in arobust statistical non-
lexicalised parser. The experiment is performed using a test corpus of 250 sertences
from the susanne treebank, and evaluated with the standard geig bracket precision,
recall and crossingmeasuregGrishman et al., 1992). While the bracket precisionand
recall stayed virtually unchanged,the crossingbracket scorefor the lexicalised parser
showved a 7% improvemen, which yet turned out not to be statistically signi cant
at the 95% level. Howewer, a dierent and larger experiment reported by Carroll,
Minnen and Briscoe (1998) yields di erent results. They use a larger test corpus,
acquire scf data from 10 million words of bnc and usea grammatical relation-based
(gr ) annotation schemefor evaluation (Carroll, Briscoe and San lipp o, 1998) which
is more sensitive to argumert-adjunct and attachment distinctions. The experimernt
shaws that gr recall of the lexicalised parser drops by 0.5% comparedwith baseline,
while precision increasesby 9.0%. While the drop in recall provesnot to be statisti-
cally signi cant, the increasein precision does. This shows that the scf frequencies
acquired using Briscoe and Carroll's system can signi cantly improve parseaccuracy
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Discussion

While the results achieved with current systemsare generally encouraging,the accu-
racy of the resulting lexicons shanvs room for improvemert. Errors arise in automatic
scf acquisition for seweral reasons. Due to ungrammaticalities of natural language,
some noise already occurs in input data. Further errors arise when processingthe
data through di erent phasesof hypothesisgenerationand selection. In section2.5.1,
we mertioned qualitativ e errors typical to more and lesssophisticated scf acquisition
systems. Someof these errors are common to all extant systems,regardlessof their
sophistication.

With hypothesis generation, the most frequertly reported error is the inability of a
system properly to distinguish between argumerts and adjuncts (e.g. Brent, 1991,
1993; Manning, 1993; Ushioda et al., 1993; Lapata, 1999; Carroll and Rooth, 1998).
This makesdetection of scf s involving prepositional phrasesespecially di cult.  Al-
though one can make simple assumptions, for instance, that argumerts of specic
verbs tend to occur with greater frequencyin potential argument positions than ad-
juncts, problems arise when the judgments of argumert-adjunct distinction require
a deeper analysis. Many argumert-adjunct tests cannot yet be exploited automati-
cally sincethey rest on semariic judgmerts that cannot yet be made automatically 7.
One exampleis the syntactic tests involving diathesis alternation possibilities which
require recognition that the sameargumert occursin dierent argumen positions.
Recognizingidentical or similar argumerts requires considerablequartities of lexical
data or the ability to badk-o to lexical semaric classes.

In fact, there is a limit to how far we can get with subcategorization acquisition
merely by exploiting syntactic information. As Briscoe and Carroll (1997) point out,
the ability to recognizethat argumert slots of di erent scf s for the same predicate
share selectional restrictions/preferences would assist recognition that the predicate
undergoes speci ¢ diathesis alternations. This in turn would assistinferencesabout
cortrol, equi, and raising, enabling ner-grained scf classications and yielding a
more comprehensie subcategorization dictionary (Boguraev and Briscoe, 1987). In
the end, any adequate subcategorization dictionary needsto be supplemened with
information on semaric selectionalpreferences/restrictionsand diathesisalternations
to provide a full accourt of subcategorization and to be useful as a lexical resource.

With hypothesisselection, the largest sourceof errors is the poor performanceof the
statistical test often employed for ltering out the noisefrom the systemoutput. The
binomial hypothesistest widely usedin early aswell asrecen scf acquisition work is
reported to be particularly unreliable for low frequency scf s (Brent, 1993; Manning,
1993; Ersan and Charniak, 1996; Briscoe and Carroll, 1997; Manning and Sceitze,
1999). Manning, for instance, notesthat bht seemsonly to selectscf s which are well
attested and conversely does not select scf s which are rare. Similarly, Ersan and
Charniak note that a large number of scf s only obsened onceor a few times in data
were rejected by their bht Iter. Briscoe and Carroll note that with their system,the
majority of errors in scf acquisition arise becauseof the statistical Itering process.
The performanceof their lter for scf swith lessthan 10 exemplarsis around chance,

1"Recall our discussion on the argument-adjunct distinction earlier in section 2.2.
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and a simple heuristic of acceptingall scf s with more than 10 exemplarswould have
produced broadly similar results to those generatedby use of the Iter. The high
number of missing low frequency scf s hasa direct impact on recall, resulting in poor
performance.

This problem with hypothesisselectionmay overturn bene ts gainedwhen e.g. allow-
ing for large data or low-reliabilit y scf cuesin the hope of detecting a higher number
of rare scf s. Similarly, it may overturn bene ts gained from re ning hypothesisgen-
eration. The problem concernsmost scf acquisition systems,sincenearly all perform
hypothesisselectionusing statistical hypothesistests. For thesereasons,the problem
of hypothesis selectionremains critical to any attempt to improve subcategorization
extraction.

In this thesis we report work on improving the hypothesis selection phase of scf

acquisition. All the work reported is done using Briscoe and Carroll's (1997) system
as a framework for scf acquisition. Capable of categorizing over 160 scf types,
which also incorporate semariic information, this systemis the most comprehensie
scf extraction systemavailable. By exploiting a robust statistical intermediate parser
and a comprehensie scf classi er, it represens the latest phasein the developmert
of scf acquisition technology. The ewaluation discussedn this sectionshows that the
system performs with accuracy comparableto that of lessambitious extant systems,
most of which are limited to a highly restricted set of syntactically basedscf s. Before
proceedingfurther, we shall describe this systemin more detail.

2.5.3 Framew ork for SCF Acquisition

Briscoe and Carroll's (1997) verbal acquisition system consistsof six overall compo-
nents which are applied in sequenceto sertences containing a speci ¢ predicate in
order to retrieve a set of scf s for that predicate:

1. A tagger, a rst-order Hidden Markov Model (hmm) pos and punctuation
tag disambiguator (Elworthy, 1994). It assignsand ranks tags for eath word
and punctuation token in sequencesof sertences using the cla ws-2 tagset'®
(Garside et al., 1987).

2. A lemmatizer, an enhancedversionof the General Architecture for Text Engi-
neering(gate ) project stemmer(Cunningham et al., 1995). It replacesword-tag
pairs with lemma-tag pairs, where a lemma is the morphological baseor dictio-
nary headword form appropriate for the word, given the pos assignmemn made
by the tagger.

3. A probabilistic LR parser, trained on a tree-bank derived semi-automatically
from the susanne corpus, returns ranked analyses(Briscoe and Carroll, 1993;
Carroll, 1993, 1994) using a grammar written in a feature-baseduni cation
grammar formalism which assignsintermediate phrasestructure analysesto tag
networks returned by the tagger (Briscoe and Carroll, 1995;Carroll and Briscoe,
1996).

8cLaws = The Consistent Likelihood Automatic Word Tagging System.
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4. A pattern extractor extracts subcategorization patterns, i.e. local syntactic
frames, including the syntactic categoriesand head lemmas of constituents,
from sertence subanalyseswhich begin and end at the boundaries of speci ed
predicates.

5. A pattern classifier which assignspatterns to scf s or rejects them as un-
classi able on the basis of the feature values of syntactic categoriesand head
lemmasin ead pattern.

6. A SCF filter which evaluates sets of scf s gathered for a predicate. It con-
structs putativ e scf entries and lters them on the basisof their reliability and
likelihood.

At the rst stageof the scf acquisition process,corpusdata is taggedusing the tagger
basedon hmm. The hmm model incorporatestransition probabilities (the probability
that atag followsthe precedingone) and the lexical probabilities (the probability that
aword arisesfor a particular tag). The tagger hypothesisesa non-zeroprobability tag
for eadh word and givesthe most probable sequenceof tags, giventhat the sequencenf
words is determined from the probabilities. It doesthis using the Forwards-Badkward
algorithm (e.g. Manning and Schutze, 1999). The cla ws-2 tagset usedby the tagger
includes a total of 166tags for words and punctuation marks. The tagger may return
more than one ranked tag per token. The acquisition system lters out all but the
highest-rankedtag, trading a small lossin coverageand accuracyfor improved runtime
spacerequiremerts and e ciency , sothat large amounts of text can be processednore
easily.

At the secondstage,the data output by the taggeris lemmatized. During this process,
the words are assignedlemmas, their morphological base or dictionary headword
forms, basedon their pos assignmei. In addition to producing a stem or root form
for eadt token, the lemmatizer also producesa normaliseda x (e.g. -ed for all past
participle forms, both regular and known irregulars).

For example, assumingthat we build lexical entries for attribute and that one of the
senencesin our data is (15), the tagger returns (16) and the lemmatizer returns (17).

(15) He attributed his failure, he said, to no-one buying his books.

(16) he_PPHSIattributed_VVD his_APP$ failure_NN1 ,_, he_PPHSIsaid_VVD,_,
to_Il  no-one_PN buying_VVG his_APP$ books_NN2

(17) he_PPHSIattribute_VVD his_APPS$ failure_NN1 ,_, he_PPHSilsay VVD,_,
to_ll  no-one_PN buy_VVGhis_APP$ book_NN2

At the third stage of the scf acquisition process,the tagged and lemmatized data
are parsed. The probabilistic parser employed by the system usesa grammar which
consistsof a 455 phrase structure rule schemata. This grammar is a syntactic vari-
ant of a De nite Clause Grammar (dcg ; Pereira and Warren, 1980) with iterativ e
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Kleene operators. It is shallow, which meansthat no attempt is madefully to analyse
unbounded dependencies.Howewer, the distinction betweenargumerts and adjuncts
is expressed following X-bar theory (e.g. Jackendo, 1977) by Chomsky-adjunction
to maximal projections of adjuncts (xp ! xp Adjunct) as opposedto governmert of
argumerts (i.e. argumerts are sisterswithin X1 projections; X1 ! X0 Argl... ArgN).
All analysesare rooted in S so the grammar assignsglobal, intermediate and often
“spurious' analysesto many sertences. There are 29 dierent values for vsubcat
and 10 for psubcat ! , which are later analysedalong with speci ¢ closed-classhead
lemmasof argumerts (e.g. it for dummy subjects) to classify patterns as evidencefor
one of the scf s. Currently, the coverageof this grammar, the proportion of sertences
for which at least one analysisis found, is 79% when applied to the susanne corpus.
Wide coverageis important here becauseinformation is acquired only from successful
parses.

The parserranks analysesusing a purely structural probabilistic model, which makes
training the parseron realistic amourts of data and usingit in a domain-independert
fashionfeasible. The modelis are nement of pcf g conditioning context freebackbone
application on left-to-right (Ir ) state and lookaheaditem. Probabilities are assigned
to transitions in the Ir action table via a processof supervisedtraining. The latter is
basedon computing the frequencywith which transitions are traversedin a corpus of
parse histories. The parser is capable of probabilistically discriminating derivations
which di er only in terms of order of application of the sameset of cf badkbonerules,
due to the parsecortext de ned by the Ir table.

(18) illustrates the highestranked analysisthe parserwould return for the lemmatized
sertence exempli ed in (17).

(18) (Tp
(V2 (N2 he_PPHS1)
(V1 (VO attribute_VVD))
(N2 (DT his_APP$)
(N1
(NO (NO failure_NN1)
(Ta (Pu ,_,)
(V2 (N2 he_PPHS1)
(V1 (VO say_VVvD))) (Pu ,_.)))
(P2
(P1 (PO to_lIl)
(N2 no-one_PN)
(V1 (VO buy_VVG)
(N2 (DT his_APP$) (N1 (NO book_NN2)))))))

Quite often the parser has no medanism for choosing the correct analysis and hence
the output is noisy. This is illustrated in example (19), wherethe correct analysis for
(19a) is shown in (19c) and the correct analysisfor (19b) in (19d) (Briscoe, 2001).

19vSUBCAT stands for ‘verbal’ subcategorization and PSUBCAT for ‘prepositional’.
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(19) a Helooked up the word
b He looked up the hill

C (Tp (V2 (N2 he_PPHS1)(V1 (VO (VO look_VVD) (PO up_RP)) (N2 (DT the_AT)
(N1 (NO word_NN1)))))

d (Tp (V2 (N2 he_PPHS1)(V1 (VO look_VVD) (P2 (P1 (PO up_RP) (N2 (DT the_AT)
(N1 (NO hill_NN1)))))))

The parser cannot reliably selectbetween(19c) and (19d) becauseit hasno accesgo
any lexical information. In this caseit hasno information about the likelihood of look
up being a phrasal verb nor the di ering selectionalrestrictions on the np as either
pp or verbal argument.

At the fourth processingstage,the extractor takesasinput analysesfrom the parser.
It extracts subcategorization patterns by locating the subanalysesaround the pred-
icate and nding the constituents identied as complemers inside ead subanalysis
and the subject precedingit. Passiwe constructions are treated speci cally. The ex-
tractor returns the predicate, the vsubcat value and the headsof the complemers.
In caseof pps, it returns the psubcat value, the preposition head and the headsof
the pp's complemers.

For example, taking as input the analysis shavn in (18), the extractor would yield
the subcategorization pattern exempli ed in (20).

(20) ((((he:1  PPHS1)) (VSUBCANP_PP)((attribute:6 VVD) ((failure:8 NN1))
((PSUBCATSING) ((to:9 1))  ((no-one:10 PN)) ((buy:11 VVG)))))

At the fth stage,the extracted subcategorization patterns are fed into the pattern
classi er, which assignsthe patterns into scf s. The scf s usedin the systemwere con-
structed by manually merging the scf s of the anl t and comlex syntax dictionaries
and adding around 30 scf s found by examining unclassi able patterns of corpus
examples. These consisted of some extra patterns for phrasal verbs with complex
complemenation and exible ordering of the preposition or particle, somefor non-
passivizablepatterns with a surfacedirect object, and somefor rarer combinations of
governed preposition and complemerizer combinations. The resulting set of scf s ab-
stract over speci ¢ lexically-governed particles and prepositions and speci ¢ predicate
selectionalpreferences.However, they include somederived semi-predictablebounded
dependencyconstructions, such as particle and dative movemen. The current version
of the classi cation comprises163 scf s (Briscoe, 2000) and is included in Appendix
A of this thesis.

The classi er providestranslation betweenextracted scf patterns and the two existing
dictionaries and a de nition of the target subcategorization dictionary. It assigns
subcategorization patterns into classeson the basis of the vsubcat and psubcat
valuesand sometimesalso the lexical information included in patterns. For example,
the subcategorization pattern exempli ed in (20) is classi able as the scf np-p-np-
ing (transitiv e plus pp with non- nite clausal complemert) with additional lexical
information, suc as the preposition and the headsof the np argumerts and of the
np and vp argumerts of the pp. Each scf is represenied asa scf classnumber. In
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this casethe classi er returns two scf s, 43 and 44. (21) shows the ertries for these
scf s in the classi cation. The rst line of an entry shaws the comlex scf name,
the secondgivesthe frame speci cation accordingto anl t, the third shows a tagged
exampleserniencewherethe frame occurs,and the nal line givesthe scf speci cation
accordingto the grammar employed by the systent?.

(21) 43. NP-P-NP-ING/ ??
ANLTgap (SUBCATNP_PP_SING)
he_PPHSIattributed_VVD his_AT failure_NN1 to Il no-one_NP1buying VVG
his_AT books_NN2
(VSUBCATNP_PP)to (PSUBCATING)

44. NP-P-POSSING ??

ANLTgap (SUBCATNP_PP_SING)
They_PPHSZsked VVDhim_PPHOXbout_Il his_PPHO1participating_VVG
in_Il  the_AT conference_NN1

(VSUBCATNP_PP)about (PSUBCATING)

More than onescf is returned by the classi er whenit cannot tell which of the scf s
is the correct one. In this case,scf 43 providesthe correct analysis, but the classi er
cannot distinguish it from the similar scf 44, due to the parser problems discussed
above.

The classi er also lters out as unclassi able around 15% of patterns. These are
spurious analysesoutput by the extractor which do not conform to the known scf s
for English. Additionally , asthe parseroutput is noisy, many classi able patterns are
still incorrect and hypothesisselectionis needed.

At the nal processingstage,the systememploysa Iter for hypothesisselection. The
Iter rst builds putativ e lexical erntries speci c to the verb and scf combinations. It
takesthe patterns for a given predicate built from successfulparsesand recordsthe
number of obsenations with ead scf . Patterns provide seeral typesof information
which can be usedto rank or selectbetweenthem, suc asthe ranking of the parse
from which it was extracted or the proportion of subanalysessupporting a specic
pattern. Currently, the system simply selectsthe pattern supported by the highest
ranked parse. The resulting putativ e scf entries for a predicate are ltered usingthe
binomial hypothesistest.

bht attempts to determine whether one can be con dent that there is a geruine
assaiation between a hypothesisedverb and scf combination. The test usesthe
overall error probability that a particular scf (scf;) will be hypothesised,and the
amount of evidencefor an assaiation of scf; with the predicate form in question.
The error probability for a given scf; is estimated by

o = <1 jverbs in scfij) Jpatterns for scfi (2.8)

jverbsj jpatternsj

208ee Appendix A for full details of these entries.
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where the counts for scf s were obtained by running the system's pattern extractor
on the entire susanne corpus and the counts for verbs assaiated with scf s were
obtained from the anl t dictionary. The probability of an event with probability p
happening exactly m out of n attempts is given by the binomial distribution:

Plmmp) = o )" 29)

ml(n

The probability of the event happening m or more times is:

P(m+ ,n,p) = z”: P(k,n,p) (2.10)

k=m

So P(m+,n,p°) is the probability that m or more occurrencesscf; will be assaiated
with a predicate occurring n times. A threshold on this probability is set at 0.05,
yielding a 95% con dence that a high enough proportion of patterns for scf; have
beenseenfor the verb to be assignedscf;.

The resulting lexicon is organized by verb form with sub-ertries for eat scf. (22)
shows a putativ e lexical entry built for attribute, given the subcategorization pattern
shawn earlier in (20) and the scf assignmen in (21). The entry, displayed as output
by the system, includes seweral types of information. In addition to specifying the
verb and scf combination in question and its frequency in corpus data, it species
the syntax of detected argumerts, the reliabilit y of the entry accordingto the parser
and the value assignedto it by bht . It also gathers information about the pos
tags of the predicate tokens,the argumert headsin di erent argumert positions and
the frequency of possiblelexical rules applied. The dierent elds of the ertry are
explainedin the legendbelow it. For example,the entry in (22) indicatesthat attribute
was obsened in the data only oncewith the scf 43 44 (:freqent 1), and therefore
the entry gathersinformation from only one scf pattern. It also indicates that the
entry wasrejectedby the bht . The value of :freqscore  is 0.25778344which is larger
than the con dence threshold of 0.05. Another, successfullexical entry for attribute
is shown in gure 2.6. This entry for the scf 56 49 (e.g. She attributes her success to
hard work) is large, gathering information from 36 distinct subcategorization patterns.
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(22) scf entry:

#S(EPATTERNTARGETattribute| :SUBCAT(VSUBCATNP_PP)
:CLASSEY((43 44) 2)
‘RELIABILITY 0 :FREQSCORE25778344
:FREQCNT
:TLTL (VVD)
:SLTL
((lhe] PPHSL))
:OLT1L
((failure| NN1))
:OLT2L
((PSUBCATSING)
((tol 1))  ((Inc-one|  PN)) ((lbuy| VVG))
:OLT3L NIL :LRL 0)

Legend:

#S(EPATTERNTARGET|verb| :SUBCAT(syntax of arguments for SCF)
:CLASSES((SCF number code(s)) frequency of SCFin ANLT)
:RELIABILITY parse reliability threshold :FREQSCOR$tore assigned by BHT
:FREQCNTumber of observations in data
:TLTL (POStags for the verb)
:SLTL (POStags for argument heads in subject position)
:OLT1L (POStags for argument heads in first argument position)
:OLT2L (POStags for argument heads in second argument position)
:OLT3L (POStags for argument heads in third argument position)
:LRL  number of lexical rules applied)

In sum, Briscoe and Carroll's approac to acquiring scf s assumeshe following:

Most sertenceswill not allow the application of all possiblerules of English
complemenation.

Somesertenceswill be unambiguous even given the indeterminacy of the gram-
mar.

Many incorrect analyseswill yield patterns which are unclassi able and are thus
ltered out.

Arguments of a speci ¢ verb will occur with greater frequencythan adjuncts in
potential argumert positions.

The hypothesisgeneratorwill incorrectly output patterns for certain scf classes
more often than others.

Even a highest ranked pattern for scf; is only a probabilistic cueto menmbership
of scf;, so membership should only be inferred if there are enough occurrences
of patterns for scf; in the data to outweigh the error probability for scf;.

The overall performance of this system was discussedearlier in section 2.5.2, where
the systemwasreported to perform similarly with lessambitious extant systems. The
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#S(EPATTERNTARGET|attribute] ~ :SUBCAT(VSUBCATNP_PP)

:CLASSES((56 49) 2115)

‘RELIABILITY 0 :FREQSCORE6752692e-25

'FREQCNB6

TLTL

(WZ WZWZWZVWZ WZVWZVWZ VWNVWGVWGVVGVVGVVG

VVGVWWGVVGVVGVVGVVDVVDVVDVVDVVDVVDVVO VW0 VVO
VVO VV0 VO VW0 VVO0 VVO VVO VVO)

SLTL

(((|text| NN1)) ((|literature| NN1)) ((jhe] PPHS1))
((lhe] PPHS1)) ((Jaccount]  NN1)) ((|He|] PPHS1))
(((text| NN1)) ((|literature| NN1)) ((jhe] PPHS1))

((lhe] PPHS1)) ((Jaccount]  NN1)) ((|He|] PPHS1))
((IHe| PPHSLY)) ((|He|] PPHS1)) ((lmedicine]  NN1))
((lwhat] DDQ)) ((|serve|  VVO0)) ((|prefer| VV0))
((Naid| VVD)) ((Jit| PPH1)) ((Jlaudience|  NN))

((IPeople]  NN)) ((It] PPH1)) ((|Attributing| VVG))
((|Aristotle| NP)) ((|she] PPHSL1)) ((Joccupation| NN1))
((Jinstitutions| NN2)) ((Jgovernment]  NN))

((|Prentice| NP)) ((|He| PPHS1)) ((lwhich] DDQ))
((|study] NN1)) (([reports| NN2)) ((jone|] PN1))

(it ~ PPH1)) ((jattribute| WW0)) (((We| PPIS2))
((We| PPIS2)) ((We| PPIS2)) ((This| DD1))

(1]  PPHL))

‘OLTIL

((validity] NN1)) ((effectf  NN1)) ((lideas|] NN2))

((lideas|  NN2)) ((Jrole| NN1)) ((Jthis| DD1))
((]success|  NN1)) ((Jsuccession| NN1))

((Jinferiority| NN1)) ((Jcontent| NN1))
((Jcharacteristics| NN2)) ((Jit| PPH1))
((Jsituation| NN1)) ((Jproperties| NN2))

((|beliefs| NN2)) ((|disturbances| NN2)) ((lwork]  NNZ1))
((lvalue]  NN1)) ((ideas|  NN2)) ((Jlack| NN1))
(lit] PPH1)) (([failure| NN1)) ((Jcrash]  NN1))
((lvalue]  NN1)) ((ideas|  NN2)) ((Jlack| NN1))
((lit] PPH1)) (([failure| NN1)) ((lcrash]  NN1))

((jwin] ~ NNZ1)) ((Jrole| NN1)) ((|difficulties| NN2))
((Jcontribution| NN1)) ((Jnumber| NN1))
((Jvariability| NN1)) ((Jsuccess| NN1)) ((Jthis| DD1))

((Jreality| NN1)) ((Jgrasp| NN1)) ((Jeffect| NN1))
((lweight]  NN1)) ((jwhole]  NN1))

:OLT2L
((PSUBCATNP)
(((to]  |to] fto| [to] [to] |to] |to|] [to| [to] |to] |to] [to] |to]
[to] [to] |to] [to] [Jto| [to] [to| [to| [to] [to] |to] [to] |to]
[to] fto] [to] to| |to] |to| [to|] |to] [to] . fto| )II))
((Jintention| NN1) (Jvariables| NN2) (|characters| NN2)

(Icharacters| NN2) (|processes| NN2) (Jjmethods| NN2)
(lallusions] NN2) (|sort| NN1) (Jbeing] NNZ1) (Jit| PPH1)
(Ithem| PPHO2)(|childhood| NN1) (lerror| NN1)
(Isystems| NN2) (Jancients| NN2) (|group] NN)
(lhand] NNZ1) ([first| MD) ([thinker| NN1)
(lindulgences| NN2) (Jmachinations| NN2)
(lconditions| NN2) ([fault| NN1) (|collapse| NN1)
(lvanguard| NN1) (Jnature]  NN1) (Jdismissal| NN1)
(Iconditions| NN2) (|fault| NN1) (|collapse| NN1)
(lvanguard| NN1) (Jnature]  NN1) (Jdismissal| NN1)
(them| PPHO2)(Jmind] NN1) (Jasset] NN1)
(lprocess|  NN1) (Jobjects| NN2) (|[Fido] NP)
(lcombination| NNZ1) (|principle| NN1) (Jthis] DD1)
:OLT3L NIL :LRL 0)

Figure 2.6: A samplescf entry
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experimental evaluation reported in Briscoe and Carroll (1997) showed that both the
hypothesis generation and hypothesis selection phasesneedre nement. The weakest
link in the system proved, however, to be hypothesis selection. The ertire approac
to Itering needsimprovemert the better to dealwith low frequencyscf s and to yield
better overall performance.

2.6 Summary

In this chapter, we have discussedthe background and motivation for our work. We
rst described the phenomenon of verb subcategorization and the accourt of this
phenomenonin linguistic theory, establishing why subcategorization is one of the
most important type of information a computational lexicon should provide. We
then discussedsubcategorization lexicons; the requiremerts of these resourcesand
attempts to obtain them (semi-)manually. After explaining why (semi-)manual work
hasnot yielded adequateenoughlexicons,we arguedthat automatic subcategorization
acquisition is the avenue to pursue.

We surveyed various approacesto automatic subcategorization acquisition. Within
a decade,the systemshave dewveloped from those capable of learning a small number
of scf s automatically from corpus data, to those capable of detecting a comprehen-
sive set of scf s and producing large-scalelexicons containing data on the relative
frequenciesof di erent scf s and verb combinations.

Although this is an encouragingdevelopmert, our review of evaluation indicated that
the accuracy of resulting lexicons shonvs room for improvemert. Analysis of error
reveals problems common to di erent systems,arising during hypothesis generation
and selection. We pointed out that, while analysis of corpus data has deweloped
signi cantly during the past decade,the samecannot be said of the Itering methods
usedfor hypothesisselection,which are reported to perform especially poorly. When
aiming to improve scf acquisition, improving hypothesisselectionis thus critical. We
establishedthis asthe scope of our researd. We concludedthe sectionby intro ducing
the systememployed as framework for scf acquisition in all the work reported in this
thesis.
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Chapter 3

Hyp othesis Testing for
Sub categorization Acquisition

3.1 Introduction

As discussedin chapter 2, nearly all subcategorization acquisition approades pro-
ceedin two steps: generating hypothesesfor scf s and deciding which hypothesesare
reliable. The latter step is neededto remove the noisewhich inevitably arisesin scf

acquisition. Most approachesemploy statistical hypothesistests for this purpose(e.g.
Brent, 1993; Manning, 1993; Ersan and Charniak, 1996; Lapata, 1999; Briscoe and
Carroll, 1997; Sarkar and Zeman, 2000). Despite the popularity of thesetests, they
have beenreported to be inaccurate. As a consequencehypothesis selectionappears
to be the weak link in many scf acquisition systems. The aim of this chapter is
to addressthis problem by examining why hypothesis tests do not perform in scf

acquisition as expected.

In section 3.2, we rst provide some theoretical badkground on hypothesis testing
in general. Then in section 3.3, we consider hypothesis testing in the context of
subcategorization acquisition, reviewing the tests used and discussingthe problems
reported with them. In section 3.4, a more detailed examination is provided of the
performance of hypothesistesting. We report experiments we conducted to compare
three di erent Itering methods within the framework of Briscoe and Carroll's (1997)
scf acquisition system. Our results show that two hypothesistests perform poorly,
compared with a simple method of ltering scfs on the basis of their mles. We
discussreasonsfor this, point out a number of problems with hypothesis testing
for scf acquisition, and consider possible directions for further researd. Finally,
section 3.5 summarisesour discussion.

3.2 Background on Hypothesis Testing

Hypothesistesting, asusedin scf acquisition, involvesmaking decisions. In statistics,
decision making belongsto the study of inference problems called "decisiontheory'.

67
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Generally speaking, decision theory involves formally de ning all elemens of the
decision-making process,including the desiredoptimality criteria. These criteria are
then usedto compare alternativ e decisionprocedures.

One elemern of a decision problem is the “data’ described by a random vector X
with sample space X. Another elemen is a ‘model', a set of possible probability
distributions for X, indexedby a parameterf. This parameteris the true but unknown
state of nature about which we wish to make an inference. The set of possiblevalues
for 6 is called the parameter space(). Thus the model is a setf f(xjf) : 62 ¢
where ead f(xj#) is a probability massfunction or probability density function on
X. After the data X = z is obsened, a decisionregarding the parameter 8 is made.
The set of allowable decisionsis the “action space',denoted by (A). The action space
determinesthe type of inferenceproblem with which we are concerned.

When the decision problem is a hypothesis testing problem, the goal is to decide,
from a sampleof the population, which of the two complemertary hypothesesis true:
the “null hypothesis' Hy or the “alternative hypothesis' H;. Hypothesis testing is
performed by formulating H,, which is assumedtrue unlessthere is evidenceto the
contrary. If there is evidenceto the contrary, H is rejected and H; is accepted.
Essettially, a hypothesistest is a rule that speci es

i For which samplevaluesthe decisionis madeto accept H, astrue

ii For which samplevalues H is rejected and H; is acceptedastrue

The subset of the sample spacefor which Hy will be rejected is called the ‘rejec-
tion region' or “critical region'. The complemen of the rejection region is called the
‘acceptanceregion'.

Thusin terms of decisiontheory, only two actions are allowable in hypothesistesting,
either \accept Hy" or \reject Hy". When denoting these two actions ag and aq,
respectively, the action spacein hypothesistesting is the two point setA = fag, a1g.
A decisionrule (4(x)) is arule that speci es, for eath = 2 X, what action ¢ 2 A will
be takenif X = x is obsened. In hypothesistesting we have

0(z) = a¢ for all x that are in the acceptanceregion of the test

0(x) = a1 for all x that are in the rejection region of the test

In deciding to acceptor reject Hy, we may make a mistake. Two typesof error may
be distinguished:

Type I Error The hypothesistest incorrectly rejects Hy

Type II Error The hypothesistest incorrectly accepts H
These two di erent situations are depicted in gure 3.1. Supposing R denotesthe

rejection region for a test, the probability of Type | Error is P(X 2 RjH,) and
the probability of the Type Il error is P(X 2 RCjH;). Hypothesis tests are often
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Accept Hy | Reject Hy

Hy Correct Type 1
decision error

H,y Type 11 Correct
error decision

Figure 3.1: Two typesof error in hypothesistesting

evaluated and compared through their error probabilities. When doing so, Type ||
error is frequertly minimised subject to a pre-speci ed value for Type | error. That
value is the “signi cance' of the test. The signi cance is often set at 0.05, in which
casewe have a “con dence' of 95%in accepting Hy.

The hypothesis tested may refer to a certain parameter of the distribution of the
data. For example, we may have a hypothesisabout the population mean. Tests of
sudh hypothesesare called "parametric' tests, and they assumesomedistribution for
the data (e.g. the binomial, normal, ¢ distribution). Examples of parametric tests
are the binomial hypothesis test, the log likelihood ratio test and the ¢ test which
we shall discussfurther in section 3.3. Sometests, on the other hand, are designed
for hypothesesabout other characteristics of the distribution, sud as the similarity
betweenthe distributions of two samples. Suc tests are called "non-parametric' (e.g.
the Chi-Squaretest) or “distribution-free’, when they do not assumeany distribution

for the data (e.g. the Fisher's exact test).

Typically, a parametric hypothesis test is specied in terms of a ‘test statistic', a
function of the sample W(X). A test might, for example, specify that Hg is to be
rejected if X, the sample mean, is greater than 3. In this case,W(X) = X is the
test statistic and the rejection regionis f (z1, ..., z,) : T > 39. Dierent test statistics
(e.g. likelihood ratio tests, invariant tests, Bayesiantests) and rejection regionscan
be de ned. The choice dependsupon what sort of departures from the hypothesiswe
wish to detect!.

3.3 Hypothesis Testing in Subcategorization Acquisition

When applying hypothesistesting to scf acquisition, the task is to examinewhether,
on the basisof accunulated evidence,there is a geruine assaiation betweena partic-
ular verb (verb;) and a scf (scf;). As the input data to statistical Itering is noisy,
ead occurrenceof verb; has somenon-zeroprobability of being followed by a cue for
scf;, evenif it cannotin fact occur with scf;. The more often verb; occurs, the more
likely it is to occur at least once with a cue for scf;. Hypothesis testing considers
ead occurrenceof verb; without a cue for scf; asa small item of evidenceagainst

'For a more detailed account of decision theory and hypothesis testing, see e.g. Casella and Berger
(1990) and Kalbfleisch (1985).
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verb; occurring with scf;. The aim is to determine when verb; occurs with cuesfor
scf; often enoughto indicate that all those occurrencesare unlikely to be errors.

Given this, the null hypothesis Hj is that there is no assaiation betweenverb; and
scf;. Mearnwhile, the alternativ e hypothesis H; is that there is such an assaiation.
The test is “one-tailed' since H; states the direction of the assaiation, which is a
positive correlation betweenverb; and scf;. The expectedprobability of scf; occurring
with wverb; if Hy is true is compared with the obsened probability of co-occurrence
obtained from the corpusdata. If the obsened probability is greaterthan the expected
probability, we reject Hy and accept Hq, and if not, we retain Hy.

Sofar, three hypothesistests have beenusedin scf acquisition: the binomial hypoth-
esistest, the log likelihood ratio test, and the ¢ test. We discussthesetests and their
performancein following three sections.

3.3.1 Binomial Hyp othesis Test

The most frequertly employed statistical test in scf acquisition is the binomial hy-
pothesistest (bht ), originally intro ducedfor the purposeby Brent (1993) and subse-
quertly usedby Manning (1993), Ersan and Charniak (1996), Lapata (1999), Briscoe
and Carroll (1997), and Sarkar and Zeman (2000). In section 2.5.3, we intro duced
Briscoe and Carroll's version of bht . We shall now look at the test and its di erent
versionsin more detail.

Applying this test to scf acquisition requiresrecording the total number of scf cues
(n) found for verb;, and the number of these cuesfor scf; (m). It also requiresan
estimate of the error probability (p€) that a cue for a scf; occurswith a verb which
doesnot take scf;. Occurrencesof verbswith di erent putativ e scf s are regardedas
independert Bernoulli trials. The probability of an event with probability p happening
exactly m times out of n sud trials is given by the following binomial distribution:

P(m,n,p) = "@aopt " 3.1

ml(n | m)!p

The probability of the evert happening m or more times is:

P(m+,n,p) = i P(k,n,p) (3.2)

k=m

Finally, P(m+ ,n,p°) is the probability that m or more occurrencesof cuesfor scf;
will occur with a verb which is not a member of scf;, given n occurrencesof that verb.
A threshold on this probability, P(m+,n, p°®), is usually set at lessthan or equal to
0.05. This yields a 95% or greater con dence that a high enough proportion of cues
for scf; have beenobsened for the verb legitimately to be assignedscf;.

Approachesto scf acquisition which usea binomial hypothesistest typically dier in
respect of the calculation of error probability. Brent (1993) estimates p® for ead scf
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experimentally from the behaviour of his scf extractor. Let N bealower limit on the
number of verb occurrencesin the sample. For ead scf;, we can build a histogram
where the height of the m'" bin is the number of verbs that cue for scf; exactly
m times out of their rst N occurrences. Assumethat there is somel j, N
such that most verbs not taking scf; are seenwith cuesfor scf; jo times or fewer
and, cornversely that most verbs seenwith cuesfor scf; jo times or fewer do not
take scf;. The distribution for m  jo occurrencesshould be roughly binomial, i.e.
proportional to P(m, N, p¢), where p¢ denotes an estimate of p¢ for scf;. Brent's
procedure examinesead possibleestimate j of j;. For ead j, he estimatesp¢ asthe
averagerate amongthe rst N occurrencesat which verbs in bins up to j cue for
scf;. The plausibility of j is evaluated by normalizing the rst j bins, setting the rest
to zero, comparing with P(m, N, ), and taking the sum of the squareddi erences
betweenthe two distributions. The estimate giving the closestt between predicted
and obsened distributions is chosenas the best estimate of p°.

Brent's calculation of error probability was presumably adopted without changesby
Lapata (1999) and Sarkar and Zeman (2000). Manning (1993), howewer, found that
for somescf s, this method leadsto unnecessarylow estimatesfor p¢. Since Brent's
cueswere sparsebut unlikely to be false, the best performancewas found with values
of the order of 2 &. This wasnot the casewith Manning's approad, wherethe number
of available cueswas increasedat the expenseof reliabilit y of thesecues. To maintain
high levels of accuracy Manning applied empirically determined® higher bounds on
the error probabilities for certain scf s. The high bound valuesranged from 0.25 to
0.02. This approach was also employed by Ersan and Charniak (1996).

When estimating p¢ in the manner of Brent or Manning, one makesthe assumption
that the error probabilities for scf s are uniform acrossverbs. This assumption is
false, as noted by Brent (1993). Most verbs can, for example, take an np argumert,
while very few can take an np followed by a tensed clause. Assuming uniform error
probability results in too few verbs being classi ed astaking an np argumert and too
many taking an np followed by a tensed clause. This suggeststhat in calculation of
p¢, a better approach would be to take into accourt variation on the percertage of
verbs that can appear in ead frame. Briscoe and Carroll (1997) take a step in this
direction by estimating p¢ asfollows:

o= (1 jverbs in scfij) jpatterns for scfi (3.3)

jverbsj jpatternsj

Briscoe and Carroll extract the number of verb types which are members of the
target scf in the anl t dictionary. They then cornvert this number to a probability of
frame membership by dividing by the total number of verb typesin the dictionary.
The complemen of this probability provides an estimate for the probability of a
verb not taking scf;. Secondly this probability is multiplied by an estimate for the
probability of observing the cue for scf;. This is estimated using the number of
patterns for i extracted from the susanne corpus, divided by the total number of
patterns. According to this estimation, if the probability of observingthe cuefor scf;

2Manning provides no further details of the empirical estimation.
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is 0.5 and the probability of frame membership is only 0.1, the error probability of
assaiating verbs with scf; is 0.45. Howevwer, if the probability of frame membership
is 0.5 instead, the error probability is only 0.25.

As shown above, Briscoe and Carroll's estimation of p¢ takesinto accourt the rela-
tive frequency of verb typesthat appear in eat frame. Howewer, since basedon a
dictionary, it does not considerthe relative frequency of tokens of verb types. It is
probable that to obtain more accurate estimates, the number of verb typesin anl t
scf; should be weighted by the frequency of these verbs. It is also possiblethat the
patterns extracted from the susanne corpus are not represetativ e enoughto yield
fully accurate estimation.

Briscoe, Carroll and Korhonen (1997) apply a method which iterativ ely optimizes
the error probabilities obtained using Briscoe and Carroll's estimation. The idea is
similar to that of Manning (1993), i.e. to set high bounds on the error probabilities.
The method is based on automatically adjusting the pattern frequenciesshown in
equation 3.3 on the basis of the errors (false positives and false negatives) the scf
acquisition system makes. First, the errors the system has made are analysed. Then
an “optimal’ con dence threshold is calculated such that if the bht Iter had applied
it instead of the actual con dence threshold of 0.05, the errors with scf s would have
been minimised. This is done by initially setting a threshold between ead pair of
scf occurrencesin system output, and then choosing the threshold which yields the
minimum number of errors as the optimal con dence threshold. Let p,., be the
probability assignedto scf; by the binomial hypothesistest and n the total number
of scf sin systemoutput. The number of incorrect scf s for eat possiblethreshold
is calculated as follows:

Dscf; + pscth
2 )
(3.4)

Errors; = § limj iy Dscf; i=0

Iimj! i DPscfjs i=n

The threshold which yields the smallest number of incorrect scf s is chosenas the
optimal threshold p,,;. Next, the distance betweenthe optimal threshold and the
actual con dence threshold (ps,) is calculated by dividing the latter by the former.
The resulting value is multiplied with the pattern frequency of scf;. This givesan
optimised pattern frequency:

ipatterns for scfijopt = jpatterns for scfi <§thr> (3.5)
opt

Correcting errors in the above manner will generate somenew errors. Accordingly,
the whole processis repeated until the pattern frequenciesand hencethe error prob-
abilities are optimised to give the optimum system results with type precision and
recall.

Briscoe, Carroll and Korhonen (1997) report an experiment using this method, where
the error probabilities were rst iterativ ely optimised with held-out training data
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covering 10 verbs and then evaluated with test data covering 20 verbs?. Using the
optimised error probabilities improved scf acquisition performance by 8.8% with
type precision, 20.7%with typerecall and 10.9%with ranking accuracy ascompared
with the performancewith original error probabilities. This result demonstratesthat
Briscoe and Carroll's estimation of p© is not optimal. However, the optimization
method yields only 70%type precision, 62%type recall and 77%ranking accuracy at
its best, which also leavesfor room improvemert. Closer analysis of results revealed
that the method was su cien t only to improving the performanceof medium-to-high
frequency scf s.

Nearly all approadies using bht report that the test is unreliable for scf s with a
frequency of lessthan 10 (Brent, 1993; Manning, 1993; Ersan and Charniak, 1996;
Briscoe and Carroll, 1997). In practice, the poor performanceof bht with low fre-
guency scf s results in low recall, as many correct scf s are missedand wrong ones
selected.

3.3.2 Log Lik eliho od Ratio

The binomial log-likelihood ratio (llr ) test (Dunning, 1993) seemsheoretically more
promising than bht for low frequency data. The test has been recommendedfor
usein nlp sinceit doesnot assumea normal distribution, which invalidates many
other parametric tests for use with natural language phenomena. Moreover, it is
usedin a form ( 2log\) which is asymptotically x? distributed. This asymptote is
appropriate at quite low frequencies,which renders the hypothesis test potentially
useful when dealing with natural language phenomena,where low frequency events
are commonplace. Dunning (1993) demonstratesthe bene ts of the llr  statistic in
practice, compared with Pearson'schi-squared, on the task of ranking bigram data.
The (lIr ) test (Dunning, 1993) has been used in scf acquisition by Sarkar and
Zeman (2000) and by Gorrell (1999), who appliesit to the scf acquisition framework
of Briscoe and Carroll (1997). Both Sarkar and Zemanand Gorrell usethe test in the
sameway.

To calculate the binomial log-likelihood ratio test, four counts are required for ead
verb and scf combination. Theseare the number of times that:

the target verb occurswith the target scf (k1)
the target verb occurswith any other scf (ny k1)

any other verb occurs with the target scf (ks)

e

any other verb occurswith any other scf (ns  k2)

These are the counts from a cortingency table, such as that shown below, where
the rows indicate the presenceor absenceof the verb and the columns indicate the
presenceor absenceof the scf :

3The corpus data and method used for evaluation were identical to those used by Briscoe and
Carroll (1997), see chapter 2 for details.
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\ | SCF \ — SCF | Totals |

verb SCF & verb (k1) - SCF & verb ny
= verb || SCF & — verb (k3) | = SCF & — verb Ny

The statistic  2log\ is calculated as follows:

log-likelihood = 2[logL(p1, k1,n1)
+logL(p2, k2, n2)
logL(p, k1,mn1)

logL(p, k2,n2) ] (3.6)
where
logL(p,n,k) = k logp+ (n k) log(l p)
and
_ ki ke kit ke
pPr= —, P2— —, -
n1 N2 ny+ ng

The llIr  statistic provides a scorethat re ects the di erence in (i) the number of bits
it takesto describe the obsened data, using pl = p(scf juerd) and p2 = p(scf j. verd),
and (ii) the number of bits it takesto describe the expecteddata using the probability
p = p(scf jany verbd).

The llr  statistic detects di erences betweenpl and p2. The di erence could poten-
tially bein either direction, but with scf acquisition, oneis interestedin lir s where
pl > p2, i.e. wherethere is a positive assaiation betweenthe scf and the verb. For
these cases,the value of 2log)\ is comparedto the threshold value obtained from
Pearson'sChi-Squaredtable, to seeif it is signi cant at the 95% level.

Surprisingly, both Gorrell (1999) and Sarkar and Zeman (2000) report that with scf
acquisition, lIr  yields worse overall performance than bht . Gorrell reports that
when comparedto bht , llr  shawvs a 12% decline in system performance with type
precision, 3% with type recall, and 7% with ranking accuracy Sarkar and Zeman
report a 6% decline in token recall with llr , as comparedwith bht . Gorrell, who
provides more detailed analysis of errors, doesnot nd evidencethat lIr would even
perform better on low frequency classeshan bht .

3.3.3 The t test

The t test is applied to scf acquisition only by Sarkar and Zeman (2000). It is derived
from the log likelihood ratio test for the normal distribution. Relying on the normal
approximation, it is only reliable for large enoughscf samples(n; p; > 5, n; (1 p;) >
5) and therefore not theoretically as promising for the use of scf acquisition aslIr

Given a samplefrom a normal distribution with unknown meanand variance, the test
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is usedto make hypothesesabout the mean. It examinesthe di erence betweenthe
obsened and expected means, scaledby the variance of the data, and indicates how
likely it is to get a sample of that (or more extreme) mean and variance, assuming
that the sampleis drawn from a normal distribution with mean .

When applied to scf acquisition, the value of the ¢ test is usedto measurethe asso-
ciation betweenwverb; and scf;. Using the de nitions from section 3.3.2, the test is
computed as follows:

b1 P2
Voi(ni,p1)? + oa(ng, p2)?

o(n,p) =4/ LG (3.8)
n

The value of T hasthe t distribution with n; + ny 2 degreesof freedom (which is
about normal for large samples). The larger that value is, the more con dent we can
be that p; is greater than p, and thus that null hypothesisshould be rejected.

where

Sarkar and Zeman report that the ¢ test performs similarly with lIr , shoving only
0.5%improvemert overllr with tokenrecall. No further analysisof errorsis provided.

3.4 Comparison of Three Methods

None of the hypothesistests usedin scf acquisition sofar yields accurate enoughper-
formance. Although they have beenwidely reported as problematic, especially with
low frequency scf s, the reasonsfor poor performancehave not beeninvestigated. To
examine why thesetests perform poorly in scf acquisition, we performed a seriesof
experiments within the framework of the Briscoe and Carroll's scf acquisition sys-
tem?. In theseexperiments, we comparedthe performanceof the Brent style binomial
Iter of Briscoe and Carroll and the llr  Iter of Gorrell (1999) with the performance
of a simple method which usesa threshold on the mle s of scf s. This sectionreviews
these experiments, discusseghe results obtained and considersdirections for future
work. The three Iters are described in section 3.4.1. The details of the experimental
evaluation are supplied in section 3.4.2. Our ndings are discussedin section 3.4.3
and future work in section 3.4.4.

3.4.1 Metho ds

When investigating the Itering performance,we usedBriscoe and Carroll's scf sys-
tem asa framework (seesection2.5.3). In theseexperiments, the hypothesisgenerator

4The research reported in this section was undertaken in collaboration with Genevieve Gorrell and
Diana McCarthy. Full report of our joint work can be found in Korhonen, Gorrell and McCarthy
(2000).
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of the system (the tagger, lemmatizer, parser, pattern extractor and classi er) was
held constart, the only di erence being that a parser was used di erent from that
selectedby Briscoe and Carroll®>. While they employed a probabilistic Ir parser,
our data was parsedusing a probabilistic chart parser(pcp) (Chitrao and Grishman,
1990f. Otherwise, the Iter was the only componert we experimented with. We
comparedthe performanceof the systemwith three di erent lters:

The bht Iter of Briscoe and Carroll (1997)
The lIr  Iter of Gorrell (1999)

A new Iter which usesa threshold on mle s of scf s

The two statistical Iters have beendescribedin detail earlier. Section2.5.3described
the version of bht usedby Briscoe and Carroll, while section 3.3.2 provided details
of Gorrell's llr  lter. The new Itering method was applied in order to examinethe
baselineperformance of the system without employing any notion of the signi cance
of the obsenations. The method involves extracting scf s classi ed by the system's
classi er, and ranking them in the order of probability of their occurrencewith the
verb (p(scfijverd;)). Probabilities are estimated simply by using a maximum likeli-
hood estimate (mle ) from obsened relative frequencies. This is the ratio of court for
scf; + verb; over the court for verb;. A threshold, determined empirically, is applied
to these probability estimatesto Iter out the low probability ertries for eat verb.
We determined the threshold using held-out training data: sud value was chosen
which gave optimum average lItering results (according to F measure)for a set of
verbs. This yielded a threshold value of 0.02, which was used in the experiments
reported below.

3.4.2 Experimen tal Evaluation
Method

To evaluate the dierent lters, we took a sample of 10 million words of the bnc
corpus. We extracted all sertencescontaining an occurrenceof one of the following
fourteen verbs: ask, begin, believe, cause, expect, find, give, help, like, move, produce,
provide, seem, swing. Theseverbsoriginally usedby Briscoe and Carroll (1997) were
chosenat random, subject to the constraint that they exhibited multiple complemen-
tation patterns. After the extraction process,we retained 3000 citations, on average,
for eat verb. The sertencescontaining these verbs were processedby the hypoth-
esis generator of the scf acquisition system, and then the three Itering methods
described above were applied. We also obtained results for a baseline without any
Itering.

5We are indebted to John Carroll for providing us with extracted patterns used in these and other
experiments reported in this thesis.

6See McCarthy (2001, p. 136) for evaluation of the PCP we employed and the LR parser Briscoe
and Carroll (1997) employed. In this evaluation, the LR parser proved slightly more accurate than
the PCP, but the differences were not statistically significant.
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Method High Freq Medium Freq Low Freq Totals

TP | FP | FN || TP | FP FN || TP | FP | FN || TP | FP | FN
BHT 751 29| 23 || 11 | 37 31 4123 | 151 90| 89 | 69
LLR 66 | 30 | 32 9 | 52 33 2 23| 17 || 77 | 105 | 82
MLE 92 | 31 6 0 0 42 0 0 19| 92| 31| 67

Table 3.1: Raw results for 14 test verbs

| Method | Type Precision % | Type Recall % | F measure |

BHT 50.3 56.6 53.3
LLR 42.3 48.4 45.1
MLE 74.8 57.8 65.2
baseline 24.3 83.5 37.6

Table 3.2: Precision, recall and F measure

The results were evaluated against a manual analysisof corpusdata, the samemanual

analysisasemployed by Briscoe and Carroll. It wasobtained by analysing around 300

occurrencesfor ead of the 14 test verbsin lob (Garside et al., 1987), susanne and

sec (Taylor and Knowles, 1988) corpora. A manual analysis of the bnc data might

produce better results. However, since the bnc is a balanced and heterogeneous
corpus, we felt it was reasonableto test the data on a di erent corpus which is also

balancedand heterogeneous.

Following Briscoe and Carroll (1997), we calculated type precision (percertage of
scf s acquired which were also exemplied in the manual analysis) and type recall
(percertage of the scf s exempli ed in the manual analysis which were acquired au-
tomatically). We also combined precision and recall into a single measureof overall
performanceusing the F measure.

Results

Table 3.1 givesthe raw results for the 14 verbsusing eady method. It shovsthe number
of true positives(tp ), false positives(fp ), and false negatives(fn ), asdetermined by
manual analysis. The results for high frequency scf s (above 0.01relative frequency),
medium frequency (between 0.01 and 0.001) and low frequency (below 0.001) scf s
are listed respectively in the second,third and fourth columns. Thesethree frequency
rangeswere de ned so that a roughly similar number of scf s would occur in eah
range. The nal column includesthe total results for all frequencyranges.

Table 3.2 shows type precision, type recall and the F measurefor the 14 verbs. We
also provide the baselineresults, if all scf s were accepted.

From the results given in tables 3.1 and 3.2, it is apparert that the mle approact
outperformed both hypothesistests. For both bht and llr  there was an increasein
fn s at high frequencies,and an increasein fp s at medium and low frequencies,when
comparedwith mle . The number of errors wastypically larger for llr  than bht . The
hypothesistests reducedthe number of fn s at medium and low frequencies,but this
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‘ Method | Type Precision % | Type Recall % ‘ F measure

BHT 62.5 55.1 58.6
LLR 50.9 47.0 48.9

Table 3.3: Results with small bnc data

was countered by the substartial increasein fp s that they gave. While bht nearly
always acquired the three most frequert scf s of verbs correctly, llr  tended to reject
these.

While the high number of fn s can be explained by reports which have shown lIr
to be over-consenrative (Ribas, 1995; Pedersen,1996), the high number of fp s is
surprising. Although theoretically the strength of Ilir lies in its suitability for low
frequency data, the results displayed in table 3.1 do not suggestthat the method
performs better than bht on low frequency frames.

mle thresholding producedbetter resultsthan the two statistical tests used. Precision
improved considerably showing that scf soccurring in the data with highestfrequency
are often correct. Also recall showved slight improvemert as comparedwith bht and
lIr . Although mle thresholding clearly makes no attempt to solve the sparsedata
problem, it performs better than bht or lIr overall. mle is not adept at nding low
frequency scf s: the other methods are, however, problematic in that they wrongly
accept more than they correctly reject. The baseline,of accepting all scf s, obtained
a high recall at the expenseof precision. It performed 7.5 worse according to the F
measurethan llr , shawing that even a poor lItering method yields better overall
performancethan no ltering at all.

Interestingly, we have some further results which suggestthat both bht and lir
perform better when less data is used. When we run the same experiment using
only an average of 1000 citations of ead verb from the sample of 10 million words
of the bnc, precision and recall are improved, as seenin table 3.3. This is surprising
sincestatistical tests take samplesizeinto accourt and should be more reliable asthe
samplesizeincreases.We performed cross-walidation which con rmed that this e ect
holds acrossdi erent subsetsof bnc. Each of the three subsetsexamined shoved
better performancewith smaller sample.

3.4.3 Discussion

Our results indicate that mle outperforms both hypothesis tests. We found two
explanations for this, which we believe are jointly responsible.

Firstly, the scf distribution is approximately zip an, asare many distributions con-
cernedwith natural language(Manning and Schetze, 1999). In a zipf-lik e distribution,
the product of rank order (r) and frequency(f) is constart. According to Zipf's law:

fl % (3.9)
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In other words, there is a constart k£ such that f r = k.

Figures 3.2 and 3.3 display two zipf plots. The former shows the conditional scf
distribution for the verb find, while the latter shaws the unconditional distribution
of scf sfor all verbs. Theseun Itered scf probability distributions were obtained by
running the pattern classi er of Briscoe and Carroll's systemon 20 million words of
bnc. The gures show scf rank on the X-axis versusscf relative frequency on the
Y-axis, using logarithmic scales.The line indicates the closestZipf-lik e power law t
to the data. These gures illustrate typical zip an skewed distributions where the
few very high frequencyscf s have seeral orders of magnitude more occurrencesthan
most others. There is a middling number of medium frequency scf s and a long tail
of low frequency scf s.

Secondly the hypothesistests make the false assumption (H;) that the unconditional
and conditional distributions are correlated. The fact that a signi cant improvemert
in performanceis made by optimizing the prior probabilities for scf s accordingto the
performance of the system (Briscoe, Carroll and Korhonen, 1997; seesection 3.3.1)
suggeststhe discrepancybetweenunconditional and conditional distributions.

We examined the correlation betweenthe manual analysis for the 14 verbs and the
unconditional distribution of verb typesover all scf s estimated from anl t using the
Kullback-Leibler Distance (kl ) and SpearmanRank Correlation Coe cien t (rc). The
resultsincluded in table 3.4 show that the distributions comparedare fairly dissimilar
and that only a moderate to poor rank correlation was found averagedover all verb
types. Manual inspection of scf s taken by individual verbs shaws that this result
is not surprising. For example, the highest ranked scf type with the verb believe is
a sertential complemer. This scf type is not as common, however, with verbs in
general, ranked only as 12th among the scf typesin anlt. Furthermore, while the
mle for sertential complemert is 0.48with believe, it is only 0.012with verb typesin
general.

Both lIr and bht work by comparing the obsened value of p(scf;jverb;) with that
expected by chance. They both use the obsened value for p(scf;jverb;) from the
system's output, and they both use an estimate for the unconditional probability
distribution (p(scf)) for estimating expected probability. They dier in the way in
which the estimate for unconditional probability is obtained and the way that it is
usedin hypothesistesting.

For bht , the null hypothesisis that the obsened value of p(scf;jverb;) arose by
chance, becauseof noise in the data. We estimate the probability that the value
obsened could have arisen by chanceusing p(m+ ,n,p€). p° is calculated using:

the scf acquisition system's raw (un Itered) estimate for the unconditional
distribution, which is obtained from the susanne corpusand

the anl t estimate of the unconditional distribution of a verb not taking scf;,
acrossall scf s

"Note that KL > 0, with KL near to 0 denoting strong association, and —1 < RC < 1, with RC near
to 0 denoting a low degree of association and RC near to -1 and 1 denoting strong association. See
section 2.5.2 for full account of both KL and RC.
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| Verb [ KL | RC |
ask 1.25 | 0.10
begin 2.55 | 0.83
believe 1.94 | 0.77
cause 0.85 | 0.19
expect 1.76 | 0.45

find 1.29 | 0.33
give 2.28 | 0.06
help 1.59 | 0.43
like 1.39 | 0.56

move 0.78 | 0.53
produce | 0.53 | 0.95
provide | 0.44 | 0.65
seem 3.32 | 0.16
swing 0.79 | 0.50

Average | 1.48 | 0.47

Table 3.4. Kullback-Leibler distance and Spearman rank correlation between the
conditional scf distributions of the test verbs and unconditional distribution

For llr , both conditional (p;) and unconditional (p;) estimates are obtained from
the bnc data. The unconditional probability distribution usesthe occurrenceof scf;
with any verb other than our target.

The binomial tests look at one point in the scf distribution at a time, for a given
verb. The expected value is determined using the unconditional distribution, on the
assumption that if the null hypothesisis true then this distribution will correlate
with the conditional distribution. However, this is rarely the case. Moreover, given
the zip an nature of the distributions, the frequencydi erences at any point can be
substartial. In these experiments, we used one-tailed tests becausewe were looking
for caseswhere there was a positive assaiation betweenthe scf and verb, however,
in a two-tailed test the null hypothesis would rarely be accepted, becauseof the
substartial di erences in the conditional and unconditional distributions.

A large number of false negativesoccurred for high frequency scf s becausethe prob-
ability with which we comparedthem wastoo high. This probability was estimated
from the combination of many verbs geruinely occurring with the frame in question,
rather than from an estimate of badcground noise from verbs which did not occur
with the frame. We did not use an estimate from verbs which do not take the scf,
since this would require a priori knowledge about the phenomenathat we were en-
deavouring to acquire automatically. For llr the unconditional probability estimate
(p2) was high, simply becausethis scf was common, rather than becausethe data
was particularly noisy. For bht , p¢ waslikewisetoo high asthe scf wasalsocommon
in the susanne data. The anlt estimate went someway to compensating for this;
thus we obtained fewer false negativeswith bht than IIr

A large number of false positivesoccurred for low frequencyscf s becausehe estimate
for p(scf;) was low. This estimate was more readily exceededby the conditional
estimate. For bht false positives arose becauseof the low estimate of p(scf;) (from
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susanne) and becausehe estimate of p(: scf;) from anl t did not compensateenough
for this. For llr , there was no meansto compensatefor the fact that p, was lower
than py.

In cortrast, mle did not compare two distributions. Simply rejecting the low fre-
quency data produced better results overall by avoiding false positives with the low
frequency data, and false negativeswith the high frequency data.

3.4.4 Conclusion

Further work on handling low frequency data in scf acquisition is warranted. With

hypothesistests, onepossibility is to put moree ort into estimation of p¢, and to avoid
use of the unconditional distribution for this. For example, Manning and Scutze
(1999) propose supplemeriing bht with prior knowledge about a verb's scf s. This
could be doneby stipulating a higher prior for scf slisted for a verb in somedictionary.
In somefurther experiments with bht , we optimised the estimatesfor p¢ depending
on the performance of the systemfor the target scf, using the method proposedby
Briscoe, Carroll and Korhonen (1997) (seesection 3.3.1). The estimates of p© were
obtained from a held-out training set separate from the bnc data used for testing.
Results using the new estimates for p¢ shaved no improvemert with low frequency
scf s. They gave an overall improvemernt of 10% type precision and 6% type recall,
comparedto the bht results reported here®. Nevertheless,the result was 14% worse
for precision than mle, though there was a 4% improvemert in recall, making the
overall performance 3.9 worsethan mle accordingto the F measure.

Methods basedon optimising estimatesfor p¢ are likely to represen an upper bound
to bht 's accuracy bht and other hypothesistests applied in scf acquisition so far
assumethat the di erent scf stakenby verb; occurindependertly. Seweral researters
have questioned this assumption (Carroll and Rooth, 1998; Manning and Sdutze,
1999; Sarkar and Zeman, 2000). Manning and Scetze (1999) and Sarkar and Zeman
(2000) propose modeling the dependencebetween dierent scf s for verb; using a
multinomial distribution. To our knowledgethis method hasyet not beentried. While
we agreethat the independenceassumptionis arguably questionable,it is unclear how
this method would addressthe problems we have identi ed with bht and lir

A non-parametric or distribution-free statistical test, such asFisher's exacttest recom-
mendedby Pedersen(1996), might improve on the results obtained using parametric
tests. The computation for this test, howewver, can quickly becomecumbersomeas
a calculation is required for every possiblecon guration of the cortigency table that
results in the obsened marginal totals. Moreover, Pedersen'sresults did not appear
to demonstrate a signi cant advantage comparedwith Illr . On the task of identifying
bigrams, the ranks assignedby the Illr  and Fisher's exact test are identical.

As known from other areasof nlp , the zip an nature of data alone remains a chal-

8This improvement obtained using the optimization method is smaller than that reported in
section 3.3.1. This is due to the optimization method’s being dependent on the accuracy of the
baseline results. As the baseline BHT results reported in this section were not as accurate as those
reported in section 3.3.1 (e.g. due to the differences in test data) the improvement gained was smaller.
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lenge for both parametric and non-parametric statistical tests’. The frequert and
infrequent rangesof a zip an distribution exhibit very di erent statistical behaviour.
It is possiblethat no statistic can be found that would work well for both high and
medium-to-low frequency events and thus allow direct comparison of the signi cance
of both rare and commonphenomena. Also, asBriscoe (2001) points out, zip an data
is by nature inadequate from the statistical learning point of view, regardlessof the
amourt and accuracy of the data used. Becausethe power law is scaling invariant,
no nite sample will be represenativ e in the statistical sense. In addition, power
law distributions often indicate that we sample from a non-stationary rather than a
stationary source(Casti, 1994). This partly explains why statistical models of learn-
ing, which rely on represenative samplesfrom stationary sources,do not perform
optimally.

The better result obtained using mle is to someextent supported by Lapata (1999)
who reported that a threshold on the relative frequenciesproduced slightly better
results than those achieved with a Brent-style binomial Iter when establishing scf s
for diathesis alternation detection. However, Lapata's approad diers from oursin
that she determined thresholds for ead scf (independertly from verbs) using the
frequency of the scf in bnc and comlex . The method fails to accourt for the fact
that scf probabilities are not uniform acrossthe verbs. Better results would be
obtained if the variation on the percertage of tokensof verb typesthat can appearin
ead frame wastaken into accourt.

To improve the performanceof mle, it would be worth investigating ways of handling
low frequency data for integration with this method. Any statistical test would work
better at low frequenciesthan the mle, sincethis simply disregardsall low frequency
scf s. If in our experiments, we had usedmle only for high frequencydata, and bht
for medium and low, then overall we should have had 54% precision and 67% recall.
For integration with mle, it seemsworth employing hypothesis tests which do not
rely on the unconditional distribution for low frequency scf s. Another option would
be to integrate mle with smoothing. This approac would avoid altogether the use
of statistical tests. Howewver, more sophisticated smoothing methods, which badk-o
to an unconditional distribution, will alsosu er from the lack of correlation between
conditional and unconditional scf distributions. In other words, only if the uncondi-
tional scf distribution provided accuratebadk-o estimatesfor scf s, could it be used
to smooth the conditional distributions to compensatefor the poor performanceon
rare scf s and to detect scf s unseen.

3.5 Summary

In this chapter, we have discussedthe problem of statistical Itering in subcategoriza-
tion acquisition. After providing theoretical badkground on the theory of hypothesis
testing, we reviewed hypothesis tests applied in scf acquisition and described the
problems assaiated with them. We then reported experiments with Briscoe and Car-

9For example, Manning and Schiitze (1999) discuss the performance of various hypothesis tests
on the task of identifying collocations, and Kilgarriff (2001) evaluates different statistical tests used
for comparing corpora. They both report poor performance with these tests on zipfian data.
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roll's scf acquisition system, where we explored three possibilities for ltering scf
entries produced by the system. Thesewere (i) a version of the binomial hypothe-
sistest Iter, (ii) a version of the binomial log-likelihood ratio test Iter and (iii) a
simple method using a threshold on the mle s of the scf s hypothesised. Surprisingly,
the simple mle thresholding method worked best. The bht and llr  both produced
an astounding number of fp s, particularly at low frequencies. Our investigation
showved that hypothesistesting doesnot work well becausenot only is the underlying
distribution zip an but also there is very little correlation between conditional and
unconditional scf distributions. bht andllr wrongly assumedsuc a correlation for
Hy and thus were susceptibleto error. The lack of correlation betweenthe conditional
and unconditional scf distributions will, howewer, alsoa ect re nements of mle sudc
assmoothing or Bayesianestimation. Sophisticated methods for handling sparsedata
would bene t from more accurate back-o estimatesfor scf s than the unconditional
scf distribution can provide.



Chapter 4

Back-o Estimates for
Sub categorization Acquisition

4.1 Introduction

In chapter 3, we discussedthe poor performance of statistical tests frequertly em-
ployed for hypothesisselectionin scf acquisition. Our investigation shoved that one
substartial sourceof error lies in the lack of accurate badk-0 estimates' for scf s,
delimiting the Itering performance. Howewer, accessto more accurate badk-o esti-
mateswould not only bene t widely-usedstatistical lters, but any method employed
for hypothesis selection which relies on such estimates. It would also help e.g. the
simple lter basedon mle thresholding (introducedin chapter 3) which requires re-
nement the better to deal with sparsedata.

In this chapter we shall considerways of obtaining more accurate back-o0 estimates
for scf acquisition. The poor correlation between the unconditional (p(scf)) and
conditional scf distributions (p(scfjverd)) suggeststhat no single set of badk-o0 es-
timates is applicable to all verbs. Rather, it is likely that verbs of di erent subcate-
gorization behaviour require di erent estimates. In the following sectionswe consider
linguistic resourceswhich classify verbs according to their distinctiv e subcategoriza-
tion behaviour. We examine whether badk-o estimatescould be basedon the verb
classegheseresourcesprovide (p(scfjclass)).

We start by introducing the linguistic verb classi cations we plan to explore (sec-
tion 4.2). We then report experiments where we compare how well verbs grouped
similarly in these classi cations correlate in terms of scf distributions (section 4.3).
The outcome from these experiments is summarizedin section 4.4%.

1'We use the term ‘back-off estimates’ in a broad sense to refer to the SCF probability estimates used
for guiding SCF acquisition is some way. We make no reference to the particular method employed
(e.g. hypothesis testing, smoothing, Bayesian estimation, etc.).

2See Korhonen (2000) for a summary of the central experimental findings presented this and the
following chapter.
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4.2 Methods of Verb Classification

In the previous chapter, poor correlation wasreported betweenunconditional (p(scf))
and conditional scf distributions (p(scfjverd)). Unlike approacesto scf acquisition
have sofar generallyassumed,p(scf) doesnot provide accuratebadk-o estimatesfor
p(scfjverb). This is not actually surprising, consideringthat individual verbs dier
largely in terms of the number and type of scf s they take. For instance, a verb like
ignore takesonly one scf (np), while a verb like believe takesmultiple scf s (e.g. np,
par t-np , np-pp, pp, par t-np-pp , intrans , part, np-adjp , np-pp-pp). Given this,
a single set of back-o estimatesis unlikely to fully account for the scf variations
the di erent verbs pose. Instead, it is likely that verbs of di erent subcategorization
behaviour require dierent badk-o estimates. A verb like clip, for instance, which
intuitiv ely takes near identical set of scf s with cut (e.g. np, part-np , np-pp, pp,
par t-np-pp , intrans , part, part-pp , np-pp-pp) should require similar bad-o

estimatesto cut.

An alternativ e is thus to classify verbsinto classedistinctiv e in terms of subcatego-
rization and obtain badk-o estimates specic to these classes(p(scfjclass)). Some
lexical resourcesexist which assaiate verbs with classeshat capture subcategoriza-
tion behaviour characteristic to their members. These classi cations have been ob-
tained on both semartic and syntactic grounds. In the following, we shall rst de-
scribe the semartically and then the syntactically-driv en verb classi cations usedin
our work.

421 Semantic Verb Classi cation

Two current approadesto semarically-driv en verb classi cation, both widely used
within nlp researt, are the Levin classeqLevin, 1993) and WordNet (Miller et al.,
1993). Levin's taxonomy of verbs and their classesis based on diathesis alterna-
tions. Verbswhich display the samealternations in the realization of their argumert
structure are assumedto share certain meaning componerts and are organized into
a semarically coherent class. WordNet, on the other hand, is a semariic network
basedon paradigmatic relations which structure the di erent sensef verbs. Of the
two sources,Levin classesare more interesting to us, sincethey provide setsof scf s
assaiated with individual classes.WordNet classi es verbs on a purely semariic ba-
sis without regard to their syntactic properties. Although the syntactic regularities
studied by Levin are to someextent re ected by semartic relatednessasit is repre-
serted by WordNet's particular structure (Dorr, 1997; Fellbaum, 1999), WordNet's
semartic organization doesnot always go hand in hand with a syntactic organization.
Levin classeghus give us a better starting point. WordNet provides, however, useful
information not included in Levin classes,for example, information about di erent
semartic relations between verbs and the frequency of verb senses. Unlike Levin's
taxonomy, it is also a comprehensie lexical database. We thus use WordNet as a
sourceof additional information. We shall next intro duce thesetwo classi cations in
more detail.
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Levin’s Semantic Verb Classes

Levin verb classeqLevin, 1993) are basedon the ability of a verb to occur in speci ¢
diathesis alternations, i.e. specic pairs of syntactic frames which are assumedto
be meaning retentive. Levin's certral thesis is that \the behaviour of a verb, par-
ticularly with respect to the expressionand interpretation of its argumerts, is to a
large extent determined by its meaning" (Levin, 1993, p. 1). Thus, according to
Levin, the semariics of a verb and its syntactic behaviour are predictably related.
The syntactic framesare understood as a direct re ection of the underlying semartic
componerts that constrain allowable argumens. For instance, (23) exempli es the
substance/sourcealternation. Verbs undergoing this alternation expresssubstance
emission. They take two argumerts, which Levin characterizesas (i) a source(emit-
ter) (e.g. sun) and (ii) the substanceemitted from this source (e.g. heat). The
semairtic role of the subject of the intransitiv e use(23a) of the verb is the sameasthe
semartic role of the object of the transitiv e use (23b). Similarly the semartic roles of
the oblique object of the intransitiv e useand the subject of the transitiv e use match.

(23) a Heat radiates from the sun

b The sun radiates heat

Drawing on previous researt on diathesis alternations (e.g. Jackendo, 1990;Pinker,
1989) and her own investigations, Levin de nes 79 alternations for English. These
alternations concernchangesin verbs' transitivit y or within the argumerts of vp, or
involve the intro duction of oblique complemeris, re exiv es, passies, there-insertion,
dierent forms of inversionsor specic words. They are mainly restricted to verbs
taking np and pp complemerts.

Levin analysesover 3200 verbs according to alternations, assaiating ead verb with
the alternation(s) it undergoes. She arguesthat verbs which behave similarly with
respect to alternations sharecertain meaning componert(s), and canthus be grouped
together to form a semartically coherer class. Levin puts this idea into practice by
proposing 48 semarically motivated classesof verbs whose menmbers pattern in the
sameway with respect to diathesis alternations and other properties:

\The classi catory distinctions... involve the expressionof argumerts of
verbs, including alternate expressionsof argumerts and special interpreta-
tions assaiated with particular expressionsof argumerts of the type that
are characteristic of diathesis alternations. Certain morphological prop-
erties of verbs, such as the existenceof various types of related nominals
and adjectives, have been used as well, since they are also tied to the
argumert-taking properties of verbs". (Levin, 1993,p. 17)

Someof the classessplit further into more distinctiv e subclasses,making the total
number of classesl91. For eat verb class,Levin provides key syntactic and seman-
tic characteristics. She does not provide in-depth analysis of meaning componerts
involved in various classes,nor does she attempt to formulate verb semariic repre-
sertation of the type discussede.g. with most linking approadesin section 2.3.1.
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Rather, her aim is to better set the stagefor sud future work. According to Levin,
examination of classesof verbs de ned by shared behaviour can play an important
role in identi cation of meaning componerts.

Let us consider,as an example, the broad Levin classof \V erbs of Change of State".
This classdivides into six di erent subclassesgad of which relatesto changesof state
in distinguishing ways. For instance,\ Break Verbs" referto actionsthat bring about a
changein the material integrity of someentity, while \ Bend Verbs" relate to a change
in the shape of an ertit y that doesnot disrupt its material integrity. Each subclassis
characterized by its participation or non-participation in speci c alternations and/or
constructions. \ Break Verbs" (e.g. break, chip, fracture, rip, smash, split, tear) are
characterized by six alternations, three of which they permit (24a-c) and three of
which they do not permit (24d-f), and by further constructions, as shavn in (24g-i).

(24) a Causative/inchoative alternation:
Tony broke the window $ The window broke

b Middle alternation:
Tony broke the window $ The window broke easily

¢ Instrument subject alternation:
Tony broke the window with the hammer $ The hammer broke the window

d *With/against  alternation:
Tony broke the cup against the wall $ *Tony broke the wall with the cup

e *Conative alternation:
Tony broke the window $ *Tony broke at the window

f *Body-Part possessor ascension alternation:
*Tony broke herself on the arm $ Tony broke her arm

g Unintentional interpretation available (some verbs):
Re exiv e object: *Tony broke himself
Body-part object: Tony broke his finger

h Resultative phrase:
Tony broke the piggy bank open, Tony broke the glass to pieces

i Zero-related Nominal:
a break, a break in the window, *the break of a window

Membership in speci ¢ alternations and constructions yields the syntactic description
of this verb class. For instance, the speci cation in (24) shows that the \ Break Verbs"
take (at least) the intrans , np, np-pp and np-adjp frames.

Levin classi cation is not exhaustive in terms of breadth or depth of coverage. More
work is neededto cover a larger set of diathesis alternations and further to extend
and re ne verb classication. Also, as Levin mertions, there is a sensein which
the whole notion of a verb classis articial. As most verbs are characterized by
seeral meaning componerts, there is potential for cross-classi cation, which in turn

meansthat other, equally viable classi cation stchemescan be identi ed instead of
that proposed. Nevertheless,the current sourceis unique in providing useful core sets
of verbswith speci ¢ setsof properties and in being extensive enoughfor practical nlp
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Figure 4.1: A WordNet hierarchy fragmert: troponymy relations

use. The particular interest to us is that it links the syntax and semartics of verbs,
providing semarically motivated setsof scf s assaiated with individual classes.

WordNet

WordNet (Miller et al., 1993)(version1.6) is an online lexical databaseof English con-
taining over 120,000conceptsexpressedby nouns, verbs, adjectives, and adverbs. In
contrast to Levin's classi cation, WordNet organizeswords on a purely semartic basis
without regard to their scf s. As a semartic source,it concerrates on paradigmatic
relations and whole lexical items rather than atomic meaning units. The design of
WordNet is inspired by psydolinguistic and computational theories of human lexical
memory. Its organization is that of a network of interlink ed nodesrepresening word
meanings. The nodes are sets of unordered synonym sets (‘synsets'), which consist
of all the word forms that can expressa given concept. For example, the synsetcon-
taining the verb forms put, place, set, pose, position and lay stands for the concept,
which can be referredto by any one of its members. The members of a synsetare not
absolute but rough synonyms, sothat they can be substituted for ead other in most
but not all contexts. Word forms and synsetsare linked to one another by means
of lexical and conceptual-sematic relations. While synonymy links individual words
within synsets,the super-/subordinate relation (e.g. “troponymy' relation with verbs)
links ertire synsets. The latter relation builds hierarchical structures linking generic
to more speci ¢ concepts.

We used the verb hierarchy of WordNet version 1.6. It contains 10,319 distinct
word forms whose 22,066 sensesare organized into 12,127 synsets, represeiting an
equal number of distinct verb meanings. The verb hierarchy consists of 15 mostly
semarically-driv en subhierarchies eat of which accommalates appropriate synsets:
\v erbsof motion", \p erception”, \contact”, \communication", \comp etition", \c hange",
\cognition", \consumption", \creation", \emotion", \p ossession")stativ e", \w eather",
\b odily careand functions" and\social behaviour and interaction". Most verb synsets
in these hierarchies are interrelated by a pointer standing for a manner relation tro-
ponymy. For example, the synsetf snooze, drowse, dozeg belongingto the subhier-
archy of \v erbs of bodily care and functions" is represerted as one of the trop onyms



90 CHAPTER 4. BACK-OFF ESTIMATES FOR SUBCATEGORIZATION ACQUISITION

(subordinates) of the hypernym (superordinate) synsetf rest, reposeg, since snooze,
drowse or doze meanto rest or repose in a particular manner. Figure 4.1 illustrates
the part of the WordNet verb hierarchy where these synsets appear among other
synsetsarranged according to troponymy. Other conceptual-sematic relations link-
ing both entire synsetsand individual verb forms are cause,entailment and sematriic
opposition.

Each verb synsetcontains, besidesall the word forms that canreferto a givenconcept,
a de nitional gloss,and - in most cases an examplesertence. Using WordNet seard
facilities, one can obtain further information about a single word form, e.g. about
its di erent WordNet sensesand their frequencies,its synonym(s), hypernym(s), tro-
ponym(s), antonym(s) and so forth. Someinformation about scf s is also available
(for example, basic information about transitivit y and argument type) but this in-
formation is neither comprehensie nor detailed. The four sensesof lend e.g. are
described in WordNet with the following sertence frames:

(25) Somelody is| ing pp
Somelody | something
Something| something
Somelody | somethingto somelndy
Somelndy | somelndy pp
Somelody | something pp

Thesetranslate into scf s np, np-pp, np-to-np and pp, while it is known that lend
can alsotake (at least) the scf s np-np, intrans , part-np , par t-pp and pp-pp.

4.2.2 Syntactic Verb Classication

A possiblesourceof syntactic verb classi cation is a large syntax dictionary. Verbs
encaded with similar scf possibilities in a comprehensie dictionary may be assumed
to demonstrate similar syntactic behaviour. Verbscanthus be grouped into syrntacti-
cally coheren classesaccordingto the particular setsof scf s assignedto them. This
approach was previously taken e.g. by Carter (1989). He introduced a lexical acqui-
sition tool for the sri Core LanguageEngine (cle ), which allows the creation of cle
lexicon entries using templates basedon expected setsof scf s already exempli ed in
the cle lexicon. Carter calls such setsof scf s ‘paradigms’. He de nes a paradigm
as\any maximal set of categories(i.e. scf s) with the samedistribution among (lex-
ical) entries" (Carter, 1989,p. 4). We adopt here Carter's term and de nition of a
paradigm.

To obtain syntactic verb classi cation basedon paradigms, we usedthe anl t dictio-
nary. (Boguraev et al., 1987). anl t includes 63,000lexicon entries in total, 23,273
of which are verbal entries. A verbal entry comprisesa certain verb form and sub-
categorization conmbination. Separateargumert structures are thus listed in separate
ertries, as illustrated by appear in gure 4.2. The treatment of subcategorization
is fairly thorough, with phrasal, prepositional and phrasal-prepositional verbs also
encaled with subcategorization possibilities. Control is encaded and the distinction
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Figure 4.2: anl t lexical ertries for appear

made betweenobject and subject control, aswell as equi and raising. Somealterna-
tions are included, such asthe dative alternation.

anl t de nes subcategorization using feature value pairs. The main featuresare sub-
cat which describesthe argumerts a verb subcategorizesfor; subtype , which pro-
vides further information about a particular subcategorization; arity , which lists the
number of logical argumerts; and pf orm and prt, which indicate subcategorizations
concerning prepositions and particles of a particular type. More or lessspeci ¢ scf

classi cations canbe obtained, depending on which featuresand valuesare takento be
distinctiv e. Briscoe's (2000) scf classi cation in Appendix A, for example, includes
127 scf distinctions from anlt. The scf s abstract over speci ¢ lexically-governed
particles and prepositions, but make useof most other distinctions provided in anl t 3.

The lexical entry in (26) e.g. could be usedto describe subcategorizationin He appears
crazy. In this case,appear is a subject control verb which subcategorizesfor adjectival
phrase (subcat sc_ap). It is also a raising verb (subtype rais ) of latinate origin
(lat -), and takesonly onelogical argumert (arity 1).

(26) (appear ”” (V (ARITY 1) (LAT -) (SUBCAT SC_AP) (SUBTYPE RAIS)) APPEAR)

We extracted from anl t all possibleparadigms,i.e. all di erent setsof scf sassaiated
with verbs, assumingthe classi cation of 127 scf s by Briscoe (2000). 742 dierent
paradigms were identi ed, ranging from those including only one scf (e.g. np) to
those including over 30 scf s. After this, all verbsin anlt were grouped according
to the paradigms they take. Each verb was classi ed as a member of one paradigm
only, that whosescf sinclude all and only the scf s assaiated with the verbin anl t.
Relative frequencyfor di erent paradigms was also calculated, basedon the number
of anl t verb typesassaiated with them. (27) exempli es an anl t paradigm which
comprisessix scf st:

3See Briscoe (2000) for further details.

*Instead of using the ANLT feature value pairs to indicate different SCFs, we use here simple abbre-
viations from the SCF classification included in Appendix A. See this classification for the mapping
between the abbreviations and the ANLT feature value pairs.
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(27) a intrans : The ship loaded
b np: They loaded the ship
C np-pp : They loaded the ship with oranges
d part: The ship loaded up
e part-np : They loaded up the ship
f par t-np-pp : They loaded up the ship with oranges

This particular paradigm is assaiated in anl t with six di erent verbs: drum, flood,
flush, load, marry and shut. Thus accordingto anl t, these verbs exhibit identical
syntactic behaviour. (28) shows the entry for this paradigm in our syntactic verb
classi cation.

(28) anlt paradigm: intrans , np, np-pp, part, part-np , par t-np-pp
Relative frequency: 0.0009
Members: drum, flood, flush, load, marry, shut

4.3 Experiments with Subcategorization Distributions

We conducted experimerts to investigate whether the verb classi cations introduced
above are in practice distinctive enough in terms of subcategorization to provide
an adequate basis for back-o estimates. This was done by examining the degree
of correlation between conditional scf distributions for individual verbs classied

similarly in theseresources. Section 4.3.1 gives details of the scf distributions used
in theseexperiments and section 4.3.2 describesthe measuresusedfor examining the

degreeof correlation between the distributions. The experiments with semarically

similar verbs are reported in section 4.3.3, and those with syntactically similar verbs
in section4.3.4.

4.3.1 SCF Distributions

We used two methods for obtaining the scf distributions usedin our experimerts.
The rst wasto acquirean un ltered subcategorization lexicon for 20 million words of
bnc using Briscoe and Carroll's system. This givesus the \observed" distribution of
scf s for individual verbsand that for all verbsin the bnc data. The secondmethod
was manually to analysearound 300occurrences$ of ead individual verb examinedin
the bnc data. The scf swereanalysedaccordingto Briscoe and Carroll's classi cation
(Appendix A). This givesus an estimate of the \correct" scf distributions for the
individual verbs. The estimate for the correct distribution of scf s over all English
verbswas obtained by extracting the number of verbswhich are members of ead scf
in the anl t dictionary. In this, we assumedBriscoe's (2000) de nition of an anl t
scf .

®Manual analysis of around 300 occurrences was discovered by Briscoe and Carroll (1997) sufficient
to obtain an adequate SCF distribution for gold standard.
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Both the obsened and correct estimates are speci ¢ to verb form rather than sense.
The obsened estimatesfor scf s are noisy, but they are all reported over verb tokens.
The correct estimates are more accurate, but only those for individual verbs are
reported over verb tokens. The correct estimates for all English verbs are over verb
typessince, due to the lack of comprehensive manual analysis for all English verbs,
they were obtained from the anl t dictionary. As neither the obsened nor the correct
estimatesare ideal, we usedboth in our experimerts to verify that the results obtained
with one generalizeto the other.

4.3.2 Measuring Similarit y between Distributions

The degreeof scf correlation was examined by calculating the Kullback-Leibler dis-
tance (kl ) and the Spearman rank correlation coe cien t (r c) betweenthe di erent
distributions. The details of these measureswere were given in section 2.5.2. Let us
recall now that while kI measuregshe dissimilarity betweenthe distributions (kI 0,
with kI nearto 0 denoting strong assaiation), r ¢ measuresthe similarity in ranking
of scf s betweenthe distributions ( 1 rc 1, with rc nearto 0 denoting a low
degreeof assaiation and r ¢ near to -1 and 1 denoting strong assaiation).

4.3.3 SCF Correlation between Semantically Similar Verbs

To examinethe degreeof scf correlation betweensemartically similar verbs, we took
Levin's verb classi cation as a starting point. Levin classesare based on assia-
tions between speci ¢ scf s and verb senses. However, subcategorization acquisition
systemsare so far capable of assaiating scf s with verb forms only, as no wsd is
employed. Thus while Levin has shown that verbs from the samesematrtic classare
similar in terms of verb sensespeci ¢ subcategorization, our aim was to investigate
whether verbs from the same class are also similar in terms of verb form specic
subcategorization. In addition, we are not only interestedin intersectionsof scf s be-
tweenverbsbut alsoin the degreeof correlation betweenscf distributions and in the
ranking of scf sin thesedistributions. The Levin classemeverthelessprovide us with
a useful starting point. We examined (i) to what extent verbs from the samelLevin
classcorrelate in terms of scf distributions speci c to verb form and (ii) whether the
factors of sensefrequency (i.e. predominart vs. non-predominart sense),polyseny
(i.e. the number of sensestaken by a verb), semariic relations (i.e. hypernym vs.
hyponym®), and the speci cit y of Levin classassumed(broad classvs. subclass)a ect
this correlation.

Focusingon v e broad Levin classes \V erbs of Change of Possession"\Assessmert
Verbs", \V erbs of Killing", \V erbs of Motion", and \ Destroy Verbs" - we chose v e
test verbsfrom ead class. Theseverbswere chosensothat oneis a generichypernym
of the other four verbs. We used WordNet for de ning and recognisingthis semaric
relation. We de ned a hypernym as a test verb's hypernym in WordNet, and a
hyponym as a verb which, in WordNet, sharesthis samehypernym with a test verb.

5We do not differentiate between hyponymy and troponymy relations but for the rest of this thesis
use the term hyponym to refer either to troponym or hyponym.
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| 13. Verbs of Change of Possession ‘ Test Verbs | No. of WN Senses |
13.1 Give Verbs give 45
13.2 Contribute Verbs contribute 4
13.3 Verbs of Future Having offer 13
13.4 Verbs of Providing provide 4
13.6 Verbs of Exchange change 10

| 43. Verbs of Assessment ‘ Test Verbs | No. of WN Senses |
analyse 3
explore 4
muvestigate 2
survey 6
observe 9

| 42. Verbs of Killing ‘ Test Verbs | No. of WN Senses |
42.1 Murder Verbs kill 14
42.1 Murder Verbs murder 2
42.1 Murder Verbs slaughter 2
42.2 Poison Verbs strangle 1
42.1 Murder Verbs execute 7

| 44. Destroy Verbs ‘ Test Verbs | No. of WN Senses |
destroy 4
TUIN 2
demolish 2
waste 1
devastate 7

| 51. Verbs of Motion ‘ Test Verbs | No. of WN Senses |
51.3 Manner of Motion verbs move 16
51.1 Verbs of Inherently Directed Motion | arrive 2
51.4 Verbs of Motion Using a Vehicle fly 14
51.4 Verbs of Motion Using a Vehicle sail 4
51.2 Leave Verbs abandon 2

Table 4.1: Levin test verbs

Three of the four hyponyms were required to have their predominant senseinvolved
in the Levin classexamined, while one of them was required to have its predominart
sensdan someother verb class. Predominant sensevasde ned by manually examining
the most frequert senseof a verb in WordNet and by comparing this with the Levin
sensein question’.

Table 4.1 shaows the test verbs employed. The rst column lists the number and
name of ead broad Levin classand speci es the possibleLevin subclassan individual
verb belongsto®. The secondcolumn lists, for eac Levin class,the v e individual
test verbs. The hypernym verb for the other verbsin the sameclassis indicated in
bold font. The three hyponyms whosepredominant senseis involved with the Levin
classin question are indicated in italic font. The one hyponym whose predominan

"We acknowledge that WordNet sense frequency information was obtained from the Brown corpus
and therefore cannot be taken as definite but rather instructive.

8We only consider subclasses, ignoring possible further divisions into sub-subclasses. Where no
subclass is given, the broad Levin class does not divide further.
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senseis not involved with the Levin classin questionis listed last, using normal font.
The third and nal column shows the number of sensesassignedto ead test verb in
WordNet. This indicates the degreeof polyseny.

For instance, table 4.1 lists v e \Change of Possession'verbs: give, contribute, offer,
provide and change. The hypernym of the four other verbsis give. Contribute, offer,
provide and change are its hyponyms; the predominant senseof change, however, is
not with this verb class (rather, with the Levin \V erbs of Change of State"). The
class of \Change of Possession"verbs consists of seweral subclasses. The v e verbs
eat belong to a dierent subclass. The degreeof polyseny between these verbs
varies largely. The hypernym give e.g. is highly polysemicwith 45 distinct sensesn
WordNet, while contribute and provide ead have only four WordNet senses.

All other test verbsarelisted in Levin (1993) with the verb classindicated in this table,
except explore, investigate, survey and observe, which are listed with \ Investigate
Verbs". We re-assignedthese verbs to \Assessmen Verbs", sincethey alsoful | the
characteristics of that class. In addition, their predominant sensein WordNet is
assaiated with \Assessmert', rather than with \ Investigate Verbs".

In these experimernts, we took from ead verb classthe three hyponyms whose pre-
dominant sensebelongsto the verb classin questionand examinedthe degreeto which
the scf distribution for ead of these verbs correlateswith the scf distributions for
three other verbs from the sameLevin class. The latter verbs were chosenso that
one is the hypernym of a test verb, while the two others are hyponyms - one with
predominant sensen the relevant verb classand the other with someother verb class.
For comparison, we also examined how well the scf distribution for the di erent test
verbs correlateswith the scf distribution of all English verbsin generaland with that
of a semariically dierent verb (i.e. a verb belongingto a di erent Levin class).

The results given in tables 4.2 and 4.3 were obtained by correlating the \observed"
scf distributions from the bnc data. Table 4.2 shows an example of correlating the
scf distribution of the \Motion" verb fly against that of (i) its hypernym mouwe, (ii)
hyponym sail, (iii) hyponym abandon, whose predominart senseis not with motion
verbs, (iv) all verbsin general,and (v) agree, which is not related semartically. The
results show that the scf distribution for fiy clearly correlates more closelywith the
scf distribution for move, sail and abandon than that for all verbsand agree.

The averageresults for all test verbs given in table 4.3 indicate that, according to

both kI and rc, the degreeof scf correlation is closestwith semartically similar

verbs. Hypernym and hyponym relations are nearly as good, the majority of verbs
shawing slightly better scf correlation with hypernyms. As one might expect, sense
frequency a ects the degreeof scf correlation. Of the two hyponym groups, that

whosepredominart senseis involved with the Levin classexamined show closer scf

correlation. The correlation betweenindividual verbs and verbsin general, is poor,

but still better than with semariically unrelated verbs.

These ndings for obsened scf distributions hold as well for \correct” scf distribu-
tions, as seenin tables 4.4 and 4.5. The averageresults given in table 4.4 are closely
similar to thosegivenin table 4.3. Table 4.5 shows that in terms of scf distributions,
verbsin all classesexamined correlate more closely with their hypernym verbs than
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L ENEEE
fly | mowve 0.25 | 0.83
fly | sail 0.62 | 0.61

fly | abandon | 0.82 | 0.59
fly | all verbs | 2.13 | 0.51
fly | agree 2.27 | 0.12

Table 4.2: Correlating the scf distribution of fly against other scf distributions

| | KL [ RrC |
hypernym 0.65 | 0.71
hyponym (predominant sense) | 0.71 | 0.66
hyponym (non-predominant) 1.07 | 0.63
all verbs 1.59 | 0.41
semantically different verb 1.74 |1 0.38

Table 4.3: Overall correlation results with obsered distributions

| | KL [ RrC |
hypernym 0.44 | 0.66
hyponym (predominant sense) | 0.76 | 0.59
hyponym (non-predominant) 0.89 | 0.54
all verbs 1.19 | 0.39
semantically different verb 1.62 | 0.27

Table 4.4: Overall correlation results with correct distributions

Hypernym | All Verbs
Verb Class KL RC KL RC
change of possession || 0.61 0.64 || 1.16 | 0.38
assessment 0.28 0.71 || 0.73 | 0.48
killing 0.70 0.63 || 1.14 | 0.37
destroy 0.30 0.60 || 1.19 | 0.29
motion 0.29 0.73 || 1.72 | 0.42
AVERAGE 0.44 0.66 || 1.19 | 0.39

Table 4.5: Correlation results for v e verb classeswith correct distributions
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with all verbsin general. However, there are di erences betweenthe verb classessuc
that verbsin oneclassshow closerscf correlation with the hypernym verb than those
in another class. According to our results, thesedi erences are not attributable to the
degreeof polysemny. The highly polysemic\Change of Possession'verbs, for instance,
show the secondpoorest correlation (among the v e verb classes),while the closest
occurs between\V erbs of Motion" which are also fairly polysemic. \ Destroy Verbs"
which all have under 10 WordNet sensesshow averageresults. Detailed comparison
of results for individual verbs supports these obsenations. It seemsthat the degree
of polyseny doesnot a ect the scf correlation as much as sensefrequency (i.e. the
predominart sense).

Similarly, the speci cit y of the Levin classassumeddoesnot seemto a ect the results.
\Motion" verbsexaminedare mostly from di erent subclassesput they still correlate
more closelywith their hypernym verb than \ Destroy Verbs", which are all from the
samebroad class, which does not divide into subclasses. Arguably, there should be
better scf correlation betweenverbsfrom an indivisible verb class. On the other hand,
Levin (1993) produced her classi cation accordingto verb sense,while we extracted
scf distributions specic to verb form. Our polysemic distributions involve a wider
rangeof scf sthan Levin's singlesenseclasses.In addition, Levin's classi cation is not
fully comprehensie and seeral verb classesrequire further work before su cien tly
clear distinctions can be made.

Overall, theseresults show that verbsfrom the sameLevin classcorrelate more closely
with other verbs from the sameclass(especially when classi ed semariically accord-
ing to their predominant sense)than with all verbsin generalor with semartically
di erent verbs.

4.3.4 SCF Correlation between Syntactically Similar Verbs

To investigate the degreeof scf correlation between syntactically similar verbs, we
examinedthe extent to which verbstaking the sameparadigm in the anl t dictionary
correlate in terms of scf distributions.

In theseexperiments, we focusedon four di erent anl t paradigms. The rst consists
simply of an np frame. This is the most frequert paradigm in anl t, with roughly
30% of verb typestaking only an np frame. The secondparadigm comprisesintrans
and np frames. This is the secondmost common paradigm in anl t , taken by 12%
of the verb types. The third paradigm comprisesintrans and pp frames, and the
fourth intrans , np, pp, and np-pp frames. Thesetwo paradigms are lessfrequert,
with 4% of anl t verb typestaking the former, and 1.7% the latter.

From ead of the four paradigms, we chosefour anl t verbs as our test verbs. To
ensurethat we examine purely syntactic similarity, we required that the verbs from
the sameparadigm are semariically di erent. This wasveried by manually cheding
that their sensesbelongto dierent Levin classes. Table 4.6 shows the test verbs
employed. The rst column speci es the verbal paradigm in question and below it
the four individual test verbs. The secondcolumn lists, for ead verb, the anlt scf s
included in our correct scf distributions obtained from the manual analysis of bnc
data.
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ANLT Paradigm: Paradigm from Corpus

NP

acquire NP, NP-PP

analyse NP, NP-PP, INTRANS, NP-AS-NP, WH-S

complete NP, NP-PP, PP

ignore NP

ANLT Paradigm: Paradigm from Corpus

INTRANS, NP

destroy INTRANS, NP

hide INTRANS, NP, PP, NP-PP, ADJP, ADVP, NP-ADVP, PART
PART-NP, PART-NP-PP, PART-PP

produce NP, NP-PP, NP-PP-PRED, NP-TO-INF-SC

slide INTRANS, NP, PP, NP-PP, NP-ADVP, PART, PART-NP,

PART-PP, PP-PP, NP-PART-PP, NP-ADL

ANLT Paradigm: Paradigm from Corpus

INTRANS, PP

arise INTRANS, PP

arrive INTRANS, PP, NP-PP, ADVP, PART-PP, PP-PP

differ INTRANS, PP, P-WH-S

react INTRANS, PP, NP-PP, ADVP, PP-PP, P-ING-SC,
ADVP-PP

ANLT Paradigm: Paradigm from Corpus

INTRANS, NP, PP, NP-PP

remove INTRANS, NP, PP, NP-PP, NP-PP-PP, P-POSSING

contribute INTRANS, NP, PP, NP-TO-NP

distinguish NP, PP, NP-PP, NP-PP-PP, NP-AS-NP, WH-S

visit INTRANS, NP, PP, NP-PP

Table 4.6: Paradigm test verbs



4.3. Experiments with Subcategorization Distributions 99

Paradigm || All Verbs
ANLT Paradigm KL RC KL RC
NP 0.40 | 0.80 || 0.61 | 0.75
INTRANS, NP 0.76 | 0.50 || 0.88 | 0.48
INTRANS, PP 0.79 | 0.41 || 1.34 | 0.37
INTRANS, NP, PP, NP-PP || 1.21 | 0.31 || 1.10 | 0.29
AVERAGE 0.79 | 0.51 || 0.98 | 0.47

Table 4.7: Correlation results for syntactically similar verbs

According to anl t, the verbs acquire, analyse, complete and ignore take only an np
frame. Manual analysis of a corpus reveals, however, that all these verbs, except
ignore, also permit additional scfs. For instance, analyse can take also np-pp (We
analysed words into phonemes), intrans (He analysed and analysed), np-as-np (Bill
analysed the words as nouns), and wh -s (John analysed what had gone wrong) frames.

By just manually comparingthe anl t and corpusparadigmsshown in table 4.6 we can
seethat the paradigms provided by anl t are not comprehensie. This is due to the
nature of static dictionaries: they tend to have high type precision but disappointing
type recall. Only 3 of the 16 test verbs do not occur in corpus data with a scf
assignedto them by anlt. Only 4 of the verbs occurred in corpus data with a
paradigm identical with that predicted by anl t. As many as 12 take additional scf s
not predicted by anl t , 4 per verb on average.

To examinethe scf correlation, we took from ead anl t paradigm the four individual
test verbs and examined the degreeto which the scf distribution for eat of these
verbs correlates with those for all the other verbs taking the sameparadigm. Thus
for eadh paradigm, six pairs of scf distributions were compared. For comparison,
we also examined how well the scf distribution for the di erent test verbs correlates
with the scf distribution of all English verbsin general.

We obtained the results givenin table 4.7 by correlating the obsened scf distributions
from the bnc data. The averageresults for all paradigms show that, according to
both kI and rc, the degreeof scf correlation is closer with syntactically similar
verbs than with all verbs in general. However, this di erence is smaller than with
the semartically similar verbs, especially with rank correlation. Nor doesit apply
to all the paradigms examined. The verbs taking the anl t paradigm intrans , np,
pp, np-pp shown poorer correlation with ead other than with all verbs in general.
From theseresults, it would seemthat verbs from a more frequernt paradigm, which
contains fewer scf s, shav closer mutual scf correlation. This e ect is, however,
partly due to our evaluation. The fewer scf s there are to consider, the less noise
erters the evaluation. For this reasonwe did not use the correct distributions in
these experiments. The correct distributions contain fewer scf s than the obsened
distributions. All verbs tested for semaric similarity took enough scf s to yield an
adequatetest using these distributions, but this was not the casewith all the verbs
tested for syntactic similarity.

Since, as noted above, dictionaries tend to have low type recall, more comprehensie
verbal paradigms could be obtained by combining the syntactic information in seweral
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dictionaries. Howevwer, it is unclear whether this would give better results for scf
correlation. In our experimert, the test verbs which, accordingto manual analysis of
corpus data, took near-idertical sets of scf s (e.g. remove and distinguish) did not
shaw noticeably better scf correlation than the other test verbs examined.

4.4 Summary

In this chapter, we have addressedthe problem that the unconditional scf distribu-

tion provides poor badk-o estimatesfor scf acquisition. We investigated whether
more accurate badk-o estimatescould be obtained by basing them on linguistically-

driven verb classes.Employing Levin's semartic verb classi cation and the syntactic

classi cation obtained from the anl t dictionary, we examined whether verbs clas-
sied similarly in these resourcescorrelate well in terms of their verb form specic

scf distributions. The results shaved that the degreeof scf correlation was closer
with semarically and syntactically similar verbsthan with all verbsin general,and
that the correlation betweensemariically similar verbswas better than that between
syntactically similar verbs. The closestscf correlation was obsened when verbswere
classi ed semartically according to their predominant sense. These results suggest
that more accurate back-o estimatesmay be obtained for scf acquisition by classi-
fying verbssemartically accordingto their predominant senseand obtaining estimates
speci ¢ to semairiic classes.



Chapter 5

A New Approac h to Hyp othesis
Selection

5.1 Introduction

The experiments reported in chapter 4 suggestthat more accurate badk-o estimates
could be obtained for scf acquisition by basing them on semaric verb classes. In
this chapter, we propose a method for constructing semartically motivated badk-
0 estimates (section 5.2). In addition, we propose a new method for hypothesis
selection, which makes use of these estimates (section 5.3). This involves conbining
the mle thresholding and smoothing with badk-o estimates, allowing us to avoid
any problemsbasedon hypothesistesting. To evaluate the back-0 estimatesand the
method for hypothesisselection,we report a seriesof experimerts to examinewhether
this approac can, in practice, improve the accuracy of subcategorization acquisition
(section5.4). Finally, we considerfurther work (section 5.5) and summarisediscussion
(section 5.6).

5.2 Back-off Estimates

In chapter 4, fairly closescf correlation was reported between pairs of semarically
similar verbs. A simple way of obtaining badk-o estimateswould be to selecta single
verb from a semartic classand useits conditional scf distribution as estimates for
the other verbsin the sameverb class. We proposeanother method, however, which
involvestaking the conditional scf distributions of a few verbsin the sameclassand
merging them to obtain the back-o estimates for the class (p(scfjclass)). Using
seweral conditional scf distributions - as opposedto only one- helpsto minimise the
problem of sparsedata and cover the scf variations within verb classesand variations
due to polyseny.

Our method involves constructing back-o0 estimates speci ¢ to broad Levin classes.
First, 4-5 represeftativ e verbs are chosenfrom a class, subject to the following con-
straints, which we verify manually:

101
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1. Toreducethe e ect of sensefrequency the predominant WordNet senseof eat
verb must correspond to the Levin classin question.

2. To obtain represenativ e estimates, when possible, the verbs should represert
di erent Levin subclasses.

3. To make useof the benet that verbs correlate well with their hypernym verb,
when possible, one of the verbs should be a hypernym of the other verbs in
WordNet.

For the verbs chosen, we obtain correct scf distributions by manually analysing
around 300 occurrencesof ead verb in the bnc data. The scf s are analysedaccord-
ing to Briscoe's classi cation (Appendix A). Finally, the resulting scf distributions
are mergedautomatically to construct the badk-o estimatesfor the verb class.

Using this method, we obtained the badk-o estimatesfor the Levin classof \V erbs of
Motion", for example, by choosing v e represenativ e verbs from this class- march,
mowe, fly, slide and sail - and by merging the scf distributions of theseverbs. Ta-
ble 5.1 shaws, in the rst v e columns,the scf s and their relative frequenciesfor the
v e individual \Motion" verbs. The scf s are indicated using the number codes of
the scf classication. They are listed in order of their relative frequency starting
from the highestranked scf (e.g. 87 for slide) and endingin the lowest ranked scf (s)
(e.g. 24,120,155, and 3 for slide). The sixth column shaws the badk-o0 estimatesfor
the classof \Motion" verbs, obtained by merging the conditional distributions shown
in the rst v e columns. The bene ts of using seeral conditional scf distributions
for obtaining the badk-o estimatesare visible in this table. The badk-o estimates
include a wider range of scf s than any of the conditional distributions alone and
embody the averageranking of scf s, giventhe v e conditional distributions.

5.3 Hypothesis Selection

In chapter 3, a simple method was proposedfor Itering scf s on the basis of their
mle s (mle thresholding; seesection 3.4.1). Experiments were reported which shaved
that this method outperforms two statistical tests frequertly employed for hypothesis
selectionin scf acquisition. Given the poor performance of the statistical tests and
the problems related to them!, we decided not to pursue them further. Instead, we
choseto re ne mle thresholding. Although the method shows good performancewith
high frequency scf s, it requires augmertation the better to deal with low frequency
scf s. A way of addressingthis problem is to smooth the mle s.

Smoothing is frequertly usedin nlp to deal with problems of sparsedata, caused
by the inherent zip an nature of language. It addressesthe problem that ewven for
a very large data collection, ml estimation doesnot allow us adequatelyto estimate
probabilities of rare but neverthelesspossibleevernts. Smoothing enablesthe detec-
tion of these events by assigningthem some non-zero probability. It does this by
making the probability distribution \closer" to someother probability distribution.

'Recall the discussion in sections 3.4.3 and 3.4.4.
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slide fly march sail move Verbs of Motion
scr r.f. scr r.f. scr r.f ScF r.f scF r.f SCF b. estimates
87  0.297 | 22 0.286 | 87  0.415 | 87  0.388 | 22 0.300 || 87 0.303
74 0222 | 87  0.236 | 22 0.193 | 22 0.355 | 87 0.180 || 22 0.240
76  0.157 | 24 0187 | 76  0.111 | 24  0.080 | 74  0.127 || 74 0.113
49 0.093 | 78  0.074 | 78 0.104 | 74  0.064 | 24  0.106 || 24 0.081
78 0.083 | 74 0.064 | 74 0.089 | 78  0.048 | 119 0.067 || 76 0.073
22 0.065 | 49  0.044 | 95 0.037 | 76  0.048 | 78  0.049 || 78 0.072
95 0.046 | 3 0.039 | 24  0.022 | 95 0.016 | 3 0.047 || 49 0.035
24 0.009 | 95 0.029 | 49  0.015 95 0.042 || 95 0.034
120 0.009 | 76 0.020 | 27  0.014 76 0.028 || 3 0.019
155  0.009 | 160 0.020 49  0.022 || 119 0.013
3 0.009 77 0.017 || 160 0.004
122 0.007 || 27 0.003
27 0.007 || 77 0.003
120 0.002
155 0.002
122 0.001

Table 5.1: scf s and their relative frequenciesin (i) conditional distributions for v e
individual \Motion" verbsand in (ii) badk-o estimatesfor \V erbs of Motion"

Most smoothing methods work by discourting probability estimatesgiven by ml es-
timation applied to the obsened frequenciesand redistributing the freed probability
massamong the events which never (or rarely) occurred in data. This can be done
simply by assigninga uniform prior to all events, or by employing a more sophisti-
cated method, sudh as badking-o. The latter method estimatesthe probability of
unseenor low frequencyevents by badking-o to another probability distribution. In-
stead of employing discourting, somesmoothing methods work by simply combining
multiple probability estimates. For example, one can make a linear combination of
two probability distributions in the hope of producing a better overall model. Various
smoothing techniques have beenproposedand applied in the eld of nlp . Compre-
hensive reviews of these techniques can be found e.g. in Jurafsky and Martin (2000)
and Manning and Scheitze (1999).

Integrating the mle method with a sophisticated smoothing method allows us to use
the semartically motivated back-o estimates before ltering. Speci cally, it allows
us to classify verbs according to their semaric class and smooth the conditional
scf distributions for these verbs using the badk-o estimates of the respective verb
class. The following two sectionsdescribe how this is done. Section 5.3.1 provides
details of the method adopted for hypothesis selection and section 5.3.2 introduces
the smoothing methods employed.

5.3.1 Pro cedure for Hyp othesis Selection

The method adopted for hypothesis selection is essetially mle thresholding (sec-
tion 3.4.1), with the additional step of smoothing added. It involves extracting the
scf s classi ed by the classi er of Briscoe and Carroll's system, and ranking them in



104 CHAPTER 5. A NEW APPROACH TO HYPOTHESIS SELECTION

order of probability of their occurrencewith the verb (p(scfi;jverb;)). Probabilities
are estimated by using a mle from the obsened relative frequencies,which is the
ratio of court for scf; + verb; over the count for verb;. The resulting conditional scf
distribution for a verb is then smoothed before Itering the scf s, using the badk-o
estimatesof the semartic classto which the verb belongs. The details of the smooth-
ing algorithms employed are provided in section 5.3.2. After smoothing, Itering is
performed by applying a threshold to the resulting set of probability estimates. Held-
out training data is usedto establish an optimal threshold for eath semaric verb
classexamined®. For ead class, such a threshold value is chosenwhich maximises
the averagescf Itering performance (according to F measure)for verbsin a class.
A threshold is established on smoothed estimatesi.e. it is determined specic to a
smoothing method.

5.3.2 Smoothing Metho ds

Three di erent smoothing methods were integrated with the overall procedure de-
scribed above: add-one,Katz badking-o and linear interpolation.

Add One Smoothing

Add-one smoothing (Laplance, 1995) has the e ect of giving some of the probabil-
ity spaceto the scf s unseenin the conditional distribution. Unlike the two other
smoothing methods employed, it makesno use of back-o0 estimates. Rather, it pro-
vides a baselinesmaoothing method against which the more sophisticated methods can
be compared. Let ¢(scf;) be the frequencyof a scf given a verb, N the total number
of scf tokensfor this verb in the conditional distribution, and C the total number of
scf types. The estimated probability of the scf is:

P(sefy = e

(5.1)
Instead of assigning eac unseenscf a frequency of 1, any other small value (1))
could in principle be used. We used held-out training data to conrm that A = 1
achieves optimal average smoothing results for test verbs: the scf distributions ob-
tained using this value correlate best on averagewith the corresponding gold standard
distributions ® (according to both kI and rc).

Katz Backing-off

Katz badking-o (Katz, 1987)usesbadk-0 estimates. It givessomeof the probability
spaceto the scf s unseenor of low frequencyin the conditional distribution. It does

2Verb class specific thresholds were used as they gave better results than a uniform threshold.
This is not surprising since verb classes differ with respect to the number of sCFs typically taken by
their member verbs.

3See section 5.4.2 for the gold standard employed.
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this by badking-o to another distribution. Let pi(scf;) be a probability of a scf
in the obsened distribution, and ps(scf;) its probability in the badk-o distribution.
The estimated probability of the scf is calculated as follows:

(L d) pi(scfi) if c(scfi) > e

a  po(scf;) otherwise (5.2)

P(scf;) = {

The cut o frequency ¢; is an empirically de ned threshold determining whether to
badk-o or not. When courts are lower than ¢; they are held too low to give an
accurate estimate, and we back-o0 to a seconddistribution. In this case,we discourt
p1(scf;) a certain amourt to resene someof the probability spacefor unseenand very
low frequencyscf s. The discourt (d) is de ned empirically, and « is a normalization
constart which ensuresthat the probabilities of the resulting distribution sumto 1.
Held-out training data wasusedto determine optimal valuesfor both ¢; and d. These
valueswere determined speci ¢ to a verb class. Such valueswere chosenfor a classas
yield scf distributions which correlate the most closely with the corresponding gold
standard distributions (according to both kI and r c) for member verbs on average.

Linear Interpolation

Like Katz-backing o, linear interpolation (Chen and Goodman, 1996) makes use
of badk-o estimates. While Katz badking-o consults di erent estimates depending
on their specicity, linear interpolation makes a linear combination of them. The
method is usedhere for the simple task of combining a conditional with the bad-o
distribution. The estimated probability of the scf is given by

P(scfi) = M(pi(scfi)) + Aa(pa(scfi) (5.3)

where the \; denotesweights for the di erent distributions and sumto 1. The value
for \; wasobtained by optimising the smoothing performanceon the held-out training
data for all scf;. It was determined specic to a verb class, by choosing the value
that yields the optimal average smoothing performance for verbs in a class’. This
was determined by comparing the correlation (according to kIl and r ¢) between scf
distributions obtained using di erent values for \; to corresponding gold standard
distributions.

5.4 Experiments

To evaluate the badk-o estimates and the new approadch of hypothesis selection,
we performed experiments which we report belon. Section 5.4.1 introducesthe test

4Note that in all experiments reported in this thesis, the minimum value for \s was set to 0.2. As
we used linear interpolation for examining the accuracy of back-off estimates, this minimum value
allowed us to examine whether (inaccurate) back-off estimates can also decrease performance.
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data and the badk-0 estimates usedin these experiments. Section 5.4.2 describes
the evaluation method adopted. Section5.4.3 reviews evaluation of smoothing, while
evaluation of badk-o0 estimatesis reported in section 5.4.4.

5.4.1 Data and Back-o Estimates

Testdata consistedof atotal of 60verbsfrom 11 broad Levin classeslisted in table 5.2.
One Levin classwas collapsedtogether with another similar Levin class (\V erbs of
Sendingand Carrying" and \V erbs of Exerting Force"), making the total number of
verb classeslO. The test verbswere chosenat random, subject to the constraint that

they occurred frequertly enoughin corpus data® and that their most frequert sense
in WordNet belongedto the Levin classin question. All the other test verbs, except
three \Assessmen Verbs" (explore, investigate, survey) were listed by Levin (1993)
as members of the respective verb class.

From ead class, 4-5 suitable test verbs were chosenby hand to construct the back-
o0 estimatesfor the class. Theseverbs are indicated in table 5.2 using normal font.
Eacdh test verb usedin obtaining the estimates was excluded when testing the verb
itself. For example, when testing the \Motion" verb travel, we used the badk-o
estimates constructed from the verbs march, move, fly, slide and sail. When testing
fly, however, we usedthe badk-o0 estimatesconstructed from the verbs march, move,
slide and sail only.

5.4.2 Metho d of Evaluation

We took a sample of 20 million words of the bnc for ewvaluation and extracted all
senencescorntaining an occurrence of one of the 60 test verbs, a maximum of 3000
citations of eadh. The sertences cortaining these verbs were processedby the scf

acquisition system. The hypothesis generator of the system was held constart, the
exceptionbeingthat the data for theseexperiments were parsedusing a pcp (Chitrao

and Grishman, 1990). For hypothesis selection, we employed the new method which
applied the di erent smoothing methods before ltering. We also obtained results for
the baselinemle thresholding method without any smoothing.

The results were evaluated against a manual analysis of the corpus data. This was
obtained by analysing a maximum of 300 occurrencesfor ead test verb in the bnc
corpora. We calculated type precision, type recall, F measureand ranking accuracy
In addition to the system results, we calculated kI and r c between the acquired
un Itered scf distributions and the distributions obtained from manual analysis. We
alsorecordedthe total number of scf sunseenin acquiredun ltered scf distributions
which occurred in gold standard distributions. This was to investigate how well the
approac tackles the sparsedata problem, i.e. the extent to which it is capable of
detecting the scf s altogether missingin the data output by the hypothesisgenerator.

5This restriction was set merely for test purposes. As we evaluated our results against manual
analysis of corpus data, we required at least 300 occurrences for each verb to guarantee sufficiently
accurate evaluation.
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9. Verbs of Putting

9.1 Put Verbs

9.2 Verbs of Putting in a Spatial Configuration
9.4 Verbs of Putting with a Specified Direction
9.5 Pour Verbs

9.7 Spray/Load Verbs

9.8 Fill Verbs

place
lay
drop
pour
load

fill

11. Verbs of Sending and Carrying,

12. Verbs of Exerting Force

11.1 Send Verbs

11.3 Bring and Take

11.4 Carry Verbs

12. Verbs of Exerting Force

send, ship, transport
bring

carry

pull, push

13. Verbs of Change

of Possession

13.1 Give Verbs

13.2 Contribute Verbs

13.3 Verbs of Future Having
13.4 Verbs of Providing

13.5 Verbs of Obtaining

give, lend
contribute, donate
offer

provide, supply
acquire, buy

34. Verbs of Ass

essment |

analyse, explore,
investigate, survey

36. Verbs of Social

Interaction |

36.1 Correspond Verbs
36.2 Marry Verbs
36.3 Meet Verbs

agree, communicate, struggle
marry
meet, visit

42. Verbs of Killing |

42.1 Murder Verbs
42.2 Poison Verbs

kill, murder, slaughter
strangle

44. Destroy Verbs |

demolish, destroy,
ruin, devastate

48. Verbs of Appearance, Disappearance and Occurrence |

48.1 Verbs of Appearance
48.2 Verbs of Disappearance

arise, emerge
disappear, vanish

51. Verbs of Motion |

51.1 Verbs of Inherently Directed Motion
51.3 Manner of Motion Verbs

arrive, depart
march, move, slide, swing, travel, walk

51.4 Verbs of Motion Using a Vehicle fly, sail
51.5 Walz Verbs dance
| 55. Aspectual Verbs |

55.1 Begin Verbs
55.2 Complete verbs

begin, start
end, complete, terminate

Table 5.2: Test data
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System results Unseen
Method | KL | RC Rank A. (%) | Precision (%) | Recall (%) | F SCFs
Baseline | 1.41 | 0.50 33.3 60.0 33.3 42.8 4
Add-one | 1.67 | 0.27 33.3 60.0 33.3 42.8 0
Katz b. 1.58 | 0.58 33.3 60.0 33.3 42.8 0
Linear i. | 0.97 | 0.70 57.1 100.0 77.8 87.5 0

Table 5.3: Smoothing results for march

5.4.3 Evaluation of Smoothing

We shall rst illustrate smoothing performancewith the single test verb march, and
then look at the overall performancewith the 60 test verbs.

Table 5.3 shows the baseline, add-one, Katz bading-o and linear interpolation
smoothing results for march. For eadh method it lists the kl , r ¢ and systemresults,
and the number of correct unseenscf s, as comparedto the gold standard. Table 5.4
shaws the ranking of correct (gold standard) scf s for march in the unfiltered distri-
butions obtained using the baselinemethod and the three smoothing methods®. The
fth column includes, for comparison, the correct scf ranking for march in the gold
standard. The highest ranked scf s are listed rst, the lowest last. scf s missingin
the baselinedistribution which occur in the gold standard distribution are indicated
using bold font.

As these results illustrate, add-one smoothing presenes the ranking of scf s which
appear in the baselinedistribution. It therefore has little or no impact on system
performance. With march, the kI and r ¢ scoresworsen. This is due to the method
assigningall missing scf s a uniform probability. Thus although add-one detects all
scf sunseenin data from the hypothesisgenerator,it may not improve results for low
frequency scf s.

Katz badking-o presenesthe ranking of the most frequert scf s. As a consequence,
results for high frequency scf s are rarely a ected and there is little changein the
system performance. With march, kI worsensslightly, while r ¢ shows improvemert.
The reasonis apparert in table 5.4. After smoothing with Katz backing-o, the
newly-detected scf s 74, 78 and 76 are correctly ranked higher than scf 28, which
is also newly detected. In addition, scf 49 appears, correctly, lower in the ranking
scale. Unlike add-one smoothing, Katz bacing-o can thus correct the ranking of
low frequency scf s, depending on the accuracy of the badk-o estimates.

Unlik e add-one smoothing and Katz badking-o, linear interpolation alsoa ects high
frequency scf s. With march, system results, as well as kIl and rc, improve sig-
nicantly. As illustrated in table 5.4, linear interpolation correctly lowers the high
frequencyscf 24in the ranking list, while raising 87 higher. It alsogetsthe ranking of
the lower frequencyscf s 49 and 28 right. Thuswhenbadk-o0 estimatesare accurate,
one may expect good overall results with linear interpolation.

Table 5.5 givesaverageresults for all the 60 test verbs using eadh smoothing method.

5Note that all incorrect SCFs are omitted in this table, as these do not occur in the gold standard.
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| Baseline ‘ Add-one ‘ Katz b. | Linear i. H Correct |

22 22 22 22 87
24 24 24 87 22
87 87 87 24 76
95 95 74 74 78
49 49 78 78 74
27,76, 78, 74 | 95 95 95

76 76 24

27 49 49

49 27 27

Table 5.4: Ranking of correct gold standard scf s for march in acquired unfiltered
distributions. (Note that all incorrect scf s are omitted in this table).

System results Unseen
Method | KL | RC Rank A. (%) | Precision (%) | Recall (%) | F SCFs
Baseline | 0.63 | 0.72 79.2 78.5 63.3 70.1 151
Add-one | 0.64 | 0.74 79.0 79.1 64.8 71.2 0
Katz b. 0.61 | 0.75 79.0 76.4 67.6 717 3
Lineari. | 0.51 | 0.82 84.4 87.8 68.7 77.1 3

Table 5.5: Averageresults with di erent methods using semartically motivated badk-
0 estimatesfor smoothing

These results indicate that both add-one smoothing and Katz badking-o improve
the baselineperformanceonly slightly. Katz bading-o shows clearerimprovemert,
demonstrating that it is advantageousto usebadk-o estimatesto obtain the likelihood
of low and zerofrequencyscf s. However, linear interpolation outperforms both these
methods, achieving better results on all measures.The improvedkl measureindicates
that the method improvesthe overall accuracyof scf distributions. The results with
r ¢ and systemaccuracyshow that it helpsto correct the ranking of scf s. That both
precision and recall show clear improvemen over baselineresults demonstratesthat
linear interpolation can successfullybe combined with the Itering (i.e. thresholding)
method employed. These results seemto suggestthat a smoothing method which
a ects both highly ranked scf s and those of low frequencyis pro table for this task.

For comparison,we re-ran theseexperimerts using the unconditional scf distribution

of all verbs as badk-o0 estimates for smoothing. These estimates were obtained by
extracting the number of verbswhich are membersof ead scf in the anl t dictionary.
Averageresults for the 60 test verbsgivenin table 5.6 shaw that, with theseestimates,
we obtain worse results than with the baselinemethod. Thus while sudh estimates
provide an easy solution to the sparsedata problem, they can actually degradethe
accuracyof verbal acquisition. This is in agreemen with the well-known view of Gale
and Church (1990): poor estimatesof cortext are worsethan none.
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System results Unseen
Method | KL | RC Rank A. (%) | Precision (%) | Recall (%) | F SCFs
Baseline | 0.63 | 0.72 79.2 78.5 63.3 70.1 151
Katz b. 0.68 | 0.69 77.2 75.2 61.7 67.8 0
Lineari. | 0.79 | 0.64 76.7 71.4 64.1 67.6 0

Table 5.6: Averageresults using the unconditional distribution asback-0 estimates
for smoothing

KL RC
Verb Class BL LI % || BL LI %
9. Verbs of Putting 0.70 | 0.66 +6 || 0.68 | 0.70 +3

11. Verbs of Sending and Carrying || 0.64 | 0.50 | +22 || 0.72 | 0.96 | +33
12. Verbs of Exerting Force
13. Verbs of Change of Possession 0.61 | 0.60 +2 | 0.61 | 0.75 | +23

34. Verbs of Assessment 0.81 | 0.62 | +23 || 0.61 | 0.70 | +15
36. Verbs of Social Interaction 0.65 | 0.58 | +11 || 0.72 | 0.80 | +11
42. Verbs of Killing 0.69 | 0.67 +3 || 0.91 | 0.95 +4
44. Destroy Verbs 0.95 | 0.20 | +79 || 0.70 | 0.97 | +39
48. Verbs of Appearance, 0.14 | 0.17 | -21 || 091 | 0.83 -9
Disappearance and Occurrence
51. Verbs of Motion 0.66 | 0.58 | +12 || 0.56 | 0.66 | +18
55. Aspectual Verbs 0.48 | 0.54 -13 || 0.86 | 0.89 +3

Table 5.7: Baselineand linear interpolation results for the verb classes

5.4.4 Evaluation of Back-o Estimates

Table 5.5 shows that, in the above experimert, the semartically motivated badk-o

estimateshelped signi cantly to reducethe sparsedata problem. While a total of 151
gold standard scf s were unseenin the data from the hypothesisgenerator, only three
were unseenafter smoothing with Katz badking-o or linear interpolation. Table 5.7
displays individual results for the di erent verb classes.lIt lists the results obtained
with kI and r ¢ using the baselinemethod (bl ) and linear interpolation (li ) (with
the semarically motivated badk-o0 estimates). It also givesthe percertage linear
interpolation improved (+) or worsened(-) the baselinekl and rc scores.As linear
interpolation is highly sensitive to accuracy of back-o0 estimates, examining these
results allows us to considerthe accuracyof the back-o estimatesfor ead verb class.

Out of ten verb classesgight show improvemert with linear interpolation, with both
kI and rc. \ Destroy Verbs" shav the biggest improvemert over baseline results,
while \ Verbs of Killing" shownv the smallest improvemert. From the 51 individual
test verbsincluded in theseeight classespnly two shav worseresults after smoothing
with linear interpolation. The rst isthe \Putting" verb place, which takesnoticeably
fewer scf sthan the other \Putting" verbsexamined. Back-o estimatesfor this verb
classinclude high-ranking scf s not taken by place. This results in false positives,
degrading performanceslightly. The secondverb is the \Motion" verb dance. Dance
takes scf s typical to \V erbs of Motion", but the ranking of these scf s di ers from
the ranking of those in back-0 estimates. One reasonfor this is that dance occurs
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in the corpus data analysedexceptionally frequertly in idiomatic expressionssuc as
we danced the night away.

Two verb classes- \Asp ectual Verbs", and \V erbs of Appearance, Disappearance
and Occurrence" - show worseresults when linear interpolation is used. The problem
with \Asp ectual Verbs" is that the classcontains verbstaking sertential complemeris.
Two verbs examined (begin and start) occur frequertly with sertential complemers,
while three others (end, terminate and complete) do not take them at all. According
to Levin (1993), thesetwo verb classeseedfurther classi cation beforefull semaric

account can be given. As Levin doesnot classify verbson the basisof their serential

complemert-taking properties, further classi cation is required before we can obtain

accurate scf estimatesfor this type of verb.

The problem with \V erbs of Appearance, Disappearanceand Occurrence" is more
speci ¢ to the verb class. For example,\Disapp earanceVerbs" (disappear and vanish)
take noticeably fewer scf sthan \App earanceVerbs" (arise and emerge). In addition,
verbs belonging to the di erent (and even same) subclassesseemto di er greatly in
terms of scf sthey take. For example, from the scf staken by arise and emerge, less
than half are sharedby both, although the verbs belongto the samesubclass. Levin
remarksthat the de nition of this verb classmay be too loose,which may explain the
poor results.

The poor results with the two verb classessuggestthat it is worth examining the
degreeof scf correlation betweenverbs from di erent subclassesbefore deciding on
the nal (sub-)classfor which to obtain the estimates. As seenwith the eight other
verb classesexamined, more often than not, back-o estimates can successfullybe
basedon a broad Levin class. As seenwith the combined verb class(Levin classesll
and 12), estimatescan also be built using verbsfrom di erent Levin classesprovided
that the classesare similar enough. Examination of the degreeof scf correlation
beforehandwould, however, be a useful precaution to guarantee the accuracy of back-
0 estimates.

Interestingly, for the eight verb classeswhich shov improvemert with linear interpo-
lation, the averageoptimal value of A\, usedin smoothing was 0.5 (the valuesfor )\;
were obtained by optimisation, seesection’5.3.2). Thus when back-0 estimateswere
accurate, best results (on average)were obtained by giving conditional and badk-o
distributions equal weight. The fact that valueshigher than 0.5 for A, generally did
not further improve (but gradually degraded) performance demonstratesthat auto-
matic scf acquisition is vital and that we could not obtain an accurate lexicon merely
by using back-o0 estimates. Conversely the fact that the averageoptimal value for
Ao was as high as 0.5 demonstrates the utilit y of semarically motivated badk-o
estimatesin guiding scf acquisition.

5.5 Discussion

The experimental evaluation reported in the above sectionshaws that the new method
of hypothesis selection outperforms the baselinemle method, addressingthe sparse
data problem e ectiv ely and producing better overall results. Smoothing with lin-



112 CHAPTER 5. A NEW APPROACH TO HYPOTHESIS SELECTION

ear interpolation, which gives more emphasison badk-o estimates than the other
smoothing methods, producesespecially good results. This is a direct indication of
the accuracy of the verb classspeci ¢ estimates employed.

The proposedmethod seemspromising but could it be applied to benet large-scale
scf acquisition? This would require (a) de ning the set of semaric verb classes
acrossthe ertire lexicon, (b) obtaining badk-o estimatesfor eat verb class,and (c)

implementing a method capableof automatically assigningverbsto semariic classes.

Verbs could be assignedto semariic classesvia WordNet, using a method similar to
that employed by Dorr (1997). De ning a comprehensie set of verb classess realistic
aswell, giventhat Levin's classi cation provides a good starting point and that work
onre ning and extending this classi cation is already available (e.g. Dang et al., 1998;
Dorr, 1997). The manual e ort neededto obtain the badk-o estimateswasquite high
for this preliminary experimert, yet, our investigation” shaws that the total number
of semariic classesacrossthe whole lexicon is unlikely to exceed50. Although some
broad Levin classesnust be broken down into subclassesmany are similar enoughin
terms of scf distributions to be combined. The additional e ort requiredto apply the
method to benet large-scalescf acquisition thus seemgusti ed, giventhe accuracy
enhancemeh reported.

5.6 Summary

In this chapter, we proposeda method for constructing verb class speci c badk-o
estimates for scf acquisition and a new semartically motivated approad for hy-
pothesisselectionwhich combines mle thresholding and smoothing with the back-o
estimates. We reported experimens which demonstrated that the back-o estimates
can be usedto signi cantly improve scf acquisition through the approac employed
for hypothesis selection, when linear interpolation is employed for smoothing. Fi-
nally, we consideredthe work required for extending this method to large-scalescf
acquisition. We concluded that, despite the manual e ort involved in constructing
the badk-0 estimates,the task seemgjusti ed, giventhe improvemerts reported.

"See section 6.3.1 for the method of investigation.



Chapter 6

Semantically Motiv ated
Sub categorization Acquisition

6.1 Introduction

This chapter concernssemartically motivated lexical acquisition: speci cally, the use
of a priori knowledge about verb semartics in guiding the processof automatic scf
acquisition. We shall start by looking at somerelated work on this topic (section 6.2).
In section 6.3, we outline our own approac. This involves describing how the novel
approad for hypothesisselectionintroducedin the previous chapter wasre ned fur-
ther and integrated as part of automatic large-scalescf acquisition. Experimerts for
evaluation of the approad re ned are reported in section 6.4. Section 6.5 discusses
further work and section 6.6 contains a summary and our conclusions.

6.2 Related Work

Our work on semariically motivated scf acquisition relates to the (computational)
linguistic researt (Fillmore, 1968; Grimshaw, 1990; Hale and Keyser, 1993; Jack-
endo, 1990; Levin, 1993; Levin and Rappaport Hovav, 1996; Pinker, 1989) which
suggeststhat there is a closerelation betweenthe underlying lexical-semaric struc-
tures and their assaiated syntactic behaviour. While lexical-semartic structures may
fall short of providing full semartic inference,they can provide a robust basisfor the
developmert of language-praessingfunctions and an analysis more useful than the
merely syntactic (Dorr, 1997). That somesemartic componerts canbeidenti ed with
syntactic behaviour opensup the possibility of inferring semartics of a word on the
basisof its syntactic behaviour, and the syntax of a word on the basisof its semartic
behaviour. This possibility is of special interest for lexical acquisition. In this section,
we discusshow information about diathesis alternations and verb semariic classes
has so far beenusedto aid the processof lexical acquisition (Ribas, 1995; Poznanski
and San lipp o, 1995; Korhonen, 1998). In chapter 7 (section 7.2.2), we will consider
further ways of exploiting the syntax-semartics link in subcategorization acquisition.

113
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Ribas (1995) used diathesis alternations to aid acquisition of selectional preferences.
He did this by combining the argumert headdata which occur in the argumernt slots of
the alternating variants involvedin a diathesisalternation, and by acquiring the selec-
tional preferencesdrom the combined data. Ribas experimented with one alternation

only, the passie alternation with the verb present:

(29) a She presents great risks
b The challenge being presented to us by Tim

Selectionalrestrictions for the subject and object slots of present were acquired from
the wsj corpus data. Three dierent methods were then applied to assesghe ben-
et of alternation information. Method 1 involved acquiring selectional restrictions
speci ¢ to dierent argumert slots, regardlessof the passiwe alternation. Method 2
involved detecting the passiwe alternation and acquiring selectional restrictions spe-
cic to argumen slots with the samesemariic role. Method 3 involved detecting the
passiwe alternation, combining argumert head data from the alternating slots, and
acquiring selectional restrictions speci c to the combined data. The latter method
would, for example,combine shein (29a) and Tim in (29b) beforeacquiring selectional
restrictions.

Ribas evaluated the three methods on awsd task. Method 3 achieved the bestresults,
outperforming the others both in precision and recall. While this is an encouraging
result, Ribas mentions two problemsthat would needto be tackled if the method were
to be extended beyond the passiwe alternation: the low frequency of diathesis alter-
nation patterns in the wsj data, and the di cult y of detecting alternation patterns
on purely syntactic grounds.

Poznanski and San lipp o (1995) used sematriic classinformation to aid wsd. They
preseried a system capableof individuating dependenciesbetweenthe verb semartic
classesand their assaiated scfs. The system extracts scf tokensfrom the Penn
Treebank, supplemeris the scf tokenswith semariic tags from the lloce thesaurus
(McArth ur, 1981), and corverts the scf tokensinto scf types. A scf type consists
of a verb stem assaiated with oneor morelloce semaric tags. Semartic ambiguity
arising from multiple tag assignmerts is removed by using the lloce collocational
information. The codes of word stems, which according to the collocational infor-
mation are incompatible with the type of scf in which they occur, are Itered out.
(30a) shows the scf token for deny aliens state benefits. The scf type for this token
is shown in (30b), where deny is assaiated with two potential semartic tags: \ C193"-
refuseand \ Gi127"-reject. The disambiguator choosesthe latter (30c) as, accordingto
the lloce collocational information, deny canonly take ditransitiv e scf in the refuse
sense.
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(30) a SCFtoken: ((DENY)
(NP (ALIENS NNS))
(NP (*COMPOUNROUNXSTATE NN) (BENEFITSNNS))))

b SCFtype: (("deny" ("C193"-refuse "G127"-reject))
((*NP* ("C"-people_and_family))
(*NP* ("N"-general_and_abstract_terms"))))

C Disambiguated SCFtype: (("deny" ("C193")
((GNP* ('C))
(*NP* ("N")))

This approad was evaluated on a set of 1335scf tokenswhich were corverted into
817 scf types. The system managedto reduce ambiguity in over half of the scf
typesand totally disambiguate over 16%, providing unique correspondencebetween
a semanic classand a scf in 346 cases. This demonstratesthe utilit y of semartic
classinformation in aiding lexical disambiguation. In addition, preliminary results
were reported which showved that verbs assaiated with similar semartic codestook
similar scf s. For instance, the verbs assaiated with putting and taking, and pulling
and pushing senseshowved a higher than averagetendency for scf np-pp. Poznanski
and San lipp o discussedthe possibility of using semartic classinformation to predict
unseenscf options, but reported no work on this.

Korhonen (1998) used alternations to improve automatic scf acquisition. The ap-
proach involved correcting the performance of the statistical Iter of Briscoe and
Carroll's scf acquisition system' by addition of information about likely diathesis
alternations. The basic idea was to make use of likely correlations between pairs of
scf s. For example, an English verb which takesa np-s complemen (It bothered John
that Bill was so clever) is unlikely alsoto take a s complemen (*It bothered that Bill
was so clever). If a hypothesisgenerator proposesthesetwo scf s for the sameverb,
oneis likely to be wrong and should be dropped during hypothesis selection.

Korhonen examinedthe errors with scf sin systemoutput and arrived at nine alter-
nations which could aid correction of theseerrors. In addition, a large set of alterna-
tions was constructed automatically by considering correlations betweenall possible
scf typesin the anl t dictionary. The alternations were expressedasdirectional rules
of the form:

(31) scf A ! scf B

Each rule was assigneda probability by calculating the number of anlt verb types
in both scf A and scf B, and dividing this by the number of verb typesin scf A.

The alternation ruleswereapplied at the Itering phaseof the scf acquisition process.
The systems hypothesis generator was run as usual, and the bht lter was used
to build scf ertries and assignead entry a probability?. However, no con dence

!See section 2.5.3 for the system description and details of the statistical filter.

2BHT assigns each verb and SCF combination P(m+, n,p®), which is the probability that m or more
occurrences of cues for scf; will occur with a verb which is not a member of scf;, given n occurrences
of that verb. See section 2.5.3 for details of this calculation.
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threshold was set on the probabilities, but instead, the alternation probabilities were
applied. This was done accordingto the following principle:

Givenan alternation rule scf A ! scf B, if both scf A and scf B are hypothesised
for a verb, the probability assignedto scf A by bht is improved by the probability
of the alternation rule. However, if scf A is hypothesisedfor a verb but scf B is
not, the probability assignedto scf A by bht is lowered by the probability of the
alternation rule.

Let p,.r, bethe probability of scf A givena verb accordingto bht andp(A ! B)
the probability of an alternation rule. If scf B is also hypothesisedfor the verb, the
revised probability of scf A is

PscfA = Pscfa w((pscfA) p(A ! B)) (61)

If scf B is not hypothesisedfor the verb, the revised probability of scf A is

PscfA = Pscfa + w((pscfA) p(A ! B)) (62)

where w is de ned empirically. After revising the probabilities assignedby bht in the
above way, ertries are Itered using a con dence threshold of 0.05.

Supposethen we have the alternation rule® scf 49 ! scf 24 with probability .38.
If bht assignsscf 49 the probability of 0.08,this scf would normally be rejected, as
0.08 0.05. Using the method described above, however, the scf would be accepted
if scf 24 were also hypothesisedfor the verb:

0.0496= 0.08 1(0.08 0.38)

Korhonen evaluated this approac with 23 unseentest verbs, using the sameevalua-
tion method and corpusdata asBriscoe and Carroll (1997), describedin section2.5.2.
The large set of automatically derived alternation rules from anl t improved the sys-
tem's ranking accuracy and type precision by 4%, and type recall by 5% over the
baselineresults obtained with the original system.

As our review indicates, little work exists on using verb semariic information for
guiding automatic lexical acquisition. Our approad most closely resenbles that of
Korhonen (1998) in that we also use semaric knowledgeto aid scf acquisition, and
do this at the hypothesis selection phaseof the process. Our approadc hereis, how-
ever, more knowledge-driven. Instead of using empirical information about likely
alternations, we classify verbsinto semaric classesand use probabilistic information

related to theseclasses.We alsoemploy a more accurate method for hypothesisselec-
tion which usesverb classspeci ¢ badk-o estimates, enabling us to exploit semariic

classinformation to detect unseenscfs. The idea of detecting scf s on the basis of
semartic information was earlier raised by San lipp o (1994) and Poznanskiand San-
lipp 0 (1995), but to our knowledge, it has not yet beenapplied to automatic scf

acquisition.

3 According to the SCF classification used, SCF 49 is equivalent to NP-PP frame and 24 to NP frame.
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6.3 Method for Semantically Motivated SCF Acquisition

In chapter 5, we proposeda new approacd for semartically motivated hypothesisse-
lection. In this section, we describe how the method wasfurther re ned and extended
to suit large-scaleautomatic scf acquisition.

The basicidea of the method, asoutlined in chapter 5, is to identify the semartic class
of averb, usethe scf acquisition systemto hypothesisea conditional scf distribution

for the verb, smooth this distribution with the badk-o estimates of the respective
semartic class,and use a simple technique for Itering scf s which applies a thresh-
old to the resulting set of probability estimates. This method requires (a) semartic
verb classes(b) verb classspeci ¢ back-0 estimates, (c) a technique for identifying

semartic classesf verbs,and (d) a Itering method which employs the back-o esti-
mates. In chapter 5, we proposed methods for (a), (b) and (d). In this chapter, we
shall proposemaodi cations to the methods for (a) and (b), but adopt the method for
(d) asit stands. In other words, we shall employ the ltering approad introduced
in section5.3.2asit stands, and useit primarily with the smoothing technique that
proved best (i.e. linear interpolation). In chapter 5, no method was proposed for
(c). Rather, verbal participation in semaric classeswas identied manually. In this
section, we proposea technique which doesthis automatically.

The following sectionsdescribe thesechangesand extensionsmadeto the basicmethod.
Section 6.3.1describes(a) our approad with semariic classesand section 6.3.2 gives
details of (b) the technique usedfor obtaining back-o estimatesfor the classes.Sec-
tion 6.3.3introduces(c) the method capable of automatically assigningverbsto se-
mantic classes. Finally, section 6.3.4 describes the application of methods reported
in the three previous sections. It reports the work completed on semaric classes,
badk-o0 estimatesand semartic classi cation of verbs.

6.3.1 Semantic Classes

In section 5.2, we proposed basing our semartic classeson Levin classes. The lat-
ter provided us with a good starting point for large-scalescf acquisition as well.
Although not comprehensie in breadth or depth of coverage,the classescover a sub-
stantial number of diathesis alternations occurring in English. In addition, work on
re ning and extending this classi cation is under way (Dang et al., 1998;Dorr, 1997;
Korhonen, Appendix C).

Dang et al. (1998) havere ned someLevin classesnto intersective classes.To remove
the overlap betweenthe extant classesthey have created intersective classedor those
Levin verbs which share menmbership of more than one Levin class. For example, an
intersective classwas formed for the verbs pull, tug, show and push that are triple-

listed in the Levin classesof \ Split", \ Push/Pull' and \ Carry Verbs". These verbs
show characteristic syntactic and semaric behaviour not typical of their original verb
classes. Although Dang et al. report only preliminary work on a few verb classes,
it seemspromising: the intersective classesprovide a ner-grained classi cation with

more coheren setsof scf s and assaiated semartic componerts.

Dorr (1997) has created new sematriic classesfor verbs whose syntactic behaviour
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di ers from the syntactic description of existing Levin classes.The creation of new
classesis a by-product of her verb classi cation algorithm which assignsunknown
verbsinto Levin classes.We shall discussthis algorithm in detail in section6.3.3. Es-
sertially , the syntactic description of Levin classeswhich corresponds roughly to the
alternation pairs from Levin (1993), is represernted by setsof codesadopted from the
Idoce dictionary. If no Levin classis found to match the Idoce syntactic descrip-
tion of the unknown verb, a new semartic classis created, and eat verb matching its
syntactic description is classi ed as a menber. Using this method, Dorr has arrived
at 26 novel classes.The majority of these classesconcernverb typesnot covered by
Levin, e.g. those taking sertential complemers.

We have, in addition, proposed new diathesis alternations not included in Levin
(1993), particularly those involving sertential complemens. We did this work while
collaborating with Diana McCarthy on automatic diathesis alternation detection (see
section 7.2.3 for details of this work). The new alternations are discussedbriey in
Appendix C of this thesis. They were obtained by manually examining the classi ca-
tion of 163 scf s employed by Briscoe and Carroll's system and considering possible
alternations between pairs of scf sin this classi cation. Novel alternations could be
usedfurther to re ne Levin verb classesand to create new classedfor verb typesnot
covered by Levin.

The above work demonstratesthat extending Levin's classi cation to obtain a com-
prehensiwe set of verb classesacrossthe ertire lexicon is a realistic goal. In the work
reported in this chapter, however, we restrict ourselvesto employing existing Levin
classes.

In chapter 5, we took the broad Levin classesas a starting point. Assuming a broad

classwheneer possible makes sense,as it minimises the manual e ort required in

constructing the badk-o estimates for ead class: obtaining badk-o estimates for

a broad classis lesslaborious than obtaining separate estimatesfor eadt of its sub-
classes.The experiments reported in section 5.4.4 shoved, however, that while many

of the broad classesare distinctiv e enoughin terms of subcategorization, and while

some can successfullybe combined, others needto be broken down into subclasses.
This suggeststhat we should examine the distinctiv enessof Levin classedn terms of

subcategorization prior to deciding on the grouping of these classes.We did this in

two steps, by examining the

syntactic similarity betweenLevin classeqStep 1)

subcategorization similarity betweenverbsin Levin classeqStep 2)

Step 1 gives us an indication of whether the verb sensednvolved in the classesare
syntactically similar enough. It also helps to identify the Levin classeswhich need
further re nement. Step 2 complemerns Step 1, asthe syntactic information included
in Levin (1993) is not always conclusive and doesnot provide any information about
the relative frequencyof scf options. In addition, it allows usto examinethe degree
of scf correlation betweenthe verb form specic scf distributions we are actually
concernedwith. The subsequeh two sectionsdescribe how we proceededwith Steps
1 and 2, respectively.
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| Class | Syntactic Pattern | LDOCE Codes

30.1 0-[np,v] I

See Verbs 0-[np,v,np,pp(for)] T1-FOR D1-FOR
0-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT

1-[np,v,np] T1 L1

1-[np,v,np,vp] V4 V4-FROM V4-WITH X4 V2
1-[np,v,np,pp(in)] D1-IN T1-IN
1-[np,v,s comp] T5 15 X5
1-[np,v,vp] 14 T4 L4 T2 12 WV2

30.2 0-[np,v] I

Sight Verbs 0-[np,v,s comp] T5 15 X5
0-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT
1-[np,v,np] T1 L1
1-[np,v,np,vp] V4 V4-FROM V4-WITH X4 V2

30.3 0-[np,v,np] T1 L1

Peer Verbs 0-[np,v,s comp] T5 15 X5
1-[np,v,pp(around)] Lo1
1-[np,v,pp(at)] LAT I3-AT L9-AT WV4-AT
1-[np,v,pp(into)] I-INTO
1-[np,v,pp(on)] I-ON L9-ON I-UPON
1-[np,v,pp(through)] I-THROUGH
1-[np,v ,pp(tO)] L-TO

30.4 0-[np,v] I

Stimulus Subject | 1-[np,v,adjective] L7 WA4

Perception Verbs | 1-[np,v,adjective,pp(to)] | L7

Table 6.1: Idoce codesfor \V erbs of Perception”

Step 1: Syntactic Similarity between Levin Classes

For Step 1, we employed Dorr's sourceof Idoce codesfor Levin classe$. Dorr (1997)
extracted automatically basic syntactic patterns from all the sertencesin Levin's
book. The patterns were mapped onto Idoce codes and grouped into canonical
and prohibited codesfor eadt class. We used Dorr's Idoce codesto determine the
syntactic similarity between Levin classes.This was done by consideringthe degree
of intersection betweenthe codesfor the classes.

For example, table 6.1 shows the Idoce codesfor ead of the four subclassesof the
broad Levin classof \V erbs of Perception”. The rst column of the table indicates
the Levin subclassin question, the secondlists a syntactic pattern extracted from
a Levin sertence and the third givesthe Idoce code correspnding to the pattern.

Canonical and prohibited Idoce codes are pre xed as\1-" and \0-", respectively.
By examining the codes, we can tell that syntactic descriptions of subclassesdi er

signi cantly. Firstly, no Idoce code (canonical or prohibited) is shared by all four
subclasses.The only intersection with canonical codesoccurs betweensubclasses30.1
and 30.2, which share two canonical codes (T1 L1 and v4 V4-FROM V4-WITH X4 V2).
Classes30.1, 30.2 and 30.4 share one prohibited code (1), classes30.1 and 30.2 share
one (I-AT I3-AT L9-AT Wv4-AT) and classes30.2 and 30.3 one (15 15 X5). Howewver, a

4We are indebted to Bonnie Dorr for the use of these codes. We adopted the codes as they stand
but removed duplicate and uncertain code assignments. See Procter (1978) for a detailed description
of LDOCE grammatical codes and Dorr (1997) for further information.
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[ Class | Syntactic Pattern | LDOCE Codes

111 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT

Send Verbs 0-[np,v,pp(to)] I-TO
1-[np,v,np] T1 L1
1-[np,v,np,np] D1 X1
1-[np,v,np,pp(from)] D1-FROM T1-FROM
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH
1-[np,v,pp(from),pp(to)] I-FROM I-TO

1.2 0-[np,v,np,pp(with)] DI-WITH X7-WITH T1I-WITH WV5-WITH X9-WITH

Slide V erbs 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT
1-[np,v,np] T1 L1
1-[np,v,np,np] D1 X1
1-[np,v,np,pp(across)] T1-ACROSS
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,pp(across)] L9
1-[np,v,pp(at)] I-AT I3-AT L9-AT WVA4-AT
1-[np,v,pp(from),pp(to)] I-FROM I-TO
1-[np,v,np,pp([away,from])] | X9

11.3 0-[np,v,np,adjective] X7

Bring and Take | O-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT
0-[np,v,pp(to)] I-TO
1-[np,v,np,np D1 X1

]
1-[np,v,np,pp(from)]
1-[np,v,np,pp(to)]
1-[np,v,np,pp(with)]

D1-FROM T1-FROM
D1-TO T1-TO WV5-TO
D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH

11.4 0-[np,v] I

Carry Verbs 0-[np,v,pp(at),pp(to)] I-TO I-AT I3-AT L9-AT WV4-AT
0-[np,v,pp(to)] I-TO
1-[np,v,np] T1 L1
1-[np,v,np,pp(from)] D1-FROM T1-FROM
1-[np,v,np,pp(to)] D1-TO T1-TO WV5-TO
1-[np,v,np,pp(with)] D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH
1-[np,v,pp(against)] I-AGAINST
1-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT
1-[np,v,pp(from),pp(to)] I-FROM I-TO
1-[np,v,pp(to),pp(with)] -TO -WITH I3-WITH L9-WITH

115 0-[np,v] I

Drive Verbs

0—[np,V,np,pp(With)}
0-[np,v,pp(at)]
0-[np,v,pp(at),pp(to)]
0-[np,v,pp(to)]

1- [Hp,V,Hp}
1-[np,v,np,pp(from)]
1-[np,v,np,pp(to)]
1-[np,v,pp(from),pp(to)]

D1-WITH X7-WITH T1-WITH WV5-WITH X9-WITH
I-AT I3-AT L9-AT WV4-AT

I-TO I-AT I3-AT L9-AT WV4-AT

I-TO

T1 L1

D1-FROM T1-FROM

D1-TO T1-TO WV5-TO

I-FROM I-TO

Table 6.2: Idoce codesfor \V erbs of Sendingand Carrying"
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| Class ‘ Syntactic Pattern | LDOCE Codes
12. 0 [np,v] I
Verbs of 1-[np,v,np] T1 L1
Exerting Force | 1-[np,v,np,adjective] X7
1-[np,v,np,pp(against)] T1-AGAINST
1-[np,v,np,pp(through)] X9 T1-THROUGH
1-[np,v,np,pp([away,from])] | X9
1-[np,v,pp(against)] I-AGAINST
1-[np,v,pp(at)] I-AT I3-AT L9-AT WV4-AT
1-[np,v,pp(on)] I-ON L9-ON I-UPON
1-[np,v,pp(through)] I-THROUGH
1-[n] N

Table 6.3: Idoce codesfor \V erbs of Exerting Force"

canonical code for one classshows up asa prohibited code for another class,and vice

versa. Secondly the number of codestaken by the di erent subclassesvaries greatly.

For example, class 30.3 takes six canonical codes, while class 30.2 takes only two.

These obsenations suggestthat the syntactic descriptions of the subclassesare so
dissimilar asto merit our obtaining the badk-o estimatesspeci ¢ to the subclasses,
rather than to the broad classof \P erception” verbs.

Table 6.2 lists the Idoce codesfor eat of the four subclassesof Levin's \V erbs of

Sendingand Carrying". With this broad class,the syntactic descriptions of subclasses
prove more similar. All v e subclassesshare one canonical code (D1-TO T1-TO WV5-

TO). In addition, four subclassesshare three canonical codes (I-FROM I-TO, D1-FROM

T1-FROM and 11 L1) and three shareone (p1 x1). None of the latter are found among
the prohibited codesof the other classes.With prohibited codes, one code is shared
by all v e subclasses(1-To 1-AT 13-AT Lo-AT Wv4-AT) and another by four subclasses
(r-To). Although someprohibited codesoccur as canonicalcodesfor other classesthe

intersection of both canonical and prohibited codesis fairly extensive. This suggests
that the broad classof \Sending and Carrying Verbs" is syntactically coherert enough
to provide an adequatebasisfor badk-o estimates.

The above examplesillustrate typical choices between more or less specic Levin
classes.In addition, somesematrtically similar broad Levin classesare syntactically
similar enoughto be combined. For example, \V erbs of Sendingand Carrying" and
\V erbs of Exerting Force" are sematrtically fairly similar: someLevin verbsare cross-
listed in thesetwo classesasthey sharethe semartic componert of exertion of force.
To nd out whether these classescould be combined, we compare their syntactic
descriptions. The Idoce codesfor \V erbs of Sendingand Carrying" were shown in
table 6.2, and those for \V erbs of Exerting Force" are listed in table 6.3. The two
classesshare one prohibited and four canonical codes. Only one canonical code for
class12 is found among prohibited codesfor class11 (with one subclassonly). The
two broad classesseemthus syntactically similar enoughto be combined.
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Step 2: Subcategorization Similarity between Verbs in Levin Classes

For Step 2, we chose represenativ e verbs from Levin's classi cation. These were
chosenat random, subject to the constraint that they occurred frequertly enoughin
corpusdata, represened di erent subclassef a broad Levin class(when applicable),
and that their most frequernt sensein WordNet involved the Levin classin question.
The scf distributions for these verbs were obtained by manually analysing c. 300
occurrencesof eat verb in the bnc data, using the scf classi cation in Appendix A.
After this, the resulting scf distributions were comparedin terms of

the intersection of sharedscf s
the dissimilarity of distributions

the similarity in ranking of scf sin distributions

Table 6.4 shaws the scf s as code numbers for \Sending and Carrying" verbs send,
ship, bring and carry and those for \Exerting Force" verbs push and pull, asobtained
from manual analysis. The di erent \Sending and Carrying" verbstake a total of 21
dierent scf s, 5 of which are sharedby all four verbs, a further 3 by three verbs and
5 by two verbs. The averageoverall kl distance betweenthe di erent distributions
is 0.6 and the averagerc, 0.56. The latter results are better than those obtained
when correlating the distributions against the unconditional distribution of all verbs
in English. Theseobsenations support those made by examining verb classsimilarity:
the Levin classof \V erbs of Sendingand Carrying" seemdistinctiv e enoughin terms
of subcategorization.

To examinewhether this classcould be combined with the other broad class,\V erbs
of Exerting Force", the mergedscf distribution of the four \Sending and Carrying"
verbsis comparedwith the mergedscf distribution of the two \F orce Exerting" verbs.
From a total of 23 di erent scf s occurring in the two distributions, 21 occur in both.
The averagekl distance betweenthe distributions is 0.47 and the averager c, 0.51.
These gures again support the obsenations made earlier with Step 1: the two Levin
classesare syntactically similar enoughto be combined.

6.3.2 Constructing Back-o Estimates

We adopted the method proposedfor constructing badk-o estimatesin section 5.2
as it stands, with one exception. For some semariic classes,not enough suitable
Levin verbs were found that would occur frequertly enoughin corpus data. In these
cases,jnstead of using the scf distributions of the ideal 4-5 verbsfor constructing the
badk-o0 estimates,we usedas many as possible.

6.3.3 Assigning Verbs to Semantic Classes

In the work reported so far, verbs were manually assignedto semariic classes. We
shall now describe a method we used for automatic classi cation of verbs. This in-
volvesassigningverbsto semartic classessia WordNet. Although WordNet's semartic
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send | ship | bring | carry | pull | push |

49 49 76 76 76 76
56 7 56 24 49 49
37 24 24 49 24 24
76 122 120 (s 78 7
7 87 27 78 7 22
24 78 31 27 87 87
53 22 49 87 22 74
27 76 122 122 74 78
122 37 74 30 27
150 56 (s 74 25
87 3 69 22 93
35 95 3
29 122
112

Table 6.4: scf s for \V erbs of Sendingand Carrying" and \Exerting Force"

organization doesnot always go hand in hand with syntactic information, Dorr and
Jones(1996a, 1996b) and Dorr (1997) have demonstrated that synonymous verbs in
WordNet exhibit syntactic behaviour similar to that characterisedin the classi cation
system of Levin. This enablesassaiation of verbswith semaric classeson the basis
of their WordNet synonyms. Our semariic verb classi cation approacd resenblesthat
previously taken by Dorr (1997). We shall begin by reviewing this related work, after
which we intro duce our own method.

Previous Work

Dorr's (1997) verb classi cation algorithm is a re ned version of those proposedin
Dorr and Jones (1996a, 1996b). It assignsead unknown verb to a semartic class
by examining the verb's synonyms from WordNet and selecting those whose Levin
classis assiated with syntactic information matching that of the unknown verb.
The syntactic information is expressedasldoce codes’. The classi cation algorithm
works as follows:

Step 1: If agivenverb V isin Levin's index, it is classi ed directly.
Step 2: Otherwise, V's WordNet synornyms are extracted.

Step 3: If noneof 's WordNet synonymsiis in Levin's index, V is setasidefor later
application of the algorithm (after one or more of its synonyms is classi ed).

Step 4: A candidate set of semartic classes(from Levin's index) corresponding to
the synonyms in V's synset(s)is produced.

Step 5: If V'sldoce codesdo not match the canonicalldoce codesfor any semariic
classassaiated with the WordNet synonyms, a new classis created.

5See section 6.3.1 for description of Dorr’s source of LDOCE codes for Levin classes.
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Step 6: If V's Idoce codesmatch the canonical ldoce codesfor a semaric class
assciated with the WordNet synoryms, V is included in that class.

The notion of \matc h" in this algorithm is basedon the degreeof intersection between
V's Idoce codesand the canonicalldoce codesfor a candidate class. A preference
is given to those classeswhose prohibited Idoce codesare not among V's Idoce
codes. A preferenceis also given to the classescontaining the highest number of
matching WordNet synoryms. The algorithm is run iterativ ely: after 100-200verbs
are classi ed, the procedureis re-run on the remaining set of unknown verbswith the
larger databaseof semairtic classes.

As an example, let us considerthe semartic classi cation of swear accordingto Dorr's
algorithm. The Idoce specication of this verb iS 1 -AT T1 T1-ON T1-TO T3 T5. Step
4 of the classi cation algorithm extracts candidate Levin classesassaiated with the
WordNet synornyms of this word: (1) class29.4\ Declare Verbs", (2) class29.5\Con-
jecture Verbs", (3) class37.7\ Say Verbs", and (4) class48.1.2\Re exiv e Verbs of
Appearance”. The canonicalldoce codesfor eat of these classesrespectively, are:
(1) D1 X1 D3 V3 T6 GO_BE X7-TO_BE X9-TO_BE V3-TO_BE T5 I5 X5, (2) D3 V3 T6 X1-TO_BE X7-
TO_BE X9-TO_BE V3-TO_BE T5 I5 X5, (3) D1-TO T1-TO WV5-TO D5-TO T5-TO T5 15 X5, and (4)
D1-TO T1-TO WV5-TO T1 L1. The largest intersection with the canonical [doce codes
occurs with class 37.7 (T5 T1-T0). Thus step 6 of the algorithm selects37.7 as the
semartic classfor swear.

Dorr evaluated this approad using a set of 95 verbs not in Levin (1993), taken from
the Idoce cortrol vocabulary (i.e. primitiv e words used for dictionary entry de ni-
tion). A total of 135 semariic classassignmems were made with the algorithm, with
seweral verbs receiving more than one classassignmen. Of these, 61% were hand-
veri ed to be correct. 22% of incorrect assignmeis weredueto syntactic omissionsin
ldoce and Levin (1993). In sud casesthe relevant WordNet synorym was available,
but the canonical/prohibited codesassaiated with the synorym's class(es)were not
speci ¢ enoughfor the class(es)to be selected. The majority of these omissionswere
causedby missing syntactic codesin Idoce . Others arosewhen a relevant syntac-
tic pattern was missingin Levin's data, or when a WordNet synonym was found in
Levin's index but in a classirrelevant to the verb under consideration. The remaining
17% of incorrect assignmeits corresponded to caseswhere there is a semariic mis-
match between WordNet and Levin (1993). In sud cases,the WordNet synoryms
for an unknown verb corresponded to word senseshat are not available in Levin's
classi cation.

Our aim is similar to Dorr's; we alsoaim to assignverbsto Levin classessia WordNet.
Adopting Dorr's approach as it stands would be problematic, however. The rst

problem hasto do with accuracy As our method is highly dependert on accurateclass
assignmetts, the 61% accuracy of assigningverbsto correct classesis not adequate.
This problem is coupled with the fact that the approadc allows for multiple class
assignmen. Given the nature of our task, we assignead verb to only one semartic
classand, to achieve overall improvemer, this needsto be the classrelated to the
verb's most frequert sense.Dorr's algorithm returns no information about which of
the assignedclassesif any, correspondsto the verb's most frequent sense.Accordingly,
we shall adopt a di erent approad for semartic classi cation of verbs. This approac
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will, however, use someof the techniquesemployed in Dorr (1997).

Our Approach

While Dorr's (1997) method assignsverbs to semariic classeson the basis of their
WordNet synornyms, ours assignsertire WordNet synsetsto semariic classes.In our
approad, individual verbsreceiwe the semariic classassignmen of their synsets. Our
objective is to build a more static sourcewhere WordNet synsetsare assa@iated with
di erent Levin classes.Although static, the sourcewill allow for updating and adding
new verbs to WordNet. Verbs added to the existing synsetsare classi ed directly
via their synsetand the sourcecan be updated to cover novel synsets. Rather than
proposinga Dorr-style fully automatic verb classi cation algorithm which relies solely
on mrd s and other lexical resources,we propose a semi-automatic approach which
partly draws on sudh resources. Since the accuracy of class assignmers is highly
important for us, someallowancefor manual intervertion is necessary

Our method comprisestwo phaseswhich we introduce in the following paragraphs:
annotating Levin classi cation (Phase I) and assigningWordNet synsetsto semartic
classeqPhase II) .

Phase I Annotating Levin's Classic ation To employ Levin's verb index use-
fully and to proceedwith the presen classi cation task, we needto know which Levin
verbs are already classi ed according to their predominant sense. As a preliminary
step, we annotated the index for the rst senseverbs. This was done by manually
examining ead Levin verb, extracting its predominant sensefrom WordNet, and com-
paring it with that/those involved with the semartic class(es)of the verb in Levin's
classi cation. For example, Levin lists the verb convey with both \ Send Verbs" and
\ Say Verbs". According to WordNet, the most frequert senseof convey is

convey, impart -- (make known; pass on, of information)
=> communicate, intercommunicate -- (transmit thoughts or feelings)
=> interact -- (act together or towards others or with others)
=> act, move -- (perform an action)

The hypernym nodesof this senseinclude those of f communicate, intercommunicateg
and finteractg. The sensein question clearly corresponds to the meaning involved
with \ Say Verbs" rather than to that involved with \ Send Verbs". Thus we dropped
the verb from the latter classand presened it in the former.

Levin assaiates most, but not all, verbs with a classthat correspondsto their rst
sense. For example, Levin lists shift only with \ Send Verbs", while its predominant
sensecorresponds rather to that involved with \V erbs of Change of State™:

switch, change over, shift, turn around -- (make a shift in or exchange of)
=> change, alter

We dropped these casesfrom the index and set them asideto be classi ed using the
method introduced in the next paragraph.
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‘ 11. Verbs of Sending and Carrying |

11.1 Send Verbs

airmail, (drop: convey), (drop: deliver), dispatch, (drop: express),
FedEz, forward, hand, mail, (drop: pass), port, (drop: return),
send, (drop: shift), ship, shunt, (drop: slip), smuggle, (drop: sneak),
transfer, transport, UPS

11.2 Slide Verbs

(drop: bounce, float, move, roll)

11.3 Bring and Take

bring, take

11.4 Carry Verbs

carry, (drop: drag, haul), (drop: heave, heft, hoist, kick), lug,
(drop: push, pull, schleg, shove, tow)

11.5 Drive Verbs

barge, bus, cart, (drop: drive), ferry, (drop: fly, row, shuttle),
truck, (drop: wheel, wire)

‘ 12. Verbs of Exerting Force

draw, (drop: heave), jerk, press, pull, push, shove,
thrust, tung, yank

Table 6.5: Annotated Levin classi cation

For someother verbs, no senseeven exists in Levin (1993) which would correspond
to the predominant. The majority of these casesconcern verb types not properly
covered by Levin, sud asverbs taking sertential complemeris. Thesewere dropped
from the index as well and set aside for later examination.

The annotated classi cation for \Sending and Carrying" and \F orce Exerting" verbs
is showvn in table 6.5. The table shows all Levin verbs,thosewhosepredominant sense
is involved with the verb classeslisted, and those whose predominant senseis not,

and which are thus dropped from the classi cation. The latter are marked as (drop:

verb).

Phase II Assigning Wor dNet Synsets to Semantic Classes WordNet 1.6
includes 10,319 verb forms whose 22,066 sensesspread over 12,127 synsets. These
latter divide into 15 subhierarchies which represert di erent semaric domains. The
WordNet les which include the verbs for ead subhierarchy are listed in table 6.6.
Dorr (1997) notesthat many of the top level synsetsin the hierarchiesintersectdirectly
with the Levin classes.For example,\Sending and Carrying” and \F orce Exerting"

verbs are all found under the sametop level synsetf move, displaceg. Furthermore,
verbs belonging to the same Levin classesoften occur in the synsetsof the same
subhierarcy. For example, the most frequernt sensesof the Levin verbs of \Sending
and Carrying" and \F orce Exerting" are all found in the verb le \38-verb.motion".

Due to this overlap between WordNet and Levin classeswe assiated synsetswith
Levin classessubhierarchy by subhierarchy, starting from the top level synsets,and
going further down in the taxonomy when required. The basicideawasto assignead
synsetto a semartic classby rst assigningthe majority of its member verbsto a
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| Verb Files | Contains Verbs of
29-verb.body grooming, dressing and bodily care
30-verb.change size, temperature change, intensifying, etc.
31-verb.cognition thinking, judging, analyzing, doubting
32-verb.communication | telling, asking, ordering, singing
33-verb.competition fighting, athletic activities
34-verb.consumption eating and drinking
35-verb.contact touching, hitting, tying, digging
36-verb.creation sewing, baking, painting, performing
37-verb.emotion feeling
38-verb.motion walking, flying, swimming
39-verb.perception seeing, hearing, feeling
40-verb.possession buying, selling, owning
41-verb.social political and social activities and events
42-verb.stative being, having, spatial relations
43-verb.weather raining, snowing, thawing, thundering

Table 6.6: WordNet verb les

semartic class,and then choosingthe Levin classsupported by the highest number of
verbs. "Member verbs' refer hereto those which are members of the synsetin question
and of its hyponym synsets. Thus if a classi ed synset has hyponym synsets, the
latter are classi ed according to their classi ed hypernym synset. Our classi cation
algorithm considersonly those verbs whosemost frequert sensebelongsto the synset
in question. The algorithm proceedsas follows:

Step 1: If the majority of member verbs of a given synset S are Levin verbs® from
the sameclass,classify S directly. (See Example 1 below).

Step 2: Otherwise, classify more member verbs (according to Step 4a-d) until the
majorit y are classi ed, and then go badk to Step 1.

Step 3: If the classi ed verbs point to dierent Levin classes,examine whether S
consistsof hyponym synsets(See Example 2 below):

(a) If not, assign S to the Levin class supported by the highest number of
classi ed verbs.

(b) If yes,go onelevel down in the hierarchy and classify the hyponym synsets
separately starting again from Step 1.

Step 4: If S includes no Levin verbs, proceedas follows to classify the majority of
member verbs of S (See Examples 3 and 4 below):

(a) Extract the predominarnt senseof a given verb V from WordNet
(b) Extract the syntactic codesfrom Idoce relevant to this sense

SFor the remainder of this chapter, ‘Levin verbs’ refer to the first sense verbs in the annotated
Levin classification.
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(c) Examine whether V' could be assignedto a Levin classalready assaiated
with the other verbsin the

1. samesynset
2. possiblehypernym synset
3. possiblesister synsets

by comparing the Idoce codesof the senseand Dorr's Idoce codesof the
respective Levin class(es). Given the hypothesisedclasses make the nal
classassignmen manually.

(d) If no suitable classis found, re-examine the caseafter more verbs have
beenanalysed. If the classi cation remains unsolved, set V' asidefor later
examination, when it might be grouped with other unclassi ed verbs and
assignedto a verb classnot covered by Levin”.

The above algorithm is for the most part automatic, however, identi cation of Idoce
codesrelevant to the sensein question (Step 4b), and the nal classassignmem (part
of Step 4c) are done manually to ensureaccuracy of classi cation.

The following examplesillustrate the useof this algorithm to assignhyponym synsets
of the top level synsetf move, displaceg to Levin classe$:

Example 1: Synset01328437has v e rst sensemember verbs, three of which are
Levin verbs from the sameverb class. The synsetis assigneddirectly to the
Levin classof \V erbs of Sendingand Carrying".

ship => Verbs of Sending and Carrying
despatch

dispatch => Verbs of Sending and Carrying
route

forward => Verbs of Sending and Carrying

Example 2: Synset01278717includes Levin verbs which point to di erent classes.
Sinceit consistsof hyponym synsets(as indicated by the synsetidenti ers be-
low), we go one level down in the taxonomy and classify the hyponym synsets
separately

push => Verbs of exerting force

jab poke 01296169 => Poke Verbs

nudge prod 00838894 => Verbs of contact
repel 01034588

shove 01278320 => Verbs of exerting force
ram 01296169

obtrude 01279473

thrust 01296169 => Verbs of exerting force
elbow shoulder 01278320

"No work on the latter is reported in this thesis; see, however, the discussion in section 6.3.1

8As we only consider first sense verbs here, for clarity, we refer to synsets in these examples
as WordNet synset identifier codes, rather than their actual names. In addition, to simplify the
examples somewhat, we refer to all Levin classes below as broad classes. In practice, the specificity
of classification varies from class to class; see above section 6.3.1.
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Example 3: Synset 00994853includes thirteen member verbs, four of which are
Levin \V erbs of Sendingand Carrying":

carry => Verbs of sending and carrying
port

airlift

lug => Verbs of sending and carrying
tote

chariot

bring => Verbs of sending and carrying
ferry => Verbs of sending and carrying
church

tube

whisk

channel

retransmit

We needto classify more verbsto determine classassignmen. To classify whisk,
we extract its rst sensefrom WordNet:

whisk - (move somewhere quickly; "The president was whisked away in his limo")
=> bring, convey, take - (take somebody or someone with oneself somewhere)
=> transport, carry - (move while supporting)
=> move, displace - (cause to move)

In Idoce the verb hasthree senses.That corresponding to the WordNet rst
senseis identi ed asthe secondldoce senseshown below:

1. [T1] to move (something) quickly, exp. as to brush something off:
"The horse was whisking its tail"
2. [X9 esp. OFF, AWAY] to remove
a. by brushing lightly: "She whisked the dirt off"
b. by taking suddenly: "She whisked the cups away / whisked him
(off) home"
3. [T1] to beat (esp. eggs), esp. with WHISK.

The Levin classesalready matched with the verbsin the same,hypernym and
sister synsetsare:

Verbs of putting

Verbs of removing

Verbs of sending and carrying
Verbs of exerting force

Poke verbs

Verbs of contact

Verb of cutting

Verbs of combining and attaching
Verbs of separating and disassembling
Verbs of throwing

Verbs of motion
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From these classesthose whosesyntactic description includes the Idoce code
X9 are:

Verbs of putting

Verbs of removing

Verbs of sending and carrying
Verbs of exerting force

Verbs of motion

After verifying these options manually, whisk is assignedto \V erbs of Sending
and Carrying".

Example 4: The synset 01527059includes around 90 member verbs related to the
transfer of messages. These spread over nearly 60 hyponym synsets. Sewen
of the verbs are Levin verbs from various classeswhich include verbs taking
sertential complemens. Two of them are listed by Dorr (1997) as menbers of
her new semartic classes.The synsetis set asidefor future work.

6.3.4 Completed Work

We applied the methods described in the above sectionsfor (a) construction of se-
mantic classes,(b) back-0 estimates,and for (c) semaric classi cation of verbs as
follows: using the semartic verb classi cation method described in the previous sec-
tion, we analysedas exhaustively as possiblethree large WordNet verb les, assigning
synsetsin these les to semartic classes.The following three verb les were chosen
becausethey covered most verbs usedin our previous experiments:

35-verb.contact. From the total of 513 synsetd, 494 were classi ed as mem-
bers of 17 broad'® Levin classes.The classesare listed in table 6.7. 19 synsets
were set aside for later classi cation.

38-verb.motion. From the total of 888 synsets, 814 were assignedto the 23
Levin classesshown in table 6.8 and 71 synsetswere left unclassi ed.

40-verb.possession. From the total of 331 synsets, 273 were assaiated with
the 10 Levin classesncluded in table 6.9. 58 synsetswere left unclassi ed.

In addition, a small number of synsets(35) from other WordNet verb les were as-
signedto the Levin classesalready listed in tables 6.7, 6.8, and 6.9, and to those of
\V erbsof Assessmeti, \V erbsof Assuminga Position", and \V erbsof Concealmen".

Analysis of these synsetswas a by-product of dewveloping the approac. Howewer, no
further work was done on these other verb les.

From the total of 32 broad Levin classesexempli ed among the classi ed WordNet
synsets,22 of the most frequert were chosenfor further work. Thesewere re-grouped

9Note that the total number of synsets refers here to the total number of synsets including verbs
whose first sense belongs to the synset of question.
OTables 6.7, 6.8 and 6.9 list only the broad Levin classes, not possible subclasses.
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Levin Classes Classified
Synsets

9. Verbs of Putting 163

10. Verbs of Removing 32

12. Verbs of Exerting Force 5

13. Verbs Of Change of Possession 19

15. Hold and Keep Verbs 4

18. Verbs of Contact by Impact 54

20. Verbs of Contact 14

22. Verbs of Combining and Attaching 115

23. Verbs of Separating and Disassembling 13

24. Verbs of Colouring 3

35. Verbs of Searching 11

36. Verbs of Social Interaction 7

42. Verbs of Killing 27

44. Destroy Verbs 10

45. Verbs of Change of State 2

46. Lodge Verbs 1

47. Verbs of Existence 14
Table 6.7: Levin classesassaiated with WordNet \contact" verbs
Levin Classes Classified

Synsets

9. Verbs of Putting 66
10. Verbs of Removing 28
11. Verb of Sending and Carrying 44
12. Verbs of Exerting Force 22
17. Verbs of Throwing 39
18. Verbs of Contact by Impact 1
19. Poke Verbs 23
20. Verbs of Contact 2
21. Verbs of Cutting 53
22. Verbs of Combining and Attaching 4
23. Verbs of Separating and Disassembling 27
25. Verbs of Coloring 3
26. Verbs of Creation and Transformation 3
40. Verbs of Involving the Body 13
43. Verbs of Emission 8
44. Destroy Verbs )
45. Verbs of Change of Possession 11
47. Verbs of Existence 51
48. Verbs of Appearance, Disappearance and Occurrence 6
49. Verbs of Body-Internal Motion 11
51. Verbs of Motion 383
53. Verbs of Lingering and Rushing 2
55. Aspectual Verbs 9

Table 6.8: Levin classesassaiated with WordNet \motion" verbs

131
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Levin Classes Classified
Synsets

9. Verbs of Putting 8

10. Verbs of Removing 38
11. Verbs of Sending and Carrying 7

13. Verbs Of Change of Possession 156
15. Hold and Keep Verbs 8

25. Image Creation Verbs 15
29. Verbs with Predicative Complements 5

39. Verbs of Ingesting 11
47. Verbs of Existence 5

54. Measure Verbs 20

Table 6.9: Levin classesassiated with WordNet \p ossession'verbs

Class | Contains
Code | Levin Verbs of

Verbs for
Back-off Estimates

A 9. Putting

place, lay, drop, load

B 10. Removing: 10.1 - 10.3, 10.5 - 10.9

remove, withdraw,
steal, peel

C 10. Removing: 10.4

wipe, brush, filter

D 11. Sending and Carrying
12. Exerting Force

send, ship, carry
push

E 13. Change of Possession

give, lend, contribute,
donate, offer

F 15. Hold and Keep
16. Concealment

grasp, keep, store
block, hide

G 17. Throwing

hit, throw, toss

H 18. Contact by Impact
19. Poke Verbs

bang, knock, punch
pierce, poke

I 20. Contact stroke, touch, kiss
J 21. Cutting cut, clip, carve, chop,
slice
K 22. Combining and Attaching: 22.1 - 22.4 add, miz, attach, lock
L 22. Combining and Attaching: 22.5 cling
M 23. Separating and Disassembling: 21.3 - 23.3 | distinguish, tear, detach
N 23. Separating and Disassembling: 23.4 differ
0] 34. Assessment analyse, explore, investigate, survey
35. Searching fish
P 36. Social Interaction communicate, marry,
meet, visit
Q 42. Killing kill, murder, strangle
R 44. Destroy demolish, destroy, ruin
S 47. Existence: Verbs of Spatial Configuration | hang, sit
50. Assuming Position kneel, lie
T 51. Motion arrive, move, slide,
fly, sail

Table 6.10: Sematrtic verb classesand verbs usedfor their badk-o estimates
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| Class Code | Test Verbs |

A cover, drop, fill, install, park, place, put, rearrange, set, space,
superimpose

B arrest, confiscate, dispel, exclude, erile, remove, rescue, save, steal

C shear

D attract, bring, carry, draw, hand, merchandise, pull, send,

E acquire, allocate, arm, contribute, credit, get, give, grant, letter, locate,
obtain, offer, owe, pay, provide, receive, score, supply, win

F keep, hide, maintain, protect, reserve, retain, withhold

G fire, hit, kick, single, throw, toss

H bump, hammer, knock, prick, rap, slam, slug, whip

1 neck, pet, touch

J carve, hew, slice

K add, attach, combine, compare, hook, join, mount, rejoin

L cling

M distinguish, divide, segregate

N differ

O investigate, probe, scan, seek

P agree, arque, bargain, compete, consult, fight, jest, marry, play, secede

Q N

R destroy, eliminate

S hang, kneel, lie, lounge, orient, sit, stand

T abandon, caper, charge, chase, coast, come, dance, drive, enter, flee,
follow, go, haunt, head, hop, lead, leave, move, overhaul, pass, reach,
return, run, sail, speed, swing, toe, turn, walk

Table 6.11: Classi ed test verbs

to our semartic classesby using the method described in section 6.3.1. This led to

the combination of v e pairs of broad Levin classesand the division of three into

subclasses. The resulting 20 semariic classesare shown in table 6.10, labelled by

classcodesshown in the rst column of the table. Back-o estimatesfor theseclasses
were built using the method described in sections6.3.2 and 5.2. The verbs used for

obtaining the badk-o0 estimatesfor ead verb classare showvn in the third column of

table 6.10.

6.4 Experimental Evaluation

In this section we report the experimental evaluation of our re ned and extended
method to semarically motivated hypothesis selection. Section 6.4.1 intro ducesthe
test verbs employed and section 6.4.2 describes the scf lexicons usedin our exper-
iments. Direct evaluation of the acquired lexicons s reported in section 6.4.3, task-
basedewaluation in the context of parsingin section 6.4.4.
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6.4.1 Test Verbs

We selectedfor evaluation the sameset of 474 test verbs as usedby Carroll, Minnen
and Briscoe (1998). 140 were found in the classi ed WordNet synsets. Our method
assignedtheseverbsto semariic classesas shown in table 6.11. As many as118are
included in (Levin, 1993) and 106 in our annotated index, where they are classi ed
accordingto their rst sense.This big overlap is presumably due to both Levin's and
Carroll, Minnen and Briscoe's selecting frequertly occurring verbs as example/test
verbs. This undoubtedly reducedthe number of misclassi cations our method made,
aswe assignedall 106verbs(which occurredin the annotated Levin index) to semartic
classesmanually. Howewer, among the remaining 34 non-annotated or non-Levin
verbs, just one verb was classi ed incorrectly by our method: locate was assaiated
with \Change of Possession"verbs (class E), while it should have been assaiated
with \V erbsof Putting” (classA). This demonstratesthat the semariic classi cation
method is fairly accurate. The remaining 334 test verbs which were left unclassi ed,
asthey do not occur in any of the classi ed synsets,are listed in Appendix B.

6.4.2 Lexicons

We experimented with four di erent scf lexicons. The data for these lexicons were
obtained from 20 million words of bnc. Sertencescontaining an occurrenceof one of
the 474test verbswere rst extracted, on averageof 1000citations of ead, and then
processedusing the scf acquisition system's hypothesis generator. The parser em-
ployed in theseexperiments was a pcp (Chitrao and Grishman, 1990). Four di erent
lexicons were constructed from the resulting scf data using four di erent methods
for hypothesis selection'!:

1. lex-a : Briscoe and Carroll's (1997) version of bht

2. lex-b : mle thresholding

3. lex-c : add-onesmoothing and thresholding on smoothed estimates
4.

lex-d : linear interpolation with semaric badk-o estimatesfor the 140 seman-
tically classi ed verbs, and add-one smoothing for the 334 unclassi ed verbs,
thresholding on smoothed estimates

When ltering the scf data for lex-d , any test verb which was usedfor constructing

the badck-o0 estimates was smoothed with a version of badk-o0 estimates where this
verb was excluded.

6.4.3 Evaluation of Acquired Lexicons

The acquired scf lexicons were evaluated against a manual analysis of corpus data.
The latter was obtained by analysing an average of 300 occurrencesfor ead test

" These methods were introduced in earlier chapters. See section 2.5.3 for details of BHT and
section 3.4.1 for those of MLE thresholding. Add-one smoothing and linear interpolation methods
were described in section 5.3.
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System results Unseen
Lexicon | KL. | RC Rank A. (%) | Precision (%) | Recall (%) | F SCFs
LEX-A 0.55 | 0.67 72.4 55.3 49.4 52.2 75
LEX-B 0.55 | 0.67 63.8 84.5 47.2 60.6 75
LEX-C 0.56 | 0.72 65.2 86.9 51.8 64.9 0
LEX-D 0.29 | 0.88 78.3 87.1 71.2 78.4 4

Table 6.12: Averageresults for 45 semariically classi ed test verbs

System results Unseen
Lexicon | KL | RC Rank A. (%) | Precision (%) | Recall (%) | F SCFs
LEX-A 0.21 | 0.77 88.8 50.1 55.9 52.8 44
LEX-B 0.21 | 0.77 82.7 75.1 56.3 64.4 44
LEX-C 0.31 | 0.71 82.9 78.2 58.7 67.1 0

Table 6.13: Averageresults for 30 unclassi ed test verbs

verb in bnc or lob , susanne and sec corpora. This evaluation was restricted to
those test verbs for which the gold standard was readily available: 45 semarically
classi ed and 30 unclassi ed verbs. These verbs are indicated in table 6.11 and in
Appendix B in bold font. For these 75 verbs we calculated system results using type
precision, type recall, ranking accuracyand F measure.We alsocalculatedkl andrc
between acquired un Itered scf distributions and gold standard distributions. The
total number of scf s unseenin the acquired scf distributions which occurred in the
gold standard distributions was also recorded. We did this to investigate how well
the approac tackles the sparsedata problem, i.e. the extert to which it is capable
of detecting scf s altogether missingin the data output by the hypothesisgenerator.

Table 6.12 gives averageresults for the 45 semartically classi ed test verbs in ead
lexicon. Thosefor the 30 unclassi ed test verbsin lex-a , lex-b andlex-c are shown
in table 6.13. In both tables the system results obtained with lex-a (lexicon built
using bht ) are clearly worsethan those obtained with other lexicons. This shaws on
all measuresexceptranking accuracy The ranking of scf sis in fact identical in lex-
a and lex-b - asindicated by r ¢ - sincefor both lexicons, it is calculated using the
mle s straight from the scf acquisition system'sclassi er. Ranking accuracy appears
worse with lexicon lex-b , howewer, becauseit only considerscorrect scf s above the
Itering threshold. With lex-b there is a higher number of correct scf s to consider
and thus ranking accuracy shovs worse results.

In both tables the systemresults obtained with lex-c are better than those obtained
with lexicon lex-b . kI and r c results do not improve (except r ¢ with semartically
classi ed test verbs). This is for reasonsdiscussedin chapter 5; add-one smoothing
assignsidentical probabilities/ranks to newly detected scf s. Where it doesso incor-
rectly, this shavsonly onkl andr ¢ measureswhich considerertire scf distributions.

lex-d is evaluated with the semariically classied test verbs only. The results in-
cluded in table 6.12 show that the lexicon is clearly more accurate than the others
examined. The improvemert obtained with linear interpolation over the baselinemle
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Sem. | Verbs KL RC F Measure Unseen
Class | Tested SCFs
LEX-B | LEX-D || LEX-B [ LEX-D || LEX-B | LEX-D || LEX-B | LEX-D
A 3 0.59 0.32 0.59 0.75 65.2 71.4 4 0
B 2 0.14 0.10 1.19 0.96 72.0 87.3 3 0
D 5 0.72 0.41 1.12 0.85 53.6 77.3 10 1
E 6 0.28 0.24 0.85 1.00 68.1 78.7 7 0
F 2 0.71 0.34 0.65 0.95 53.0 72.3 4 0
G 3 0.51 0.19 0.46 0.93 56.3 83.0 8 0
H 1 0.75 0.41 0.64 0.77 63.2 93.0 1 0
I 1 0.17 0.15 0.85 0.63 61.5 76.9 0 0
J 2 0.37 0.14 0.71 0.92 48.7 68.1 7 0
K 3 0.63 0.38 0.59 0.84 66.5 68.2 4 0
L 1 0.39 0.25 0.75 1.00 78.8 80.0 0 0
M 1 0.07 0.02 0.28 0.53 66.0 62.0 1 0
N 1 0.90 0.27 0.28 0.53 78.0 79.9 0 0
O 1 0.23 0.12 0.82 0.88 72.7 72.7 0 0
P 2 0.38 0.35 0.86 0.91 53.7 68.2 6 3
R 1 0.13 0.06 0.39 0.87 85.7 85.7 0 0
S 4 0.89 0.17 0.44 0.97 57.5 86.5 3 0
T 6 0.86 0.51 0.60 0.78 43.5 78.8 17 0

Table 6.14: Results for semariic classes

(lex-b ) is bigger than that reported in chapter 5. F measureimproveshereby 17.8,
while in earlier experiments it improved by 7. The improvemerts obtained with rc
and especially with kl are, moreover, clearly bigger with theseexperimerts. Baseline
results are lower than those in chapter 5, which leaves more room for improvemern.
They are worse probably becausethey uselessdata. In the earlier experiments, we
used an average of 3000 citations of ead test verb in corpus data, while here only
1000 were used. On the other hand, here we employed a re ned method for con-
structing the semartic classesand badk-o estimatesand thus expect to seea bigger
improvemert in results.

From the total of 75 gold standard scf s unseenin lex-b only 4 are unseenin lex-
d. This indicates that the badk-o estimatesdeal e ectiv ely with sparsedata. Verb
classspeci ¢ results obtained with (i) the baselinemle and (ii) linear interpolation
methods allow us to examinethe accuracyof the badk-o estimates. Theseresults are
givenin table 6.14. The table shavskl , r c and F measureresults and the number of
correct scf s missingfor (i) lex-b and (ii) lex-d . The rst column shawvs a semariic
verb classand the secondindicates the number of verbs tested for the class. From a
total of 20 classes est verbs were found in 18. There are betweenone and six test
verbsin ead class. Thus the verb classspeci ¢ results are not directly comparable,
but sere to give us a generalidea of the estimate's accuracy for ead class.

kI, rc and F measureall agreethat in 14 of the 18 verb classesJex-d outperforms
lex-b . kI shaws improvemert in all the 18 classes.r ¢ indicates that when back-o0

estimates are used, the ranking of scf s is better in all but one verb class. Class|
(Levin verbs of \Contact”) shaws worseranking with lex-d than with lex-b . This
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classis tested using one verb only: touch. This verb was used when constructing
badk-o estimates for the class. While testing, it was excluded, howewer, and the
badk-o0 estimateswere constructed using two verbs only: stroke and kiss. Although
theseverbs take similar scf options to touch, they rank them di erently from touch.

With the F measure,lex-d outperforms lex-b in 15 classes. In one class, lex-b

outperforms lex-d . This is classm, which includes Levin verbs of \Separating and
Disassenbling” (subclasses23.1 - 23.3). Results are obtained using one test verb
only: distinguish. Again, this verb wasusedin constructing the default set of badk-0

estimates for the verb class, but excluded when acquiring subcategorization for the
verb itself. The badk-o0 estimates employed here were thus constructed using only
verbs tear and detach, which both take signi cantly fewer scf sthan distinguish. With
two verb classesthe two lexicons show identical results. These are classeso and r,
ead tested with oneverb only. No improvemert wasacdhieved becausehe empirically
set (verb classspeci ¢) ltering thresholdsappearedtoo high for thesetwo individual
verbs, resulting in too many false negatives.

All but two setsof back-0 estimatestackled the sparsedata problem e cien tly. In
lex-d , there are gold standard scf s missing only with verb classesd and p. The
three scf s unseenfor classp (i.e. Levin verbs of \Social Interaction”) occur with
agree. The one scf unseenfor classd (i.e. Levin verbs of \Sending and Carrying"
and \Exerting Force") occurswith bring. Thesetwo verbsare fairly polysemicand, in
fact, the scf sunseeninvolve sensesiot taken by the verbsusedfor badk-o estimates.

6.4.4 Task-based Evaluation

The acquired scf lexiconswere also assessedising task-basedevaluation in the con-
text of parsing'?. The idea wasto examinethe extent to which acquired scf infor-
mation improves accuracy of statistical parsing. This was done using the method
proposedby Carroll, Minnen and Briscoe (1998). In the following, we shall rst de-
scribe incorporation of the acquiredscf information into parsing and then give details
of the evaluation.

Incorporating Acquired SCF Information into Parsing

The baselinenon-lexicalisedparsing system comprises®:

an hmm pos tagger (Elworthy, 1994).
an enhancedversion of the gate project lemmatizer (Minnen et al., 2001).

a wide-coverage uni cation-based phrasal grammar of English pos tags and
punctuation.

12We are indebted to John Carroll for producing the parses and providing us with the Gr data for
evaluation.

13The tagger and grammar employed here are the same as used by Briscoe and Carroll’s SCF
acquisition system; see section 2.5.3.
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AP NP_PP_PP PP_WHPP VPINF
NONE NP_.SCOMP PP_WHS VPING

NP NP_WHPP PP_.WHVP VPING_PP
NP_AP PP SCOMP VPPRT
NP_NP PP_AP SINF WHPP
NP_NP_SCOMP PP_PP SING

NP_PP PP_.SCOMP SING_PP

NP_PPOF PP_VPINF VPBSE

Table 6.15: vsubcat valuesin the grammar

a generalizedlr parserusing Inui et al.'s (1997) variant of Briscoe and Carroll's
(1993) statistical model, which usesthe grammar, takesthe results of the tagger
asinput and performs disambiguation.

training and test treebanks (of 4600 and 500 sertences respectively) derived
semi-automatically from the susanne corpus.

The 500-setence test corpus consists only of in-coverage sertencesand contains a
mix of written genres: newsreportage (general and sports), belles lettres, biography,
memoirs and scierti ¢ writing. The mean senence length is 19.3 words (including
punctuation tokensbut excluding sertence- nal full stop). It cortains a total of 485
distinct verb lemmas and includes all verb types employed here as test verbs (see
section 6.4.1).

In the experiment we took the four lexicons (from lex-a to lex-d ) and assignedany
scf typesmissing (from the 163 possible)from theselexiconsa probability using add-
onesmoothing. After this, the scf probabilities in ead acquiredlexicon werefactored
into the parsing processduring parse ranking at the end of the process. Complete
derivations were ranked basedon the product of (i) the (purely structural) derivation
probability accordingto the probabilistic parse model and (i) for ead verb instance
in the derivation, the probability of the verbal lexical entry that would be usedin the
particular analysis context. The entry was located via the vsubcat value assigned
to the verb in the analysis by the immediately dominating verbal phrase structure
rule in the grammar. This waspossibleasthe vsubcat valuesare also presen in the
lexical ertries acquired automatically using the samegrammar. Table 6.15 lists the
dierent vsubcat values. Somevsubcat valuescorrespond to seweral of the 163scf s
distinguished by the acquisition system. In thesecaseshe sum of the probabilities of
the corresponding lexical entries was used.

In taking the product of the derivation and scf probabilities, someof the properties
of a statistical languagemodel are lost. The product is no longer strictly a probability,
although it is not used here as sud: it is used merely to rank competing analyses.
Carroll, Minnen and Briscoe (1998) note that better integration of thesetwo sets of
probabilities is an areawhich requires further investigation.
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dependent

mod arg-mod arg aux conj

detmod ncmod xmod  cmod subj_or_dobj

subj comp
ncsubj xsubj csubj obj clausal
dobj obj2 iobj xcomp ccomp

Figure 6.1: The grammatical relation hierarchy

Evaluation

Method The baselineand lexicalised parserswere evaluated against 500 test sen-
tencesmarked up in accordancewith a grammatical relation-based (gr ) annotation
scheme, described in detail by Carroll, Briscoe and San lipp o (1998) and Briscoe and
Carroll (2000). This evaluation was chosenbecauseit was found by Carroll, Minnen
and Briscoe (1998) more sensitive to the argument/adjunct and attachment distinc-
tions than the standard parsev al bracketing evaluation they employed (Carroll et
al., 1997).

In general, grammatical relations (gr s) are viewed as specifying the syntactic de-
pendencywhich holds betweena head and a dependen. The gr s form a hierarchy,
shown in gure 6.1. The most genericrelation betweena head and a dependert is
dependent. Where the relationship betweenthe two is known more precisely relations
further down the hierarchy are used. Dependent relations divide into conj(unction),
auzx(iliary), arg(ument), mod(ier) and arg_mod relations. The latter relations re-
fer to a semaric argumert which is syntactically realised as a modi er (such as
the passiwe by-phrase). Mod(i er) relations divide further into determiner (detmod),
non-clausal (ncmod), and clausal modi er relations controlled from within (cmod)
or without (zmod). Arg(ument) relations divide initially into comp (lement), sub-
ject/ob ject (subj_or_obj) and subj(ect) relations. Subj(ect) gr s divide further into
clausal (zsubj/csubj) and non-clausal (ncsubj) relations. Comp (lement) gr s divide
into clausal (ccomp cortrolled within and zcomp cortrolled without) and non-clausal
obj(ect) relations. Below the latter, we still nd the following relations: direct ob-
ject (dobj), second(non-clausal) complemen in ditransitiv e constructions (0b52), and
indirect object complemern intro duced by a preposition (iobj).

In generalthe parser returns the most speci c (leaf) relations in the gr hierarchy,
except when it is unable to determine whether clausal subjects or objects are con-
trolled from within or without (i.e. csubj vs. zsubj, and ccomp VS. xcomp respectively),
in which caseit returns subj or clausal asappropriate. Each relation is parameterised
with a head (lemma) and a dependert (lemma), and optionally also with a type
and/or speci cation of grammatical function. For example,the sertence (32a) would
be marked up asin (32b).



140 CHAPTER 6. SEMANTICALLY MOTIVATED SUBCATEGORIZATION ACQUISITION

(32) a Paul intends to leave IBM.

b nesubj (intend, Paul,_)
xzcomp (to,intend,leave)

nesubj (leave, Paul,_)
dobj (leave,IBM,_)

When computing matchesbetweenthe gr s produced by the parser and those in the
corpusannotation, a singlelevel of subsumption is allowed: a relation from the parser
may be one level higher in the gr hierarchy than the correct relation. For example,
if the parserreturns clausal, this is takento match both the more speci ¢ zcomp and
ccomp. Also, an unspeci ed ller (_) for the type slot in the iobj and clausal relations
successfullymatches any specied ller. The head slot llers are in all caseshase
forms of single head words: so for example, ‘multi-componert' heads, such as the
namesof people, placesor organisationsare reducedto one word.

(33) shaws an example sertence from the test corpus:
(33) They found deep pessimism in them.

The gr s returned for this sertence by the baselineand lexicalised parsersare (34a)
and (34b), respectively.

(34) a ncsubj (find, they, _)
dobj (find, pessimism, _)
nemod (-, pessimism, deep)
iobj (in, find, they)

b ncsubj (find, they, _)

dobj (find, pessimism, _)
nemod (-, pessimism, deep)
nemod (in, find, they)

The latter is correct, but the former, incorrectly taking the pp to be an argumernt of
find, gets penalised,receiving only 75% precision and recall.

Results Table 6.16 gives the result of evaluating the baselineand the lexicalised
versions of the parser on the gr s annotation. It shows the results for the four lexi-

calised versions, obtained using the four sets of scf probabilities from the dierent

lexicons. The measurescompare the set of gr s in the annotated test corpus with

thosereturned by the parser,in terms of recall (the percenage of gr s correctly found
by the parser out of all those in the treebank), precision (the percertage of gr s re-
turned by the parserthat are actually correct) and F measure. On these measures,
the lexicalised versionsshow only slight improvemert over the baselineparser. The
results are mainly in accordancewith those obtained with lexicon evaluation: the
results with lex-a are the worst while those with lex-d are the best. Howewer, the
improvemert obtained with lex-d over the baselineis only 0.73with F measure.

The results in table 6.16 are for all gr s. Results for argumert gr s were closely
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[ Method | Precision (%) | Recall (%) | F |
Baseline parser 75.59 76.48 76.03
Lexicalised, LEX-A | 76.06 77.14 76.59
Lexicalised, LEX-B | 76.20 77.24 76.72
Lexicalised, LEX-C | 76.18 77.26 76.71
Lexicalised, LEX-D | 76.20 77.32 76.76

Table 6.16: gr evaluation for all gr s, beforeand after incorporation of scf informa-
tion
| Method | Precision (%) | Recall (%) | F |

Baseline parser 63.28 79.90 70.62

Lexicalised, LEX-A | 70.48 74.75 72.55

Lexicalised, LEX-B | 70.99 75.15 73.01

Lexicalised, LEX-C | 70.94 74.95 72.89

Lexicalised, LEX-D | 71.10 75.05 73.02

Table 6.17: gr evaluation for comp (lemernt) gr s only, before and after incorporation
of scf information

| Method | Precision (%) | Recall (%) | F |
Baseline parser 62.4 82.2 71.0
Lexicalised, LEX-D | 71.7 76.4 73.9

Table 6.18: gr ewaluation for comp(lemernt) gr s, before and after incorporation of
scf information from lex-d . Only test seriencescontaining semartically classi ed

test verbs are

considered.
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GR Type || Baseline | With Subcat | Correct
Parser (LEX-D)
mod 472 525 21
ncmod 1995 2148 2434
xmod 24 46 129
cmod 139 140 208
detmod 1113 1114 1125
arg_mod 14 15 41
subj 24 22 1
nesubj 1039 1039 1039
xsubj 0 0 5
csubj 5 6 3
obj 2 4 0
dobj 393 393 409
obj2 55 38 19
10bj 300 181 158
clausal 189 124 0
xcomp 260 262 323
ccomp 51 43 81
auz 376 370 379
conj 165 165 164
‘ Total: || 6616 ‘ 6635 | 6539 |

Table 6.19: Numbers of eat type of gr

similar. The lexicalisedversionsshowed clearerimprovemerts over the baselineparser,
however, with complemen gr s. This is illustrated in table 6.17, which shows results
for complemern gr s. The best results are obtained with lex-d (only slightly better
than with lex-b ), which improves2.4 with F measure. Precision improvesand recall
worsenswith ead lexicalised version, as compared with the baselineresults. With
lex-d , the 7.8%increasein precisionis statistically signi cant even at the 99.9%level
(paired t-test, T=6.17, 499 df). The 4.9% drop in recall is statistically signi cant at
the 99% level (paired t-test, T=-3, 499 df).

Table 6.18 shavs complemen gr results for the baselineparser and the version lex-
icalised with lex-d , for those 129 sertences which contain semartically classi ed
verbs'4. F measurefor lex-d now shows a 2.9 improvemert over the baseline. Re-
call drops by 5.8% compared with the baseline, while precision increasesby 9.3%.
The increasein precisionis again signi cant at the 99.9%level (paired t-test, T=3.73,
128 df). However, the drop in recall is no longer statistically signi cant at the 99%
level, but only at the 95% level (paired t-test, T=-2.15, 128 df).

Table 6.19 givesthe number of eadt type of gr returned by the baselineparser and
when lexicalised with lex-d , comparedwith the correct numbersin the test corpus.
The baseline parser performs better than the lexicalised, when judged by the total
number of gr returned, asopposedto the correct number in the test corpus. However,

14Recall that when constructing LEX-D, linear interpolation and semantically motivated back-off
estimates were used for these verbs, while add-one smoothing was used for all other verbs.
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the lexicalised parser is clearly better than the baseline when the total number of
argumert relations is considered (2318 are returned by the baseline parser, 2112 by
the lexicalised parser, and 2038 occur in the test corpus), with complemen relations
contributing nearly all of this improvemen.

Overall, the above results demonstrate that the scf probabilities can yield statisti-
cally signi cant improvemerts in parse accuracy These are, however, insubstartial
and mainly concerncomplemeri relations. Carroll, Minnen and Briscoe (1998) used
the sameewaluation method and test sertencesto examine whether lexicalising the
parserwith scf frequenciesacquired using Briscoe and Carroll's system(with bht for
hypothesisselection)would improve parseaccuracy They reported 9.0%improvemert
in precisionand 0.5%decreasean recall with argumert relations. The improvemert in
precision was statistically signi cant, while the decreasen recall was not. In our ex-
perimert, bht (lex-a ) did not yield statistically signi cant improvemers even with
complemert relations. This is presumably becausewe employed a re ned version of
the parserand a more complete gr annotation scheme.

With this task-based evaluation the di erences in results between lexicons are not
as great as we would expect on the basis of the lexicon evaluation reported in the
previous section. One reasonfor this could lie in the evaluation method: the approact
of combining the probabilities of seweral scf s to obtain a probability for a single
vsubcat value. Essetially, this approad involves\reducing” the 163 scf s into 29
vsubcat values. Not only are many scf distinctions lost in doing this, but the
approac can also alter the ranking of scf s for verbs. For example,it is possiblethat
the resulting highest ranked vsubcat value for a verb may not correspond to the
vsubcat value of the highestranked scf for this verb. For keep in our gold standard,
for example,the value np will becomethe highestranked, although np-pp is the value
of the highest ranked scf .

To investigate this e ect, we consideredthe 129 test sertenceswhich contain seman-
tically classi ed verbsand for ead test verb manually examined how much it a ects

the parse ranking if, instead of the probability of vsubcat value, we consider the

probability of the vsubcat value of the scf in question. Contrary to what we had
expected, this had virtually no e ect on results. While examining the test sertences
manually we noticed, however, that many scf s seemed\t ypical" for the verbs they

occurred with. When we consideredthe 45 test verbsfor which we had manually anal-
ysed (gold standard) corpus data, we noticed that, from the total of 77 occurrences
of these verbsin the 129 test sertences, 40% were with the scf ranked the highest
in the gold standard and 37% were with the scf ranked the secondor third highest.
For instance, hit occurred twice in our test data, and both times with scf np which,

according to our gold standard, is its highest ranked frame. Thus accordingto the

gold standard, in 77% of casesa high frequency scf was evaluated for a verb.

As we did not have a gold standard for all the 474 test verbs employed, we could
not extend this investigation to the entire test data. On the basis of this smaller
investigation it seems,however, that the 500 sertence test data employed are not
adequatefor comparing the scf frequenciesbetweenthe lexiconsexamined. There is
very little di erence in accuracybetweenthe various lexiconswith the highest ranked
scf s. Back in section 3.4.2 we showed, for example, that despiteits poor overall per-
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formance, bht nearly always acquiresthe three most frequernt scf s of verbs correctly.
The mle, add-onesmoothing and linear interpolation methods likewise perform well
with high frequencyscf s. Thus properly to comparethe di erent lexiconsusing this
evaluation method, we would needtest sertenceswhich exemplify a higher number of
medium and low frequency scf s for the verbs tested.

6.5 Discussion

Direct evaluation of acquired lexicons showed that the approad to semarically mo-
tivated scf acquisition canyield signi cant improvemerts when applied to large-scale
lexical acquisition. At best, it achieved 78.4 F measurewith 45 test verbs. On the
same set of verbs, Briscoe and Carroll's original bht method achieved 52.2 F mea-
sure, and the baselinemle method 60.6 F measure. Our result comparesfavourably
also with results obtained with the other equally ambitious scf acquisition systems
discussedin chapter 2.

Task-basedevaluation showed that the scf probabilities acquired using our method
can improve the parse accuracy of a statistical parser. The improvemerts obtained
were not considerable;howewer, they were statistically signi cant when the evalua-
tion was restricted to complemen gr s and to sertenceswhich contained verbs for
which subcategorization probabilities were acquired using the semariically motivated
method for hypothesis selection.

The semartically motivated method could be extendedand improved in seweral ways.

Extensionsare required beforethe approac can be usedto bene t the entire lexicon.

Firstly, a comprehensie set of semartic classesand back-0 estimatesis needed. This

requiresre nement and extensionof Levin classi cation. As discussedn section6.3.1,

we can approach the task by building on previous work, e.g. on re ned Levin classes
by Dang et al. (1998), the new sematic classesproposedby Dorr (1997) and the

new diathesis alternations by Korhonen (see Appendix C). Secondly the semartic

classi cation of WordNet synsetsneedsto be completed. We covered most synsetsin

three large WordNet verb les; howewer, further work is required on the 148 synsets
left unclassi ed in these les, and on the synsetsin the remaining 12 WordNet verb

les.

Re nements are required in the current approact to badk-o estimates. For some
verb classesbadck-0 estimateswere constructed using fewer verbs than the ideal 4-
5, becausenot enough Levin verbs were found in the annotated index that would
occur frequertly enoughin the corpusdata. In the lexicon evaluation, theseestimates
proved insu cien t for sometest verbs. We could addressthis problem by using also
non-Levin verbs for badk-o estimates. For example, the verbs correctly assignedto
semartic classeshy our classi cation method could be consideredas candidates.

In lexicon evaluation, the semartic classesemployed proved fairly distinctiv e in terms
of subcategorization. Accuracy could further be improved by narrowing down the
current classesnto more speci ¢ (sub)classeswhere possible. This would, of course,
increasethe manual e ort involvedin the approacd, asead novel classrequiresmanu-
ally constructed badk-o estimates. We could investigate the possibility of construct-
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ing back-o0 estimatesautomatically or semi-automatically. One idea would be to use
the scf acquisition systemto hypothesisethe scf distributions neededfor badk-o
estimates. If this were not to yield accurate enough estimates, one could manually
verify the automatically acquired distributions and remove any incorrect scf assign-
ments. Further researd is neededto determine how well this approac would work
in practise.

Narrowing down the semaric classeswvould be especially helpful if, instead of poly-
semicscf distributions, we were concernedwith verb sensespeci ¢ scf distributions.
In future, the system's hypothesis generator could be modi ed to hypothesisesud
distributions, using wsd techniques on the predicate forms. This would reduce noise
in hypothesisselectionand in the subcategorization acquisition processin general. For
this, the verb classi cation algorithm would also require modi cation. It currently
assignsverbsto semartic classesaccordingto their rst senseonly.

Currently, we deal with the problem of polyseny by assigningpredicatesto semartic
classescorresponding to their predominant sense. An easy way of improving this
approadh would be to assignpredicatesto classescorresponding to all their senses.
We could thus obtain badk-o0 estimates for a polysemic predicate by merging the
badk-o estimates of all its semariic classes. The cortribution of ead set of bad-
0 estimatescould be weighted according to the frequency of the respective sensein
WordNet. This would allow detection of those scf s related to lessfrequert senses,
while still giving most weight to the badk-o estimates of the predominart sense.
Although it is clear that modifying the system's hypothesisgeneratorto hypothesise
verb sensespeci ¢ scf distributions (asdiscussedabove) is a better long term solution
to the problem of polyseny, this approac would o er a quick way of improving the
extant approad.

Lexicon evaluation shoved that the semartically motivated method yields signi cant
improvemerts in hypothesisselection. It is especially e cien t in addressingthe prob-
lem of low frequency data discussedin chapter 3. With evaluation on 45 test verbs,
the method achieved 87.1% precision, while the baselinemle method also achieved
impressive 84.5% precision. The crucial di erence betweenthe two methods shoved
up in recall. This was 71.2%for the semartically motivated method and only 47.2%
for the mle method. As lItering in both methods is basedon cutting o the low
frequencydata, the 24%improvemert in recall is due to more appropriate handling of
sparsedata. However, the approac could be further improved. Currently, the verb
classspeci c ltering threshold is establishedempirically, using held-out training data.
Our ewaluation revealedthat this doesnot deal optimally with the variations in the
number of scf s taken by individual verbs. Rather, too few/many scf s are accepted
for someverbs. A way to addressthis problem would be to weight the empirically
de ned threshold by the number of scf options for an individual verb in a dictionary
such asanl t or comlex .
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6.6 Summary

In this chapter, we rst discussedearlier work on semartically motivated lexical acqui-
sition and then outlined our own approad. Essertially, we adopted the new approacd
to hypothesis selection proposedin chapter 5, re ned it further and modied it for
large-scalescf acquisition. The resulting overall approad involvesautomatically as-
signing verbs to semaric classeson the basis of their most frequert sense. This is
done by choosing the semartic classalready assaiated with the respective WordNet
synset. Hypothesis selectionis conducted by ranking the hypothesisedscf s accord-
ing to their mle s, by smoothing the conditional distribution with badk-o estimates
of the respective verb class, and by setting an empirically de ned threshold on the
resulting estimatesto lter out unreliable scf s.

We evaluated our semarically motivated approach with unknown test verbs using
two methods: direct evaluation of the acquired lexicons and task-based evaluation
in the context of parsing. The approach was comparedwith three other approaces
to hypothesis selection (the bht , mle thresholding and add-one smaoothing meth-
ods). Lexicon evaluation shaved that our method yields subcategorization informa-
tion signi cantly more accurate than that obtained by the other methods examined.
Task-basedevaluation showed that the subcategorization probabilities acquired by
our method can improve the performance of a statistical parser. With task-based
evaluation, there were no substartial di erences betweenthe various methods of hy-
pothesisselection;rather, the semartically motivated approac achieved only slightly
better results than the other methods. We discussedpossiblereasonsfor this.

Finally, we discussedways in which the proposed method could be further re ned.
We also consideredthe modi cations and extensionsrequired successfullyto apply
the method acrossthe ertire lexicon.



Chapter 7

Conclusions

In this concluding chapter, we summarisethe cortributions of this thesis (section 7.1)
and outline directions for future researd (section 7.2).

7.1 Contributions of this Thesis

The main contribution of this thesis was to improve the accuracy of automatic sub-
categorization acquisition. We did this by improving the critical hypothesisselection
phase of subcategorization acquisition, reported to be the weak link of many scf

acquisition systems. Our work resulted in various experimental ndings and method-
ological proposalswhich we summariseas follows.

I Hypothesis Testing We addressedthe widely-recognizedproblem that statisti-
cal Itering - usedby most systemsto remove noisefrom automatically acquiredscf s-
performs badly, especially with low frequencydata. We conducted experiments where
we comparedthree di erent approacesto hypothesisselection. Thesewere (i) a lter
basedon the binomial hypothesistest, (i) a Iter basedon the binomial log-likelihood
ratio test, and (iii) a lter which usesa threshold on mle s of scf s from the hypothe-
sis generator. Surprisingly, the simple mle thresholding Iter worked best. The bht
and llr  both producedan astounding number of fp s, particularly at low frequencies.
Our investigation shaved that hypothesis testing does not work well in subcatego-
rization acquisition becausenot only is the underlying distribution zip an but nor is
there signi cant correlation betweenconditional and unconditional scf distributions.
The lack of correlation betweenthe two distributions also a ects re nements of mle
thresholding such as smoothing or Bayesianestimation. Thus more accurate badk-o
estimates are neededfor scf acquisition than those assumedso far, especially if we
are to deal e ectiv ely with low frequency data.

II Back-off Estimates Assumingthat unconditional scf distribution providesac-
curate back-o estimatesfor all verbsis equivalent to assumingthat all verbs behave
uniformly with respect to subcategorization. We pointed out that this assumption

147
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is in contradiction with simple obsenations about verb behaviour, as well as with
linguistic researt, which hasshown that it is possibleto assaiate verbswith seman-
tically and syntactically motivated classesthat capture subcategorization behaviour
characteristic of their members.

We examinedexperimentally to what extent we could exploit linguistic verb classi ca-

tions in automatic subcategorization acquisition. We did this by experimerting with

a set of scf distributions specic to verb form (as opposedto verb sense). Employ-

ing the semartic verb classi cation of Levin (1993) and the syntactic classi cation

obtained from the anl t dictionary, we examinedto what extent verbs classi ed sim-

ilarly in theseresourcescorrelate in terms of scf distributions. The results shaved
that the degreeof scf correlation was greater with semariically and syntactically

similar verbsthan with all verbsin general,and that the correlation betweenseman-
tically similar verbs was better than that between syntactically similar verbs. The

best scf correlation was obsened when verbs were classi ed semartically according
to their predominant sense. These results suggestthat more accurate badk-o esti-

mates can be obtained for scf acquisition by exploiting generalizationsfrom linguistic

theory. On the basisof our results, we proposedassigningverbsto semariic classes
matching their predominant senseand obtaining badk-o estimates speci c to these
classeqp(scfjclass)).

ITT Semantically Motivated Hypothesis Selection We presened a novel ap-
proach to hypothesis selection suitable for large scalescf acquisition which usesse-
mantically motivated badk-o estimates. This approacdh makes no use of statistical
hypothesistests. Instead, it builds on mle thresholding.

Semantic Classes Our semariic classeswere basedon Levin's. As it was
important to minimise the cost involved in constructing badk-o estimates, we
did not adopt all Levin classesas they stand, although this would have al-
lowed maximal accuracy Rather, a method was devised for determining the
speci cit y of the Levin class(es)required for reasonabledistinctiv enessin terms
of subcategorization. This method involves examining the similarity between
Dorr's (1997) Idoce codes for Levin classesand the scf similarity between
verbsin theseclasses.While Levin proposedaltogether 48 broad (191 speci c¢)
classesfor verbs taking np and pp complemeris, we estimated that not more
than 50 classesare required acrossthe ertire lexicon. We applied the method
to 22 broad Levin classeswhich resulted in 20 semartic classes.

Verb Classification A technique was devised which automatically assigns
verbsto semariic classesvia WordNet (Miller et al., 1993). Levin's verb index
was annotated for verbs classi ed according to their predominant sense,and a
semi-automatic algorithm was designedwhich assignsWordNet synsetsto se-
mantic classes. This algorithm makes use of the annotated Levin index, the
Idoce dictionary and Dorr's Idoce codesfor Levin classes. We applied the
algorithm to the total of 1616 synsets. Given the resulting synset-classass@i-
ations, individual verbs are automatically classi ed according to the semartic
class assaiated with the synset corresponding to their rst sense. Our tech-



7.1. Contributions of this Thesis 149

nique exploits someideas from Dorr (1997). Howewer, it diers from Dorr's
technique in seweral ways which cortribute to increasedaccuracy classifying
verbs according to their predominant senseand building a more static lexical
resource.

Back-off Estimates for Semantic Classes A method was proposedfor con-
structing badk-o0 estimatesbasedon semartic verb classes.This involved choos-
ing from ead class(ideally) 4-5 verbswhosepredominant sensecorresponds to
the class,manually analysing corpusdata to obtain scf s distributions for these
verbs, and automatically merging the resulting distributions to obtain bad-o
estimates for the class. Using this method, we constructed badk-o estimates
for 20 semariic classes.

Filtering The proposedsemariic verb classesyerb classi cation technique and
badk-o estimatescould be usedin hypothesis selectionin various ways. Our
novel approad involves (i) identifying the semariic classof a predicate, (ii) ac-
quiring a conditional scf distribution for the predicate from corpusdata (using
a subcategorization acquisition system's hypothesis generator), (iii) smoothing
the conditional distribution with badk-o estimates of the semaric class of
the predicate using linear interpolation, and (vi) setting an empirically de ned
threshold on the probability estimates from smoothing to Iter out unreliable
hypotheses.

According to the ewaluation reported, this semartically motivated approad to hy-
pothesisselectionprovides an e ectiv e way of dealing with sparsedata. It yields sub-
categorizationinformation substartially more accuratethan that obtained by baseline
mle thresholding. When we performed experiments where we smoothed the condi-
tional scf distributions of predicateswith the unconditional distribution, this yielded
subcategorization information lessaccurate than that obtained by mle thresholding.
This shawvsthat poor back-0 estimatesare worsethan none(Gale and Church, 1990).
Overall, our result demonstratesthat it is bene cial to guide subcategorization ac-
quisition with a priori semaric knowledge. Such knowledge allows detection of scf

information that doesnot emergefrom purely syntactic analysis.

The experimental ndings and various methods proposedin this thesis cortribute di-
rectly to the developmert of subcategorization acquisition and thusto obtaining more
accurate subcategorization lexicons. The work reported in this thesisis potentially of
interest to many practical nlp applications which use subcategorization information,
and to linguistic theory. Knowledge about novel verb and verb class assaiations,
and accurate scf and verb assaiations can also be usedto test and enrich linguistic
theory (e.g. Levin, 1993).
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7.2 Directions for Future Research

7.2.1 Hyp othesis Selection

Further work is required before the novel approad can be applied to benet the en-
tire lexicon. Firstly, a comprehensie set of semartic classesand badk-o estimates
is neededwhich covers the ertire lexicon. This will require re ning the Levin clas-
si cation (e.g. Dang et al., 1998) and extending it to cover novel verb classes(e.g.
Dorr, 1997). Secondly the semartic classi cation of WordNet synsetsneedsto be
completed so that verbs acrossthe ertire lexicon can automatically be assignedto
semairtic classes.

The proposedapproad canalsobeimprovedin seweral respects. Many of the semartic
classesemployed could be narrowed down further to obtain clearer subcategorization
distinctions. We opted for fairly generalclassi cation due to the high cost involved
in obtaining back-o0 estimates. Howewer, it would be worth investigating ways of
reducing this cost. One option would be to obtain the conditional distributions needed
for back-0 estimatesautomatically usingthe subcategorization acquisition machinery
with mle thresholding for hypothesisselection. If this doesnot yield accurate enough
estimates- which is likely, given the poor performanceof mle thresholding with low
frequency data - we could examine whether it would help manually to verify the
automatically acquired distributions and remove incorrect scf assignmets.

Obviously, one could also reduce the cost involved in obtaining back-o estimates
by reducing the number of conditional distributions used for these estimates. Our
evaluation showved, howewer, that when fewer distributions than the ideal 4-5 were
used (due to the lack of suitable Levin verbs), back-o estimatesdid not turn out
comprehensie enough. Thus this is not an ideal solution. Rather, it seemssensible
also to consider non-Levin verbs (e.g. verbs from semarically classied synsets)
as candidates to obtain the ideal number of conditional distributions for back-o
estimates, and considerways of reducing the costin constructing estimates.

According to our evaluation, when badk-o estimates were accurate, they helped to
deal e ectiv ely with sparsedata. However, the bene ts from smoothing did not al-
ways show up in the acquired lexicon becausethe empirically de ned ltering thresh-
old (specic to verb class) either acceptedtoo many or too few scfs. It is worth
investigating ways of more accurate thresholding. One option would be to weight the
empirically de ned threshold by the number of scf options for an individual verb in
a dictionary sudch asanlt or/and comlex .

Currently we deal with the problem of polysemny by assigningpredicatesto semariic
classescorresponding to their predominant sense.A better approac might beto con-
sider all sensef predicatesand allow for multiple classassignmen. For a polysemic
predicate, backk-0 estimates could be obtained by merging the back-o0 estimates of
all its semartic classes. When doing this, we could weight the contribution of eadh
setof badk-0 estimatesaccordingto the frequencyof the sensen WordNet. In other
words, the badk-o estimates of the predominant sensewould still have the biggest
e ect, but the other estimateswould allow detection of those scf s merely related to
lessfrequernt senses.
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A more e ectiv e way to deal with polysemy would be to modify the subcategorization
acquisition system to hypothesisescf distributions specic to verb senseby using
wsd techniques on the predicate forms!. This would allow us to assignoccurrences
of predicatesto semartic classescorresponding to their appropriate sensesand thus
reduce noisein hypothesis selectionand subcategorization acquisition in general. To

gain full benet from this approad, we would needto narrow down semaric verb

classi cation, obtain badk-o estimates specic to ner-grained classes,investigate
ways of reducing the cost of obtaining badk-o estimates and re ne the verb clas-
si cation algorithm so that it is capable of allocating predicate sensesto semariic

classes.

The starting point in this thesis was to investigate why hypothesis tests have been
reported to perform poorly in subcategorization acquisition. While we detected rea-
sonsfor this, we did not further re ne the lters basedon hypothesistests. It would
be interesting to integrate semartically motivated badk-o estimatesinto hypothesis
tests and investigate to what extent this improves performance.

7.2.2 Hyp othesis Generation

The work reported in this thesis has concenrated on improving the hypothesis se-
lection phaseof subcategorization acquisition. There is, howewer, a limit to how far
we can get by merely re ning hypothesis selection. To render full subcategorization
recovery possible,improvemerts are required in hypothesisgeneration as well.

One way of improving hypothesis generation would be to enhance parse selection
accuracy In this thesis, we demonstratedthat using the scf s acquired by the system
to rerank analysesreturned by the parsercanimprove parseraccuracy Incrementally
integrating this and other lexical information into probabilistic parsing could help.

Current subcategorization acquisition systemsgeneratehypothesesabout assaiations
of predicateswith scf s. Howewver, there is more to subcategorization than syntactic
frames; the ertire range of phenomenawe discussedin chapter 2: linking between
syntactic and semaric levels of predicate-argumert structure, semariic selectional
restrictions/preferenceson argumerts, cortrol of understood argumerts in predicative
complemers, diathesis alternations and soforth. The evertual aim is to supplemen
a target lexicon with all this information. Knowledge of these further details of
subcategorization will also aid hypothesis generation. The various componerts of
argumert structure are interrelated, sothat knowledgeabout one componert can aid
the automatic recovery of another.

For example, if a subcategorization acquisition system gathers from corpus data in-
formation about lemmaswhich occur as headsof argumerts in scf s given predicates,
this information could be usedasinput to predicate sensedisanbiguation. This would
allow hypothesising assaiations betweenverb sensesand scf s. The argument head
data could also be usedasinput to selectionalpreferenceacquisition (e.g. McCarthy,
2001). Knowledge about selectional preference(s)of predicates on their argumerts
would help to disambiguate argumert sensege.g. Kilgarri and Rosenzweig, 2000).

!Some work already exists on this, see section 7.2.3.
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In addition, as Briscoe and Carroll (1997) and Boguraev and Briscoe (1987) suggest,
the ability to recognizethat argument slots of di erent scf s for the samepredicate
sharesemaric restrictions/preferenceswould assistrecognition that the predicate un-
dergoesspeci ¢ diathesisalternations. This in turn would assistinferencese.g. about
control, equi and raising, which again would help to narrow down somescf options.

Similarly, knowledgeabout alternations would help to distinguish e.g. betweenunerga-
tiv e, unaccusative and object-drop verb types(Levin, 1993). Theseverbstake similar
intransitiv e and transitiv e scf s, but assigndi erent thematic roles to their subject
and object argumerts in the event described:

(35) a Unergative:
The plane flew to Rome $ Bill flew the plane to Rome
Npagent ew $ NPcauseT ew NPtheme

b Unaccusative:
Snow melted in the kettle $ They melted snow in the kettle
NP heme Melted $ NP qyser Melted NP ypepme
¢ Object-drop:
Mary ate the food $ Mary ate
NP gent ate NPipeme $ NP ygen ate

Furthermore, classifying verbs semartically according to their alternation behaviour
would aid prediction of unseenscf behaviour and induction of low frequency frame
assaiations (as demonstrated with hypothesis selectionin this thesis). If frequency
of alternations were known, thesepredictions could be made via statistical estimation
of the semi-praductivit y of alternation rules (Briscoe and Copestake, 1999).

7.2.3 Extending the Scope

Work is under way to dewelop subcategorization acquisition in the directions discussed
above. To provide an idea of the state of the art, we shall now give a brief overview of
such work undertaken recertly around Briscoe and Carroll's system. We contributed
to someof this work while working on the researt reported in this thesis.

McCarthy (2001) has developed a systemwhich acquiresselectional preferencesfrom
ascf lexicon extracted using Briscoe and Carroll's system. The systemusesthe list of
headlemmasin argumert slotsin scf s and the WordNet semariic noun hierarchy to
infer a probability distribution on semaric classesoccurring in a given argumert po-
sition in agivenscf for speci c predicates. This probability distribution characterizes
the selectional preference(s)of the predicate on that argumert.

The technique employed for selectional preferenceacquisition is basedon that pro-
posedby Li and Abe (1995). The preferencesfor a slot are represened as a tree cut
model (tcm ). This is a set of classeswhich cuts acrossthe WordNet noun hypernym
hierarchy covering all leavesdisjointly. The argument head data is collected from a
slot and usedto populate the WordNet hierarchy with frequency information. Each
headlemma s assigneda WordNet classwhereit occursasa synorym. If alemmais
ambiguous between classesthen counts are evenly distributed betweentheseclasses.
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Figure 7.1: tcm for build Object slot

The frequency at ead classis then propagated up the is-a links of the hierarchy
so that the frequency counts from hyponym classesare added to the count for eath
hypernym class. A root node contains the total frequency court for all argumert
head lemmasthat were found in WordNet. The appropriate level of generalization -
the besttcm - is determined using the Minim um Description Length (mdl) principle
(Rissanen,1978). The mdl principle nds the set of classeshat make the best com-
promise betweena good t for the data and providing a succinct model. Figure 7.1
displays, as an example, how part of the tcm for the direct object slot of build might
look?.

McCarthy has usedthe selectional preferencedistributions for wsd on nouns occur-
ring in scf slotswith results of around 70% precision(Kilgarri and Rozerweig, 2000)
and alsoto identify whether a speci ¢ predicate participates in a diathesis alternation
(McCarthy and Korhonen, 1998; McCarthy, 2001). Identifying participation in alter-
nations on purely semariic grounds would be di cult, asthe subtle lexical-semartic
componerts which give rise to alternations are not easily de ned (e.g. Levin and
Rappaport, 1996) and as alternations are semi-productive in nature (e.g. Briscoe and
Copestake, 1999). Looking for near-idertical selectionalpreferencedistributions on ar-
gumert slots betweenputativ ely alternating scf sis an alternativ e option. McCarthy's
method is suitable for detecting participation in alternations where a particular argu-
ment type appearsin slots which have di erent grammatical rolesin the alternating
frames. One exampleis the causative-inchoative alternation, where the object of the
transitiv e variant can also appear as the subject of the intransitiv e variant:

(36) The boy broke the window $ The window broke

McCarthy rst usessyntactic processingo nd candidate verbstaking the alternating
scf s. For this, a scf lexicon acquired using Briscoe and Carroll's systemis screened
for candidate verbs which occur with the scf sinvolved in an alternation. The latter
are obtained from a mapping which links the scf s involved in Levin alternations to
thoserecognizedby Briscoe and Carroll's systen?. Selectionalpreferencesare then ac-

2The type of TCM exemplified in this figure is an Association TcM. See McCarthy and Korhonen
(1998) and McCarthy (2001) for further details of this and other TCM types employed.

3We contributed to McCarthy’s work by producing this mapping. A brief description of the
mapping is included in Appendix C.
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quired for the slotsinvolved in an alternation using asinput data the argumert heads
stored in the lexical entries. Verbs which participate in alternations are expected to
show a higher degreeof similarity betweenthe preferencesat the target slots com-
pared with non-participating verbs. To comparepreferencesprobability distributions
acrossWordNet are comparedusing a measureof distributional similarity. McCarthy
(2001) reported a signi cant relationship betweensimilarity of selectionalpreferences
at alternating slots, and participation in the causative and conative alternations. At
best, 72% accuracy (against 50% baseline)was obtained for the causative alternation
using euclideandistance (Lee, 1999) as the measureof distributional similarity.

Although this is a promising result, applying the method to a wider range of alterna-
tions will largely depend on overcoming the sparsedata problem. Many alternations
involve rare verbs and for many verbs that participate in alternations, one of the
alternating forms is rare. This problem could partly be addressedby improving the
accuracy of subcategorization acquisition, e.g. by using the novel method for hypoth-
esisselectionproposedin this thesis.

Recerly McCarthy has worked on disambiguating verb forms into WordNet senses
using the distribution of argumert headsin argumert slots*. If this work proves
successfulit should be possibleto apply the techniques discussedin this and above

sectionsto predicate sensedirectly, and thus reduce noisein scf , selectional prefer-

enceand alternation acquisition.

Most techniques discussedin this section require further developmernt before they
can be integrated into subcategorization acquisition machinery to benet large-scale
hypothesis generation. In the meartime, the novel sematrtically-driv en approad to
hypothesis selection proposedin this thesis allows us to someextent to compensate
for the semartic information currently missingin hypothesisgeneration.

4This work has not yet been published.
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SCF Classi cation

A.1 Introduction

The below list details the 163 scf s employed by Briscoe and Carroll's scf acquisition
system. The scf s were constructed by manually merging the scf s of the anlt and
comlex syntax dictionaries and adding around 30 scf s found by examining unclassi-
able patterns of corpusexamples. Theseconsistedof someextra patterns for phrasal
verbs with complex complemenation and exible ordering of the preposition or par-
ticle, somefor non-passivizablepatterns with a surface direct object, and some for
rarer combinations of governed preposition and complemertizer combinations. The
resulting scf s abstract over speci ¢ lexically-governed particles and prepositions and
speci ¢ predicate selectional preferencesbut include some derived semi-predictable
bounded dependencyconstructions, sud as particle and dative movemen.

(37) shaws a legend for a scf ertry in the classi cation. The rst line shows the
comlex scf name (for the rst 116 scf swhich appearin comlex ). It alsoindicates
the frequency of the scf in anl t . Where this is O, the scf doesnot appearin anl t .
Casesmarked as "??" are unsure. The secondline givesthe frame speci cation using
anl t notation (for the last 47 scf s - which do not appear in comlex but only in
anl t and/or corpusdata - this speci cation is givenin the rst line of the entry) and,
for somescf s, the mapping to an xt ag tree family. The following line shows a tagged
examplesertencefrom corpusdata wherethe scf occurs. The nal line givesthe scf
speci cation according to the grammar employed by Briscoe and Carroll's system.
It indicates the tag sequencegrammar (TSG10vs) feature values and headwords in
parsetrees. For full details of the classi cation and the mapping betweenanl t and
comlex , seeBriscoe (2000).

(37) SCFclass number. COMLEXlass name/ Frequency of the class in ANLT
(ANLT SUBCAT/SUBTYPEORM/PRfeature value pairs) [/ XTAG:Tree-family
Example sentence with CLAWS-II/Susanne TAGS
TSG10vsPSUBCAT/VSUBCAHRT, PFORMNd headwords/'HEADWORPS_TAGS

155
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A.2 Classification

1. ADJP/ 93

(SUBCATSC_AP,SUBTYPEQUI) / XTAG: TnxOVal
his_AT reputation_NN1 sank_VVDlow_JJ

(VSUBCATAP)

2. ADJP-PRED-R$ 15

(SUBCATSC_AP,SUBTYPRAIS) / XTAG:Tnx0Ax1
he_NPlappears_VVZcrazy JJ / distressed_VVN

(VSUBCA®RP) / (VSUBCATNVPPRT)

3. ADVP/ 64

(SUBCATADVP)
he_NP1meant_VVDwell_RP

(VSUBCATNONE,PRT+) well

4. ADVP-PRED-RS 0 (in vppp)

(SUBCATADVP, SUBTYPRAIS)
He_NPl1seems_VVZvel_RP

(VSUBCATNONE,PRT+) well

5. AS-NP/ 0 (in vppp with PRT1 = end)
(SUBCATSC_NP,SUBTYPEQUI, PREPas)

I_NP1 worked_VVZas_CSAan_AT1 apprentice_ NN1 cook NN1
(VSUBCATPP) as

6. EXTRAP-NP-$ 58
(SUBCATNP_SFIN, SUBTYPEXTRAP ,AGRN2[NFORNIT])

it PPH1 annoys_VVZthem_PPHO2hat_CST she_PPHS1left_VVD
it (VSUBCANP_SCOMP) * VVZ/DIG

7. S-SUBJ-NP-OBJ 58

(SUBCATNP_SFIN, SUBTYPEXTRAP,AGRSI[FIN +]) / XTAG:TsO0Vnx1
that_ CST she_PPHSleft VVD annoys_VVZthem_PPHO2

* VWD/ZIG (VSUBCATNP)

8. TO-INF-SUBJ-NP-OBJ 56

(SUBCATOC_INF, SUBTYPEEQU_EXTRARGRVP[FIN -])
to_TO read_VVO pleases_VVZ them_PPHO2

* VVO0 (VSUBCATNP)

9. EXTRAP-TO-INF 4

(SUBCATVPINF, SUBTYPEXTRAP AGRN2[NFORNIT)
it PPH1 remains_VVZto_TO find_VVO0 a_AT1 cure_NN1

IT (VSUBCANVPINF)

10. EXTRAP-FOR-TO-INF 0 (not in vppp)
(SUBCATSINF, SUBTYPEXTRAPAGRN2[NFORNI])

it PPH1 remains_VVZfor_IF us_PPHO20_TO find_VV0 a_AT1cure_NN1
IT (VSUBCAPP_VPINF)for (PSUBCATNP)

11. EXTRAP-NP-TO-INF 56
(SUBCATOC_INF, SUBTYPEEQU_EXTRARGRN2[NFORNIT])

it PPH1 pleases_VVZ them_PPHOZ20_TO find_VV0 a_AT1cure_NN1
IT (VSUBCATBINF)
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12. EXTRAP-TO-NP- 5 (4 without EXTRAP)
(SUBCATPP_SFIN, SUBTYPEXTRAP,PFORND, AGRN2[NFORNI])
it PPH1 matters VVZ to_Il them_PPHO2hat_CST she_PPHSIeft VVD

IT (VSUBCAPP_SCOMRp (PSUBCANP) * VWZ/D/G

13. EXTRAP-TO-NP-TO-INF 1
(SUBCATPP_VPINF, SUBTYPEXTRAP,PFORND)

it PPH1 occurred VVD to Il them_PPHO20 TO watch_VVO
IT (VSUBCAPP_VPINF)to (PSUBCATNP)

14. S-SUBJ-TO-NP-OBJ 5
(SUBCATPP_SFIN, SUBTYPEXTRAP,AGRS[FIN +])

that_ CST she_PPHSleft_VVD matters_VVZ to_Il them_PPHO2
* \VWD/G/Z (VSUBCAPP) to (PSUBCANP)

15. FOR-TO-INF/ 17
(SUBCATSINF)

|_PPHS1prefer_VVO for_IF her_PPHOIlo_TO do_VVO0it PPH1
(VSUBCATPP_VPINF)FOR(PSUBCATNP)

16. HOW-S 155 (combined with other wh comps)
(SUBCATWHS)

he PPHSlasked VVDhow RG®he PPHSIdid_VDDit PPH1
(VSUBCATPP) HOW/WHY/WHERE/MWRENBCATSFIN)

17. HOW-TO-INF 100 (combined with other wh comps)
(SUBCATWHVP)

he_PPHSlexplained_VVD how_RGQ@_TO do_VV0it_PPH1
(VSUBCATPP) HOW/WHERE/WHKEBUBCATNPINF)

18. INF-AC/ ??

ANLTgap (SUBCATVC_BSE)
he_PPHSIhelped_VVDbake_VVO0the AT cake NN1

(VSUBCAWVPBSE)

19. ING-NP-OMIT/ 242
(SUBCATSC_ING, SUBTYPEQUI)

his_AT hair_NN1 needs_VVZcombing_VVG
(VSUBCATNVPING)

20. ING-SC/BE-ING-SC/ 21

(SUBCATSC_ING, SUBTYPRAIS)
she_PPHSIstopped_VVD smoking_VVG

(VSUBCAWPING)

21. ING-AC/ ??

ANLTgap (SUBCATVC_ING)
she_PPHSIdiscussed_VVD writing_VVG novels_NN2

(VSUBCATNVPING)

22. INTRANS 2985

(SUBCATNULL)
he_PPHSIwent VVD

(VSUBCATNONE)

23. INTRANS-RECIP(SUBJ-PL/COORDP?
(SUBCATNULL)
They PPHSZnet VVD
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* PP/NN*2 (VSUBCATNONE)
John_NPland_CCher_AT brother NN1 met VVD
* CC (VSUBCATNONE)***

24. NP/ 5281
(SUBCATNP) / XTAG:TnxOVnx1

he_PPHSloved_VVD her_PPHO1
(VSUBCANP)

25. NP-ADJP/ 113
(SUBCATOC_AP,SUBTYPEQUI)

he_PPHSIpainted_VVD the_AT car_NN1 black_JJ
(VSUBCATNP_AP)

26. NP-ADJP-PRED 46
(SUBCATOC_AP,SUBTYPRAIS) / XTAG:Tnx0Vsl

she_PPHSIconsidered_VVD him_PPHOZoolish_JJ
(VSUBCATNP_AP)

27. NP-ADVA 9

(SUBCATNP_ADVP)
he_PPHSIput_VVDit PPH1 there RL

(VSUBCATNP, PRT+) * there

28. NP-ADVP-PRED 281 (with PPs)
(SUBCATNP_LOC) / XTAG:Tnx0Vsl

they PPHS2mistakenly_RA thought VVD him_PPHOhere_RL
(VSUBCANP, PRT+) here

29. NP-AS-NP/ 3

(SUBCATSC_NP_NPSUBTYPIRAIS, PREPas)
I_PPHS1sent_VVD him_PPHOZXs_CSAa_AT1 messenger_NN1

(VSUBCATNP_PP)(PFORNAS)

30. NP-AS-NP-SC 3

(SUBCATSC_NP_NPSUBTYPRAIS, PREPas)
she_PPHSIserved_VVDthe_AT firm_NN1 as_CSAa_AT1 researcher_NN1

(VSUBCATNP_PP)(PFORNAS)

31. NP-FOR-NFR 90

(SUBCATNP_PP,SUBTYPBMOVTPFORNDr)
she_PPHSlbought_VVDa_AT1 book_NNifor_IF him_PPHOL1

(VSUBCATNP_PP)(PFORM-OR)

32. NP-INF/ 11
(SUBCATOC_BSESUBTYPRAIS) / XTAG:Tnx0Vsl

he_PPHSImade VVer_PPHO1sing_VVO0
(VSUBCATSCOMP) *_VV0

33. NP-INF-OC/ 17
(SUBCATOC_BSE,SUBTYPEQUI)

he_PPHS1helped_VVD her_PP$ bake_VVOthe AT cake_NN1
(VSUBCATSCOMP) *_VVO

34. NP-ING/ 28

(SUBCATOC_ING,SUBTYPIRAIS) / XTAG:Tnx0Vsl
I_PPHS1kept_VVD them_PPHOZaughing_VVG

(VSUBCATSING)
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35. NP-ING-OC/ 45
(SUBCATOC_ING,SUBTYPEQUI)

|_PPHS1caught_VVD him_PPHOXtealing_VVG
(VSUBCATING)

36. NP-ING-SC/ ?7?
ANLTgap: real complement?

he_PPHSIcombed_VVDhe AT woods_NNZooking_VVG for_IF her_PPHO1
(VSUBCATSING)

37. NP-NP/ 231

(SUBCATNP_NP)/ XTAG:Tnx0Vnx1lnx2
she_PPHSlasked VVDhim_PPHOis AT name_NN1

(VSUBCATNP_NP)

38. NP-NP-PRED 38
(SUBCATOC_NP,SUBTYPEQUI) / XTAG:Tnx0Vsl

they_PPHS2appointed_VVD him_PPHOZYrofessor_NN1
(VSUBCATNP_NP)

39. NP-P-ING/ 2

(SUBCATOC_PP_INGPFORNrom, SUBTYPIPVERB_ORDRDEROSTNP)
|_PPHS1prevented_VVD her_PPHOIfrom_IlI leaving_VVG

(VSUBCANP_PP)from (PSUBCATNPING)

40. NP-P-ING-OC/ 31

(SUBCATOC_PP_INGPFORMSUBTYPPVERB_OEQRDEROSTNP)
|_PPHS1laccused_VVDher_PPHOlof IO murdering_VVG her_AT husband_NN1

(VSUBCATSING, PRT+) of

(VSUBCANP_PP)* (PSUBCATNPING)

41. NP-P-ING-SC/ ??

Gapin ANLTscheme, shid be: (SUBCATSC_PP_INGPRT, ORDEROSTNP)
he_PPHSIwasted_VVDtime_NNT1on_Il fussing_VVG with_IW his_AT hair_NN1

(VSUBCATNP_PP)on (PSUBCATNPING)

42. NP-P-ING-AC/ ??
Gapin ANLTscheme (SUBCATVC_PP_ING)

he_PPHSold_VVD her_PPHOlabout_Il climbing_VVG the_AT mountain_NN1
(VSUBCATNP_PP)about (PSUBCATNVPING)

43. NP-P-NP-ING/ ??

ANLTgap (SUBCATNP_PP_SING)
he_PPHSIattributed_VVD his_AT failure_NN1 to_ Il noone_NPlbuying VVG
his_AT books_NN2

(VSUBCAMNP_PP)to (PSUBCATING)

44. NP-P-POSSING ??

ANLTgap (SUBCATNP_PP_SING)
They_PPHSZsked_VVDhim_PPHOXbout_Il his_PPHO1participating_VVG
in_Il  the_AT conference_NN1

(VSUBCATNP_PP)about (PSUBCATING)

45. NP-P-WH-§ 0 (not in vppp, and below)

(SUBCATNP_WHSPREP)
they_PPHS2made_VVIa_AT1great JJ fuss_NN1 about_Il whether_CSWhey PPHS2
should_VM participate_VVO0
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(VSUBCANP_PP)about (PSUBCATPP) whether (PSUBCATSFIN)

46. NP-P-WHAT-3 0

(SUBCATNP_WHSPREP)
they PPHS2made_VVIx_AT1great_JJ fuss _NN1 about Il what_ DDQthey PPHS2
should_VM do_VVO0

(VSUBCATNP_WHPRybout (PSUBCATWHS)

47. NP-P-WHAT-TO-INF 0
(SUBCATNP_WHVFPREP)

they_PPHS2made_VVIx_AT1great_JJ fuss NN1 about Il what_DDQo_TO do_VVO
(VSUBCATNP_WHPPR)bout (PSUBCATNP)

48. NP-P-WH-TO-INFH 0
(SUBCATNP_WHSPREP)

they PPHS2made_VVIa_AT1great_JJ fuss_NN1 about_Il whether_CSWo_TO go_VV0
(VSUBCATNP_PP)about (PSUBCATPP) whether (PSUBCATPINF)

49. NP-PP/ 2010

(SUBCATNP_PP,PFORMSUBTYPHBIONE/PVERB?) XTAG:Tnx0Vnx1pnx2
she_PPHSladded_VVDthe AT flowers NN2 to_Il the AT bouquet_NN1

(VSUBCATNP_PP)to

50. NP-PP-PRED 2010/50?7?

(SUBCATNP_PP,PFORMf, SUBTYPEIONE,PRD+)
|_PPHS1considered_VVD that AT problem_NN1of IO little_JJ concern_NN1

(VSUBCAMNP_PPOF)

51. NP-PRED-R$ 12
(SUBCATSC_NP,SUBTYPRAIS)

he_PPHSI1seemed_VV2_AT1 fool_NN
(VSUBCATNP)

52. NP-S/ 33
(SUBCATNP_SFIN, SUBTYPERIONE)Y XTAG:Tnx0Vnx1s2

he_PPHS1old_VVD the_AT audience_NN1that CST he_PPHSlwas_VBZeaving_VVG
(VSUBCATNP_SCOMP) * VVZ/D/G

53. NP-TO-INF-OC/ 189

(SUBCATOC_INF, SUBTYPEQUI)
|_PPHS1ladvised_VVD Mary NP1to_TO go_VVO

(VSUBCATSINF)

54. NP-TO-INF-SC/ 1
(SUBCATSC_NP_INF,SUBTYPEQUI)

John_NP1promised_VVDMary_NP1to_TO resign_VV0
(VSUBCATSINF)

55. NP-TO-INF-vVC/ ?7?

ANLTgap
they_PPHS2badgered_VVDhim_PPHO10_TO go_VVO0

(VSUBCATSINF)

56. NP-TO-NP/ 105

(SUBCATNP_PP,PFORNDb, SUBTYPBMOVT)] XTAG:Tnx0Vnx1Pnx2
he_PPHSIgave_VVDa_AT1big_JJ kiss_NN1 to_Il his_AT mother_NN1

(VSUBCANP_PP)to
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57. NP-TOBH 88
(SUBCATOC_INF, SUBTYPRAIS)
|_PPHS1found_VVDhim_PPHOlo_TO be_VBOa_AT1good_JJ doctor NN1
(VSUBCATSINF) BE

58. NP-VEN-NP-OMIT 3
(SUBCATOC_PASSSUBTYPEQUI/RAISING)

he PPHSIwanted VVDthe AT children_NN2 found_ VVN
(VSUBCATSCOMP¥_VVN

59. NP-WH-§ 12

(SUBCATNP_WHS)
they_PPHS2asked_VVDhim_PPHOWwhether_CSWhe_PPHSIwas_VBZgoing_VVG

(VSUBCANP_PP)WHETHER/IFPSUBCATSFIN)

60. NP-WHAT-$ 12
(SUBCATNP_WHS)

they_PPHS2asked_VVDhim_PPHOIwhat DDChe_PPHSlwas_VBZdoing_VVG
(VSUBCATNP_SCOMRy(WH-+)

61. NP-WH-TO-INF 12
(SUBCATNP_WHVP)

he PPHSlasked VVDhim_PPHOMwhether CSWo_TO clean_VVO0 the AT house NN1
(VSUBCATNP_PP)WHETHERSUBCATNPINF)

62. NP-WHAT-TO-INF 12
(SUBCATNP_WHVP)
he_PPHSIasked_VVDhim_PPHOWhat_DDQo_TO do_VVO
(VSUBCATNP_NP)* WHAT/WHO/WHICH

63. P-ING-SC/ 100
(SUBCATSC_ING, SUBTYPEQUI, PREP)

they _PPHS2failed_VVD in_Il attempting_VVG the_AT climb_NN1
(VSUBCATPP) in (PSUBCATNPING)

64. P-ING-AC/ ??
ANLTgap (SUBCATVC_ING, PRT)

they_PPHS2disapproved_VVD of 10 attempting_VVG the_AT climb_NN1
(VSUBCATNVPING, PRT+) of

they_PPHS2argued_VVDabout_II attempting_VVG the_AT climb_NN1
(VSUBCATPP) about (PSUBCATPING)

65. P-NP-ING/ 8

(SUBCATOC_PP_INGPFORMDp, SUBTYPIPVERB_OR/OE)DRDERRENP)
they_PPHS2worried_VVD about_Il him_PPHOMrinking_VVG

(VSUBCATPP) about (PSUBCATSING)

66. P-NP-TO-INF(-SC) / 6

(SUBCATSC_PP_INF,PFORNM®p, SUBTYPEQUI)
he_PPHSIconspired_VVD with_IW them_PPHO20_TO do_VV0it_PPH1

(VSUBCATPP_VPINF)with (PSUBCATNP)

67. P-NP-TO-INF-OC/ 29
(SUBCATOC_PP_INF,PFORM®p, SUBTYPIPVERB_OE/OR/EQUI)
he_PPHSbeckoned_VVDto_Il him_PPHOXo_TO come_VVO
(VSUBCAPP_VPINF)to (PSUBCATNP)

68. P-NP-TO-INF-VC/ ??
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ANLTgap

she_PPHSlappealed_VVDto_II him_PPHO%o0_TO go_VVO

she_PPHSlappealed_VVDto Il him_PPHOlo_TO be_ VBOfreed_JJ
(VSUBCAPP_VPINF)to (PSUBCATNP)

69. P-POSSING 10

(SUBCATOC_PP_INGPFORM®p, SUBTYPIPVERB_ORDRDERRENP)
they_PPHS2argued_VVDabout_Il his_PP$ coming_VVG

(VSUBCATPP) about (PSUBCATSING)

70. P-WH-S/ 37
(SUBCATWHS,PRT/PRER@p)

he_PPHSlhought VVD about_Il whether_CSWhe_PPHSlwanted_VVDto_TO go_VV0
(VSUBCATPP) about (PSUBCATPP) WHETHER/IFPSUBCATSFIN)

71. P-WHAT-S 37
(SUBCATWHS,PRT/PRER@p)

he_PPHSlhought VVD about_Il what DDGhe_PPHSlwanted VVD
(VSUBCAWHPPRbout (PSUBCATWHS)

72. P-WH-TO-INF/ 27
(SUBCATWHVP PREP@p)

he_PPHSlthought VVD about_Il whether_ CSWo_TO go_VVO0
(VSUBCATPP) about (PSUBCATPP) whether (PSUBCATNPINF)

73. P-WHAT-TO-INF 27
(SUBCATWHVP PREP@p)

he_PPHSlhought VVD about_Il what DDQo_TO do_VV0
(VSUBCATWHPP)Rbout

74. PART/ 3219

(SUBCATNULL, PRT)/ XTAG:Tnx0Vpl
she_PPHSIlgave_VVDup_RL

(VSUBCATNONE,PRT+) up
she_PPHSIgave_VVDup_lI

(VSUBCATPP) up (PSUBCATNONE)

75. PART-ING-SC 7

(SUBCATSC_ING, SUBTYPEQUI, PRT/PREP)
he_PPHSIuled_VVD out_Il paying_VVG her_AT debts_NN2

(VSUBCATPP) out (PSUBCATNPING)
he_PPHSIruled_VVD out_RP paying_VVG her_AT debts_NN2

(VSUBCANVPING, PRT+) out

76. PART-NP/NP-PART 2134
(SUBCATNP, PRT) (ORDERFREE)/ XTAG:Tnx0Vpinx1
|_PPHS1looked_VVD up_RLthe_ AT entry_NN1
(VSUBCANP, PRT+) up *
I|_PPHS1looked_VVD the_AT entry_NN1 up_RL
(VSUBCANP, PRT+) * up

77. PART-NP-PR 312
(SUBCATNP_PP,PFORMPRT, SUBTYPERIONE/PVERB?)(ORDER-REE)
I_PPHS1separated_VVD out_Il the_AT three_JJ boys_NN2from_Il the_AT crowd_NN1
(VSUBCATPP_PP)out (PSUBCANP) from (PSUBCATNP)
|_PPHS1separated_VVD out_RL the_AT three_JJ boys_NN2from_Il the_AT crowd_NN1
(VSUBCANP_PP,PRT+) out from (PSUBCANP)
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78. PART-PP/ 234

(SUBCATPP, PFORMPRT, SUBTYPPVERB)
she_PPHSlooked_VVDin_Il on_Il her_AT friend_NN1

(VSUBCATPP) in (PSUBCAPP) on (PSUBCANP)
she_PPHSllooked VVDin_RL on_ Il her_AT friend_NN1

(VSUBCATPP, PRT+) in on (PSUBCANP)

79. PART-WH-$ 20

(SUBCATWHS,PRT, SUBTYPEONE)
they_PPHS2figured_VVD out_Il whether_CSWshe_PPHSlhad_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATPP) out (PSUBCATPP) WHETHER/IFPSUBCATSFIN)
they_PPHS2figured_VVD out_RP whether_CSWshe_PPHSlhad_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATPP, PRT+) out WHETHER/IFPSUBCATSFIN)

80. PART-WHAT-5 20
(SUBCATWHS,PRT, SUBTYPEONE)

they_PPHS2figured_VVD out_Il what_DDQshe_PPHSlhad_VHDn't_ XX done_VVD
(VSUBCAWHPPput (PSUBCATWHS)

they_PPHS2figured_VVD out_RP what_DDQshe_PPHSlhad_VHDn't XX done_VVD
(VSUBCATSCOMPPRT+) out S(WH+)

81. PART-WH-TO-INF 22
(SUBCATWHVP PRT, SUBTYPERIONE)
they PPHS2figured_VVD out_Il whether_ CSWo_TO go_VV0
(VSUBCATPP) out (PSUBCATPP) whether (PSUBCATPINF)
they PPHS2figured_VVD out_RP whether_CSWo_TO go_VV0
(VSUBCATPP, PRT+) out whether (PSUBCATPINF)

82. PART-WHAT-TO-INF 22
(SUBCATWHVP PRT, SUBTYPERIONE)

they PPHS2figured_VVD out_Il what DDQo_TO do_VVO0
(VSUBCAWHPPYut (PSUBCANP)

they PPHS2figured_VVD out_RP what_ DDQo_TO do_VV0
(VSUBCANP, PRT+) WHAT/WHICH/WHO

83. PART-THAT-3 48

(SUBCATSFIN, PRT, SUBTYPEONE)
they_PPHS2figured_VVD out_II that CST she_PPHSlhad_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATPP_SCOMRyut (PSUBCATNONE)*_VVG/Z/D
they_PPHS2figured_VVD out_RP that_ CST she_PPHSIhad_VHDn't_XX done_VVD
her_AT job_NN1

(VSUBCATSCOMPPRT+) out * VVG/Z/D

84. POSSING 27

(SUBCATOC_ING, SUBTYPIRAIS)
he_PPHSWdismissed_VVD their_PP$ writing_VVG novels_NN2

(VSUBCATING)

85. POSSING-PP ??
ANLTgap (SUBCATOC_ING_PP)

163

she_PPHSIattributed_VVD his_PP$ drinking_VVG too_RA much_RAo_Il his_AT anxiety_NN1

(VSUBCABING_PP)to (PSUBCATNP)

86. ING-PP/ 2?7
ANLTgap
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they_PPHS2limited_VVD smoking_VVGa_AT pipe_NN1to_Il the_AT lounge_NN1
(VSUBCATNPING_PP)o (PSUBCATNP)

87. PP/ 2465 (366 LOC)

(SUBCATPP/LOC, PFORMSUBTYPERIONE/PVERB) XTAG:Tnx0Vpnx1
they PPHS2apologized_VVD to_Il him_PPHO1

(VSUBCATPP) to (PSUBCATNP)

88. PP-FOR-TO-INF 1
(SUBCATPP_SINF, PFORM)

they_PPHS2contracted_VVD with_IW him_PPHOZor_IF the AT man_NNIo_TO go_VVO0
(VSUBCATPP_PP)with (PSUBCANP) for (PSUBCATSINF)

89. PP-HOW-3 7
(SUBCATPP_WHSPFORM)

he_PPHSlexplained_VVD to_Il her_PPHOlhow_RGQ@he_PPHS1did_VDD it_PPH1
(VSUBCATPP_PP)to (PSUBCATNP) HOW/WHY/WHERE/WRENBCATSFIN)

90. PP-HOW-TO-INF 3
(SUBCATPP_WHVPRPFORM)

he_PPHSlexplained_VVD to_Il them_PPHOZow RGQ@o_TO do_VV0it_PPH1
(VSUBCATPP_PP)to (PSUBCATNP) HOW/WHERE/WKEBUBCATNPINF)

91. PP-P-WH-S/ ?7?

Gapin ANLTscheme: (SUBCATPP_WHSPFORMPRT)
|_PPHS1lagreed_VVDwith_IW him_PPHObout Il whether_CSWhe_PPHSIshould_VM
kill_VV0O the_AT peasants_NN2

(VSUBCATPP_PP)with (PSUBCATMNP) about (PSUBCATPP) WHETHERSUBCATSFIN)

92. PP-P-WHAT-§ ??
Gapin ANLTscheme

|_PPHS1lagreed_VVDwith_IW him_PPHOZbout Il what DDChe_PPHSIshould_VM do_VVO0
(VSUBCATPP_WHPPR)ith (PSUBCANP) about (PSUBCATWHS)

93. PP-P-WHAT-TO-INF ??
Gapin ANLTscheme

I_PPHS1lagreed_VVDwith_IW him_PPHOZXbout_Il what DDQo_TO do_VV0
(VSUBCATPP_WHPPRYith (PSUBCATNP) about (PSUBCATNP)

94. PP-P-WH-TO-INFH 2?2
Gapin ANLTscheme

|_PPHS1lagreed_VVDwith_IW him_PPHO®Xbout Il whether_CSWo_TO go_VV0
(VSUBCATPP_PP)with (PSUBCATNP) about (PSUBCATPP) whether (PSUBCATNPINF)

95. PP-PP/ 64 (22 PVERB)
(SUBCATPP_PP)

they PPHS2flew_VVD from_II London_NP1to_II Rome_NP1
(VSUBCATPP_PP)from (PSUBCANP) to (PSUBCATNP)

96. PP-PRED-R$ 0 (not in vppp)
(SUBCATPP, SUBTYPRAIS)

the_AT matter_NN1 seems_VVZn_Il  dispute_NN1
(VSUBCATPP) in (PSUBCATNP)

97. PP-THAT-S/ 22

(SUBCATPP_SFIN, SUBTYPEIONE,PFORM)
they_PPHS2admitted_VVD to_Il the AT authorities_NN2 that CST they_ PPHS2
had_VHDentered_VVD illegally_RA
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(VSUBCAPP_SCOMRp (PSUBCANP) * VWD/Z/G

98. PP-THAT-S-SUBJUNQCT?2

(SUBCATPP_SBSE,PFORMS[BSE, that])
they_PPHS2suggested_VVDto_Il him_PPHOZ%hat CST he_PPHSIgo_VVO0

(VSUBCATPP_SCOMRY (PSUBCAMNP) *_VVO

99. PP-TO-INF-RS/ 1

(SUBCATSC_PP_INF,SUBTYPRAIS, PFORMVP][to0])
he_PPHSlappeared_VVDto_Il her_PPHO1to_TO be_VBOill_JJ

(VSUBCATPP_VPINF)to (PSUBCANP) BE

100. PP-WH-§ 7

(SUBCATPP_WHSPFORM)
they_PPHS2asked_VVDabout_Il everybody NP1 whether CSWthey PPHS2
had_VHDenrolled_VVN

(VSUBCATPP_PP)about (PSUBCATNP) WHETHER/IFPSUBCATFIN)

101. PP-WHAT-3 7
(SUBCATPP_WHSPFORM)

they_PPHS2asked_VVDabout_Il everybody NP1 what DDQhey PPHS2had_VHDdone_VVN
(VSUBCATPP_WHSabout (PSUBCATNP)

102. PP-WH-TO_INF 3
(SUBCATPP_WHVP)

they_PPHS2deduced_VVDirom_Il kim_NP1whether CSWo_TO go_VVO0
(VSUBCATPP_PP)from (PSUBCAMNP) whether (PSUBCATPINF)

103. PP-WHAT-TO-INF 3
(SUBCATPP_WHVP)

they_PPHS2deduced_VVDfrom_Il kim_NPlwhat_DDQo_TO do_VVO
(VSUBCATPP_WHVPyom (PSUBCANP) WHAT/WHO/WHICH

104. S/ 296

(SUBCATSFIN, SUBTYPHEIONE) XTAG:Tnx0Vsl
they_PPHS2thought_VVD that CST he_PPHSlwas_VBZalways_RA late_JJ

(VSUBCATSCOMP¥_VVD/Z/G

105. S-SUBJ-S-OBJ/ 9

(SUBCATSFIN, SUBTYPEXTRAPAGRS[FIN -])
for_IF him_PPHOo0_TO report_VVO the_AT theft NN1 indicates_VVD that CST
he_PPHSIwas_VBzZn't_ XX guilty_JJ

* VW0 (VSUBCATSCOMP) * VVD/Z/G

106. S-SUBJUNCT 27
(SUBCATSBSE)

She_PPHSHemanded_VVIhat CST he_PPHSleave VV0 immediately RA
(VSUBCATSCOMP¥_VVO

107. SEEM-5 9

(SUBCATSFIN, SUBTYPEXTRAPAGRN2[NFORNI])
it PPH1 seems_VVzhat CST they_PPHS2left_VVD

IT (VSUBCATSCOMPY_VVD/Z/G

108. SEEM-TO-NP-$ 1
(SUBCATPP_SFIN, SUBTYPEXTRAP,PFORMAGRN2[NFORNI])

it PPH1 seems_VVZo_ Il her_PPHO1that_CST they PPHS2were_ VBDRwrong_JJ
IT (VSUBCAPP_SCOMRY (PSUBCANP) * VVD/ZIG
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109. THAT-S/ 296 (with 104)

(SUBCATSFIN, SUBTYPHERIONE) XTAG:Tnx0Vsl
he_PPHSIcomplained_VVDthat CST they_PPHS2were_VBDRoming_VVG

(VSUBCATSCOMP¥_VVD/Z/G

110. TO-INF-AC /| ??

ANLTgap (SUBCATVC_INF)
He_PPHShelped_VVDto_TO save_VVOthe AT child_NN1

(VSUBCANPINF)

111. TO-INF-RS/ 27
(SUBCATSC_INF, SUBTYPRAIS)

he PPHSIseemed VVDo TO come_VVO
(VSUBCATNPINF) be

112. TO-INF-SC/ 179
(SUBCATSC_INF, SUBTYPEQUI)
|_PPHS1wanted_VVDto_TO come_VVO

(VSUBCATPINF)

113.WH-S/ 133

(SUBCATWHS)/ XTAG:Tnx0Vsl
he_PPHSlasked_VVDwhether_ CSWhe_PPHSIshould_VM come_VVO0

(VSUBCATPP) WHETHER/IRFPSUBCATSFIN)

114. WHAT-S 133
(SUBCATWHS)/ XTAG:Tnx0Vsl

he PPHSIlasked VVDwhat DDGhe PPHSIshould VM do VVO
(VSUBCATSCOMPE(WH+)

115. WH-TO-INF/ 78

(SUBCATWHVPY XTAG:Tnx0Vsl
he_PPHSlasked_VVDwhether_ CSWo_TO clean_VVO0 the_AT house_NN1

(VSUBCATPP) whether (PSUBCATPINF)

116. WHAT-TO-INF 78

(SUBCATWHVPY XTAG:Tnx0Vsl
he_PPHSlasked_VVDwhat_DDQo_TO do_VV0

(VSUBCATNP) WHAT/WHO/WHICH

117. XTAG:Tnx0VpInx1nx2/ 45
(SUBCATNP_NP,PRT)

|_PPHS1opened_VVDhim_PPHOLp_RPa_AT new_JJ bank_NN2laccount_NN1
(VSUBCAMNP_NP,PRT+) up

118. XTAG:Light-verbs (various classes) / ??

ANLTgaps (not a genuine class as subclasses of 49/50)
he_PPHSImade_VVIRomments_NN2n_Il the_ AT paper_NN1

(VSUBCATNP_PP)(make comments) on (PSUBCATNP)

119. (SUBCATPP/LOC, PFORMPRT, SUBTYPERIONE) 881 (LOC 45)
he_PPHSreaks_VVZ away RPfrom_Il the_AT abbey NN1
(VSUBCAPP, PRT+) away from (PSUBCATNP)

120. (SUBCATNP_PP,PFORMPRT, SUBTYPIBEMOVT] 25
he_PPHS1brought_VVD a_AT book_NN1back_RPfor_IF me_PPHO1
(VSUBCANP_PP,PRT+) back for (PSUBCANP)
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121. (SUBCATPP_PP,PFORMPRT)/ 3
he_PPHSIcame_VVDRiown_RPon_II him_PPHOZor_IF his AT bad_JJ behaviour NN1
(VSUBCATPP_PP,PRT+) downon (PSUBCANP) for (PSUBCANP)

122. (SUBCATNP_PP_PPPFORM] 16
he_PPHSturned_VVD it PPHOL1 from_Il a_AT disaster_NN1 into_Il a_AT victory_NN1
(VSUBCATNP_PP_PPJfrom (PSUBCANP) into (PSUBCATNP)

123. (SUBCATMP)/ 29
it PPHS1 cost_VVD ten_MC pounds_NNU2
(VSUBCATNP) _NNU/(NTYPBMEAS)

124. (SUBCATNP_MPY 6
it PPHS1 cost_VVD him_PPHOen_MC pounds_NNU2
(VSUBCATNP_NP)_NNU/(NTYPBMEAS)

125. (SUBCATNP_MP,PRT)/ 1
it PPHS1 set_VVD him_PPHODack_RPten_MC pounds_NNU2
(VSUBCAMNP_NP,PRT+) back _NNU/(NTYPBJEAS)

126. (SUBCATADL, PRT)/ 13
he_PPHSIcame_VVDff RP badly RP
(VSUBCATNONE,PRT+) off (..PRT +) badly

127. (SUBCATADV_PP,PFORM] 2
things_NN2 augur_VVO well_RP for_IF him_PPHOL1
(VSUBCATPP, PRT+) well for (PSUBCANP)

128. (SUBCATSFIN, AGRN2[NFORNT], PRT)/ 3
it PPHS1 turns_VVZ out_RP that_CST he_PPHSIdid_VVD it_PPHO1
IT (VSUBCABCOMPPRT+) out * VVD/ZIG

129. (SUBCATSFIN, AGRS[FIN +], SUBTYPEXTRAPY 9
that CST he_PPHSIcame_VVDmatters VVZ
* VVD/G/Z (VSUBCATNONE)

130. (SUBCATNP_SFIN, SUBTYPBRIONE,PRT)/ 4
he_PPHSIhad_VVDher_PPHOlon_RPthat CST he_PPHOAttended_VVD
(VSUBCANP_SCOMMRRT+) on *_VVD/Z/G

131. (SUBCATPP_SFIN, SUBTYPEIONE,PRT)/ 4
she_PPHSIgets_VVZ through_RP to_Il him_PPHOZhat_CST he_PPHSIcame_VVD
(VSUBCATPP_SCOMMRRT+) through to (PSUBCANP) *_VVD/Z/IG

132. (SUBCATNP_NP_SFINY 4
he_PPHSIet VVD her_PPHOlten_MC pounds_NNU2hat_ CST he_PPHSIcame_VVD
(VSUBCATNP_NP_SCOMPYNU*/(NTYPEMEAS)*_VVD/ZIG

133. (SUBCATNP_SBSE) 1
he_PPHSIpetitioned_VVD them_PPHO2hat CST he_PPHSlbe VBOfreed_VVN
(VSUBCATNP_SCOMP) * VB0

134. (SUBCATIT_WHS,SUBTYPH-, AGRN2[NFORNT]) / 1
|_PPHS1would_VMappreciate_VV0 it PPHO1 if CF he_PPHSIcame_VVD
(VSUBCAMNP_PP)if (PSUBCATSFIN)

135. (SUBCATPP_WHSPFORMAGRN2[NFORNT]) / 1
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it PPHS1 dawned_VVDn Il him_PPHOMWhat_ DDGhe_PPHSIshould_VM do_VVO
IT (VSUBCAPP_WHSpPn (PSUBCATP)

136. (SUBCATSC_NP,PRT, SUBTYPRAIS/EQUI, PRD+) / 2
he PPHSXurned VVD out RP a_ AT fool NN1
(VSUBCATNP, PRT+) out

137. (SUBCATSC_AP,PRT, SUBTYPEQUI/RAIS) / 22 (RAIS 3)
he_PPHSIstarted_VVD out_RP poor_JJ

(VSUBCARP, PRT+) out
he_PPHSIstarted_VVD out_Il poor_JJ

(VSUBCATPP_AP)out (PSUBCATNONE)

138. (SUBCATSC_INF, PRT, SUBTYPRAIS) / 6
he_PPHSlurned_VVD out_RP to_TO be_VBOa_AT crook_NN1
(VSUBCATNPINF, PRT+) out BE
he PPHSXurned VVD out Il to TO be VBOa_ AT crook NN1
(VSUBCATPP_VPINF)out (PSUBCATNONE)BE

139. (SUBCATSC_INF, PRT, SUBTYPEQUI) / 12
he_PPHSIset_VVD out_RP to_TO win_VV0
(VSUBCANVPINF, PRT+) out
he PPHSIset VVDout Il to TO win_VVO0
(VSUBCATPP_VPINF)out (PSUBCATNONE)

140. (SUBCATSC_ING, PREP,PRT, SUBTYPEQUI) / 32
he_PPHSIgot_VVD around_RPto_Il leaving_VVG
(VSUBCATPP, PRT+) around to (PSUBCATNPING)

141. (SUBCATSC_PASSSUBTYPRAIS) / 4
he_PPHSI1got_VVD given_VVN a_AT book_NN1
(VSUBCATVPPRT)

142. (SUBCATSC_BSE,SUBTYPEQUI) / 3
he PPHSIdared VVDdance VVO
(VSUBCANVPBSE)

143. (SUBCATSC_NP_APSUBTYPRAIS, PREPas) / 3
he_PPHSIstrikes_VVZ me_PPHOA4s_CSAfoolish_JJ
(VSUBCATNP_PP)AS (PSUBCATAP)

144. (SUBCATOC_NP,SUBTYPIRAIS) / 35
he_PPHSIconsiders_VVZ Fido_NP1 a_AT fool_NN1
(VSUBCATNP_NP)

145. (SUBCATOC_AP,SUBTYPRAIS, PRT)/ 3
he_PPHSImakes_VVDhim_PPHODut RP crazy JJ
(VSUBCATNP_AP,PRT+) out

146. (SUBCATOC_AP,SUBTYPIEQUI, PRT)/ 4
he_PPHSIsands_VVZit PPHO1 down_RPsmooth_JJ
(VSUBCATNP_AP,PRT+) down

147. (SUBCATOC_AP,SUBTYPEQUI, PREPas) / 5
he_PPHSIcondemned_VVDim_PPHOZXs_CSAstupid_JJ
(VSUBCANP_PP)AS (PSUBCATAP)

148. (SUBCATOC_AP,SUBTYPEQUI, PREPas, PRT)/ 6
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he_PPHSIput_VVD him_PPHOMXown_RPas_CSAstupid_JJ
(VSUBCANP_PP,PRT+) down AS (PSUBCATAP)

149. (SUBCATOC_INF, SUBTYPIRAIS, PRT)/ 3
he_PPHSImade_VVDim_PPHODut RP to_TO be_VVOcrazy_JJ
(VSUBCATSINF, PRT+) out BE

150. (SUBCATOC_INF, SUBTYPEQUI, PRT)/ 19
he_PPHSIspurred_VVD him_PPHODn_RPto_TO try_VV0
(VSUBCATBINF, PRT+) on

151. (SUBCATOC_PP_INF,SUBTYPPVERB_OEPFORMPRT)/ 6
he_PPHSXkept_VVDon_RPat_Il him_PPHO%o_TO join_VV0
(VSUBCATPP_VPINF,PRT+) on at (PSUBCANP)

152. (SUBCATOC_PP_INGSUBTYPPVERB_OERPFORMPRT)/ 4
he_PPHSalked_VVD him_PPHOZXround_RPinto_Il  leaving_VVG
(VSUBCAMNP_PP,PRT+) around into (PSUBCATWPING)

153. (SUBCATOC_PP_BSEPFORMSUBTYPIPVERB_OE) 1
he_PPHSlooked_VVDat_Il him_PPHOleave VVO
(VSUBCATPP_SCOMR)t (PSUBCATNONE)*_VV0

154. (SUBCATVPINF, SUBTYPEXTRAP,AGRVPI[FIN-]) / 4
to_TO see_VV0them_PPHOurts_VVZ
_VV0 (VSUBCATNONE)

155. (SUBCATNP_ADL)/ 39
he PPHSIstood VVDit PPHO1 alone RL
(VSUBCAMNP, PRT+) * * RL/A/P

156. *NP-HOW-3 ?
he_PPHSlasked_VVDhim_PPHOhow RG®e_PPHSIcame_VVD
(VSUBCANP_PP)HOW/WHY/WHERE/WHRENBCATSFIN)

157. *NP-FOR-TO-INF/ ?
he_PPHSIgave_VVDmoney_NNZor_IF him_PPHOIo0_TO go_VV0
(VSUBCATNP_PPFOR(PSUBCATSINF)

158. *IT-PASS-SFIN / ?
it PPHS1 is VBZ believed VVN that CST he PPHSIcame_ VVD
IT PASS(VSUBCATSCOMP)

159. *AS-IF-SFIN / ?
he_PPHSIseems_VVZas_CSif CS he_PPHSls_VBZ clever_JJ
(VSUBCATPP) AS (PSUBCAPP) IF (PSUBCATSFIN)

160. (SUBCATADL)
it PPHS1 carves_VVZ easily_RP
(VSUBCATNONE)*_RP/A

161. (SUBCATSC_NPSUBTYPEQUI)
he_PPHSZXelt VVD a_ AT fool _NN1
(VSUBCATNP)

162. *AS-VPPRT
he_PPHSlaccepted_VVDhim_PPHOZXs_IlI/CSA associated_VVN
(VSUBCANP_PP)AS (PSUBCAWVPPRT)
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163. *AS-VPING
he_PPHSlaccepted_VVD him_PPHOZXs_II/CSA being_VBGnormal_JJ
(VSUBCANP_PP)AS (PSUBCATPING)



Appendix B

Test Verbs from Chapter 6

TablesB.1 and B.2 list the 334 unclassi ed test verbs usedfor experimerts reported
in section6.4.

accept comfort endure infer prevail stay
accommodate | compensate | enforce inform prevent steer
account complement | engage nsist price stop
accuse complete ensure msure print strengthen
achieve compose equate intend produce stretch
acknowledge | compress establish | introduce | promise strive
act concern exemplify | invade propose study
adjust conduct exercise involve prove subject
admit confess exert issue quit succeed
advise confine exist jar raise sue
affect conform expand Justify react suffer
afflict confront expect know read suggest
afford consider exrpire lack recognize suit

aid consist expose launch recommend | support
allow constitute express learn reconvene swear
amend contain explain leer reduce take
announce contend extend let refer talk
answer contest face lighten register tangle
appear continue fail like regroup taste
apply control fascinate | limit remain teach
approach converse fear list repair tell

Table B.1: Unclassi ed test verbs |
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approve
arise
ask
aspire
assail
astonish
attempt
attend
back
become
begin
believe
bend

bet

boom
border
bother
break
brood
buzld
bunch
call
campaign
capture
care
cause
celebrate
centralize
challenge
change
characterize
choose
cite
claim
clothe

cool
cope
counsel
crack
create
deal
deceive
decide
declare
decry
depend
derive
design
desire
despair
detail
deteriorate
determine
develop
devise
dictate
die
disarm
discover
discuss
disdain
disorder
display
dress
drift
dwindle
elaborate
elect
emerge
end

feed

feel
figure
find

fit

fix

Sflow
force
forsake
freeze
glance
greet
grow
guarantee
gquard
hasl
handle
happen
hate
hear
help
hold
honour
hope
hurt
idolize
ignore
illuminate
tllustrate
mpair
imply
maugurate
include
mcrease
induce

live

look

lose

love
make
match
measure
meditate
meet
melt
metamorphose
mirror
miss
mock
motivate
note
nourish
object
observe
occupy
open
oppose
participate
peep
penalize
permit
persist
pipe
plan
ponder
postulate
predict
prepare
preserve
preside

repeat
replace
reply
report
represent
require
rescent
resemble
Testgn
resist
resolve
respond
restrain
retire
revere
review
rise

rule

say
schedule
scream
see
seem
serve
share
shatter
shout
show
sin

sniff
solve
speak
speculate
start
state

tempt
tend

term
terminate
test
thank
thicken
think
threaten
time

toy
transcend
transpire
treat
trigger
tripple
trust

try
understand
understate
urge

use

view
violate
voice

vote

wait

want
watch
wonder
work
worship
write

Table B.2: Unclassi ed test verbs||




Appendix C

Diathesis Alternation - SCF
Mapping

In Chapter 7 (section 7.2.3), we brie y discussedMcCarthy's work on diathesis alter-
nation acquisition (McCarthy and Korhonen, 1998;McCarthy, 2001). We cortributed
to this work by producing a mapping between scf s involved in Levin alternations
(Levin, 1993) and those recognizedby Briscoe and Carroll's system (App endix A).
This source was employed by McCarthy for selecting candidate scf s and verbs for
alternations.

In constructing this mapping, ead Levin alternation was rst assigneda shallov
syntactic description, based on example sertencesgiven in Levin (1993). All scfs
matching this syntactic description were then extracted from the list of 163 scf s (see
Appendix A). The outcome was chedked manually for nal scf assignmets. The
resulting set of scf s provides in most casesmore detailed syntactic description of
an alternation than that provided by Levin. Levin's example sertencesoften exem-
plify only the most prototypical frames involved in an alternation. In reality, many
alternations can occur with a wider range of frames.

Where possible, we supplemernied the syntactic description of an alternation with
constraints or preferenceson argumert slots, possible prepositions and participat-
ing verbs. We basedthese constraints/preferenceson information provided in Levin
(1993). Preferenceson argumert slots were de ned as simple descriptive labels and
WordNet conceptual classes.The latter wereidentied manually from the noun hier-
archy of the taxonomy'. Allowable prepositions were simply given asa list of lemmas.
Participating verbswerede ned asLevin verb classesnvolvedin an alternation. The
resulting constraints/preferencesare often vague, either becausethe description given
by Levin is inadequate or simply because,n somecases,no strong constraints exist,
due to the semi-productive and elusive nature of alternations.

Figure C.1 displays a sampleentry from the alternation-scf mapping for the instru-
ment subject alternation. It shows rstly a pair of example sertencesfrom Levin
(1993) where the alternation occurs and below it, a simple syntactic description for
the alternation. This is followed by description of preferences/constrairts. These

'We used for this work WordNet version 1.5.
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APPENDIX C. DIATHESIS ALTERNATION - SCF MAPPING

3.3 Instrument Subject Alternation
Example David broke the window with the hammer
& The hammer broke the window
Syntax NP1 V NP2 P NP3 & NP3 V NP2
Constraints | NP1: (in)animate entity, WN class 100002403
NP2: breakable physical object, WN class 100009469
NP3: intermediary instrument, WN class 102009476
P: with
V: Break verbs
Alternating | NP2, NP3
slot(s)
Alternating | 49 & 24, 77 < 76
SCF's
Further Only Break verbs that take intermediary instruments may
description | participate. These are change of state verbs which refer to actions
that bring about a change in the ‘material integrity’ of some entity.
Their meaning provides no information on how the change of state
came about.
Example verbs: break, chip, crash, crush, fracture, rip

Figure C.1. A sampleentry for instrument subject alternation

Alternation Category | Example Alternation

Extraposition To read pleases them < It pleases them to read
SCF 8 < SCF 11
Equi I advised Mary to go < I advised Mary
SCF 53 & SCF 24
Raising Julie strikes me as foolish < Julie strikes me as a fool

SCF 143 < SCF 29

Category switch

He failed in attempting to climb < He failed in the climb
SCF 63 < SCF 87

PP deletion

SCF 90 < scr 17

P deletion

I prefer for her to do it < I prefer her to do it
SCF 15 < SCF 53

Table C.1: Examples of new alternations

Phil explained to him how to do it < Phil explained how to do it
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indicate that the alternation typically appliesto Levin \ Break" verbs permitting the
preposition with and taking three noun phrasescapableof functioning as (in)animate
ertity, breakable physical object and intermediary instrument, respectively. After
this, the slots and scf s involved in the alternation are specied. The latter are
given as scf numbers recognizedby Briscoe and Carroll's system. Frames 49 and
24 alternate in the example given by Levin. Frames77 and 76 alternate in another,
phrasal/prepositional verb variant, not exempli ed in Levin (1993), e.g. David broke
the door down with the axze , The axe broke the door down. Finally, somefurther
details of the alternation are given.

Levin's classi cation covers mostly alternations involving np and pp complemerns.
Those involving cortrol or sertential complemerts are largely ignored. Although in-
dividual studies are available on a few alternations or verb classestaking sertential
complemeris (e.g. Alexander and Kunz, 1965; Rudanko, 1989; Jackendo, 1990), no
extensive Levin style referencework exists which would cover them. After completing
the Levin-scf part of the mapping, we screenedthrough the list of 163 scf s, consid-
ering possible further alternations between pairs of scf s, especially those involving
control and sertential complemens. We used criteria similar to Levin's for recogni-
tion of alternations: the scf s alternating should presene the sensein question, or
modify it systematically.

Seweral additional alternations were discovered and grouped into di erent categories:
alternations involving exraposition, equi, raising, category switch, pp deletion and p
deletion. Table C.1 showvs an examplealternation from ead category Further work is
required on thesealternations beforewe can group them into semariically motivated
verb classes.
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