Technical Report A

Number 53

Computer Laboratory

A new type-checker for
a functional language

Jon Fairbairn

July 1984

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1984 Jon Fairbairn

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

New ?yép@u@h@@keﬁé for a Functional Language

Jon Fairbairn
Cambridge University Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG,
United Kingdom.

Abstract

A polymorphic type checker for the functional programming language Ponder [Fair-
bairn 82] is described. The initial sections give an overview of the syntax of Ponder,
and some of the motivation behind the design of the type system. This is followed
by a definition of the relation of ‘generality’ between these types, and of the notion
of type-validity of Ponder programmes. An algorithm to determine whether a Ponder
programme is type-valid is then presented. The final sections give examples of useful
types which may be constructed within the type system, and describe some of the areas
in which it is thought to be inadequate.

1. Introduction

This is a description of the type system used in the pure functional programming
Janguage Ponder. Ponder was designed as a vehicle for experiments in functional program-
ming style, and to demonstrate that neither purity nor simplicity need be compromised
for the sake of utility. To this end it contains no built-in data types or type constructors,
no built-in flow control constructs and no assignable variables. Despite this, implementa-
tion of Ponder has reached a stage where it is efficient enough for one to consider writing
large programmes in it. For example, the performance on Motorola 68000s for first order
functions is comparable to that of compiled Lisp.

My intention is not to present any new type-theoretical results, but to describe a
practical type-system powerful enough to build many useful types. I describe the syntax
of types and an algorithm for a type-checker, and give examples of some constructed types
which have been found to be useful. The paper contains neither formal semantics of the
type system nor proof of the type-checker, as my main interest has been to develop a
practical system. I hope that someone may be inspired to provide both of these.

For the purposes of this paper, I assume that the reason for using a type system is to
prevent applications of functions to arguments outside their intended domain. To spare
the reader the details of Ponder, it is sufficient to know that because there are no built-in
types, the underlying objects in Ponder are just untyped A-functions. It is the intentions of
the programmer which determine the domain of a function, since the A-calculus allows the
application of any pair of terms. For example, 2 A-function intended to perform addition
of two integers represented as by Church [Church 41] would simply do something else if
given a A-function which did not fall within the limits of the representation. The emphasis
of this type system is therefore upon intention. If a programmer defines a function which
is intended to work on a particular type of datum, it is stated in the programme, and
the type checker ensures that the function is never applied to anything of an incompatible
type.

On the other hand, one wants to permit the definition of functions which work for
any type of argument; so the strict typing encountered in ‘conventional’ programming
languages is considered too restrictive. This implies that we need a polymorphic system,
such as Milner’s for ML [Milner 78]. However, his is too weak to allow the definition of
some useful type constructors (see section 5 below for examples), and although one can
add other ‘built-in’ types, this would be contrary to the spirit of Ponder.

Ponder types are similar to the types of MacQueen and Sethi as in [MacQueen 82,
84] but include fewer built-in type constructors, and are restricted in order to make me-
chanical type-checking possible.

2. Syntax

This section describes the kinds of Ponder expression which are relevant to the dis-
cussion of type-checking.

2.1. Expressions

Name Variable

Expression; Expression, Application
Expression = { Type Name — Expression Abstraction

Type : Expression Cast

VV.Expression Quantified expression

2.1.1. Grouping

Parentheses are used merely to achieve a particular binding, but square brackets are
used around lists of arguments to type generators.

2.1.2. Function Application
The syntax of function application is the same in Ponder as in the A-calculus:
f = means ‘apply f to z’. Application associates left, so f z y means (f z) y

2.1.8. Abstraction

Ponder uses a compact method of specifying the name and type of the bound variable
of a function:

Type Name — Body

is a function with bound variable Name which is required to have type Type. The
equivalent A-function would be AName . Body.

For example
Int i — plusi 1

is a function taking an argument of type Int called ¢, and returning the value of plus
applied to ¢ applied to 1 (i.e. Ai.plus ¢ 1 in the A-calculus).

2.1.4. Casts
A cast is an expression which is asserted by the programmer to have a particular type:

Type : Expression
means that Expression must have type Type.

2.1.5. Quantified Expressions

An expression may be preceded by a type quantifier:
VV.Expression

This declares the type variable V in the expression and states that the expression must
work for any V. -

2

2.2. Constructing Types

Ponder types are constructed from function types, quantified types and type genera-

tors:
: |4 Type variables
_) Type — Type Functions
ype= YV.Type Quantified types

G|Type,...,Type] Generators

‘Generators’ are user defined parameterised type constructors. A further facility is the
capsule, which provides a very simple kind of encapsulation of types.

Note that there are no built-in types at all. This is unimportant since parameterless
capsules which behave like built-in types (such as Integer) can be constructed. Capsules
with parameters perform a similar function to that of built-in type constructors.

2.2.1. Naming

For clarity I will give types names which are either a single upper-case letter (e.g. 1),
or are words beginning with an upper-case letter followed by letters, hyphens and possibly
with a subscript (like T', Ty, Long-name, ...).

2.2.2. Function Types

The most primitive kind of type is that of the function from one type to another, which
is written using ‘—’. Thus if Parameter and Result are both types, then Parameter —
Result is the type of a function taking objects of type Parameter to objects of type Result.
Note that — associates to the right, so that A — B — C means the same as 4 — (B —
C).

2.2.3. Quantifiers

The universal quantifier, V, (pronounced “for all’), introduces a name within the rest
of a type or expression. Hence VI.I — I is a type, which means ‘For all types I, take an
object of type I, to another object of type I.” This is the type of the identity function
Az.z.

A note about binding: the scope of a variable introduced by a quantifier extends as far
to the right as possible, but is limited by parentheses, so VI'.T — Bool means the same
as VT.(T — Bool), and takes any argument, whereas (VT.T) — Bool demands that its
argument has type VI.T (and hence could not be expressed in Milner’s type system). For
the sake of conveénience, VI.VU ... may be written VT, U ...

2.2.4. Type Generators

The final kind of type constructor is the type generator, which is a user defined
operator which generates a type, for example:

TYPE Identity = VI.I — I

This declares (= means ‘is defined as’) a generator Identity which means the same as
VI.I— I.

Generators may also have parameters:
TYPE Arrow [Left, Right] = Left — Right

so that Arrow [Bool, Bool] means the same as Bool — Bool, and Arrow [Int, Real] is the
same as Int — Real, and so on. For example, we might define pair types as

TYPE Pasir L, R] 2 VRes.(L — R — Res) — Res

Note that this is an example of a type which is not expressible in ML. (This type is
described in more detail in the section ‘Representing Objects’ below.)
Finally Ponder allows types to be recursive (but in a restricted way); so we can have

declarations like
RECTYPE Infinite-list [T] £ Pasr [T, Infinite-list [T]

which means that Infinite-list [Int] means the same as Pair [Int, Poir [Int, Pasr [Int, .. .]]].

Recursive generators are restricted to ensure that all types generated are finite cycles
rather than infinite trees. One way of looking at this restriction is to consider it in terms
of a p-operator for type generators. p binds a type variable (not a generator) and finds a
fixed point of a type generator, so that if we were to allow type definitions like

TYPE G [X] £ pT.T —- X
then G would be the same as if it were defined as in
RECTYPE G [X]2G [X] - X.

Recursive types in Ponder are just those types constructible with the p-operator. Hence

in a definition
RECTYPE G [Tl,...,Tn] 2 Body

all applications of G within Body must be to exactly the parameters [Ty,...,). For
example: '

RECTYPE Invalid [T] 2 Invalid [(T — T)]

is invalid. This restriction is necessary to make mechanical compile-time type checking
possible, since without it type generators would be equivalent to the A-calculus, and hence
type-checking would be undecidable, since comparison of types would have the same com-
plexity as computation of the equality of functions.

2.2.5. Capsules

Normally, two differently named definitions of the same type are equivalent; i.e. are
indistinguishable in use (the exact rules for equivalence are given below). For example, if

TYPE A 2VT,.Ty

and
TYPE B 2NT\ NT,. T,

A and B may be used interchangeably since they define equivalent types. This is not
always what is wanted, so capsules are provided as a means of destroying the referential
transparency of a particular name. Capsules are the same as generators, except that the
structure of the declared. type is hidden for the purposes of fype-checking. This means

that, for example :
CAPSULE-TYPE P = Int

is considered to be a different type from Int. Thus capsules obey ‘name equivalence’ (as do
abstract types in ML), whereas types in general obey the rules of equivalence given below,
in a similar way to the structural equivalence of types in Algol 68 {[van Wijngaarden 75].

3. Type Checking

This section introduces the rules to which a Ponder programme must adhere.

Although it is not mentioned above, Ponder allows the definition of overloaded oper-
ators (operators for which the meaning is dependent upon the types of the arguments).
This means that it is impossible to infer the type of an expression unless the types of all
the variables are known. However, the syntax ensures that all variables are declared with
a particular type.

On the other hand, it would be tedious to have to give the result types of every
function application, because in most cases it is possible to infer the result type from the
types of the function and argument. Hence the Ponder type-checker must be capable of
determining whether an expression is type correct, given the types of all the variables
present.

In order to describe this, I need to give a definition of the relationship of generality
between types. The relation T > 7% is intended to mean that any object of type T7 may
validly be used in any situation where an object of type T5 may validly be used. Thus, if
Identity is as defined above, Identsty > (Int — Int), since the any object of type Identity
(they are all equivalent to Az.z) may safely be used where an object of type Int — Int
may be used. A

As programmes contain sub-expressions with type variables defined at an outer level,
it is necessary to consider the possibility of comparison of types containing free variables.
For example, within the body of a function of type VV.V — ..., the parameter of the
function will be of type V. Free type variables like this can be treated as constant types,
because there is no information available about the type that they represent.

Capsules with no arguments are treated in exactly the same way as type variables
bound at an outer level. Capsules with arguments require slightly more complex treat-
ment, since we want to ensure that applications of the same capsule to different ar-
guments compare in a friendly way. If Arrow were a capsule, we would still want
Arrow [Int, Identity] > Arrow [Int,(Int — Int)]. This is achieved by observing that
to compare capsules, one first discovers whether they are the same capsule (if not, then

5

they are incomparable), and then compares the types resulting from the application of the
capsule to its two sets of arguments.

3.1. The Relation of generality between types

Rules R1 to R8 below define the relation >. V,, are type variables, T,, are arbitrary
types (possibly with free variables), G, are generators, I' stands for a set of assumptions
each of which is of the form Ty > T3 or G[...] £ T and > is as above.

Reflexivity

'-T>T R1
This means that from any set of assumptions I' and type T' we can deduce that T' > T
l.e. any type is at least as general as itself. ’
Transitivity
LT 2T, Tob T 215
NLWulL, F Ty > T,

In rules such as this, assumptions are written above the line and conclusions below it. This
rule may be read as ‘If we can prove from I'y that T} > T, and from I’y that 75 > T3,
then we can prove from the union of I';y and 'y that Ty > T3.

R2

Instantiation

T+ VV.G[V] > G[T] R3

A function which works for all types is more general than one which only works for one
type.
Generalisation
I'-T>G|V], V not freein T
I'kT >VV.GV]

If a type T is more general than a type parameterised on V, regardless of the value of V',
then T is also more general than the generalised version of that function.

Function

R4

I3 2Ty, TobT 2Ty

R5
MUl FTy - T >T: - Ty
A function which requires less of its argument is more general.
Result
V not freein T RG

TFVW.T = GV] =T — VV.G[V]

A quantifier which does not appear in the parameter specifier of a function can be moved
to the result.

Recursion
T >To b Gy >T, TokFGTa] 2T 7
MUl FT5 >y B
this rule allows the comparison of recursive fypes.
Fxpansion
'+Gh,... T E2T
TFT > C[Ts, ... T] f28a
FG|Ty,... T, 2T
I‘ [1y n] Rgb

TFG[T,.. . T > T

(where T, ...T, may involve T'); this gives the meaning of definition.

3.2. Properties

The type checker makes tacit use of some straightforward consequences of these rules
including the following:
g VVl,Vz.T = VVZ, VI.T

(where Ty = T, means Ty > Ty, T > T4, T is equivalent to T3), i.e. the order in which
quantifiers appear in a type is irrelevant to its meaning.

Wi, Vo, V.T = G[V] =YV, ...V,.T — VV.G[V]

Hence types may be equivalent even when they have different textual representations.

'F(VWV)>T forall T

3.3. Rules for Type-Validity of Expressions

This section presents the rules to which valid Ponder programmes must conform. In
general a programme will consist of a ‘casted’ expression, the type of which is determined
by the environment in which the programme is intended to run. It is also meaningful to say
that a programme without a cast at the outermost level must be type-valid—this means
that the programme must have at least one type.

A programme p is type-valid if a statement of the form T' © p for some 7' may be
proven within the following rules.

The notation T . e means that e has the type T, and T' is a set of assumptions as
before but may also include assumptions of the form T < e.

Application
Fll‘(Tl —-’Tg):el, I‘zl‘Tl :62

P1UP2|_T2:61 ()

Function
I,Ty cv-T5 ce, vnot freein T
THET, —» T3¢ (Tiv—e)
Cast
T'HFT; ce
LHFTy 2 (T):¢)
Generalisation
I'+G[T] < e T not freein I'
I'FVV.G[V]:VV.e
Restriction

Pll-TIZe, Fgf‘leTz
PLUPQ*‘TQ:G

4. The Type Checking Algorithms

Vi1

V2

V3

V4

V5

Having established the meaning of type-validity, I now describe an algorithin for type-
checking Ponder programmes. The algorithm is presented as a function type-check,
followed by definitions of subsidiary functions. For the sake of clarity, the mechanism

which deals with recursion is described separately.

In what follows, V' are type variables, T are types, and e are expressions.

4.1. type-check

The type checker (type-check) takes as argument a triple (A, 7,e), where A is a set of

assumptions about type variables, each element of which is one of

(a) Fixed V,
(b)) V<1,
() T <V,

e is a Ponder expression and 7 is a set of typings of the form T : e.

8

The result of type-check (A,7,¢€) is a pair (A’, T'), where T is a type and A’ is either
a set of type assumptions (as defined above), or ‘Fail’. If A’ is a set of assumptions, then
T is the type of ¢, when interpreted within those assumptions, otherwise we conclude that
e is invalid. In other words, type-check (A, 7,¢) = (A’,T) implies that AU7T T Ce.

The type checker requires two subsidiary functions walid, and valid checks a sef of
constraints and either returns the same set of constraints or fails, and T) [<| T3 is the set
of assumptions needed to show that T < T5.

, The definition of type-check is given as a case analysis of possible expressions, together
with a short description of the idea underlying each particular case.

Variables
The type of a variable is given by its environment:

type-check (A,7,v) = (A, T), where (T :v) €7;

Application
To check an application, check the function and argument, and then calculate the

result type:

type-check (A, 7,e; eg) = (valid (A, VAL, UT) [2](T2 — V;)), V4),
where (A, T1) = type-check (A, 1,e1)
and (Ag,T5) = type-check (A, 1, e2)
and V, is not freein A,, A,, Ty or T
Function

Type-check the body of the function given that the parameter has the stated type;
the result type is a function from the parameter type to the type of the body:

type-check (A,7,Tyv — ¢) = (A", T, — T.),
" where (A, T.) = type-check (A, 7U {T, : v},e)

Casts
The type of a cast expression is the type given in the cast, but we must check to see

that the type of the expression > that type:
 type-check (A,7,T : ¢) = (Az,T), where Ay = valid (A, U T, [3]T)
where (A, Ty) = type-check (A, 7,€)

Quantified Expressions
The body of a quantified expression is checked given that the type variable is fixed:

type-check (A,7,VV.e) = (A’ — {Fixed V'},VV.T,),
where (A', T.) = type-check (A U {Fixed V},7,¢)

4.1.1.

is an infix operation between two types. T [>|T: is either Fail or a set of assump-
tions A, such that A+ Ty > T5.

The following rewriting rules define [>] case by case (¢ => b,c¢ means reduce a to b,

otherwise try c):

V >|Y.T
V2T
YV.T, 2| T:
This corresponds to R3

T1 — T2 V
Tl - T2 VV.T:;

= {V > T, Fixed V}},
= {(V >T},
= T] T2,

= {T1 — Tg 2 V},
= (I = T3 2] T5) U {Fixed V},

the ‘Fixed’ represents the fact that V must be free in T3 as in R4

I —-DLRE->T

4.2. Checking Assumption Sets

I now give the rules for valid.

valid ({Fail} U A) =

valid ({V < T\,V Fixed}U A) =
valid ({V > T1,V Fixed}U A) =
valid ({V < T,V < T} UA) =
=

valid ({V < Ty,V > T,}UA)

4.2.1. [Y]

=2 (T [2]T) U (T2 3] Ts)

Co
C1
C2

C3
C4

C5

valid checks a set of assumptions for consistency,
returning Fail if the set contains contradictory assumptions, and a simplified set otherwise.
A is a set of assumptions as for type-check, and [V] is defined below.

Fail,

Fail,

Fail,

valid ({V < 1} U (Th Y T2) U A),
Uwﬁﬂgummh

51
52
53
54

{V > T2} Uvalid (A U{V < T}}) Otherwise 55

This operation performs a similar function to unification. T} T> is the sef of
restrictions on variables in Ty and 7% needed to find a 75 such that 75 < T} and T3 < T.

VT

VW.T, M T,

Ty, — Ty MV

T, — Ty [VV.Ts
T1 - Tg T3 - T4

10

= {VRIT, T2V},

= Tng,

= {I\ - LZV,V 5|1 — T2},
= T1—>T2T3,

= T2T4

4.2.2. Examples

If f and z have been declared with types (Int — Int) — Bool and (VI.7' — T)
respectively, then type-check ({},{(Int — Int) — Bool . f,(VI'"T' — T') ¢ =}, f) results
in checking f and z, which in turn resulis in

(valid ((Int — Int) — Bool 2] (VI'.T — T) — V,), V)

taking
(Int — Int) — Bool Z|(VI.T' — T) — V,
we get
((VI.T — T) 3] Int — Int) U (Bool [Z]|V;) By C5
(VI.T — T [Z] Int — Int) U {V, < Bool} By C1
(T — T) [Z] (Int — Int)) U {V, < Bool} By C2
(Int Z]T) U (T 2] Int) U {V; < Bool} By C5
{V: < Bool,T > Int, T < Int} By C1 (twice)

valid checks Int > Int (which is true), so the answer is
({V: < Bool, T > Int,T < Int},V;)
Which means that f z has type V.., provided that V. < Bool.

Suppose that the argument and parameter types had been the other way round. The
initial tests would follow the same course, but

(VT.T — T) — Bool [5] (Int — Int) — V,

would reduce like this:

(Int — Int [>]VT.T — T) U Bool [>] V, By C5
{(Int — Int [5|VT.T — T) U {V, < Bool} By C1
(Int — Int [S]T — T') U {V, < Bool, T Fixed} By C4
(T 2] Int) U (Int [Z] T) U {V; < Bool, T Fixed} By C5

{Ve < Bool,T Fixed, T < Int, T > Int}
but this time valid would produce Fail (By S2).

4.3. Recursive generators

In the absence of recursive type generators it is clear that rules C'1-5 will produce a
finite set of assumptions, since each rule involves a reduction in size of the comparands.

11

Recursive generators have the effect that types are no longer finite, and so recursion on
their structure may not terminate. The restrictions Ponder imposes on recursive generators
ensure that the expansions of recursive calls to type generators are equivalent to the original
application;

G[Ty,...,Ta) & ...ﬁ[TI,...,Tn]...

so the application of G marked with {} will be equivalent to the initial application of G.
Since the texts of recursive generators are finite, it is clear that any infinite series of
comparisons which could arrive must be a cycle. Hence it suffices to introduce a memory
into the algorithm, and not perform any comparison twice (the assumptions generated
must be the same as some which have occurred already).
Note that the same mechanism is useful for valid, in order to avoid checking the same

thing twice.

4.4. Optimisations

The description of the algorithm above is simplified. In fact, it is desirable that a type
error should be detected as soon as possible (the overloading mechanism of Ponder relies
on type-checks which fail).

A number of optimisations to the algorithm are therefore desirable. Instead of comput-
ing the sets of assumptions and then checking for consistency at the end it is useful to pass
the set as computed so far to succeeding comparisons, and use a special function to insert
new elements in the set. This means that inconsistencies of the form {V' < T',V Fixed} are
discovered immediately, and the comparison may stop. To speed the process of insertion,
it is useful to sort the assumptions by variable, and to duplicate cases where two variables
are compared, so that the relationship is keyed by both variables.

A further optimisation arises from the observation that it is not necessary to perform
an expansion when comparing type generators which are the same. A more efficient ap-
proach is to compare only the arguments of the two generators. However, it is necessary to
pre-calculate the directions which comparisons will take. For example if F[4, B] £ A — B,
then for F[A;, By > F|Ag2,B2] we need By > B,, but A, > A;. In a comparison
G[Tip,... Tor) 2] G|TiRr, .. T2g], each T;y, will be compared with the corresponding pa-
rameter T;p, either by T;p [>|Tig, or by T; g [2] T; or both. It is a simple matter to pass
over the definition of a generator and classify each parameter according to which way it
will be compared.

5. Representing Objects

Because there are no built-in functions or data-types, objects in Ponder are represented
as functional data-structures. In this section I give the definitions of a few types which

one would normally expect to be built in.
None of the examples is particularly complex; I merely wish to show that the type
system is strong enough for them, and add that it is possible for the compiler to detect

12

the general cases of which these are particular examples, and hence o implement them
efficiently.

5.1. Booleans

TYPE Bool =VT.T - T — T

In which true £ Az.\y.z and felse £ Az.Ay.y. Any (terminating) function of this type must
be equivalent to either true or false. The Ponder compiler takes advantage of this fact
when generating code, so that any application of an object of that type to two arguments
is generated as a test and jump, and so is as efficient as if Bool had been built in. In fact,
the compiler recognises the general case of types of the form VI.T' - T — ... — T, and
generates n-way branches as appropriate.

5.2. Pairs

TYPE Pair [A, B)2VT(A—-B—->T)-T
In which pairs are represented as functions which may be applied to Az.Ay.z or Az.Ay.y to

return their first or second component respectively.

5.3. Options

Options are things which may or may not be there, like the tail of a list or the
daughters of a node in a tree.

TYPE Option [T)2VR(T - R) >R — R

i.e. options are functions which either apply a function to the thing they hold, or return
another result. In other words, if opt is an optional integer, then it will either be Af.Az.f n
for some integer n, or it will be Af.Az.z (which is called n#l), so :

opt (Az.2 X) 0

will wither return twice if it is there, or zero if it isn’f.

5.4, Lists

The previous two definitions allow us to define lists:
RECTYPE List [T] £ Option [Pasr [T, List [T])]

Which means that a list will either be nél (as in Options above), or will accept a function
to which it will pass the head and tail of the list.

13

5.5. Binary Unions

Unions are like options, except that the thing is either one type of thing or another
type of thing:

TYPE Union [Ty, Tp] 2VR.(Ty —» R) — (T — B) — R

s0 if u is of type Union [A, B] then u f, f, applies either f, if the object in the union is
of type A, or fy if it is of type B.

Note that in Milner’s system abstract type definitions of Bool, Pasr, Option and Unson
would not be allowed.

6. Inadequacies

Ponder has been used to write a large number of small programmes (an interactive
calculator for example), and people using it feel confident enough to consider writing
medium sized programmes (a spreadsheet system is under construction). Unfortunately
a number of things are lacking and are difficult or impossible to provide without altering
the language.

6.1. Unions

The most important example of an inadequacy in the type system is that it is not
possible to define unions of the Algol 68 kind, in which the elements of the union are
not ordered, so that one need only know the type of each alternative in order to select the
appropriate cases, rather than having to remember the sequence of types within the union.

I can see no way of altering the type system to allow the definition of such unions,
other than just adding them in in an ad hoc way (which I am loath to do). However,
Ponder’s unions are virtually the same as those in the current ML. Users of ML seem to
have survived for quite some time with nothing more sophisticated, and the syntax-defining
features of Ponder make their use somewhat more palatable.

6.2. Coercions

Another problem is that capsules are unrelated to all other types. For example if Nat
is the same type as Int with restrictions to ensure that only positive integers are included,
the type system would not allow one to pass a Nat quantity to a function requiring an
Int, despite the fact that this would do no harm. Thus I am considering allowing the
programmer to state that the relationship between the types in two capsules should be
preserved.

Thus for example one could construct Real to be 2 superset of Int, allowing integers
to be passed as arguments of functions of Reals. Unfortunately, the construction of related
representations of related types can be quite tedious, and generally occurs in the wrong

14

order. One would be required to define all of Int, Real and Comples at once with this in
mind, and to ensure that Ints were Rationals as well as Reals would be very difficult.

A possible solution to this would be o allow the programmer fo specify that one
type may be converted to another by the application of some arbitrary function (call it a
coercion). This overcomes the objection stated above, but raises a whole new problem as
to the order in which coercions should be applied. If we have coercion functions of type
Int — Real and Real — Complez, we can clearly use an Int when we want a Complez,
but what if we also have Ini — Ratsonal and Rational — Complex?

A further objection is that if the programmer is allowed to specify coercions, there is
plenty of opportunity to make enormous mistakes. If we do not have them, though, the
programme may have to be much larger. Consider the coercion Int — VI'.Union|T', Int],
which would save many injection functions.

Can we write a type checker which knows when to apply coercions, composes the ap-
propriate conversion function, and is reasonably efficient? Consider passing a Complez —
X to a (Int — X) — Y function: the checker must compose the Int to Real and Real

to Complez coercions with the argument in order to get an Int — X argument to give
to the function. In [Mitchell 82], Mitchell describes an algorithm for doing this in Mil-
ner’s system, but Ponder types are rather different, and overloading produces some other

interesting problems.

7. Conclusion

The type checker described above has not been implemented. Instead, an earlier
version is still in service. This previous version has several infelicities which cause it to
reject some expressions which are type-valid. This was caused by an attempt to make the
type-checker ‘guess’ a particular type for every sub-expression, something which although
impossible to do accurately is desirable for helpful error messages.

Nonetheless, users of the Ponder compiler find the type-checking system sufficiently
powerful for most of their requirements, and have been using the previous (pessimistic)
type-checker for two years without much complaint.

8. Acknowledgements

I am grateful to Mike Gordon for patient supervision, and to Dave MacQueen for
some useful conversations which helped to clarify my thoughts about the algorithms.
The work has been funded by the Science and Engineering Research Council of Great

Britain.

15

Bibliography

[Church 41]: A. Church,
The Calculi of Lambda-Conversion,
Princeton University Press 1941

[Milner 78]: R. Milner,
A Theory of Type Polymorphism sn Programmsing,
Journal of Computer and System Sciences Volume 17 No. 3, December 1978

[MacQueen 82]: D.B. MacQueen, Ravi Sethi,
A Semantic Model of Types for Applicative Languages,
Symposium on Lisp and Functional Programming 1982

[MacQueen 84]: D.B. MacQueen, Ravi Sethi,
An Ideal Model for Recurssve Polymorphse Types,
Eleventh Annual ACM Symposium on Principles of Programming Languages 1984

[van Wijngaarden 75]: van Wijngaarden et al,
 The Revised Report on the Algorithmic Language Algol 68,
Springer Verlag 1975

[Mitchell 82]: J. C. Mitchell,
Coercion and Type Inference,
ACM Symposium on Lisp and Functional Programming 1982

16

