Technical Report A

Number 509

Computer Laboratory

Proximity visualisation of abstract data

Wojciech Basalaj

January 2001

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2001 Wojciech Basalaj

This technical report is based on a dissertation submitted
October 2000 by the author for the degree of Doctor of
Philosophy to the University of Cambridge.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Data Visualisation is an established technique for exploration, analysis, and pre-
sentation of data. A graphical representation is generated from the data content,
and viewed by an observer, engaging vision — the human sense with the greatest
bandwidth, and the ability to recognise patterns subconsciously. For instance, a
correlation present between two variables can be elucidated with a scatter plot.
An effective visualisation can be difficult to achieve for an abstract collection of
objects, e.g. a database table with many attributes, or a set of multimedia docu-
ments, since there is no immediately obvious way of arranging the objects based on
their content. Thankfully, similarity between pairs of elements of such a collection
can be measured, and a good overview picture should respect this proximity infor-
mation, by positioning similar objects close to one another, and far from dissimilar
objects. The resulting prozimity visualisation is a topology preserving map of the
underlying data collection, and this work investigates various methods for gener-
ating such maps. A number of algorithms are devised, evaluated quantitatively
by means of statistical inference, and qualitatively in a case study for each type
of data collection. Other graphical representations for abstract data are surveyed,
and compared to proximity visualisation.

A standard method for modelling proximity relations is Multidimensional Scal-
ing (MDS) analysis. The result is usually a two- or three-dimensional configuration
of points — each representing a single element from a collection, with inter-point
distances approximating the corresponding proximities. The quality of this ap-
proximation can be expressed as a loss function, and the optimal arrangement can
be found by minimising it numerically — a procedure known as least-squares metric
MDS. This work presents a number of algorithmic instances of this problem, us-
ing established function optimisation heuristics: Newton-Raphson, Tabu Search,
Genetic Algorithm, Iterative Majorization, and Simulated Annealing. Their effec-
tiveness at minimising the loss function is measured for a representative sample
of data collections, and the relative ranking is established. The popular classical
scaling method serves as a benchmark for this study.

The computational cost of traditional MDS makes it unsuitable for visualising
a large data collection. Incremental multidimensional scaling solves this problem
by considering only a carefully chosen subset of all pairwise proximities. Elements
that make up cluster diameters at a certain level of the single link cluster hier-
archy are identified, and are subject to standard MDS, in order to establish the
overall shape of the configuration. The remaining elements are positioned inde-

iv Abstract

pendently of one another with respect to this skeleton configuration. For very
large collections the skeleton configuration can itself be built up incrementally.
The incremental method is analysed for the compromise between solution quality
and the proportion of proximities used, and compared to Principal Components
Analysis on a number of large database tables.

In some applications it is convenient to represent individual objects by compact
icons of fixed size, for example the use of thumbnails when visualising a set of
images. Because the MDS analysis only takes the position of icons into account,
and not their size, its direct use for visualisation may lead to partial or complete
overlap of icons. Proximity Grid — an analogue of MDS in a discrete domain — is
proposed to overcome this deficiency. Each element of an abstract data collection
is represented within a single cell of the grid, and thus considerable detail can be
shown without overlap. The proximity relationships are preserved by clustering
similar elements in the grid, and keeping dissimilar ones apart. Algorithms for
generating such an arrangement are presented, and compared in terms of output
quality to one another, as well as standard MDS.

Acknowledgements

This work has been supported by an External Research Studentship received
from Trinity College Cambridge, and by the Overseas Research Students Awards
Scheme.

The author is indebted to Kerry Rodden for invaluable comments and ideas, and
her help with statistical analysis and the production of figures with photograph
arrangements.

Stephen Childs, Kerry Rodden, Peter Sewell, Pawel Wojciechowski, and Walt Yao
contributed to the characterisation of algorithms presented in this dissertation, by
permitting the author to run various computations on their workstations. Without
their help the task could not have been completed on time.

A number of data sets have been used during the course of this work, and their
originators are acknowledged in the appendices. Also, a number of existing algo-
rithms served as an evaluation benchmark, and their authors or implementers are
credited in the text, where the algorithms are first mentioned.

Last but not least, the author would like to thank his supervisor — Ken Moody —
for providing a research environment that made this work possible.

Publications

Aspects of the work described in this dissertation feature in the following publi-
cations:

e W. Basalaj. Incremental multidimensional scaling method for database
visualization. In Proc. of Visual Data Exploration and Analysis VI, SPIE
volume 3643, pages 149-158, San Jose, California, January 1999.

e W. Basalaj and K. Eilbeck. Straight-line drawings of protein interactions.
In Proc. of Graph Drawing ’99, LNCS volume 1731, pages 259266, Stirin,
Czech Republic, September 1999.

e K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. Evaluating a visuali-
sation of image similarity as a tool for image browsing. In Proc. of IEEE
Information Visualization 99, pages 36—-43, San Francisco, October 1999.

Contents

List of Figures

List of Tables

1

2

3

Introduction

1.1 What is Proximity Visualisation

1.2 DataTypes o o o o e e e e e e
1.2.1 Quantitative L e
1.22 Ordinal e
1.23 Nominal e e e e e
1.24 Binary o o e e e e
1.2.56 Heterogeneous o v v v it it e
1.2.6 Relationships e
1.2.7 Tmages. . . . o v v v e e e e e e e
1.2.8 Text COrpuS . . v v v v i e e e e e e e e e
1.2.9 Proximity e e e

1.3 Dissertation AIms e e e e e

1.4 Evaluation Framework e

Multivariate Visualisation Techniques
2.1 Running Example e
2.2 Parallel Coordinateso i e
2.3 Andrews Plot e
2.4 Multidimensional Scaling
2.5 Scatterplot Matrix e
2.6 Tconographic Displays
2.6.1 Star Glyphs e e
2.6.2 Chernoff Faces i
2.7 SUMMATY o v e e e e e e e e e e

Multidimensional Scaling

3.1 Problem Definition e e e e e e e
3.2 Loss Functions 0 i i i i e e e e e e e e e e e e e
321 Raw Stress . . v v v i i e e e e e e e e e e e e e e
3.2.2 Normalised Stress o . 0 i e e e e e
3.2.3 Kruskal’s Stress o . o i e e e e e e e
324 Energy. o i e e e e e
3.3 Algorithms
3.3.1 Classical Scaling e
3.3.2 Newton-Raphson
3.3.3 TabuSearch @ e e e

3.3.4 Genetic Algorithm o

xiii

"
<

G~ ~I Oy U1 UL o W W NN

Contents

3.4
3.5

3.6
3.7
3.8

Large Scale Visualisation
4.1 Challenges of Visualising Large Data Collections
Incremental Multidimensional Scaling
4.2.1 Single-link Clustering
4.2.2 The Algorithm Outline
Time Complexity
Space Complexity
4.2.3 Empirical Characteristics
Principal Components Analysis

4.2

4.3
4.4

4.5
4.6

Proximity Grid
5.1 Origins of the Problem

5.2

9.3

5.4

3.3.5 Majorization Algorithm
3.3.6 Simulated Annealing
Experimental Setup
Statistical Analysis
3.5.1 Minimum Energy
3.5.2 Average Energy
3.5.3 Running Time

3.5.4 Identifying the Best Algorithm
3.5.5 Hybrid Algorithm
Qualitative Evaluation
Discussion
Related Work

Comparison

4.4.1 Statistical Analysis
Two-dimensional Visualisation
Three-dimensional Visualisation
Running Time

4.4.2 Qualitative Evaluation

Discussion

Related Work

Algorithms

5.2.1 Greedy
5.2.2 Improved Greedy
5.2.3 “Squeaky Wheel” Optimization
5.2.4 Genetic Algorithm

Comparison

5.3.1 Statistical Analysis
Allocation Strategy Analysis
Algorithm Analysis
Grid Density Analysis
Complete Analysis

5.3.2 Qualitative Evaluation

Discussion

5.5 Related Work

Case Studies

6.1
6.2
6.3

Protein Interactions
Image Browsing
Databases
6.3.1 Metadata Visualisation
6.3.2 Data Visualisation

Contents xi

7 Conclusions 99
A Partial Derivatives of Energy 101
A.1 The First Partial Derivative of the Euclidean Distance 101
A.2 The First Partial Derivative of Energy, 101
A.3 Second Partial Derivativesof Energy 102
B Test Bed 103
B.1 Small Data Sets. o o o o e 103
B.2 Medium Data Sets o . o e e 105
B3 TargeData Sets. . . . o v v v v i e e e 105
Bibliography 107
Author Index 113

Subject Index 115

List of Figures

2.1 Parallel coordinates.
2.2 Andrews plot e e
2.3 Multidimensional scalingo
2.4 Scatterplot matrix L e e e e
2.5 Iconographic visualisations L oo e

3.1 MDS representations of a binary tree with different loss functions
3.2 Plots of Energy and its partial derivatives for one fixed point in 2 dimensions . .
3.3 Surface plot of Energy for 10 fixed points in 2 dimensions
3.4 Comparison of visualisations generated by different MDS algorithms
3.5 Histogram of Energy minima for all collections in the test bed

4.1 Plot of Energy and Stress minima vs. exponent for N-body simulation data . . .
4.2 Comparison of the mfeat data set visualisations generated with different methods
4.3 Comparison of the segment data set visualisations
4.4 Comparison of the spambase data set visualisations

5.1 100 images of Kenya arranged by visual similarity
5.2 Example of spiral searchinagrid. o oL
5.3 Examples of different grid allocation strategies
5.4 Linear regression comparison of grid algorithms
5.5 4 x 4 proximity grids generated with different algorithms for a sample graph . . .
5.6 bxbproximity grids e
5.7 6x6proximity grids e
5.8 Tx7proximity grids
5.9 8&x8proximity grids L
510 9 x 9 proximity grids L. e
5.11 13 x 13 proximity grids e
5.12 MDS configuration for a sample graph oL,
5.13 13 x 13 proximity grid for the G4 algorithm rotated to the MDS configuration .
5.14 Histogram of Stress minima for all collections in the test bed

6.1 Comparison of protein interaction drawings
6.2 100 images of New York arranged by visual or caption similarity
6.3 Proximity visualisation of a sample databasetable

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

6.1
5.2
5.3
5.4
5.5
5.6

B.1
B.2
B.3

Details of a sample multivariate data table. 12
Wilcoxon test results for SA.acceptance parameter 39
Friedman test results for minimum and average Energy 40
Tukey Multiple Comparison results o v v vt 41
Comparison of algorithm running time 43
Wilcoxon test results for SA-2500 and hybrid algorithms. 44
Linear regression comparison of MDS algorithms 45
Congruence coeflicient for pairs of MDS configurations 48
Energy and Stress at various stages of optimisation 56
The amount of total variance preserved in two or three dimensions 59
Friedman test results for Energy o o 61
Comparison of running time for PCA and incremental MDS 62
Statistics of mfeat, segment, and spambase visualisations 63
Congruence coeflicient for pairs of configurations 67
Friedman test results for allocation strategies 79
Tukey Multiple Comparison results for allocation strategies 79
Friedman test results for the algorithm grouping 80
Friedman test results for the grid density grouping 82
Friedman test results for the complete grouping 83
Assessment of the samplegraph L o oL, 88
Small data collections e 103
Medium-sized data tables o o 105

Largedatatables e 106

Chapter 1

Introduction

1.1 What is Proximity Visualisation

The focus of this dissertation is visualisation of abstract data collections, and an
evaluation of a particular technique — Prozimity Visualisation — suitable for the
task. Database tables with many attributes, graphs, and multimedia collections
are types of data collections for which it is difficult to design useful visual represen-
tations, since there is no immediate way to control the position of elements based
on their content. However, similarity between elements of such collections can be
measured, and a good overview picture should respect this proximity information,
by positioning similar elements close to one another, and far from dissimilar ones.
Such a visualisation is in effect a topology preserving map of the underlying data
collection.

1.2 Data Types

The proximity of a pair of objects from a data collection can be expressed either
as their similarity, mutual agreement, or dissimilarity — their distance in the ab-
stract domain of the collection. The latter form is preferable for constructing a
proximity visualisation of the collection, as distances between objects in the visual
representation are to match the corresponding distances in the abstract domain.
However, there exist transformations between the two variants of proximity mea-
surements, and as long as at least one can be established for pairs of objects from
a given data collection, its proximity visualisation can be formed.

A function that measures dissimilarity between a pair of objects from a col-
lection is a dissimilarity coefficient. There may be a number of coefficients that
could be used with a particular data collection, which in general will emphasise
different aspects of object proximity. This section discusses suitable dissimilarity
coefficients for a comprehensive range of types of abstract data collection, which
reflect our experiences with applying proximity visualisation. It seems reason-
able to assume that other types could be serviced by one of these dissimilarity
coefficients, perhaps after certain reductions.

2 1. Introduction

1.2.1 Quantitative

A quantitative variable can either be measured on an interval or a ratio mea-
surement scale, for example temperature. If temperature is measured in degrees
Celsius, i.e. an interval scale, the difference between two measurements ¢; and to is
meaningful, and so is the ratio of such differences: (t; —t3)/(ta —t3). Additionally,
a ratio scale, e.g. the Kelvin temperature scale, has a well defined zero point, and
thus a ratio of two measurements ¢; /s becomes meaningful. Since the dissimilar-
ity between two measurements can be defined in terms of their difference, both
scales can be treated in the same way.

Suppose we have a set of n objects with the o™ attribute measured on the
quantitative scale {uy,, : 1 < i < n}, and the range of this attribute is R, =
MAX Ujg — miin Ui The dissimilarity 6;;, between a pair of objects (¢,j) with

regard to the o' attribute can be defined as follows [Anderber73]:

th

Ui — Ui
Oija = ’—@TM (1.1)
Dissimilarity coefficient (1.1) is always between 0 and 1, and can be viewed as a
fractional disagreement between objects ¢ and j on the a'® attribute, relative to
the maximum disagreement given by R,.

For quantitative measurement scales (and also those of Sections 1.2.2, 1.2.3,
and 1.2.4) there exist many ways of combining dissimilarity scores on multiple
attributes into an overall dissimilarity between a pair of objects [Anderber73].
However, we will not go into their details here, as an assumption that attributes
are homogeneous, i.e. measured on the same scale, is very restrictive, and we prefer
to treat this condition as a special case of heterogeneous data in Section 1.2.5.

1.2.2 Ordinal

An ordinal scale is weaker than quantitative, in that it also induces an ordering of
objects, but does not make any statement about the magnitude of the differences.
An example of an ordinal scale is the A-F system of grades; although there is a
well defined ordering A > B > ... > F, it is impossible to say how the differences
between pairs of grades relate, for instance whether the difference between A and
B is greater than that between B and C. However, the difference between A and C
must be greater than the difference between A and B, due to the inequalities, and
an effective dissimilarity coefficient for a pair of objects measured on an ordinal
scale can be based on differences in their rank.

Let a set of n objects with the a'* attribute measured on an ordinal scale be
denoted as {u;, : 1 < 4 < n}. If the rank order of an observation u;, is given
by 7(ui), and the number of distinct ranks is k, = max r(uiq), the dissimilarity

between objects ¢ and j on the o™ attribute takes the following form [Anderber73]:

_r(uie) = 7(uga)|
ija = =1 (1.2)

1.2 Data Types 3

Coefficient (1.2) achieves in effect a transformation of an ordinal variable into a
quantitative one, by replacing the ordinal measurements {u;,} with their rank
order {r(u;)}. Analogously to Section 1.2.1, (1.2) is also in the range [0, 1], and
represents the fractional disagreement between ranks of objects ¢ and 4 on the 't
attribute, relative to the maximum observed rank difference.

1.2.3 Nominal

A nominal scale allows for the weakest form of measurement, as it does not enforce
any ordering of objects. A number of non-overlapping categories are defined and
an object can belong to a single one of these. The similarity of a pair of objects
is defined in terms of their category membership: if they belong to the same
category they are judged to be equivalent, otherwise they are completely different.
An example of such an exclusive categorisation is a person’s zodiac sign. For a set
of n objects whose a*® attribute is measured on a nominal scale {u : 1 < i < n}
pairwise dissimilarity between objects is defined as [Anderber73]:

o 0 Ujq = Ujg,
Oija _{ 1 : otherwise (1.3)

1.2.4 Binary

A binary scale of measurement is a special case of a nominal scale with only two
categories. If both categories have the same significance, for example male-female,
(1.3) can be used as the dissimilarity coefficient for such an attribute. However,
if one of the categories denotes an absence of some property, e.g. yes—no, on—off,
a negative match of a pair of objects is not considered as significant as a positive
match. The dissimilarity between a pair of objects from the set {u;, : 1 <14 < n},
with the o' attribute measured on a binary scale, then becomes [Anderber73]:

0 up=ue=1
ija _{ 1 : otherwise (1.4)

In creating ontologies entities are scored on a number of binary attributes, and
typically only a small proportion of them will be positive for any given entity.
In such cases it might be advantageous to treat an attribute on which both en-
tities scored negative as missing (see Section 1.2.5), so as not to unduly bias the

judgement of their pairwise similarity [Gower71].
AN

1.2.5 Heterogeneous

A collection of entity descriptions may be conveniently represented by a set of
tuples or a set of objects with appropriate attributes. The utility of relational and
object databases is based on this premise. The canonical representation of such
data is a table with one row for each object, and a column for each attribute —
Table 2.1 on page 12 provides an example. In general, the attributes cannot be

4 1. Introduction

expected to be homogeneous, and thus a dissimilarity coefficient for data tables has
to combine attributes measured on arbitrary scales, to give an overall dissimilarity
between pairs of objects (rows).

A general similarity coefficient [Gower71] is a suitable coefficient for hetero-
geneous data, and can accommodate missing values and conditional attributes —
a crucial ability if any possible real world data is to be considered. An analo-
gous general dissimilarity coeflicient can be defined for a set of n objects with ¢
attributes {u;, : 1 <1< n,1 <a < g} as follows:

q
> WijaWabija
=1
by = (15)

Z WijoWe
a=1

where w;;, takes value 1 if objects 4 and j can be compared on the o attribute,
and 0 otherwise; w, is the weight given to attribute a; d;;, is the dissimilarity
between objects 7 and j as measured on the a** attribute according to (1.1), (1.2),
(1.3), or (1.4) depending on the type of this attribute.

Each 6;;, provides the distance in a uniform scale between a given pair of ob-
jects (4,) with respect to a single attribute a. The general dissimilarity coefficient
is a framework for combining individual distances for all attributes into an overall
distance in a uniform representation space. It can be seen that a weighted City
block metric, normalised by the maximum distance, is used in effect:

(ZJ) Z W,0 iia (1.6)

where 6% = (8,1, ...,68,) Tt is a vector of distances for individual axes. There-
fore, the general dissimilarity coefficient can be generalised to any instance of the
weighted Minkowski metrict:

60]) (Z Wq ’L]a) ’ ->_ 1 (17)

to give the A-general dissimilarity coefficient:

S

g A X
) WijaWalij
5 = | (1.8)

Z WijaWq
a=1

For A\ = 2 and purely quantitative attributes (1.8) simplifies to the weighted
Euclidean distance normalised to the range [0, 1], and for this desirable property
we decided to use this form of the A-general dissimilarity coefficient for data tables
in the sequel.

thenceforth, all vectors are taken as column vectors; a row vector can be obtained from the
column vector, and vice versa, by transposition, which is denoted with the T superscript
tDy corresponds to the Euclidean distance, and Do, is equivalent to max 0ija
a

1.2 Data Types 5

1.2.6 Relationships

Binary relationships z Ry within a set V of entities can be expressed as a graph
G(V,E = {(a,b) : a,b € V,a Rb}), with an edge (a,b) whenever entities a and b
enter into a relationship, and an entity being synonymous to a vertex. In general,
a pair of entities might enter into an indirect relationship through one or more
intermediate entities. Such a chain of vertices defines a path through the graph G
that has a length equal to the number of chained vertices less one, i.e. the number
of edges that have to be traversed.

The graph theoretic distance ! is a function that for a given pair of vertices
a,b € V returns the length of the shortest path between them. For undirected
graphs [satisfies metric properties:

1. non-negativity: l(a,b) > 0, for all a,b € V
2. identity: I(a,b) = 0, if and only if a = b
3. symmetry: [(a,b) = l(b,a), for all a,b €V

4. triangle inequality: [(a,b) < l(a,c) + l(c,b), for all a,b,c € V. If cis a
vertex on the shortest path between a and b then l(a,b) = l(a,c) + l(c, b).
Otherwise, {(a,b) > l(a,c) + I(c,b) cannot hold because a path through c
would be shorter.

These properties are preserved for a disconnected graph if the length of the path
between vertices from separate components is considered to be infinite, though for
practical purposes a value greater than the longest path in all of the connected
components will suffice. Thus, [is a suitable and intuitive dissimilarity coefficient
for undirected graphs [Kruskal78al.

Directed graphs can be accommodated by treating all edges as undirected for
the purposes of calculating dissimilarity between vertices, and taking account of
the direction of edges only in their visual representation. Alternatively, the third
metric property could be dispensed with, making dissimilarities asymmetric. If the
strength of relationships can vary appropriate weights can be assigned to edges,
and [generalised to return the path with the least cumulative weight for a given
pair of vertices.

1.2.7 Images

Humans are adept at determining similarity between a given pair of images, by
utilising the capabilities of the visual cortex to recognise objects in both images,
and establishing semantic relationships between these objects. This process is dif-
ficult to emulate on a computer system, with the present knowledge of neurology
and artificial learning. However, it is practical to automatically extract low-level
features from the images, such as colour and texture, and compare their similarity
to give an overall similarity between the two images. In our work we have been

6 1. Introduction

using IRIS (the acronym stands for Image Regions In Summary) — an image simi-
larity coefficient developed at AT&T Laboratories in Cambridge, which combines
global image properties in the form of colour histograms and local, region based
features [Rodden99a).

During a pre-processing step an image is segmented into regions of broadly
homogeneous colour properties. Regions are then classified as either large or small.
The large regions are further classified as either textured or smooth, and the small
regions as regularly or irregularly shaped. The image is partitioned into nine areas
in a 3 by 3 grid. Subsequently, a colour histogram for each of the 4 types of region is
recorded, and the largest (dominant) region is identified, in an area summary. The
dissimilarity between a pair of images is computed from their summaries: the x?
statistic is used to determine the distance between histograms from corresponding
areas, the Mahalanobis distance in RGB colour space is used for dominant regions,
and the final coefficient is a weighted sum of these distances.

IRIS has been designed specifically to perform well on indexing and search-
ing of image databases. There exist a multitude of alternatives, contributed by
the Image Retrieval community, for calculating low-level visual similarity between
pairs of images. These coefficients are of varied complexity and retrieval perfor-
mance, however they seem to be roughly equivalent for the purposes of visualisa-
tion [Rodden00].

1.2.8 Text Corpus

It is common practice to index a corpus of documents on themes occurring within
it, e.g. nouns or phrases, to facilitate querying for relevant themes. In a classic
model of Information Retrieval — the vector model — each document is represented
by a weight vector w = (wi,...,w,)”, where element w, specifies the relative
importance of theme ¢, in the document, and ¢ is the total number of themes and
the dimensionality of the weight vector space [Baeza-Ya99]. If the theme ¢, does
not occur in the document, the element w, is simply set to 0, otherwise w, is made
proportional to the frequency of ¢,’s occurrence in the document, and inversely
proportional to the commonness of ¢, within the corpus. Thus, a theme frequently
occurring in a given document will be assumed to have high relevance, unless it
is common to all the documents, e.g. ‘computer’ in a corpus of computer science
articles.

A measure of similarity s;; between documents ¢ and j, or equivalently vectors
w® and w® in the vector model, is a cosine of the angle between w® and w:

q
(9)qy(9)
gorae Dl y
55 = Tw®|[lwd] (i (‘)2>% (Zq: Y (1.9)
Wy wy)
a=1 ‘ a=1 ¢

where ||w|| denotes the Euclidean norm (length) of the vector w. Since theme
weights are non-negative, s;; will be in the range [0,1], and to convert it to a

1.3 Dissertation Aims 7

dissimilarity é;; between documents ¢ and 7, the following formula can be used:

0ij = /1 — sij | (1.10)

Let V = ('w(l)/||'w(1)|[, o .,w(”)/“w(")H)T be the matrix of normalised weights
for all n documents in the corpus; the complete similarity matrix can be expressed
as 8§ = [sy] = VVT, and is positive semi-definite by definition. Consequently,
the dissimilarity matrix calculated by applying (1.10) to every element of S is
Euclidean’ [Gower86] — a desirable property for its visual representation.

1.2.9 Proximity

There are data collections that consist solely of proximity measurements, for ex-
ample results of an experiment where a subject has been asked to rate how similar
pairs of stimuli are. The only meaningful visual representation for such data is
one based on proximity. If similarity measurements have actually been collected
they have to be transformed to the corresponding dissimilarity scores, prior to
constructing their visualisation, by using (1.10) for instance. Additionally, un-
standardised similarities have to be scaled by the largest similarity to bring them
to the range [0, 1], which is a precondition for the transformation (1.10).

Since judgements of dissimilarity have been collected directly, they are unlikely
to obey Euclidean or even metric properties — most importantly triangle inequality
— which will make their proximity visualisation of dubious quality. However, by
adding a sufficiently large positive constant to every dissimilarity, except self-
dissimilarities which should always be 0, they can be made metric and Euclidean
[Gower86, Borg97].

The magnitude of dissimilarity judgements may be deemed not to be reliable,
and only their relative order, exactly the distinction between a quantitative scale
(see Section 1.2.1) and an ordinal scale (see Section 1.2.2). In this case the dis-
similarities should be replaced by their rank order. Such a procedure will cancel
the effect of outlying dissimilarity measurements, which could otherwise greatly
distort the visual representation.

1.3 Dissertation Aims

For the types of data discussed in Section 1.2 there exist many visualisation tech-
niques; however, they are applicable to just a single data type, in general. On
the other hand, proximity visualisation is generic, and can be used with any data
collection, as long as a suitable dissimilarity coefficient can be defined for it. Anal-
ysis of quantitative data is the main concern of Statistics and Data Visualisation,
and thus the greatest number of visualisation methods target collections of objects

San n x n matrix [d;;] is said to be Euclidean if n points can be embedded in a Euclidean
space of some dimension, such that the Fuclidean distance between the i* and j*" points is d;;,
forall 1 <4, <n

8 1. Introduction

measured on multiple quantitative variables. Chapter 2 presents an overview of
multivariate visualisation, and compares the most influential techniques.

An established technique for creating proximity visualisations is introduced in
Chapter 2, and its detailed account is the purpose of Chapter 3. The underlying
theory is presented first, followed by examples of practical algorithms for meeting
that specification. To put the discussion on a more rigorous footing, these algo-
rithms are subsequently evaluated based on the quality of proximity visualisations
they supply, and their responsiveness.

The algorithms of Chapter 3 are unsuitable for very large data collections,
as they will require an inordinate amount of time for computing the correspond-
ing proximity visualisations. Chapter 4 discusses the use of cluster analysis to
pre-process the data, so that the most important objects from a collection are
identified. The proximity of such marker objects is visualised exactly; the re-
maining objects are located by reference to these markers only. Thus, a way of
achieving a compromise between quality and responsiveness is established.

Chapter 5 takes a different approach to proximity visualisation. The emphasis
is not on preserving dissimilarities as well as possible, or coping with large data
collections, but with achieving a display with high information density. Such a
display allows the use of complex icons to augment the visual representation of
proximity, useful for browsing a multimedia collection or searching for a specific
element from it, for example. This scenario is further explored in Chapter 6.

A browsing interface for a collection of images, based on proximity visualisa-
tions using both visual proximity of images and proximity of image captions, is
just one of the case studies presented in Chapter 6. Interactions between pro-
teins in a cell can be considered as an undirected graph, and an example protein
graph drawing is studied in comparison to an equivalent textbook diagram. The
final case study is that of database visualisation, where a unified view of data and
metadata can be achieved by means of proximity visualisation.

The results of this dissertation are summarised in Chapter 7, and some con-
cluding remarks are offered.

1.4 Evaluation Framework

Chapters 3, 4, and 5 each present a number of alternatives for creating proximity
visualisations. Given a visual representation, it is possible to assess objectively
how well dissimilarities among all pairs of objects from a collection are preserved.
Thus, every algorithm is exercised with a test bed of data collections, and an ob-
jective measurement of quality is taken for each test case. Subsequently, statistical
analysis is applied to rank the algorithms by their overall quality. An analogous
analysis is performed with respect to the time taken to compute proximity visuali-
sations with each algorithm, and conclusions are drawn from the trade-off between
these two criteria.

It is important to complement the statistical analysis with a subjective as-
sessment of proximity visualisations produced with different algorithms. It is

1.4 Evaluation Framework 9

conceivable to imagine that algorithms can be comparable in terms of objective
quality, but deliver proximity visualisations with different distribution of objects,
or other disparate characteristics. Consequently, examining these visualisations
might establish that the output of a certain algorithm is more pleasing or intu-
itive, and thus favour it over others. For algorithms that differ significantly on
objective quality it is still advantageous to compare visualisations generated by
them, to find out the character of the differences.

Chapter 2

Multivariate Visualisation
Techniques

Visual exploration of multivariate data is of great interest in Statistics and Infor-
mation Visualisation. A number of methods have been proposed in both fields,
ranging from the very useful to the quirky. This chapter introduces a few of the
most established multivariate visualisation techniques by example. The criterion
for selection was generality, and suitability for the non-interactive and flat medium
of paper. The effectiveness of the methods is compared, and evaluated relative to
their limitations.

2.1 Running Example

Several multivariate visualisation techniques have been presented with a challenge
in the form of the cars data table [Henderso81], which is reproduced in Table 2.1,
and is also mentioned in Section B.1 of the appendices. This data table con-
tains a record of 38 cars manufactured in the period 197879, with the following
attributes:

1. primary country of the manufacturer

2. model name

3. miles per gallon — a measure of petrol efficiency assessed on the race track
4. weight in thousands of lbs

5. drive ratio in the highest gear

6. horsepower

7. engine displacement in cubic inches

8. number of cylinders

12 2. Multivariate Visualisation Techniques

Table 2.1: Details of the cars data table

country model name mpg weight ratio hp disp. cyl
USA Buick Estate Wagon 16.9 4.360 2.73 155 350 8
USA Ford Country Squire Wagon 15.5 4.054 2.26 142 351 8
USA Chevy Malibu Wagon 19.2 3.605 2.56 125 267 8
USA Chrysler LeBaron Wagon 18,5 3.940 2.45 150 360 8
USA Chevette 30.0 2.155 3.70 68 98 4
Japan Toyota Corona 275 26560 3.056 95 134 4
Japan Datsun 510 272 2300 3.54 97 119 4
USA Dodge Omni 30.9 2230 337 75 105 4
Germany Audi 5000 20.3 2.830 3.90 103 131 5
Sweden Volvo 240 GL 17.0 3.140 3.50 125 163 6
Sweden Saab 99 GLE 21.6 2795 3.77 115 121 4
France Peugeot 694 SL 16.2 3.410 3.58 133 163 6
USA Buick Century Special 20.6 3.380 2.73 105 231 6
USA Mercury Zephyr 20.8 3.0710 3.08 8 200 6
USA Dodge Aspen 18.6 3.620 2.71 110 225 6
USA AMC Concord D/L 18.1 3.410 2.73 120 258 6
USA Chevy Caprice Classic 17.0 3.840 2.41 130 305 8
USA Ford LTD 17.6 3.725 2.26 129 302 8
USA Mercury Grand Marquis 16.56 3.955 2.26 138 351 8
USA Dodge St Regis 18.2 3.830 245 135 318 8
USA Ford Mustang 4 26.5 2.585 3.08 88 140 4
USA Ford Mustang Ghia 21.9 2910 3.08 109 171 6
Japan Mazda GLC 34.1 1975 3.73 65 86 4
Japan Dodge Colt 35.1 1.915 2.97 80 98 4
USA AMC Spirit 274 2,670 3.08 80 121 4
Germany VW Scirocco 31.5 1990 3.78 71 89 4
Japan Honda Accord LX 29.5 2.135 3.06 68 98 4
USA Buick Skylark 284 2.670 2.53 90 151 4
USA Chevy Citation 28.8 2.595 2.69 115 173 6
USA Olds Omega 26.8 2700 2.84 115 173 6
USA Pontiac Phoenix 33.5 2.556 2.69 90 151 4
USA Plymouth Horizon 34.2 2200 337 70 105 4
Japan Datsun 210 31.8 2.020 3.70 65 85 4
Italy Fiat Strada 37.3 2130 3.10 69 91 4
Germany VW Dasher 30.5 2190 3.70 78 97 4
Japan Datsun 810 22.0 2815 3.70 97 146 6
Germany BMW 320i 21.5 2.600 3.64 110 121 4
Germany VW Rabbit 31.9 1.925 378 71 89 4

2.2 Parallel Coordinates 13

The first attribute is measured on a nominal scale (see Section 1.2.3), the second
is a label (see Section 1.2.8), the remaining attributes are quantitative (see Sec-
tion 1.2.1). The task set out for each visualisation method is that of bringing out
the differences and similarities between cars on the basis of their drive parameters.
We felt that including the first two attributes would prejudice this analysis, and
cause cars from the same manufacturer or just the same country to appear more
similar.

2.2 Parallel Coordinates

A single row ul = (u1,...,ui) of a data table with ¢ attributes, measured on

any scale apart from nominal (see Section 1.2.3), can be thought of as a point
in a g-dimensional Cartesian coordinate system, with the abscissa on the a* axis
given by u;,. For ¢ > 3 such configurations of points cannot be directly visualised;
the method of Parallel Coordinates overcomes this limitation by arranging axes
vertically, and spacing them uniformly across the plane [Inselber85]. Point u; in
this coordinate system is a polygonal line connecting the corresponding abscissas
on the parallel axes.

It is apparent from the parallel coordinates visualisation of the cars data table
in Figure 2.1(a) that the last three attributes are substantially correlated. More-
over, lines representing the individual rows cross over between mpg, weight, drive
ratio, and horsepower attributes, suggesting that these attributes might be nega-
tively correlated in pairs. Inverting the mpg and drive ratio axes leads to a much
clearer visualisation in Figure 2.1(b), which could be improved further by permut-
ing the order of axes. The need for such a high level of customisation presents the
ultimate obstacle in effectively visualising many variables with this method, made
worse if the number of observations, and hence lines, is large.

2.3 Andrews Plot

In an Andrews plot each row ul = (u;, ..., ui) of a data table with ¢ attributes
is represented by a line, similarly to parallel coordinates. In this case it is a curve
defined by the following trigonometric function [Andrews72]:

Uj N .
fu, (1) = 7% + ugo sin(t) + us cos(t) + uiasin(2t) + uscos(2t) + . .. (2.1)

“ S

q

plotted over the interval ¢t € (—m, 7). It is recommended that the most important
attributes are associated with the low frequency terms, as they determine the
overall shape of the curve. This might entail an iterative and exploratory approach
to determine a satisfactory assignment, in the same way as for parallel coordinates.

I\
RN
N

14 2. Multivariate Visualisation Techniques
\ // A
7

0\

A\\ ’ ‘
A

W \’/!

Y):\\\'/‘ \l\%’f!f{?‘\\\‘\ ‘
/) A ==

05

\ \ \ \\\\\
‘ E———

N~ | AN AN
V7R 2
————=N |
mpg weilght drive‘ratio horse;')ower displa(l:cment cylh;ders -mpg weight -drive ratio horse;mwer displacement cylirlxders

(a) original (b) correlated

Figure 2.1: Parallel coordinates

Figure 2.2: Andrews plot

2.4 Multidimensional Scaling 15

Let @ = L 37" | u; denote the mean of the n rows w] of the data table; function

(2.1) preserves this mean:
1 n
falt) = 3 0 2.2)

so that the plot of @ is a pointwise average of the plots for individual rows. Another
useful property of (2.1) is that it preserves the Euclidean distance |lu; — |
between pairs of points in the g-dimensional space:

/_7; (f’lh(t) - fuj (t))2dt = 7llu; — uj”2 = Wi (Uiq — uja)2 (2.3)

Thus, close points will result in similar plots, and plots for distant points will
be distinct. These features are useful for detecting clusters and outliers, and are
common to the parallel coordinates technique. Andrews plots have a number of
other characteristics, especially helpful in statistical analysis of the underlying
data [AndrewsT72].

Figure 2.2 is an Andrews plot of the cars data table. There seem to be two
extreme clusters of cars. The remaining observations fall between the extremes,
and form a loose cluster, which can be separated from the first two at ¢ = —1 and
t = 2. Additional insight could be gained by plotting these clusters separately,
and in fact it is recommended that no more than 10 points u; are plotted at a
time for a detailed examination [Andrews72].

2.4 Multidimensional Scaling

Like parallel coordinates and Andrews plots, Multidimensional Scaling can also
be used to visualise multivariate data [Borg97, Cox94]. However, the original ¢
axes and coordinates of points w; = (41, ..., ui)" do not enter the visualisation
directly. Instead, a configuration of points &; = (z;1,...,%)" is found in a space
of lower dimension p < ¢, such that all inter-point distances ||x; — @,|| match as
closely as possible the original distances |u; — u;||. A two- or three-dimensional
embedding is an obvious choice for visualisation; higher values of p can be useful
for statistical analysis. A more elaborate description of this method is presented
in Chapter 3.

It might be helpful to envisage the process of multidimensional scaling in two
dimensions as wrapping a surface — an elastic sheet — around points {u;} in the
original high dimensional space, and taking ; as the projection of w; onto this
surface. In effect a non-linear mapping between the two configurations is estab-
lished, and it is likely to be superior for purposes of visualisation to rotating a rigid
plane in the high dimensional space to find the closest fit to {u;}, a procedure
known as Principal Components Analysis [Pearson01].

A two-dimensional multidimensional scaling configuration for the cars data
set is presented in Figure 2.3. Inspection of the corresponding Andrews plot in
Section 2.3 led to the conclusion that there are three clusters of cars. These

16

2. Multivariate Visualisation Techniques

oFord LTD

oChevy Malibu Wagon

o+Chevy Caprice Classic

o "Mercury Grand Marquis
Ford Country Squire Wagon

Dodge St Regis

*Chryster LeBaron Wagon

*Buick Estate Wagon

.Dodge Aspen

*Buick Century Special
eFord Mustang Ghia

¢AMC Concord D/L

sMercury Zephyr

*Pontiac Phoenix

*Buick Skylark *Dodge Colt

*Chevy Citation oFiat Strada

*Olds Omega sHonda Accord LX

o #AMC Spirit *Plymouth Horizon
Toyota Corona

eFord Mustang 4 *Dodge Omni

t|Mazda GLC
Datstin 210
*Chevatte

oYW Scirocco

eDatsun 510 *yw Dashal VW Rabbit

*Datsun 810 |
*BMW 320i

*Volvo 240 GL

#Saab 99 GLE
*Audi 5000

*Peugeot 694 SL

Figure 2.3: Multidimensional scaling

20 2.5 3.0 35 40 80 100 120 140 4 5 6 7 8
L el i e - Bhndiaarndi S S S SR S
b e P T | TS -, {] &
» ? L] B/
] ! .‘ e ¢ < .' ~ . . v e ! . 8
. .C . .' ° . . “ . '.I Ld .
1 mpg Lo
. 3 o AL [S LI o
1 ‘8 . P . . . [~
AR . MU : Ty H § °
v + G 0
SHoe s 8 . 5 S
A .. A N . :
LI 'Y N L[] . . LI . .
ale . weight . v . . . ' i
o . * e 0oty we . .]
] PN L S *s* 3 . td, e .82 |} : L
o AR - 0% |len -»* i
I (RN . “ ||fe. S) F
0 0 v g v
. - . . .
B o, \.... Lo we oy B I.:.= ! ; i
e » - o . ©
| o e Y8 eee drive ratio IR Yoo o [. _g
we tL, A o sees . e oo ol : .
{1 2 o[
. " o e R "o
oos oo o PO .
*e o e % H
l.. - .. * Ld : O.‘
1.4 ™. . . : :
8 N . N Lt ' , . i
. - .e H
2 LA - ¢ o R * 1 ¢ r
N B 3 L 4
Jou® N et . e Os
1« o o P H¥]
1 e . ., o . o_"’
1 L L L displacement ’)
. o . . &
1" :.: * S"..' ¢ ; T -‘.‘.' ° . : i
. %2 A T e e H o
] o 2 o (¥ v |8 i =
o [ememe eees sj [me ® et 8 e T e
N~ L
©{sem 08 oo e EX -e o ..o o sesese e v s @ e cy”nders L
w4 b
~ . onomun we ol (mame ane s 6 _sm o coms mim me e ey L
16 20 25 30 35 25 3.0 835 100 200 300

Figure 2.4: Scatterplot matrix

2.5 Scatterplot Matrix 17

clusters are apparent from Figure 2.3, and can be readily verified to group cars
with 8 cylinders on the left hand side of the figure, 6 and 5 in the middle, and
4 on the right. In effect a map is constructed that charts individual cars based
on the overall similarity of their drive parameters — a Proximity Visualisation, in
other words.

2.5 Scatterplot Matrix

A scatterplot matrix is a collection of scatterplots organised analogously to a co-
variance matrix, with variable a plotted against variable b in the a* row and 5™
column of the matrix [Clevelan84]. The diagonal plots can show the distribution
of individual variables, or simply be placeholders for variable names, as is the
case for the scatterplot matrix representation of the cars data table in Figure 2.4.
Individual scatterplots can reveal correlations between variables, for example lin-
earity, and the complete matrix can be useful for an initial exploration of a data
set. However, the display becomes overwhelming with anything more than a few
variables; lack of a unified representation of data is also a serious drawback.

Definite correlations between attributes of the cars data table can be seen from
Figure 2.4. For example, the weight of a car is proportional to its horsepower,
engine displacement, and the number of cylinders, and inversely proportional to
its drive ratio and mileage per gallon. Thus, the decision to invert the parallel
coordinates for the last two attributes was justified in Section 2.2. The number
of cylinders attribute stands out as having only four levels, and separating most
other attributes into distinct clusters.

2.6 Iconographic Displays

In an iconographic display each icon or glyph represents a single row of a data
table. Icons can be arranged in a grid, as in Figures 2.5(a) and 2.5(b), to enable
a systematic assessment of similarities and differences between the rows, and also
between the attributes. Alternatively, the position of glyphs in the plane can be
driven by two of the attributes, providing their spatial interpretation is meaning-
ful. An iconographic display can be combined with the corresponding proximity
visualisation, by using icons instead of labelled points, to give the resulting visual
representation a degree of redundancy.

2.6.1 Star Glyphs

A star is composed of equally spaced radii, as many as the number of attributes
in the data table, stemming from the centre. The length of the rightmost spike is
proportional to the value of the first attribute for a given row; the remaining at-
tributes are assigned to their spikes counter clockwise in this manner [Fienberg79].

18

2. Multivariate Visualisation Techniques

5N

Buick Estate Wagon

BN

Ford Country Squire Wgn

N

Chevy Mallbu Wagon

Chrysler LeBaron Wgn

"

Chevette

4

Toyota Corona

¢

Bulck Estate Wagon

&

Ford Country Squire Wgn

)
[}

Chevy Malibu Wagon

9

Chryster LeBaron Wgn

Toyota Corona

v

Datsun 610

r

Dodge Omni

&

Audi 5000

&

Volvo 240 GL

7

Saab 89 GLE

&

Peugeot 694 SL

Datsun 5§10

Dodge Omni

Audl 6000

Voivo 240 GL

Saab 99 GLE

Peugeot 684 SL.

wd

Buick Century Special

N/
A

Mercury Zephyr

«

Dodge Aspen

A

AMC Concord D/L.

al

Chevy Caprice Classlc

A

Ford LTD

Mercury Grand Mamuls

Dodge St Regis

O

Ford Mustang 4

XK

Ford Mustang Ghla

g

Mazda GLC

[

Dodge Colt

(a) star glyphs

Bulck Century Special

@
1

Mercury Zephyr

Dodge Aspen

AMC Concord D/t

I
N

Chevy Capiice Classic

IS
S~

Ford LTD

(b) Chernoff faces

¢

Mercury Grand Marquls

S

Dodge St Regls

Ford Mustang 4

Ford Mustang Ghla

Mazda GLC

Dodge Colt

=

AMC Splrit

N

VW Scirocco

Ne—

Honda Accord LX

@

Buick Skylark

x>

Chevy Citation

<X

Olds Omega

AMC Splrit

Olds Omega

Figure 2.5: Iconographic visualisations

— ASY

Pontiac Phoenlx BMW 320
Plymouth Horizon VW Rabbit

-

Datsun 210

N

Fiat Strada.

7

VW Dasher

R

Datsun 810

G

BMW 320

VW Rabblt

Datsun 210

Fiat Strada

VW Dasher

Datsun 810

2.6 Iconographic Displays 19

The result of applying this prescription to the cars data table is shown in Fig-
ure 2.5(a).

The clarity of a star display will suffer as the number of attributes increases,
and grouping correlated attributes to provide smooth transitions between spikes
might be beneficial. The similarity or dissimilarity of a pair of stars can be ap-
preciated visually; however, gaining a proper overview of a large data table can
become a tedious task. This sort of processing is best left to the computer, so
that proximity between rows of a data table can be represented in a direct spatial
form, as in Section 2.4.

Stars of Figure 2.5(a) can be classified into a few tight groups. This clustering
would become more obvious with the aid of automatic or interactive sorting of
stars, to bring the similar ones together. However, this will amount to carrying
out multidimensional scaling, as pointed out earlier. An interesting observation is
that roughly circular stars, e.g. the one for ‘Ford Mustang Ghia’, appear in the
middle of the proximity visualisation of Figure 2.3; many more analogies can be
found in both visualisations.

2.6.2 Chernoff Faces

Chernoff faces take advantage of the natural familiarity and recognition of human
faces [Chernoff73]. Each facial feature represents one variable; obviously, some
features are more prominent, and a possible assignment in the decreasing order of
importance is:

e area of the face

e shape of the face

e length of the nose

e location of the mouth

e curve of the smile

e width of the mouth

e location, separation, angle, shape, and width of the eyes
e location of the pupil

e location, angle, and width of the eyebrows

In total, 15 attributes can be represented, and additional variables could be en-
coded by making faces asymmetric [Flury81]. The trouble is that the appearance
of a face will vary with the order of assignment of variables to facial expressions,
and perceived similarity of faces will be affected.

Figure 2.5(b) is a collection of Chernoff faces representing the rows of the cars
data table. Only the first six facial features are used, and the rest is set to a

20 2. Multivariate Visualisation Techniques

neutral expression. Overall, faces are as effective at portraying similarities as star
glyphs. The differences between rows can be detected; however, their magnitude
is much more difficult to judge, without detailed knowledge of the assignment of
attributes to facial features. Also, it is not possible to tell anymore which icons
represent average or extreme observations, e.g. compare ‘Ford Mustang Ghia’ and
‘VW Rabbit’. Additionally, Chernoff faces share disadvantages of star glyphs, and
thus are inferior.

2.7 Summary

The advantage of multidimensional scaling over other multivariate visualisation
techniques is that it is independent of the number of variables. As long as it is
possible to ascertain the high dimensional distance between observations, by using
dissimilarity coefficients of Section 1.2 for example, a low dimensional embedding
can be found. The type of variables is also immaterial, and even heterogeneous
data can be visualised with the aid of the general dissimilarity coefficient (1.8),
including nominal variables, which elude other multivariate visualisation methods.

The multidimensional scaling technique scales well with the number of obser-
vations, since labelled points or small icons constitute the visual representation
of individual observations. Thus, identification of observations is provided, and
their actual relationships are represented by proximity. With more observations,
the density of icons will increase; however, their relative proximity will be unaf-
fected. Therefore, an informative overview of the data set is presented, highlight-
ing clusters and outliers. Interesting groups of observations can then be analysed
separately with this or other multivariate visualisation techniques.

Chapter 3

Multidimensional Scaling

This chapter presents an evaluation of algorithms for generating proximity visuali-
sations. Dissimilarities between pairs of objects from a data collection are given by
a suitable coefficient, and then approximated by distances between corresponding
pairs of entities in a visual representation. The quality of this approximation is ex-
pressed as a loss function, which yields the optimal arrangement at its minimum.
The algorithms under test are heuristics for numerically minimising this function.
Their effectiveness is measured for a representative sample of data collections, and
the relative ranking is statistically inferred, as well as illustrated with examples.

3.1 Problem Definition

Suppose that we are given a collection of n objects and a way of determining the
dissimilarity between any pair A = [6;; : 4, = 1,...,n]; as set out in Section 1.2.
Metric Multidimensional Scaling (MDS) [Borg97, Cox94] is a procedure for finding
a configuration X* = [z}, : a = 1,...,p] of n points in a p-dimensional space,
usually Euclidean, such that point «} = (z,,. .., a:;f‘p)T uniquely represents object
i, and the Euclidean distance between points x; and z}:

p

— \l > (ot — @) (3.1)

* *

dij(X") = |

approximates the corresponding dissimilarity d;;, for all pairs of objects (¢, 7):

1<

In general it is sufficient to consider each pair of objects (4,7) just once: i < 7,
since dissimilarities are assumed to be symmetric. Elements of an asymmetric
matrix A have to be averaged out prior to the analysis: 0ij = 05 = (&] - Sﬂ) /2
[Borg97].

22 3. Multidimensional Scaling

3.2 Loss Functions

For a given configuration X the approximation error in representing the dissimi-
larity between objects 7 and j can be defined as follows:

ei; 2 |dig(X) — 8] (3.3)

A least-squares MDS technique defines a loss function that is a weighted and pos-
sibly normalised sum of errors over all pairs of objects (4, 5), and thus it penalises
the overall approximation error. A minimum of this function over X is subse-
quently found through numerical optimisation, to yield the desired configuration
X*.

3.2.1 Raw Stress

Raw Stress [Kruskal64] is the most elementary MDS loss function, as it simply
accumulates the total squared representation error:

o(X)E e =3 (dy(X) — dy) = 3 (dy(X) — 1(6)) (3.4)

i<j i<j 1<j

where a?ij is the disparity between objects 7 and 7, which is arrived at by applying
transformation f to the given dissimilarity d,;. Since dissimilarities are calculated
from object attributes, relationships, or other features (see Section 1.2), and there
is no error or uncertainty associated with this process, the correct way to model
the disparities is to apply a linear transformation to the dissimilarities: czij =
f(8:5) = adij, where a is chosen to minimise the value of Stress.

The optimal a, which shall be denoted as a*, can be found analytically by
differentiation. Alternating this step with an iterative improvement to X provides
an efficient procedure for finding the solution X * satisfying A, termed ratio MDS
[Borg97]. By considering the dissimilarities directly, we restrict ourselves to an
identity transformation, and arrive at an absolute MDS model. At the other end of
the spectrum, the transformation can be relaxed just to be monotonic, so that only
the rank order of dissimilarities is preserved, because it is assumed to be the only
reliable information (see Section 1.2.9), which gives an ordinal (nonmetric) MDS
model. Nonmetric MDS can be approximated with the ratio model by replacing
the dissimilarities with their rank order a priori [Weeks79, Borg97]. Therefore, we
conclude that ratio MDS is the most applicable for visualisation, and focus our
efforts on this model.

3.2.2 Normalised Stress

Raw Stress (3.4) can only be successfully minimised in practice under the absolute
MDS model. If we permit a transformation of the dissimilarities then by alternat-
ing an update of the configuration X with an update to the disparities [d;;] = aA

3.2 Loss Functions 23

0-(X,a) can be made arbitrarily small, with @ and X shrinking gradually. This
deficiency can be overcome by normalising raw Stress by ¥,; dZ; [Borg97]:

ot i< (di(X) - fzia')Q

on(X) =
2i<j dij

(3.5)

Loss function (3.5), termed normalised Stress, expands for ratio MDS to:

i< (dig(X) — C¥5ij)2
Dics Q26
Tici B(X) = 2035 0i5diy (X)) + 02 25 05
o? Ei<j 5z‘2j

n*(X) — 2ap(X) + o’nf

o®n§
_ 20p(X) = *(X)

a3

on(X,a) =

~ 1 (3.6)

where 7?(X) is a sum of the squared distances di;(X), p(X) is a weighted sum
of distances 8;;d;;(X), and 7} is a constant equal to the sum of the squared dis-
similarities d;, over all pairs of objects (4,7). The optimal o can be found by
differentiating (3.6) with respect to «:

Oon (X,) _ —202p(X) — 2a (—2ap(X) + n*(X))
o atng
_apl(X) — (%)
o3

which is equal to zero for o = n*(X)/p(X). Inserting o* into (3.6) yields:

772(X)_ 2
M) 0
e 772774(X)
?p%(X)
(X)) Y
! (mn(X)>
_ 1o Yicj 0idig (X)
(Ei<j 5%) : (Zi<j d?j(X)) :
= 1—c(A,[dy (X))’ (3.7)

The last term of (3.7) is the square of Tucker’s congruence coefficient ¢ with
dissimilarities and distances [Tucker51]. The coefficient is always between 0 and

24 3. Multidimensional Scaling

1, due to the Cauchy-Schwarz inequality:

S < @pﬁ)% (= qf)% (39)

and the fact that dissimilarities and distances are nonnegative. Hence, it holds
that 0 < 0,(X, a*) < 1, for the optimal scaling constant «.

It is worth noting that scaling the dissimilarities by a factor « is equivalent to
scaling the distances by 1/a:

Sici (dig(X) — abiy)’
2i<; 0125i2j
Tics (07 di(X) — 8)°
Yici 0
Dicy (dig(a7 X) = b)°
Yicj
The derivation of ¢,(b*X) is equivalent to that presented above [deLeeuw77,
Borg97|, and yields b* = 1/a*. However, it relies on the assumption that X

is a local minimum of (3.5), whereas our derivation does not require such an as-
sumption, and thus is applicable to any configuration X.

on(X,0) =

= op(a”'X)

3.2.3 Kruskal’s Stress

Stress formula 1, or Stress-1 for short, is historically an earlier solution to the
scale dependency problem of raw Stress (3.4), with the normalising factor n*(X)
[Kruskal64]:

A N2

2 (X) & Sici (dig(X) — diy)
' Ticj d5(X)

The whole formula is square rooted by analogy of referring to the standard devi-

ation instead of the variance.
Substituting the ratio MDS model yields:

Yicj (dig(X) — B6i;)?

(3.9)

2 —
01(Xa5) - Zi<jdz2j
n*(X) — 2Bp(X) + B°n3
n*(X)
_A2,2
= 1- Qﬁp(;f()x)ﬁ s (3.10)

The minimum of (3.10) over § is obtained by setting the first derivative with
respect to 5 equal to 0:
003X, B) _ fn — p(X)

98 X)L

3.2 Loss Functions 25

8) o = 0.04024 b) 02 = 0.04021 o5 = 0.05934
(@) on (b) o1 (©) (o = 0.05054)

Figure 3.1: Visualisations of a 6 level complete binary tree computed by minimising
different loss functions. The dissimilarity between a pair of nodes is the length of
the path connecting them (see Section 1.2.6)

which yields 8* = p(X)/n3. Inserting 8* into (3.10) gives:

2 ¥ _ 1 _ p(X) 2_ e N 2, o) &
o007 = 1= (LEL) — 1o cla) = an(x,a) Eo @)

Therefore, for a given configuration X, normalised Stress (3.5) is equivalent to the
square of Stress-1 (3.9) if we allow for an optimal scaling of dissimilarities in each
case, and we shall refer to this unified index as Stress (0). Since such a scaling
step is an integral part of any ratio MDS procedure, and is alternated with an
iterative improvement to X, the final solution will be a local minimum of both
of these loss functions. A graphical illustration of this equivalence is presented
in Figure 3.1(a) and 3.1(b). The relationship (3.11) can also be demonstrated by
taking the alternative route of rescaling the configuration X [Borg97], however an
assumption that X is a local minimum has to be made again.

3.2.4 Energy

Any of the loss functions defined previously can be generalised to weight the
contribution of individual pairs of objects, for example weighted normalised Stress
acquires the following form:

det 2i<j Wi (dij (X) - Ciz'j)Q
O (X)) % - (3.12)
i<y Wijdi

Each weight w;; can take any non-negative value, as long as it does not depend
on X. Typical use allows missing dissimilarities to be accommodated by setting
the corresponding weights to 0, and the remaining ones to 1. However, by setting

26 3. Multidimensional Scaling

Wi = cfz_f a new loss function can be obtained, which we shall refer to as Energy:

(d(X) = dy)°

2
on(X) ¥ . 3.13
_)) o1 n(n —1)
The ratio MDS model produces the following expansion, with 3= 5 =
n
= Z 1:
22
dij (X) — 7v6:5)°
i) = 23)15
i<j 77044
296;:d; (X)) — d% (X
— A(Zl_ZVJJ(Z)Q zg()
i<j i<j Y 5z'j
2 diy(X) 1 d?.(X))
= 1=)X[= J N~ wm
(7 g &g % 5
2 1

An optimal v can be found by differentiating (3.14) with respect to 7:

50’E(X,’)/) 2 2
205X = (= 2o+ Jun)

2\
= = ((X) -w(X))
v
which is equal to zero for v* = w(X)/¥(X). Substituting v* into (3.14) yields:

P (X)
w(X)

)
S P W .

di; (X
y

<J 7
2
055 dij (X))
__%(;*g—

0% — 2 (X)
D OB

i<j Yij i<y

O'E(X,’)/*) = 1=

Yi<j Wii0ijdi; (X)
1 1
2 2

(Ei<j wij5§j> (Zi<j wijdy; (X))
= l=cy (Aa [dzJ(X)])2 (315)

= 1-

3.3 Algorithms 27

The last term of (3.15) is the square of weighted Tucker’s congruence coefficient
¢ with dissimilarities and distances [Tucker51]. The coefficient is always between
0 and 1, due to the Cauchy-Schwarz inequality (3.8). Hence, it holds that 0 <
or(X,v*) <1, for the optimal scaling constant .

Energy (3.13) penalises error (3.3) in representing short dissimilarities more
than the same error for larger dissimilarities. Such a proportional contribution of
error is likely to agree with user’s expectations, because it does not matter exactly
how distant dissimilar objects are from a given object, as long as they are far
in relation to similar ones. Figure 3.1 gives a visual comparison of the results of
minimising Stress (3.11) and Energy. Stress, on the other hand, minimises absolute
error, since errors in representing large and small dissimilarities are penalised
equally, and does not preserve the local detail as well as Energy. Therefore, we
prefer to use Energy for proximity visualisation, with the exception of Chapter 5.

For simplicity we drop the normalising constant A\ when deriving MDS algo-
rithms, and minimise raw Energy instead:

(di(X) - sz'j)Q

def
opr(X) = Z) (3.16)
1<J 1]
which can be derived from the weighted form of raw Stress (3.4):
5 \2
O'r,w(X) d:ef Z Wiy (dZ](X) - d”> (317)

i<J

by setting the appropriate weights. We note that minimising (3.16) is equivalent
to minimising (3.13), and we use the normalised form when reporting results.

(3.16) may be interpreted as the total energy of a fully connected spring system,
with an anchor for each object, and springs connecting it to all other anchors. The
relaxed length of a spring connecting two anchors is given by the optimally scaled
dissimilarity between the corresponding pair of objects. The actual length of the
spring is the Euclidean distance between the anchors. The spring constant is ci;f
for a spring connecting anchors ¢ and j, which causes the spring to be rigid if d;; is
small in relation to other dissimilarities, and therefore to contribute substantially
to the value of (3.16) if deformed. Equilibrium of this spring system corresponds
to a local energy minimum.

3.3 Algorithms

Each of the least-squares MDS algorithms presented here is an instance of a well-
known function minimisation heuristic. Such a heuristic constitutes a theoretical
framework, and typically a large number of options or variations contributed by
practitioners in the operational research and other fields. Some of the choices are
simply determined by the application domain, others can be made on theoreti-
cal grounds, or empirical evidence — either found in literature or established on

28 3. Multidimensional Scaling

our own. In each case we outline the heuristic framework, giving references to
dedicated texts, and detail the decisions and customisations made to provide a
complete algorithm.

3.3.1 Classical Scaling

Classical scaling [Gower66, Cox94, Borg97] is an analytical technique for solving
the metric MDS problem, and it was the first to be developed. Dissimilarities are
treated as Euclidean distances, and a matching configuration Z is recovered from
the eigendecomposition of —2JA®J = ZZT, where J is the centring matrix,
and A® = [65;]. p < n— 1 eigenvalues will be non-zero, and they represent
the minimum number of dimensions required to preserve all the dissimilarities, so
that (3.2) holds exactly. Selecting p' < p largest eigenvalues and corresponding
eigenvectors is equivalent to selecting the first p' principal components Y of the
p-dimensional configuration Z, i.e. the projection of Z onto p’ orthogonal axes
that preserves the maximum variance (see Section 4.3). This combined proce-
dure is termed Principal Coordinate Analysis (PCO)! [Gower66], and analytically
minimises the following criterion over Y':

S (d3(2) - d5(Y)) =3 (6 — d%(Y)) (3.18)
i<j i<j
Note, that under the projection d;;(Y) < d;;(Z) = &;;, for all pairs (i,), ie.
distortion of the dissimilarities will be biased, unlike for the least-squares MDS
loss functions of Section 3.2.

3.3.2 Newton-Raphson

The initial MDS algorithm that we have developed is based on the generalised
Newton-Raphson (NR) method [Press92]. It is an iterative technique for solving a
vector equation of the form f(x) = 0. If f(x) represents the first partial deriva-
tives of a multidimensional function e(a) this procedure will find an extremum of
this function.

The gradient vector g and the Hessian matrix H of loss function (3.16) at

point @y = (Tg1,... ,:Ekp)T can be established analytically (see Appendix A for
details):
B0, (X du(X) —d
goly) = %Q =25 _k_l(__)_T’ﬁ(mka — Ty)
Tka £k dk‘l(X)dkl
9 Z (Tha — T1a) (Tro — Tip) L a#b
H (w) — 820ET(X) — I#k d%l(X)dkl
ab\k 0T o 0%k 9 _l_ _ 22 d%l(X) - (mka _ xld)Q : a=b
ey ot di (X) dis

tin our work we have used an implementation of PCO — DistPCoA — made publicly available
by Philippe Casgrain: www.fas.umontreal.ca/BIOL/Casgrain/en/labo/distpcoa.html

3.3 Algorithms . 29

An extremum of the loss function with respect to point x; can then found by
repeatedly applying the NR iteration:

&, = xx—H'g
H (&, —x;) = —g

Let the 5™ column of H be denoted by H; = (Hy;, ..., Hy)"

c’ék — mk+(det(_97H2,-..,Hp) det(H1,~—g,...,Hp)

det H ’ det H ’

det (HlaHQa"'a_g)

T
. 1
’ det H) (3.19)

Figure 3.2(a) depicts the Energy function (3.13) for a trivial case when there is
a single constant (fixed) point x; to optimise @) against in 2 dimensions. A circle
of radius cffk centred at @y is the set of all minima. There is a local maximum
at @y where the function takes value 1. However, it is a singular point, as is
apparent from Figures 3.2(b) and 3.2(c); consequently, gradient g does not have a
root at @y. Moreover, if @), gets inside the minimum circle it will be repelled with
a subsequent NR iteration (3.19), because the direction of g is reversed over the
cusp at point @ ¢, whereas Hessian H is not affected. This argument extends to the
case of multiple constant points; see Figure 3.3 for an illustration. Because of the
parabolic characteristic of the component Energy functions, no new maxima can
be introduced by their summation, and thus the NR method will only converge to
a minimum. Unlike the steepest descent method [Press92] (also see Section 3.3.5)
an upward move — a transition from x;, to &) that increases Energy — is possible
with an NR iteration, especially if the current solution is far from a minimum.
This will prevent the method from getting stuck in a poor local minimum, in
general. ~

To minimise the loss function with respect to the whole configuration, the
algorithm applies a single NR. iteration (3.19) to each point in turn, and continually
cycles through the configuration until convergence occurs. Since the focus of our
work is visualisation, we only need to consider MDS in at most three dimensions.
By deriving analytical formulae for up to 3 variables and hardcoding them, we
have been able to substantially increase the overall efficiency of the algorithm.
An algorithm for drawing general undirected graphs [Kamada89] also minimises
(3.16) using the NR method, and its basic details are identical.

The sequence in which points are considered when updating the configuration
is randomised to ensure faster convergence [Frick94]. This has a side effect of
randomising output of the algorithm, even if the same starting configuration is
used. To detect convergence a record of previous configurations is kept. The
algorithm terminates if the current configuration is identical to a prior one, to
within a certain level of precision € (NR.epsilon parameter); this can be triggered
either by a genuine convergence or an occurrence of a cycle. Using a hash value
of a complete configuration minimises the storage requirements of this scheme,

30 3. Multidimensional Scaling

(a) Surface plot of og () (b) Surface plot of (¢) Contour plot of
Oop(xy)/0Tr1 Oop(xr)/0xr2 (symmet-
rical to 21 derivative)

Figure 3.2: Plots of the Energy function and its first partial derivatives for one
fixed point in 2 dimensions

o

.

v

Figure 3.3: Surface plot of op(xy) for 10 fixed points in 2 dimensions. These
points can be identified as distinct peaks — local maxima. The white elliptical
area encompasses the global minimum

3.3 Algorithms 31

and makes the test for equality of two configurations take constant time. The
Secure Hash Algorithm [NIST95] has been chosen for its property of making it
computationally infeasible to find two different messages — MDS configurations in
this case — that produce the same hash value.

It is possible for an NR iteration (3.19) to result in a radically different new
location of a point from its original one, normally causing a drastic increase in En-
ergy (3.13). This will have a knock on effect on points considered subsequently, and
may result in a perpetual instability of the configuration. This would not consti-
tute a cycle in general, and therefore to trap this behaviour a separate mechanism
is required. A cyclic buffer of size [(NR.buffersize parameter) is used to record the
Energy of the [most recent configurations. If the current configuration is found
to be inferior or equivalent to the oldest configuration in the buffer, a flag is set.
[configuration updates are then performed unconditionally; if the situation does
not reoccur within another | updates the flag is cleared. Otherwise, the flag is
kept set, and € is increased by one order of magnitude. If instability persists € will
increase to a point where any two configurations will be judged equivalent, and
the algorithm will necessarily stop.

3.3.3 Tabu Search

Tabu search (TS) [Glover95] is a meta-heuristic that improves on known numeri-
cal optimisation heuristics by exploiting principles of intelligent problem solving.
The key element is the use of flexible memory to guide the optimisation process
around difficult regions, and allow boundaries of local optimality to be crossed, so
that new regions of solution space can be explored. This is achieved by system-
atically imposing and releasing restrictions on certain search moves (transitions
from one solution to the next), based on their recency, frequency, quality, and in-
fluence. These restrictions can be implemented by directly excluding such moves
and classing them as ‘tabu’ or ‘forbidden’; an alternative is to modify loss function
evaluations for these moves or the probabilities of their selection.

To illustrate the basic principles of tabu search we will describe the main fea-
tures of our initial application of this method to MDS. A search move consists of
applying a single Newton-Raphson iteration (3.19) to a point in the configuration.
Instead of simply cycling through the moves, as is the case for the NR algorithm
(see Section 3.3.2), they are selected based on the optimisation history. If a move
has been recently performed it is classified as tabu, and excluded from consider-
ation for the number of iterations equal to the duration of the tabu restriction.
However, an important exception is taken into account: the restriction is revoked
if the move would result in the best solution found so far. Such a mechanism
for overriding the tabu classification is termed an aspiration criterion. Another
aspiration criterion is used alongside the best solution criterion: aspiration by
search direction permits a tabu move that improves on the current solution if it
also caused improvement the last time it was performed.

For each move its associated value can be determined as the change to the value

32 3. Multidimensional Scaling

of raw Energy (3.16) it would cause if it was applied. Of all admissible (non-tabu)
moves the one with the highest value is selected, as long as it is positive. If no
improving move exists frequency-based memory is used to determine the winner.
The moves are sorted in the descending order of their values, and the one with the
smallest sum of its rank and frequency (count of its prior occurrence) is selected.
A tie is broken by selecting the least frequent move. Frequency memory operates
over the long term, and its application here diversifies the search, driving it into
new regions.

We found however that this algorithm had poor convergence performance. The
cause of the problem was that moves which consistently had large negative values
would only be selected after frequency memory disqualified other moves, i.e. after
a large number of iterations. Such moves are temporarily disadvantageous but
crucial if a minimum is to be found. Consequently, many iterations were being
wasted considering only a subset of the configuration. The second shortcoming
was that in order to calculate move values incrementally between iterations, for
efficiency reasons, a different loss function to raw Energy (3.16) had to be used.
This is due to the fact that (3.16) involves a square root calculation, and its update
for each move cannot be determined analytically, i.e. in fixed time. We overcame
this problem by squaring both terms in the numerator of (3.16):

(%) —)"

UErz(X) défz

d (3.20)
i<j dzzj

which can be derived from weighted S-Stress [Takane77] by setting w;; = d;j?:

02 (X) & Y wyy ((X) — d2)” (3.21)

i<

However, the expanded analytical formulas for updating (3.20) were complicated
and expensive to compute. '

The reason that we thought TS should perform better than NR is that it
would not indiscriminately apply the moves, and hence could prevent configuration
instability altogether. Since it is important for all points to be updated regularly,
but avoid drastic moves (see Section 3.3.2), we decided to rely solely on frequency
memory for selection, combined with move values, in the revised version of the
algorithm. The value of a move is defined as the contribution of the originating
point &; to the overall value of (3.16), i.e. it is the total energy of springs stemming

from it:
(s~ dy).
ore(@) = 3 AL
A di
These values can be updated between iterations with little overhead. The move
with the lowest sum of its value rank in descending order and its frequency is
selected, favouring the least frequent one if there is a tie. This will have an
effect of keeping frequency of all moves roughly equal, and making subsequent

(3.22)

3.3 Algorithms 33

selection of a drastic move very likely, which will give the corresponding point an
opportunity to finally assume a favourable location. The termination criterion is
the same as in the NR algorithm, i.e. when the configuration reaches stability up
to a desired level of numerical precision (TS.epsilon parameter).

3.3.4 Genetic Algorithm

Genetic Algorithms (GAs) [Goldberg89, Reeves95] exploit random search in an
intelligent manner to solve optimisation problems. Because they work with a cod-
ing of the parameter set, and not the parameters themselves, they are generic
and largely domain independent. To steer the process only some measure of per-
formance or fitness is needed, for example evaluation of the loss function in the
case of a function optimisation problem. (GAs draw a parallel to the mechanics
of natural evolution. A population of candidate solutions (chromosomes) is main-
tained, and they are selectively combined by means of a crossover operator into
a new generation of solutions. A mutation operator is applied probabilistically to
diversify the population, and prevent premature convergence. Although selection
is random, it is biased towards solutions with high fitness, giving their parameters
(genes) a better chance of propagating to subsequent generations, and therefore
influencing the optimisation process. A record of the best solution is kept, and
returned upon termination.

Because MDS is a continuous optimisation problem, we have decided to use
the real coding [Surry95] in our algorithm. A solution is encoded as a vector of
floating-point numbers (genes), which directly correspond to coordinates of points
in the configuration. Blend crossover (BLX) [Surry95] is used for recombining
genes. It takes a parameter o that controls its precise effect, and a pair of values
z and y to recombine. Assuming z < y without loss of generality, its outcome is
a uniform random number drawn from the interval [z — a(y — z),y + a(y — z)].
BLX, operates on the range [z,y], and is therefore biased towards the centre.
This effect is countered by using o = 0.5. A new solution is derived from a pair
of chromosomes by applying BLXq 5 to each pair of corresponding genes.

The most appropriate form of mutation to use with the real coding is creep
mutation [Surry95]. Instead of replacing the affected gene with a new random
value, the current value is perturbed by a small amount. This can be achieved by
adding on a number drawn from the Gaussian distribution of zero mean and stan-
dard deviation sigma (GA.sigma parameter), for example. The crossover operator
is most effective when the population is diverse. At this stage of optimisation too
high a level of mutation will interfere with crossover. However, once the popula-
tion starts to converge, crossover becomes ineffective, and a good rate of mutation
is essential if different solutions are to be explored, and optimisation to continue
[Reeves95]. Therefore, we concluded that an adaptive rate of mutation would work
best. Whenever BLX is attempted on a pair of genes that are identical up to a
certain level of precision (GA.epsilon parameter), Gaussian mutation is performed
instead. This form of mutation reintroduces diversity only when needed.

34 3. Multidimensional Scaling

The final facet of the algorithm is the process of selecting which chromosomes
will undergo the genetic operations described above, to form the next generation.
To steer the optimisation process, it is important to give a higher likelihood of
selection to solutions with high fitness f(X) = ¢ — og(X), where ¢ > og(X) for
all X. However, simply making the probability of selection proportional to fitness
has undesirable effects. Initially, a relatively good solution could take over the
population, and cause it to converge prematurely around a poor local minimum.
At the later stages of optimisation, when the population has largely converged,
and differences between solutions are small, best solutions will not receive enough
emphasis. The desired level of competition among members of the population
can be attained throughout the algorithm run if rank of solution fitness is used
instead, as is effectively done in the tournament selection scheme [Reeves95].

Tournament, selection takes its name from performing a tournament on a ran-
dom subset of ¢ solutions from the population of size m (GA.populationsize pa-
rameter), and choosing the solution with the highest fitness value as the winner.
This selection is performed m times, and the subsets are determined by randomly
perturbing the population sequence, and taking successive groups of ¢ elements.
Once the pool of solutions is exhausted, a new permutation is created; ¢ repeti-
tions are needed overall. Setting ¢ = 2 results in an adequate selective pressure
[Surry95], in that the best solution will be chosen twice, the worst not at all, and
the median once on average.

Successive pairs of tournament winners are subject to the combined crossover
and mutation operator twice, to yield two new solutions. m needs to be divisible by
2t to ensure that these pairs come from a single permutation, and hence avoid the
possibility of a solution being mated with itself. A new generation of m solutions
is created in this way, and the algorithm can proceed to the next iteration. If a
superior solution is encountered it is noted, otherwise the best solution found so
far replaces the worst solution in the new population. This mechanism is a form of
elitist selection [deJong75|, and guarantees monotonic improvement of maximum
population fitness, and ultimately convergence. Termination occurs after a set
number of iterations (GA.iterationlimit parameter) have been performed without
finding an improving solution.

3.3.5 Majorization Algorithm

Iterative Majorization (IM) [Ortega70, deLeeuw77] belongs to a class of descent
techniques for function minimisation [Press92], as it generates a non-increasing se-
quence of function values. If a complicated function f to be minimised is bounded
from below, like Energy (3.13) for example, IM will converge to a local minimum
of f. Instead of minimising f(z) directly, an auxiliary function g(z, z), where z
is a constant, is defined and minimised, to get an approximation to a minimum
of f(z). By choosing g to be quadratic in z, its unique minimum can be found
analytically, although other function forms can be useful, too. g has to meet two
conditions to be called a majorizing function of f:

3.3 Algorithms 35

1. f(z) < g(z,2), forall x
2. f(2) = g(z, z), with z referred to as the supporting point

Assuming that z* is the minimum of g(z, 2) over z, the majorizing conditions
imply the following chain of inequalities:

fz™) < g(a*,2) < g(z,2) = f(2) (3.23)

Once z* is found it is used as the new supporting point: 2’ = z*, and thus a better
approximation to the minimum of f is established iteratively.

The principle of IM can be easily generalised to multivariable functions. There
exists a quadratic majorizing function for weighted raw Stress (3.17), and it forms
the basis of the SMACOF algorithm [deLeeuw77, Borg97] (the acronym stands
for Scaling by MAjorizing a COmplicated Function). The scale dependency of
(3.17) (see Section 3.2.2) is circumvented by explicitly normalising {d;;}, so that
Yi<; 'wijczz?j = n(n — 1)/2. By setting each w;; = 552 this algorithm can be made
to minimise raw Energy (3.16). The explicit normalisation under the ratio MDS
model (di; = ady;) becomes;

- n(n—1)
Z5ij2“25i2j = T 9
<]

> 1 = 1

i<j i<j
a = 1

that is we arrive at the absolute MDS model with loss function (3.16).

The most recent implementation of the SMACOF algorithm is ProxScal ver-
sion 6.4 [Busing97], and we decided to use it as a benchmark for our MDS algo-
rithms (see section 3.5). The stopping criteria for the algorithm are met when
either the rate of change of Energy (3.13) drops below a specified threshold value
(ProzScal.rate parameter), or a maximum number of iterations has been reached
(ProzScal.iterationlimit parameter).

3.3.6 Simulated Annealing

Simulated Annealing (SA) [Dowsland95] generalises descent methods of local op-
timisation (see Section 3.3.5 for an example) by allowing uphill moves, i.e. ones
increasing the value of the loss function. It is hoped that by introducing such
moves the method will be able to escape local minima, and ultimately converge to
a global minimum?. To satisfy this objective the acceptance probability for an up-
hill move has to be related to the magnitude of the increase, and the optimisation
history. A convenient formula can be borrowed from thermodynamics:

SE

p(0E) = exp <—ﬁ> (3.24)

fwe use the indefinite article because there may be many distinct solutions with the same
globally minimal value of the loss function

36 3. Multidimensional Scaling

which gives the probability of an increase 6F in energy at temperature T'. k is
Boltzmann’s constant, and is obviously meaningless in the function minimisation
context, thus the whole denominator is replaced by a single parameter ¢, although
the thermal nomenclature is retained. For negative 6 E the formula (3.24) produces
p(6E) > 1, thus a downhill move is always accepted. Initially the temperature is
high, and so is the probability of accepting an uphill move of a given magnitude.
During the course of the optimisation the temperature is reduced, and so is the
associated probability, until both attain low enough values for the procedure to
effectively reduce to a very slow descent, at which stage it can be stopped. SA
draws obvious analogies to the physical process of annealing, as it originates from
simulation studies in this field [Metropol53, Kirkpatr83).

At a given temperature ¢ all n points in the configuration are considered one
at a time. A move is generated by adding a deviate from the Cauchy distribution
to each coordinate of point x;:

Zip = Ty, + ttanp (3.25)

where p is drawn uniformly from (—7/2,7/2), and temperature ¢ is acting as
the scale parameter of the distribution. The update formula (3.25) will produce
Gaussian like local displacement most of the time, with an occasional long jump,
which allows radical moves to be tried even at low temperatures in a controlled
manner. Thus temperature can be reduced quicker, compared to using a deviate
from the Gaussian distribution in (3.25), while maintaining the properties of global
optimisation [Szu87].

The new value of raw Energy (3.16) can be calculated efficiently since only one
point is affected, by maintaining a breakdown of the contribution (3.22) of each
point to the overall value, as in Section 3.3.3. Rather than calculating the accep-
tance probability from (3.24), and comparing it with a uniform random number
p € [0,1] to decide whether to accept the move, the maximum acceptable value of
(3.22) can be calculated in advance by rearranging (3.24):

{=op(®:) —tlnp (3.26)

allowing the calculation of o, (&;) to be aborted as soon as it exceeds & [Wright89)].
This modification improves the performance, especially when the rejection ratio is
high. There is no need to randomise the order of points, as in Section 3.3.2, since
not all the moves will be accepted according to (3.26), and thus the sequence of
accepted moves will automatically be scrambled.

Central to the design of a simulated annealing algorithm is the choice of a
cooling schedule, i.e. the manner in which the temperature parameter ¢ is reduced.
It is a common observation that most of the useful work is done in the middle of
the schedule [Dowsland95], and thus it is important to chose an appropriate range
of temperatures, over which the cooling occurs. However, the optimal temperature
range is not only application dependent, but will be different for every instance
of the problem, in general. The actual temperature reduction function is less

3.4 Experimental Setup 37

important, and a geometric function #;;1 = at; is the most common choice in
practice, for some o € (0,1) (SA.geometric parameter) [Dowsland95].

Since the amount of useful work done by the algorithm is the overriding con-
sideration, we decided to specify a target acceptance ratio f (SA.acceptance pa-
rameter) instead of prescribing the temperature range [Dowsland93]. The actual
acceptance ratio y is the proportion of both downhill and uphill moves accepted
to the total number of moves n at each temperature. At high temperature many
moves generated by (3.25) will result in a significant increase to (3.22), and ac-
cording to formula (3.26) will be rejected, thus p will be low. Conversely, at lower
temperature more moves will be downhill, and the remaining uphill ones are likely
to be more local, and cause smaller increases to (3.22), therefore, u will be higher.

Temperature is updated according to the following formula:

tz‘+1 = a(ﬂ_“")”ti (327)

If temperature ¢; is too high p; will be less than fi, and for each deficit acceptance
temperature is multiplied by a, and thus reduced in proportion to the deficit. Con-
versely, too low a value of ¢; causes y; to be greater than fi, and the temperature is
divided by a for each surplus acceptance, i.e. proportionally increased. Therefore,
this schedule will eventually converge at iteration j to a state where uy ~ [, for
all subsequent iterations k£ > j. The speed of this convergence is dependent on
the value of a and ty (SA.initialtemperature parameter), although we expect the
algorithm to be fairly insensitive to their exact choice, as only the value of i de-
termines the equilibrium temperature. The algorithm goes through a set number
of temperature updates (SA.iterationlimit parameter), and maintains a record of
the best solution generated.

3.4 Experimental Setup

In order to evaluate the relative merits of each algorithm described in Section 3.3,
we used a test bed consisting of 66 data collections: 2 dissimilarity matrices, 2
image collections, 6 graphs, and 56 data tables (see Section B.1 and B.2 in the
appendices for details). The number of objects in a collection ranged from 9
to 1484, with the median value of 159. Since least-squares MDS algorithms are
heuristics for function minimisation, and can only be expected to find local minima
in general, we decided to scale each data collection 10 times, to give us a more
complete picture of the algorithms’ performance. We recorded the minimum and
average Energy (3.13) values of 10 trials, and the mean running time per trial for
every combination of data collection and algorithm. PCO is an analytical method
(see Section 3.3.1), and only a single trial per data collection was necessary.
Parameters of the algorithms were fixed to the following values:

e p = 2, dimensionality of MDS configurations

o NR.epsilon = TS.epsilon = 0.001, chosen on the basis that such a level of
accuracy is sufficient for visualisation, i.e. on the order of 1000 x 1000 pixels

38

3. Multidimensional Scaling

GA.iterationlimit = ProzScal.iterationlimit = SA.iterationlimit = 1000
NR.buffersize = 100, corresponds to the choice of iterationlimit

GA.sigma = 0.01, GA.epsilon = 107%, determined after some informal ex-
perimentation, which demonstrated equivalent performance over a broad
range of values

GA.populationsize = 32, a compromise between diversity of search for a
global minimum and running time; population size as small as 30 has been
reported to be adequate for many problems [Reeves95]

ProzScal.rate = 10712, this level of accuracy was used in collecting Energy
measurements for all algorithms

SA.geometric = 0.99, a typical choice amongst SA practitioners [Dowsland95)

SA.initialtemperature = 1.0, well above the equilibrium temperature for all
data collections in the test bed.

SA.acceptance = 20%, this value was determined through a formal exper-
iment. As it is argued in Section 3.3.6, the acceptance ratio ji strongly
determines the cooling schedule, and thus the performance of the algorithm.
SA with g € {5%,10%, 15%, 20%, 25%, 30%} has been applied to the test
bed to decide where the optimal range lies. Table 3.1 shows the results of the
two-tailed Wilcoxon signed-rank test [Siegel56] for pairs of adjacent choices
of [i, when considering the minimum and average Energy achieved over 10
trials. The parametric ¢ test could be used with the experimental measure-
ments instead. It is slightly more powerful, but at the expense of making
restrictive assumptions about the distribution of the measurements. The
choice of a non-parametric test over a parametric alternative is discussed
also in Section 3.5.

The null hypothesis Hy is that minimum Energy for both acceptance ratios
under consideration is equivalent, overall. At the outset p = 0.05 significance
level was assumed, on the basis of which Hy for (5%, 10%), (10%, 15%), and
(15%, 20%) is rejected. The direction of the differences can be decided from
the relevant rank sums in Table 3.1(a), and it can be seen that Energy is
the lowest at 20%. There is no evidence to reject Hy for (20%,25%) and
(25%, 30%), implying that these acceptance ratios are tied in terms of min-
imum Energy. According to Table 3.1(b) the average Energy achieved at
30% is significantly worse than at 25%, however. At 20 and 25% measure-
ments are tied again, alongside that for 15%. Therefore, the optimal value
of i falls between 20 and 25%, and we decided to use i = 20% without
further experiments, as we expected the performance across this range to be
equivalently good.

3.4 Experimental Setup 39

Table 3.1: Wilcoxon test results for SA.acceptance parameter

relationship® # cases’ rank sum® p ¢
1005 53 1938 0.001
1015 13 273
151 10 49 1868 0.001
15 110 17 343
20] 15 43 1599 0.001
20 115 23 612
25] 20 39 1384 0.076
25 1 20 27 827
30} 25 36 1109 0.985
30125 30 1102

(a) minimum Energy

relationship # cases rank sum D
1015 50 1861 0.001
1015 16 350
15] 10 41 1564 0.003
15110 25 647
20)15 32 1157 0.746
20115 34 1054
25 20 30 1151 0.775
257120 36 1060
30425 27 778
30 125 39 1433 0.036

(b) average Energy

°¢ | u denotes that Energy for acceptance ratio t% is lower than for u%, and ¢ 1 u implies
the opposite

bthe number out of 66 cases for which the relationship holds

cabsolute differences in Energy for both values of the acceptance ratio parameter across all
cases are ordered on their magnitude. Ranks for which differences are negative are summed
separately from the positive ones, and their total is Zﬁil r = 2211. These two sums should be
roughly equal under Hy: no overall difference in Energy for both acceptance ratios

dprobability of rejecting Hy when it is true, nominally an acceptable value — the significance

level of the test — is no greater than 5%

40 3. Multidimensional Scaling

Table 3.2: Friedman test results for minimum and average Energy

algorithm minimum average
NR 2.86 3.27
TS 2.29 2.80
GA 4.11 3.89
SA 3.27 2.67
IM 2.55 2.61
PCO 5.92 5.76
X2 171.38 137.33
W 0.519 0.416

x2 is Friedman’s chi-square statistic; the critical value at p = 0.001 level is 20.52

W is Kendall’s coefficient of concordance; it ranges between 0 (no agreement between cases)
to 1 (complete agreement); the critical value at p = 0.001 level is 0.062
The figures in rows 2-7 are mean ranks across 66 cases, which are computed by summing the
relative order of minimum or average Energy for a particular algorithm over all cases, and
dividing by their total number

3.5 Statistical Analysis

The statistical analysis of MDS algorithms of Section 3.3 is structured into three
distinct parts: minimum Energy, average Energy, and running time experiments,
each of which consists of 6 related measurements, one for each algorithm, made for
every data collection in the test bed. For such an experimental design there are
two statistical tests: two-way analysis of variance, or its non-parametric cousin,
the Friedman test [Siegel56]. The former can only be used if measurements are
independently drawn from normally distributed populations, these populations
have identical variance, and their means are linear combinations of effects due to
differences in algorithms and data collections. The latter test is more general and
robust, as it does not make any of these assumptions, and we preferred to use it
for our statistical analysis.

3.5.1 Minimum Energy

A Friedman test has been carried out with the null hypothesis Hy of no difference
between algorithms with regard to minimum Energy, and the alternative hypoth-
esis H; of at least one algorithm having a different ranking from the others; the
results are presented in the second column of Table 3.2. The values of both Fried-
man’s chi-square statistic and Kendall’s coefficient of concordance are statistically
significant at a level exceeding 0.001, which allows H, be rejected in favour of
H,. This permits the use of the Tukey Multiple Comparison procedure to test for
significant differences between algorithm rankings in pairs [Keselman77].

Table 3.3(a) demonstrates that PCO has the highest overall ranking, meaning

3.5 Statistical Analysis

41

Table 3.3: Tukey Multiple Comparison results

o

rank comparison Q° D
PCO>TS 15.79 e
PCO>IM 14.64 *
PCO>NR 13.32 *
PCO>SA 11.51 *
PCO>GA 7.90 *
GA>TS 7.90 *
GA>IM 6.74 *
GA>NR 5.43 *
GA>SA 3.62 0.003
SA>TS 4.28 *
SA>IM 3.13 0.010
SA>NR < 4.03 0.244
NR>TS 2.47 0.008
NR>IM < 4.03 0.037
IM>TS < 4.03 0.089
(a) minimum Energy
rank comparison Q D
PCO>IM 13.69 *
PCO>SA 13.42 *
PCO>TS 12.83 *
PCO>NR 10.79 *
PCO>GA 8.09 *
GA>IM 5.59 *
GA>SA 5.33 *
GA>TS 4.74 *
GA>NR 2.70 0.103
NR>IM 2.90 0.005
NR>SA < 4.03 0.003
NR>TS < 4.03 0.045
TS>IM < 4.03 0.165
TS>SA < 4.03 0.159
SA>IM < 4.03 0.439

(b) average Energy

%) is Tukey’s statistic for multiple comparisons; the critical value at p = 0.05 level is 4.03

bthe p value associated with a one-tailed Wilcoxon signed-rank test
¢* denotes a significant Tukey comparison, and thus no need for a Wilcoxon test

42 3. Multidimensional Scaling

that it achieves the worst minimum Energy. The comparisons between GA and
the remaining algorithms, except SA, are significant at p < 0.05 level. To verify
the tie of GA and SA, we decided to perform a one-tailed Wilcoxon signed-rank
test, because it is considerably more powerful [Siegel56]. It produces a highly
significant p value of 0.003 (see Table 3.3(a)), which taken together with the mul-
tiple comparison results implies that GA is the second worst in terms of minimum
Energy. The only remaining significant Tukey comparison is that between SA
and TS; additionally, the Wilcoxon test is significant for (SA,IM), (NR,TS), and
(NR,IM) pairs. Thus, it can be inferred that IM and TS are tied in the first
place, and are significantly better than both SA and NR, which in turn are also
equivalent in performance.

3.5.2 Average Energy

The third column of Table 3.2 contains the results of the Friedman test with the
null hypothesis Hy of no difference between algorithms with regard to average
Energy, and the alternative hypothesis H; of at least one algorithm having a dif-
ferent ranking from the others. Both Friedman’s chi-square statistic and Kendall’s
coefficient of concordance are statistically significant at p < 0.001 level, which al-
lows Hj be rejected in favour of H;. The Tukey Multiple Comparison procedure
can subsequently be performed, to find out which pairs of algorithm rankings are
significantly different.

Since PCO is an analytical method (see Section 3.3.1) the minimum and aver-
age values of Energy are taken to be the same. The Tukey comparisons between
PCO and the other algorithms are significant at the 5% level according to Ta-
ble 3.3(b), implying that PCO has the highest overall ranking with regard to
average Energy. The multiple comparisons between GA and the remaining algo-
rithms are significant at p < 0.05 level, except with NR, and this tie is confirmed
by the Wilcoxon test. All remaining Tukey comparisons are not statistically sig-
nificant; however, the Wilcoxon tests of NR versus IM, SA, and TS in turn are
significant at the 5% level. Thus the following ordering can be inferred: SA, IM,
and TS jointly achieve the lowest average Energy, and are significantly better
than NR and GA, which are tied themselves.

3.5.3 Running Time

The algorithms under test have different time complexities: PCO is O(n?) as it is
based on an eigendecomposition of an n X n matrix [Press92] (also see Section 3.3.1
and 4.3), the other algorithms are least-squares techniques, and are O(n?) per iter-
ation¥, except that IM is O(n?) per iteration when minimising raw Energy (3.16),
as it involves a multiplication of two n X n matrices [deLeeuw77, Borg97]. There-
fore, we decided not to perform the analysis of variance on the time measurements,

$follows from the fact that the whole dissimilarity matrix A of order n x n has to be inspected
at every iteration, where n is the number of objects

3.5 Statistical Analysis

43

Table 3.4: Comparison of algorithm running time
algorithm | total time® time ratio® linear fit®
SA 136 n/a n/a
NR 152 1.12 1.34
PCO 165 1.22 1.51
IM 345 2.54 2.74
TS 1074 7.91 9.48
GA 866964 638.36 764.03

“average time in minutes required for a single test trial with the test bed
bratio of average time for a given algorithm to that of SA

“the parameter of a least-squares fit of SA timings to that of each algorithm
dapproximately 60 days

as the majority of data sets in the test bed are small (see Section 3.4), and an
unfair advantage would be given to PCO and IM, which are efficient for such data,
but are quickly outperformed when n grows.

The second column of Table 3.4 reports the average running time of a single
test trial for each algorithm. The fastest algorithm with our test bed is SA, and it
is closely followed by NR and PCO. For convenience, the ratio of running time for
every algorithm to that for SA is presented in the third column of Table 3.4. IM
and TS are considerably slower, but are within one order of magnitude of SA. GA
is by far the slowest algorithm, as it required almost one and a half years of CPU
time of an Intel Pentium II 300 MHz workstation to complete the experiment¥.

The total running time and its ratios in Table 3.4 are peculiar to the compo-
sition of the test bed. To derive a more robust estimation of relative speed of the
algorithms, we decided to perform a linear regression of measurements for SA to
that of other algorithms. The timings for an individual algorithm ¢ are collected
in the vector m, with one element for each data collection in the test bed. The
parameter g; that gives the best least-squares fit of the model m® = g;m4
is taken as an empirical estimate of how much slower algorithm ¢ is compared to
SA, and is reported for each algorithm in the last column of Table 3.4. These
parameters are in a good agreement with the running time ratios, and thus the
conclusions of the previous paragraph hold.

3.5.4 Identifying the Best Algorithm

SA was identified as the fastest algorithm for our experimental settings, while
at the same time sharing the lowest average and second lowest minimum Energy
ranking. Close contenders are IM and TS, which achieved the lowest minimum and

Yactually a number of workstations have been used, and the timings normalised to that of
the 300MHz CPU

44 3. Multidimensional Scaling

Table 3.5: Wilcoxon test results for SA-2500 and hybrid algorithms

SA-2500 hybrid
algorithm | #tcases® rank sum® p ¢ #cases rank sum p
PCO 65 2166 0.001 65 2209 0.001
GA 47 1670 0.001 59 2057 0.001
SA-1000 93 1773 0.001 66 2211 0
NR 30 1203 0.538 47 1623 0.001
IM 34 991 0.469 44 1374 0.001
TS 25 897 0.185 44 1481 0.007
SA-2500 n/a 46 1624 0.001

%he number out of 66 cases for which minimum Energy achieved by a given algorithm was
greater than that of SA-2500 or hybrid

babsolute differences in minimum Energy for both algorithms across all cases are ordered on
their magnitude. The sum of ranks for which SA-2500 or hybrid achieved lower Energy than a
given algorithm is reported; the rank total is Eiil r = 2211. The rank sum should be about a
half of the total under Hy: no overall difference in minimum Energy for both algorithms

“probability of rejecting Hy when it is true, nominally an acceptable value — the significance
level of the test — is no greater than 5%

average Energy, however at a 2.5 and 8 fold increase in running time, respectively
(see Table 3.4). This comparison may be unfair on SA, which exhibits good global
optimisation characteristics, confirmed by the average Energy performance, but
perhaps was not given enough time to refine its solutions, and achieve competitive
minimum Energy scores. Therefore, we decided to re-run the SA tests, setting
SA.iterationlimit to 2500 this time (see Section 3.3.6 and 3.4).

Table 3.5 shows the results of the two-tailed Wilcoxon signed-rank test between
SA-2500 and all other algorithms. The null hypothesis is Hy: no difference in
minimum Energy between SA-2500 and a given algorithm. Hj is rejected for
PCO, GA, and SA-1000; moreover, SA-2500 can be identified to be significantly
better that these algorithms from the relevant rank sums. There is no evidence
to reject Hy for NR, IM, and TS, however. Since SA-1000 was tied with NR,
t00, but worse than the other two algorithms in terms of minimum Energy (see
Section 3.5.1), SA-2500 is only slightly better, and occupies the middle ground.

3.5.5 Hybrid Algorithm

Section 3.5.4 demonstrated that prolonging the SA run did improve the minimum
Energy performance, but not as much as we hoped. We realised that the extra
time could be spent on running a different heuristic after SA-1000, instead. IM
seemed the best choice, as it is a strictly local minimisation procedure, i.e. will

3.5 Statistical Analysis 45

Table 3.6: Linear regression comparison of MDS algorithms

algorithm ratio®
PCO 1.9873
GA 1.0561
SA-1000 1.0476
NR 1.0446
SA-2500 1.0397
IM 1.0018
TS 1.0016

¢overall ratio of minimum Energy for a given algorithm to hybrid

converge to the local minimum nearest to an SA-1000 solution!l. Therefore, the
best configuration of 10 SA-1000 runs for each data collection in the test bed was
used as a starting point for IM, and the final value of Energy (3.13) recorded. The
total time of the test for this hybrid algorithm was 2.87 times that of SA-1000
alone. This is comparable to 2.99 for SA-2500, and 2.54 for IM (see Table 3.4).
The linear regression coefficients (see Section 3.5.3) are also similar at 3.01, 2.99,
and 2.74 respectively. Thus, the best algorithm can be decided on the minimum
Energy performance alone.

The results of the two-tailed Wilcoxon signed-rank test between hybrid and
the remaining algorithms can be found in Table 3.5. The null hypothesis Hy of no
difference between algorithms can be rejected in every case. The rank sums are
in favour of hybrid, thus it can clearly be identified as the best MDS algorithm.
As expected, hybrid improves on SA-1000 configurations for all data collections
in the test bed.

To complete the comparison of the various algorithms described in this chapter,
we decided to perform a linear regression of minimum Energy measurements for
the best algorithm to that of the others. Assuming that measurements for all data
collections in the test bed with a given algorithm ¢ are collected in the vector m®,
the linear model becomes: m® = g;mMtd) Table 3.6 presents all coefficients
a; in the descending order. This ordering is exactly the same as inferred by the
statistical tests, namely: PCO is the worst in terms of minimum Energy, followed
by GA, the next place is jointly occupied by NR and SA-1000; SA-2500 is only
slightly better. TS and IM achieve considerably lower Energy overall, and are
only 0.2% worse than hybrid on average. The improvement between SA-1000 and
hybrid is almost 5%, and fully justifies using a local minimisation heuristic to
refine SA solutions.

Il 1M is a deterministic algorithm, thus for a given starting configuration it will always converge
to the same local minimum

46 3. Multidimensional Scaling

3.6 Qualitative Evaluation

In Section 3.5 we were able to demonstrate by means of statistical tests that the
algorithms of Section 3.3 differ significantly in terms of output quality. It is a
much more objective and efficient method of comparing MDS configurations for
all 6 x 66 combinations of an algorithm and a test data collection, than inspecting
them visually. Nonetheless, it is important to show some examples, so that the
magnitude and character of the differences can be appreciated. For this purpose we
have selected a sample data set from the test bed, which appears in Section B.1
in the appendices as cpu-performance. It is a tabular record of 7 quantitative
attributes for 209 CPUs.

Visualisations produced by all algorithms are arranged side by side in Fig-
ure 3.4. The experimental setup of Section 3.4 has been used, thus the best
configuration of 10 runs for each algorithm is shown, except that the PCO con-
figuration is unique. To ease the task of comparing these visualisations, and only
focus on significant differences, a common orientation of the figures was assumed.
Each configuration has been transformed by Procrustes Analysis [Borg97, Cox94]
with regard to a reference configuration — that for the hybrid algorithm, as it
achieved the lowest value of Energy (3.13) of all algorithms. Procrustes Analysis
seeks the optimal transformation of a configuration to match a given target con-
figuration. Since Energy (and Stress (3.11) for that matter) with the ratio MDS
model are invariant under dilation and rigid motions: translation, rotation, and
reflection of a given configuration, these transformations were allowed.

As can be seen from Figure 3.4(e), the configurations for SA and hybrid —
the reference configuration — are very similar. Since hybrid consists of an SA
run followed by IM, i.e. it finds the local minimum closest to the configuration
produced by SA, such a correspondence was expected.

The level of agreement between a pair of configurations X and Y can be
measured by the Tucker’s congruence coefficient [Tucker51] (also see Section 3.2.2):

Yicj dij(X)di(Y)

(Eiq‘ dzzj(X)) (Ei<j dz?j(Y)) :

The coefficient achieves its maximum value 1 when d;;(X) = 0d;;(Y"), for all ¢, 5.
The congruence coefficient is invariant under dilations of X and Y:

Yicj adi; (X)bdy(Y)

(Ziq‘ GQd%j(XD (Eiq‘ b2d12j(Y)> :

and under rigid motions, since distances are not affected by them. Therefore,
c(X,Y) will not change after carrying out Procrustes Analysis between configu-
rations X and Y, and determines their fit in advance.

Let the configuration for algorithm z be denoted as X®). The value of
e(X 54 X (brid)) \which can be found in Table 3.7, is higher than for any other
pair, and very close to the maximum value possible. Overall, X (™) in Figure 3.4(f)

o(X,Y) = : (3.28)

c(aX,bY) =

3.6 Qualitative Evaluation 47

(2) op(PCO) = 0.0746 (b) o5(GA) = 0.0475

(e) o (SA) = 0.0327 (f) ox(IM) = 0.0325

Figure 3.4: Visualisations of the cpu-performance data table with different MDS
algorithms. Dots represent individual CPUs — rows in the table. Each config-
uration was fitted to the one for the hybrid algorithm by Procrustes analysis;
og(hybrid) = 0.0308. Lines link pairs of corresponding points in both configura-
tions, and thus show the extent of the differences

48 3. Multidimensional Scaling

Table 3.7: Congruence coeflicient for pairs of MDS configurations

hybrid SA M TS NR, GA
SA 0.9989

M 0.9946 0.9938

TS 0.9918 0.9905 0.9923

NR | 09909 09881 09897 0.9921

GA | 09734 09725 009733 0.9748 0.9736

PCO | 0.9783 0.9765 0.9800 0.9796 0.9796 0.9604

corresponds well to X (%4 except that some outliers assume an opposite orienta-
tion with regard to the main group of points. Nonetheless, Energy (3.13) is vir-
tually the same in both cases, and the congruence coeflicient is very high among
these two configurations and also X (#%rid) This is an apt demonstration that
there can exist equivalently good proximity visualisations of a given data collec-
tion, with nontrivial differences between them. This point is emphasised when
considering X (7). which exhibits even more differences to X ") but is judged
similar by both the loss function and the congruence coefficient.

X (VE) ig g significant departure from the reference configuration, and conse-
quently congruence with X4 and XUM) is moderate, relative to the values of
coefficient ¢ for the algorithms considered so far. However, c(X VR X (T5) ig
the fifth highest, despite NR being much worse in terms of Energy, and many
similarities between Figures 3.4(c) and 3.4(d) can be noticed.

PCO and GA have produced very different configurations to that of the hybrid
algorithm, since many long lines can be seen in Figure 3.4(a) and 3.4(b). Val-
ues of the congruence coefficient with configurations for the other algorithms are
relatively low, and ¢(X(P¢0), X(GA)) ig actually the lowest. Energy of X ¢0) ig
much worse than for X (%4 which in turn is inferior to the remaining configura-
tions. The PCO configuration is completely different to that of the least-squares
algorithms. Points are close to two perpendicular lines — principal components
(see Section 3.3.1), and local detail is not represented as well as with the other
algorithms.

3.7 Discussion

Several MDS algorithms have been described in this chapter, and compared on
the basis of their performance with a sample of small and medium-sized data col-
lections. A histogram of Energy (3.13) minima calculated by the hybrid algorithm
for all data sets is presented in Figure 3.5. The distribution of data collections
between buckets is typical of a balanced sample, with most having moderate En-
ergy, and extreme cases being in minority. The minimum Energy for a data set is

3.8 Related Work 49

A
[} < © 293 L 3V} <
[=3 o (=] o o o

Figure 3.5: Histogram of Energy minima calculated by the hybrid algorithm for
all collections in the test bed

indicative of its complexity, and a challenge it represents to an MDS algorithm in
finding a good low-dimensional representation for it. Therefore, we are confident
in the validity of statistical inference presented in Section 3.5, and conclude that
these results go beyond just the data collections considered there.

PCO is shown to achieve inferior results both objectively and subjectively, and
this can be explained by the characteristics of the loss function (3.18) it actually
minimises, compared to Energy (3.13). However, its solutions are unique, and
can be computed efficiently for smaller data sets; consequently, with such data
PCO might serve for other MDS algorithms as the source of a better starting con-
figuration than a purely random one [Kruskal78b|. The least-squares algorithms
are much more effective at minimising Energy. The overall difference in Energy
between the best and the worst heuristic is less than 6%; thus the correctness of
these algorithms is cross-validated.

It is not practical to run GA on standard computer hardware, as it takes
“ prohibitively long to produce its solutions. However, this algorithm can easily be
parallelised [Reeves95], and merits consideration with such an architecture. NR
and SA are the fastest MDS algorithms, and actually perform slightly better than
GA. IM and TS are able to achieve even lower Energy on average, but at the
same time are significantly slower. If one is willing to accept such an increase in
running time then a combination of SA followed by IM performs the best. Such
a hybrid approach takes advantage of the global optimisation characteristics of
Simulated Annealing, in order to find the neighbourhood of a global or a good
local minimum, and converge on this minimum with a descent technique of local
optimisation.

3.8 Related Work

Multidimensional Scaling has been applied in many other areas, and consequently
the literature is vast and dispersed over many periodicals and books. We will not

50 3. Multidimensional Scaling

attempt to give an overview of the developments to date, and refer the reader
elsewhere [Borg97, Cox94]. Also, the Psychometrika journal is the single richest
source of reference for MDS, as it regularly includes articles on the subject. Here,
we give a brief summary of other work directly related to the algorithms discussed
in this chapter.

The graph drawing community proposed a number of algorithms for construct-
ing straight-line drawings of general undirected graphs, and an evaluation of the
five most popular has been carried out [Brandenb95]. The study compared run-
ning time, number of edge crossings, and edge length uniformity across a collection
of 79 graphs. One of the algorithms [Kamadag9] is in fact an MDS implementa-
tion minimising raw Energy (3.16) (see Section 3.3.2). This algorithm was found
to produce drawings of comparable quality to that of other algorithms, with the
least computational cost. This favourable result should, therefore, extend to other
MDS algorithms for this domain. The analysis presented (in the form of charts)
was inconclusive for the aesthetic criteria, and the recommendations were based
purely on running time of the algorithms.

In Sections 3.3.6 and 3.5 it has been demonstrated that the Simulated Anneal-
ing heuristic improves the likelihood of finding a global minimum of a loss function
like Energy (3.13). The Deterministic Annealing approach [Klock97] capitalises on
the benefits of its stochastic counterpart, while avoiding the multitude of choices
and challenges in designing and fine tuning a successful algorithm. It does so by
considering the statistical behaviour of Simulated Annealing as an entropy max-
imisation procedure, and deriving an approximate but computationally tractable
solution. An algorithm for minimising Stress (3.11) based on this method is sub-
sequently proposed.

Chapter 4

Large Scale Visualisation

Abstract data collections can be visualised effectively with Multidimensional Scal-
ing; however, the process becomes very time consuming for large data sets. This
chapter explores alternatives that aim to achieve a substantial speed up, without
sacrificing the quality of visualisation too much. A novel technique is proposed
that combines cluster analysis with least-squares MDS, to reduce both running
time and space requirements of traditional MDS, while adequately representing
proximity relationships in a large data collection. Multivariate statistics provides
an alternative method of visualising data tables, which is equivalent to classical
scaling, but dependent on the number of attributes instead of objects, and thus
more efficient for large data sets. Both methods are compared statistically and
qualitatively on a sample of large data tables.

4.1 Challenges of Visualising Large Data Collec-
tions

The amount of screen space available to each icon representing an object from a
data collection becomes very limited if the collection is large. Here, it is more
important to convey a proper overview of relationships among the objects than
individual detail. Proximity Visualisation is particularly suitable, as it will accu-
rately portray the distribution of objects and clusters. Detailed information can
be accessed by interacting with this overall visualisation. For example, an object
could be singled out, and its attributes shown to the user. Alternatively, a subset
of the objects could be specified with a visual query, and visualised on its own
with more detailed icons, as in Chapter 2.

Traditional multidimensional scaling is unsuitable for visualising a large data
collection, because the amount of pairwise dissimilarities that have to be consid-
ered grows quadratically in the number N of objects (see Section 3.1). However,
there is a degree of redundancy in collecting all (]g) dissimilarities, especially when
no error is present [Young72], as is the case with the dissimilarity coefficients of
Section 1.2. Thus we may attempt to identify and discard unimportant dissimi-

52 4. Large Scale Visualisation

larities without affecting the accuracy of the visual representation.

Let us define the number of degrees of freedom for configuration X of N points
in p dimensions [Young70]:

p(p—1)

dof(X)=p(N —1) ==~

(4.1)

A simple relation has been empirically shown to exist between dof(X) and the
proportion X of dissimilarities that must be retained for an MDS procedure to
successfully recover a matching configuration X [Spence74]:

(3)

dofx) = °
6p(N —1) = 3p(p—1)
A NN -1
6p
A > N for N> p (4.2)

Admittedly, the study is only based on N € {32,40,48} and p = 3, but shows
that there is scope for discarding some dissimilarities without compromising the
recovery of X.

In practice, most large data collections are multivariate tables, for example the
test data of Section B.3 in the appendices. Dissimilarity matrices with a compa-
rable number of objects are rare, as such a huge number of pairwise experimental
measurements would be impractical to obtain, except when derived from an in-
termediate representation, e.g. some sort of summary for each object, which may
be expressed as a multivariate table, anyway. Alternatively, an incomplete design
could be applied, where only a subset of all dissimilarities is collected [Spence74],
adhering to the guideline provided by (4.2) when deciding on the subset size A.
Likewise, large connected graphs are not very common, and disconnected graphs
can be visualised by considering each connected component individually.

The advantage of considering only tabular data is that the variables (columns)
can be manipulated to derive a smaller number of variables, preferably two or three
to facilitate direct visualisation. Attribute clustering is one possibility, whereby
correlated groups of variables are hierarchically aggregated, starting with as many
groups as the original variables [Anderber73]. A particular level in the hierarchy
with the desired number of groups is then selected, and these groups serve as the
new variables. However, a more fine-grained composition of the original variables
is possible with Principal Components Analysis [Pearson01, Hotellin33]. With this
reclassification method, each derived variable is expressed as a linear combination
of the original variables, subject to the new variables being mutually uncorrelated,
or orthogonal in other words.

4.2 Incremental Multidimensional Scaling 53

4.2 Incremental Multidimensional Scaling

An incremental MDS method, that achieves a good compromise between solution
quality and the number of dissimilarities considered, is proposed here. The dis-
carded dissimilarities are those which are not needed to preserve the overall shape
of the MDS configuration. This overall shape is established by first carrying out a
single-link clustering of the objects from a collection using a suitable dissimilarity
coefficient (see Section 1.2). The clustering is used to select a subset of objects,
which make up cluster diameters at a certain level of the cluster hierarchy. Stan-
dard MDS is then applied to this subset — full scaling stage — thus establishing
a skeleton of marker points. The remaining objects are positioned within this
skeleton configuration by only considering their dissimilarities to the fixed objects
— single scaling stage. For a very large data collection the skeleton configuration
can itself be built up incrementally.

The particular choice of an MDS method has little significance to the overall
incremental approach described in the following sections. However, the method
should allow new objects to be added to an existing configuration (single scaling)
with little cost. Least-squares metric MDS fulfils this criterion; see Section 3.3 for
examples of algorithms that could be applied.

4.2.1 Single-link Clustering

To determine an ordering of objects for the incremental method a Minimum Span-
ning Tree (MST) is computed for a fully connected graph, with one vertex for each
object, and edge weights taken to be dissimilarities between vertices. MST is a
connected graph with NV vertices and N — 1 edges, having the minimal cumulative
weight of its edges [Harary69]. Prim’s algorithm [Prim57] is used, as it is the most
efficient MST algorithm for dense graphs [Sedgewic92].

There is a close relationship between a single-link clustering and an MST
[Rohlf82], and the former can be derived from the latter trivially. Edges of the
MST with the greatest weight link the highest level clusters in the cluster hi-
erarchy, and thus define the overall structure of data. The order of objects is
determined by taking vertices of MST edges sorted in descending order of weight,
with only the first occurrence of a vertex noted. Therefore, the position of an
object in the sequence will depend on its structural importance, with the most
important objects coming first.

This discussion assumes no significant effect of outliers. In cases where they are
a real concern, a data preparation stage might be necessary, for example replacing
actual dissimilarities by their rank order (see Sections 1.2.9 and 3.2.1). Other
cluster analysis techniques can be used instead, e.g. complete or average linkage;
however, single-link clustering is the least computationally intensive [Anderber73].

54 4. Large Scale Visualisation

4.2.2 The Algorithm Outline

1. objects are sorted in a descending Minimum Spanning Tree order v, ...vn
2. vy ...v,, are assigned random coordinates; ¢ <— 1

3. full scaling is performed on v; ...,

i

4. Vp;q1...vp,,, are added to the configuration by single scaling with respect
to v ... Uy,

(3

5. 1 -1+ 1, and steps 3 and 4 are repeated until there are no more objects to
add: n;, = N

The choice of n; determines how far to go down the single-link cluster hierarchy in
order to form the first skeleton of marker points. The configuration is established
by performing full scaling starting from random positions. Further objects from
the lower levels in the cluster hierarchy up to a total of ny are then included in
the configuration by single scaling. The extended set of ny points is taken as the
initial configuration for a further full scaling run, and the new skeleton so formed
is enlarged to ny points by single scaling. The process of refining to form a skeleton
by full scaling and then enlarging the configuration by single scaling is repeated
until there are no more objects to be included. Note that the saving in cost arises
because at the final step new objects are incorporated using single scaling only.
These objects are associated with the lowest levels in the cluster hierarchy, and
so may be positioned independently of one another without affecting the overall
structure of the configuration.

A sensible choice of n; — the size of the initial skeleton — is crucial to the
success of the incremental method. The initial full scaling starts from random
positions, and if a large skeleton is to be determined the computational cost may
be high. On the other hand, if too few objects are included the configuration will
not represent the overall structure adequately. It may be advantageous to scale
several times from different random starting points and select the configuration
with the lowest Energy (3.13), since the computational cost is dominated by later
scaling runs, and the quality of the initial skeleton determines the final outcome.

The sequence n. = (nq, ..., N) of constants is chosen in the following way:
Uy = N
U1 = U
n;, = Ug—i41 (4°3)

where £ is the smallest natural number such that u; = ny < ¢ for some constant
¢, and 1 < 1 < k. Thus, the number n; of objects to be included in the initial

. : . ul108a 108w 1 .
skeleton is determined by ¢, for given N and a2 ny = N . The choice
of a suitable value for the exponent « is discussed in Section 4.2.3.

k-1
tcalculated by expanding the sequence n: n; = N® | and solving nkin ny < ¢ fork

4.2 Incremental Multidimensional Scaling 55

Time Complexity
1} O(N?)
2. O(ny) = O(¢) = O(1)
3. O(n?) per iteration, with O(n;) iterations: O(nf)}

(
(n
4. O(n;) per iteration per object, with O(n;) iterations: O((nit1 — ny)nZ) =
O(nit1ng)

T(N) = O(N?*)+ ZO)+ ZO niyne) = O(N?) +I§O(m+1n?)
— O(N?)+ Ongn?_)) = O(N®) + O(N'22) (4.4)

Space Complexity

1. O(N) , dissimilarities are not stored, but computed on demand

2.

o

1)
3. O(n?), dissimilarities are cached for efficiency?’
4. O(n;), dissimilarities are cached for efficiency

(

5. O(N) for the configuration itself

S(N) = +ZO +ZO n;) (N)+I§O(nf)

=1

= O(N)+0(nk_1)—0()+ O(N™) (4.5)

4.2.3 Empirical Characteristics

Table 4.1 shows results of tests run on synthetic data. Each data set consists of
5000 points randomly placed within a 3-, 4-, 5- or 6-dimensional cube, with a unit
diagonal to keep the dissimilarity coefficient — Euclidean distance — uniformly in
the range [0,1]. Incremental MDS, based on the NR algorithm of Section 3.3.2,
has been applied to represent these data in two dimensions. The initial value
of an index, either Energy (3.13) or Stress (3.11), refers to its value after single
scaling from 300 to 5000 points. The remaining columns contain values after 100
iterations of full scaling on 5000 points, 200 iterations, and the final value after
the algorithm has converged. To circumvent the natural variability of the method,

Habels correspond to steps of the algorithm
$this is also the worst case running time of standard MDS: O(N?3)
Ythis is also the space requirement of standard MDS: O(N?)

56 4. Large Scale Visualisation
Table 4.1: Energy and Stress at various stages of optimisation
Energy
data initial 100 iterations 200 iterations final
3D 0.0782655 0.0697988 0.0695496 0.0694058
4D 0.1127830 0.0997244 0.0989172 0.0989170
5D 0.1376181 0.1161879 0.1159678 0.1159672
6D 0.1567037 0.1264447 0.1263261 0.1262402
Stress
3D 0.0847296 0.0636327 0.0641757 0.0643987
4D 0.1315574 0.0944356 0.0926183 0.0926292
5D 0.1779833 0.1125812 0.1117612 0.1117596
6D 0.2166460 0.1253326 0.1248531 0.1245055

each figure is taken as an average of 10 tests. Because Stress is a different loss
function, it is possible for its value to increase when the value of Energy decreases
during a minimisation procedure. This effect can be seen for the 3D and 4D tests
in the last two columns of Table 4.1.

The results indicate that the initial value of Energy in all cases is already quite
low. With 100 iterations it can be brought very close to the final value, i.e. a
minimum. Performing a fixed number of iterations of full scaling, for example
100, on all objects, without caching the dissimilarities, would not affect time and
space complexities of the algorithm.

In order to suggest a suitable exponent « that determines the sequence (4.3) of
constants in the incremental algorithm, extensive testing has been performed on a
sample data set, which appears as nbody-2 in Section B.3 of the appendices. This
data set is a snapshot of an astronomical N-body simulation [Tout97] consisting of
N = 14898 objects with 12 attributes. A range [0.5,0.91] of exponents has been
sampled at intervals of 0.0025. For every exponent o the sequence n = (N%, N)
has been used with the incremental version of the NR algorithm (see Section 3.3.2),
and the final value of Energy and Stress in two dimensions recorded. The test has
been repeated 10 times, and the resulting minimum value of Energy and Stress for
every exponent is plotted in Figure 4.1. The chart also includes a corresponding
plot of the minimum over the first three measurements for each exponent. Best
of 3 and best of 10 plots coincide for the range [0.65,0.91], which indicates that
incremental MDS for large enough exponents is consistent between multiple runs.

It can be seen from Figure 4.1 that the relationship between exponent and in-
dices is negative exponential: f(«) = a+br®, r < 1. The a-axis scale is logarithmic
in effect, because t = N is actually used in the tests. This results in an inverse
polynomial relationship between N and indices: f(t) = a + bt°, ¢ = logy 1 < 0,

which implies an even slower decay rate. Therefore, choosing an exponent is a

4.3 Principal Components Analysis 57

- q_ — P aTT — :
|— energy-3 --—energy — energy regression — stress-3 — stress — stress regresswn\

0.20

0.16 +

0.14

0.12 o

0.10

0.08 -

0.06

0.04 -

0.02 4

©
) @
c

exponent

Figure 4.1: Plot of Energy and Stress minima vs. exponent for N-body simulation
data

matter of trading off speed for accuracy, with a diminishing advantage for larger
exponent values. A value in the range [2/3,3/4] seems to be a good compromise.
The fitted exponential regressions predict the Energy minimum for this particular
data set at 0.05551, and Stress at 0.03143. Standard MDS for all 14898 objects
has yielded 0.05418 and 0.03283 respectively, which suggests that these regres-
sions are a good fit to the measurements. It is worth noting that this single MDS
run takes about a week to compute on an Intel Pentium II 300 MHz workstation,
which is enough time to test the range [0.5,0.75] 10 times. However, to extend
the measurements up to o = 0.91 requires an additional month of computation.

4.3 Principal Components Analysis

Principal Components Analysis (PCA) is a multivariate statistics method for lin-
early transforming a sample of N p-variate vectors X = [z : ¢ =1,...,N;k =
1,...,p] into a new sample of g-variate vectors Y = [y; : | = 1,...,¢|, such that
the columns of Y are uncorrelated, and ¢ < p [Flury97]. Thus, each of the ¢
derived variables is expressed as a linear combination of p correlated, measured
variables [Hotellin33].

58 4. Large Scale Visualisation

The ¢ derived variables are referred to as Principal Components (PCs), and
form a system of orthogonal axes. If we consider X to be a configuration of N
points &; = (%s1,...,Tip)” in a p-dimensional Euclidean space then the first PC
defines a line through this space that minimises the sum of squared distances of
the points from it, and thus maximises the variance of coordinates {z} = y; } of
an orthogonal projection of {x;} on this line [Pearson01]. The second PC is a
line that maximises the variance of the projection coordinates {z! = y;} of the
points, subject to being perpendicular to the first PC. Taken together the first
two PCs give a plane of closest fit to the configuration X, i.e. one that minimises
the sum of squared distances of the points to that plane. The remaining PCs are
defined recursively in this manner, and individually account for an increasingly
smaller amount of the total variance of the p variables of X. Thus, the first ¢’ < ¢
principal components give the best linear approximation, and ¢’ can be chosen
such that a sufficient proportion of the total variance is preserved, or set to 2 or
3 to facilitate direct visualisation.

Let us define the column centred matrix X = (z; — &,...,zy —)T, with
T = % Zi]_i.l x;, the sample mean vector. An eigendecomposition of the sample
covariance matrix § = 7#5X7X yields eigenvalues \; > Xp > ... >), and

associated eigenvectors by, ..., b,. The pxp matrix B = (by,...,by,0,...) defines
the transformation to the first ¢’ PCs: Y = X B [Flury97]. Principal Coordinates
Analysis (see Section 3.3.1) on the dissimilarity matrix A = {dij(X’)], with d the
Euclidean distance (3.1), results in the same configuration Y [Gower66]. However,
PCO requires the eigendecomposition of an N x N matrix of scalar products X X7,
whereas in the case of PCA S is only of order p X p. Eigendecomposition of a
k x k matrix is an O(k®) computation [Press92], and for p < N, as is normally
the case, PCA will be significantly faster. However, PCA is less general because
it requires X as input, which can only be constructed for quantitative, ordinal,
or binary data, or a combination thereof (see Section 1.2). When PCA can be
applied it is equivalent to PCO, and thus the results of Sections 3.5 and 3.6 are
applicable to both.

4.4 Comparison

We have gathered 10 large data tables ranging from 2000 to 58000 rows (see
Section B.3 in the appendices), and used them as the basis for comparison of
incremental MDS and PCAl. Full scaling (see Section 4.2) was performed with
the Simulated Annealing algorithm of Section 3.3.6, single scaling with a version
of this algorithm modified to position individual objects (rows) with respect to a
fixed skeleton. The parameters of the algorithm are identical to that documented
in Section 3.4. Each data set was subject to PCA, and incremental MDS with
exponent initially set to o; = 2/3 and then to a; = 3/4. To avoid degeneracies

llwe have based this evaluation on an implementation of PCA by Fionn Murtagh, available
from the StatLib Multivariate Archive: http://lib.stat.cmu.edu/multi/pca.c

4.4 Comparison 59

" Table 4.2: Percentage of the total variance explained by the first two or three
principal components

data 2D 3D
abalone 94.8 97.6
letter 43.7 56.3
mfeat 91.6 98.7
pageblock 81.4 94.1
sat 84.7 89.9
segment 73.8 83.9
nbody-1 69.1 82.9
nbody-2 70.5 86.9
shuttle 89.3 99.6
spambase 23.6 29.2

of an incremental solution, e.g. a skeleton configuration representing a bad local
minimum, the solution was taken as the best in terms of Energy (3.13) of three
trials. The target size ¢ = 500 was used for the initial skeleton (see Section 4.2.2).

Table 4.2 shows the proportion of the total variance explained by selecting only
the first two or the first three principal components for each data set, which cor-
responds to the optimal orthogonal projection from the original high dimensional
space to a two- or three-dimensional subspace (see Section 4.3). The third dimen-
sion substantially improves on the amount of explained variance over just the first
two PCs, except for abalone data table, which is already represented well in two
dimensions, at 95% of the total variance. On the other hand, letter and spambase
are poorly represented even in three dimensions, and are examples of data tables
with relatively uncorrelated attributes, which will pose a challenge to any dimen-
sionality reduction method. However, for other data sets in the test bed over 80%
of the total variance is accounted for in three dimensions, resulting in respectable
visualisations. Since, PCA is likely to fare much better with three-dimensional
visualisations, we decided to consider them also in the statistical comparison.

4.4.1 Statistical Analysis

Our experiment consists of a group of Energy measurements — one for each visu-
alisation method being evaluated — made for every data collection in the test bed,
and has been carried out in both two and three dimensions. We chose to perform
the statistical analysis with the Friedman test [Siegel56], for the same reasons as
outlined in Section 3.5.

60 4. Large Scale Visualisation

Two-dimensional Visualisation

Table 4.3(a) contains Energy measurements in two dimensions for all combina-
tions of a method and a data table. These measurements were subject to the
Friedman test with the null hypothesis Hy of no overall difference in Energy be-
tween visualisation methods, and the alternative hypothesis H; of at least one
method having a different ranking from the others. The values of both Friedman’s
chi-square statistic and Kendall’s coefficient of concordance are not significant at
the 5% level, and thus there is no evidence to reject Hy. Consequently, post hoc
testing, in the form of the Tukey Multiple Comparison procedure [Keselman?77]
for example, cannot be carried out.

Nonetheless, certain patterns emerge from Table 4.3(a). Incremental MDS
with oy = 2/3 has the highest rank of Energy in most cases, and it achieves the
lowest rank only for the shuttle data table. In this case it actually outperforms
incremental MDS with «p = 3/4, which is unusual, but possible with an iterative
minimisation technique such as this one. PCA and the ay method have an almost
identical mean rank, and are one rank apart for most data tables. None of the
methods construct a good representation for the spambase data set, judging from
the Energy values (3.13) alone. This merits a visual inspection, which is presented
in Section 4.4.2

Three-dimensional Visualisation

Analogously, we have performed the Friedman test on the Energy measurements
for three-dimensional representations, with the same null and alternative hypothe-
ses. As can be seen from Table 4.3(b), this time both Friedman’s chi-square statis-
tic and Kendall’s coefficient of concordance are significant at the 5% level, allowing
Hj to be rejected in favour of Hy. Tukey Multiple Comparison procedure can now
be performed to test for significant differences between method rankings in pairs.

At p < 0.05 level the only significant comparison is between incremental MDS
with oy = 2/3 and ay = 3/4, demonstrating that the latter has a lower overall
ranking of Energy measurements. To verify the other two pairwise comparisons,
we performed a more powerful one-tailed Wilcoxon signed-rank test [Siegel56].
The test is in agreement with the Tukey Comparison for (PCA, «s), in that there
is no significant difference in their mean ranks. However, PCA is shown to have a
significantly lower ranking than oy at p < 0.05 level.

An informal inspection of Table 4.3(b) leads to the same conclusions as the
statistical inference, and also the evaluation of the two-dimensional representa-
tions. Incremental MDS with oy has the highest rank of Energy for most data
tables, and consequently the highest mean rank of all the methods. PCA and the
ap method achieve a very similar mean rank, and alternate for the lowest and the
second lowest rank for individual data sets.

4.4 Comparison 61

Table 4.3: Friedman test results for Energy

data table
abalone
letter
mfeat
pageblock
sat
segment
nbody-1
nbody-2
shuttle
spambase
mean rank®

statistic |
X; " 3.8
W e 0.19

(a) two dimensions

data table
abalone
letter
mfeat
pageblock
sat
segment
nbody-1
nbody-2
shuttle
spambase
mean rank

statistic

Xo 7.4
w 0.37

(b) three dimensions

%an average of the relative order of Energy for a particular method over all data sets

by2 is Friedman’s chi-square statistic; the critical value at p = 0.05 level is 5.99

°W is Kendall’s coefficient of concordance; it ranges between 0 (no agreement between cases)
to 1 (complete agreement); the critical value at p = 0.05 level is 0.3
Values in each row are coded in greyscale, based on their relative rank.

62 4. Large Scale Visualisation

Table 4.4: Comparison of running time for PCA and incremental MDS

2D
method total time® time ratio® linear fit°
PCA 433 n/a
o =2/3 1155 2.67 2.59
oy = 3/4 2535 5.86 5.65
3D
PCA 431 n/a
o 1198 2.78 2.64
Q9 2619 6.08 5.69

%agverage time in minutes required for a single test trial with the test bed
bratio of average time for a given incremental method to that of PCA
“the parameter of a least-squares fit of PCA timings to that of each incremental method

Running Time

The total time required for each method to generate visualisations of all data tables
in the test bed can be found in the second column of Table 4.4. For incremental
MDS each figure is an average over 3 trials; since PCA is an analytical method, only
one trial has been performed, and its duration is reported. The total time for each
method is very similar across two and three dimensions. With PCA all Principal
Components are calculated at once, regardless of how many will actually be used.
However, for incremental MDS there is some overhead in calculating distances
over an extra dimension, and the total time for three dimensions is slightly higher
than for two.

The timings include the calculation of Energy (3.13) for each configuration. For
PCA this computation completely dominates the construction of the correlation
matrix and its eigendecomposition (see Section 4.3), which itself are only a matter
of seconds even for the largest data table. For ease of comparison the ratios of the
total time for both variants of the incremental method to that of PCA are given
in the third column of Table 4.4. Thus, it can be seen that evaluation of Energy
accounts for 37% (~ 1/2.7) of the total time to perform incremental MDS with
oy = 2/3 on the test bed, and 17% (= 1/6) for ay = 3/4.

Analogously to Section 3.5.3 we decided to perform a linear regression of PCA
timings to that of incremental MDS, to get a more accurate empirical estimate
of their ratios. The timings over all data tables in the test bed are collected in a
vector mU?) for a given method j in p-dimensions. The linear model is expressed
as mP) = q;,mFC4P) and the parameter a; , that gives the best least-squares fit
can be interpreted as an estimate of how much slower method ¢ is than PCA in p-
dimensions, taking the calculation of Energy into account. The values of a,, 2 and
(ay,2 Teported in the final column of Table 4.4 agree well with the corresponding

4.4 Comparison 63

Table 4.5: Statistics for two-dimensional visualisations of mfeat, segment, and
spambase data tables

Energy
data, PCA = 2/3 g = 3/4 MDS
mfeat 0.0578 0.0313 0.0256 0.0201
segment 0.0927 0.0759 0.0617 0.0469
spambase 0.2599 0.3532 0.6638 0.1460
Stress
mfeat 0.0127 0.0128 0.0108 0.0141
segment 0.0441 0.0418 0.0310 0.0261
spambase 0.3120 0.0955 0.0861 0.1401
time
mfeat 14 123 235 2376
segment 43 190 334 3582
spambase 495 960 1535 8228

running time ratios, and even better with a,, 3 and ae, 3 respectively, signifying
that the estimation is accurate.

The time to calculate Energy of a configuration is comparable to that of a
single iteration of full scaling (see Section 4.2) with this configuration, since both
computations involve the inspection of the entire dissimilarity matrix A. There-
fore, following an incremental MDS procedure with full scaling of the complete
configuration will add substantially to the running time, for each additional iter-
ation.

4.4.2 Qualitative Evaluation

We have chosen the three smallest data tables to present visually here. They
are easier to represent in a limited space, to allow a side-by-side comparison, but
manage to bring out key differences between the methods, nonetheless. We have
been able to perform standard MDS on these data due to their manageable size,
and include it in the evaluation of PCA and incremental MDS, as the limiting
case of the latter. For ease of comparison the relevant Energy values (3.13) of
Table 4.3(a) are repeated alongside the results for standard MDS in Table 4.5;
Stress (3.11) and the running time for each data set are also given. In all cases
MDS achieves the lowest Energy, however, at a marked increase in the running
time. Stress results are less consistent, which is understandable as it is Energy
that has actually been minimised; thus observations of Section 4.2.3 are replicated.

Visualisations produced by all the methods are arranged side by side in Fig-
ures 4.2-4.4 for each data set respectively. Analogously to Section 3.6, MDS con-

64 4. Large Scale Visualisation

0.2 4
0.4 -

01 031 . %]

-0.6 : T T - -0.8

(a) PCA (b) ay =2/3

09 -
04 1

014 7

-0.6 : ‘ : 0.6 -
-1 0.5 0 0.5 -1 -0.5 0 0.5 1

(c) ag =3/4 (d) MDS

Figure 4.2: Visualisations of the mfeat data set. Black dots in the incremental
MDS plots denote the skeleton configuration

figurations have been transformed by Procrustes Analysis [Borg97, Cox94] to have
the same orientation as the corresponding PCA configuration. Tucker’s congruence
coefficient (3.28) has been used to ascertain the agreement between configurations
in pairs [Tucker51], and all possible combinations are given in Table 4.6.

The overall structure of the mfeat data set is represented well by the first
two principal components. Three distinct clusters can be seen in Figure 4.2(a);
however, the intra-cluster detail is not discernible, and this where the 8% of un-
explained variance (see Table 4.2) must lie. Incremental and standard MDS plots
in Figures 4.2(b)—4.2(d) are superior, in that they spread the cluster contents out,
and portray more clusters than PCA. o, = 3/4 and MDS plots are very simi-
lar, which is confirmed by the highest value of the Tucker’s congruence coefficient
(3.28) for this pair, reported in Table 4.6(a). Note that the position of marker
points is in a good agreement for these two configurations, and thus attests the
validity of the incremental MDS procedure. The match between oy = 2/3 and

4.4 Comparison 65

1.2

(a) PCA (b) a1 =2/3

05 -

05 -

-1.6 -1.1 -0.6 -0.1 0.4 0.9 -1.6 -1.1 -0.6 -0.1 0.4 0.9

(c) ag = 3/4 (d) MDS

Figure 4.3: Visualisations of the segment data set. Dark dots in the incremental
MDS plots denote the skeleton configuration

MDS configurations is not as good, due to a smaller number of marker points
defining the skeleton configuration: n{®) = 159 versus n{®? = 299.

It is possible to identify three clusters in the PCA representation of the segment
data set in Figure 4.3(a). There are some dense clumps of points, highlighting
areas of unexplained variance (see Table 4.2). Figures 4.3(b), 4.3(c), and 4.3(d)
in turn exhibit an increasingly better dispersion of points, showcasing the bias of
Energy (3.13) towards preserving local detail (see Section 3.2.4 for more details).
Again, ap and MDS plots are the most similar visually, and objectively according
to the congruence coefficient (see Table 4.6(b)). The distinction between two of
the clusters is lost in the «; configuration, suggesting that an insufficient size of
the skeleton has been specified.

66 4. Large Scale Visualisation

0.1

-0.1 1

-0.4

-0.9 ‘ : , ‘ . -0.6 : ‘
-0.4 0.1 0.6 1.1 16 .06 0.4 04 0.9

(a) PCA (b) o = 2/3

0.5 -

0.1 4

-0.5 - : 0.4 .
0.4 0.1 0.6 03 0.2

(c) ap =3/4 (d) MDS

Figure 4.4: Visualisations of the spambase data set. Black dots in the incremental
MDS plots denote the skeleton configuration

The spambase data set presents a challenge to PCA, as according to Table 4.2
only 24% of the total variance is explained by the first two PCs. Only a few
outlying data points are represented well in Figure 4.4(a), the remaining ones are
grouped in a single clump, with little apparent structure. Incremental MDS is
able to spread the contents of the clump, and a dense distribution of the points
can be seen in the middle of Figures 4.4(b) and 4.4(c), surrounded by layers of
other points, mainly markers. Such a concentric arrangement is indicative of a
severe mismatch between dimensionality of the representation and the original
data [deLeeuw84]. The two incremental plots are similar, and the congruence
coefficient, reported in Table 4.6(c), is much higher for this pair than any other.
As can be seen from Figure 4.4(d), standard MDS pushes more points towards the

4.5 Discussion 67

Table 4.6: Congruence coefficient for pairs of configurations

| PCA C¥1:2/3 a2:3/4
o 0.9915
Olo 0.9884 0.9849
MDS | 0.9867 0.9810 0.9928

(a) mfeat

| PCA (075} (8]
o 0.9751
Qg 0.9835 0.9833
MDS | 0.9800 0.9796 0.9920

(b) segment

| PCA (e 5] (67)
o 0.8280
o 0.8209 0.9762
MDS | 0.7441 0.8880 0.8940

(c) spambase

perimeter, and achieves a much lower value of Energy (see Table 4.5); however, it
cannot bridge the dimensionality gap, and visually the effect is not very different
to incremental MDS plots.

For the spambase data set the subjective observations are in contrast to the
statistical analysis of Section 4.4.1. Incremental MDS is judged to be much worse
than PCA by the Energy function (3.13), as can be gleaned from Table 4.5. It
seems that local detail cannot be represented well for this data set, unless all
dissimilarities are considered, as is the case for standard MDS. However, the con-
verse ranking of PCA and incremental MDS is true for Stress (3.11). This loss
function assesses the absolute error of a configuration, and thus agrees with the
overall, subjective impressions. The reader is referred to Section 3.2.4 for a further
comparison of Energy and Stress.

4.5 Discussion
The incremental Multidimensional Scaling method presented here alleviates the

high time and space complexity associated with standard MDS. This method is
capable of visualising data collections in excess of 100,000 objects at moderate cost.

68 4. Large Scale Visualisation

Inevitably, some additional inaccuracy is introduced into configurations. However,
structurally significant objects will be represented accurately with respect to one
another, and error will be spread over a large number of less significant objects.
If enough computing resources are available the resulting configuration can be
refined by submitting it as a starting point for a least-squares MDS procedure.

Multivariate data tables can alternatively be visualised with Principal Com-
ponents Analysis, provided that none of the attributes are measured on a nominal
scale. For such data PCA is equivalent to Principal Coordinates Analysis, at a
fraction of its computational cost. As has been pointed out in Section 3.7, these
methods will not represent the local proximity of objects accurately. However,
incremental MDS also compromises local detail to achieve its speed up, and in-
stead focuses on preserving the overall shape of the configuration. The difference
is that the trade-off between quality and algorithm responsiveness can be varied,
and approach the ultimate quality of least-squares MDS in the limiting case, with
the associated long running time.

The objective evaluation of incremental MDS versus PCA was somewhat in-
conclusive, because of the limited number of data collections on which it was based.
Real-world data of the required size is difficult to obtain, but more importantly an
exhaustive assessment of the methods with each data set is very time consuming.
The key observation is that at the trade-off level where incremental MDS matches
PCA for overall quality, the former is much more expensive computationally. How-
ever, visual inspection of configurations produced by both methods reveals that
objective measurements are misleading in this case, and that incremental MDS
provides more pleasing arrangements than PCA, even at a lower objective quality
and quicker response setting.

4.6 Related Work

A least-squares MDS algorithm has been proposed that computes the configuration
update in linear time in the number N of objects [Chalmers96]. When calculating
a new position of an object only two small subsets of the remaining objects are
considered. One of them contains the most similar objects to the given object;
the other is sampled at random. By keeping the sizes of these subsets constant
an O(N) time complexity is achieved for a single iteration. Assuming that O(NV)
iterations are necessary to find an optimal configuration, the algorithm can be seen
to have O(N?) overall time complexity. There are two possible disadvantages to
this approach: instability due to optimising against a changing set of objects, and
inaccuracies in representing large dissimilarities, which can result in a distorted
configuration.

FastMap [Faloutso95] is an analytical MDS algorithm that achieves O(kN)
running time, where k is the number of dimensions in the configuration. It is
an enormous improvement over PCO (see Section 3.3.1), which is expensive as
it involves the eigendecomposition of a N x N matrix — an O(N3) computation
[Press92]. A line passing through the two most distant (dissimilar) data points in

4.6 Related Work 69

the multidimensional space approximates the first principal axis (principal com-
ponent), which is a line that yields the maximum variance when data points are
orthogonally projected onto it (see Section 4.3). All data points are projected onto
the hyperplane perpendicular to this line. Successive applications of this proce-
dure to the resulting subspace approximate the remaining principal axes. The
resulting axes are necessarily orthogonal. Although very fast, this method only
approximates a PCO solution, which itself is likely to be inferior to a least-squares
MDS configuration (see Sections 3.5 and 3.6).

An incremental arrangement method [Cohen97] has been proposed to speed
up drawing of undirected graphs, and avoid suboptimal solutions. The order
of N vertices to be introduced into the drawing is determined by performing a
depth-first search from an arbitrary vertex, and reshuffling this list so that every
—Z]ith vertex is taken first, then every g—th, and so on, ignoring duplicates. The
first batch of vertices is placed using standard MDS. The next batch is then
added to the partial drawing, by positioning each new vertex in proximity of the
two vertices introduced previously that are its nearest neighbours in the graph.
Another round of MDS follows, and these two stages are applied alternately while
there are vertices to be added. The algorithm has been shown empirically to
achieve a factor of 2 to 10 speed improvement.

Chapter 5
Proximity Grid

This chapter is concerned with Proximity Grid — a visualisation technique that
allows information to be presented with high density. Each element of an abstract
data collection is represented within a single cell of the grid, and thus considerable
detail can be shown without overlap. The proximity relationships are preserved by
clustering similar elements in the grid, and keeping dissimilar ones apart. Prox-
imity Grid is thus a counterpart of Multidimensional Scaling in a discrete domain.
Four algorithmic solutions to this problem are presented, and evaluated in terms
of output quality and running time. A recommendation for algorithm selection is
made based on the trade-off between these criteria.

5.1 Origins of the Problem

An experimental evaluation of MDS arrangements versus random grid arrange-
ments, in the context of browsing a collection of images, demonstrated the su-
periority of the former for a basic search task [Rodden99a|. However, in a post-
experimental questionnaire subjects reported overlap of image thumbnails in MDS
arrangements to cause them difficulty in finding a target image. Some actually
preferred the regularity of a random grid, because it made scanning the collec-
tion easier. An arrangement method that combined the best features of both
configuration types — here referred to as Prozimity Grid — was proposed.
Because the MDS analysis does not take the size of configuration elements into
account, its direct use for visualisation may lead to partial or complete overlap of
icons representing the objects from a collection. Figure 5.1(a) is an MDS visuali-
sation of an image collection, with many thumbnails having their detail obscured.
By forcing icon centres to lie on a grid, a minimum amount of separation can be
ensured, while still keeping similar icons (objects) together. The effect of trans-
forming the MDS configuration to a proximity grid can be seen in Figure 5.1(b).
The problem of overlap is less serious in three dimensions. The ability to view
a 3D visualisation from different viewpoints aids in separating the icons, and thus
alleviates the problem to a large extent. Also, the size of icons can be reduced to
limit overlap, and compensated by the natural use of zooming and panning. These

72 5. Proximity Grid

(b) 12 x 12 proximity grid generated by the SWO algorithm (o = 0.0789)

Figure 5.1: 100 images of Kenya arranged by visual similarity. These images have
been taken from the Corel stock photograph collection

5.2 Algorithms 73

counter measures are not suitable for a flat representation, whose primary use is
to provide an informative overview of a data collection. Therefore, we restrict our
attention to two-dimensional grids, but note that the theory and algorithms can
easily be extended to higher dimensionality.

5.2 Algorithms

The purpose of the algorithms described below is to position a set of n objects
in a grid, such that similar objects occupy neighbouring cells, and are separated
from dissimilar objects, where the dissimilarities between all pairs of objects are
collected in matrix A, as in Chapter 3. The size of the grid, i.e. the number of
cells, can be greater than the number of objects. As the number of spare cells rises,
there is more freedom in placing the objects, and a more faithful representation
of pairwise similarity can be achieved. In the limiting case the grid will become
so sparse that it will be equivalent to a continuous MDS configuration, especially
when taking the discrete nature of computer displays into account. Therefore,
the accuracy of a grid algorithm at a certain level of grid density can be assessed
against the corresponding continuous configuration.

The quality of a proximity grid Y € IN2, where IN denotes the set of natural
numbers, can be established by evaluating one of the loss functions discussed in
Section 3.2 for a given Y and A. An algorithm for generating proximity grids
is essentially a numerical minimisation procedure for such a loss function. As a
consequence of specifying this minimisation problem over a discrete domain — IN?
— the choice of a heuristic is limited, as any method relying on derivatives cannot
be applied.

When using Stress (3.11) small dissimilarities will not be modelled faithfully,
because even a large relative error will have negligible impact on the value of
(3.11); see Section 3.2.4 for a discussion and comparison with Energy (3.13). This
property is actually an advantage in the case of a discrete (grid) configuration,
because similar objects cannot be closer than the cell separation, and will not be
penalised for it. Consequently, we have chosen Stress as the basis of our grid algo-
rithms. KYST is a publicly available MDS program that works with Stress-1 (3.9)
[Kruskal78b], which is equivalent to Stress after a suitable scaling transformation
(see Section 3.2.3 for details). Hence, we used KYST for generating continuous
MDS configurations corresponding to proximity grids.

5.2.1 Greedy

The idea behind this algorithm is to start with a continuous MDS configuration,
and discretise it so that object locations are snapped to the grid. Naturally, it is
possible for two objects to be mapped to the same grid cell, and many strategies
could be employed to resolve this. Since we wanted to avoid introducing another

YKYST version 2a is available from Netlib (www.netlib.org)

74 5. Proximity Grid

A

A
<
<

Y

v
r Y

Figure 5.2: Example of spiral search in a grid. The grey triangle represents the set
of all possible positions of point y; that would result in this particular orientation
of the spiral. The black circle denotes the optimal cell ¢ for this point

numerical optimisation process, we adopted a greedy approach. This will only
give an approximate solution, but the computational cost is low, and the amount
of introduced error can be controlled by adjusting the grid size.

The location y; of each object 7 in the configuration is considered in turn. If
the closest grid cell ¢ to ¥; is unoccupied, 4 is allocated to it. Otherwise, a close
by empty cell e is found by performing a spiral search starting from cell c¢. The
second cell visited by the square spiral is the second closest cell to y;, taking the
Euclidean distance into account. This determines the orientation of the spiral in
an unbiased way. Figure 5.2 is an example of a spiral search when c is below and
to the left of y;; the remaining three cases are analogous. If there are at least
as many grid cells as objects this procedure is guaranteed to find e, though this
might not be the closest empty cell to ;.

Once e is found three different strategies can be adopted, as illustrated in
Figure 5.3:

1. empty — 1 is allocated to e
2. swap — the object allocated to c is relocated to e, and 4 is allocated to ¢

3. bump — objects allocated to cells on the line from ¢ to e are relocated out-
wards by one cell, and ¢ is allocated to c. These cells can be determined by
applying the line drawing algorithm of computer graphics.

Note that a bump is equivalent to a swap when e is adjacent to c.

The order in which objects are considered is important, and should be indepen-
dent of permutations of the input configuration. We define a complete weighted
graph with a vertex for each object in the collection, and take each edge weight
to be the dissimilarity between the corresponding pair of objects. The Minimum
Spanning Tree (MST) calculated for this graph then defines such a unique order-
ing of objects (see Section 4.2.1). The shortest MST edges link the most closely
related objects. Considering them first in the empty strategy will ensure that they
occupy neighbouring cells. The same effect will be achieved by considering them
last in the swap and bump strategies.

5.2 Algorithms 75

(a) empty (c) bump

Figure 5.3: Examples of different grid allocation strategies. The solid black circle
denotes the optimal cell, and the empty circle shows the empty cell found during
the spiral search

To identify the best strategy we have performed a rigorous evaluation, which
is presented in Section 5.3.1. The bump strategy is significantly better in terms
of Stress (3.11) for proximity grids that it generates. This can be attributed to
its tendency of spreading error (3.3) over many objects, rather than positioning
some optimally, and delegating potentially large error to others, as is the case for
the other strategies. Henceforth, we refer to the greedy algorithm with the bump
strategy as Greedyl.

5.2.2 Improved Greedy

One obvious area of improvement to Greedy! is to replace the spiral search by an
exact procedure to find the closest empty cell to the original object location y;.
A brute force approach is to calculate the distance between y; and the centre of
every cell in the grid, sort these distances in the ascending order, and pick the first
corresponding cell that is empty. The same effect can be achieved by evaluating
the distances lazily, by considering increasingly larger sub-grids around c¢. We
start with the eight cells that immediately surround ¢, and enter them into a heap
[Press92], with the heap condition based on their distance to y;, and the closest
remaining cell to y; as the root. At each step the root cell r is examined, if it is
empty the search is terminated; otherwise, it is removed from the heap. If r falls
on the boundary of the current sub-grid, the sub-grid is enlarged in this direction
by entering a new layer of cells into the heap. The heap condition is subsequently
restored. We refer to this modified grid algorithm as Greedy?2.

76 5. Proximity Grid

5.2.3 “Squeaky Wheel” Optimization

Section 5.2.1 highlighted that the order in which objects are considered for inclu-
sion in the grid by the greedy algorithm is important. In Greedy! and Greedy?2 we
decided to derive this order from the data themselves, so that closely related ob-
jects would be given preferential treatment. In general, this will not give the best
arrangement in terms of Stress (3.11), and there will be other orderings that will
give better results. One could envisage a procedure that will continually permute
the order of objects, run the greedy algorithm with it, and evaluate Stress in search
of the minimum. An obvious candidate is a Genetic Algorithm [Goldberg89] (also
see Section 3.3.4) or Simulated Annealing [Dowsland95] (also see Section 3.3.6).
However, a much better use for these techniques is to search directly for the best
allocation of objects to grid cells, as in Section 5.2.4, bypassing the greedy and
continuous MDS steps.

“Squeaky Wheel” Optimization (SWO) [Joslin99] is an effective technique for
coupling a greedy algorithm with a reordering (reprioritisation) scheme. Once
a solution is constructed, it can be evaluated to find objects that contribute the
most to the value of the loss function, and these objects can be promoted in the se-
quence, so that they will be handled earlier and probably better on the subsequent
greedy run. This construct/analyse/prioritise cycle continues for a set number of
iterations, or until an acceptable solution is found. Typically, the sequence evolves
so that easy to deal with objects sink to the back, whereas troublesome ones stay
at the front.

In our SWO algorithm the construction phase is essentially the entire Greedy?2,
with the empty allocation strategy (see Section 5.2.1). The SWO algorithm will
automatically achieve the effect of spreading the representation error (3.3), and an
explicit mechanism in the form of the bump strategy will actually interfere with it.
The initial sequence is the ascending MST order, which is the appropriate choice
for the empty strategy (see Section 5.2.1).

Every object is subsequently analysed, and the distance from the centre of its
grid cell ¢ to the original continuous location y; constitutes its blame factor. If c is
the closest cell to y; the blame factor is set to 0. The prioritisation phase consists of
a partial bubble sort. On a single pass from the front of the sequence to the back,
every object that has a positive blame factor is swapped with its predecessor,
and its blame is reduced by 1. The net effect is that objects move forward in
the sequence proportionally to their blame. The SWO cycle is repeated a fixed
number of times (SWO.iterationlimit parameter), and the grid configuration with
the lowest value of Stress (3.11) constitutes the solution.

5.2.4 Genetic Algorithm

For a brief introduction to Genetic Algorithms (GAs) the reader is referred to
Section 3.3.4. It has been relatively straightforward to adapt the GA for continuous
MDS to a Proximity Grid one, which is a clear demonstration of how generic this
heuristic strategy is. The details of the selection scheme and that of forming a

5.3 Comparison 77

new generation of the chromosome population remain unchanged, and are given in
the final three paragraphs of Section 3.3.4. The only exception is that the fitness
of a chromosome is based on Stress (3.11) instead of Energy (3.13). The low-level
issues of selecting the coding of the problem and associated crossover and mutation
operators have to be reconsidered, and are discussed below.

An allocation of n objects to k grid cells can be compactly represented by a
permutation of n cell identifiers, taken from an alphabet of cardinality k. Thus, a
non-binary coding seems to be the most appropriate for this problem [Goldberg89].
A solution is encoded as a vector v of n cardinal numbers, where object ¢ is
allocated to cell v;, determined by counting cells sequentially from top left to
bottom right. A pair of solutions »®) and v®2) is recombined by applying the
cycle crossover (CX) operator [Goldberg89), to yield a new pair of chromosomes
v{©) and v(®?), This operator ensures that the value vi(cl) of each child gene 7 comes
from the first parent 'vgp Y or the other vz(p 2), and that the whole solution is feasible,
i.e. no two elements of v(¢) are the same; v(¢?) is simply the complement of v{¢t).
Inheriting a gene from a particular parent might require another gene to be taken
from the same parent, and so on, in order to meet the above conditions. This
dependency is circular, and CX operates by copying each cycle from a randomly
selected parent.

The most appropriate form of mutation to use here is exchange mutation
[Reeves95]. An object 4 is drawn at random from the range [1,7], and a new
cell a is randomly selected for it from the range [1, k]. If there exists j such that
v; = a, i.e. cell a is already occupied, v; and v; exchange their values; otherwise v;
simply becomes a. As argued in Section 3.3.4, the relative importance of crossover
and mutation changes throughout the optimisation process, and an adaptive rate
of mutation is likely to work best. Thus, whenever CX produces a pair of chromo-
somes that is identical to the input pair, exchange mutation is performed on both
chromosomes. This form of mutation reintroduces diversity only when needed,
and does not interfere with crossover otherwise.

5.3 Comparison

To evaluate the performance of each algorithm, we used a test bed consisting of 53
data collections: 2 dissimilarity matrices, 2 image collections, 6 graphs, and 43 data
tables (see Section B.1 in the appendices for details). The number of objects in a
collection ranged from 9 to 506, with the median value of 107. For each collection
we applied KYST to calculate a continuous MDS configuration, representing a
minimum of Stress (3.11). Since KYST is based on the steepest descent technique
[Press92], and therefore can only be expected to find a local minimum, we decided
to run it 10 times from a random initial configuration, and only use the final
configuration with least Stress. These continuous configurations served as input
to Greedyl, Greedy?2, and SWO algorithms. Subsequently, these three algorithms
and GA were set to generate proximity grids with varying levels of density for
each data collection. Grids from 10 to 100% full at the 10% density increments

78 5. Proximity Grid

were used, and the resulting Stress recorded for each. We only considered square
grids, and so the size was rounded up to the nearest square number. For a small
data collection this could result in identical grid sizes for different density levels,
and we avoided duplicating the experiment in these cases.

Parameters of the algorithms were fixed to the following values:

o SWO.iterlimit = GA.iterationlimit = KYST .iterationlimit = 1000

o GA.populationsize = 32, see Section 3.4 for the justification.

5.3.1 Statistical Analysis

Our experiment consists of a group of related measurements, made for every data
collection in the test bed. We decided to rely on the Friedman test [Siegel56] for the
analysis, for the same reasons as given in Section 3.5. Before proceeding with the
main experiment we had to establish which allocation strategy (see Section 5.2.1) is
best, and we present our findings in the first subsection. The remaining subsections
are concerned with the main experiment. Each experimental group consists of 40
measurements of Stress (3.11), one for each combination of grid density level and
algorithm. There are three possible ways of grouping these measurements and
structuring the analysis: by algorithm, by grid density, and complete.

Allocation Strategy Analysis

To determine whether empty, swap, or bump allocation strategy (see Section 5.2.1)
is best to use with the greedy algorithm, we have implemented all three, and tested
with the test bed of data collections. The denser the grid the more allocation
clashes will occur, and require the intervention of a particular allocation strategy.
Thus, we focused on the densest square grids possible: m x m, where m = [/n],
and m is the number of objects to be positioned in the proximity grid.

Table 5.1 reports the results of the Friedman test with the null hypothesis Hy
of no difference between strategies with regard to Stress (3.11), and the alternative
hypothesis H; of at least one strategy having a different ranking from the others.
The values of both Friedman’s chi-square statistic and Kendall’s coefficient of
concordance are statistically significant at a level exceeding 0.001, which allows
Hj be rejected in favour of Hy. Having done so, we can apply the Tukey Multiple
Comparison procedure to test for significant differences between strategy rankings
in pairs [Keselman77].

As can be gleaned from Table 5.2, all Tukey comparisons are significant at the
5% level, implying that there are definite differences between strategies, and al-
lowing a complete ordering to be derived: bump has the lowest rank, meaning that
it consistently achieves the lowest Stress, empty comes second, and swap performs
the worst. Non-parametric tests will not establish what the actual differences are,
however. A linear regression of bump measurements m®*™) to ones for empty
and swap in turn can provide an answer: m® = a;m®™) where m) is the

5.3 Comparison 79

Table 5.1: Friedman test results for allocation strategies

strategy | rank sum® mean rank’

empty 102.0 1.93
swap 147.5 2.78
bump 68.5 1.29

statistic }

X2 © 60.76

w4 0.573

%rank sum is the sum of the relative order in terms of Stress for a particular strategy over all
53 cases

bmean rank is the corresponding rank sum divided by the number of cases

°x? is Friedman’s chi-square statistic; the critical value at p = 0.001 level is 13.82

4T¥ is Kendall’s coefficient of concordance; it ranges between 0 (no agreement between cases)
to 1 (complete agreement); the critical value at p = 0.001 level is 0.13

Table 5.2: Tukey Multiple Comparison results for allocation strategies

rank comparison | difference” Q°
swap>bump 79.0 10.85
swap>empty 45.5 6.25
empty>bump 33.5 4.60

%the difference in rank sums; see Table 5.1
bQ is Tukey’s statistic for multiple comparisons; the critical value at p = 0.05 level is 3.31

vector of Stress measurements for all 53 data collections under condition j. The
best least-squares fit is for aempry = 1.05 and azpep = 1.23, meaning that empty is
5% worse than bump, and swap is 23% worse, when considering 100% dense grids.
These differences will gradually diminish as the grids get sparser, and disappear
completely, when no allocation clashes occur, and there is no need to employ one
of these strategies. Nonetheless, bump appears to be the best strategy, and we
have based Greedyl and Greedy2 on it.

- Algorithm Analysis

There are 53 groups, one for each data collection, of 4 measurements of Stress
(3.11) for the Greedyl, Greedy2, SWO, and GA algorithm respectively. Such
a block of measurements is made for a particular level of grid density, and we
analyse them in the descending order, starting with grids that are 100% full.
The second row of Table 5.3 reports the results of the Friedman test with the
null hypothesis Hy of no difference between algorithms with regard to Stress at

80 5. Proximity Grid

Table 5.3: Friedman test results for the algorithm grouping

density | Greedyl Greedy2 SWO GA x2e Wb
100% 3.57 3.42 2.00 1.02 | 141.55 0.890
90% 3.63 3.35 2.00 1.02 | 142.74 0.898
80% 3.70 3.28 2.00 1.02 | 144.49 0.909
70% 3.59 3.33 2.00 1.08 | 134.77 0.848
60% 3.66 3.28 1.92 1.13 | 134.90 0.848
50% 3.63 3.20 1.94 1.23 | 120.18 0.756
40% 3.72 3.13 1.92 1.23 | 125.71 0.791
30% 3.69 3.14 1.87 1.30 | 119.76 0.753
20% 3.48 2.82 1.81 1.89 65.76 0.414
10% 3.13 2.69 1.78 2.40 34.06 0.214

%2 is Friedman’s chi-square statistic; the critical value at p = 0.001 level is 16.27
T

bW is Kendall’s coefficient of concordance; the critical value at p = 0.001 level is 0.102
The figures in columns 2-5 are mean ranks across 53 observations

100% grid density, and the alternative hypothesis H; of at least one algorithm
having a different ranking from the others. The values of both Friedman’s chi-
square statistic and Kendall’s coefficient of concordance are statistically significant
at a level exceeding 0.001, which allows Hy be rejected in favour of H;. The
Tukey Multiple Comparison procedure can now be performed to test for significant
differences between algorithm rankings in pairs.

All pairwise comparisons, except for the one involving Greedy! and Greedy2,
are significant at the p < 0.05 level, meaning that GA achieves the best perfor-
mance at 100% grid density, followed by SWO, and the greedy algorithms are
tied in last place. We decided to perform a one-tailed Wilcoxon signed-rank test,
because it is considerably more powerful [Siegel56], to verify the tie of the greedy
algorithms. It produced a p value of 0.055, which just misses our nominal 5%
limit, and supports the Tukey comparison.

The analysis of the remaining grid densities is analogous. The results of the
Friedman test in every case allow Hy be rejected in favour of H; at the 0.001
significance level. The outcome of the Multiple Tukey comparisons is essentially
the same for densities between 100 and 40%, i.e. GA always comes first, followed
by SWO, and the greedy algorithms jointly in last place. However, the Wilcoxon
test for each of the greedy pairs is significant at the 5% level, except for 70%
density with p = 0.06. Thus overall, there is a difference between the greedy
algorithms, with Greedy?2 performing significantly better.

For 30 and 20% density Tukey comparisons between GA and SWO are no
longer significant at the 5% level. The comparison between Greedy! and Greedy2
at 30% density is not significant either. However, the corresponding Wilcoxon
tests are significant at the 5% level, and so the same ordering of the algorithms

5.3 Comparison 81

-o-Greedy1 -o- Greedy2 - SWO - GA
D0 prerrrere e e

ratio to KYST

100 90 80 70 60 50 40 30 20 10
grid density (%)

Figure 5.4: Linear regression comparison of grid algorithms. The closer a combi-
nation of algorithm and grid density is to 1 (KYST) the better

holds: GA first, then SWO, Greedy2, and Greedyl last.

The situation is less clear at 10% density. The only significant Tukey compar-
isons are: Greedyl-SWO, Greedyl-GA, Greedy2-SWO. Additionally, the Wilcoxon
test is significant at the 5% level for Greedyl-Greedy2, but is not significant for
GA-SWO; the test for Greedy2-GA produces a p value of 0.061. If the last result
is accepted, the following ordering can be inferred: SWO and GA are tied in first
place, followed by Greedy2, and Greedy! is last.

To get a sense of the actual differences in performance between algorithms,
we have fitted a linear regression to the measurements for each combination of
algorithm and density. The values of Stress (3.11) for KYST, which can be seen
to correspond to grid density of 0, thus serving as a suitable reference, were used
as the model predictor:

algorithm density) - KYST
m(g ! v) ~ aalgorithm,densitym()

where m® is the vector of Stress measurements for all 53 data collections under
condition 4. The value of a; that gives the best least-squares fit of the model is plot-
ted in Figure 5.4 for each level of density, with separate series for each algorithm.
The further a; is from 1 the greater the difference of the corresponding Stress mea-
surements between condition 7 and KYST, and the value indicates the overall ratio.
The chart is in good agreement with the statistical analysis conducted above. The
performance of Greedyl and Greedy? is similar, with a slight advantage going to
Greedy2, as confirmed by the Wilcoxon test. GA achieves the best performance,
and is significantly better than SWO, which in turn is significantly better than the
greedy algorithms. The performance of the various algorithms appears to converge
around the 10% density level, and approximates that of KYST.

82 5. Proximity Grid

Table 5.4: Friedman test results for the grid density grouping

density | Greedyl Greedy2 SWO GA
100% 9.70 9.72 9.74 9.74
90% 8.88 8.86 8.88 8.82
80% 8.14 8.16 8.14 8.05
70% 7.07 7.05 7.05 6.88
60% 6.04 6.04 6.08 5.89
50% 5.04 5.06 5.09 5.13
40% 4.08 4.10 4.01 4.03
30% 3.04 3.00 3.02 2.72
20% 2.02 2.02 2.00 2.11
10% 1.00 1.00 1.00 1.64
2@ 466.10 467.21 470.19 433.88
we 0.977 0.979 0.986 0.910

x2 is Friedman’s chi-square statistic; the critical value at p = 0.001 level is 27.88
b is Kendall’s coefficient of concordance; the critical value at p = 0.001 level is 0.058
The figures in rows 2-11 are mean ranks across 53 observations

Grid Density Analysis

Now we consider Greedyl, Greedy2, SWO, and GA separately. For each we have
a block with 53 groups of 10 measurements corresponding to different levels of
grid density. Table 5.4 reports the results of four Friedman tests with the null
hypothesis Hy of no difference between grid densities with regard to Stress (3.11),
and the alternative hypothesis H; of at least one density having a different ranking
from the others. The values of both Friedman’s chi-square statistic and Kendall’s
coefficient of concordance are statistically significant at a level exceeding 0.001
for each algorithm, which allows Hy be rejected in favour of H;. Moreover, the
coefficient of concordance is very close to its maximum value of 1, implying that
there is an almost complete agreement between the 53 cases, especially for Greedy1,
Greedy2, and SWO. Once Hy has been rejected, post-hoc testing in the form of
Tukey Multiple Comparisons can be applied, to identify significant differences
between grid density rankings in pairs.

The outcome of the post-hoc test for Greedyl, Greedy2, and SWO is identical.
All pairwise comparisons are significant at the 5% level, except for all adjacent
density levels and (100%, 80%), (90%, 70%). However, the Wilcoxon test for each
of these pairs shows the difference in ranking to be significant at a level exceeding
0.001. These results imply that there is a consistent gradation of performance for
these algorithms depending on grid density, as can be witnessed from the observed
ranks in columns 2-4 of Table 5.4, and the high value of Kendall’s coefficient of
concordance.

Tukey comparisons for all grid density pairs of the GA algorithm are significant

5.3 Comparison 83

at the 5% level, except for all adjacent density levels and (100%, 80%), (70%, 50%),
(60%, 40%), and (30%, 10%). Again, the Wilcoxon test shows each of these differ-
ences to be significant at the p < 0.001 level. Thus, the performance of GA also
depends on grid density; however, for densities of 30% and below the last column
of Table 5.4 demonstrates the relationship to be less consistent between all the
data collections. This effect is due to the fact that GA is a stochastic minimisation
heuristic, and can produce suboptimal solutions. Therefore, there are a number of
cases where a test measurement is inferior to one for higher density. This situation
is more likely for sparse grids, which put small constraints on the configuration,
and the corresponding global minima of Stress are close. A solution to this prob-
lem would be to run the algorithm a number of times, as we do for KYST, and use
the best result. However, we did not want to give an unfair advantage to GA over
the other algorithms, especially when taking into account the necessary increase
of the computational effort required to complete the experiment.

Complete Analysis

To complete the analyses we present the results for a block of 53 groups of all 40
measurements. Table 5.5 details the outcome of the Friedman test, with the mean
ranks of the various combinations of algorithm and density shown in descend-
ing order. Unsurprisingly, the values of both Friedman’s chi-square statistic and
Kendall’s coefficient, of concordance are statistically significant at a level exceeding
0.001, allowing the null hypothesis of no difference between conditions with regard
to Stress (3.11) to be rejected. There are too many possible pairs of conditions
for a Tukey Multiple Comparison procedure to be carried out. However, it would
not yield any new insights in addition to the previous two analyses.

Table 5.5: Friedman test results for the complete grouping

density algorithm [mean rank
100% Greedyl 39.04
100% Greedy?2 38.77
90% Greedyl 37.30
90% Greedy2 36.64
80% Greedyl 35.52
80% Greedy?2 34.76
100% SWO 33.57
70% Greedyl 32.07
70% Greedy?2 31.59
90% SWO 30.90
80% SWO 28.88
60% Greedyl 28.62
100% GA 28.06
60% Greedy?2 27.91
70% SWO 25.58

84 5. Proximity Grid

Table 5.5: (continued)

density algorithm |mean rank
90% GA 24.29
50% Greedyl 23.96
50% Greedy?2 23.28
60% SWO 22.32
80% GA 21.65
40% Greedy1 19.05
50% SWO 18.66
0% GA 18.56
40% Greedy2 18.35
60% GA 15.57
40% SWO 14.88
30% Greedyl 13.84
50% GA 13.45
30% Greedy?2 12.93
30% SWO 10.51
40% GA 10.39
20% Greedyl 8.63
20% Greedy?2 7.84
30% GA 7.11
20% SWO 6.34
20% GA 5.75
10% GA 4.32
10% Greedyl 3.70
10% Greedy?2 3.22
10% SWO 2.20
X2 ¢ 1941.28

w? 0.939

2y is Friedman’s chi-square statistic; the critical value at p = 0.001 level is 72.05
bW is Kendall’s coefficient of concordance; the critical value at p = 0.001 level is 0.035

Greedyl always appears before Greedy2 in Table 5.5, meaning that it has
a higher overall rank, and therefore Stress, at each level of density. This is in
agreement with the algorithm analysis. SWO at 100% density performs better
than Greedy?2 at 80%, the same relation holds for 90 and 70%, 70 and 60%, 60
and 50% respectively. At 40% density and below Greedy2 closes in on SWO,
but always performs worse. Again, these observations are consistent with the
algorithm analysis, and Figure 5.4 in particular. GA at 100% density is better
than SWO at 80%; this relation also holds for 90 and 70%, 80 and 60%, 70 and
50%, 50 and 40%, 40 and 30% respectively. GA comes best at 20 and 30% density,
but is the worst performer at 10%. The last observation does not agree with the

5.3 Comparison 85

algorithm analysis, which takes precedence as it is based on pairwise statistical
tests with a documented confidence level.

There is a clear division of algorithmic complexity between the greedy algo-
rithms, SWO, and GA. The time taken to execute the entire test is approximately
35 seconds, 2 hours 17minutes, and 80 days respectively?. This translates to a ratio
of 0.004 to 1 to 800. The first number follows from the fact that SWO is equiva-
lent to repeating a simplified version of Greedy2 1000 times (SWO.iterationlimit
parameter), and considering that initialisation costs dominate the simple compu-
tation of Greedyl and Greedy2. GA is almost three orders of magnitude slower
than SWO because of the sheer number of Stress (3.11) evaluations needed for
the population of solutions to converge.

5.3.2 Qualitative Evaluation

In Section 5.3.1 we have been able to systematically rank the algorithms based on
their performance in terms of loss function (3.11). However, it is also important
to show the extent to which proximity grids calculated by the algorithms differ
visually, for if there is hardly any difference between them subjectively then the
objective results are of little significance. We have selected a sample data collection
from the test bed for this purpose. It is a graph with 16 vertices and 21 edges,
which appears in Section B.1 of the appendices under the name network.

The dissimilarity between a pair of vertices in a graph is taken to be propor-
tional to their graph theoretic distance — shortest path length (see Section 1.2.6)
— so that adjacent vertices are the most similar of all pairs of vertices. Thus, a
configuration with a low value of Stress (3.11) will have uniform edge lengths, and
will preserve the graph topology well: Figure 5.12 is a drawing of the sample graph
generated by KYST. However, the number of edge crossings, another important
graph drawing aesthetic [Battista94], will not be minimised in general, as it might
be in conflict with the previous criteria. There is some correlation between these
aesthetics, since configurations with high Stress also exhibit a high degree of edge
and vertex crossover, as illustrated by Figures 5.5 and 5.6.

As the basis for our qualitative evaluation we are using the experimental setup
of Section 5.3.1. Since the graph is small, there are only 7 distinct grid lengths at
the 10% density increments: 4, 5, 6, 7, 8, 9, and 13; Figures 5.5-5.11 present the
respective configurations for all algorithms. Visually Greedyl and Greedy2 are
very messy, with a lot of crossover and a poor preservation of topology for high
densities. For sparse grids these algorithms produce similar or identical results to
SWO. Generally, GA and SWO configurations are comparable, but the advantage
goes to the former for spreading graph drawings across the grid, and hence making
better use of available space. The continuous MDS configuration in Figure 5.12 is
rotated to its principal axes (see Section 4.3), and thus elongated in the horizon-

fthe time taken by KYST to generate continuous configurations, which constitute a start-
ing point for the greedy algorithms and SWO, has not been included, as it is negligible when
compared to the time required to run GA

86 5. Proximity Grid

| NG

OF | “@5 ‘
gf%@ Q@™ e’ © 92
e © 2o OWe Foeow @ U0

(a) Greedyl (b) Greedy2 (c) SWO (d)

Q
N

Figure 5.5: 4 x 4 proximity grids, 100% density. o(Greedyl) =
0.2173, o(Greedy?2) = 0.2257, o(SWO) = 0.1246, o(GA) = 0.095

©
=

; -® ®r ® @—c D)
SO @ @D D @
| T D ® ©

)

Figure 5.6 5 x b5 proximity grids, 64% density. o(Greedyl
0.1632, o(Greedy2) = 0.1345, o(SWO) = 0.0566, o(GA) = 0.0449

vReos © & fvo@ ________ G W
&

Figure 5.7: 6 x 6 proximity grids, 44% density. o(Greedyl) = o(Greedy?2) =
0.0478, o(SWO) = 0.0371, o(GA) = 0.0344

Figure 5.8: 7 x 7 proximity grids, 33% density. o(Greedyl) = o(Greedy2) =
F(SWO) = 0.0323, o(GA) = 0.0298

5.3 Comparison 87

Figure 5.9: 8 x 8 proximity grids, 26% density. o(Greedyl) = o(Greedy?2) =
0.0339, o(SWO) = 0.0313, o(GA) = 0.0294

i(a — tn v (n)

©) Q&/lip

By D @ET

=)

Figure 5.12: Continuous MDS con- Figure 5.13: 13 x 13 proximity grid

figuration. ¢ = 0.0209 for the GA algorithm rotated with
Procrustes Analysis to fit the MDS
configuration

88 5. Proximity Grid

Table 5.6: Assessment of the sample graph

grid length | Greedyl Greedy SWO GA

4 i 4 4
5
6
7 2 2
8 2 2
9 2 2
13 2 2
rank total® | 16 16 8 8

grid length | Greedyl Greedy2 SWO GA
! 0.0950
0.0449
0.0344
0.0298
0.0294
0.0261

1 0.0229
rank total 19 19 14 7

LY 0o O O

(b) Stress

°the rank total for a given algorithm is the sum of its relative ranking over all grid lengths; if
two or more algorithms are tied at a given grid length they all share the lowest available rank,
and the next available rank is incremented by the number of tied algorithms less one, i.e. as if
the tie had not occurred
The rank of a value is denoted in greyscale

tal direction. Since SWO and the greedy algorithms use this configuration as a
starting point, they are unable to significantly alter its shape. The grid drawings
at the 10% density level, including the GA one when factoring out the rotation
(see Figure 5.13), very closely resemble the continuous configuration, with small
differences in Stress between all of them.

Table 5.6(a) conveniently summarises the number of edge and vertex crossovers
for all combinations of grid length and algorithm. The performance of both SWO
and GA is very good, with very few crosses even for dense grids. They achieve
an identical rank total, calculated by summing their respective ranking over all
grid lengths. Greedy! and Greedy2 also have the same rank total between them,
however, they do not cope with dense grids well, and produce a large number of

5.4 Discussion 89

Figure 5.14: Histogram of Stress minima calculated by KYST for all collections
in the test bed '

crosses. Table 5.6(b) summarises Stress for all configurations, which is indicative of
how well graph topology is preserved. GA is consistently the best, closely followed
by SWO. The results for Greedy! and Greedy2 are similar, and they achieve the
same rank total. For dense grids there is an enormous difference between these
two pairs of algorithms, which gradually reduces, and diminishes completely for
sparse grids. These quantitative results are in agreement with the impressions
reported in the previous paragraph.

5.4 Discussion

The data collections contained in the test bed are varied in type, size, and com-
plexity. Stress (3.11) is normalised for the size of a collection (see Section 3.2.3),
and its value at a minimum will depend on the inherent dimensionality or com-
plexity of data. Figure 5.14 is a histogram of the test results for KYST, with each
measurement rounded to the nearest bucket. A high value of Stress is indicative of
high dimensionality of data, and suggests that a two-dimensional representation
is not very faithful. Such data is seldom found in practice, and the small number
of data collections with Stress over 0.1 reflects this. Other Stress values are fairly
evenly distributed, which indicates the test bed to be a representative sample from
a population of small-to-medium sized data collections. The size of the sample is
large enough to warrant the use of statistical inference, and allows the results to
be generalised to the whole population.

Both objective and subjective evaluations identify a significant difference be-
tween the greedy (Greedyl, Greedy?2) and iterative (SWO, GA) algorithms, and
confirm an intuitive expectation that the more computational effort is put in the
better the results are. Statistical inference demonstrates Greedy2 to be the better
of the greedy algorithms, which again is to be expected, as an exact rather than
an approximate method for finding the closest empty cell is used. GA generates
the best proximity grids in terms of both objective and subjective quality, but is

90 5. Proximity Grid

closely matched by SWO for sparser grids at a fraction of the computational cost.

Dense proximity grids provide visualisations with the highest information den-
sity, since there are none or very few empty areas. At the same time stringent
constraints are imposed on the preservation of object proximity, and the use of a
global optimisation heuristic, for example GA, is essential to find a good alloca-
tion of objects to cells. Grids of medium density (20-70%) achieve a useful amount
of separation, and allow fairly large object representations with no overlap: see
Figure 5.1(b) for an example of a 70% proximity grid. The increase in Stress
(3.11) over a continuous MDS configuration is moderate, and a hybrid technique
like SWO is capable of matching global optimisation for quality. A sparse grid is
not a very large departure from the corresponding continuous configuration, and a
greedy approach is capable of transforming the latter to the former. Alternatively,
a hybrid technique can be run for a small number of iterations, to overcome any
potential misallocation. Sparse grids only give a limited amount of separation,
but nonetheless can be useful for configurations with complete overlap or clumps
of points.

Obviously, separation between icons can be increased by enlarging the canvas
area, while keeping the icon size fixed. However, GA will use available space on
a given canvas most efficiently, i.e. require partition into the smallest number of
cells. SWO will need a larger grid size to provide an equally accurate representa-
tion of proximity relationships; the sparsest grid will be attributed to the greedy
algorithm, in general. Thus, when populating the canvas with icons, GA will afford
the largest icon size without overlap. In a particular application, the information
density provided by each method has to be weighed against its computational
requirement, the two criteria being in complete conflict.

5.5 Related Work

A Self-Organising Map (SOM) [Kohonen89] is a neural network that learns a map-
ping from an n-dimensional space to an m-dimensional lattice, which preserves
proximity relations. The network is comprised of two fully connected layers: n
continuous-valued inputs, and a lattice, usually two-dimensional, of output units.
The training consists of presenting successive input tuples, and updating the win-
ner neuron, i.e. the output unit with the weight vector closest to the current input,
as well as its neighbours. Once the training has been completed, the mapping can
be read out by enumerating every input, and noting the lattice coordinates of the
winner neuron. With a sufficient number of output units for a given input set, this
algorithm can generate a one-to-one mapping between them, i.e. a proximity grid.
However, this method will not work if identical or nearly identical tuples are to be
represented separately. A SOM can only process a data table with quantitative
attributes (see Section 1.2.1), and so is not as widely applicable as the algorithms
presented in this chapter.

Chapter 6

Case Studies

Three applications of proximity visualisation are presented in this chapter, which
tackle disparate areas, and give a testament to how generic this visualisation
paradigm is. Two of the case studies are the result of collaboration on analysing
protein interactions and evaluating an interface for image browsing. The final
one is more of a proposal of how a database and its metadata could be explored
effectively by means of proximity visualisation.

6.1 Protein Interactions

The topic of this section is an application of proximity visualisation to collections
of protein interactions. Only a brief summary and a single example are presented
here. A complete treatment of the problem of visualising protein interactions has
been published separately [Basalaj99], as a result of a collaboration with Karen
Eilbeck — a bioinformatics researcher at the University of Manchester.

The analysis of protein-protein interactions within a cell is concerned with
understanding the function of individual proteins and networks of proteins. The
presence of an interaction between a pair of proteins implies the existence of a
binary relationship. There are various types of interactions, but the ones we
analysed are all bidirectional. As discussed in Section 1.2.6, such a collection of
entities and relationships between them can be expressed as a graph, which is
undirected in this case. Thus, the shortest path length between a pair of proteins
in the graph is taken as their dissimilarity.

A study of a protein interaction cluster in yeast, a unicellular organism, is
presented here. This cluster is of great interest to pharmaceutical companies, as
it represents a signal transduction pathway that is responsible for passing stimuli
from the cell membrane to its nucleus. This process is initiated by a membrane-
bound receptor, a G-protein, GPA1 [Rens-Dom95]. Figure 6.1(a) is a diagram
put together by a domain expert of this network of interacting proteins, with
arrows to represent both enzymatic mechanisms and movement. Figure 6.1(b) is
a proximity visualisation of the same protein cluster, with interactions gathered
from biochemical. and library based experiments. In general, only the proteins

92 6. Case Studies

/‘STII

\ SSPA2 ’

\ ?BUD6// S
4 /
eSBAL 7

T *CNSL
............. ’H§CB2
. .\\-.
“e E e
STE18 “eHSF1

«MPTS /1 epB%:2

)

A AN

//. .
*CDC25 CLNS

(a) expert (b) proximity visualisation

Figure 6.1: Comparison of protein interaction drawings

relevant to the transduction mechanism are common to both drawings, and other
proteins might not have a counterpart in the other drawing.

Overall, Figure 6.1(b) captures more information, though a few interactions
are missing as a result of experimental errors. The essential edges are: GPA1l
interacts with SST2, which in turn interacts with MPT5; and the cascade STE11,
STE7, FUS3/KSS1. Unfortunately, the interaction between STE11 and STET7
is missing, but the rest of the architecture is there: STE5, STE50, and STE11.
According to biologists that inspected both drawings the correlations between
them are impressive.

Figure 6.1(b) has been created with the hybrid algorithm of Section 3.5.5 by
minimising Energy (3.13). It follows from the argument of Section 3.2.4 that any
deviation in distance between adjacent vertices is penalised more than the same
error for non-adjacent vertices. Therefore, a straight-line drawing based on an
optimal vertex layout will have uniform edge lengths. At the same time an even
spread of vertices is achieved, because the distance between a non-adjacent pair
of vertices tends to be proportional to their dissimilarity, i.e. their shortest path
length. Overall, the dissimilarities between vertices will be preserved as closely as
possible, and hence the topology of the graph. Multidimensional scaling has been
used for generating graph drawings before [Kruskal78a, Kamada89, Cohen97]. It is
worth noting that this method does not explicitly minimise edge crossings or max-

6.2 Image Browsing 93

imise drawing symmetry, other important graph drawing aesthetics [Battista94],
but still achieves pleasing results.

There are many alternative algorithms for drawing graphs [Battista94]; how-
ever, the advantage of using MDS for visualising protein interactions is that it
is not specific to a graph representation of these data. Instead of a dissimilar-
ity coefficient based on graph theoretic distances, one that takes the location of
proteins within the cell into account can be used, for example. A comparison of
configurations resulting from these two representations might help to clarify the
relationship between the location of a protein and its interactions.

It is customary for collections of protein interactions to be drawn manually,
or be presented in a tabular form. However, these approaches are not practical
for anything but small collections, and automatically generated two- or three-
dimensional graph drawings are a welcome alternative. To our knowledge, it is
the first time a graph drawing technique has been applied in this context. With
typically large quantities of protein interactions in most collections, visual rep-
resentation is an ideal method to communicate such complex information within
the biological community. Moreover, proximity visualisations are invaluable for
discovering data inconsistencies, and carrying out comparative studies between
organisms [Basalaj99].

6.2 Image Browsing

Proximity visualisation can be applied to multimedia collections, for example col-
lections of images or text documents. This case study is based on the results of
joint work with Kerry Rodden of University of Cambridge Computer Laboratory,
and also David Sinclair and Kenneth Wood of AT&T Laboratories in Cambridge.
A series of experiments have been undertaken to verify the usefulness of proximity
visualisation as a tool for image browsing [Rodden99a, Rodden99b].

Thanks to improvements in storage and networking technologies, large dig-
ital collections of images are now commonplace. To facilitate access to these
collections, it is necessary to perform some indexing of their content. If textual
annotations exist it is possible to use conventional information retrieval methods,
for example the vector model of Section 1.2.8. However, annotating images is a
time-consuming process, and the results tend to be highly subjective. An alter-
native is to classify images based directly on their content. The most common
approach is to use low-level visual features of images such as colour and texture,
extracted by the IRIS similarity coefficient of Section 1.2.7, for instance.

Forming a visual query to an image collection is considerably more difficult
than a textual query. The user is required to either sketch a prototype image or
select a suitable example by browsing the collection. The query result will be a set
of images judged by the system to be the most similar. This is based, however, on
the low-level visual features, and thus might disagree with the user’s perception.
There can be many images satisfying a query, especially if it is not well formed.
These difficulties make provision of good support for browsing paramount.

94 6. Case Studies

(b) caption similarity

Figure 6.2: 100 images of New York arranged in a 10 x 10 proximity grid by
visual or caption similarity. These images have been taken from the Corel stock
photograph collection

6.3 Databases 95

A proximity visualisation of an image collection, with each individual image
represented by a thumbnail, appears to constitute a good paradigm for a brows-
ing interface. To prevent thumbnails from overlapping one another, they can be
arranged in a proximity grid. Figure 5.1(b) on page 72 serves as an example,
arranging 100 images of Kenya by visual similarity. The combination of the im-
age similarity coeflicient and proximity grid has uncovered a natural structure
in the collection. Photographs of people are clustered in the top right corner,
buildings are to the left, and wildlife is at the bottom. Existing image browsing
tools commonly employ grid arrangements, as they assist in systematic scanning
of a collection; however, thumbnails are positioned arbitrarily or chronologically,
instead of according to their similarity.

Figure 6.2(a) is another example of an image collection, 100 photographs of
New York this time, arranged by visual similarity in a proximity grid. This dis-
play makes it very easy to locate photographs with similar colour composition, e.g.
sunsets in the top right corner, night time photos at the top left, and panoramas
at the bottom. Each image has a caption associated with it, describing its main
features in a few keywords. Thus, it is thus possible to give an alternative view of
the collection, with photographs arranged by caption similarity. All thematically
related images are grouped in Figure 6.2(b), e.g. photographs of the Statue of Lib-
erty. Both views are complementary, as they support different types of browsing
tasks.

6.3 Databases

Visualisation of relational and object databases poses a number of challenges re-
lated to the complexity that needs to be anticipated in data. Such databases
are usually heterogeneous, requiring either a visualisation method that is generic
enough to handle all possible data types, or a set of specific methods that cater for
the individual combinations of data types occurring in the database. Both these
approaches can be combined, with the generic method used whenever a specific
one is unavailable or unnecessary.

Because of this inherent structural complexity, a database schema (metadata)
deserves to be visualised in its own right. A preliminary metadata analysis can as-
sist in planning and structuring a subsequent data analysis. There is an enormous
benefit in integrating both forms of visualisation, because the metadata presenta-
tion provides context for exploring and navigating through detail presentations of
data. Although a database is likely to change over time, its schema, if properly
defined to start with, will undergo few changes. Having a stable starting point
for the visualisation process is important, and metadata presentation is an ideal
choice.

Integration of metadata visualisation, to convey the overall structure of a given
database, and data visualisation, to reveal the actual detail, enables the database
to be analysed in its entirety. Most existing database visualisation systems, e.g.
DataSpace [Petajan97], Exbase [Lee96], VizDB [Keim94], focus solely on data vi-

96 6. Case Studies

sualisation, disregarding the benefits of metadata visualisation. Such an approach
is satisfactory for a homogeneous database, but fails in the more general and
common heterogeneous case.

6.3.1 Metadata Visualisation

A database schema can be graphically represented as an Entity-Relationship di-
agram. An entity, represented as a box in the diagram, is a type that is defined
in the schema. A relationship, shown as a link between boxes, pertains to a pair
of entities. Inheritance can be represented in a number of ways, for example by
inclusion of a subtype entity within its supertype. Entity attributes can be repre-
sented either as elements of an entity box, or as separate boxes attached to it. An
E-R diagram has a number of desirable properties: familiarity, naturalness, and
scalability.

An E-R diagram is a graph, in essence, with vertices having complex proper-
ties and possibly being nested. Visualising it in a proximity grid will allow large
visual representations of entities to be accommodated, without causing them to
overlap. It is convenient to arrange that by interacting with this schema repre-
sentation a viewer can drill down to the entity (type) instance level. At the same
time the E-R diagram provides context for visualisation of this higher level of de-
tail, and thus assists in exploration of the database. For example, a fisheye lens
metaphor [Furnas86] can be employed, so that details of data and relationships
can be explored, while maintaining the context at the periphery.

6.3.2 Data Visualisation

Proximity visualisation is well suited to representing collections of abstract objects.
Dissimilarity between pairs of tuples from a relational database table, or objects
from an object database extent can be assessed with coefficient (1.8), introduced
on page 4, which allows a heterogeneous mix of attributes, with a possibility
of conditionally defined or missing values. The method loses its appeal when
strong attribute semantics are present, e.g. longitude and latitude in a Geographic
Information System database, in which case a specialised visualisation method is
likely to be superior. However, proximity visualisation is very effective in a general
case, and as such would be a good default visualisation choice.

Figure 6.3 gives an example of the proximity visualisation of a database table,
based on the crcars data table [Donoho83], which also appears in Section B.1 in
the appendices. The following attributes of 406 cars have been recorded: model
name, miles per gallon, number of cylinders, engine displacement, horsepower,
weight, acceleration, model year, and origin — American, European, or Japanese;
with some values missing. The Euclidean \-general dissimilarity coefficient (1.8)
has been used to calculate dissimilarities between cars in pairs. All attributes have
been given equal weight, except model name and origin, which have been given
zero weight, and thus effectively excluded from the calculation of dissimilarity for
the same reasons as in Section 2.1.

6.3 Databases 97

Figure 6.3: Proximity visualisation of the crcars data table

Individual cars are represented as solid circles in Figure 6.3, with the green
colour component assigned to the number of cylinders attribute, and the red com-
ponent linked to model year. These two attributes can be seen to explain the data
well, with the former determining the horizontal location of cars, and the vertical
direction coinciding with the latter attribute. Three clusters can be clearly iden-
tified, from left to right: 8, 5 or 6, and 4 cylinder cars. This structure is easy
to explain once it is realised that the number of cylinders strongly determines
other characteristics of a car, like its weight and horsepower, as do technological
advances captured in the model year attribute.

A Minimum Spanning Tree (MST) can be computed for the cars data table, as
in Section 4.2.1, to identify the most similar pairs of cars — leaves in a single-link
cluster hierarchy. The MST is superimposed on the configuration of Figure 6.3,
where the weight of an edge connecting a pair of cars is equal to their dissimilarity,
and is coded in greyscale, ranging from black for an identical pair to light grey
for the most dissimilar pair. In a perfect geometrical representation of the data,
no edges would cross over, and every vertex (car) will be connected by an edge to
its closest neighbour. Thus, overlying the MST on the configuration allows one
to see easily which links are badly represented, and which vertices are positioned
inaccurately [Gordon81]. Based on this criterion the visualisation of Figure 6.3
can be seen to have a small degree of error. Such a graph representation ties in

98 6. Case Studies

naturally with the schema graph.

Proximity visualisation can be used to represent more than one database table
or object extent a time. Potentially, if two sets of tuples or objects have some
overlapping attributes it will be possible to calculate pairwise dissimilarities within
the amalgamated set, and subsequently apply proximity visualisation. This could
be an effective way of visualising relationships and inheritance at the detailed,
instance level, analogously to drawing a bipartite graph.

On the other hand, proximity visualisation is also suitable for representing a
subset of instances from a database table or an object extent, resulting from a
query, for example. Thus, a viewer could select a subset of elements in a visu-
alisation, in order to analyse the corresponding instances in more detail. Apart
from a specialised view of data, this query-by-example mechanism can be used to
construct a generalised view. Such a natural evolution of analysis, coupled with
provision for backtracking, will encourage the viewer to explore data.

Chapter 7

Conclusions

Throughout the course of this dissertation Proximity Visualisation has been de-
fined, and a number of related techniques that fulfil this paradigm have been
demonstrated. A well established statistical technique of Multidimensional Scaling
is the most fundamental of these, and has been applied to information visualisation
before. The contribution of this work is a comprehensive survey of multidimen-
sional scaling algorithms, an empirical assessment of their effectiveness, and a
recommendation for the best, hybrid approach.

Multidimensional scaling is effective at visualising abstract data collections;
however, it is computationally intensive, and becomes very time consuming for
large collections of objects. Cluster analysis can identify the most important
objects, so that more time can be devoted to representing them, over less struc-
turally significant objects. An incremental multidimensional scaling procedure
is proposed that has lower time and space requirements, achieved by gradually
introducing objects into a visualisation based on their importance. As a result,
it becomes practical to visualise data collections two orders of magnitude larger
than with standard multidimensional scaling. The validity of this concept has
been confirmed by means of a rigorous evaluation.

Proximity Grid is a novel visualisation technique, especially suited to the design
of user interfaces, as it can provide a display with high information density. Icons
representing objects from a data collection are arranged in a grid, and thus can
occupy their respective cells completely, without overlap. Rather than assigning
icons and the corresponding objects arbitrarily to grid cells, they are positioned
so that proximity relationships between objects are preserved as well as possible.
Unlike multidimensional scaling, this is a combinatorial problem, and different
heuristics are needed for solving it. A number of algorithms of varied complexity
have been presented, and the trade-off between their effectiveness and responsive-
ness established.

The evaluation framework, used in characterising algorithms for generating
each type of proximity visualisation, is innovative in its own right. A number of
real world data collections have been selected to serve as input for each algorithm
under test. The objective quality of the resulting visualisations was recorded, so
that a ranking of the algorithms could be established with statistical analysis. It

100 7. Conclusions

would have been possible to present these series of measurements in the form of
charts, and draw conclusions based on visual inspection, as is customary in such
empirical studies. However, no matter how useful visualisation is, it cannot be
applied blindly, and in this case the use of statistical inference has yielded a more
concise and objective decision.

This dissertation is concerned with visualisation of abstract data, and is rich
in examples as a consequence. A sample output of every algorithm has been
provided, so that the extent and character of the differences between algorithms
can be easily ascertained. Such a qualitative evaluation naturally complements
the statistical analysis. Also, a number of case studies have been presented that
illustrate the broad range of applications of proximity visualisation.

The overall thesis is that proximity visualisation is more generic than other
information visualisation techniques, as any conceivable data type can be repre-
sented. Even heterogeneous data can be accommodated by means of the general
dissimilarity coefficient. For data with strong temporal or spatial semantics a spe-
cialised technique is more natural, and likely to provide a superior visual represen-
tation. However, an abstract collection of objects is best described and visualised
in terms of object proximity.

Appendix A

Partial Derivatives of Energy

For convenience we repeat the definition of raw Energy (3.16) here:

(dig(X) — dig)’

ogr(X) = Z) (A.1)
1<g i
and that of the Euclidean distance (3.1) between points @; = (21, ...,Z;) and
x; in the p-dimensional MDS configuration X = [z;,]:
P
dij(X) = ||l; — ;| = \J > (@ia — T50)” (A.2)
a=1
A.1 The First Partial Derivative of the Euclidean
Distance
0di;(X) 1 0d5(X)
Ba:ka - Qdij(X) &Eka
1 P 8(332;, bt ij)
- 2(zs TA%ib T gb)
35 (%) 2 2)™
_ Tig — Tja a(xm x]a)
C diy(X) OTpq
Tio — Tja
_ L0, A.
47 (X) (i — Os1) (A.3)
1 ¢+ r=s .
where 0, = { is the Kronecker delta,
0 : r#s

A.2 The First Partial Derivative of Energy

?EEL__QZ i3 (X) — di; 0dis(X)

851719:1 i<j d2 (9.’17]“1

102 A. Partial Derivatives of Energy
- 9 Z M(mw — 240) (Oi — Oix)
i< dig(X)d ! ’
) .
. dii (X)) — du
k=1< 7 7é k = ——-A—(mka — mla)(gkk — elk)
ik dkl(X)iy
d d
= Z< k‘?é’b<j=/€ = 2 —Ii————,\ﬂ(xla—wka)(glk—gkk)
zlz<k dkl(X)d%l
k£i<j#k = 0
| k=i<j=k = contradiction
) _d s ,
~ 2y dy (X)) AQdkl (20 — 21a) — 23 d (X) AQdkl (310 —)
sk Ga(X)dg i<k Ga(X)dy
du(X) —d
= 2} ﬂ(‘—)—AQM(QCIW — Tya) (A.4)
Zx A (X)dy
Tka — Tlo Tka — Lo
= 22 - T
o dy l;ézlc Akt (X)dm
A.3 Second Partial Derivatives of Energy
833ka — ZLia
O’op(X) _ 2% Onk — O 23 1 du(X)
Ozfy Ik % 7k A O%ka
Odi (X
dlcl(YOk — Ou) — (Tha — T1a) akl()
= Z 2 e
md i dkl diy (X)
(fvica - mla)Q
d(X) — ———— (O, — 0
_ w (X)) dkl(X)A (B — O
z;ék dkl 17k d(X)dw
_ Z d%l(X) - (mka;‘“ xla)2 (A.5)
i dig(X)dgs :
8$ka — Ty
O*oge(X) _ 0-9 Z dit(X)
ab OTpaTrp 12k dy 0w
0 — (The — xla)w(ekk — Ow)
l;ék: diy (X)) di
9 Z -'Eka iEZa)(ﬂka - mlb) (A 6)

Ik A3 (X)) dya

Appendix B
Test Bed

B.1 Small Data Sets

A small data set can either be a graph (g), image collection (i), dissimilarity matrix
(m), or a data table (t).

Table B.1: Small data collections

name size type source

aud 18 m Mietta E. Lennes, Department of Phonetics,
University of Helsinki

bridges 108 t UCI Machine Learning Repository (MLR)
[Blake98]

crears 406 t D. Donoho [Donoho83]

cars 38 t H.V.Henderson [Henderso81]

gd98¢c 62 g Graph Drawing 98 Contest

corel-244 100 i Kerry Rodden, Computer Laboratory, Uni-
versity of Cambridge

corel-385 100 i Kerry Rodden

cpu-performance 209 t MLR

dermatology 366 t MLR

detroit 13 ¢t StatLib Datasets Archive,
http://lib.stat.cmu.edu/datasets/

echocardiogram 131 t MLR

ecoli 107 g Karen Eilbeck, Biochemistry Division, Uni-
versity of Manchester

FFT 18 m Mietta E. Lennes

flags 194 t MLR

gd99c 105 g Graph Drawing '99 Contest
gene2sc 112t MLR

glass 214 ¢t MLR

GPAlcomponent 27 g Karen Eilbeck

104 B. Test Bed
Table B.1: (continued)

name size type source

group 16t Opera Group, Computer Laboratory, Uni-
versity of Cambridge

haberman 306 t MLR

heart 270t MLR

house-votes 435 t MLR

housing 506 t MLR

humandevel 130 t MLR

image 210 t MLR

imports-85 2060t MLR

ionosphere 3561t MLR

iris 150 t MLR

Kellog 23t T. Cox [Cox94]

letters 26 t F. Labelle’s Dimensionality Reduction page,
http://www.cs.mcgill.ca

/~sqrt/dimr/dimreduction.html

letters-back 24 t F. Labelle

liver-disorders 345 t MLR

misc 2060 t MLR

network 16 g J. B. Kruskal [Kruskal78al, Figure 3: “Input
for Corn Biomass Network”

odmg-schema 22 g The Object Database Standard version 2.0
[Cattell97]

o-ring-erosion 23 t MLR

places 329 t StatLib

planets 9 t F. Labelle

post-operative 90 t MLR

protein 25 t Handbook of Small Data Sets [Hand94]

query 20 t MLR

retention 270 t U.S. Department of Agriculture,
http://www.nal.usda.gov

/fnic/foodcomp/Data/

Servo 167 t MLR

shuttle 15 ¢t MLR

Skulls 40 t T.Cox

solar-flare 323 t MLR

soybean 307 ¢ MLR

tae 151 t MLR

usa-sales 26t American Automobile Manufacturers’ Asso-
ciation (AAMA),
http://www.economagic.com/aama.htm

usa-share 26 t AAMA

B.2 Medium Data Sets

105

Table B.1: (continued)

name size type source
wine 178 t MLR
Yoghurt 12t T.Cox
Z0O 101 t MLR
minimum 9
maximum 506
mean 145
median 107

B.2 Medium Data Sets

All medium-sized data sets in the test bed are tabular, and come from the UCI
Machine Learning Repository[Blake98].

Table B.2: Medium-sized data tables

name size
australian 690
breast-cancer 699
cloud-1 1024
cloud-2 1024
cmce 1473
credit-screening 690
german 1000
pima-indians-diabetes 768
tic-tac-toe 958
vehicle 846
vowel 990
water-treatment 527
yeast 1484
minimum 527
maximum 1484
mean 936
median 958

B.3 Large Data Sets

All large data sets in the test bed are tabular. The number of attributes (columns)
is also given, as it is relevant for Principal Components Analysis (see Section 4.3),
which was applied to them.

106 B. Test Bed

Table B.3: Large data tables

name rows cols source

abalone 4177 8 UCI Machine Learning Repository (MLR)
[Blake98]

letter 20000 16 MLR

mfeat 2000 6 MLR

pageblock 5473 10 MLR

sat 6435 36 MLR

segment 2310 18 MLR

nbody-1 15000 12 Jarrod Hurley, Institute of Astronomy, Uni-
versity of Cambridge

nbody-2 14898 12 Jarrod Hurley

shuttle 58000 9 MLR

spambase 4601 57 MLR

minimum 2000

maximum 58000

mean 13289

median 5954

Bibliography

[Anderber73]

[Andrews72)
[Baeza-Ya99)

[Basalaj99]

[Battista94]

[Blake98]

[Borg97]

[Brandenb95]

[Busing97]

[Cattell97)

[Chalmers96]

[Chernoff73]
[Clevelan84]

[Cohen97)

[Cox94]

M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York,
1973.

D.F. Andrews. Plots of high dimensional data. Biometrics, 28:125-136, 1972.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrievel. Addison-
Wesley, Harlow, 1999.

W. Basalaj and K. Eilbeck. Straight-line drawings of protein interactions. In
Proc. of Graph Drawing ’99, volume LNCS 1731, pages 259-266, Stirin, Czech
Republic, September 1999.

G. Di Battista et al. Algorithms for drawing graphs: an annotated bibliography.
Computational Geometry: Theory and Applications, 4:235-282, 1994.

C. L. Blake and C. J. Merz. UCI Repository of machine learning datebases.
University of California, Irvine, Dept. of Information and Computer Sciences,
http:/ /www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

1. Borg and P. Groenen. Modern Multidimensional Scaling. Springer-Verlag, New
York, 1997.

F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison
of force-directed and randomized graph drawing algorithms. In Proc. of Graph
Drawing 95, volume LNCS 1027, pages 76-87, Passau, Germany, September
1995.

F. M. T. A. Busing, J. J. F. Commandeur, and W. J. Heiser. PROXSCAL: A
Multidimensional Scaling Program for Individual Differences Scaling with Con-
traints. SOFTSTAT, 1997.

R. G. G. Cattell et al. The Object Database Standard: ODMG 2.0. Morgan
Kaufmann Publishers, Los Altos, California, 1997.

M. Chalmers. A linear iteration time layout algorithm for visualising high-
dimensional data. In Proc. of Visualization ’96, pages 127-132, San Francisco,
October 1996.

H. Chernoff. The use of faces to represent points in k-dimensional space graphi-
cally. Journal of the American Statistical Association, 68:361-368, 1973.

W. S. Cleveland and R. McGill. The many faces of the scatterplot. Journal of
the American Statistical Association, 79:807-822, 1984.

J. D. Cohen. Drawing graphs to convey proximity: An incremental arrange-
ment method. ACM Transactions on Computer-Human Interaction, 4:197-229,
September 1997.

T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman & Hall,
London, 1994.

108

Bibliography

[deJong75]

[deLeeuw?77]

[deLecuwg4]

[Donoho83]

[Dowsland93]

[Dowsland95]

[Faloutso95]

[Fienberg79]

[Flury81]

[Flury97]

[Frick94]

[Furnas86]

[Glover95]

[Goldberg89]
[Gordon81]
[Gower66]
[GowerT1]

[Gower86]

K. A. de Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, 1975.

J. de Leeuw. Applications of convex analysis to multidimensional scaling. In
J. R. Barra et al., editors, Recent developments in statistics, pages 133-145.
North-Holland, Amsterdam, 1977.

J. de Leeuw and I. Stoop. Upper bounds of Kruskal’s Stress. Psychometrika,
49:391-402, 1984.

D. Donoho and E. Ramos. PRIMDATA: Data sets for use with PRIM-H. In
American Stotistical Association (ASA) Second Exposition of Statistical Graphics
Technology, Toronto, August 1983.

K. A. Dowsland. Some experiments with simulated annealing techniques for
packing problems. FEuropean Journal of Operational Research, 68:389-399, 1993.

K. A. Dowsland. Simulated annealing. In C. R. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, chapter 2. McGraw-Hill Book Company,
Berkshire, 1995.

C. Faloutsos and K-I. Lin. FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In Proc. of Conference
on Management of Data (ACM SIGMOD ’95), pages 163-174, San Jose, CA,
May 1995.

S. E. Fienberg. Graphical methods in statistics. The American Statistician,
33:165-178, 1979.

B. Flury and H. Riedwyl. Graphical representation of multivariate data by means
of asymmetrical faces. Journal of the Ameerican Statistical Association, 76:757
— 765, 1981.

B. Flury. A first course in multivariate statistics. Springer-Verlag, New York,
1997.

A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for
undirected graphs. In Proc. of Graph Drewing ’94, volume LNCS 894, pages
388-403, Princeton, New Jersey, October 1994.

G. W. Furnas. Generalized fisheye views. In Proe. of Conference on Human
Factors in Computing Systems (ACM CHI ’86), pages 16-23, April 1986.

F. Glover and M. Laguna. Tabu search. In C. R. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, chapter 3. McGraw-Hill Book Company,
Berkshire, 1995.

D. E. Goldberg. Genetic Algorithms in Search, Optimizotion, and Machine
Learning. Addison-Wesley, Reading, Massachusetts, 1989.

A.D. Gordon. Classification: Methods for the Exploratory Analysis of Multivari-
ate Data. Chapman & Hall, London, 1981.

J. C. Gower. Some distance properties of latent root and vector methods used in
multivariate analysis. Biometrika, 53:325-338, 1966.

J. C. Gower. A general coefficient of similarity and some of its properties. Bio-
metrics, 27:857-871, 1971.

J. C. Gower and P. Legendre. Metric and Euclidean properties of dissimilarity
coeflicients. Journal of Classification, 3:5-48, 1986.

Bibliography 109

[Hand94]

[Harary69]
[Henderso81]

[Hotellin33]
[Inselber85]
[Joslin99]
[Kamada89]
[Keim94]
[Keselman77]
[Kirkpatr83]

[Klock97]

[Kohonen89]
[Kruskal64]

[Kruskal78a]
(Kruskal78b]

[Lee96]

[Metropol53]

[NIST95]

[OrtegaT0]

[Pearson01]

D. J. Hand et al. A Handbook of Small Data Sets. Chapman & Hall, London,
1994.

F. Harary. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1969.

H. V. Henderson and P. F. Velleman. Building regression models interactively.
Biometrics, 37:391-411, 1981.

H. Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology, 24:417-441, 1933.

A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1:69-91,
1985.

D. E. Joslin and D. P. Clements. “Squeaky Wheel” optimization. Journal of
Artificial Intelligence Research, 10:353-373, 1999.

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31:7-15, April 1989,

D. A. Keim and H.-P. Kriegel. VisDB: Database exploration using multidimen-
sional visualization. JEEE Computer Graphics and Applications, 14:40-49, 1994,

H. J. Keselman and J. C. Rogan. The Tukey multiple comparison test: 1953-1976.
Psychological Bulletin, 84:1050-1056, 1977.

S. Kirkpatrik, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. Science, 220:671-680, May 1983.

H. Klock and J. M. Buhmann. Multidimensional scaling by deterministic anneal-
ing. In Proc. of Energy Minimization Methods in Computer Vision and Pattern
Recognition, pages 245-260, Venice, May 1997.

T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin,
third edition, 1989.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29:1-27, 1964.

J. B. Kruskal and J. B. Seery. Designing network diagrams. In Proc. of the First
General Conference on Social Graphics, pages 22-50, October 1978.

J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage Publications, Beverly
Hills, California, 1978.

J. P. Lee and G. G. Grinstein. Describing visual interactions to the database:
closing the loop between user and data. In Proc. of Visual Data Exploration and
Analysis III, volume SPIE 2656, pages 93-103, San Jose, California, January
1996.

N. A. Metropolis et al. Equation of state calculation by fast computing machines,
Journal of Chemical Physics, 21:1087-1091, 1953.

NIST. Secure Hash Standard - Federal Information Processing Standards Pub-
lication 180-1. U.S. Department of Commerce/National Institute of Standards
and Technology, April 1995.

J. M. Ortega and W. C. Rheinboldt. Iterative solutions of nonlinear equations
in several variables, pages 253-255. Academic Press, New York, 1970,

K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, Sizth Series, 2:559-572, 1901.

110

Bibliography

[Petajan97]

[Press92]
[Prim57]

[Reeves95]

[Rens-Dom95]

[Rodden99a]

[Rodden99b]

[Rodden00]

[Rohlf82]

[Sedgewic92]
[Siegel56)
[Spence74]
[Surry95]
[Szu87)

[Takane77]

[Tout97)

[Tucker51]

E. Petajan, Y. Jean, D. Lieuwen, and V. Anupam. DataSpace: An automated
visualization system for large databases. In Proc. of Visual Data Ezploration
and Analysis IV, volume SPIE 3017, pages 89-98, San Jose, California, February
1997.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, second edition, 1992.

R. C. Prim. Shortest connection networks and some generalizations. Bell Systems
Technical Journal, 36:1389-1401, 1957.

C. R. Reeves. Genetic algorithms. In C. R. Reeves, editor, Modern Heuristic
Techniques for Combinational Problems, chapter 4. McGraw-Hill Book Company,
Berkshire, 1995.

S. Rens-Domiano and H. E. Hamm. Structural and functional relationships of
heterotrimeric G-proteins. Journal of the Federation of American Societies for
Experimental Biology, 9:1059-1066, 1995.

K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. Evaluating a visualisation of
image similarity as a tool for image browsing. In Proc. of Information Visuoliza-
tion 99, pages 36-43, San Francisco, October 1999.

K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. Evaluating a visualisation of
image similarity (short paper and poster). In Proc. of Conference on Research
and Development in Information Retrieval (ACM SIGIR ’99), Berkeley, August
1999.

K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. A comparison of measures for
visualising image similarity. In Proc. of Challenge of Image Retrieval, Brighton,
May 2000.

F. J. Rohlf. Single-link clustering algorithms. In P. R. Krishnaiah and L. N,
Kanal, editors, Classification Pattern Recognition and Reduction of Dimension-
ality, volume 2 of Handbook of Statistics, pages 267-284. North-Holland, 1982.

R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, Massachusetts,
1992.

S. Siegel. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill
Book Company, Berkshire, 1956.

1. Spence and D. W. Domoney. Single subject incomplete designs for nonmetric
multidimensional scaling. Psychometrika, 39:469-490, 1974.

P. D. Surry. Hypertext Manual and Glossary of Evolutionary Computing.
http://tarantula.quadstone.co.uk /rpl2/glossary /nodel.html, July 1995.

H. Szu and R. Hartley. Fast simulated annealing. Physics Letters A, 122:157-162,
June 1987.

Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences mul-
tidimensional scaling: An alternating least-squares method with optimal scaling
features. Psychometrika, 42:7-67, 1977.

C. A. Tout, S. J. Aarseth, O. R. Pols, and P. P. Eggleton. Rapid binary star
evolution for N-body simulations and population synthesis. Monthly Notices of
the Royal Astronomical Society, 291:732-748, November 1997.

L. R. Tucker. A method for the synthesis of factor analysis studies. Technical
Report 984, Department of the Army, Washington, DC, 1951.

Bibliography 111

[WeeksT79] D. G. Weeks and P. M. Bentler. A comparison of linear and monotone multidi-
mensional scaling models. Psychological Bulletin, 86:349-354, 1979,

[Wright89)] M. B. Wright. Applying stochastic algorithms to a locomotive scheduling prob-
lem. Journal of Operational Research Society, 40:187-192, 1989.

[YoungT70] F. W. Young. Nonmetric multidimensional scaling: Recovery of metric informa-
tion. Psychometrika, 35:455-473, 1970.

[Young72] F. W. Young and N. Cliff. Interactive scaling with individual subjects. Psy-
chometrika, 37:385-415, 1972.

Author Index

Anderberg 2, 3, 52, 53
Andrews 13, 15

Baeza-Yates 6

Basalaj 91, 93

Battista 85, 93

Blake 103, 105, 106

Borg 7,15, 21, 22, 23, 24, 25, 28, 35, 42, 46,
50, 64

Brandenburg 50

Busing 35

Cattell 104

Chalmers 68

Chernoff 19

Cleveland 17

Cohen 69, 92

Cox 15, 21, 28, 46, 50, 64, 104

de Jong 34

de Leeuw 24, 34, 35, 42, 66
Donoho 96, 103

Dowsland 35, 36, 37, 38, 76

Faloutsos 68
Fienberg 17
Flury 19, 57, 58
Frick 29
Furnas 96

Glover 31
Goldberg 33, 76, 77
Gordon 97
Gower 3, 4, 7, 28, 58

Hand 104
Harary 53
Henderson 11, 103
Hotelling 52, 57

Inselberg 13

Joslin 76

Kamada 29, 50, 92

Keim 95

Keselman 40, 60, 78

Kirkpatrik 36

Klock 50

Kohonen 90

Kruskal 5, 22, 24, 49, 73, 92, 104

Lee 95
Metropolis 36
NIST 31
Ortega 34

Pearson 15, 52, 58

Petajan 95

Press 28, 29, 34, 42, 58, 68, 75, 77
Prim 53

Reeves 33, 34, 38, 49, 77
Rens-Domiano 91
Rodden 6, 71, 93

Rohlf 53

Sedgewick 53

Siegel 38, 40, 42, 59, 60, 78, 80
Spence 52

Surry 33, 34

Szu 36

Takane 32
Tout 56
Tucker 23, 27, 46, 64

Weeks 22
Wright 36

Young 51, 52

Subject Index

alternative hypothesis, 40, 42, 60, 78, 80, 82
analysis of variance, 40, 42
Andrews plot, 13-15

binary
coding, 77
relationship, 5, 91
scale, 3, 58
tree, 25

Cauchy distribution, 36
Cauchy-Schwarz inequality, 24, 27
Chernoff faces, 18-20
classical scaling, 28, 51
cluster, 15, 17, 20, 51, 53, 64, 65, 97
analysis, 8, 51, 53
diameter, 53
hierarchy, 53, b4, 97
convergence, 29, 32-34, 37
covariance matrix, 17, 58

data table, 4, 11-13, 15, 17, 19, 37, 46, 47,
51, 52, 58-60, 62, 63, 68, 77, 90,
96, 97, 103, 105, 106
database, 3, 91, 95, 96
object, 95
extent, 96, 98
relational, 95, 96
schema, 95, 96
table, 96, 98
degrees of freedom, 52
descent minimisation method, 34-36
disparity, 22
dissimilarity, 1-8, 19, 21-25, 27, 28, 51-53,
55, b6, 67, 68, 73, 74, 85, 91, 92,
96-98
coeflicient, 1-5, 7, 20, 51, 53, 55, 93, 96
matrix, 7, 37, 52, 58, 63, 77, 103

eigen-
decomposition, 28, 42, 58, 62, 68
value, 28, 58
vector, 28, 58
Energy, 26, 27, 29-31, 34, 35, 37, 38, 40, 42,
44, 48, 50, 54-57, 59, 61, 63, 65,
67, 73, 77, 92

raw, 27, 32, 35, 36, 42, 50
Fuclidean
distance, 4, 7, 15, 21, 27, 28, 55, 58, 74,
101
matrix, 7
norm, 6
space, 7, 21, 58

Friedman
chi-square statistic, 40, 42, 60, 61, 78—
80, 82-84
test, 40, 42, 59-61, 78-80, 82, 83
full scaling, 53-56, 58
function
derivative, 24, 73
differentiation, 22, 23, 26
gradient, 28, 29
Hessian, 28, 29
minimisation, 27, 34, 36, 37
partial derivative, 28, 30, 101, 102
singular point, 29

GA, see genetic algorithm
Gaussian distribution, 33, 36
genetic algorithm, 33, 76, 90
crossover, 33, 34, 77
elitist selection, 34
mutation, 33, 34, 77
tournament selection, 34, 76
global
minimum, 30, 35, 38, 50, 83
optimisation, 36, 44, 90
graph, 5, 37, 50, 52, 53, 69, 74, 77, 85, 88,
91, 93, 96, 97, 103
bipartite, 98
depth-first search, 69
drawing, 85-87, 92, 93
aesthetic, 85, 93
algorithm, 29, 50, 69, 93
shortest path length, see graph theo-
retic distance
theoretic distance, 5, 85, 91, 93
topology, 85, 89, 92

hash function, 31

116 Subject Index
heap, 75 nominal scale, 3, 13, 20, 68
heuristic, 21, 27, 31, 37, 44, 45, 50, 73, 76, NR, see Newton-Raphson method

83, 90
histogram, 6, 48, 89

IM, see iterative majorization
image collection, 6, 37, 71, 72, 77, 94, 95,
103
information retrieval, 6, 93
iterative majorization, 34, 35
majorizing function, 34
supporting point, 35

Kendall’s coefficient of concordance, 40, 42,
60, 61, 78-80, 82-84

Kronecker delta, 101

KYST, 72,73, 77

least-squares
fit, see linear regression
MDS, 22, 27, 28, 37, 42, 53, 6769
linear
regression, 43, 62, 78, 81
transformation, 22, 57
local
maximum, 29, 30
minimum, 24, 25, 29, 34, 35, 37, 59, 77
optimisation, 35
loss function, 22, 25, 26, 28, 29, 31-33, 35,
49, 56, 73, 76, 85

MDS, see multidimensional scaling
metadata, 91, 95, 96
metric properties, 5, 7
minimum spanning tree, 53, 54, 74, 76, 97
MST, see minimum spanning tree
multidimensional scaling, 15, 16, 19, 20, 22,
27-29, 31, 33, 35, 37, 40, 46, 47,
49-53, 63-66, 68, 69, 71, 73, 76,
77, 85, 90, 92, 93
absolute, 22, 35
incremental, 53-56, 58, 63, 64, 66, 67
least-squares, see least-squares MDS.
metric, 21, 28
nonmetric, 22
ordinal, see multidimensional scaling,
nonmetric
ratio, 22-26, 35, 46
multivariate
data, 11, 15
statistics, 51, 57
visualisation, 8, 11, 20

Newton-Raphson method, 28, 29, 31

null hypothesis, 40, 42, 60, 78, 79, 82, 83
numerical optimisation, 22, 31, 73, 74

operational research, 27
ordinal scale, 2, 3, 7, 58
orthogonal projection, 58, 59, 69
outlier, 7, 15, 20, 48, 53

parallel coordinates, 1315, 17
PCA, see principal components analysis
PCO, see principal coordinates analysis
Prim’s algorithm, 53
principal
axis, 69, 85
component, 28, 48, 58, 59, 64, 69
components analysis, 15, 57, 58, 6366,
68, 105
coordinates analysis, 28, 37, 42, 58, 68,
69
Procrustes analysis, 46, 47, 64, 87
proximity, 1, 7, 8, 19, 20, 51, 68, 69, 71, 90
grid, 71-73, 75-78, 85, 89, 90, 94-96
visualisation, 1, 7-9, 17, 19, 21, 27, 51,
91-93, 95-98
ProxScal, 35

quantitative scale, 2-4, 7, 13, 58

rank order, 2, 3, 7, 22, 53
representation error, 22, 27, 68, 73-76, 92

S-Stress, 32
SA, see simulated annealing
scalar product matrix, 58
scatterplot matrix, 16, 17
self-organising map, 90
similarity, 1, 3, 5-7, 13, 17, 19, 20, 72, 73,
94, 95
coeflicient, 4, 93, 95
matrix, 7
simulated annealing, 35, 36, 38, 50, 58, 76
acceptance probability, 35, 36
acceptance ratio, 37, 38
cooling schedule, 36, 38
single scaling, 53-55, 58
single-link clustering, 53, 54, 97
SMACOF, 35
SOM, see self-organising map
space complexity, 55, 56, 67
“squeaky wheel” optimization, 72, 76, 90
star glyphs, 17-20
statistical

Subject Index

117

analysis, 8, 15, 40, 59, 81, 89
inference, see statistical analysis
steepest descent, 29, 77
Stress, 25, 27, 556-57, 63, 73, 75-79, 81-85,
88-90
formula 1, 24, 73
normalised, 23, 25
raw, 22-24, 27, 35
SWO, see “squeaky wheel” optimization

tabu search, 31, 32
aspiration criterion, 31
frequency memory, 31, 32
recency memory, 31
text corpus, 6, 93
time complexity, 42, 55, 67, 68
TS, see tabu search
Tucker’s congruence coefficient, 23, 27, 46,
64-66
Tukey multiple comparison test, 40, 42, 60,
78, 80-83

variance, 24, 28, 40, 58, 59, 64-66, 69
vector model, 6, 93

Wilcoxon test, 38, 42, 44, 45, 60, 80-83

