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1. INTRODUCTION

This paper reports experiments on mechanizing a theory of UNITY program composition.
The key ingredients are mechanized proofs, compositional reasoning, and the UNITY for-
malism.

—Mechanical proof tools provide rigour and power, but they are highly sensitive to small
changes in the definitions. The gap between the “hand proof” and “mechanical proof”
communities makes communication difficult. Unstated assumptions in a hand formalism
can cause major problems during its mechanization. Notations designed for hand proofs
may not be suitable for mechanical tools.

—Compositional reasoning means deriving a system’s properties from those of its compo-
nents. It requires reconciling any differences in how those components are formalized.
This paper uses theguaranteesprimitive [Chandy and Sanders 2000], but almost any
theory of compositionality poses similar problems.

—UNITY [ Chandy and Misra 1988] is a simple formalism for expressing and verifying
shared-variable concurrent programs. Properties can be proved from program texts, and
program components can be specified abstractly without giving an implementation. The
issues discussed below are relevant to other shared-variable formalisms, such as the
Temporal Logic of Actions [Lamport 1994].

Paper outline.The paper begins with a brief review of UNITY (Section2) and an
overview of theguaranteesprimitive (Section3). Then it discusses a basic issue: how
to formalize the states of a system component (Section4). It argues against the standard
practice of assuming a uniform state representation based on a flat name space, preferring
instead to give each program component its own signature of strongly-typed variables. The
system’s signature is the union of those of its components, so component properties must
be transferred to the system’s signature.

Pursuing the typed-signature approach, we find that theguaranteesprimitive can be
made to work with safety properties: a complete solution is available (Section5). For
progress properties, the situation is different: no complete solution can exist, but two partial
solutions are described (Section6). Although they are not used in the final example, the
findings presented in these two sections are important.

The inability to transfer progress properties forces a new approach. By including a poly-
morphic dummy variable in each component, we can ensure that between the system’s sig-
nature and a suitable instance of the component’s signature there is an isomorphism (Sec-
tion 7). This new approach necessitates changes to the existing treatment of process ar-
rays (Section8). The resource allocation system ofCharpentier and Chandy [1999] is
introduced, with remarks about how some of the proofs were mechanized (Section9). Fi-
nally, a brief concluding section considers the implications of this work (Section10).

2. REVIEW OF THE UNITY FORMALISM

For the sake of completeness, let us recall the main elements of UNITY. More detail can
be found elsewhere [Misra 1995a; Misra 1995b].

A UNITY program consists of a set of atomicactionsthat operate upon a declared set of
variables. An execution step applies an action (chosen nondeterministically) to the current
state, resulting in a new state. The set of actions always includesskip, which leaves the
state unchanged. Aninitial condition specifies the states in which execution may begin.
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Safety properties are proved of the atomic actions according to a weakest precondition
semantics. Progress (or liveness) properties can also be proved, typically by assuming
that the actions are executed under weak fairness. UNITY includes an elegant calculus
for proving program properties, and authors have published numerous worked examples.
Although UNITY proofs were originally done by hand, researchers have attempted to use
mechanical proof tools. The present paper is a continuation of my earlier work [Paulson
2000] on mechanizing UNITY using Isabelle [Paulson 1994].

The Isabelle formalization is based on higher-order logic. It represents state predicates
as sets of states. It represents a guarded command as a relation on states. It represents a
program property as the set of programs satisfying that property. The theory is polymorphic
in the type of states, making it independent of any particular type of states.

The safety properties include constrains (co), stableandinvariant :

A co B , {F | A is a precondition forB in F}
stableA , A co A

invariant A , {F | Init F ⊆ A∧ F ∈ stableA}
A program satisfiesA co B if each command takes any state inA to a state inB. A special
case isstableA: once execution enters the setA it can never leave. A stable predicate that
holds at the start is calledinvariant . We writeInit F for F ’s set of initial states andActs F
for F ’s set of actions.

LetR(F) denote the set of states reachable in the programF . We can defineweakforms
of the safety properties by restricting attention to reachable states [Sanders 1991]:

A cow B , {F | F ∈ (R(F) ∩ A) co B}
stablew A , A cow A

alwaysA , {F | Init F ⊆ A∧ F ∈ stablew A}
These weak properties satisfy many of the same laws as the strong ones. The presence
of R(F) complicates the meta-theory but makes the primitives more usable in practice:
program proofs can appeal to previously-proved invariants.

Progress properties includetransient, ensuresand 7→ (“leads-to”). A program satisfies
transient A if some action takesA to A: informally, it falsifies A. The program satisfies
A ensures B if it takes A to B by an atomic action. This concept is expressed as the
conjunction oftransient(ArB)— we cannot haveA without B forever — with(ArB) co
(A∪ B) — the state remains inA until it entersB. The main progress assertion,A 7→ B,
is defined as the transitive and disjunctive closure ofA ensuresB. “Disjunctive closure”
means that ifF ∈ Ai 7→ B for all i in I thenF ∈ (⋃i∈I Ai ) 7→ B. There is also a weak
form of leads-to, which restricts attention to reachable states:

F ∈ A 7→w B , {F | F ∈ (R(F) ∩ A) 7→ B}
The Isabelle mechanization proves hundreds of theorems of the meta-theory and devel-

ops several examples from the literature.

3. A MECHANIZED THEORY OF COMPOSITION

When components are joined to form a system, we ought to be able to combine the prop-
erties of the components without reasoning directly about their underlying actions. The
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Isabelle UNITY theory defines program composition followingMisra [1994a], who calls
it union. Composing two programsF andG yields a new program, writtenF tG, defined
by

Init (F t G) = Init F ∩ Init G

Acts(F t G) = Acts F ∪ ActsG.

Intuitively, the program texts are merely combined. AlthoughF t G should be undefined
whenInit F andInit G are disjoint, all Isabelle functions are total, yielding in this situation
Init (F t G) = ∅: there are no legal initial states. On the other hand, the logic is strongly
typed, soF t G can be written only ifF andG have the same state type. This point will
be crucial below.

The Isabelle UNITY theory proves many laws such as these:

⊥ t F = F (1)⊔
i∈I∪J

Fi =
(⊔

i∈I

Fi

)
t
(⊔

i∈J

Fi

)
F t G ∈ A co B ⇐⇒ (F ∈ A co B) ∧ (G ∈ A co B) (2)

F t G ∈ transient A ⇐⇒ (F ∈ transient A) ∨ (G ∈ transient A) (3)

Here⊥ is the null program, which has only askip action and allows all initial states. Laws
(2) and (3) are compositional, but there are no similar ones for weak safety (cow) or for
leads-to. To allow compositional reasoning more generally, a component’s specification
must somehow describe the assumptions it makes of its environment.

3.1 The guarantees Operator

Many authors have put forward theories for compositional reasoning.Misra [1994b] de-
finesclosure properties. A program in Coq-UNITY must specify the maximal set of ac-
tions it may be composed with [Heyd and Cŕegut 1996]. The guaranteesprimitive of
Chandy and Sanders [2000] is attractive. It is simple and remarkably general; the artefacts
being specified do not even have to be programs.

In attempting to formalizeguaranteesin Isabelle, I discovered many implicit assump-
tions that had to be identified, clarified and formalized. Most of these were assumptions
about UNITY itself that had not caused problems hitherto. The effort needed to mechanize
a straightforward example [Charpentier and Chandy 1999] was entirely out of proportion
to what one might have expected from reading the paper. I describe a small fraction of this
effort below.

A guaranteesassertion specifies a conditional assurance, typically to perform some
service. By definition,F ∈ (X guaranteesY) means for allG, if F t G satisfiesX, then
F t G also satisfiesY. Here X andY are program properties: safety, progress, or even
other guarantees properties. Guarantees assertions provide a general means of proving
safety and progress properties of systems that takeF as a component. Unlike many other
rely-guarantees theories, the relied-upon assertion (X) and the guaranteed assertion (Y)
refer to the same system, which avoids complications when reasoning about a system built
of many components.

Theguaranteestheory requires thecomponentrelation, which defines a partial ordering
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6 · Lawrence C. Paulson

on programs:

F ≤ G , ∃H [F t H = G]

An equivalent definition is

F ≤ G , (Init G ⊆ Init F) ∧ (Acts F ⊆ ActsG).

Among the facts proved areFi ≤
⊔

j∈I Fj for i ∈ I and the obvious⊥ ≤ F . Once the
component relation has been proved to be reflexive, anti-symmetric and transitive, it can be
installed as a partial ordering using Isabelle’s type class mechanism. All theorems proved
about partial orderings then become applicable to the component relation.

Theguaranteesoperator is defined such that

F ∈ (X guaranteesY) ⇐⇒ ∀G [F t G ∈ X→ F t G ∈ Y]

Note that inF ∈ X guarantees Y the assertion as a whole specifiesF , but X and Y
specify programs of the formF t G for arbitraryG.

3.2 Theorems About guarantees

Chandy and Sanders [2000] state many facts about guarantees. In Isabelle, some of these
facts are best expressed as derived rules of inference. IfX is stronger thanY then any
program trivially satisfiesX guaranteesY:

X ⊆ Y
F ∈ X guaranteesY

Guarantees properties can be chained. A corollary of the following rule, puttingX = ∅, is
thatguaranteesis transitive:

F ∈ V guarantees(X ∪ Y) F ∈ Y guaranteesZ
F ∈ V guarantees(X ∪ Z)

Other properties ofguaranteesare best expressed as equational laws. HereX andY range
oversetsof program properties.( ⋂

X∈X
X guaranteesY

)
=
( ⋃

X∈X
X
)

guaranteesY(⋂
Y∈Y

X guaranteesY
)
= X guarantees

(⋂
Y∈Y

Y
)

(4)

These equations could also be expressed as logical equivalences, and we could abbreviate⋂
Y∈Y Y as

⋂
Y, which expresses the conjunction of all the properties inY. Equation (4)

becomes

∀Y∈Y [F ∈ X guaranteesY] ⇐⇒ F ∈ X guarantees
⋂

Y,

saying forF to guarantee every property inY is equivalent toF ’s guaranteeing
⋂

Y.

3.3 On Local Variables

Before we look at the Isabelle definitions, we must consider a further issue: local variables.
Published examples often use them, but UNITY has no notion of locality. At best, we can
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preserves :: "(’a=>’b) => ’a program set"
"preserves v ==

⋂
z. stable {s . v s = z}"

guar :: [’a program set, ’a=>’b, ’a program set] => ’a program set
("(_/ guarantees[_]/ _)" [55,0,55] 55)

"X guarantees[v] Y ==
{F. ∀G ∈ preserves v. F tG ∈ X → FtG ∈ Y}"

Fig. 1. TheguaranteesPrimitive in Isabelle

declare that certain variables may only be updated by certain processes and forbid compo-
sitions that violate these restrictions. In general, we need a treatment ofcompatibility: the
relation that holds between components that may be composed.

I am developing a formalization of compatibility, but the experiments reported in this
paper are based on the simplest treatment of locality. Assuming nothing about the structure
of states, we can represent a variablev by a function to inspect the state: a function from
states to values. A collection ofn variables is represented similarly: by a function from
states to ann-tuple of values. Ifv is a function over states thenpreservesv is the set
of programs that do not modify the part of the state inspected byv. Intuitively, v is a
variable andpreservesv is the set of programs that do not modifyv. The corresponding
version ofguaranteestakesv as an additional argument to restrict the quantification over
environments:

preservesv ,
⋂

z
(
stable{s | v(s) = z}

)
X guaranteesv Y , {F | ∀G∈preservesv [F t G ∈ X→ F t G ∈ Y]}

The Isabelle declarations appear in Fig.1, including types and syntactic information for
X guaranteesv Y. Type ’a program is the type of programs; the type variable’a
allows it to be used with any type of states. Type’a program set is the type of
program properties, which are sets of programs. The discussion below ignorespreserves
to avoid obscuring the main points.

4. REPRESENTING COMPONENT STATES

Consider a system built from separate components, each a UNITY program operating on
a fixed set of variables. A component may modify some of the variables, while others
are read-only. A component’s state is determined by the values of all the variables it can
read. To use mechanical proof tools requires formalizing (among many other things) each
component’s state space.

4.1 Possible Choices

States can be formalized in various ways. To allow composition, it is convenient if the
state type is common to all components. Obviously the components may be designed
independently of each other, and while they must communicate by an agreed-upon set of
shared variables, we cannot expect the combined set of variables (which includes each
component’s local variables) to be agreed upon in advance. For maximum flexibility, we
should permit a variety of state types and to provide a means of transferring properties from
one type to another. At the opposite extreme, we could impose a uniform “ISO standard”
state type on all programmers now and forevermore, ensuring a flat, global name space.
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In her PhD dissertation,Vos [1999] discusses state representations. She notes that most
authors represent the state by a function from variables to values.Andersen et al. [1994],
using the HOL system, define the types of variables and their values separately for each
program.Heyd and Cŕegut [1996], using the Coq system, represent a state by a dependent
function from variables to types. The type of variables is defined by enumeration and the
type of states can map each variable to a distinct type. Both the HOL and Coq approaches
permit a variety of state types.Prasetya [1995] adopts a uniform but unacceptably restric-
tive representation: a state is a function from variables to natural numbers. Vos generalizes
Prasetya’s approach to allow variables of other types. Her representation is also uniform:
a state is a function from variables to a large, recursively defined value space.

4.2 Drawbacks of a Global Value Space

Of all the representations discussed above, Vos’s map from variables to a global value
space is the best. It is uniform and reasonably flexible. However, it has drawbacks:

—It is potentially restrictive. Her values are the disjoint sum of natural numbers, booleans,
reals, strings and (recursively) lists, trees and finite sets of values. That is quite com-
prehensive, but adding a new type (such as bags) would be a major undertaking. Users
must live with the selection provided.

—It clutters expressions with constructor and destructor functions: injections into the dis-
joint sum and their (partial) inverses. Vos alleviates this problem somewhat by defining a
notation for expressions over her value space. But we would like to use the full notation
of our proof tool, not a subset of it.

—It ignores the relation between variables and their types, yielding a weakly-typed for-
malism. Instead of specific types such asint andbool, all variables effectively have type
any.

Here is an example to illustrate the last two points. Types in higher-order logic be-
have much as they do in programming languages. For instance, ifi and j have type
int then so does the expressioni + j , and the only values they can have are inte-
gers. With weak typing,i and j have typeany and can take on various values such
as make int(3) and make bool(false). We must write the integer sum ofi and j as
make int(dest int(i ) + dest int( j )). The constructor and destructor functions are ugly
and they complicate proofs. Reasoning aboutdest int(i ) requires showing thati always
has a value constructed usingmake int , in effect an assertion thati is well-typed. The con-
junction of the typing assertions for all the program variables forms a typing invariant. We
must prove this typing invariant and appeal to it frequently. Proofs become more complex
and less can be proved automatically. Certainly, we should try to avoid weak typing.

Lamport [1994, Section 2.1] adopts the uniform approach for TLA, decreeing “A state
is an assignment of values to variables—that is, a mapping from the setVar of variable
names to the collectionVal of values.” However, when mechanizing TLA,Merz [1999,
Section 1] felt compelled to find another representation of states: the “universal state space
that underlies TLA is not well supported by the type system of Isabelle/HOL.” The problem
is not specific to one proof tool; most of them use strongly-typed logics.

Most UNITY proofs are done by hand, where none of these problems arise. There is no
need to impose a limited selection of types. The constructor and destructor functions are
implicit, as is the typing invariant. Informal discussions with Charpentier indicate that he
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regards the representation of states to be uniform — and thus, common to all components.
As noted above,Lamport [1994] takes the same view, which I believe is common among
practitioners of hand proofs.

4.3 Representing States as Records

For mechanical proof, a better representation of states is a record type. This claim requires
justification, for a record is essentially the same as a tuple; as Vos notes, tuples are suitable
only for trivial programs. The key difference between records and tuples is that records
are equipped with syntactic sugar that keeps track of variable names, preventing confu-
sion between different variables or state types. Some proof tools allow record types to be
combined, easily expressing new record types.

The typed variable declarations in a UNITY program correspond in an obvious way to a
record type, which we can view as the program’s signature. The resulting formal proofs are
strongly typed and need no typing invariants. It is attractive to formalize each component
with respect to its own signature. When building the system, we form the union of the
signatures of the components.

Typically we have to add variables to each signature. ComponentF has been imple-
mented (or specified) with a state type involving variablesv and x, say, and must now
be combined with a componentG that uses a third variable,y. In previous work, I have
described an approach to this problem [Paulson 2000, Section 10]. A generalized pairing
functionh expresses how the signature has been extended. The type ofh is α × β ⇒ γ ,
whereα is the old type of states,β is a type comprising the additional variables andγ is
the new type of states. The functionh — which must be injective in its first argument and
surjective — is supplied to other functions that extend properties and programs to the new
signature:

—If A is a set of states (equivalently, a state predicate) for the original signature then
extend set h A is the corresponding set for the extended signature. This set does not
depend on the new parts of the signature: in our example, the variabley.

extend seth A, {h(x, y) | x ∈ A andy ranging over typeβ}

—If act is an action ofF , thenextend acth act has the corresponding effect on the old
part of the state while leaving the new part unchanged.

extend acth act, {(h(s, y), h(s′, y)) | (s, s′) ∈ act andy ranging over typeβ}

—If F is a program for the original signature thenextend h F is the corresponding pro-
gram for the extended signature. This program letsy take on any initial value and never
updates it.

Init (extend h F) = extend seth (Init F)

Acts(extend h F) = extend acth ‘ (Acts F)

Here f ‘ A is { f (x) | x ∈ A}, the image of the setA under the functionf , and thus
extend acth ‘ (Acts F) is the set of extendedF-actions.

The previous paper sketches the proofs that the main program properties are preserved. We
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have, for example, these equivalences:

extend h F ∈ (extend seth A) co (extend seth B) ⇐⇒ F ∈ A co B (5)

extend h F ∈ (extend seth A) 7→ (extend seth B) ⇐⇒ F ∈ A 7→ B

extend h F ∈ invariant (extend seth A) ⇐⇒ F ∈ invariant A

We also have the analogous laws for the weak versions of these operators. Of course, they
do not tell us anything about properties ofextend h F that involve the extra variabley, but
why should we care about such properties whenextend h F never usesy?

It is easy to prove a law forguarantees. It resembles the others, but — appearances are
deceiving — it is almost useless. The extended guarantee only applies to programs that
neither modify nor even read the new variabley:

extend h F ∈
(
(extend h ‘ X) guarantees(extend h ‘ Y)

)
⇐⇒ F ∈ X guaranteesY (6)

The imageextend h ‘ X denotes the set of programs of the formextend h H for H ∈ X.
These programs do not mention the variabley. WhenG is a program component that
usesy, this guarantee tells us nothing about the composed system(extend h F) t G. We
need a more general theorem.

5. TRANSFERRING SAFETY GUARANTEES

Our problem is essentially one of linguistics. The guarantee forF is formalized in the
language of state typeα, in which (say) it can refer to variablesv andx. To includeF in
a system involving another variabley requires transferringF ’s guarantee to this extended
language. Naturally,F cannot do anything withy.

A uniform state type would avoid these problems by providing a common language for
expressing components’ guarantees. But, as argued above, a flat name space has draw-
backs. Therefore, let us see how far we can go using signatures. Progress properties, as we
shall discover in the next section, present severe problems. For safety, the problems can be
solved; safety properties can be transferred.

5.1 The Extended Guarantee Theorem

Extending a guarantee from one signature to another requires transferring properties from
the extended signature down to the original signature and back again. (This observation
follows directly from the definition ofguarantees.) Some terminology may be useful in
the discussion below. The original signature is the state typeα, and programs over that
type are calledα-programs. The extended state type isγ , whose programs are calledγ -
programs. The generalized pairing functionh, which has typeα × β ⇒ γ , relates the two
signatures. A key result is theextended guarantee theorem:

THEOREM 1. Let F be anα-program and letp be a function that mapsγ -programs
to α-programs. LetX and Y beα-program properties and letX′ and Y′ be γ -program
properties. Then if for allγ -programsG we have

(extendh F) t G ∈ X′ H⇒ F t p(G) ∈ X (i)

F t p(G) ∈ Y H⇒ (extendh F) t G ∈ Y′ (ii)

and if F ∈ X guaranteesY then we haveextendh F ∈ X′ guaranteesY′.
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, Nov. 2001.
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BA projection of C

C

extension of A

extension of B

Fig. 2. Examples ofextend setandproject set

The proof is trivial by the definition ofguarantees, which as we recall expands to a uni-
versally quantified implication. We assume the antecedent of the guarantee we are trying to
derive, project it (using the functionp) down to typeα, apply the existing guarantee, then
extend the conclusion upwards. (The Isabelle proofs also consider thepreservesproperty,
but that does not concern us here.)

In order to apply this theorem, we start with a guarantee forF , for type α, that we
need to extend to some other typeγ . We must choose program propertiesX′ andY′ that
adequately represent the guarantee we require and choose a functionp such that (i) and (ii)
hold.

Note that this theorem places no constraints on the functionp apart from its type and
conditions (i) and (ii). Plainlyp must be an inverse of the functionextend. If we imagine
a programF executing in an extended signature, and consider whatF will see of actions
performed by its environment, then we arrive at the obvious definition of projection. Pro-
gramF sees the effect of changes to variables in its signature (sayv andx), and does not
see changes to other variables (y). To be precise, the actionact is projected fromγ -states
down toα-states by

{(x, x′) | ∃y y′ [(h(x, y), h(x′, y′)) ∈ act]}. (7)

When trying to develop a worthwhile theory, I considered some alternative definitions.
The most plausible idea is to requirey = y′ above, projecting only actions that leave the
extended part of the signature unchanged:

{(x, x′) | ∃y [(h(x, y), h(x′, y)) ∈ act]}. (7’)

Taking this idea to the extreme, we could even arrange for projection to ignore actions
other than those created byextend act. These variants still makep an inverse ofextend,
but they do not transfer program properties as well as (7), the version adopted.

A γ -state predicateA is projected to anα-state predicate as follows:

{x | ∃y [h(x, y) ∈ A]}

Figure2 illustrates two setsA andB being extended and a setC being projected. In both
cases,h is the ordinary pairing function, so projection is the obvious map from the plane
down to a line.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, Nov. 2001.
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5.2 Weak Safety: An Example

The obvious projection function for programs projects the initial condition and actions as
described above. From this definition ofp, we can satisfy the conditions of Theorem1,
provided the guarantee we want to extend concerns strong safety. Naturally we want more:
at least, weak safety. Transferring weak program properties requires complicating the
projection function, adding an argument to give control over the set of reachable states.
Let us see why this step is necessary.

Recall that a weak safety property is a strong safety property that has been relativized
with respect to reachability. Naive projection, as proposed above, does not work for weak
safety. Consider the following program over an extended signature.

initially x, y = 0,1

x, y := x + y, y+ 2

Execution yields(x, y) = (0,1), (1,3), (4,5), (9,7),. . . ; the variabley enumerates the odd
numbers whilex enumerates perfect squares. (Note that 1+· · ·+ (2n−1) = n2.) Now “y
is an odd number” is a strong invariant, since it is preserved by the assignment. However,
“x is a perfect square” is only analwaysproperty (a weak invariant). When we project this
program to the signature containingx alone, we obtain the following:

initially x = 0

x := x + 〈anything〉
The projected program allows any number to be added tox. It has lost the weak safety
property “x is a perfect square.” We can correct this problem by projecting a state transition
only if the starting state is reachable in the original program. In our example, the projected
program only has the instances ofx := x+y such that(x, y) is reachable, namely ifx = n2

andy = 2n+ 1 for somen ≥ 0. The result of the projection is a program consisting of the
infinitely many assignments

x := x + 1 if x = 0

[] x := x + 3 if x = 1

[] x := x + 5 if x = 4

[] x := x + 7 if x = 9

[] x := · · ·
We are no longer dealing with program texts in any practical sense, but with program
semantics. Formally, our modified projection function involves restricting the domain of
each action.

5.3 The Isabelle Theory of the Projection Operators

Figure3 presents, in Isabelle theory syntax, the definitions used for the projection opera-
tions. As described above, to transfer weak safety properties requires an operator to restrict
an action’s domain. This operator satisfies laws such as the following:

(x, y) ∈ Restrict A r ⇐⇒ (x, y) ∈ r ∧ x ∈ A

Restrict UNIV r = r

Restrict A (Restrict B r) = Restrict(A∩ B) r
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The projection functions for sets and actions were described above. Each takes as its
first argument the functionh, which describes how the signature is extended with new
variables. The setproject set h A is the result of ignoring the new variables. The ac-
tion project act h act is like act but ignores its effect on the new variables. Obviously
project acth Id = Id (whereId, the identity relation, represents theskip action). As we
might expect, both projection functions are left inverses:

project seth (extend seth A) = A

project acth (extend acth act) = act

Now we might expect to haveproject h (extend h F) = F , but there are complications.
In Section5.2we saw thatproject act does not preserve weak safety properties; a solution
is to restrict each action to the set of reachable states before projecting it. Strong safety
does not require restricting the actions, but sinceRestrict UNIV r = r we can arrange for
restriction to do nothing.

An additional argument, theγ -setC, accommodates these options. IfG is aγ -program
thenproject h C Gexpresses its projections. Each action of the projected program is given
by

project act h (Restrict C act) for act ∈ ActsG,

which restricts an action’s domain toC before projecting it.
The functionp needed to apply Theorem1 is (by currying)project h C. To extend a

guarantee involving strong safety, we putC = UNIV ; projecting a program then projects
its initial condition and actions. For weak safety, we putC = R((extend h F)tG) where
G is the environment mentioned in conditions (i) and (ii). (Formally,G is a universally
quantified variable whose scope comprises those conditions.) If the guarantee combines
strong and weak safety properties, then the conflicting constraints onC prevent our apply-
ing Theorem1.

ProvidedC is big enough — ifproject seth C = UNIV — we have

project h C (extend h F) = F;
it suffices if C = UNIV . In general, the programproject h C (extend h F) is derived
from F by restricting the domains of its actions. Another result shows that this sort of
restriction preserves safety properties.

F ∈ A co B
project h C (extend h F) ∈ A co B

(8)

We now come to a series of results that let us apply Theorem1 to guarantees of safety.
Because all the proofs have been mechanized, I merely sketch the arguments below. None
of these results are deep. As so often in mathematics, the difficulty consists in knowing
what theorems to prove from what definitions; the proofs themselves are straightforward.

5.4 Strong Safety and Projection

We begin with a rule that tells us what we can conclude when the programextend h F
satisfies aco property relatingγ -state predicatesA andB. It is proved by a direct appeal
to the definitions of the constants mentioned. The converse fails becauseA and B may
disagree in the new parts of the signature; for instance, ifA has the formP(x) ∧ y = 1
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Restrict :: "[’a set, (’a*’b) set] => (’a*’b) set"
"Restric t A r == r ∩ (A × UNIV)"

project_set :: "[’a*’b => ’c, ’c set] => ’a set"
"project_se t h A == {x. ∃y. h(x,y) ∈ A}"

project_act :: "[’a*’b => ’c, (’c*’c) set] => (’a*’a) set"
"project_act h act == {(x,x’). ∃y y’. (h(x,y), h(x’,y’)) ∈ act}"

project :: "[’a*’b => ’c, ’c set, ’c program] => ’a program"
"projec t h C F ==

mk_program (project_set h (Init F),
project_ac t h ‘ Restric t C ‘ Acts F)"

Fig. 3. The Projection Operators in Isabelle

andB has the formQ(x) ∧ y = 2 then we cannot haveextend h F ∈ A co B because the
program cannot change the value ofy.

extend h F ∈ A co B
F ∈ (project seth A) co (project sethB)

(9)

Next we have an equivalence used in several proofs aboutproject and constraints. The
proof is straightforward, again by appeal to the definitions. The second conjunct is neces-
sary; if C = ∅ thenproject h C G degenerates to a null program, and the left side reduces
to A ⊆ B.

project h C G∈ A co B ⇐⇒
G ∈ (C ∩ extend set h A) co (extend set h B) ∧ A ⊆ B (10)

Strong safety properties can be transferred downwards. This is condition (i) of Theo-
rem1. The premise refers to the system in the extended signature and the conclusion refers
to the same system projected to signatureα. It is proved using (2) and (10).

(extend h F) t G ∈ (extend set h A) co (extend set h B)
F t (project h C G) ∈ A co B

Strong safety properties can also be transferred upwards. This is condition (ii) of Theo-
rem1. It too is proved using (2) and (10). TheUNIV argument cannot be replaced by an
arbitraryC, for if C = ∅ then the premise degenerates toF ∈ A co B.

F t (project h UNIV G) ∈ A co B
(extend h F) t G ∈ (extend set h A) co (extend set h B)

Since we can satisfy both conditions, we can apply Theorem1 to guarantees whose pre-
conditions and postconditions involve strong safety (co). Naturally enough, if the original
(typeα) safety property wasA co B, then the extended safety property is

(extend set h A) co (extend set h B).

5.5 Weak Safety and Projection

To transfer weak safety properties requires further laws. The variableC plays an important
role. Some proofs refer to the functionf that satisfiesf (h(x, y)) = x, which exists
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becauseh is injective in its first argument. It is the obvious projection from the extended
signature to the original signature: it has typeγ ⇒ α.

This equivalence generalizes (10) to the projected systemF t (project h C G).

(F t (project h C G)) ∈ A co B ⇐⇒
(extend h F) t G ∈ (C ∩ extend set h A) co (extend set h B)

∧ F ∈ A co B (11)

Note that the second conjunct has changed fromA ⊆ B to F ∈ A co B. Given thatC can
be instantiated with a set of reachable states and is intersected in the precondition of theco
operator, we can see how this can give rise to weak safety properties. Once again the proof
appeals to (2) and (10).

We need some results about the connection betweenproject and the reachability func-
tion R. This theorem says that if the stateh(x, y) is reachable in theγ -system then state
x is reachable in the correspondingα-system. In practice, we satisfy the first premise by
puttingC = R((extend h F) t G).

R((extend h F) t G) ⊆ C h(x, y) ∈ R((extend h F) t G)
x ∈ R(F t (project h C G)) (12)

To prove the theorem, we must reformulate it in terms of the functionf mentioned above.
In the second premise, replaceh(x, y) by z, and in the conclusion, replacex by f (z). The
proof is by induction over the reachability ofz.

Now we obtain condition (ii) of Theorem1: weak safety properties can be transferred
upwards. The proof uses (11) and (12).

C = R((extend h F) t G) F t project h C G∈ A cow B
(extend h F) t G ∈ (extend set h A) cow (extend set h B) (13)

Since (12) can be applied withC = UNIV , we could have got this far without having
C in our theory at all. Now we come to results that depend crucially uponC. The first is
a converse to (12). It says that if statex is reachable in theα-system, then some extension
of x is reachable in the correspondingγ -system.

C ⊆ R((extend h F) t G) x ∈ R(F t (project h C G))
∃y [h(x, y) ∈ R((extend h F) t G)] (14)

As before, we always apply this theorem withC = R(extend h F t G). The proof is by
induction over the reachability ofx.

Finally, we obtain condition (i) of Theorem1: weak safety properties can be transferred
downwards. The rather involved proof appeals to (2), (9), (11) and (14). Below,CFG is an
abbreviation forR((extend h F) t G).

(extend h F) t G ∈ (extend seth A) cow (extend seth B)
F t (project h CFG G) ∈ A cow B

Again we can satisfy both conditions and therefore can apply Theorem1 to guarantees
involving weak safety. The propertyA cow B is transferred as

(extend set h A) cow (extend set h B).
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Fig. 4. A Progress Property That Cannot Be Transferred Downwards

5.6 Safety Guarantees: Summary

Let us review the situation. We formalize states not by a uniform representation based
on variable to value maps, but as records. A program component’s state type specifies
a finite set of variables and their types, which constitute the component’s signature. To
combine components, first we must merge their signatures and then we must transfer each
component’s guarantees to the common signature. The equivalence (6) is useless here, but
we can transfer guarantees using Theorem1.

An appeal to Theorem1 involves expressing the originalα-program propertiesX andY
asγ -program propertiesX′ andY′, and then showing (i) thatX′ can be transferred down
to X and (ii) thatY can be transferred up toY′. In the previous section we saw that
this could be done for program properties of the formA co B and A cow B. Boolean
expressions and quantifications over these properties can be transferred too, provided the
properties occur only in positive positions. For example, ifX is a conjunction (actually,
an intersection in our formalism) thenX′ will also be a conjunction; to satisfy (i), the
conjuncts are transferred separately.

This is a complete solution for safety properties. The only thing we cannot do, for rea-
sons explained in Section5.3, is combine strong and weak properties in a single guarantee.
This is seldom required anyway.

6. TRANSFERRING PROGRESS GUARANTEES

Safety has been solved, but no complete solution exists for progress. Safety is tractable
because aco property involves a single state change. A leads-to property, however, may
involve an arbitrarily long sequence of state changes. Theorem1 turns out to be of little
use for transferring progress guarantees.

We can still seek partial solutions, typically based on stronger notions of progress. We
can restrict attention to certain key variables, and we can transferensuresassertions, which
like co involves one state change only.

6.1 The Problem with Progress

Let us see why no general solution exists, starting with condition (i): transferring a leads-to
property downwards. Here the environment (processG) is influenced by the extra part of
the signature (the variabley), which is lost after projection.
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Fig. 5. A Progress Property That Cannot Be Transferred Upwards

Figure4 presents a typical case. ComponentG has the actions

x := x − 1 if x < 5∧ y = 3

[] x := x + 1 if x < 5∧ y = 1

[] x, y := 2,3 if x = 5

[] x, y := 1,1 if x = 6

and therefore satisfies

{x = 5} 7→ {x = 2∧ y = 3} 7→ {x = 1}
and {x = 6} 7→ {x = 1∧ y = 1} 7→ {x = 2}.

After projection, the program loses the variabley:

x := x − 1 if x < 5

[] x := x + 1 if x < 5

[] x := 2 if x = 5

[] x := 1 if x = 6

Since this program can both increase and decreasex, it satisfies neither{x = 5} 7→ {x = 1}
nor {x = 6} 7→ {x = 2}.

Condition (ii) involves transferring a leads-to property upwards. Here the projected
system may be able to make progress when the original system cannot because they-parts
do not match. The progress we see in the projected system is illusory.

Figure5 illustrates a typical situation. The system might have the actions

x := x + 1 if x ≤ 1∧ y = 1

[] x := x + 1 if x > 1∧ y = 2.

After projection, these become

x := x + 1 if x ≤ 1

[] x := x + 1 if x > 1

so the projected system satisfies{x = 1} 7→ {x = 3}. The original system does not, since
the two increment actions are guarded by different values ofy.
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These examples show there is no general way to apply Theorem1 with leads-to. But
what if we impose special conditions on the environment or on the progress properties? If
only condition (ii) could be satisfied, then we could at least transfer guarantees with a safety
precondition and a progress postcondition. But there is no point in satisfying condition (i)
alone, since no guarantee needs a progress precondition to establish a safety postcondition.

6.2 Variable-Restricted Progress

To illustrate the sort of special case worth investigating, this section presents a variable-
restricted form of leads-to. The intuition is simple: since new variables can cause the
transfer to fail, strengthen leads-to so that it specifies precisely which variables are rele-
vant to making progress. Such progress assertions can be transferred — and we seem to
have solved the problem of reasoning in a compositional way about progress. That a flaw
remains (the details appear below) shows again how slippery this problem is.

The idea is to restrict the base case of leads-to in its use ofensures, for that is where
progress actually occurs. LetCC be a set of state predicates and consider the relation
A 7→CC B, defined to be the transitive and disjunctive closure of the following base case:

F ∈ A ensuresB Ar B ∈ {∅} ∪ CC
A 7→CC B

HereAr B denotes set difference andensuresis defined by

A ensuresB , ((Ar B) co (A∪ B)) ∩ transient(Ar B).

If F ∈ A 7→CC B thenF makes progress fromA to B with each use ofensuresconfined
to state predicates drawn from the setCC. Including∅ among the allowed state predi-
cates allowsA 7→CC B to enjoy precondition strengthening and postcondition weakening,
which are needed in order to derive other standard progress theorems, such as PSP.

The plan is to letCC be the set of state predicates that can be expressed using certain
variables alone. Section3.3noted how a functionv from states ton-tuples can represent a
collection ofn variables. Consider all state predicates of the form{s | P(v(s))}, whereP
is a predicate overn-tuples. Such state predicates are “given byv,” in the sense that every
access to the state has the formv(s); there is no direct access tos. We can neatly define
this collection of state predicates:

A ∈ givenByv ⇐⇒ ∃P [ A = {s | P(v(s))}]
This definition is polymorphic: it need not mentionn-tuples or specify the types ofv
andP.

Now A 7→givenByv B specifies the programs that progress fromA to B while depending
only on the variables inv: changes to other variables cannot interfere. Typically, assertions
about a primitive componentF involve all its local variables. As it is combined with
other components, its progress assertions (now aboutextend h F) will depend on its local
variables only, ignoring the new ones.

From the definitions above, a substantial proof effort establishes conditions (i) and (ii)
for Theorem1. Both theorems refer to the functionf , which as we recall from Section5.5
is the first projection ofh. It has typeγ ⇒ α, mapping extended states to the corresponding
original states.
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This theorem satisfies condition (i), transferring the progress property downward:

extend h F t G ∈ (extend set h A) 7→givenBy f (extend set h B)

F t project h UNIV G ∈ A 7→ B

If the γ -system makes progress fromA to B depending only onf — and thereforenot
depending on the additional variables in typeγ — then its projection satisfiesA 7→ B.
The conclusion uses the standard leads-to relation.

This theorem satisfies condition (ii), transferring the progress property upward:

F t project h UNIV G ∈ A 7→givenByv B

extend h F t G ∈ (extend set h A) 7→givenBy(v◦ f ) (extend set h B)

If the projected (typeα) system makes progress fromA to B depending only on the vari-
ablev, then its extended version satisfiesA 7→ B, depending now onv ◦ f ; the composed
function refers to the variablev of the original state signature.

Both theorems are available for the weak version ofA 7→CC B too, so we can freely
use the variable-restricted progress relation in guarantees. Unfortunately, it is less useful
than it looks. We can reason about a component that makes progress on its own. However,
when several components co-operate to make progress, we cannot restrict attention to one
component’s local variables. Section9 will describe the resource allocator example and
indicate where the proof fails.

6.3 Transferring an Ensures Property

We can handle the special case where a component makes progress by an atomic action:
anensuresproperty. Provided the environment is well-behaved as given by (16) below, we
can transfer theensuresproperty upwards. This satisfies condition (ii) and lets us extend
a guarantee that has a safety precondition and a progress postcondition.

The first lemma involvesunless, where as we recallA unlessB abbreviates(Ar B) co
(A∪ B).

G ∈ stableC project h CG∈ (project set h C∩ A) unlessB
G ∈ (C ∩ extend set h A) unless(extend set h B)

(15)

This result is one of the few with a tolerably easy proof. Things get pretty horrendous from
now on, though as before the details are not illuminating.

We can now formalize what it means for the environment to be well-behaved. For the
system to progress fromC∩extend set h A to extend set h B, the environment must keep
the system inC ∩ extend set h Ar extend set h B. Formally, this is astableproperty:

G ∈ stable((C ∩ extend set h A)r (extend set h B)) (16)

All the results below depend on this assumption.
The first step is to prove that a non-trivialtransient property cannot have originated

with the projection ofG. It is for this result that condition (16) is assumed; a more natural
condition such asG ∈ (C ∩ extend set h A) unless(extend set h B) is too weak, letting
G make progress.

project h C G∈ transient(project set h C∩ Ar B)
C ∩ extend set h Ar extend set h B= ∅ (17)

The alternative would be to allow the projection ofG to satisfy atransient property and to
show thatG itself satisfies the corresponding property onγ -states. Transferring atransient
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property upwards requires exhibiting an action that, among other things, is enabled over
all of C ∩ extend set h Ar extend set h B. This requirement is hard to satisfy, for (as a
glance at Fig.2 will remind you) applyingextend setyields a large set. If the action has
such a large domain, presumably it does not use the additional variable at all.

The next theorem has a second premise,extend h F t G ∈ stableC, which is trivial to
satisfy: we only apply the theorem withC = UNIV or C = R(extend h F t G).

F t project h CG∈ (project set h C∩ A) ensuresB
extend h F t G ∈ (C ∩ extend set h A) ensures(extend set h B)

The proof is messy. The safety aspect ofensuresis proved by appeals to (2), (8) and (15).
The transient aspect refers to (3) and (17). This result directly establishes condition (ii)
for both strong and weakensures.

For strongensures, we assume (16) with C = UNIV .

F t project h UNIV G ∈ A ensuresB
extend h F t G ∈ (extend set h A) ensures(extend set h B)

For weakensures, abbreviateC = R(extend h F t G):

F t project h C G∈ A ensuresw B
extend h F t G ∈ (extend set h A) ensuresw (extend set h B)

These rules give a partial treatment of progress, but it is unsatisfactory in several re-
spects. It only covers progress made by a single component; the progress must be made
atomically (byensures); proving the well-behavedness assumption (16) can be tedious.
Luckily, there is much simpler way of transferring guarantees —all guarantees — while
retaining the benefits of signatures. However, it requires abandoning Theorem1.

7. POLYMORPHIC STATE TYPES

Our problems withguaranteesare caused by the use of projection. Program properties
are not easily preserved under projection, especially in the case of progress. If we are to
transfer guarantees from one signature to another, the signatures have to be isomorphic.
Fortunately, we can ensure that they will be isomorphic by taking advantage of polymor-
phism. We get the best of both worlds: strong typing and the ability to combine any two
signatures. No global state type is required, but we must put up with an extra component
in each signature.

Each component is given an extra variable that it does not use. Initially this variable
is unconstrained, and each action preserves its value. Crucially, the variable’s type is not
specified, but is left polymorphic. In essence, the component stands for an infinite family
of components, all identical but for the type they give this variable. Everything we prove
of this component, includingguaranteesproperties, will be polymorphic in the dummy
variable’s type.

When we combine several components to build a system, we first work out what the
common signature should be. Then, for each componentF , we form the Cartesian product
of all the new variables and give this type to the dummy variable. More precisely, we
specify the bijection from theF ’s signature to the common signature; the domain of this
bijection will be an instance of theF ’s polymorphic type. The properties previously proved
of F are easily transferred over a bijection between states. This device solves all our
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problems. While it introduces some complications, it is much simpler overall than any
approach relying on Theorem1.

Polymorphism is essential here. An obvious alternative is to introduce a global value
space: a recursive disjoint sum over integers, booleans, lists, etc. Such a value space has
many drawbacks (recall Section4 above). And it does not help here, because the resulting
state types will not be isomorphic. If componentF has an dummy variable that belongs
to this value space, then includingF in a system will mean replacing its dummy variable
by tuple of variables belonging to other system components. The tuple cannot take on all
possible elements of the value space, so some states have been lost. It turns out (and I have
devoted some effort to the attempt) that to transfer program properties through this sort of
mapping is as hard as transferring them through a projection.

A new constant,rename, streamlines the mechanization. It appliesextendusingunit ,
the one-element type. This extends typeα with nothing and yields an isomorphism be-
tween signatures:

rename :: "[’a => ’b, ’a program] => ’b program"
"rename h == extend ( λ(x,u::unit). h x)"

Hereλ(x,u::unit). h x is a function with pattern-matching; we could have written
rename h = extend(h ◦ fst), wherefst is the first projection function for ordered pairs.
The functionh must be a bijection; this condition is implicit in all the theorems presented
below.

To transfer guarantees underrename, two equivalences can be used:

rename h F ∈ (rename h ‘ X) guarantees(rename h ‘ Y)

⇐⇒ F ∈ X guaranteesY (18)

rename h F ∈ X guaranteesY

⇐⇒ F ∈ (rename(h−1) ‘ X) guarantees(rename(h−1) ‘ Y) (19)

Each is a simple consequence of equation (6), which as you may recall from Section4 was
our first attempt at extending guarantees. The use ofh−1 in (19) does not cause problems.
When we apply this equation, we have in mind a particular bijectionh. Typically it is a
renaming of record fields and we can easily express its inverse.

To see how we deal with the program properties in this framework, considerco. The
following equivalence is an immediate consequence of the similar result (5) for extend:

rename h F ∈ (h ‘ A) co (h ‘ B) ⇐⇒ F ∈ A co B

Using this, we can prove another equivalence that helps us eliminate expressions of the
form rename h ‘ X, which are introduced by (18) and (19):

rename h ‘ (A co B) = (h ‘ A) co (h ‘ B)

To rename aco property is to rename its precondition and postcondition. Formally, each
of these is a set, hence the use of the image operator. A similar equivalence can be proved
for all the other program properties, such asstable, invariant , 7→ and their weak coun-
terparts. These equivalences can be installed so that Isabelle’s simplifier will apply them
automatically. Not only can arbitrary guarantees be transferred; they can be transferred
almost without effort. In contrast, invoking Theorem1 requires several proof steps, even if
we have already proved theorems for its conditions (i) and (ii).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 6, Nov. 2001.



22 · Lawrence C. Paulson

8. ARRAYS OF PROCESSES, REVISITED

Arrays of processes sometimes arise in examples. The allocation system ofCharpentier
and Chandy [1999] comprises a resource allocator, a network, and a family of similar
clients. In the previous UNITY paper, I described how the replication of a process could
be handled [Paulson 2000, Section 11]. Now, replication requires taking care to keep the
dummy-variable convention and to ensure that the renaming is a bijection.

As an aside, note that arrays of processes also pose a challenge for the uniform state
representation based on the traditional variable-to-value map. If a single client has a vari-
able calledx, then each replicated client will have a subscripted variablexi . So the type of
variable names needs to admit subscripting; more generally, it must anticipate every kind
of variable-name structuring that might be encountered. This is analogous to a problem
already discussed, namely the need to anticipate every type of value that might be needed.

The treatment of the array of clients illustrates some features of our new approach, in
particular, the treatment of the dummy variable. The client must be specified according to
our new convention; it has a polymorphic dummy variable whose purpose is to anticipate
all ways of extending the signature with new variables. When we insert this component into
an array, the other array elements count as new variables. And to allow further extensions
of the signature, the array must have its own dummy. So the original client’s dummy
variable is instantiated to range over pairs, consisting of an array of client states coupled
with the array’s dummy.

There is a further difficulty. Under the old approach, to make an array of processes was
simple. To make the array elementi , we used the obvious embedding from the valuev

into the functionsf such thatf (i ) = v. However embeddings are no longer good enough:
we must have bijections. This requires a careful construction in which the client’s value is
inserted into an already existing array, with the other elements pushed upwards so that no
information is lost. That way the insertion operation becomes a bijection. The definitions
and proofs are all straightforward, but compared with the previous approach, we have
certainly lost some elegance. Also, the old approach allowed the array to be indexed by
any type, but now the type has to be infinite, so I have fixed it to be that of natural numbers.

The necessary Isabelle declarations appear in Fig.6. Here are informal descriptions of
them:

—Function insert map is like the familiar function updatef (i := z), except that the
previous value off (i ) is not lost but is moved to positioni + 1, with further elements
moved up.

—Functiondeletemap is the obvious inverse ofinsert map, which discards a function’s
value at positioni and moves the other elements down.

—Functionlift map i , wherei is a natural number, is the state renaming to make elementi
of an array. It expects the client’s state to have the form(s, ( f,uu)) wheres is the “real”
state and( f,uu) is its view of the dummy variable. The resulting state consists of the
array built froms and f , which supplies the other array elements; the new state hasuu
as its dummy variable.

—Functiondrop map i is the inverse oflift map i .

—Functionlift set i translates a state predicate about clients into a state predicate about
elementi of an array of clients.

—Functionlift i converts a program over the client signature into one over the signature
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insert_map :: "[nat, ’b, nat=>’b] => (nat=>’b)"
"insert_ma p i z f k == if k<i then f k

else if k=i then z
else f(k-1)"

delete_map :: "[nat, nat=>’b] => (nat=>’b)"
"delete_ma p i g k == if k<i then g k else g (Suc k)"

lift_map :: "[nat, ’b * ((nat=>’b) * ’c)] => (nat=>’b) * ’c"
"lift_map i == λ(s,(f,uu)). (insert_ma p i s f, uu)"

drop_map :: "[nat, (nat=>’b) * ’c] => ’b * ((nat=>’b) * ’c)"
"drop_map i == λ(g, uu). (g i, (delete_map i g, uu))"

lift_set :: "[nat, (’b * ((nat=>’b) * ’c)) set]
=> ((nat=>’b) * ’c) set"

"lift_se t i A == lift_ma p i ‘ A"

lift :: "[nat, (’b * ((nat=>’b) * ’c)) program]
=> ((nat=>’b) * ’c) program"

"lift i == rename (lift_map i)"

PLam :: "[nat set, nat => (’b * ((nat=>’b) * ’c)) program]
=> ((nat=>’b) * ’c) program"

"PLa m I F ==
⊔

i:I. lift i (F i)"

Fig. 6. Isabelle Declarations for Arrays of Processes

for an array of clients, with the supplied program as elementi . Used with the image
operator, it translates program properties.

—FunctionPLam forms an array of processes over a supplied index set of natural num-
bers. The notation{F [i ]}i∈I for PLam I F appeared in my previous paper [Paulson
2000].

Equations for these operators are easy to derive, culminating in a crucial property,
namely thatlift map is bijective:

deletemap i (insert map i x f ) = f

(insert map i x(deletemap i g)) = g(i := x)

drop map i (lift map i s) = s

lift map i (drop map i s) = s

Naturally, sincelift is ultimately based onextend, program properties can be transferred.
For instance, here is the rule for weak progress:

(lift i F ∈ (lift seti A) 7→w (lift seti B)) = (F ∈ A 7→w B)

Guarantees can be transferred in two steps. Suppose that we have a processF satisfy-
ing F ∈ X guaranteesY. First, we transfer this guarantee so that it holds of an array
containingF as elementi :

lift i F ∈ (lift i ‘ X) guarantees(lift i ‘ Y)
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Then we appeal to the meaning ofguarantees: every system that containslift i F as a
component and satisfieslift i ‘ X also satisfieslift i ‘ Y. Since by definition

{F [i ]}i∈I ,
⊔
i∈I

lift i F,

we find thatlift i F is a component of{F [i ]}i∈I and obtain

{F [i ]}i∈I ∈ (lift i ‘ X) guarantees(lift i ‘ Y).

In order to transfer a guarantee this way, we need the following equivalence, which is
simply an instance of (18).

lift i F ∈ (lift i ‘ X) guarantees (lift i ‘ Y) ⇐⇒ F ∈ X guarantees Y

In practice, it is often easier to transfer the guarantee backwards. That is, we start with
the final system and a property we require of it. Then we reduce the property to one that
must hold for an individual client. This equivalence, an instance of (19), does the job.

lift i F ∈ X guaranteesY

⇐⇒ F ∈ (rename(drop map i ) ‘ X)

guarantees(rename(drop map i ) ‘ Y)

In proofs, this two-stage translation turns out to require a bit of effort. It does not work
purely by logical equivalences, so it cannot be done purely by rewriting. A theorem of
the form{F [i ]}i∈I ∈ X′ guaranteesY′ has to be stated explicitly and then proved from
the assumptionF ∈ X guaranteesY. When a guarantee can be transferred by rewriting
alone, it can be conveniently generated on the fly.

9. EXAMPLE: THE ALLOCATION SYSTEM

In the resource allocation system ofCharpentier and Chandy [1999], several clients re-
quest and return resources (represented by tokens), while an allocator attempts to satisfy
the requests. The design is compositional: the allocator, network and a typical client are
specified separately. Properties of the allocator are proved under the assumption that the
network and clients behave well; for instance, they return resources eventually. A typical
client is verified under analogous assumptions. Then the allocation system is verified by
reasoning from the components’ properties.

9.1 System Overview

First, we must discuss the formalization of communication. In UNITY, processes commu-
nicate via shared variables, but the allocator and clients communicate over a network. The
communication channels are modelled as histories, that is, as lists of transmitted messages.
The network process has the task of copying data from the output of one process to the in-
put of another process. For this purpose, Charpentier and Chandy use a modified version of
follows, a temporal operator introduced bySivilotti [1997] in his thesis. (History variables
are ordered by extension. Variablex follows y if both are increasing over time,x never
exceedsy andx eventually reaches any value reached byy. This is expressed formally
usingco and 7→.) They specify the network to arrange that each input history follows the
corresponding output history. Each component has full access to its history, so part of its
specification is that it only extends its history. With this approach, no variable may be
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Network

Allocator

ask1

rel1

giv1

askN

relN

givN ...

clientN

ask

rel

giv

client1

ask

rel

giv

...

Fig. 7. The Allocation System

updated by more than one process. Each process writes to its output variables, which other
processes can only read. The network is itself a process. This deviates from the shared-
variable mutual-exclusion flavour of traditional examples, but (according to Charpentier)
it makes proofs easier.

Figure7 shows the system’s structure. TheN clients each meet the same specification.
(They form an array of processes, as described in Section8.) Each client has three vari-
ables. It sends requests alongask; tokens are given to it alonggiv; it releases tokens after
use alongrel. The allocator communicates with its clients via the network. Its variables
aski andreli receive data fromaskandrel of client i , whose variablegiv receives data from
the allocator’s variablegivi . Each component is specified formally.

—The network’s specification is simple, using thefollows operator: each of its output
histories follows that of the corresponding input history. For example,aski follows
variableaskof client i .

—The client’s specification comprises three guarantees. History variablesaskandrel are
increasing. (The client makes no such guarantee forgiv, a variable outside its control.)
No element ofaskexceedsNbT, the maximum permitted number of tokens. Finally,
there is a progress guarantee: if the historygiv is also increasing, and if the client has
been given at least as many tokens as it has asked for, then it will eventually release all
tokens it was given. The formal statements of these guarantees are formidable, involving
operators for histories and prefixes. Figure9 presents them in Isabelle syntax.

—The allocator meets three analogous guarantees. Variablegivi is increasing, for 1= 1,
. . . , N. The total number of tokens given and not released never exceedsNbT. The
progress guarantee states that providedaski andreli are increasing (1= 1, . . . , N), no
client asks for more thanNbTtokens, and clients eventually return their tokens, then the
allocator will meet all requests. These preconditions match the client’s specifications.

Charpentier and Chandy [1999] put these components together to form a system, which
they prove always to meet client requests. Intuitively, progress depends on the mutual
co-operation of all components.

Finally we can see why the variable-restricted leads-to operator (Section6.2) is insuffi-
cient. The network is the only component with direct access to all the variables in the sys-
tem. Clients and the allocator have their signatures extended, so we express their progress
guarantees using variable-restricted leads-to. The client’s progress guarantee can be trans-
ferred, and we can combine it with the network’s progress property, proving that the allo-
cator’s variablereli behaves correctly: clients eventually return their tokens. It looks like
we have proved the allocator’s precondition. But we have not, for using variable-restricted
leads-to in the allocator’s specification allows progress to depend only on the allocator’s
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record clientState =
giv :: nat list (*client’s INPUT history: tokens GRANTED*)
ask :: nat list (*client’s OUTPUT history: tokens REQUESTED*)
rel :: nat list (*client’s OUTPUT history: tokens RELEASED*)

record ’a clientState_d =
clientState +
dummy :: ’a (*dummy field for new variables*)

record allocState =
allocGiv :: nat => nat list (*OUTPUT history: source of giv[i] *)
allocAsk :: nat => nat list (*INPUT: allocator’s copy of ask[i] *)
allocRel :: nat => nat list (*INPUT: allocator’s copy of rel[i] *)

record ’a allocState_d =
allocState +
dummy :: ’a (*dummy field for new variables*)

record ’a systemState =
allocState +
client :: nat => clientState (*states of all clients*)
dummy :: ’a (*dummy field for new variables*)

Fig. 8. The Resource Allocator: Process Signatures

local variables. Actually, the progress made byreli depends on that made by clienti ’s
local variablerel. Variable-restricted leads-to is simply too strong to express a guarantee’s
precondition.

9.2 Remarks on the Proof Effort

The allocation system is a substantial example. Its specification comprises nearly 200 lines
of Isabelle text. (Figures8 and9 present extracts.) The proof script comprises nearly 600
lines, proving around 40 theorems with an average of just over two commands per proof.
Much of the script concerns routine properties of translations between different signatures.
A typical translation function maps one record to another, copying fields across and moving
information in some trivial way. These functions are obviously bijections and their inverses
can be read off from their definitions, but all these properties must, at present, be stated and
proved explicitly. Routine reasoning of this sort amounts to fully half of the proof script.
Specialized automation could save the user a lot of work.

I have mechanized most of the proofs inCharpentier and Chandy [1999], with the ex-
ception of some large ones in the appendices. A typical example is the first composition
proof from section 4.2. This proof amounts to a page and a half; the reasoning is given
in some detail. The effort needed to undertake this proof is difficult to quantify. Merely
to formalize and enter the allocation system specification took the better part of a day.
Some effort went into developing thefollows operator, the generalized prefix relation, and
other mathematical notions. The great majority of the effort was devoted to exploring the
question of transferring guarantees, discussed at length in this paper. This exploration was
interleaved with mechanizing the proof itself.

The Isabelle proofs follow the hand proofs quite well, but the level of automation is
disappointing. At issue is the amount of effort needed to mechanize a given amount of
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client_increasing :: ’a clientState_d program set
"client_increasing ==

UNIV guarantees[funPair rel ask]
(Increasing ask) ∩ (Increasing rel)"

client_bounded :: ’a clientState_d program set
"client_bounded ==

UNIV guarantees[ask]
Always {s. ∀elt ∈ set (ask s). elt ≤ NbT}"

client_progress :: ’a clientState_d program set
"client_progress ==

Increasing giv
guarantees[funPair rel ask]
(
⋂

h. {s. h ≤ giv s & h pfixGe ask s}
LeadsTo {s. tokens h ≤ (tokens o rel) s})"

Fig. 9. The Resource Allocator: Client Specification

proof text. To formalize a page from a mathematics book may take weeks;Paulson and
Gra̧bczewski [1996, Section 5.2] discuss a sentence in a proof that took two days to mech-
anize. In contrast, a typical paper about weakest precondition calculi presents highly de-
tailed proofs of elementary theorems. The UNITY meta-theory, including extensions such
as theguaranteesoperator, falls into this category; many of the published proofs can be
ignored, since the auto-tactic proves them in seconds. This is because most UNITY laws
reduce to simple properties of sets, where Isabelle’s reasoners are highly effective. Many
UNITY examples can also be done easily, at least when proving safety. With the allo-
cator, the need to combine the properties of the components makes automation difficult.
The hand proofs appear to be written in great detail, but each line makes several implicit
inferences.

For progress proofs, the situation is different. Progress proofs have always been (in my
experience) hard to automate. They often appeal to transitivity and similar laws that cause
any mechanical search to diverge. Even in the meta-theory, some progress laws (such as
the completion and PSP theorems) are hard to prove. Per line of proof text, the difficulty
of mechanization seems about the same whether the proof concerns program composition
or the progress properties of a piece of code.

9.3 Signatures of the Components and the System

Since much of this paper has discussed signatures and maps between them, let us examine
some of the signatures in the allocator example (Fig.8). RecordclientState declares
the three variables of a client: the historiesgiv , ask andrel . The dummy variable is
added separately, extending the record with a new fielddummyto create the record type
clientState d. RecordallocState declares the three analogous variables, but as
they represent requests from all the clients, they are functions from clients (designated by
natural numbers) to histories. Again, recordallocState d extends this state with a new
field dummy. Finally, the recordsystemState extendsallocState with a family of
clients and adummyfield; the dummy is not strictly necessary, but it allows the system to
become a component of some larger system later.

Here is a translation function fromallocState d to systemState , which illus-
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trates how dummy variables work:

sysOfAlloc :: "((nat => clientState) * ’a) allocState_d
=> ’a systemState"

"sysOfAlloc == λs. let (cl,xtr) = allocState_d.dummy s
in (| allocGiv = allocGiv s,

allocAsk = allocAsk s,
allocRel = allocRel s,
client = cl,
dummy = xtr|)"

The . . . d records are polymorphic in the type of their dummy variable. This function
requires the allocator’s dummy to be a pair consisting of a family of clients (cl ) and
another value (xtr ) of polymorphic type, which serves as the system’s dummy. So the
function is a bijection that simply re-arranges these values in the obvious way. One trivial
lemma (needed for other proofs) presents this function’s inverse, which simply returns the
fields to their original places.

inv sysOfAlloc s =
(| allocGiv = allocGiv s,

allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = (client s, dummy s) |)

Figure9 presents the specification of a client. The system description assumes the exis-
tence of such a client, along with an allocator and network, satisfying their specifications:

consts
Alloc :: ’a allocState_d program
Client :: ’a clientState_d program
Network :: ’a systemState program
System :: ’a systemState program

rules
Alloc "Alloc : alloc_spec"
Client "Client : client_spec"
Network "Network : network_spec"

Here is how we combine these components to form a system. ProcessNetwork already
belongs to the system signature, so it requires no renaming. ProcessAlloc belongs to the
allocator’s signature, so it must be renamed using the bijectionsysOfAlloc . Process
Client is replicated, forming an array of similar processes, using theplam binder. In-
formally, we might write something like{Clienti }i<Nclient. The client needs renaming both
after the replication (to add the other system variables) and before (to put its signature into
the form thatplam expects).

System == rename sysOfAlloc Alloc t Network t
rename sysOfClient

(plam x: lessThan Nclients. rename client_map Client)

10. CONCLUSIONS

The Isabelle mechanization ofguaranteesis successful in so far as a substantial example
can be verified in a similar style to the hand proofs. However, this treatment of composi-
tionality is not ideal, whether we use Theorem1 or polymorphic state types (Section7).
The former approach gives a general treatment of safety, but it allows only a partial treat-
ment of progress, and (having experimented at length) I do not see much hope of handling
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progress in a guarantee’s precondition. The dummy variable device is general, but it com-
plicates definitions somewhat; and some theorem provers, such as ACL2 and PVS, do not
have polymorphism.

There is a further problem, again concerning components’ signatures. The client is
specified to operate on three variables. However its implementation uses a fourth variable
[Charpentier and Chandy 1999, Section 6.1]. Charpentier has pointed out (in an e-mail)
that the original specification admits implementations with any number of additional vari-
ables. This view presupposes the uniform state representation, in which all variables are
available. But a flat name space is not satisfactory: if several components are designed in
this way, we run the risk of name clashes.

The guaranteesprimitive is not tied to UNITY. A process formalism that hides local
variables — I do not know of asuitable one — would work better. The problems de-
scribed in this paper would disappear. When a component was combined with the rest of
the system, the latter’s local variables would no longer appear in the signature; the two
signatures would be identical; we would not have to transfer properties from one signature
to another. UNITY remains valuable as a simple formalism in which fundamental issues
can be examined easily.

An alternative conclusion is that we should indeed use a uniform state type. In this view,
the difficulties described in this paper outweigh the arguments given in Section4 against
having a global name space. This claim can be examined experimentally by formalizing a
uniform state type within the Isabelle UNITY environment. Performing two sets of proofs
in the same environment would identify the respective benefits of the two state representa-
tions. Stephan Merz has suggested (in a private e-mail) yet another representation. Declare
an abstract type of states and introduce selector functions for new variables as they are re-
quired. We get a universal state type and strong typing simultaneously. A drawback is that
we are forced to assume axioms. Clearly there is room for much more experimentation.

The present work illustrates the hazards of formalization. I had been rendering the
UNITY theory into Isabelle in a straightforward way; for a long time, this approach pro-
ceeded smoothly. But when I came toChandy and Sanders [2000], definitions that looked
correct proved to have the wrong properties. My treatment of states madeguarantees
too weak, highlighting the underlying assumption of a global name space. Formalization
makes implicit assumptions explicit; that is one of its benefits.

The Isabelle formalization of UNITY is useful for investigating proposed constructs
such asguarantees, both the meta-theory and possible applications. With a bit more de-
velopment, the Isabelle environment could be used to verify larger examples involving
program composition.
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