Technical Report A

Number 502

Computer Laboratory

Formalizing basic number theory

Thomas Marthedal Rasmussen

September 2000

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 2000 Thomas Marthedal Rasmussen

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Formalizing Basic Number Theory

Thomas Marthedal Rasmussen*
Computer Laboratory
University of Cambridge

September 2000

Abstract

This document describes a formalization of basic number theory in-
cluding two theorems of Fermat and Wilson.

Most of this have (in some context) been formalized before but we
present a new generalized approach for handling some central parts, based
on concepts which seem closer to the original mathematical intuition and
likely to be useful in other (similar) developments.

Our formalization has been mechanized in the Isabelle/HOL system.

Contents
1 Introduction 2
2 Basic Number Theory 2
2.1 The Chinese Remainder Theorem 6
2.2 Fermat’s Little Theorem v i v i i v v i e e e s 7
2.3 Wilson’s Theorem v 0 i v i e e e e e e e 8
3 Formalization 8
3.1 Bijection Relations e 9
3.2 Fermat’s Little Theorem v . v v v i v i e e e et e 10
3.2.1 Boyer—Moore’sproof o e 12
3.3 Wilson’s Theorem v v v v v i i e s e e e e e e 12
3.3.1 The “Concrete” Approach 12
3.3.2 The “Abstract” Approach 14
4 Mechanization 15
4.1 The Chinese Remainder Theorem 16
4.2 Finite Sets. o i e e e e e e e e e 17
4.3 Bijection Relations o oo 17
4.4 Fermat’s Little Theorem i i 18
4.5 Wilson’s Theorem v o v i v i e e e e e e e e 19
46 Related Work o e e e 19
5 Conclusion 19

*Permanent address: Dept. of Information Technology, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark. E-mail: tmr@it.dtu.dk

1 Introduction

Based on a theory of the integers up to and including the operators mod and
div we formalize basic parts of Number Theory.

We formalize the notions of divides, greatest common divisor and congruence
on which we then build to formalize the Chinese Remainder Theorem and two
theorems of Fermat and Wilson.

Most of these results have been formalized and mechanized before (most
notably using the Boyer-Moore Theorem Prover [2, 3, 4, 8]). Part of our con-
tribution is to give a coherent presentation of our development, which has been
mechanized using the Isabelle/HOL theorem proving system [7].

More interesting though, is the way we have formalized important parts of
the theorems of Fermat and Wilson. Both use notions of “pairing off” elements
of sets in a “one-to-one” manner. We have developed a generalized approach to
handle these concepts. Once the machinery is in place, this seems to be more
intuitive and closer to the original mathematical proofs. We also believe that
this approach can be used when formalizing similar concepts in other contexts.

In number theory it is customary to mix natural numbers and integers freely;
thus one uses whatever is most appropriate in a given situation. In a thorough
formalization this is difficult to do — one has to choose either. The formaliza-
tions and mechanizations of [2, 3, 4, 8, 9, 10] are all restricted to the natural
numbers. In [6] the formalization and mechanization is based on the integers
but only the Prime Factorization Theorem is proved. This has also been done in
Boyer-Moore and Isabelle/HOL. To the author’s knowledge the work presented
in this document is the most comprehensive development based on the integers.

Using the natural numbers makes some parts of the reasoning simpler but
also puts some limitations on the expressiveness. In formalizations and mech-
anizations based on integers, if needed, natural numbers are represented as
non-negative integers.

This document is organized as follows: Section 2 presents those parts of
number theory we have formalized and mechanized. We give a fairly thorough
mathematical presentation. In Section 3 we turn to the question of formal-
izing these concepts. Some parts do not need much work in the sense that
the mathematical development is formal enough to act as a basis for mecha-
nization, whereas other parts need some substantial additional theory. Finally,
in Section 4 we discuss how the formalization is mechanized in Isabelle/HOL.
The presentation of the formalization is fairly detailed such that most of the
mechanization is essentially straightforward based on that.

2 Basic Number Theory

This section contains material which can be found in all introductory texts on
number theory, e.g. [1, 5]. On the other hand, we have made the development
here more elaborate and some proofs more detailed than what can be found in
those books. Importantly, we have tried to keep this in the spirit of a mathe-
matician being asked to make the development more rigorous, i.e. without any

specific thoughts of mechanization. We will later see that this further rigour
is useful in mechanization but there are still some gaps around due to their
seemingly obviousness to a mathematician.

Unless otherwise stated we work solely with integers in the following.

Definition 2.1 We say that
1. a divides b (written a | b) if there is a k such that b= ak
2. a is congruent to b modulo m (written a = b (mod m)) if m | (a —b)

3. the greatest common divisor of a and b is ¢ (written gcd(a,b) =c¢) ifc|a
and c| b and for alld, ifd|a and d| b thend | c

It is easy to show that | is reflexive and transitive, and that = is an equiva-
lence relation.

There exists an algorithm (known as Euclid’s Algorithm) for computing the
greatest common divisor of two numbers. This algorithm can be extended to
compute two numbers f, g such that

If ged(a,b) = c then c=af + by

Below we state some properties (without proof) of the modulo operator.
Notice that we always assume m to be positive in any expression involving
“mod m” (including congruence expressions).

Proposition 2.2
1. (ab) mod m = (a(b mod m)) mod m
2. (a+ b) mod m = (a + (b mod m)) mod m
3. a=b(mod m) iff a=(bmodm) (mod m)

The following proposition lists properties of congruence and greatest com-
mon divisor.

Proposition 2.3
1. If gcd(a,m) = 1 and ged(b,m) =1 then ged(ab,m) =1
2. If a =b (mod m) and ¢ = d (mod m) then ac = bd (mod m)
3. If gcd(k,m) = 1 and ka = kb (mod m) then a = b (mod m)
(

4. If gcd(m,n) =1 and a = b (mod m) and a = b (mod n) then
a = b (mod mn)

5. If ged(a,m) =1 and a = b (mod m) then ged(b,m) =1

6. For any a there ezists a unique b such that 0 < b <m and a = b (mod m)

7. Ifged(a,m) = 1 then for any b there ezists a unique = such that0 < z < m
and az = b (mod m)

We will not give proofs for these properties except for 7. for which we later
give two different proofs to illustrate some important points.
Euler’s totient function ¢(m) is defined as follows:

Definition 2.4 (Totient)
¢(m) = |{n|ged(n,m) =1A0<n <m}|

In other words, ¢(m) is the number of non-negative integers less than and
relatively prime to m. Note, ¢(p) = p — 1 when p is prime.

Definition 2.5 (Residue Sets) A complete set of residues (mod m) is any
set of m numbers mutually non-congruent (mod m).

A reduced set of residues (mod m) is any set of ¢(m) numbers mutually
non-congruent (mod m) and relatively prime to m.

We note that complete sets of residues are “maximal” in the sense that any
number will be congruent (mod m) to some number in every complete set of
residues. This stems from the fact that when doing arithmetic (mod m) there
are essentially only m distinct numbers.

Below we give the two most important examples of a complete residue set
and a reduced residue set, respectively:

o Tp, ={n|0<n<m}
e &, ={n| ged(n,m)=1A0<n<m}

Note by definition, ¢(m) = |®p|.
If z is some integer and A is some set of integers then zA = {za | a € A}.

Lemma 2.6 Let m be positive and let be some integer with ged(z, m) = 1.
Let A be a complete set of residues (mod m) and let B be a reduced set of
residues (mod m). Then

o zA is a complete set of residues
e B is a reduced set of residues

Proof Let aj,a2 € A and assume za; = zay (mod m). By Proposition 2.3-
3 we get a1 = az (mod m) and therefore a; = ag as all elements in A are
mutually non-congruent. Thus we conclude that all elements in A are mutu-
ally non-congruent too. Clearly |A| = |zA| as ¢ # 0 (which follows from the
assumptions), hence zA is a complete set of residues.

To show that zB is a reduced set of residues we show as above that all
elements are mutually non-congruent and that |B| = |zB|. We are thus done if
we can show ged(zb,m) = 1 for all b € B but this follows from Proposition 2.3-
1. t

Proposition 2.7 Let A and B be two complete sets of residues (mod m). Then
the elements of A and B can be put in a unique one-to-one correspondence with
respect to congruence (mod m).

Proof Let a € A. Euistence: It follows immediately from maximality of B
that there is a b € B such that a = b (mod m).

Uniqueness: Assume a = b; (mod m) and a = by (mod m) where by, b, € B.
By symmetry and transitivity of = we get by = by (mod m). But this means
b1 = by because of the mutual non-congruence of elements in B. We can similarly
show that no two distinct elements of A are congruent to the same element of
B. O

Proposition 2.8 Let A and B be two reduced sets of residues (mod m). Then
the elements of A and B can be put in a unique one-to-one correspondence with
respect to congruence (mod m).

Proof We show that an arbitrary reduced set of residues (mod m) (let A be
such a set and let a € A) can be put in a unique one-to-one correspondence with
®,,. Then the proposition follows from symmetry and transitivity of one-to-one
correspondence,
Existence: By Proposition 2.3-6 there is a b such that 0 < b < m and
a = b (mod m). If ged(b,m) = 1 then b € ®,, by definition. But we know
gced(a,m) = 1 and the result then follows from Proposition 2.3-5.
Uniqueness: Similar to the uniqueness part of the proof of Proposition 2.7.
O

To illustrate the use of Proposition 2.7 we give below a proof (A) of Propo-
sition 2.3-7 using complete residue sets. We also give a quite different proof (B)
using the extended gcd algorithm.

Proof A of Proposition 2.3-7 Let X be a complete set of residues (mod m).
By maximality of X we have that b = z (mod m) for some z € X. By Lemma 2.6
we know that aX is a complete set of residues too. Using Proposition 2.7
we conclude that there is ' € X such that a2’ = z (mod m), hence az’ =
b (mod m). O

Proof B of Proposition 2.3-7 We first show that az = 1 (mod m) has a
solution. Using the extended gcd algorithm we can find f, g such that af +mg =
1 from which easily follows af = 1 (mod m), thus f is a solution. We now show
that fbis a solution to az = b (mod m):

a(fo) =b (mod m) if af =1 (mod m)and b= b (mod m)

by Proposition 2.3-2. O

In both proofs we have actually not made sure that the solution z we exhibits
satisfies 0 < £ < m. But z mod m satisfies this and is still a solution which can

easily be shown using Proposition 2.2. In this case it is also straightforward to
show uniqueness.

2.1 The Chinese Remainder Theorem

Theorem 2.9 (Chinese Remainder) Letmg,my,... ,m, be positive integers
with ged(mi,m;) = 1, i # j. Let ko, k1, ... , kn be integers where ged(k;, my;) =
1. Finally, let by, by,... ,b, be integers.

Then the system

kiz = b; (mod m;)
has a unique solution x with 0 <z < mgmy -+ -my,

Proof Let m = momy - my,. Uniqueness: Assume k;z = b; (mod m;) and
kiy = b; (mod m;), 0 < ¢ < n. By transitivity and symmetry of = we have
k;z = k;y (mod m;) and then Proposition 2.3-3 gives

z =y (mod m;)

for 0 < i < n. By Proposition 2.3-4 we now have z = y (mod m) from which
we conclude z = y as both z < m and y < m.

Ezistence: Let m; = m div m;. By Proposition 2.3-7 there is a unique
solution x; to

kimiz; = b; (mod my) (1)
as ged(k;m;, m;) = 1 (Proposition 2.3-1). We now show that
n
T = <Z n/z\i:cl) mod m
=0

is the required solution to k;z = b; (mod m;). First, as m;|m; when i # j we
get from Proposition 2.2-2 that

n
(Z fn}m,) mod m; = m;z; mod m; (2)
i=0
Now, by Proposition 2.2-1 and Proposition 2.2-3
kiz = b; (mod m;) iff (k; mod m;)(z mod m;) = (b; mod m;) (mod m;)
As m;|m it follows that
n
(ki mod m;)((Z n/z\zmz> mod m;) = (b; mod m;) (mod m;)
i=0
From (2) we finally arrive at
kimiz; = by (mod my;)

which is (1). O

2.2 Fermat’s Little Theorem

Theorem 2.10 (Fermat) Let p be prime and let x be some integer. Assume
p does not divide z. Then

2P~ =1 (mod p)

We give two proofs of this theorem. The first proof (A) uses the binomial
expansion; the second (B) uses complete residue sets.

Proof A of Theorem 2.10 This proof only works for ¢ positive. By Propo-
sition 2.3-3 we are done if we can show zP = z (mod p). We do this by in-
duction on z. The base case (z = 1) is trivial. The induction hypothesis is
(z —1)?» =z — 1 (mod p) which is equivalent to (z — 1)P + 1 = z (mod p). By
transitivity of = we are done if we can show z? = (z—1)P+1 (mod p). Consider
zP: By using the binomial expansion we get

P =((z-1)+1)P = i:o (Z) (z —1)P—k1k
= (-1 + (T3 @)@ - 1) +1
We have that p|(¥) when 0 < k < p hence 2P = (z — 1)’ + 1 (mod p). O

Proof B of Theorem 2.10 This proof works for any integer z. By Proposi-
tion 2.7 we know that the elements of T), and zT, (that £, is a complete set
of residues follows from Lemma 2.6) can be paired of uniquely with respect to
congruence (mod p). As we clearly have 0 = 20 (mod p) also the sets Tp, \ {0}
and z(Yp\ {0}) can be paired of in this manner. From Proposition 2.3-2 follows
that their products are congruent:

[T\ {0}) = [[(15 \ {0}) (mod p)
hence
[T(rp\ {0}) = 27 T](Tp \ {0}) (mod p)

The Theorem now follows using Proposition 2.3-2 because ged([[(Y,\{0}),p) =
1 by Proposition 2.3-1. O

The following theorem generalizes Theorem 2.10 to arbitrary moduli, i.e. not
only primes.

Theorem 2.11 (Euler-Fermat) Let m be positive with ged(z,m) = 1 for
some integer ©. Then

z%™ =1 (mod m)

Proof Let Y be a reduced set of residues (mod m). By Lemma 2.6 it follows
that zY is a reduced set of residues (mod m) too. Using Proposition 2.8 we have

that ¥ and zY" can be paired of uniquely with respect to congruence (mod m).
Thus (Proposition 2.3-2),

HYEHmY (mod m)

hence

HY = g#(m) HY (mod m)

The Theorem now follows using Proposition 2.3-2 because ged([[Y,m) =1 by
Proposition 2.3-1. D

Note that the proof is a generalization of proof B of Theorem 2.10. Proof A
cannot be generalized in a similar way [5].

2.3 Wilson’s Theorem

Lemma 2.12 Let p be prime and assume 0 < a < p. Then
=1 (modp) 4f a=lora=p-1

Proof If: Trivially 1 =1 (mod p). As (p—1)(p—1) = p(p — 2) + 1 we also
have (p—1)(p — 1) = 1 (mod p).

Only if: By definition a? = 1 (mod p) iff p|a?—1. But as p is prime we
have p | (a — 1) or p | (a + 1) which is only possible ifa=1ora=p—1. O

Theorem 2.13 (Wilson) Let p be prime. Then
(p—1)!'= -1 (mod p)

Proof Assume 0 < a < p. Then there exists unique a’ such that 0 < a' < p
aa’ = 1 (mod p) (Proposition 2.3-7). Clearly, a’ # 0. If a = a’ we know by
Lemma 2.12 that a = 1 or @ = p — 1. This means that the set ©, = {n | 1 <
n < p— 1} can be divided into ?;—3 pairs (a,a’) with aa’ = 1 (mod p). By
Proposition 2.3-2 we thus get []©, = 1 (mod p), hence (p — 2)! = 1 (mod p).
As p—1 = —1 (mod p) we finally have (p — 1)! = —1 (mod p). This proof
assumes p > 5. Clearly the Theorem holds for p = 2 and p = 3. t

3 Formalization

In this section we revisit the development of the previous section and fill the
gaps necessary for a rigorous formalization. This is done with an eye to an
eventual mechanization,

The presentation is fairly elaborate and the proofs all quite detailed. This
presentation has been chosen as it can then be seen as “documenting” the mech-
anization, thus the steps of the mechanization follows from the detailed formal-
ization in a straightforward way.

The major gaps are the notions and reasoning of one-to-one correspondences
concerning residue sets and the “pairing off” in Wilson’s theorem. This can be
handled in a general framework with the notion of bijection relations as defined
in the following section.

3.1 Bijection Relations

When referring to sets in the following we always mean finite sets of integers
unless otherwise stated.

Definition 3.1 Let P C Z X Z. The relation ~p C P(Z) x P(Z) is inductively
defined as follows

P(a,b) a¢ A b¢B A ~p B
0 ~p 0 ({a}UA) ~p ({b}UB)

It is straightforward to show by induction that ~p is symmetric and tran-
sitive if P is.

Proposition 3.2 Let f be an injective function with domain A. Assume
P(a, f(a)) forallae A. Then A ~p f(A).

Proof By induction on the size of A. Assume A = 0. Then § ~p f(0)
because) ~p @. Now, assume A = {a} U A’ where a ¢ A’. We must show
({a}u A ~p f({a}UA") But as f({a}UA") = f(a)U f(A') we are done if (by
definition of ~p): P(a,f(a)), a & A', f(a) & f(4') and A’ ~p f(A'). The
first two requirements follow by assumption, the third because f is injective and
the last follows by induction. O

Definition 3.3 Let P C Z x Z. The set BSp C P(Z) is inductively defined as
follows
P(a,d') a¢A o ¢A A € BSp
0 € BSp ({a,a'}UA) € BSp '

Proposition 3.4
If A~p A then A € BSp

Proof Assume A ~p A. We now show 4 € BSp by induction on the
definition of ~p . Assume A = (. Then trivially # € BSp. Now, assume
A= {d}UA and A = {a"} U A" where P(d',d"), ' ¢ A, o’ ¢ A" and
A" ~p A", Assume o' = a”. Then A' = A" and by induction A’ € BSp
hence ({a'} U A') € BSp. Now, assume a' # a”. Then there is A such that
A'={d"Y U4, A" = {a'YUA,d' ¢ A, a" ¢ A As A' ~p A" we furthermore
have A ~p A and then by induction A € BSp from which we finally conclude
({a',a"} U A) € BSp O

3.2 Fermat’s Little Theorem

We concentrate here on the formalization of the generalized version of Fermat’s
Little Theorem (Theorem 2.10).

We first formalize the notion of a reduced set of residues (mod m) (cf.
Definition 2.5).

Definition 3.5 The set RRy, C P(Z) is inductively defined as follows

ged(a,m)=1 Va' € A. a#a (modm) A€RR,
0 € RRpp ({a} U A) € RR,,

A set A is thus a reduced set of residues (mod m) if A € RRy, and |A| = ¢(m).

Given a recursive definition of ®,, it is easy to show that ®,, is a reduced
residue set (mod m) according to the above definition.

We now turn to a formalization of the notion of one-to-one correspondence
between reduced sets of residues.

Lemma 3.6 If gcd{a,m) = 1 then there ezists a unique b such that a =
b (mod m) and b € ®,,. Let en(a) denote this b when it exists.

Proof Straightforward by Proposition 2.3-6 and Proposition 2.3-5 remembering
the definition of ®,, O

Notice that, €, (a) is essentially just a mod m.

Proposition 3.7 Let A be a reduced set of residues (mod m). Then ep is
injective on A and

em(4) = @y

Proof First, notice that e, is well-defined on A (because for all a € A,
ged(a,m) = 1).

Assume a1,a2 € A and en(a1) = en(a2). By definition we have a; =
em(a1) (mod m) and az = ep(az) (mod m), thus a; = ag (mod m). Hence, as
all elements of A are mutually non-congruent (mod m) we get a1 = as.

As ep, is injective on A and |4| = |®,,| we have e,,(A) = B, if €,(4) C By,
But this is clearly the case by definition of €. O

We are interested in the relation ~¢g,, where
Cm(a,b) = a=b(modm)
Proposition 3.8 Let A and B be reduced sets of residues (mod m). Then

A ~c, B

10

Proof Clearly, by definition Cy,(a,€emn(a)) for all a € A. Thus, A ~¢,, en(4)
by Proposition 3.2 and Proposition 3.7. Using the second part of Proposition 3.7
we get A ~¢,, ®p. We can similarly show B ~¢,, ®p,. Finally, by symmetry
and transitivity of ~c, weget A ~c,, B O

Proposition 3.9
If A ~c, B then J[A=]]B (modm)

Proof Assume A ~g, B. We now show [[4 = [[B (mod m) by induction on
the definition of ~¢,, . Assume A = B = (. Then trivially [[0 = [] @ (mod m).
Now assume A = {a} U 4’ and B = {b} U B’ where a = b (mod m), a ¢ A4,
b¢ Band A ~¢, B'. By induction [[A' = [[B’ (mod m). Finally (using
Proposition 2.3-2),

aHA’ EbHB’ (mod»m) =HAEHB (mod m)

Proposition 3.10 Assume ged(z,m) =1. Then
1. If A € RRy, then zA € RRy,
2. |A] = |zA4|

3. If A is a reduced set of residues (mod m) then A is a reduced set of
residues (mod m)

Proof 1. By induction on the definition of RRy,. Assume A = § € RRyy.
Then clearly z§) = § € RR,,. Now, assume A € RR,, because A = {a} U 4,
ged(a,m) = 1, Va' € A'. a # o' (mod m) and A" € RRy,. By induction,
zA' € RRy,. We have gcd(az,m) = 1 by Proposition 2.3-1, and Va' € A'. za #
za' (mod m) by Proposition 2.3-3. We therefore conclude {za} UzA’ = z({a} U
A" € RRyp,.

2. Follows immediately as multiplication by a constant z is an injective
function if = # 0 (which is the case by the assumption).

3. Follows from 2. and 8. (cf. Definition 3.5) O

By induction on the size of a set A we can show:

H:UAzwlA'HA

Revisiting the proof of Theorem 2.11 we see that the above equality together
with Propositions 3.8, 3.9 and 3.10 formalizes the essential parts of that proof.

Note that the formalization of this section can be used (with minor changes)
to prove both proof A of Proposition 2.3-7 and proof B of Theorem 2.10.

11

3.2.1 Boyer—Moore’s proof

In this subsection we sketch a proof of Fermat’s Little Theorem as formalized
and mechanized by Boyer and Moore in [3, 4].

Let ¥, = {zy mod p | v € (T, \ {0})} Clearly, 0 < zy mod p < p for all
v € (Y, \{0}). Now 2y mod p =0 iff p|zy if p| zorp| v, hence
0 < zy mod p < p. Assume zy; mod p = zv, mod p. This is the case
iff 91 = @vp (mod p) ff 1 = 72 (mod p) if 41 = 2. In conclusion
Up =Ty \ {0}

Clearly, [T ¥, = [1(Yp \ {0}) (mod p). By Proposition 2.2 this is equivalent
to [T2(Yp\{0}) = [1(Tp\{0}) (mod p) and the rest of the proof is now similar
to the last part of proof B of Theorem 2.10.

If we compare this proof with proof B of Theorem 2.10 the essential difference
is the use of the set ¥, which is constructed in a way such that it is easy to
establish a one-to-one correspondence as this is now simply equality of elements.

This trick makes the formalization simpler but less faithful to the original
proof and less general.

3.3 Wilson’s Theorem
Lemma 3.11 Let p be prime and let 1 <a <p—1. Then

1<a;1<p—1 and aljl#a

where ay ' is the unique solution to az = 1 (mod p) (Proposition 2.3-7).

Proof By Proposition 2.3-7 we know 0 < a, 1 < p. Clearly, a, L£o. If
a;l = 1 then a = 1 (mod p) which is not possible for 1 < a < p — 1. Now, if
a,' =p—1thena(p—1)=1(mod p) iff a=p—1 (mod p) which again is
impossible. Finally, if a; ! = @ we arrive at a contradiction using Lemma 2.12.
O

We start by revisiting the proof of Wilson’s Theorem (Theorem 2.13). The
gap in this proof is the “pairing off” of elements in the set ®,. We thus need to
formalize this notion so as to prove [[©, =1 (mod p) in a more rigorous way.

We present two different ways of doing this. The first one (the “concrete”
approach) is based on the work of Russinoff in [8]. The second one (the “abstract”
approach) uses the notion of bijection relations.

3.3.1 The “Concrete” Approach

We give a concrete definition of a,, 1 as follows:

a, = a?~% mod p

Clearly, 0 < a, ! < p. Together with part 1. of Lemma 3.12 below we see
that this definition is correct.

12

Lemma 3.12 Let p > 5 be prime. Assume 0 < a < p.

1. aa,* =1 (mod p)

2. (e, =a

Proof Using Proposition 2.2 we get

aa;! = a(aP? mod p) = a?! = 1 (mod p)

which is true by Theorem 2.10.
Extending Proposition 2.2 to exponentiation we get

(a1, = (a?~2 mod p)?~2 mod p = a®=2®=2) mod p
= a3 modp=a iff a(a?"1)P~* =a (mod p)
iff (@ P 3 =1 (modp) if aP~! =1 (mod p)

which again is true by Theorem 2.10. Note that we have to assume p > 5. [

Definition 3.13

w(p,a) = ifa>1 thenlet w =w(p,a—1) in
if a € w then w else {a} U{a;'} Uw
else {

We are interested in the set w(p,p — 2). By induction on the definition of
w(p,a) (using Lemma 3.11) we can show

bewlp,p—2) if 1<b<p-1
An immediate consequence is that ©p = w(p,p — 2).

Proposition 3.14 Letp > 5 be prime. Assumel < a <p—1landl <b<p-1.
Then

bewpa) iff b €w(pa)

Proof Only if: By induction on the definition of w(p,a). The base case
(w(p,a) = 0) is trivial. Assume b € w(p,a — 1) implies b;* € w(p,a —1). We
now have to show that b € w(p,a) implies b;l € w(p,a). If b € w(p,a—1)
we are done so assume b & w(p,a — 1). This means b =a or b = a;l. In the
first case we are done immediately, in the second case we are done by part 2.
of Lemma 3.12. If: We must show that b € w(p, a) if b;l € w(p,a —1). Using
again part 2. of Lemma 3.12 this reduces to the only if case. O

Proposition 3.15 Let p > 5 be prime. Assume 1 <a <p—1. Then

[J«(a) =1 (mod p)

13

Proof By induction on the definition of w(p,a). The base case (w(p,a) = 0)
is true by the convention [[@ = 1. Assume [Jw(p,a — 1) = 1 (mod p). We
must show [Jw(p,a) = 1 (mod p). If a € w(p,a — 1) we are done so assume
a ¢ w(p,a—1). By definition we now get [[{a}U{a,'}Uw(p,a—1) = 1 (mod p)
which again is equivalent to aa;l [Tw(p,a —1) = 1 (mod p) if a ¢ ({a;l} U
w(p,a — 1)) and a; ' ¢ w(p,a —1). Assuming the last two conditions we are
done by Proposition 2.3-2 and definition of a,'. That a & ({a;'} Uw(p,a—1))
follows by assumption and Lemma 3.11. Finally, a, L ¢ w(p,a — 1) follows from
Proposition 3.14. O

This proposition thus gives [Jw(p,p —2) = 1 (mod p) hence [[O, =
1 (mod p)

3.3.2 The “Abstract” Approach

In this section we are interested in the following relation

Ry(a,b) = (ab=1(modp)Al<a<p—1Al<b<p-1)
Proposition 3.16 Let p be prime.

If A € BSg, then HA =1 (mod p)

Proof Assume A € BSg,. We now show [[A =1 (mod p) by induction on
the definition of BSg,. Assume A = . Then [J# =1 (mod m) because of the
convention [0 = 1.

Now, assume A = {a,a’} U A’ because aa’ = 1 (mod p), 1 < a < p— 1,
l<d <p-1l,ad A, d g Aand A € BSg, If a=d wearrive at a
contradiction according to Lemma 2.12. Thus, assume a # a’. By induction
[IA" =1 (mod p). Now (using Proposition 2.3-2),

aa'HA'E 1 (modp)zﬂAE 1 (mod p)

Proposition 3.17 The function (-), 1 is injective on the domain ©,. Further-
more

Proof Assume z,y € ©p, and a:;l = y;l. We must show z = y. By definition,
zz,’ =1 (mod p) and yy,' = 1 (mod p). By Proposition 2.3-3 together with
Lemma 3.11 we get z = y (mod p) and therefore z = y. As (—), L is injective
on ©, we have (0,),! = O, if (©p);' € ©p. But this is clearly the case by
Lemma 3.11. O

14

We have Ry(a,a, 1) for all a € ©,. Now, Proposition 3.2 together with
Proposition 3.17 gives ©, ~g, ©,. Using Proposition 3.4 and then Proposi-
tion 3.16 we finally have

H ©p =1 (mod p)

Thus, we have formalized the “pairing off” using a more abstract approach.
Note that we do not utilize Fermat’s Little Theorem in this formalization.

4 Mechanization

In this section we give an overview of our mechanization in Isabelle/HOL of The
Chinese Remainder Theorem, Fermat’s Little Theorem and Wilson’s Theorem.
The mechanization is based on existing theories of integers in Isabelle/HOL
developed up to and including the operators mod and div.
We thus start our mechanization from the same point as the development in
Section 2, i.e. with the definition of the divides, congruence and gecd relations.

consts
Zprime :: int set
dvd :: [int,int] => bool (infixl 70)
zcong :: [int,int,int] => bool ("[_ = _]1’(mod _?)")
is_zged :: [int,int,int] => bool
defs
zprime_def "zprime ==
{p. #1<p & (ALL m. m dvd p --> m=#1 | m=p)}"
dvd_def "m dvd n == EX k. n=m*k"

is_zgcd_def "is_zged pmn ==

#0 < p& pdvdm& pdvdn &

(ALL d. d dvd m & d dvd n --> d dvd p)"
zcong_def "[a = b] (mod m) == m dvd (a-b)"

Some comments on syntax and conventions: The names of the definitions
(except dvd) are preceded with a z to signify that the definitions are over integers
(Z). A parallel theory defines the same concepts (except congruence) over the
natural numbers hence we choose to distinguish the defined names so as to avoid
the use of namespaces. In the case of dvd this is not necessary, as we can use
a overloaded version for both natural numbers and integers. Note also that we
introduce a special (more readable) syntax for congruence. Furthermore, notice
that integer numerals are identified by prefixing a #.

We also define Euclid’s Algorithm and Euclid’s Extended Algorithm by
means of general recursive function definitions. Below we only give the defi-
nition of the standard algorithm.

15

consts
zged :: "int*int => int"

recdef zgcd "measure ((%(m,n).(nat n)) ::int*int=>nat)"
simpset "simpset() addsimps [pos_mod_bound]"
"zgcd (m, n) = (if n<=#0 then m else zgcd(n, m mod n))"

The simpset clause is necessary if we want the termination condition of the
function to be proved automatically.

This definition requires the second argument to be positive for the function
to be correct. This is no limitation as gecd(m,—n) = ged(m,n) for arbitrary
integers m, n.

We have proven many theorems based on these definitions including all those
of Proposition 2.2 and Proposition 2.3.

As mentioned, there exists a parallel theory based on the natural numbers.
This development on the integers include all theorems proved there plus sev-
eral others. Furthermore, it includes theorems concerning congruence and the
extended ged.

4.1 The Chinese Remainder Theorem

There are essentially no surprises in the mechanization of Theorem 2.9. The
only important decision to make is how to formulate the theorem in the lan-
guage of Isabelle/HOL. We choose to let the indexed integers (m;, k; and b;)
be represented by functions from N to Z. Then the theorem can be formulated
using the following definitions

consts

m_cond :: [nat,nat => int] => bool

km_cond :: [nat,nat => int,nat => int] => bool

lincong_sol :: [nat,nat => int,nat => int,nat => int,int] => bool
defs

m_cond_def "m_cond n mf ==

(ALL i. i<=n --> #0 < mf i) &
(ALL i j. i<=n & j<=n & i "= j -->
zged(mf i,mf j) = #1)"

km_cond_def "km_cond n kf mf ==
(ALL i. i<=n --> zgcd(kf i,mf i) = #1)"

lincong_sol_def "lincong_sol n kf bf mf x ==

(ALL i. di<=n -->
[(kf i)*x = (bf i)] (mod (mf i))"

such that we can prove

16

Goal "[| O<n; m_cond n mf; km_cond n kf mf |]
==> (EX! x. #0 <= x & x < (funprod mf 0 n) &
(lincong_sol n kf bf mf x))";

in a mechanized way which follows the mathematical proof quite closely.
The funprod mf O n gives the product of the integers mf i where i runs
from 0 to n.

4.2 Finite Sets

In both the formalizations of Fermat’s and Wilson’s Theorems finite sets play
an important role. In Isabelle/HOL there is a theory developing notions of finite
sets. This development is based on inductive definitions of the finiteness of a
set, the cardinality of a finite set, and a fold function on finite set which can be
used e.g. to define sums and products (cf. setprod below) of the elements of a
finite set.

To use this development in an appropriate way we choose to use a definition
of concrete finite sets which matches the inductive definitions. This is done by
using recursive definitions of finite sets of integers.

Take e.g. the set ©p = {n | 1 <n < p—1}. We give a recursive definition
in Isabelle/HOL as follows:

recdef Theta "measure ((%a.(nat a)) ::int=>nat)"
"Theta a = (if #1<a then insert a (Theta (a-#1)) else {})"

By induction over this definition it is now straightforward to show
Goal "b:(Theta a) <-> #1<b & b<=a";

This means that ©, in Isabelle/HOL is represented by the set Theta (p-2).
It is also fairly simple by induction to show the following useful fact

Goal "setprod(Theta a) = zfact a";

where setprod(A) calculates the product of the elements of A and zfact a
calculates the faculty of a.

4.3 Bijection Relations

The mechanization of Fermat’s and Wilson’s Theorems very closely follows the
formalization described in Section 3.

Thus we need to mechanize the bijection relations as developed in Sec-
tion 3.1. Fortunately, it is very easy to define such inductive definitions as
those of Definition 3.1 and Definition 3.3 in Isabelle/HOL.

The relation ~p can be defined almost verbatim as follows

inductive "bijR P"
intrs
empty "({},{}) : bijR P"
insert "[| P ab; a ™ A; b ~: B; (A,B) : bijR P |[]
==> (insert a A, insert b B) : bijR P"

17

such that (A,B) : bijR P expresses A ~p B. We can similarly give an
inductive definition such that A : bijER P expresses A € BSp.

As it turns out, it is not possible to reproduce directly the proof of Propo-
sition 3.4 in Isabelle/HOL. In fact, we have to prove a stronger result:

If A ~p B then VF. FCAAFCB — F € BS

But this only holds if we put some extra conditions on P. Their Isabelle/HOL
definitions are as follows:

consts
bijP :: "([’a, ’a]l => bool) => ’a set => bool"
unigP :: "([’a, ’a] => bool) => bool"
symP :: "([’a, ’al] => bool) => bool"

defs

bijP_def "bijP P F == (ALL a b. a:F & P a b --> b:F)"

unigP_def "uniqP P == (ALLabc¢d. Pab &P cd -->
(a=c) = (b=d))"

symP_def "symP P == (ALL a b. (P ab) = (Pba)"

We can now prove

Goal "[| (A,B) : bijR P; unigP P; symP P [] \ 4
\ ==> (ALL F. (bijP P F) & F<=A & F<=B --> F : bijER P)";

from which trivially follows

Goal "[| (A,A) : bijR P; (bijP P A); uniqP P; symP P |]
==> A : bijER P";

which is Proposition 3.4 with extra conditions on P.

4.4 Fermat’s Little Theorem

The mechanization of Euler’s generalized version of Fermat’s Little Theorem
follows the formalization of Section 3.2 closely.

Inductive definitions and recursive definitions of finite sets are handled as
discussed in previous sections.

We end up showing

Goal "[| #0<m; zged(x,m) = #1 |] ==> [x"phi(m) = #1](mod m)";
and the easily derivable corollary
Goal "[| p:zprime; “p dvd x |] ==> [x~(nat(p-#1)) = #1](mod p)";

for the case of the modulo being prime.

18

4.5 Wilson’s Theorem

We have mechanized both the concrete and the abstract formalizations of Sec-
tion 3.3.

There are as before no surprises in the mechanization when we follow the
formalizations of Section 3.3.

In both cases we end up proving

Goal "p:zprime ==> [zfact(p-#1) = #-1](mod p)";

Notice that the relation R, used in the abstract approach easily satisfies the
extra conditions required as discussed in Section 4.3

4.6 Related Work

Boyer and Moore have mechanized Fermat’s Little Theorem [3, 4] in their the-
orem prover [2]. They used the approach discussed in Section 3.2.1. They did
not prove Euler’s generalized version.

Russinoff mechanized Wilson’s Theorem [8] in Boyer—Moore’s Theorem Prover
using the concrete approach discussed in Section 3.3.1.

Théry [10] compares mechanizations in Coq, HOL and PVS of Fermat’s
Little Theorem based on the proof using the binomial expansion.

5 Conclusion

We have presented a formalization and mechanization (in Isabelle/HOL) of basic
number theory including two theorems of Fermat and Wilson.

We used a generalized approach for handling the concepts of one-to-one
correspondences and “pairing off”.

Comparing the generalized approach with existing approaches is most easily
done with respect to the formalizations of Wilson’s Theorem as we mechanized
both the concrete and the abstract approach in Isabelle/HOL.

It is our claim that the abstract approach gives a cleaner and more modular
presentation closer to the original mathematical proof.

When it comes to quantity (number of proof steps) the two developments are
comparable but if one ignores the bijection relation part the abstract approach
gets noticeably shorter. A reason for doing this is that once the “machinery” for
handling the bijection relations is in place it can be used unchanged in other
contexts as well (cf. the proof of Fermat’s Little Theorem).

We believe that the usefulness of the generalized approach is not limited to
the developments of this document. Russinoff has given a mechanical proof of
Quadratic Reciprocity [9] (using the Boyer-Moore system) where at least one
place the idea of “pairing off” is used (we have not studied this mechanization
in detail). It seems very likely that a similar development (in eg. Isabelle/HOL)
could benefit from the generalized approach using bijection relations.

19

Acknowledgements

This work was carried out while the author was visiting the Computer Labora-
tory, University of Cambridge. The author would like to thank Larry Paulson
for many valuable comments and suggestions, and for always being willing to
discuss Isabelle and formalized mathematics in general.

References

[1] Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge
University Press, 1984,

[2] R.S. Boyer and J.S. Moore. 4 Computational Logic. Academic Press, 1979.

[3] R.S.Boyer and J.S. Moore. Proof Checking the RSA Public Key Encryption
Algorithm. Technical Report ICSCA-CMP-33, Institute for Computing
Science and Computer Applications, University of Texas at Austin, 1982.

[4] R.S. Boyer and J.S. Moore. Proof Checking the RSA Public Key Encryption
Algorithm. American Mathematical Monthly, 91(3):181-189, 1984.

[6] H. Davenport. The Higher Arithmetic. Cambridge University Press, sixth
edition, 1992,

[6] Douglas J. Howe. Implementing Number Theory: An Experiment with
Nuprl. In Automated Deduction, CADE-8, volume 230 of Lecture Notes in
Computer Science, pages 404-415. Springer-Verlag, 1986.

[7] Lawrence C. Paulson. Isabelle, A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

[8] David M. Russinoff. An Experiment with the Boyer-Moore Theorem
Prover: A Proof of Wilson’s Theorem. Journal of Automated Reasoning,
1:121-139, 1985.

[9] David M. Russinoff. A Mechanical Proof of Quadratic Reciprocity. Journal
of Automated Reasoning, 8:3-21, 1992.

[10] Laurent Théry. Comparing Coq, HOL, PVS on a simple proof of the RSA
Public Key Encryption Algorithm. INRIA Sophia-Antipolis, March 2000.

coq.inria.fr/seminaires/comparaison/.

20

