Technical Report RS

Number 501

Computer Laboratory

Integrated quality of
service management

David Ingram

September 2000

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2000 David Ingram

This technical report is based on a dissertation submitted
August 2000 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Jesus College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-501

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-501

Abstract

General purpose operating systems need integrated real time scheduling.

It has recently become standard practice to run soft real time applications, such as
multimedia and games programs, on general purpose desktop systems. The operating
systems in use on these platforms employ scheduling algorithms derived from the tradi-
tional multi-user timesharing world, which are unsuitable for real time purposes. The
scheduler is viewed as a “black box” whose behaviour depends in an unpredictable way
on the entire system load. Many hard real time systems use static priorities instead,
but these are not suitable for the dynamic task sets encountered in a general purpose
computing environment.

A large number of prototype systems with improved real time schedulers have been
created in the past. Unfortunately, designers of these systems placed constraints on the
operating system structure which are incompatible with ubiquitous monolithic kernels,
client-server architectures, existing standards and applications. This has prevented their
adoption in a production desktop system. Furthermore, little regard has been given
to making real time capabilities convenient to use. An integrated user interface and
automated quality of service management are necessary in a desktop environment.

This dissertation makes three main contributions which combine to overcome the diffi-
culties just described.

(a) Scheduling

We present a conventionally structured, general purpose platform which provides effec-
tive soft real time scheduling. Binary compatibility with a large application software
base has been preserved by extending an existing operating system; the modified plat-
form is called Linuz-SRT.

A basic design premise is that scheduling is separated from functionality, which allows
quality of service to be associated with unmodified Linux applications and permits
centralised control. We have developed a named reserve abstraction to share quality
of service between threads and take advantage of application-specific knowledge where
appropriate. Reserves and processes are handled by the same kernel scheduler, without
a separate real time mode or hierarchy of schedulers.

(b) Servers and IPC

Techniques for scheduling real time servers accurately are discussed, and a solution
presented. This allows server processes to utilise their clients’ quality of service without
restructuring. Multi-threaded servers are handled by allocating a single reserve to a set
of threads. Single-threaded servers, including the X window system, are addressed with
a retrospective accounting mechanism. '

The implementation makes use of a novel IPC mechanism. This distributes kernel events
to servers, so they can synchronise with other activities, and is also used to integrate
with window management and desktop control functions. In addition we have improved
the normal socket abstraction by adding authentication and resource propagation, so
that priority inheritance can take place between real time processes.

(¢) Quality of Service Management

Linux-SRT applies quality of service parameters automatically to real time applications.
These are described using a new kind of dual policy specification. Tools and user in-
terface components which allow ordinary users to interact with the quality of service
management system are demonstrated. These are tightly integrated with window man-
agement functions, avoiding cumbersome control programs.

We also evaluate methods for determining scheduling parameter values without user
intervention. Processor time slices can be determined by empirical adaptation. Where
statistical multiplexing is used, overrun probabilities are considered explicitly. Simple
forms of mode-change support such as automatic idle state detection are also possible.
Access control to real time service classes has been defined in a flexible capability-based
manner, so programs do not need administrator rights to use them. Limits prevent over-
committing of resources, starvation of lower priority processes and denial of service.

The resulting system has the following properties which have not been achieved before:
soft real time scheduling on a desktop operating system, binary application compatibil-
ity, real time support for single-threaded servers, and a simple user interface for quality
of service management.

i

Preface

This dissertation is the result of my own work and is not the outcome of work done in
collaboration, except where stated otherwise in the text.

I hereby declare that no part of this dissertation has been or is currently being submitted
for any other degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words.

Copyright (© 1999-2000 David Ingram.

All trademarks used in this dissertation are hereby acknowledged.

iii

Acknowledgements

I am grateful to my supervisor, Jean Bacon, and to Ken Moody for encouragement,
advice and valuable feedback.

The Nemesis OS group at Cambridge and Mike Jones at Microsoft Research both assisted
greatly by providing access to the internals of their own real time systems.

Many people helped me bounce ideas back and forth, including Neil Stratford, Dickon
Reed and Andrew McNeil. Dominic Camus helped refine the IPC design. Daniel Andor
deserves special thanks for many enthusiastic discussions and for testing Linux-SRT.
Martin Keegan started it all with his deep understanding of UNIX, and also corrected
many of my errors.

Finally I should like to thank the developers of the Linux kernel, the XFree86 project,
and the community at large for creating a stable, interoperable system—and releasing
the source code for every component so that I could reuse and adapt it.

This work was supported by the UK EPSRC.

iv

Contents

List of Figures x
List of Tables xi
Glossary xii
1 Introduction 1
1.1 Real Time Systems i i i i it e e e e et 1
1.1.1 Hard and Soft Real Time 1

11,2 SCenario - . v v v v v e 2

1.1.3 Objectives v v i i e e e e 3

1.1.4 Applicationdomains, 4

1.2 Scheduling e e e 4
1.2.1 UNIXscheduling, 4

1.2.2 Windows NT it e e e e 5

1.2.3 Weighted scheduling 5

1.2.4 Commercial and embedded real time systems 6

1.3 Guaranteed real time scheduling 8
1.3.1 Defining quality of service, 8

1.3.2 QOS Algorithms 8

1.4 Requirements for a new platform 10
1.5 Dissertation OQutline 10

2 Linux scheduling 11
2.1 Process terminology L e e 11
2.2 Scheduling algorithm 11
2.3 The nice parameter i i it e e e e e e e e e e e e 12
24 Realtime support e e e e e e e e 12
2.5 Disadvantagesof Linux 13
2.5.1 Realtimeaspects. i i i it i, 13

252 Other APIs e 13

2.6 Measurements e e e e e e e e e e e e e e e e 14

2.6.1 Application burst lengths

2.6.2 System call duration

2.6.3 Time spent in the kernel, servers and applications

3 Implementation

3.1
3.2
3.3
3.4

3.5
3.6
3.7

3.8

3.9

3.10

3.11

4 Inter-Process Communication

4.1
4.2

A New Real Time Platform
Timing granularity
Scheduling classes
Kernel Scheduler Internals .
3.4.1 Time periods
3.4.2 Accounting
3.4.3 Policing
3.4.4 Admission Control .
Dual policy scheduling . . .
POSIXAPI
Linux-SRT API..

3.7.1 Reserve names . . .

.........................

.........................

.........................

.........................

3.7.2 Namespace management« v v v vt b vt e ...

3.7.3 System Call Synopsis
Results.

3.8.1 Kernel scheduler effectiveness

3.8.2 Kernel scheduling overheads . . . v vt ot

Other resources
3.9.1 Memory
3.9.2 Network bandwidth
Related work
3.10.1 RT-Mach
3.10.2 Nemesis
3.10.3 Rialto
3.10.4 Exokernel
Real Time Linux variants .
3.11.1 RT Linux
3.11.2 KURT
3.11.3 QLinux

Existing IPC mechanisms .
Properties of an IPC system
421 Speed

4.2.2 Kernel event sources

.........................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.........................

.........................
.........................

vi

14
17
17

20
20
20
21
22
22
22
22
23
23
24
24
25
25
26
27
27
28
29
29
30
30
30
31
31
31
32
32
32
32

33
33
34
34
34

4.2.3 Multicasting o e 34
424 NamMESPACE . - « « « v v vt e e e e e e e e e 35
425 Asynchrony i . i e e e 35
4.2.6 Authentication L oo 36
4.2.7 Remoteaccess e 36
4.2.8 Decoupling sourceand sink 37

4.3 Applications usingevents oL el 37
4.4 Designing a new IPC mechanism 37
4.4.1 Kernel and user-space implementations 38
4.4.2 Heavy and lightweight streams 38

45 Kernel Events 0 e e 39
451 Naming i 39
45.2 Interface. ST T T 40
453 Implementation. o L. 41

4.6 Authenticated sockets 42
4.7 Related work e 42
Scheduling Servers 43
5.1 Operating System Structures 43
5.1.1 Singledomain. e 43
5.1.2 Monolithic Kernel, 43
5.1.3 Microkernel e 44
5.1.4 Vertically integrated 44

5.2 Client-Server Architectures 45
5.2.1 Migratory Threads o 45

5.3 Multi-threaded servers P 46
5.3.1 Joiningreserves i i ittt e 46

5.3.2 Scheduling withinareserve 47

5.4 Single-threadedservers 0., 47
5.4.1 Master-Slave scheduling model 48
5.4.2 Connection establishment 49
5.4.3 Prioritising clients oo oo 49
5.4.4 Retrospective accounting L. 50
5.4.5 Billingsystemcall 51
54.6 Policing i e 53

' 5.4.7 Priority inheritance 53
54.8 Results e 54

vil

6 Adaptation

6.1 Workload classification o e
6.2 CPUwusagepatterns oo v v i v iv i v in v ..
6.3 Initial adaptation . . .‘
6.4 Continuous adaptation L. . e
6.5 QOS-Aware Applications e

6.5.1 (a) Application control of QOS Management

6.5.2 (b) Support for Adaptive Application Behaviour
6.6 Modechanges v i v i i it e e e

7 DPolicies

7.1 Application requirements oo
7.1.1 Realtimetasks
7.1.2 Best effort tasks vttt e

7.2 QOS Managementottt
7.2.1 DesktOpP CUES . . . v v v v v et e e e e e e e e e e e e
7.2.2 Choosing QOS parameter values

7.3 Admission control L e
7.3.1 Orderdependence iiwnuneeinion
7.3.2 Alternativesto QOS L oo oo

T4 Access Comtrol e
7.4.1 Capabilities e e
7.4.2 Multiple USEIS. . . . v« v v v v i e e e e e e
7.4.3 Resource exchanges,

8 User Interface

8.1 OVELVIEW . . . v v i ittt e e e e e e e e e e e
8.2 AutoQOS e e e e e e
8.2.1 QOS configurationfile
8.3 Command line interface o L. :
8.3.1 Control program-setp
8.3.2 Status information - viewp
8.3.3 Load generator - loadgen
8.4 Monitor program e e e e e
8.5 Window management 0 000,
8.5.1 Identifying clients
8.5.2 Titlebar buttons
853 Modules e e
8.5.4 Control e e
8655 Feedback o oL

viii

9 Conclusion 84

9.1 SUMMATY .« v v v vt e 84
9.2 Further work e e 84
Bibliography 86

List of Figures

1.1

2.1
2.2
23
24

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5

8.1
8.2
8.3
8.4
8.5
8.6

Fair share scheduling 6
Burst lengths for load generator processes 15
Burst lengths for raytracing processes e e e e e 16
Burst lengths for multimedia processes 18
Burst lengths for X'server oL L L 19
Kernelevent usage i i ittt 40
Operating System Structures 44
Servers and Reserves e 46
Master-slave scheduling data-paths 48
New X connections it ittt 49
X Request Service Times o v i v i i it e e e e 51
CPU usage classification 56
CPUtracesforkmp3 i 58
CPUtracesforkmidi. 59
CPU tracesforxanimo e 60
CPU traces for Afterstep (BE, aperiodic) 61
Monitor program v v it e e e e e e e e e e 77
Monitoring real time parameters 78
Scheduling parameters dialog 79
Window manager interaction 80
Window list module 80
Titlebar buttons oo e 81

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3

7.1

8.1
8.2

CPU allocation to mice tasks 12
Kernel and server processor usage v v v v e o e vt e e e 17
Scheduling parameters e 21
Example scheduling parameters 23
Minimum time periods (ms) Lo oL 28
Throughput (millions of loop iterations per second) 29
Stream weights 39
Standard event sources i i el e e e e e 39
X server actions between clientso oL 52
Priority inheritance techniques 53
Times to play video clip (inseconds) 54
Example Linux and Linux-SRT capabilities 71
/etc/qosrc configuration filekey, 74
Mouse button bindings o o o oo oL 82

xi

Glossary

ACL
API
BE
CLI
CORBA
CSCwW
DE
EDF
FCFS
FD
FIFO
FPS
GID
GUIL
HRT
IDE
IDLE
IPC
MMU
MPEG
MP3
OTHER
PID
PIP
POSIX

POSIX.1
POSIX.1b
POSIX.1c
POSIX.le
PSS

QOS

RID

Access Control List

Application Programming Interface

Best Effort (not real time)

Command Line Interface

Common Object Request Broker Architecture
Computer Supported Cooperative Working
Desktop Environment

Earliest Deadline First

First Come First Served

File Descriptor

First In First Out (also a POSIX static priority scheduling class)
Frames Per Second

Group Identifier

Graphical User Interface

Hard Real Time

Integrated Development Environment
Scheduling class for background processing
Inter Process Communication

Memory Management Unit

Moving Picture Expert Group (compressed video format)
MPEG part 3 (compressed audio format)
POSIX scheduling class for BE applications
Process Identifier

Priority Inheritance Protocol

Portable Operating System Interface for Computer Environments
(IEEE standard)

Main OS API standard

Real time extensions

Threads standard

Security enhancements

Proportional Share Scheduling

Quality Of Service

Reserve Identifier

xil

RM
RPC
RR
RT
RTOS
SFQ
SMP
SRT
TID
UI
UID
VM
VOD

WM

X11

Rate Monotonic
Remote Procedure Call

Round Robin (also a POSIX static priority scheduling class)

Real Time
RT Operating System

Start-time Fair Queueing

Symmetric Multi Processing

Soft Real Time
Thread Identifier
User Interface
User Identifier
Virtual Memory
Video On Demand
Window Manager

X Window System, version 11 (The Open Group)

xiii

Chapter 1

Introduction

1.1 Real Time Systems

This dissertation considers the application of Real Time (RT) scheduling to a desktop
computing environment. We shall start by defining some useful terminology.

A RT program is one which must meet temporal as well as logical correctness criteria if
it is to fulfill its intended function. By contrast, best-effort (BE) applications are those
which produce useful results even when run slowly—although of course speed is usually
still desirable.

The purpose of a RT system is to extend the virtual machine presented by the OS to
each application, so that it provides consistent performance as well as functionality.

The most common metrics for performance are throughput and response time. A real
time system must offer predictable performance, so we are more concerned about the
statistical distribution of response times. A system which is slow can be optimised or
upgraded, but an unpredictable one cannot host RT applications at all.

For example, a text editor which always takes 0.1 seconds to respond to keystrokes is
preferable to one which takes 0.01 seconds 90% of the time, but 0.5 seconds otherwise.
The latter is almost twice as fast on average, but will behave unevenly in use.

1.1.1 Hard and Soft Real Time

A further distinction is drawn between Hard and Soft RT systems. A hard RT ap-
plication is one which will fail completely if any timing guarantee is not met. A soft
RT application experiences only temporary failure if a short-term scheduling deadline
is missed; it is not necessary to abort the application.

For example, a continuous speech recognition program is SRT, an air traffic control
system is HRT, and a wordprocessor is BE. We shall be concerned specifically with SRT
systems.

2 ' CHAPTER 1. INTRODUCTION

A more detailed analysis requires the statement of a “threat model” (by analogy with
this notion in security), in which the situations that may cause the system to renege on
guarantees are clearly identified (since any real system has some chance of failure).

Threats to accurate scheduling which can be allowed for include uncooperative applica-
tions, scheduler overheads, and client-server interactions. However we will not consider
certain other threats such as excessive numbers of interrupts, or critical sections. This
is justified because these are either very unlikely in practice, or intrinsic limits due to a
particular application’s design.

1.1.2 Scenario

In the past, low end platforms did not require a RTOS. Future consumer operating
systems will need much better RT support, because users want to run RT applications
now and most of them have access only to mass market personal computers. This trend
has been driven by the increasing power of small machines and by the demand for
multimedia applications in particular.

It isn’t practical or cost effective to use a dedicated machine, with a special purpose
operating system to run increasingly common real time applications. Applications such
as video-conferencing are in fact likely to be more useful on standard desktops than on
dedicated RT systems.

The personal computer environment is significantly different from a multi-user system
or the high-end workstations which have been used for real time research previously.
Here are some of the contrasting characteristics:

e Shrink-wrapped software

No specialised hardware

e Real time and conventional applications on the same machine

Relatively few busy applications running at once

Primarily single-user

Non-technical end-users and no system administrator

These factors have a number of consequences. The use of shrink-wrapped software means
that programs cannot easily be customized by each site, so real time support must not
require changes to the application. We also cannot rely on special hardware, such as
“multimedia” disk drives, framebuffer ownership tags or user-safe devices [Barham96.

We require predictable behaviour whilst handling a mixture of simultaneous RT and
BE processes. For example, during a video-conference it may be necessary to make
concurrent use of desktop accessories such as note-taking, spreadsheets or document
exchange. Although there may be many light background processes there will usually be
a small number of very busy tasks, which means that statistical multiplexing techniques
are not likely to work well.

1.1. REAL TIME SYSTEMS 3

Although we cannot guarantee there will be a single user, this will often be the case,
which makes the problem of access control to real time resources somewhat easier.
However, the lack of expert assistance means that configuration must be automatic for
the most part.

1.1.3 Objectives

The primary design criteria we wish to satisfy are as follows:.

Focus on the desktop environment

Predictability

Run real applications, not benchmarks

Provide backwards compatibility and integration with existing systems

The system must not leave the choice of parameters to applications or users

High level tools are required

Effective user interface design

Simplicity

In addition, it should be possible to provide fundamental support for network instal-
lations, multiple users, and SMP architectures. These are essential features of any
production system, though they are not considered in detail by this dissertation.

The predictability objective includes a desire to minimize the amount of surprise expe-
rienced by end-users under conditions of resource contention, adaptation, and multiple
tasks.

Note that we are considering a complete system, not simply the low level scheduling
aspects or QOS management alone. The user interface is an important aspect in its own
right; it also turned out to highlight the need for new APIs and IPC primitives, so that
RT information could be shared between system components.

The need for appropriate tools is also more pressing than it would at first appear. For
example, Microsoft Windows NT has a powerful ACL model for file permissions, but
suffers from a lack of convenient tools for viewing this information for collections of files
and directories. As a result it is harder to manage file permissions correctly than with.
the simpler UNIX model. Another example is the POSIX support for RT scheduling
under Linux. This is potentially useful but is defined as a system call interface, with
access restricted to root. It is not often used because there is no GUI, nor even a
command line tool to activate it.

4 CHAPTER 1. INTRODUCTION

1.1.4 Application domains

Many desktop applications can benefit from RT scheduling, as shown by the list below.
In Chapter 5 we identify the particular requirements of each application, and show how
to set scheduling parameters in order to meet these demands.

e Video and animation playback (DVD for example)

e Voice and video mail (recording and playback)

¢ Internet phones and video-conferencing

e Streaming internet radio, video on demand (news clips, movies)
e TV tuner display

e Sound synthesis and MIDI

e Audio servers (mixing and processing)

e Real Time Games and VR (consistent speed provides a realistic and reproducible
environment, though adaptive algorithms help achieve this)

e Java applets (a temporal sandbox)
e Emulators (allows the use of legacy RT software)

e User interfaces (guaranteed responsiveness for mouse movement, window manage-
ment, voice control and abort functions)

e Debugging (pausing applications, testing at reduced speeds, benchmarking).

1.2 Scheduling

In this section we review some of the history of real time and conventional scheduling.
The advantages and limitations of current methods are highlighted.

Note: detailed discussion of the Linux scheduler is deferred until Chapter 2.

1.2.1 TUNIX scheduling

The conventional UNIX scheduler is based on multilevel feedback queues [Leffler89].
Dynamic priorities depend on exponentially weighted processor usage. Threads running
in kernel mode have priority over all those in user mode.

It achieves a combination of good interactive response times for I/O bound tasks, and
high throughput. This works well for best effort tasks and multiuser systems.

The scheduler functions as a “black box” with only one adjustable parameter—the nice
value, which is added to a task’s dynamic priority when it is recalculated. This is rarely
satisfactory for prioritizing RT applications because its effect depends in a complex way
upon the entire system load.

1.2. SCHEDULING ' 5

Solaris [Khanna92] is an example of a more modern UNIX variant, which also has some
RT features. Interestingly the kernel, although monolithic, is fully preemptive. This
attractive structure is more often used to achieve high degrees of SMP scalability than
for RT purposes, however. The scheduler provides static priorities for RT tasks as well
as the usual dynamic ones. A System V priocntl interface is used to control this.

1.2.2 Windows NT

The Windows NT [Solomon98] scheduler supports 16 static priority levels for real time
tasks, and 16 dynamic levels. Scheduling within each level is round-robin, with a time
quantum adjustable for each thread.

As with Solaris, user mode threads may preempt those in the kernel (threads maintain
their ordinary priority level in kernel mode).

There is no facility to lower the priority of threads based on CPU usage. However, the
dynamic priority is increased for a task when it unblocks (the level depends on what it
was waiting for). Such elevated tasks are moved back down a level every time quantum
until they block or reach the base level.

The scheduler also obeys hints from the GUI in an attempt to deliver better apparent
performance. The thread which owns the “foreground” window has its time quantum
tripled, and any thread with a dialog box open has a greatly increased priority.

Finally, the scheduler provides a fail-safe mechanism in case of priority inversion. Every
second it scans for processes which have been ready to run for more than 3 seconds, and
gives them the maximum dynamic priority for 2 time quanta. They then immediately
revert to their normal priority. This method is obviously too coarse to provide acceptable
response times for a desktop system.

1.2.3 Weighted scheduling

Several different scheduling algorithms are designed to assign fair proportions of the
available processor time to each process or user. These are easily generalised to deal
with arbitrary weighting factors.

The Fair share scheduler [Kay98] is an extension of dynamic priorities in UNIX to respect
group weightings. The formula for calculating priorities is summarised in Figure 1.1.

Lottery scheduling [Waldspurger94] is a probabilistic method which operates on individ-
ual process weights. Processes are assigned a number of ‘lottery tickets’ in proportion
to their weights. Random numbers are used to select which process wins the lottery and
will be scheduled next.

Stride scheduling [Waldspurger95| is similar to the lottery algorithm but makes the
selection process deterministic. This has better statistical properties and thus guarantees
fair allocation of CPU at shorter time scales.

6 CHAPTER 1. INTRODUCTION

C=(c+C")/2

p=b+C+(G/w) G=(g+G"/2

p = process dynamic priority
b = process base priority
w = group weight
{¢, g} = {process, group} CPU usage this time interval
{C, G} = exponentially weighted {process, group} CPU usage
{C’, G'} = previous values of {C, G}

Figure 1.1: Fair share scheduling

Proportional Share Scheduling (PSS) achieves similar results to Stride scheduling, al-
though it is not derived from a probabilistic method. PSS has been implemented for
FreeBSD [Jeffay96]. It is viewed as an approximation to pure processor sharing (in which
all processes would receive their fair share during any time interval, however small).

A virtual time concept is used to account for the discrepancies between the progress ex-
perienced by each task and ideal, continuous time. The scheduling algorithm is Earliest
Virtual Deadline. A bound can be derived for the deviations caused by the discrete time
quanta, so the algorithm can be used to guarantee response times for RT applications.

The weights used in PSS have been applied to the scheduling of operating system ac-
tivities as well [Jeffay98]. This solves the livelock problem caused by incoming network
packets, without the need for dedicated kernel threads.

Start-time Fair Queueing [Goyal96] is another variant of PSS. It has been implemented
for Solaris and is also used by QLinux [Goyal96].

A disadvantage of any method based on pure weights is that different quantities of time
are assigned to a process depending on the other tasks in the system. This is not usually
the required behaviour for RT applications.

1.2.4 Commercial and embedded real time systems

Most industrial real time systems make use of static priority schedulers. These offer
very predictable behaviour. In some cases dynamic priorities are supported as well; in
this case the static priorities are used for real time tasks and are higher than all the
dynamic ones.

These operating systems are tuned for fast response times by reducing context-switch
delays and interrupt latencies. They almost all have microkernel architectures to ensure
a high degree of preemptivity, and priority inheritance is used to improve client-server
interactions. However there is no support for quality of service guarantees.

In cases where there is more than one RT task, it is difficult to achieve the desired
quality of service for all of them with static priorities. Moreover, there are now so

1.2. SCHEDULING 7

many RT applications in common use that it is not sufficient to restrict to a single RT
process. Another problem with static priorities is that they cannot impose upper limits
on uncooperative RT tasks.

In order to correctly schedule multiple tasks with static priorities there must be a fixed
task set with priority values carefully chosen in advance (this can be extended to a
number of different task sets for modal systems such as aircraft flight control). It is
then possible to check that scheduling constraints will be met using offline analysis, or
long-term empirical tests.

There are two similar APIs for setting static priorities in common use; the System V
priocntl interface, and POSIX.1b [Gallmeister95].

Examples

There are many examples of this type of OS, which we will describe briefly.

BeOS [Be99] is positioned as a “media OS” for desktop multimedia applications, and has
a fairly conventional architecture. The main improvement over UNIX is a finer timing
granularity, with microsecond timers and a 3ms quantum for best effort tasks.

Chorus [Sun99a] offers some distributed as well as RT features. It supports POSIX.1a,
1b and 1c (the threads standard). Scheduling classes include FIFO, best effort and a
“user-defined” policy. It is also used as the basis for JavaOS for Consumers [Sun99b].

LynxOS [Lynx99] is aimed at embedded applications and can run from ROM. Although
it lacks dynamic priorities it supports an optional MMU for address space protection
between tasks.

Real time features include a preemptible kernel and priority inheritance on semaphores.
Operating system activities which would normally take place in interrupt service rou-
tines, such as I/O, run in kernel threads with priority matched to the user-level process
concerned. This is designed to provide a predictable response time to external events.
It also supports POSIX.1a, 1b and lc.

QNX [QNX99] emphasizes the microkernel structure and includes higher level compo-
nents such as a window system. Priority inheritance is performed for servers by deliver-
ing messages in priority order and running the server at a priority equal to that of the
highest priority waiting client. Scheduling disciplines include RR, FIFO and dynamic
priority.

VxWorks [WindRiver99] is again targetted at embedded applications and provides only
static priorities, with priority inheritance on semaphores. It runs on many different
architectures (PPC, 68K, ColdFire, MCORE, x86, 1960, ARM, MIPS, SH, SPARC,
NEC V8xx, M32 R/D, RAD6000, ST20 and TriCore).

8 CHAPTER 1. INTRODUCTION

1.3 Guaranteed real time scheduling

1.3.1 Defining quality of service

An accepted basis for scheduling RT tasks is to replace priorities with a more general
Quality of Service (QOS) measure.

QOS can be described by a pair of parameters such as (CPU share, time period). This
amounts to a guarantee on both throughput and timeliness. For example, a contract
of (15%, 20ms) specifies that a task must be allocated at least 3ms of time in each
successive 20ms interval, assuming that it is ready to run. These intervals start from
the time at which the contract is established and occur periodically from then on.

This parameter specification is called a Contract or Reserve. It is more suitable for
RT applications because the scheduling properties are explicit (traditionally they were
implicit and usually unknown).

1.3.2 QOS Algorithms

Once QOS contracts have been established for RT tasks, the scheduler must choose
which task to run or preempt in such a way that each task receives its proper guaranteed

reserve. This can be ensured using the Rate Monotonic (RM) or Earliest Deadline First
(EDF) algorithms [Liu73].

Liu and Layland proved these methods guarantee all contracts under certain restrictions,
and provided the sum of the CPU shares allocated to RT tasks does not exceed a
threshold value. This is called the schedulability of the system. RT systems typically
perform an admission control check before granting new QOS contracts, to ensure that
the CPU is not committed to RT tasks beyond this amount.

Rate Monotonic

RM is a static priority algorithm, in which the priorities are set in inverse relation to
each task’s time period. Tasks with shorter time periods are therefore scheduled first,
until their QOS reserve runs out or they block. It is approximately 69% schedulable.
On average it performs better; this is the lower bound which holds for any task mix.

Earliest Deadline First

EDF is a form of dynamic priority algorithm. Each task’s current deadline is defined to
be the end of its current period. The task with the earliest deadline at any particular
time is declared to be the highest priority task, and will be scheduled first.

EDF is 100% schedulable but behaves more unpredictably than RM under transient
overload (which may occur due to critical sections or synchronisation, for example).

1.3. GUARANTEED REAL TIME SCHEDULING 9

Assumptions

The restrictions under which the schedulability bounds for either algorithm become valid
are as follows:

All tasks are periodic
Deadlines are equal to periods
Tasks are independent—they do not synchronise or communicate with other tasks

Computation time is constant each period for a given task

Gl WD

Tasks are fully preemptive with zero context switch time

These are unlikely to hold in most cases, but can be relaxed in order to adequately cover
real systems. The first two restrictions are not too severe because most RT applications
behave this way.

Assumption 3 is hard to dispense with, since in reality processes do communicate. Prior-
ity inheritance protocols can be used to reduce the effect. Fortunately, processes which
do not need to synchronise are unaffected.

Assumption 4 can be relaxed by performing adaptation. The fifth requirement can be
allowed for by using a preemptive kernel and allocating slightly less than the maximum
available CPU time, to cover overheads.

Time periods

A QOS system implementor must choose which time periods to support. There are
three main possibilities:

1. Jubilees
2. Arbitrary periods

3. Harmonic periods

Jubilees are fixed periods which apply to the whole system. This has the advantage of
simplicity but leads to a compromise: no task can have a faster guaranteed response
than the jubilee time, however very frequent jubilees lead to unnecessary overhead.

The second option is to allow an arbitrary period for each task, according to its require-
ments.

An interesting alternative is to restrict to harmonic periods. These may differ between
tasks, provided that they are a power-of-two multiple of the smallest period. Arbitrary
periods can be handled by rounding down to the next smallest power-of-two, and scaling
the slice appropriately.

10 CHAPTER 1. INTRODUCTION

It is very easy to process end of period events in this case, by interrupting at the highest
frequency in use and maintaining a queue of tasks for each time period. This also results
in fewer timer interrupts than an equivalent system with arbitrary (out of phase) periods.
A further advantage is that in this special case the Rate Monotonic schedulability bound
is 100% rather than 69%.

1.4 Requirements for a new platform,
or “Oh no, not again!”

Developing a new platform is undesirable given the large number of existing operating
systems, and is of course a major undertaking. Our particular interests (QOS manage-
ment, policies and user interfaces) are higher level concerns which don’t depend on the
particular RTOS used.

The requirements for a platform to develop and test QOS management are broadly as
follows:

1. It should support QOS
2. It must run full scale, conventional desktop applications
3. Source code must be available for modification and integration

4. It should be sufficiently well documented and supported

Unfortunately no existing OS (commercial or research) meets both of the first two re-
quirements. This motivated the construction of a new platform, based on an existing
one to minimize duplication of effort.

We choose to start with Linux [Beck98], since it meets requirements 2, 3 and 4 very well
(but lacks QOS).

The availability of “real” applications is particularly important in order to test policies
and interfaces under normal loads and usage patterns. Comnsiderable work has already
been done using micro-benchmarks, but such an approach brings no guarantee of realism.

It is easy to develop for Linux, because of the clean, relatively small source code base.
It is also stable, well documented and offers the advantage of a familiar environment.

1.5 Dissertation Outline

In the following chapter we discuss the standard Linux scheduler in detail. In Chapter
3 we present a real time platform which supports QOS scheduling and runs standard
desktop applications. The next two chapters go beyond the kernel and develop further
infrastructure required for a complete system. Chapter 4 describes an improved IPC
facility and Chapter 5 develops mechanisms for scheduling real time server processes.
Chapters 6 and 7 briefly explore the space of resource control policies which can be built
on the new platform. Finally, Chapter 8 illustrates the highest level of our prototype
system; the user interface.

Chapter 2

Linux scheduling

2.1 Process terminology

Throughout this dissertation the terms process and task will be used interchangably,
with no special meaning attached to either. A process comprises one or more threads,
and the word thread is used when we wish to emphasise that several execution contexts
may run within one address space.

Linux actually unifies all three terms (task, process and thread), since the same data
structure task_struct is used to represent any of them. Whenever a new process is
created, various properties of the parent may be passed on or shared with the child.
In addition to familiar aspects such as open files, and (under Linux-SRT) scheduling
parameters, this includes the address space. A new thread is thus created by handing
the do_fork() routine the flag CLONE_VM, which requests that the address space be
shared, instead of creating a new one for the child.

In the context of Linux-SRT we define another term, Thread ID (TID), which we prefer
to use rather than Process IDs (PIDs). A TID consists of the following tuple: (PID,

Start time, Host IP address). Platform-dependent alternatives may replace the PID
field.

Using process identifiers would have some disadvantages for representing tasks in a real
time networked environment. Firstly, they can be reused, which would cause problems
if an operation is applied to the results of an earlier query. Although PIDs wrap around
rarely in practice, no guarantees are made that they will be valid at any time. Secondly,
they do not specify the host on which the process is running. By contrast TIDs identify
threads uniquely.

2.2 Scheduling algorithm

The Linux timesharing scheduler fulfills the role of SCHED_OTHER in the POSIX real time
policy classification.

11

12 CHAPTER 2. LINUX SCHEDULING

The algorithm is different (and quite a bit simpler) than the BSD UNIX one, but achieves
similar results. The notions of dynamic priority and timeslice are merged into one and
represented by a single counter value for each task.

The counter for the running task is decremented at each timer interrupt. If the counter
reaches zero before the process blocks, a mandatory reschedule is performed (which
will preempt the process if anything else is ready to run). Also, if a process with a
higher counter value unblocks, preemption occurs immediately. Whenever the scheduler
is called, it chooses the task with the highest value of counter to run. The counter is

therefore a form of dynamic priority, as well as representing the remaining timeslice in
ticks for CPU-bound tasks.

If there are no runnable processes with counter greater than zero when the scheduler is
called, it recalculates the counters (for all tasks, whether runnable or not). This is-done
by dividing the current counters by 2 and adding on their base value. Processes which
are rarely scheduled will therefore always have a high counter.

2.3 The nice parameter

The base counter value for each task is derived from its nice parameter. The latter is
restricted to the range [19, -20] and corresponds to a base counter value in the range
[1, 40] (note the inverted sense). By default nice is 0, which sets initial counters to 20.
The periodic timer on Linux normally interrupts 100 times per second, which means the
default timeslice for CPU-bound processes is 200ms.

In the presence of competing CPU-bound processes, the nice parameter therefore func-
tions as a weighting factor. Nice 19 corresponds to a multiplicative weight of 0.05, nice
10 to a weight of 0.5, and nice -20 to a weight of 2.

Table 2.1 shows the CPU usage observed for two tasks, one of which is adjusted with nice.
Both tasks are running an infinite loop. The results correspond with our expectations;
for example a task at nice level 19 has a default timeslice of only one tick, compared to
20 ticks for a normal task.

NICE LEVEL BASE COUNTER || NICE TASK | NORMAL TASK
-20 (least nice) 40 67% 33%
0 (without nice) 20 50% 50%
10 (typical nice) 10 33% 67%
19 (maximum) 1 5% 95%

Table 2.1: CPU allocation to nice tasks

2.4 Real time support

Linux supports POSIX real time static priorities in the range [0,99]. Static priority
policies consist of SCHED_FIFO and SCHED_RR. Tasks in the former category are not

2.5. DISADVANTAGES OF LINUX 13

preempted unless a higher priority task becomes ready to run; the latter schedules tasks
with equal static priorities on a round robin basis.

The round robin variant has no explicit support for adjusting time quanta. Examining
the code we see however that the time quantum can be set, on a per task basis, by
adjusting the nice value for a real time task. This is still used to recalculate time slices,
and therefore can be used to set a quantum between 1 and 40 ticks (10 to 400ms) as
usual, for SCHED_RR tasks. Timing tests also verify this.

2.5 Disadvantages of Linux

The Linux architecture is based on a traditional monolithic UNIX design. This poses
serious problems when it is used as a RT system, as do some of the legacy APIs and
data structures.

2.5.1 Real time aspects

Linux is not at all suited to real time applications. The main problems are listed below.
Note: we defer discussion of OS structures in detail until Chapter 4.

e Processes running in kernel mode cannot be preempted by more urgent ones in
user space, or by others in kernel mode.

o Interrupt latency can be considerable (some critical sections in the disk device
drivers disable interrupts for up to 400us [Srinivasan98]).

e Server processes (such as the X11 graphics server) perform work for clients in
a different scheduling domain; moreover requests cannot be preempted by more
urgent ones within single-threaded servers.

e The low granularity of system clock ticks (100 Hz) affects the resolution achievable
for timers and scheduling.

2.5.2 Other APIs

The following list describes some shortcomings of the Linux kernel which don’t directly
relate to RT support, but became significant during the implementation of Linux-SRT:

e The kernel is implemented in C rather than an OOPL. One consequence is that
different types of list and their associated manipulation routines clutter the names-
pace and require code duplication.

e There is a lack of ‘capabilities’ for fine grained access control {(some support has
appeared in later kernels; see Chapter 5).

e It is not easy to perform reverse lookups from sockets, window structures and
process names to the corresponding process identifier.

o Although many IPC mechanisms are offered they are not sufficiently modern or
flexible (see Chapter 3).

14 CHAPTER 2. LINUX SCHEDULING

2.6 Measurements

Before designing a RT system, we wish to understand the timing characteristics of
system activities and typical applications. There is a lack of published data in this area.
We therefore began with a number of timing measurements. The following observations
were obtained with a 133 MHz Pentium processor, using a Linux kernel unmodified
except for the tracing code.

2.6.1 Application burst lengths

The burst length for a process is the time for which it runs before blocking or being
preempted by the scheduler.

We modified the scheduler to record the burst lengths for all processes during their entire
runtime. This was done by defining a large number of timing intervals and maintaining
frequency counts of these ranges for each task.

The frequencies with which each timing interval occurred were multiplied by the length
of the interval, and the results displayed in bar chart form. By plotting frequency
multiplied by time, the distribution of area under the graph illustrates the burst lengths
during which the process spent most of its time (an unscaled frequency graph would
emphasise a few short bursts in which the process was preempted by an OS activity
over its “natural” burst length).

Figure 2.1 shows the trace for one or two load generator processes, consuming CPU
time in a tight loop without blocking. A single such process typically runs for exactly 5
seconds before preemption (and never longer). This is likely to be the time at which a
critical system task (probably the swapper) wakes up to perform general maintenance
checks.

This behaviour was recorded with the system in single-user mode, running the twm
window manager. Interestingly, most other window managers and desktop environments
performed some regular processing which limited the burst lengths to far less than 5
seconds.

In the second part of Figure 2.1, two load generators are running simultaneously. Each
one runs for its whole timeslice of 200ms and is preempted on the next clock tick.

Figure 2.2 repeats the experiment using raytracing processes. These occasionally render
a few pixels of graphics to update the scene on-screen as the raytrace progresses, causing
the X server to be scheduled. This leads to a more uneven distribution of run times,
with a maximum of about half a second.

With two raytracers running simultaneously the burst lengths are reduced due to com-
petition for the CPU, and there is a peak at 200ms which is the default timeslice. No
burst length exceeds 400ms, because the maximum possible dynamic priority is twice
the base value (recall that existing counters are halved before the base is added during
priority recalculation). '

2.6. MEASUREMENTS

15

Frequency x Time

Frequency x Time

5e+07

4.5e+07

4e+07

3.5e+07

3e+07

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

2e+07

1.8e+07

1.6e+07

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

Single loadgen process

1 T 1 T T

0 1 2 3 4 5 6

Burst length (secs)

One of two loadgen processes

1 I T 1

| L 1 no o l o o ﬂl[m

0 50 100 150 200

Burst length (ms)

Figure 2.1: Burst lengths for load generator processes

300

16

CHAPTER 2. LINUX SCHEDULING

8e+06
fe+06
6e+06
5e+06

4e+06

Frequency x Time

3e+06

2e+06

1e+06

4.5e+06

4e+06

3.5e+06

3e+06

Frequency x Time

1.5e+06

1e+06

500000

Single povray process

L

=L T 1

g h [l mam [

T

2.5e+06

2e+06

0.1 0.2 0.3 0.4
Burst length (secs)

0.5 0.6 0.7 0.8

"One of two povray processes

T T T T T

-

A

T T T T

11—

1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Burst length (secs)

Figure 2.2: Burst lengths for raytracing processes

2.6. MEASUREMENTS 17

Figure 2.3 illustrates two more realistic, naturally bursty processes (an mp3 music de-
coder and a Quicktime movie player). They have natural timeslices of 6 and 10ms
respectively and are very consistent because they deal with constant bit rate streams.

Finally, Figure 2.4 gives the distribution for the X server process, as observed after a
period of “normal” use. This is much more uneven and has several spikes based on
common patterns of X request. The peak around 10ms may be due to preemption after
a timer interrupt. '

2.6.2 System call duration

The time taken to complete a system call is one factor which determines the respon-
siveness of the system. This was measured by repeating calls large numbers of times. A
“do nothing” system call was found to take 1.7us on our test system. This is also the
approximate time to make trivial calls such as getpid(), which merely return a value
from a kernel data structure.

Another important call is gettimeofday(), which is used by the test programs to obtain
timestamps at roughly microsecond accuracy. This was found to take 2.8us. Allowances
for this delay were made when computing other results with this call.

2.6.3 Time spent in the kernel, servers and applications

It is important to understand how much time the system spends in kernel mode (which
cannot be preempted) and executing server processes. Any such time will lead to inac-
curacy or jitter if it is not accounted for or made preemptive, respectively. The following
proportions were observed under realistic loads in a normal working environment, and
the results are shown in Table 2.2. The actual measurements were taken to microsec-
ond accuracy using the new tracing facilities. The table shows kernel and user-space
processing, time spent in the X server compared with all other tasks, and busy versus
idle time.

Loap KERNEL | USER || X SERVER | OTHER || Busy | IDLE
Long-term average 30% | 70% 29% 71% | 20% | 80%
Audio playback 15% | 85% 5% 95% || 30% | 70%
Video playback 42% | 58% 37% 63% || 100% | 0%
Raytracing 2% | 98% 1% 99% || 100% | 0%

Table 2.2: Kernel and server processor usage

The results show that a considerable amount of time (typically around 30%) is spent
in both the kernel and X server. Raytracing is an exception as it executes in user-
space with few system calls (some I/O is performed to update the status output to the
console). Audio playback also uses less kernel time than average (a small amount of X
server usage was caused by the GUI track name and elapsed time display).

18

CHAPTER 2. LINUX SCHEDULING

kmp3 player
6e+06 T T T T T T T T T
I
5e+06 E
4e+06 | =
@
£
'_
x
g 3e+06 |- -
[
3
(o
o
I
2e+06 - -
1e+06 - E
0 1] Ol ool I 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Burst length (ms)
xanim (quicktime movie)
1.2e+06 T T T T T T T T T
1e+06 | -
800000 -
(]
£
|_
x
g 600000 |- -
S
g 1
IC
400000 + -
200000 .
0] 1 ! 1 1 Il 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20

Burst length (ms)

Figure 2.3: Burst lengths for multimedia processes

2.6. MEASUREMENTS 19

1e+07 T T T T T T T T T

9e+06 [4

8e+06 - : B

7e+06 |t -

6e+06 fr —

5e+06 -

Frequency x Time

4e+06 Ir

3e+06 ir -
2e+06 .
1e+06 .
0 . I 1 1
30 35 40 45 50

Burst length (ms)

Figure 2.4: Burst lengths for X server

Note that usage related to servers other than X11 was minimal on our test machine.
The long-term average figures for kernel and X server usage were surprisingly consistent
(£ 2%) when measured on different occasions. '

Chapter 3

Implementation

3.1 A New Real Time Platform

We have constructed a prototype operating system called Linuz-SRT to investigate RT
scheduling in a desktop environment. It is based upon a standard Linux kernel, with
modifications to the kernel and X server, and user-space control programs.

Linux-SRT runs all normal Linux software and is stable enough for everyday use. It does
not have to be switched into a special RT “mode”, and RT processes have access to all
normal services and APIs. A quality of service guarantee may be applied to any existing
program without the application writer needing to have anticipated this or written any
special code to handle it. We use Linux-SRT itself as our development platform.

The applications which have been used to test the system include a normal range of
web browsers, office suites, movie players, other multimedia programs and a raytracer
in addition to a few benchmark test-cases.

~ In this chapter we describe the modifications we have made to Linux in order to support

QOS.

3.2 Timing granularity

The most accurate way to improve the timing granularity of the system is to program
the timer in one-shot mode. Timer interrupts then occur aperiodically, at whichever
times are necessary to preempt the running task. This is determined by the current
task’s remaining QOS allocation.

The UTIME kernel patch developed at the University of Kansas [Srinivasan98] takes
this approach to overcome the kernel’s coarse scheduling granularity. It also inserts
pseudo-deadlines at regular 10ms intervals to simulate the normal periodic ticks, so that
the rest of the system is unaffected.

20

3.3. SCHEDULING CLASSES 21

Linux-SRT takes a much simpler approach by increasing the frequency of the periodic
timer instead. This adds to the jitter experienced by RT tasks but is currently the most
stable solution. The timer fires at a rate specified by the kernel constant HZ, which we
have increased from 100 to 1024.

The default timeslice used by BE tasks is determined by the kernel constant DEF_PRIORITY.
This establishes the dynamic priority which is assigned to tasks with a zero nice factor
when the counters are recalculated. The value used is scaled depending on HZ; this
ensures that BE timeslices are not altered by the increased periodic timer rate.

3.3 Scheduling classes

Linux-SRT adds several new scheduling classes to the standard ones supported by
POSIX. The complete set of classes consists of SCHED_PAUSE, SCHED_IDLE, SCHED_OTHER,
SCHED_RR, SCHED_FIFO, SCHED_QOS and SCHED_VAR.

The scheduler gives priority to tasks with guaranteed time (SCHED_QOS), followed by
the static priorities (SCHED_RR and SCHED_FIF0). Next in precedence are the best ef-
fort tasks (SCHED_OTHER) and finally those from the idle class, SCHED_IDLE. Tasks in
the SCHED_PAUSE class are ignored by the scheduler. SCHED_VAR is a variable priority
scheduling class used for priority inheritance with RT servers (see Chapter 5).

BE tasks are therefore scheduled by the normal Linux algorithm whenever no RT task
is ready to run. Limits on RT task reservations ensure that starvation of the BE tasks
cannot occur. The idle class is used for processes which must not affect the normal
responsiveness of the machine, such as batch jobs. The BE scheduler handles both
unreserved time and unused reserved time.

In addition to the scheduling class, there are a number of scheduling parameters asso-
ciated with each task. These are listed in Table 3.1. Fallback policies are described in
more detail in Section 3.5, Dual policy scheduling.

PARAMETER DESCRIPTION

Policy Normal scheduling class.

Fallback policy Scheduling class to use when overrunning (exceeded slice for
this time period).

Inherit Boolean flag which specifies whether child processes inherit
these parameters.

Nice In the range -20 to 19. Affects SCHED_OTHER service (also
determines the timeslice for SCHED_RR).

Priority Static priority for FIFO or RR policies in the range 1 to 99.

Period, Slice QOS guarantee (for SCHED_QOS) or limit (all other policies).
May be null.

Table 3.1: Scheduling parameters

22 CHAPTER 3. IMPLEMENTATION

3.4 Kernel Scheduler Internals

The scheduler uses the Rate Monotonic algorithm. Only a few changes to the standard
POSIX RT scheduler are required to support RM, since both use static priorities. The
modifications required to enable QOS are (i) accounting, (ii) policing and (iii) admission
control. These are described below.

Priorities are chosen when contracts are established, in such a way that the tasks with
shorter time periods have higher priorities, as required by the RM algorithm.

RM scheduling is more stable than EDF under transient overload; the deadlines of the
longest period tasks will be missed first, rather than all tasks failing at once. Static
priorities also have the advantage that priority inheritance is easier to implement.

3.4.1 Time periods

Arbitrary time periods are supported. Although harmonic periods (see Section 1.3.2) are
attractive theoretically, we found that the extra efficiency is not worthwhile in practice,
because the scheduler overhead is so small. Furthermore the behaviour of the system
was observed to depend in a critical way on whether the time periods were set close
enough to the correct value. When a smaller time period was chosen and the slice scaled
down accordingly, considerable scheduling problems occurred.

The API therefore exposes an arbitrary time period model, although the underlying
system could also be said to exhibit characteristics of a fine-grained Jubilee model, due
to the periodic timer interrupt limitations.

3.4.2 Accounting

Accounting in UNIX consists of noting which process is active at each clock tick (every
10ms). Because this is so infrequent, the CPU usage estimates are only valid for very
long time spans. We obtain much more accurate accounting information by reading
the processor’s Time Stamp Counter (TSC) each time a reschedule is performed. CPU
usage is measured to microsecond accuracy and attributed to the correct task.

3.4.3 Policing

RT tasks must be preempted immediately if they exhaust their CPU allocation for the
current time period before blocking, unless their fallback policy entitles them to carry
on running. This function is called policing. Preempted processes only return to the
conceptual QOS ready queue at the start of their next period, when they are allocated
another chunk of CPU time. Any process which still has guaranteed time left is scheduled
in preference to those which have overrun, or don’t have a QOS contract.

3.5. DUAL POLICY SCHEDULING 23

3.4.4 Admission Control

The kernel performs admission control to grant or refuse new requests for QOS. A
contract is not granted if it would invalidate any previously established contracts. If
a new RT task begins but cannot be guaranteed it runs anyway, without QOS. These
policies may be adjusted by the QOS manager (see Chapter 7).

3.5 Dual policy scheduling

The Linux-SRT scheduling parameters include a rate limit and a fallback policy. The
limit is calculated as the slice divided by the period. When a task has exceeded its
current QOS allocation, its scheduling class drops to the fallback policy until the start
of the next period. In this way QOS may be used to limit the CPU consumption of a
process to a fixed maximum amount, as well as providing a minimum level of service.

Some examples are given in Table 3.2.

DESCRIPTION PoLicy | LiMIT | FALLBACK
Optimistic Qos 25% OTHER
Hard guarantee Qos 25% PAUSE
Ceiling OTHER 50% PAUSE
Cut to idle OTHER 50% IDLE
Safety limit FIFO 80% OTHER

Table 3.2: Example scheduling parameters

Notice that limits can be applied to any task, including static priority ones. This is a
very useful facility, not least to prevent a crashed static priority process from halting the
entire system. In practical day to day usage several RT applications (such as RealPlayer)
proved to be quite liable to crash in this way.

The limits on such processes are not of course guarantees, unlike those for SCHED_QOS;
neither are they subject to admission control. The sum of the limits on static priority
tasks may therefore exceed 100% at any given time.

In addition to the per-task limits, there is a global limit stored in a kernel variable called
rsvd, which can be adjusted through a system call interface. The admission control
check for SCHED_QOS refuses to allocate more than 100 — rsvd percent of the processor
time. The value of rsvd is 31% by default, which guarantees the correctness of the RM
scheduling algorithm, although we reduced it to 10% after some experimentation.

The use of SCHED_QOS with a SCHED_OTHER fallback policy corresponds to the notion
of an optimistic task in the Nemesis OS [Leslie96]. This is a RT task which has a flag
set indicating it can benefit from receiving more than its standard CPU slice if time is
available.

24 CHAPTER 3. IMPLEMENTATION

Tasks running optimistically should not have outright priority over BE tasks, because
this would lead to starvation of the BE tasks if a RT task never blocked. Conversely, the
BE tasks must not have outright priority over optimistic RT ones, or a long background
job would prevent any optimistic scheduling for the (presumably important) RT tasks.

The best solution is to temporarily demote RT tasks which have overrun to BE status,
placing them under the remit of the standard BE scheduler. This is expressed naturally
in Linux-SRT with a SCHED_OTHER fallback policy. If strict upper bounds are required
this can be achieved by falling back to SCHED_PAUSE; alternatively SCHED_IDLE provides
a low-impact overrun policy.

3.6 POSIX API

Our first implementation made the new scheduling classes and parameters available by
extending the standard POSIX scheduling system calls in the recommended way. The
interface is shown here:

struct sched_param

{

int sched_priority;
b

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);
int sched_getscheduler(pid_t pid);

int sched_setparam(pid_t pid, const struct sched_param *p);

int sched_getparam(pid_t pid, const sched_param *p);

This approach was later rejected because it implicitly assumes that scheduling parame-
ters are associated with processes rather than some other abstraction such as reserves.
This proves to be very inconvenient when reserves are shared, for example between
clients and server threads. In this case there is a many to one relationship between
processes and reserves. If a sched_setparam call is made for one such process it is not
clear if the whole reserve should be altered, or just a single thread.

3.7 Linux-SRT API

The revised Linux-SRT API provides functions to manipulate reserve objects, and for
associating reserves with threads. The reserves encapsulate descriptions of scheduling
characteristics together with any associated guarantees. They exist in their own right,
even if no threads have subscribed to them. Threads which have joined the reserve are
called members of the reserve, and all share the same scheduling properties and QOS.

3.7. LINUX-SRT API : 25

3.7.1 Reserve names

All reserves have a name, in the form of a text string. These appear in /proc/reserves,
together with the parameters and a list of suscribed client threads. Applications may
join a reserve specified by name. If it does not yet exist it is instantiated with parameters
from the QOS configuration file; otherwise the thread joins the existing reserve.

Named reserves solve the problem of sharing between unconnected threads. For example,
we may wish to share a reserve between the window manager and shells on different
virtual consoles, to ensure all aspects of the user interface are responsive. Multiple
reserves would be inappropriate and wasteful of guaranteed time, since only one of the
consoles can actually be used at once.

Another problem addressed by named reserves is that of multithreaded applications
which have different scheduling requireménts for each thread. Examples include Al-
saplayer or XMMS (X Multimedia System). These media player programs have a RT
audio thread, a normal UI thread and several spectrum analyzer or scope threads.

Applying a single priority to the whole program in these cases without application-
specific knowledge gives poor results. For example, the audio thread has SRT require-
ments, but the scopes are good candidates for nice scheduling. On the other hand, if
the application contains hard-coded priorities for each of its threads, these may well
conflict with those chosen by other programs. Requirements may also not be fixed, for
example if the analyzer threads are of current interest to the user, smooth updates will
be required and they should not be scheduled with nice.

Standard Linux systems provide no way for the user to set priorities or QOS, so mul-
timedia applications often do try to select static priorities themselves. The results are
often undesirable as they have no knowledge of other tasks. Furthermore, they must be
running as root to do this, which is dangerous for ordinary applications.

Named reserves solve these problems, because the application may attach each type
of thread to a different reserve. The parameters associated with each name can be
configured by the user in advance, before the application runs.

3.7.2 Namespace management

In cases where there is no need to refer to a reserve by name, an automatic reserve
facility is provided for convenience. One automatic reserve can be created for each
running process. A null string may be used as reserve name to indicate the automatic
reserve (which will actually be named auto <pid>, where <pid> is the process it relates
to). The auto prefix is reserved for automatic reserves.

Named reserves are never removed from the namespace until an explicit delete_reserve
call. Automatic reserves are deleted when their owner dies, if they have no remaining
members at that time. Otherwise, the reserve is instead renamed according to the pid
of the first remaining member. This ensures that daemons which fork and exit to put
themselves into the background do not lose a reserve configured for them by the QOS

26 CHAPTER 3. IMPLEMENTATION

manager. The transfer of ownership also maintains the relationship between automatic
reserve names and live process pids, so no conflicts occur after pid’s wrap around.

The admission control checks for all reserves (named or automatic) which include a QOS
guarantee occur when the number of tasks subscribed to the reserve exceeds zero. The
resources are freed when the number of members drops back to zero.

3.7.3 System Call Synopsis

The following data structure is used to describe the scheduling classes and parameters
comprising a reserve by the Linux-SRT API: !

struct rsv_param

{
int policy, fallback_policy;
int period, slice; .
int static_priority; // only used for FIFO or RR
int nice; // only used for OTHER or IDLE
};

Any of the seven different scheduling classes described in Section 3.3 can be used for
policy and overrun_policy. The period and cpu fields are optional (policy is used at all
times if they are null).

int sched_inherit(int pid, int inherit);

Queries and sets the inherit flag for process pid. This determines whether child
processes will inherit the scheduling properties of the parent. If it is set and the
parent belongs to a QOS reserve, the children will be subscribed to the same
reserve.

int sched_query_reserve(int pid, char *name) ;

Fill in name with the reserve used by process pid.

int get_reserve(char *name, struct rsv_param *750) ;

Fill in rsv with settings for the reserve indicated.

int join_reserve(int pid, char *name);

Process pid joins the reserve given by name. An implied leave_reserve is per-
formed first if necessary. If this is the first member to join a QOS reserve and
allocation fails, the reserve remains uninstantiated (but still in the namespace)
and the call fails.

!Some of the field names have been changed to make them easier to understand. The actual interface
uses alternatives which correspond better with established naming practice in the kernel. We also omit
many details related to error handling from the system call synopsis. Please consult the Linux-SRT
documentation for exact programming information.

3.8. RESULTS 27

int leave_reserve(int pid);

Leave the reserve currently in use by this process. Note: when a process exits for
any reason it calls leave_reserve automatically.

int set_reserve(char *name, struct rsv_param *rsv, bool create, bool modify) ;

This call defines a reserve with the given name (an automatic reserve can be
specified by the empty string of course). Note that a subsequent and explict
join_reserve is necessary if the same process wishes to be a member of the new
reserve.

If the reserve does not exist, the create flag specifies whether to create it. If the
reserve does exist, the modify flag specifies whether to modify it.

An attempt to modify an existing, instantiated reserve may fail if the QOS alloca-
tion needs to be increased. In this case the reserve retains its current values and
members, but the call returns ~-ENOSPC. An existing reserve which has no members
can always be modified without any error possibility.

void delete_reserve(char *name);

The reserve must have no members. If so it is removed from the namespace.

int sched_yield(void);

This is an existing system call which we have extended. If called by a process
using a reserve, the effect is to immediately drain the current allocation of CPU
time to zero. The reserve will be refreshed at its next epoch as usual.

This can be used by programmers to synchronize an application with its reserve,
avoiding the need for low resolution and unpredictable interval timers.

3.8 Results

Here we evaluate the effectiveness of the RT scheduler, and measure the overhead of
increasing the timing granularity.

3.8.1 Kernel scheduler effectiveness

The scheduler was assessed by measuring the minimum timing granularity which can
be achieved by a periodic task, without incurring any missed deadlines. To eliminate
noise these measurements were taken under controlled conditions (not during normal
running). The results are shown in Table 3.3.

We performed eight sets of experiments. The three parameters which are varied are the
periodic timer frequency (in HZ), the scheduling policy applied to the target task, and
the presence or absence of a background load. The background load process, if present,
is always scheduled with SCHED_OTHER and never blocks.

28 CHAPTER 3. IMPLEMENTATION

In each case, the target task was adjusted to require either 20, 40, 60 or 80 percent
of the total CPU available, by blocking and unblocking periodically to simulate bursts.
Various time periods were then tested (all values from 2 to 64, together with 128, 256 and
512 milliseconds). We recorded the shortest period for which the process was scheduled

reliably enough to complete all its work every time period without exception (each test
lasted 5 seconds).

TEST PARAMETERS SLICE
BG LoAD | TIMER HZ | PoLicy || 20 % | 40 % | 60 % | 80 %
No 100 OTHER 20 30 40 128
No 100 QOs 18 28 40 128
No 1024 OTHER 2 2 3 6
No 1024 Q0s 2 2 2 2
Yes 100 OTHER 20 30 | Fail | Fail
Yes 100 Qos 18 28 40 128
Yes 1024 OTHER 2 2 | Fail | Fail
Yes 1024 QOS 2 5 16 18

Table 3.3: Minimum time periods (ms)

Several things are apparent from this data. Firstly, increasing the periodic timer fre-
quency gives a corresponding improvement to the minimum schedulable time period.
Secondly, when there is no background load, the use of QOS makes little difference.
This is unsurprising since the BE scheduler gives our target task as much time as it
wants in this case. The minimum time period of 20ms for a light task on an unloaded
machine is equal to 2 ticks of the system clock (it takes 1 tick to wake the task up ready
for its next burst, so a single tick period is not possible).

In the presence of a background load, the target task can still meet all its deadlines with
the Linux BE scheduler, provided its CPU utilisation is less than 50% (this will ensure
its counter value is higher than the background task). If it requires more than 50% CPU
it fails to meet deadlines regardless of the time period, unless QOS is used. With QOS,
it can indeed be scheduled, with a time period less than 18ms when the timer is set to
1024 HZ. This is suitable for video applications which require fewer than 55 frames per
" second, for example.

3.8.2 Kernel scheduling overheads

We have observed that the periodic timer frequency must be increased to achieve good
response times, but doing so also increases the overhead due to interrupts and context
switches. Table 3.4 measures the throughput in the system with different values of
the timer frequency and default timeslice. One, two or five load generator tasks are
simultaneously competing for the processor.

The number of tasks and default timeslice have little effect; most of the overhead is from
timer interrupts and not context switches.

3.9. OTHER RESOURCES | 29

PErIODIC TIMER || 100 HZ | 1024 HZ | 1024 HZ
TIMESLICE 200ms | 200ms 20ms
1 task 22.16 21.86 21.83
2 tasks 22.15 21.79 21.77
5 tasks 22.13 21.69 21.68

Table 3.4: Throughput (millions of loop iterations per second)

The results show that throughput is between 1.5 and 2% less with the higher clock
frequency. This is an appreciable amount, but was just small enough to make one-
shot timer programming unnecessary for our prototype. These results are based on a
133 MHz Pentium; the drop in throughput would be correspondingly less with a faster
processor.

3.9 Other resources

The processor is not of course the only resource which must satisfy scheduling guarantees
in order to create an effective RT system. Memory availability is of particular interest,
as are network, disk and graphics processor bandwidth. Processor reservations may be
replaced by more general resource sets [Jones95], which grant several resources at once.

Reservations may be

e fized if held exclusively with space division (locked memory pages, audiochannels)
e adapted if there is significant overhead to reallocate (memory)

o scheduled if shared by time division (CPU, bus)

o statistically multiplezed if we rely on clients not to all request service at once
(networks, buffers)

Statistical multiplexing does not work as well for CPU scheduling as for networking,
because the number of entities (tasks instead of communication streams) is too small.

This dissertation is largely concerned with CPU allocation, because it is a scheduled
resource. We comment briefly on the memory and network resources below.

3.9.1 Memory

Most RT systems handle memory simply using the POSIX mlockall() function, which
ensures that RT applications stay entirely resident in memory.

More flexible solutions would be to guarantee either a certain number of page frames
or a specific set of pages. In the former case it may not be easy to guess how many
pages should be reserved for good performance. Adaptive methods could be used to

30) CHAPTER 3. IMPLEMENTATION

calibrate this. If paging is allowed for RT processes, the disk bandwidth resource also
becomes relevant. It is unclear how to define QOS if several interdependent resources
are required.

Placing upper limits on the number of physical pages used by a process is also useful, for
regulating BE tasks. The standard UNIX mechanism for placing limits on the number
of wvirtual pages cannot distinguish between a program with a large VM footprint but
a small working set, and a similarly large program which touches all its data pages in
rapid succession. Unfortunately the latter may overwhelm the system by absorbing all
free page frames, even when run at a very low priority.

3.9.2 Network bandwidth

Network protocol processing is usually performed inside the kernel, and the time taken
not attributed to applications correctly. This is partly due to the asynchronous nature
of incoming network traffic.

Most approaches to scheduling protocol processing focus on lazy receive techniques.
Nemesis [Leslie96] uses packet filtering or self-selecting NICs to distribute incoming data
to the correct application, where it is processed by the application thread. RT Mach
also puts the protocol stack in a library [Mercer96b] so that processing is performed in
user space. An enhanced version of FreeBSD applies PSS to incoming packet processing
within the kernel [Jeffay98].

Real time networked applications include network audio servers and remote X clients.
In general, an application may be running on a different machine from the one rendering
graphics, whilst the data might be coming across the network from a third site. End to
end QOS is needed to honour guarantees for such a program.

It is advantageous to treat end to end QOS as a middleware service, rather than inte-
grated with the platform’s scheduler. This is because networks are naturally hetereoge-
neous and we cannot expect all hosts to be running the same OS. Of course we must
ensure that the OS running at each node does support QOS.

3.10 Related work

Other systems which provide QOS include RT-Mach, Nemesis and Rialto. Unfortunately
none of these can run unmodified mainstream applications. This makes it unclear how
well they manage typical work loads.

3.10.1 RT-Mach

RT-Mach is an extension of the Mach microkernel. The RT scheduling additions are
known as Processor Capacity Reserves (PCR) [Mercer94]. PCR provides QOS and
implements RM scheduling. Mach has a UNIX emulation layer, although applications
which run on it are handled by the UNIX scheduler, so cannot request QOS.

3.10. RELATED WORK 31

3.10.2 Nemesis

Nemesis [Leslie96] is an entirely new RT'OS aimed at multimedia applications, developed
at Cambridge University. Scheduling is performed using the EDF algorithm. Nemesis
has a vertically integrated structure (see Section 5.1.4). Shared servers are largely re-
placed with libraries; this enables precise accounting of resources and high degrees of
preemptivity. Existing applications are not supported although some have been ported
to run on the system.

3.10.3 Rialto

Rialto is a RTOS developed by Microsoft Research [Jones95, Jones96]. The scheduler
is based on a Least Slack Time First algorithm. Rialto supports resource sets and
activities in order to reserve multiple types of resource for use by a given group of
threads. Compatability with a subset of the Win32 API is provided; standard Win32
applications require modifications to run on this platform.

In addition to periodic guarantees, Rialto allows for one-shot “time constraints”. These
are of limited utility because they may be refused at request time, requiring the use of
short-term adaptive algorithms. The scheduler tries to respect periodic CPU reserva-
tions and meet as many time constraints as possible. Time constraints are expressed as
follows:

feasible = BeginConstraint(start_earliest, est_cpu, deadline, critical);

time_taken = EndConstraint();

3.10.4 Exokernel

Exokernel is an OS architecture developed at MIT [Kaashoek95, Kaashoek97]. It con-
sists of a very small kernel with functionality limited to the allocation and multiplexing
of physical resources. Traditional OS abstractions are provided by shared Library Oper-
ating Systems which operate in user-space. The inténded benefits are performance (via
specialisation) and flexibility (policies can be tailored on a per-application basis).

The Exokernel scheduler is based on a cycle of slots with a static schedule. It is doubtful
whether a scheduler can really be policy-free, although it does provide hooks to execute
custom code before and after preemption points. ‘

There are a number of problems with the Exokernel structure. Protecting resources
without understanding how policy decisions are made requires techniques such as caching
frequently used access control information in the kernel, to avoid harming performance.

Library OS’s cannot trust each other, so it is difficult to share objects safely between-
them. There is a danger that a multitude of incompatible interfaces could arise. Tests
indicate that an Exokernel system performs little better than UNIX, except on filesystem
intensive applications. Finally, portability is affected since applications must be relinked
if the Library OS is updated.

32 CHAPTER 3. IMPLEMENTATION

3.11 Real Time Linux variants

A number of existing real time systems have been based on the Linux platform.

3.11.1 RT Linux

RT Linux [Yodaiken97] takes the form of a wrapper for the Linux OS. It provides a
minimal RT kernel, which runs the Linux kernel itself as a subtask when no RT task
requires the processor.

If the Linux kernel calls the disable interrupts function, RT Linux emulates this with a
software flag, instead of disabling the actual hardware interrupts. This allows RT tasks
to be scheduled at a fine granularity without the delays incurred by disabling interrupts
for long periods of time.

RT tasks do not have access to Linux syscalls, or any higher level services and APIs such
as graphics and networking. Consequently, applications have to be split into a RT part
(which uses almost no services) and a non-RT part (which has no timing requirements).
Communication between the two is possible via message passing and shared memory.

RT Linux has been used successfully for process and experiment control, monitoring and
robotics. One benefit of RT Linux over a conventional RTOS is the familiar development
environment. However, it is not suitable for general purpose RT computing due to the
restrictions placed on RT tasks.

3.11.2 KURT

The KURT system [Srinivasan98] is also based on Linux, but is better integrated, allow-
ing RT processes to use normal kernel services. It makes use of two convenient kernel
patches. The first patch is UTIME, which was discussed in Section 3.2. The second
patch provides better support for POSIX.1b by making the improved timers accessible
from user space via system calls.

KURT itself uses an explicit plan scheduler based on application schedule files. Although
it does have a “periodic mode”, applications must cooperate by calling KURT each
period, requiring source-level modifications.

KURT can run in two modes: ‘focussed’ or ‘mixed’. In focussed mode only RT processes
are allowed to run, which helps reduce kernel crosstalk from the BE applications at the
expense of a more limited system.

3.11.3 QLinux

QLinux uses a hierarchical version of SFQ [Goyal96], as described in Section 1.2.3.

It also provides a SFQ network packet scheduler and lazy receiver processing, in order to
charge protocol processing to the correct task. A multi-service disk scheduling algorithm
is included as well.

Chapter 4

Inter-Process Communication

A desktop environment (real time or otherwise) requires close integration between several
distinct components. These include the kernel, X server, window manager, control panels
and applications.

One of the strengths of UNIX is that each of these pieces of software is developed
independently, and they interoperate though well defined, published interfaces. This
benefits stability and allows the use of code from different vendors.

A disadvantage is that it is harder to share data, and some of the internal interfaces are
not rich enough to express the interaction present in a modern desktop environment.
There is a particular need for an event mechanism, to provide synchronisation for real
time components.

Projects such as GNOME and KDE [Weis98] have responded to the problem, using

CORBA [OMG95a] to tie components together. This is a significant improvement but
still does not meet all our requirements.

4.1 Existing IPC mechanisms

Even if we focus on UNIX, a considerable range of IPC primitives are in common use.
Existing mechanisms include Unnamed pipes, Named pipes (FIFOs), UNIX domain
sockets, TCP/IP sockets, File locking, System V and POSIX message passing, shared

memory and semaphores, original and POSIX.1b signals.

Note that POSIX enhanced message passing, shared memory and semaphores as well as
POSIX.1b signals are not currently available under Linux.

Higher level mechanisms include RPC, RMI, CORBA, and the CORBA services.

33

34 CHAPTER 4. INTER-PROCESS COMMUNICATION

4.2 Properties of an IPC system

In this section we examine desirable properties for an IPC system. We concentrate on an
events based model. UNIX does not have a standard, general-purpose event registration
and notification system. This has resulted in a proliferation of specialised event systems,
particularly in graphics toolkits.

The optional CORBA event service [OMG95b] has been adopted by some projects to
solve this problem, although this lacks some features such as event filtering.

The Cambridge Event Architecture [Bates98] provides a more complete facility based
on the publish, register and notify paradigm. Filtered, typed messages can be delivered.

4.2.1 Speed

There is a clear distinction between bulk data streams and synchronisation mechanisms.
The use of sockets for synchronisation is not ideal because of the high overhead, so we
require a more lightweight event system which complements the existing means of data
transfer.

A balance can be met between efficiency and functionality by offering different stream
“weights” (see Table 4.1 later in this chapter). Whether the server is implemented in
the kernel or user space has considerable bearing on efficiency as well (see Section 4.4.1).

4.2.2 Kernel event sources

Many events of interest occur within the kernel, with little relevance to the thread which
happens to be running. For example, we would like to be notified when a process changes
to a different scheduling policy (the window manager uses this information to update a
graphical display of real time tasks). This can occur either due to an explicit request or
an automatic QOS management action.

The IPC system must therefore support events which originate from the kernel itself.
This differs from mechanisms such as sockets which are expected to have two user-space
endpoints.

4.2.3 Multicasting

All the primitive IPC mechanisms on UNIX assume messages are “consumed” by a
single listener. We require instead that messages be distributed to any number of tasks
which have registered an interest in that event type.

Another useful extension allows multiple tasks to fire a single event source. For example,
an application can create an event source, listen to it and accept commands fired at it,
thereby gaining language-independent scripting capabilities.

Recent work has included composite event detection [Bates98].

4.2. PROPERTIES OF AN IPC SYSTEM 35

4.2.4 Namespace

Communication endpoints require unique and preferably meaningful names. Some mech-
anisms use numeric namespaces; for example IP ports, signal numbers or System V
“keys”. These are unattractive because they require the use of further protocols to
agree on which numbers to use.

A better solution is to use hierarchical, ASCII names. These should appear somewhere
within the filesystem, in order to minimize new abstractions. This conforms with the
UNIX principle that most entities can be manipulated through file I/O operations.

Note that namespaces embedded within a file are unwise, because the standard tools
that operate on files and directories will not work. An example of this is the Win32
registry. In order to search or selectively extract information, the usual filesystem tools
must be duplicated with special embedded versions.

A disadvantage of using the filesystem is that the event queue names may then be
written to disk. This occurs with UNIX domain sockets, named pipes and lock files. It
is inelegant for a memory-based concept, which should not be persistent. In the event
of a serious crash these files might not be cleaned up and could prevent servers from
restarting properly.

Fortunately, Linux provides the /proc filesystem, which allows memory-based filesystem
objects.

Conventions and file permissions are needed to.keep the new namespace orderly. Suit-
able pathnames include /proc/events/user/brian/app/netscape, or /proc/events/
gui/mousedown.

4.2.5 Asynchrony

Events can be received by polling, waiting or through callbacks. The ability to poll is
generally useful and is possible with all the IPC mechanisms we have considered.

Callbacks are provided by signals, and are useful for major interruptions, such as restart-
ing a process. They are less suitable for general-purpose IPC, because the asynchronous
behaviour is harder to integrate with a main event loop and requires carefully placed
semaphores to protect data structures.

When waiting for events it is usually necessary to wait for several sources at once. The
normal primitive to wait for a set of events under UNIX is select (), which operates
on file descriptors. This is very common because sockets and pipes are handled using
file descriptors.

There are other functions such as sigsuspend(), which is used to wait for a signal.
However it is not possible for a single thread to wait on more than one of these primitives,
and application designers are reluctant to spawn multiple threads to work around blocked
I/0O. Compatibility with select () will therefore be a key requirement for any new IPC
mechanism.

36 CHAPTER 4. INTER-PROCESS COMMUNICATION

4.2.6 Authentication

Current IPC mechanisms do not provide integral support for authentication. In a few
cases there is a fixed, implicit notion of peer identity—signals cannot come from another
user’s process and unnamed pipes rely on sharing file descriptors explicitly with another
process.

Without authentication, servers can adopt only a few policies. Often it will be possible
to accept all requests anonymously. Sockets allow one to verify that the peer is running
as root if it is using a reserved port number, and this is the basis for somewhat weak
security in rlogin and NFS. The remaining option is to defer authentication to the
application. This must be based on tokens which can be passed down the pipe itself,
for example passwords typed by a user or a cryptographic protocol.

The ability to look up identities is essential for servers which need to prioritise client
requests according to scheduling parameters or other status information. Without this,
it is not possible to automatically restrict service to a particular group of users, for
example.

Flexible event sources need separate access control bits for firing sources and for listening
to them. In some cases these rights must be restricted to the task which created the
source, in other cases we wish to allow connections based on UID or GID.

Remote authentication services can be built on top of any suitable local-case equivalent.
For example, identd (specified in RFC 1413) maps remote TCP connections to user
names (but cannot name individual processes).

Under Linux, utilities such as identd, pidof and fuser use the /proc filesystem to
identify peers. This is extremely slow for several reasons. Firstly, the data must be
converted from binary to ASCII and back again. Secondly, whilst it is easy to discover
the sockets held by a given client, the system is not designed to answer the reverse query.
A linear search is therefore made through the list of all sockets on the system.

Furthermore, this only returns the UID of the peer task. In cases where it is necessary
to identify the process itself, the lists associated with every task are scanned. The
fuser command takes over 0.3 seconds to do this (on a Pentium 133 with 48 mostly-idle
processes). We therefore need a more efficient way to discover client TID’s for local
connections.

4.2.7 Remote access

Of the IPC mechanisms studied, only TCP /IP sockets and higher level protocols support
remote access. The use of IP as the underlying protocol is inevitable due to the necessity
of Internet compatability. A remote access events system must therefore be layered,
perhaps built on CORBA. Transparency is desirable, for example when using a remote
X server.

4.3. APPLICATIONS USING EVENTS 37

4.2.8 Decoupling source and sink

Most event systems do not require a source to be aware of its listeners. However, a
source must exist before you can listen to it. This restriction can be relaxed too, so that
clients may listen to named sources even if they have not been created yet.

Should someone later create an event source with this name, those clients which pre-
registered immediately start getting events of this type delivered along with the others.
Furthermore, listeners are not necessarily deregistered if the event source task termi-
nates.

The benefits are that servers do not have to be started before clients, and it isn’t recessary
to re-attach the clients if a server has to be restarted.

Decoupling can be implemented using a “shadow” event source structure, which points
to a linked list of listeners as usual.

4.3 Applications using events

An events system capable of multicasting to arbitrary processes has many applications
within the desktop environment. For example:

e Desktop environments, control panels, window systems, GUls, DnD
e Disk change events

¢ Resource alerts (disk space etc.)

e Screen resolution, palette or font preference changes

e Audio volume change events

e IDEs (run compiler, highlight errors in editor)

e Timer events

e Applications, daemons or sessions starting and exiting

e Printer events (offline, out of paper)

e Remote control, CSCW, scripting and logging

4.4 Designing a new IPC mechanism

This section covers the design decisions which influenced the form of Linux-SRT’s en-
hanced IPC facilities.

38 CHAPTER 4. INTER-PROCESS COMMUNICATION

4.4.1 Kernel and user-space implementations

Sockets already provide most of the necessary attributes for our IPC system, including
inter-host communication. Although sockets lack a multicast capability, they do provide
the means to construct it using a user-space event server process listening on a well-
known port. One such server is needed per host. Each client may listen to several event
servers, and register interest in various streams per connection.

A user-space event server has two disadvantages: much higher event delivery overhead
and the inability to export kernel event sources.

We therefore decided to separate the design into two distinct mechanisms: a mandatory
kernel subsystem, and optional user-space event servers. The kernel event system is
restricted to kernel sources only, and does not allow the registration of user-space sources.
To do so would increase efficiency and the convenience of multicasting, at the expense of
increased kernel complexity and a local-remote case distinction. Kernel complexity is a
particularly serious concern due to the relative difficulty of maintaining it and the need
for extreme reliability. Complex subsystems such as CORBA certainly do not belong in
the kernel.

The kernel events device is restricted to one stream per file descriptor. It takes a long
time to select () on hundreds of file descriptors (represented by a bit array) so this does
not scale as well as a composite event queue. There is also a limit of 256 file descriptors
per process (which can be raised to the select () set size of 1024). However we avoid
duplicating mechanisms and feel that it is better to make select () more efficient than
to use two levels of multiplexing.

The kernel events device could defer multicast abilities to the user space events server
as well, having a dedicated upstream connection from which kernel events are delivered
and relayed on with the others. We have chosen to provide multicast from the kernel,
however. This allows kernel events to be safely used directly without a canonical user-
space daemon.

A user-space event server can be implemented by communicating with different event
sources and sinks (and with a kernel event uplink) over different file descriptors.

4.4.2 Heavy and lightweight streams

Several possibilities for stream weight were evaluated (see Table 4.1).

The initial implementation used “pure” events, which are limited to notification only.
Other means can be used to retrieve the parameters or changed data itself. Although
this is simple it results in more work being done in subsequent lookups.

Using lightweight events instead, we can for example specify that a specific task has
changed scheduling class, avoiding a great deal of inefficiency checking all tasks to decide
what has changed.

4.5. KERNEL EVENTS 39

EVENT TYPE | DESCRIPTION

STREAM_PURE | Payload: none

Implementation: occurrence counter (value can be read to distin-
guish rapid bunched events).

STREAM_LIGHT | Payload: 32 bits

' Implementation: slots in an expandible circular array.
STREAM_HEAVY | Payload: variable length, with timestamp

Implementation: Queues contain pointers to messages. Buffers
allocated from free store, with reference counts.

Table 4.1: Stream weights

4.5 Kernel Events

We have implemented an IPC mechanism which provides notification of internal kernel
events to user-space clients. The first five properties described in Section 4.2 are satisfied
by this system. It uses lightweight events and is designed for high performance. Because
it is a device it can be opened with normal file access commands and waited for using
select (). The device name in the filesystem is /dev/events.

It is implemented as part of the “memory” device and therefore shares the same ma-
jor device number as /dev/zero, /dev/null, /dev/random and so on. It is identified
uniquely by its minor device number.

4.5.1 Naming

Event sources are identified by text strings. The kernel currently registers the sources
listed in Table 4.2. A list of the event sources currently registered can be browsed in
/proc/events.

STREAM NAME | DESCRIPTION PAyroAD
sched-param Scheduling parameters changed PID
sys—exec Occurs when a task performs an exec PID
sched-overrun | Indicates when policing is applied/removed | PID or -PID
user User events for synchronisation Event type

Table 4.2: Standard event sources

Figure 4.1 shows how kernel events are used by X11 and the window manager. Both re-
ceive notification of scheduling class changes using the kernel events multicast capability.
X11 also needs policing information. Each type of kernel event is carried on a different
file descriptor, and select () is used to multiplex all IPC sources which the tasks wait
for. Note: the timeouts are used by X11 for the screensaver and by the window manager
to implement “autoraise”.

40 CHAPTER 4. INTER-PROCESS COMMUNICATION

select() | I select()
[

Y ['Y '} A
kY |
: |
| Y I
I 3 !
I |
| Cuosae) |
I I
I l
y | I
I l
Client2 ! sched-overrun sched-param :
| 1
I 1 1 1
I /dev/events :
Kernel
! K <+—— Socket = Eventstream !
' e t
i v *-moo-- * Pipe == -~ Timeout '

Figure 4.1: Kernel event usage

4.5.2 Interface

The kernel events system presents its API using device calls, and also communicates
with the kernel in a well defined way.

External device interface

Several methods from the device driver virtual function table [Rubini98] are used.

The device implements open() and release() to keep track of its clients. It can be
opened by multiple tasks, and also more than once per client. If a client process ter-
minates, the release method is called when the associated file descriptor is destroyed,
ensuring that clients are always deregistered correctly.

The device accepts a single ioctl() request as follows:

bool ioctl(int fd, EVT_IOCTL_BIND, char *source_name)

This is used to bind a particular connection to a named event source.

The read() operation returns the next message due to be delivered to the client in
question, and select () determines whether messages are currently available.

4.5. KERNEL EVENTS 41

Internal kernel interface

The following two functions are made available to the rest of the kernel:

struct source *create_event_source(char *stream-name)
void fire_event(struct source *src, int payload)

These can be called from the main kernel or from dynamically loaded kernel modules.
This interface makes it easy to add new event sources without changing the event system
itself.

4.5.3 Implementation ‘

Each client has a circular buffer that initially has room for 5 messages (20 bytes). When
it becomes full it is expanded to double size. There is a failsafe limit of 1280 pending
messages per client, after which new events are thrown away.

The main data structures are as follows:

struct source

{
struct source *next, *prev; /* list of all sources */
struct listener *listener_list;
struct Wait_queue *wq ;
char name[0];
}
struct listener
{
struct client *ptr;
struct listener *next, *prev;
}
struct client
{
struct source *src;
int xbuffer;
int buffer_capacity, next_msg_slot, queue_len;
}

A pointer to the client structure is stored in the private data field for each file
structure manipulated by /dev/events.

42 CHAPTER 4. INTER-PROCESS COMMUNICATION

4.6 Authenticated sockets

An extension to the socket IPC mechanism has been developed, which identifies the peer
task across such a connection. This allows servers to make access control decisions and
is also the basis for QOS transfer from client to server. '

As was noted in Section 4.2.6, there is normally no efficient way to do this. The source
of the problem is that there is no back pointer from the socket (or matching inode)
structure to the open file structure.!

Authenticated sockets solve this problem, and make the information available in sev-
eral ways. The sockpeerinfo() system call is most efficient, but the information
can also be retrieved from extended versions of /proc/net/tcp, /proc/net/udp and
/proc/net/unix.

The new facility maps a socket onto the peer’s TID, so in particular the target PID can
be determined. This may be used to look up other information such as the user name,
groups and reserve held by the peer.

Authenticated sockets work with TCP or UDP sockets which are connected to a local
endpoint, and with UNIX domain sockets.

Remote TCP connections are not handled directly, although this could be added with
~an identification server similar to identd, returning TID’s in addition to user names.

Reverse lookups always return the process which created the socket (although it may
share its file descriptor with other processes). If the original process has terminated, an
error code is returned. TIDs are never reused, so this can always be determined.

4.7 Related work

The kernel events system is similar to Alan Cox’s netlink device. The main difference
is that netlink is stream orientated, allowing 2-way exchange of arbitrary data; whereas
kernel events emit fixed size messages. Netlink messages are consumed when read,
instead of being multicast to listeners. Netlink also uses the minor device number to
distinguish streams, but kernel events employ a single device number with a human-
readable namespace.

In certain cases a back pointer does exist, for example when garbage collecting UNIX domain sockets
or if an asynchronous notification list has been set up for SIGIO.

Chapter 5

Scheduling Servers

When applications rely on other processes to provide services, quality of service guaran-
tees for the applications may fail to be met as a result. In this chapter we explore ways
of maintaining quality of service across task boundaries and describe a solution which
works well with existing client-server systems.

5.1 Operating System Structures

The way in which access to services is provided by the platform determines the QOS
transfer technique which will be appropriate. Here we identify four main operating
system structures. In each case we must account for all CPU usage, including overheads,
and charge it to the most appropriate party.

5.1.1 Single domain
Older operating systems, or those running on embedded hardware with no MMU, employ
a single protection domain. System services are supplied by library routines.

It is easy to provide QOS in this environment (assuming the OS supports preemptive
scheduling), because services run in the same thread as the application.

Such systems are now rare, however, due to their lack of robustness and inability to
support multiple users safely.

5.1.2 Monolithic Kernel

Traditional UNIX operating systems are based around a fairly large privileged kernel,
which is entered via trap instructions. Multiple protected address spaces are supported.

Services supplied by kernel traps are executed in the application’s thread just as library
routines are—so it is again clear which task to attribute the CPU usage to. However,
it is hard to provide accurate QOS guarantees, because processes running in the kernel
cannot be preempted at will.

43

44 : CHAPTER 5. SCHEDULING SERVERS

Figure 5.1: Operating System Structures

Single domain Monolithic Kernel
One protection
domain App Server App
Server App
Server
Kemel
processes

|:| Thread .
D In-thread execution

Kemel state

Key

OS code

Non-OS code

Protection boundary
Privileged mode boundary

Application code
Library code

5.1.3 Microkernel

Microkernel operating systems such as Mach have small kernels which provide schedul-
ing, memory management and message passing. Additional OS functionality (file sys-
tems, networking and graphics) is deferred to user-level server processes.

QOS reserves must be passed between clients and servers, in order to correctly attribute
work done to the client process. '

5.1.4 Vertically integrated

A more recently proposed structure is used by the Nemesis [Leslie96] operating system.
The vertically integrated architecture is again based on a small kernel. In addition, the
work done by servers is limited to initial access control only. Once a client has been
authenticated, common data path operations are performed in the client’s thread by
library routines. For example, rendering code can be moved from the X server into the
X library.

In this case there is no need to transfer reserves between threads.

5.2. CLIENT-SERVER ARCHITECTURES 45

Protection between clients is more difficult with this model, unless custom hardware is
used. The access control server for a particular resource may avoid this by installing
trusted code or packet filtering into the device driver at connection establishment time.

Another drawback is that common client-server software must be restructured to run
on such a system, making porting difficult.

5.2 - Client-Server Architectures

One of our objectives is to support soft real time scheduling on general purpose client-
server systems. Now, shared servers cause inaccurate scheduling whenever their clients
have different scheduling requirements (which is always the case, even for a BE dynamic
priority system).

There are several possible ways to ensure that servers respect priority distinctions:

(a) Eliminate the server
(

(c) Make the server multi-threaded

b) Use a migratory thread implementation

(d) Perform local scheduling within a single-threaded server

Note that all of these require some kind of modification to the server itself; we can’t
apply these techniques without access to the source code.

5.2.1 Migratory Threads

The principle behind migratory threads is to allow execution domains (threads) to cross
to other protection domains (address spaces) and back again. A client can thus make
a request to a server, execute server code and receive a response without performing a
full reschedule.

Arguments are passed on a stack provided by the client, and the context switch overhead
is that which is involved with reloading the virtual memory registers. To clients, the
mechanism resembles an extension of kernel traps to an arbitrary number of levels or
server domains.

Migratory threads have been implemented on DEC workstations by the Lightweight
RPC system at the University of Washington [Anderson90]. A similar idea is that of
paths as found in the Scout operating system [Mosberger96]. Paths allow scheduling
properties to be associated with data flows rather than with processes.

These architectures solve the problem of accounting for client-server interactions, com-
bining the client thread processing attributes of a vertically integrated system with the
strong protection offered by a microkernel. Unfortunately there are no widely used
systems based on this.

46 CHAPTER 5. SCHEDULING SERVERS

5.3 Multi-threaded servers

If the server process is multi-threaded, resource usage can be accounted to clients cor-
rectly using Linux-SRT’s reserve abstraction (see Section 3.7). QOS contracts are al-
located to reserves instead of individual threads, so reserves form scheduling domains
and threads correspond to execution domains. The threads belonging to a particular
reserve will normally be cooperating in order to achieve some goal, for example a real
time UNIX pipe.

In the case of a multi-threaded server, we can assign the server thread working for a
particular client to the same reserve as the client itself. Reserves natually span several
protection domains in this case, and all the work done for a particular client is charged
to the same resource allocation. Figure 5.2 illustrates these relationships.

Figure 5.2: Servers and Reserves

L Retrospective accounting
Application

......

Single activity / reserve

¢ 3} Protection domain (process)

% Reserve 1

Reserve 2

ﬁ Reserve 3

The Linux-SRT implementation is based on a reserve structure which contains a linked
list of subscribed tasks. A system-wide list links all the reserves together so that they
can be refreshed periodically without reference to the processes themselves.

O Execution domain (thread)

5.3.1 Joining reserves

Threads may join a reserve in several ways:

(a) Any application may make a join_reserve () syscall to coordinate its own threads.

5.4. SINGLE-THREADED SERVERS 47

(b) Child processes belong to the same reserve as parents if the inherited scheduling
flag is set for the parent.

(c) Servers may make an explicit join_reserve() request in order to associate one
of its worker threads with a new client.

(d) The connection can be made automatically by the IPC mechanism whenever an-
other process is contacted.

The Processor Capacity Reserves [Mercer94] system implements reserve sharing between
server and client threads based on a modified RPC primitive. Linux-SRT currently
makes use of the first 3 techniques.

5.3.2 Scheduling within a reserve

In some systems the client reserve may be “handed over” to the server for the duration
of the call. This is quite effective but restricts us to blocking IPC only.

A more general approach is to allow multiple threads to tap a shared reserve simulta-
neously. In this case there must be a policy for scheduling threads within the reserve.
Possible solutions include the following:

(a) Proportional share. This is easily achieved by subdividing the original reserve.
Whilst it does allow the client to continue processing we have no way of knowing
what proportion to use.

(b) FCFS. This will occur if we don’t perform preemptive scheduling between the
threads at all. It’s a reasonable approach given that the threads are supposed to
be working on the same problem and will presumably block when they need data
from the others.

(c) Fair share. The Rialto [Jones96] operating system uses this policy between threads
in an activity. It is more flexible than the first two policies.

(d) Dynamic priority. This is the approach used by Linux-SRT, because it is already
supported by the BE kernel scheduler.

5.4 Single-threaded servers

Although multi-threaded servers work well, they are not always appropriate. If a server .
handles many short requests, a single-threaded version is likely to be more efficient.
Multi-threaded servers incur overhead performing IPC between their threads, even if a

suitable set of worker threads are forked in advance. Many existing servers are single-
threaded.

We therefore need a way to schedule RT clients of a single-threaded server, and attribute
the work done on their behalf to the proper client reserves. A single-threaded server
cannot switch between different reserves, since it would then be completely blocked when
a client reserve it was using ran out.

48 CHAPTER 5. SCHEDULING SERVERS

Example — X11

XFree86 is an example of a single-threaded server with very high processor usage (about
40% during MPEG video playback on a desktop machine). Throughout this section we
will use X to illustrate our techniques for handling single-threaded RT servers. This is
appropriate both as an example and because it is in practice the main obstacle to real
time scheduling on the desktop (see Section 2.6.3 for server CPU usage figures).

To test the effect of using the X server on scheduling guarantees, we started several video
player applications simultaneously and assigned one of them a static real time priority
level. The real time player was observed to achieve exactly the same frame rate as the
others.

The reason for this is that the real time task requests graphics rendering and then blocks
waiting for the server’s response. The X server typically has the lowest dynamic priority
(being the busiest task in the system) and hence is not scheduled until all the other
tasks have run, and put their own X requests into the queue. The graphical tasks are
thus effectively scheduled on a round-robin basis irrespective of priority.

5.4.1 Master-Slave scheduling model

Ideally we would like to multiplex each resource (such as the CPU) in only one place—in
this case the kernel scheduler. Where this is not possible, it is necessary to synchronise
the scheduling decisions made throughout the system, so that applications will have
access to all the resources they need in order to make progress during their time slice.

We have developed a master-slave system to perform this synchronisation. In our system
the kernel is the “master” scheduler, and the single threaded servers are slaves. The
interactions between master and slave are illustrated in Figure 5.3.

Server (slave scheduler) Client
. h
Initial client Client identity Client priority | Policing
priority (authorised changes sched-
Accounting get_reserve sockets) sched- overrun Data Data
& yielding param »
billing Priority
3 inheritance 3
l7 Syscalls- /proc/net /dev/events SCHED_VAR Sockets

Kernel (master scheduler)

Figure 5.3: Master-slave scheduling data-paths

Example — X11

We have applied our master-slave scheduling model to the X server. The implemen-
tation consists of modifications to the platform independent parts of the X server

5.4. SINGLE-THREADED SERVERS 49

code [Angebranndt94]. Some additional requests were incorporated into the X pro-
tocol [Scheifler94] and Xlib [Gettys96] for control and test purposes. This modified X
server was first described in a paper by the author [Ingram99]. More details are given
below.

5.4.2 Connection establishment

When a new client connects to a RT server, the server must determine the client’s
identity, scheduling class and priority. This can be done using authenticated sockets
(see Section 4.6). '

Example — X11

Figure 5.4 shows the sequence of events which occur when a new X client connects to
the server. This is complicated by the fact that the X server normally does not know
which process corresponds to each client; once they are authenticated it treats them all
equally. The authenticated socket mechanism is used to provide this information, by
reading an extra field in /proc/net/tcp which specifies the TID.

1. The server begins with a file descriptor for the new connection.
2. getpeername() is called to discover the socket address of the client.

3. The server checks this is an address for a Jocal TCP/IP or UNIX connection,
and extracts the port field.

4. The /proc filesystem is read to discover which process opened this connec-
tion.

5. sched_query_reserve() and get_reserve() are called to look up the
scheduling parameters for the client.

Figure 5.4: New X connections

5.4.3 Prioritising clients

Once the client priority has been established, requests from different clients can be
prioritised by the server.

The sched-param kernel event is used to notify the server of any subsequent changes to
the scheduling parameters; this can be monitored by reading the events device in the
server’s select () loop. Because such changes are infrequent events, handling them has
little effect on performance.

50 CHAPTER 5. SCHEDULING SERVERS

Example — X11

The X protocol reference manual [Scheifler94] remarks that:

“Whether or not a server is implemented with internal concurrency, the
overall effect must be as if individual requests are executed to completion in
some serial order, and requests from a given connection must be executed in
delivery order (that is, the total execution order is a shuffle of the individual
streams).”

Therefore, although it is not possible to interrupt a request part way through, we may
reorder the request queue to favour particular clients whilst meeting the requirements
of the existing protocol. '

The Linux-SRT X server thus handles requests according to client priority, using a pri-
ority queue structure. The mechanism is similar to that used by the X Synchronization
Extension [Glauert91].

5.4.4 Retrospective accounting

The method we have chosen to properly account for CPU time used by the server is to
charge client reserves retrospectively.

Since the server is assumed to be single-threaded, it cannot switch clients whilst pro-
cessing a request. The granularity at which scheduling occurs is thus determined by the
request service times. Reserves are debited after each request, and may drop below zero
as a result.

Retrospective accounting contrasts with a pure QOS system which can preempt at any
instant to achieve precise CPU allocation. A UNIX best effort (dynamic priority) or
fair-share scheduler is also retrospective, because it adjusts priorities in accordance with
recent CPU usage, to achieve the desired CPU allocation.

Timescales differ considerably, though. Linux recalculates priorities around five times
per second. Timing data for single-threaded servers shows that typical requests take
only a few microseconds to process. This means that servers can react very quickly to
clients which overrun their reserve. Response times can be guaranteed by augmenting
reserves slightly to allow for this lag. Retrospective accounting is therefore suitable for
RT scheduling when performed at suitably short time-scales.

It should be noted in passing that retrospective accounting is also applicable to schedul-
ing operating system activities (although we do not cover this). Incoming network packet
processing may require significant work before we know which process to charge, and
makes it difficult to schedule proactively.

5.4. SINGLE-THREADED SERVERS ' 51

Example — X11

X request service times were measured in order to assess the accuracy of the retrospective
accounting system. The mean service time was 6us. Process scheduling intervals are
therefore much longer than X requests. For example, given 10 real time tasks running
at 70 Hz, a typical X request takes 0.4% of a time-slice. Retrospective accounting is
therefore likely to work well; the lag between kernel and server schedulers will be small.

Figure 5.5 investigates the tail of the distribution. Logarithmic observed frequencies are
plotted against request length. 99.6% of requests take less than 200us. Some requests
take over 1ms but are less common (about 1 request in 2870). No request was observed
to take more than 3ms on a Pentium 133. The X server used is non-accelerated, so
rendering for this test is done entirely by the CPU and not by the draw engine on the
graphics card.

Frequency (log base 10)

0 1 1) I L 1] 1 1 1 L

o

100 200 300 400 500 600 700 800 900 1000
Time (us)

Figure 5.5: X Request Service Times

5.4.5 Billing system call

The slave scheduler passes accounting information to the kernel with a new billing()
system call. This measures the amount of CPU time which the calling process has
consumed since the last time it called for a checkpoint, to microsecond accuracy.

The standard timing mechanisms cannot supply this information. Calling gettimeof-
day() to report wall clock time within the server would not take into account times
when the server is preempted. The times () system call reports CPU usage instead but
has a resolution of at best 10ms, because it works by polling the active task at each

52 CHAPTER 5. SCHEDULING SERVERS

timer interrupt. billing() is implemented by calling do_gettimeofday() within the
scheduler and thus does not suffer from these problems. The accumulated time is noted
whenever a task switch occurs.

The call synopsis is as follows:
int billing(reset, pid, yield);

Return value: the CPU time used by the process making the call since the last reset, in
microseconds.

reset: specifies whether to reset the elapsed time to zero.

pid: if non-zero, the time value returned is charged by the kernel to the process specified
by pid (typically the server calls billing(), and pid identifies one of its clients). You
should always set reset to 1 in this case as well, so that CPU time is never charged for
twice. The kernel uses a PID to task struct hash table to find the process quickly.

yield: only applicable when the process making the billing() call has scheduling policy
SCHED_VAR, this returns it from a high to a normal priority (see Section 5.4.7 on Priority
Inheritance).

Example — X11

The X server uses the billing() call to return accounting information to the kernel,
so that graphics processing is charged to the correct client’s reserve. The server also
spends time reading from sockets and performing general book-keeping. This is charged
to the next client in turn, so that overheads are shared in approximate proportion to
the number of requests made.

In practice it is unnecessary to report accounting information after every request, so
this is done in batches to reduce overhead.

Originally the billing() call passed a list of (client, CPU usage) pairs, and this was
done at one of three times: (i) when the server was about to go idle, (ii) when all RT
clients had been processed and (iii) periodically (between requests, every 500us—a time
chosen to be less than a tick). The cost of managing the linked list was found to exceed
the time saved in reducing system calls, though. The call was therefore changed to the
current version, which only reports on one client’s usage. billing() must be called
more frequently, but runs quickly, with less complexity in the server.

PREVIOUS CLIENT NEXT CLIENT ACTION

BE client — Another BE client No special action.
BE client — QOS client billing(1,0,0);
QOS client — Another QOS client | billing(1,pid,0);
QOS client — BE client billing(1,pid,1);

Table 5.1: X server actions between clients

5.4. SINGLE-THREADED SERVERS 53

The billing() calls now made by the X server when switching between clients are
shown by Table 5.1. Note that billing() does not have to be called between successive
requests from the same client (and to do so would introduce unacceptable overhead).

5.4.6 Policing

Linux-SRT uses rate monotonic scheduling, so process priorities are static. The only
state which needs to be communicated regularly from the master scheduler to the slave
is therefore the times at which a client has overrun its time contract, or resumed normal
scheduling. Clients with exhausted reserves should not be selected for processing by
servers.

In our initial implementation, the X server polled the kernel between requests, returning
this information with a system call. This has been replaced by the kernel events system,
which notifies the server of policing and other scheduling events, and is much more
efficient.

Policing events are generated by the sched-overrun source. The parameter specifies
the PID in question (positive for policing, negative for reactivation). One event is sent
out for each process in the reserve which is effected.

5.4.7 Priority inheritance

In any priority-based environment, a situation in which a high priority process has to
wait for a low priority one is known as priority inversion. This may occur due to
contention for any shared resource, such as a semaphore or server. Although undesir-
able, some degree of priority inversion is unavoidable if access to the resource must be
serialised.

In some situations a queue of clients may result in priority inversion for an unbounded
length of time. The well known priority inheritance protocol (PIP) [Sha90] is used
to prevent this. Generalising, we can identify four types of PIP, shown in Table 5.2.
Multi-threaded servers are easier because the PIP occurs exactly once at connection
establishment time for each client.

SERVER STATIC PRIORITY CLIENTS QOS CLIENTS

The server is elevated to the pri-
Server uses SCHED_VAR schedul-

SINGLE ority of the highest priority client | 1 bel
THREADED || currently waiting ing class (see below)
MuLTI Server threads have the same pri-

. . . . r thr join cli T
THREADED || ority as their respective clients Server threads join client reserves

Table 5.2: Priority inheritance techniques

If PIP is built into IPC mechanisms, we need to determine when a client is waiting for
service and when it has finished being serviced. This necessitates different approaches
for RPC, socket protocols and other types of communication.

54 CHAPTER 5. SCHEDULING SERVERS

The SCHED_VAR scheduling class

To solve the priority inheritance problem for RT servers, we use a new scheduling class
called SCHED_VAR (variable priority). This has two states, in which it has an effective pri-
ority of either zero or 200. The higher priority exceeds any static priority (the maximum
under Linux is 99) and is below than the range of priorities used by SCHED_QOS.

UNIX sockets connected to a SCHED_VAR process perform an additional check when data
is sent to them. If the sending task has QOS available, the peer process is switched to
high priority mode. There is no immediate reschedule because it is better to wait until
the sending client has blocked, so it can batch several requests together.

The server must switch back to the low priority mode explicitly when changing from
QOS to BE client request processing (using the billing() call). The kernel may then
reschedule the server as for any SCHED_OTHER task.

The choice of the fixed priority level 200 was made for simplicity and to reduce com-
munication overhead. The effect is that RT client-server processing is performed in
a lazy fashion; all possible guaranteed work is done in the clients first. This reduces
unnecessary context switching without missing deadlines.

5.4.8 Results

In order to test the modified X server, a number of video players were run simultaneously
(we used xanim together with a short Quicktime movie clip). The time for the movie
to play to completion was noted. With a small number of players full frame rate was
achieved so the duration was always the same, but with many players the movie took
longer to complete as the frame rate slowed down (our players did not skip frames).

The experiment was then repeated with one video player flagged for real time server
scheduling. The performance of the boosted application and of the others was measured.
In contrast to the use of real time kernel scheduling alone, making X aware of its clients’
priorities has a significant effect (see Table 5.3).

NUMBER OF ALL TREATED | PRIORITISED NoT
CONCURRENT PLAYERS EQUALLY PLAYER PRIORITISED
1 12s 12s 12s
4 12s 12s 12s
8 24s 12s 29s
12 37s 12s 46s
16 50s 12s 64s

Table 5.3: Times to play video clip (in seconds)

This experiment illustrates how one could keep the frame rate high on the current
speaker during a video-conference, or on the channel of interest when receiving TV or
video.

Chapter 6
Adaptation

Adaptation can be used to determine unknown scheduling parameters, and adjust to
gradually varying requirements. Although our prototype does not perform adaptation,
it is likely to be a necessary component of any completely automated QOS manager.
Adaptation helps free users from the need to understand or configure QOS. We therefore
consider the technique in some detail.

- An adaptive scheduler observes tasks as they run, measuring CPU usage and deducing
their timing requirements. These values can then be guaranteed for future runs.

Regular periodic tasks often have spikes of activity due to sporadic external events. We
can use probabilistic adaptation to filter these out. It is important that we quantify this
(“probabilistic guarantees” have been suggested in some cases with no way of discov-
ering the actual probability of missing a deadline). A suitable measure is the greatest
acceptable chance of an overrun event, or equivalently the mean inter-failure time.

6.1 Workload classification

Before considering adaptive algorithms it is necessary to understand how CPU usage
varies over time for different applications. Figure 6.1 begins by establishing an idealised
classification of possible behaviours (CPU usage is sketched against time in each graph).

If we examine CPU usage on a single processor machine at fine enough time scales, any
of these graphs will of course resemble pulses between 0 and 1, since only one task is
running at once. At longer time scales we may see apparently noisy behaviour, before
one of the other patterns becomes apparent.

Processes which exhibit noisy behaviour at time scales longer than their required re-
sponse times will not be good candidates for adaptation or periodic scheduling in gen-
eral.

Applications with fluctuating usage will benefit from adaptive scheduling in particular.
Multimodal tasks are likely to experience temporary failure whilst the system adjusts
to a mode change, unless the application is able to change its own contract at these

55

56 CHAPTER 6. ADAPTATION

Figure 6.1: CPU usage classification

Constant Intermittent Multimodal
A A A
Fluctuating Noisy Pulses

A

o~ | I

points. A common form of bimodal behaviour is shown in the “intermittent” graph;
this corresponds to applications which have an idle state and a busy state, for example
media players which can be paused.

High pulses will occur if a special operation is being carried out, rather than the ongoing
processing of a data stream. This may be in response to a user interface action, for
example. In such a case the application will generate a load of 100% until the operation
is complete; this must not be confused with its normal behaviour.

It is quite possible that several of these characteristics will apply to one program, for
example fluctuating behaviour with pulses. When an application is preempted because
it has overrun its QOS contract, it may be difficult to distinguish between a pulse (which
should be filtered out) and a gradual increase in usage to which the system should adapt,
since we cannot tell how high the spike would have been without preemption.

6.2 CPU usage patterns

The next four figures show traces from real applications running on Linux-SRT. The
graphs show how much CPU time the program consumed during 400 consecutive time
periods. Each experiment is repeated three times, with periods of 10ms, 50ms and
250ms. The total experiment lengths are therefore 4, 20 and 100 seconds respectively.
We are interested in the application’s natural pattern and not crosstalk with other
programs, so the target application was given a large (80%) QOS guarantee.

Figure 6.2 traces an mp3 audio player process. The bottom two graphs both show that
the average CPU utilisation is 24%. The graph is quite noisy, with spot utilisation in
the range [0, 60%] over 10ms time periods. Since the application possessed an 80%

6.3. INTTIAL ADAPTATION | 57

guarantee, all its bursts must be shorter than 6ms. With 50ms periods, utilisation is in
the range [12%, 40%)] and at 250ms it reaches a more consistent [20%, 26%].

Figure 6.3: shows a MIDI synthesizer. This process has burst lengths greater than 10ms,
as shown by the high peaks in the first graph. Its natural period appears to be 11 Hz.
The lower graphs show an average CPU usage of around 40%. The usage fluctuates
much more than the mp3 player does; even with 250ms time periods the range is a full
[20%, 52%]. This is due to the changing complexity of the piece of music throughout
the 100 second test and indicates that adaptation would be advisable.

The middle graph shows an apparent periodic behaviour at 1.5 Hz, which is a sampling
artefact. The 50ms time period is approximately half the natural period of the process,
so the usage rises and falls in alternate periods, covering a [0, 80%] range. The 1.5 Hz
beat is caused by phase changes between the application and sampling processes.

This illustrates the importance of choosing the correct period for a process which is to
be continuously adapted, since a period which is too small requires an unnecessarily
large slice allocation to avoid missing apparent deadlines. This may be as undesirable
as the poor scheduling caused by a period which is too large. Another consequence
is that adaptation cannot be applied straightforwardly to Jubilee-based or Harmonic .
period systems (see Section 1.3.2).

Figure 6.4 examines a Quicktime movie player. The top graph reveals a natural period
of 10 Hz, and the bottom two confirm an average CPU usage of 12%. The middle graph
illustrates severe sampling artefacts once again, with a range of [0, 24%]. The 250ms
graph narrows the range down to [9%, 17%].

Figure 6.5 traces an Afterstep window manager process. As this is a BE application
with sporadic utilisation, the traffic shown here is essentially arbitrary. We include it to
show the contrast with periodic processes only.

6.3 Initial adaptation

The simplest use of adaptation is to calibrate a program for the machine on which it
is running, thus accomodating hardware differences. This is only necessary once, when
the program is installed. To do so, the program is run and the system instructed to
observe its CPU requirements over a period of time.

The alternatives to initial adaptation include a prior analysis of the program’s perfor-
mance, scaled by the various hardware parameters. In most cases this is much too
difficult due to the complexity of the program. Another possibility is to pass the prob-
lem onto the user, who will then have to resort to trial and error, a time consuming
process. Finally, in some cases it may be better to time a benchmark case instead of
running the program normally, though this requires specially written support from the
application.

The initial adaptation problem is two dimensional, since we must choose a period and
a slice. During adaptation the overrun policy should be void, in order to establish the
required slice. If deadlines are being missed (indicated by the process being policed

58

CHAPTER 6. ADAPTATION

CPU used per time period (ms) CPU used per time period (ms)

CPU used per time period (ms)

1 1 1 J

10ms time periods

20 T

1 1.5 2 2.5

w

Time (secs)

i
i

10 |

o

—

T T T T T

50ms time periods

1 L 1 1 |

70 T

S

6 8 10 12 14
Time (secs)

20

66 |-
64 |-
62 -

58

56
54 |-

50 |
48 L

U i 1 1 1

250ms time periods

]) 1 1]

30 40 50 60 70
Time (secs)

Figure 6.2: CPU traces for kmp3

80

20

100

6.3. INITIAL ADAPTATION 59

CPU used per time period (ms)

1 1 1

CPU used per time period (ms)

1.5 2 25 3 3.5 4
Time (secs)
i T T 1 T] T
50ms time periods
if i it | | l
[et I h i
i IR TTE00R £ lifeH
| ‘ bl ‘
| [il I | i
1 1 1 1 1 1 1
6 8 10 12 14 16 18 20
Time (secs)

CPU used per time period (ms)

T T T T T T T

250ms time periods MW H

1 1 1 1 1 1 1

30 40 50 60 70 80 90 100

Time (secs)

Figure 6.3: CPU traces for kmidi

eeeeeeeee

M J “ w W

IIIIIIIII

40
T
B[
[o]
g, 34
£ 32 m l | i
c 0 A W |
S 30 MWM’M’ “. i s "J il e h |
5 [i
3 28
2D
S 26 1
24 |

lllllllll

6.3. INITIAL ADAPTATION

61

5 T T T T T T T
4.5

10ms time periods

35

2.5

1.5

CPU used per time period (ms)

0.5

0 1 1 L 1 1 !
0.5 1 1.5 2 25 3 35

Time (secs)

o

=y
o

T T T T T

= : 50ms time periods

CPU used per time period (ms)
[\V] w o [4)] [«)] ~ [+4] ©
1

Rl

o -
T
-
b

0 2 4 6 8 10 12 14 16 18 .

Time (secs)

20

12 T T T T T T T 1 T

250ms time periods

CPU used per time period (ms)
o
T

MA . LCHI .

0 10 20 30 40 50 60 70 80 90
Time (secs)

Figure 6.5: CPU traces for Afterstep (BE, aperiodic)

100

62 CHAPTER 6. ADAPTATION

before blocking) the algorithm may try to increase the slice or decrease the period.
If the usage varies considerably between periods it should increase the period. The
adaptation process may potentially be quite efficient, although if it fails to converge we
can fall back on sampling the parameter space exhaustively, since there are no particular
time constraints for initial adaptation.

Once calibrated, the reserve is written out to the QOS configuration file. A probabilistic
measure can be used.

6.4 Continuous adaptation

Continuous adaptation is necessary for any RT task whose workload varies considerably
over time. Some examples are:

e Animations with a variable number of moving objects
e Graphical applications whose window can be resized

e Audio players which experience quiet periods

Of course, continuous adaptation should not be used for all tasks; we must provide hard
guarantees for those which need them.

The technique works by automatically and gradually increasing the reservation for tasks
which frequently run out of time, and decreasing it for those which block without using
their full allocation. Again it will be advantageous to use a probabilistic model, aiming
for the target miss rate specified by the user.

Periods in which the task uses very little CPU should be discounted if possible, so that
we do not adapt down to zero during idle times. This is discussed further in the mode
changes section below.

Periods are not adapted continuously; these are specified by the application or user at
install-time, or during initial adaptation. Only slices are adapted at run time.

Adaptation should not be carried out during an application’s startup phase, in which
CPU usage is likely to be uncharacteristic. We can avoid this either by waiting a few
seconds, or observing when the CPU usage settles down.

Continuously adapted contracts obviously do not provide firm guarantees whilst adapt-
ing, because it takes some time to adjust when demands increase. However, they do
isolate the program from load variations in all the other tasks running on the system.
Temporary failure whilst adapting can be made less likely by reserving slightly more
CPU than the task requires, and using damping to prevent reservations being decreased
too hastily.

Another disadvantage is that there is no guarantee that the system can augment the
contract when it needs to. If a request to scale up fails, we prefer to retain the old
parameters (so we don’t lose the contract altogether).

6.5. QOS-AWARE APPLICATIONS 63

When adapting continuously, the system should record a history of CPU usage to a
log file on disk (possibly via syslogd). From time to time (at boot, or triggered by
cron), these log files can be parsed and then deleted. The results are incorporated in
a permanent statistics file which can be used to provide initial values next time the
program runs.

6.5 QOS-Aware Applications

Linux-SRT has been designed to work with existing applications. However, new appli-
cations may be written specifically with QOS in mind. There are some benefits to doing
so.

Applications which are QOS-aware can explicitly specify which threads are RT, and
notify the OS of mode changes. They can translate from application QOS (in terms
meaningful to the user, such as frames per second) to kernel QOS.

QOS-aware applications may also use performance feedback information provided by
the OS. This has two distinct purposes: to allow them to control their own QOS, or to
adapt their behaviour. Both these possibilities are optional.

6.5.1 (a) Application control of QOS Management

In this case the application’s contract is continuously adapted as in Section 6.4, except
that the program is responsible for making adjustments to its own reserve, instead of the
QOS manager. It gets performance feedback from the kernel in order to make informed
decisions about the reserve it needs.

There are two possible ways the system can react if a task runs out of time for a certain
period, and has to be preempted:

1. Checkpoints: the task resumes obliviously next period. The QOS manager waits
until it finally does block (or reaches its “checkpoint”). The total time taken is
measured and reported to the application later through normal IPC mechanisms.
It can use this as an estimate to enlarge its reservation.

2. Activations: the program is notified that it overran at the start of its next period,
so that it can abort the part-finished computation and begin the next period’s
work immediately. Implementing this is more difficult under UNIX. The adaptive
algorithm can then increase its reservation slightly for the new period.

The advantage of putting applications in the adaptation feedback loop is that it solves
the mode-change problem through the use of application-specific knowledge.

The disadvantage is that it is difficult to integrate user preferences. Worse, applications
don’t have global knowledge, so they can’t pick suitable priorities or revoke and negotiate
based on other tasks and policies. Economic methods partially solve this by making
applications aware of current resource “pricing”, although this is only a single scalar.
Our design therefore does not allow applications to perform their own QOS management.

64 ' CHAPTER 6. ADAPTATION

6.5.2 (b) Support for Adaptive Application Behaviour

The second way in which an application can make use of performance feedback is by
adapting its own behaviour. For example, it may switch to a cheaper algorithm if the
required resource isn’t available. Continuous Media applications can often run success-
fully at different rates, by adjusting frame rate or resolution. To take advantage of this,
they should be configured with both a minimum and ideal QOS level, so that the QOS
manager can reduce their reservation when it needs to shed load.

Note that this is the opposite process to the continuous adaptation described in Section
6.4. In that case the system adapted to the application’s changing conditions, here the
application adapts to the system instead.

The advantage of this strategy is that something intelligent happens when sufficient
resource is not available. Of course, in some cases nothing intelligent can be done.

Scheduler activations have been used to enable adaptive application behaviour, and also
to implement application-specific thread schedulers without the disadvantages of pure
user-level thread packages [Leslie96, Anderson92].

Adaptive application behaviour is beneficial and harmless, because it cannot adversely
affect other programs. It also requires little support from the kernel, since applications
can detect whether they are keeping up with the workload using ordinary timers anyway.

6.6 Mode changes

Application mode changes cause sudden jumps in CPU usage and behaviour. Specially
written QOS-aware programs may take advantage of knowledge about their own modes
by requesting a different level of QOS just before a mode change. In our system we
assume applications are not QOS-aware, though. Ideally the system should detect mode
changes itself.

General-purpose mode change detection is not possible, because spikes and fluctuation
can easily be mistaken for a new mode. The simplest form of mode-change support
is idle-state detection, which is feasible (it is used to remove silent periods in audio
compression). It is also useful in a RT system.

For example, often it is convenient to keep several different media player tasks (midi, CD,
etc.) open at once. Typically only one such program will be playing at a time. A media
player only needs its reserve whilst playing, and there typically won’t be enough resource
for them all to hold a reserve. Idle-state detection allows them to run simultaneously,
each with their own QOS contract. This is similar to the way the audio device is shared
(software mixers notwithstanding); it is allocated when needed and released when the
stream is paused.

Another use of idle-state detection is to cancel the reserves of processes which have quit
or crashed in some way but not yet exited.

Chapter 7

Policies

7.1 Application requirements

Before considering global QOS management policies, we focus on the needs of individual
tasks. In this section we look at various typical applications, and determine suitable
scheduling policies for them individually. The basic policies were described earlier in
Sections 2.2, 2.4 and 3.3.

7.1.1 Real time tasks

CD burner Hard QOS guarantee, initial adaptation
Arcade game QOS guarantee
Midi player Continuously adapted QOS
Full-screen movie SCHED_FIFO, high static priority
Window manager Optimistic QOS, small slice
Video phone QOS guarantee, short period

Most of these real time tasks are best handled using QOS. The full-screen movie is an
exception, because we are not interested in the parameters and are unlikely to run any
other multimedia applications at the same time. This is most easily expressed with a
static priority.

A video phone is different from a video on demand (VOD) movie because it has specific
latency constraints. It does not matter when watching a movie if it is lagged a few
seconds behind the broadcast source, so we can buffer well ahead to prevent underflow,
and give the decompression task a relatively long period. Video phones need a round
trip time of about 0.1 seconds for people to perceive them as real time, which implies
a fairly small time period at each end, once communication delays are accounted for.
Platforms with poor timing granularity, such as Linux, are therefore better suited to
VOD than video phones.

65

66 CHAPTER 7. POLICIES

7.1.2 Best effort tasks

Text editor, Compiler SCHED_O0THER
Java applet SCHED_OTHER with limit
Screensaver SCHED_IDLE
Animated screensaver QOS, small slice
Galaxy simulation SCHED_IDLE, high weight
RCS5 challenge SCHED_IDLE, low weight

Best effort tasks are usually scheduled with the dynamic priority SCHED_OTHER policy.
In the case of Java applets we are additionally concerned with limiting execution rates,
rather than providing lower bounds. This is possible because Linux-SRT uses its polic-
ing and accounting mechanisms to support rate-based limits for all scheduling classes,
including BE ones. Traditional support for this is crude indeed (UNIX can stop a pro-
cess when it has consumed some total amount of CPU time since it started, but cannot
provide an ongoing rate limit).

Large or multi-user systems require several levels of background priority. For example,
we may be running time-consuming scientific calculations together with less serious
activities, such as a distributed brute-force RC5 cracking process. This can be achieved
using SCHED_IDLE combined with different weighting factors provided by nice.

An interesting curiosity is the animated screensaver. This is a notorious consumer of
unnecessary cycles, but if it is made nice any other activity on the machine causes
unpleasant, unpredictable jerkiness-on the display. The two sensible options appear to
be either not to use it, or in fact to make it real time! With a small slice and a hard

limit (non-optimistic) we can ensure both smoothness and a restricted impact on system
load.

7.2 QOS Management

A key concern for a desktop RT system is the calibration of QOS parameters. This must
be done semi-automatically in order to be non-intrusive enough for everyday use, and
to cater for novice users. However, applications usually do not know what their own
QOS requirements are.

A QOS management component must take into account policies from several different
sources:

Default preferences (created at install time by the application)

Static user preferences (importance and QOS)

e Dynamic performance feedback (adaptation)

A stored history of previous requirements for this application

7.2. QOS MANAGEMENT : 67

e The system load

e Application requests (typically due to mode changes, such as a video window being
resized or paused)

e Dynamic overrides by the user

Modifications to applications are not necessary to enable QOS. The task fork code in
Linux-SRT recognises binaries by name and looks up the parameters from a config-
uration file (a “policy editor” front end could be provided to edit this). QOS-aware
applications may register themselves with the system at install time, and suggest ap-
propriate defaults. Other applications won’t be registered until the user adds them to
the configuration file.

7.2.1 Desktop cues

Some systems have attempted to derive scheduling hints from the .state of windows in
the desktop environment. Microsoft Windows NT [Solomon98] makes decisions partly
based on which window has the input focus and also on the presence of raised dialog
boxes.

Weights can be applied to the “active” window, for example. We suspect this is not
a good idea because input focus and scheduling are naturally distinct concepts. It’s
particularly distracting to tie them together if a no-click-to-focus mouse policy is used.

An ability to suspend or renice a task if a window is unmapped (completely invisible
due to being on a different virtual desktop or minimized) can certainly be useful for
graphical tasks, however.

Desktop hints are limited in usefulness by the lack of a one-to-one relationship between
threads and windows. A

7.2.2 Choosing QOS parameter values

We have seen that QOS scheduling is open, explicit and predictable; however it lacks
intelligence. There is no simple way to choose the scheduling parameters for each task.
By contrast, the UNIX scheduler is flexible and self-adjusting.

The need for automatic configuration of QOS parameters has not been well addressed
to date. This restricts the application of QOS to commercial operating systems. We
need to add a software layer called “QOS management” to bring back the ease of use of
traditional schedulers, without losing the ability to make guarantees.

68 CHAPTER 7. POLICIES

Centralisation

Much work has been done on decentralised QOS management. A common approach
is to form a tree of scheduling domains [Ford96, Goyal96]. The available CPU time is
split at each node and delegated to the child schedulers, in a similar way to proportional
share group scheduling, but with the option of using a different scheduling policy at
each node. .

The decentralised approach is normally chosen to avoid a fixed set of built-in policies
within the kernel scheduler. There are clear advantages to allowing an application to
schedule its own threads, but this can be done with hooks (scheduler activations) and
doesn’t require a full tree hierarchy. Furthermore, any real time characteristics which a
child scheduler would like to guarantee must also be provided by its parent, and hence
the root scheduler in the first place.

We have adopted a centralised QOS management strategy, because the most effective
scheduling requires global knowledge about the running task set.

One example of the difficulties caused by local scheduling is the inability to provide nice
or SCHED_IDLE behaviour. A task may defer to its siblings under a single node of the
tree, but if they are idle it will always consume the full resources allocated to its parent
scheduler. It has no way of indicating to the rest of the tree that it wishes to donate
CPU time to any more important tasks which exist elsewhere.

A more flexible method of decentralised QOS management can be created using an
adaptive economic model [Stratford99]. In this case resources such as the CPU have a
“cost” which depends on the demand for them. The price of each currency is a form
of feedback which allows load information to cross the boundaries imposed by strict
hierarchical reservations.

7.3 Admission control

Admission control policies specify for each application whether to reject it at startup
if guaranteed time isn’t available, or to run it without QOS. Similar choices exist for a
mode change. Other possible actions are to suspend the process until resources become
available, or to steal them from other processes (see below).

Admission control should only be performed at times where possible failure is acceptable.
Practical experience also suggests that the system should always provide feedback to the
user when admission control fails to establish a contract (see Chapter 6). In some cases
an unseen process may still be holding a reserve, blocking a new contract the user expects
to be granted easily.

Extra flexibility can be introduced by allowing tasks to specify both an ¢deal and a
minimum level QOS. ! For example, a simulator may have an ideal of 25 FPS and
a minimum of 10 FPS. Similar techniques have been used by the QOS manager for

Lif adaptation is used, these values may be derived from a range of acceptable overrun probabilities
specified by the user (say between 0.2% and 2%).

7.3. ADMISSION CONTROL 69

Processor Capacity Reserves [Mercer96a). Tasks with fixed workloads and no choice of
algorithm simply specify the same value for ideal and minimum QOS.

We then have the option of scaling down existing contracts in order to admit new tasks,
while still observing minimum levels. Adjustment polices should specify which tasks
to degrade first, and whether to start new arrivals at minimum QOS in preference to
reducing any existing tasks below their ideal levels. A further possibility is to mark some
tasks as revocable-by-stopping (these tasks are paused until resource becomes available
again).

7.3.1 Order dependence

An important question is whether the final QOS allocations for a given task set should
depend on the order in which each task was started.

At first glance a lack of dependence on starting order appears to be a useful property,
since it frees the user from worrying about the order in which tasks are launched by
startup scripts and so on. It emphasises the importance of tasks over the length of time
they have been running.

We note that in order to arrive at the same result regardless of starting order, it may be
necessary to revoke or reduce earlier contracts to make room for more important, later
processes.

The alternative is to maintain a FCFS scheme, which does not require revocation but
is order dependent. We believe that order dependence (at least to some degree) is the
correct solution, and a key principle of Linux-SRT is that contracts are never revoked.
This is required in order to ensure predictability for tasks with guarantees, a central
concern.

There are disadvantages which must be observed, particularly on a multi-user system.
These are less serious if contracts have been established with explicit fallback levels,
timeouts or adaptation criteria—since we may then revoke them, at least partially. Such
techniques provide flexibility in the system, and can be appropriate for non-critical RT
tasks.

Order dependence can be extremely useful. On a single user system in particular,
ultimately users will perform some kind of scheduling discipline themselves; by deciding
how many processes to run at once, whether to quit some of them or ultimately to log
out if performance is unacceptable. This argues in favour of order-dependence. It’s
more intuitive to start with the essential processes and then add load until newcomers
can’t be accommodated, than to have the system shift allocations and alter existing
guarantees.

The user may even be frustrated if they try starting tasks in a different order deliberately
to achieve an unusual scheduling effect, but the system persists in adjusting to the
same endpoint. An order dependent system is more comprehensible and psychologically
acceptable.

70 CHAPTER 7. POLICIES

7.3.2 Alternatives to QOS

Sometimes it is more natural to express importance rather than order-dependent CPU
shares. Two ways of doing so are static priorities and weighting factors.

It is important that any static priorities be specified by the QOS manager (see Section
8.2) and not by the application, since global knowledge is essential to form a static
priority schedule. There is no safe way to do this on a multi-user system, so special
authorisation is required.

Some systems have assigned tasks timing deadlines and a measure of importance; these
schedulers attempt to balance both factors [Mosberger98, Nieh97].

Proportional share scheduling uses a weighting factor for each task. We could envisage
a new policy, SCHED_PROP perhaps, to provide this capability. There are only a few
cases in which this is clearly preferable to the policies we have discussed in detail. One
advantage of weighted scheduling is that it is easy to translate a user’s imprecise notion
that a given task is ‘important’; ad-hoc requests to assign better service to a running
task can be interpreted by increasing its weighting.

Recall that the nice parameter in Linux acts similarly to a weighting factor for CPU-
bound tasks. This could be better defined, capable of larger and smaller weights, with
meaningful timespans for the decay of priorities (not depending on ticks and magic
numbers). Alternatively, weights can be built on top of the RM scheduler. Either way
it is possible to avoid the frequent reschedules which occur when lottery scheduling is
used, as well as the need for compensation tickets [Waldspurger94).

7.4 Access Control

Access control for QOS reserves is partly an authorisation procedure, and partly a
resource allocation problem.

Resources such as BE CPU and network bandwidth are subject to time division alloca-
tion, whereas disk space and physical RAM pages are based on space division. Guaran-
teed CPU time falls into the space division category because reserves have relatively long
lifespans. This makes flexible access control difficult. Some of the solutions we consider
include probabilistic access, resource exchanges, timeouts, and credit-based systems.

7.4.1 Capabilities

Ordinary users must have some authority to establish QOS contracts in a general purpose
RT system. Capabilities provide a convenient way of separating such powers from root
user status.

Capabilities designate the rights held by a running process. They are also associated
with executable programs, which provides a fine-grained alternative to SUID. They may
be assigned based on identity (User ID) or roles (Group ID). User-based protection

7.4. ACCESS CONTROL | | 71

works well because it corresponds with obvious real world entities (and is alreadsr well
supported by UNIX). More complicated nested schemes do not have this advantage.

Specific resources are associated with each capability. This separates the concept of
identity from the currently available privileges and is motivated by the principle of least
required privilege.

Linux Capabilities are based on POSIX.le, with some additions. They are repre-
sented by a 128-bit set. See Table 7.1 for some examples. Capabilities with the prefix
CAP_SCHED are unique to Linux-SRT; the only standard capability relating to scheduling
is CAP_SYS_NICE. The Windows NT [Solomon98] “increase scheduling priority” privilege
is similar.

In Linux-SRT the CAP_SCHED_STATIC capability is required to use static priorities, and
this is not generally permitted for normal users. Even with this capability it is not
possible to consume all of the available processor time without CAP_SCHED_LIMIT, which
overrides the reservation limits.

We use pure capabilities at the kernel API (system call) level, to keep it policy free.
More complicated access control based upon group membership can be implemented
with privileged user level tools.

CAPABILITY EFFECT
CAP_SYS_NICE May use negative nice values
CAP_SYS_TIME Allow manipulation of the system clock
CAP_SYS_QUOTA May change disk quotas
CAP_SCHED_ADMIN | Allows use of the calls billing() and join_reserve()
CAP_SCHED_QOS May request QOS
CAP_SCHED_STATIC | Allows use of static priorities
CAP_SCHED_LIMIT | May exceed scheduling limits

Table 7.1: Example Linux and Linux-SRT capabilities

7.4.2 Multiple users

The access control problem is more difficult for a multiuser system. There is a tradeoff
between fairness and making effective use of the CPU. If the total resource available is
R and there are n users logged on, a “fair” solution would be to supply each user with
a guaranteed share of R/n. However, many users are normally idle, so these shares are
unnecessarily small.

The alternative is to allow variable size shares for users, allocated on a FCFS basis. It is
reasonable to tolerate some unfairness. The “service neutrality” argument [Liedtke99]
points out that denial of service conditions equivalent to large RT reservations are pos-
sible using many BE processes anyway.

72 : CHAPTER 7. POLICIES

If we vary the share assigned to each user, the system becomes not only unfair but
unpredictable as well, since users are then affected by each others actions. One way to
make this more acceptable is to keep the user informed of resource availability.

Negotiating resource limits for a user at login time is not a good solution. The user may
log out and in again, be logged in several times simultaneously, or stay logged in for as
long as they like, so login times are arbitrary for this purpose.

Multiuser revocation

As discussed in Section 7.3.1, revocation of individual task contracts is not allowed. The
reduction or revocation of a user’s reserve when new users log in is therefore problematic,
because we may need to revoke task contracts as a consequence.

A popular solution is to give all contracts a timeout value. This ensures that users
cannot hold resources forever. In a credit-based system, long timeouts may cost more
(consuming more of the user’s apparent share), which encourages frequent renegotiation.
A fundamental problem is that applications prefer long timeouts, but short timeouts are
required to share the CPU more effectively.

A better approach may be to use automatic idle time detection. We can “suspend”
the contracts of those tasks which are not making significant use of their reserves, and
no others. Suspending contracts may not be permitted for all tasks. In an economic
system, the certainty of guarantees could be traded against their slice.

Existing shares can be scaled down to accomodate new users, provided that no task
contracts are revoked in the process. In the meantime, the new arrival may have less
than their fair share of time. We can bring them into line when other tasks quit.
Eventually all existing users could have the minimum permitted share. Further new
users must then be admitted without guaranteed time.

7.4.3 Resource exchanges

Several methods of fairly allocating non-schedulable (space-division) resources are based
on resource exchange in an economic system.

A system created at IBM [Liedtke99] allows unlimited memory pinning by exchanging
unpinned pages for locked ones.

The same idea could be applied to allow a user to obtain a greater SCHED_QOS allocation
at the expense of their SCHED_QTHER service. This could be achieved by introducing a
reduced weighting factor for such BE tasks. -

Extensions to multi-resource lottery scheduling [Sullivan99] have been developed to allow
resource exchanges and keep allocation fair. For example, CPU time can be traded for
additional disk bandwidth or RAM pages. Brokers are used to coordinate resource
exchanges.

Chapter 8

User Interface

8.1 Overview

The main aim of the Linux-SRT user interface is to achieve high levels of automation
whilst satisfying the user’s specific real time requirements. Adjustments are typically
made once at configuration time. Simplicity is paramount.

The user interface also has interactive components, which provide manual control and
user feedback. Although it has proven useful to override QOS management in rare cases,
interactive controls are also essential for experimentation prior to making persistent
configuration changes.

Feedback to the user is useful for troubleshooting purposes, but is not needed continu-
ously. A graphical QOS display helps keep the user’s mental model of the system close
to the actual one. For example, the user can clearly see why the QOS manager is having
trouble admitting a new program.

8.2 AutoQOS

When a program is started with the exec () syscall, a configuration database is checked
to select suitable scheduling parameters, which are applied to the task immediately.
This was originally performed by the kernel, but is now implemented in user-space by a
daemon listening to sys-exec kernel events. Tasks receiving automatic QOS allocations

are subject to admission control in the usual way. The mechanism is referred to as
AutoQOS.

System default settings are read from the file /etc/qosre, and user-specific ones from
~/ .qosrc. Program names and argument lists can be specified using UNIX shell style.
wildcards. Specific cases can be listed later on to override more general matches. A
flag provides the option disable the normal behaviour of applying QOS parameters
automatically when the tasks starts; in this case they are stored for use later in case the
user chooses to activate RT scheduling for the task whilst it is runnning.

73

74 : CHAPTER 8. USER INTERFACE

The AutoQOS daemon, autoqosd, is started when the system boots and runs continu-
ously. When it starts up it reads the /etc/qosrc configuration file. Any named reserve
definitions present are passed onto the kernel at this point.

Subsequently, autogosd monitors application startup using the sys-exec kernel event.
It applies the scheduling parameters you specify to programs automatically once they
start running (however they are launched). Automatic reserves (see Section 3.7.2) are
used to generate names for the reserves created by AutoQOS in this way.

If you modify /etc/qosrc, you can send autoqosd a SIGHUP to force it to read the
configuration file again.

8.2.1 QOS configuration file

The global QOS configuration file is /etc/qosrc. Lines in the qosrc file must conform
to one of the following formats (anything else is treated as a comment):

1. "pattern" nice pri per P cpu Q A I
2. "pattern" <reserve> AT
3. <reserve> nice pri per P cpu

Lines of types 1 and 2 associate a program with a reserve (automatic or named respec-
tively). They are used by the control program setp when invoked with the “lookup
reserve” option, and by autoqosd when tasks perform an exec call.

Lines of type 3 define a named reserve for later use (no QOS is allocated until a task
joins that reserve). They are read by autogosd when it starts up, in order to pre-register
the named reserves with the kernel. Applications may join them later and the user can
select them conveniently when making interactive scheduling adjustments.

A = Auto

I = Inherit

P = Policy

Q = Overrun policy
nice = nice

pri = static priority
per = period (ms)
cpu = slice (%)

Table 8.1: /etc/qosrc configuration file key

The meanings of the fields on each line are given in Table 8.1. The policy codes for the
P and Q fields are as follows: F = FIFO, R = RR, O = OTHER, Q = QOS, I =IDLE,
P = PAUSE.

“Auto” applies parameters at task startup (otherwise they are only applied at the user’s
request, via setp or the window manager integration). “Inherit” specifies if children
g 2

should inherit these parameters.

8.3. COMMAND LINE INTERFACE 75

Example

/etc/qosrc

#

cmdline nice pri per P cpu Q AI
- - - - -_—

"'xmms*" 0 0 850 Q 56 P 11
"kmp3*" 0 0O 50 Q 2 0 11
"xanim" 0 3 50 F 50 0 11
"kxrealplayx*" -20 0 50 0 9 I 11
"xlock" 0 0 100 0 10 I 11
"krecord" <fifo> 11
"kmedia" <fifo> 11
et <default> 01
<default> 0 0 50 Q 50 0

<ui> 0 0 50 Q 5 0
<idle> 0 0 0 I 0 P
<pause> 0 0 o P 0 P
<fifo> 0 30 0 F 0 P
<safe> 0 30 50 F 9 O
<ceiling> 0 0 50 0 75 P

8.3 Command line interface

The CLI includes a program to set scheduling parameters, another to display them, and
a load generator for benchmarking.

8.3.1 Control program - setp

The control program can be used to launch new processes (using exec) with particular
scheduling parameters applied, or “attach” to processes which are already running. It
is primarily useful within scripts. Any scheduling class can be requested, so tasks can
be launched with a given QOS or at POSIX priorities or nice factors.

Synopsis: setp [options] <functiomn>

Functions:
e <command> <argl> <arg2> ... = exec command
a <pid> = attach to arbitrary process

Options:
-t
-f <value>

Toggle between normal and specified scheduling
POSIX realtime priority (FIFO policy)

76 CHAPTER 8. USER INTERFACE

-n <value> = nice [-20, 19]; same as Linux setpriority

-r <name> = join the reserve specified
-1 = lookup and join the reserve configured by /etc/qosrc
-z = return to normality

8.3.2 Status information - viewp

This utility can be instructed to behave in a similar way to either ps or top, depending
on whether continuous monitoring is required. In both cases it displays scheduling class,
parameters and performance figures. An option is provided to list only the “interesting”
tasks, i.e. those with non-default parameters or significant CPU usage.

8.3.3 Load generator - loadgen

The load generator runs in a busy loop to simulate various kinds of CPU usage in a
reproducible way. Options supported are as follows:

¢ Continuous or bursty usage (configurable period and slice)
e Progress indicators (CPU and wallclock times)

e Forking multiple tasks (used to test timeslicing overhead)

8.4 Monitor program

The GUI monitor program is based on gps, a graphical version of top, using the Qt
toolkit [Dalheimer99]. Figure 8.1 shows a typical display.

The snapshot in Figure 8.2 highlights the more important scheduling fields (policy,
POSIX priority, period, slice, percentage CPU use and command name). In this case
three raytracing processes have been given different scheduling classes to illustrate the
effects on CPU allocation.

Monitoring is performed by reading the /proc filesystem. The refresh rate, displayed
fields and sort key are configurable. A bar graph in the top right shows the proportion
of time allocated to QOS reserves.

The monitor program also permits interactive adjustment of QOS parameters. All the
scheduling attributes for a task can be adjusted in a dialog box (Figure 8.3). The user
can also select groups of tasks and apply changes to all of them at once.

" S ,wmwmwm” :.., 4 ﬁ..,.zmwss
~
g
I
-1}
@]
=
=9
=~
[}
b=
=)
Q
=
v 4]
(]
o]
=
-
<]
=
<
ae]
O
Q
o
[al
oo
o
=
[om)
Z
o
=
N
o0

s1gjowered swr} (Bl SurIoNUOR :Z°8 9IMILg

‘sdb Aq pue sseo0.d
aoeuAel piYl oy} Aq paleys
Bulaq s1 NdD Bulurewsal sy

aajuelenb o409 yim Jasenley

(Asng s1 NdD 8yl esneodaq
panpayos Jou Ajualind)
Jaoelifel ssep a|p|

Johe|d gdw Aluoud onels

Buibbngap 1o} pasn
‘A wod-jeues awil [eay

W IND aAIsuodsai e sapiaoid aaiasal
(onsiwndo) %01 paleys

HOVAYHLNI H4S1 '8 HHLJVHD 8L

8.5. WINDOW MANAGEMENT 79

Figure 8.3: Scheduling parameters dialog

8.5 Window management

Standalone monitor programs are useful, but too intrusive for everyday use on a desktop
system. For this reason Linux-SRT supports window manager integration. Initially we
used fvwm 1.2 to test this; the current version uses Afterstep 1.8. The functions are
relatively easy to port to different window managers however. Allowing the window
manager to provide input to the QOS management system enables a direct manipulation
interface which is much more natural for occasional on-the-spot changes.

8.5.1 Identifying clients

The window manager uses titlebar buttons to display information about the quality of
service associated with each window, and to permit dynamic adjustments.

To do this, the WM maintains a mapping between windows and their respective client
PIDs. In the case of Afterstep, the PID is added to the ASWindow structure, and a hash
table permits efficient lookups by PID.

The mapping is evaluated lazily with a new Xlib function, XGetClientIdentity(), and
its supporting X request. The server returns the PID it established at client connection
time using authenticated sockets.

Under the present system the window manager can control scheduling for processes
running on the same machine only. Using TIDs instead of PIDs would correct this.
Remote X sessions already work provided the enhanced X server is used at the terminal.

80 CHAPTER 8. USER INTERFACE

This requirement could also be removed by storing TIDs in window manager hints (which
are supported by all X servers), thus making the custom X request obsolete.

The new data paths connected to the window manager are summarised in Figure 8.4.

Manual scheduling request \

internal J
Command API Module

c
Titiebar 2 . Client scheduling
and module 5 Window
bindings 2 Manager status
5
(6]
Titlebar
Client
Identity Request altered
priority/class
A
Syscalls
X11
Kernel
Authenticated
Client Identlty Sockets

Figure 8.4: Window manager interaction

8.5.2 Titlebar buttons

The button images used are shown in Figure 8.6(a). Each
button has a normal appearance and a sunken alternative
one, which is used when it is clicked. Figure 8.6(b) shows
the standard window decorations, using the mixer task as an
example. Overlaid copies of the window are included in each
of the five possible service states recognised by the window
manager.

8.5.3 Modules

An alternative to titlebar buttons is to use window manager
modules. These communicate with the window manager us-
ing pipes and can trigger the same set of internal commands.

Figure 8.5: Window
list module

8.5. WINDOW MANAGEMENT 81

Maximise
Close Priority Minimise vertically Max Resize

AT ¢

iEi «<— Maximum priority

<«— Real time
i «— Nice oridle
{ «<— Stopped

<— Normal priority

(a) Image set (b) Titlebars
Figure 8.6: Titlebar buttons

Figure 8.5 gives an example of this. It shows a version of FvwmWinList which has
been modified to provide more information. Minimised windows are shown as darkened
buttons, and real time scheduling status is flagged with a small icon to the left of the
name.

8.5.4 Control

It would be possible to provide detailed control over the various scheduling parameters,
although these are not something the desktop user needs to know about. However,
users have asked for a single control which can be used to make the QOS “better” for a
particular task as required [Mosberger98].

The bindings used at present are listed in Table 8.2. These can be configured in the
window manager’s feel file. Rather than complicating the window manager with ad-
ditional built-in functions to control scheduling parameters, we make use of its ability
to launch arbitrary external programs. We have enhanced this so that Afterstep will
replace any occurences of the string <pid> with the PID of the process which owns the
window in question. The modified command is then executed. Of course this would not
be possible without XGetClientIdentity() and authenticated sockets.

For example, the left mouse button binding is achieved with the following line from the
feel file (notice that we use the setp control program and pass the PID as a parameter):

Mouse 1 3 A Exec "" setp -t -1 a <pid>

|
\
\
\
\
82 CHAPTER 8. USER INTERFACE
\
|
|

MOUSE BUTTON | FUNCTION

LMB Toggle real time status
Shift-LMB Toggle FIFO scheduling
MMB Toggle idle scheduling class
Shift-MMB Toggle nice scheduling class
RMB Toggle pause scheduling class
Shift-RMB Pop-up scheduling dialog

Table 8.2: Mouse button bindings

If the task is listed in the QOS database, the “real time” command enables or disables
its contract. Tasks which are not listed receive a standard reserve instead (25% with a
SCHED_OTHER fallback policy, by default).

When the user clicks on a titlebar control, the relevant internal command is executed.
A check is made to see if the window PID is known (not true if the task is running
remotely). Afterstep then requests new scheduling parameters for it.

The authority of the user running the window manager is used to determine if the
scheduling adjustment is honoured (this will generally be the same as the user running
the client).

Afterstep does not immediately change the button image, other than presenting a low-
ered 3D look to confirm the actual mouse click. If the request is successful feedback will
arrive as for any scheduling class change (see below), thus closing the loop and providing
confirmation to the user.

8.5.5 Feedback

Many kinds of feedback could be provided by window decorations, but simplicity is also
very important here. For example, an indicator to show whether a reserve is currently
under-utilised or overrunning would be too detailed. We use a single button to display
broad scheduling classes and status, as shown in Figure 8.6(b).

The following features allow titlebars to properly reflect window service-class status:

e An extended TitleButton option in Afterstep’s look file allows the user to specify
multiple images for each button at configuration time. This is a widely useful
feature; for example Microsoft Windows substitutes images for maximise buttons
in accordance with the current state. Linux-SRT allows up to 10 buttons, with 10
possible states each.

e A new option in Afterstep’s feel file called ButtonFeedback specifies which but-
tons should update their images in accordance with particular kinds of state
change. We support maximisation, window shade, and stickyness in addition to
scheduling class.

e When Afterstep calls select() to wait for events, it includes a file descriptor
attached to the sched-param kernel event source provided by /dev/events.

8.5. WINDOW MANAGEMENT 83

¢ On notification of a scheduling parameter change, it queries that particular task’s
reserve to discover the new values.

e The new button image is substituted and the titlebar redrawn.

Chapter 9

Conclusion

9.1 Summary

We have shown that SRT scheduling can be implemented effectively on a conventionally
structured, general purpose desktop platform.

Precise scheduling depends on the timing granularity of the kernel, yet even a monolithic
kernel proved capable of guaranteed performance with typical multimedia applications,
once support for QOS was added. Existing shared servers can be adjusted to respect
client priorities; we have demonstrated this technique with the X server.

Linux-SRT has been in everyday use for the last 18 months, as a normal working envi-
ronment as well as a real time and development system. The system can be downloaded
from http://www.uk.research.att.com/~dmi/linux-srt/. It has been successfully
downloaded and installed on standard Linux boxes without requiring any technical sup-
port.

By keeping scheduling constraints separate from functionality, we have shown that it
is not necessary to sacrifice binary compatibility with existing applications. We have
also investigated automated scheduling policies and made the user interface simple for
novice users to understand.

RT applications are becoming increasingly commonplace, but general purpose operating
systems do not provide any kind of appropriate support for them. Integrated real time
functionality must be considered an essential requirement for future systems, alongside
existing metrics such as performance, reliability and scalability.

9.2 Further work

There are several directions for further work in this area. Firstly, we have not considered
how to adapt the kernel scheduler to a multi-processor system. Integrated scheduling
with the non-CPU devices in the system is also a difficult problem which has not been
addressed.

84

9.2. FURTHER WORK | 85

A more flexible security model would be necessary to grant and protect QOS facilities in
a true multi-user environment. End-to-end QOS over networked RT systems is another
logical development, particularly in the context of broadband Internet access, although
this does depend on the availability of suitable RT operating systems.

Finally, there are sure to be many avenues of further research into QOS management
policies, as the needs of RT desktop applications and users become apparent.

Bibliography

[Anderson90]

[Anderson92]

[Angebranndt94]

[Barham96]

[Bates98]

[Be99]

[Beck98]

[Comer96]

[Dalheimer99]

[Ford96]

[Gallmeister95]

“Lightweight Remote Procedure Call.” Brian Bershad, Thomas An-
derson, Edward Lazowska, Henry Levy. ACM Transactions on Com-
puter Systems. Feb. 1990.

“Scheduler Activations: Effective Kernel Support for the User-level
Management of Parallelism.” Thomas Anderson, Brian Bershad, Ed-
ward Lazowska and Henry Levy. ACM Transactions on Computer Sys-
tems. Feb 1992.

“Definition of the Porting Layer for the X v11 Sample Server.” Susan
Angebranndt, Raymond Drewry, Philip Karlton, Todd Newman, Bob
Scheifler, Keith Packard, David Wiggins. X Consortium Standard.

“Devices in a Multi-Service Operating System.” Paul Barham. Uni-
versity of Cambridge Computer Laboratory Technical Report No. 403
July 1996.

“Using events for the scalable federation of heterogeneous compo-
nents.” John Bates, Jean Bacon, Ken Moody, Mark Spiteri. Pro-
ceedings of the Eighth ACM SIGOPS European Workshop. September
1998.

BeOS. Be, Inc. Online, http://www.beos.com

“Linux Kerﬁel Internals”, Second Edition. Michael Beck, Harald
Bohme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus, Dirk Ver-
woner. Addison-Wesley, 1998.

“Internetworking with TCP/IP”, Second Edition, Volume 3, BSD
Socket Version. Douglas Comer, David Stevens. Prentice-Hall, 1996.

“Programming with Qt.” Matthias Dalheimer. O’Reilly, May 1999.

“CPU Inheritance Scheduling.” Bryan Ford, Sai Susarla. Proceedings
of the Second USENIX Symposium on Operating Systems Design and
Implementation (OSDI). October 1996.

“POSIX.4: Programming for the Real World.” Bill Gallmeister
O’Reilly, January 1995.

86

BIBLIOGRAPHY 87

[Gettys96]

[Glauert91]

[Goyal96]

[Ingram99]

[Jeffay96]

[Jeffay98]

[Jones95]

[Jones96]

[Kaashoek95]

[Kaashoek97]

[Kay98]

“Xlib - C Language X Interface, X Version 11, Release 6.3.” James
Gettys, Robert Schiefler. X Consortium Standard.

“X Synchronization Extension Protocol, Version 3.0 (X11 R6.3).” Tim
Glauert, Dave Carver, Jim Gettys, David Wiggins. X Consortium
Standard.

“A Hierarchical CPU Scheduler for Multimedia Operating Sys-
tems.” Pawan Goyal, Xingang Guo and Harrick Vin. Proceed-
ings of the Second USENIX Symposium on Operating Systems
Design and Implementation (OSDI). October 1996. (See also
http://wuw.cs.umass.edu/"lass/software/qlinux/).

“Soft Real Time Scheduling for General Purpose Client-
Server Systems.” David Ingram. 7th Workshop on Hot Top-
ics in Operating Systems (HotOS-VII). March 1999. (See also
http://www.cl.cam.ac.uk/users/dmi1000/1linux-srt/).

“A Proportional Share Resource Allocation Algorithm For Real-Time,
Time-Shared Systems”. Ion Stoica, Hussein Abdel-Wahab, Kevin Jef-
fay, Sanjoy Baruah, Johannes Gehrke, Greg Plaxton. Proceedings of
the 17th IEEE Real-Time Systems Symposium. December 1996.

“Proportional Share Scheduling of Operating System Services for
Real-Time Applications.” Kevin Jeffay, Donelson Smith, Arun Moor-
thy, James Anderson. Proceedings of the 19th IEEE Real-Time Sys-
tems Symposium. December. 1998.

“Modular Real-Time Resource Management in the Rialto Operating
System.” Mike Jones, Paul Leach, Richard Draves, Joseph Barrera.
Proceedings of the Fifth Workshop on Hot Topics in Operating Systems
(HotOS-V). May 1995.

“An Overview of the Rialto Real-Time Architecture.” Mike Jones,
Joseph Barrera, Alessandro Forin, Paul Leach, Daniela Rosu, Marcel-
Catalin Rosu. Proceedings of the Seventh ACM SIGOPS European
Workshop. September 1996.

“Exokernel: An Operating System Architecture for Application-Level
Resource Management.” Dawson Engler, Frans Kaashoek, James
O’Toole. Proceedings of the Fifteenth Symposium on Operating Sys-
tem Principles (SOSP). December 1995.

“Application Performance and Flexibility on Exokernel Systems.”

Frans Kaashoek, Dawson Engler, Gregory Ganger, Hector Briceno,

Russell Hunt, David Mazieres, Thomas Pinckney, Robert Grimm,

John Jannotti, Kenneth Mackenzie. Proceedings of the Sizteenth ACM -
Symposium on Operating System Principles (SOSP). October 1997.

“A Fair Share Scheduler.” J. Kay, Piers Lauder. Communications of
the ACM. January 1988.

88

BIBLIOGRAPHY

[Khanna92]

[Leftler89]

[Leslie96]

[Liedtke99]

[Liu73]

[Lynx99]

[Mercer94|

[Mercer96a)

[Mercer96b)

[Mosberger96]

[Mosberger98|

[Nieh97]

“Real time scheduling in SunOS 5.0.” Sandeep Khanna, Michael Se-
bree and John Zolnowsky. Proceedings of the Winter 1992 USENIX
Conference. Jan 1992,

“The Design and Implementation of the 4.3BSD UNIX Operating Sys-
tem.” Samuel Leffler, Marshall McKusick, Michael Karels, John Quar-
terman. Addison-Wesley, 1989.

“The Design and Implementation of an Operating System to Support
Distributed Multimedia Applications.” Ian Leslie, Derek McAuley,
Richard Black, Timothy Roscoe, Paul Barham, David Evers, Robin
Fairbairns, Eoin Hyden. IEEE Journal on Selected Areas in Commu-
nications (JSAC). September 1996.

“How to Schedule Unlimited Memory Pinning of Untrusted Processes
or Provisional Ideas About Service-Neutrality.” Jochen Liedtke, Volk-
mar Uhlig, Kevin Elphinstone, Trent Jaeger, Yoonho Park. 7th Work-
shop on Hot Topics in Operating Systems (HotOS-VII). March 1999.

“Scheduling Algorithms for Multiprogramming in a Hard Real-Time
environment.” C. Liu, James Layland Journal of the ACM. Jan 1973.

LynxOS. Lynz Real-Time Systems, Inc.
Online, http://www.lynx.com

“Processor Capacity Reserves: Operating System Support for Mul-
timedia Applications.” Clifford Mercer, Stefan Savage, Hideyuki
Tokuda. Proceedings of the IEEE International Conference on Mul-
timedia Computing and Systems. May 1994.

“Experiences with Processor Reservation and Dynamic QOS in Real-
Time Mach.” Clifford Mercer, Chen Lee, Ragunathan Rajkumar. Pro-
ceedings of Multimedia Japan. March 1996.

“Predictable Communication Protocol Processing in Real-Time
Mach.” Chen Lee, Katsuhiko Yoshida, Cliff Mercer, Ragunathan Ra-
jkumar. Proceedings of the Real-time Technology and Applications
Symposium. June 1996.

“Making paths explicit in the Scout operating system.” David Mos-
berger, Larry Peterson. Proceedings of Operating Systems Design and
Implementation (OSDI) 96. October 1996.

“BERT: A Scheduler for Best-Effort and Real time Paths.” Andy

Bavier, Larry Peterson, David Mosberger. Princeton University TR
602-99. August 1998.

“The Design, Implementation and Evaluation of SMART: A Scheduler
for Multimedia Applications.” Jason Nieh, Monica Lam. Proceedings

of the Sizteenth ACM Symposium on Operating Systems Principles
(SOSP). October 1997.

BIBLIOGRAPHY 89

[OMG95a)
[OMG95b]

[QNX99]
[Rubini9s]
[Scheifler94]

[Sha90]

[Solomon98]

[Srinivasan98]

[Stratford99]

[Sullivan99]

[Sun99a)
[Sun99b]

[Waldspurger94]

[Waldspurger95]

[Weis98]

“The Common Object Request Broker: Architecture and Specifica-
tion”, Revision 2.0. OMG Standard. July 1995.

“CORBAservices: Common Object Services Specification”, Revised
Edition. OMG Stendard. March 1995.

QNX Software Systems Ltd. Online, http://www.qnx.com
“Linux Device Drivers.” Alessandro Rubini. O’Reilly, February 1998.

“X Window System Protocol (X11 R6.3).” Robert Scheifler. X Con-
sortium Standard.

“Priority Inheritance Protocols: An Approach to Real-Time Synchro-
nisation.” Lui Sha, Ragunathan Rajkumar, John Lehoczky. IEEE
Transactions on Computers. September 1990.

“Inside Windows NT”, Second Edition. David Solomon. Microsoft
Press, 1998.

“A Firm Real-Time System Implementation using Commercial Off-
The-Shelf Hardware and Free Software.” Balaji Srinivasan, Shyamalan
Pather, Robert Hill, Furquan Ansari, Douglas Niehaus. Fourth IEEE
Real-Time Technology and Applications Symposium. June 1998.

(See also http://hegel.ittc.ukans.edu/projects/).

“An Economic Approach to Adaptive Resource Management” Neil
Stratford, Richard Mortier. 7th Workshop on Hot Topics in Operating
Systems (HotOS-VII). March 1999.

“Tickets and Currencies Revisited: Extensions to Multi-Resource Lot-
tery Scheduling.” David Sullivan, Robert Haas, Margo Seltzer. 7th
Workshop on Hot Topics in Operating Systems (HotOS-VII). March
1999.

ChorusOS. Sun Microsystems, Inc.
Online, http://www.sun.com/chorusos

JavaOS. Sun Microsystems, Inc.
Online, http://wuw.sun.com/javaos

“Lottery Scheduling: Flexible Proportional-Share Resource Manage-
ment.” Carl Waldspurger, William Weihl. Proceedings of the First
Symposium on Operating System Design and Implementation (OSDI).
November 1994.

“Stride Scheduling: Deterministic Proportional-Share Resource Man-
agement.” Carl Waldspurger, William Weihl. Technical Memo
MIT/LCS/TM-528, MIT Laboratory for Computer Science. June
1995.

“K Desktop Environment Object Model: KOM/OpenParts.” Torben
Weis. August 1998. Online at http://developer.kde.org

90 BIBLIOGRAPHY

[WindRiver99] VxWorks. Wind River Systems, Inc.
Online, http://wuw.vxworks.com

[Yodaiken97] “Introducing Real-Time Linux.” Michael Barabanov, Victor Yodaiken.
The Linuz Journal, Issue 3. February 1997.
(See also http://luz.cs.nmt.edu/"rtlinux/).

