
Nomadic Pict: Language and

Infrastructure Design for Mobile

Computation

Pawe l Tomasz Wojciechowski

Wolfson College

University of Cambridge

A dissertation submitted for the degree of

Doctor of Philosophy

March 2000

ii

Abstract

Mobile agents | units of executing computation that can migrate between

machines | are likely to become an important enabling technology for fu-

ture distributed systems. We study the distributed infrastructures required

for location-independent communication between migrating agents. These

infrastructures are problematic: the choice or design of an infrastructure

must be somewhat application-speci�c | any given algorithm will only have

satisfactory performance for some range of migration and communication

behaviour; the algorithms must be matched to the expected properties (and

robustness demands) of applications and the failure characteristic of the com-

munication medium. To study this problem we introduce an agent program-

ming language { Nomadic Pict. It is designed to allow infrastructure al-

gorithms to be expressed clearly, as translations from a high-level language

to a lower level. The levels are based on rigorously-de�ned process calculi,

which provide sharp levels of abstraction. In this dissertation we describe

the language and use it to develop a distributed infrastructure for an ex-

ample application. The language and examples have been implemented; we

conclude with a description of the compiler and runtime system.

iv

To Maria and Zdzis law

vi

Preface

Except where otherwise stated in the text, this document is the result of my

own work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any that I have submitted

for a degree or diploma or other quali�cation at any other university.

No part of this dissertation has already been or is being concurrently sub-

mitted for any such degree, diploma or other quali�cation.

This dissertation does not exceed sixty thousand words, including tables,

footnotes and bibliography.

This dissertation is copyright c
2000 by Pawe l T. Wojciechowski

All trademarks used in this dissertation are hereby acknowledged.

viii

Acknowledgments

This research was supported by a scholarship from the Wolfson Foundation.

Without this support and Prof. Jerzy Brzezi�nski at Pozna�n University of

Technology, who after my graduation made me want to do research into

distributed algorithms, I could not even have gone to England.

I am grateful to Ken Moody for introducing me to the problem of locations

and failures in process calculi, and for many stimulating and enjoyable dis-

cussions. I would also like to thank Ken for supervising my thesis and his

continuous support during years of my study.

I would like to express my special gratitude to Prof. Robin Milner, whose

lectures about the �-calculus I was able to attend shortly after coming to

Cambridge in the fall of 1995. They gave me a lot of insight into problems

which were new to me and appeared to be a great source of inspiration in

my research work.

I owe especial thanks to Peter Sewell, who not only taught me a great deal

about the theory and semantics of programming languages, but also, in the

midst of a busy schedule, he took time out to answer all my endless questions

and provided me with friendly conversation even as I was depriving him of

his work and his peace. Part of this research was done in collaboration with

Peter.

I consider myself very fortunate, to have been introduced to Benjamin Pierce,

a co-author of Pict, while he was visiting the Computer Laboratory at the

University of Cambridge in the academic year 1995/96. Some of the early

ideas of the nomadic �-calculi resulted from the discussions with Benjamin

and Peter during our brief meeting at Indiana University in May of 1997.

I would also like to thank C�edric Fournet and Asis Unyapoth. They have

contributed valuable comments on parts of this work at various stages of its

completion.

I am very grateful too to past and present members of the Opera Group,

which is part of the Systems Research Group, and members of the Theory

and Semantics Group, who not only showed much interest and understanding

of the true nature of my work, but also created an interesting and stimulating

environment.

x

Finally, I would like to thank Ken Moody and Peter Sewell who read what

I was scribbling with extraordinary sympathy and care, cheering me on and

holding me to the very highest standards.

Thanks to the sta� in the Computer Laboratory at the University of Cam-

bridge for helping me with the administrative aspects of being a PhD student.

Thanks to my mates and fellows at Wolfson College and friends from various

societies for many enjoyable discussions, social events, and sharing time in

Cambridge.

More personally, thanks to my family and best friends, especially to Ania, for

her friendship and happiest memories. Finally, all the time I was at home,

and away, I was kept upright by my parents, who reconciled themselves with

patience and good grace to a son who chose to live far away, and always

looked after my well-being | showing so much kindness and helping me in

various important ways.

Publications

Aspects of the work described in this dissertation feature in the following

publications:

� Pawe l T. Wojciechowski and Peter Sewell. Nomadic Pict: Language

and Infrastructure Design for Mobile Agents. In IEEE Concurrency.

The Computer Society's Systems Magazin, April-June 2000. This is an

extended version of the paper below.

� Pawe l T. Wojciechowski and Peter Sewell. Nomadic Pict: Language

and Infrastructure Design for Mobile Agents. This appeared in the

Proceedings of ASA/MA'99 (First International Symposium on Agent

Systems and Applications/Third International Symposium on Mobile

Agents), Palm Springs, CA, USA, October 1999.1

� Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce.

Location-Independent Communication for Mobile Agents: A Two-

Level Architecture. In Henri E. Bal, Boumediene Belkhouche, and Luca

Cardelli, editors, Internet Programming Languages (ICCL'98 Work-

shop), volume 1686 of Lecture Notes in Computer Science, pages 1{31.

Springer, 1999. Also appeared as Technical Report 462, Computer

Laboratory, University of Cambridge, April 1999.

� Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Loca-

tion Independence for Mobile Agents. This appeared in the Proceedings

of ICCL'98 Workshop on Internet Programming Languages, Chicago,

USA, May 1998. It is largely superseded by the paper above.

1Awarded Best Paper Overall of Conference

xii

Contents

1 Introduction 3

1.1 Mobility and Location Independence . 4

1.1.1 Process Migration . 6

1.1.2 Distributed Objects . 8

1.1.3 Mobile Agents . 12

1.2 Thesis Contribution . 13

1.2.1 Observations . 13
1.2.2 Problem Statement . 14

1.2.3 Project Foundations . 15

1.2.4 Contribution . 16

2 Model of Mobile Computation 19

2.1 Asynchronous �-Calculus . 20

2.1.1 Syntax . 21

2.1.2 Informal Semantics . 22

2.1.3 Operational Semantics . 24
2.2 Nomadic �-Calculus . 27

2.2.1 Low-Level Calculus . 28

2.2.2 High-Level Calculus . 34

2.2.3 Reduction Semantics . 35

2.3 Related Models . 39
2.3.1 Related Calculi . 39

2.3.2 I/O Automata . 41

2.3.3 Mobile UNITY . 43

2.3.4 Brief Comparison . 46

3 Programming Language 51

3.1 Motivations . 51

3.1.1 Mobility in a Wide-Area Network . 52

3.1.2 Veri�cation of Mobile Computation 53

3.1.3 Infrastructure Design and Speci�cation 56
3.2 Nomadic Pict . 57

3.2.1 Language Principles . 57

3.2.2 Low-Level Language . 58

3.2.3 High-Level Language . 60

3.2.4 Examples and Idioms . 61
3.3 Related Languages . 66

xiv CONTENTS

3.3.1 Facile . 67

3.3.2 The Join Language . 71

4 Infrastructure for Location-Independent Communication 77

4.1 Algorithms . 77

4.1.1 Central Server . 79
4.1.2 Forwarding Pointers . 81

4.1.3 Broadcast . 82

4.1.4 Group Communication . 84

4.1.5 Hierarchical Directory . 85
4.1.6 Arrow Directory . 86

4.2 Example Translations in Nomadic Pict . 87

4.2.1 A Central-Server Infrastructure Translation 88

4.2.2 A Forwarding-Pointers Infrastructure Translation 94

4.3 Alternative Descriptions . 100

5 Infrastructure Design for Mobile Agents 103

5.1 Resource Monitoring . 104
5.1.1 Migration and Communication Pattern 104

5.1.2 Example Infrastructure . 105

5.2 Mobile Devices . 106

5.2.1 Example Infrastructure . 106
5.3 Information Retrieval . 108

5.3.1 Migration and Communication Pattern 109

5.3.2 Example Infrastructure . 109

5.4 Fault-Tolerance . 111
5.4.1 Mobile Agent Support for Checkpointing 112

5.5 Large-Scale Parallel Computation . 113

5.5.1 Migration and Communication Pattern 113

5.5.2 Example Infrastructure . 114
5.6 Event-Driven Mobility . 115

5.6.1 Mobile Agent Support for Events . 117

5.6.2 Migration and Communication Pattern 118

5.6.3 Example Infrastructure . 118

6 The PA Application and Infrastructure Design 121

6.1 Application . 122
6.1.1 High-Level Architecture . 122

6.1.2 Migration and Communication Pattern 123

6.2 Design of Appropriate Infrastructure . 124

6.2.1 Example Infrastructure: The QSC Algorithm 126
6.2.2 Disconnected Operation: The QSCD Algorithm 131

6.2.3 Wide-Area Architecture: The FQSC Algorithm 141

7 Nomadic Pict Implementation 151

7.1 Architecture of the Compiler . 151

7.1.1 Compilation Phases . 153

7.1.2 Architecture-Independent Core Language 155
7.2 Architecture of the Runtime System . 156

CONTENTS xv

7.2.1 Virtual Machine and Execution Fairness 156
7.2.2 Interaction with an Operating System and User 158
7.2.3 I/O Server and Trader Service . 158

8 Conclusions and Future Work 161

A Syntax 165

A.1 Lexical Rules . 165
A.2 Reserved Words . 166
A.3 Concrete Syntax . 166

xvi CONTENTS

List of Figures

2.1 Syntax of the �-Calculus . 21
2.2 Operational Semantics of the �-Calculus 26
2.3 Syntax of the Low-Level Nomadic �-Calculus 33
2.4 Operational Semantics of the Nomadic �-Calculus 38

4.1 A Central-Server Translation: The Compositional Translation 89
4.2 A Central-Server Translation: The Top Level and the Daemon 93
4.3 A Forwarding-Pointers Translation: The Compositional Translation 95
4.4 A Forwarding-Pointers Translation: The Daemon 96
4.5 A Forwarding-Pointers Translation: The Top Level 99

6.1 The QSC Algorithm: The Query Server and Daemon Daemon 128
6.2 The QSC Algorithm: The Delivery of Location-Independent Message 129
6.3 The QSCD Algorithm: The Query Server 134
6.4 The QSCD Algorithm: The Daemon Daemon 135
6.5 The QSCD Algorithm: The Disconnection and Reconnection Requests . . . 139
6.6 The QSCD Algorithm: The Delivery of Location-Independent Message . . . 140
6.7 The FQSC Algorithm: The Query Server 143
6.8 The FQSC Algorithm: The Daemon Daemon 144
6.9 The FQSC Algorithm: The Delivery of Location-Independent Message . . . 148

7.1 The Nomadic Pict Two-Levels of Abstraction 152
7.2 Architecture of the Nomadic Pict Runtime System 157

2 LIST OF FIGURES

Chapter 1

Introduction

Mobile agents, units of executing computation that can migrate between

machines, have been widely argued to be an important enabling technology

for future distributed systems [CHK97, VT97]. They introduce a new prob-

lem, however. To ease application writing one would like to be able to use

high-level location independent communication facilities, allowing the parts

of an application to interact without explicitly tracking each other's move-

ments. To provide these above standard network technologies (which directly

support only location-dependent communication) requires some distributed

infrastructure, problematic in three ways. Firstly, the distributed algorithms

needed are delicate. Secondly,
exible structuring mechanisms are required

to support clean factorisation of a system into its high-level application com-

ponent and the infrastructure implementation. Thirdly, the choice or design

of an infrastructure must be somewhat application-speci�c | any given al-

gorithm will only have satisfactory performance for some range of migration

and communication behaviour; the algorithms must be matched to the ex-

pected properties (and robustness and security demands) of applications.

We are addressing these issues in the context of a mobile agent program-

ming language, designed and implemented as part of this thesis. The lan-

guage, called Nomadic Pict, is based on a small core calculus { the Nomadic

�-calculus { that has a clear rigorous operational semantics, tightly related

to real network communication. This permits infrastructure algorithms to

be expressed precisely and concisely in an executable form, aiding design and

supporting ongoing work on correctness and robustness proofs.

The language has a two-level architecture. The low level consists of well-

understood, location-dependent primitives, including communication and

agent migration. The high level, in which applications can be written, ex-

tends these with location-independent communication. An infrastructure can

be expressed as an implementation of the high-level primitives in terms of

4 Introduction

the low-level language; only the low level need be supported by a widespread

runtime system (the distributed parts of the infrastructure can be deployed

dynamically, on application start-up, using agent migration).

The ease of writing infrastructure algorithms, and the fact that an ar-

bitrary infrastructure can be provided for an application at compile time,

make it straightforward to experiment with a wide range of infrastructures

for applications with di�erent migration and communication patterns.

The content of the thesis is as follows. In chapter 2, after discussing a

variant of the asynchronous �-calculus, we describe the design of the No-

madic �-calculus, giving its operational semantics. In the end of the chapter,

we describe related calculi and two other non-calculi models. In chapter 3,

we present Nomadic Pict. Firstly, we motivate our decision to design and

implement another programming language. Then, we describe the language

in more detail, introducing enough of the syntax and idioms to be able to

understand translation encodings. Finally, we compare our design with two

other related programming languages. In chapter 4, we describe di�erent

plausible infrastructures for location independence in the presence of mobil-

ity, expressing two simple infrastructure algorithms as translations from high-

to low-level Nomadic Pict. In chapter 5, we discuss various applications of

mobile agents, matching example applications with suitable infrastructures.

Then, in chapter 6 we discuss a small example application and the design of

an infrastructure suited to it in more detail. The focus is on demonstrating

the bene�ts of a multi-level architecture based on clearly de�ned levels of

abstraction. We begin with a simple centralised algorithm, which is further

extended to improve scalability and providing support for disconnected oper-

ation. In chapter 7, we describe the current implementation of the Nomadic

Pict compiler and runtime system.

In x1.1 we present background work, describing process mobility, dis-

tributed objects, and mobile agent systems. We focus on the problems of

migration and communication transparency in these systems. Then, in x1.2

we introduce our work and outline the contribution of this thesis to research

on the semantics of programming languages and design of communication

infrastructures for systems with mobility.

1.1 Mobility and Location Independence

The last few years have seen much interest in systems and applications which

support and use di�erent forms of mobility, such as mobility of processes, de-

vices, and agents (see, e.g. a collection of representative papers on each of

these, published in [MDW99]). A major challenge to the success of em-

1.1 Mobility and Location Independence 5

ploying mobility in the global network is the lack of widespread distributed

infrastructure. The infrastructure should o�er support for connecting devices

while or after they physically move, and allow processes, objects or agents

to visit remote sites and bind to local resources. For example, in collabo-

rative applications, mobile devices such as palmtop computers can be used

to maintain continuous communication channels within a group of people;

mobile agents can migrate to a stable part of the network and act on behalf

of the users if the connection with the mobile device was likely to be broken

or interrupted. The agents and processes executing on mobile or stationary

computers may want to maintain communication while moving.

In order to ease application writing, the infrastructure should support

some forms of location-independence for programs and devices migrating

from one location to another. The principle of location-transparency means

that all names are independent of their location, migrating processes can re-

quest identical kernel services wherever they reside, distributed objects can

be invoked without knowing their physical location, etc. Ideally, this means

that communication with a migrating entity can proceed as if there had been

no mobility. In practice, however, this is an (unattainable) ideal, especially

in wide-area networks. The issues of speed, latency, failure semantics, het-

erogeneity, and physical disconnection mean that agent or object behaviour

must adapt with location. Arguably, this adaptation should not be entirely

at infrastructure level since the knowledge about the application cannot be

fully exploited. The application programmer should be aware of mobility and

distribution at a low level whenever it is hard or ineÆcient to drive adap-

tation within the infrastructure. In this context, we are interested in the

infrastructure support for location independence which allows mobile devices

to be transparently reconnected after restarting at a new location, objects

to be accessed after migration to a new host machine, and mobile agents to

receive messages while they move on the network, as long as the only failures

which happen in the system are transient failures and there are no network

partition or any administrative boundaries.

The need for a suitable infrastructure to support location independence

appears inevitably in mobile computing. Traditionally, the Internet Protocol

(IP) assumed that an address is mapped to a static physical location, i.e.

the �rst few octets of an IP address speci�ed a network, and the last part

of the address speci�ed a host interface on that network. Since a mobile

computer can be moved around and connected to di�erent networks, keeping

the IP address static required other protocols for routing communication

to and from the mobile computer (such as Mobile IP, initially proposed in

[IDJ91, IJ93]).

6 Introduction

Examples of traditional infrastructures supporting location independence

include network services like directory assistance (e.g. X.500 protocol), dis-

tributed object managers (e.g. CORBA, DCOM, OLE, and OpenDoc) and

automatic brokers, such as Publish and Subscribe Service in Mac OS and

ToolTalk. Directory assistance allows a program to �nd a desired service.

Distributed object managers provide transparent access to a distributed col-

lection of objects; messages are automatically routed to the destination object

even if the sender does not know the object's network location. Automatic

brokers provide both functions by �rst identifying an appropriate recipient

for a message and then forwarding the message.

Below, we describe background work on migration and communication

transparency in process migration, distributed objects and mobile agents.

1.1.1 Process Migration

In [MDW99], Miloji�ci�c, Douglis and Wheeler summarise the key concepts of

process migration and give an overview of the most important implementa-

tions. The basic idea of process migration is to move an executing process

from one node to another (a node here can be a processor or host machine)

in order to, e.g. balance load distribution. Below, we describe examples

of systems with process migration; they are assumed to run in a local area

network.

Traditional process migration mechanisms rely on support provided by

the underlying operating system. For example, in MOSIX [BGW93] and

Sprite [OCD+87], the distributed operating system provides a single system

image that allows access to system resources (e.g. �les) in the same way

irrespective of the process' physical location, i.e. a process running on any

node can access any other node's resources transparently (we assume the

notion of ownership of resources by a node). The system can automatically

migrate any process | migration is transparent to processes and to the users.

Other systems provide higher level mechanisms. For example, in

[MZDG93] Miloji�ci�c et al. present a task migration mechanism built on top

of the Mach microkernel system [ABB+86]. In Mach, a task is an execution

environment that provides the basic unit of resource allocation. A task con-

sists of a virtual address space and protected access to system resources via

ports. A task may contain one or more threads. A port is implemented as a

kernel-protected communication channel. File systems and other traditional

abstractions are implemented in Mach by user-space system daemons. Since

ports are location independent, a task and all its ports can be easily moved

from one machine to another. All tasks which previously communicated with

the moved task can continue to do so because they reference a task only by

its location-independent ports and communicate via messages to these ports.

1.1 Mobility and Location Independence 7

Although, task migration in Mach has been implemented in user space, some

modi�cations to the kernel were necessary.

Condor [LS92] avoids the complexity of kernel-based migration and sup-

ports migration of UNIX processes entirely as a user-space mechanism, i.e.

the process state must be exported into user space and then transferred.

When a process is about to migrate, the system produces a core �le for the

process, which is sent to the new node. However, not all types of applications

can migrate in this way, e.g. processes are not eligible for migration if they

use signals or inter-process communication (IPC).

Some operating systems with process migration, such as Charlotte

[ACF87], Amoeba [TvRvS+90, Tan92], and Mach provide support for trans-

parent communication of processes (or tasks in Mach) irrespective of the

current process location. Maintaining communication in the presence of mi-

gration has turned out to be one of the most complex components in these

systems. Complex algorithms are required, e.g. to prevent messages sent

during migration being discarded or received out of order. Typically, the

algorithms involve some form of forwarding through proxies.

The object-based language and system Emerald [JLHB88] takes another

approach to mobility. Firstly, Emerald has language support for the notion

of location and for mobility. Secondly, mobility is �ne-grained, i.e. the unit

of distribution and mobility is an object, which can be a small data object

(e.g. integer) as well as an active object which contains a process. The ac-

tive object mobility subsumes both process migration and data transfer. In

the next section, we describe the mechanism of location-independent invoca-

tion of Emerald objects. Besides object mobility, processes executing native

machine code can also be moved on the
y, but only between computers

that have the same architecture. (This restriction was later lifted when full

heterogeneous mobility was implemented [SJ95].)

Process migration provides several bene�ts, e.g. it enables: load distribu-

tion (by migrating processes from a node which is overloaded to a less loaded

one), fault resilience (by migrating processes from a node that may have par-

tial failures), improved system administration (by migrating processes from a

host machine that is about to be shutdown), and improved data access local-

ity (by migrating processes to the host of data). However, process migration

has not achieved widespread use. One reason for that is the complexity of

supporting migration in operating systems originally designed as stand-alone.

Another reason for the failure of process migration to become commonplace

commercially is the rapid improvement of processing capabilities and other

resources. For example, reclaiming processing power by migration in order

to improve interactive performance is now a less obvious requirement, since

interactive performance is now less likely to be a�ected by CPU-intensive

and memory-intensive processes.

8 Introduction

1.1.2 Distributed Objects

In order to ease the writing of distributed applications, good programming

abstractions are required, providing forms of location independence. In the

vision of \objects all the way down", one could imagine a single natural

object-oriented design for a given application, regardless of whether that

application will be deployed in a local or distributed context. The failure and

performance issues are tied to the implementation of the underlying system

components, and consideration of these issues is left out of the application

design. The interface to a remote object is just like the interface to objects

used locally.

In [WWWK97], Waldo et al. argue that such a uni�ed view of local and

remote objects was mistaken. Local and distributed computing are di�erent

in many ways. Distributed systems require that the programmer be aware of

network latency, have a model of remote data access and data distribution

di�erent from the model of local memory access, and take into account issues

of concurrency, inherent indeterminacy, and partial failure. Neglecting these

di�erences has led to systems which are either not robust and reliable in

a distributed context, or o�er unnecessary complication of the local object

implementation (since all local objects in this uni�ed view must be treated as

potentially remote). The conclusion which can be drawn from this polemic

paper is that in order to realise a true distributed object system, a suitable

infrastructure is required. A commonly accepted technology to build such

an infrastructure was unavailable at that time.

In traditional RPC systems, such as DCE, and object based RPC systems,

such as DCOM [EE98] and CORBA [OMG91], we use an interface de�nition

language to de�ne interfaces, where method calls are speci�ed in terms of the

primitive data types, object references, and structures of these entities. These

interfaces are then compiled, for any given implementation language, with the

result being stub and skeleton �les. Once these are augmented with code that

needs to be provided by a programmer, they can be compiled for the target

operating system and architecture. The kind of information passed between

the client and server cannot change without both the participants being

updated simultaneously, since each must know exactly what is transmitted

by the wire protocol.

We can use traditional distributed object frameworks to realise the dis-

tributed system as a whole as a set of cooperating objects. Unfortunately,

the way in which those objects cooperate and communicate is decidedly non-

object-oriented [Wal99]. In order to explain this point, we should recall the

de�nition of the object-oriented paradigm. The principles that are at the core

of object-oriented programming are the following: (1) the independence of an

1.1 Mobility and Location Independence 9

object's interface from the implementation of the object, (2) the binding of

behaviour with data, (3) polymorphism, i.e. the ability to describe an object

in terms of the necessary conditions on the object, allowing an object to have

multiple forms. Polymorphism is only available if the full objects, including

implementations, can be passed between client and server. Unfortunately,

the traditional distributed object frameworks cannot download and execute

implementations because they do not allow real objects to be passed as argu-

ments from one location in a distributed system to another, only data1. This

precludes a common (in the non-distributed context) style of programming,

when the information passed between objects as a parameter or a return

value in a method call is another object. A revolution has been brought in

by infrastructures that make it possible to communicate objects, not just

object references. Below, we characterise the design choices made within the

examples of Emerald, Network Objects and the Java environment.

Emerald [JLHB88] introduced mobile objects with safe, static subtyping

and location-independent invocations. In Emerald, programmers use a single

object de�nition mechanism with a single semantics for de�ning all objects.

This includes small, local data-only objects, and active, mobile, distributed

objects. Objects have unique network-wide names. The location of the ac-

tive object may change over time, as an object migrates from one machine

to another. The Emerald compiler is capable of analysing the needs of each

object and generating an appropriate implementation from the same piece of

source code, depending on the context in which it is compiled. For example,

an array object whose use is entirely local to another object will be imple-

mented di�erently from an array that is shared globally. Altogether with

other features, such as the idea that new objects and new classes (subtypes

as well as supertypes) can be added to a system at any time, Emerald can be

seen as precursor of Network Objects and the Java environment, described

below.

The need for semantic support for mobility, distribution, and abstract

types led the Emerald group to design a new language. While method invo-

cation is location-independent, language primitives can be used to �nd and

manipulate the location of objects. Emerald uses call-by-object-reference pa-

rameter passing semantics for all object invocations, local or remote. How-

ever, the programmer may decide that an object should be moved based on

knowledge about the application. For example, on remote invocations a pa-

rameter passing mode called call-by-move permits an invocation's argument

object to be moved along with the invocation request. A call-by-visit mode

1Passing functions (code) has long been exploited in distributed implementations of
functional languages (e.g. Facile described in x3.3.1).

10 Introduction

does the same but the argument object returns to the source of the call.

Also, the compiler may decide to move an object along with an invocation

(e.g. small immutable objects which can be copied cheaply, such as integers

or strings, are moved in this way).

Systems like Emerald successfully handle object distribution and hide

the distinction between local and remote objects in small networks. But the

failure modes of local and remote objects are inherently di�erent, and perfor-

mance is radically reduced by distribution and scale. This means that object

placement is absolutely critical to application performance and robustness

| and the tools that are currently available to automate this placement are

minimal [Bla99]. (A closely related problem of the static estimation of po-

tentially mobile functions and channels in a Facile-like language has been

studied in [Kir99].) A simpli�ed and more
exible approach to object-based

distributed computing has been taken by the designers of Network Objects

and Java.

Network Objects [BNOW95] is a distributed programming system de-

signed for Modula-3. Network objects are not mobile, but the system makes

it easy to communicate objects either by copying or by reference. The ob-

jects have no implicitly associated thread of control. The main features of the

design are distributed typechecking, transparent invocation, powerful mar-

shalling, eÆcient and convenient access to streams, and distributed garbage

collection. We characterise some of these features brie
y. The system pro-

vides typechecking via the narrowest surrogate rule, which allows a program-

mer to release a new version of the service (a separately compiled program)

as a subtype of the old version, which supports both old and new clients

and ensures type safety. Remote invocations are syntactically identical to

local ones. A client invoking a method of an object need not know whether

the object is local or remote. Marshalling (of argument values and results

into a sequence of bytes sent between programs) relies on a general-purpose

mechanism called pickles. Pickles perform eÆcient and compact marshalling

of arbitrary complicated data types. The facility can be used to distribute

data and computation by object copying. Network objects are always sent by

reference and other objects are always sent by copying. On the other hand,

object mobility would allow the same object to be either sent by reference or

moved. The authors of Network Objects argue, however, that this extra
ex-

ibility does not seem to be worth the substantial increase in the complexity

of mobile objects.

The Java programming language and Java environment [GJS97, LY97]

provide an object-oriented layer on top of the heterogeneity of the distributed

system. Rather then thinking in terms of particular architectures and op-

erating systems as in CORBA or DCOM, the Java environment provides a

virtual machine that is (more or less) the same everywhere. This allows code

1.1 Mobility and Location Independence 11

to be moved from one machine to another, irrespective of the underlying

architecture. Applets were the �rst application of the Java technology to a

large scale network. By supplying code that implemented a well-known in-

terface, and making sure that browsers of the World-Wide Web knew how to

recognize such code, Java allowed active content to be added to the World-

Wide Web. Di�erent implementations for the same interface can be o�ered

and moved dynamically into the browser that made the calls to that inter-

face. However, in order to support the sending of whole objects rather than

just code, an additional layer of distributed infrastructure is required.

The Java Remote Method Invocation system (RMI) [WRW96] provides

the next step, allowing real objects (both code and data) to be passed from

one Java virtual machine to another. RMI uses the standard Java object

serialization mechanism to pass objects. Arguments that are references to

remote objects are passed as remote references. If an argument to a method is

a primitive type or a local (non-remote) object, a copy is passed to the server.

Return values are handled in the same way, but in the other direction. RMI

lets one pass and return full object graphs for local objects and references to

remote objects. The mechanism allows the passing of subtypes to methods

declared to use a supertype. If the receiving virtual machine does not have

the code associated with the actual class of the object that it receives, the

code for that class is downloaded, veri�ed, and dynamically loaded into the

receiving virtual machine. RMI does not allow thread mobility.

Jini [AWO+99] forms another layer of infrastructure on top of the Java en-

vironment (including RMI), adding a component, called the Lookup Service,

that allows services to advertise themselves, and a simple protocol that al-

lows these services and clients wanting to �nd a service to �rst �nd a Lookup

Service. By using Jini, matching services and clients can be virtually auto-

matic and transparent. The Jini architecture has been designed for subnets

that enable multicasting, restricting the use of Jini to local-area networks.

However, some enhancements to overcome this problem were proposed by the

Jini community and realised in practice, in order to allow multicast messages

to be "tunneled" to other domains through a hierarchical set of daemons.

Java o�ers typed bytecode and bytecode veri�cation. This is a real ad-

vance over systems like Emerald, since one can obtain a class that someone

else has compiled and be sure that it is type-safe. However, the Java virtual

machine institutionalizes a particular object model, and some authors argue

that it is a \technical, commercial, and cultural mistake". In their opinion,

a better approach would be a virtual machine that is language-neutral { for

example, a virtual RISC processor, which would \evenhandedly and compat-

ibly enable any number of high-level languages for distributed computing"

[Whi98]. This could also be done in a type secure way by using a typed

assembly language (see, e.g. Morrisett et al. [MCG+99]).

12 Introduction

1.1.3 Mobile Agents

Mobile agents are units of executing computation that can migrate between

machines (in a local- or wide-area network) and act on behalf of their users or

other agents. The attributes of agents such as being autonomous, goal-driven,

etc. are investigated in the area of Distributed Arti�cial Intelligence (DAI).

Here, we are only interested in the ability of agents to migrate freely, i.e. to

suspend execution at some point, move the whole state of computation to

another location, and resume execution at this new location. Agent mobility

combines features known from mobile code (such as in Java), object migration

(moving encapsulated code and data), and process migration (moving the

thread of execution). Additionally, issues of security (such as authentication

and authorisation) have to be solved to migrate and execute agents safely.

Many mobile agent systems have been built in Java, using Java support

for code mobility; they include Aglets [LOKK97], Voyager [Obj97, Gla98],

Concordia [WPW98], Mobile Objects and Agents (MOA) [MLC98], and Mole

[SBH96]. TACOMA [JvRS95] and Agent Tcl [Gra95] are systems in which

agents can be written using a scripting language Tcl. Some languages and

runtime systems have been designed expressly to support mobile agents or

mobile computation, such as Telescript [Whi96], the Join Language [FGL+96,

CF99], and Nomadic Pict, described in this thesis.

A number of existing mobile agent systems provide a form of location

independence; we brie
y review some of them below. Comparisons are diÆ-

cult, in part because of the lack of clear levels of abstraction and descriptions

of algorithms | without these, it is hard to understand the performance and

robustness properties of the infrastructures.

The Join Language provides location-independent messages using a built-

in infrastructure, based on forwarding pointer chains that are collapsed when

possible. Voyager supports location-independent messages, both synchronous

and asynchronous messages and multicasts, again using forwarding pointer

chains that are collapsed when possible. A directory service is also provided.

The Mobile Object Workbench [BHDH98] provides location independent in-

teraction, using a hierarchical directory service for locating clusters of ob-

jects that have moved. There is a single infrastructure, although it is stated

that the architecture is
exible enough to allow others. The infrastructure

work of Aridor and Oshima [AO98] provides three main forms of message

delivery: location-independent using either forwarding pointers or location

servers, and location dependent (they also provide other mechanisms for lo-

cating an agent). Mobile Objects and Agents (MOA) supports four schemes

for locating agents; these are used as required to deliver location-independent

messages. Stream communication between agents is also described, with

1.2 Thesis Contribution 13

communicating channel managers informing each other on migration. The

MASIF proposal [MBB+98] also involves four locating schemes, but appears

to build communication facilities on top. This excludes a number of reason-

able infrastructures; it contrasts with our approach here, in which location-

independent message delivery is taken as primary (some infrastructures do

not support a location service).

1.2 Thesis Contribution

Di�erent forms of mobility, such as process migration, distributed objects,

and mobile agents, require speci�c distributed infrastructures and novel forms

of language and runtime support | for interaction between migrating enti-

ties, responding to network failure and recon�guration, support of discon-

nected operation, binding to resources, managing security, etc. Although

the problems which designers of systems with mobility have to solve are of-

ten very similar (e.g. maintaining communication between moving entities,

resource discovery, etc.), the complexity of plausible implementations and

heterogeneity of target environments make it hard to directly transfer and

reuse results developed for a particular system.

1.2.1 Observations

Distributed infrastructures are somewhat application-speci�c. Di�erent ap-

plications may require di�erent forms of support for mobility. For example,

a non-stop system manager would require thread mobility in order to be

able to move all running processes from a node which is (or may soon be)

partially faulty to another node. In mobile computing, the desire to sup-

port small devices which have limited CPU and memory capabilities (such

as PDAs and mobile phones) will require some light-weight infrastructures

designed for a particular application. In the example of an \active home",

home devices could be plugged into a home LAN using a Jini architecture

(which uses code mobility). However, in the vision of ubiquitous computing

on the whole Internet, the infrastructure would have to be even more delicate.

The problem of scale is not the only one which has to be solved. The wide-

area network is more asynchronous and less predictable and manageable than

a local-area network, delays and bandwidth
uctuations are unpredictable,

failures harder to detect (since remote machines are not under a centralised

management and normal disconnected operation of some remote device can-

not be distinguished from faulty behaviour). Thus, it may not be easy to

extend an infrastructure originally designed for a LAN to a wide-area net-

14 Introduction

work by just introducing proxy servers and replicating servers to improve

scalability and availability. For example, it may be required to use a network

event noti�cation service as a building block of the infrastructure, instead

of explicitly attempt to detect failures using time-outs. The service would

use time-outs only on neighbouring servers and local clients, rather than on

processes that are several hops away. It would propagate information about

network events to clients that subscribed for it. Also, pervasive computing

on the Internet will require good support for (optional) code mobility, discon-

nected operation, naming and location independence (e.g. to enable binding

to local resources after reconnecting a mobile computer at some other point

of the network).

It seems unlikely one can build a world-wide distributed infrastructure

on the whole wide-area network which could eÆciently address all these re-

quirements for all types of applications (it may even not be desirable due to

security reasons). Instead, a wide-area network should o�er some mech-

anism to enable many di�erent distributed infrastructures to co-exist on

top of some architecture-independent, perfectly scalable and loosely cou-

pled medium. Some light-weight infrastructures could possibly be spawned

dynamically with the application | they would form another layer of the

legacy system. For example, in chapter 5 we describe a few potential mo-

bile agent applications; they all use only a very limited pattern of migration

and communication (we generally do not envisage free-roaming on the whole

Internet), thus encouraging the use of infrastructures that are speci�cally

tailored for the application.

The design of distributed applications for wide-area networks (WANs)

may require a new model of computation (and so a new kind of programming

language). In a LAN we could successfully use some transparent distributed

object system in order to build a distributed application, but the intent to use

the same application in a WAN, across �rewalls and along links with large and

highly unpredictable message latency, would require some less transparent

way of accessing objects and more asynchrony in the computational model.

1.2.2 Problem Statement

Mobile agent communication primitives can be classi�ed into two groups.

At a low level, there are location dependent primitives that require a pro-

grammer to know the current site of a mobile agent in order to communicate

with it. If a party to such communications migrates, then the communicat-

ing program must explicitly track its new location. At a high level, there

are location independent primitives that allow communication with a mo-

bile agent irrespective of its current site and of any migrations of sender or

1.2 Thesis Contribution 15

receiver. Location independent primitives may greatly simplify the develop-

ment of mobile applications, since they allow movement and interaction to

be treated as separate concerns. Their design and implementation, however,

raise several diÆcult issues. A distributed infrastructure is required for track-

ing migrations and routing messages to migrating agents. This infrastructure

must address fundamental network issues such as failures, network latency,

locality, and concurrency; the algorithms involved are thus inherently rather

delicate and cannot provide perfect location independence. Moreover, appli-

cations may be distributed on widely di�erent scales (from local to wide-area

networks), may exhibit di�erent patterns of communication and migration,

and may demand di�erent levels of performance and robustness; these vary-

ing demands will lead to a multiplicity of infrastructures, based on a variety of

algorithms. These infrastructure algorithms will be exposed, via their perfor-

mance and behaviour under failure, to the application programmer | some

detailed understanding of an algorithm will be required for the programmer

to understand its robustness properties under, for example, failure of a site.

Below, we sketch some of the assumptions, which laid the foundation for the

Nomadic Pict language.

1.2.3 Project Foundations

A good level of abstraction is needed for our language primitives - high

enough not to fuss with marshalling and unmarshalling of data which need

to be sent between agents, but low enough to have clear handle on the algo-

rithms which are used in real mobile agent systems. An intuitive example of

such abstraction is provided by the Remote Procedure Call (RPC) systems.

At the application level, we use transparent method invocations for client-

server computing (they involve parameters which are passed to the method

and results which are returned to the method caller), and at the low stub

level, we have a wire protocol encoded for transferring data from one loca-

tion in the distributed system to another (which involves messages containing

application data and control information, such as acknowledgments).

The need for clear understanding and easy experimentation with infras-

tructure algorithms, as well as the desire to simultaneously support multiple

infrastructures on the same network, suggests a two-level architecture of the

language|a low-level consisting of a single set of well-understood, location-

dependent primitives, in terms of which a variety of high-level, location-

independent communication abstractions may be expressed. This two-level

approach enables one to have a standardized low-level runtime system that

is common to many machines, with divergent high-level facilities chosen and

installed at run time. It also facilitates simple implementation of the location-

16 Introduction

independent primitives (cf. protocol stacks).

For this approach to be realistic, it is essential that the low-level primitives

should be directly implementable above standard network protocols. The In-

ternet Protocol (IP) supports asynchronous, unordered, point-to-point, un-

reliable packet delivery; it abstracts from routing. We choose primitives

that are directly implementable using asynchronous, unordered, point-to-

point, reliable messages. This abstracts away from a multitude of additional

details|error correction, retransmission, packet fragmentation, etc.|while

still retaining a clear relationship to the well-understood IP level. It is also

well suited to the process calculus presentation that we use in 2.2. More

controversially, we also include agent migration among the low-level primi-

tives. This requires substantial runtime support in individual network sites,

but not sophisticated distributed algorithms|only one message need be sent

per migration. By treating it as a low-level primitive we focus attention

more sharply on the distributed algorithms supporting location-independent

communication. We also provide low-level primitives for agent creation, for

sending messages between agents at the same site, for generating globally

unique names, and for local computation.

Many forms of high-level communication can be implemented in terms of

these low-level primitives, for example synchronous and asynchronous mes-

sage passing, remote procedure calls, multicasting to agent groups, etc. For

the work presented in this dissertation we consider only a single representa-

tive form: an asynchronous message-passing primitive similar to the low-level

primitive for communication between co-located agents but independent of

their locations and transparent to migrations.

1.2.4 Contribution

The main contribution of this dissertation is the design and implementation

of Nomadic Pict, a concurrent programming language with thread mobil-

ity. The language introduces a new model of concurrent mobile computa-

tion in a wide-area network. It assumes the underlying environment is very

asynchronous and loosely coupled | the runtime system generally does not

depend on any distributed infrastructure | all (application-speci�c) infras-

tructure algorithms are executed by the Nomadic Pict virtual machine as

normal applications above the network level. Although the desire to have

a runtime system implementation purely local may seem to be absolute in

the real world, it appeared very useful for prototyping purposes. The im-

plementation of the Nomadic Pict runtime system is very light-weight (even

messages are encoded as little agents).

1.2 Thesis Contribution 17

We have used our language to design some non-trivial infrastructure algo-

rithms for mobile agent systems. The language has been used to prototype

a small example application and the design of a suitable communication in-

frastructure for it. The infrastructure design, which required good scalability

and support for disconnected operation, is an interesting problem in its own

right. Our experience of using Nomadic Pict has been positive | the sharp

levels of abstraction have aided the design of algorithms. It was also possible

to include in this thesis an almost complete speci�cation of the algorithms,

expressed as Nomadic Pict encodings.

The Nomadic Pict language allows distributed algorithms to be expressed

precisely and unambiguously, but in a compact and clean way; this enables

a good understanding of the infrastructure algorithms. The language prim-

itives have simple but powerful semantics. The communication primitives

are designed to express easily fundamental concepts of synchronisation and

concurrency in the presence of mobility. A polymorphic type system and the

notion of agents allow simple objects to be expressed. Although we focus

here on distributed infrastructures for location-independent communication

between mobile agents, our language can be used for specifying virtually

any kind of distributed infrastructure (e.g. distributed garbage-collectors for

distributed programming languages).

The work may contribute to future design of speci�c infrastructures, and

also to future industrial languages for distributed programming.

18 Introduction

Chapter 2

Model of Mobile Computation

The purpose of this chapter is to introduce the Nomadic �-calculus, a new

model of mobile computation. The calculus is a formal extension of the

asynchronous �-calculus, also presented in this chapter. The Nomadic �-

calculus is designed to model computations with the use of mobile agents.

The calculus identi�es two levels of abstraction. At a low level there are

location dependent primitives that require a programmer to know the current

site of a mobile agent in order to communicate with it. At a high level there

are location independent primitives that allow communication with a mobile

agent irrespective of its current site and of any migrations. Implementation

of these requires delicate distributed infrastructure. Our calculus serves as a

foundational core for Nomadic Pict language design. We use our language as

a concise and precise notation for specifying the infrastructure algorithms.

In our work we deal with communication aspects of using mobile agents.

By analogy to process communication in distributed operating systems we

can think of two low-level methods of communication between agents: mes-

sage passing, where agents send and receive messages over communication

channels, and the concept of logically shared memory, where agents interact

by means of a �nite collection of shared variables. Shared memory, simu-

lated in distributed systems by message passing, has potential to make it

easier to write distributed applications. Unfortunately, it requires a dis-

tributed infrastructure which does not scale well (in particular if we allow

migration). Therefore, we are primarily concerned with a message passing

method as more fundamental in distributed systems. The message-passing

style of communication can be eÆciently implemented just above IP proto-

cols. Other abstractions at the same level, such as streams which are useful

in many agent applications, can be incorporated into our model by simply

extending the current calculus.

20 Model of Mobile Computation

The message-passing communication of processes and mobile agents can

be best understood in terms of a tiny model capturing the essential features of

communication and synchronisation, but expressive enough to reason about

complex interactions built on top of it. Many di�erent models of sequential

and concurrent computation have been proposed. For example, the lambda-

calculus invented by Church in the 1930s [Chu32, Chu41], has proven to be

a good model of purely functional computation (the programming paradigm

where the only observable properties of an expression are its behaviour when

applied to arguments). Concurrency, distribution, and recently mobility,

have introduced new models of computation, most notably (state-based) au-

tomata models and process calculi (sometimes also called process algebras).

Process calculi denote processes and actions in concurrent systems by

using algebraic expressions and sets of algebraic operators. They are built

around three basic principles [Pie97]: modelling interaction via communica-

tion in terms of message passing rather than shared variables, using a small

set of basic primitives to specify behaviour of the system, deriving useful

algebraic laws for manipulating expressions written using these primitives.

We focus here on one process calculus, the �-calculus of Milner, Parrow, and

Walker [MPW92, Mil91].

In x2.1 we present a very simple version of the �-calculus, describe its

semantics, �rst informally by comparison to message passing in operating

systems, and formally by giving operational semantics. In x2.2 we describe

Nomadic �-calculus | a formal extension of the above. We conclude the

chapter by showing related work.

2.1 Asynchronous �-Calculus

The �-calculus of Milner, Parrow, and Walker [MPW92, Mil91] is a model of

concurrent computation. Below, we present a simple asynchronous, choice-

free version of the calculus (the asynchronous �-calculus was �rst proposed

by Honda and Tokoro [HT91], and Boudol [Bou92]). The �-calculus has two

kinds of entities | concurrent processes and communication channels (identi-

�ed by globally unique names). The calculus allows communication between

concurrent processes by an output and an input (on the same channel) in

parallel. One of its goals is to demonstrate that in some sense it is suÆciently

powerful to allow only names to be the content of communications. Names

have no structure, while the syntax of processes is as follows.

2.1 Asynchronous �-Calculus 21

2.1.1 Syntax

Take an in�nite set N of names of channels, ranged over by x; y, : : : etc.

The process terms are then those de�ned by the grammar in Figure 2.112.

P;Q ::= () nil

P jQ parallel composition of P and Q

x !v output v on channel x

x?p!P input from channel x

x?�p!P replicated input from channel x

new x in P new channel name creation

Figure 2.1: Syntax of the �-Calculus

The term () represents an inactive process, which cannot perform any

action. The form P jQ means that P and Q are concurrently active, and

can also communicate. Intuitively, a process term x !v sends the name v on

channel x. A process term x?w !P waits to receive a name on x, substitutes

w in P by this name after reception, and continues with P . Placing the

restriction operator new x in before a process expression P ensures that x

is a fresh channel in P | i.e. messages sent and received on x will never

be mixed with messages sent on any other channel created elsewhere, even

if that channel would happen to be named x too. In x?w !P the `formal

parameter' w binds in P ; in new x in P the x binds in P . We will work up

to alpha renaming of bound names so as to avoid name clashes (in the same

way as we are allowed to rename formal parameters and their occurrences in

a function de�nition). We write fa=xgP for the process term obtained from

P by replacing all free occurrences of x by a, renaming as necessary to avoid

capture. We assign parallel composition the lowest precedence among the

operators. Substitutions have precedence over the operators of the calculus.

1Here we have adopted the language concrete syntax, instead of a more concise, math-
ematical style usually found in the literature on process calculi.

2An original de�nition of the �-calculus also includes a choice operator +; the expression
P+Q denotes an external choice between P and Q: either P is allowed to proceed and Q is
discarded, or vice versa; we drop the full choice here as it is not very useful for programming
in our language (input-only choice, which seems more useful, can be encoded as a library
module).

22 Model of Mobile Computation

2.1.2 Informal Semantics

We �rst try to describe the semantics of �-calculus communication informally,

using the communication metaphors of message-passing in network architec-

tures. In network architectures and distributed systems (described, e.g. in

[CDK94]), processors share only a communication network. We can think of

a �-calculus channel as an abstraction of a physical communication network.

It provides a communication path between processes, a means for data to be

transferred between them. A process here is a running program in the sense

understood in the �eld of operating systems; it consists of an environment for

execution together with a thread of control. Communication is accomplished

when one process sends a message to a channel and another (concurrent) pro-

cess acquires the message by receiving from the same channel. The message

can only be received after it has been sent (causal ordering).

One of the arguments of a send operation must specify an identi�er de-

noting the message destination address. This identi�er must be known to

any process that wishes to send to this address. In the Internet protocols,

destination identi�ers for messages are speci�ed as the Internet address of

the host computer (as in IP) or a pair of the Internet address and a �xed

port number attached to the host computer on which a receiving process runs

(as in UDP). In the �-calculus, however, there is no notion of physical ma-

chines, channels are linked directly to processes, and channel names are used

for communication addresses. Therefore, perhaps a better intuition would

be provided by distributed operating systems such as Amoeba [MvR92], in

which messages are transmitted directly to processes, or to communication

ports that are attached to processes (a communication port here is one of

several alternative points of entry to the receiving process). Messages are

addressed by specifying port names.

The semantics of �-channels is however di�erent from semantics of com-

munication ports, as shown below. A communication port is a message des-

tination that can have many senders, but has exactly one receiver. In the

�-calculus, many concurrent processes can share the same channel for input,

although only one process will succeed in receiving a message sent by some

other process1. Here v is received on x by either P or Q

x !v j x?u !P j x?w !Q

1Some operating systems provide the ability to send a message to groups of destinations
(either ports or processes) identi�ed by a group identi�er. A message addressed by such
a group identi�er will be received by all group members. There is no similar operation in
the �-calculus.

2.1 Asynchronous �-Calculus 23

There can be many outputs on the same channel competing for the same

input | only one will succeed, introducing nondeterminism. For example

process P can receive either a or b on x

x !a j x !b j x?u !P

If we want to model process P which is always ready to receive a new

message (similar to a process listening on the communication port), we can

use a replicated input

x !a j x !b j x?�u !P

�-calculus names can be dynamically generated and communicated be-

tween processes; every process which has obtained a channel name x can use

it for unrestricted communication (in particular the process can read from

x). This allows modelling of systems with evolving connectivity structures.

Pure port names can only have output capability. Thus, there is no simple

analogy between �-calculus channels and communication ports as described

above.

A port has usually a message queue to store incoming messages. Sending

processes add messages to the queue and the receiver process removes mes-

sages from the queue. The send and receive operations in operating systems

can include synchronisation of the receiving operation with the sending oper-

ation, so that the sending or receiving process is prevented from continuing

until the other process makes an action that frees it (much as semaphore

operations on shared variables). In the asynchronous form of communica-

tion, the sending process is allowed to proceed as soon as the message has

been copied to a local bu�er and the transmission of the message proceeds

in parallel with the sending process. The receive operation can have blocking

or non-blocking variants. In the original �-calculus, the communication is

synchronous | the input and output processes synchronize at every mes-

sage. Here, we only consider a variant with asynchronous communication

and blocking input, where the writer can continue computation after sending

value to a channel, but the reader is always blocked if there is no message

to read. This style seems more practical in distributed systems. The asyn-

chronous version is known to be powerful enough to encode the synchronous

message passing discipline of the �-calculus (see [HT91, Bou92]).

The issue of channel implementation is hidden from the model. The

calculus assumes that channels are global (each process which obtained a

channel name can read messages sent to the channel by any other process)

and unbounded (i.e. they are never full; therefore an output will never be

blocked due to over�lling the channel). There is no guarantee on the order

24 Model of Mobile Computation

of message delivery, much like in connectionless transport protocols, such

as UDP, in which neither the transport nor the network layer is required to

perform any sequencing of data packets. The UDP service does not guarantee

that all messages sent are actually received at the destination, however it

makes its 'best e�ort' to deliver each message. It is a responsibility of higher-

level services to support reliable delivery. In the �-calculus, we assume that

messages are never lost or duplicated1.

Although we have used an analogy to message-passing, we should not,

however, forget that the �-calculus is simply a model of concurrent com-

putation | there is neither the notion of process locations in the calculus,

nor the physical separation between the sender and receiver. Communica-

tion (or computation) is assumed to be error-free; process failures cannot be

expressed in the calculus. However, many other �-calculi (including the No-

madic �-calculus) identify the problem of distribution, and they do it in the

context of network communication. In the Nomadic Pict language, bare �-

calculus, as described here, is used as a means for expressing local concurrent

computation within an agent.

2.1.3 Operational Semantics

The operational semantics of �-calculus expressions and operations on chan-

nels is usually de�ned as a reduction relation, as in the lambda-calculus. We

say that P reduces to Q, written P�!Q, if P contains two parallel subpro-

cesses that can communicate on the same channel to become the correspond-

ing subprocesses of process Q. For example, in the expression x !a j x?u !R,

�rst two subprocesses can communicate, the value a is being sent along the

channel x, reducing the whole expression to () jfa=ugR. We normally drop

inactive processes (). In order to illustrate substitution fa=ugR, let R be

y !u. Then the data value a is substituted for the bound variable u in R as

follows:

x !a j x?u ! y !u �! y !a

A replicated input x?�p!P can be used to construct a server which

after reading a value from x, is ready to accept a new input on x; it loosely

1Nomadic �-calculus (described below) introduces messages which can be misaddressed
and discarded ('lost'), and timed inputs to model situations where the potential sending
process has crashed or the expected message has been lost. A timeout speci�es an interval
of time after which the input operation will give up its action.

2.1 Asynchronous �-Calculus 25

behaves as an arbitrary number of parallel copies of x?p!P :

x !a j x?�u ! y !u �! fa=ug(y !u) j x?�u ! y !u

�! y !a j x?�u ! y !u

More importantly, the replicated input term allows the encoding of in�nite

computations (similarly to the way in which recursion is used for this purpose

in pure functional languages). For example, a process term x?�u !(y !u j x !v)

responds to a message on x by sending the message on y and 'triggering'

another copy of itself by sending another message on x, thus leading to an

in�nite computation (here a continuous stream of v's on y).

(x?�u !(y !u j x !u)) j x !v �! (x?�u !(y !u j x !u)) j y !v j x !v

�! :::

�! (x?�u !(y !u j x !u)) j y !v j ::: j y !v j x !v

The data values sent on channels are just names. In particular, a name

received on a channel can then be used itself as a channel name for output

or input. The strength and subtlety of the calculus comes from the dynamic

character of name scoping. A restricted name can be sent (exported) out-

side its original scope (this is known as scope extrusion). For example, in

the expression (x?y ! y !u) j (new z in (x !z j z?v ! v !a)), we create a new

fresh channel z, which will be exported outside its original scope, and used

for communication. Names x and a are free (the channels have been either

created or imported by some process which our expression is part of). Ini-

tially, the scope of z is limited to the second branch of the parallel, and z

is unknown in the �rst branch. One can then pass z to the �rst branch on

x | outside the scope of the initial new z in binder which must therefore

be moved (with care, to avoid capture of other instances of z), obtaining the

term new z in (z !u j z?v ! v !a). From now on, z can be used as a communi-

cation channel between both branches and our term reduces to new z in u!a

which is structurally equivalent to u!a.

The operational semantics can be de�ned in two steps, by giving a de�ni-

tion of a structural congruence (written �) and the binary reduction relation

�! over process terms. The structural congruence relation formalizes the

intuition that we can always rearrange a reducible process term such as to

enable reduction (we can change the order of parallel compositions, enlarge

the scope of bindings, or garbage-collect null processes and names which will

be no longer used). Rules for our simple �-calculus are grouped in Figure 2.2.

26 Model of Mobile Computation

Structural congruence:

P j 0 � P

P jQ � Q jP
P j(Q jR) � (P jQ) jR

new x in new y in P � new y in new x in P

P jnew x in Q � new x in (P jQ) if x 62 FV(P)

new x in P � P if x 62 FV(P)

Renaming of bound variables

x?w !P � x?v !(fv=wgP) if v 62 FV(P)

new x in P � new y in (fy=xgP) if y 62 FV(P)

Reduction semantics:

c!v j c?w !P �! fv=wgP communication

c!v j c?�w !P �! c?�w !P jfv=wgP communication and replication

P�!Q
P jR�!Q jR

reduction under j

P�!Q
new x in P�!new x in Q

reduction under new ::: in

P � P 0�!Q0 � Q
P�!Q

structural congruence

Figure 2.2: Operational Semantics of the �-Calculus

2.2 Nomadic �-Calculus 27

There is potentially a large set of di�erent variants of the �-calculus pre-

sented here. We mention some of these calculi in the end of this chapter.

There are also a number of extensions which are useful in designing a pro-

gramming language based on process calculi. A natural extension is to allow

tuples of names to be sent (as in polyadic �-calculus), or allow more general

data, e.g. tuples-of-tuples and basic values such as booleans, strings and

natural numbers. Another extension would be to have recursion, e.g. with

process variable X and a recursion operator rec X:P .

Having de�ned a set of basic operators (syntax) and operational seman-

tics, a notion of observational (or behavioural) equivalence and congruence

can be introduced. This makes it possible to reason about the behaviour

of communicating processes in a formal theoretical framework. The formal

framework and proof methods developed within the �-calculus (e.g. based on

bisimulation) are beyond scope of this thesis. A theory of bisimulation for the

�-calculus is described, e.g. in [San96, MPW92]. Honda and Tokoro [HT91],

and Amadio, Castellani, and Sangiorgi [ACS98] present two di�erent notions

of bisimulation for the asynchronous �-calculus. More about �-calculus can

be found in Milner's book [Mil99], see also good introductory texts such as a

chapter of the \Computer Science and Engineering Handbook" [Pie97] and

the tutorials [Mil91, San99, San, Sew].

2.2 Nomadic �-Calculus

We were looking for a calculus which would lay down a foundation for a

distributed programming language, suitable for describing infrastructure al-

gorithms for mobile agent systems. The asynchronous �-calculus described

above provides an abstract model of concurrent computation. The model is

based on a reduced set of concepts which allows expressing the dynamic gen-

eration of names and processes, communication on abstract channels, trans-

mission of channel names between processes, and a static scoping discipline.

However, the calculus does not provide support for modelling distributed pro-

gramming ; we are not able to express in it, e.g. the notion of computer nodes,

allocation of resources to these nodes, process mobility, and system failures.

Therefore, we proposed the Nomadic �-calculus, a calculus which captures

some of these formally, enough to provide a clean and eÆcient strategy for

the programming language design. Most notably, it identi�es two levels of

abstraction suitable for formal reasoning about infrastructure algorithms.

In this section our two levels of abstraction are made precise by giving

two corresponding process calculi, the low- and high-level Nomadic �-calculi.

Their design involves a delicate trade-o� | the distributed infrastructure

28 Model of Mobile Computation

algorithms that we want to express involve non-trivial local computation

within agents, yet for the theory to be tractable (particularly, for opera-

tional congruences to have tractable characterisations) the calculi must be

kept as simple as possible. The primitives for agent creation, agent migra-

tion and inter-agent communication that we consider do not suÆce to allow

the required local computation to be expressed clearly, so we integrate them

with those of the asynchronous �-calculus presented above. The other com-

putational constructs that will be needed, e.g. for �nite maps, can then be

regarded as lightweight syntactic sugar for �-processes. The advantage of se-

lecting the basic model of the �-calculus on which to add additional features

is that we will be able to inherit and state many of the results and proof

methods developed within the �-calculus theory.

The low- and high-level calculi are introduced in x2.2.1 and x2.2.2 re-

spectively. The operational semantics of the calculi are described informally

| the precise reduction semantics will be given in x2.2.3. For simplicity,

the calculi are presented without typing or basic values (such as integers and

booleans). Types and basic values will be introduced in chapter 3, describing

the Nomadic Pict language.

2.2.1 Low-Level Calculus

We begin with an example. Below is a term of the low-level calculus showing

how an applet server can be expressed. It can receive (on the channel named

getApplet) requests for an applet; the requests contain a pair (bound to a

and s) consisting of the name of the requesting agent and the name of its

site.

getApplet?�[a s]!
agent b =

migrate to s ! (ha@siack !b jB)

in

0

When a request is received the server creates an applet agent with a new

name bound to b. This agent immediately migrates to site s. It then sends

an acknowledgement to the requesting agent a (which is assumed to also

be on site s) containing its name. In parallel, the body B of the applet

commences execution.

The example illustrates the main entities represented in the calculus:

sites, agents and channels. Sites should be thought of as abstractions of

physical machines or, more accurately, as instantiations of the Nomadic Pict

runtime system on machines; each site has a unique name. The calculus does

2.2 Nomadic �-Calculus 29

not explicitly address questions of site failure, network failure and recon�g-

uration, or security. Sites are therefore unstructured; neither network topol-

ogy nor administrative domains are represented in the formalism. Agents

are units of executing code; an agent has a unique name and a body con-

sisting of some process term; at any moment it is located at a particular

site. Channels support communication within agents, and also provide tar-

gets for inter-agent communication|an inter-agent message will be sent to a

particular channel within the destination agent. Channels also have unique

names.

The inter-agent message ha@siack !b is characteristic of the low-level cal-

culus. It is location-dependent|if agent a is in fact on site s then the

message b will be delivered, to channel ack in a; otherwise the message will

be discarded. In an implementation at most one inter-site message is sent.

Names As in the �-calculus, names play a key rôle. We take an in�nite set

N of names, ranged over by a; b; c; d; e; f; s; x and y. Formally, all names are

treated identically; informally, a and b will be used for agent names, c; d; e; f

for channel names, and s for a site name. (A type system of the language

will allow these distinctions to be enforced.) The calculus allows new names

(of agents and channels) to be created dynamically.

Names are pure, in the sense of Needham [Nee89]; no information about

their creation is visible within the calculus and language (in our current im-

plementation they do contain site IDs, but could equally well be implemented

by any mechanism that allows globally-unique bit strings to be created lo-

cally, e.g. by choosing large random numbers).

Values We allow the communication of �rst-order values, consisting of

names and tuples.

u; v ::= x name

[v1 :: vn] tuple (n � 0)

Patterns As in the �-calculus, values are deconstructed by pattern match-

ing on input. Patterns have the same form as values, with the addition of a

wildcard.

p ::= wildcard

x name pattern
[p1 :: pn] tuple pattern (n � 0, no repeated names)

30 Model of Mobile Computation

Process terms The main syntactic category is that of process terms,

ranged over by P;Q. We will introduce the low-level primitives in groups.

agent a = P in Q agent creation

migrate to s !P agent migration

The execution of the construct agent a = P in Q spawns a new agent on

the current site, with body P . After the creation, Q commences execution,

in parallel with the rest of the body of the spawning agent. The new agent

has a unique name which may be referred to both in its body and in the

spawning agent (i.e. a is binding in P and Q). Agents can migrate to named

sites | the execution of migrate to s !P as part of an agent results in the

whole agent migrating to site s. After the migration, P commences execution

in parallel with the rest of the body of the agent.

P jQ parallel composition

0 nil

The body of an agent may consist of many process terms in parallel, i.e.

essentially of many lightweight threads. They will interact only by message

passing.

new c in P new channel name creation

c!v output v on channel c in the current agent

c?p !P input from channel c

c?�p !P replicated input from channel c

if u = v then P else Q value equality testing

To express computation within an agent, while keeping a lightweight imple-

mentation and semantics, we include �-calculus-style interaction primitives

described in 2.1. Execution of new c in P creates a new unique channel

name; c is binding in P . An output c!v (of value v on channel c) and an

input c?p !P in the same agent may synchronise, resulting in P with the

names in the pattern p replaced by corresponding parts of v (the output

is asynchronous | note that we do not have c!p !Q in the syntax). A

replicated input c?�p !P behaves similarly except that it persists after the

synchronisation, and so may receive another value. In both c?p!P and

c?�p!P the names in p are binding in P . The conditional allows any two

values to be tested for equality.

wait c?p!P ; n !Q input with timeout

For implementing infrastructures that are robust under some level of failure,

or support disconnected operation, some timed primitive is required. The

2.2 Nomadic �-Calculus 31

low-level calculus includes a single timed input as above, with timeout value

n. If a message on channel c is received within n seconds then P will be

started as in a normal input, otherwise Q will be. The timing is approximate,

as the runtime system may introduce some delays.

i
ocal haic!v !P else Q test-and-send to agent a on current site

Finally, the low-level calculus includes a single primitive for interaction be-

tween agents. The execution of i
ocal haic!v !P else Q in the body of an

agent b has two possible outcomes. If agent a is on the same site as b, then

the message c!v will be delivered to a (where it may later interact with an

input) and P will commence execution in parallel with the rest of the body

of b; otherwise the message will be discarded, and Q will execute as part of b.

The construct is analogous to test-and-set operations in shared memory sys-

tems | delivering the message and starting P , or discarding it and starting

Q, atomically. It can greatly simplify algorithms that involve communication

with agents that may migrate away at any time, yet it is still implementable

locally, by the runtime system on each site.

Syntactic sugar Empty tuples and tuple patterns will generally

be elided, writing c! and c?!P for c![] and c?[]!P . Multi-

ple new channel bindings will be coalesced, writing new c; c 0 in P for

new c in new c 0 in P . Let-declarations will be used, writing let p = v in P

for new c in (c!v j c?p !P) (where c is a name not occurring free in v or

P).

Scope extrusion Channel names are �rst-class values and they can be

freely sent to processes which are located at other agents. As in the �-

calculus, names can be scope-extruded | here channel and agent names can

be sent outside the agent in which they were created. For example, if the

body of agent a is

agent b =

new d in

i
ocal haic!d ! 0 else 0

in

c?x ! x !

then channel name d is created in agent b. After the output message c!d has

been sent from b to a (by i
ocal) and has interacted with the input c?x ! x !

there will be an output d ! in agent a.

32 Model of Mobile Computation

We require a clear relationship between the semantics of the low-level

calculus and the inter-machine messages that are sent in the implementation.

To achieve this we allow direct communication between outputs and inputs

on a channel only if they are in the same agent | messages can be sent

from one agent to another only by i
ocal. Intuitively, there is a distinct

�-calculus-style channel for each channel name in every agent. For example,

if the body of agent a is

agent b =

new d in

d?! 0

j i
ocal haic!d ! 0 else 0

in

c?x ! x !

then after some reduction steps a contains an output on d and b contains an

input on d, but these cannot react. At �rst sight this semantics may seem

counter-intuitive, but it reconciles the con
icting requirements of expressive-

ness and simplicity of the calculus. An implementation creates the mailbox

datastructure | a queue of pending outputs or inputs | required to imple-

ment a channel as required; it could be garbage collected when empty. The

queue is part of an agent's state which is transferred with every move of the

agent.

Communication of names between agents preserves locality of channels.

For example, if the body of agent a is

agent b =

new d in

(d?! 0

j i
ocal haic!d ! 0 else 0)

j e?y ! y !

in

c?x ! i
ocal hbie!x ! 0 else 0

then after some reduction steps agent b contains both an input and an output

on d which can synchronise according to the scope extrusion rule of the �-

calculus, as follows. In the second line, we create a fresh channel name d; the

name is bound in the process put in brackets. A message c!d is sent to agent

a (by i
ocal) where it can interact with the input on c. After agent a has

obtained d from agent b, the name d is exported back to agent b, received on e

(outside the original scope of d), and used for communication with the input

following new d in . A sample execution is below (a grey arrow illustrates

2.2 Nomadic �-Calculus 33

communication inside agent b).

a b b

�
�
�
�

�
�

�
��9

c!d

X
X
X
X
X
X
X
XXz

e!d

X
X
X
X
X
X
X
XXz

d !

Syntax Summarizing, the terms of the low-level calculus are presented in

Figure 2.3. Note that the only primitive which involves network commu-

P;Q ::=

agent a = P in Q agent creation

migrate to s !P agent migration

P jQ parallel composition

0 nil

new c in P new channel name creation

c!v output v on channel c in the

current agent

c?p!P input from channel c

c?�p!P replicated input from channel c

wait c?p !P ; n !Q input with timeout

if u = v then P else Q value equality testing

i
ocal haic!v !P else Q test-and-send to agent a on

current site

Figure 2.3: Syntax of the Low-Level Nomadic �-Calculus

nication is migrate, which requires at most one (reliable) message to be

sent, asynchronously, between machines. Distributed implementation of the

low-level calculus is therefore straightforward, requiring no non-trivial dis-

tributed algorithms. It could be done either above a reliable datagram layer

or above TCP, using a lightweight layer that opens and closes streams as re-

quired. In the current implementation of Nomadic Pict we build upon TCP

connections.

34 Model of Mobile Computation

Two other useful forms of location-dependent output are expressible in

the calculus given.

haic!v output to agent a on the current site
ha@sic!v output to agent a on site s

The execution of an output haic!v in the body of an agent b will either deliver

the message c!v to agent a, if agent b is on the same site as a, or will silently

discard the message, if not. The execution of an output ha@sic!v in the body

of an agent will either deliver the message c!v to agent a, if agent a is on site

s, or will silently discard the message, if not. We regard these as syntactic

sugar for

i
ocal haic!v ! 0 else 0

and

agent b = (migrate to s !(i
ocal haic!v ! 0 else 0)) in 0

(where b is fresh) respectively. Since the primitives fail silently if a is not

where expected, they are usually used only where a's location is predictable.

In an implementation, the �rst is implementable locally; the second requires

only one asynchronous network message. Note that one could optimize the

case in which the second is used on site s itself by trying i
ocal �rst:

i
ocal haic!v !
0

else

agent b = (migrate to s !(i
ocal haic!v ! 0 else 0)) in 0

2.2.2 High-Level Calculus

The high-level calculus is obtained by extending the low-level calculus with

a single location-independent communication primitive:

ha@?ic!v location-independent output to agent a

The intended semantics of an output ha@?ic!v is that its execution will reli-

ably deliver the message c!v to agent a, irrespective of the current site of a

and of any migrations.

2.2 Nomadic �-Calculus 35

2.2.3 Reduction Semantics

The informal descriptions of the primitives in x2.2.1, 2.2.2 can be made pre-

cise by giving them an operational semantics. We adopt a reduction se-

mantics, de�ning the atomic state-changes that a system of agents can un-

dergo by reduction axioms with a structural congruence, following the style

of [BB92, Mil92].

The process terms of the calculi in x2.2.1,2.2.2 only allow the source

code of the body of a single agent to be expressed. During computation,

this agent may evolve into a system of many agents, distributed over many

sites. The reduction relation must be between the possible states of these

systems, not simply between terms of the source calculi; we express such

states as con�gurations �; P . Here � is a location context that gives the

current site of any free agent names; P is a term of the (low- or high-level)

calculus extended with two new forms.

@a P P as part of agent a

new a@s in P new agent name a, currently at site s

waitt c?p !P ; Q input with timeout at t (UTC)

Con�gurations may involve many agents in parallel. The form @a P denotes

the process term P as part of the body of agent a, so for example @a P j@b Q

denotes P as part of the body of a in parallel with Q as part of the body

of b. It will be convenient to allow the parts of the body of an agent to be

syntactically separated, so e.g. @a P1 j@b Q j@a P2 denotes P1 jP2 as part of

a in parallel with Q as part of b. Con�gurations must record the current sites

of all agents. For free agent names this is done by the location context �; for

the others, the form new a@s in P declares a new agent name a, which is

binding in P , and records that agent a is currently at site s.

We now give the detailed de�nitions. Process terms are taken up to

alpha-conversion throughout. Structural congruence � includes the axiom

@a (P jQ) � @a P j@a Q

allowing the parts of an agent a to be syntactically separated or brought

together, and the axiom

@a new c in P � new c in @a P if c 6= a

allowing channel binders to be extruded past @a . It is otherwise similar

to a standard structural congruence for an asynchronous �-calculus, with

36 Model of Mobile Computation

scope extrusion both for the new channel binder new c in P and for the new

agent binder new a@s in P . In full, it is the least congruence satisfying the

following axioms.

P � P j 0
P jQ � Q jP

P j(Q jR) � (P jQ) jR
P jnew c in Q � new c in P jQ if c not free in P

P jnew a@s in Q � new a@s in P jQ if a not free in P

@a (P jQ) � @a P j@a Q

@a new c in P � new c in @a P if c 6= a

A con�guration is a pair �; P , where the location context � is a �nite

partial function from N to N , intuitively giving the current site of any free

agent names in P , and P is a term of the (low- or high-level) extended

calculus. The initial con�guration, for a program P of the (low- or high-level)

unextended calculus, to be considered as the body of an agent a created on

site s, is:

fa 7! sg; @a P

We are concerned only with con�gurations that can arise by reduction of

initial con�gurations for well-typed programs. In these, any particle (i.e.,

agent, migrate, output, input, if , or i
ocal) will be under exactly one @

operator, specifying the agent that contains it. (In this presentation of the

Nomadic �-calculus we do not give a type system, and so leave this informal.)

Other con�gurations have mathematically well-de�ned reductions but may

not be easily implementable or desirable, for example

�; @a (c?b !@b P)

receives an agent name and then adds P to the body of that agent.

We de�ne a partial function match, taking a value and a pattern and

giving (where it is de�ned) a �nite substitution from names to values.

match(v;) = fg

match(v; x) = fx 7! vg

match([v1 :: vm]; [p1 :: pm]) = match(v1; p1) [: : : [match(vm; pm)

match(v; [p1 :: pm]) unde�ned, if v is not of the form [v1 :: vm]

The natural de�nition of the application of a substitution from names to

values to a process term P is also a partial operation, as the syntax does

2.2 Nomadic �-Calculus 37

not allow arbitrary values in all the places where free names can occur. We

write fv=pgP for the result of applying the substitution match(v; p) to P .

This may be unde�ned either because match(v; p) is unde�ned, or because

match(v; p) is a substitution but the application of that substitution to P is

unde�ned.

The reduction axioms for the low-level calculus are as follows.

�;@a agent b = P in Q �! �;new b@�(a) in (@b P j@a Q)

�;@a migrate to s !P �! (�� a 7! s);@a P

�;@a i
ocal hbic!v !P else Q �! �;@b c!v j@a P if �(a) = �(b)

�! �;@a Q if �(a) 6= �(b)

�;@a (c!v jc?p!P) �! �;@a fv=pgP
�;@a (c!v jc?�p!P) �! �;@a (fv=pgP jc?�p !P)

�;@a if u = v then P else Q �! �;@a P if u = v

�! �;@a Q if u 6= v

To express the reduction axioms for an input with timeout, we need to write

the con�guration as a triple �; t; P , where t is the global time UTC (Coor-

dinated Universal Time). The reduction axioms below are to illustrate the

language implementation issues | they do not currently form part of the No-

madic �-calculus operational semantics which is used for reasoning formally

within our model, e.g. in [Uny]. Thus, we can drop t in all other contexts.

�; t;@a wait c?p !P ; n !Q �! �; t + 1;@a waitt+n c?p !P ; Q

�; t;@a waitt0 c?p !P ; Q �! �; t + 1;@a Q if t � t0

�; t;@a (c!v jwaitt0 c?p !P ; Q) �! �; t + 1;@a fv=pgP

The rules mentioning potentially-unde�ned expressions �(x) or fv=pgP in

their side-condition or conclusion have an implicit additional premise that

these are de�ned. Such premises should be automatically satis�ed in deriva-

tions of reductions of well-typed programs.

Note that the only inter-site communication in an implementation will

be for the migrate reduction, in which the body of the migrating agent a

must be sent from its current site to site s.

The high-level calculus has the additional axiom below, for delivering

location-independent messages to their destination agent.

�;@a hb@?ic!v �! �;@b c!v

38 Model of Mobile Computation

Structural congruence:

P � P j 0

P jQ � Q jP

P j(Q jR) � (P jQ) jR

P jnew c in Q � new c in P jQ if c not free in P

P jnew a@s in Q � new a@s in P jQ if a not free in P

@a (P jQ) � @a P j@a Q

@a new c in P � new c in @a P if c 6= a

Reduction semantics:

�;@a agent b = P in Q �! �;new b@�(a) in (@b P j@a Q)

�;@a migrate to s!P �! (�� a 7! s);@a P

�;@a i
ocal hbic!v!P else Q �! �;@b c!v j@a P if �(a) = �(b)

�! �;@a Q if �(a) 6= �(b)

�;@a (c!v jc?p!P) �! �;@a fv=pgP

�;@a (c!v jc?�p!P) �! �;@a (fv=pgP jc?�p!P)

�;@a hb@?ic!v �! �;@b c!v

�;@a if u = v then P else Q �! �;@a P if u = v

�! �;@a Q if u 6= v

�; t;@a wait c?p!P ; n!Q �! �; t+ 1;@a waitt+n c?p!P ; Q

�; t;@a waitt0 c?p!P ; Q �! �; t+ 1;@a Q if t � t0

�; t;@a (c!v jwaitt0 c?p!P ; Q) �! �; t+ 1;@a fv=pgP

Q � P �; t; P�!�
0; t0; P 0 P 0 � Q0

�; t; Q�!�
0; t0; Q0

�; t; P�!�
0; t0; P 0

�; t; P jQ�!�
0; t0; P 0 jQ

(�; a 7! s); t; P�!(�
0; a 7! s0

); t0; P 0

�; t;new a@s in P�!�
0; t0;new a@s

0 in P 0

�; t; P�!�
0; t0; P 0 c 62 dom(�)

�; t;new c in P�!�
0; t0;new c in P 0

Figure 2.4: Operational Semantics of the Nomadic �-Calculus

2.3 Related Models 39

Reduction is closed under structural congruence, parallel, new c in and

new a@s in , as speci�ed by the rules below.

Q � P �; t; P�!�0; t0; P 0 P 0 � Q0

�; t; Q�!�0; t0; Q0

�; t; P�!�0; t0; P 0

�; t; P jQ�!�0; t0; P 0 jQ

(�; a 7! s); t; P�!(�0; a 7! s0); t0; P 0

�; t;new a@s in P�!�0; t0;new a@s 0 in P 0

�; t; P�!�0; t0; P 0 c 62 dom(�)
�; t;new c in P�!�0; t0;new c in P 0

All rules for the Nomadic �-calculus are grouped in Figure 2.4.

2.3 Related Models

Many di�erent models of concurrent computation have been proposed in

the literature. They can be roughly classi�ed into two groups: automata

models and process calculi. Below we brie
y characterise a few process calculi

which are related to our work. A more elaborated analysis of two example

calculi will appear in the next chapter, where we discuss the design choices in

concurrent programming languages which are based on mobile process calculi.

In this section, we focus on the automata models and describe two of them:

I/O automata, which assume input/output-style of communication between

concurrent processes, and Mobile UNITY, which extends the shared-memory

model of UNITY with abstractions designed to study loosely-coupled and

mobile systems. We also describe two implementations, IOA and LIME,

which are formally based on these models.

We also attempt to discuss and compare some of the automata and �-

calculi features (the comparison, however, should be seen as a rough approx-

imation only, since the two automata models and process calculi represent

di�erent philosophy).

2.3.1 Related Calculi

In recent years a number of process calculi have been introduced in order

to study some aspect of distributed and mobile agent computation. They

include:

� The �l calculus of Amadio and Prasad [AP94], for modelling the failure

semantics of Facile [TLK96] (see also discussion in x3.3.1).

� The Distributed Join Calculus of Fournet et al. [FGL+96], intended as

the basis for a mobile agent language (see also discussion in x3.3.2).

40 Model of Mobile Computation

� The language of located processes and the D� calculus of Riely and

Hennessy, used to study the semantics of failure [RH97, RH98] and

typing for control of resource use by mobile agents [HR98b, HR98a].

� The calculus of Sekiguchi and Yonezawa [SY97], used to study various

primitives for code and data movement.

� The dpi calculus of Sewell [Sew97a, Sew98], used to study a subtyping

system for locality enforcement of capabilities.

� The Ambient calculus of Cardelli and Gordon [CG98], used for mod-

elling security domains.

� The Seal calculus of Vitek and Castagna [VC98, VC99], focusing on

protection mechanisms including revocable capabilities.

There is a large design space of such calculi, with very di�erent primitives

being appropriate for di�erent purposes, and with many semantic choices. A

thorough comparison and discussion of the design space is beyond the scope

of this dissertation | a brief discussion can be found in [Sew]; here we

highlight only some of the main design choices:

Hierarchy We have adopted a two-level hierarchy, of agents located on

sites. One might consider tree-structured mobile agents with migration of

subtrees, e.g. as in [FGL+96]. The added expressiveness may be desirable

from the programmer's point of view, but it requires somewhat more com-

plex infrastructure algorithms | migrations of an agent can be caused by

migrations of their parents | so we neglect it in the �rst instance.

Unique Naming The calculi of x2.2 ensure that agents have unique names,

in contrast, for example, to the Ambients of [CG98]. Inter-agent messages

are therefore guaranteed to have a unique destination.

Communication In our preliminary work [SWP98] the inter-agent com-

munication primitives were separated from the channel primitives used for

local computation. The inter-agent primitives were

ha@?i!v location-independent output of v to agent a
ha@si!v location-dependent output

?p!P input at the current agent

2.3 Related Models 41

These give a conceptually simpler model, with messages sent to agents rather

than to channels at agents, but to allow infrastructure encodings to be ex-

pressed it was necessary to add variants and local channels. This led to a

rather large calculus and somewhat awkward encodings.

2.3.2 I/O Automata

The input/output (I/O) automaton model [LT87, LT89] is a simple type of

state machine, designed to model reactive programs interacting with their

environments. Originally developed for specifying and verifying theoretical

distributed algorithms, I/O automata have also been applied to practical

communication services like TCP, distributed shared memory, and group

communication (see [GL98] for many references).

An I/O automaton consists of a set of actions, a set of states (including

a nonempty subset of start states), a set of transitions, and a set of tasks.

The actions are classi�ed as either input, output, or internal. The inputs

and outputs are used for communication with the automaton's environment,

while the internal actions are visible only by the automaton itself. Transitions

are triples (s; a; s0), of adjacent states s and s0 and action a which caused

the change of states. Tasks are sets of non-input actions. A composition

operation is de�ned by which I/O automata can be combined to form a larger

automaton representing a concurrent system. Concurrent reactive programs

are described by I/O automata that compose by synchronising an input with

an output action. The hiding operator is used to reclassify output actions as

internal so they cannot be used in further compositions.

For example, an asynchronous network architecture can be modelled as a

composition of processes and communication channels. A process i is mod-

elled as an I/O automaton which has output actions of the form send(m)i;j ,

where j is an outgoing neighbour of i and m is a message, and inputs of

the form receive(m)j;i, where j is an incoming neighbour of i. The commu-

nication channels are also modelled as automata, allowing the speci�cation

of various types of channel, e.g. reliable FIFO, reliable reordering channels,

channels with failures, etc. The channel automata interact with process au-

tomata by send(m)i;j and receive(m)j;i actions. For brevity, we omit here

speci�cation of actions for processes and channels.

The operation of an I/O automaton is described by its executions, which

are alternating sequences of states and actions. As their notion of external

behaviour, they use simple linear traces of executions, which are sequences of

input and output actions. I/O automata admit a notion of implementation

based on inclusion of sets of traces. Some properties to be proved about I/O

automata are formulated as properties of their (fair) traces. Two important

42 Model of Mobile Computation

special types of trace property are safety and liveness properties.

Proofs for I/O automata typically involve compositional methods for rea-

soning about collections of interacting components, forward and backward

simulation relations for proving that one automaton implements another,

and invariant assertions for proving that a particular property is true in

all reachable states. A forward simulation [LV94] from automaton A to au-

tomaton B is a relation R between states of A and states of B that satis�es

two conditions: (1) each start state of A is R-related to some start state of

B, and (2) for each step (sA; a; s
0
A) of A and each state sB of B such that

(sA; sB) 2 R, there exists an execution fragment (i.e., a sequence of steps)

of B that \corresponds" to the step in a particular way. Namely, it has the

same trace and leads to a state s0
B with (s0

A; s
0
B) 2 R.

IOA Language IOA [GL] is a formal language for de�ning and stating

properties of I/O automata. Together with a design for a coordinated suite

of tools, it allows the validation of distributed algorithms expressed as IOA

programs, and | in a �nal stage | enables programs to be translated auto-

matically into the source code of an existing programming language, thereby

eliminating the need for a �nal coding step.

The language evolved from pseudo-languages used for describing dis-

tributed algorithms that are based on guarded commands, i.e. named, pa-

rameterized transition de�nitions containing preconditions and e�ects. An

e�ect can be described either operationally by simple imperative programs,

or assertionally in a form of a predicate relating pre- and post-states. In

moving from pseudocode to a formally de�ned programming language, the

authors of IOA have made several design choices. For example, data types

are de�ned axiomatically, in the style used by LP (Larch Prover) [GG91]

and other theorem provers. This provides a sound semantics and facilitates

translation into the theorem prover input language. The programmer can

also de�ne new types using Larch. The IOA toolset supports a variety of an-

alytic tools which range from light-weight validation, formal proof, to Java

code generation for producing distributed implementations of the algorithms.

All the tools are based formally on I/O automata.

At the moment, the language is not very expressive. In [GL98], it is

postulated that in order to avoid complicating the semantics of IOA, any

additional programming features should be made as syntactic sugar (i.e.

there should be an unambiguous translation of the code with the additions

into code without them). In [GL], Garland and Lynch discuss a number of

potential extensions to IOA. It is not clear, however, how to formally de�ne

all such extensions (e.g. a module system). Currently, the language lacks

2.3 Related Models 43

local naming conventions. For example, all action names in a composition

are global. Also, all of an automaton's state variables are global to all of

its transition de�nitions. The current version of IOA does not have explicit

structures for specifying action order | however it is likely that such support

will be introduced in future[GL].

2.3.3 Mobile UNITY

A number of other concurrency models have been proposed, which are based

on di�erent types of automata than presented above, with a di�erent notion

of composition and external behaviour. Here we discuss Chandy and Misra's

UNITY model [CM88] which is based on automata that combine via shared

variables instead of shared actions. Rather than dealing directly with execu-

tion sequences, the formal semantics of UNITY are given in terms of program

properties that can be proven from the text. Mobile UNITY [RMP97] is an

extension of the UNITY notation and logic with concepts designed to deal

with mobility. The model has been proposed to study problems such as:

decoupling, context dependencies, and location transparency in systems with

mobility. For example, it has been used in an exercise involving the speci�-

cation and veri�cation of Mobile IP [MR97], and in modelling various forms

of program mobility [PRM97].

A UNITY program consists of three sections, called: declare,

initially, and assign. The �rst two de�ne variable types and the initial

program conditions (such as the initial values of data structures), the last

section consists of a set of assignment statements. The types include also

abstract types, such as sets and queues. The assignment statements execute

atomically, and are selected for execution with an interleaving semantics in

a weakly fair manner | in an in�nite computation each statement is sched-

uled for execution in�nitely often. A larger system can be composed from

programs, by using either a simple union operator, or superposition. For ex-

ample, if we have two programs A and B, we can use the union operator [] to

construct a new system (denoted as A [] B), which consists of the following:

the union of all program variables (in such a way that variables with the

same name refer to the same physical memory), the union of all assignment

statements (interleaved for execution in a fair manner), and the intersection

of initial conditions. Communication between programs A and B will take

place via shared variables. Note, however, that reading and writing is not

synchronised | it is a fair interleaving execution, but not \in lock step".

Thus, some values, e.g. written by A, may not be read by B, or B may read

the same value many times. Another way to compose systems is through the

use of superposition, which combines di�erent components by synchronising

44 Model of Mobile Computation

statements rather than sharing variables. For example, we can superimpose

new statements and variables of B on an underlying program A, such that

the new statements do not assign to any of the original variables of A, and

each of the new statements is synchronised with some statement of A. This

kind of composition helps in building layered systems, where the underlying

layers are not aware of the higher layers.

In Mobile UNITY, a system consists of programs declared as in UNITY,

and two additional sections: components, where program declarations are in-

stantiated (i.e. free parameters of programs are bound by the instantiation),

and interactions, which de�nes transient interactions among program in-

stances. Mobile UNITY captures dynamic recon�guration and disconnection

of system components. Essentially, components are capable of continuing op-

eration whilst disconnected. Components are located ; a prede�ned location

variable (say �), initialised in the components section, will store the current

location of a program and can be freely used in assignment statements. The

type of this variable will depend on the application (e.g. location of a mobile

computer and location of a software agent are of di�erent type). The model

assumes isolation of namespaces of individual components. It assumes that

variables associated with distinct components are distinct even if they bear

the same name. Therefore, to fully specify a variable in a global scope, its

name should be pre�xed with the name of the component in which it appears

(e.g. A:x, or A:�).

Interactions among components can be expressed in three possible ways,

by using: extra statements, reactions, and inhibitions. The simplest is to

use an extra assignment statement, which involves variables of di�erent

components and is accompanied by a predicate, following when, treated

as a guard on the statement. For example, an assignment statement

receiver:x := sender:x when sender:� = receiver:� would be executed only

if components sender and receiver are co-located (the precise meaning of \at

the same location" depends on semantics of the location variable �). Since

the execution of this statement is interleaved with other statements in a fair

but arbitrary order, we do not have much control on whether the assignment

will succeed or not while the location predicate is true. Therefore, the key

new concept is a reactive statement, which allows for speci�cation of location-

and context-dependent side e�ects. It can be used, e.g. to detect and prop-

agate changes between components. For example, we can use the following

reactive statement receiver:x := sender:x reacts�to sender:� = receiver:�,

to guarantee that each and every value written to sender:x will also appear

at receiver:x whenever the predicate following reacts�to is true. The set of

reactive statements continues to execute until no statement would have an

e�ect if executed.

2.3 Related Models 45

Other programming constructs include inhibitions and transactions. The

inhibitor provides a mechanism for constraining the scheduler when execution

of some statement would be undesirable in a certain global context. The

e�ect of inhibit s when p is a strengthening of the guard on statement s by

conjoining it with :p and thus inhibiting execution of the statement when p

is true. Normally, the components in Mobile UNITY execute asynchronously.

If necessary, one can de�ne a transient synchronisation construct, which is

a mechanism for synchronising pairs of statements when their components

are co-located. The inhibit clauses can further be used to prohibit the

statements from executing independently when the components are not co-

located. The transaction provides a form of sequential execution. A sequence

of assignment statements forming a transaction must be scheduled in the

speci�ed order with no other nonreactive statements interleaved in between.

The UNITY and Mobile UNITY languages support statement and proof

of program properties (such as safety and liveness), using temporal logic

reasoning. Proofs of program simple properties involve a universal quanti�-

cation over the set of assignment statements; proofs of more complicated

progress properties are carried out inductively to show that the program

moves through a whole sequence of steps in order to achieve some goal.

The low-level primitives of Mobile UNITY presented above have been

used to formally express high-level language abstractions for communication

between mobile components by transient state sharing [MR98]. Based on a

paradigm of shared memory, the transient sharing constructs for read-only,

read-write, engagement and disengagement operations provide a mechanism

for expressing highly decoupled and context-dependent systems. For exam-

ple, they consider a queue of documents to be output on a printer. A laptop

computer paired with the printer via some wireless communication medium

can occasionally disconnect from the network (and so from the printer), and

connect again, so it has to maintain a local cache of this queue. Each time

the laptop re-connects, the state of the queue must be properly reconciled:

updates to the queue are atomically propagated, expressed as a transient

sharing of the queue. Operationally, both the laptop and printer maintain

two variables: a variable representing a local view of the queue, and a his-

tory variable, introduced for detecting changes, so that only new values are

propagated. The history variable models the previous state of the queue

seen at the counterpart. The propagation of changes is expressed by guarded

reactive statements which assign new values to variables and history vari-

ables. Additional statements are required to specify reintegration policies,

which indicate what values the queue variables should take on disconnection

(disengage) and when the connectivity is re-established (engage).

46 Model of Mobile Computation

LIME In [PMR99], Picco et al. describe LIME (Linda in a Mobile Envi-

ronment), a system designed to assist in the rapid development of dependable

mobile applications over wired and ad hoc networks. The authors intend to

describe the formal semantics of LIME using Mobile UNITY. In LIME, all

location-independent communication between mobile agents (that can reside

on mobile hosts) take place via transiently shared tuple spaces distributed

across the host machines. At the application level, agents and hosts perceive

movements as a sudden change of context. The set of tuples which are acces-

sible by agents residing on a given host is altered transparently in response to

the changes in the connectivity among mobile hosts. A prototype of LIME,

built upon IBM's TSpaces, is under development [PMR99].

2.3.4 Brief Comparison

Below, we brie
y compare I/O automata and process calculi. A similar

comparison of Mobile UNITY and process calculi is diÆcult since the models

are based on di�erent philosophy. Instead, we brie
y discuss some arbitrarily

selected issues (namely modularity and expressing mobility) in the context

of di�erent models.

I/O automata and process calculi There arguably exist some similari-

ties between process calculi and automata models. Both models use a notion

of composition based on synchronising external actions. In the �-calculus,

the parallel operator composes processes which may synchronise (communi-

cate) if they share the same �-channels. A process expression beginning with

an input or an output may, in general, be part of several redexes that are

ready to be evaluated by a reduction step. According to the process expres-

sion chosen, reductions may yield di�erent results. Synchronising external

actions of I/O automata may also exhibit non-determinism, yielding many

meaningful executions. This models the intrinsic behaviour of real concur-

rent programs; they may often yield di�erent results depending on the order

in which various internal events occur. The basic intuition is that executions

(or traces) have a similar meaning to the chains of labelled transitions in

process calculi. The I/O automaton may have some input and output ac-

tions de�ned by which it can communicate with an external user; this allows

problems to be expressed in terms of traces at the \user interface". In the

case of process calculi, we can de�ne observational congruence, understood

as some (presumably rather coarse) congruence that is clearly induced by

top-level real-world observations.

2.3 Related Models 47

However, process calculi have a very di�erent style and syntax from I/O

automata: they denote concurrent processes by algebraic expressions, and

actions by a small set of algebraic operators. The syntax and computable

operational semantics are formally de�ned. This helps in designing program-

ming languages based on the model. The way of describing action code in I/O

automata is not part of the model. Commonly natural language is used to

describe states and transitions, supported by arbitrary mathematical objects,

or, more recently the IOA language. However, one of the most important

di�erences between process calculi and automata models is that in process

calculi the state is implicit in the process term that one has reduced to. In

I/O automata a set of states is explicit, initialised in action encodings and

given in transitions which are triples of state, action, and state.

The authors of I/O automata introduce a notion of fairness, which spec-

i�es that all the system components (automata) get fair turns to perform

steps. It rules out the possibility that some components are permanently

denied turns to take steps. There is little work on formalising fairness rules

for the �-calculus, but Costa and Stirling's work on fairness for CCS [CS87]

seems likely to generalise to the case of �-calculus ([PT97a], section 2.9).

The source of problems which, at the moment, make it diÆcult to de�ne a

complete theory of fair �-calculus is that, although it is not hard to de�ne fair

reductions, other semantics, e.g. \fair bisimulation", gets quite complicated.

In practice, however, one can (with abstract machines, which are equipped

with some operational semantics) describe the behaviour of particular sched-

ulers, some of which enforce some fairness (see, e.g. the abstract machine of

Pict [Tur96]).

In the �-calculi, proofs typically use bisimulation techniques. We say

that two process expressions P and Q are bisimilar if every action of one

can be matched by a corresponding action of the other to reach a bisimilar

state. In practice, so-called weak bisimulation is often more useful, which re-

laxes the demand that the processes simulate each other's behaviour \in lock

step" and instead regards arbitrarily many steps of internal communication

as equivalent to a single step. It is similar to the forward simulation relation

described in the I/O automata section.

Expressing Mobility Mobile UNITY has been proposed to model dy-

namically recon�guring distributed systems, and attempts to address design

issues raised by mobile computing. I/O automata, because of the essentially

static structure of computation which can be expressed, are not very suitable

for addressing these problems. An original concern of the �-calculus was to

study systems with evolving connectivity structure, by enabling names of

48 Model of Mobile Computation

communication channels to be freely communicated along channels. This

departs from the static nature of the �-calculus' direct predecessors: CSP

[Hoa78a] and CCS [Mil89]. Nevertheless, the calculus does not have the no-

tion of physical mobility. However, many extensions of the �-calculus have

been introduced in order to study some aspect of mobile agent computation

(e.g. our calculus and the calculi described earlier in this section).

Modularity In the �-calculus, there is no simple way of grouping processes

into named components, and so expressing boundaries between components

(required, e.g. to model �rewalls). Therefore, network architecture, which

can easily be expressed in I/O automata by de�ning two classes of com-

ponents (see 2.3.2) would have to be modelled by a set of plain �-processes

which compose in the standard way using the parallel operator. On the other

hand, the Mobile UNITY language allows a system to be declared as a col-

lection of decoupled and mobile components which interact asynchronously.

However, there are also calculi which have some forms of modularity, e.g. the

Ambient calculus[CG98] used for modelling security domains. An ambient

is a named cluster of processes and subambients, which moves as a group.

Ambients can model a variety of concepts such as network nodes, packets,

channels, and software agents. Similarly, we can group concurrent processes

into named agents in the Nomadic �-calculus. Agents could possibly be used

for abstracting away reactive components of complex systems. In addition,

adopting into the model a tree-like hierarchy of agents would allow a hier-

archy of components to be built. Some features, which are only represented

in the �-calculi-like models, such as dynamic name and process generation

and local name extrusion, can facilitate non-trivial reasoning about system

recon�guration and security.

Which model? A common dilemma in selecting a model is how abstract

we want the model to be. A model which is too abstract is not credible, as we

can lose many important details. On the other hand, if too many details are

exposed, reasoning in such a model becomes tedious. Concurrent programs

in Mobile UNITY are sets of assignment statements (often guarded by logical

predicates). Conversely, an action style of specifying the programs seems to

be closer to the intuitive informal description of how they actually execute.

It seems reasonable that it should be easier to produce executable code from

speci�cations expressed in a language which enjoys executable operational

semantics, e.g. based on actions. However, speci�cations expressed in the

Mobile UNITY logic are likely to be more concise than in the process calculi

(and so easier to grasp and proofs arguably easier to carry out), but they

2.3 Related Models 49

further abstract from details of the systems modeled. Thus, there is no

de�nite answer to the initial question | it all depends on the context in

which a model is used and some preferences, e.g. about proof techniques.

There are some tools designed for all the models described above. A

variety of UNITY validation tools have been developed, e.g.: HOL-UNITY

theorem prover [And92] (implemented as a library of HOL), and the UNITY

Veri�er [Kal94] | a symbolic model checker for �nite state UNITY programs.

Some tools have also been designed for the �-calculus, e.g. the Mobility

Workbench [Vic94]; the workbench can eÆciently check open bisimulation

equivalences. Some proofs of formal speci�cations in I/O automata have

been carried out using interactive theorem provers, such as the Larch Prover

[GG91, Che98] and Isabelle [Pau94].

50 Model of Mobile Computation

Chapter 3

Programming Language

In this chapter we describe the Nomadic Pict language. It is designed to

allow infrastructure algorithms to be expressed as clearly as possible, as

translations from a high-level language to a low level. In x3.2, we describe

the principles and syntax of our language and some programming idioms

which are used in the infrastructure translations. We conclude the chapter

by describing Facile and the Join Language | two general-programming lan-

guages, which are based on mobile process calculi. We compare the design

choices, and argue that Nomadic Pict is more suitable for the speci�cation

and experimenting with the infrastructure algorithms for mobile agent sys-

tems. We begin the chapter by presenting our motivations for building a new

programming language for mobile computation.

3.1 Motivations

With the emergence of the World-Wide Web and ubiquitous computing, a

number of new programming languages have been developed, such as Java

and scripting languages (e.g. Tcl, Python, and Perl). These languages are

usually interpreted or compiled to some architecture-independent bytecode,

which can be highly portable on current and future platforms. Java, the

most popular of these languages, has been used to build many mobile agent

systems. It is relatively easy to use Java, due to support o�ered by the

language for code mobility, architecture-independence, and secure program

execution. Aglets [LOKK97], Voyager [Gla98], Concordia [WPW98], and

Mole [SBH96] are examples of Java-based mobile agent systems. However,

the metaphor \mobile agent" was �rst introduced in Telescript [Whi96], an

object-oriented language designed speci�cally for mobile agent programming.

A few programming languages which support mobile computation appeared

as extensions of functional languages (such as Facile and JoCaml [CF99])

52 Programming Language

3.1.1 Mobility in a Wide-Area Network

The main concern in the mobile agent community has been demonstrated

so far around problems of safety, security, scalability, fault-tolerance, and

eÆciency of code manipulation and execution. The issues of a programming

language design for mobile agents appear seldom, and usually in the context

of high-level communication between intelligent agents. It is true, that many

of the technical problems mentioned above are still not well understood and

solved, however the main problem seems to be not only technological. In spite

of the potential bene�ts of using mobile agents in certain contexts, there are

very few real agent applications in use. Mobile agent technology itself simply

does not o�er anything which could not be implemented in the traditional

client-server model. It may however, as a set of positive factors, enhance

some applications [CHK97]. Also, the importance of software mobility will

grow naturally as a consequence of pervasive mobile computing (enabled by

mobile computers, PDAs, etc.) However, deployment of mobile computa-

tion, especially in wide-area networks, may appear to be diÆcult. Mobility

complicates system management, because programs are no longer bound to

static locations and administrative domains. However, some authors argue

that mobile agents have the potential to provide a convenient, eÆcient and

robust programming paradigm for Internet applications, particularly when

computers have only intermittent access to the network [GKN+97]. They

predict that agent technology will be a critical near-term part of the Internet

[KG99]. It appears to us, however, that in order to exploit this potential

fully, there must be better programming language support than is o�ered at

present.

Knabe [Kna95] pointed out desirable properties of mobile agent lan-

guages: strong typing, remote resource access, automatic memory manage-

ment, security, authentication, support for manipulation, transmission and

execution of code-containing objects. Java and other languages used in cur-

rent mobile agent systems successfully meet some or all of these properties.

However, they do not necessary o�er convenient programming metaphors for

building applications where agents must communicate and collaborate while

migrating. The construction of such applications would be made easier by

isolating the agent communication and collaboration from: low-level com-

munication, authentication protocols, tracking the agent whereabouts, and

lock-based concurrency control (if supported). One of the aims is to enable

developers, who are not necessarily experts in distributed systems and mo-

bile agents, to construct applications, but in such a way that they can still

be aware of the distribution concerns. This awareness seems essential in the

context of mobile agents; it facilitates the construction of applications which

are eÆcient, scalable, and secure.

3.1 Motivations 53

The programming languages used in current mobile agent systems are

rather traditional | they are based either on the object-oriented style, or

the imperative techniques of scripting languages. On this ground, system

developers added new primitives to support mobility of code. However, they

usually do not provide the suitable level of abstraction needed for express-

ing communication between mobile agents on the Internet. Communication

is usually made possible through current middleware systems or RPC-like

techniques. RPC is too low-level an abstraction | it does not support loca-

tion independence. Middleware, such as CORBA-compliant Object Request

Brokers, provide support for language-independent and location-transparent

method invocation. The main problem is, however, that they cannot ad-

equately provide scalability and
exibility, important issues in the case of

mobile agent systems. The proposition of Globe [vSHBT98], a worldwide lo-

cation service for distributed objects, o�ers better infrastructure for a wide-

area network, which can better cope with (occasional) mobility of objects.

We argue, however, that the transparent-object model simply does not

provide a suitable level of abstraction for expressing the (low-level) communi-

cation between mobile agents, which should not be made transparent to the

application intended for a wide-area network. The reason is simply because

a wide-area network is not like a local-area network: communication is very

asynchronous, delays and bandwidth
uctuations unpredictable, communica-

tion may have to cross administrative boundaries and �rewalls, remote sites

are invisible, failures are indistinguishable from deliberate disconnected op-

eration of some machines, mobile computers can be moved between network

domains and have only intermittent access to the network, and so on. Any

global distributed infrastructure which would try to hide these issues to some

extent (if possible) by replication and fault-tolerant protocols, and provide

a uniform transparent-object model to the programmer would dramatically

slow down the whole Internet (besides it would be undesirable due to secu-

rity reasons). On the other hand, communication between mobile agents is

suÆciently above network protocols to make searching for new programming

abstractions worthwhile.

3.1.2 Veri�cation of Mobile Computation

There is a natural demand for the most critical parts of systems to be anal-

ysed, veri�ed, and proven correct (correctness informally means compliance

of program execution with our assumptions). Network protocols and dis-

tributed infrastructures are highly concurrent; testing can often be useful

to �nd common errors, but is not capable of guaranteeing correctness. The

activity of proving formally that a system is correct is called veri�cation.

The veri�cation of formally described protocols can, to some extent, be au-

54 Programming Language

tomated using interactive tools, such as theorem provers. Nevertheless, the

process is costly, since one has to write an input for a standard theorem

prover from a program speci�cation, and after proving it correct, must re-

code the program using a traditional programming language. This process is

diÆcult, error-prone, and the veri�cation information is not readily reusable

as the system grows. The growing complexity of mobile protocols (such as

Mobile IP) and prevalent programming practice, will make such an approach

diÆcult and questionable. New methods are required, which would be easier

to use and less costly.

The solution would be to verify the actual code expressed in a program-

ming language rather than some abstraction of it, as this gives us more ac-

curate and reliable information about the way the system is going to behave

(it would also facilitate updating proofs after code revisions). The advan-

tage is that executable code could be generated from veri�ed speci�cations

which are proven correct. This would save duplication of e�ort in all these

cases where formal veri�cation is essential, and rule out the possibility of

introducing errors while coding. Unfortunately, the traditional programming

languages are not very suitable for formal veri�cation. The solution would

be to use a programming language whose syntax is already quite abstract,

providing a concise set of semantically-clean primitives, which are however

eÆciently implementable.

Although this is an ultimate goal, there are already examples of rigor-

ous veri�cations on the level of actual running code, without resorting to

approximate techniques. For example, Arts and Dam [AD99] demonstrate

a pragmatic approach to formalisation and veri�cation based on an example

from industry, and discuss their experience with using a veri�cation tool for

Erlang programs. Erlang [AWWV96] is a functional programming language

developed at Ericsson, which has been used for writing robust distributed

telecommunication applications. The \core" features of Erlang include: list

and number processing, dynamic process creation (also spawning processes

on remote hosts), and communication. They extract, from the real imple-

mentation in Erlang, a fragment implementing the protocol to verify, add

some additional code to provide a very simple simulated interface to parts

of the system that are irrelevant for the problem at hand, and verify the

program using the (interactive) veri�cation tool. Erlang programs can be

seen as a very precise, and in some sense formal, description of the algorithm

(although the language semantics has not been formally de�ned).

In [GL98], it has been argued that the features which make a language

suitable for veri�cation and proofs (e.g. nondeterminism, simplicity, declar-

ative style) are di�erent from those that make it suitable for code generation

(e.g. determinism, expressive power, imperative style). Nondeterminism

helps to validate designs in a general form. Simplicity gives hope for simple

3.1 Motivations 55

semantics and simple proof rules, making designs described in such a lan-

guage easier to understand and verify. A declarative style would be easier to

translate into the input languages of standard theorem provers. On the other

hand, a deterministic language with an imperative style is easier to translate

to eÆcient executable code. The expressiveness of language primitives makes

programming easier. We believe that Nomadic Pict o�ers a good balance of

the trade-o�s mentioned above. Although, Nomadic Pict is a general pro-

gramming language, it can also be used for informal but rigorous proofs, as

demonstrated in [Uny].

The language o�ers primitives that can be eÆciently implemented yet not

at all far from a process calculi-like level of abstraction. The object and func-

tional programming concepts which are useful for general programming have

complex semantics, and therefore applying them to reasoning about mobile

computation (where partial failures may happen) must be done with care.

Our approach is as follows. We are �rst looking for convenient metaphors (or

concepts) which are basic in the general model of concurrent computation,

where each program is a set of agents or activities which co-exist and inter-

act with each other. Then, we add to this support for mobility and physical

distribution of agents. Distributed objects and functions, being the most

complex metaphors, may eventually be built on top, if required. Objects

and functions known traditionally from sequential programming can be seen

as deterministic subsets of that more general model.

In our work we build on process calculi. Process calculi o�er a small

set of operators accompanied by computable operational semantics, which

altogether form a clean design path for the construction of programming

languages. The expressive power of a language is achieved by additional pro-

gramming idioms, such as data structures, higher-order programming, and

concurrent objects. They can be formed by adding a layer of convenient syn-

tactic sugar and a static type system to a tiny core. For example, translations

of high-level idioms, like functions and objects, into �-calculus processes have

been given a rigorous theoretical treatment (e.g. [San99, San98], see also ob-

jects in Pict [PT95, LSN96]). The Nomadic �-calculus, an extension of the

�-calculus, formed a foundation for the Nomadic Pict language design. The

advantage of our calculus is that, although the model is nicely tractable the-

oretically, there is only a small gap between the model abstractions and the

real system implementation. Therefore, we hope that any results of reasoning

formally in the (quite intricate) mathematical model of mobile communicat-

ing agents should be easily transferable into the real system. This should

guarantee a good level of con�dence that the system and applications devel-

oped in it will meet the speci�cation, and help in understanding what the

system actually does. It may also facilitate construction of tools such as de-

buggers, monitors, and optimised compilers for programming with mobility.

56 Programming Language

3.1.3 Infrastructure Design and Speci�cation

In distributed systems with mobile hosts and code mobility, chunks of dis-

tributed computation may have only intermittent access to the network; they

are no longer static but can freely migrate to other physical locations while

exchanging messages. Designers of mobile agent systems usually assume that

mobile agents are autonomous, solitary programs which can migrate from site

to site and perform tasks on behalf of their users. The agents communicate

at visiting sites (\meeting places") with other resources or agents. They can

also open RPC connections to services which are on remote sites. On top of

that, there are mechanisms provided for tracking locations of mobile agents

and message delivery. In our language, the act of communication between

agents rose to the rank of a single language primitive, which may greatly

simplify building applications. We have de�ned semantics of this primitive

precisely within our calculi-based model and provided a number of imple-

mentations. We wanted to be able to express the infrastructure algorithms

in a form that is clean and easy to understand. Also, we wanted to prototype

the algorithms and simple examples of agent applications in a distributed

environment. At the time of starting the project, there were few languages

which supported location-independent communication as a primitive, with

a formally speci�ed semantics (e.g. Facile and the Join Language described

in x3.3). These systems, however, are closed. They do not o�er convenient

language metaphors for location-dependent communication, and do not pro-

vide a means for expressing and supplying the infrastructure algorithms for

location-independent language primitives. Therefore, we decided to imple-

ment our own light-weight runtime system and language, where this would

all be possible. In our system, the agent programming abstractions can be

factored into hierarchical translations of the higher into the lower level lan-

guage, thus customising the agent system. An arbitrary infrastructure can

be deployed dynamically, on application start-up, using agent migration |

this makes it straightforward to experiment with a wide range of infrastruc-

ture algorithms for applications with di�erent migration and communication

patterns. Also, a simple message passing discipline of the low-level language,

freed from the burden of marshalling and unmarshalling parameters of net-

work and middleware protocols, makes it easy and straightforward to verify

results of reasoning formally about message-passing algorithms in the pres-

ence of mobility.

Nomadic Pict has been designed to validate our model of mobile compu-

tation with highly-concurrent agents. The system is currently less suitable

for building serious applications, due to the lack of suÆcient support for ap-

plication interoperability; we plan to extend the language to meet some of

3.2 Nomadic Pict 57

these requirements in future. Services, traditionally provided by operating

systems and some \middleware" (such as object brokers and lookup service),

are assumed to be delivered as translations in Nomadic Pict. This allows

complex distributed systems to be built while at the same time remaining

inside a coherent, integrated framework. Therefore one can easily prototype

new algorithms, because the system services can be customized and their

source code is highly readable. The semantics of all external and internal

services can therefore be understood within a single coherent model.

3.2 Nomadic Pict

In the following sections, we describe the Nomadic Pict language and pro-

gramming idioms. We conclude the chapter presenting two general-purpose

programming languages supporting code mobility, Facile and Join-calculus,

which also grew up from process calculi.

3.2.1 Language Principles

We have designed and implemented Nomadic Pict as a vehicle for explor-

ing distributed infrastructure. It builds on the Pict language of Pierce and

Turner [PT97a, PT97b, Tur96], a concurrent (but not distributed) language

based on the asynchronous �-calculus [MPW92, HT91, Bou92]. Pict sup-

ports �ne-grain concurrency and the communication of asynchronous mes-

sages. To these Low-Level Nomadic Pict adds primitives for agent creation,

the migration of agents between sites, and the communication of location-

dependent asynchronous messages between agents. The high-level language

adds location-independent communication; an arbitrary infrastructure can

be expressed as a user-de�ned translation into the low-level language. The

combination of low-level language and facilities for de�ning a translation thus

embody the design principle:

A wide-area programming language should provide a level of ab-

straction that makes distribution and network communication

clear; higher levels should be provided and implemented using

the modularisation facilities of the language. It should be possi-

ble to deploy such infrastructure dynamically.

Such a language can have a standardised low-level runtime system that is

common to many machines, with divergent high-level facilities chosen and

installed on demand. The levels of abstraction can be made precise by giv-

ing process calculi equipped with rigorous operational semantics. Preliminary

58 Programming Language

de�nitions of the (low and high-level) Nomadic �-calculi were given in chap-

ter 2. They have since been extended to large fragments of the language, for

use in correctness proofs, but are not described here (see [Uny]).

We have focussed on the simplest language that allows us to study the

core problem of location-independent communication introduced in chapter

1, rather than attempting to produce an industrial-strength language. In

particular, we study a single representative location-independent primitive,

that of delivering a message to an agent on an arbitrary site. We believe

that analogous work could be carried out for other high-level primitives, e.g.

multicasts, and for many other concurrent languages.

A further simpli�cation is the adoption of a �xed two-level architecture,

rather than a general purpose module system. The utility of a rich module

system for structuring communication protocols, in the absence of mobil-

ity, has been demonstrated in the FOX project [HLP98]; see also Ensemble

[Hay98]. In future work we intend to integrate an ML-style module system

with a Nomadic Pict language.

In this section we introduce enough of the language for the example ap-

plication and infrastructures given in the following chapters. The language

extends primitives of the Nomadic �-calculus with some convenient syntactic

sugar and a type system. The operational semantics of the primitives have

been described in x2.2.

3.2.2 Low-Level Language

Below is a program in the low-level language showing how mobile agents
can be expressed; it extends the applet server in x2.2.1 with programming
constructs such as types and functions. Inside the agent a (which is assumed
to be on site s') we de�ne a function spawn; the function accepts two formal
parameters s and prompt, and creates a new fresh agent named b

newnewnew answer : ^String

defdefdef spawn [s:Site prompt:String] =

(agentagentagent b =

(migratemigratemigrate tototo s

<a@s'>answer!(sys.read prompt))

ininin

())

(spawn ! [s1 "How are you? -"]

| spawn ! [s2 "When does the meeting start? -"]

| answer ?* s = print!s

...

3.2 Nomadic Pict 59

In the body of the agent a, we have two parallel invocations of the function

spawn, creating two agents b (with di�erent names) which immediately mi-

grate to remote sites s1 and s2, print a prompt on the current console, and

read from a standard input. A message containing the string read from the

console is sent to the spawning agent a. The agent a can receive the messages

on the channel named answer (carrying values of type String) and print the

reply on the screen. Functions (process abstractions) are syntactic sugar;

they can be replaced by channel communication internal to the agent (we

will explain it in x3.2.4). The sites, agents, and channels are typed; the lan-

guage types are described below. The language is built above asynchronous

messaging, both within and between sites; in the current implementation

inter-site messages are sent on TCP connections, created on demand, but

our algorithms do not depend on the message ordering that could be pro-

vided by TCP.

Types The language inherits a rich type system from Pict, including simple

record types [label1=T1...labeln=Tn], higher-order polymorphism, sim-

ple recursive types (recrecrec X =..X..) and subtyping. It has a partial type

inference algorithm. Pict's four basic channel types are classi�ed as follows:

^T (the type of input/output channels carrying values of T) is a subtype of

both !T (output channels accepting T) and ?T (input channels yielding T).

That is, a channel that can be used for both input and output may be used

in a context where just one capability is needed. Also /T (responsive output

channels carrying T) is a subtype of !T.

Nomadic Pict adds new base types Site and Agent of site and agent

names, a variant type for expressing variants, and a type Dyn of dynamic val-

ues (to date only partially implemented) for implementing traders. The vari-

ant type flabel1>T1...labeln>Tng denotes all values flabel>v:Tg such as

(label; T) 2 f(label1; T1); :::; (labeln; Tn)g.

In this thesis we make most use of Site, Agent, the base type String

of strings, Int of integers, Bool of Booleans, the type ^T of channel names

that can carry values of type T, tuples [T1...Tn], variants, and existential

polymorphic types such as [#X T1...Tn] in which the type variable X may

occur in the �eld types T1...Tn. We also use a type operator Map from the

libraries, taking two types and giving the type of maps, or lookup tables,

from one to the other (we will explain maps in x3.2.4).

Values Channels allow the communication of �rst-order values: names a,b,

: : : , strings, tuples [v1...vn] of the n values v1...vn, packages of existen-

tial types [#T v1...vn], and elements of variant types {label>v}. The

language does not support passing of processes (except for the migration

60 Programming Language

of whole agents) or of higher-order functions. Patterns p are of the same

shapes as values, with the addition of a wildcard.

Core Language Syntax The main syntactic category is that of processes.

c!v output v on channel c in the current agent

c?p = P input from channel c

c?*p = P replicated input from channel c

(P | Q) parallel composition

(Dec P) local declaration

() null process

ififif v thenthenthen P elseelseelse Q conditional

iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q test-and-send to agent a on this site

waitwaitwait c?p=P timeouttimeouttimeout n -> Q input with timeout

<a>c!v send to agent a on this site

<a@s>c!v send to agent a on site s

Declarations Dec are used to introduce new channels, agents, and express

migration; they form a separate syntactic category.

newnewnew c:T P new channel name creation

agentagentagent a=P ininin Q agent creation

migratemigratemigrate tototo s P agent migration

All bound variables (and wildcards) are explicitly typed. In practice, how-

ever, many of these type annotations can be inferred automatically by the

compiler. Therefore we did not include them in the syntax above. Types

are required in de�nitions, e.g. execution of newnewnew c:^T creates a new unique

channel name for carrying values of type T.

In the language implementation, we use environments to store bindings of

names to values instead of an explicit substitution. For example, an output

c!v and an input c?p=P in the same agent may synchronise, resulting in P

with the appropriate parts of the value v bound to the formal parameters in

the pattern p.

3.2.3 High-Level Language

The high-level language is obtained by extending the low-level with a single

location-independent communication primitive:

c @ a ! v location-independent output to channel c

at agent a

3.2 Nomadic Pict 61

The low-level communication primitives are also available, for interacting

with application agents whose locations are predictable. Other low- and

high-level communication primitives may be added in future, e.g. in order

to support stream communication.

Summarising, agents located on a particular site can freely change loca-

tion by migrating to a new site. Channels created inside an agent are local

within the agent but can also be used for communication between agents,

providing that the sender and receiver use the same channel name (which

has been de�ned in common lexical scope or dynamically extruded). The

location-independent output will require some distributed infrastructure to

deliver messages reliably. In distributed operating and \middleware" sys-

tems, this kind of infrastructure is a hard-wired part of the system. In

Nomadic Pict, the distributed infrastructure for location-independent com-

munication, and addressing schemes can be anything whatever, since all have

to be explicitly encoded in the low-level language.

Expressing Encodings The language for expressing encodings of high-

level language primitives allows the translation of each interesting phrase (all

those involving agents or communication) to be speci�ed and type checked;

the translation of a whole program (including the translation of types) can

be expressed using this compositional translation. A rudimentary module

system allows encodings of any new phrases of the high-level language to be

expressed as macro de�nitions. We can use the macros in programs writ-

ing dododo "macroname" parameter ininin P. Here, the type of parameter is not

known until the macro de�nition is applied and the type information can

be inferred. We omit in this section the concrete syntax of the language for

expressing encodings; the example infrastructures in chapters 4 and 6 should

give the idea (see also Appendix).

3.2.4 Examples and Idioms

We give some syntactic sugar and programming idioms that will be used

in the translations. Most are standard �-calculus idioms; some involve dis-

tributed communication. The syntax for process abstractions, value declara-

tions, and applications has been introduced in Pict and described informally

below (see [PT97b] for a formal description of the source-to-source transla-

tions and more syntactic sugar).

Syntactic sugar (a) In Pict, we can de�ne process abstractions via the
declaration keyword defdefdef, as in

defdefdef f [x:T1 y:T2] = (x!y | x!y)

62 Programming Language

and instances are created using the same syntax as output expressions, as in
f![a b] (f is a channel | a process abstraction is translated into a channel
declaration newnewnew f and a replicated receiver on f). Recursive and mutually
recursive de�nitions

defdefdef f [..] = ... g![..] ...

andandand g [..] = ... f![..] ...

are also allowed.
(b) The syntactic category of values is extended with declaration values

of the form (Dec v), as in

c!(newnewnew d:T d)

The complex value is always evaluated to yield a simple value, which is

substituted for the complex expression; the process above creates a fresh

channel d and sends it o� along c, as in (newnewnew d:T c!d).
(c) A declaration

valvalval p=v

evaluates a complex value v and names its result. Formally, a valvalval declaration

(valvalval p=v e) is translated using the continuation-passing translation, so that

the body e appears inside an input pre�x on the continuation channel which

is used to communicate a simple value evaluated from the complex value v.

This means that valvalval declarations are blocking : the body e cannot proceed

until the bindings introduced by the valvalval have actually been established.
(d) In value expressions, we allow the application syntax (v v1 ...

v2). For example, we can de�ne a process abstraction

defdefdef double [i:Int r:/Int] = +![i i r]

and then, in the scope of the declaration, write (double i) as a value, drop-

ping the explicit result channel r, e.g. printi!(double 2) would compute

4 and print it out on the console, using the library channel printi.
(e) A functional style is supported in Pict by a small extension to the syn-

tactic class of abstractions. For example, we can replace a process abstrac-
tion defdefdef f [a1:T1 a2:T2 r:/T] = r!v, where v is some complex value, by
a `function de�nition'

defdefdef f (a1:T1 a2:T2) : T = v

and avoid explicitly giving a name to the result channel r.
(f) The idiom \invoke an operation, wait for a signal (i.e. a null value [])

as a result, and continue" appears frequently, so it is convenient to introduce
; (semi-colon), as in

3.2 Nomadic Pict 63

(v1 ...); (v2 ...)

for the sequence of operations v1 and v2.
(g) In Nomadic Pict we introduced variants and a new type Dyn. In the in-

frastructure translations, we use a variant type flabel1> T1 ... labeln>

Tng so often, that it is convenient to introduce a new process form switchswitchswitch,
as follows

c?v= switchswitchswitch v ofofof

(

flabel1> p1g -> P1

...

flabeln> png -> Pn

)

that matches a variant type value v with all the variants, chooses the one

which has the same label as v, and proceeds with a process P of the matched

variant.
(h) We can compare dynamic values at runtime via the process keyword

typecasetypecasetypecase, as in

c?v= typecasetypecasetypecase v ofofof

s:String -> print!s

[s:String d:^String] -> d!s

elseelseelse print!"Type not recognised."

where c has type ^Dyn. Instances of dynamic values are created using

(dynamic v). For example, c!(dynamic ["ala" x]) in parallel with the

process term above may synchronise, resulting in \ala" being sent along the

channel x, c!(dynamic "ala") would print \ala", but any other (dynamic)

value sent on c would print an error message. The translations of switchswitchswitch

and typecasetypecasetypecase use the value equality testing primitive.

Process Abstractions in Agent Programming A name f of process

abstraction defdefdef f x:T=P in agent a has type /T. In the current implementa-

tion, the name f can be extruded outside a and used for remote invocations,

as in f@a!.... However, we usually use standard channels for inter-agent

communication (e.g. in `procedures' described below). The type /T of f

guarantees that there is exactly one receiver on f. Therefore it is not sen-

sible to use f outside agent a for a local output because this would never

synchronise. In the future, the type system may enforce types /T to be used

within a single agent only (this would require the introduction of new types

and sub-typing rules for channels which are intended to be used for inter-

agent communication). We neglect it for a while so as not to complicate the

type system.

64 Programming Language

However, functions from Nomadic Pict libraries are treated in a special

way; they can be e�ectively used in all agents de�ned in a user program (so

formally it looks as though each agent has a private copy of each library

function it might ever use). Declarations of library modules precede lexically

the program declarations, therefore the library function names are visible

inside any agent in a normal way, just as any other names de�ned in the

lexical scope.

A plausible extension of the Nomadic �-calculus would be a higher-order

nomadic calculus, in which agents could communicate higher-order values,

such as process abstractions, not just names and simple values. If eÆciency

is not critical, it would be very easy to extend the current implementation

of Nomadic Pict to support higher-order values, by simply extending a type

of standard Nomadic Pict messages to allow any higher-order value to be

transmitted, and sending a local environment with messages. On the receiver

side, the higher-order value would be interpreted as any other agent process.

Procedures Within a single agent one can express `procedures' in Nomadic
Pict as simple replicated inputs. Replicated inputs are useful to express
server agents. Below is a �rst attempt at a pair-server, that receives values
x on channel pair and returns two copies of x on channel result, together
with a single invocation of the server.

newnewnew pair : ^T

newnewnew result : ^[T T]

(pair?*x = result![x x]

| pair!v

| result?z = ... z ...)

This pair-server can only be invoked sequentially|there is no association
between multiple requests and their corresponding results. A better idiom
is below, in which new result channels are used for each invocation. The
pair-server has a polymorphic type (X is a type variable), instantiated to Int

by a client process.

typetypetype (Res X) = ^[X X]

newnewnew pair : ^[#X X (Res X)]

(pair?*[#X x r] = r![x x]

| (newnewnew result:(Res Int) (pair![1 result] | result?z =... z ...))

| (newnewnew result:(Res Int) (pair![2 result] | result?z =... z ...)))

The example can easily be lifted to remote procedure calls between agents.
We show two versions, �rstly for location-dependent RPC between static
agents and secondly for location-independent RPC between agents that may
be migrating. In the �rst, the server becomes

3.2 Nomadic Pict 65

newnewnew pair : ^[#X X (Res X) Agent Site]

pair?*[#X x r b s] = <b @ s>r![x x]

which returns the result using location-dependent communication to the
agent b on site s received in the request. If the server is part of agent
a1 on site s1 it would be invoked from agent a2 on site s2 by

newnewnew result : (Res Int)

(<a1 @ s1>pair![7 result a2 s2]

| result?z = ...z...)

If agents a1 or a2 can migrate this can fail. A more robust idiom is easily
expressible in the high-level calculus|the server becomes

newnewnew pair : ^[#X X (Res X) Agent]

pair?*[#X x r b] = r@b![x x]

which returns the result using location-independent communication to the
agent b. If the server is part of agent a1 it would be invoked from agent a2

by

newnewnew result : (Res Int)

(pair@a1![3 result a2]

| result?z= ...z...)

Locks, methods and objects The language inherits a common idiom for
expressing concurrent objects from Pict [PT95]. The process

newnewnew lock:^StateType

(lock!initialState

| method1?*arg = (lock?state = ... lock!state' ...)

...

| methodn?*arg = (lock?state = ... lock!state'' ...))

is analogous to an object with methods method1: : : methodn and a state of

type StateType. Mutual exclusion between the bodies of the methods is

enforced by keeping the state as an output on a lock channel; the lock is free

if there is an output and taken otherwise. For more detailed discussion of

object representations in process calculi, the reader is referred to [PT95].

Finite maps The algorithms given in the following chapters involve �nite
maps from Nomadic Pict standard library | in the �rst, there is a daemon
maintaining a map from agent names to site names; in the second, there
are daemons maintaining maps from agent names to lock channels. The
translations make use of the following constructs:

66 Programming Language

c!(map.make eq)

outputs the empty map on channel c (where eq is a comparing function over
the keys),

(map.add m a v)

returns a map containing the same binding as m, plus a binding of a to v; if
a was already bound in m, its previous binding disappears,

switchswitchswitch (map.lookup m a) ofofof

(

f Found> p g -> P

f NotFound> _ g -> Q

)

looks up a in map m. Our calculi are suÆciently expressive to allow these

to be expressed directly, in a standard �-calculus style | formally we can

regard the constructs as syntactic sugar for �-calculus process terms, as in

[SWP99]; in Nomadic Pict, maps are de�ned using the built-in library List.

The Map library contains four additional functions, for removal, testing,

and iterations: (4) (remove m k) returns a map containing the same binding

as m, except for k which is unbound in the returned map, (5) (present m

k) returns truetruetrue if there is binding of k in m, or falsefalsefalse otherwise, (6) (iter

m f) applies f to all bindings in map m, discarding the results; f receives

the key as �rst argument and the associated values as second argument; the

order in which the bindings are passed to f is unspeci�ed, (7) (fold m f a)

computes (f kn vn ... (f k1 v1 a) ...), where k1 ... kn are the

keys of all bindings in m, and v1 ... vn are the associated data; the order

in which the bindings are presented to f is not speci�ed.

3.3 Related Languages

A large number of other programming languages which are based on some

formal model have appeared over the years. They include purely functional

languages based on lambda-calculus (e.g. Haskell), \impure" functional lan-

guages (e.g. Scheme and ML [Mil84, MTHM97]), and languages which com-

bined the concurrency primitives of process calculi with some more tradi-

tional features for sequential programming (e.g. Amber [Car86], Concurrent

ML [Rep93], and open source industry languages based on object or func-

tional model, e.g. Obliq [Car95] and Erlang [Lab98]). A main motivation for

using such languages (apart from making it easier to write distributed appli-

cations) is that they integrate di�erent computational paradigms in a clean

3.3 Related Languages 67

and well understood programming model, which has the potential to auto-

mate some formal reasoning about the behaviour and properties of programs

expressed in these languages (e.g. in proofs of program correctness).

Below, we describe Facile and the Join Language , two general-purpose

programming languages which support code mobility. In both cases, process

calculi have been successfully used in the speci�cation of language semantics

and on di�erent stages of the language design and implementation. Since all

the system and middleware services for code mobility and communication are

tightly integrated within one single framework, Facile and the Join Language

can also facilitate formal reasoning about programs.

3.3.1 Facile

Facile [GMP89, PGM90, TLG93] is a higher-level, strongly-typed, modular,

distributed programming language. The industry-strength implementation

of Facile at ECRC [TLP+93] provided concurrency and synchronous channel

communication extensions to Standard ML of New Jersey [AM91]. As an

extension of ML, Facile brings all the concepts and techniques from advanced

language research to the fore. It o�ers a strong but
exible type system (with

polymorphism and type inference), convenient primitives for manipulation

of complex data structures, lexical scoping and higher-order programming

(e.g. functions can be de�ned in any scope and passed to other functions or

returned as results). In Facile, all these features are seamlessly integrated

with a simple interface to distributed programming.

The computational model of Facile consists of a collection of nodes, possi-

bly located on di�erent host machines, each node running zero or more Facile

processes. A node can be thought of as a virtual processor with a shared ad-

dress space1. Processes execute by evaluating expressions (in a functional

style), and can communicate values between each other by synchronising

over typed abstract channels. New nodes, channels, and processes can be

created dynamically, processes can be spawned on a given node and exe-

cute a given script. Communication on channels is reliable and synchronous

(both the server and receiver processes are blocked until communication can

be completed). Any data, including process scripts, channel names, and

node identi�ers, which are �rst-class values, can be sent over channels. Im-

portantly, they can be sent to a remote site, while preserving type safety.

A non-deterministic selection of ready communications over a dynamically

speci�ed list of channels can be made by using guarded choice. A timeout

1Facile processes running on the same node can be thought of as light-weight threads.
They share an address space and execute concurrently under control of a preemptive
scheduler of the Facile run-time system.

68 Programming Language

mechanism and exception handling support writing fault-tolerant applica-

tions. The module system of Standard ML has been extended with supplying

and demanding constructs for dynamic connection of applications that were

started independently. Applications may store modules by supplying them to

servers on the network, and other applications may retrieve these modules by

demanding them based on an interface speci�cation (a signature). Descrip-

tion of the language constructs can be found in a Facile tutorial [TLK96].

A formal model of Facile is an extension of �-calculus with primitives

for concurrency, channel communication, and distribution. The concurrency

model of Facile is based on CCS and its higher order and mobile exten-

sions (CHOCS [Tho93] and the �-calculus). Furthermore, constructs for dis-

tributed computing are based on results from timed process algebra and true

concurrency theory. The semantics of Facile has been studied extensively,

either focusing on de�ning the (abstract) execution of programs in terms

of transition systems, reduction systems or abstract machines, or being con-

cerned with the development of program equivalences. Concurrent functional

programming has been studied in a framework of a simply typed �jj calculus

(Amadio, Leth, and Thomsen [ALT95], see also [Ama94]), which comprises

three basic ingredients of Facile: (1) call-by-value �-calculus extended with

the parallel evaluation of expressions, (2) a notion of channels and primi-

tives for synchronous input/output (communications are performed as side

e�ects of expression evaluation), (3) the possibility of dynamic generation

of new channels. The calculus includes CHOCS and a simply sorted part

of the (synchronous) �-calculus as its sub-calculi. In addition, Amadio and

Prasad [AP94] study issues related to physical distribution, namely locations

and failures. In their �l-calculus, basic resources are nodes (locations), and

channels and processes located at these nodes. A node can fail (in a fail-

stop fashion); the consequence of node failure is that all processes located

at that node abruptly terminate and the communication channels allocated

there become unavailable to other processes. At the semantic level, this ob-

viously means that processes that could normally be considered equivalent

in a calculus without locations, may turn out to exhibit di�erent behaviours

when complex allocations and failures are allowed. The work on modelling

mobility, initiated in Facile, has been continued by Amadio [Ama97, Ama].

In [ALT95, AP94], the authors gave simple translations of both calculi

into the �-calculus, thus proving (at least in theory) that reasoning about

Facile distributed applications can be carried out in the familiar interleaving

semantics of the �-calculus (e.g. by using a barbed bisimulation). We sketch

the translations in turn. The basic idea of translating the �jj calculus into

the �-calculus is to represent a function by means of a replicated input on

a channel and to transmit channel names (pointers) instead of functions (a

3.3 Related Languages 69

similar translation has been used to desugar functions in concurrent but non-

distributed Pict). However, in the real distributed implementation, process

scripts (possibly containing functions) are sent between nodes together with

their local execution environments. In case of the �l-calculus translation,

each node is represented by a special process, which interacts by means of a

simple protocol with any process of the original program wanting to access

resources depending on that location.

Discussion The Facile project has proven that formal reasoning can be suc-

cessfully employed in designing a complex system. Also, people working on

theory can bene�t from a closer insight into practical problems encountered

in system development. In Facile, the assumptions about system functional-

ity have been exempli�ed by de�ning a formal model based on process calculi.

It also became clear that the initial design choices in the model have a far

going impact on system implementation, including eÆciency and scalability.

Therefore, it is important to precisely de�ne a range of application targets

and the future environment, while designing the system model. We have

been much aware of this fact when designing Nomadic Pict, whose model

has been guided by concrete assumptions about applications which we would

like to support.

Facile uses synchronous channels for communication between concurrent

processes (possibly running on networked machines). A function send takes

channel and value as arguments, and returns unit value after communication

is completed. A hand-shake protocol is used for delivering messages between

networked machines. If the remote site is not reachable, a timeout exception

can be handled by the sender process (which is blocked on send). The syn-

chronous model better matches the concept of functions (a function returns

after the computation is �nished), thus leading to a natural integration of

function invocations and primitives for channel communication. While some

process A is blocked on send, other concurrent processes of the same ap-

plication can continue execution unless they have pending communications

with A. This communication dependency between processes may create a

problem if processes are distributed in wide area networks, where links can

be slow or broken. Thus, programmers may prefer to spawn new Facile pro-

cesses each time there is some value to send across the network. A more

asynchronous model is also required for applications executing in a mobile

environment, where mobile devices can often work in a disconnected mode.

Nomadic Pict supports asynchronous channels on top of standard network

protocols. Such a simple communication model allows us to experiment with

di�erent concurrency control policies and levels of synchrony (the algorithms

can be expressed as translations and used in applications).

70 Programming Language

From a conceptual point of view, a channel is a synchronisation point

allowing many concurrent processes to communicate. In Facile, the concept

has been extended to a distributed world. In the implementation, a channel

is represented as a data structure. Each process attempting to communicate

over a channel leaves a request on it. A decentralised approach for channel

management has been adopted, in which a programmer has got control over

the node on which channels are created. A channel manager (one per chan-

nel) takes care of matching senders and receivers using a particular channel.

The manager can communicate with Facile processes using links (e.g. sock-

ets). Channel implementations reside in the nodes where they have been

created. If a node fails, channels created on this node disappear (the system

can still communicate over channels created on other nodes, though). The

channel access mechanism utilizes location hints in (globally unique) channel

identi�ers and as a fall-back mechanism, a hash table that maps each channel

identi�er to its current implementation.

One of the initial goals of Facile was to seamlessly extend the functional

and concurrent primitives to distributed computing. This has been done

while showing much care to preserve the semantic di�erence between dis-

tributed and concurrent (but within the same shared address space) com-

putation. The issues of locating processes and being aware of failures and

distribution is in sharp contrast with the popular object-oriented approaches

which attempt to deliver full transparency. Nevertheless, implementing one

single policy of distributed channels can be controversial. Synchronisation

between the sender and receiver processes may be expensive in terms of ad-

ditional control messages, especially if the two processes, located on di�erent

nodes, have to share a channel created on some third node, and thus they

end up talking to this third node. Also, some further work can be needed by

the channel managers to coordinate communications that stem from choices.

EÆciency problems caused by using distributed channels in some applica-

tions have been noticed by Facile designers and future work was planned,

e.g. to establish fast audio/video connections.

Currently, a programmer can choose the nodes where channels will be

created, thus leading to improved eÆciency in particular cases. Some ap-

plications, however, may require even more
exibility, which cannot easily

be achieved with a static implementation of channels. An example is mobile

communicating agents, which may migrate often and while migrating want to

preserve any pending communications with other agents on the same chan-

nels. In those agent applications, which can span nodes distributed on the

whole Internet, it would be desirable to optimise message communication

(i.e. reduce the number of forwarding pointers or aliasing) and, in particu-

lar, avoid (if possible) any long distance queries to some third parties (here

3.3 Related Languages 71

channel structures). However, it has been demonstrated that Facile can be

successfully used to build Mobile Service Agents (MSAs) [TKLC95], which

can be understood in the usual way, i.e. as self-contained pieces of software

which can serve as local representatives for remote services, provide interac-

tive access to data they accompany, and carry out tasks for a mobile user

temporarily disconnected from the network.

A follow-up of work on Facile and the Join Language (described be-

low) is the �1-calculus, an asynchronous calculus with uniqueness of the

receptor [Ama]. It assumes that every channel name is associated with a

unique process which receives messages addressed to that name (communica-

tion becomes point-to-point). Such asynchronous point-to-point communica-

tion does not require synchronisation between possibly distant processes and

therefore it makes minimal assumptions on the capabilities of the distributed

system. As a consequence of receptor uniqueness, any received names will

have a send only capability.

In contrast, our best e�ort approach allows for unrestricted communi-

cation on �-channels in all those cases which do not constrain eÆciency of

the implementation, so they can be freely used, e.g., for a local computation

within the shared address space of an agent. However, in the case of com-

munication between migrating agents, the use of channels is restricted (see

x2.2.1). At the same time, our approach is liberal, i.e. although we admit

that there is no implementation of distributed channels that is eÆcient for all

possible applications, we do not try to evade the problem. Instead, we o�er

a programmer the possibility of encoding distributed channels for particular

applications, as translations on top of agents.

3.3.2 The Join Language

The Join Language [FGL+96] is a distributed programming language based

on the join-calculus, a calculus of concurrent processes that communicate

through named, one-directional channels [FG96]. Concerns about mobility

and distribution resulted in abandoning the �-calculus channel communi-

cation and integrating the input action and receiving process within one

language primitive called a join-pattern; the join-pattern additionally allows

many inputs (from many sending processes) to be synchronised in one action.

In many important respects, the join-calculus resembles the �-calculus, e.g.

a channel name can be communicated through channels, possibly outside the

lexical scope of its de�nition. However, only the process that creates a chan-

nel can receive messages on the channel (so here channel names can better

mimic, e.g. Amoeba port identi�ers).

72 Programming Language

Below is an example process term of the join-calculus showing the main

syntactic categories of processes, de�nitions, and join-patterns.

def (xhyijthi� P) ^ (xhzijthi� Q) in xhaijthijxhbi

The main process xhaijthijxhbi is a parallel composition of three outputs

on channels x and t. The de�nition (xhyijthi � P) ^ (xhzijthi � Q) can

receive some value (a or b in our example) on the channel named x and a

null value on channel t, and continue with either some guarded process P

or Q (^ denotes a non-deterministic choice). The guarded process can be

executed only if there are inputs available on both channels x and t in the

corresponding join-pattern xh ijthi. Since we have two outputs on x but only

one output on t, the execution of P and Q is mutually exclusive. Below, we

explain the syntactic forms in more detail.

A join-pattern J is a non-empty list of message patterns, denoted

J1jJ2j::jJn, where each message pattern Ji is of the form xihy1; :::; ymi
i

(1 � i � n). A join-pattern J is much like a guard for a de�nition J�P . Let

us consider �rst a simple case where J is a single message input xhy1; :::; ymi.
In this case, process P can only execute if there is some message matching

join-pattern J (i.e. some value v has been sent on x, and v has arity m).

The names y1; :::; ym are bound in P , and should all be distinct. The name

x is also bound in P | intuitively, it is the name of a polyadic channel that

is being de�ned. The novelty of the join-calculus stems from the fact that a

number of synchronous inputs can be grouped together and represented by

a join-pattern of the form J1jJ2j::jJn, where each Ji (1 � i � n) is a single

input. In this case, process P in de�nition J � P will block until the whole

join-pattern can be triggered, i.e. there are values matched by all inputs

J1::Jn. If there are a number of messages matching J then accordingly a

number of instances of P may execute concurrently.

In addition to de�nitions D of the form J � P , the language allows

de�nitions of the form D ^ D0. In particular, a conjunction such as

xhyi � P ^ xhzi � Q, where the same name x appears in more than one

de�nition D, is also legal, and if there is a message on x, then either P or Q

will be nondeterministically chosen for execution.

A process P is the asynchronous output (such as xhyi), de�nition of port

names def D in P , or parallel composition of processes P1j::jPn. De�nitions

obey lexical scoping rules. In particular, given a process def D in P , a chan-

nel name de�ned in D is recursively bound in the whole process, including

D.

3.3 Related Languages 73

In order to express distributed programs and mobile agents, the Join

Language uses explicit locations and primitives for mobility de�ned in the

distributed join-calculus [FGL+96]. Intuitively, a location resides on a physi-

cal site and contains a group of processes. Locations form a tree of locations

with a meta-location as a root. Children of the root location abstract away

physical machines. To introduce new locations, the syntax of de�nitions is

extended with a new location constructor a[D : P], which creates a sublo-

cation of the current location containing the unique de�nition D and the

unique running process P (the initialisation of location a). There are some

assumptions about the uniqueness of location and channel names, such as a

channel name de�ned in a de�nition can only appear in the join-patterns of

one location. We can atomically move locations between sites: the migration

primitive gohb; �i invoked inside location a will cause a and its subtree to

move in the tree of locations so that a will become a sublocation of b. On

arrival, the continuation �hi can trigger other computations.

The failure semantics of the join-calculus assumes the fail-stop model of

locations. There are two primitives halt and fail in the calculus to model

failures. The former primitive executed at location a will make the location

permanently inert, while failha; �i triggers �hi after it detects that a has

failed, i.e. that a or one of its parent locations has halted.

Discussion Join-patterns may simplify writing of distributed protocols

which have to synchronise receipt of messages from many sources. The non-

trivial synchronisation can be expressed concisely by using only one language

primitive (de�nition), which has a well-de�ned semantics. Since join-patterns

are meant to be used heavily in the Join Language programs, as the only syn-

chronisation primitive available, their compilation requires much care. The

deterministic �nite-state automata modelling the synchronisation of message

receipts tend to be rather complicated (however some optimisations are pos-

sible, as described in [ML98]). In Facile and Nomadic Pict, the composite

synchronisation has to be expressed using more elementary language primi-

tives which have a more straightforward interpretation.

A de�nition xhyi�P , which contains a join-pattern with a single message

input, resembles a process abstraction defdefdef x y = P in Pict, which denotes

a replicated input on polyadic channel x with a guarantee (forced by a type

system) that channel x is not used for input in any other place; x and y are

bound in process P (see also x3.2.4).

Formal encoding of the non-distributed choice-free join-calculus into the

�-calculus (described, e.g. in [FG96]) is rather simple, because the join-

calculus is somehow the �-calculus with restrictions on communication pat-

74 Programming Language

terns. However, some care is needed in the formal translation to prevent the

context of the (typeless) �-calculus from reading on channels they receive

from the translation.

The reverse translation (i.e. from the �-calculus to join-calculus) is less

straightforward; it assumes that we associate with each channel x of the �-

calculus two names xo and xi, for an output and input, and an enclosing

de�nition that matches output and input. The sender simply sends values

on xo; the receiver de�nes a name for its continuation, and sends it as a

reception o�er on xi (see [FG96] for details).

In a translation from the join-calculus to Nomadic �-calculus, agents

could possibly be used to build \�rewalls" to prevent the context from in-

terfering with the translation, and also to model locations. Intuitively, a

process def xhpijyhzi� P in xhvijyhwi could be encoded using a replicated

input abstraction inside an agent, and location-independent communication,

e.g. as new x ; y in agent a = x?�p! y?z ![[P]] in (ha@?ix !v j ha@?iy !w).

The conjunction of de�nitions might be translated into a parallel compo-

sition of (replicated) input abstractions (however, the order of inputs in

each branch of a parallel composition is then important and some care

is needed to avoid deadlock). Locations could be encoded using agents

(which explicitly maintain the corresponding tree structure when migrat-

ing). Intuitively, a process def a[xhpi � P : Q] in R could be encoded as

new c in agent a = (new x in (x?�p ![[P]]j[[Q]])) in [[R]], where process Q

(after performing some initialisation of location a) must explicitly extrude

name x to R on continuation channel c. A fully abstract translation would

have to be more subtle though.

The most important di�erence between the join-calculus and Nomadic

�-calculus is that, in the former calculus, migrating agents can only commu-

nicate by location-independent messages. In any distributed implementation

of the join-calculus, messages must be transparently and reliably routed to

migrating agents (or \locations" in the join-calculus terminology). Thus, the

Join Language corresponds to a �rst approximation to High Level Nomadic

Pict, together with a suitable infrastructure encoded in Low Level Nomadic

Pict.

In order to fully implement the semantics of the join-calculus, in partic-

ular location-independent communication and migration of nested locations,

a sophisticated infrastructure is required (to deliver messages transparently,

atomically migrate the whole subtree of locations, and prevent race condi-

tions from arising between migrating locations). Such an infrastructure can

be diÆcult to implement eÆciently, especially in wide-area networks.

The \strong asynchronous" model of the join-calculus failure semantics

assumes that we can observe location failure and no messages will be deliv-

3.3 Related Languages 75

ered from a location which is detected as failed. A basic impossibility result

in distributed systems states that we cannot achieve distributed consensus

(such as agreeing on which sites have failed) in a system which consists of

a collection of asynchronous processes [FLP85]. Thus, complete accuracy of

failure detection by non-faulty processes in an asynchronous system where

failures may happen is impossible. In practice, however, a good approxi-

mation is provided by some degree of synchrony and failure detection, but

the algorithms required are costly. Fortunately, the semantics of the join-

calculus does not require that all locations have to maintain a consistent

view on which locations have failed (i.e. some locations can detect failure,

other locations do not). Thus, simpler algorithms can be used. For ex-

ample, the \weak asynchronous" model [FGL+96], implemented in the Join

Language as testing-equivalent of the join-calculus \strong asynchronous"

model, assumes only that location a suspected as failed cannot respond to

messages; this can be enforced by blocking output to a from all locations

which detected a as failed (or have received messages which are causally

depended on this failure detection). We argue, however, that the fail-stop

model of location failure may not be convenient in the practice of distributed

programming, especially for applications in networks where partitions can

happen (e.g. caused by disconnected operation). A location which has been

partitioned from other locations, and then suspected as failed, is supposed to

terminate silently. Therefore, after the network heals (or after reconnection),

the \failed" location may have to recreate its state under a new location name

and join the application explicitly, so that all locations will get to know the

new location name. This may not be practical in computation which involves

many locations.

To summarise, the join-calculus o�ers a set of interesting primitives for

synchronised patterns of communication, expressing locations, and modelling

failures. The ability to transparently and atomically move a whole collection

of locations from one place to another may also be convenient in some appli-

cations (e.g. when a server is about to shut down). Criticism of the approach

is concerned with the diÆculty of providing any eÆcient and scalable imple-

mentations of the model semantics in wide-area networks. In contrary, the

primitives o�ered by Nomadic Pict have been explicitly designed for writing

applications in wide-area networks with mobility. Such applications require

primitives which have simple failure semantics, and eÆcient, straightforward

implementations, immediately above present day computer networks. The

language architecture should also allow the system to be split into layers, one

of which deals with infrastructure algorithms (including a layer which deals

with fault detection and failure semantics), and reason about the algorithms

implementing each layer formally.

76 Programming Language

To sum up, Facile and the Join Language o�er a lot of expressiveness

through a small set of higher-level primitives, whereas our approach is aimed

at a small number of low-level primitives that can be implemented eÆciently,

together with an easy way of encoding more expressive primitives on top.

The implementations of Facile and the Join Language have evolved from

toy systems to more industrial-strength distributions (like Facile Antigua

Release [TLP+93] and JoCaml [CF99]), which support extensive libraries,

optimised runtime systems, and have been used to write various applications.

The Nomadic Pict language has currently only one implementation, which is

described as part of this thesis.

Chapter 4

Infrastructure for

Location-Independent

Communication

In chapter 1, we introduced the problem of distributed infrastructure, re-

quired for location-independent message delivery to migrating agents. In

this chapter, we describe the space of algorithms which might be useful for

building such infrastructures. These are simple, generic versions of the al-

gorithms which are used in real distributed systems with object mobility

and in mobile networks. In x4.1, we use natural language to describe the

algorithms. However, natural language descriptions are often ambiguous (as

demonstrated in the last section, x4.3, of this chapter). Therefore, in x4.2,

we present two algorithms in detail, expressed as translations in Nomadic

Pict.

4.1 Algorithms

Let us de�ne the space of algorithms for location-independent message de-

livery to migrating agents. The algorithms should support two operations:

\migrate", facilitating the move of an agent to a new site, and \deliver",

locating a speci�ed agent and delivering a message. The tasks of minimizing

the communication overhead of these two operations appear to be in con
ict.

Awerbuch and Peleg [AP95] (see also Mullender and Vit�anyi [MV88])

stated the analogous problem of keeping track of mobile users in a distributed

network (they consider two operations: \move", facilitating the move of a

user to a new destination, and \�nd", enabling one to contact a speci�ed

user at its current address). They �rst examined two extreme strategies.

78 Infrastructure for Location-Independent Communication

The full-information strategy requires every site in the network to main-

tain complete up-to-date information on the whereabouts of every user. This

makes the \�nd" operation cheap. On the other hand, \move" operations

are very expensive, since it is necessary to update information at every site.

In contrast, the no-information approach does not assume any updates while

migrating, thus the \move" operation has got a null cost. On the other hand,

the \�nd" operation is very expensive because it requires global searching

over the whole network. However, if a network is small and migrations fre-

quent, the strategy can be useful. In contrary, the full-information strategy is

appropriate for a near-static setting, where agents migrate relatively rarely,

but frequently communicate with each other. Between these two extreme

cases, there is space for designing intermediate strategies, that will perform

well for any or some speci�c communication to migration pattern, making

the costs of both \�nd" and \move" operations relatively cheap.

Awerbuch and Peleg [AP95] introduced the graph-theoretic concept of

regional matching, and demonstrated how �nding a regional matching with

certain parameters enables eÆcient tracking of mobile users in a distributed

network. The communication overhead of maintaining a distributed directory

server used to keep track of mobile users is within a polylogarithmic factor of

the lower bound. This result is important in the case of mobile computing,

where the infrastructure should perform well, considering all mobile users

and their potential communication to migration patterns. These patterns

can vary, depending on people.

The choice of infrastructure algorithm(s) for a given application with mo-

bile agents will depend strongly on many characteristics of the application

and target network, especially on the expected statistical properties of com-

munication and migration. In many mobile agent applications, however, we

know the communication to migration pattern of mobile agents precisely.

This enables the design of algorithms which are optimal for these special

cases and simpler than the directory server mentioned above. In contrast,

the design of an adaptive customized infrastructure for mobile computing de-

pends on probabilistic assumptions about the estimated behaviour of mobile

users. The infrastructure should therefore support all migration and commu-

nication scenarios, and optimise those scenarios which are likely to happen

more often.

The task of deciding on a mobile agent infrastructure may involve many

criteria. In our examination, we expand the space for interesting algorithms

to many dimensions, considering not only the communication cost but also

other factors, such as scalability, interoperability, and fault-tolerance. In

wide area applications, sophisticated distributed algorithms will be required,

allowing for dynamic system recon�gurations such as adding new sites to

4.1 Algorithms 79

the system, migrating parts of the distributed computation before shutting

down some machines, tracing locations of di�erent kinds of agents, and imple-

menting tolerance of partial failures. The space of feasible algorithms and the

trade-o�s involved require detailed investigation. We are not giving a quan-

titative theoretical or empirical view of the algorithms, however, because it

would be too hard to take under consideration all these factors. In chapter

6, we take an example application and de�ne assumptions about the target

network and behaviour of all agents involved. Then, we design an infrastruc-

ture which behaves well for our application (although other infrastructures

would also be plausible). Any change of assumptions (e.g. about failures in

the system) will require the infrastructure to be extended accordingly.

Di�erent infrastructures can be characterised by a number of properties

such as scalability, and tolerance of failures. An infrastructure is scalable if

adding new sites or agents, or expanding the system to wide-area networks

does not severely degrade overall system performance (in these terms, we

consider two di�erent kinds of scalability which explore either the numerical

or geographical dimensions). Fault-tolerance is costly; the level of fault-

tolerance and methods which can be used will depend on the target network

and application demands. Below, we describe the algorithms and give some

hints about the infrastructure scalability and fault-tolerance, where possible.

4.1.1 Central Server

Central Forwarding Server The server records the current site of every

agent. Before migration an agent A informs the server and waits for

ACK (containing the number of messages sent from the server to A).

It then waits for all the messages due to arrive. After migration it tells

the server it has �nished moving.

If B wants to send a message to A, B sends the message to the server,

which forwards it. During migrations (i.e. after sending the ACK) the

server suspends forwarding.

Central Query Server The server records the current site of every agent.

Migration support is the same as in the case of a Central Forwarding

Server (except that ACK from the server to A would have to contain

globally unique IDs of all messages which were included in the queries

about A's location since A's last migration). The di�erence is in how

locations communicate. The application messages will be delivered

directly to destinations without any forwarding.

80 Infrastructure for Location-Independent Communication

If B wants to send a message to A, B sends a query (containing the

message ID) to the server asking for the current site of A, gets the

current site s of A and sends the message to s. During A's migration

(i.e. after sending the ACK to A) the server postpones replying to all

queries about A's location until it gets con�rmation from A that A has

migrated. Before sending the ACK, the query server can send a current

record about A's location (say s). The name s can be used again for

direct communication with A. If a message arrives at a site that does

not have the recipient then a message is returned saying `you have to

ask the name server again'.

Home Server Each site s has a server (one of the above) that records the

current site of some agents | usually the agents which were created

on s. Agent names contain an address of the server which maintains

their locations.

On every migration agent A synchronises with the server whose name

is part of A's name. If B wants to send a message to A, B resolves A's

name and contacts A's server. Other details are as above.

Discussion Central Forwarding and Query Servers do not scale. If the

number of agents is growing and communication and migration are frequent,

the server can be a bottleneck. Home servers can improve the situation. The

infrastructure can work �ne for small-to-medium systems, where the number

of agents is small.

If migrations are rare and also in the case of stream communication or

large messages, the Query Server seems the better choice.

The algorithms do not support locality of agent migration and communi-

cation, i.e. migration and communication involve the cost of contacting the

server which can be far away. If agents are close to the server, the cost of

migration, search, and update is relatively low.

The server is a single-point of failure. In this and other algorithms we can

use some of the classical techniques of fault-tolerance, e.g. state checkpoint-

ing, message logging and recovery [JZ88]. We can also replicate the server

on di�erent sites to enhance system availability and fault-tolerance. Group

communication can provide adequate multicast primitives for implementing

either primary-backup or active replication [GS96].

Mechanisms similar to Home Servers have been used in many systems

which support process migration, e.g. in Sprite [DO91]. Caching has been

used, e.g. in LOCUS [PW85], and V [Che88], allowing operations to be sent

directly to a remote process without passing through another site. If the

4.1 Algorithms 81

cached address is wrong a home site of the process is contacted (LOCUS) or

multicasting is performed (V).

In x4.2.1, we describe the Central Server algorithm in detail, as a trans-

lation in Nomadic Pict. In chapter 6, we begin with a centralised algorithm

with caching, which evolves to match application demands of scalability (ex-

ecution on wide-area networks) and support for disconnected operation (on

laptop computers). In the translations, we shall use explicit acknowledge-

ments instead of piggybacking. For example, the server simply does not

acknowledge A's migration until it has received con�rmation that all mes-

sages to A have been delivered. We obtain an algorithm which is a bit less

asynchronous and optimised, but easier to understand.

4.1.2 Forwarding Pointers

Algorithm There is a forwarding daemon on each site. The daemon on site

s maintains a current guess about the site of agents which migrated from s.

Every agent knows the initial home site of every agent (it is part of an agent's

name). If A wants to migrate from s1 to s2 it leaves a forwarding pointer

at the local daemon. Communications follow all the forwarding pointers.

If there is no pointer to agent A, A's home site is contacted. Forwarding

pointers are left around forever.

Discussion There is no synchronisation between migration and commu-

nication as there was in centralised algorithms. A message may follow an

agent which frequently migrates, leading to a race condition. A chain of

forwarding pointers is sometimes used in combination with other infrastruc-

tures, e.g. hierarchical directory [AP95], where it is ensured (using locking in

the directory) that the search will eventually be able to reach the migrating

agent, even if the agent repeatedly moves.

The Forwarding Pointers algorithm is not practical for a large number of

migrations to distinct sites (a chain of pointers is growing, increasing the cost

of search). Some \compaction" methods can be used to collapse the chain,

e.g. movement-based and search-based. In the former case, an agent would

send backward a location update after performing a number of migrations

(i.e. \move" operations); in the latter case, after receiving a number of

messages (i.e. after a �xed number of \�nd" operations occurred).

Some heuristics can be further used such as search-update. A plausible

algorithm can be as follows. On each site there is a daemon which maintains

82 Infrastructure for Location-Independent Communication

forwarding addresses for all agents which ever visited this site. A forwarding

address is a tuple (timestamp; site) in which the site is the last known loca-

tion of the agent and timestamp speci�es the age of the forwarding address.

Every message sent from agent B to A along the chain of forwarding point-

ers contains the latest available forwarding address of A. The receiving site

may then update its forwarding address for the referenced agent, if required.

Given con
icting guesses for the same agent, it is simple to determine which

one is most recent using timestamps. When the message is eventually deliv-

ered to the current site of the agent, the daemon on this site will send an

ACK to the daemon on the sender site, containing the current forwarding

address. A similar algorithm has been used in Emerald [JLHB88], where the

new forwarding address is piggybacked onto the reply message in the object

invocation. Fowler [Fow85] has shown that it is suÆcient to maintain the

timestamp as a counter, incremented every time the object moves.

A single site fail-stop in a chain of forwarding pointers breaks the chain. A

solution is to replicate the location information in the chain on k consecutive

sites, so that the algorithm is tolerant of a failure of up to k � 1 adjoint

sites. Stale pointers should be eventually removed, either after waiting a

suÆciently long time, or purged as a result of a distributed garbage collection.

Distributed garbage collection would require detecting global termination of

all agents that might ever use the pointer, therefore the technique may not

always be practically useful. Alternatively, some weaker assumptions could

be made and the agents decide arbitrarily about termination, purging the

pointers beforehand.

An analytical comparison of many pointer-based, centralised and dis-

tributed location management schemas for mobile computing can be found

in [Kri96].

4.1.3 Broadcast

Data Broadcast Sites know about the agents that are currently present.

An agent noti�es a site on leaving and a forwarding pointer is left over

until agent migration is �nished.

If agent B wants to send a message to A, B sends the message to all

sites in a network (domain). A site s discards or forwards the message

if A is not at s (we omit details).

Query Broadcast Sites know about agents that are currently present. An

agent noti�es a site on leaving and a forwarding pointer is left over

until agent migration is �nished.

4.1 Algorithms 83

If agent B wants to send a message to A, B sends a query to all sites

in a network (domain) asking for the current location of A. If site

s receives the query and A is present at site s, then s suspends any

migration of A until A receives the message from B. A site s discards

or forwards the query if A is not at s.

Noti�cation Broadcast Every site in a network (domain) maintains a cur-

rent guess about agent locations. After migration A distributes in the

network (domain) information about its new location.

If site s receives a message whose recipient is not at s (because it has

already migrated or the initial guess was wrong), it waits for informa-

tion about the agent's new location. Then s forwards the message.

Location information is time-stamped. Messages with stale location

information are discarded.

Discussion Broadcasts are not scalable to a large network (broadcasting

in a large region is impractical), however some algorithms may be scalable

to many agents on a small network.

The cost of communication in Query and Data Broadcasts is high (pack-

ets are broadcast in the network) but the cost of migration is low. Query

Broadcast saves bandwidth if messages are large or in the case of stream

communication.

Noti�cation Broadcast has a high cost of migration (the location message

is broadcast to all sites) but the communication cost is low and similar to

forwarding pointers with pointer chain compaction.

In Data and Noti�cation Broadcasts, migration can be fast because there

is no synchronisation involved (in Query Broadcast migration is synchro-

nised with communication); the drawback is a potential for race conditions

if migrations are frequent. Site failures do not disturb the algorithms.

Although we usually assume that the number of sites is too large to

broadcast anything, we may allow occasional broadcasts within, e.g. a local

Internet domain, or local Ethernet. Broadcasts can be accomplished eÆ-

ciently in bus-based multiprocessor systems. They are also used in radio

networks. A realistic variant is to broadcast within a group of sites which

belong to the itinerary of mobile agents known in advance.

Broadcast has also been used in Emerald [JLHB88] to �nd an object, if a

node speci�ed by a forwarding pointer is unreachable or has stale data. To

reduce message traÆc, only a site which has the speci�ed object responds to

the broadcast. If the searching daemon receives no response within a time

limit, it sends a second broadcast requesting a positive or negative reply from

84 Infrastructure for Location-Independent Communication

all other sites. All sites not responding within a short time are sent a reliable,

point-to-point message with the location request.

The Jini lookup and connection infrastructure [AWO+99] uses multicast

in the discovery protocol. A client wishing to �nd a Lookup Service sends

out a known packet via multicast. Any Lookup Service receiving this packet

will reply (to an address contained in the packet) with an implementation of

the interface to the Lookup Service itself.

4.1.4 Group Communication

Algorithm The agents forming a group maintain a current record about

the site of every agent in the group. Agent names form a totally ordered set.

We assume communication which takes place within a group only.

Before migration an agent A informs the other agents in the group about

its intention and waits for ACKs (containing the number of messages sent

to A). It then waits for all the messages due to arrive and migrates. After

migration it tells the agents it has �nished moving. Multicast messages to

each agent within a group are delivered in the order sent (using a �rst-in-

�rst-out multicast).

If B wants to send a message to A, B sends the message to site s which

is A's current location. During A's migrations (i.e. after sending the ACK

to A) B suspends sending any messages to A.

If two (or more) agents want to migrate at the same time there is a con
ict

which can be resolved as follows. Suppose A and C want to migrate. If B

receives migration requests from A and C, it sends ACKs to both of them

and suspends sending any messages to agents A and C (in particular any

migration requests). If A receives a migration request from C after it has

sent its own migration request it can either grant ACK to C (and C can

migrate) or postpone the ACK until it has �nished moving to a new site.

The choice is made possible by ordering agent names.

Discussion The advantage of this algorithm is that sites can be stateless

(the location data are part of agent state).

However, in a system with failures the algorithm is more complicated than

above. Agents are organised into groups, corresponding to multicast delivery

lists, that cooperate to perform a reliable multicast (i.e. if one agent on the

delivery list receives a reliable multicast message, every agent on the delivery

list receives the message). A precise meaning to the notion of delivery list can

be given by using virtual synchrony de�ned for non-movable groups [BJ87].

4.1 Algorithms 85

The current list of agents to receive a multicast is called the group view. The

group view is consistent among all agents in the group. Processes are added

to and deleted from the group via view changes. If agent A is removed from

the view, the agents remaining in the view would assume that A has failed.

Virtual synchrony guarantees that no messages from A will be delivered in

the future (if A has not failed it must rejoin the group explicitly, using a

membership protocol).

A problem is how agents can dynamically join the group, which can

change sites. One solution is to leave forwarding pointers, such that agents

which want to join (or rejoin) the group can follow them and \catch up" with

at least one group member. Another solution is to have one agent within a

group (a coordinator or manager) which never migrates. The algorithm for

inter-group communication could then use the pointers or coordination agent

for delivering messages that cross group boundaries.

The algorithm is suitable for frequent messages (or stream communica-

tion) between mobile agents and when migrations are rare. Agent failures

and network partitions will not disturb agents which are alive; however, there

are detailed subtleties which depend on the semantics of the algorithm im-

plementing virtual synchrony. The group service algorithms for non-movable

processes which have been originally proposed, e.g. in ISIS, are costly in

terms of control messages and hard to use in networks larger than a LAN.

However, they are also examples of scalable group membership and commu-

nication services implementing the virtual synchrony semantics, designed for

wide-area networks [KSMD99].

4.1.5 Hierarchical Directory

Algorithm A tree-like hierarchy of servers forms a location directory (sim-

ilar to DNS). Each server in the directory maintains a current guess about

the site of some agents. Sites belong to regions, each region corresponds to

a sub-tree in the directory (in the extreme cases the sub-tree is simply a

leaf-server for the smallest region, or the whole tree for the entire network).

The algorithm maintains an invariant that for each agent there is a unique

path of forwarding pointers which forms a single branch in the directory; the

branch starts from the root and �nishes at the server which knows the actual

site of the agent (we call this server the \nearest").

Before migration an agent A informs the \nearest" server X1 and waits

for ACK. After migration it registers at a new \nearest" server X2, tells X1

it has �nished moving and waits for ACK. When it gets the ACK there is

86 Infrastructure for Location-Independent Communication

already a new path installed in the tree (this may require installing new and

purging old pointers within the smallest sub-tree which contains X1 and X2).

Messages to agents are forwarded along the tree branches. If B wants to

send a message to A, B sends the message to the B's \nearest" server, which

forwards it in the directory. If there is no pointer the server will send the

message to its parent.

Discussion The algorithm above has a translation similar to the Forward-

ing Pointers translation (see 4.2.2), in which daemons would be replaced by

directory servers. Certain optimisations are plausible, e.g. if an agent mi-

grates very often within some sub-tree, only the root of the sub-tree would

contain the current location of the agent (the cost of a \move" operation

would be cheaper).

Di�erent variants of the directory infrastructure can be proposed. A hier-

archical directory was �rst proposed by Awerbuch and Peleg [AP89, AP95],

for online tracking of mobile users. A proposition of Globe [vSHT99] uses

a hierarchical location service for worldwide distributed objects [vSHBT98].

In [Mor99], Moreau describes an algorithm for routing messages to migrating

agents which is also based on distributed directory service.

The Hierarchical Directory scales better than Forwarding Pointers and

Central Servers. Also, some kinds of fault can be handled more easily (see

[AP95], and there is also a lightweight crash recovery in the Globe system

[BvST99]).

4.1.6 Arrow Directory

Some algorithms can be devised for a particular migration pattern. Below

we describe the Arrow Distributed Directory protocol proposed by Demmer

and Herlihy [DH98] for distributed shared memory systems. The protocol

assumes that the whole object is always sent to the object requester.

Algorithm The arrow directory is given by a minimum spanning tree for

a network, where the network is modelled as a connected graph. Each ver-

tex models a node (site), and each edge a reliable communication link. A

node can send messages directly to its neighbours, and indirectly to non-

neighbours along a path. The directory tree is initialised so that following

arrows (pointers) from any node leads to the node where the object resides.

When a node wants to acquire exclusive access to the object, it sends a

message �nd which is forwarded via arrows and sets its own arrow to itself.

When the other node receives the message, it immediately \
ips" the arrow

4.2 Example Translations in Nomadic Pict 87

to point back to the immediate neighbour who forwarded the message. If the

node does not hold the object, it forwards the message. Otherwise, it bu�ers

the message �nd until it is ready to release the object to the object requester.

The node releases the object by sending it directly to the requester, without

further interaction with the directory.

If two �nd messages are issued at about the same time, one will eventually

cross the other's path and be \diverted" away from the object, following

arrows towards the node (say v) where the other �nd message was issued.

Then, the message will be blocked at v until the object reaches v, is accessed

and eventually released.

Discussion The directory imposes an optimal distributed queue of object

requests, with no point of bottleneck.

The arrow directory protocol was motivated by emerging active network

technology [LWG98], in which programmable network switches are used to

implement customized protocols, such as application-speci�c packet routing.

Naimi, Trehel, and Arnold [NTA96] describe a distributed mutual exclu-

sion algorithm which is also based on a dynamically changing distributed

directed graph. In the algorithm, when a node receives a message, it
ips its

edge to point to the node from which the request originated, instead of to

the immediate source of the message as above.

4.2 Example Translations in Nomadic Pict

Due to limited space, we present only two translations in Nomadic Pict of

the infrastructure algorithms described above. They will be the Central For-

warding Server and Forwarding Pointers infrastructure. Assumptions about

the system are described in x2.2. The translations are taken almost verbatim

from a program which can be executed by the Nomadic Pict system.

The �rst is one of the simplest algorithms possible, highly sequential and

with a centralized server daemon; the second is one step more sophisticated,

with multiple daemons maintaining forwarding-pointer chains. The algo-

rithms have been chosen to illustrate the model, and the use of the language

| algorithms that are widely applicable to actual mobile agent systems would

have to be yet more delicate, both for eÆciency and for robustness under par-

tial failure.

Even the simplest of our algorithms, however, requires delicate synchro-

nization that is easy to get wrong; expressing them as translations between

well-de�ned low- and high-level languages provides a solid basis for discussion

and algorithm design, subject to stated assumptions about the behaviour of

88 Infrastructure for Location-Independent Communication

externally-provided network services. In the end of this section we discuss

alternative descriptions.

A formal correctness proof of these two algorithms within our Nomadic

�-calculus framework will appear in the complementary work by Unyapoth

[Uny], who extended the Nomadic �-calculus with a labelled transition sys-

tem and suitable techniques based on bisimulation.

4.2.1 A Central-Server Infrastructure Translation

The Central-Forwarding-Server algorithm presented in this section in-

volves a central daemon that keeps track of the current sites of all agents and

forwards any location-independent messages to them. The daemon is itself

implemented as an agent which never migrates; the translation of a program

then consists roughly of the daemon agent in parallel with a compositional

translation of the program. For simplicity we consider only programs that

are initiated as single agents, rather than many agents initiated separately on

di�erent sites. (Programs may, of course, begin by creating other agents that

immediately migrate). The precise de�nition is given in Figures 4.1 and 4.2.

Figure 4.2 de�nes a top-level translation [[]]Top . For each term P of the high-

level language, considered as the body of an agent named a and initiated at

site s, the result [[P]]Top
[a s]

of the translation is a term of the low-level language.

The de�nition of [[]]Top involves the body Daemon of the daemon agent (given

in Figure 4.2) and an auxiliary compositional translation [[P]][a D SD], de�ned

phrase-by-phrase, of P considered as part of the body of agent a, where the

daemon agent D is assumed to be at site SD. The compositional translation

is given in Figure 4.1.

Let us look �rst at the daemon. It contains three replicated inputs, on the

register, migrating, and message channels, for receiving messages from

the encodings of agents. The daemon is essentially single-threaded | the

channel lock is used to enforce mutual exclusion between the bodies of the

replicated inputs, and the code preserves the invariant that at any time there

is at most one output on lock. The lock channel is also used to maintain

the site map | a �nite map from agent names to site names, recording the

current site of every agent. The body of each replicated input begins with

an input on lock, thereby acquiring both the lock and the site map.

Turning to the compositional translation [[]][a D SD], only three clauses are

not trivial | for the location-independent output, agent creation, and agent

migration primitives. We discuss each, together with their interactions with

the daemon, in turn.

4.2 Example Translations in Nomadic Pict 89

[[c@b!v]][a D SD]

def
= <D@SD>message![b c v]

[[agentagentagent b=P ininin Q]][a D SD]

def
= currentloc?s=

(agentagentagent b =

(deliver?*[#X c:^X v:X] = (<D@SD>dack![] | c!v)

| <D@SD>register![b s]

| ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

(currentloc!s

| [[P]][b D SD])

elseelseelse ())

ininin

ack?_= (currentloc!s

| [[Q]][a D SD]))

[[migratemigratemigrate tototo s P]][a D SD]

def
= currentloc?_=

(<D@SD>migrating!a

| ack?_ = (migratemigratemigrate tototo s

(<D@SD>migrated!s

| ack?_ = (currentloc!s

| [[P]][a D SD])

)))

Figure 4.1: A Central-Server Translation: The Compositional Translation

90 Infrastructure for Location-Independent Communication

Location-independent output A location-independent output in an
agent a is implemented simply by using a location-dependent output to send
a request to the daemon D, at its site SD, on its channel message:

[[c@b!v]][a D SD]

def
= <D@SD>message![b c v]

The corresponding replicated input on channel message in the daemon

| message?*[#X a:Agent c:^X v:X]= lock?m=

switchswitchswitch (map.lookup m a) ofofof

fFound> s:Siteg ->

(<a@s>deliver![c v]

| dack?_ = lock!m)

fNotFound> _g -> ()

�rst acquires the lock and current site map m, then looks up the target agent's

site in the map and sends a location-dependent message to the deliver

channel of that agent. It then waits to receive an acknowledgement (on the

dack channel) from the agent before relinquishing the lock. This prevents the

agent migrating before the deliver message arrives. Note that the NotFound

branch of the lookup will never be taken, as the algorithm ensures that

all agents register before messages can be sent to them. The inter-agent

communications involved in delivery of a single location-independent output

are illustrated below.

a D b

X
X
X
X
X
X
X
XXz

message![bc v]

X
X
X
X
X
X
X
XXz

deliver![cv]

�
�
�
�
�
�
�
��9

dack!

Creation In order for the daemon's site map to be kept up to date, agents

must register with the daemon, telling it their site, both when they are

created and after they migrate. Each agent records its current site internally

as an output on its currentloc channel. This channel is also used as a lock,

to enforce mutual exclusion between the encodings of all agent creation and

migration commands within the body of the agent.

4.2 Example Translations in Nomadic Pict 91

The encoding of an agent creation in an agent a

[[agentagentagent b=P ininin Q]][a D SD]

def
=

currentloc?s=

(agentagentagent b =

(deliver?*[#X c:^X v:X] = (<D@SD>dack![] | c!v)

| <D@SD>register![b s]

| ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

(currentloc!s

| [[P]][b D SD])

elseelseelse ())

ininin

ack?_= (currentloc!s

| [[Q]][a D SD]))

�rst acquires the lock and current site s of a, and then creates the new agent
b. The body of b sends a register message to the daemon and waits for
an acknowledgement. It then sends an acknowledgement to a, initializes the
lock for b and allows the encoding of the body P of b to proceed. Meanwhile,
in a the lock is kept until the acknowledgement from b is received. The body
of b is put in parallel with the replicated input

| deliver?*[#X c:^X v:X] = (<D@SD>dack![] | c!v)

which will receive forwarded messages for channels in b from the daemon,

send an acknowledgement back, and deliver the value locally to the appro-

priate channel.
The replicated input on register in the daemon

| register?*[a s]= lock?m=

(lock!(map.add m a s)

| <a@s>ack![])

�rst acquires the lock and current site map, replaces the site map with an

updated map, thereby relinquishing the lock, and sends an acknowledgement

to the registering agent. The inter-agent communications involved in a single

agent creation are illustrated below.

a b D

agentagentagent b = ...
s
X
X
X
X
X
X
X
XXz

register![bs]

�
�
�
�
�
�
�
��9

ack!

�

ack!

92 Infrastructure for Location-Independent Communication

Migration The encoding of a migratemigratemigrate in agent a

[[migratemigratemigrate tototo s P]][a D SD]

def
= currentloc?_=

(<D@SD>migrating!a

| ack?_ = (migratemigratemigrate tototo s

(<D@SD>migrated!s

| ack?_ = (currentloc!s

| [[P]][a D SD])

)))

�rst acquires the lock for a (discarding the current site data). It then sends
a migrating message to the daemon, waits for an ack, migrates to its new
site s, sends a migrated message to the daemon, waits again for an ack, and
releases the lock (with the new site s). The replicated input on migrating

in the daemon

| migrating?*a= lock?m= switchswitchswitch (map.lookup m a) ofofof

(fFound> s:Siteg ->

(<a@s>ack![]

| migrated?s' =

(lock!(map.add m a s')

| <a@s'>ack![]))

fNotFound> _g -> ())

�rst acquires the lock and current site map, looks up the current site of a1 and

sends an ack to a at that site. It then waits to receive the new site, replaces

the site map with an updated map, thereby relinquishing the lock, and sends

an acknowledgement to a at its new site. The inter-agent communications

involved in a single migration are shown below.

a D

X
X
X
X
X
X
X
XXz

migrating!a

�
�
�
�
�
�

�
��9

ack!

migratemigratemigrate tototo s
X
X
X
X
X
X
X
XXz

migrated!s

�
�
�
�
�
�

�
��9

ack!

The top level Putting the daemon and the compositional encoding to-

gether, the top level translation, de�ned in Figure 4.2, creates the daemon

1Alternatively, the current site of a could be sent in the migrating message.

4.2 Example Translations in Nomadic Pict 93

newnewnew register : ^[Agent Site]

newnewnew migrating : ^Agent

newnewnew migrated : ^Site

newnewnew message : ^[#X Agent ^X X]

newnewnew dack : ^[]

newnewnew deliver : ^[#X ^X X]

newnewnew ack : ^[]

newnewnew currentloc : ^Site

[[P]]
Top

[a s]

def
=

(agentagentagent D = Daemon ininin

valvalval SD = s

(deliver?*[#X c:^X v:X] = (<D@SD>dack![] | c!v)

| <D@SD>register![a s]

| ack?_ = (currentloc!s | [[P]][a D SD])))

Daemon
def
=

(newnewnew lock : ^(Map Agent Site)

(lock!(map.make ==)

| register?*[a s]= lock?m=

(lock!(map.add m a s)

| <a@s>ack![])

| migrating?*a= lock?m=

switchswitchswitch (map.lookup m a) ofofof (

fFound> s:Siteg ->

(<a@s>ack![]

| migrated?s' =

(lock!(map.add m a s')

| <a@s'>ack![]))

fNotFound> _g -> ())

| message?*[#X a:Agent c:^X v:X]= lock?m=

switchswitchswitch (map.lookup m a) ofofof (

fFound> s:Siteg ->

(<a@s>deliver![c v]

| dack?_ = lock!m)

fNotFound> _g -> ())

))

where the newnewnew-bound names, SD, and D, do not occur in P.

Figure 4.2: A Central-Server Translation: The Top Level and the Daemon

94 Infrastructure for Location-Independent Communication

agent, installs the replicated input on deliver for a, registers agent a to

be at site s, initializes the lock for a, and starts the encoding of the body

[[P]][a D SD].

4.2.2 A Forwarding-Pointers Infrastructure Transla-

tion

In this section we give a more distributed Forwarding-Pointers algorithm, in

which daemons on each site maintain chains of forwarding pointers for agents

that have migrated. It removes the single bottleneck of the centralised-server

solution in the preceding section; it is thus a step closer to algorithms that

may be of wide practical use. The algorithm is more delicate; expressing it

as a translation provides a more rigorous test of the framework.
As before, the translation consists of a compositional encoding of the

bodies of agents, given in Figure 4.3, daemons, de�ned in Figure 4.4, and a
top-level translation putting them together, given in Figure 4.5. The top-
level translation of a program, again initially a single agent, creates a daemon
on each site mentioned by the agent. These will each maintain a collection
of forwarding pointers for all agents that have migrated away from their site.
To keep the pointers current, agents synchronize with their local daemons
on creation and migration. Location independent communications are im-
plemented via the daemons, using the forwarding pointers where possible. If
a daemon has no pointer for the destination agent of a message then it will
forward the message to the daemon on the site where the destination agent
was created; to make this possible an agent name is encoded by a triple of an
agent name and the site and daemon of its creation. Similarly, a site name is
encoded by a pair of a site name and the daemon name for that site. There
is a translation of types with clauses

[[Agent]]
def
= [Agent Site Agent]

[[Site]]
def
= [Site Agent]

We generally use lower case letters for site and agent names occurring in the

source program and upper case letters for sites and agents introduced by its

encoding.

Looking �rst at the compositional encoding, in Figure 4.3, each agent uses

a currentloc channel as a lock, as before. It is now also used to store both

the site where the agent is and the name of the daemon on that site. The

three interesting clauses of the encoding, for location-independent output,

creation, and migration, each begin with an input on currentloc. They are

broadly similar to those of the simple Central-Server translation.

4.2 Example Translations in Nomadic Pict 95

[[c@b!v]]A
def
= currentloc?[S DS]=

iflocaliflocaliflocal <DS>message![b c v] thenthenthen

currentloc![S DS]

elseelseelse currentloc![S DS]

[[agentagentagent b=P ininin Q]]A
def
= currentloc?[S DS]=

agentagentagent B =

(valvalval b = [B S DS]

(currentloc![S DS]

| <DS>register!B

| ack?_= iflocaliflocaliflocal <A>ack![] thenthenthen [[P]]B elseelseelse ()))

ininin

valvalval b = [B S DS]

ack?_= (currentloc![S DS]

| [[Q]]A)

[[migratemigratemigrate tototo u P]]A
def
= currentloc?[S DS]=

(valvalval [U DU] = u

ififif (&& (== #Agent DS DU) (== #Site S U)) thenthenthen

(currentloc![U DU]

| [[P]] A)

elseelseelse

(<DS>migrating!A

| ack?_=

(migratemigratemigrate to U

(<DU>register!A

| ack?_=

(<DS@S>migrated![A [U DU]]

| ack?_=

(currentloc![U DU]

| [[P]] A))))))

[[iflocaliflocaliflocal c!v thenthenthen P elseelseelse Q]]A
def
=

(val [B _ _] = b

iflocaliflocaliflocal c!v thenthenthen [[P]]A elseelseelse [[Q]]A)

Figure 4.3: A Forwarding-Pointers Translation: The Compositional Transla-

tion

96 Infrastructure for Location-Independent Communication

Daemon[S DS]

def
=

(newnewnew lock : ^(Map Agent ^[Site Agent])

(lock!(map.make ==)

| register?*B:Agent=

lock?m= switchswitchswitch (map.lookup m B) ofofof (

fFound> Bstate:^[Site Agent]g ->

Bstate?_=

(Bstate![S DS]

| lock!m

| ack![])

fNotFound> _g ->

(newnewnew Bstate : ^[Site Agent]

(Bstate![S DS]

| lock!(map.add m B Bstate)

| ack![])))

| migrating?*B:Agent=

lock?m= switchswitchswitch (map.lookup m B) ofofof (

fFound> Bstate:^[Site Agent]g ->

Bstate?_=

(lock!m

| ack![])

fNotFound> _g -> ())

| migrated?*[B:Agent [U:Site DU:Agent]]=

lock?m= switchswitchswitch (map.lookup m B) ofofof (

fFound> Bstate:^[Site Agent]g ->

(lock!m

| Bstate![U DU]

| <B@U>ack![])

fNotFound> _g -> ())

| message?*[#X [B:Agent U:Site DU:Agent] c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m B) ofofof (

fFound> Bstate:^[Site Agent]g ->

(lock!m

| Bstate?[R DR]=

iflocaliflocaliflocal c!v thenthenthen

Bstate![R DR]

elseelseelse (<DR@R>message![#X [B U DU] c v]

| Bstate![R DR]))

fNotFound> _g ->

(lock!m

| <DU@U>message![#X [B U DU] c v]))))

Figure 4.4: A Forwarding-Pointers Translation: The Daemon

4.2 Example Translations in Nomadic Pict 97

Turning to the body of a daemon, de�ned in Figure 4.4, it is parametric

in a pair s of the name of the site S where it is and the daemon's own name

DS. It has four replicated inputs, on its register, migrating, migrated,

and message channels. Some partial mutual exclusion between the bodies

of these inputs is enforced by using the lock channel. The data stored on

the lock channel now maps the name of each agent that has ever been on

this site to a lock channel (e.g. Bstate) for that agent. These agent locks

prevent the daemon from attempting to forward messages to agents that

may be migrating. Each stores the site and daemon (of that site) where the

agent was last seen by this daemon | i.e. either this site/daemon, or the

site/daemon to which it migrated from here. The use of agent locks makes

this algorithm rather more concurrent than the previous one | rather than

simply sequentialising the entire daemon, it allows daemons to process inputs

while agents are migrating, so many agents can be migrating away from the

same site, concurrently with each other and with delivery of messages to

other agents at the site.

Location-independent output A location-independent output c@b!v in

agent A is implemented by requesting the local daemon to deliver it. (Note

that A cannot migrate away before the request is sent to the daemon and a

lock on currentloc is released.)

The message replicated input of the daemon gets the map m from agent

names to agent lock channels. If the destination agent B is not found, the

message is forwarded to the daemon DU on the site U where B was created.

Otherwise, if B is found, the agent lock Bstate is grabbed, obtaining the

forwarding pointer [R DR] for B. Using iflocaliflocaliflocal, the message is then either

delivered to B, if it is here, or to the daemon DR, otherwise. Note that the

lock is released before the agent lock is requested, so the daemon can process

other inputs even if B is currently migrating.

A single location-independent output, forwarded once between daemons,

involves inter-agent messages as below. (Communications that are guaran-

teed to be between agents on the same site are drawn with thin arrows.)

A DS DS' B

-

message![bc v]
X
X
X
X
X
X
X
XXz

message![bc v]

-

c!v

98 Infrastructure for Location-Independent Communication

Creation The compositional encoding for agentagentagent is similar to that of the

encoding in the previous section. It di�ers in two main ways. Firstly the

source language name b of the new agent must be replaced by the actual

agent name B tupled with the names S of this site and DS of the daemon

on this site. Secondly, the internal forwarder, receiving on deliver, is no

longer required: the �nal delivery of messages from daemons to agents is

now always local to a site, and so can be done using iflocaliflocaliflocal. An explicit

acknowledgement (on dack in the simple translation) is likewise unnecessary.

A single creation involves inter-agent messages as below.

A B DS

agentagentagent B = ...
s
X
X
X
X
X
X
X
XXz

register!B

�
�
�
�
�
�
�
��9

ack!

�

ack!

Migration Degenerate migrations, of an agent to the site it is currently

on, must now be identi�ed and treated specially; otherwise the Daemon can

deadlock. An agent A executing a non-degenerate migration now synchronises

with the daemon DS on its starting site S, then migrates, registers with the

daemon DU on its destination site U, then synchronises again with DS. In

between the �rst and last synchronisations the agent lock for A in daemon

DS is held, preventing DS from attempting to deliver messages to A.

A single migration involves inter-agent messages as below.

DS A DU

�
�
�
�

�
�

�
��9

migrating!A

X
X
X
X
X
X
X
XXz

ack!

migratemigratemigrate tototo U
X
X
X
X
X
X
X
XXz

register!A

�
�
�
�
�
�
�
��9

ack!

�
�
�
�

�
�

�
��9

migrated![A[U DU]]

X
X
X
X
X
X
X
XXz

ack!

4.2 Example Translations in Nomadic Pict 99

newnewnew register : ^Agent

newnewnew migrating : ^Agent

newnewnew migrated : ^[Agent [Site Agent]]

newnewnew message : ^[#X [Agent Site Agent] ^X X]

newnewnew ack : ^[]

newnewnew currentloc : ^[Site Agent]

[[P]]
Top

[a s1 ::: sn]

def
=

(newnewnew daemondaemon : ^Site

newnewnew nd : ^[Site Agent]

agentagentagent A =

(daemondaemon?*S:Site=

(agentagentagent D =

(migratemigratemigrate tototo S

(Daemon[S D]

| <A@s1>nd![S D]))

ininin ())

| daemondaemon!s1 | nd?s1=

...

(daemondaemon!sn | nd?sn=

(valvalval [S1 DS1] = s1

valvalval a = [A S1 DS1]

(currentloc!s1

| <DS1>register!A

| ack?_= [[P]]A

))))

ininin ())

where P is initiated on site s1, the free site names in P are s1 .. sn, and

the newnewnew-bound names, S1, DS1, and A do not occur in P.

Figure 4.5: A Forwarding-Pointers Translation: The Top Level

100 Infrastructure for Location-Independent Communication

Local communication The translation of iflocaliflocaliflocal must now extract the

real agent name B from the triple b, but is otherwise trivial.

The top level The top-level translation of a program P, given in Figure 4.5,

dynamically creates a daemon on each site mentioned in P. Each site name si

is re-bound to the pair [si DSi] of the site name together with the respective

daemon name. A top-level agent A is created and initialised; the agent name

a is re-bound to the triple [A S1 DS1] of the low-level agent name A together

with the initial site and daemon names.

4.3 Alternative Descriptions

Distributed infrastructure algorithms can usefully be expressed as transla-

tions between the two-levels of the Nomadic Pict language. Almost the en-

tire encoding of the Forwarding-Pointers protocol can be given in 2.5 pages,

rather concise for a non-trivial executable distributed infrastructure. The

code fragments are taken almost verbatim from the executable source, with

some minor sugar. In our experience with designing such algorithms we have

found that the language provides a good level of abstraction at which po-

tential problems (such as deadlocks and lost messages) can be seen rather

clearly. The uniform treatment of concurrency and asynchronous messages

both within agents and between machines is a signi�cant gain.

Below, we mention about other possible ways of describing distributed al-

gorithms | we brie
y consider diagrammatic, natural language, pseudocode,

and automata based approaches.

The diagrams used in x4.2.1, 4.2.2 convey basic information about the

algorithms | the messages involved in isolated transactions | but they are

far from complete descriptions and can be misleading. The correctness of

the algorithms depends on details of synchronisation and locking that are

precisely de�ned by the translation but are hard to express visually. For

example, a message
ow diagram of the agentagentagent b=P ininin Q encoding would

have to be parametrised on actual sites and conditional upon behaviour of

the body P of b, thus leading to complicated multi-diagrams.
Natural language descriptions, as given in x4.1, are often ambiguous. For

example, in the case of the Forwarding-Pointers translation (see Figure 4.3),
if we replace in the compositional translation of agentagentagent a line

| ack?_= iflocaliflocaliflocal <A>ack![] thenthenthen [[P]]B elseelseelse ()

by a following line

| ack?_= (<A>ack![] | [[P]]B)

4.3 Alternative Descriptions 101

then we get a following de�nition of agent creation which is erroneous

[[agentagentagent b=P ininin Q]]A
def
= currentloc?[S DS]=

(valvalval A = A

agentagentagent B =

(valvalval b = [B S DS]

(currentloc![S DS]

line 6: | <DS>register!B

line 7: | ack?_= (<A>ack![] | [[P]]B)))

ininin

valvalval b = [B S DS]

line 10: ack?_= (currentloc![S DS]

| [[Q]]A))

However, both de�nitions might well be described informally using exactly

the same text, as follows:

The body of b sends a register message to the daemon (see line

6) and waits for an acknowledgement (line 7). It then sends an

acknowledgement to a and allows the encoding of the body P of

b to proceed (line 7). Meanwhile, in a the lock is kept until the

acknowledgement from b is received (line 10).

What is missing are possible interactions between the encoding of agentagentagent

and user program P. In the original de�nition we have a guarantee that the

encoding of the body P of b will not proceed before the acknowledgement to a

is actually sent and delivered. In the de�nition above, the acknowledgement

to a is sent in parallel with the execution of P. Therefore, it does not prevent

b from migrating away to a new site (e.g. if P would proceed with migratemigratemigrate)

and sending a local message ack on that new site. In that case, a would stay

locked and wait for ack forever.

For a pseudocode description to provide a clear (if necessarily informal)

description of an algorithm the constructs of the pseudocode must themselves

have clear intuitive semantics. This may hold for pseudocodes based on

widespread procedural languages, such as Pascal. Infrastructure algorithms,

however, involve constructs for agent creation, migration and communication.

These do not have a widespread, accepted, semantics | a number of rather

di�erent semantic choices are possible | so more rigorous descriptions are

required for clear understanding.

Automata-based descriptions have been widely used for precise speci�-

cation of distributed algorithms, for example in the text of Lynch [Lyn96].

Automata do not allow agent creation and migration to be represented di-

rectly, so for working with a mobile agent algorithm one would either have

102 Infrastructure for Location-Independent Communication

to use a complex encoding or consider only an abstraction of the algorithm

| a non-executable model, rather than an executable complete description.

The modelling approach has been followed by Amadio and Prasad in

their work on IP mobility [AP98]. They consider idealizations of protocols

from IPv6 proposals for mobile host support, expressed in a variant of CCS,

and prove correctness results. There is a trade-o� here: the idealizations

can be expressed in a simpler formal framework, greatly simplifying correct-

ness proofs, but they are further removed from implementation, inevitably

increasing the likelihood that important details have been abstracted away.

Chapter 5

Infrastructure Design for

Mobile Agents

In this chapter, we describe several kinds of application using mobile agents

in order to improve locality of computation, support disconnected operation,

avoid transferring large volumes of data, facilitate fault-tolerance, and adapt

to changes in the network characteristics and in the user environment. For

each kind we de�ne a simple example application and describe an appropriate

infrastructure for location-independent communication and migration in a

wide-area network. In the previous chapter, we characterised the algorithms

for delivering location-independent messages to migrating entities and assess

their usefulness in a general case. Below, we apply this knowledge and use

some of the algorithms and techniques in the design of infrastructures which

are application-speci�c.

The goal of this chapter is to demonstrate a variety of simple infrastruc-

tures which are useful for speci�c applications. It can be observed that in

many di�erent applications, the pattern of agent migration is di�erent and

often limited, e.g. agents migrate only once or twice, migration is within a

local-area network or between a few sites which are known in advance, agents

can only migrate to or from a central site, and between a mobile computer

and the network, etc. We do not attempt to specify all the infrastructures for-

mally, so we use natural language descriptions. In the next chapter, however,

we describe the design of a suitable infrastructure for an example application

in more detail, presenting an almost complete executable description of the

infrastructure in Nomadic Pict.

104 Infrastructure Design for Mobile Agents

5.1 Resource Monitoring

Mobile agents (or mobile code) can be useful as monitors, i.e. programs that

are dispatched to remote sites, where they monitor a set of sensors or data

streams, and take some actions whenever certain prescribed conditions ap-

ply. For example, agents can be dispatched to a remote server and control a

unique piece of external equipment (we assume here that the latency in net-

work transmission is high compared to real-time constraints imposed by the

external equipment, so RPC cannot be used). In other applications, agents

can be sent to stock market sites, auction sites, vendors' e-commerce sites,

or other data stores, and notify their clients that some event has happened

(e.g. share prices dropped below some threshold or a new book of a favourite

author has been published).

The advantage of mobile agents over the client-server and event systems

is the higher level of customization possible: both prescribed conditions and

triggered actions are de�ned by the client and dispatched as an autonomous

mobile agent. The remote site provides access only to raw data which can

be trusted and veri�ed on demand (e.g. a stock-market server would publish

a list of companies and current share prices).

Moreover, bringing computation to the source of data has two potential

bene�ts. Firstly, mobile agents acting on behalf of a user can react im-

mediately, irrespective of network delays and broken links (so, for example,

agents in the ticket reservation system could book speci�ed
ights as soon as

they become available). Secondly, the client can stay disconnected while the

mobile agents perform their actions, and only reconnect to collect results.

5.1.1 Migration and Communication Pattern

At the application level, we would like to think of agent migration as \one-

hop" between the client and resource sites. However, in many applications

we may not have direct access to the resource sites (e.g. because they are

hidden behind �rewalls, or they are temporarily disconnected from the net-

work). Instead, mobile agents migrate to some host machines where they are

authenticated and stored in a queue. The system can periodically allow the

agents from the queue to migrate from the host machine to the resource site.

In some applications, agents may have to migrate forth and back between

the host machine and resource sites (e.g. if the resource site needs to be

temporarily disconnected, or the agent expired and the client has to pay for

service continuation). In such situations, it is convenient to move both code

and thread of control between machines; therefore we use mobile agents, not

mobile code.

5.1 Resource Monitoring 105

Clients may not be aware of the low-level migration between many ma-

chines; they use location-independent asynchronous messages for communi-

cating with monitoring agents. The client may stay disconnected, and only

connect to collect the data.

5.1.2 Example Infrastructure

The concept of waiting room forms a main building block of our infrastruc-

ture. The \waiting room" is a site where agents can be received, registered,

and typechecked to prevent malicious behaviour, but not executed. The

agents are queued and forwarded for execution to other sites upon request.

Such a two-tier mechanism of migration is useful when the destination

sites may be: (1) temporarily disconnected from the network, (2) located

inside �rewalls, or (3) have unknown addresses. A similar mechanism in

Aglets, called Agent Boxes, is described in [AO98]. The \waiting room" can

provide a secure mechanism for accepting agents inside �rewalls and secu-

rity domains (since agents are �rst authenticated and then pulled out from

the \waiting rooms", which are located outside the �rewalls or domains; the

agents in the \waiting room" queue are inactive and thus malicious agents

cannot harm the server). The mechanism can also facilitate managing agents

(e.g. agents whose lifetime expired might have to move back to the \waiting

room" and wait there until the client collects results and/or pays for the ser-

vice continuation). Eventually, the \waiting room" may coordinate sharing

and distribution of agents (e.g. to improve load balancing).

Encodings In the infrastructure translation, the primitive migratemigratemigrate is en-

coded as low-level migrations between the client site, \waiting room", and

resource sites. Communication with mobile agents is forwarded through a

daemon, located in the \waiting room", which will know current agent lo-

cations. The daemon maintains the queue of agents sitting in the \waiting

room" and manages the extraction of agents from the \waiting room".

The naming scheme is as follows. Before creating mobile monitors, we

look up the name (say D) of the database or resource to be monitored. This

name should allow resolving the address of the daemon dedicated for this

particular database or resource (e.g. using a local trader mechanism of the

agent system). Mobile agents are created dynamically and their names, used

for communicating with the agents, would contain either D or simply the

daemon address resolved from D.

106 Infrastructure Design for Mobile Agents

5.2 Mobile Devices

The use of mobile agents makes a lot of sense in the case of applications

launched from mobile devices, as described below. Mobile devices such as

laptops, notebooks and personal communicators are only intermittently con-

nected to a network, hence they have only intermittent access to a server.

The connection with a server can often be via low-bandwidth, high-latency,

high-cost connections (wireless or dial-up links). Applications running on

mobile devices can react to a drop in network bandwidth by moving network-

intensive computations to a well-connected proxy site. Example applications

include remote access to data repositories. The client can develop an agent

request | possibly while disconnected | launch the agent during a brief

connection session, and then immediately disconnect. The response, if any,

is collected during a subsequent connect session from a proxy client left at

the edge of the network. The user could spawn mobile agents from thin

clients like Personal Digital Assistants (PDAs) and cellular phones, and be

noti�ed about certain events through the phone or e-mail (e.g. in [JJ99], a

weather alarm application is described, where the alarm conditions can be

programmed on a mobile phone, using a simple scripting language, and sent

to a remote server which monitors the weather; if the alarm is triggered, a

noti�cation is sent to the client).

5.2.1 Example Infrastructure

In [GKN+96], a docking system has been described, which allows an agent to

transparently move between mobile computers, regardless of when the com-

puters connect to the network. Below, we describe a similar infrastructure

to support disconnected operation, however, with less transparency. The

\waiting room" described in x5.1.2 will serve as a docking station for agents

who want to migrate from a stable part of the network to a mobile computer.

However, communication in the opposite direction remains under application

control. We focus on the semantics of location-independent communication

between clients and monitoring agents.

Communication from a stable part of the network to clients executing on

mobile computers is as follows. The high-level location-independent output

would be encoded as either sending a message (or the agent carrying the

message) directly to the client if it is connected, or otherwise, sending the

message (or agent) to the \waiting room" (and possibly saving their state on

disk), so that it can be fetched by the client upon reconnection.

5.2 Mobile Devices 107

Communication initiated from mobile devices requires a bit more consid-

eration. It has to be decided whether connection and reconnection should be

made transparent to the application (and the user) or not. For example, the

CODA distributed �le system [Kis93] supports transparent access to remote

�les from mobile clients, and the client performing some operations (such as

writing to a remote �le) may not be aware of disconnection | the operation

is serviced by a local server emulator which will complete the operation when

the client machine reconnects. On the other hand, in some applications the

client must be aware of any changes between the \connect" and \disconnect"

states, so that it can react accordingly (e.g. informing the user who wants to

read e-mail from a mobile phone that it is not possible at that time because

of some problems with connecting the mobile to the network, etc.; the user

may not wish to see the e-mail pop up later when the connection is resumed).

There is a range of choices for the infrastructure support of location-

independent communication from mobile devices. It would be good if we have

support for two kinds of disconnection \triggers": an intentional or software

trigger (such as switching a mobile device to the \power save" mode), and in-

advertent (such as connection failure, e.g. when a physical obstruction blocks

the signal from a cellular modem). The software trigger can be delayed, but

the latter is out of our control. We might try our best to deliver a message

if the \trigger" can be delayed. In order to delay the software \trigger", the

underlying operating system should support some mechanism for blocking

disconnection (at least for some time), e.g. using semaphores. Then, the

encoding of the location-independent message output might use this mecha-

nism and block system-controlled disconnection until the message is actually

sent o�. Otherwise, if message sending fails (after a few attempts to deliver

the message), some exception would be generated to be handled by the ap-

plication. All messages which are not delivered would either be discarded by

the application or queued to try again (depending on the application logic).

In the docking system of [GKN+96], a fully transparent solution has been

adopted, where all agents which did not succeed in being sent o� from the

mobile device are silently stored on disk under the control of the system dock-

master. The dock-master continually monitors the network status and will

attempt to transfer all waiting agents, e.g. during a brief reconnection period.

It is assumed that the mobile device will eventually reconnect. In our opinion,

however, complete transparency may not be good for some applications (e.g.

we might want to know if and when eventually the agents are sent o� to

the network, and be able to cancel all pending communications, e.g. if the

application is about to terminate). Thus, there should be the possibility of

checking and deleting agents from the queue maintained by the dock-master.

108 Infrastructure Design for Mobile Agents

5.3 Information Retrieval

Mobile agents can be used in data-mining and retrieving context-based in-

formation from multiple resources (such as data repositories and the World-

Wide Web). In [OPL94], Oates et al. discuss bene�ts of viewing information

gathering as distributed problem solving (which subsumes distributed pro-

cessing). The approach, called Cooperative Information Gathering (CIG),

involves concurrent and asynchronous access and composition of associated

information spread across a network of information servers by a group of

intelligent agents. Top level queries drive the creation of partially elaborated

information gathering plans, resulting in the employment of multiple coop-

erative agents for the purpose of achieving goals and subgoals within these

plans. For example, intelligent agents of the Vacation Planner search multi-

ple databases { weather, car rental, hotel and \places of interest" { to plan

an appropriate vacation for the user. Each agent searches its assigned re-

source independently but uses partial results from the other agents to adjust

its search criteria when needed. For example, the place agent might assume

good weather initially, but then redo portions of its search when the weather

agent tells it that bad weather is forecast for a particular area. Eventually

the agents arrive at a consistent vacation plan.

The potential advantage of using mobile agents for information retrieval

is the generic interface which they provide, and the possibility of saving

network bandwidth (which is important if the application is launched from a

mobile device). In the client-server approach, the client may sometimes have

to download large volumes of data from many data repositories in order to

perform some more customized �ltering locally. Mobile agents can perform

�ltering at the repository which is optimal for the query. For example, let

us suppose we want to apply a query x to data retrieved from databases A

and B as a result of performing two queries, respectively q1 at A and q2 at

B (neither interface to A nor to B supports query x). If one of the queries

q1 and q2 (say q1) returns a very large volume of data, we could save the

network bandwidth as follows. First, we send two agents to A and B where

they locally collect results of the queries q1 and q2. Then, they communicate

and agree that the agent carrying the results of query q2 (as lower in quantity)

could migrate to database A, where the query x would be performed on both

sets of retrieved data and the �nal result sent back to the client.

The example showed the advantage of using mobile agents over tradi-

tional SQL-based interfaces. In database systems, we can specify an arbi-

trary query, expressed as an SQL program, executed as a transaction which

is distributed and highly optimised. However, we cannot easily access data

that are not maintained by SQL-servers. Moreover, the agents can migrate or

5.3 Information Retrieval 109

clone themselves on new sites and repeat querying, without necessarily occu-

pying resources on sites previously visited (they also do not require the client,

who launched the query, to be connected). The
exibility o�ered by mobile

agent interface seems a valuable feature on the Internet, where e-commerce

applications may span many domains which are administered or managed

separately. A typical e-commerce transaction may require access to di�erent

data repositories which almost certainly do not support the same interface

(e.g. SQL). Mobile agents can retrieve various data (e.g. represented as Web

documents, objects, or relational tuples, etc.) and �lter them together in a

common context. Plausible actions include: notifying the client about any

progress in searching, user-customized on-the-
y generation of Web links,

etc. Below, we describe a simple example of the net search application and

propose a good infrastructure for it.

5.3.1 Migration and Communication Pattern

A client enters a query which is semantically reformulated, so as to iden-

tify the domain and goals of searching. The yellow page directory or net

search engines are used to identify target servers for performing information

gathering locally. We assume that the target servers advertise themselves

somehow, specifying the interface and access control. A �rst group of mobile

agents is dispatched to target servers, where the agents cooperatively gather

information, asking the client for additional attributes of the search process,

getting some feedback on the quality of partial data retrieved, and dynami-

cally dispatching themselves to new target servers if necessary (in practice,

probably not more than once or twice).

It is assumed that communication is frequent and is mostly between the

client and agents, or between adjacent agents (e.g. a parent and child). The

volume of data depends on who is the sender. The client may send short

messages (e.g. queries) to mobile search agents, but the agents may send

back large portions of data to the client.

5.3.2 Example Infrastructure

Agents clone themselves (i.e. create child agents with the same or similar

functionality). The clones migrate to new sites carrying partial results if

necessary, the spawning agents remain on their sites. So, the style of agent

migration is one-hop. The agents form a tree with the client as a root of

the tree. The tree-like pattern of agent creation and communication suggest

the Hierarchical Directory infrastructure (such as in x4.1.5). However, since

110 Infrastructure Design for Mobile Agents

there are few agents involved and migrations are rare, the Home Server in-

frastructure (as in x4.1.1) would be good enough. We can combine these two

techniques, as below. Since agents migrate only once, server daemons are

not necessary and the infrastructure can be more light-weight.

The agents spawned on new sites must bind to local resources. The search

agents look up local resource names using a local name service (the name of

the local name server, or trader, would be known on each runtime system, so

that agents landing on a new site can easily invoke this server and ask, e.g.

for the interface to the local database). The agents expire after the search is

completed (a termination message may need to be sent by the client, or they

just expire after some suÆciently long timeout).

Messages from the client (root) to the search agents might be forwarded

along the branches of the tree and anonymously broadcast to all clones in the

branch (if required). Or, the client might want to contact only the current

leaves of the tree. Then, the message is distributed in the tree as before

but ignored by clones which are not leaves. Thus, agents can serve as active

forwarding proxies, forwarding messages to their clones if required. Finally,

a search agent might be contacted directly by the client if the client knows

the agent name. The client is assumed not to migrate, otherwise, \waiting

rooms" (described before) or proxy clients might be used. The proxy client

would forward to the client all messages received from search agents.

Encodings The infrastructure should support creation of two kinds of

agents: stationary agents which never migrate, and one-hop agents which

can migrate only once. For convenience, we may introduce a new high-level

language construct for creating one-hop agents. The execution of spawn a s

= P in Q would create a new agent a on the current site, with body P (using

agentagentagent), and immediately spawn the agent on site s (using migratemigratemigrate). After

migration, Q commences execution, in parallel with the rest of the body of

the spawning agent. An agent name a is binding in P and Q. The agent name

a would be encoded by a pair of the actual agent name and the address of s.

Agents in a user program communicate using location-independent mes-

sages. The encoding is as follows. An agent a which wants to send a message

to b �rst tries to send the message locally, if this fails then the message is

sent directly to the site recorded in b's name. Since agents cannot migrate

once they are spawned, the message will be delivered.

The advantage of such an infrastructure is good scalability and good in-

teroperability (since the infrastructure is deployed dynamically and does not

depend on any global service for tracking locations). Agents of the same

application manage their locations by themselves, forwarding messages from

5.4 Fault-Tolerance 111

other agents if required (no daemons necessary). The disadvantage is that

agents can only migrate once. Some higher order communication mecha-

nisms can be built on top of forwarding agents like active tuplespace (such

as proposed in [CLZ98]). Agents can record some context-based data on sites

they visit and enable incoming agents (of the same application) to retrieve

these data.

5.4 Fault-Tolerance

The semantics of application operations (e.g. time related), may have a great

impact on the design of infrastructure and tolerance of system failures. For

example, the information gathering process is idempotent | if something

goes wrong, we can interrupt the process (losing partial results) and start

it again. The result of a new search might be more accurate or not, but

usually it does not matter (since the client cannot observe any di�erence).

However, if the computation is long-running we may want to occasionally

store partial results and agents to a non-volatile store and recover the state

of computation after failure when the system is restarted. On the other hand,

the monitoring process requires real-time, continuous access to the resources

monitored. It may not be desirable to stop this long-running process in the

middle (e.g. selling and buying shares would depend on the
uctuations of

the stock market; the stock agents are expected to react at the right moment).

The resource servers have to be replicated in order to provide high availability

in spite of failures. Di�erent levels of fault tolerance are therefore required

to satisfy the di�erent semantics.

A simple method to achieve fault-tolerance in a distributed system is

through process checkpointing, message logging, and recovery after failures.

Checkpointing means recording the process state from time to time on a

stable store. After a failure occurs and the machine is restarted, we recover

the process from this state (called the process checkpoint). Processes must

restart computation in a consistent state. That is, the restarting state of

one process should not causally depend on the restarting state of another

process. The problem is to ensure that after distributed recovery, there will

be no orphan messages observed (i.e. messages which are received without

having been sent), and no messages that have been sent but not delivered.

A way to handle these problems is to roll back the execution of the processes

until a consistent global checkpoint is found.

A recovery algorithm based on repeatedly rolling back processes to earlier

checkpoints may lead to a number of problems that have to be sorted out by

the algorithm. Cascading rollbacks may lead to a total failure when the only

112 Infrastructure Design for Mobile Agents

consistent state is the initial state. A computation that is made fault resilient

by checkpointing and recovery might exhibit stuttering, i.e. producing the

same output or asking for the same input twice. Messages in transit from

failed or rolled-back processes cause a problem of message duplication (see,

e.g. [CJ97] for references).

The method of distributed checkpointing and recovery requires that the

processes executing on each site have access to stable storage on that site and

if the site fails, it will be restarted. Below, we present a solution where we

do not require all machines to have access to stable storage; host machines

are chosen from a pool of available machines and can fail-stop (except those

doing checkpoints, which must be recoverable).

5.4.1 Mobile Agent Support for Checkpointing

Our motivation is that mobile agents could reduce the dependency on some

host machines and network connections, by moving computation around if

necessary. For example, processes that execute on unreliable machines or

computers connected ad-hoc by wireless connections, might want to leave

these machines at some critical points of execution (e.g. a period of fre-

quent communication), and move the distributed computation state to one

machine (called a \meeting place"), where they could exchange messages

locally, with no need for communication over the network. After the com-

munication is �nished, processes could migrate back to their host sites, and

continue computation and interaction with the users. If the \meeting place"

site is reliable and allows process checkpointing but the other sites are not

reliable and do not allow access to a disk store, the \meeting place" may

facilitate the building of fault-tolerant applications as described below.

We de�ne a communication transaction in process A to be �nite com-

putation during which A will frequently output or input messages (e.g. the

application code of some �nite negotiation protocol might be de�ned as a

communication transaction). Our transaction is local to the process where it

has been de�ned | in particular, the communication transaction T de�ned

in agent A is independent of any transactions de�ned in processes communi-

cating with A.

Processes of the communication transaction that execute on unreliable

host machines could migrate to the \meeting place", checkpoint their state,

execute the communication transaction, checkpoint again and migrate back

to their host machines (or some other machine if the host machine failed). If

a host machine fails, we recover processes which have been executing on this

machine from their last checkpoints stored at the \meeting place". Since this

checkpoint is guaranteed to be consistent (processes on the failed machine

5.5 Large-Scale Parallel Computation 113

did not communicate over network), there is no need to roll back processes

executing on other machines. Thus, we can avoid problems of distributed

checkpointing and recovery because the most critical part of the algorithm

is localised (i.e. the consistent global checkpoint is found locally). Moreover,

traditional techniques of checkpointing and recovery would be of no use, since

we assumed that some host machines do not have access to stable storage

(therefore, with every failure we would have to restart computation from the

beginning).

Below, we consider an example of a large-scale parallel computation where

mobility allows for the dynamic deployment of the application. Then, we

propose a suitable infrastructure for it, which tolerates machine and link

failures. Another similar application of mobility is dynamic relocation of

computation from a site which is about to shut down.

5.5 Large-Scale Parallel Computation

We have long-running, parallel computation spawned on a large number of

host machines in a wide-area network. Parallel computation can utilize the

CPU power of many single computers and thus improve the overall perfor-

mance. Examples of such computations are large-scale scienti�c computa-

tions built on top of MPI (the Message-Passing Interface standard) or PVM

(Parallel Virtual Machine).

5.5.1 Migration and Communication Pattern

Concurrent processes of the computation may occasionally want to commu-

nicate (e.g. exchange partial results). Communication is infrequent. The

host computers are generally unreliable. They may fail, be switched o�, or

rebooted at any time. Processes executing on a machine which failed are

lost. The computation is a repeatable process and it does not necessarily

require speci�c resources (i.e. host machines can be chosen from a pool of

free machines). However, it would be undesirable to have to repeat the com-

putation from the beginning, each time some failure occurred. It may take

a long time to complete the computation. Therefore, we should ensure that

distributed computation will make progress in spite of machine failures and

broken links. Since the host computers do not have access to stable storage,

standard methods of checkpointing and recovery cannot be used. Due to

a very large number of computers and processes, other techniques, such as

process replication on distinct machines, may not be practically useful nor

eÆcient in wide-area networks.

114 Infrastructure Design for Mobile Agents

5.5.2 Example Infrastructure

Let the computation be deployed as a collection of mobile agents, each ex-

ecuting a number of concurrent processes. The agents are spawned from a

machine which is assumed to be reliable and having access to a stable store

(we call this site a \meeting place"). A star-like pattern of migration sug-

gests a centralised infrastructure, such as the Central Server infrastructure

described in x4.1.1, where the server would be a meeting place. Below we

�rst describe the general idea of the infrastructure, then the encoding of

agent creation and location-independent output. We assume there is a dae-

mon agent in the \meeting place" which knows current agent locations and

is responsible for agent checkpointing and recovery.

If agent A executing on a remote site wants to communicate with some

agent B, it will �rst migrate to the \meeting place" and call for B. The

agent B must suspend execution at some point and migrate to the \meeting

place" (unless it is already there), and then agents A and B can perform

the communication transaction locally. The application programmer should

ensure that there would not be any frantic migrations forth and back. They

can do that by grouping frequent input and output operations into a sin-

gle programming block | the communication transaction. For example, a

given process might execute the protocol for exchanging partial results as

one communication transaction. Mobile agents involved in the transaction

will be called up to the \meeting place" in a lazy way (i.e. when they are

needed). After the transaction has completed, the agent would migrate to

the remote site, which would be either the previous site, or a site chosen from

a pool of available non-failed sites (e.g. if the previous site failed). If we were

to adopt some scheduling policy of choosing sites, it would even be possible

to balance the workload on host machines by scheduling agent migrations to

sites which are free (or less loaded).

Encodings The application is initially spawned from the \meeting place"

| a site which is assumed to be reliable. Agents are created dynamically

whenever required. However, each time a new agent is created it has to be

correctly checkpointed. Therefore, the encoding of agentagentagent would require the

spawning agent to �rst migrate to the \meeting place" (if not there), where

a new child agent is created, registered at the daemon, and checkpointed.

Then, both agents can migrate back to the remote site.

The application programmer uses location-independent messages for com-

munication, and two high-level language operations dododo "start" and dododo

"commit and migrate to" s for expressing a communication transaction,

encoded as follows. The execution of dododo "start" as part of an agent results

5.6 Event-Driven Mobility 115

in the whole agent migrating to a \meeting place". The execution of dododo

"commit and migrate to" s results in checkpointing the whole agent state

on the current site and migration of the agent to site s, or some arbitrary

site if none is speci�ed. The location-independent output is encoded as fol-

lows. We �rst migrate to the \meeting place" (unless we were already there,

e.g. performing dododo "start" earlier). Then, we send locally. If this fails, the

\meeting place" daemon calls for the message recipient to migrate and then

the output can be �nished locally. After the message has been delivered, the

sender and receiver either migrate to their previous sites, or if the output or

input is part of some transaction, the agent executing it will continue at the

\meeting place" until dododo "commit and migrate to" s is performed. On

departure from the \meeting place" site, agents leaving the site are always

checkpointed.

If a remote site or agent on that site has been suspected of failure (e.g. as

a result of calling for the agent), all agents on the suspected site (or only the

a�ected one) are recovered from the last checkpoint stored at the \meeting

place" and executed locally or sent to a free site (or to the same site after

it recovers). Agents are given incarnation numbers which are incremented

each time the agent is recovered from the last checkpoint. Any agents arriv-

ing to the \meeting place" from a site which has been incorrectly suspected

of failure, will be �rst examined by a daemon and discarded if some new

incarnations of these agents (with higher numbers) have already been recov-

ered from local checkpoints. The daemon will know all agent locations and

incarnation numbers.

5.6 Event-Driven Mobility

In this section, we describe two applications of event-driven mobility: multi-

media and collaborative work (CSCW) in the local-area network, and video-

conferencing and chat applications in the wide-area network. In the �rst ap-

plication, mobility results from physical movements of people, in the second

one, mobility is a tool for adapting to variations in network characteristics.

An event here is an asynchronous message or signal, which may trigger some

actions.

In a teleporting system [RBM+94], a user application interface follows

the user. The current physical location of the user is monitored by an active

badge location system [HH94]. Each user wears a badge which periodically

transmits a unique infra-red signal. A network of detectors allows the physi-

cal location of the user to be detected. When a user is near some machine and

clicks a button on their active badge, their current session shows up on the

116 Infrastructure Design for Mobile Agents

new machine. The teleporting is based on the X-windows system. Only the

user interface follows a user; applications do not themselves migrate. Bacon,

Bates and Halls [BBH97], extend the idea and describe using an event system

for multimedia and CSCW applications, which are able to move around a

network, remapping user interfaces and stream-based endpoints like cameras,

microphones, and speakers to the user's current location. In general, applica-

tions could use some event infrastructure and register their interest in some

events. The infrastructure would notify its clients of any events which match

their interests. The clients may then trigger some actions, such as dispatch-

ing code on the machine which is near the user, or summoning mobile agents

to a new site. The advantage of using mobility is a dynamic deployment

of the application on new machines, possibly with automatic redirection of

communications.

A di�erent approach to using event-driven mobility is represented in

[BPR98], where code mobility is used in a videoconference system as a means

to achieve better system customization. It is achieved by: (1) enabling users

to dynamically upload the conference server with code describing some cus-

tomized processing (e.g. coding algorithms, QoS policy, etc.), (2) enabling

the server to enhance its performance through server migration or cloning

on a di�erent site, triggered by changes in the network conditions. The

videoconference server is an example of network-aware mobile programs, i.e.

programs that can use mobility as a tool to adapt to variations in network

characteristics. Mobility allows applications to recover from a poor initial

placement of some data-structures (services, etc.) used by the application

by repositioning it to a more suitable location. The advantage of a mobility-

based strategy over replicating these structures at all suitable points in the

network, is that it allows services used for a short time only to be set up

without requiring extensive server placement.

Network-awareness inspired several applications, e.g. a chat server

[RASS97], capable of enhancing its performance through server code migra-

tion. It allows multiple users to have an online conversation. To ensure that

all participants see the same conversation and that new participants can dy-

namically join ongoing conversations, a central server is used to serialise and

broadcast the contributions. The desired behaviour of the chat application

is to provide a rapid response time to all participants so that a conversation

can make quick progress. The response time for a particular participant de-

pends on the latency between it and the central server. The application can

take advantage of the mobility support to place the chat server so as to min-

imise the maximum response time seen by any participant. It is sensitive to

changes in the latency of a link over a period of time, so that the server can

change its location during conversations. Network-awareness also provided

the rationale for exploiting active networks [TSS+97].

5.6 Event-Driven Mobility 117

5.6.1 Mobile Agent Support for Events

The event system must provide support for event registration and noti�ca-

tion. Before clients can receive event noti�cation, they should �rst register

with the event manager by sending the manager a list of types of all events

which they want to be noti�ed about, together with the location information

about where the clients wish the noti�cations to be sent. The event man-

ager �lters each event it receives by notifying only those clients that have

registered to receive events of that type. This mechanism can be extended to

group-oriented events, i.e. events that are reliably sent to a group of clients.

The clients forming the group have to register with the event manager.

One could imagine that mobile agents are clients who register at the event

manager and are noti�ed about events. For example, Concordia [WPWD97]

supports events and event groups to enable mobile agents to collaborate.

The system o�ers two kinds of event groups for collaboration: basic and

persistent (in the latter, group membership survives site failures, and reliable,

transparent recovery from failures via proxy objects is provided; the details

are not given). In our model, we could build the event infrastructure just

above the infrastructure supporting location-independent messages. Then,

the event manager may use location-independent messages for sending event

noti�cations to mobile agents. For event groups, the event manager should

reliably broadcast events to all agents that form a group1.

In some applications, mobile agents may only be interested in receiving

certain events while executing on a given site. After moving to a new site,

the events from previous locations are irrelevant, and the agents might want

to register again at the local event manager. In that case we can think

of infrastructure, where a mobile agent registering with the event manager

speci�es the location where the event noti�cations should be sent (usually it

would be the agent's current site). The event manager can now use location-

dependent communication for sending event noti�cations to the agent. If

the agent migrated away, the event system would not make any attempt

to deliver the event; the event would be discarded and the agent silently

unregistered from the (local) event system.

1The reliable broadcast (see, e.g. [HT94]) guarantees three properties: (1) all non-
faulty processes agree on the set of events they deliver, (2) all events broadcast by non-
faulty processes are delivered, and (3) no spurious events are ever delivered. While these
properties may suÆce for many applications, sometimes the order in which events are
delivered is important (e.g. �rst-in-�rst-out, causal, and total order broadcasts would be
required).

118 Infrastructure Design for Mobile Agents

5.6.2 Migration and Communication Pattern

Network-aware applications, such as chat and videoconference servers, could

dynamically spawn monitoring agents to prede�ned sites, where the agents

would register at the local resource monitors. These agents would be in-

formed about variations in local network characteristics by receiving events

from the local resource monitors. If performance conditions, e.g. network

latency from the clients, were not satisfactory, the chat or videoconference

servers might interrogate the monitoring agents and migrate to a di�erent

site, which received more than a threshold score. The server would use

location-dependent communication to monitoring agents (they do not mi-

grate a second time). The clients would use location-independent communi-

cation to communicate with the network-aware server as it migrated.

5.6.3 Example Infrastructure

The monitoring agents migrate to prede�ned sites where they register at

the local resource managers. The address of the manager daemon would

be obtained from a local trader, maintained by the agent system (all public

names, such as local daemon names are assumed to be registered in the local

trader when the daemon starts up). The event registration message would

contain the agent current location (this site should not change | in the case

of site failures, the application server would have to spawn the monitoring

agent again). The monitoring agents collect events about the local network

characteristics and compute a summary for the application server.

The infrastructure for location-independent communication between the

server and monitoring agents can be such as described in x5.1. Also, it

would be convenient to abstract away from the location information when

expressing the application protocol of the communication between the server

and clients (i.e. participants of the videoconference or Internet chat). Note,

that some infrastructure algorithms, such as forwarding pointers, are clearly

not appropriate here, because they would still depend on congested sites and

links. Instead, the server might synchronise their moves with all the clients

(as in the Group Communication infrastructure, described in x4.1.4). Since

migration is infrequent, the infrastructure should perform well. Similarly, the

client could synchronise with the server while migrating (it does not need to

synchronise with other counterparts since we assume that the architecture

is centralised and the whole communication
ow between the conference or

chat participants is forwarded through the server).

5.6 Event-Driven Mobility 119

It also has to be decided how new users could register at the server and

join the conference. The server should either leave forwarding pointers from

some initial site (forwarding messages along a chain of sites is acceptable

here since registration takes place only once), or in some other way make it

possible for the new participants to know its current location.

120 Infrastructure Design for Mobile Agents

Chapter 6

The PA Application and

Infrastructure Design

In this chapter we discuss a small example application, the Personal Assis-

tant (PA), and the design of an infrastructure suited to it in more detail (a

preliminary discussion appeared in [WS99]). The focus is on demonstrating

the bene�ts of a multi-level architecture based on clearly de�ned levels of

abstraction; we have therefore chosen a somewhat idealised example applica-

tion. The required infrastructure is still far from trivial, however. Expressing

it as a Nomadic Pict translation allows us to include an almost complete ex-

ecutable description, making the details of concurrency, synchronisation and

distribution clear and precise. By considering the migration and commu-

nication patterns of the application we can argue that this infrastructure

algorithm is a practicable choice, whereas many others, including those in

chapter 4, would not be.

We begin with a simple centralised algorithm in x6.2.1, which is further

extended to provide support for disconnected operation (x6.2.2). Then, we

extend the original algorithm of x6.2.1 to obtain a scalable infrastructure

(x6.2.3). Finally, we discuss informally how to merge the algorithm of x6.2.2

with the scalable architecture described in x6.2.3, so as to enable mobile

computing in wide-area and ad-hoc networks.

In order to give a feeling of \mobile agent world", we have implemented

the Mobile-Chat-Room application, and asked people in di�erent oÆces to

try our demo. The Mobile-Chat-Room uses a somewhat simpli�ed idea of

the PA application, where we have only a single PA agent, which stores the

whole state of people's conversation and can migrate on demand. The users

can summon the PA agent to their site using a summoner agent. The static

summoners (one per site) are dynamically spawned on all sites when the ap-

plication starts. The migrating agent carries the history log of the messages

122 The PA Application and Infrastructure Design

typed by users on di�erent machines. We tested the program on di�erent

machines connected to the Computer Laboratory network; di�erent architec-

tures were involved (Alpha and ix86). The application communicates with

the user by an X-windows interface, implemented using a simple graphical

library of Nomadic Pict.

6.1 Application

We consider the support of collaborations within (say) a large computer sci-

ence department, spread over several buildings. Most individuals will be

involved in a few collaborations, each of 2{10 people. Individuals move fre-

quently between oÆces, labs and public spaces; impromptu working meetings

may develop anywhere. Individuals may also travel to other institutions, and

continue collaboration from there over a wide-area network, as well as be-

ing involved in any new collaborations locally. They would therefore like

to be able to summon their working state (which may be complex, consist-

ing of editors, �le browsers, tests-in-progress etc.) to any machine. These

transfers should preserve any communications that they are engaged in, for

example audio/video links with other members of the project. It should also

be possible to summon the working state to a mobile computer, work in a

disconnected mode, and later reconnect to the network (possibly in an other

institution), and complete all pending communications.

To achieve this, the user's working state can be encapsulated in a mobile

agent, an electronic personal assistant (PA), that can migrate on demand.

6.1.1 High-Level Architecture

We implement the PA application in High-Level Nomadic Pict with three
classes of agents: the PAs themselves, which migrate from site to site; sum-
moner agents, which are static (one per site) and are used to call the PAs;
and name server agents, also static, which maintain a lookup table from
the textual keys of PAs to their internal agent names. They interact using
location-independent communication on channel names.

registPA : ^[String Agent] moveOn : ^Site

summonPA : ^[String Agent Site] notFound : ^[]

mid : ^String

A sample PA is below. It has 4 parallel components; a registration message, a
message sent to another PA, a replicated input that receives data from other
PAs and prints it, and a replicated input that receives migration commands
and executes them.

6.1 Application 123

agentagentagent PA1 =

(registPA @ NameServer ! ["pawelsPA" PA1]

| mid @ PA2 ! "Outgoing data stream"

| mid ?* d = print!(+$ "Incoming data:" d)

| moveOn ?* s =

(migratemigratemigrate tototo s (print!"Hello Pawel! Your PA has arrived...")))

For simplicity, we assume a single name server. The name server below
maintains a map from strings to agent names; it receives new mappings on
registPA. The map is stored as an output on the internal channel names.
Summon requests are received on summonPA, containing a textual key and
the name/site of the summoner. If the key has been registered the name
server sends a migration command to the corresponding PA agent, otherwise
it sends an error message to the summoner.

agentagentagent NameServer =

newnewnew names : ^(Map String Agent)

(names ! (Map.make ==)

| registPA ?* [descr PA] = names ? m = names!(map.add m descr PA)

| summonPA ?* [descr Su s] = names ? m =

(switchswitchswitch (map.lookup m descr) ofofof (

fFound> PA : Agentg -> moveOn @ PA ! s

fNotFound> _g -> notFound @ Su ! [])

| names!m))

The summoner at site s is as below. It gets strings from the local console,
sending them as requests to the name server.

agentagentagent Summoner =

valvalval PAkey = (sys.read_line [])

(summonPA @ NameServer![PAkey Summoner s]

| notFound?_= print!(+$ PAkey " not found!"))

In the actual implementation the top-level encoding launches summoners dy-

namically, using the standard migration primitive, onto the list of active sites.

For simplicity the implementation uses location-independent communication

throughout, despite the fact that the name server and summoners are static.

6.1.2 Migration and Communication Pattern

A usable infrastructure for the PA application can only be designed in the

context of detailed assumptions, both about the system properties and about

the expected behaviour of the high-level agents.

For the former, in the �rst stage we assume that the application is running

over a large LAN, in which reliable messaging can be provided by lower-level

124 The PA Application and Infrastructure Design

protocols1 and all machines are at roughly the same communication cost

distance from each other. Machines are also basically reliable, although from

time to time it is necessary to reboot or turn o�. The LAN is under a single

management, with no internal �rewalls.

As for the assumptions about the expected behaviour of the high-level

agents, we suppose that the number of PA agents is of the same order as the

number of people in the lab. Each PA will migrate infrequently, with minutes

or hours between migrations. The path of migrations is unpredictable | it

may range over the whole LAN. The migrations of di�erent PAs are essen-

tially uncorrelated in time. It is common for people to work for extended

periods at machines out of their oÆces. PAs communicate between each

other frequently, with signi�cant bandwidth | e.g. audio/video messages or

streams, and other data (that must be delivered reliably).

These assumptions are not wholly appropriate | the application also

demands disconnected operation (on laptops) and a higher level of fault-

tolerance. Therefore, in the second stage we also assume that PAs can mi-

grate to laptop computers. A user can disconnect the computer from the

network, work in a disconnected mode for extended periods, and later re-

connect in the same or other network domain. All messages that cannot be

delivered to a laptop or sent out from the laptop due to disconnection will be

transparently delivered upon reconnection. A migration from a disconnected

computer fails, causing an exception in the high-level program. In the last

stage, we assume migration and communication in a wide-area network, so

the system should scale well. We discuss infrastructure design addressing the

problems of disconnected operation and scalability in x6.2.2 and x6.2.3, but

for the sake of a clear example infrastructure we neglect them for now.

6.2 Design of Appropriate Infrastructure

We develop our infrastructure in several steps, beginning with the two ex-

tremely simple algorithms described precisely in x4.2. The Central Server

algorithm has a single server that records the current site of every agent;

agents synchronise with the server before and after migrations; application

(location-independent) messages are sent via the server. The Forwarding

Pointers algorithm has a daemon on each site; when an agent migrates away

it leaves a pointer to the site that it is going to (and the daemon there).

Application messages are delivered by the daemons, following the pointers.

1We do not deal with the unreliable case here so as not to complicate the encoding
too much, however a simple algorithm for disconnected operation, described in 6.2.2, can
tolerate some message losses; it should give the feel of this style of working.

6.2 Design of Appropriate Infrastructure 125

Neither of these algorithms suÆce for the PA application. The central server

is a bottleneck for all inter-PA communication; further, all application mes-

sages must make two hops (and these messages make up the main source of

network load). The forwarding pointers algorithm removes the bottleneck,

but there application messages may have to make many hops, even in the

common case.

Adapting the Central Server so as to reduce the number of application-

message hops required, we have the Query Server algorithm. As before, it has

a server that records the current site of every agent, and agents synchronise

with it on migration. In addition, each site has a daemon. An application

message is sent to the daemon which then queries the server to discover the

site of the target agent; the message is then sent to the daemon on the target

site. If the agent has migrated away, the message is returned to the original

daemon to try again. In the common case application messages will here take

only one hop. The obvious defect is the large number of control messages

between daemons and the server; to reduce these each site's daemon can

maintain a cache of location data.

The Query Server with Caching does this. When a daemon receives a

mis-delivered message, for an agent that has left its site, the message is

forwarded to the server. The server both forwards the message on to the

agent's current site and sends a cache-update message to the originating

daemon. In the common case application messages are therefore delivered in

only one hop.

This may seem well-suited to the PA application, but the textual descrip-

tion omits many critical points | it does not unambiguously identify a single

algorithm. To do so, and to develop reasonable con�dence in its correctness

and performance, a more precise description is required, ideally in an exe-

cutable form. We give such a description, as a Nomadic Pict encoding, in

x6.2.1.

These algorithms clearly explore only a part of the design space | one

can envisage e.g. splitting the servers into many parts (one dealing with

agents created for each user), forwarding pointers in which long chains are

collapsed, and server-less algorithms in which the agents of a collaborative

group synchronise among themselves. An exhaustive discussion is beyond the

scope of this dissertation. One can also analyse the application further | in

fact, the migrations of each user's PA may usually be within a small group of

machines, e.g. those of a research group. More sophisticated infrastructures

might use some heuristics to take advantage of this. For a critical application

a quantitative analysis may be required.

A closely related application for multimedia CSCW is described in

[BHB97], implemented (with real video support) using the Tube Mobile

126 The PA Application and Infrastructure Design

Agent System. A low-level multimedia stream library was used; streams

were reconnected on movement at the application level. Moving this into

the infrastructure would involve synchronisation between the source and all

sinks of a stream on any migration.

6.2.1 Example Infrastructure: The QSC Algorithm

In this section we describe the Query Server with Caching (QSC) algorithm

as a Nomadic Pict encoding, thereby making all the details of concurrency

and synchronisation precise.

An encoding consists of three parts, a top-level translation (applied to

whole programs), an auxiliary compositional translation [[P]] of subprograms

P, de�ned phrase-by-phrase, and an encoding of types. The QSC encoding

involves three main classes of agent: the query server Q itself (on a single

site), the daemons (one on each site), and the translations of high-level ap-

plication agents (which may migrate). The top-level translation of a program

P launches the query server and all the daemons before executing [[P]]. The

query server, and the code which launches daemons (which is assumed to

be part of agent toplevel on site firstSite), are given in Figure 6.1; the

interesting clauses of the compositional translation are in the text below.

The messages sent between agents fall into three groups, implementing

high-level agent creation, agent migration, and location-independent mes-

sages. Typical executions are illustrated in Figure 6.2 and below.

Each class of agent maintains some explicit state as an output on a lock

channel. The query server maintains a map from each agent name to the site

(and daemon) where the agent is currently located. This is kept accurate

when agents are created or migrate. Each daemon maintains a map from

some agent names to the site (and daemon) that they guess the agent is

located at. This is updated only when a message delivery fails. The encoding

of each high-level agent records its current site (and daemon).
To send a location-independent message the translation of a high-level

agent simply asks the local daemon to send it. The compositional translation
of c@b!v, `send v to channel c in agent b', is below.

[[c @ b ! v]][a Q SQ]

def
=

currentloc?[S DS]=

iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS]

elseelseelse ()

This �rst reads the name S of the current site and the name DS of the local

daemon from the agent's lock channel currentloc, then sends [b c v] on

the channel try message to DS, replacing the lock after the message is sent.

6.2 Design of Appropriate Infrastructure 127

Once the lock is released, the agent is free and may, for example, migrate

away while the message is delivered. The translation is parametric on the

triple [a Q SQ] of the name a of the agent containing this phrase, the name Q

of the query server, and the site SQ of the query server | for this phrase, none

of those is used. We return later to the process of delivery of the message.
To migrate while keeping the query server's map accurate, the translation

of a migratemigratemigrate in a high-level agent synchronises with the query server before
and after actually migrating, with migrating, migrated, and ack messages.

[[migratemigratemigrate tototo u P]][a Q SQ]

def
=

currentloc?[S DS]=

valvalval [U DU] = u

(<Q @ SQ>migrating!a

| ack?_ = migratemigratemigrate tototo U

(<Q @ SQ>migrated![U DU]

| ack?_ = (currentloc![U DU]

| [[P]][a Q SQ])))

A sample execution is below.

a@S Q@SQ

X
X
X
X
X
X
X
XXz

migrating!a

�
�
�
�
�
�
�
��9

ack!

migratemigratemigratetototo U

X
X
X
X
X
X
X
XXz

migrated![UDU]

�
�
�
�
�
�
�
��9

ack!

The query server's lock is kept during the migration. The agent's own record

of its current site and daemon must also be updated with the new data [U

DU] when the agent's lock is released. Note that in the body of the encoding

the name DU of the daemon on the target site must be available. This is

achieved by encoding site names in the high-level program by pairs of a site

name and the associated daemon name; there is a translation of types

[[Agent]]
def
= Agent

[[Site]]
def
= [Site Agent]

128 The PA Application and Infrastructure Design

agentagentagent Q = (* the query server *)

newnewnew lock : ^(Map Agent [Site Agent])

(lock!(map.make ==) (* initialise the lock *)

| register?*[a [S DS]]= (* register a new agent *)

lock?m=

(lock!(map.add m a [S DS])

| <a@S>ack![])

| migrating?*a= (* lock during a migration *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [S:Site DS:Agent]g ->

(<a@S>ack![]

| migrated?[S' DS'] =

(lock!(map.add m a [S' DS'])

| <a@S'>ack![]))

fNotFound> _g -> ())

| message?*[#X DU U a:Agent c:^X v:X]= (* deal with a lost msg *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [R : Site DR : Agent]g ->

(<DU @ U>update![a [R DR]]

| <DR @ R>try_deliver![Q SQ a c v truetruetrue]

| dack?_ = lock!m)

fNotFound> _g -> ()))

daemondaemon?*S:Site= (* launch a daemon on site S *)

agentagentagent D =

migratemigratemigrate tototo S

newnewnew lock : ^(Map Agent [Site Agent]) (* the daemon body *)

(<toplevel@firstSite>ndack![S D]

| lock!(map.make ==)

| try_message?*[#X a:Agent c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [R : Site DR : Agent]g ->

(<DR @ R>try_deliver![D S a c v falsefalsefalse]

| lock!m)

fNotFound> _g ->

(<Q @ SQ>message![D S a c v]

| lock!m))

| try_deliver?*[#X DU:Agent U:Site a:Agent c:^X v:X ackme:Bool] =

iflocaliflocaliflocal <a>c!v thenthenthen

ififif ackme thenthenthen <DU @ U>dack![] elseelseelse ()

elseelseelse <Q @ SQ>message![DU U a c v]

| update?*[a s] = lock?m= lock!(map.add m a s))

Figure 6.1: Parts of the Top Level in the QSC Algorithm { The Query Server

and Daemon Daemon

6.2 Design of Appropriate Infrastructure 129

The best scenario: good guess in the D cache. This should be the common

case.

a@S D@S DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

try deliver![DS b c v false]

-

c!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

message![DS b c v]

�
�
�
�

�
�

�
��9

update![b[R DR]]
X
X
X
X
X
X
X
XXz

try deliver![QSQ b c v true]

�
�
�
�
�
�
�
��9

dack!
-

c!v

The worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

try deliver![DS b c v false]

X
X
X
X
X
X
X
XXz

message![DS b c v]

�
�
�
�
�
�
�
��

X
X
X
X
X
X
X
XXz

try deliver![QSQ b c v true]

�
�

�
�

�
�

�
��9

update![b[R DR]]
�
�
�
�
�
�
�
��9

dack!
-

c!v

Horizontal arrows are synchronised communications within a single machine

(using iflocaliflocaliflocal); slanted arrows are asynchronous messages.

Figure 6.2: The Delivery of Location-Independent Message c@b!v from a to

b in the QSC Algorithm

130 The PA Application and Infrastructure Design

Similarly, a high-level agent a must synchronise with the query server
while creating a new agent b, with messages on register and ack.

[[agentagentagent b = P ininin P']][a Q SQ]

def
=

currentloc?[S DS]=

agentagentagent b =

(<Q @ SQ>register![b [S DS]]

| ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

(currentloc![S DS]

| [[P]][b Q SQ])

elseelseelse ())

ininin

ack?_= (currentloc![S DS]

| [[P']][a Q SQ])

The current site/daemon data for the new agent must be initialised to [S

DS]; the creating agent is prevented from migrating away until the registra-

tion has taken place by keeping its currentloc lock until an ack is received

from b. A sample execution is below.

a@S b@S Q@SQ

agentagentagent b = ...

s
X
X
X
X
X
X
X
XXz

register![b[S DS]]

�
�
�
�
�
�
�
��9

ack!

�

ack!

Returning to the process of message delivery, there are three cases (see

Figure 6.2). Consider the implementation of c@b!v in agent a on site S, where

the daemon is D. Suppose b is on site R, where the daemon is DR. Either D

has the correct site/daemon of b cached, or D has no cache data for b, or it

has incorrect cache data. In the �rst case D sends a try deliver message to

DR which delivers the message to b using iflocaliflocaliflocal. For the PA application

this should be the common case; it requires only one network message.

In the cache-miss case D sends a message message to the query server,

which both sends a try deliver message to DR (which then delivers suc-

cessfully) and an update message back to D (which updates its cache). The

query server's lock is kept until the message is delivered, thus preventing b

from migrating until then.

6.2 Design of Appropriate Infrastructure 131

Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer

to DU@U. It will send a try deliver message to DU which will be unable to

deliver the message. DU will then send a message to the query server, much

as before (except that the cache update message still goes to D, not to DU).

Re�nements and Extensions The algorithm is very asynchronous; some

additional optimisations are feasible (e.g. updating the daemon's cache more

frequently, more asynchrony in QS, replacing explicit acknowledgement mes-

sages by piggybacking control data, e.g. a number of messages in transit). It

should have good performance for the PA application, with most application-

level messages delivered in a single hop and none taking more than three hops

(though 5 messages). The query server is involved only between a migration

and the time at which all relevant daemons receive a cache update; this

should be a short interval.

The algorithm does, however, depend on reliable machines. The query

server has critical state; the daemons do not, and so in principle could be

re-installed after a site crash, but it is only possible to reboot a machine

when no other daemons have pointers (that they will use) to it. In a re�ned

version of the protocol daemons and the QS would use a store-and-forward

protocol to deliver all messages reliably in spite of failures; the QS would be

replicated. In order to extend collaboration between clusters of domains (e.g.

over a wide-area network), a federated architecture of interconnected servers

must be adopted. In order to minimise communication between domains, the

agents should register and unregister with the local QS on changing domains.

We present an example federated architecture translation in the end of this

chapter.

6.2.2 Disconnected Operation: The QSCD Algorithm

In this section we describe the Query Server with Caching and Disconnec-

tion (QSCD) algorithm which tolerates temporal disconnection of sites. An

agent can disconnect a current site from the network and later reconnect, so

that all high-level messages to and from the site are transparently delivered

irrespective of agent migration and site disconnection. No messages are ever

lost. No duplicate messages are ever received by agents. However, agent

migration is not transparent - a program exception is raised in a high-level

agent if the agent tries to migrate out from a disconnected site; migration

to a site which has been disconnected is blocked until the site is back in the

network.

The algorithm implements disconnection-aware daemons and extends the

high-level language with primitives "disconnect" ininin P and "connect to"

s:Site ininin P to handle disconnection. The algorithm translations are similar

132 The PA Application and Infrastructure Design

to the QSC translations in x6.2.1; the main di�erence is that the inputs used

to receive acknowledgments are replaced by inputs with timeout in order to

detect disconnection. If there is a timeout then an alternative action is per-

formed (e.g. a message can be sent again, an operation can be blocked, etc.).

The precise de�nition of the query server and daemon is given in Figures 6.3

and 6.4. The translations described below are mainly to illustrate the use

of a rudimentary module system of the high-level language, an input with

timeout, and replicated messages (with a property that exactly one message

is eventually delivered). Therefore, in order not to complicate the algorithm,

we made a few simpli�cations. Firstly, the algorithm speci�ed below is not

very practical since a site disconnection will block all agent migrations and

all communications which need to be forwarded through the query server.

Secondly, each time the operation agentagentagent or migratemigratemigrate fails due to a timeout,

an exception is invoked in the application (in a more practical algorithm,

the infrastructure should rather try to repeat the operation with a slightly

longer timeout before �nally signalling problems). Therefore, the algorithms

that are applicable to actual systems with mobile computers would have to

be yet more delicate and complex. We discuss some of these re�nements and

extensions informally in the end of x6.2.2 and x6.2.3 (e.g. an algorithm which

allows ad-hoc connection of computers, i.e. with no connection to the stable

part of the network).

The messages sent between agents fall into �ve groups, implementing

high-level agent creation, agent migration, location-independent messages,

and two operations for site disconnection and reconnection to the network.

Below, we describe the compositional translation of these cases. We omit de-

tailed description of the translation whenever it is very similar to the trans-

lation of the simple QSC algorithm, presented in x6.2.1.

Each class of agents maintains some explicit state as an output on a lock

channel. The meaning of this state is as in the simple QSC algorithm.
To send a location-independent message the translation of a high-level

agent �rst tries to send the message locally. If that fails, the message is
forwarded to the local daemon as in the QSC algorithm. The composition
translation of c@b!v, `send v to channel c in agent b', is below.

[[c @ b ! v]]
def
=

iflocaliflocaliflocal c!v thenthenthen ()

elseelseelse currentloc?[S DS]=

iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS]

elseelseelse ()

The local output (in the 2nd line) allows adjacent agents (on the same site)

to communicate even if the local daemon will be blocked in the case of site

6.2 Design of Appropriate Infrastructure 133

disconnection. We return later to the process of delivery of the message

which is sent to the local daemon.
To migrate while keeping the query server's map accurate, the translation

of a migratemigratemigrate in a high-level agent a synchronises with the query server [Q SQ]

before and after actually migrating, with migrating, migrated, and mack

messages. We also deal with a case when the current site is disconnected. If
the query server does not respond within a certain period of time t (i.e. the
current site is disconnected or the communication link is slow), migration will
be abandoned (with an exception message err). Alternatively, we could ask
the local daemon for more accurate information (the daemon always knows
about the connection/reconnection status) but due to the lack of space we
omit details here.

[[migratemigratemigrate tototo u P]][a Q SQ t err]

def
=

currentloc?[S DS]=

valvalval [U DU] = u

newnewnew mack : ^[]

(<Q @ SQ>migrating![a mack]

| waitwaitwait mack?_ = (migratemigratemigrate tototo U

(<Q @ SQ>migrated![U DU]

| mack?_ = (currentloc![U DU]

| [[P]][a Q SQ t err])))

timeouttimeouttimeout t ->

(currentloc![S DS]

| mack?_ = (* connection is back, or timeout too short *)

<Q @ SQ>migrated![S DS]

| err!"No connection." (* raise exception *)

| [[P]][a Q SQ t]))

This �rst creates a fresh private channel mack, then sends [a mack] on the

channel migrating to the query server, in parallel with a timed input on

the channel mack. If the reply on mack is received within t seconds (ap-

proximately), the migration proceeds exactly as in the basic QSC algorithm.

Otherwise, the timeout clause is triggered and the migration is abandoned.

However, if in fact the connection to the server was made possible (e.g. a

timeout was simply too short) then the message migrating would be deliv-

ered to the server and the server would send to the agent a reply message

mack. Note, that the query server blocks any disconnection requests after re-

ceiving a message migrating and can only release the lock after receiving an

acknowledgement that migration is �nished. Therefore, although migration

failed the agent may still have to send a message migrated in the timeout

clause and release the lock in the query server; the message will then contain

an address [S DS] of the current site.

134 The PA Application and Infrastructure Design

agentagentagent Q = (* the query server *)

(migratemigratemigrate to SQ

newnewnew lock : ^(Map Agent SiteTy)

(<toplevel@firstSite>nd![SQ Q] (* ack that Q is on SQ *)

| lock!(map.make ==) (* initialise the lock *)

| register?*[a [S DS]]= (* register a new agent *)

lock?m=

(lock!(map.add m a [S DS])

| <a@S>ack![])

| migrating?*[a:Agent ack:^[]] = (* lock during a migration *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [S : Site DS : Agent]g ->

(<a@S>ack![]

| migrated?[S' DS'] =

(lock!(map.add m a [S' DS'])

| <a@S'>ack![]))

fNotFound> _g -> ())

| message?*[#X DU U a:Agent c:^X v:X dack:^SiteTy]=

(* deal with a lost message *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [R : Site DR : Agent]g ->

(<DU @ U>dack![R DR]

| <DR @ R>message![Q SQ a c v dack]

| dack?_ = lock!(map.add m a [R DR]))

fNotFound> _g -> ())

| block?*[a:Agent S:Site]=

lock?m= (<a@S>ack![]

| buffer!m)

| unblock?*[a:Agent S:Site]=

buffer?m= (lock!m

| <a@S>ack![])

))

Figure 6.3: Parts of the Top Level in the QSCD Algorithm { the Query

Server

6.2 Design of Appropriate Infrastructure 135

daemondaemon?*S:Site= (* launch a daemon D on site S *)

(agentagentagent D = (* the daemon body *)

(migratemigratemigrate tototo S

newnewnew lock : ^(Map Agent SiteTy)

defdefdef send_message [#X Q:Agent SQ:Site D:Agent S:Site

a:Agent c:^X v:X m:(Map Agent SiteTy)

dack:^SiteTy] =

(<Q @ SQ>message![D S a c v dack]

| dack?s= lock!(map.add m a s))

(<toplevel@firstSite>nd![S D] (* ack that D is on S *)

| lock!(map.make ==)

| try_message?*[#X a:Agent c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [R : Site DR : Agent]g ->

(newnewnew dack : ^SiteTy

(<DR @ R>message![D S a c v dack]

| waitwaitwait

dack?s= lock!(map.add m a s)

timeouttimeouttimeout t ->

send_message![Q SQ D S a c v m dack]))

fNotFound> _g -> send_message![Q SQ D S a c v m

(newnewnew dack : ^SiteTy)])

| message?*[#X DU:Agent U:Site a:Agent c:^X v:X dack:^SiteTy] =

iflocaliflocaliflocal <a>msg![dack c v] thenthenthen <DU @ U>dack![S D]

elseelseelse lock?m= (<Q @ SQ>message![D S a c v dack]

| dack?s= (lock!(map.add m a s)

| <DU @ U>dack!s))

| disconnect?*a = lock?m= (buffer!m | <Q @ SQ>block![a S])

| connect?*[a _ _] = (* connect and unblock msgs *)

buffer?m= (<Q @ SQ>unblock![a S]

| lock!m)))

())

Figure 6.4: Parts of the Top Level in the QSCD Algorithm { the Daemon

Daemon

136 The PA Application and Infrastructure Design

The query server's lock is kept during migration. This lock will protect

the current and target sites from being disconnected by other agents while

migration is in progress. The agent's own record of its current site and

daemon must also be updated with the new data [U DU] (or restored from

the old data if the migration failed) when the agent's lock is released. Site

names in the high-level program are encoded as before, i.e. by pairs of a site

name and the associated daemon name; there is a translation of types

[[Agent]]
def
= Agent

[[Site]]
def
= [Site Agent] = SiteTy

Similarly, a high-level agent a must synchronise with the query server
while creating a new agent b, with messages on register and ack. If the
query server is not accessible, the creation fails.

[[agentagentagent b = P ininin P']][a Q SQ t err]

def
=

currentloc?[S DS]=

agentagentagent b =

(newnewnew msglog : ^(Map Id [])

(<Q @ SQ>register![b [S DS]]

| waitwaitwait ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

(currentloc![S DS]

| [[P]][b Q SQ t err])

elseelseelse ()

timeouttimeouttimeout t -> (<a>ack![]

| err!"No connection.") (* raise exception *)

| msglog!(map.make ==)

| msg?*[#X id c v]= msglog?m= switchswitchswitch (map.lookup m id) ofofof (

fNotFound> _g -> (c!v | msglog!(map.add m id []))

fFound> _g -> msglog!m))) (* ignore duplicate *)

ininin

ack?_= (currentloc![S DS]

| [[P']][a Q SQ t err])

As in the original algorithm, the current site/daemon data for the new agent

must be initialised to [S DS]; the creating agent is prevented from migrating

away until registration has taken place by keeping its currentloc lock until

an ack is received from b. The connection with the query server is tested by

a timeout mechanism. If connection is suspected of being broken, the ack

is sent immediately to the creating agent. The last two clauses of the body

of b are responsible for ignoring duplicate messages received by the agent.

A message log msglog is created to store unique identi�ers of all messages

received on the channel msg. Messages whose identi�ers are not found in the

6.2 Design of Appropriate Infrastructure 137

log are registered with the log and sent to proper local channels, or discarded

as duplicates otherwise.

Returning to the process of message delivery, there are three basic cases

(see Figure 6.6) as in the simple QSC algorithm. Consider the implemen-

tation of c@b!v in agent a on site S, where the daemon is D. Suppose b is

on site R, where the daemon is DR. Either D has the correct site/daemon of

b cached, or D has no cache data for b, or it has incorrect cache data. In

the �rst case D sends a message message to DR which delivers the message

to b using iflocaliflocaliflocal and sends an acknowledge message dack. For the PA

application this should be the common case; it requires only two network

messages. If dack is not received within a certain time (which means that

either site R is disconnected or the communication link to site R is slow), D

sends a message message to the query server which delivers it correctly as

in the cache-miss case, described below. Each message is augmented with a

unique name dack of a freshly created acknowledge channel. This name is

later used by agent b to look up the message log and discard the message if

it has already been delivered (when the timeout was caused by a slow link

between S and R). Agents DR and Q use dack to sent back acknowledgments

and location updates, which are delivered unambiguously.

In the cache-miss case D sends a message message to the query server,

which both sends a message message to DR (which then delivers successfully)

and a dack message back to D (which updates its cache). The query server's

lock is kept until the message is delivered, thus preventing b from migrating

until then.

Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer to

DU@U. It will send a message message to DU which will be unable to deliver

the message. DU will then send a message to the query server, much as before

(the cache update messages are sent �rst to DU which then forwards it to D).

If D has not received the cache update acknowledgement for a long enough

time, it suspects that something went wrong, and sends a message (with a

dack) to the query server, as in the cache-miss case.

To disconnect a site while not missing messages sent between the site

and a stable part of the network, the translation of a "disconnect" macro

in a high-level agent a synchronises with the local daemon and the query

server. Messages sent from the stable network to the disconnected site will

be blocked in the query server until the site reconnects. In the opposite

direction, cross-network messages sent by agents on the disconnected site

will be blocked in the local daemon. No messages are ever lost.

138 The PA Application and Infrastructure Design

[["disconnect" foo ininin P]][a Q SQ t err]

def
=

currentloc?[S DS]=

iflocaliflocaliflocal <DS>disconnect!a thenthenthen

ack?_= (currentloc![S DS]

| print!"Now you can safely disconnect

your computer."

| [[P]][a Q SQ t err])

elseelseelse ()

Similarly, a high-level agent a must reconnect to the network by invoking a
"connect" macro with a parameter s, 'connect to a query server which is
on site s'. Here, the parameter s is actually not used by the encoding since
the algorithm assumes only one query server. Later, we describe a scalable
version of the algorithm which uses many query servers, and the parameter
can then be useful.

[["connect to" s ininin P]][a Q SQ t err]

def
=

currentloc?[S DS]= valvalval [SQ:Site Q:Agent] = s

iflocaliflocaliflocal <DS>connect![a SQ Q] thenthenthen

ack?_= (currentloc![S DS]

| [[P]][a Q SQ t err])

elseelseelse ()

Note that the server's site in the high-level program (of type Site) is encoded

by a pair of a site name and the associated daemon (query server) name.

Typical executions are illustrated in Figure 6.5.

Re�nements and Extensions The algorithm should have good perfor-

mance for the PA application if the timeout mechanism is set up correctly

(e.g. using some stabilising failure detector), with most application-level mes-

sages delivered in a single hop and none taking more than three hops (though

6 messages). The query server is involved only between migration and the

time at which all relevant daemons receive a cache update; this should be a

short interval. Messages to a disconnected site cannot be delivered and so

they are bu�ered in the query server which will deliver them upon site recon-

nection. However, the algorithm described above is not very practical, since

the query server uses a global lock during disconnected operation, i.e. the

QS blocks high-level messages to all sites if at least one site is disconnected.

Also, an operation \create a new agent" fails with a program exception raised

in a spawning agent, each time the operation is invoked from a disconnected

site. A re�ned version of this algorithm which is free from these problems is

described below.

6.2 Design of Appropriate Infrastructure 139

Disconnect a site from the network.

a@S D@S Q@SQ

-

disconnect!a
X
X
X
X
X
X
X
XXz

block![a S]

�
�
�
�
�
�
�
��

�
�
�
�

�
�

�
��9

ack!

Reconnect a site to the network.

a@S D@S Q@SQ

-

connect![aR DR]
X
X
X
X
X
X
X
XXz

unblock![a S]

�
�
�
�
�
�
�
��

�
�
�
�

�
�

�
��9

ack!

Figure 6.5: The Disconnection and Reconnection Requests in the QSCD

Algorithm

140 The PA Application and Infrastructure Design

The best scenario: good guess in the D cache. This should be the common

case.

a@S D@S Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XX

X
X
X
X
X
X
X
XXz

![..dack] X
X
X
X
X
X
X
XXz

![D S b c v dack]

�
�
�
�

�
�

�
��9

dack!
X
X
X
X
X
X
X
XXz

![Q SQ..dack] �
�
�
�
�
�
�
��

-

msg![dackc v]

�
�
�
�

�
�

�
��9

dack!
�
�
�
�
�
�
�
��9

dack!
-

msg![dackc v]

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

![D S b c v dack]

�
�
�
�

�
�

�
��9

dack!
X
X
X
X
X
X
X
XXz

![Q SQ b c v dack]

�
�
�
�
�
�
�
��9

dack!
-

msg![dackc v]

The worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

![D S b c v dack]

X
X
X
X
X
X
X
XX

![..dack]
X
X
X
X
X
X
X
XXz

![DU U b c v dack]

X
X
X
X
X
X
X
XXz

�
�
�
�
�
�
�
��9

dack!

X
X
X
X
X
X
X
XXz

![Q SQ b c v dack]

�
�

�
�

�
�

�
��9

dack!
�
�
�
�
�
�
�
��9

dack!
-

msg![dackc v]

�
�
�
�
�
�
�
��

X
X
X
X
X
X
X
XXz

![Q SQ b c v dack]

�
�

�
�

�
�

�
��9

dack!
�
�
�
�
�
�
�
��9

dack!
-

msg![dackc v]

The communication in grey colour is executed only if there is a timeout.

Abbreviations: ![..] for message![..], and dack! for dack![R DR]

Figure 6.6: The Delivery of Location-Independent Message c@b!v from a to

b in the QSCD Algorithm

6.2 Design of Appropriate Infrastructure 141

Many sites should be able to disconnect and reconnect at the same time,

and the query server should block communication and migration only to

a site which is currently disconnected. This requires that a query server

maintains a separate map from sites to status information (\connected" or

\disconnected"). A map of agents must contain little locks (each per agent

entry) so that only messages to agents in disconnected sites are bu�ered.

A local daemon has exact knowledge whether there is connection to the

query server or not, so we can improve the algorithm by synchronising agent

migrations with the local daemon (taking care to avoid distributed deadlock

with disconnection requests). Also, only minor re�nements are required to

be able to re-install daemons after a site crash (making a query server fault-

tolerant is much more diÆcult). In the protocol presented here, it is only

possible to reboot a machine when a query server does not have an active

communication link to it.

In the next section, we discuss extensions necessary for ad-hoc connection

of mobile computers. These extensions also allow for non-blocking agent

creation, since the registration messages from a laptop computer may be

sent to a local QS, installed on the laptop, and thus do not depend on the

network availability. Further improvements of the disconnected mode are

plausible, e.g. operations connect and disconnect might be implicit if the

operating system could provide a
ag or an interrupt every time the local

network connection goes up or down (though it might still be useful to have

the operation \connect" in a high-level language).

6.2.3 Wide-Area Architecture: The FQSC Algorithm

In this section we describe the Federated Query Server with Caching (FQSC)

algorithm. We extend the original QSC algorithm which we described in

x6.2.1, so as to allow many query servers, one per local network (domain).

We then discuss re�nements and extensions which are required to support

transferring mobile computers between local networks, and establishing ad-

hoc connections between mobile computers.

The algorithm has a collection of query servers. For each agent there is at

least one server (the current local server) that records the current site of the

agent; agents synchronise with the local server before and after migrations

(and register at a new query server if moving to a new domain); application

(location-independent) messages are sent directly to destinations according

to the cache information, or | if there is no good cache data | via the

servers, which work as forwarding pointer chains that are collapsed when

possible.

142 The PA Application and Infrastructure Design

The protocol is almost the same as the original QSC algorithm, except

that a query server can forward a message to another query server which

eventually delivers the message. If a query server has no pointer for the

destination agent of a message then it will forward the message to the QS

in the network (domain) where the destination agent was created; to make

this possible an agent name is encoded by a triple of an agent name and

the names of the site and query server on which the agent was originally

registered. Similarly, a site name is encoded by a record of a site name and

the names of the daemon, query server, and server's site for that site. The

precise de�nition of the query server and daemon is given in Figures 6.7 and

6.8. A translation of types is following:

[[Agent]]
def
= [Agent Agent Site] = AgentTy

[[Site]]
def
= [Site Agent Agent Site] = SiteTy

To send a location-independent message the translation of a high-level
agent simply asks the local daemon to send it, exactly as in the original QSC
algorithm. The compositional translation of c@b!v, `send v to channel c in
agent b', is below.

[[c @ b ! v]]a
def
=

currentloc?[S DS Q SQ]=

iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS Q SQ]

elseelseelse ()

This time the translation is parametric only on the name a of the agent

containing this phrase but the agent's lock channel currentloc stores four

values: the name S of the current site, the name DS of the local daemon, and

the names Q and SQ of the current query server and the server's site.

To migrate while keeping the query server's map accurate, the translation

of a migratemigratemigrate in a high-level agent synchronises with the local query server

before and after actually migrating, with migrating, migrated, and ack

messages.

6.2 Design of Appropriate Infrastructure 143

serverserver?*SQ:Site= (* launch a query server Q on site SQ *)

(agentagentagent Q =

(migratemigratemigrate tototo SQ

newnewnew lock : ^(Map AgentTy SiteTy)

(<toplevel@firstSite>nq![Q SQ]

| lock!(map.make ==) (* initialise the lock *)

| register?*[a [S DS]]= (* register a new agent *)

lock?m= (lock!(map.add m a [S DS])

| (val [A _ _] = a <A@S>ack![]))

| migrating?*a = (* lock during a migration *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [S : Site DS : Agent]g ->

(val [A _ _] = a

(<A@S>ack![]

| migrated?[S' DS' DR' R'] =

(lock!(map.add m a [R' DR'])

| <A@S'>ack![])))

fNotFound> _g -> ())

| message?*[#X DU U a:AgentTy c:^X v:X _]=

(* deal with a lost message *)

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [R : Site DR : Agent]g ->

(<DR @ R>message![Q SQ a c v true]

| update?[_ [S' DS']] =

(<DU @ U>update![a [S' DS']]

| lock!(map.add m a [S' DS'])))

fNotFound> _g ->

(val [A Q' SQ'] = a

(<Q' @ SQ'>message![Q SQ a c v true]

| update?[_ [S' DS']] =

(<DU @ U>update![a [S' DS']]

| lock!(map.add m a [S' DS'])))))

))

())

Figure 6.7: Parts of the Top Level in the FQSC Algorithm { the Query Server

144 The PA Application and Infrastructure Design

daemondaemon?*[S:Site [Q:Agent SQ:Site]]=

(* launch a daemon D on site S *)

(* Q is a local Query Server located at site SQ *)

(agentagentagent D = (* the daemon body *)

(migratemigratemigrate tototo S

new lock : ^(Map AgentTy SiteTy)

(<toplevel@firstSite>nd![S D Q SQ]

| lock!(map.make ==)

| try_message?*[#X a:AgentTy c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (

fFound> [R : Site DR : Agent]g ->

(<DR @ R>message![D S a c v false]

| lock!m)

fNotFound> _g ->

(<Q @ SQ>message![D S a c v true]

| lock!m))

| message?*[#X DU:Agent U:Site a:AgentTy c:^X v:X ackme:Bool] =

(valvalval [A _ _] = a

iflocaliflocaliflocal <A>c!v thenthenthen

ififif ackme thenthenthen <DU @ U>update![a [S D]] elseelseelse ()

elseelseelse <Q @ SQ>message![DU U a c v true])

| update?*[a s] = lock?m= lock!(map.add m a s)))

())

Figure 6.8: Parts of the Top Level in the FQSC Algorithm { the Daemon

Daemon

6.2 Design of Appropriate Infrastructure 145

[[migratemigratemigrate tototo u P]]a
def
=

currentloc?[S DS Q SQ]=

valvalval [A _ _] = a

valvalval [U DU Q' SQ'] = u

(<Q @ SQ>migrating!a

| ack?_= (migratemigratemigrate tototo U

ififif (== [Q' SQ'] [Q SQ]) thenthenthen (* an easy case *)

(<Q @ SQ>migrated![U DU DU U]

| ack?_ = (currentloc![U DU Q SQ]

| [[P]]a))

elseelseelse (* a cross-domain hop! *)

(<Q' @ SQ'>register![a [U DU]]

| ack?_= (<Q @ SQ>migrated![U DU Q' SQ']

| ack?_ = (currentloc![U DU Q' SQ']

| [[P]]a)))))

After migration we check whether the destination site is in the same domain.

If so (see a thenthenthen clause), we proceed as in the original QSC algorithm. In the

case of cross-domain migration (see an elseelseelse clause), this registers an agent

a at the new query server Q' with a register message, and then sends [U

DU Q' SQ'] on the channel migrated to the old query server Q, releasing

the lock with a new value after the message is sent. A �rst message for the

destination agent a sent to the old query server Q will be forwarded to Q',

which will forward it to a daemon DU that delivers the message as usual.

A sample execution of a local (within domain) migration is below.

a@S Q@SQ

X
X
X
X
X
X
X
XXz

migrating!a

�
�
�
�
�
�
�
��9

ack!

migratemigratemigratetototo U

X
X
X
X
X
X
X
XXz

migrated![UDU DU U]

�
�
�
�
�
�
�
��9

ack!

146 The PA Application and Infrastructure Design

A sample execution of a cross-domain migration with registration at Q'.

a@S Q@SQ Q'@SQ'

X
X
X
X
X
X
X
XXz

migrating!a

�
�
�
�

�
�

�
��9

ack!

migratemigratemigratetototo U
X
X
X
X
X
X
X
XX
X
X
X
X
X
X
X
XXz

register![a[U DU]]

�
�
�
�
�
�
�
��

�
�
�
�

�
�

�
��9

ack!

X
X
X
X
X
X
X
XXz

migrated![UDU Q' SQ']

�
�
�
�

�
�

�
��9

ack!

Similarly, a high-level agent a must synchronise with the query server
while creating a new agent b, with messages on register and ack. The
encoding is the same as in the original QSC algorithm except for the param-
eters.

[[agentagentagent b = P ininin P']]a =

currentloc?[S DS Q SQ]=

(val [A _ _] = a

agent B =

val b = [B Q SQ]

(<Q @ SQ>register![b [S DS]]

| ack?_= iflocal <A>ack![] then

(currentloc![S DS Q SQ]

| [[P]]b)

else ())

in

val b = [B Q SQ]

ack?_= (currentloc![S DS Q SQ]

| [[P']]a))

In the record [S DS Q SQ], S is a name of a current site, DS, a name of a

current daemon, Q, a name of a local query server, and SQ, a name of Q's site.

6.2 Design of Appropriate Infrastructure 147

A sample execution is below.

a@S b@S Q@SQ

create

s
X
X
X
X
X
X
X
XXz

register![b[S DS]]

�
�
�
�
�
�
�
��9

ack!

�

ack!

Returning to the process of message delivery, there are three basic cases as

in the original QSC algorithm, and a few variations (see Figure 6.9). Consider

the implementation of c@b!v in agent a on site S, where the daemon is D.

Suppose b is on site R, where the daemon is DR. Either D has the correct

site/daemon of b cached, or D has no cache data for b, or it has incorrect

cache data. In the �rst case D sends a message message to DR which delivers

the message to b using iflocaliflocaliflocal. For the PA application this should be the

common case (also for the cross-domain communication); it requires only one

network message.

In the cache-miss case D sends a message message to the query server Q

which forwards the message. After receiving an update message the query

server Q forwards the update back to D (which updates its cache). In Fig-

ure 6.9 the message message is forwarded directly to DR (which then delivers

successfully). However, two other situations are possible. If the forwarding

pointer for the agent b is not found, Q sends the message to the query server

in the domain where b was created (names of this query server and its site

are encoded as part of the name b). Similarly, if b has migrated between

domains but there has been no communication to b since then (and so no

cache updates), Q will contain a pointer to the query server in the domain

visited by b. In this case, the message message is forwarded between query

servers until it eventually reaches DR. Both situations, i.e. a server's cache

miss and cross-domain forwarding, are illustrated in Figure 6.9 using a grey

colour. The forwarding pointer chain is collapsed by sending the update

messages which update caches with b's current location.

Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer to

DU@U. It will send a message message to DU which will be unable to deliver the

message. DU will then send a message to the query server, much as before

(except that the cache update message still goes to D, not to DU). Note,

that the daemon D can also be a query server (if this were a cross-domain

communication).

148 The PA Application and Infrastructure Design

The best scenario: good guess in the D cache. This should be the common

case.

a@S D@S DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

message![DS b c v false]

-

c!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

message![DS b c v true]

X
X
X
X
X
X
X
XXz

message![QSQ b c v true]

�
�
�
�
�
�
�
��9

update![b[R DR]]
-

c!v

�
�
�
�

�
�

�
��9

update![b[R DR]]

The 1st worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-

try message![bc v]
X
X
X
X
X
X
X
XXz

message![DS b c v false]

X
X
X
X
X
X
X
XXz

message![DS b c v true]

X
X
X
X
X
X
X
XXz

message![QSQ b c v true]

�
�
�
�
�
�
�
��9

update![b[R DR]]
-

c!v

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
��9

update![b[R DR]]

The 2nd worst scenario: not-updated (or no) guess in the query server's

cache.

Q@SQ Q'@SQ'

X
X
X
X
X
X
X
XXz

message![QSQ b c v true]

q q q

�
�
�
�
�
�

�
��9

update![b[R DR]]

Figure 6.9: The Delivery of Location-Independent Message c@b!v from a to

b in the FQSC Algorithm

6.2 Design of Appropriate Infrastructure 149

Re�nements and Extensions Some additional optimisations are feasi-

ble (e.g. updating the daemon's and server's cache more frequently). In the

algorithm presented above, the forwarding pointer chain may grow if there

is no communication to migrating agents. However, in the PA application

migrations between domains are rare and they usually take place between no

more than a few domains only (since agent cross-domain migrations corre-

spond to travels of individuals working on projects). The cost of forwarding

a message to an agent in an other domain is paid only for the �rst message

(then the forwarding pointer chain is collapsed and any subsequent messages

for this agent are sent directly, if the agent does not migrate, or indirectly

through the local domain QS if the agent moves locally). Local migrations

within a domain can be more frequent than inter-domain moves, and thus

sending too many cache updates must be avoided. For example, if agent

migrations are local, the algorithm sends a cache-update message to other

query servers only in the case of incorrect-cache-hits from these servers (this

is similar to the \wrong guess in the D cache" case of the original QSC

algorithm). The algorithm could be made more asynchronous and use time-

stamped asynchronous messages instead of explicit locking (e.g. in the case of

the hand-over operation when agents and messages travel between domains),

e.g. as in the protocol for location directory maintenance in mobile networks

described in [RRD95], which allows for consistent location information to be

maintained about mobile hosts that switch o� and arbitrarily reappear in

some other part of the network; the algorithm tolerates base station failures

and the corruption of a logical time stamp.

The algorithms described in x6.2.2 and x6.2.3 can be used to build a

complete generic infrastructure for the PA application that uses a federated

architecture, augmented with support for disconnected operation. To discon-

nect a site (e.g. a mobile computer) from a current local area network and

reconnect it in some other network, the translation of a site daemon acts in

a similar way to the translation of agent migration between domains, i.e. it

has to synchronise with the query servers of these two domains. The algo-

rithm allows mobile computers to connect to each other and establish ad-hoc

communications, assuming that at least one has a local query server installed

(so that this computer can be a \domain" to which the other connects).

A fault-tolerant version of the algorithm may require an additional level of

infrastructure to detect failures. The QSCD algorithm uses a timeout mech-

anism to detect disconnection of laptop computers from a local QS server. If

the laptop is connected to the server via a LAN (as assumed in 6.2.2), then

we should be able to set the timeout properly. However, detecting faults by

setting timeouts on remote agents in a wide-area network is bound to be in-

accurate since message latency in these networks tends to be large and highly

150 The PA Application and Infrastructure Design

unpredictable. We can still attempt to detect failures using timeouts in the

case of local communication (i.e. between agents and QS server in a LAN),

but for the inter-domain communication the algorithm may use some addi-

tional infrastructure, such as a network event noti�cation service, or some

other similar service, e.g. the gossip-based scalable failure detector [RMH98].

The event noti�cation service would have daemons that use timeouts only

on neighbouring servers and local clients, and notify the service subscribers

about failures. In addition to timeouts, the infrastructure may use other

techniques to detect failures where appropriate (see, e.g. [Vog96]), for exam-

ple failure noti�cations generated by the operating system which recovered

after a failure.

Chapter 7

Nomadic Pict Implementation

Nomadic Pict implementation has a two-level architecture, illustrated in

Figure 7.1, following that of the language. The low-level extends the Pict

language [PT97a] by providing direct support for agent creation, migration

and location-dependent communication. The high level supports location-

independent communication by applying translations { the compiler takes

as input a program in the high-level language together with an encoding of

each high-level primitive into the low-level language (expressed in a simple

meta-language). It type-checks and applies the encoding; the resulting low-

level intermediate code is executed on a relatively straightforward distributed

run-time system. The source code of the compiler doubled the size of the

Pict compiler, and is around 15000 lines of Objective Caml. The runtime

system is only around 1700 lines of Objective Caml; this, however, does not

include distributed infrastructures and standard libraries, which are written

in Nomadic Pict. Below, we describe the compiler and runtime system in

more detail.

7.1 Architecture of the Compiler

Programs in Nomadic Pict are compiled in the same way as they are formally

speci�ed, by translating the high-level program into the low-level language,

which in turn is compiled to the intermediate code executed by the run-

time system. The compilation of a Nomadic Pict program has the following

phases:

� parsing the high-level program and infrastructure encoding

� importing separately compiled units (e.g. standard libs)

152 Nomadic Pict Implementation

Unix / TCP-IP

agent migration and
location-dependent
asynchronous reliable
messages;
parallel programs

location-dependent
streams;
Unix processes

agent migration and
location-independent
asynchronous reliable
messages;
parallel programs

Distributed

Local Virtual Machine
Nomadic Pict

Application

Infrastructure

Translations

Figure 7.1: The Nomadic Pict Two-Levels of Abstraction

7.1 Architecture of the Compiler 153

� scope resolution and typechecking the high-level program and meta-

de�nitions of the encoding

� applying the encoding and generating the low-level code

� scope resolution and typechecking the low-level code

� continuation-passing translation of the low-level code to the intermedi-

ate code

� joining imported code (if there are any bindings exported from a unit)

� incremental optimisation of the intermediate code

7.1.1 Compilation Phases

Below, we describe brie
y the more interesting compilation phases. The gen-

eration of the core language from the low-level language is based on modules

of Pierce and Turner's Pict compiler, extended with rules for the Nomadic

Pict language. See the Pict de�nition [PT97b] for a formal description of

this translation for Pict constructs.

Parsing The compiler uses standard lexing and parsing tools to generate

an abstract syntax tree in which issues of precedence and parenthesization

have been resolved. Some very straightforward derived forms are desugared

during parsing, e.g. the parallel composition of three or more processes is

transformed to a nested sequence of binary parallel compositions.

Importing A program consists of a collection of named compilation units,

each comprising a sequence of import statements followed by a sequence

of declarations. Individual units can be compiled separately. Compilation

begins with the unit that has been designated as the main unit. A program

de�ned in the main unit can use the high-level language. In such a case, a

top-level clause of the infrastructure encoding and compositional translation

of high-level primitives must be included. The program begins execution

from the top-level clause which contains all the necessary daemons and initial

values of the encoding parameters.

Scope Resolution The process of resolving variable scopes yields an

alpha-renamed copy of the original term. The alpha-renamed term has the

property that every bound variable is unique, so that a simpli�ed implemen-

tation of substitution and inlining can be used.

154 Nomadic Pict Implementation

Typechecking Some languages, such as ML and Haskell, which are based

on the Hindley-Milner type system, can automatically infer all necessary type

annotations. Pict's type system, however, is signi�cantly more powerful then

the Hindley-Milner type system (e.g. it allows higher-order polymorphism

and subtyping) and a simple partial type inference algorithm has been used

(the algorithm is partial, in the sense that it may sometimes have to ask the

user to add more explicit type information rather than determine the types

itself). The algorithm is formalised in [PT97b]. It exploits the situations

where the type assigned to a bound variable can be completely determined

by the surrounding program context. The inference is local, in the sense that

it only uses the immediately surrounding context to try to �ll in a missing

type annotation. For example, the variable x in the input expression c?x=e

has type Int if the channel c is known to have type ^Int.

In Nomadic Pict, typechecking is performed twice, before and after an

encoding is applied. This allows more precise type error reporting. Types

are erased before execution and so there is no way that type annotations in

the program could a�ect its behaviour (an exception is type Dyn, to date

only partially implemented, which allows data that are created dynamically

to be used safely).

Applying Encodings Each high-level construct in a program is replaced

by its meta-de�nition, in such a way that free occurrences of variables in the

meta-de�nition are substituted by current variables from the program. Also

certain types, such as Agent and Site de�ned in the program are replaced

by their encodings.

Continuation Passing Style The compiler uses some binding-time im-

provements, like conversion of a program to continuation passing style1, in

order to remove the overhead of interpreting the source program and the

overhead of environment lookups. In particular, the continuation-passing

transformations are used to simplify complex expressions of the low-level

language so that they fall within the core language. The complex expres-

sions are complex values, value declarations (valvalval x = v P), application (v

v1 ... vn), and abstractions such as a \function de�nition" defdefdef f (a1

a2) = v.

1In functional languages, a program is in continuation passing style (CPS) if every
function takes a continuation as a parameter, and whenever a function would normally
return a result r to its caller, it instead returns the result of applying the continuation to
r. A continuation is a kind of abstract return address, and represents the whole of the
rest of the computation after the function call.

7.1 Architecture of the Compiler 155

The \continuation-passing" conversion in Pict is similar to those used

in some compilers for functional languages (e.g. [App92]). In essence, it

transforms a complex value expression into a process that performs what-

ever computation is necessary and sends the �nal value along a designated

continuation channel.

A complex value is always evaluated \strictly" to yield a simple value,

which is substituted for the complex expression. For example, when we

write c![13 (v v1 v2)], we do not mean to send the expression [13 (v v1

v2)] along c but to send a simple value evaluated from this complex value.

Thus, the expression must be interpreted as a core language expression that

evaluates �rst the `function' value v, followed by the argument values v1 and

v2, then calls the function instructed to return its result along the application

expression's continuation channel, and �nally packages the result received

along the continuation channel into a simple tuple along with the integer 13

and sends the tuple along c.

Optimisations In the last phase, all separately compiled units are joined

with the main unit, and the compiler incrementally optimises the resulting

intermediate program. It does a static analysis and partial evaluation of a

program, reducing �-computations whenever possible and removing inacces-

sible fragments of code. The remaining computations make up the generated

or \residual" program executed by the runtime system. The Pict optimiser

also checks the program's consistency | the following conditions must hold:

no unbound variables (every variable mentioned in the program must be in

scope), all bound variables must be unique, static variables (i.e. ones whose

value is known to be a compile-time constant) are represented as global vari-

ables in the generated code. In the current implementation of Nomadic Pict,

global variables are dynamically copied to a local agent environment upon

agent creation; other solutions are plausible in a more optimised version of

the compiler and runtime system.

7.1.2 Architecture-Independent Core Language

The compiler generates the intermediate code of the core language which

is executed by the Nomadic Pict runtime system. The intermediate code is

architecture-independent; its constructs, forming a core language, correspond

approximately to those of the Low Level Nomadic �-calculus (extended with

value types and system function calls). Process terms are output atoms,

input and migrate pre�xes, parallel compositions, processes pre�xed by dec-

larations, terminate, test-and-send, and conditional processes. There is no

separate primitive for cross-network communication | these are all encoded

156 Nomadic Pict Implementation

by terms of agent migration and test-and-send. Declarations introduce new

channels and agents. Finally, Values (i.e. entities that can be communi-

cated on channels) include variables, agent and channel names, records of

values, and constants (such as String, Char, Int, and Bool). Record values

generalise tuple values (since the labels in a record are optional).

A program that uses only the Pict language is compiled to a subclass of

the core language, and an original Pict backend can be chosen to translate

it to a C program which is then compiled and executed on a single machine.

See [Tur96] for a detailed description of generating C code from Pict core

language.

7.2 Architecture of the Runtime System

Because much of the system functionality, including all distributed infras-

tructure, is written in Nomadic Pict, the runtime system has a very simple

architecture. It consists of two layers, illustrated in Figure 7.2: the Vir-

tual Machine and I/O server, above TCP. It is written in Objective Caml

(O'Caml) [Ler95]. The implementation of the virtual machine builds on the

simple abstract machine designed for Pict [Tur96].

7.2.1 Virtual Machine and Execution Fairness

The virtual machine maintains a state consisting of an agent store of agent

closures; the agent names are partitioned into an agent queue, of agents

waiting to be scheduled, and a waiting room, of agents whose process terms

are all blocked. An agent closure consists of a run queue, of Nomadic �

process/environment pairs waiting to be scheduled (round-robin), channel

queues of terms that are blocked on internal or inter-agent communication,

and an environment. Environments record bindings of variables to channels

and basic values. The virtual machine executes in steps, in each of which

the closure of the agent at the front of the agent queue is executed for a

�xed number of interactions. This ensures fair execution of the �ne-grain

parallelism in the language. Agents with an empty run queue wait in the

waiting room. They stay suspended until some other agent sends an output

term to them. The only operations that remove agent closures from the agent

store are terminate and migrate. A migrate moves an agent to a remote

site. On the remote site, the agent is placed at the end of the agent queue.

The agent scheduler provides fair execution, guaranteeing that runnable

concurrent processes of all non-terminating agents will eventually be exe-

cuted, and that processes waiting to communicate on a channel will eventu-

7.2 Architecture of the Runtime System 157

1 . . . n

TCP

ak

aj aj+1

ai ai+1

Environment

c queue

c queue

P

n2

[Q e]Q

v

1

2

ai

n1

s 1 cc,T

s 2 vv,T

[P e]

Channel queues

Run queue

Trader’s map

I/O server

 I/O threads
1 . . . n

Closure of agent

Incoming agent

Migrant agent

Virtual machine

System function
 call threads

Waiting room

Agent queue

Agent store

 Closure ai

c

Figure 7.2: Architecture of the Nomadic Pict Runtime System. Abbrevia-

tions: ai, agent IDs; ci, channel IDs; ni, names; v, values; P or Q, processes;

ei, local environments; si, strings

158 Nomadic Pict Implementation

ally succeed (of course, if suÆcient communication partners become available

on a local or remote site). The implementation is deterministic and the lan-

guage parallel operations are interleaved fairly. Non-deterministic behaviour

will naturally arise because of time-dependent interactions between the ab-

stract machine, the I/O server, and the system function calls to the operating

system.

7.2.2 Interaction with an Operating System and User

For many library functions execution consists of one or more calls to corre-

sponding Unix I/O routines. For example, processing print!"foo" involves

an invocation of the O'Caml library call output string. All interaction

between the abstract behaviour of a Nomadic Pict library function and its

environment (the operating system and user) occurs via invocations of sys-

tem function calls. When a system function call reaches the front of the run

queue some special processing takes place. The interpreter invokes the sys-

tem function, passing all the function parameters and a result channel. The

functions which can block for some time or can potentially never return (such

as input from a user) will be executed within a separate execution thread, so

that they do not block parallel computation. The agent operations migrate

and terminate are special cases | they have to wait until all threads that

execute system functions invoked inside the agent have terminated. If the

system function returns any value, the Nomadic Pict program will receive it

along the result channel.

7.2.3 I/O Server and Trader Service

The multithreaded I/O server receives incoming agents, consisting of an agent

name and an agent closure; they are unmarshalled and placed in the agent

store. Note that an agent closure contains the entire state of an agent, allow-

ing agent execution to be resumed from the point where it was suspended.

Agent communication uses standard network protocols (TCP in our �rst im-

plementation). The runtime system does not support any reliable protocols

that are tailored for agents, such as the Agent Transfer Protocol of [LA97].

Such protocols must be encoded explicitly in an infrastructure encoding {

the key point in our experiments is to understand the dependencies between

machines (both in the infrastructure and in application programs); we want

to understand exactly how the system behaves under failure, not simply to

make things that behave well under very partial failure. This is assisted by

the purely local nature of the runtime system implementation.

7.2 Architecture of the Runtime System 159

The trader service o�ers two library functions publish and subscribe

that can be used in programs which are executed separately in order to ex-

change names (such as channel and agent names), basic values (e.g. strings),

and any complex values which can be sent along channels. The function

publish takes as arguments a value to be published (which must be con-

verted to a type Dyn) and a string keyword to identify the value. A program

which wants to receive the value invokes a function subscribe, passing as

arguments a string keyword and the current agent and site names. The

function blocks until the value is available. The function subscribe returns

a dynamic value which can be typechecked against expected types using

typecasetypecasetypecase. If the dynamic typechecking succeeds basic values extracted from

the dynamic value can be used in the program (e.g. for communication with

the other program). When the runtime system starts up, the user has to spec-

ify an address for the runtime system selected to maintain the trader's map

from strings to published names and values. The library functions publish

and subscribe, written in Nomadic Pict, implement the whole distributed

protocol which is necessary to contact the trading runtime system (so, the

implementation of the runtime system remains purely local).

160 Nomadic Pict Implementation

Chapter 8

Conclusions and Future Work

In this dissertation we have looked at mobile agents from the perspective of

programming languages. We have shown that the �-calculus extended with

primitives for agent creation, migration and location-aware communication

can form a basis for distributed programming language design. Our ex-

perience suggests that high-level concurrent programming languages, which

have a powerful type system and type inference, have a signi�cant advan-

tage over conventional imperative languages. This is simply because writing

distributed applications using these languages is easier and less error-prone,

and so can reduce costs of the product development cycle. While the tech-

nical arguments are convincing, they are not suÆcient for most industrial

companies, and several non-technical hurdles must be addressed along the

way. The gap between the best that research has to o�er and the current

industrial standard is often too large, which results in some misconceptions

(such as \recursive style of programming is hard to learn", etc.). There are,

however, examples in which emerging application areas have allowed the gap

to be bridged and old technology to be displaced. For example, Java (which

shares some ideas with early predecessors, such as ML) has become popular

with the emergence of the World-Wide Web and applets, and has managed

to displace C++ in many areas. The Ericsson example shows that func-

tional languages are already being chosen instead of C++, Java, or C in the

development of some large industrial applications [Arm96].

Work Done within This Thesis Emerging Internet applications require

new infrastructures (such as Mobile Agents, Mobile IP, Jini, TSpaces), above

standard network protocols. The infrastructure algorithms (especially with

mobility) are complex; they need languages that have clean semantics. We

have focused on one problem, the design of communication primitives for

agents to interact. Location-independent primitives can potentially simplify

162 Conclusions and Future Work

application development but they need delicate distributed infrastructure

which must be somewhat application-oriented. To facilitate experimenta-

tion, we have implemented Nomadic Pict, a prototype mobile agent program-

ming language corresponding to our high- and low-level process calculi. The

high-level language, with particular infrastructures for location-independent

communication, is obtained by applying user-supplied translations into the

low-level language. The full language available to the user remains very close

to the process calculus presentation, and can be given rigorous semantics in

a similar style. The operational semantics of the Nomadic calculi provides

a precise and clear understanding of the algorithms' behaviour, aiding de-

sign, and ultimately, one may hope, supporting proofs of correctness and

robustness (see below).

We have used our language to investigate the behaviour of many infras-

tructure algorithms in practice, and to assess the usefulness of our two-level

architecture in applications. For example, we developed a disconnection-

aware and scalable communication infrastructure, designed for the PA agent

application (described in chapter 6). Our infrastructure allows disconnected

operation of PA agents. The PA agent uses location-independent primitives

to communicate with a name server and other PAs. In the low-level encod-

ing of the infrastructure, partition from the network is made explicit. Upon

reconnection, any pending communication is reconciled. A federated archi-

tecture of name servers allows agents to maintain eÆcient communication on

changing between local networks. The algorithms comprise strategies such

as caching and simple adaptive searching; they are highly concurrent.

In our experience with designing such algorithms we have found that the

language provides a good level of abstraction at which potential problems

(such as deadlocks and lost messages) can be seen rather clearly. The uniform

treatment of concurrency and asynchronous messages both within agents and

between machines is a signi�cant gain.

All infrastructures whose translations are included in this thesis have been

prototyped in Nomadic Pict. For testing purposes, we have also written many

short example distributed programs that use message communication, e.g.

Dining Philosophers. EÆciency of the program execution appeared satisfac-

tory (including the distributed algorithms which communicate frequently),

which is encouraging, considering that the runtime system implementation

of Nomadic Pict has not been optimised.

Future Work Proposal An obvious area of future work includes the de-

sign of di�erent infrastructure algorithms for di�erent applications. The

design of infrastructures for wide-area networks should explicitly address the

Conclusions and Future Work 163

problem of administrative boundaries and �rewalls (encoded as part of the

Nomadic Pict translations). A simple infrastructure for the PA application

should also be further re�ned, in order to allow tolerance of arbitrary kinds

of fault in the system. There are also many interesting problems to solve in

the area of the language design and theory. Below, we sketch some of these

problems.

There is work underway to develop proof techniques from the theory of

process calculi (such as observational equivalence) that could be used within

the Nomadic �-calculus framework [Uny]. In particular, Unyapoth is proving

formally the correctness of algorithms proposed in x4.2. An analogous work

should be conducted on formal proofs of more complex algorithms expressed

in Nomadic Pict, such as those described in chapter 6 (this will require to

extend the proof techniques so as to support an input with timeout).

Our low-level language extends the compiler and abstract machine of

Pict, a concurrent but not distributed language based on the �-calculus, to

support our primitives for agent creation, migration, and location-dependent

communication. Analogous extensions could be given for other concurrent

uniprocessor programming languages, such as Amber [Car86], Concurrent

ML [Rep93], and Concurrent Haskell [PGF96].

Our experience shows that the type system designed for Pict is able to

catch a signi�cant number of the most common errors in Nomadic Pict pro-

grams. Of course, that is not to say that there are no useful re�nements one

can make to the type system, and indeed we did not attempt, for example,

to re�ne a subtyping system for locality enforcement of channel types. An-

other important area for further work is the development of an appropriate

module system for Nomadic Pict (e.g. following work on Standard ML). A

simple type-safe trader, which has been currently implemented for dynamic

connection of executing programs, could then be extended so that agents

could publish and subscribe whole modules (as in Facile). The mechanism

should scale well to support a large number of sites, services, and agents.

Turning to semantics, some better notion of time than used in 2.2.3 must

be introduced into the low-level calculus, to allow timeouts to be expressed,

yet the semantics must be kept tractable, to allow robustness properties to

be stated and proved. Failure semantics will require further investigation,

especially in the context of observational equivalence. An important general

question is about the sense in which the semantics of Nomadic Pict relates to

the behaviour of the actual implementation. An operational model by Sewell

[Sew97b] of the interactions between a Pict implementation of Pierce and

Turner (considered as the abstract behaviour of a C program) and its envi-

ronment (modelling an operating system and user) is one example of such an

analysis, but there are many further potential re�nements needed. The im-

164 Conclusions and Future Work

plementation of Nomadic Pict is signi�cantly more complex than Pict (there

are interactions with the network communication protocols such as TCP,

communication and site failures may happen, the system function calls can

be executed as separate threads of control, etc.). Further work is therefore

required to prove that our abstract machine is indeed correct.

In our language, we have used single messages for communication between

agents. One might also consider other high-level communication primitives,

such as location-independent multicast, events, and agent primitives, such

as tree-structured agents. More speculatively, the two levels of abstraction

that we have identi�ed may be a useful basis for work on security properties

of mobile agent infrastructures. However, we have neglected it so far as

not being immediately related to the area of our investigation. To consider

whether a distributed infrastructure for mobile agents is secure one must

�rst be able to de�ne it precisely, and have a clear understanding of how it

is distributed on actual machines. Recent years have seen a lot of research

in the area of security for mobile agents; some results apply directly to the

�-calculus style of communication (e.g. [AFG99]).

Conclusion In conclusion, we believe that the Nomadic �-calculus pre-

sented here can be used as a simple theoretic foundation for agents which

need to communicate while migrating. Moreover, the low-level primitives are

directly implementable above standard network protocols, and the Nomadic

Pict experiment proves that they can be eÆciently incorporated into a real

programming language design.

Appendix A

Syntax

This chapter describes the syntax of Nomadic Pict programs (for description of lexical
rules and Pict primitives we use extracts from [PT97b], by courtesy of Benjamin Pierce).

A.1 Lexical Rules

Whitespace characters are space, newline, tab, and formfeed (control-L). Comments are
bracketed by {- and -} and may be nested. A comment is equivalent to whitespace.

Integers are sequences of digits (negative integers start with a - character). Strings
can be any sequence of characters and escape sequences enclosed in double-quotes. Sites
can be any sequence of characters and escape sequences enclosed in double single-quote
characters ("), to denote the Internet address, followed by a colon and integer, to denote
a port number. The escape sequences \", \n, and \\ stand for the characters double-
quote, newline, and backslash. The escape sequence \ddd (where d denotes a decimal
digit) denotes the character with code ddd (codes outside the range 0..255 are illegal).
Character constants consist of a single quote character ('), a character or escape sequence,
and another single quote.

Alphanumeric identi�ers begin with a symbol from the following set:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Subsequent symbols may contain the following characters in addition to those men-

tioned above:

0 1 2 3 4 5 6 7 8 9 '

Symbolic identi�ers are non-empty sequences of symbols drawn from the following set:

~ * % + - < > = & | @ $, `

166 Syntax

A.2 Reserved Words

The following symbols are reserved words:

Agent agent and Bool ccode Char DEC def dynamic else

ENCODE false if iflocal import inline Int in migrate new

now of PROC rec run Site String terminate then timeout

to Top true TYPE Type type typecase val switch wait

where with @ ^ \ / . ; : =

| ! # ? ?* _ < > -> {

([})]

A.3 Concrete Syntax

For each syntactic form, we note whether it is part of the core language (C), the language
for expressing encodings (T), a derived form (D), an optional type annotation that is �lled
in during type reconstruction if omitted by the programmer (R), or an extra-linguistic
feature (E). Syntactic forms characteristic for the Nomadic Pict language are marked by
n.

Compilation units

TopLevel = Import : : : Import Dec : : : Dec E Compilation unit
Import : : : Import TopDec : : : TopDec En Compilation unit

Import = import String E Import statement

Top Declarations

TopDec = Dec Declaration
ENCODE TYPE AGENT = Type Tn Agent type

ENCODE TYPE SITE = Type Tn Site type
ENCODE TYPE PROGRAM = Type Tn Type of program parameters
ENCODE TYPE TOPLEVEL = Type Tn Type of toplevel parameters
ENCODE PROC PROGRAM Id = Proc Tn Program declaration
ENCODE DEC TOPLEVEL Id Id = Dec Tn Toplevel declaration
ENCODE DEF Id Abs Tn def Id Abs

{ agent Id = Id in Id } Id = Dec Tn Agent creation
{ migrate to Id Id } Id = Dec Tn Agent migration
{ < Id @ Id > Id ! Id } Id = Proc Tn Output to agent on site
{ < Id > Id ! Id } Id = Proc Tn Output to adjacent agent
{ iflocal < Id > Id ! Id then Proc else Proc }

Id = Proc
Tn Test-and-send to agent

{ Id @ Id ! Id } Id = Proc Tn Location-independent output
{ String Id in P } Id = Proc Tn Macro-de�nition

A.3 Concrete Syntax 167

Declarations

Dec = new Id : Type C Channel creation
val Pat = Val D Value binding
run Proc D Parallel process
Val ; D Sequential execution
inline def Id Abs D Inlinable de�nition
def Id1 Abs1 and ... and Idn Absn C Recursive de�nition (n � 1)
type Id = Type D Type abbreviation
type (Id KindedId1 : : : KindedIdn) = Type D Type operator abbrev (n � 1)
now (Id Flag : : : Flag) E Compiler directive
agent Id1 = Proc1 and ... and Idn = Procn Cn Agent creation (n � 1)

agent Id1 = Proc1 and ... and Idn = Procn in Cn Agent creation (n � 1)
migrate to Val Cn Migrate to site
do String Val Tn Plug in macro-de�nition
do String Val in Tn Plug in macro-de�nition
{ Id Id } Tn Plug in declaration

Flag = Id E Ordinary
ag
Int E Numeric
ag
String E String
ag

Abstractions

Abs = Pat = Proc C Process abstraction
(Label FieldPat : : : Label FieldPat) RType = Val D Value abstraction

Patterns

Pat = Id RType C Variable pattern
[Label FieldPat : : : Label FieldPat] C Record pattern
(rec RType Pat) C Rectype pattern
_ RType C Wildcard pattern
Id RType @ Pat C Layered pattern
{ Id } Tn Plug in pattern

FieldPat = Pat C Value �eld
Id Constr C Type �eld

Type constraints

Constr = hemptyi D No constraint
< Type C Subtype constraint
= Type C Equality constraint

168 Syntax

Processes

Proc = Val ! Val C Output atom
Val ? Abs C Input pre�x
Val ?* Abs Cn Replicated input

wait Val ? Abs timeout Val -> Proc Cn Input with timeout
< Val @ Val > Val ! Val Dn Output to agent on site

< Val > Val ! Val Dn Output to adjacent agent
iflocal < Val > Val ! Val then Proc else Proc Cn Test-and-send to agent
Val @ Val ! Val Dn Location-independend output
() C Null process
(Proc1 | ... | Procn) C Parallel composition (n � 2)
(Dec1 : : : Decn Proc) C Local declarations (n � 1)
if Val then Proc else Proc C Conditional
terminate Cn Terminate agent

typecase Val of Pat1 -> Proc1 ... Patn ->

Procn else Procn+1

Dn Type matching (n � 1)

switch RType Val of ({ Id1 > Pat1 } -> Proc1
... { Idn > Patn } -> Procn)

Dn Variant matching (n � 1)

{ Id Id } Tn Plug in process

Values

Val = Const C Constant
Path C Path
\ Abs D Process abstraction
[Label FieldVal : : : Label FieldVal] C Record
if RType Val then Val else Val D Conditional
(Val RType with Label FieldVal : : : Label FieldVal
)

D Field extension

(Val RType where Label FieldVal : : : Label Field-
Val)

D Field override

(RType Val Label FieldVal : : : Label FieldVal) D Application
(Val > Val1 : : : Valn) D Right-assoc application (n � 2)
(Val < Val1 : : : Valn) D Left-assoc application (n � 2)
(rec RType Val) C Rectype value
(Dec1 : : : Decn Val) D Local declarations (n � 1)
(ccode Int Id String FieldVal : : : FieldVal) E Inline C code (Pict)
(ccode Int Id String FieldVal : : : FieldVal) En Call system function

(dynamic Val RType) Dn Typed value
{ Id > Val } Dn Variant
typecase RType Val of Pat1 -> Val1 ... Patn
-> Valn else Valn+1

Dn Type matching (n � 1)

switch RType Val of ({ Id1 > Pat1 } -> Val1 ...

{ Idn > Patn } -> Valn)

Dn Variant matching (n � 1)

{ Id } Tn Plug in value

A.3 Concrete Syntax 169

Path = Id C Variable
Path . Id C Record �eld projection

FieldVal = Val C Value �eld
Type C Type �eld

Const = String C String constant
Char C Character constant
Int C Integer constant
true C Boolean constant
false C Boolean constant

Types

Type = Top C Top type
Id C Type identi�er
^ Type C Input/output channel
! Type C Output channel
/ Type C Responsive output channel
? Type C Input channel
Int C Integer type
Char C Character type
Bool C Boolean type
String C String type
[Label FieldType : : : Label FieldType] C Record type
(Type with Label FieldType : : : Label FieldType)D Record extension
(Type where Label FieldType : : : Label FieldType)D Record �eld override
\ KindedId1 : : : KindedIdn = Type C Type operator (n � 1)
(Type Type1 : : : Typen) C Type application (n � 1)
(rec KindedId = Type) C Recursive type
Agent Cn Agent type

Site Dn Site type
Dyn Dn Dynamic type
{ Id1 > Type1 ... Idn > Typen } Dn Variant type
{ Id } Tn Plug in type

FieldType = Type C Value �eld
Id Constr C Type �eld

RType = hemptyi R Omitted type annotation
: Type C Explicit type annotation

Kinds
Kind = (Kind1 : : : Kindn -> Kind) C Operator kind (n � 1)

Type C Type kind

KindedId = Id : Kind C Explicitly-kinded identi�er
Id D Implicitly-kinded identi�er

170 Syntax

Labels
Label = hemptyi C Anonymous label

Id = C Explicit label

Bibliography

[ABB+86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A new kernel foundation for UNIX development. In
Proceedings USENIX 1986 Summer Technical Conference and Exhibition,
Atlanta, USA, pages 93{112, June 1986.

[ACF87] Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel. Interprocess com-
munication in Charlotte. IEEE Software, 4(1):22{28, January 1987.

[ACS98] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous pi-calculus. Journal of Theoretical Computer Science, 195(2):291{
324, March 1998. Also appeared in Proceedings of CONCUR '96: Con-
currency Theory (7th International Conference, Pisa, Italy, 26-29 August,
1996), Springer LNCS 1119.

[AD99] Thomas Arts and Mads Dam. Verifying a distributed database lookup man-
ager written in Erlang. In Proceedings of the World Congress on Formal
Methods, Toulouse, France, September 1999.

[AFG99] Mart��n Abadi, C�edric Fournet, and Georges Gonthier. Secure communica-
tions processing for distributed languages. In IEEE Symposium on Security
and Privacy, pages 74{88, May 1999.

[ALT95] Roberto M. Amadio, Lone Leth, and Bent Thomsen. From a concurrent
�-calculus to the �-calculus. In Horst Reichel, editor, Fundamentals of
Computation Theory (FCT '95, 10th International Conference, Dresden,
Germany), volume 965 of Lecture Notes in Computer Science, pages 106{
115. Springer Verlag, 1995. Full version as Technical Report ECRC-95-18,
European Computer-Industry Research Center, Munich, Germany, 1995.

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey.
In J. Ma luszy�nski and M. Wirsing, editors, Proceedings of the 3rd Int. Sym-
posium on Programming Language Implementation and Logic Programming,
PLILP '91, Passau, Germany, volume 528 of Lecture Notes in Computer
Science, pages 1{13. Springer-Verlag, August 1991.

[Ama] Roberto M. Amadio. On modelling mobility. To appear in the Journal of
Theoretical Computer Science.

[Ama94] Roberto M. Amadio. Translating core Facile. Technical Report ECRC-TR-3-
94, European Computer-Industry Research Center, Munich, Germany, 1994.
Also available as a technical report from CRIN(CNRS)-Inria (Nancy).

172 BIBLIOGRAPHY

[Ama97] Roberto M. Amadio. An asynchronous model of locality, failure, and process
mobility. In D. Garlan and D. Le Metayer, editors, Coordination Languages
and Models (Proceedings of COORDINATION '97, Berlin, Germany), vol-
ume 1282 of Lecture Notes in Computer Science. Springer Verlag, 1997. Ex-
tended version as Rapport de Recherche RR-3109, INRIA Sophia-Antipolis,
1997.

[And92] F. Andersen. A Theorem Prover for UNITY in Higher Order Logic. PhD
thesis, Technical University of Denmark, March 1992.

[AO98] Y. Aridor and M. Oshima. Infrastructure for mobile agents: Requirements
and design. In K. Rothermel and F. Hohl, editors, Proc. 2nd Int. Workshop
on Mobile Agents, volume 1477 of Lecture Notes in Computer Science, pages
38{49. Springer-Verlag, 1998.

[AP89] B. Awerbuch and D. Peleg. Online tracking of mobile users. Technical Memo
MIT/LCS/TM-410, Massachusetts Institute of Technology, Laboratory for
Computer Science, July 1989.

[AP94] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. In
Pazhamaneri S. Thiagarajan, editor, Foundations of Software Technology
and Theoretical Computer Science, volume 880 of Lecture Notes in Com-
puter Science, pages 205{216. Springer Verlag, 1994. Full version as Tech-
nical Report ECRC-94-18, European Computer-Industry Research Center,
Munich, Germany, 1994.

[AP95] Baruch Awerbuch and David Peleg. Online tracking of mobile users. Journal
of the ACM, 42(5):1021{1058, September 1995. A shorter version appeared
as Technical Memo MIT/LCS/TM-410, Massachusetts Institute of Technol-
ogy, Laboratory for Computer Science, July 1989.

[AP98] Roberto M. Amadio and Sanjiva Prasad. Modelling IP mobility. In Da-
vide Sangiorgi and Robert de Simone, editors, CONCUR '98: Concurrency
Theory (9th International Conference, Nice, France), volume 1466 of Lec-
ture Notes in Computer Science, pages 301{316. Springer Verlag, September
1998.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[Arm96] Joe Armstrong. Erlang - a survey of the language and its industrial appli-
cations. In Proceedings of the 9th Exhibitions and Symposium on Industrial
Applications of Prolog, Hino, Tokyo, Japan, 1996.

[AWO+99] Ken Arnold, Ann Wollrath, Bryan O'Sullivan, Robert Schei
er, and Jim
Waldo. The Jini speci�cation. Addison-Wesley, Reading, MA, USA, 1999.

[AWWV96] J. L. Armstrong, M. C. Williams, C. Wikstr�om, and S. R. Virding. Concur-
rent Programming in Erlang. Prentice Hall, 2nd edition, 1996.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96:217{248, 1992.

[BBH97] J. Bacon, J. Bates, and D. Halls. Location-oriented multimedia. IEEE
Personal Computer, 4(5):48{57, October 1997.

BIBLIOGRAPHY 173

[BGW93] Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX dis-
tributed operating system: Load balancing for UNIX, volume 672 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[BHB97] John Bates, David Halls, and Jean Bacon. Middleware support for mobile
multimedia applications. ICL Systems Journal, 12(2):289{314, November
1997.

[BHDH98] Michael Bursell, Richard Hayton, Douglas Donaldson, and Andrew Herbert.
A Mobile Object Workbench. In Kurt Rothermel and Fritz Hohl, editors,
Proceedings of the 2nd International Workshop on Mobile Agents (MA '98),
volume 1477 of Lecture Notes in Computer Science, pages 136{147. Springer-
Verlag, September 1998.

[BJ87] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in distributed
systems. Proc 11th ACM Symposium on OS Principles, Austin, TX, USA,
pages 123{138, November 1987.

[Bla99] Andrew P. Black. Object-oriented programming: Regaining the excitement.
In R. Guerraoui, editor, Proceedings ECOOP '99 (Lisbon, Portugal, June
1999), volume 1628 of LNCS, pages 519{528. Springer-Verlag, 1999.

[BNOW95] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network
objects. Software{Practice and Experience, 25(S4):87{130, December 1995.
Also available as Digital Systems Research Center Research Report 115.

[Bou92] G�erard Boudol. Asynchrony and the pi-calculus. Technical Report RR-1702,
Inria, Institut National de Recherche en Informatique et en Automatique,
1992.

[BPR98] M. Baldi, G. P. Picco, and F. Risso. Designing a videoconference system
for active networks. In K. Rothermel and F. Hohl, editors, Proc. 2nd Int.
Workshop on Mobile Agents (MA98), Stuttgart, Germany, October 1998,
volume 1477 of Lecture Notes in Computer Science, pages 273{284. Springer-
Verlag, 1998.

[BvST99] G. Ballintijn, M. van Steen, and A.S. Tanenbaum. Lightweight crash re-
covery in a wide-area location service. In Proceedings of the 12th Inter-
national Conference on Parallel and Distributed Computing Systems, Fort

Lauderdale, Florida, August 1999.

[Car86] L. Cardelli. Amber. In G. Cousineau, P.-L. Curien, and B. Robinet, editors,
Combinators and Functional Programming Languages, volume 242 of Lecture
Notes in Computer Science, pages 21{47. Springer-Verlag, 1986.

[Car95] Luca Cardelli. A language with distributed scope. In ACM, editor, Con-
ference record of POPL '95, 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages: papers presented at the Symposium:
San Francisco, California, January 22{25, 1995, pages 286{297, New York,
NY, USA, 1995. ACM Press.

[CDK94] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design. Addison-Wesley, Reading, MA, USA, second edition,
1994.

174 BIBLIOGRAPHY

[CF99] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for
Objective-Caml. In First International Symposium on Agent Systems and
Applications/Third International Symposium on Mobile Agents (ASA/MA
'99), Palm Springs, CA, USA, October 1999.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of Foun-
dations of Software Science and Computation Structures (FoSSaCS '98),
volume 1378 of LNCS, pages 140{155. Springer-Verlag, 1998.

[Che88] David Cheriton. The V distributed system. Communications of the ACM,
31(3):314{333, March 1988.

[Che98] B. Chetali. Formal veri�cation of concurrent programs using the Larch
Prover. IEEE Transactions on Software Engineering, 24(1):46{62, 1998.

[CHK97] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are they a
good idea? In Mobile Object Systems { Towards the Programmable Internet,
volume 1222 of Lecture Notes in Computer Science, pages 25{48, 1997.

[Chu32] A. Church. A set of postulates for the foundations of logic. Ann. of Math.,
33:346{366, 1932.

[Chu41] A. Church. The Calculi of Lambda Conversion. Princeton University Press,
1941.

[CJ97] R. Chow and T. Johnson. Distributed Operating Systems and Algorithms.
Addison-Wesley, 1997.

[CLZ98] G. Cabri, L. Leonardi, and F. Zambonelli. How to coordinate Internet appli-
cations based on mobile agents. In Proc. 7th IEEE Workshops on Enablings
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages
104{109, Stanford, CA, USA, June 1998. IEEE Computer Society Press.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-
tion. Addison-Wesley, New York, NY, 1988.

[CS87] Berardo Costa and Colin Stirling. Weak and strong fairness in CCS. Infor-
mation and Computation, 73(3):207{244, June 1987.

[DH98] M. J. Demmer and M. P. Herlihy. The arrow distributed directory protocol.
In Proceedings of 12th International Symposium on Distributed Computing
(DISC '98), Andros, Greece, September 1998, volume 1499 of Lecture Notes
in Computer Science. Springer-Verlag, 1998.

[DO91] Fred Douglis and John Ousterhout. Transparent process migration: De-
sign alternatives and the Sprite implementation. Software { Practice and
Experience, 21(8):757{785, August 1991.

[EE98] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Program-
ming Series. Microsoft Press, Redmond, WA, 1998.

[FG96] C�edric Fournet and Georges Gonthier. The re
exive CHAM and the join-
calculus. In ACM, editor, Conference record of POPL '96, 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages:
papers presented at the Symposium: St. Petersburg Beach, Florida, 21{24
January 1996, pages 372{385, New York, USA, 1996. ACM Press.

BIBLIOGRAPHY 175

[FGL+96] C�edric Fournet, Georges Gonthier, Jean-Jacques L�evy, Luc Maranget, and
Didier R�emy. A calculus of mobile agents. In Proceedings of CONCUR '96.
LNCS 1119, pages 406{421. Springer-Verlag, August 1996.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty processor. Journal of the ACM, 32(2):374{382,
1985.

[Fow85] Robert J. Fowler. Decentralized object �nding using forwarding addresses.
Technical Report 85-12-1, Department of Computer Science, University of
Washington, Seattle, WA, USA, December 1985.

[GG91] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover.
Technical Report 82, Digital Equipment Corporation, Systems Research
Centre, December 1991.

[GJS97] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison
Wesley, 1997.

[GKN+96] Robert Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko.
Mobile agents for mobile computing. Technical Report PCS-TR96-285, Dept.
of Computer Science, Dartmouth College, May 1996.

[GKN+97] Robert Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cy-
benko. Mobile agents: The next generation in distributed computing. In
Proceedings of the Second Aizu International Symposium on Parallel Algo-
rithms/Architectures Synthesis (pAs '97), pages 8{24, Fukushima, Japan,
March 1997. IEEE Computer Society Press.

[GL] Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing
distributed systems. To appear in Foundations of Component Based Systems.
Cambridge University Press.

[GL98] Stephen J. Garland and Nancy A. Lynch. The IOA language and toolset:
Support for designing, analyzing, and building distributed systems. Tech-
nical Report MIT/LCS/TR-762, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, August 1998. (Original version: Septem-
ber 25, 1997).

[Gla98] G. Glass. ObjectSpace Voyager | the agent ORB for Java. Lecture Notes
in Computer Science, 1368:38{48, 1998.

[GMP89] Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. FACILE: A
symmetric integration of concurrent and functional programming. Interna-
tional Journal of Parallel Programming, 18(2):121{160, April 1989. Also
in TAPSOFT '89, ed. J. Diaz and F. Orejas, LNCS 352, pages 184-209.
Springer-Verlag, 1989.

[Gra95] Robert S. Gray. Agent Tcl: A Transportable Agent System. In Tim Finin
and James May�eld, editors, Proceedings of the CIKM Workshop on Intel-
ligent Information Agents, Fourth International Conference on Information
and Knowledge Management (CIKM '95), Baltimore, MD, USA, 1995.

[GS96] R. Guerraoui and A. Schiper. Fault-tolerance by replication in distributed
systems. In Reliable Software Technologies - Ada-Europe '96, LNCS 1088,
pages 38{57. Springer-Verlag, June 1996.

176 BIBLIOGRAPHY

[Hay98] Mark Hayden. The Ensemble system. Technical Report TR98-1662, Cornell
University, Computer Science, January 8, 1998.

[HH94] Andy Harter and Andy Hopper. A distributed location system for the active
oÆce. IEEE Network, 8(1):62{70, January 1994. See also AT & T Lab.
Cambridge Technical Report 94.1.

[HLP98] Robert Harper, Peter Lee, and Frank Pfenning. The Fox project: Advanced
language technology for extensible systems. Technical Report CMU-CS-98-
107, Carnegie Mellon University, January 1998.

[Hoa78a] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666{677, August 1978. See corrigendum [Hoa78b].

[Hoa78b] C. A. R. Hoare. Corrigendum: \Communicating sequential processes". Com-
munications of the ACM, 21(11):958{958, November 1978. See [Hoa78a].

[HR98a] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In Workshop on High-Level Concurrent Languages, 1998. Full
version as University of Sussex technical report CSTR 98/02.

[HR98b] Matthew Hennessy and James Riely. Type-safe execution of mobile agents
in anonymous networks. In Proceedings of ECOOP '98 Workshop on Mobile
Object Systems, 1998. Full version as University of Sussex technical report
CSTR 98/03.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-
munication. In Pierre America, editor, Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP '91), volume 512 of Lecture
Notes in Computer Science, pages 133{147. Springer-Verlag, 1991.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report TR94-1425, Cornell Uni-
versity, Computer Science Department, May 1994.

[IDJ91] John Ioannidis, Dan Duchamp, and Gerald Q. Maguire Jr. IP-based proto-
cols for mobile internetworking. In Proceedings of the 1991 ACM SIGCOMM
Symposium, pages 235{245, September 1991.

[IJ93] John Ioannidis and Gerald Q. Maguire Jr. The design and implementation of
mobile internetworking architecture. In USENIX Winter 1993 Conference,
pages 491{502, San Diego, CA, USA, January 1993.

[JJ99] Kjetil Jacobsen and Dag Johansen. Ubiquitous Devices United: Enabling
Distributed Computing Through Mobile Code. In Proceedings of the Sym-
posium on Applied Computing (ACM SAC '99), February 1999.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems,
6(1):109{133, February 1988.

[JvRS95] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating
system support for mobile agents. In Proceedings of the Fifth Workshop Hot
Topics in Operating Systems (HotOS '95), pages 42{45, Washington, USA,
May 1995.

BIBLIOGRAPHY 177

[JZ88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems
using asynchronous message logging and checkpointing. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing,
pages 171{181, Toronto, Ontario, Canada, August 1988.

[Kal94] Markus Kaltenbach. Model checking for UNITY. Technical Report CS-TR-
94-31, University of Texas, Austin, December 1994.

[KG99] David Kotz and Robert S. Gray. Mobile agents and the future of the Internet.
ACM Operating Systems Review, 33(3):7{13, August 1999.

[Kir99] Dilsun Kirli. A static type system for detecting potentially transmissible
functions. In Proceedings of the 5th ECOOP Workshop on Mobile Object
Systems (MOS '99), Lisbon, Portugal, June 1999.

[Kis93] James J. Kistler. Disconnected Operation in a Distributed File System. PhD
thesis, Carnegie Mellon University, May 1993.

[Kna95] Frederick Knabe. Language Support for Mobile Agents. PhD thesis, Carnegie
Mellon University, December 1995.

[Kri96] P. Krishna. Performance Issues in Mobile Wireless Networks. PhD thesis,
Texas A&M University, August 1996.

[KSMD99] Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny Dolev. A client-
server oriented algorithm for virtually synchronous group membership in
WANs. Technical Report CS1999-0623, University of California, San Diego,
Computer Science and Engineering, July 1999.

[LA97] Danny B. Lange and Yariv Aridor. Agent Transfer Protocol { ATP/0.1. IBM
Tokyo Research Laboratory, March 1997.

[Lab98] Ericsson Computer Science Laboratory. The birthplace of Erlang. Open-
source Erlang available from http://www.erlang.org/, 1998.

[Ler95] Xavier Leroy. Le syst�eme Caml Special Light: modules et compilation
eÆcace en Caml. Technical Report RR-2721, Inria, Institut National de
Recherche en Informatique et en Automatique, 1995.

[LOKK97] Danny B. Lange, Mitsuru Oshima, Gunter Karjoth, and Kosaka Kazuya.
Aglets: Programming mobile agents in Java. In T. Masuda, Y. Masunaga,
and M. Tsukamoto, editors, Proceedings of Worldwide Computing and Its
Applications (WWCA '97), volume 1274 of Lecture Notes in Computer Sci-
ence, pages 253{266, Tsukuba, Japan, March 1997.

[LS92] Michael Litzkow and Marvin Solomon. Supporting checkpointing and pro-
cess migration outside the UNIX kernel. In USENIX Association, editor,
Proceedings of the Winter 1992 USENIX Conference: January 20 | Jan-
uary 24, 1992, San Francisco, California, pages 283{290, 1992.

[LSN96] Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Using metaob-
jects to model concurrent objects with PICT. In Proceedings of Langages et
Mod�eles �a Objects, pages 1{12, Leysin, October 1996.

178 BIBLIOGRAPHY

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Fred B. Schneider, editor, Proceedings of the
6th Annual ACM Symposium on Principles of Distributed Computing, pages
137{151, Vancouver, BC, Canada, August 1987. ACM Press.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output
automata. CWI Quarterly, 2(3):219{246, 1989. Centrum voor Wiskunde
en Informatica, Amsterdam, The Netherlands. Also appeared as Technical
Memo MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts
Institute of Technology, November 1988.

[LV94] N. Lynch and F. Vaandrager. Forward and backward simulations part I:
Untimed systems (replaces TM-486). Technical Memo MIT/LCS/TM-486b,
Massachusetts Institute of Technology, Laboratory for Computer Science,
October 1994.

[LWG98] Ulana Legedza, David J. Wetherall, and John Guttag. Improving the per-
formance of distributed applications using active networks. In Proceedings
of the IEEE INFOCOM '98, San Francisco, CA, USA, April 1998.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation.
Addison-Wesley, Reading, USA, 1997.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
1996.

[MBB+98] D. Miloji�ci�c, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,
K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
and J. White. MASIF: The OMG Mobile Agent System Interoperability
Facility. In K. Rothermel and F. Hohl, editors, Proc. 2nd Int. Workshop on
Mobile Agents, volume 1477 of Lecture Notes in Computer Science, pages
50{67, Stuttgart, Germany, 1998. Springer-Verlag, Berlin.

[MCG+99] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. Talx86: A realistic type assembly
language. In ACM SIGPLAN Workshop on Compiler Support for System
Software, Atlanta, GA, USA, May 1999.

[MDW99] Dejan Miloji�ci�c, Frederick Douglis, and Richard Wheeler, editors. Mobility:
Processes, Computers, and Agents. Addison-Wesley, Reading, MA, USA,
1999.

[Mil84] Robin Milner. A proposal for Standard ML. Polymorphism: The
ML/LCF/Hope Newsletter, 1(3), January 1984. Also appeared in Proceed-
ings of the ACM Symposium on Lisp and Functional Programming, Austin,
Texas, USA, August 1984, pages 184-197, and as Technical Report CSR-
157-83, University of Edinburgh, 1983.

[Mil89] R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[Mil91] Robin Milner. The polyadic �-calculus: A tutorial. Technical Report ECS-
LFCS-91-180, Laboratory for Foundations of Computer Science, Department
of Computer Science, University of Edinburgh, October 1991. Appeared
in Proceedings of the International Summer School on Logic and Algebra of

BIBLIOGRAPHY 179

Speci�cation, Marktoberdorf, August 1991. Reprinted in Logic and Algebra of
Speci�cation, ed. F. L. Bauer, W. Brauer, and H. Schwichtenberg, Springer-
Verlag, 1993.

[Mil92] Robin Milner. Functions as processes. Journal of Mathematical Structures
in Computer Science, 2(2):119{141, 1992. Previous version as Rapport de
Recherche 1154, INRIA Sophia-Antipolis, 1990, and in Proceedings of ICALP
'91, LNCS 443.

[Mil99] Robin Milner. Communicating and Mobile Systems: The �-Calculus. Cam-
bridge University Press, May 1999.

[ML98] Luc Maranget and Fabrice Le Fessant. Compiling join-patterns. In Uwe
Nestmann and Benjamin C. Pierce, editors, HLCL '98: High-Level Concur-
rent Languages (Nice, France, September 12, 1998), volume 16.3 of Elec-
tronic Notes in Theoretical Computer Science (ENTCS). Elsevier Science
Publishers, 1998.

[MLC98] Dejan S. Miloji�ci�c, William LaForge, and Deepika Chauhan. Mobile Objects
and Agents (MOA). In Proceedings of the 4th Conference on Object-Oriented
Technologies and Systems (COOTS '98), pages 179{194. USENIX Associa-
tion, April 1998.

[Mor99] Luc Moreau. Distributed directory service and message router for mobile
agents. Technical Report ECSTR M99/3, University of Southampton, 1999.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts
I and II. Information and Computation, 100(1):1{77, 1992.

[MR97] P. J. McCann and G.-C. Roman. Mobile UNITY coordination constructs ap-
plied to packet forwarding for mobile hosts. In Coordination Languages and
Models, Berlin, 1997, volume 1282 of Lecture Notes in Computer Science,
1997.

[MR98] P. J. McCann and G.-C. Roman. Compositional Programming Abstrac-
tions for Mobile Computing. IEEE Transactions on Software Engineering,
24(2):97{110, 1998.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Def-
inition of Standard ML (Revised). The MIT Press, 1997.

[MV88] Sape J. Mullender and Paul M. B. Vit�anyi. Distributed match-making.
Algorithmica, 3:367{391, 1988.

[MvR92] S. J. Mullender and G. van Rossum. Amoeba: A distributed operating sys-
tem for the 1990s. In Akkihebbal L. Ananda and Balasubramaniam Srini-
vasan, editors, Distributed Computing Systems: Concepts and Structures,
pages 201{212. IEEE Computer Society Press, Los Alamos, CA, 1992.

[MZDG93] Dejan Miloji�ci�c, Wolfgang Zint, Andreas Dangel, and Peter Giese. Task mi-
gration on the top of the Mach microkernel. In USENIX, editor, Proceedings
of the USENIX Mach III Symposium, April 19{21, 1993, Santa Fe, New
Mexico, USA, pages 273{289, April 1993.

[Nee89] R. M. Needham. Names. In S. Mullender, editor, Distributed Systems, pages
89{101. Addison-Wesley, 1989.

180 BIBLIOGRAPHY

[NTA96] Naimi, Trehel, and Arnold. A log(N) distributed mutual exclusion algo-
rithm based on path reversal. JPDC: Journal of Parallel and Distributed
Computing, 34, 1996.

[Obj97] ObjectSpace. Voyager core package technology overview. Available from
http://www.objectspace.com/, 1997.

[OCD+87] John Ousterhout, Andrew Cherenson, Fred Douglis, Michael Nelson, and
Brent Welch. The Sprite Network Operating System. Technical Report
UCB/CSD/ 87/359, Computer Science Division (EECS), University of Cal-
ifornia, Berkeley, June 1987.

[OMG91] Object Management Group, Inc. The Common Object Request Broker: Ar-
chitecture and Speci�cation, OMG document number 91.12.1, 1.1 edition,
December 1991.

[OPL94] Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooperative in-
formation gathering: A distributed problem solving approach. Technical Re-
port 94-66, Department of Computer Science, University of Massachusetts,
September 1994.

[Pau94] L. C. Paulson. Isabelle: A generic theorem prover. Lecture Notes in Com-
puter Science, 828, 1994. Springer-Verlag.

[PGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In ACM, editor, Conference Record of POPL '96, 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages:
papers presented at the Symposium: St. Petersburg Beach, Florida, 21{24
January 1996, pages 295{308, New York, NY, USA, 1996. ACM Press.

[PGM90] Sanjiva Prasad, Alessandro Giacalone, and Prateek Mishra. Operational
and algebraic semantics for Facile: A symmetric integration of concurrent
and functional programming. In Michael S. Paterson, editor, Automata,
Languages and Programming, 17th International Colloquium, volume 443 of
Lecture Notes in Computer Science, pages 765{780. Springer-Verlag, 1990.

[Pie97] Benjamin C. Pierce. Foundational calculi for programming languages. In
Allen B. Tucker, Jr. (Editor-in-Chief), The Computer Science and Engi-
neering Handbook. CRC Press, in cooperation with ACM, 1997.

[PMR99] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME:
Linda meets mobility. In Proceedings of the 21st International Conference
on Software Engineering, pages 368{377. ACM Press, May 1999.

[PRM97] Gian Pietro Picco, Gruia-Catalin Roman, and Peter J. McCann. Express-
ing code mobility in mobile UNITY. In M. Jazayeri and H. Schauer, edi-
tors, Proceedings of the Sixth European Software Engineering Conference
(ESEC/FSE 97), pages 500{518. LNCS 1013, Springer{Verlag, September
1997.

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent objects in a process
calculus. In Takayasu Ito and Akinori Yonezawa, editors, Proceedings of the
Theory and Practice of Parallel Programming (TPPP, Sendai, Japan, 1994),
volume 907 of Lecture Notes in Computer Science, pages 187{215. Springer
Verlag, 1995.

BIBLIOGRAPHY 181

[PT97a] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. Technical Report CSCI 476, Computer Science
Department, Indiana University, 1997. To appear in Proof, Language and
Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin Stir-
ling, and Mads Tofte, editors, MIT Press.

[PT97b] Benjamin C. Pierce and David N. Turner. Pict Language De�nition, 1997.
Available electronically as part of the Pict distribution.

[PW85] G. J. Popek and B. J. Walker. The Locus Distributed System Architecture.
MIT Press, Cambridge, Mass., 1985.

[RASS97] Mudumbai Ranganathan, Anurag Acharya, Shamik Sharma, and Joel Saltz.
Network-aware mobile programs. In Proceedings of the USENIX 1997 An-
nual Technical Conference, Anaheim, CA, USA, January 1997.

[RBM+94] Tristan Richardson, Frazer Bennett, Glenford Mapp, Andy Harter, and
Andy Hopper. Teleporting { making applications mobile. In Proceedings
of ACM CSCW '94 Conference on Computer-Supported Cooperative Work,
Formal Video Program: Prototypes and Enabling Technologies, pages 9{10,
1994.

[Rep93] J. H. Reppy. Concurrent ML: Design, application and semantics. In P. E.
Lauer, editor, Functional Programming, Concurrency, Simulation and Auto-
mated Reasoning, volume 693 of Lecture Notes in Computer Science, pages
165{198. Springer-Verlag, 1993.

[RH97] James Riely and Matthew Hennessy. Distributed processes and location
failures. In Proceedings of ICALP '97. LNCS 1256, pages 471{481. Springer
Verlag, July 1997.

[RH98] James Riely and Matthew Hennessy. A typed language for distributed mobile
processes. In Proceedings of the 25th POPL, January 1998.

[RMH98] Robbert Van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style
failure detection service. Technical Report TR98-1687, Cornell University,
Computer Science, May 1998.

[RMP97] G.-C. Roman, P. McCann, and J. Plun. Mobile UNITY: Reasoning and
Speci�cation in Mobile Computing. ACM Transactions on Software Engi-
neering and Methodology, 6(3):250{282, June 1997.

[RRD95] S. Rangarajan, K. Ratnam, and A. T. Dahbura. A fault-tolerant protocol
for location directory maintenance in mobile networks. In The Twenty-Fifth
International Symposium on Fault-Tolerant Computing (FTCS '95), pages
164{173, Los Alamitos, June 1995. IEEE Computer Society Press.

[San] Davide Sangiorgi. Asynchronous process calculi: The �rst-order and higher-
order paradigms (Tutorial). To appear in Theoretical Computer Science.

[San96] Davide Sangiorgi. A theory of bisimulation for the �-calculus. Acta Informat-
ica, 33:69{97, 1996. Earlier version published as Report ECS-LFCS-93-270,
University of Edinburgh. An extended abstract appeared in the Proceedings
of CONCUR '93, LNCS 715.

182 BIBLIOGRAPHY

[San98] Davide Sangiorgi. An interpretation of typed objects into typed pi-calculus.
Information and Computation, 143(1), 1998.

[San99] Davide Sangiorgi. Interpreting functions as pi-calculus processes: A tutorial.
Also appeared as INRIA Technical Report RR-3470, August 1998; revised
February 1999.

[SBH96] M. Strasser, J. Baumann, and F. Hohl. Mole { A Java based mobile agent
system. In Proceedings of the 2nd ECOOP Workshop on Mobile Object
Systems, University of Linz, Austria, July 1996.

[Sew] Peter Sewell. A brief introduction to applied Pi. Lecture notes for the MATH-
FIT Instructional Meeting on Recent Advances in Semantics and Types for
Concurrency: Theory and Practice, Imperial College, July 1998.

[Sew97a] Peter Sewell. Global/local subtyping for a distributed �-calculus. Technical
Report 435, University of Cambridge, August 1997.

[Sew97b] Peter Sewell. On implementations and semantics of a concurrent program-
ming language. In Antoni Mazurkiewicz and J�ozef Winkowski, editors, Pro-
ceedings of CONCUR '97. LNCS 1243, pages 391{405. Springer Verlag, 1997.

[Sew98] Peter Sewell. Global/local subtyping and capability inference for a dis-
tributed �-calculus. In Proceedings of ICALP '98, LNCS 1443, pages 695{
706, 1998.

[SJ95] Bjarne Steensgaard and Eric Jul. Object and native code thread mobility
among heterogeneous computers. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles, pages 68{78, December 1995.

[SWP98] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location
independence for mobile agents. In Proceedings of ICCL '98 Workshop on
Internet Programming Languages, Chicago, USA, May 1998. It is largely
superseded by [SWP99].

[SWP99] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location-
independent communication for mobile agents: A two-level architecture. In
Henri E. Bal, Boumediene Belkhouche, and Luca Cardelli, editors, Internet
Programming Languages (ICCL '98 Workshop, Chicago, USA, May 1998),
volume 1686 of Lecture Notes in Computer Science, pages 1{31. Springer,
1999. Also appeared as Technical Report 462, Computer Laboratory, Uni-
versity of Cambridge, April 1999.

[SY97] Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mobility.
In Howard Bowman and John Derrick, editors, Formal Methods for Open
Object-based Distributed Systems (Proceedings of FMOODS '97), pages 21{
36. IFIP, Chapman and Hall, July 1997.

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, New
Jersey, 1992.

[Tho93] Bent Thomsen. Plain CHOCS. A second generation calculus for higher order
processes. Acta Informatica, 30(1):1{59, 1993.

[TKLC95] Bent Thomsen, Frederick Knabe, Lone Leth, and Pierre-Yves Chevalier.
Mobile agents set to work. Communications International, July 1995.

BIBLIOGRAPHY 183

[TLG93] B. Thomsen, L. Leth, and A Giacalone. Some issues in the semantics of
Facile distributed programming. Technical Report ECRC-92-32, European
Computer-Industry Research Centre, 1993.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In
Ugo Montanari and Vladimiro Sassone, editors, CONCUR '96: Concurrency
Theory, 7th International Conference, Pisa, Italy, 26{29 August, 1996, vol-
ume 1119 of Lecture Notes in Computer Science, pages 278{298. Springer-
Verlag, 1996.

[TLP+93] Bent Thomsen, Lone Leth, Sanjiva Prasad, Tsung-Min Kuo, Andre Kramer,
Fritz C. Knabe, and Alessandro Giacalone. Facile Antigua Release { Pro-
gramming guide. Technical Report ECRC-93-20, European Computer In-
dustry Research Centre, Munich, Germany, December 1993.

[TSS+97] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research. IEEE
Communications Magazine, 35(1):80{86, January 1997.

[Tur96] David N. Turner. The Polymorphic Pi-calculus: Theory and Implementation.
PhD thesis, University of Edinburgh, 1996.

[TvRvS+90] Andrew S. Tanenbaum, Robert van Renesse, Hans van Staveren, Gregory J.
Sharp, Sape J. Mullender, Jack Jansen, and Guido van Rossum. Experience
with the Amoeba distributed operating system. Communications of the
ACM, 33(12):46{63, December 1990.

[Uny] Asis Unyapoth. Nomadic �-Calculus: Its Theories and Applications. A
forthcoming PhD thesis, University of Cambridge, Computer Laboratory.

[VC98] Jan Vitek and Guiseppe Castagna. Towards a calculus of mobile compu-
tations. In Proceedings of ICCL '98 Workshop on Internet Programming
Languages, Chicago, USA, May 1998.

[VC99] Jan Vitek and Guiseppe Castagna. Seal: A framework for secure mobile
computations. In Henri E. Bal, Boumediene Belkhouche, and Luca Cardelli,
editors, Internet Programming Languages (ICCL '98 Workshop, Chicago,
USA, May 1998), volume 1686 of Lecture Notes in Computer Science, pages
47{77. Springer, 1999.

[Vic94] Bj�orn Victor. A Veri�cation Tool for the Polyadic �-Calculus. Licentiate
thesis, Department of Computer Systems, Uppsala University, Sweden, May
1994. Available as report DoCS 94/50.

[Vog96] Werner Vogels. World wide failures. In Proceedings of the ACM SIGOPS
European Workshop, Connemara, Ireland, September 1996.

[vSHBT98] Maarten van Steen, Franz J. Hauck, Gerco Ballintijn, and Andrew S. Tanen-
baum. Algorithmic design of the Globe wide-area location service. The
Computer Journal, 41(5):297{310, 1998.

[vSHT99] Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum. Globe:
A wide-area distributed system. IEEE Concurrency, 7(1):70{78, January
1999.

184 BIBLIOGRAPHY

[VT97] Jan Vitek and Christian Tschudin, editors. Towards the Programmable In-
ternet, Proceedings of the Second International Workshop on Mobile Object
Systems, MOS '96. Springer-Verlag, 1997.

[Wal99] Jim Waldo. Object-oriented programming on the network. In R. Guerraoui,
editor, Proceedings ECOOP '99, Lisbon, Portugal, June 1999, volume 1628
of Lecture Notes in Computer Science, pages 441{448. Springer-Verlag, 1999.

[Whi96] J. E. White. Telescript technology: Mobile agents. General Magic white
paper. In J. Bradshaw, editor, Software Agents. AAAI/MIT Press, 1996.

[Whi98] James E. White. Telescript retrospective. Afterword to mobile agents. In
Dejan Miloji�ci�c, Frederick Douglis, and Richard Wheeler, editors, Mobility:
Processes, Computers, and Agents. Addison-Wesley, 1998.

[WPW98] T. Walsh, N. Paciorek, and D. Wong. Security and reliability in Concordia.
In 31st Hawaii International Conference on System Sciences, volume VII,
Software Technology Track, 1998.

[WPWD97] D. Wong, N. Paciorek, T. Walsh, and J. DiCelie. Concordia: An infras-
tructure for collaborating mobile agents. In K. Rothermel and R. Popescu-
Zeletin, editors, Proceedings of the First International Workshop on Mobile
Agents, volume 1219 of Lecture Notes in Computer Science, pages 86{97.
Springer-Verlag, 1997.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for
the Java system. Computing Systems, 9(4):265{290, 1996.

[WS99] Pawe l T. Wojciechowski and Peter Sewell. Nomadic Pict: Language and in-
frastructure design for mobile agents. In Proceedings of ASA/MA '99 (First
International Symposium on Agent Systems and Applications/Third Inter-
national Symposium on Mobile Agents), Palm Springs, CA, USA, October
1999.

[WWWK97] Jim Waldo, Geo� Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. In Mobile Object Systems: Towards the Programmable
Internet, volume 1222 of Lecture Notes in Computer Science, pages 49{64.
Springer-Verlag, April 1997. A reprint of the Sun Microsystems Lab. Tech-
nical Report TR-94-29, 1994.

