Technical Report A

Number 485

Computer Laboratory

Three notes on the
interpretation of Verilog

Daryl Stewart, Myra Vanlnwegen

January 2000

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2000 Daryl Stewart, Myra Vanlnwegen

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-485

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-485

Three notes on the Interpretation of Verilog.
Daryl Stewart and Myra Vanlnwegen

University of Cambridge Computer Laboratory
o New Museums Site
Pembroke Street
Cambridge CB2 3QG
England

January 28, 2000

Abstract

In order to simplify the many constructs available in the Verilog Hard-
ware Description Language two methods were used to normalise code be-
fore analysis, scalarisation and hierarchy flattening.

A method for scalarising Verilog expressions is described and the re-
placement of expressions with scalarised versions is considered. This then
forms the basis of an implementation of Verilog expression evaluation and
normalization.

The organisation of hierarchical designs is described and an algorithm
for flattening designs is derived from this.

1 Introduction

This technical report comprises three papers written for the research project
“Checking the Equivalence between Synthesised Logic and Non-Synthesisable
Behavioural Prototypes”.

The two subjects covered here, scalarisation and hierarchy flattening , were
used to transform large hierarchical design descriptions with busses into single
module descriptions with only scalar registers. This step represents a move
from an abstract design towards a more concrete, real world version, since the
realisation of a circuit can be thought of as a single mass of circuitry with many
single bit registers (flip-flops or memory cells) and single wires.

The first two papers deal with the subject of expression semantics in the
Hardware Description Language “Verilog”. The dominant problem addressed
here is how Verilog interprets the rules for expressions of various bit-widths.

Part I describes a scalarising algorithm and considers the use of scalarised

expressions within Verilog code with respect to the simulation cycle differences

‘they could introduce.

, Section 6 of part II tackles expression evaluation and describes the imple-
mentation of an expression evaluator based partly on the earlier work. Section

7 covers the normalization of expressions within Venlog code wh1ch allows later

analysis of the code to be simplified.

The third paper describes an algorithm for elaboratmg h1erarch1cal verilog
and producing a single flat module describing the same design, as used in the
- research project. The consequences of removing module boundaries include the
modelling of port connections and identifier renamlng across different module
instantiations.

Decisions about how Verilog expressions should be evaluated were a.ﬁ'ected
by several sources which are acknowledged within the papers themselves.

2 Acknowledgements

The work described here comprised various parts of the tools developed Wlthln
the EPSRC project “Checking the Equivalence between synthesised logic and
non-synthesisable behavioural prototypes” and was supported by EPSRC grants
-GR/K57343 and GR/L35973. '

Part 1
Scalarising Verilog Expressmns

by Daryl Stewart

Here, we present a description in a denotational semantics style of an al-
gorithm for converting Verilog expressions into a scalar form. The scalar form
version of an expression should be interchangeable with the original vector form
version with no discernable difference in simulation behaviour. Sectlon 3 out-
lines several factors which make this difficult in practice.

The algorithm is described in a bottom-up fashion in section 4, starting with
definitions of functions on the algorithm’s data structures, and ending with a
denotational style definition over the concrete syntax of expressions.

Finally, in section 5, we show how to incorporate the scalar expression list
generated by the algorithm into the various syntactic categories which contam
them.

The algorithm was constructed from a study of [5] and from experiments
with Verilog-XL from Cadence Design Systems Inc. [7], the Viper/free simulator
from interHDL [9] and the Veriwell simulator from Wellspring Solutions Inc. [§]

3 Representing Vectors as Scalar Expressions

Scalarisation forms a part of any synthesis process which produces bit-level
descriptions of hardware. For example, the Verilog code

reg [1:0] a, b, q;
initial q = a & b;

should synthesise to produce two 1 bit and gates, perhaps as described by:

reg a_1, a_0, b_1, b 0, g_1, q_0;
and (q_1, a_1, b_1);
and (q_0, a_0, b_0);

where there are no busses, only 1 bit registers.
We wish to produce scalar expressions, not instantiations of gates linked by
wires, so a suitable form for the output of our algorithm may be:

reg [1:0] a, b, g;
initial begin
ql1] = al1] & b[1];
ql0] = a[0] & b[0];
end

if we allow bit selects of vectors on the basis that they are 1 bit values.

3.1 Atomicity of Multiple Scalar Assignments

~ We soon realise that the above code is not interchangeable with the original.
Consider r = A q; being executed somewhere in parallel with the above code.
If we have a state where ¢ = 0, b = 3 and a = 3, then in the original code, q =
a & b; is executed atomically and g = 3 follows immediately, hence r = A q;
sets 7 = 0 whether it executes before or after the assignment to q. If, however,
the assignment to r executes in-between the two seperate blocking assignments
in the scalarised version, then we will have a state where g = 2, leading tor =1,
a completely unreachable state given the original code.

In order to enforce the same atomic assignment behaviour on the scalarised
code as on the vector code, we allow a special form of vector expression to be
‘present in scalarised code - Verilog’s concatenation operator, denoted by a list of
expressions enclosed in curly braces. Our condition on the use of this operator
from within scalarised code is that every expression within the concatenation i is
a truly scalar expression, and not a further concatenation. This gives us:

reg [1:0] a, b, q; ' o . '
initial { q[1l, ql0] } = { (al1]l & b[1]), (al0] & b[01) };

The only change here is in the way we have incorporated the list of scalar
expressions into the surrounding concrete syntax of the assignment operator.
In other words, we can consider the transformation of vector expressions into a
list of scalar expressions without worrying about the use of the final result in a
concatenation or otherwise. Hence our expression scalarising will only produce
expressions made up from scalar expressions and not concatenations and we can
be sure to meet our condition on the use of concatenations.

32 Contextual vs. Self Determination of
Expression Width

Apart from the problem with maintaining atomic assignments, there are some
subtle features of the Verilog expression evaluation semantics themselves. When
evaluating an expression or sub-expression in Verilog, there is a need to know
how wide the resulting expression will be. Every subexpression has a minimum
width which is required to represent its result fully, but it must also be prepared
to fill a larger, requested width. In general, we can fill extra bits by padding to
the left with zeros, but this must be done at the correct subexpression level.
On the occasions when an expression is required to extend itself, the ex-
pression is said to be contezt-determined. Subexpressions of certain operators
are context-determined, for example in bitwise binary operators, since they will
be combined with another value on a bit by bit basis, so they need to match
it in length. In assignments, the rvalue must be able to fill the full length of
the lvalue, so such expressions are also context determined. The case statement

is also defined such that the case expression and all the switch expressions are
evaluated to the length of the longest among them.

In tables 6 and 7, functions CONTEXT and CONTEXTPAIR are used when
a subexpression must match some context provided width. SELF is used for
expressions whose width is solely determined by the expression itself. This is
explained further in section 4.

Consider the following example, which contains two such contextual length
evaluations:

reg [15:0] q;
reg [4:0] a;

initial
begin
a = 12; X
q = -8’dl & -a;
end

The first assignment has an integer on its right hand side. Although integers
are 32 bits, only the last five are required and a is left holding (5'601100).

The second assignment’s first context arises from q being 16 bits, requiring
the right hand side to provide 16 bits. The bitwise and has two operands,
one of 8 bits and one of 5 bits, so it would normally evaluate each of these
subexpressions to at least 8 bits - this is the second context. However, if this
were the case then we would see the 8 bit result extended with 8 zeros. In fact,
Verilog assigns the value (16'61111111111110100) to q. This implies that both
the operands of the bitwise and had been evaluated to 16 bits with 1’s in their
top 8 bits. ‘ ‘ ‘

In the rule for [e;binope, | (table 6), we see the MAXINDEX function is
used to determine the context due to the operation, but this is not the value
used in evaluating the subexpressions. Instead, the presence of CONTEXTPAIR
forces the enclosing environment (be it an expression or, as in our example, an
assignment statement), to either use this value, or to provide its own - which
must be the same or larger.

3.3 Use of Signed Arithmetic with Integer Data Types vs.
Unsigned Arithmetic with Reg Data Types

In Verilog there are two types for numeric values, integer and reg. Any arith-
metic involving the former should use signed arithmetic, otherwise operands are
treated as unsigned two’s complement values.

In practice, this does not matter with addition and subtraction, since adding
two’s complements produces the correct results with respect to full signed arith-
metic.

3.4 Arlthmetlc Carrles

- Scalarising arithmetic does have one- ‘major effect, due to the- calculatmn of

carries. A naive algorithm for scalarising addition could involve recalculating
the whole carry chain for each successive bit of the result. _

For two equal length lists of scalar expressions, e¢; = [I,,...,lo] and e, =
[Tny .y 7o), then ADD ¢; e, = [ay, .., ag] Where

a; = _lj AN S EVAN
and | : ' ‘
. { 0 1f_1 =0
(rj-1 & Li—1) | (¢j—1 & (rj—1 | lj—1)) otherwise

Notice that this definition matches Ver110g s behaviour of not retufning an
extra most significant bit for the leftmost carry. If this is required, the subex-

- pressions should be evaluated to a larger width, and ARITHPAIR allows this

due to its use of CONTEXTPAIR.

The advantage of this is that the scalarisation can maintain the atomic
assignment semantics. The disadvantage is that c; appears in a; for k¥ < j
leading to scalar expression lists of size O(n?).

A better approach is to allow the insertion and use of extra carry wires, which

are continually assigned, or carry registers, which are assigned immediately
- before the expression which uses them. This requires the ability to invent fresh
~wire or reg names. The result of applying ADD to a pair of scalar expression

lists would then be a scalar expression list representing the answer, and a list
of (wire name by scalar expression) pairs with the least mgmﬁcant bit’s carry
first. ‘

We choose to describe the rest of the scalarising algorithm in a way which
allows either of these methods, since the former is easier to follow, and the latter
is easily constructed with a few modifications to it.

4 Formal Description of the Scalarlslng Algo-
rithm

In this section we define the scalarising algorithm as it presently stands, in both
a carry generating form and a non carry generating form. These two forms differ
in only a few places and table 2 contains the mod1ﬁcat1ons which produce the
former from the latter.

Tables 6 and 7 define a function over pieces of concrete syntax in a denota-

‘tional style which relies on the functions defined in earlier tables. The division

between ezpressions and primary ezpressions is a characteristic of Verilog. In-
spection of these two tables shows that the result of [e] is not a scalarised
version of e. Although not immediately obvious, the result is in fact of the

type integer * (integer > expression list). As mentioned earlier (sec-
tion 3.2), every expression has a minimum bitwidth required to represent it and
the integer which is returned is known as the most significant bit’s indez. By
convention, the least significant bit is given index 0, so the actual number of
bits required is one more than the most significant bit’s index. The integer
accepted by the function is the index of the most significant bit desired in the
result. A

In table 1 we see that the functions INDEX and SIZE, when applied to [e],
will return the most significant bit’s index and the number of bits respectively.
We also have MAXINDEX, which returns the largest index required from be-
tween two expressions, and CATINDEX, which returns the index for a list of
expressions which are to be concatenated. Notice that this is defined in terms
of SIZE, since the concatenation’s index is one less than the sum of the sizes of
the constituent expressions. CATSIZE is defined in terms of CATINDEX.

At this point it is worth noting that in the tables which follow CAPI-
TALISED names are functions we define (e.g. SIZE, INDEX, FUNC), whilst
lower case names are standard functions (e.g. map, fst, snd). Furthermore,
Verilog operators are ranged over by names in lower case typewriter font,
and functions which construct them are assumed to produce a subexpression of
the obvious form. For example, bitand (e;, ;) produces the Verilog expression
e;&e, and bitnot e produces ~ e. Notice the definition of a curried version of
cond, CONDRESOP, in table 1.

Two special cases are shiftop and compop. Each possible operator for these
categories has a special constructor function defined in the associativity lists
given in tables 3 and 4. Where shiftop’ is seen, the function paired with the
appropriate shift operator in the associativity list is used. Similarly for compop’.

Continuing the theme of destructors defined over the results of [e], we have
FUNC which returns the integer — expression list function, followed by
SELF, which applies the INDEX of [e] to the FUNC of [e]. In this way we can
denote operands with SELF-determined bitwidth. In other words, SELF [e]
returns a list of scalar expressions fully representing e.

The remaining functions in table 1 are defined differently for a carry pro-
ducing algorithm, as per table 2, which is described in section 4.1.

_ When an expression is to fill a bitstring which is wider than its own size, the

function OPAD can be used, which uses OEXTEND to extend to the left with
zeros by an amount equal to the difference between the expression’s index (r)
and the index required (p). Note that p > r is required.

The more complicated version of SELF [e] is CONTEXT [e] f which
applies the FUNC of [e] to some other index (p). It also applies f to the
resulting list of scalar expressions, which allows us to express a function over
the scalar version of a subexpression before the subexpression is evaluated. As
an example of this, see the definition of | ~ e], which yields its function of

fun FOLD f [e]
fun FOLD fe::es
“fun COPYCAT es 0
| COPYCAT es n
fun ZERO

€

f(e,(FOLD fes))

D .
es@(COPYCAT es (n — 1));
COPYCAT (1'60);

 fun INDEX (i,.)
fun MAXINDEX (ee,ee,)
fun CATINDEX ees

z,
max(INDEX ee;, INDEX eer),
(FOLD (+)

(map(SIZE) (ees))) -1;

o

. fun SIZE ee = (INDEX ee) + I;
fun CATSIZE ees = (CATINDEX ees) +1;
fin FUNC (_, f) f;

Il

fun SELF ee (FUNC ee)(rmINDEX ee);

fun CONDRESOP e, (e, ef) cond(e., €, €f);

fun OEXTEND es P
fun OPADesrp

(ZERO p)Qes;
OEXTEND es (p —r);

fun CONTEXTee fp
fun CONTEXTPAIR(ee,ee,) f p

f(FUNC ee p);
F((FUNC ee; p), (FUNC ee, p));

o

fun SELFPAIR pair f CONTEXTPAIR (pair)(f)

' (MAXINDEX pair);
fun ARITHPAIR pair = CONTEXTPAIR(pair)(ADD);
fun TUNOP op ee = FOLD(op) (SELF ee);
fun TRUTH = (UNOP bitor);

fun CONSTANT ee decimal _of_bit_list(SELF ee);

fun CONCAT
fun MULTICAT

flat;
- COPYCAT;

o

" Table 1: Function Definitions for Scalarising.

type integer — expression list by using CONTEXT to wrap a mapping
of bitnot up with [e]. Whatever index is passed to FUNC [~e] is passed
-to FUNC [e] before map bitnot is applied.

CONTEXTPAIR is an extension of CONTEXT to deal with pairs of Verilog
expressions which must both be evaluated to the same length before having some
function (f) applied to them. The function f will commonly involve using zip

to produce a smgle list of expression pairs. See the definition of [e binop e, |
for a good example of this.

SELFPAIR is like CONTEXTPAIR, except that it reqmres no mdex In-
stead it generates its own using MAXINDEX and evaluates two Verilog expres-
sions to the length of the longest of them. _

ARITHPAIR is used by [e; + e,], which is the only place where carries can
be created but in this form of the algorithm, no carries are generated. ADD is
described in section 3.4.

For Verilog’s unary reduction operators we have UNOP op, which eval-
uates a subexpression and then returns a single expression consisting of all
the scalar expressions which represent the subexpression, joined by op. For
this we use FOLD, a slightly non-standard version of the normal fold op-
eration, which is undefined for empty lists. FOLD f [z,,Zp-1,-..,Z1,%0] is
f(@n, (f(@n-1,...(f(21,0))-..)))-

TRUTH is an alias for the reduction or (|) operator. why?

In the definition of CONSTANT we assume a function decimal_of_bit_list
which produces an integer given a list of (constant) scalar expressions. If any of
the scalar expressions passed to decimal of bit_list are not known constant bits
(1’60 or 1'b1) it is treated as a static parsing error.

Finally CONCAT is defined to produce a list of scalar expressions from a list
of scalar expression lists, and MULTICAT to copy such a list multiple times.
These function names are really needed for the with carries form of the algorithm
and have more complicated definitions in table 2.

4.1 Modifications to Provide Carries.

So far, the functions described are suitable for manipulating the results of the
naive implementation of ADD from section 3.4. The alternative is to create a
set of fresh carry wires..

In order to extract these wires and their associated expressions from the
scalarisation of an expression e, we modify the type of the result of [e] to
integer * (integer —> (expression list * carry list), where carry is
a type suitable as an argument to the functions which construct Verilog’s con-
tinuous assignments or immediate assignment constructs; i.e. it contains an
Lvalue and a (scalar) expression. Here we show that implementing this re-
quires changes to some of the constructor functions already defined while the
denotational definition is unaffected.

Since only the final result’s datatype has changed, from expression list
to (expression list * carry list), the first few constructors of table 1
are unchanged, as mentioned earlier. However, we need to consider functions
which manipulate the result type more closely.

The first new functions in table 2 are destructors over the new datatype
of our final result. The scalar expression list equivalent to e is returned by
ANS (SELF [e]), and the new list of carries by CARRY (SELF [e]).

fun ANS (es,.) = es;

fun CARRIES (,cs) = es5 °

fun OEXTEND ecs p = ((ZERO p)@ANS(ecs)),

' CARRIES(ecs));
fun OPAD ecsr p = OEXTEND ecs (p — r);
fun CONTEXTeefp = ((FANS(FUNC ee p)),
' CARRIES(FUNC ee p));

fun CONTEXTPAIR = ((f(ANS(FUNC ee; p),

(eer,eer) f p ANS(FUNC ee, p))),
| (CARRIES(FUNC ee; p)
- @CARRIES(FUNC ee, p)));

fun SELFPAIR pair f = CONTEXTPAIR(pair)(f) .
’ ‘ (MAXINDEX pair);
fun ARITHPAIR pair p = (fn scalar_sum =>
| ~ ((ANS(ANS(scalar_sum))),
(CARRIES(scalar_sum))

Q@(CARRIES(ANS(scalar_sum))))
)(CONTEXTPAIR(pair)(ADD)(p));

fun UNOP op ee

Il

(FOLD op (ANS(SELF ee)) (1'50),
CARRIES(SELF ee));

(UNOP bitor);

decimal of blt_hst(ANS(SELF ee));

fun TRUTH
fun - CONSTANT ee

((Hat(fst(unzip ecs))),
(flat(snd(unzip ecs))));
((COPYCAT(ANS(ecs)) n),
CARRIES(ecs))'

il

fun CONCAT ecs

fun MULTICAT ecs n

‘Table 2: Alternative Funct1on Definitions for Scalarising with Extra Carry Gen-
eration.

OEXTEND is redefined to accept the new result type, ahd return a result

with the original carries unchanged. Although the form of OPAD is unchanged,
it is repeated to make clear that it uses our new OEXTEND function.
CONTEXT and CONTEXTPAIR are similarly redefined so as to work with
the new result type. Again, despite having the same form as previously, we
redefine SELFPAIR here for clarity.
The major change comes in the form of ARITHPAIR which is the only
place where new carries can be introduced. Since it combines two subexpres-
sions and then applies ADD using CONTEXTPAIR, it will have to combine

10

three lists of carries - one from each of the subexpressions and one from the
result of the arithmetic it implements. Since this third list of carries is gener-
ated from the subexpressions, it may contain uses of their carries. Thus it is
important that the subexpressions’ carries are assigned first, hence the carry list
from the CONTEXTPAIRing of the subexpressions occurs first in the concate- =
nation of carries. (Notice that the type of CONTEXTPAIR(pair)(ADD)(p)
is ((expression list * carry list) * carry list), where the first pair is
the result of ADD, and the last list of carries is a concatenation of the subex-
pressions’ carries.)

UNOP, TRUTH and CONSTANT are all redeclared to make use of the new
result type, whilst leaving the carries unaffected.

The new CONCAT makes use of flat and unzip to produce a pair of lists
from a list of pairs, and MULTICAT simply copies the expressions in the result
it is passed a given number of times.

4.2 Denotational Definitions over Expressions

Having described the functions used to compose the denotational definitions,
we can now explain the meaning of tables 6 and 7.

Remembering that each right hand side comprises a pair indez * function,
we see that operators which return a single bit, such as logical operators and
reduction operators, have 0 in the first place, whilst bitwise operators return
- some function of the index (indices) of their subexpression(s). Notice that the
definition for addition adds one to the MAXINDEX of its operands since we
require an extra bit for a final carry to fully represent the result. ’

We use OEXTEND or CONTEXT to construct functions with a single ar-
gument (p) remaining unbound, which is the requested most significant index.
In several places, TRUTH is used to obtain expressions for operands which
represent truth values.

The shiftop and compop definitions make use of the functions from tables
3 and 4 respectively. LeftShift simply adds extra zeros to the right of a list
of scalar expressions, removing an expression from the left every time it does,
yielding a list of the same length as its argument. If any of these “lost” most
significant bits are required in the result, the subexpression being shifted will
have been evaluated to the correct length for the final result. A right shift is
implemented as a reversed left shift.

The comparison operators use BusGt, CaseEqReduc and NoXsPresent to
implement comparisons in terms of Verilog’s ? :, &, A, === and ~ operators.
Case equality (“===") between vectors is a conJunctlon of case equivalences
between the vectors’ bits, achieved with CaseEqReduc. Logical equality (“==")
is slightly more complicated, since it treats the result of comparisons which
involve any unknown values as unknown. NoXsPresent is used to detect the
presence of any unknowns in the bitwise comparison of two vectors. Its result
is 1'bz if there is at least one and 1'b1 if there are none. Since an exclusive-or

11

fun LeftShift es0

= s
| . LeftShifte:esk =

LeftShift (es@(1'50)) (k — 1);

[(“<<”, fnkrfnes— LeftShift k es),
(“>>", fnkw— fes— rev(LeftShift k (rev es)))]

Table 3: Definition of shiftop Functions.

150
cond(bitxzor(eg, el), eg,
(BusGt egs els));

fun BusGt []]
| BusGt eg: egsel:els

caseeq(e;, e3)
bitand(caseeq(e;,e3),
(CaseEqReduc es; esz));

fun CaseEqReduc le1] [e2]

| CaseEqReduc e; :: es; ez :: s

nu

bitand(bitzor(ey,~ 1),
bitxor(ez, ~ e2))

fun NoXsPresent [e;] [e2]

| NoXsPresent e; ::es; ez ::es; = bitand(bitand(bitxor(ey,~ e1),

bitxor(es, ~ e3)),
(NoXsPresent es; esz));
“>” fnes;+— fnes; — [BusGt es; essy]
“<”, fnes;~ fnes; = [BusGt ess esg]
“>”, fnes; — fnesy— [bitnot(BusGt esz es;)]
fn es; — fn es; = [bitnot(BusGt es; esy)]
“===", fnes; — fnes;—~ [CaseEqReduc es; es;]
“==", fnes; > fn es; = [bitnot(CaseEqReduc es; es;)]
“==", fnes;— fnes; — [bitxor(bitnot(CaseEqReduc es; es;),
(NoXsPresent ess es1))]
(“=", fnes;+>fnes;+— [bitzor((CaseEqReduc es; es;),
(NoXsPresent esz esy))]

—

PN ITION SN PTN SN ST
-
~
A
2
-

Table 4: Definition of compop Functions.

12

involving an unknown is defined as unknown, the definitions for “==" and “!="
in the associativity list can produce the required 1'bz.

We assume that the primary expressions involving identifiers and constant
numbers generate empty lists of carries in the carry generating version.

The extra conditions on bit selects and part selects make use of the functions
msb and Isb, which rely on the declarations of the identifier they are passed.
For example, having declared reg [7:0] r1, msb r1is 7 and Isb r1 is 0. The
conditions ensure that the addresses selected are within the correct range for the
identifier. Notice that dynamic bit selects, often used to implement multlplexers
are not allowed.

The definition of [{elist}] is the only place where the denotation of a list
of expressions is taken. This is defined recursively as:

[01
[e:es]

I
Tel]:=[es]

‘hence SELF is applied to every expression in the concatenation using the map
function, with the results being CONCATenated together.

One final point is that the negated unary operators, ~ &(e), ~| (e) and
~ A(e) are treated as ~ (&(e)), ~ (| (e)) and ~ (A(e)) respectively.

fun TwosComp_zero]
| TwosComp-zero (1'60) :: es
| TwosComp.zero (1'b1) :: es
fun TwosComp.one [|
| TwosComp_one (1'40) :: es
| TwosComp_one (1'd1) :: es

I

(1'b1) :: (TwosComp_zero es)
(1'60) :: (TwosComp_zero es);
[

(1'80) :: (TwosComp_one es)
(1'b1) :: (TwosComp_zero es);

i

fun TWOSCOMP es rev(TwosComp_one(rev es));

Table 5: Definition of TWOSCOMP Function.

13

[unop e]

[te]

[e logop e, |

[e binop e, |

[~el

[ec?es:es]

[e shiftop k]
[er compop e |
[+el
[—el

I[el;er]]

ﬂ:‘ez + e,]]

@]

(o,

»OEXTEND(UNOP unop [e]))

- (o,

OEXTEND (bltnot (TRUTH[D)

(0
OEXTEND(logop(TRUTH[[e], TRUTH[[e- 1))

(MAXINDEX([&][e- 1),
CONTEXTPAIR([¢], [e~])

((map b:mop) o zip))

(INDEX[e],
CONTEXT(e |(map bitnot))

(MAXINDEX([e 1, [e 1)
CONTEXTPAIR([e;], [es)
((map(CONDRESOP(TRUTH[e 1)) o zip))

(INDEX[e],
CONTEXT] e](shiftop' (CONSTANT] k)

©, ,
OEXTEND(SELFPAIR(] ¢],[e,])compop'))

[el
(INDEX] e],
CONTEXT[e JTWOSCOMP)

[e+(—e)]

((MAXINDEX([e], er ID)s
ARITHPAIR([¢,], [e/ 1))

[el

Table 6: Scalarising Verilog Expressions.

14

[k] = [32'dk]
['Bk] = [32'Bk]
[s'Bk] = (s-1,
OPAD(bit list_of based number k)(s — 1))
[ide]] = (9

OEXTEND(id[CONSTANT] e]}))
iff (msb id < (CONSTANT][¢]) < 1sb id)
V (msb id > (CONSTANT][e]) > Isb id)
= COPYCAT 1'bz otherwise

[idlei:e2]] = [{idles],...,id[e2]}]
i ((CONSTANT[e; | < CONSTANT[e;])
A (msb id < Isb id))
V ((CONSTANT[e; | > CONSTANT] e;])
A (msb id > Isb id))
V (CONSTANT] e; | = CONSTANT] e2])

[id] = [id[(msb id): (Isb id)]]

[{elist}] = (CATINDEX] elist], |
OPAD(CONCAT(map SELF(] elist])))(CATINDEX] elist [))

[{k {elist}}] = ((CONSTANT] k] = (CATSIZE[{elist}])) -1,

OPAD(MULTICAT(SELF([{elist}]))CONSTANT] &]))
(((CONSTANT] k]) * (CATSIZE[{elist}])) — 1))

Table 7: Scalarising Verilog Primary Expressions.

15

5 Scalarising Verilog code

We now turn our attention to the 'pi"d(':'éé's' of i’ﬁéﬁfpbratiﬁg"thé'Sffélé;fi‘éed' ex-

pressions into the Verilog syntactic categories which include them. Although
both carry generating and non-carry generating forms of the algorithm have so
far been shown, only the former will be described here, since without carries,

‘scalar expression lists enclosed in Verilog’s concatenations can be directly sub-

stituted. The issue of interest from now on is what to do with the carries we
have generated.

Table 8 shows mostly syntactic components concerned w1th flow of control.
In these, an expression is usually used as a condition to determine the next state-
ment to execute, so the vector expression e. is replaced with the scalar version

-obtained from ANS(TRUTH][e,]). The carries from CARRIES(TRUTH] e,])

are turned into immediate assignments with the constructor
immediate_assignment. Each seperate carry wire must be assigned seperately,
so that less significant bits’ carries are set before the more significant bits’ car-
ries which depend on them. In the translation of while we must set the carries
once before the first test, and again after executing the body of the while.

The rule for repeat performs unwinding, and the for and wait rules are
recursively defined by evaluating an equivalent piece of Verilog code. The defini-
ton of the function SUPPORT, which returns a list of the identifiers present in
its argument, is not shown, as it is defined recursively on the whole structure of -
expressions. :

Notice in the rule for wait, the use of a null statement °; after the tim-
ing control, making the body of the while loop do nothing once the guard is

- triggered. Also, with this equivalent code, it is possible that in-between the trig-
- gering of the guard, and the evaluation of the original expression, the support

is changed by a non-deterministic interleaving with another process. In such
cases, a transient true value which could release the guard could be missed.
Such behaviour has been noticed in the Verilog simulator.

In table 9, the context for evaluating the rva.lue is taken from the INDEX of
the lvalue.

5.1 Event guards

Expressions are permitted in event guards and this adds a complication because
our generated carries can no longer accompany the scalarised expression. A
solution is to continually assign the carries. : o

A further complication arises if we consider the final form of our language
V, where only identifiers may occur in the event guards. Again, the solutlon is
to continually assign the original scalar expressions.

Finally, the posedge and negedge guards are only sensitive to changes in
their least significant bit.

16

begin
(map immediate_assignment)
(CARRIES(TRUTH] e,]))

[if ec st else sy |

end

if ANS(TRUTH[e.]) [s:] else [sy]

[forever s;] = foreverl['s,c |
[repeat e s, | = begin
: COPYCAT[s, [(CONSTANT[e])
end
[while e. s; | = Dbegin

(map immediate_assignment)
(CARRIES(TRUTH] e,]))
end _
while ANS(TRUTH] e.])
begin
[s:]
(map immediate_assignment)

CARRIES(TRUTH] e,])

end
[for (r1 =e1; ec; r2=e2) s] = begin
[[Ty = é3;]] v
[while e, begin s; 7 = e2; end |
end

[wait (e) s] [while (~ e) @Q([SUPPORT e) ; s]

(*nothingx)
begin [ss | end

[begin end |
[begin ss end]

Table 8: Scalarising Flow Control Statements.

17

i[i=ge;]l. =

[i<=g9&] =

[posedge(e)]

[negedge(e)]

[anyedge(e) |

[@(edgés) |

[#e]

~ fun NHEADS e:
| NHEADS e::
~fun SNIP esp

es0 = e - -
esn = e:(NHEADS es (n—1))

= rev(NHEADS(rev es) p)
begin

(map immediate_assignment)(CARRIES

(CONTEXT[e]](MAXINDEX([[[1.TeD))
end .
{ANS(SELF[!} =1[g] {ANS :

(CONTEXT[e]](MAXINDEX(I[1],]e]])))}

begin '

(map immediate_as 51gnment)(CARRIES(SNIP
(CONTEXT[e]](MAXINDEX([[LIeD))
(INDEX[{])))

end

{ANS(SELF[I])} <=[g] {ANS(SNIP

(CONTEXT[e]](MAXINDEX([[[1,Tel))
(INDEX] !]I))}

Table 9: Scalarising Assignments.

(map posedge(ANS(SNIP(SELF[e])0)))
Continuously assign(CARRIES(SNIP(SELF] e [)0))
(map negedge(ANS(SNIP(SELF[e])0)))
Continuously asszgn(CARRIES(SNIP(SELFI[e]])0))
(map anyedge(ANS(SELF[€])))
Continuously assign(CARRIES(SELF[e]))

@(fat(map ANS| edges]))
Continuously assign-

(CARRIES(flat(map CARRIES] edges])))
#CONSTANT([e])

Table 10: Scalarising Event Guards.

18

Part 11
Verilog Expressions

by Myra Va.nInwegen

~ Our work with Verilog expressions proceeded in two stages. The first stage
was to work out exactly what the meaning of Verilog expressions should be. In
doing this we wrote a program that evaluated expressions. Part of the problem
here is to figure out width and signedness (signed vs. unsigned) of intermediate
results. The second stage was to normalize Verilog expressions, transforming
them into a form such that they can be evaluated exactly as they are, without
doing any width calculations.

6 Verilog Expression Evaluation

How to evaluate Verilog expressions ought to be clearly specified by the Proposed
IEEE Standard 1364 describing Verilog HDL [2]. However, the Standard only
describes the results in the straightforward cases, not what should happen if the
programmer does something unexpected. To see what to do in these cases, we
referred to three simulators: Cadence Design Systems’ Verilog-XL, Wellspring
" Solutions’ VeriWell, and interHDL’s ViperFree. We also used a Verilog textbook
by Thomas and Moorby [6].

The semantics we chose usually follows the Standard, but if all three sim-
ulators took a different route, and they all agreed with each other, then we
usually took the solution used by the simulators. If the Standard wasn’t spe-
cific about some aspect, we would pick our favorite of the solutions proposed by
the simulators.

First we explain the evaluation strategy (in general terms, how the pro-
gram evaluates expressions), then we explain in detail the choices we made in
determining exactly how expressions should be evaluated.

6.1 Evaluation Strategy

Probably the most complicated aspect of expression evaluation is determining
the widths of intermediate results. If you add two vectors together, the width
of the result is the maximum of the widths of the two vectors. Using compu-
tations such as this, we determine the minimum width needed to hold the final
result, based on the widths of the components. Here, the components in the
computation of the width are not necessarily the leaves in the syntax tree of the
expression, but are just those subexpressions that have a fixed width, including
identifiers, bit and part selects, expressions with unary or binary operators that
have a single-bit result, and concatenations.

19

The width used for computing intermediate results in operations such as
addition is the maximum of the minimum width needed to hold the final result
and the width of the lvalue to which it is assigned. Each of the components
in the expression must be expanded to this size (by adding zeros to the left of
the most significant bit) before the computation is started. We must do this
in order to allow operators that invert the most significant bits to operate in a
sensible manner. For example, in the program fragment -3°b010 + 5°b00101,
we are adding —2 to 5, and the result should be 3. This is in fact what we get if
we expand the first component to a 5 bit width before we negate it. However, if
we negate the first component while it is still 3 bits wide, then pad with zeros,
then add, we get the result 11 (in binary, 01011).

Thus we must explore a good portion of the syntax of the expression in
order to find the width before we can begin evaluating the expression. However,
simply finding the widths of the components requires evaluating expressions:
the repetitions argument in the multiple concatenation and the indices of a part
select may themselves be expressions. '

To break this seeming circularity we adopted the approach used by Daryl
Stewart, in which expression evaluation is done in one recursive examination
of the expression. The result of an expression evaluation is a pair of an SML
integer and an SML function. The integer is the minimum width needed to hold
the expression. The function can be considered a partial evaluation. It takes a
integer, which is expected to be greater than or equal to the minimum width
returned, and completes the evaluation at that width. We get the final result
by applying the function to the maximum of the returned width and the width
of the lvalue to which it is being assigned.

6.2 Signed vs. Unsigned Computation

Since a two’s complement representation is used for negative numbers, most op-
erations (including multiplication and addition) are exactly the same for signed
as for unsigned numbers. However, for some operations it makes a difference.
For example, -8 / 4 could either end up a large positive number or —2, de-
pending on whether —8 is considered a large positive number (unsigned) or a
small negative number (signed). Similarly, whether or not -4 < 5 depends on
whether we’re comparing the arithmetic values, or just the bit patterns. That
is, it depends on whether —4 is treated as signed or unsigned.!

According to the Standard, arithmetic operations on integers are to be
treated as signed, whereas operations on registers or nets are treated as un-
signed. With integer constants, if the constant is written with a size or base,
then it is treated as unsigned, but plain numbers are treated as integers.

! Actually, the Standard never states explicitly that a relational operation on integers should
be treated as a signed comparison, but at least one textbook (Thomas and Moorby) does, and
all the simulators do, so we do as well.

20

What exactly is an integer anyway? The Standard says that integers are gen-
eral purpose registers used for simulation, but are not meant to model hardware
registers. The Standard does not say how many bits an integer register should
have. In fact it suggests that an integer register may not have a fixed width
(there is a note stating that implementations may limit the maximum size of an
integer). However, all the simulations (and the Thomas and Moorby textbook)
treat an integer as a special register with a fixed range (the most significant bit
- has index 31, the least 0). We adopt this latter approach, except that we can
easily change the width of the integer reglsters by changing a constant in the
implementation.

What if one signed and one unsigned argument are used in arithmetic op-
erators? The Standard suggests that the signed vs. unsigned aspect of each
argument should be considered separately. For example, -12 / 3 results in —4,
and -10°d12 / 3 results in a large positive number, but probably -12 / 5°d3
should result in —4. However, two of the simulators we use (namely, Verilog-
XL and ViperFree) treat the computation as signed only if both operands are
signed. Using this method, -12 / 5’d3 would result in a large positive number:
because second argument is unsigned, the —12 is treated as unsigned as well.
This method makes for fewer different cases in implementations of operators. It
also makes it easier to decide when the result is signed: the result of a binary
operation is signed if both arguments are signed (with one exception, see below)
Thus we have adopted this method.

What if we do something like (a opl b) op2 c, where opl and op2 are
binary arithmetic operations, a and b are signed values, and c is an unsigned
value? According to our approach, op2 is evaluated using unsigned arithmetic,
since c is unsigned, but is the evaluation of op1 done using signed or unsigned
arithmetic? Verilog-XL uses unsigned for op1; the other two use signed. We
prefer the idea of using signed if both operands are signed, so in this situation
we use signed for opl.

It is even less clear whether the result of non-arithmetic operations should
be signed. For example, is -6 | -8 signed? There is no suggestion one way or
another in the Standard. However, all the simulators say that the result will be
signed, so we follow their lead: What about -12 << 1’b1? This is trickier. The
Standard says that the width of the result is the width of the left argument,
and that the right argument is self-determined and also should be considered
unsigned (thus we never end up with a negative number to shift by). Our opinion
is that since the right argument is always considered unsigned, then its actual
sign should not affect the sign of the result. Thus if the left argument is signed,
then the result is as well. Two of the simulators (ViperFree and VeriWell) agree
with me; Verilog-XL insists that both the left and right arguments be signed
before the result will be.

In our semantics, the results of a part select and concatenation are always
unsigned, even if the part select selects all the bits of an integer or an integer is
the only item in the concatenation (in these cases the bits we get are just the

21

original bits in the integer). Verilog-XL does things our way. With VeriWell, the
“result of the concatenation example is signed while the part select is unsigned.
ViperFree returns a 51gned value in both of the special cases above.

We treat the repetitions argument in multiple concatenations as unsigned,
in analogy with treating the right argument of the shift operator as unsigned.

Integers are special registers of a fixed width (see above). What if we add
a negative integer and a register that has a width larger than the width of an
integer? Do we extend the most significant bit of the integer with zeros (as we
normally do), or do we extend with ones, thus preserving the sign of the number?
The Standard suggests that whenever values are extended, they are extended
with zeros. Yet extending negative signed values with ones makes logical sense.
Two of the simulators (Verilog-XL and VeriWell) extend with zeros, while the
third (ViperFree) extends with ones. We will go with the majority opinion (and
the Standard) on this and extend w1th Zeros.

6.3 Diﬁ'erences from the Standard—Widths

~ There are several places where our semantics differs from that in the Standard

in handling the widths of expressions. In each case, all three simulators did the
same thing, which was different from what the Standard says. These differences
are summarized by Table 11, which is similar to Table 4-21 in the Standard.
Table 11 also includes comments on signedness of operatlons, as discussed in
the Section 6.2.

‘In our semantics, the length of a multiplication is the maximum length of
the two operands, while in the Standard it is the sum of the two lengths. We
chose to use the maximum for several reasons. First, all the simulators do it
‘this way. Second, it uses the same philosophy as addition, in which the carry
bit can be lost unless you make sure that you’ve got the bits available to hold it.
Third, we allow signed operations only on integer-width values. If we follow the
Standard’s suggestion and then multiply two integers, we end up with a value
that is twice the width of an integer, whrch we would then treat as unsigned.
This does not seem sensible. :

‘In our semantics, the operands of the relational a.nd equality operators are
context-determined. To implement this, we figure out natural widths of each
of the operands, evaluate the operands to the maximum of those widths, then
compare. The Standard says that the operands of all the relational and equality
operators are self-determined, and then they are extended with zeros to make
their lengths equal before the comparison. We chose to do it our way because
all the simulators do it that way, and because it seems more logical: with the
Standard’s semantics, the comparison -3°d5 == -5’d5 would result in false (a
one-bit binary 0). _
The Standard spec1ﬁes that the width of the return value of a condltlonal
operator will be the maximum of the widths of the second and third operand.
As Table 4-21 doesn’t mention that j and k are self-determined, then one can

22

| Expression

Bit length

| Comments

unsized constant number

same as integer

Result is signed .

sized constant number

as given

Result is unsigned

i op j, where op is:
+ = % & | NN ~A

max(L (), L())

Result is signed if i and j are

op i, where op is: L(i) Result is signed if i is

L _~

i op j, where op is: 1 bit Operands are context-
===l====I= determined, length used is
>>=< <= max(L(i), L(j))

i op j, where op is: 1 bit Operands are self-determined
&& || v , .
op i, where op is: 1 bit Operand is self-determined
& ~& | ~| A A

i op j where op is: L(i) j is self-determined

and treated as unsigned

>> <L Result is signed if i is
i?7j:k max(L(j), L(k)) i is self-determined
Result is signed if j and k are
{i, ..., j} L(i)+...+L(3) Operands are self-determined
Result is unsigned
{ifj, ..., k}} i*(L(j)+...+L(k)) | Operands are self-determined

i is treated as unsigned

| Result is unsigned

Table 11: Bit lengths and signs resulting from expressions

23

suppose that they are context-determined. However, in the section on condi-
__tionals, it is stated that if one of the operands is shorter than the other, it
will be extended to match the length of the larger operand. This suggests that
the second and third arguments are self-determined. We have chosen to make -
the second and third arguments context-determined, both because all the sim-
ulators do this and because it results in more intuitive behavior (for example,

a ? -12 : -5°d12 evaluates to an integer-width unsigned value with the twos'
complement representation of —12 no matter what a is).

6.4 The 'Logiéal Operators

The Standard’s description of the meaning of the logical operators && (and)
and || (or) in Section 4.1.9 leaves much to be desired. Presumably, a && b will
- be evaluated by determining the truth value of a and b, then performing the
&& according to some truth table. However, it is not stated exactly how one
turns a vector value into a single bit logical value. Nor is it stated what truth
tables to use for && and ||. What to do with true and false is obv1ous, but what
do we do with ambiguous truth values?

In Section 4.1.13 on the conditional operator, the Standard says that if the
vector has the value zero it is false, if it has a known value other than zero it
is true, and if the value of the vector is x or z the truth value is ambiguous.
Piecing this together with information from other parts of the Standard, we can
~ figure out that if any bit of the vector is x or z, then the truth value is x. If the

value is all zeros, then the result is 0 (false). Othermse, it is either all ones or
~ is a mix of zeros and ones, and the truth value is 1 (true). This is the semantics
we use. Incidentally, two of the three simulators we use have a different method
to compute truth values: Verilog-XL and ViperFree say that a value is true if
there are any 1 bits in it, is ambiguous if there is a mix of zeros and xs, and is
false if it is all zeros; only VeriWell agree with the Standard.

We still need to know the truth tables for && and ||. After factoring out
their different truth valuations, all of the simulators use the same truth tables
for the logical operators as for the bitwise binary operators, and so we do this
as well.

6.5 Short-Circuit Expressmn Evaluation

Section 4.1.4 of the Standard states that short-circuit evaluation is allowed.
This form of evaluation allows one to leave part of an expression unevaluated
if the result of the expression can be determined early. For example, if E; has
the truth value 0 (false), then E;&&E- Wlll be 0, no matter what E2 is, so there
is no need to evaluate E,.

We do not implement this in the program. The main reason for this is
that leaving it out makes the program code clearer. When we include function
evaluation, there will be another reason not to do it. The problem is that

24

function calls may have side effects (changes to non-local variables). Recall that
~ one must partly evaluate an expression in order to find its width. Thus, using

the example above, any function calls occurring in say, part select indices in By
" and E, would be evaluated. If E; has the truth value 0 and we use short-circuit -

evaluation, then the rest of E> will not be evaluated. Thus some function calls
in E, would be evaluated, while others are not. If the functions have side effects,

this could be very confusing to the user, as it would be hard to predict which

function calls would be evaluated and which would not.

6.6 Ranges and Bit and Part Selects

The range gives the most and least significant bits in reg or net declarations.
" These are given by constant expressions. The Standard does not specify what
to do if there are x or z bits in the resulting values. Different simulators take
different approaches. Venlog—XL seems to use x or z bits as if they were 0.
ViperFree treats x bits as 0 and z bits as 1. VeriWell prints prints out an error
message. Since range specifications much be constants, we feel that it is a bad
idea to try to make sense of ranges with x or z bits in them, so we issue an error
message if this happens.

The Standard and the Thomas and Moorby book state that the keywords
vectored or scalared may be used to modify the range to specify that a vector
net or trireg must be treated as a single entity, that is, bit or part selects cannot
be done on it. The simulators take a strange approach to these keywords.
Verilog-XL and ViperFree allow one to declare a net as vectored, but they ignore
it without giving any error messages. VeriWell prints out “sorry: VECTORED
keyword is not supported; all nets treated as vectored”. This would leave one
to think that one cannot do bit or part selects on any net, but this is not the
_ case. It seems that the implementors of VeriWell have gotten a bit confused
about what the vectored keyword means.

We implement the vectored and scalared keywords: if a net is declared as
vectored and you try to do a bit or part select on it, an error message is printed
out and the execution stops. -

The Standard specifies that if a bit or part select is out of range, or if the

indices are x or z, then the value returned will be x. It also says that part-select
indices that evaluate to x or z may be flagged as compile-time errors, and that
bit or part-select indices that are outside the declared range may be flagged as
compile-time errors.

. The simulators all return an x if a bit-select is out of range. They also all
return x if the bit-select contains an x, and two of the three return x if the
bit-select contains a z. However, ViperFree sometimes gives an “Index out of
bound” error if the bit-select contains a z, and it sometimes returns an x.

For part selects, if the part-select is out of range, Verilog-XL and VeriWell
seem to return Os for the part that is out of bounds on the side of the most

25

significant bit, but they returns a result that is all Os if the part is out of bounds
on the least significant bit side. For example, in the code below

reg [3:1] r2, r3, r4;

r2

= 3’b10z;
r3 = r2[4:2];
rd = r2[2:0];

r3 ends up as 010, while r4 is 000. ViperFree gives a “Range index out of bound”
in both cases. ‘

If a part select contains an x or a z, Verilog-XL and VeriWell give error
messages. ViperFree seems to mterpret an x in a part select index as a 0 bit,
and a z as a 1 bit.

This is very bizarre. We do the following. For bit selects, if there is an x
or z in the index, or if the index is out of the declared range, we return x. For
part selects, if there is an x or z in one of the indices, or if the part select is
out of range, we give an error message. We chose different behaviors for bit
and part selects because bit selects can be dynamic, while part-selects much be
constant. In a dynamic value; there may be temporary situations where there
are unknown or high-impedance bits in the index, or the index is out of range,
so we return what we feel is a sensible value (x). Since part selects are static
(constant), if the desired part has xs or zs in the indices, or if the part is out of
range, then it is a mistake and the user should be notified.

6.7 Parameters

Parameters are constants. When you declare them, the form of the value as-
signed to them determines the type of the parameter. The following examples
are from the Standard.

parameter msb = 7;
parameter r = 5.7;

The explanation given is that msb is a constant value 7, and r is a real value.?
Thus a parameter’s form determines the way it is used. Since unsized, unbased
constants are treated as integers, one can suppose that when these parameters
are used in expressions, they are treated as signed values with integer width.
Further extending this “value determines type” notion, we can guess that based
numbers will result in registers with a width appropriate for the number (integer
width for unsized numbers, the given size for sized numbers). This is what all
the simulators do, and thus our implementation does as well.

The Standard and the Thomas and Moorby book do not allow range spec-
ifications for parameters. All the simulators allow it, but the way they handle

2Recall that we don’t implement real numbers; this is just an illustration.

26

the ranges is very unintuitive: using a range in a parameter declaration does

~not change the size of the resulting parameter For example, in the followmg o

declaration 7 |
pa:ramei:er [5:0] pa = 6°b110101, pa2 = 5, pa3 = 3°b101;

pa is a 6-bit value, pa2 is a 32-bit integer, and pa3 is a 3-bit value. The only
thing that using a range in a parameter declaration does is change the indexes
of the bits. Consider the following declaration:

parameter [0:1] pb = 4°b01xz;

The result is that pb is the 4-bit value Olxz. In all the 51mulators, the last two
bits (x and z) have indices 0 and 1: if we select bit 1 (using pb[1]), the result
is a 1-bit z. However, if we select an index that is in the value of the parameter
but not in the declared range, each simulator returns something different. If we
ask for pb[-1] Verilog-XL returns 1, the bit in that position. VeriWell returns

an x, since —1 is out of the declared range. ViperFree considers it an error, -

saying “Index out of bound”. Because of the strange way it is handled, we will
go with the Standard and not allow ranges in parameter declarations.

The Standard is ambiguous about whether bit or part selects on parameters
should be allowed. Among the listing of possible operands (just before Section
4.1 on operators); bit or part selects on parameters are not mentioned. However,
just a few of paragraphs earlier, bit and part selects on parameters are listed
as possible operands for constant expressions. Certainly, constant expressions
should be a subset of expressions, so we will allow bit and part selects on pa-
rameters in all situations. Two of the simulators (Verilog-XL and VeriWell) do
as we do; ViperFree does not allow bit or part selects on parameters.

7 Verilog Expression Normalization

The normalization of the expressions results in an expression that has been
altered in three major ways. First, all the subexpressions that are required to
be constant have been evaluated. Second, all the width manipulations have been

made explicit. Components are padded with the use of concatenations, and if
the result of an expression is wider than will fit into the lavalue to which it’s.

assigned, a part select retrieves the least significant bits. Finally, declarations
are normalized so that ranges of busses are [width — 1 : 0], where width is the

number of bits in the bus. Bit and part selects in expressions and lva.lues are .

changed accordingly.

In order to simplify the semantics, we do not distinguish between signed and
unsigned values when doing constant expression evaluation. The reasons for
this are explained below in Section 7.1.

 The input is the abstract syntax (Daryl Stewart’s P1364.meta syntax) for
a Verilog source file, and the output is the modified source. We can deal with

27

B
i

concrete syntax with the use of the CLaReT tools [1]. In addition to modifying .
the expressions, all widths of arguments to module instantiations, task enables,
and function calls are checked. The types of identifiers is checked (for exam-
ple, registers cannot be used in continuous assignments), and exceptions are
raised (with arguments describing roughly what went wrong) when a problem
is encountered. :

Here are some examples that show the results of expression normalization.
The following declarations are used for all the examples.

reg [3:0] reg4, regib;
reg [5:0] regb;

reg [11:0] regl2;

reg regl;

parameter p = 5, p2 = 16;

The examples will be shown as follows:

before: statementl
after: statement2

This shows a statement (statementl) and what the program transforms it to
(statement2). We use a full statement rather than just an expression because
the width of the lvalue to which an expression is assigned affects the width of
intermediate expressions. Occasionally the before and after lines will contain
declarations in addition to statements. ' v

The operands of a sum are “context-determined”.” This means that the
operands both contribute to the final width of the expression and are affected
by the width required by the context. For example:

before: regl2 = regd + regb;
after: regl2 = {8°d0, reg4} + {6°d0, regbl};

The result is determined this way: the maximum width needed to hold the sum
is 6 bits. Since the lvalue to which it’s assigned has 12 bits, the expression must
be evaluated to 12 bits. In order to evaluate a sum to 12 bits, we expand each
operand to 12 bits, then do the sum.
The arguments of minus (—) are also context-determined, as well as for

bitwise AND (&), OR (|), XOR (), and XNOR (*~ or ~").

 If the width needed to hold an expression is larger than the width of the
lvalue to which it’s assigned, a part select retrieves the least significant bits of
the result of the expression.

before: regé = (regd + regb) - regil2;
after: (({8°d0, reg4} + {6°d0, reg6}) - regl2)[5:0];

Since the maximum width of the components is 12 bits, the components with
width less than 12 are expanded via concatenating them with bunches of 0s.

28

Since the lvalue to which the expression is assigned has a width of 6 bits, the
least significant bits of the result are extracted with a part select. Note that
the use of a part select with a general expression rather than an identifier is
. non-standard Verilog. It is an extension we have made to the syntax.

The operand of unary operators for two’s complement negation (—) and
bitwise negation (™) are context-determined.

before: regl2 = -regb6 + reg4{
after: regl2 = -{6°d0, reg6} + {8’d0, regd};

Note that the expansion of regé via the concatenation happens before the
negation—that way we will have a proper 12-bit two’s complement represen-
tation of the intermediate values, and hence the result. »

If we need to expand a concatenation, the extra 0 bits are included in the
concatenation itself.

before: regi2 = {reg4, regb};

after: regl2 = {2°d0, reg4, reg6l};

before: regl2 = {reg4, regd4b} + regb;

after: regl2 = {4°d0, reg4, reg4b} + {6°d0, regbl;

With shift expressions, the left operand (the item to be shifted) is context-
determined, while the right operand is evaluated at its natural width (this is
called “self-determined”).

before: regb = regd << i;
after: reg6 = {2°d0, regdl} << 1;

With conditional expressions, the second and third operands are context-
determined, while the first operand is self-determined.

before: regl2 = regl ? regd : regb;
after: regl2 = regl 7 {8’d0, reg4} : {6°d0, reg6l;
before: regd = regl 7 regb : regl2;
after: reg4 = (regl 7 {6°d0, regb} : regi2)[3:0];

For binary operators that require a bit-by-bit comparison, but have a one-
bit result, the operands are expanded to the maximum of the sizes of the two
operands. The operators where this is the case are logical equality (==), logical
inequality (! =), case equality (===), case inequality (! ==), less than (<),
greater than (>), less than or equal (<=), and greater than or equal (>=).

before: regd = (reg4 > regb) ? regé : regidb;
after: regd = ({2°d0, regd4} > regb) 7 regd : regdb;

Unary operators with one-bit results (like the reduction operators |, ~|, ",
~N, &, ~&) have self-determined arguments.

29

before: regb = regb + |reg4;
after: regb = regb + {5°d0, |regd};

The meaning of the reduction operators involving negation is that the operation
is performed, then the result is negated. For example, ~|reg6 is equivalent to
~(lreg6).

One thing that the program does not make explicit is the truth reduction
required to get a truth value out of a vector. For example, the statement

regd = (regb) 7 regd : regdb;

is left exactly as it is by the program, although a one-bit truth value is needed
as the first operand of the conditional. A vector is converted to the truth value
in the following way: if any bit of the vector is x or z, then the truth value is x
(uncertain). If the value is all zeros, then the result is 0 (false). Otherwise, it
is either all ones or is a mix of zeros and ones, and the truth value is 1 (true).
Since there is no clear way to represent this in Verilog expression syntax, we do
not make it explicit, but leave it to whatever takes the output of this program
as input to deal with this.

For logical operators (&& and ||), where the operands are reduced via
truth reduction to one bit values that are then compared, both args are self-
determined. Thus, for example, the statement regd = (reg6 && regl2) 7
regd : regdb; is unchanged by the program.

In Verilog some expressions (for example, in ranges of declarations and in
the repetitions operand of a multiple concatenation) are required to be constant
expressions (that is, the only identifiers are parameters). These expressions are
fully evaluated by the program.

before: regb = regi2[p + 3:p-2];
after: regb = regl2[8:3];

before: regl2 = {p - 3{reg4}l};
after: regl2 = {4°d0, {2{regd}}};

As noted below, in Section 7.1, we do not allow function calls in constant
expressions. Also, we do not do signed computation in evaluating constant
expressions.

We normalize declarations so that the ranges become [width — 1 : 0], where
width is the number of bits in the vector. Bit and part selects in expressions
and lvalues are changed accordingly.

before: reg [2:9] reg8; ... regd = reg8[4:7];
after: reg [7:0] reg8; ... regd = reg8l5:2];
before: reg [1:p2] short; reg [1:p2+p2] long;
after: reg [15:0] short; reg [31:0] long;
before: reg [2:9] reg8; ... reg8[3] =

after: reg [7:0] reg8; ... reg8 [6] = 1°dO0;

30

Because we do not deal with signed numbers during evaluation of constant

_expressions, negative indices are not allowed. We do not allow concatenations

in Ivalues. We do not allow block declarations in modules. The output of the

program has all the declarations placed at the top of the module, no matter

where you put them in the code All of the above are changes from standard
Verilog.

7.1 Limitations

All width conversions needed to evaluate expressions are made explicit in the

result produced by the program, except one: when a bus is used as a truth

value, a reduction must be made to it to determine its truth value.

The rest of this section summarizes the differences between standard Verilog
and the input accepted and produced by the program.

The program doesn’t understand basic modules (gates such as AND, NOT,
and pmos). Module, function, and task declarations must appear before their
use (in function calls, task enables, or module instantiations) in the text. We
don’t allow arrays of module instantiations.

We do not allow concatenations as lvalues. Since connections to output and
inout ports in module instantiations and arguments of task enables declared
as output or inout act as lvalues, concatenations are not allowed here either.
Connections to output/inout ports in module instantiations and output/inout
arguments to task enables must be the same width as that used in the declaration
within the module or task. Concatenations and b1t and part selects are not
allowed in port lists in module declarations.

The program does not handle declarations local to functions and tasks (other
than its input/output parameters), or block declarations in modules. It is in-
tended that the user be allowed to include these in his/her Verilog code, but
the code should be processed first by Daryl Stewart’s scope-checkmg code which
deals with this.

All register, wire, and input /output declatatlons in modules are moved to
the top of the module (before task or function declarations, assignments, and
statements) in the output of the program. Comments are eliminated. '

We do not handle defparam statements or parameter overrides in module
instantiations. We do not handle charge or drive strength, time, real or real-
time variables, or simulator directives such as monitor and display stamements.

The method used to evaluate constant expressions is limited in two ways.
First, it cannot handle function calls. Second, it does not do signed arithmetic.
In Verilog, integer variables and unsized integer constants should be treated
as signed. The program does use proper two’s complement representations of
numbers, so it will get most operations right despite not explicitly treating
integers as signed. There are a few cases where special consideration is needed

31

to get the “right” answer. These are in comparison operators over vectors.® In
a comparison, a small (in absolute value) negative number will be represented
with the same bit pattern as a large positive number, so it will be larger than
most positive numbers. Thus, one may get unexpected behavior, as in

before: reg [((-5 > 5) 7 10 : 20):0] regc;
after: reg [10:0] regc; '

3There is a problem with the division operation as well, but since the syntax we are using
doesn’t have division, it doesn’t show up here.

32

Part III

""'Flattenmg Verilog Module

Hierarchies

by Daryl Stewa,rt

Here we describe a method for producing a single module version of a hierar-
chical piece of verilog code. After explaining some terminology, the procedures
used for this are described and the method for applying them is explained. An
example of a hierarchy is given with a step by step explanation of its flattening.

8 Terminology for Instantiations__

A Verilog module-hierarchy consists of one or more top-level modules containing
tasks and instantiations of submodules, which may themselves contain tasks
and instantiations of further modules. In order to flatten a module we need
to substitute suitable statements for task invocations and flattened versions of
submodules for module instantiations.

I use the term module type name to refer to the name given to a module by
a module declaration. When modules are instantiated, they are given module
instance names. A top-level module is one which is never instantiated, therefore
it has no module instance name.

The syntax of an instantiation [2, section 12.1.2 “Module instantiation”]
using Backus-Naur form is shown in table 12, where square brackets enclose
optional items and braces enclose a repeated item. Here, the module_identifier
in the module_instantiation category is a module type name, and the mod-
ule_instance identifier in the module instance category is a module instance
name.

of a particular module type. Each instance will have a unique replacement,
derived from the module type definition using the instance name a.nd port con-
nections as explained in section 9.

8.1 IDENTIFIERS vs. identifiers |
In Verilog an IDENTIFIER is any sequence of letters, digits, dollar signs (3)

and underscore characters (). The first character of an IDENTIFIER may not

be a digit or §. IDENTIFIERS refer to unique objects within a given scope.

An identifier is made up of several IDENTIFIERs, separated by periods (.).
Identifiers are used to refer to objects which may exist elsewhere in the module

33

Note that a single msta.ntlatlon may instantiate more than one new instance

-

module top();
reg tl;

mid m();
endmodule

N

(

module mid();
reg ml, m2;

bot b_a(), b_b():

a initial ml = bot.b;
b initial m2 = b_b.b;
L\endmodule
(jnodule bot () ;

reg bl, b2;

¢ initial bl
d initial b2
endmodule

a) a downward reference by module type name, b) a downward reference by
instance name, ¢) an upward reference by module type name, which is also a
top-level reference and d) an upward reference by instance name.

Figure 1: A Simple Hierarchy with References.

34

hierarchy and are composed of a module type name or a module instance name

_followed by module instance names, ending with the object’s IDENTIFIER.
There are downward references, upward references and top- -level references,
which are actually a special case of upward references. If an identifier begins

with the instance name of a module instantiated in the same module that the
identifier appears in, then the rest of the identifier is resolved within that in-
stance (figure 1 b). This is a downward reference. When an identifier begins
with a module type name, the rest of the identifier is resolved as a downward
reference in the first instantiation of that type (figure 1 a). In either case, if no

suitable module instance exists in the module where the identifier is used, then.

an attempt is made to resolve it in the parent modules (figure 1 c and d). This
is known as an upward reference. A top-level reference begins with the module

type name of a top-level module (figure 1 ¢) and is a full-pathname reference to

the desired item.
Furthermore we will assume that both IDENTIFIERS and identifiers are

represented as lists of ID’s. An ID has the same form as an IDENTIFIER but

not the same meaning. A singleton ID list represents an IDENTIFIER. Taking
example identifiers and IDENTIFIERS from the unflattened code in section
10 we would represent the wire named conx by the ID list [“conx”] and the
downward reference sub_type.delay by [“sub_type”, “delay”].

Since, by definition, there is no hierarchy in a flattened Verilog program, we
will replace all identifiers with unique IDENTIFIERs. Such unique IDENTI-
FIERs can be formed by concatenating the elemental IDENTIFIERS of the full-

. pathname for an object, adding some unique characters between them. These

unique characters should not appear in any other IDENTIFIER, since they are
in effect replacing the unique periods used in identifiers for seperating hierar-

chical levels. In this paper we will use a double underscore (-.) as the umque '
characters.

module_instantiation := moduleidentifier
’ [parameter_value_assignment |
module_instance {, module_instance } ;
(expression {, expression })
module_instance_identifier
: _ ([list-of_module_connections])
list_of_module_connections == ordered_port_connection

{, ordered_port_connection }

| named_port_connection

{, named_port_connection }
ordered_port_connection [expression]
named_port_connection = .port.identifier ([expression |)

parameter_value_assignment
module_instance

Table 12: Syntax of an Instantiation.

35

We will assume a recursive function FlatID id : ID list — ID list which
creates these unique IDENTIFIERs from full-pathname identifiers. So, for
example, FlatID[“my”, “child_s”, “count”] returns [“my__child_s__count”], and
FlatID[“me”] returns [“me”

8.2 Modelling Ports

Module ports in Verilog can exhibit quite complex behaviour and our model
reflects this. .

The obvious way to model a port connection is as a continuous assignment
from source to sink, e.g. for an input port we would form assign port expres-
sion=port connection, and this is what the standard [2, section 5.6.6 “Port Con-
nections”] would seem to state. Although this method works well for ports with
registers as sources, experiments with Verilog-XL show that port connections
involving wires as sources exhibit behaviour not covered by this approach. We
are also left with the problem of modelling inout ports, which are supposedly
modelled by non-strength reducing, bidirectional transistors [2].

8.2.1 Directionality

The first oddity about ports to note is that the directionality of a port is only
important with respect to the type of nets connected to the port, and has no
effect on the port’s simulation behaviour.

Although conceptually, the designer should generate values in wires on the
source side of a port and only read values from wires on the sink side, it is
possible to affect a port’s source by assigning values to its sink. Hence we
ignore the directionality of a port completely in our model - it’s only relevence
is in generating a restriction forbidding reg types from being sinks.

8.2.2 Delays

If we consider a simple port with wires on either side we see there are several
delays we can specify. Remembering that wires have two sorts of inertial delays
, a driver delay for every driver connected to it and a net delay which affects
signals which have passed the driver delay section, we find four delays associated
with a port, two from the source and two from the sink.

The net delay for a wire is specified in its declaration. If none is given it
defaults to #0, and if the wire declaration contains an assignment declaratlon
then there is no net delay.

The driver delays are specifed with each continuous assignment used to set
up a driver for the wire, and if unspecified then there is no delay associated with
that driver.

My experiments have shown that in all three directional types of port where
solely wires are involved, the internal net delay is ignored, and no delay is per-

36

ceivable between a cha.nge in the actual elements of the port expression and the

- matching elements of the port connection and vice versa. Their values matchso

' tightly that even if they are used in the same expression of wire assignment with
no delay (e.g. wire A = port._comnection === port_expresion) no difference
is detected - the example would have a constant value of true, whereas wire A
= B === C with wire C = B actually allows an interleaving where A is false.

Where a port expression contains a concatenation of registers and wires, the
register dominates and the internal net delay given to the wire in the concate-
nation does affect the delay across the port. ‘

8.2.3 Rules for Flaf Mod‘el

Given a hierarchic model, we can produce flat code with the same behaviour by
applying the following rules: '

1. For a port 'involiring registers anywhere:

(a) All declarations and assignments are unchanged.

(b) A continuous assignment with no driver delay is formed, assigning
the source to the sink.

2. For a port involving no registers anywhere:

(a) All declarations and assignments affecting the port connection are
unchanged. .

(b) The declaration(s) of the wire(s) in the port expression are removed.

(c

) All uses of parts of the port expression become uses of the ma.tchmg
part of the port connection.

9 Flattening Verilog code
Flattening involves six procedures:

1. Task Substituting
This is applied to each module type declaration, and textually replaces
task invocations with the body of the task, leaving us with a task-free
module type declaration.

2. IDENTIFIER Prefizing
This provides a unique prefized module type declaration for each instance
of a module type by prefixing the instance’s name to all IDENTIFIERS in
the task-free module type declaration. _

37

3. Parameter Overriding
This provides an overriden module type declaration for each instance, by
substituting parameter overrides into the prefixed module type declara-
tion.

4. Port Assignments
Produces port code consisting of continuous assignments and/or identifier
renaming rules for each instance from the overriden module type declara-
tion.

5. Abso'rptzon
Replaces an instantiation command w1th the port code and contents of
the overriden module type declaration for each instance named in the
instantiation command.

6. Identifier Imploding
Resolves any identifier references in the now flat module.

To flatten a piece of Verilog so that we are left with only top-level modules,
containing no identifier references which can be resolved (i.e. only IDENTI-
FIERS), we firstly replace all module type declarations with their task free ver-
sions by using procedure 1. Then modules are flattened by using the following
algorithm to flatten a module M. ‘ '

I Flatten every module type named in the instantiations present in |
M. If there are no instantiations in M then it is already flat so skip
the remaining steps.

II If we take all the instantiations in M, we will have ¢ module typeé
being instantiated. Call these Ny, ..., Ny. Let i; be the number of

instances of N;. Then we need Ej.:l i; instances in all. Call these
I’ and we have:

B o I

Ir ... I

Hence I} is instance i of module type N;.

An instance I ¢ is produced by applying procedures 2, 3 and 4 to
the (flat) declaratlon of N,, using the parameter overrides and port
connections specified for the ith instance of IV;.

III Apply procedure 5 and procedure 6 to M using the instances I J‘ from
’ the previous step.

38

Designs which contain looping instantiations can be easily detected, since at -
some point we will attempt to flatten a module as a descendant of itself. N

Once all the modules have been flattened, any modules which were never
instantiated are top-level modules. To produce code with a single top-level
module, we flatten an imaginary module called MAIN__ which consists of an
instantiation for each top-level module named T of the form T T__ ();. The
use of “_..” in these IDENTIFIERs allows us to create umque names for this
imaginary construction.

All other modules should be removed from the program. This ensures that
our final code contains a single, albeit imaginary, top-level module and that
top-level references between the (original) top-level modules are resolved.

The six procedures are now descnbed in detail. Examples of their use can
be found in section 10.

9.1 Task Substltutlng

First we take each task declaration a.nd prefix all IDENTIFIERs which are
~ declared in the task with the name of their enclosing task. Any IDENTIFIERSs
which are not prefixed in this way will later be interpreted in the scope of the
enclosing module. Then we substitute every task invocation in a module with
the result of surrounding the statement which forms the body of the task with
appropriate blocking assignments to perform input and output. For example,
an invocation of the task my_task, declared as: ‘ :

task my_task;
input a;

- output b; ‘

b = "a & active;

- endtask

of the form my_task ‘(z», y). is replaced by

begin

my_task_a = z;

my-task_b = "my_task_a & active;
y = my_task_b; |

end; ‘

The task declaration itself is replaced with the declarations it contains, un-
changed except that the keywords input and output become reg. In the ex-
ample, the following declarations become part of the enclosing module:

reg my_task_a;
reg my_task_b;

39

This method does not allow tasks to be invoked by reference as is possible in
Verilog-XL since the present Verilog definition [2] does not include this feature.

9.2 IDENTIFIER Prefixing

Every occurence of an IDENTIFIER in the flattened task-free module type
declaration of m is replaced with an IDENTIFIER formed by prefixing it with
the instance name of the instance we are producing. The result is a prefixed
module type declaration for a single instance of m.

Note that every IDENTIFIER is affected, but not unresolved identifiers.
This includes IDENTIFIERs in port expressions, declarations, statements etc.
There are, of course, no instantiations in the flattened version of m to be affected
by prefixing.

9.3 Parameter Overriding

A pre-requisite of parameter overriding is that the number of override expres-
sions in a module instantiation of module type m does not exceed the number of
parameters declared in the module type declaration of m. It is important that
this check is made against the original module type declaration of m, since flat-
tened versions of m may include parameter declarations absorbed from children
in an arbitrary order. _

We produce an overriden module type declaration for each instance of m by
replacing the right hand side of the parameter declarations in the prefixed mod-
ule type declaration with the override expressions in the instantiation command
in the same order listed there.

9.4 Port Assignments

Each port in a module type declaration is “in”, “out” or “inout”.

If every net used in a port expression is declared as an input then the port
is “in”. If every net used in a port expression is declared as an output then the
port is “out”. If the nets used in the port expression are declared as a mix of
input, output or inout types, then the port is “inout”.

Note also that certain side conditions on the input/output declarations exist:

o Every identifier declared as an input, output or inout must be used in a
port expression.

o Every identifier used in an “in” or “inout” port must be declared as a
wire type of the same range as its input, output or inout declaration.

e Every identifier used in an “out” port must be declared as a reg or net
type of the same range as its output declaration.

40

Each port is connected by pairing the | port connections in the instantiation
command with the port expressions in the overriden module type declaration.

If connections are by order then they are palred with port expressions in ‘the
same order that they are hsted in the 1nstant1at10n Any null port connectlonsr

will not make a pair.

If connections are by name, then port connections pair w1th the port ex-
pression of the same name. If a port expression consists of a single identifier,
its name is the same as that identifier. A port’s name can be explicitly given
using the named_port_connection form (see table 12). Ports left unconnected
are treated as though they had null port connections given (see above).

- Each pair made is then processed according to the rules in section 8.2.3.

9.5 Absorption |
Here we textually replace all instantiations in a module with the port code from
9.4 and the body of the overnden module type declaratlon from 9.3 for the

required instances.
During absorption we produce a function 7 : ID —1ID,:

icat “_” ifiis the name of an mstance or task we replaced
Ti= j cat “_” if j is the first instance of the module type ¢ we replaced
, “n if 7 is the module type of the absorbing module
L otherwise

Here the infix function “cat” concatenates strings. Note that where both a
module type and an instance name match 7 the instance name takes precedence.

9.6 Identifier Imploding

Finally, we replace every identifier in the module whose instantiations have been
absorbed away with the result of applying Z’ : ID list — ID list:

I’z’d—{id | . ifZ (hd id) =
“ | (Z (hd id)) cat FlatID (tl id) otherwise

The first case leaves an identifier unchanged if it cannot yet be resolved.
Hopefully such identifiers are upward or top-level references, and will be re-
solved later. Any identifiers left in the code after all flattening has occured are
€IToneous. _

The second case allows us to determine which instance the reference should

be resolved down from. If the identifier is correct, the IDENTIFIER produced .

will be that of a declared object. IDENTIFIERS are unaffected at this point. -

41

10 An example of flattening
Suppose we have a pair of modules:

module top();
reg D, clk; wire conx, Q;

sub_type alpha(D, conx,);
sub_type #(sub_type.delay) beta(.result(Q), .data(conxz));

initial begin
clk = 0;
forever #100 clk = “clk;
end ’
endmodule

module sub_type (. data(D) .result(Q), clk);
parameter delay =
input D, clk; output Q;
wire D, clk; reg , data;

always @(posedge (top.clk) or posedge(clk))

begin
Q = data;
data = #delay D;
~end
endmodule

Note that sub_type has no children so flattening it has no effect but we must
flatten top.

1. Task Substituting
There are no tasks anywhere, so the task free module type declarations are
the same as the module type declarations in this case.

2. IDENTIFIER Prefizing '
We produce two prefized module type declarations for sub_type. The first
is prefixed with alpha, the second with beta. For example:

module sub_type
(.data(alpha__D), .result(alpha__Q), alpha__clk);

parameter alpha__delay = O;

input alpha__D, alpha__clk;
output alpha__Q;

42

‘wire alpha__D, alpha__clk;.
reg alpha__Q,_alpha__data; S

always @(posedge (top. clk) or posedge(alpha _clk))
begin
alpha__Q = alpha__data;
alpha__data = #alpha__delay alpha__D;
end '

endmodule.

. Parameter Overriding
We produce one overriden module type declaration from each of the two
prefixed module type declarations.

For the first instantiation we have no overrides, so we do not cha.nge the
prefixed module type declaration of alpha. For the second we replace the
parameter declaration with parameter beta__delay = sub_type.delay.

. Port Assignments
For alpha we connect by order, and form the three continuous ass1gn-
ments:

assign alpha_D = D;
assign conx = alpha_Q;

Note that the IDENTIFIERs alpha_D and alpha__Q are taken from the -

port_list of the overriden module type declarations.
For beta we connect by name, and form the three continuous assignments:

assign Q = beta_(Q;
assign beta_D = conx;

. Absorption

The two instantiation commands in top are replaced by the port codes
and the bodies of the overriden module type declarations we have. We
also create Z:

T (“alpha,”) — “a.lpha,__”

Z (“beta”) = “beta_”
Z (“sub_type”) = “alpha_”
I (“top”) —_ [152]

43

The firt two cases are from the instance names of the instances we absorb.
The third case returns the first named instance of the instance type we
absorbed. The third and fourth cases are for references which refer by
module type, either to a direct parent, in this case “top”, or a sibling
module type, “sub_type”.

. Identifier Imploding

In this one level hierarchy we rather hope that all unresolved identifiers
resolve in the top-level module, which they do.

Note particularly the reference to subtype.delay in the override of param-
eter delay in instance beta. Once the overriden module type definition
for beta is absorbed Z(“sub_type”) provides “alpha”, the correct prefix in
this case.

The resulting flat module is:

44

module top() ;

// top’s original declarations are:
reg D, clk;
wire conx, Q;

~ // sub_type alpha(D, conx,);

// is replaced by port code:

assign alpha_D = D; '

assign conx = alpha_Q;

// and overriden module type declaratioms:
parameter alpha__delay = 0; '

wire alpha_ D, alpha_clk;

reg alpha_Q, alpha__data;

always @(posedge (clk) or posedge(alpha_clk))
begin
alpha__Q = alpha__data;
alpha__data = #alpha_delay alpha_D;
end

 // sub_type #(sub_type.delay) beta(.result(Q), .data(conx));

// is replaced by port code:

‘assign Q = beta_Q;

assign beta_D = conx;

// and overriden module type declarations:
‘parameter beta__delay = alpha__delay;

wire beta_D, beta_clk;

reg beta_Q, beta;.data;

always @(posedge (clk) or posedge(beta__clk))
begin :
 beta-Q = beta__data;
beta__data = #beta__delay beta_D;
end

// top’s 6rigina1 code is:
initial begin
clk = 0;

forever #100 clk = “clk;
end -

endmodule

45

If top were instantiated elsewhere, then this declaration would be used in
flattening its parents. Since it is not we now have a flat version of a top-level
module. This is instantiated in our imaginary MAIN__ module like so:

module MAIN__();
top top-- O;
endmodule

Flattening this will give us the fully flattened version of the code.

46

References

‘[I]'R.;]."“Béultéﬁ.’ - ‘Compiuter Language Reasoning Tool. -~ Available at

http://www.dai.ed.ac.uk/daidb/staff /personal_pages/rjb/claret/.

[2] IEEE Standards Department. P1364 IEEE Draft Verilog HDL Reference |

Manual. IEEE, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331
October 1995. Draft standards document. ‘

[3] M.J.C. Gordon. The semantic challenge of Verilog HDL. In Tenth Annual
IEEE Symposium on Logic in Computer Science (LICS’95), San Diego, Cal-
ifornia, June 26-29 1995. http://www.cl.cam.ac.uk/users/mjcg/Verilog.

[4] D.J. Greaves and M.J.C Gordon. Checking equivalence between synthesised -

logic and non-synthesisable behavioural prototypes. A three year EPSRC
research project On http / [www.cl.cam.ac.uk/users /mjcg/ Venlog

[5] Open Verilog International. Verilog Hardware Descmptzon Language Refer-
ence Manual (LRM), version 1.0 edition, November 1991. '

[6] Donald Thomas and Philip Moorby. The Verilog Hardware Descmptzon Lan-
guage. Kluwer, Second edition, 1995.

[7] The Verilog-XL simulator. Available from Cadence Design Systems, -

Inc., 555 River Oaks Parkway, San Jose, CA 95134, emaﬂ talkver-
ﬂog@cadence com. :

[8] The Veriwell simulator from Wellspring Solutions. Available for downloading
on ftp://iii.net:/pub/pub-site/wellspring/.

[9] The V1per/free simulator. ~ Available free from interHDL, Inc., 4984
El Camino Real, Suite 210, Los Altos, CA. 94022-1433, email:
info@interhdl.com. ' : ’ o

47

