Technical Report A

Number 483

Computer Laboratory

Elastic network control

Hendrik Jaap Bos

January 2000

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/


https://www.cl.cam.ac.uk/

© 2000 Hendrik Jaap Bos

This technical report is based on a dissertation submitted
August 1999 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-483


https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-483

Summary

Connection-oriented network technologies such as Asynchronous Transfer
Mode are capable, in principle, of supporting many different services. Control
and management of these networks, however, are often rooted in the monolithic
and inflexible design of a traditional telephone network. This is unfortunate,
as the speed at which new services can be introduced depends on the flexibility
of the control and management system.

Recent attempts at opening up network control and management have
achieved promising results. Using non-proprietary interfaces and strict parti-
tioning of network resources, multiple control systems are allowed to be active
simultaneously in the same physical network. Each control system controls a
virtual network;, i.e. a subset of the network resources. Success of this approach
has been limited, however, due to the inflexibility of its software components.
The way in which resources are partitioned, or virtual networks are built, is
determined once and for all at implementation time. Similarly, the control sys-
tems themselves are rigid. Building and running a specialised control system
in a separate virtual network for each application area, although possible in
principle, is too heavy-weight for many applications.

This dissertation presents a solution for these problems, the implementation
of which is called the Haboob. It represents the next step in opening up the net-
work, by permitting customisation of all aspects of network control, including
the software components. For this purpose, an agent environment, called the
Sandbox, was developed, which is both language and implementation indepen-
dent, and general enough to be used for purposes other than network control as
- well. It includes a simple uniform way for agents on different nodes to interact.
Various mechanisms enforce protection and access control.

Sandboxes have been successfully introduced to all components that make
up the network control and management system. Code running in Sandboxes
is able to extend or modify the functionality of the components. This is called
elastic behaviour. The customisability of all aspects of network control and
management eases the development of new services. It is shown how recursive
repartitioning of resources allows for application-specific control at a very low
level and even enables clients to differentiate the traffic policing associated with
these partitions. Such low-level control by dynamically loadable code may lead
to significant performance improvements. Elasticity has also been introduced
to generic services, such as traders, and components on the datapath. Elastic
behaviour allows network control and management to be completely open.

When multiple control )systems are active, interoperability becomes ex-
tremely important. Existing solutions suffer from problems to do with transla-
tion of control messages from one domain into those of an incompatible neigh-
bouring domain. These mappings are fixed and suffer from loss of information
at the domain boundaries, leading to functionality degradation. This is solved
by making the mapping between domains programmable and by establishing
inter-domain signalling channels across control domains with only limited func-
tionality. In other words, the interoperability between control domains has been
made elastic as well.

It is concluded that elastic network control and management eases the in-
troduction of new functionality into the network.
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Chapter 1

Introduction

Connection-oriented network technologies such as Asynchronous Transfer Mode
(ATM) networks allow various types of traffic to be multiplexed on the same
physical connection. The control and management of these networks, however,
are often still rooted in the monolithic and inflexible design of traditional tele-
phone networks. This dissertation proposes an open and extensible control and
management solution that does not display the rigidness of existing solutions.

1.1 Motivation

The work discussed in this dissertation represents the next step in the evolu-
tion of opening up control and management of communication networks. The
evolution started with proprietary, closed, rigid and monopolistic systems, of-
ten owned and operated by national PTTs (Post, Telegraph and Telephony
organisations). Next, standardised approaches with only limited support for
installing new functionality were introduced. These systems can be charac-
terised as closed and monolithic. The physical network is controlled by a single,
more or less fixed, system and by a single operator (for a detailed overview, see
[Garrahan93]). In order to allow new services to be implemented and intro-
duced into the network more rapidly, control and management were opened
up to some extent, for example in the zbind project [Lazar96a]. In this ap-
proach, new functionality is relatively simple to build and to make available,
but control and management are still monolithic, the assumption being that
there is a single network operator in a physical network. This limitation was
addressed by the open system support architecture (OSSA), which allowed for
multiple control systems owned by different operators to be active in the same
physical network [van der Merwe98]. In this approach, which is also advo-
cated by [Rooney98], the interface to the network elements is made public and
generic and the network resources are partitioned. In other words, the control
of network elements is opened up, in the sense that any control software can
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be used to control a partition of the network, as long as it uses the generic
interface. This dissertation represents the next step, in which the control soft-
ware (including the interfaces) itself is opened up. The implementation of this
solution is called Haboob. Haboob allows clients to customise their control and
management solutions completely. This somewhat simplified representation of
the evolution of telecommunications network control and management is shown
in Figure 1.1.

Proprietary Standardised > Monolithic —_— Multiple —_— Completely Open
Monolithic, Closed Monolithic, Closed Open Control Architecures Control Software
1 L L 1 L
PSTN, S§7,IN" Xbind OSSA Haboob
-limited support for -network controlled by  -opening up the network ~ -control software itself
the introduction of one open control -multiple network is opened up
new services architecture operators can run their -all aspects of network
R i X own control software control and management
Most modem l?ubhc' Switched Telephone Netwrfrks (PSTNs) in same physical are customisable in a
are based on Signalling System No. 7 (SS7), while IN stands network safe manner

for Intelligent Networks (SS7 and IN are discussed in Sections
3.8.1 and 5.6.1.2.1, respectively)

Figure 1.1: Evolution of telecommunications network control

Although the proposed solution is not ATM-specific, the case of ATM is
highlighted as it is one of the most widely deployed connection-oriented tech-
nologies with support for quality of service. Furthermore, a prototype imple-
mentation of the proposed control and management solution was built for ATM.

ATM is a connection-oriented network technology that was designed for
multi-service networks on which different types of traffic may be carried simul-
taneously. Prior to communication, a connection, known as a virtual circuit
(VC), must be set up between the participating parties. A connection type can
be defined as an interaction between parties on a network, in terms of endpoint
participation and the roles played by the various parties. Conventional connec-
tion types are unidirectional and bidirectional point-to-point communication,
and multicast (point-to-multipoint) communication.

Multi-service networks promise to integrate connection types with different
Quality of Service (QoS) requirements in a single network. It is impossible to
predict either what sort of connection types, or what sort of QoS requirements
future applications may demand of a network. To be future proof, the multi-
service network should prescribe neither the connection types to be used nor
the QoS guarantees that may be associated with them. A particular connection
type combined with a particular corresponding QoS requirement is termed a
connection in ATM. Ideally, the multi-service network should support any possi-
ble combination of connection types and QoS requirements that an application
may require, while still using the network resources as efficiently as possible.

An individual application, on the other hand, generally requires only a
small number of connection types with very specific QoS requirements. The
QoS requirements of an application can be loosely defined as its resource and
performance demands. Different applications may have widely varying perfor-




1.1. MOTIVATION 3

mance requirements, for example concerning the delay and loss in the network.
Similarly, there must be support for different levels of resource requirements.
Moreover, it should be recognised that resource requirements (and possibly also
performance requirements) differ not only from application to application, but
may vary over time for a single application as well. A well-known example
of this is variable bit rate (VBR) video where scenes with very little change
may be followed by resource-hungry action scenes. As many applications with
potentially conflicting service requirements may be active at the same time, a
true multi-service network should be able to handle the many different con-
nection types, with many possible combinations of performance and resource
guarantees, simultaneously.

From the outset ATM was designed with this purpose in mind. ATM allows
applications to specify their QoS requirements in a connection request. The
request is submitted to an admission control entity which decides whether or
not these requirements can be met, taking into account previously accepted
connections. Rather than compromising the QoS requirements, either of the
new connection or of previously accepted connections, the network will reject
connection requests for which the QoS requirements cannot be met. Alterna-
tively, it can enter a state of renegotiation of QoS demands. In this way, it is .
able to guarantee a certain level of QoS to the applications. Depending on how
well the control system does its job, it will be able to provide these guarantees
while still making efficient use of the network resources.

This dissertation deals with network control. The ease with which new ser-
vices can be introduced and used is determined largely by the network control
system. Consequently, the success or failure of the multi-service network and
in particular of ATM, hinges on the quality of the network control and man-
agement. However, although the nature of the underlying ATM data-transfer
technology is probably a given, the way in which these networks are controlled
is not. A variety of approaches toward the control and management of ATM
networks have been proposed by many different organisations, ranging from pro-
prietary solutions proposed by research institutes or vendors of ATM switches,
to complex, all-encompassing solutions proposed by standards organisations
such as the ATM Forum (ATMF) and the Telecommunications sector of the
International Telecommunications Union (ITU-T).

In this dissertation the term control is used in a very general sense and often
includes management tasks as well. The distinction between control and man-
agement is mostly one of time scales, where the latter is generally understood
to pertain to longer time scales (up to minutes or even days) than the former
(of the order of milliseconds). Another distinction is that management consists
of those functions concerned with the general well-being of the network, while
control consists of functions which try to do something useful with the network
[van der Merwe98]. Henceforth, in this dissertation the distinction between
control and management is not made, unless required for better understanding
of specific issues. '
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The standardised solutions for network control tend to be complex, highly
inflexible and uncooperative: there is a fixed set of control primitives that is
considered to be sufficient for all applications, present and future, and it is
implicitly assumed that there is only a single control system controlling a piece
of equipment, e.g. a switch. However, which approach toward network control
and management is the best depends not only on the technology, but also, and
even more so, on the environment and the applications. In other words, there
is not a single best solution for network control and management.

There are two main problems with the all-encompassing approach. The first
is that an implementation of network control and management that is designed
to cater to all applications, present and future, tends to be bulky and too heavy-
weight for certain application areas. For example, a control and management
implementation that includes support for a large number of QoS parameters
provides a huge amount of redundancy when applied in an environment where
a best-effort connection is all that is ever needed. The second problem is the
inverse of the first: since there is only a limited functionality that can be offered
by any one implementation of network control, certain applications may require
functionality that is not supported by the chosen control and management
system.

This dissertation argues that no finite set of end-to-end primitives and re-
source partitioning can be assumed to be able to cater to all possible applica-
tions, present and future. As a first step towards solving this problem, research
conducted in the Cambridge Computer Laboratory has provided for ways to
partition the resources in the network, enabling multiple clients and network ser-
vice providers each to run its own management and control system on the same
physical network. This means that instead of there being one all-encompassing
control system, there can now be multiple management and control architec-
tures active simultaneously on the same physical equipment. This is the ap-
proach taken in the Open System Support Architecture [van der Merwe98|
and in [Rooney98]. Another approach to allow client-specific solutions to net-
work control is taken in active network technology [Tennenhouse96]. Both
approaches and their shortcomings are discussed below.

1.1.1 The Open System Support Architecture

In the Open System Support Architecture (OSSA) a high-level distinction is
made between several levels of network control and management. The first level
considers the switch control interface. It consists of the interface between control
software and physical switch. In traditional network control, this interface is
closed. In other words, the interaction between control software and switch
uses a proprietary solution that is specific to the switch and vendor. The
OSSA, however, proposes an open and generic switch control interface called
Ariel, which contains a small number of basic operations that are expected to
be implemented by all switches.
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The second level, called divider allows the partitioning of resources on
switches. Each partition, or switchlet, can be controlled by its own control
software. For each of the partitions the divider level exports an Ariel open
switch control interface. This allows multiple control entities to execute the
basic switch control operations on their own partitions by invoking operations
over their respective Ariel interfaces. These requests are validated by the di-
vider level to ensure that they only access resources belonging to the requesting
control architecture’s switchlet. The third level, called netbuilder allows users
to build virtual networks by combining switchlets on multiple switches.

The fourth and final level is the control entity itself, i.e. the software respon-
sible for such things as connection setup and teardown. It consists of the set of
policies, algorithms and protocols that controls the partition of the network al-
located to it and that is not part of any of the previous levels. Such a control en-
tity is called a control architecture. Examples include P-NNI [PNNI1.0:96], IP
Switching [Newman97], UNITE [Hjalmtysson97b], and Xbind [Lazar96a].

The OSSA can only be seen as a first step towards opening up ATM net-
work control and management. In particular, the set of primitives in each of
the OSSA levels is still fixed. At implementation time it is decided once and
for all by the software developer what the functionality of the various com-
ponents will be. This prevents applications and system operators from taking
advantage of knowledge specific to the application or environment at hand. For
example, because the open switch control interface only contains a small num-
ber of operations (since these operations have to be supported by all switches),
more advanced vendor-specific operations, if available on a switch, can not be
exploited.

Also, it is probably infeasible to write and run a control architecture for
every single application that has specific network requirements. Using a small
set of control architectures, each with a fixed set of primitives, is only marginally
better than running a single control architecture which is (mistakenly) assumed
to be all-encompassing. Developers of applications that have specific control
requirements are forced either to write a complete control architecture, or to
use a control architecture that is not an ideal match. For truly open network
control it is desirable that control architectures allow applications to exploit
application-specific knowledge as well. This requires an ‘open’ management
and control architecture.

Furthermore, prescribing the way the network resources are partitioned and
virtual networks are built limits their usefulness in situations where more dy-
namic behaviour is desired. For example, for scaling purposes clients may de-
sire to aggregate switchlets and virtual networks following the private network-
network interface (P-NNI) [PNNI1.0:96] model of aggregation. However, they
may also prefer an altogether different model. For maximum flexibility, no spe-
cific model for resource partitioning/aggregation or network building should be
prescribed which precludes any other model.
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In the networking community, new mechanisms for specific network prob-
lems (e.g. admission control, routeing, connection setup, etc.) are proposed all
the time. Often, these ideas do not find wide acceptance. Few network oper-
ators introduce the proposed solutions of others in their networks, even when
the solution would be very useful in their environments. There exist at least
four barriers that make it hard to pick up new ideas and mechanisms.

1. Operators often do not have access to particular elements of their control
system. For example, it would be very difficult to replace the admission
control module of the FORE SPANS signalling software[FORE95b]. In
many cases, the source code of the control system is a well-kept secret of
the vendor and changes cannot be made by the users. The only option
may then be to replace the existing control system completely with the
one that contains the new mechanism.

2. Even with access to the source code, the introduction of a new mechanism
is a difficult task. It requires a thorough understanding of the control soft-
ware and careful consideration of how and where the mechanism should
be implemented

3. It is hard to test a solution’s quality assurance, except by introducing the
new mechanism (untested) to the system. If the mechanism is faulty, it
will only be found out when real problems occur.

4. Any changes generally require the control system to be taken down for at
least some time.

It can be concluded that there is need for a solution that allows changes
to be made to the control system dynamically, using a small set of simple
interfaces, without requiring access to the vendor’s source code. This makes
it easier to take up new ideas for specific control problems, introduced by the
research community. The OSSA model can be seen as a useful albeit limited
first step towards opening up network control and management.

1.1.2 Active Networks

Active network technology [Tennenhouse96], supports a certain amount of
programmability of the network. Clients of a packet-switched active network
are permitted to inject programs into the network in the form of capsules (pro-
gram code together with embedded data) which get executed at the nodes they
traverse. This allows network nodes to process data in an application-specific
way. Programming the network is not separated from using it, as all capsules
travel in-band. In-band control is problematic as the speed at which control
code is executed is strongly related to the speed at which the packets can travel
through the network. For example, control code to offload a congested router
may be delayed a long time itself due to the congestion.
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Even ignoring the long-standing issue of whether the separation of control
path and data path is important, it can be observed that most active networks
do not address the programmability of such processes as network resource par-
titioning, and virtual network building. The ability to partition resources in
the network and combine them in completely separate virtual networks is an
essential property of any open network technology. The reason for this is that
it is desirable to run multiple control systems on the same physical network
and misbehaviour or faults in one virtual network should have no effect on any
other virtual nétwork. The ability to customise the processes that carry out
the resource partitioning and the network building is an important feature of
open networks which needs to be addressed. Not -doing so limits the usefulness
of active networks.

This dissertation concerns itself both with opening up the interfaces used
to control and manage networks, and with enabling applications to extend and
modify existing components that exercise such control. These components need
not necessarily reside on routeing/switching nodes, as is generally the case
in active networks. Thus, while an important aspect is also ‘activating the
network’ (and as such could be placed under the active networks umbrella), the
location and role played by the active code is different from that in most active
networks (see also Section 3.8.4). As such, the topic of this dissertation can be
seen as an attempt to bridge the gap between active networks and open control.
A key idea is that extensibility should be incorporated in all levels of network
control and management. It will be demonstrated that providing support for
extensibility and modification of the entire network control allows for a whole
new class of applications and control architectures to be built.

A similar observation is a motivation for the NetScript project [Yemini96],
where intermediate nodes in a network can be programmed with the NetScript
programming language within the boundaries of what is also called a virtual
network. NetScript’s notion of a virtual network, however, is very different from
that of the OSSA. It merely indicates a set of related execution environments
that exist on some nodes in a network. It is possible to dynamically execute
NetScript code in these environments which are linked via so-called virtual links
that allow NetScript programs to communicate. In this way, it is possible to
implement, for example, a specialised routeing protocol on a specific set of net-
work nodes. It is much weaker than the OSSA’s notion of virtual networks
though, as it does not provide virtual networks with guarantees regarding re-
sources: every virtual network can interfere with every other virtual network.
Moreover, the NetScript project is flawed not only because of the integration
of control and data, but also because it requires all data packets to carry a
NetScript encapsulation (another header), to allow proper demultiplexing to
the appropriate NetScript programs.

This dissertation describes an implementation of network control that is
centered around the ‘hard’ virtual networks of the OSSA, which allow resource
guarantees to be given to the control systems. Furthermore, it keeps a clean
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separation between control and data. Moreover, the data path is not touched
at all, which implies that there is no need for undesirable extra headers or
encapsulations.

1.1.3 Technology leads, standards follow slowly

A final motivation for the extensibility of network control concerns the time
scales at which innovation can be introduced into the network. Currently, inno-
vation only makes its way into commercial networks relatively slowly. For ex-
ample, the gap between the development of protocols such as RSVP [Zhang93|
and its large scale deployment in commercial networks exceeds half a decade
already. Similarly, the technology of leaf-initiated joins of multicast trees in
ATM networks existed a long time before the ATMF User-Network-Interface
standard version 4.0 [UNI4.0:94] was fully developed, implemented and de-
ployed by the switch vendors. In general, technological innovation moves fast,
while standards are inevitably slow to follow.

Ideally, network applications developers would like to use the latest tech-
nology, but this objective is hampered, because they have to wait for the stan-
dards to catch up. If, on the other hand, an effort was made towards stan-
dardising the loading and execution of code in the network (or, as suggested
in [Wetherall96], the computational model) in addition to, or even instead
of, the standardisation of all-encompassing control protocols themselves, new
services could be deployed on a much shorter time scale, far ahead of the stan-
dards. In fact, it would enable use and deployment of technological innovation
at the pace of the innovation itself.

1.2 Contribution

It is the thesis of this dissertation that allowing users dynamically to combine,
modify and extend a small set of basic building blocks providing well-defined
control and management functions, eases the development and introduction of
new and innovative network control.

[Goldszmidt98] defines the notion of an elastic server as a process, “whose
program code and process state can be modified, extended and/or contracted
during its execution.” In this dissertation, this notion is adopted and generalised
for network control. Specifically, distributed elastic network control is defined
as:

Network control software that consists of multiple interacting com-
ponents distributed across a network. The interaction takes place
across well-defined interfaces, which are open and public (as op-
posed to closed and proprietary). The elasticity of the network con-
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trol means that the components can be dynamically modified and
extended in a safe manner.

Regarding programmable network technology, [Campbell99a] also distin-
guishes between the two schools of thought described in Sections 1.1.1 and 1.1.2
respectively. The first is based on open signalling, which abstracts communica-
tion hardware using a set of open programmable network interfaces and open
access to switches and routers, thereby enabling third party service providers
to enter the telecommunications market. The second is formed by the active
networks community, which advocates the dynamic deployment of new services
at runtime by the dispatch, execution and forwarding of active packets, “mainly
within the confines of existing IP networks.” This dissertation presents a third
approach, which combines the useful elements of both open signalling and active
networks in a single framework.

A prototype design and implementation of elastic network control called Ha-
boob will be discussed in detail. Haboob, which spans all levels of network con-
trol, follows the distributed systems approach to network control. The service
interfaces in Haboob will be typed to facilitate conformance checks at compile
and bind time.

In the remainder of this chapter, the key contributions of this dissertation
are described.

'1.2.1 Elasticity

Elastic functionality is provided by a simple and implementation independent
design of an execution environment for dynamically loadable code, as well as
by a small yet extensible set of basic interfaces to leverage the use of such
code. Although a very generic elastic runtime was designed and implemented
as part of this work, it should be pointed out that such dynamically loadable
code, or agent, technology per se is not the focus of this dissertation. Instead,
it concerns itself predominantly with opening up network control all the way
from the level of building virtual networks to the level of setting up connections
across a switch. The dynamic agent environment has been developed merely as
a proof of concept.

Elastic versions of all the network control components were built. It will
be shown how elastic dividers and switch interfaces allow for very application-
specific ‘micro-control architectures’ to be uploaded, possibly into the switch
itself. As an application, a simple way of aggregating switchlets and virtual
networks (P-NNI style) using the elastic nature of the various components was
achieved.

Furthermore, this dissertation discusses a simple and uniform model for
communication between instances of loadable code (and other elastic objects).
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The communication model forms part of the proposed computational model for
dynamically loadable code which ensures that regardless of which component a
client is extending, the execution environment for the code will look the same.
Care is taken that the computational model itself can be easily extended. The
framework is general enough not to be limited to the field of network control. In
fact, it will be shown that the same framework can be used to build extensible
applications as well.

1.2.2 Sandman control architecture

As part of the Haboob, the implementation of two very different types of control
architecture will be discussed. The first, known as Sendman, is an advanced
control architecture, providing support for a number of new connection types,
immediate reservation as well as reservation in advance, repartitioning of virtual
networks, and finally, dynamic code loading. It will be shown how a measure-
ments server can be added to the control architecture on the fly, upgrading
the connection admission control algorithm from simple peak-based admission
control to advanced measurement-based admission control.

The Sandman control architecture addresses a number of independent re-
" search issues that are problematic in many existing control architectures. For
example, in many control architectures, bursty sources need to be characterised
as accurately as possible (e.g. in terms of peak cell rate, sustainable cell rate,
burst length, etc.), in order to gain from statistical multiplexing. It is not
clear at all how this source modelling should be done. The Sandman therefore
avoids extensive modelling and, following [Crosby95b], derives the required
information about the traffic from observing the traffic itself. This informa-
tion is then used to allocate resources to the connection. In this way, high
resource-utilisation can be achieved without detailed a priori knowledge about
the source behaviour. Furthermore, issues to do with reservations in advance
will be discussed, as well as the interesting possibility of allowing differentiated
levels of policing in virtual networks by extending the idea of switchlets into the
control architecture. Finally, it will be shown how such a control architecture
can be used to build a new type of distributed continuous media server.

1.2.3 Noman: dynamically loadable control architectures

The second type of control architecture comprises the dynamically loadable con-
trol architectures (DLCA). The DLCAs are built on top of a so-called ’empty’
control architecture called Noman. Noman is not a control architecture in the
normal sense of the word, as it does not provide any network control functional-
ity whatsoever. Instead, it offers simple programming interfaces to dynamically
loadable control architectures which enables them to build networks, partition
resources and control switching equipment in any way they see fit. In other
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words, Noman provides an ’empty’ runtime for network control on top of which
DLCAs can be loaded to provide control functionality.

1.2.4 Interoperability

In an environment where multiple control architectures are expected to be ac-
tive, interoperability between control architectures becomes an extremely im-
portant issue [Decina97]. Inter-domain signalling is difficult, because in gen-
eral the control operations in one domain cannot be mapped perfectly on cor-
responding operations in the other domain. Instead, there is often no choice
except to find the ‘best possible match’. Something similar was observed in
[Cidon95], where it was noted that inter-domain signalling causes information
loss because of functionality degradation.

Another problem with current inter-domain signalling solutions is that the
mapping between operations from one domain to the next is fixed, even though
there may be multiple ways to do this mapping. The ‘best match’ mapping
of signalling operations that is chosen may be optimal for certain applications,
but not for others. Using the Sandman control architecture as an example, it
will be shown how a general solution for both of these problems was developed.

1.3 Outline

It is important to understand the context in which the research described in
this dissertation was conducted. A brief overview of this is given in Chap-
ter 2. Chapter 3 describes the design of the Sandbox, which represents the
elastic environment. The computational model will be discussed in general,
implementation-independent terms, and it will be shown how it can be ap-
plied to the various components in the Haboob in particular. In Chapter 4, an
implementation of the Sandbox is described in some detail. Next, in Chap-
ter b, control architectures are discussed. In this chapter many topics relevant
to control architectures are touched upon. In particular, the focus will be on
application-specific behaviour, advance reservation, measurement-based admis-
sion control and resource (re-)partitioning. For demonstration purposes an
innovative video server was built, which will be discussed briefly in the same
chapter. Chapter 6 is devoted to new ways of achieving interoperability between
control architectures. Chapter 7 considers the switch interface, the switch di-
vider process, as well as the netbuilder process. It will be shown how each of
these could be extended using Sandboxes and examples of useful applications
are given. Chapter 8 describes a number of experiments that were conducted to
obtain a measure of the performance of the Haboob. Chapter 9, finally, contains
conclusions and a discussion of future work.

Related work is discussed throughout the text.




Chapter 2

Research context

This chapter describes the research context, including the underlying approach
towards network control on which the rest of this dissertation is founded. It
explains the various levels of open control and management: the interaction
with switches, the partitioning of resources, the building of virtual networks and
finally, the control architectures associated with and controlling these virtual
networks. In addition, issues to do with distributed processing environments
and bootstrapping are discussed.

2.1 Multiple control architectures

For this work, the realisation that there is more than one valid approach to
network control is important. Indeed, standards bodies such as the ATM Fo-
rum and ITU-T have tried for many years to standardise the control of ATM
networks, with standards that develop in an evolutionary fashion!, but rad-
ically new proposals for network control continue to spring up (for example:
[Bettati95, Crosby95a, Lazar96a, Newman97, Hjalmtysson97b).

Most of these alternative approaches are born out of dissatisfaction with the
existing standards (or the way in which they evolve), or simply because there
is a niche for a different type of control in a particular environment. Whatever
the reason, it seems likely that the situation in which many different control
architectures are used by different users is not going to change for quite some
time. Moreover, a variety of solutions in other network technologies such as
IP represent entirely different approaches to network control. Examples in-
clude the Resource Reservation Protocol (RSVP) [Zhang93|, TAG switching
[Rekhter97], Multi-Protocol Label Switching (MPLS) [Callon99], Differenti-
ated and Integrated Services Internet [Shenker97, White97b].

'For example, the User-Network Interface standard [UNI4.0:94] was derived from
[UNI3.1:94] and [UNI3.0:93], which in turn are based on even older protocols, such as
Q.931, developed for telephone networks.

12
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Another reason why it is desirable to have multiple control architectures in
(separate partitions of) the same physical network is precisely the evolutionary
development of control software. Whenever a new version of a standard or
proprietary control architecture is developed, problems arise when the network
is upgraded. For real applications it may well be required that all nodes in the
system are upgraded to the new version, but if not all applications are able
to use the new version of the control software yet, it is necessary to keep the
old version running also, to ensure backward compatibility. Things get worse
if the new version of the control software contains errors. If there is no clear
separation between the resources for the old version and those of the new version
of the control software, this affects not only applications using the new version,
but potentially all other applications as well.

Thus, it is desirable to enable different control architectures to safely coexist
in the same physical network. Safe coexistence in this context is understood to
mean that faults and misbehaviour in the operation of one control architecture
do not adversely affect the operation of any other control architecture.

2.2 Levels of network control

In the OSSA [van der Merwe98| a model is introduced in which network
control and management are split up in a small number of levels. A prototype
implementation of the OSSA, known as the Tempest, was developed by various
people in the Computer Laboratory. The architecture is shown in Figure 2.1. At
the lowest level of the architecture, we find Ariel, the non-proprietary interface
to the ATM switch. Ariel represents an API rather than a protocol. The
implementation is not specified. Method invocations on an implementation of
Ariel, allow users to set up and delete switch connections, gather statistics, etc.

The next level up handles the partitioning of resources on the switch. Par-
titioning enables one to create what looks like a number of independent small
switches, which are called switchlets. Each switchlet has its own non-overlapping
ranges of virtual path identifiers (VPIs) and virtual channel identifiers (VClIs),
as well as its own share of buffers and scheduling guarantees, etc. The parti-
tioning process, called the switch divider, supports a separate Ariel interface for
each of the switchlets (see also Figure 2.1). Since this interface is identical to
that of the Ariel server on the switch, this makes it completely transparent to
the control software that it is actually controlling only a portion of the switch:
switchlets look just like switches.

The next level is the virtual network builder, or netbuilder. The netbuilder
is responsible for creating switchlets on the various switches in its domain (by
calls to their respective switch dividers) and combining these switchlets into
virtual networks. In the same way that switchlets are simple partitions of the
physical switch, virtual networks are simple partitions of the physical networks.
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8 Manager

The manager interface is used
by the netbuilder to create
switchlets and to perform other
switchlet management tasks

Figure 2.1: Partitioning networks

At the highest level we find the control software itself. The control software
requests the netbuilder to create a virtual network on its behalf and as a result
is given the references for the Ariel interfaces of the corresponding switchlets. It
now controls these switchlets in exactly the same way it would control ordinary
(unpartitioned) switches.

The next few sections will discuss the various components and their in-
teractions and limitations in more detail. As a convention, throughout this
dissertation the names of interfaces are capitalized and printed in italic, while
the names of the processes implementing the interfaces are in lower case.

2.2.1 The open switch control interface

As explained above, the Ariel switch control interface is used for communication
with the switch. The motivation for defining a generic switch control interface
is that it gains independence from switch (vendor) specific implementations of
control and management. As far as functionality is concerned, there is little to
distinguish Ariel from these vendor-specific interfaces, except that the former is
well-defined, public and as concise as possible to make it generally applicable,
whereas the latter generally support very vendor-specific features. The proce-
dures defined in Ariel should easily map onto the vendor-specific operations of
any switch.

For this purpose, Ariel contains a small set of basic operations that can
be expected to be implemented by any switch. The control software and the
Ariel server on the switch communicate according to a client-server relation-
ship. Ariel defines an interface only. The actual implementation of the switch
control interface (as well as the communication between client and server) is
left unspecified. Different implementations are possible for different switches.

It should be realised that Ariel is not the only attempt at specifying an
open switch control interface. A less general approach is defined by the Gen-
eral Switch Management Protocol (GSMP) [Newman96] and yet another, the
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Switch Control Applications Programming Interface (SCAPI), can be found
in the zbind project [Lazar96a, Lazar96b]. A current standardisation effort,
IEEE P1520 [Biswas98], aims to define standard interfaces for various levels
of network control, including the interaction with the switch. Another stan-
dard that is similar to Ariel is the virtual switch interface (VSI), originally
proposed by the Multi-service Switching Forum (MSF) [Buckley98]. Recently
however, the MSF decided to settle on GSMP version 2 for the switch con-
trol interface [Newman98]. Unlike Ariel’s specification, this means that the
protocol is also dictated. In principle, it makes no difference which switch con-
trol interface is chosen, as long as it is general enough for all tasks and basic
enough to allow implementation for all switches. In the work presented in this
dissertation implementations of Ariel over both SNMP (Simple Network Man-
agement Protocol, [Case96, Stallings98]) and GSMP were used?. There are
many tradeoffs here, e.g. regarding efficiency, reliability, etc. For example, a
fast implementation of Ariel over a home-grown protocol was developed which
outperforms the GSMP implementation by a fair margin, but is less robust.
These issues are not discussed any further in this dissertation.

Ariel consists of simple interfaces for configuration, port management, con-
nection setup, QoS, statistics and alarms [van der Merwe98]. The configu-
ration interface allows Ariel clients to discover the switch configuration. Port
management allows one to check the state of a switch port, or set it to active,
inactive or loopback. The connections interface enables users to setup or tear-
down connections across the switch without worrying about QoS. QoS in the
form of specific resource requirements can be associated with connections via
the QoS interface, if and when needed (this means that best-effort connection
can by-pass the QoS interface completely. The statistics interface allows one
to obtain various switch statistics, such as number of cells received, number
of cells dropped, etc. The alarms interface, finally, enables clients to request
notification in the case of a change in the state of a switch port.

It should be noted that the operations in the Ariel interface as described
here are very general and basic. Their nature, unfortunately, is more or less
fixed. This prevents clients of the Ariel switch control interface from really
exploiting efficient switch-specific optimisations. For example, the Connections
interface allows one to set up or delete a single switch connection per operation
invocation. Even if the switch supported batch connection setup and teardown,
this functionality could not be used with Ariel. Just as serious is the way in
which Ariel (admittedly for understandable reasons) has tied itself to the ATMF
services categories for QoS control. In other words, a more configurable switch
control interface is desired.

>The Ariel implementations used in this dissertation were carried out by Kobus van der
Merwe, Sean Rooney (both of the Computer Laboratory) and the author
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2.2.2 Partitioning the resources

A generic switch control interface offers developers of control architectures a
certain amount of independence from specific switch implementations. A con-
trol architecture that uses Ariel operations is capable of controlling any switch
for which an Ariel server has been implemented. The next step is to partition
the resources in the network. The process responsible for this task is called the
switch divider, or divider for short.

2.2.2.1 Switchlets

On request, the divider allocates a subset of the switch resources to a switchlet.
It also exports an Ariel interface for each switchlet that was created which al-
lows control software to control the switchlet’s resources (see also Figure 2.1).
The control software (the control architecture) does not control its switch re-
sources directly. All control requests go through the divider. The divider checks
whether the request is valid, i.e. whether it does not attempt to access resources
that are not allocated to that switchlet. If invalid, the request is rejected with
an error message. Otherwise, it is forwarded to the Ariel server on the switch.
Whether the divider process runs off-switch or on-switch is not important for
the model. For prototyping it could just as easily run on a general purpose
workstation connected to the switch. In commercial implementations, however,
it probably makes sense (for performance purposes) to run the divider on the
switch.

Switchlets are created and destroyed by calls over the divider’s Manager
interface. Typically this is done by the virtual network builder, as will be shown
in Section 2.2.3. The call to create a switchlet takes as argument a specification
of the switchlet to be created in terms of what ports are required, and for each
of these ports the VPI/VCI space required, as well the bandwidth and buffer
space. Since the latter may be difficult to obtain, switch internals could be
hidden behind ATMF service categories. In that case, the client specifies per
port what service categories are required as well as what capacity is required
for each service category.

2.2.2.2 Shortcomings of current switchlets

The switch divider is an essential component of the Tempest. It allows multiple
control architectures to coexist safely in the same physical network. This in it-
self sets the Tempest apart from most other advanced control solutions for ATM
that have been proposed. However, the divider’s tasks are fixed. Creating a
switchlet results in some predetermined actions, which may limit its usefulness.

As a very trivial example, suppose that for testing purposes of a new control
architecture it is considered desirable to create switchlets in ‘emulation mode’.
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In other words, switchlets are created on real and active dividers, but without
actual communication to the physical switch. This allows network operators
to test experimental control software without setting up datapaths. Emulated
switchlets also allow operators to test the scalability of control architectures by
extending a network with emulated switchlets, i.e. without requiring a large
number of physical switches. Such emulated switchlet creation is not normally
supported by the divider functionality and can currently not be instantiated on
the fly in the Tempest. Emulated switchlets are quite simple. A more complex
example concerns aggregate switchlets, where one logical switchlet really rep-
resents a group of switchlets. Both emulated and aggregate switchlets will be
discussed in Chapter 7.

2.2.3 Building virtual networks

The switch divider together with the Ariel interface allows multiple controllers
to be simultaneously active on the same switch. Thus safe coexistence of control
architectures is achieved for a single switch. This section describes how a num-
ber of switchlets in the network can be combined to form a virtual network.
The process responsible for this task is called the virtual network builder, or
netbuilder. Figure 2.2 illustrates the steps involved. Clients of the netbuilder
invoke operations in the netbuilder, requesting it to create virtual networks on
their behalf (step 1 in Figure 2.2). This is known as networks on demand.

1 = client wants to create a virtual network
1 2=a call Swi in divider’s r:{ interface
b. return handle on Ariel instantiation
3 3 =return handles to client
NETBUILDER 4 = client controls switchlet directly
2
2 2
Aoy 4 4 N
divider [ aivider JEEY mgm:

> > Dol

Figure 2.2: Creating virtual networks: the netbuilder

The netbuilder has access to the Manager interfaces of the switch dividers
in its domain. Via calls over these interfaces, it attempts to create switchlets on
the relevant switches and if successful, returns references for the corresponding
Ariel instantiations to the client (generally a control architecture). This is
shown in steps 2 and 3 in Figure 2.2. As shown in step 4, the client can now
control these switchlets directly. The netbuilder ensures that the network is
‘sensible’, so that for example, the VPI/VCI spaces of switchlets for adjacent
switch ports overlap. A further responsibility of the netbuilder is to handle
incremental growth of virtual networks, e.g. so that new switchlets can be added
to an existing virtual network.
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Again, the nature of the netbuilding functionality is fixed. It is impossible
for the virtual network provider, for example, to keep logs of what sort of net-
works are created when and by which clients, if this logging functionality is not
explicitly supported by the netbuilder to begin with. Similarly, it is impossible
to support interfaces to the netbuilder, other than the ones provided at compile
time. For example, it would be useful if the netbuilder could support control
architecture specific requests for resources, that go beyond what is offered in
the “normal” APIL

2.2.4 Controlling virtual networks

As shown above, the netbuilder returns to a client (e.g. a control architecture)
a handle on what is essentially a subset of the physical network. These virtual
networks consist of switchlets for each of which an Ariel interface has been ex-
ported for control. The entity that actually controls the networks is called the
control architecture. In [Rooney98| the relationship between control archi-
tectures and the rest of the Tempest infrastructure is likened to that between
applications and the operating system. Throughout this dissertation more sim-
ilarities between operating systems and network control will be pointed out.
Indeed, new developments in operating systems have been a source of inspira-
tion for the work presented here.

In essence, control architectures are allocated a subset of the network’s re-
sources, which they are free to use as they please. Switchlets allow any control
architecture to coexist with any other control architecture. Thus, each of the
advanced, complex control systems such as PNNI, IP Switching, and RSVP,
as well as any small proprietary solution can be seen as ‘just another control
architecture’ that runs on top of switchlets. Allowing many incompatible con-
trol architectures to be active simultaneously in the same physical network,
makes interoperability an important issue. The problem of control architecture
interoperability will be dealt with in Chapter 6.

On the other hand, it seems unlikely that every application with particular
network control requirements will be running its own control architecture. In-
stead, the number of active control architectures is probably relatively small®.
For example, application programmers may not want to spend their time writ-
ing the one control architecture that fits their needs exactly, opting instead for
the closest match that exists already.

This alone is sufficient motivation to open up the control architecture itself,
allowing applications to specify their own policies to extend or override existing
operations in the control architecture. Another motivation is that it makes it
easier to modify control architectures. For example, if a control architecture is
shared by a number of applications and one of the applications is upgraded so
that its network control requirements are different, it can continue using the

3However, a large number of control architectures is not precluded by the switchlets model.
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same control architecture. All that is required is a slight customisation of the
control architecture for this application alone. Chapter 5 will mention other
reasons for wanting to open up the control architecture. The main reasons,
however, remain those mentioned in Section 1.1:

1. Control architectures that attempt to cater to all uses in all situations

tend to be too bulky for certain uses in certain situations®.

2. Tt is impossible to implement a control architecture which implements ev-
ery conceivable operation (including those desired by future applications).

2.3 Distributed network control

Both the Tempest and the Haboob have an object-oriented and distributed char-
acter. Objects offer encapsulation and clear, well-defined semantics, while dis-
tribution follows the distributed nature of components in a network. Instead
of using the over-loaded term ‘object’ for the various entities in the distributed
system, the more neutral ‘component’ will be used.

The components in both systems operate and interact in a distributed pro-
cessing environment (DPE), where they communicate using remote procedure
calls (RPCs) and notifications. The implementation of the various components
discussed here has been over CORBA [OMG91, OMG95] compliant DPEs,
notably DIMMA [Li95] and OmniOrb [ORL97]. CORBA uses the notion of
an object request broker (ORB), which allows components to find each other,
obtain a reference to each other’s interfaces and communicate in a platform
independent way by enabling one component to invoke operations in another.
Access to components is restricted to calls over well-defined interfaces (specified
in an interface definition language, or IDL). The precise location of a remote
component (or indeed, its implementation), is generally not known by the call-
ing component.

A component A communicates with a component B by first obtaining a
handle on the service offered by B. The handle, known as interface reference,
contains enough information to locate B, find out what transport protocols to
use for communication and establish communication with it. Interface refer-
ences to which resources have been allocated are called invocation references.
Part of the CORBA specification is the Internet Inter-ORB Protocol (IIOP)
which runs over TCP /IP (Transmission Control Protocol / Internet Protocol).
All communication between components in the Tempest is over IIOP.

4Concerning the complex ATMF signalling and routeing standards, it was first observed in
[Kalmanek97] that such complex protocols are not needed everywhere. Some examples are
given of environments where a lightweight signalling protocol might be preferred.
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2.4 The bootstrap virtual network

The previous sections showed that netbuilder and divider communicate with
each other and with clients over a network, while it takes the cooperative effort
of both of them to create networks. The obvious question is then: who creates
the first network over which the netbuilder and divider communicate? This is
called the bootstrap network problem.

It is ‘solved’ by requiring a bootstrap virtual network for the Tempest en-
vironment. The way that the bootstrap network is set up is not specified. It
could be as simple as a number of permanent virtual circuits (PVCs) that were
set up by the network administrator, together with some simple communication
primitives®. The bootstrap virtual network is controlled by the bootstrap control
architecture. The bootstrap network used in this work is classic IP over ATM
[Laubach94]. In the long term, the heavy-weight classic IP-over-ATM is an
unsatisfactory solution, relying as it does on ATMF signalling. Current work in
the Computer Laboratory aims to replace it with a light-weight implementation
of TP over ATM.

The advantages of using IP in experimental, evolving network control are
manifold. There are many tools and resources for IP; naming and routeing prob-
lems are automatically solved; CORBA-compliant ORBs can communicate over
IP using IIOP, and off-the-shelf implementations of many other useful proto-
cols can be used as well: SNMP, TCP, NFS, etc. The advantages are particu-
larly great, because the bootstrap virtual network can be used to leverage the
communication of control architectures as well. In other words, the bootstrap
network offers a number of basic communication services which can be used by
the Tempest network building services and by those control architectures that
do not require their own specific protocol for their control messages. In many
other research projects IP is proposed as the basis for communication between
network control components as well [Kalmanek97, Biswas97, Pavon98].

2.5 Related projects

Many alternatives to the ATMF and ITU-T standards for network control have
been proposed. These alternative approaches to network control, as well as
ATMF and ITU-T standards, will be discussed in some detail in Chapter 5.6.
Several research projects in the Computer Laboratory have influenced the work
presented in this dissertation. Although their focus is not on network control
per se, either their design, underlying principles or implementation, were used
in the implementation of the Haboob.

5This bootstrap problem occurs not only within the Tempest. All ATM network control
needs some initial means for communication. .
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2.5.1 Measure

In the Tempest, as described in Section 2.2, the issue of resource management
and admission control is important at at least two levels: (1) the divider, and
(2) the control architecture. At the divider level, it must be decided whether,
given the resource guarantees currently given to existing switchlets, a new re-
quest for the creation of a switchlet can be accepted or not. Similarly, at the
control architecture level, one must determine whether a new connection can be
accepted, given the resources currently reserved for existing QoS connections.

Resource management and call admission control in ATM networks are
based on the specification of QoS requirements and traffic descriptions in con-
nection setup requests. There are several ways to make such decisions. Sig-
nalling protocols defined by the standards bodies (e.g. UNI4.0) contain very
elaborate specifications of QoS-requirements as well as detailed traffic char-
acterisation. Traffic descriptions may include such things as peak cell rate,
sustainable cell rate, burst tolerance, etc. The problem with such detailed
specification is that it is impossible to accurately characterise most sources as
their behaviour is not known a priori.

The ESPRIT MEASURE project investigates a different approach whereby
source characterisation is minimal and interesting properties of the traffic are
derived from online measurements of the actual flows [Crosby95b)|. Instead of
specifying the sustainable cell rate say, an effective bandwidth for the connec-
tion is estimated based on periodic measurement of the traffic. The effective
bandwidth can be used for resource management and call admission control.
In [van der Merwe98], the same approach is used to perform admission con-
trol at the divider level. For this purpose, the divider collects statistics from
the switch and computes the aggregate effective bandwidth estimates for an
entire switchlet. Based on these aggregate effective bandwidth estimates it is
determined whether enough resources are available to create a new switchlet.

Thus, only limited use is'made of a huge amount of statistics that is col-
lected from a switch. It may well be that other applications would like to use
this information as well. However, no application-specific operations can be
performed on the data, which is ’owned’ by the divider. Furthermore, it is
impossible to predict exactly what use applications might want to make of it
anyway. For this reason, and because it is impractical to send all the statistics
to all applications that are interested in them (due to the volume), such ap-
plications would benefit greatly from an approach that provided them with a
elastic traffic server: an independent and extensible process to deal with traf-
fic measurements. This would allow clients to implement their own ways of
processing this data. The application of measurement-based admission control
with an independent traffic server is described in Section 5.2. The way in which
the traffic server is made extensible is explained in Section 5.4.2.3
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2.5.2 The Nemesis operating system

If multiple control architectures are active simultaneously on the same switch, it
must be ensured that each control architecture gets its due share of the switch’s
resources (such as CPU time). Especially if control architectures are allowed
to extend the functionality of the components that make up the control and
management system, there should be limits on the amount of resources these
extensions are allowed to use.

The Nemesis operating system [Leslie96] is a ‘vertically structured’ oper-
ating system. Instead of implementing a host of services in the kernel, Nemesis
gives individual applications low-level control over the resources they use. This
enables it to eliminate QoS cross-talk, which is impossible in traditional operat-
ing systems such as UNIX. One of the goals of the operating system is to provide
QoS guarantees to applications. Nemesis is termed a soft real-time operating
system, as it is able to provide applications with guarantees as to the avail-
ability of resources. For example, it guarantees to periodically give schedulable
domains a specific slice of the CPU (Central Processing Unit) time.

One of the lessons learnt from the Nemesis operating system, is that to be
able to provide guarantees, multiplexing of resource use should happen only
once and at the lowest possible level. The partitioning of resources (e.g. the
CPU) is comparable to the partitioning of switch resources by the divider. It
will be shown in Section 3.3.3.2 that the ability to give resource guarantees is
also very relevant to elastic network control.

2.6 Summary

In this chapter a framework for ATM network control and management was
presented which forms the context for the work in this dissertation. Network
control and management is split up in four relatively independent levels con-
sisting of: Ariel, the open switch control interface; the divider, which parti-
tions switch resources into switchlets; the netbuilder, responsible for combining
switchlets into virtual networks; and finally, control architectures, where the ac-
tual control of the virtual networks takes place. It was suggested that although
the decomposition of network control and management into the various layers
is very useful, the fixed nature of the interfaces and the lack of flexibility in the
components limits their general applicability.



Chapter 3

Elastic Control

In Chapter 2, a brief description of the research context was given, in particular
of an open approach to network control. It was demonstrated how the fixed
nature of the functionality of the components seriously limits their usefulness.
For example, although customised control architectures could be built, it is
impossible to extend these control architectures on the fly. In Chapter 6 it
will be shown that this presents great difficulties when interoperability between
incompatible control architectures is required. Also, the way in which the net-
work resources are partitioned and virtual networks are built is determined a
priori, at the time of implementation of the divider and netbuilder processes.
This chapter presents the design of a solution that opens up network control
completely—to the extent that functionality can be loaded into all aspects of
network control, on a dynamic basis. Such network control is termed elas-
tic. The implementation of the design will be called the Haboob*. The Haboob
greatly improves the flexibility and ’openness’ of network control.

The design was developed using a network architecture that extends the
model of Section 2.2. This is discussed in Section 3.1. Next, the computational
model is explained in Sections 3.2 and 3.3, which show that the elastic function-
ality in Haboob is based on a generic computational model, expressed in uniform
interfaces. A small set of basic operations is defined to support dynamically
loadable code. It includes a simple way of extending the basic functionality,
allowing, for example, application-specific support. In fact, the computational
model is both implementation and language independent and general enough
to be applied to many application areas, not just network control. Well-defined
interfaces at the component boundaries ensure clean interaction. The remain-
der of this chapter is devoted to a discussion of elastic versions of the various
components of the network model: control architectures in Section 3.4, switch
dividers in Section 3.5, netbuilders in Section 3.6, and remaining components
in Section 3.7. Finally, related work is discussed at the end of this chapter.

1The Haboob is a violent sandstorm in the south of the Sahara.
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3.1 Decomposition of network control

Before discussing elasticity in detail, this section splits up the network control
and management tasks into six relatively independent components. Such a
modular approach allows independent development of the components. It is
useful also, because it facilitates the differentiation of policy implementation
among the components, e.g. with regards to access control (components that
cannot cause much harm when broken into may be less well-protected than
components that can). In subsequent sections, each of the components will
be associated with elastic behaviour. As shown below, the core of the network
control model is formed by the four-level decomposition of Section 2.2. However,
two new levels are added to complete the model. The complete model contains:

1. a generic switch control interface, known as Ariel;

2. switch dividers, that are able to partition the resources on switches into
switchlets;

3. netbuilders that combine switchlets into virtual networks;

4. control architectures that perform the actual control over the virtual net-
works;

5. generic services, which are independent processes that can be used by any
component;

6. datapath components, which differ from all other components in that they
reside on the data path.

The two additional levels are now briefly discussed. The first new level is
formed by the generic services. This comprises services that are implemented
as independent processes which may be used by any component. An example
of a generic service is the traffic server (discussed in Section 5.2.2.3), which
gathers traffic statistics from an ATM switch, processes these statistics and
interacts with other components in the control system that need such infor-
mation. Another example of a generic service is the trading component that
was implemented as part of the Haboob. Although similar in functionality, the
Haboob trader has certain features that distinguish it from more traditional
trading mechanisms, such as [Bearman91]. The trader will be discussed in
Section 4.7.

The second additional level concerns the datapeth components. Datapath
components include applications and endpoints that take part in control, for
example a video source that is notified via signalling that it should start sending
JPEG (joint photographic experts group) video data of a certain quality on
a specific connection. They also include components such as filters, encoders,
decoders and other data processing engines that are not endpoints per se. In the
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Haboob, an attempt is made to separate control and data as much as possible.
This is not always desirable, however, and a small amount of in-band control
is sometimes useful. An example datapath component of this type is the FEC
(forward error correction) encoder discussed in Section 7.6.

The decomposition of network control and management tasks is quite unlike
approaches such as ANTS [Wetherall98], which considers only a single com-
ponent for programmibility: the router. Such models either (1) do not permit
policies like resource partitioning and virtual network building, if implemented
at all, to be programmable, or (2) combine them in a monolithic system (often
including the data as well), that is hard to understand and maintain. In the
Haboob the tasks in each of the component levels are relatively independent. As
mentioned before, this allows independent development of each of the compo-
nent levels, which in turn is beneficial to the rapid introduction of innovation.
Other models of decomposition are possible. Whichever model is used, however,
the question if and to what extent components should allow programmability,
modification and extensibility and by whom, deserves careful consideration.

3.2 A design for elastic network control

Programmability in networks and the ability to load code in network nodes
in itself is nothing new. Switch manufacturers for example, have always been
able to program their switch equipment. Also, whenever switch vendors or
network operators update the software in a switch (e.g. in order to support a new
version of the signalling protocol), it makes no difference whether this is done
by installing a new circuit board, or by using protocols such as TFTP (trivial
file transfer protocol) to transfer a new boot image to the switch: what matters
is that code is loaded into the switch and the equipment is reprogrammed.

What makes elastic network control different from such reprogramming tech-
niques can be summed up as follows:

e Time scales. Upgrading hardware and software on a switch by vendors is
a rare event, generally in the order of once every few months or even years;
elastic code loading, in contrast, may happen as frequently as many times
a second. This allows for very short-lived extensions and modifications,
e.g. that provide support for only a single application.

o Uninterrupted operation. The process of upgrading the switch controller
traditionally takes the switch control out of service for some time; elastic
code loading allows changes to be made on a per-application basis without
affecting other applications at all.

o Access restrictions. Changing network control and management software
is typically a privileged task that only one or a few people are permitted
to perform (e.g. the system administrator). Elastic control allows access
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restrictions at a much finer granularity. For example, it may grant access
to the internals of a specific control architecture to everybody, while allow-
ing a smaller group to obtain access to certain operations within a switch
divider and restricting only the most sensitive network operations (such as
granting access rights to certain operations) to the system administrator.

Conceptually, this can be thought of as introducing safe execution environ-
ments to the component levels where foreign code can be loaded and run. This
is illustrated in Figure 3.1 for the first four component levels. In the figure, dy-
namic execution environments have been introduced in the netbuilder, switch
divider and control architecture components (and even in an application). The
figure also shows that the dynamic code running in these environments is able
to extend the normal interfaces. Furthermore, there are two types of execution
environments in the switch divider: one for the management part and one for
the switchlet/ Ariel part. Figure 3.1 is only intended to give a flavour of what
elastic control is about. The details will be explained in the remaining sections
of this chapter. Observe that in the figure only the Ariel server in the divider
has been considered, not the one on the switch. There is no technical barrier,
however, to having the switch support such an execution environment as well,
except in the case of very dumb switching equipment that may not want to
be burdened with such functionality. For now, a safe environment is taken to
mean a runtime in which foreign-code is ’sand-boxed’. In other words, where
the code cannot perform operations that compromise the integrity or security
of the component. Security issues will be addressed in Section 3.3.3. In the
next few paragraphs the nature of the execution environments of Figure 3.1
will be discussed in more detail. Informally, the elastic execution environment
will be called the Sandboz.

3.3 Elastic components

Elastic components can be defined as components that provide basic building
blocks and allow dynamically loadable code to combine, modify (override) and
extend these building blocks to provide new functionality. Code that is dynam-
ically loaded onto some runtime has been around for a long time in the field of
agent technology [Pham98). In fact, the elastic environment presented here is
similar to existing agent technologies in that it could be used as a generic mobile
agent platform. The techniques and implementations are applicable to many
problem areas, not just network control. However, this dissertation concerns
itself with network control. The focus is on the application of dynamically load-
able code to the network control problem, where the code-loading functionality
is part of a more generic mobile agent platform. Therefore, such code will from
now on be referred to as dynamically loadable agents or DLAs.

Following [Franklin96], an agent is loosely defined as “a system situated
within and a part of an environment that senses that environment and acts on
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Figure 3.1: Elastic network control

it, over time, in pursuit of its own agenda and so as to effect what it senses in
the future”. DLAs in the Haboob are composed of (potentially many) relatively
independent sub-components known as granules. A granule is the smallest unit
of autonomous program behaviour that can be identified. A simple administra-
tion keeps track of which granules correspond to which DLAs, which is used,
for example, to ensure that all granules corresponding to a DLA are removed
from the system when the DLA is destroyed. Apart from this administration,
granules are logical units only: there exist operations to register and deregis-
ter granules with a DLA | but there is no explicit operation to create or destroy
granules. Granules help programmers think about DLAs. Examples of granules
may include such things as individual services, background tasks and all other
active components in a DLA that are more or less autonomous (in an extreme
case, a granule could even be an individual statement). Code that is not dynam-
ically loadable will be called static. Figure 3.2 illustrates this decomposition of
code. In the figure, a DLA consisting of a 'main’ part and several background
tasks and services is running in Sandbox. Here, “background tasks” indicate
functions that are executed periodically, while “services” identify server opera-
tions that can be called by clients. Both the services and the background tasks
are set up as autonomous entities and are registered as granules.

The rest of this section will consider in some detail a concrete design for
DLA support. There are many ways in which support for elasticity can be
provided. This dissertation argues that a good design should take at least the
following issues into account:
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. Support for existing code
It should be easy to provide elastic functionality to applications, even if
these applications were not written with elastic behaviour in mind.

. Uniform interfaces
Regardless of application area or location, the core functionality that
provides the elastic environment should always look the same.

. Extensibility
It should be simple to support elasticity for specific applications which
goes beyond the basic elastic functionality.

. Interoperability

In order to allow DLAS to cooperate, a uniform framework for interaction
is needed. Interacting DLAs could both reside on the same host (and in-
deed the same address space), but may also be distributed over a network.
Support for location transparency is therefore desirable.

. Implementation independence
Interfaces should be used at component boundaries, while the implemen-
tation should not be prescribed.

. Language independence
Similarly, the programming language in which to express the DLA should
not be prescribed a prior.

. Security
Issues such as trust, access control (who is allowed to do what) and re-
source management should be given careful consideration.
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3.3.1 Making code elastic

The first goal is achieved by making the execution environment for DLAs (the
Sandbox) a single object, that only needs to be instantiated to make any existing
program elastic. Henceforth it will be assumed that all elastic components have
an amount of static code with static interfaces, both of which can be extended
or overridden by DLAs. This is illustrated in Figure 3.3. The original static
code is at the bottom of the layered computational model. This static code,
or base layer, exports a static interface. Built partly on top of this interface
and partly directly over the base layer is the execution environment or elastic
runtime.

The core of the runtime consists of a basic execution environment for DLAs
in the form of a virtual machine (i.e. any entity that accepts dynamic code
and is able to execute this code in a safe manner). The DLAs may consist
of source code, partially compiled bytecode, or even fully compiled platform-
specific code (possibly with multiple versions of the code allowing it to run
on various platforms). The elastic model does not prescribe any one of these
alternatives, although the former two are probably the easiest to check for
safety /security.

The Sandbox implements both the hooks and mechanisms to load and run
DLAs, and the extensions to the original code’s functionality. The runtime is
essentially static as well: it is compiled and linked with the base layer. The
extensions to the basic functionality provided by the runtime are organised in
modules, each of which may export one or more interfaces.

The Sandbox allows clients

to extend the functionality of
an existing program (the

base layer), which implements
a (static) public API.

The Sandbox provides extra
functionality that may be
based on the static API or

underlying static code .

Extra functionality can be
Module A Module B supplied (dynamically) via
Interface Interface modules.

A module that is always
implemented is the SUFI,
which enables DLA interaction .

Static Application Programming Interface

Using the SUFI, DLAs can
export their own interfaces.
These can be accessed by
external clients.

STATIC PROGRAM CODE
(BASE LAYER)

Figure 3.3: The Sandbox elastic execution environment

These interfaces allow DLAs to access the internals of static code and state
in a controlled fashion. Beyond these methods, there is no way DLAs can
tamper with either code or state. One module that is always implemented is
called the simple uniform framework for interaction (SUFI). As illustrated in
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Figure 3.3, the SUFI consists of two sub-modules, called Generic and Threads.
The SUFI provides very simple types of interaction both between DLAs and
between threads within a single DLA. It is also responsible for such things
as exporting interfaces on behalf of DLAs and access control on individual
operations. There is a one-to-one mapping between a Sandbox and a SUFI
interface. The implementation of the SUFT operations, however, may be shared
by any number of runtimes. The SUFI will be discussed in Section 3.3.2.

3.3.1.1 Elastic runtimes

In the previous section, it was shown how DLAs run on top of an elastic en-
vironment known as the Sandbox. They are allowed to execute any operation
that was made available by the SUFI or some other Sandbox module, as long as
they have the appropriate access rights. Access rights are provided in the form
of capabilities. DLAs are also allowed to export their own interfaces. Again,
this is done via the SUFIL. External clients wishing to call a specific DLA’s
operations obtain an interface reference (for example, CORBA style interface
references as described in Section 2.3, or something similar) which allows DLA
services to be automatically located and bound to. The SUFI will be described
in detail in Section 3.3.2.

The Sandbox is a single object. Upon creation, the runtime is initialised,
the corresponding modules are added and either an initial DLA is run, or a
handle is exported which allows external clients to load DLAs on top of it, or
both. Destruction of Sandboxes is a rather more delicate matter, as it may be
the case that one or more threads of a DLA are still active when the runtime
is destroyed under its feet. Rather than requiring the DLAs to give up control
completely before their runtimes can be destroyed, the elastic model allows a
more relaxed mode of destruction. Active runtimes can be destroyed provided
that this does not compromise the safety of the underlying process.

The integrity of other runtimes and DLAs communicating with the de-
stroyed runtime is a higher-level responsibility, beyond the scope of the elastic
model. As explained below, however, it is possible for DLAs to register a
cleanup procedure, which will be called just prior to destruction of the runtime.
The cleanup procedure allows DLAs to take the necessary action to restore or
rollback to a consistent state.

3.3.2 Simple Uniform Framework for Interaction (SUFI)

The SUFI module is found in every runtime in all elastic components. The SUFI
can be thought of as the ‘standard’ interface between the Sandbox and the un-
derlying implementation. In [Calvert98] a similar sort of interface is called
the ezecution environment <> node operating system interface. The SUFI only
defines the interface; the language and implementation are left unspecified. The
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way the SUFI and other interfaces are presented to users (or DLAs) depends
on the environment, e.g. the programming language that is used. This is de-
fined by an environment-specific interface which is called the user <> ezecution
environment interface.

The SUFI consists of a inter-DLA interaction sub-module called Generic
and an intra-DLA interaction sub-module called Threads. Of these only the
Generic interface is mandatory, i.e must be made available to DLAs. The
Threads interface need not be exported, because there may be good reasons not
to allow multi-threading in a simple DLA environment.

The SUFT provides in the Generic sub-module a simple and general means
for interaction that is both access controlled and location transparent. A thread-
ing and mutex-locking mechanism is provided in the Threads sub-module. The
SUFI can be extended in the future simply by defining more SUFI sub-modules.
Other responsibilities of the SUFI include the registration of new modules
(which includes making the modules’ operations available to DLAs) and the
offering of an interface which allows external clients to call individual DLAs
(or their operations). As such, SUFI can be considered the root of the elastic
functionality.

3.3.2.1 Remote evaluation

Interaction in the SUFI goes beyond traditional remote procedure calls (RPC)
communication [Birrell84], although it retains the RPC flavour. Indeed, in
its simplest form, there is nothing to distinguish a SUFI interaction from a
normal remote procedure call: well-known operations on remote interfaces are
called with a number of parameters, while the results of these operations are
marshalled back to the caller. In addition to this, the SUFI allows what is called
remote evaluation, whereby the caller (with the appropriate access rights) also
supplies the code (a granule) to run on the remote host. The results of the
operation that is executed remotely, if any, are still marshalled back to the
caller. Related work on remote evaluation will be discussed in Section 4.8.1.

The granule that is supplied by the caller can be active, e.g. an iteration
over an information base maintained at the remote side, or passive, whereby
no code is really executed, but a new granule of functionality is installed at
the remote side. An example of the latter is the passive installation of a new
procedure that contains an iteration over the same information base. This code
is only activated when it is actually called. A combination of both active and
passive code in the same interaction is also possible. Granules may or may not
contain state.

One advantage of remote evaluation is that it allows new functionality to
be installed at a remote component dynamically. Another advantage is that
for certain applications it may lead to improved performance, as discussed in
Section 4.6. :
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3.3.2.2 Issues in remote evaluation

The focus of the design of the Sandbox and the SUFI was primarily on sim-
plicity. It should be intuitive to use the SUFI’s remote evaluation facility and
likewise, it should be easy to build Sandboxes for different languages and dif-
ferent environments. For this reason, the Sandbox currently does not prescribe
such things as rigid call semantics or static parameter checking for remote eval-
uations.

In a heterogeneous multi-language environment, these are both difficult is-
sues. The former is complicated by the fact that the precise semantics of a
remote evaluation (like the semantics of RPC) depends on the semantics of the
communication/invocation primitives of the underlying runtime. For example,
a runtime which communicates according to at-most-once invocation semantics
will lead to slightly different semantics for remote evaluation than a runtime
with zero-or-more invocation semantics. It is expected that different environ-
ments will use different semantics. In a particular environment, however, the
semantics should be fixed. This is no different for RPC implementations.

Strong parameter or type checking at compile time is a useful feature that
is included in many languages and DPEs. Because of its complexity in a multi-
language remote-evaluation context where code is dynamically loaded onto and
unloaded from runtimes, it is currently not included in the Sandbox specifi-
cations. Compile-time checking is difficult, for example, because certain lan-
guages are interpreted dynamically and also because type information may not
be known at compile time (but only discovered at load or run time). How-
ever, in [Stamos90] techniques for static checking are outlined which could be
adapted for more rigorous type checking in SUFI-based interactions. The SUFI
remote evaluation semantics currently are extremely simple:

1. A DLA requests the Sandbox to execute some granule at a remote side
(this may also be a simple RPC, in which case the ‘granule’ consists of
the procedure name and its parameters).

2. The local runtime transmits the granule to the corresponding remote
Sandbox.

3. The remote Sandbox attempts to evaluate the granule.

4. The remote Sandbox returns the results or an exception to the calling
DLA.

These semantics preclude neither strong typing with type checking prior
to execution nor weak typing without a priori type checking. It is up to the
implementers to decide which model is preferable. Observe that the semantics
can be specialised without changing the SUFT interface. It should therefore be
concluded that neither of the two issues discussed in this section are limitations
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on the Sandbox SUFI. If rigid semantics and static type checking are required,
it is perfectly acceptable in an environment to choose one particular implemen-
tation for remote evaluation which does supply these features. The SUFI only
prescribes the interface.

3.3.2.3 Byte sequences and adaptors

A simple alternative to static type checking which is easy to implement in
Sandbox systems does not impose any structure on the data at all. Instead,
the parameters in a remote evaluation call are simply passed around as a single
byte sequence (or string). With (or prior to) the call an application-specific
adaptor granule is sent which parses the parameter string at the remote site,
extracts the parameters and structures the parameters in the appropriate way
and returns the structured data. This is illustrated in Figure 3.4. The name
“adaptor” is taken from a similar idea in the TUBE system [Halls97].

echo ( vect (x, y, 2),
int 100,
string "Hello World")

f> echo (vect, int, string)
ADAPTOR A SERVICE CODE
4 % SANDBOX

eval (echo, “(x y z) 100 Hello World")

Figure 3.4: Adaptors structure the data on arrival

In the figure, a remote evaluation call is made with an unstructured string
of arguments. The argument list is checked by the adaptor and the appropriate
structure is restored. Finally, the corresponding call is made. This is essentially
an example of dynamically loading marshalling and unmarshalling code.
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3.3.2.4 The Generic interface

Of all module interfaces, the Generic interface offers the most basic functionality
to DLAs. Without it DLAs would not be able to communicate with each
other or with external (static) code. Its availability to DLAs is mandatory.
It is simple enough to allow implementation in many different environments,
supporting many different programming languages. The Generic interface offers
the following functions to DLAs:

1. Remote evaluation
It allows one DLA to call an operation in another DLA or even to perform
a remote evaluation of its own code.

2. Access control
It enables DLASs to restrict access to operations (or to the ability to per-
form remote evaluation of foreign code) via capabilities.

3. Reflection
It allows DLAs to find out which operations are supported by the current
elastic runtime and what arguments these operations take.

4. Ezporting interfaces.
It provides DL As with the possibility to export their interfaces, so that
external clients can find out about them.

5. Describe method
The describe method (which can be called from remote DLAs) allows
DLAs to find out information about the runtime environment or other
“(user-defined) items.

6. Finally method
The finally method, which can be defined by DLAs, is called just prior
to the destruction of the elastic runtime. It enables DLAs to perform a

cleanup operation (for example, to tear down all connections that were
set up by a DLA).

7. Trust-establishment method
Interestingly, this is not so much related to the risk of running untrusted
DLAs in a Sandbox, as to running DLAs in untrusted Sandboxes. More
will be said about this in Section 3.3.3.

3.3.2.4.1 Protection Protection and access control in the elastic model
rely heavily on the use of capabilities [Wilkes79]. The SUFI contains opera-
tions that allow DLAs to restrict access to a specific operation to a group of
capabilities. Any entity presenting any one of these capabilities is granted ac-
cess. Alternatively, it is possible to make operations ‘publicly accessible’, which
means that the operation will match any capability. To manage access control,
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primitives are provided to incrementally add or remove capabilities from an
operation’s capability group. Finally, it is possible to restrict access to all oper-
ations to a group of capabilities in one go. The capability based access control
also guards remote evaluations: only clients with the appropriate capability are
allowed to run foreign code on the local runtime.

The problem of the creation, safe distribution and destruction of capabili-
ties is beyond the scope of the SUFI. By default, the Sandbox treats them as
sequences of octets. Upon creation of a Sandbox, however, programmers can
specify their own capability evaluation code. Whether or not encryption and
signatures are used, is also a problem that by default is not dealt with at the
SUFTI level. In the simplest case, the capabilities are treated as per-application
passwords which allow applications access to an operation. Revoking capabili-
ties is made easier by the possibility of revoking a capability for all operations
provided by a runtime.

[Delgrossi99] splits up the interaction of applications in (active) networks
in two types: datapath interference and communication. For both types three
levels are distinguished: (1) none (no interference or communication is desired),
(2) intra-application (all interference or communication takes place within a
single application), and (3) inter-application (other network entities are also
allowed to interfere or communicate with the application). It is suggested that
each of these levels be supported. The SUFI with its access control explicitly

provides this support in a single mechanism?.

3.3.2.4.2 Roaming agents The support for remote evaluation creates an-
other desirable possibility: DLAs that submit themselves (i.e. all of their gran-
ules and possibly their state) for remote evaluation. This, combined with the
possibility of removing existing DLA state at the original node, allows for a
whole new type of DLA: the roaming agent. In addition, it is possible, by
submitting only a selection of a DLA’s granules for remote evaluation, to de-
compose one DLA into multiple smaller (possibly roaming) agents. This in turn
allows for dynamic partitioning and (re-)combining of granules in almost arbi-
trary ways. In this sense, DLAs can be thought of as temporary and possibly
changing collections of granules.

There are multiple roaming-DLA models that can be implemented in this
way. For example, it is possible to generate roaming DLAs according to the
model proposed in [Appleby94]. In this model, DLAs may carry state around,
but they will never carry any critical portion of the control and management
information, where the loss of such information might jeopardise the integrity
of the system. Instead, the DLAs access and modify the state that is left
" behind in the runtime by other agents. These DLAs should never communicate
directly with other roaming DL As—instead, all communication takes place via

*Datapath interference requires access to the data, i.e. the implementation of a datapath
component. An example of such a component will be given in Section 7.6.
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shared state In the elastic runtime in the nodes. This means that the roaming
DLAs can be grouped together in teams with specific tasks (e.g. coordinators,
information gatherers, load managers, etc.), where each DLA can take over
the role of any other DLA of the same family. If the DLAs are present in
reasonably large numbers (and new DLAs of a specific type can be generated
by coordinating DLAs on the fly), this provides a high level of robustness: any
individual DLA can be lost in the network without serious consequences.

Alternatively, one could opt for more heavy-weight roaming DLAs, where
the DLAs function rather like traditional processes, containing most of their
state themselves and probably roaming at a slower time-scale. In this model,
the loss of a DLA means the loss of its functionality in the network. Such
a loss may be acceptable, however, if its occurrence is rare and affects few
applications. Recovery procedures may be implemented to reincarnate lost
DLAs. Both models are supported by the elastic environment discussed in this
dissertation.

The Sandbox SUFI does not require support for automatic freezing of ex-
ecution state, which enables one to halt code at any time and continue its
execution somewhere else. Such functionality (as provided for example by the
TUBE [Halls97]) can be used if available, but if not, explicit state saving and
evaluation can be used as well.

3.3.2.4.3 Reflection Calling the reflection operation without arguments
will list all operations (and their arguments) that are accessible to at least
some capabilities. This allows a roaming DLA to find out about supported
operations in its current runtime. Knowing which operations are supported
does not guarantee that the DLA will be able to invoke them, as it may not
have the appropriate capability. Alternatively, the reflection operation can take
a specific capability as argument, in which case only the operations accessible
~ to that capability are listed. ‘

3.3.2.4.4 Describe method In addition to the supported procedures, DLAs
are able to find out information about the execution environment via the de-
scribe method. Without arguments, this method returns information about
the Sandbox and SUFI. This includes such things as major and minor version
number, vendor, language(s) supported, etc. DLAs can add descriptions for
other items by supplying an item identifier together with a description (i.e. a
null-terminated string), e.g. they may supply name-to-semantics mappings for
functions they support.

3.3.2.4.5 Exporting interfaces The SUFI offers an operation to allow
DLAs to export (references to) themselves to a trading mechanism. The SUFI
does not specify the nature of this trading mechanism. All it requires is a name
for the service being exported. This name, in turn, is used whenever a DLA



3.3. ELASTIC COMPONENTS 37

wants to call an operation in a remote DLA. In that case the service name is
resolved, which means that something akin to a CORBA interface reference
corresponding to the name is found, after which the appropriate binding can
take place.

3.3.2.5 The Threads interface

The Threads submodule offers a simple threading mechanism, which allows
DLAs to spawn threads, block on mutices, release mutices, etc. The scheduling
policy that is offered by the Threads module offers non-preemptive threads.
Other scheduling policies and threads models can be implemented by defining
new sub-modules. The goal of the Threads module is only to offer the most
minimal threading functionality possible.

SUFI threading is not always necessary or even desirable. It is pointless
to implement simple threads if the language’s runtime environment offers more
advanced threading already. It is undesirable if one wants the DLAs to remain
simple, single-threaded programs. In such cases, there is no need to implement
the Threads interface, or to make it available to DLAs.

3.3.3 Security

Running foreign code in the heart of components like the control architecture
introduces risks that range from the risk that the code affects other applica-
tions or steals sensitive information, to the risk that the code starts running
computationally intensive programs that take up a lot of processor time or
other resources. Both problems require the ability to restrict the amount of
resources a DLA is allowed to use. Also, sometimes a distinction is made be-
tween safety and security, where the former is commonly assumed to provide
protection against errors of trusted users and the latter against those of un-
trusted users. No such distinction is made here. The terms safe and secure are
interchangeable and concern both kinds of errors. It should be stressed that the
security mechanisms discussed in this dissertation only cover a small portion of
all possible threats. A good overview of security issues in the context of mobile
agents is given in [Greenberg98].

3.3.3.1 Encryption and trust

When sensitive code or data is exchanged in an unprotected manner, e.g. when
DLAs migrate in source text encoding, it is recommended that encryption is
used for security. To shield DLAs from each other, different Sandboxes should
be used. Provided these Sandboxes’ access to resources is bound, a DLA in
one Sandbox cannot corrupt data in either the underlying system or in another
Sandbox. More interesting problems arise when the Sandbox itself cannot be
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trusted. This may be a common phenomenon if many nodes in the network
provide elastic runtimes and DLAs migrate over these nodes. A full implemen-
tation of the Sandbox includes a method that DL As or remote processes can
call to make the Sandbox prove its trustworthiness.

3.3.3.2 Restricted access to resources

Security is founded on the enforcement of controlled access to resources. A
security policy determines which operations can be performed on the resources.
This is similar to the restricted access that programs in user space commonly
have to the data structures in the kernel. A useful classification of mechanisms
enforcing controlled access to resources is given in [Adl-Tabatabai96]. Most
systems are either based on what is called abstract machine interpretation or on
language semantics. In the former case, an interpreter manages the mapping
between virtual resources as used by the abstract machine (and the DLAs)
and the physical resources of the host. This allows the interpreter to prevent
unauthorised access. The latter mechanism uses language semantics to make.
sure that a program can’t use resources that it cannot name. Of course, this
ties the mechanism to a specific programming language.

In the OmniWare system [Adl-Tabatabai96] a third approach is proposed,
whereby source code is compiled to very low-level (RISC-like) operations that
map easily on the underlying processors. OmniWare’s virtual machine, the
OmniVM, loads this code and uses software fault isolation (SFI) to ensure safe
execution. SFI checks every unsafe memory access or indirect branch access to
make sure that it is safe. The OmniVM inlines these checks at DLA load time.
An additional advantage of using a low-level intermediate language is that the
compiler can do most of the optimisations. As a demonstration, both the GNU
C Compiler gcc and a linker were retargeted to produce OmniVM instructions
(with optimisation turned on). The performance of the safe mobile code was
virtually the same as the performance of native code generated by gcc.

The operating system should not only limit a Sandbox’s access to resources,
but also provide it with guarantees as to the availability of resources. For exam-
ple, a Sandbox should be allocated a share of the CPU, memory, communication
bandwidth, etc. This way, Sandboxes are not able to interfere with each other
and are at the same time given QoS guarantees allowing them to make guar-
anteed progress. Fortunately, new developments in operating systems permit
such guarantees to be given [Leslie96].

3.3.3.3 Time to live

When DLAs start to roam (or replicate) there is a risk that they will roam
(and replicate) forever, e.g. traversing a loop in the network. This may be the
case, even if the Sandbox and the application where they were created originally
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have long since died. This will be called the eternally roaming agent (ERA)
problem. A possible solution is to annotate DLAs with a time-to-live (TTL)
attribute similar to the TTL field in the-IP protocol. Apart from this limit on
the duration of a DLA, it has been proposed to restrict the number of duplicates
an agent is allowed to make of itself or its constituent parts [Greenberg98].

3.3.3.4 Node safety versus network safety

Security in distributed systems is a hard problem and no attempt is made
here to fully solve it. Even when individual nodes are made safe, it doesn’t
automatically follow that the whole distributed system is safe. For this purpose,
the work presented in [Alexander98b] makes a distinction between node-safe
software and network-safe software. An example similar to the ERA problem is
given: a program that simply multicasts all incoming packets on a port to two
output ports. This program satisfies node safety. If this program is installed on
many nodes in the network, it may cause a traffic explosion that brings down
the network. In other words, the node-safe program is not network safe. This
dissertation will not pursue these issues any further.

3.3.4 Language independence

The elastic model prescribes neither the implementation of the runtime, nor
the programming language to use. For example, a good candidate for imple-
menting the Sandbox SUFI would be the TUBE environment [Halls97]. Other
implementations will be discussed in following chapters. The only conditions
that the code in a DLA should satisfy are that:

1. the code is dynamically loadable;
2. the execution of the code takes place in a safe manner;

3. the code supports the remote evaluation paradigm for both passive and
active code as described in Section 3.3.2.1.

There are of course limits to the extent to which this last condition can be
met in a multi-language environment. For example, language independence re-
quires that a DLA that is implemented in language L, is able to call a procedure
in a remote DLA implemented in L,. However, it is absurd to require that a
runtime that supports L; to be able to evaluate Lo code. So, the requirement of
language independence is relaxed to include only RPC-style interactions. The
more complicated remote evaluation need only be supported between compat-
ible runtimes. Note however, that an L; DLA can still easily provide an Lo
Sandbox with a fragment of Ly code to perform the remote evaluation, which
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in that case should be supported®. Moreover, it is possible to facilitate the
communication between DLAs of different language environments, by employ-
ing meta~-communication languages such as KIF and/or agent communication
languages such as KQML [Finin98].

Although in theory the above requirements do not preclude any language,
it is realised that these conditions are more easily met by certain programming
languages than by others. Recent years have seen a flurry of programming lan-
guages and execution environments that allow code to be dynamically loaded.
A major impulse for this development has been the need to support active code
on a client’s local machine in the world wide web. In this dissertation, the
choice of the programming language is considered an implementation detail.

3.4 Elastic control architectures

Elastic control architectures allow clients to override or extend the default func-

tionality of the control architectures. For simplicity, this dissertation adopts a

very coarse model that is general enough to match most control architectures.

Conceptually, control architectures are subdivided into components as illus--
trated in Figure 3.5. The next section briefly describes each of the components

and their functions.
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Figure 3.5: Components of a control architecture

3In the most extreme case, DLAs could use the describe methods to find out the sort of
encoding that is expected in the remote Sandbox and explicitly compile the source for this
target before submitting it for evaluation.
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3.4.1 A model for control architectures

At start of day, control architectures will get a number of network resources to
control. This is shown in Figure 3.5 as the request network component. In a
traditional system, this component is almost empty: the control architecture
controls the entire physical network (e.g. a single switch). In the Tempest,
however, this involves building a virtual network for the control architecture.
Either way, the result of this step is a number of handles on resources (or
partitions thereof) which the control architecture uses to exercise control.

The central component is the connection manager. It controls one or more
switches. Larger networks are controlled by multiple cooperating connection
managers. The connection manager relies on the services of a small set of com-
ponents, such as the call admission control (CAC) component, the routeing
component and possibly others. The roles these entities play and the way in
which they interact will be explained presently. Part of the control architecture
interacts with clients and either resides on the client’s host or communicates
with it extensively. This component will therefore be called the local host man-
ager. It manages resources local to the client’s host and provides an interface
to the rest of the control architecture. The separation between connection
manager and local host manager is indicated by the thick dashed lines.

The way control typically takes place is as follows. A client (either one of
the endpoints or a third party) submits a request to the local host manager.
Taking the example of a connection setup request, the local host manager checks
whether the appropriate resources to satisfy the request are available locally and
if so, it sends the setup request to the connection manager. For example, many
control architectures have a notion of service access points or SAPs, e.g. UNI4.0,
which uses Network Service Access Point (NSAP) addressing for identifying
endpoints [UNI4.0:94]. In order for a node to be able to be an endpoint of
communication there has to be a free SAP. The local host manager checks that
this is the case and only then submits the request to the connection manager.

The connection manager consults the routeing component as to which re-
sources (e.g. which switch ports) should be involved in this connection. It
presents this information to the CAC component, which determines whether
each of these resources has enough available capacity to satisfy the request®. If
not, the connection setup is aborted and a failure message is returned. Other-
wise, if the connection request is also accepted by the endpoint(s), the appro-
priate resources are reserved without actually allocating them to any physical
connection. If the other endpoint lies within the connection manager’s domain,
the reservation can be made definite (otherwise it is forwarded to the next hop
connection manager). In case of an immediate connection setup, the resources
are also allocated to the connection, while in the case of an advance reservation
for a connection, only an acknowledgement is sent back to the requesting client:

“Routeing and CAC are often closely coupled or even integrated, whereby the availability
of resource capacity determines the route and wvice versa.
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the allocation of resources to the connection only happens at the specified start
time.

Either way, resources are eventually allocated to the connection by the for-
warding component at the request of the connection manager. This component
also makes sure that the appropriate label mapping and resource allocation is
performed by the switch®. After all forwarding components have allocated the
resources, the endpoints are notified of the existence of the connection. This
notification also carries the identifiers of the connection (in ATM, the VPI/VCI
pair). Connection teardown is analogous. The endpoints are notified and the
resources are freed: physically by the forwarding components and logically by
the connection manager and CAC component.

In principle, components other than CAC and routeing may be consulted
by the connection manager. In Figure 3.5 this is illustrated by the empty
box. The architecture of Figure 3.5 can be applied to connection oriented
network technologies other than ATM as well. Frame Relay [Cisco96] or IPv6
flows [IETF98], for example, can easily be described in terms of the model’s
components.

3.4.2 Instantiating elastic runtimes

In an extreme case, each individual control architecture subcomponent could be
made elastic by instantiating a Sandbox in its scope. Such a view is illustrated
in Figure 3.6. This preserves at the DLA level the original modular structure
depicted in Figure 3.5. The disadvantage, however, is that a lot of complexity
is added to the system, while the benefits seem rather limited.
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Figure 3.6: Multiple Sandboxes Figure 3.7: Central Sandbox

The other extreme is to add a single Sandbox which acts as the elastic
runtime for the entire control architecture. The logical place for such a central
Sandbox would be in the connection manager’s scope as this is the entity that
controls all other components anyway. Such a model is shown in Figure 3.7.

5Observe, however, that the logical resource allocation in the control architecture and the
physical resource allocation in the switches need not be the same.
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A central approach would be as powerful as the distributed one, as long as
the appropriate interfaces to control the other components are provided to the
granules in the central Sandbox.

Besides determining where to instantiate the runtimes, it must also be de-
cided how many runtimes will be instantiated in these locations. The two
extremes here are (1) one Sandbox per application (or indeed connection), and
(2) a single Sandbox to be shared by all DLAs. For both location and number
of runtimes to instantiate holds that the optimal choice varies from applica-
tion area to application area. The decision is a tradeoff between functionality,
complexity, safety and efficient use of resources.

The scope for elastic code functionality in control architectures is very wide.
DLAs could potentially take on the roles of all of the components depicted in
Figure 3.5. Implementations of such control architectures will be introduced in
Chapter 5, when the Noman control architecture family is discussed. A Noman
control architecture consists solely of DLA code running on top of a Sandbox
containing a network-control module. Alternatively, the DLAs could be used
to extend or customise an existing control architecture. This is the approach
taken in the Sandman control architecture, discussed in the same chapter.

3.5 Elastic switch dividers

It is the switch divider’s task to partition resources on a switch. This means
that each partition (switchlet) obtains its own VPI/VCI space, buffer space,
scheduling guarantees, etc. The divider further ensures that operations on
switch resources by a control architecture are valid, i.e. pertain only to resources
owned by the control architecture. It interacts with the outside world via two
interfaces:

1. Management: this interface provides operations for the creation or de-
struction of switchlets.

2. Ariel: this interface allows a control architecture to control the resources
in its switchlet.

3.5.1 Creating and controlling switchlets

The interfaces are independent. A managing entity, generally the netbuilder, re-
quests the divider to create a new switchlet with certain properties on behalf of
a control architecture. The divider allocates the requested resources to the new
switchlet. This includes instantiating an implementation of the Ariel interface
for these resources. The resources are only controlled via calls over this inter-
face. After the instantiation, the divider returns a handle on these resources by
way of an interface reference corresponding to the Ariel instantiation.
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Instantiating Ariel for a switchlet, implements the methods defined in the
interface. What this implementation means concretely at the divider level is
that whenever a call is made over the interface, all parameters are checked to
ensure that they only refer to resources owned by this switchlet. For example,
a setup request is at least checked to see whether the specified port/VPI/VCI
values belong to the switchlet’s address space. If so, the request is forwarded
to the switch (where the connection is made across the physical switch). If not,
an exception is raised.

3.5.2 Divider elasticity

It can be concluded from the discussion in the previous paragraph that there
are two places where elastic runtimes would be useful. The first is in the module
where new switchlets are created. The second is in the Ariel instantiation itself.
This is illustrated in Figure 3.8 which shows a divider with three switchlets and
a management component. The possible locations for the two types of elastic .
runtime are marked by X and Y respectively. Where confusion is possible,
DLAs running on locations marked by X will be called Ariel DLAs, while
DLAs running on the Y location will be called Management DLAs.

"createVci()"

MGMT
X X X Y "createSwitchlet()"
AN N AN A

Switchlet1 | Switchlet2 | Switchlet3 |
[ s < o

N ~ ! N

\\\\______\:: Ariel el Management
Sandbox Sandbox

Figure 3.8: Places to instantiate elastic runtimes

3.5.2.1 DLASs in an Ariel Sandbox

Placing a Sandbox in a switchlet itself allows one to load application-specific
code as close as possible to the switch (this could be on the switch itself). This
code is able to call any switch control operation available to a traditional control
architecture, the only difference being that the call need not be transmitted
over the network. If the divider runs on the switch, this could even be a
simple function call in the same address space. The DLA may implement
control architecture functionality for a single switch, in which case it is called a
micro control achitecture. Micro control achitectures are either controlled from
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external applications, or in a more extreme case, contain their own application
code. Micro control achitectures that are controlled from external applications

can easily extend Ariel’s functionality by-implementing for example such things -

as batch connection setup or teardown. Examples of micro control achitectures
will be discussed in Chapter 7.

Furthermore, it is desirable to make the Ariel Sandbox support an override
operation, which allows it to safely replace, or modify the standard Ariel opera-
tions. Such functionality enables one to change the behaviour of a switchlet. A
trivial example would be to override the connection setup and teardown opera-
tions with code that not only sets up or tears down connections on the physical
switch but also sends notifications of the events to a remote monitor process,
e.g. that graphically displays the current connections on the switch. This and
more interesting examples will be discussed in Chapter 7.

Because of the nature of the divider, Sandboxes should not be shared be-
tween switchlets. A switchlet need not instantiate a Sandbox if it does not
require elastic functionality, but if it does, the Sandbox should be unique to the
switchlet and wvice versa.

3.5.2.2 DLvAs for switchlet creation

The need for elastic runtimes in the process of creating switchlets itself may be
less obvious. One simple use is that it allows network administrators to cus-
tomise switchlet creation by automatically instantiating an appropriate Ariel
DLA in an Ariel Sandbox at switchlet construction time. This Ariel DLA
can then extend or override the Ariel operations. For example, a Management
DLA installed by the system administrator may be triggered each time a create-
switchlet operation is called (i.e. the DLA has overridden the method to create
switchlets). It can then examine the request and depending on certain condi-
tions (e.g. the identity of the requester), create a new switchlet with an Ariel
DLA which extends the operations to create and delete connections with event
notifications to a remote monitor, as discussed in the previous paragraph. No
further actions are needed by the system administrator. Chapter 7 will show
more interesting examples of switchlet management DLAs.

3.6 Elastic virtual-network builders

Netbuilders are responsible for combining switchlets into virtual networks. In
other words, virtual networks are essentially a set of associated switchlets. Be-
cause they are shared servers with very little functionality that is specific to
any particular control architecture, netbuilders are interesting when it comes
to adding elasticity to them. The question arises: who decides how virtual
networks should be created? In the Tempest, this is decided once and for all




46 CHAPTER 3. ELASTIC CONTROL

by the implementers of the netbuilder. This dissertation argues that this is
unnecessarily restrictive.

For example, there is no reason why control architectures should not be
able to push code into the netbuilder when this code is restricted to using only
those operations that were exported by the netbuilder anyway. In other words,
it should be possible to load active or passive DLAs into a Sandbox which,
besides the SUFI, offers the exact same API as offered to control architectures.
This optimises performance (since netbuilders may run very close to, or even on,
a switch as well). The DLAs in turn are able to build new services by combining
existing netbuilder services and exporting interface references to them.

So far, however, only the ability to allow DLAs to (re-)combine existing
netbuilder functionality has been discussed. A more interesting question is:
who is allowed to add to, remove from or modify the netbuilder’s default func-
tionality? It seems reasonable to give at least the system administrators such
powers. After all, they may want to override certain operations to make them
include extensive logging, or to disable certain functions, or even to preclude
the use of certain switches for certain operations. The system administrators
then, should also be allowed to grant these privileges to other network users (in
the same way as a system administrator is allowed to grant the root password of
machines to certain trusted users). The new functionality that is thus created
by the system administrators can subsequently be used by non-privileged DLAs
with the appropriate capability. In this way, the divider’s functionality can be
changed and extended on the fly.

3.7 Generic services, datapath and other components

In many cases, it makes sense to make individual applications and other compo-
nents in the system elastic as well. In particular, extending the functionality of
generic services or datapath components might be very useful. It makes these
components much more generally applicable. For example, a component that
was originally built for a particular purpose may be extended and generalised
to include other purposes as well. An example of such a generic service is the
traffic server that is first introduced in Section 5.2.2.3 and extended in Section
5.4.2.3. Its functionality that was originally limited to that of a simple effective
bandwidth estimator is generalised to include policing functions as well. A sec-
ond example of generic services is the Haboob’s trading mechanism, which can
be used to find the best (e.g. the nearest or most lightly-loaded) servers for a
particular request. In Section 7.6, a datapath component is introduced that is
able to add forward error correction (FEC) to an existing data stream.

It will also be shown, that it becomes trivial to add little “plug-in” compo-
nents to a system on the fly, where the location of these components is unim-
portant. This will allow us to extend the functionality of a distributed system,
while the system is in operation.
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3.8 Related work

Programming the network by loading control code on the fly has been pro-
posed in a number of research projects, in particular in the Intelligent Networks
and Active Networks communities. This section discusses these and other ap-
proaches. Related work in dynamically loadable code and remote evaluation is
discussed in Section 4.8, while open signalling is discussed in Section 5.6.

3.8.1 Intelligent networks

Intelligent Networks (IN) [ITU-T92] allow the introduction of new services
by associating them with signalling endpoints. Basic calls are separated from
IN-based calls. For example, dialling an 0-800 number triggers a temporary
suspension of call-processing and initiates a series of transactions between the
local switching point (in IN terminology: the Service Switching Point or SSP)
and the so-called Service Control Point (SCP), which is essentially a real-time
database. A lookup in this database tries to find the corresponding application-
specific service logic, i.e. the code which is then executed. The code sends back
instructions to the SSP on how to process the call. Additional information about
the IN model is given in Section 5.6.1.2.1, on signalling system no. 7. The bulk
of current IN transactions consist of translating the number dialled by the caller
into another number depending on the needs of the service. This functionality
is part of IN’s capability set 1 (CS-1). Services based on the new IN capability
set 2 (CS-2) are now becoming increasingly common. CS-2 extends the scope
of IN to the influence of stable narrowband calls with two or more parties and
is also considered as the foundation for future broadband multiparty services
[Roche98]. Building services with the capability sets introduces the problem of
feature interaction [Cameron93], where the effects of one service interfere with
those of another. Advanced Intelligent Networks (AIN) is Bellcore’s IN effort
which aims to speed up IN introduction and address IN evolution in Bellcore
client networks in the USA [Garrahan93].

IN is very limited in the amount of network programmability that it offers to
clients. The capability sets offer a small number of end-to-end services such as
call forward, call hold, malicious call identification, call tracking, narrowband
conference calling, etc. It is not possible to gain low-level access to the physical
switches, e.g. to set up a single switch connection, which would enable clients
to build their own end-to-end services. Instead, IN does not allow optimal use
to be made of its network. Even if, in principle, the resources could be used to
provide certain functionality that is desired by the client, often these services
cannot be provided. [Rizzo97) terms this the service interface bottleneck and
shows how feature interaction exacerbates the problem. The service interface
bottleneck is a serious flaw, because it means that it is determined a priori
which services are needed by the clients. Chapter 5 will show that the Haboob
does not have this problem.
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3.8.2 Negotiating agents for telephony (NAT)

[Rizz097| also observes that in IN, offering little expressive power to sub-
scribers, the extent to which IN clients may customise the services is rather
limited. Negotiating agents for telephony (NAT) is an alternative approach to
provide telephony services, which allows users to express policies which describe
how calls should be handled. The policies are used to guide agents which ne-
gotiate and operate on behalf of the client. An important observation is that
the service interface bottleneck is primarily caused by the coarse granularity of
the service interface offered to the clients. NAT proposes to offer a lower-level
service interface to subscribers, which will give them more expressive power to
specify call management requirements. Unfortunately, NAT seems to limit it-
self to end-to-end connectivity, and falls short of allowing clients to manipulate
individual switches. Chapter 5 shows control architectures that go significantly
further in providing low-level access and offer more flexibility.

3.8.3 Java Telephony API (JTAPI)

The Java Telephony API (JTAPI) is an API for Java-based telephony applica-
tions that consists of a number of packages providing support for specific tele-
phony functionality [JavaSoft97]. At the center of JTAPI is the core package,
which provides the basic framework to model calls, as well as simple telephony
features. Layered around the core is a set of extension packages that bring ad-
ditional functionality. JTAPI allows users to program to a certain extent their
own telephony services, but is very telephony based and like NAT, it is based
on endpoint connectivity and does not seem to provide very low-level access to
network resources.

3.8.4 Active networks

Active Networks are packet-switched networks where each packet may carry
executable code. In [Tennenhouse96| these packets are called capsules, i.e.
little programs with embedded data that are evaluated in a transient execution
environment, allowing network nodes to process the data in-an application-
specific way. In this extreme model, there is no distinction between control and
datapath®. It is suggested in [Tennenhouse96] that:

instead of standardizing the computation performed on every packet,
we standardize the computational model.

5The Operation, Administration and Maintenance (OAM) cells in ATM offer a similar,
albeit much more restricted functionality (the OAM cell effectively carries one of a finite
number of pre-defined programs).
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Under the active networks umbrella we find a number of projects that differ
for example in the adherence to the pure capsules model (every packet is a pro-
gram). The ANTS project at MIT stays very close to the model [Wetherall98|.
The SwitchWare project, on the other hand, allows both traditional and active
packets [Alexander98a, Smith96]. SwitchWare is designed as a three-level
architecture, where the first level comprises the active packets, the second level
concerns so-called active extensions (programs that can be dynamically loaded
over the network and offer functions that can be used by active packets) and
the third layer is the infrastructure that enforces the rules for dynamic code
loading and takes care of resource allocation. In other words, SwitchWare al-
lows users to install new functionality on a switch in the form of programs
using out-of-band-signalling. These programs offer an API that is then used by
subsequent packets. Formal methodologies are used to prove security features
of the dynamically loadable programs.

At Columbia University the NetScript project is particularly well-suited
for protocol building [Yemini96]. NetScript specifies both the programming
language and the execution environment. The developers of NetScript also
propose a novel solution to network management using delegated programs,
where the programs consist of dynamically loadable code that can be dispatched
using a so-called delegation protocol to an executing elastic (extensible) server
[Goldszmidt98]. This helps prevent the explosion of management traffic from
all over the network to a central site, which results from using management
models that were designed when management was still a relative simple task
and the traffic generated by it was minimal. Delegating management also makes
the control loop (from managing code to managed device) smaller, decreasing
the probability of failure at times when there are problems in the network (and
management is needed the most) [Goldszmidt95b]. Delegated management
is now proposed for standardisation as well [Schénwé&lder99|.

Active networks have been used for such things as bridging between in-
compatible network segments [Alexander97], enhancing protocols in order to
make them perform better when and where needed [Marcus98], reliable mul-
ticast [Lehman98] and many others. RCANE, the resource controlled active
network environment, developed at the Cambridge Computer Laboratory over
the Nemesis operating system, provides robust control and accounting of sys-
tem resources, including CPU, I/O scheduling and memory [Menage99b]. The
RCANE architecture resembles that of SwitchWare and supports a similar type
of active network. The Node Operating System [Peterson99] is an attempt to
define an underlying system to support multiple executing environments for ac-
tive networks, each with its own set of resources (e.g. CPU, threads, bandwidth,
memory, etc.). At the University of Lancaster, the Lancaster active router ar-
chitecture (LARA) also allows multiple different execution environments for
active code to be instantiated [Cardoe99]. Using the LARA/PAL (platform
abstraction layer), it is possible to simultaneously support environments, e.g. for
Switchware, ANTS, Lancaster’s own runtime (LARA/RT), and others. Packet
filters are used to ensure that data packets are demultiplexed to the appropri-




50 CHAPTER 3. ELASTIC CONTROL

ate environment. Other projects, such as ANON [Tschudin99], concentrate
on providing an overlay network on top of underlying network technologies (e.g.
IP), which can be used to support whichever active networks implementation
users may desire. Network nodes that have to be made active start a daemon
process anond to handle active packets. A similar approach is found in the
ANETD project [Ricciuli98]

An important problem with pure active networks (capsules) is the coupling
of control and data. This integration makes it more difficult to use fast label-
based switching techniques (e.g. [Newman97, Rekhter97]). Each packet has
to be inspected for program code, which subsequently must be evaluated’.
Moreover, control packets can easily get stuck behind data packets. For ex-
ample, assume that part of the network becomes congested and active network
code is used to deal with the congestion [Bhattarcharjee97]. Because of the
congestion and the fact that there is no distinction between control and data
packets, it takes a long time before the control code reaches the congested
nodes (if they are reached at all), by which time the congestion may already
have spread. This is an example of control packets being slowed down by a
network problem that they are meant to solve. Other serious shortcomings of
current active network technology were mentioned in Section 1.1.2.

The Haboob keeps control and data separate, so that these problems will
not occur. Indeed, the datapath is not touched at all. In this way, the Haboob
also adheres strictly to a guiding principle for the placement of functionality in
networks [Bhattarcharjee97]:

If not all services will make use of a service, it should be implemented
in such a way that only those applications using it have to pay the
price of supporting it in the network

According to this dissertation, this gives the Haboob an edge over existing
active networks projects, especially as it will be shown in Section 7.6 that it
can provide the same functionality as active networks, if desired, while the
inverse is not true. The fact that the current Haboob was implemented for
ATM means that the separation of control and data comes essentially “for
free”. Implementation for IP will require more work, e.g. the establishment of
different queues for data and signalling traffic. Fortunately, many proposals
these days are directed at providing different traffic classes with different QoS
within IP, e.g. [Shenker97]. Combining such differentiation with fast switching
techniques based on flow labels, provides sufficient functionality to build an IP
version of the Haboob that also adheres to the above principle.

Moreover, by now the problem of making networks programmable by dy-
namically loadable code (or ‘active packets’) is a well-established research area

"This concerns primarily the extreme capsule approach. Projects like [Smith96] are less
extreme, allowing packets that are not active and which can be switched on the ‘fast path’.
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for which many solutions have been proposed. Although certain issues still need
to be resolved, this dissertation goes a step further and addresses questions such
as: how best to exploit such programmability, which aspects of control and man-
agement can be distinguished and how can they benefit from programmability
by dynamically loadable code? For this purpose, an approach must be taken
that also incorporates higher levels than the one where active code is classified,
demultiplexed, run by the appropriate execution environment, etc.

3.8.5 Control on demand

Control-on-demand (COD) is a design for providing a control architecture that
allows customised control in routers and switches [Hjalmtysson97a]. It allows
applications to upload their own flow-spécific controllers in the switch. The
controllers can customise both control and data path. Flows that do not need
in-band processing are not penalised by data-path operations of flows that do.
COD assumes per-flow queueing and proposes to give controllers low-level access
to the flow’s buffers. In particular, it proposes to allow frame peeking which
allows controllers to see part of an AAL frame currently in the buffers, without
necessarily reassembling the frame completely, or removing it from the data
path. As a key idea it proposes the notion of enhancement control, where the
customisation implements a service or performance enhancement, but is not
essential for correctness. Specifically, it is possible to introduce what is called
best-effort control, which is not guaranteed to work on all frames of the flow.
As an example consider a filter in a multi-layer encoding scheme, installed to
block higher-quality frames towards a client on a low-bandwidth connection.
In a best-effort version of the filter high-quality frames may occasionally trickle
through. COD is an interesting approach, but it relies on assumptions, such
as per-flow queueing and frame-peeking, that are currently not true for many
switches. It is also not clear how useful best-effort control is in practice.

3.9 Summary

This chapter discussed in detail how dynamically loadable code can be safely
introduced in advanced network control. It started with an overview of elastic
network control and a discussion of both the computational model and the net-
work control decomposition model. By only specifying well-defined interfaces,
the computational model gains a large degree of implementation and language
independence. Instances of code running in the Sandbox execution environment
are called dynamically loadable agents (DLAs). The API offered to DLAs is
organised in modules. The default module is called the simple uniform frame-
work for interaction (SUFI), while other modules can be added on the fly. The
SUFI is decomposed in a submodule for inter-Sandbox interaction and a sub-
module for intra-Sandbox interaction and threading. Interaction between DLAs
is based on remote evaluation. Access control is provided by capabilities. For
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each of the components in the network control decomposition model, specific
issues related to adding elasticity were addressed.

Proprietary 9 Standardised_é Monolithic__> Multiple —_— Elastic
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Figure 3.9: Evolution of network control

For reference, Figure 3.9 again illustrates the evolution of telecommunica-
tions network control, whereby each of the levels of the network model is incor-
porated. In the next few chapters, the implementation of various components
in all levels of the network control model will be discussed in detail.




Chapter 4

Implementing the Sandbox

In the previous chapter, the design of the Sandbox (an execution environment
for dynamically loadable code) and the SUFI (an interface allowing dynam-
ically loadable programs to interact) was described. This chapter discusses
implementation issues of both of these elements. The guiding principle of the
implementation is that the Sandbox should be intuitive to use. The chapter
starts with a discussion of the underlying communication system which enables
DLAs to communicate. Next, it is shown how an initial Sandbox is instantiated
and how it can be dynamically extended with new modules. This is followed by
an explanation of security and access control mechanisms implemented in the
Sandbox. The current version of the Sandbox is described and evaluated next.
The chapter concludes with a summary and a discussion of related work.

4.1 Introduction

From the outset, the key requirement for the Sandbox has been usability. The
elastic functionality should be a natural extension to a network programmer’s
normal work environment. For this purpose, use is made of programming lan-
guages that are commonly used by network programmers: C/C++, Java and
Tcl/Tk. However, implementations in other languages and environments should
be straightforward. In particular, Agent Tcl [Gray96] and the TUBE [Halls97]
centered around Scheme are good candidates for building a Sandbox!. Agent
Tcl and the TUBE are discussed in Section 4.8.1. -

!The reason why standard Tcl was favoured over Agent Tel is that the latter modified the
core of the Tcl interpreter to implement state capturing. This resulted in a very significant
performance penalty [Gray96]—while the functionality, although useful, is not essential. Also,
Agent Tcl introduces a host of other commands to support agents explicitly, which in a
minimalistic approach such as the Sandbox are not needed (and can always be added as
extensions)

53
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4.2 Communication

For the implementation of the SUFIT’s interaction primitives, much use was
made of ideas borrowed from DPE technology. In particular, Sandboxes were
implemented on two CORBA compliant DPEs, namely DIMMA [Li95] and
OmniOrb [ORL97]. These Sandboxes communicate using the Internet Inter-
ORB Protocol (IIOP) as the means of communication. A complete Sandbox
was implemented for Tcl and a partial implementation was made for Java.

The motivation for using CORBA-style communication to implement the
SUFI methods is that it also provides the necessary functionality for inter-
face references and location-transparency. Moreover, since the network control
components are built on top of such DPEs anyway (see Section 2.3), the neces-
sary functionality comes essentially for free. The disadvantage is that CORBA
compliant DPEs are rather heavy-weight. It is straightforward to implement
Sandboxes on a more light-weight communication system?. :

4.3 Instantiating a Sandbox

The Sandbox is implemented as a single C++ class. Its constructor auto-
matically creates a Tcl interpreter or Java virtual machine (depending on the
compile option), initialises the internal data structures (e.g. the capability lists
for access control) and exports the SUFI methods to the runtime. When the
construction process is complete a basic Sandbox has been created which pro-
vides exactly one module: the SUFI. New modules can be added dynamically
to the Sandbox by registering them with the SUFI. Registration automatically
exports the module’s methods to the Sandbox. By default, external processes
have neither access to the operations in the various modules, nor to the proce-
dures and state implemented by the DLA. Explicit access enabling is required
to expose procedures and state to the outside world.

Like NodeOS, the interface used to create a Sandbox allows a specification of
the resource requirements of the Sandbox. This currently includes Nemesis-style
specifications of period and slice of CPU time, maximum number of threads,
heap size, stack size, bandwidth for inter-Sandbox communication, etc. In the
implementation on Solaris, however, these resource requirements are not actu-
ally allocated to the Sandbox by the operating system. A future implementation
on an operating system like Nemesis will allow the resource requirements to be
strictly enforced. Unlike [Kulkarni98], the work presented here needs no a
priori assumption that DLAs typically have short execution times.

2For example, as a proof of concept, Sandboxes were built over simple TCP/IP sockets.
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4.4 Security

The introduction of foreign code in the heart of a component introduces security
risks which require, amongst others, careful shielding between the DLA and the
rest of the component, and control over the resource consumption of DLAs. The
latter problem can be dealt with if an operating system such as Nemesis is used.
Nemesis allows one to control the amount of resources (such as processor time)
that a specific application is able to use. One could even allow fully compiled
code to be executed in a Xenoserver [Reed99]. Shielding between two DLAs
can be achieved by using different Sandboxes. Provided these Sandboxes’ access
to resources is bound, a DLA in one Sandbox cannot corrupt data in either the
underlying system or in another Sandbox.

Security is an important issue in a system that allows dynamic code loading
and largely beyond the scope of this dissertation. An interesting architecture for
secure interworking services which addresses more wide-ranging security issues
is the locally developed OASIS system [Hayton96]. A good example of an
active networks implementation that has taken security issues into account at
all levels (from the hardware up) is described in [Alexander99].

4.4.1 Trust establishment

A special method was added to the SUFI to deal with the challenging problem
that emerges when the Sandbox itself cannot be trusted. The solution consists
of enabling clients that want to load security sensitive code in a possibly un-
trustworthy Sandbox, to request the Sandbox to prove its trustworthiness (by
sending it a trust request). The current implementation of this trust method
uses a trusted third party to check whether the proof that the Sandbox gen-
erates is valid. The trust algorithm is extremely simple and influenced by the
public key version of the Needham and Schroeder authentication mechanism
[Needham?78]. A client can either request a Sandbox to prove its trustworthi-
ness directly, or it can generate a trust finder DLA to assist it in finding trust-
worthy Sandboxes (see Figure 4.1). The trust finder roams around the network
(either at random, or via a predetermined route) and requests any untrusted
Sandbox that it encounters to prove its trustworthiness to the trust finder’s
owner. Authentication of clients that want to upload DLAs in a Sandbox is
based on essentially the same trust algorithm. The trust algorithm’s encryp-
tion uses a home-grown version of RSA encoding [Rivest78], implemented by
the author. The details of the trust algorithm are beyond the scope of this
dissertation and are described in [Bos99a]. The RSA cryptography can also
be made available to DLAs in the form of a Sandbox module, allowing them to
exchange information securely.
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Figure 4.1: Trust establishment using a trusted third party

4.4.2 Safe runtimes

It is important that DLAs do not compromise the safety of the system. This re-
quires restricting a DLA’s access to resources. For example, DLAs should not be
allowed arbitrary access to memory or disk space. For the Java implementation,
use is made of the built-in Java protection. Java provides its compile-once-run-
anywhere functionality by using an intermediate instruction set, or bytecode,
which can be interpreted by a Java virtual machine [Gosling96]. Like most
languages, Java uses both static analysis to ensure that programs conform with
its safety specifications and runtime checking to perform checks which could not
be carried out at compile time. Java bytecode is designed to reduce operand
validation per executed instruction [Tennenhouse97].

Normal Tcl does not provide the safe execution environment required for
sandboxed code. To remedy this, a variant of Tcl called Safe-Tcl is used
[Borenstein94]. Safe-Tcl is a restricted version of Tcl, which in its basic
form prevents Tcl code from such things as reading from or writing to file, ex-
ecuting external commands, etc. This basic functionality can be extended in a
controlled manner.

4.4.3 Capabilities and interface references

As described in Section 3.3.2.4 remote access to operations and state is con-
trolled by simple capabilities. Only invocations that present the appropriate
capability are allowed access. In the current implementation, capabilities are
simple unstructured and unprotected strings. By default, a string compare de-
cides whether the capability matches or not. In a commercial implementation
a more advanced capability scheme may be needed. To accommodate this, it
is possible to specify, upon instantiation of a Sandbox, one’s own procedure for
verifying capabilities.

At a coarser level, access to DLA granules is restricted by the interface
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references. DLAs or remote processes can only communicate with a granule
which exported an interface reference, if they can obtain the interface reference.
Storing the interface reference in an access-restricted place limits the clients that
interact with it to some privileged DL As and processes.

4.5 Implementations

The current implementation, called the Gobi Sandbox, treats all parameters as
a single unstructured sequence of bytes. The sequence is unpacked and restruc-
tured by adaptors, as explained in Section 3.3.2.3. By convention, whenever
parameters are marshalled, all implementations first place a length field indi-
cating the total length in bytes of the parameter sequence. This allows different
implementations of the Sandbox to inter-operate. Suppose, for example, that a
more advanced implementation of the Sandbox is able to treat all parameters
individually, rather than as a single byte sequence. This Sandbox understands
invocations from Gobi perfectly (type checking only consists of ensuring that
the invocation’s parameter type is in fact a byte sequence). Invocations coming
from this advanced Sandbox to Gobi DLAs will be handled correctly, as long
as the appropriate adaptors are installed, because its parameters are simply
passed up into Gobi space as a single byte sequence. Currently no common
format for marshalling specific types has been defined. The correct handling of
parameters is the responsibility of the adaptors.

How the adaptor is installed is also not specified. It could be that the pro-
cedure’s signature is described in an interface definition language (IDL) and
that an IDL compiler automatically creates adaptors for both sides. If all com-
municating parties have agreed to adhere to the conventions defined by the
IDL representation, such adaptors would work across all Sandbox implemen-
tations. Moreover, they could be generated on the fly, similar to the dynamic
stub-generation in Nemesis [Menage99a).

4.5.1 Tecl Sandbox

The implementation for Tcl (over OmniOrb) is the only one that offers a com-
plete Gobi Sandbox to its DLAs. The SUFI Threads submodule is fully ex-
posed to the dynamically loadable code. Each Sandbox thread maps directly
onto one native (POSIX-style) thread. The thread model is non-preemptive
and detached. Parameters to the constructor allow programmers to specify
both whether the Sandbox should be safe and whether the Tk toolkit should
be supported. The implementation includes trust establishment as described in
Section 4.4.1.
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4.5.2 Java Sandbox

The Java Sandbox offers only part of the SUFI functionality, but not all. For ex-
ample, it currently does not fully support remote evaluation. Instead, standard
RPC is used for remote interaction. The Threads interface is also not exposed
to the DLAs (instead, Java threads are used) and safety and trust establish-
ment are not implemented. It is possible to call operations in Tcl Sandboxes
from Java DLAs and vice versa. The Java implementation served to demon-
strate that it is not difficult to build Sandboxes in other environments for other
languages.

4.6 Is dynamically loadable code slow?

It may be thought that dynamic evaluation of code in the Sandbox, e.g. by an
interpreter, will always be detrimental to the performance of a process. This
dissertation argues that this need not be the case and that DLAs may in fact
result in improvements in performance. There are two issues here. The first
has to do with executing code in an interpreter as opposed to running native
code. The second concerns the transfer of part of the client code to the server
side, e.g. to reduce the number of remote invocations.

4.6.1 Moving client code to the server side

Dynamically loadable code can constitute a performance gain in cases where
part of the client code is transferred to the server side in order to reduce the
amount of network traffic. This reduction may be both in number of invocations
one has to make across the network, or the amount of data that is sent back
as result value by the server. Probably the best example of such a speedup is
when a client performs a large number of invocations on a server, or needs to
search a large database for a specific data item. Rather than sending the entire
contents of the database across the wire, or making a large number of RPC
calls, it is often cheaper to move (part of) the client to the server and only send
back the result. Similar examples exist in network control, for example, when a
large number of connections must be set up, or a large amount of management
information has to be searched for one particular entry. In such a case, moving
client code to the server will lead to considerable performance improvements.

4.6.2 Evaluating inferpreted code

The overhead of executing the interpreted code depends on platform, language
and implementation, etc. For example, the top half of 4.2 shows the duration
of a single assignment in a Tcl Sandbox using three different methods of eval-
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uating Tcl code. All measurements were taken on a Sun UltraSparc running
Solaris 2.5. For reference, the execution time for native C code is also shown
(compiled without optimisation using Sun’s cc compiler). The first and slow-
est implementation of Tcl code interpretation, Tcl.Eval, represents the Tecl C
library procedure used in old versions of Tcl. The line below that, Tc1_Invoke
represents an optimisation suggested by David Nichols [Welch97], which only
works for very simple Tcl commands. Tcl_EvalObj corresponds to the eval-
uation method introduced in Tcl 8.0, where the script is first compiled into
bytecode before it is executed. On average, a single assignment (measured
from start of invocation in C code till return to C code) costs approximately
7200 nanoseconds. For native C such an assignment takes 135 nanoseconds.

Program (pseudo code) Evaluation method Time (nsec)
Tcl_Eval 149718

x:=0 Tcl_Invoke 24760
Tcl_EvalObj 7240
Compiled C code 135

proc mysquare (int x) { Tcl_Eval 312498

| return X*x; Tcl_EvalObj 115726

for (i=0; i<100; i++) Compiled C code 48654

X := mysquare(i);

Figure 4.2: Performance of different types of evaluation

The bottom half of the table shows the execution time for more complicated
code, containing a loop, function calls and arithmetics. Only Tcl Eval and
Tcl EvalObj (and C code) are considered, because Tcl_Invoke is not general
enough (e.g. it doesn’t allow variable substitution). In the fastest case, the
average time for this program is slightly over 312 us in a Tcl DLA, which is
good considering that each invocation consists of many function calls, product
calculations and assignments. It can also be observed that the relative difference
between EvalObj and equivalent native C code, is now significantly smaller.

More interestingly, the table shows that the speed of evaluation of Tcl code is
improving considerably as new versions of the interpreter appear. A similar test
using Java resulted in invocation times of a few tens of microseconds for a single
assignment (using the Java Developers Kit version 1.1.2). Java code evaluation,
however, can be sped up considerably using just-in-time compilers. Moreover,
really fast dynamically loadable code can be created using the “RISC”-like
virtual machine instruction set as done in OmniWare [Adl-Tabatabai96]. A
comparison of the performance of different types of interpreted code is given in
[Romer96]. In conclusion, dynamically loadable code need not be much slower
than static code. Its use may even lead to a speedup when a transfer of client
code to the server side reduces the amount of data to send over the network.
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4.7 Active trading

A trader is a very common and useful component in distributed computing. It
allows servers to register offers for services in the form of interface references at a
central location, which can subsequently be picked up by clients [Bearman91].
For example, a video source may register an offer for its service under the name
Video_1. A client that wants to display the video can query the trader and ask
it to return an offer called Video.1. A problem with this approach is that there
may be multiple instances of a service (e.g. replicas of the same video). It is
desirable that the interface reference of the best service instance is returned (e.g.
closest to the client, or least loaded). This is difficult to do using traditional
trading. As an alternative, this section proposes active trading, which allows
registration not only of interface references, but also of simple DLAs that enable
one to find the best interface reference. When a client requests a service by
name, the DLA is executed and an interface reference specified by the DLA is
returned. In the network control model of Section 3.1, the trader is part of the
generic services.

In the current implementation, the evaluation of the DLA takes place in the
trader and only the interface reference is returned to the client. This makes
active trading completely transparent to the client. The active trader behaves
exactly like a normal trader and clients need not have instantiated a Sandbox
for the DLA’s encoding to find their interface references. An alternative would
be to offload this task from the trader and move it to the client. In this case,
instead of returning an interface reference, the trader returns a program that,
when invoked, will return an interface reference according to some policy. These
active interface references have been experimented with in the context of Noman
control architectures, discussed in Section 5.5.

As an example, consider a service which is available at two places, A and
B. The implementers of the service would like to register the service under a
single name, governed by the policy that if on the last client request it returned
the interface reference for A, it should now return the interface reference for
B and vice versa (thus implementing a crude load-balancing scheme). In the
active trader, this can easily be specified by registering the following algorithm
(in pseudo-code):

if ( variableNotDefined (LastIrefReturned) ) LastIrefReturned = IREF_A
else if ( LastIrefReturnmed == IREF_A ) LastIrefReturned IREF_B

else if ( LastIrefReturned == IREF_B ) LastIrefReturned IREF_A
return LastIrefReturned

4.8 Related work

Mobile agent technology is a very active field and many implementations exist.
The next two sections discuss work on remote evaluation and mobile agents.
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4.8.1 Remote evaluation

Related work on remote evaluation was presented in [Stamos90]. An impor-
tant difference with work discussed here is that the remote evaluation (REV)
prototype does not allow remote clients to install new procedures at the server.
Also, the implementation is tied to a homogeneous language environment. In
the paper, an extended version of CLU is described, but it is observed that
similar extensions could be built in other languages as well. Mixing languages,
however, is not allowed. A distinct compile phase for the entire program is
assumed which allows rigorous checking prior to execution. Section 3.3.4 shows
that the Sandbox SUFI retains an amount of language independence.

Early work on remote evaluation includes PostScript [Adobe85], which is
used for example to dynamically load PostScript code into printers. Building on
this, research into a special-purpose REV mechanism was conducted in the con-
text of the SunDew distributed window system [Gosling86], where PostScript
programs are transmitted between processes. At DEC, a system known as
the network command language (NCL) was developed that implements remote
evaluation and breaks the traditional client-server model by allowing clients and
servers to exchange LISP expressions [Falcone87]. Even older than this is work
in the context of operating systems described in [Gaines72] where individual
applications are able to extend the functionality of the kernel.

4.8.2 Roaming agents

Remote evaluation in the form of mobile agents is provided by the TUBFE
[Halls97]. Code mobility is made straightforward by the ability to freeze run-
ning code and continue its execution somewhere else. The TUBE is language-
dependent: properties of the Scheme language are used for saving the program
state. The TUBE has been used in experiments with network control. By
linking its libraries with stubs for an advanced control architecture it was pos-
sible to create mobile code that set up and tore down connections over which it
transmitted itself. The TUBE has also been used in management experiments
by making TUBE sites interact directly on the same host with Ariel interfaces
(i.e. the TUBE site assumes the role of control architecture).

Telescript was one of the first implementations of mobile agents and denotes
both the language and the agent environment [White97a]. The key concepts
in Telescript are agents and places (virtual locations that can be occupied by
agents). Agents in different places are able to connect to each other across a
network. Agents in the same place are able to meet. Recently, Telescript has
been replaced by the Java-based Odyssey. Agents in Agent Tel are programs
that are supported by a common services package (enabling mobility) imple-
mented as a server [Gray96|. The assumption is that all functionality that an
agent may ever want is available in the server. Explicit commands are defined to
capture and define a program’s state. Originally geared towards the Tcl script-
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ing language there is now some support for Java and Python as well>. ARA is
similar to Agent Tcl (and to the Sandbox) in that it provides a core service layer
[Peine97]. The core service layer supports multiple languages through inter-
preters. State capture, security and correctness checking is not specified. Aglets
are IBM’s approach to implementing mobile agents [Lange96]. The approach
is language-specific: mobile agents (or aglets) are Java programs that run in
the Aglet Workbench environment. There is a layered security model, where at
the lowest layer the Java virtual machine is always trusted. [MAF96] describes
how aglets are CORBA objects that are allowed to migrate. In Tacoma agents
are migrating processes [Johansen95]. The agent’s state is stored in what is
called a briefcase. State in Tacoma has to be handled explicitly by the pro-
grammer and security is weak [Pham98|. The agents are currently specified in
Tecl. In the realm of telecommunications, some groundwork is expected to be
covered for mobile agents in TINA by the MAGNA project (TINA is discussed
in Section 5.6.1.6). Obliq [Cardelli95] is an untyped, lexically-scoped language
with direct support for distributed computation. Obliq objects have internal
state and are local to a site, while computations can roam over the network
(their network connections are maintained). ObjectSpace’s Voyager is another
Java-based agent system [ObjectSpace97]. It is built around an ORB and
offers integrated CORBA support. Agents in Voyager are autonomous and can
be made to move to new sites to resume execution.

All these systems offer advanced agent mobility, but are considerably more
complex than the implementations described in this chapter. Note that the
Sandbox framework does not prescribe any one implementation of the dynamic
execution environment. Each of the above systems can be used as a Sandbox, as
long as they allow implementation of the SUFI. An overview of agent projects
is given in [Pham98]. In [Harrison97], the idea of extending a server’s func-
tionality using DLAs (as proposed in the Haboob) is assessed as “a very valuable
new capability”.

4.9 Summary

In this chapter implementation details of the Sandbox were discussed. In par-
ticular, SUFI communication and security issues of a Sandbox implementation
called Gobi were described. Gobi was implemented for Tecl and (partly) for
Java. Gobi’s performance was evaluated and it was argued that loadable code
need not be much slower in execution than static code and can even improve
performance in certain cases. The Sandbox is a generic DLA platform, i.e. it is
not specific to network control. In the next chapters, it will be shown how the
Sandbox is applied to network control. For demonstration purposes, a generic
service called the active trader was implemented.

3 Agent Tcl has recently been renamed D’Agents



Chapter 5

Elastic control architectures

In the previous chapter an implementation of the Sandbox was discussed. In
this chapter, it is shown how Sandbox elasticity can be used in network con-
trol. Specifically, this chapter deals with what is probably the most complex
component of the network control model, namely the control architecture. Two
types of elastic control architecture are discussed. The first, called Sandman,
constitutes the bulk of this chapter. The Sandman is a complete control ar-
chitecture that offers advanced functionality such as reservation in advance,
measurement-based admission control, and more. Flexibility can be added in
the form of DLAs. The second type of control architecture, called Noman, is
a Sandbox with a module that allows programmers to quickly build control
architectures using DLAs.

The Sandman’s discussion is divided in four parts: Section 5.1 discusses its
core functionality, Section 5.2 explains how traffic measurements are used for
admission control, Section 5.3 describes a video server that was built using the
Sandman to validate its functionality, and Section 5.4 shows how DLAs can be
loaded into the control architecture to make it elastic. Noman is discussed in
Section 5.5 and related work in Section 5.6.

5.1 The Sandman: basic functionality

This section explains the core functionality of the Sandman. This includes
resource reservation in advance, recursive repartitioning of allocated resources,
and call admission control based on measurements. Sandman is an example of
a control architecture that was not designed with sandboxed DLAs in mind:
elasticity was added to an existing piece of software. Before the Sandman
is discussed in detail, the next three sections consider problems to do with
connections that depend on other connections, advance reservations and multi-
point communication. '

63




64 CHAPTER 5. ELASTIC CONTROL ARCHITECTURES

5.1.1 Connection dependence

Current technology allows users to access continuous media data as well as
traditional types of data simultaneously across a network. Problems arise when
resources (e.g. file servers or network links) are overloaded and either degrade
the system as a whole or cause new requests that want to share the resources
to be rejected. It will be shown that these problems are exacerbated when
communication involves multiple parties distributed over a network. This is
not uncommon. Continuous media sources may be distributed for a variety of
reasons:

e Continuous bit rate (CBR) encoded HDTV video requires approximately
17.5 MB of storage per second, a few hours of which will not fit completely
on the disks of most clients and may well need to be segmented and
distributed.

e Load-balancing is another reason for source distribution. [Dan95] pro-
poses to balance the load on file servers by chopping up continuous media
files in segments, which are distributed over the network, depending on
the load. Furthermore, audio, video and other types of data may be stored
on specialised servers for efficiency [Lo94].

e Many sources are distributed by nature. Cameras and microphones for
example, are attached to workstations or, in the case of security cameras,
distributed over an organisation’s site.

Source distribution becomes a problem if the acceptance of a call to one
source depends on the acceptance of calls to a set of other sources. This will
be called connection interdependence. A connection is dependent on other con-
nections if its establishment is only meaningful in the context of the (possibly
future) establishment of a number of other connections. The connection de-
pendencies will be called temporal, if the acceptance of a connection is only
meaningful in combination with the acceptance and establishment of certain
other calls at a certain time.

For example, if a video file is distributed over four nodes (see Figure 5.1), the
playback of the entire video requires that segment 1 is played first, immediately
followed by segment 2, etc. It is not acceptable that the first three connections
are accepted while the last one is rejected (i.e. the client would not be able
to watch the end of the movie). It is probably also not acceptable to set up
all four connections in advance for the entire duration of the video, since this
would be a needless waste of bandwidth, as all four connections would be idle
for 75% of the time. Instead, there is need for an admission control algorithm
that guarantees that if the connection to source 1 in a sequence is accepted, the
connections to all subsequent sources are also accepted at the appropriate times.
So connections 1 to 4 in Figure 5.1 are said to be temporally interdependent.
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These sorts of guarantees are required in all systems with temporal connection
interdependencies. A ‘live’ example might be a video conference where a number
of speakers have been allocated speaking time in advance. Henceforth, the
establishment of a set of interdependent connections will be called a session.

Start Time *

SEG1 [0

SEG2 |t0+L(SEG1)

SEG3 |t0+L(SEG1)+L(SEG2)

SEG4  |t0+L(SEG1)+L(SEG2)+L(SEG3)

*where L{(s) denotes the duration of °s’

Figure 5.1: One video file consisting of four segments

5.1.2 Reservation in advance

An active research topic in the field of resource management is the problem
of resource reservation in advance (both in IP [Degermark95], and in ATM
[Ferrari97, Schill97, Hafid98, Bos98c]). As to whether advance reserva-
tions are needed at all, as questioned by [Baker97], this dissertation follows
[Degermark935] by observing that this first of all depends on the scarcity of
resources. If resources are not scarce at all, not even immediate reservations are
necessary. If resources are scarce, however, there exists a class of applications
-which would benefit from advance reservations. Whether advance reservations
are needed, depends furthermore on whether the value of the advance reserva-
tion outweighs the cost of making the reservation. Another way of saying this is
that it depends on the loss {or cost) that will be incurred if the resource cannot
be reserved at the appropriate time. This may be independent of the value of
the resource itself. Analogies can be found for reservations in other areas. For
example, it is worth the cost to reserve a seat on a plane, but it makes no sense
to reserve in advance for the subway. In networks, there are applications where
the value of the reserved bandwidth is sufficiently high to justify the cost of the
advance reservation.

Advance reservation can be defined in a general way as the reservation of
resources for some future time period(s) during which these resources will be
allocated to the requesting application. The amount and nature of the resources
reserved is determined by some policy (which in the most general case may
depend on time, load in the network, etc.).
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5.1.2.1 Resource control and advance reservation

Solving the connection dependence problem in an environment where band-
width is scarce, requires the ability to make advance reservations. For example,
if a client C requests the playback of the video file of Figure 5.1, a connection
has to be set up from server 1 to C for interval [tg, to+L(seg:1)] and from server
2 for [to+ L(seg1), to+ L(seg1)+ L(segz)], etc. All these calls require resources,
such as bandwidth, for which a reservation is needed. Without advance reserva-
tion, it is impossible to guarantee, while efficiently using the network resources,
that all segments will be able to obtain the appropriate resources at the appro-
priate times. Advance reservation decouples the time of request for resources
from the time of allocation of resources. It will be shown next that the desired
functionality goes beyond a simple end-to-end advance reservation scheme.

5.1.2.2 Problems with traditional end-to-end reservation

Suppose that two source disks, connected to the same switch, contain two con-
secutive segments of a video (e.g. file servers 3 and 4 in Figure 5.1). The
connections from both sources to the sole sink are almost identical and follow
one another seamlessly with the same QoS. End-to-end advance reservation of
connections, however, precludes the reuse of part of an existing connection. In
all probability, this results in a very large handoff overhead, because a new con-
nection has to be set up from endpoint to endpoint which may involve many
switches. In the worst case, it means that all resources upto and including the
sink are involved in the setup of a connection that is exactly the same as its
predecessor. There is a need for less restrictive connection types!.

In most advance-reservation models, the only way to give the required guar-
antees for connection interdependence is to make n separate end-to-end reser-
vations, where n is the number of connections needed to play an entire video
[Ferrari97, Schill97, Hafid98]. This not only introduces a large, unnecessary
overhead, maintaining n separate connections also presents a considerable ad-
ministration task. It would be easier if a new type of connection was introduced
which can have multiple sources (in sequence) or multiple sinks or both. One
tear-down request would then remove all state corresponding to the session from
the network. In the next sections, two new connection types are introduced.

5.1.3 Multipoint connections

Like most control architectures for ATM, the Sandman supports simple point-
to-point (unicast) connections, as well as single-source multicast connections.
Joining a multicast can be initiated by leaf nodes, source nodes or third parties.

1This is a ‘normal’ signalling problem, not specifically related to the problem of connection
interdependence.
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Besides these relatively standard operations, the control architecture employs
two new types of connection to connect multiple sources to one or more sinks.
‘Multiple source’ does not mean multiple connections. Instead, one connection
is time-shared by several sources. In other words, these connections types im-
plement sessions. This addresses to a certain extent the problem of multipoint
communication in ATM. In ATM, it is difficult to implement multipoint-to-
point and multipoint-to-multipoint connections. The problem is that whenever
multiple sources share a connection, their higher-level ATM Adaptation Layer
(AAL) frames are first segmented into ATM cells and then transmitted on the
wire in any order. Such practice may easily lead to the interleaving of AAL
frames. This is unacceptable for non-multiplexing AAL types such as AALS.

AAL types such as AAL3/4 have been said to remedy the interleaving prob-
lem. AAL3/4 supports multiplexing AAL connections into a single ATM con-
nection using the 10 bit multiplexing identification field (MID). Unfortunately,
its resource utilisation is very poor. For example, the effective payload of an
AAL3/4 ATM cell is at best 83%. The utilisation of AALS5 which does not sup-
port source multiplexing is approximately 90.5%. Moreover, AAL3/4 by itself
does not solve the interleaving problem when the frames are sent from differ-
ent sources. For this, MID value coordination between the sources needs to be
added, which adds an extra level of complexity. As a result, AAL5 is favoured
in practice and it would be useful to implement multipoint connections that
handle AALS5 packets well.

Existing mechanisms for multipoint communication are summarised in [Diot97].
Most implementations of multipoint-to-multipoint communication for n parties
employ either n sessions of 1 : n multicasts (e.g. [Bettati95]), or use a spe-
cial multicast server (MCS), e.g. [LANE95]. In the latter solution, all parties
establish a point-to-point VO to the MCS. When a party wants to send data
to the group, it sends the data to the MCS instead, which subsequently multi-
casts it to the destinations. Sandman adopts these models only when multiple
sources are active simultaneously. Otherwise a more optimal solution is used
which involves connection sharing, as shown in the next section.

5.1.3.1 Reusing resources of previous connections

The two new connection types provide a limited form of multipoint-to-point
and multipoint-to-multipoint communication support. In case there is only one
sink (multipoint-to-point), the connection behaves like a rattlesnake, with its
head at the sink and its tail at one of the sources: the tail may flip rapidly
from one source to the next, but the rest of the connection’s body remains
unchanged. In fact, the sink is not even aware of the hand-off of the sources. It
just listens on the same VPI/VCI pair and the connection is never torn down
until all sources have finished.

For example, in Figure 5.2 a sink requests video-conference access to two
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Figure 5.2: Multipoint-to-point connection: only the source moves

cameras in sequence. The cameras are connected to two switches that connect
to the same switch S. The paths from cameras to sink have an arbitrary number
of switches in common. At the top the connection is from camera 1 to the sink,
while at the bottom the source has changed from 1 to 2. For the connection,
however, hardly anything has changed. Only in the very last switch connections
(from S onwards) the change has been made from camera 1 to camera 2. The
overhead of setting up the entire connection from source to sink, each time
the source moves, is no longer needed. Resources are also not wasted, for
example by maintaining multiple connections to the same sink in parallel. A
final advantage is that the sink need not be aware of the handoff. Something
similar could be used in the hand-off process of mobile systems, although it is
currently not used for this purpose.

5.1.3.2 Sequences and patterns

Concretely, to deal with temporal connection interdependency, the Sandman
introduces the following two new connection types:

1. Connection sequence: this type has an arbitrary number of sources that
follow each other seamlessly and a single sink that may not even be aware
of the number or location of the upstream sources or hand-offs. Identi-
cal portions of the connections of subsequent sources are automatically
reused. The operation to reserve and create this type of connection takes
as arguments a reference for a sink (e.g. a display program on a work-
station), a start time, and a list of source records each of which specifies
a source, the resources required (e.g. bandwidth) and an end time. The
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end time for source ¢ is the time until which 7 is active and serves as the
start time for source 7 + 1.

2. Connection patterns: this type has the same source sequence, combined
with an arbitrary list of (possibly overlapping) sinks. The operation is
largely the same as a connection sequence, but the hand-off process is more
complicated. The operation takes the same arguments as the connection
sequence except that there is now a random list of sink records each of
which contains a sink reference as well as a period [tsiart,teng) during
which this sink is active. Overlapping sink intervals indicate multicasts
during the overlapping periods.

Both types of connections (as well as the more common point-to-point
and multicast connections) can be resérved in advance, modified and made
resilient to failures (see Section 5.1.5). Connection sequences are essentially
restricted multipoint-to-point connections, while connection patterns are re-
stricted multipoint-to-multipoint connections?. There is no danger of AAL
frame interleaving because there is only a single source that is active at the
same connection at any time. All connection types in the Sandman can be
initiated either by the source or the sink, or even by third parties.

5.1.4 Sandman components

The Sandman was designed following the control architecture model described
in Section 3.4.1. The most important entities of the distributed control archi-
tecture as well as their interactions will be described next. The Sandman uses
the following entities (see also Figure 5.3): local host manager, local trader,
connection manager and federated trader. The local host manager provides an
interface to the control architecture. Generally, there will be a local trader
and a local host manager associated with each host that wants to communicate
(where the local trader and local host manager may or may not run on the same
machine).

As an example of the interaction between these entities , consider a connection
setup between a source and a sink application. Assuming that the setup request
was initiated by the sink (indicated by start () in the application on the right
in Figure 5.3), the sequence of interactions is as follows:

i. Before communication can start, the source must export a service offer,
which is registered with its local trader, e.g. an offer for the service to send
video. The trader also registers a callback function with this offer, which is
the operation (e.g. “SendVideo”) that will be executed when a client binds
to the offer. Likewise, the sink registers an offer with its local trader, e.g.
an offer to display video that is received from the network (“Display”).

*In the proof-of-concept implementation, heterogeneity of sink QoS was not addressed
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Figure 5.3: Interactions between the various Sandman components

ii. A client who wants to access the service, tries to find an offer for it using
the local trader and federated trader which in turn uses the other local
traders (actions 1 and 2 in Figure 5.3).

iii. It also obtains a handle on its local sink offer (“Display”).

iv. The client, via the local host manager, requests the connection manager to
connect source offer to sink offer for the desired time interval® (action 8).

v. The connection manager tries to reserve the appropriate resources on the
data-path and if this completes successfully, it sends back an acknowledg-
ment to the local host manager.

vi. The request sleeps (4) until £5r¢, when the connection is set up (5).

vil. If successful, the connection manager tells the local host managers on both
sides to invoke the callback operations (6): the source is told to send video
and the sink is told to receive and display frames.

viii. Teardown at the end of the interval is analogous: the source and sink are
told to stop sending and receiving respectively and all state corresponding
to the connection is removed.

5.1.5 State and failure

When resource reservations are made, state is introduced into the network.
The nature of this state is important and requires the following questions to be
answered: (1) how should one specify what portion of a shared resource needs
to be reserved (e.g. how much bandwidth is needed for a connection), (2) should
the state be soft or hard, and (3) what should happen in the event of failures?

31t is assumed that a clock synchronisation mechanism provides global time.
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5.1.5.1 Specification of required resources

Reservation requests must contain a specification of the resources required for
the connection. The question is how detailed such a specification should be. It is
possible to take a simplistic approach, which assumes no knowledge whatsoever
about the behaviour of the sources and the best that can be done is to provide
the peak rates. Alternatively, one can use a more sophisticated scheme, whereby
a very detailed characterisation of the source behaviour is supplied, possibly
using parameters such as peak and sustainable cell rate, burst length, etc.

In Sandman, the former option was chosen: resource specifications consist
of peak rate only. This dissertation argues that accurate source characterisation
(modelling) is prohibitively difficult. The problem with peak-rate reservations
is that it leads to poor resource utilisation. This problem will be addressed in
Section 5.2.

5.1.5.2 Soft state vs. hard state

Another issue is whether one should use soft state or hard state. RSVP uses the
concept of soft state, which exists only as long as periodic messages are sent
along the datapath [Zhang93]. If at some node, the messages fail to arrive,
the soft state is removed. This is very attractive in certain aspects, but it is
not very suitable for advance reservations, because it requires nodes to be up
all the time. This is an unreasonable requirement (when users reserve a video
conference for next week, they don’t care whether all nodes on the datapath
go down overnight). Instead, the Sandman uses “hard” state, i.e. state that is
only removed as the result of an explicit release operation. Hard state comes
at the price of more complicated releasing of resources. However, the state is
not extremely hard, i.e. it will disappear of its own accord after the reservation
interval. In other words, it is covered by its own timeout mechanism. The
nature of this mechanism, however, is different from the soft-state approach.

5.1.5.3 Failure and recovery

Failures may occur at any time and at any location in the network. Failure
handling and recovery procedures in Sandman are simple but adequate as a
proof-of-concept. For example, the way the connection manager deals with the
failure of an operation (e.g. a reservation or setup failure, because a remote
host crashed) is by throwing an exception and releasing all resources allocated

to or reserved for this request. It also notifies the host managers involved.

A more interesting problem arises when the connection manager itself crashes.

Consideration should be given to what effect this should have on the connec-
tions. In the Sandman, a distinction is made between two types of sessions:
persistent and volatile. The volatile sessions crash with the connection man-
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ager, i.e. their connections will never be completed. If the crash happened
before the start of the reservation interval, no connections were ever set up and
never will be. Otherwise as soon as a connection manager comes up again, the
connections’ resources will be released. Persistent sessions on the other hand,
are written to stable storage at reservation time. If a crash occurs before the
start of the reservation interval and the connection manager comes up again
before the start of the interval as well, then all reservation state is simply re-
stored and the client is not even aware of the crash. Otherwise, if the connection
manager comes up in the middle of a session, it figures out what connections
should have been active at that moment, and if they are not active, sets them
up. It also performs all pending notifications and cleanup operations.

As an experiment, finally, a mirror connection manager was run. The pri-
mary connection manager still takes care of setting up connections, but also
sends all requests and replies from clients and host managers to the mirror,
along with heartbeat messages. The mirror runs in emulation mode: it doesn’t
set up connections, but it keeps state as if it does. If the heartbeat messages fail
to arrive, the mirror assumes that the primary connection manager has died and
takes over its role automatically. All parties that communicated originally with
the primary manager are notified of the change. Recently, a similar strategy
was proposed for services deployed in active networks [Kulkarni99].

The most difficult failure, when a network is partitioned for a long time and
the connection manager cannot reach one of the partitions to release resources,
is the subject of future research.

5.2 Call admission control in the Sandman

Call admission control {CAC) on the one hand aims at providing applications
with QoS guarantees and on the other strives to make optimal utilisation of the
network resources. Even if matters such as fairness are left out of the equation,
these are two somewhat conflicting goals that are difficult to reconcile.

5.2.1 Introduction

Admission control and resource reservation are closely related. Based on the
resources that have been reserved already for existing connections and the re-
sources that are needed for a new connection, it is decided whether or not this
new connection should be accepted. In other words, it’s decided whether the
QoS requirements of this new connection can be met, without jeopardising the
QoS of previously accepted connections.

In ATM, a wide variety of CAC algorithms has been proposed. Some of these
algorithms use very clever estimation of the total bandwidth that is required
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for the multiplexing of n connections of which some properties (e.g. peak rate,
average rate, burst length) are known. Gaussian Approximation and Equivalent
Capacity are examples of these algorithms [Guerin91].

Most of these algorithms suffer from relying on a (static) model of the traf-
fic, while, as mentioned before, it is often impossible to accurately characterise
sources. An approach that is therefore frequently taken is the division of calls
in a small set of Quality of Service (QoS) classes. This technique is problematic
also, since one can never define classes that fit all possible types of traffic (in-
cluding those of future services). Finally, most existing CAC algorithms differ
from the policy proposed here in that they deal with whether a call can be
accepted now rather than at some time in the future, which is needed for the
guarantees mentioned above.

Recently, a promising new approach has emerged which uses on-line mea-

surements to overcome some of these problems [Jamin95, Crosby95b, Gibbens97].

This is generally known as measurement-based admission control or MBAC. In-
stead of trying to model a priori the behaviour of a source, it is proposed to
measure its resource utilisation and use the knowledge that can be derived from
these measurements as the basis for the CAC algorithm. Using traffic measure-
ments, the aim is to find an estimate of the minimum resource capacity that
should be allocated to a connection to satisfy its QoS guarantees with high prob-
ability. Limiting the scope to bandwidth, this estimate is called the estimated
effective bandwidth.

Informally, the effective bandwidth of a connection is a measure of the ca-
pacity that a connection really needs, i.e. the bandwidth effectively used by the

. connection. More concretely, the term effective bandwidth (EBW), as used in

this dissertation, denotes the switch buffer service rate required to keep the cell
loss ratio (CLR) due to queue overflow under a specified target bound*. The
estimation of the effective bandwidth based on online measurements is derived
in Appendix A.

5.2.2 Alleviating a conservative CAC algorithm

The default CAC algorithm in the Sandman simply checks the reservation
schedules to see if enough capacity is available to accept the new request and if
so, updates the schedules. Reservation schedules are employed for a whole range
of resources, e.g. service access points (SAPs), capacity (bandwidth), channels
(VPI/VCI values), and others. In the present discussion, the focus will be on
bandwidth. If reservations are entered in schedules based on pedk rates alone,
this may result in very poor resource utilisation, because the resulting CAC is

41t seems that the only QoS metric dealt with here is bandwidth corresponding to a desired
CLR. However, QoS parameters are not orthogonal and other QoS parameters such as delay
and delay variance also depend only on the probability distribution of the queue length (just
like the CLR).
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extremely conservative. Statistical multiplexing for a time interval in the future
is difficult due to the unknown behaviour of future flows.

5.2.2.1 Admission control based on schedules

The default CAC uses only reservation schedules. The algorithm to decide
whether a new request should be accepted is as follows:

i. Let By, be the total capacity /bandwidth of the resource.

ii. For the time interval that is specified for the new request, determine Bycpeq, the
maximum amount of bandwidth reserved by adding all the peak rates of the reser-
vations.

iii. Let bpew be the new request’s peak rate.

iv. If Bsehed + bnew < Bior accept the request. If not, reject.

This is a very conservative admission scheme: the resource utilisation with this
CAC will be low, but the resource guarantees are relatively hard.

5.2.2.2 Combining peak rates with measurements

The default CAC in the Sandman is extended to use the observed traffic during
a time interval in the past. From these observations the effective bandwidth is
estimated and thus the amount of traffic that can be expected if a new request
is accepted. If the result does not exceed the total capacity, the call can be
accepted. By definition, the EBW lies between the mean and the peak cell
rate. Hence, CAC based on EBW gives better resource utilisation than CAC
based on peak-rateS. At first sight, it seems that measuring traffic is unsuitable
for Sandman, because requests are generally made for an interval in the future:
at call admission time, and possibly for a long time after, there is nothing to
measure. On the other hand, there is knowledge about the behaviour of flows
that are currently active. This can be used for CAC in the near future.

CAC in the Sandman is an attempt to bring together the strictness of peak-
rate schedules and the resource utilisation resulting from measurements. Start-
ing with CAC based on measurements and looking further into the future, the
Sandman’s CAC grows progressively more conservative. As time goes by, more
is learned about the flows in a specific interval that were admitted with the
conservative CAC because some reserved calls will have started by then. The
CAC algorithm can now make less conservative decisions for new requests for
that interval.

5The EBW estimators in the Sandman were developed as part of the ESPRIT Measure
project. The Measure Toolkit written by Horst Meyerdierks was used as the starting point.
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For this purpose, measuring components are connected to the resources. For
example, code is added to the switch to periodically send various cell counters
for each active connection to a generic service component, called the ¢raffic
server. In this section, only the counter denoting the number of cell arrivals on
a connection’s output port is considered. The traffic server uses these counters
to compute estimates for the effective bandwidth (EBW) of each of them. It
also obtains an estimate for the aggregate EBW.

In the Sandman’s schedules, besides the peak rate, the EBW of the flows is
also tracked. Initially, the EBW is set to the peak rate. For each new request,
the CAC asks the relevant traffic servers for the EBWs of the active connections
and also for the aggregate EBW.

BW — "NOW" TIME LINE TOTAL CAPACTI \L‘]
B

t0 tl 2 t3 t4 t5 t6 t7 t8 t9

Figure 5.4: A new reservation request arrives

The process is illustrated in Figure 5.4. At ¢+ = now a request arrives for
bandwidth in [ts,%9]. At t = now there are two active connections (1 and 2)
of which EBW estimates exist. Connection 2 finishes before the new request
starts, while the other active connection overlaps with the new reservation’s
interval. Between now and t¢ two more connections are set up (3 and 4) one of
which finishes before 5. The new CAC algorithm becomes:

i. Let Bess be the aggregate EBW that is used on the resource, b.¢7(n) the EBW of
connection n and peak(n) the peak rate of connection n.

ii. At t = now a reservation request r arrives for [tsiart, tena] With peak(r) = b.

iii. Let Epw be the estimated maximum of the bandwidth in [tstars, tend] (i-€. the
bandwidth that we use to decide whether the request should be accepted or not).
Initialise Egw to Beff.

iv. For all active flows z that finish before toqrt do: Epw = Epw — beps(2).

v. For all reservations y of which the connections have not started yet and which
overlap with [tsiars, tend], do: Epw = Epw + peak(y).

vi. If (Epw + b < Biotar) accept, otherwise reject.

The above CAC algorithm is not optimal. It may be acting too conservatively
for future reservations, because (as indicated in step (v)) the summation of the
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peak rates of all future reservations overlapping with the new request’s interval
is added to Epw, regardless of whether these reservation overlap themselves.
An optimal algorithm uses the mazimum overlap, i.e. the maximum sum of peak
rates of mutually overlapping connections that also overlap with [tstart, tend)-
This was not done in the current implementation as it would add significantly
to the CAC overhead.

The more conservative treatment for time intervals that lie furter in the
future may not be a problem at all, assuming that there are relatively few
clients that make future reservations for a particular time interval. In that
case, there will be few rejects, despite the conservative CAC algorithm. As
the CAC becomes gradually less conservative for this time interval, it may be
expected that by the time the conservative algorithm would have reached the
capacity, a number of the streams will have started (allowing less conservative
CAC decisions to be taken).

5.2.2.3 Traffic servers

Sandman provides hooks for plug-ins like traffic servers which allow the default
CAC algorithm to be easily extended. Traffic servers are independent processes
that fit in the generic services level in the network model of Section 3.1. They
talk to the switch on one end and the control architecture on the other. Traffic
servers receive raw statistics from the switch, process them and send updates of
the EBW to the control architecture. The updates are generally sent on request,
but traffic servers can also be instructed to send update messages periodically.
For the Sandman, the traffic server is optional and can be added and replaced
at runtime. If a switch cannot provide the statistics, the control architecture
still works, albeit more conservatively. In fact, it is conceivable to control a het-
erogeneous network where some switches (or indeed some of the ports of these
switches) have traffic servers, while others do not. Also, the implementation
may vary from switch to switch, allowing vendors to differentiate.

The new set of components which includes the traffic servers is shown in
Figure 5.5. Section 5.4.2.3 shows bhow traffic servers can be made elastic. This
allows the traffic servers to be programmed at a fine granularity, so that they
can be used for other tasks such as policing, as well.

5.2.3 Discussion

Measurement-based admission control is not without its problems. If N ac-
cepted connections are silent or near-silent for a long time, the CAC mechanism
will be inclined to accept more and more connections, as their effective band-
width estimates are low. Problems arise when suddenly the N sources become
very active and start transmitting at their peak rates. This would jeopardise
the QoS guarantees of all connections. A scenario in which this might happen
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Figure 5.5: Sandman extension hooks: traffic servers can be dynamically plugged in

is when many connections are waiting silently for some video transmissions to
begin, e.g. the news at nine, from different channels. Although the connections
have been set up, little or no data is sent on these connections. This changes
when the video transmissions start. The CAC algorithm will need to be re-
fined to cope with these situations. For example, if there is a large discrepancy
between the declared peak rate and the measured effective bandwidth, the algo-
rithm could become more conservative, by limiting the number of connections
that it is willing to accept. The more connections with a very high peak to EBW
ratio, the fewer new connections such an enhanced algorithm would admit.

The results of the call admission control algorithm, as described in this
chapter will be discussed in Section 8.4. Because the effective bandwidth lies
between the average rate and the peak rate, CAC based on estimates of the
effective bandwidth will be shown to be significantly less conservative than CAC
based on the peak rate alone. In addition to this, it should be noted that because
of the solid mathematical derivation of the effective bandwidth estimation, it
is still possible to give probabilistic QoS guarantees. This is almost impossible
with less rigidly determined estimates such as [Jamin95]. Recently, however,
it was suggested that, from the viewpoint of optimising resource utilisation,
further research on even better admission control equations is fruitless, as the
differences in resource utilisation is minimal [Breslau99).

5.3 Building a distributed video server

Although audio and video sources and sinks are rapidly becoming ubiquitous
in computer networks, the recording and playback of continuous media data,
is by no means a solved problem. As a validation of the Sandman, this section
will discuss the implementation of an experimental distributed video server.
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5.3.1 Introduction

Storing large video files on disk is problematic due to two problems. First,
most users do not have the storage space to record large high-quality video
files. For example, the recording of 1 hour worth of HDTV-quality video (CBR
encoded) requires more than 60 GB of diskspace [Jardetzky95]. Second, even
when storage space is abundant, we find that most present-day disks are only
able to serve a small number of simultaneous continuous media streams without
compromising QoS guarantees. These systems (or the network access to them)
are likely to become bottlenecks. Load balancing, therefore, becomes important.

In the next few sections, a prototype distributed video server (DVS) called
BigDisk is discussed that addresses both of these problems. It places few de-
mands on the machines in the network (indeed, these could even be low-end
PCs with small disks). The load on the disks is automatically balanced and
a solution is proposed that both improves latency considerably and enables
prefetching for continuous media.

5.3.2 Recording and playback with the DVS

In this discussion of BigDisk, the focus is not so much on the problem of guar-
anteed rate storage servers®. Whether the lower-level storage server is capable
of delivering guaranteed rate is considered an endpoint problem. It is assumed
that the request that is sent to the DVS is based on the endpoint QoS con-
straints that are only known at the application level”. In cheap systems, users
will simply use the cheap disks in their PCs for storing and retrieving. High-end
users may prefer to use guaranteed-rate storage servers for high-quality video.
Both types of users are supported.

For now, the principal aim of the DVS is to provide users with limited
diskspace with a virtual ‘Big Disk’, which may comprise all disks on the network
on which the user has write permission. In the DVS each designated disk stores
a segment (e.g. 10 minutes) of a large video. Consider again Figure 5.1 for
an illustration of how a video file has been segmented and distributed. The
front-end of the DVS is a graphical user interface, while the backend consists
of calls into the Sandman. The front-end enables users to inspect the various
disks on the network, add new disks to the system and select the mode for this
DVS session. The BigDisk DVS has two modes: recording and playback.

In recording mode, shown in Figure 5.6, users select the disks on which to
record the continuous media data. Even if a video fits entirely on the local
drive, users may still choose to distribute it over a number of disks to balance
the load. After users have selected the disks that act as sinks, and the video

5Nevertheless, a simple continuous media storage server was built for experimentation
purposes. More advanced systems are described in [Anderson92, Lo94, Jardetzky95].
"The rate of the storage server should be taken into account for end-to-end QoS guarantees
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Figure 5.6: BigDisk recording mode

stream that acts as source, they specify the name for this video and the start
and end time for the stream (e.g. in case of a recorded television program,
these can be the start time and end time of the program). The DVS then
suggests a particular segmentation and distribution corresponding to the user’s
choices. The suggestion is based on a load balancing policy. For example, in
the prototype, the DVS tries to guarantee the same relative disk usage on all
disks involved. The suggestion can be overruled if the user so desires.

Figure 5.7: BigDisk playback mode (with a snapshot of the video).

In playback mode, shown in Figure 5.7, users select a video to play, on any
of the disks in their system. When the video is selected, the DVS queries a small
video database to find out which segments make up this video and where they
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are stored, and starts playing them in the right order and at the appropriate
times.

5.3.3 Implementation of the DVS

Acting as a client of the Sandman and using the connection sequence and con-
nection pattern types described in Section 5.1.3.2, the DVS is able to provide
the necessary guarantees. The operation of the BigDisk backend upon a request
from the DVS client is summarised in Figure 5.8. Because of the availability
of the connection sequence and pattern operations, BigDisk itself can be very
simple. Furthermore, this functionality could never be provided by the current
signalling standards such as UNI [UNI4.0:94]. The rest of the DVS consists
of a small distributed database to manage the video segments and a storage
server that is CORBA aware and can be prompted to play or record video. The
control part of the DVS consists of less than 800 lines of Tcl.

IMPLEMENTATION OF BIGDISK OPERATIONS

a) make an advance reservation for a
sink for the entire duration of the video;

b) if successful, return the reservation identifier to the DVS (which enables the DVS to change the reservation);

) at t(start), set up the first connection (allocating the appropriate amount of bandwidth) and call back the sink and the first source disk

server in the sequence (essentially telling them to start receiving and sending, respectively);

at the end of each segment, flip the connection to the next source and call its callback function (also: tear down the dangling connection

to the previous source and notify it of the fact) and so on until all sources have finished;

at that point, free all resources, notify the currently active sink and the currently active source and remove all state from the system.

a) reserve a connection pattern with one source (e.g. the t.v. program you want to record) and n sinks (the disks on which you want to
spread this video);

b) if succesful, return the reservation identifier and wait until the program starts;

¢) set up the connection and notify the source and the first sink;

d) at the end of the pre-reserved time of 1, flip the ion to the next sink, clean up dangling connections, and repeat
this process until all segments are stored;

e) free all resources, remove all state.

involving the appropriate disks for the appropriate (segment-)times and the
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Figure 5.8: BigDisk implementation of recording and playback

5.3.4 Latency

Latency is an important aspect of BigDisk. Latency control is crucial to ensure
the smooth playback of all segments. Initial latency is defined as the time it
takes before the first video data starts arriving at the sink, measured from
the time the connection request was issued. The follow-up latency is the time
between the arrival at the sink of the last cell of one source and the first cell
of the next during a source handoff in playback mode. Initial latency is not a
problem in video playback, as clients generally don’t mind when a video starts a
few milliseconds or even seconds later. Reservation in advance provides control
over the lower bound of the initial latency, as it can be specified that playout
shouldn’t start until a specific time ts5r¢. At £s4r¢, the latency incurred is lower
(compared to traditional control architectures), because the request has already
been sent to the Sandman and CAC and resource allocation have already been
done.
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This leaves the follow-up latency. The follow-up latency means that if one
simply were to play the data immediately when it arrives at the sink, there
would be glitches in the playout at the time of handoffs. The glitches have a
length of the follow-up latency. To avoid them, a small buffer is placed at the
sink, aimed at absorbing the latency (as well as possible jitter). The question
is: how small can this buffer be? In the case of BigDisk, it is adequate to use
a buffer that is simply ‘big enough’. In other words, buffering a few seconds
of video, will be plenty to absorb all follow-up latency and all jitter (at the
expense of the initial latency). Although adequate, this is not a very general
solution. Therefore, an experimental version of Sandman was built, which is
capable of giving probabilistic upper (and lower) bounds on the latency. An
outline of this approach is given in appendix B.

5.3.5 Segment replication

A BigDisk client expects the server to meet its QoS requirements. What if
BigDisk finds that the network cannot provide the desired QoS? There are two
options: (1) reject the request, (2) try and enable the network to accommodate
the request. BigDisk attempts the latter. The reasons for not accepting a
request can vary greatly. It may be that the advance reservation fails because
the network’s capacity is already fully reserved for the desired interval. This is
an example of a rejection due to other traffic in the network. It may also be
that a request would be rejected because the storage server is simply too many
hops away to meet the QoS requirements, regardless of the presence or absence
of other traffic. This request could never be satisfied.

Requirements
can be met

Figure 5.9: Moved segment is able to meet QoS requirements

Requirements

(ATM Network)
cannot be met

Both problems can be addressed if the segment stored on the problematic
file server is moved to a location from where the required QoS can be provided,
e.g. to a disk on the same switch as the sink, as in Figure 5.9. Suppose that
segment 7 in a connection sequence is the segment that is causing the problems
(i.e. the call to this disk would be rejected because the QoS requirements can’t
be met). Define ¢; as the time that the play-out of segment 4 should start.
Observing that we have from ¢ = now until ¢ = ¢; to move things around in the
network in such a way that at ¢; we will be able to play segment 1, the following
admission control policy is implemented:

1. If the request can be admitted by the network as is, i.e. without shuffling seg--
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ments around, admit the request.

2. Else, if segment ¢ can be replicated on another disk from where the QoS can be
provided (before t;), admit the request®.

3. If not, reject the request.

Segments are automatically replicated on a lightly loaded or better-located
disk Fj;gnt, if this enables BigDisk to meet the required guarantees. The play-
out will then take place from Fy;gps. All this is transparent to the client. A
simple simulation with Poisson distributed request arrivals and exponentially
distributed video popularity, suggested that this policy increases the acceptance
ratio significantly [Bos97]. '

5.3.6 First segment replication (FSR)

The segment replication policy of the previous section yields lower latency than
would be possible if the original placement of segments was used. This can be
exploited in a different way as well. Consider a system with a large number of
video files. Although replication is often proposed to improve availability and
latency for these essentially write-only files, it makes no sense to replicate even
a subset of these videos due to their enormous sizes.

A solution for this problem is to replicate only the first (relatively small)
segment of each video over many network nodes, while making progressively
fewer copies of the following segments, e.g. by keeping only a single replica
of the last few segments. Also, the first segments will be copied ‘further’, i.e.
to more remote sites, while the later segments are more bound to the local
network. This scheme will be called first segment replication (FSR). FSR is
illustrated in Figure 5.10. The initial latency to the video file in FSR will be
low (there is always a first segment nearby) and the time to play this first
segment can be used to move the remaining segments close enough to satisfy
the QoS requirements. For this purpose, the user interface shown in Figure 5.6
has an extra option which enables users to replicate specific segments on other
disks. The replication of the first segment over many nodes is essentially a form
of cacheing.

Potentially, these techniques could also be used to implement prefetching
for continuous media. Consider a Web page with a large number of links to
very large video files. It makes no sense to prefetch all the data for all links
that a user might follow, but it may be possible to prefetch the first segment of
each these files. This allows users to quickly browse through a large number of
videos without incurring large latencies each time a new video button is clicked.

8Currently, only file servers on the same switch as the sink are considered as destinations.
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Figure 5.10: The first of three segments of video is heavily replicated

5.4 Adding granules to the Sandman

In the previous sections, the Sandman was discussed in terms of its basic func-
tionality. Next, it is shown how DLAs can be loaded into the heart of the control
architecture. Examples will be given of how this allows for functionality that
would be difficult or impossible to implement otherwise, thus supporting the
thesis that elastic control eases the development and introduction of new and
innovative network control.

5.4.1 Introduction

Resource management in networks involves first and foremost reservation and
allocation of resources to specific applications, for example in the form of con-
nections. It will be shown how DLAs constitute a new paradigm in resource
management and control. The generic nature of high-level primitives prevent
applications from exploiting application-specific knowledge. For example, con-
sider the application description in Figure 5.11. The active source changes
according to an application-specific algorithm. The application may want to
leave all connections to and from switch S in place, so all that is needed to
change sources is changing the switch connection in S. High-level end-to-end
primitives are incapable of exploiting this. This section presents a solution for
this problem.

5.4.2 Recursively partitioning networks using netlets

The infeasibility of a one-size-fits-all solution applies also to the control ar-
chitecture itself. Therefore, the idea of switchlets is extended into the control
architecture itself by partioning virtual network resources and enabling individ-
ual applications to specify their own policies for reserving and allocating these
resources. In this way, one can really speak about open control: flexible control
that is not dictated by any one organisation, vendor or network operator. For
this, the Sandman currently supports the following basic operations:
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Application:

1. only one endpoint active as source
2. all others are sinks

3. source endpoint changes

4. change is according to algorithm

Figure 5.11: Application-specific knowledge

1. Unicast, multicast, connection sequence and connection pattern.

2. Information gathering. This is a wide-ranging class of operations to dis-
cover certain things about the state of the network, the topology, routes,
available bandwidth on switch ports, etc.

3. Reservation of arbitrary sets of resources. The reservation of arbitrary
sets resources in the network by partitioning (and repartitioning) existing
sets will be described shortly.

4. Loading application-specific code. Allowing users or applications to load
their own code into the control architecture allows them to exploit application-
specific knowledge at a very low-level.

The first category contains the most commonly used operations. They are
called the primary operations. All other operations mentioned above are called
secondary operations. The primary operations are expected to be sufficiently
expressive for a large number of applications. Some applications, however,
have very specific needs so, in order not to restrict them, it is proposed to
give these applications a set of resources which is theirs to use as they please
(i.e. without any connections imposed on them). This is also useful for certain
network management tasks. For example, it has been suggested in [Schill97] to
partition resources in the network, so that immediate reservations are shielded
from advance reservations and vice versa. For this purpose, Sandman allows
one to make (advance) reservations for what are called netlets, i.e. partitions
of a larger virtual network.

5.4.2.1 Netlets

Netlets consist of an arbitrary set of resources within the encompassing virtual
network. For example, for switch port resources, a netlet element is specified
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which consists of the switch name, the port number, the direction (i.e. in or
out), the number of channels (e.g. VCIs in ATM) and the amount of bandwidth
shared by these channels. The netlet elements need not be adjacent as one netlet
may consist of multiple unconnected sub-partitions (see Figure 5.12). Netlets
resemble virtual networks of switchlets, but are more light-weight. For example,
it will be shown how a netlet could simply be a single connection of a new user-
defined type. Also, netlet partitions need not be hard partitions; they could be
“logical” only (and used for instance for admission control).

. <~ Virtual Network

One netlet consisting of 2 unconnected
partitions in a virtual network

Figure 5.12: Netlet in virtual network

Netlets can be created recursively. In other words, it is possible to cre-
ate netlets in netlets, which enables applications to repartition network re-
sources in an unrestricted manner. In fact, the encompassing virtual network
of Section 2.2 itself can be thought of as a netlet: the so-called level-0 netlet®.
Repartitioning network resources extends the idea of switchlets into the control
architecture. There are a number of control and management advantages that
result from doing this, including;:

1. Policing differentiation. Level-0 netlets (virtual networks of switchlets)
must be policed, because misbehaviour in one level-0 netlet N should
not affect connections in any of the other level-0 netlets. Given level-0
policing, however, we can decide not to police at a higher-level netlet,
because even if connections in the netlet misbehave, the problems will be
limited to N only and not propagate to the outside world.

It is now possible to differentiate the policing policy in the network, e.g.:
given that there is hard (in-band) level-0 policing, we can decide to police
specific higher-level netlets only very loosely (e.g. by periodically taking
measurements from switches to see if they have exceeded their allocated
bandwidths) and certain other netlets not at all. In fact, the looseness
may vary from netlet to netlet. In other words, netlets are light-weight
virtual networks (in this sense, the relation between a higher-level netlet

9As a convention, each time a netlet is repartitioned, the level number increases by one.
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and a lower virtual network is similar to that between a thread and a
process).

2. Interoperability differentiation. Applications that own netlets may have
different requirements regarding the interoperability between control ar-
chitectures. Interoperability will be discussed in detail in Chapter 6.

3. Partitioning. Using netlets, it is easy to separate a control architecture’s
immediate and future reservations as proposed in [Schill97] (as well as
any other type of connection or reservation).

4. Extended functionality. A netlet can be used to implement new control
architecture functions whose scope is limited to a particular netlet. For
example, it will be shown how new application-specific connection types
can be introduced. This is discussed in more detail in Section 5.4.3. Also,
in a control architecture it may be desirable to implement functions that
are not (and should not be) provided by the netbuilder. For example, one
may want to change the resource allocation to groups of applications at
very short time scales (making calls to the netbuilder expensive).

5. Application grouping. In a virtual network, there may be more control
over resources than in the network-at-large, because potentially the be-
haviour of applications within the virtual network is known, while this is
not true at a global scale. For example, if it is known that a set of appli-
cations will never be active at the same time, this allows one to assign a
logical portion of the resources to these applications that is as large as the
maximum of the resource requirements of these applications (as opposed
to the sum of the resource requirements).

At the start of the reservation interval, the netlet resources are allocated to
the requesting application. There are simple operations which the client can
use to set up and tear down end-to-end connections in netlets. At the end of
the interval, the control architecture automatically tears down all connections
belonging to the netlet and releases the corresponding resources. However, since
the resources of a netlet are said to belong to a specific application (and nobody
else), such an application should be able to manipulate these resources in any
way it wants to, not just by setting up connections between endpoints. For this,
control at a finer level of granularity than end-to-end connections is needed.
For example, applications should be allowed to set up a (possibly multicast)
connection across an individual switch from a specific input (port, VPI, VCI)
to a specific output (port, VPI, VCI). This allows applications to build their
own connection types and setup mechanisms. Such low-level operations will be
called tertiary operations.
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5.4.2.2 Taxonomy of virtual networks

Netlets were defined as light-weight virtual networks. Section 5.4.2.1 explained
in what way netlets are light-weight. Conceptually, however, there is little to
distinguish a higher-level netlet from a level-0 virtual network, except in the
entities that know of their existence. This suggests a more complete classifi-
cation of virtual networks as shown in Figure 5.13. In the figure “Restricted”
indicates whether or not the virtual networks are policed (e.g. whether there is
a mechanism that ensures that virtual networks never use more bandwidth than
was reserved for them). The next three columns indicate whether the virtual
networks exist at netbuilder, switch divider and control architecture level. The
typename is a simple abbreviation of the characteristics of the virtual network.
Not all combinations are expected to be useful.

glE |8 VN = Virtual Network
z g S g NB = NetBuilder
g | g\ SD = Switch Divider
8 % » |0 CA = Control Architecture
TYPE NAME g o (> EXAMPLE
R-NBSDCA |v |/ |/ |/ | Top-level VN: created by NB, protected + policed by SD, controlled by CA
U-NBSDCA v |/ | / | Top-level VN as above, without policing (dangeous option when bandwidth is limited)
R-SDCA v v | ¥/ | Netlet which has requested the SD to police its connections
U-SDCA v | v/ | Same as above, without policing (useful doubtful)
R-CA v v | Netlet with out-of-band policing (e.g. by extended traffic servers)
U-CA v | Netlet only known to CA: very light-weight

Figure 5.13: A classification of virtual networks

All virtual networks are known by a control architecture (otherwise they can
not be controlled). The virtual networks described in Section 2.2.3 are of the
R-NBSDCA category (or U-NBSDCA if bandwidth is unlimited). Higher-level
netlets fall in the bottom four categories. We speak of U-CA networks, if the
netlets only exist at a logical level in the control architecture. In this case, the
netlet is generally used for CAC in an environment of well-behaved applications.
This is the most light-weight of virtual networks. R-CA is more restrictive
than this. The switch divider is still not aware of the fact that a switchlet
has been repartitioned, but there is a posteriori policing. The policing could
be implemented by out-of-band monitors that periodically measure the amount
of data sent on connections belonging to the netlet. If the monitor detects a
violation of the traffic contract (i.e. the reservation that was made) for this
netlet it alerts the control architecture. Out-of-band policing is discussed in
Section 5.4.2.3. In principle, hybrid forms are also possible. For example, it
may be that a particular virtual network is mostly U-CA, except for one or
two switch ports which are to be controlled in the R-CA manner. Whenever
in this dissertation the term netlet is used, a higher-level netlet of the U-CA
or R-CA category is meant unless explicitly stated otherwise. Whenever the
term wvirtual network is used, this generally refers to a level-0 netlet of the R-
NBSDCA category. The usefulness of U-SDCA netlets is questionable, and
R-SDCA is probably also redundant. Although it may be useful to allow the
switch divider to repartition the resources on a switch and police (and protect)
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each of the partitions separately, there seems no clear advantage in bypassing
the netbuilder while doing so. Furthermore, it makes the model simpler to
request the netbuilder to repartition the resources.

5.4.2.3 Policing by traffic servers

It was shown that networks can be recursively repartitioned into netlets, creat-
ing a hierarchy of resource partitions, the root of which is the physical network.
Moreover, it was suggested that policies such as policing are a property of the
individual levels in the hierarchy, i.e. of netlets. Level-0 requires strict parti-
tioning and hence, in-band policing, but higher level netlets could differentiate
the policing policy, e.g. to provide a posteriori policing via measurements. It
will now be shown how this was achieved in the Sandman.

Recall that the CAC algorithm was enhanced with ¢raffic servers that peri-
odically measure the traffic on connections that belong to the control architec-
ture for EBW estimation. The next step is to enhance the traffic servers to do
policing as well. At the same time, it is important to recognise that this is just
one way in which traffic servers can be extended; there may be many others.
For this reason, the traffic server was extended with a Sandbox and a small
module that allows authorised DLAs to access specific measurements. Next,
DLAs were added to monitor and police individual netlets at different time
scales'0. For example, one netlet was policed in one second intervals, another
at five second intervals, etc. This is illustrated in Figure 5.14. Recently, some-
thing resembling this monitoring function of the traffic server was described in
[Huard98], where it is known as a transport monitor,

] ] Netlet "N" misbehaved (Policing DLA ]

Sandbox Sandbox

SANDMAN TRAFFIC SERVER
Police Netlet "N"

Measurements

>

Figure 5.14: Slow policing by DLA

5.4.3 Loading application-specific code

One problem with giving fine-grain control over network resources, e.g. with
netlets, is that because of the distributed nature of the interaction between

10The policing was implemented as follows: each netlet was assigned a total amount of
bandwidth B for its policing interval. If the total traffic during an interval exceeded B, the
control architecture was alerted.
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client and Sandman, it may take a long time to do simple things such as setting
up a connection across a large number of switches (each low-level operation
travels across the network). An elegant solution is to enable the application to
pass its own management and control policy into the control architecture and
have it interact locally with the low-level control operations. The interaction
takes place within the same address space, making it very fast. In other words,
applications are enabled to program the network using DLAs.

5.4.3.1 Code and available operations

To allow clients to load code into the network, a Sandbox is implemented in
the heart of the control architecture. Sandboxes are only instantiated in the
connection manager and not in all possible components. However, the DLAs in
these Sandboxes are given controlled access over the other components via the
tertiary operations contained in what is called the Sandman module.

As shown in Figure 5.15, a special load operation in the secondary interface
allows applications to specify a policy to run in the Sandbox, as well as a time
tstart, When the application wants it to be scheduled for the first time!l. At
start of day, the Sandman has two interfaces: one for the primary operations
and one for the secondary operations. The tertiary interface is not publicly
accessible. The usual Sandbox SUFI enables remote applications (e.g. the
parent application) to communicate with the DLAs. Operations available to
the DLAs include the primary, secondary, and the low-level tertiary operations.
This allows DLAs to extend the core functionality of the Sandman arbitrarily.

T
4 PRIMARY OPERATIONS ™
- SECONDARY OPERATIONS
9\)’ ___—> TERTIARY OPERATIONS ~—__

\0q>b

l_.Q DLAL Q IDLA2 Q DLA3 __l
—'_Lgx - @
= S .

Figure 5.15: Application code injected in the network

5.4.3.2 Combining resources with policies

With netlets and DLAsS, it is possible to associate application-specific behaviour
with (sets of) netlets. This creates something akin to a connection closure
[Rooney98]: a set of resources together with a policy that manipulates these
resources. In addition to the normal Sandbox capabilities, the Sandman hands

" Restrictions may be placed on how many DLAs are allowed to run in the control archi-
tecture as well as on how long they are allowed to run.
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the DLA a simple netlet capability that corresponds to the resources in the
netlet. DLAs must present the capability in order to manipulate the resources.
The netlet can be extremely light-weight and only correspond to a new type of
connection (e.g. an application-specific multipoint-to-multipoint connection).
In that case, DLA can export an interface for the new connection type, so
that all external clients with the appropriate capability can make use of the
extension. On the other hand, a netlet can also represent something more like
a virtual network of switchlets (complete with policing).

The point is that the approach of netlets controlled by DL As is much more
general than the connection closures of [Rooney98]. It allows recursive repar-
titioning of the resources, dynamic changes and extensions to the policies and
the overall control architecture functionality, and also provides a more complete
security and access control model in the way of the Sandbox design. The DLA
itself is also able to create new netlets (if need be recursively), which it can con-
trol itself as separate light-weight networks, or associate with DLAs other than
itself. Experience with the loadable code feature of the Sandman has shown
that it is extremely useful in prototyping and testing.

5.4.4 Applications, manipulations and reservations

It was shown that it is possible to extend the functionality of the control archi-
tecture with application-specific policies and to partition resources recursively.
This section uses elastic functionality to implement truly arbitrary advance
reservations. Arbitrary reservations may be periodical and changing, as shown
in Figure 5.16.

ORGANISATION X REQUESTS THE FOLLOWING RESOURCE RESERVATION POLICY:

1. Reserve a netlet N every day from 9am until 7pm
2. Except on Sundays when N should be reserved from 10am till 4pm
3. Except when that Sunday falls on May 1 in which case the reservation should be for 24 hours
4. The bandwidth reserved on N should be B
5. If, after 3 months, it turns out that N’s utilisation was never more than 70%:
update the capacity to reserve: B := 0.9B
6. Repeat (5) every three months

Figure 5.16: Example of a reservation profile

Simple reservations (such as a reservation for a specific connection tomorrow
from 9am to 5pm), which are traditionally used in advance reservations, are not
sufficiently expressive to deal with this example. Due to the long time scale it
is not possible to make a separate reservation for every single day the netlet
is needed because the number of entries in the reservation schedules would
explode. However, as shown in Figure 5.16, the policy is easily expressible in a
simple algorithm. So again, the solution adopted for Sandman is to use DLAs.
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5.4.4.1 Admission Control

In this section a distinction is made between an application’s resource manipu-
lation behaviour and its resource reservation behaviour. Resource manipulation
behaviour is defined by the application’s actions and operations on resources
under the implicit assumption that the resources are available for it to use.
This type of behaviour includes allocating resources to connections, freeing a
connection’s resources, etc. In resource manipulation behaviour, applications
generally don’t worry about the availability of the resources. Resource reser-
vation behaviour on the other hand concerns itself solely with ensuring that
certain resources are available at certain times. In general, it does not care
what the resources are used for (or whether they are used at all). Figure 5.17
illustrates the separation between the two types of behaviour. Note that many
operations encapsulate both resource manipulation and resource reservation be-
haviour. An example is the operation to make an advance reservation for an
end-to-end connection. This will both reserve the resources and manipulate
them when the connection is set up.

Application’s Network Policy

‘ Reservation Behaviour I \ Manipulation Behaviour ‘
CONCERNS: (_ Admission Control ) (Allocation of Resources )
AFFECTS: (Al applications ) (‘This application only )

Figure 5.17: Separating resource reservation and resource manipulation behaviour

An important difference between the two types of behaviour is that manip-
ulation behaviour does not affect any other applications, whereas reservation
behaviour does. For example, setting up a connection for application 1 has no
effects on application 2 as it does not change the state of the resources appli-
cation 2 expects to control. Reserving resources on the other hand, affects all
other applications in the system as it prevents them access to these resources
during the interval specified. Reservation behaviour is essentially an input to
the CAC algorithm, whereas manipulation behaviour is not.

So far, it was shown that DLAs and netlets give total freedom in the resource
manipulation behaviour. Applications can load their code into the network
and let it set up connections and manipulate resources in any way they see
fit. The reservation behaviour, however, is still more or less fixed. Clients
are able to reserve connections, or netlets, for specific time intervals. This
type of reservation behaviour, where all bookings are entered in the reservation
schedules, is called static. All advance-reservation control architectures to date
offer static reservation.

However, resource reservation behaviour can be opened up as well. This is
done by allowing applications to load code into the control architecture that




92 CHAPTER 5. ELASTIC CONTROL ARCHITECTURES

is capable of directly influencing the CAC decision. This type of reservation
behaviour will be called dynamic. Recognising that it is essentially a CAC
problem that we are addressing, the DLAs used in this context will be called
CAC DLAs. The Sandman offers an interface with an operation that is capable
of installing CAC DLAs for a particular port of a switch!?. Figure 5.18 shows
the two types of DLA running in the heart of the control architecture.

CONNECTION MANAGER

APPLICATION-SPECIFIC CODE DYNAMIC CAC CODE

'
QQQ a-— ()
Appl App2 App3 App4 @

) Q ol

Appn-1 Appn SWITCH PORT

Figure 5.18: Two types of DLA running in the connection manager

5.4.4.2 Temporary reservations at CAC time

The loadable CAC code can influence the CAC decision as follows. Whenever
the Sandman needs to make a CAC decision for a switch port (i.e. it tries to
make a reservation R for a certain amount of bandwidth for a time interval
[Ta,Ts]), it checks whether a CAC DLA was installed, and if so, executes it.
The loadable CAC code receives from the control architecture the time interval
[T,,Ty) corresponding to reservation R. It then makes temporary reservations
according to its own reservation policy for this time interval. After making
all the reservations it wants to make for this interval, it simply returns. The
CAC algorithm now makes its decision based on all reservations currently in
the schedules, including the temporary ones. The temporary reservations dis-
appear automatically when the CAC procedure returns. An example of the
CAC process is given in appendix C.

The loadable CAC code is called each time a CAC decision is made for this
port in this virtual network. This adds some overhead to the CAC procedure.
In a commercial situation applications requiring such flexibility in their resource
reservation behaviour might be charged a premium rate for their reservations,
while applications that don’t need it are charged lower rates.

12The granularity of switch port is an implementation detail. It could be changed to pro-
viding DLAs per switch, or per small number of VCIs on a particular port, if so desired.
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5.4.4.3 Combining application-specific CAC programs

CAC DLAs are different in nature from the DLAs in Section 5.4.3 in that
it affects the CAC for all applications. The CAC DLA describes reservation
behaviour which cannot be specified using higher-level operations. This intro-
duces the following problem: how do we decide whether or not the reservation
behaviour as specified in the CAC DLA of one application will never clash
with the reservation behaviour specified in the CAC DLA of another applica-
tion? In other words, how do we decide that two CAC DLAs are mutually
feasible? If Turing-complete languages are used for the CAC DLAs, this is a
very hard problem to solve. A simple solution is to restrict the CAC DLAs.
For example, the DLAs may be restricted to a limited execution time (e.g.
the code has to make its reservations within 5 ms, or within 100 instructions),
and/or it may be restricted in the expressiveness of the language. Instead of
Tecl or Java, the CAC DLAs could use a language that is easy to check on
the fly, e.g. a limited number of statements of the form: “if <expression>
then <temporary reservation list>” (with <expression> and the amount
to reserve simple functions of the time).

5.5 Noman

The second type of control architecture in this dissertation is potentially much
simpler and yet more flexible than the Sandman. Control architectures from the
Noman family consist solely of dynamically loadable code. Noman is defined as
a programmable control architecture framework. The Noman environment itself
provides no control architecture functionality. Instead, it offers a simple API
that allows DLAs to build their own control architecture. The Noman is centred
around a Sandbox. The Noman control architectures are also called dynamically
loadable control architectures (DLCAs). Noman represents a different approach
from the Sandman. In the latter, elastic execution environment was added
to an existing, full-grown, control architecture. In the former, the code in
the elastic execution environment s the control architecture. In other words,
Noman is an extreme case of elastic control architecture. The Noman Sandbox
is extended with a NetControl module that allows it to: (1) create and destroy
virtual networks, (2) add switchlets to the virtual networks, and (3) control the
switchlets (e.g. set up and tear down connections).

5.5.1 Implementing different types of control architecture

The Noman is illustrated in Figure 5.19. Noman allows any type of control
architecture model to be implemented. For example, a completely centralised
Noman control architecture was implemented, where one DLCA in one Sandbox
controls the entire network, as well as a completely distributed Noman control
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architecture whereby every component (router, CAC, host manager, etc) of
the DLCA is a separate granule in a different Sandbox on a different host.
Noman also allows for what may be called ‘open vertical integration’, whereby
applications and control architecture are integrated. The integration is ‘open’
in the sense that functionality of both control architecture and application may
be added on the fly by any party with the appropriate access rights.

Even though interpreted code is generally slower than optimised native code,
this may allow for a speedup, as there is virtually no communication overhead
between application and control architecture. The functionality is quite flexible:
a complete control architecture, simpler than, but comparable to the Hollow-
man control architecture in [Rooney97], took less than 700 lines of DLA code
in a Noman control architecture'®. Like the Hollowman, it provides end-to-end
connection types (both point-to-point and multicast), that can be set up by
the source, the sink, or some third party. The structure of the Hollowman is
roughly that of Figure 3.5 and this structure is also followed by the Noman
control architecture. Where Hollowman supports its own trading service by
which applications can register and deregister service offers, the Noman con-
trol architecture uses the active trader of Section 4.7 for this purpose. The
Hollowman offers limited programmibility in the form of connection closures,
which allows clients to provide a control policy to be associate with simple set
of resources. The Noman control architecture offers complete programmibility
using the normal Sandbox-SUFI procedures. Failure handling and performance
optimisations, however, are dealt with more extensively in the Hollowman.

il
— - - .
|SUFI| |NetControl| .:><- -><- .><-

Control Architecture
SANDBOX [Dlvlder |D1v1dcr |D1v1der
Base Layer

_—r )

Figure 5.19: Noman control: switchlets are created, controlled and destroyed by DLAs

ming

5.5.2 Example: Noman-based bandwidth speculation

Noman has been used in bandwidth management experiments aimed at using
a speculative free-market model for optimal resource allocation. Resource allo-
cation based on a free-market model is an active research topic, advocated for
example by [Miller96]. In the model, applications are charged for the band-
width they use, where the price of bandwidth fluctuates according to supply
and demand (e.g. bandwidth will be cheaper late at night than during office

13using a Gobi implementation of a Tcl Sandbox
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hours). In the Noman implementation, a control architecture called the Noman-
auction, allows clients to make two types of reservations: (1) fixed bandwidth
(FB), which, if granted, guarantees the amount of bandwidth that an applica-
tion receives, regardless of cost, and (2) fixed price (FC), which keeps the price
per time unit constant, while adjusting the amount of bandwidth provided to
the application!?.

Clients are charged for the bandwidth they use, according to the current
price!®. So if a connection is active for three time units, while the price is P
for two time units and 3p for one time unit, the amount charged to the client
will be 5p. Bills are paid to the network operator. However, there is a way for
clients to make money out of the network as well. It is based on the possibility
of bandwidth speculation. The idea is that a client A can offer for sale part of
the bandwidth that was reserved in its FB reservations. Next, if client B needs
some FB bandwidth, but none is currently available (i.e. it is all used up by
other FB reservations), it may buy the bandwidth directly from other clients.
The transaction involves selling the bandwidth to B (to be used at the normal
market rate), for a fixed amount that is paid only once, the beneficiary of which
will be A. This is implemented via the accounts that both applications have
with the network operator. The amount is debited to B’s account and credited
to A’s account.

This allows for bandwidth speculation, where bandwidth is bought when
it’s cheap (e.g. in the middle of the night), only to be sold when there is a
shortage. The cost of the speculation is the market rate that is charged for
the duration of the reservation. The profit is made by selling bandwidth at a
price that is higher than this cost. Clients are allowed to load their own market
policies in the Noman-auction (i.e. policies that handle the clients’ bandwidth
management). These DLAs are able to monitor the current prices and resource
availability, and act by buying or selling bandwidth whenever they think ap-
propriate. [Steiglitz96] suggests that allowing speculators in the market has
a stabilising effect on price (and hence resource utilisation).

5.6 Related work

In this chapter many issues to do with control architectures were condensed into
the design of two types of control architectures. This section briefly discusses
some other approaches.

1t is arranged that a fraction of the bandwidth is always available for FC reservations.
15Whether the price should be set in real money or in the form of credits is beyond the
scope of this dissertation.
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5.6.1 Control architectures
5.6.1.1 Xunet 2

Xunet 2 [Kalmanek97] on which work was started as early as 1989, was one of
the first wide area prototype implementations of ATM. Many of the experiences
and recommendations derived from Xunet 2 made their way into standards de-
fined by the various standard bodies. Xunet includes hardware design, interop-
erability and distributed control and management. An abstract switch model
is designed which hides details of the hardware, so that switch hardware and
control software can develop independently. Unlike Ariel, however, the switch
control interface was not designed to be a generic switch control interface and
the switches were custom-built.

A simple signalling protocol was designed to establish, maintain and clear
ATM connections. Most of the network control software is designed as a client-
server based system based on a DPE. For convenience, the switch controller was
run off-switch, in a general purpose workstation. There is one switch controller
per switch and one switch per switch controller. Like the basic Sandman control
architecture (and unlike standard protocols such as Q.2931 [ITU-T94]), Xunet
provides unidirectional connections. The bootstrap network in Xunet consists
of a set of pre-established PVCs over which an implementation of IP is active.

5.6.1.2 ATMF and ITU-T standards

Standards developed by ITU-T and the ATM Forum deal with most levels of
network control, including user-network signalling (defined in the user-network-
interface, or UNI) and internetwork control and routeing (defined in network-
network-interfaces, or NNIs). In general, the ATM Forum concerns itself with
private networks, while ITU-T standards pertain more to the public network.

5.6.1.2.1 Signalling System Number 7 SS7, a clear channel signalling
specification published by the ITU-T, is the prevalent signalling system in the
modern public switched telecommunications networks (PSTN) [ITU-T93]. It
defines procedures for set-up, management and clearing of calls between tele-
phone users. For this purpose, SS7 employs telephone control messages that are
exchanged between SS7 components that support end-user connections. The
SS7 signalling data links are 64 kbit/s full duplex, digital transmission channels,
dedicated to SS7 signalling. Figure 5.20 depicts a typical SS7 topology.

Subscriber lines are connected to the SS7 network through the service
switching points (SSPs), which receive signals from the customer equipment
and perform call processing on the user’s behalf. SSPs are the source and desti-
nation for SS7 messages, initiating SS7 message exchanges either with another
SSP or with a signalling transfer point (STP). STPs are responsible for trans-
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Figure 5.20: SS7 topology

lating the SS7 messages and routeing them between nodes and databases. In
other words, they are switches that relay between SSPs, STPs and service con-
trol points (SCPs). SCPs contain software and databases for the management
of the calls. This is explained in Section 3.8.1, on intelligent networks. SS7 is a
layered suite of protocols that uses, for the lowest layers, the message transfer
part (MTP) layers 1-3, while employing protocols such as the ISDN user part
(ISUP) and the transactions capabilities part (TCAP) for the higher layers.
TCAP is an application-layer protocol which is used for such things as the ex-
change of non-circuit related data (e.g. routeing information for 0800 numbers
in intelligent networks). As shown in Section 5.6.1.2.3, SS7 is used by ITU-T
and the ATM Forum as the model for signalling.

5.6.1.2.2 The user-network interface (UNI) The UNI [UNI4.0:94]
connects an end system to an access switch. The UNI specifies the signalling
functionality that is offered to the user. Therefore, users cannot benefit from
innovations in functionality until this has been incorporated in a standard and
the standard has been introduced in the network. UNI also defines a number of
service categories, such as: variable bit rate (VBR), constant bit rate (CBR),
available bit rate (ABR) and unspecified bit rate (UBR, or best-effort). Finally,
it defines the protocol messages, information elements, timers and procedures
to establish, maintain and tear down connections. Signalling is based on the
Q.2931 protocol. Resource reservation is carried out at connection setup time.
All point-to-point connections are bidirectional, while multicast connections are
unidirectional.

5.6.1.2.3 Network-network interface (NNI) NNIs are divided into two
categories: the private network-network interface or P-NNI [PNNI1.0:96] and
the public network-network interface. Of these, the ATM Forum’s private
network-network interface is intended for private networks and contains inter-
faces both for the exchange of routeing information and for connection control
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[PNNI94]. B-ISUP, the public NNI developed by the ITU-T serves as a de-
marcation point between two public networks. It is based on a modified version
of SS7 and uses preassigned VCIs for signalling [Onvural95|. The ATM Fo-
rum version of the public NNI, known as the broadband inter-carrier interface
(B-ICI), gives ATM carrier networks interoperability, assisting them in trans-
porting different services across each other [BICI94]. The B-ICI specification
includes the physical layer, the ATM layer and service-specific functions above
the ATM layer. Also addressed are such issues as traffic management, network
performance and operations and management specifications. B-ICI only exists
at the boundaries of networks. It specifies a wide range of physical layers over
which the ATM layer can run and also particular adaptation layers for common
inter-carrier services such as Frame Relay.

Unlike B-ICI, one of P-NNT’s goals is to make switches from different vendors
work together. Accordingly, it can be used as an inter-network solution as well
as for intra-network control. In routeing, P-NNI uses information aggregation,
where groups of network nodes are collapsed into a single aggregation node, to
achieve scalability. For end-to-end signalling, UNI signalling is mapped onto
NNI signalling inside the network. At the remote endpoint the NNI signalling
message is mapped back to the corresponding UNI signalling message. The
mapping is straightforward, since P-NNI and UNI signalling are very similar.
P-NNI includes a link-state routeing protocol that is similar to OSPF (open
shortest path first) in that extensive flooding is used for sending topology and
utilisation updates.

5.6.1.3 OPENET: enhanced PNNI

OPENET aims at providing a common, portable, open and high-performance
control platform based on enhancements of the P-NNI standard [Cidon95]. In
this sense, it is not a radically new approach to network control. Directly at
odds with this dissertation, OPENET embraces wholeheartedly the idea that
one particular control architecture, e.g. enhanced P-NNI, should become the
universal ATM control platform. The changes that are proposed to P-NNI
are: (1) native ATM switching for dissemination of utilisation updates, (2)
lightweight connection setup and teardown, and (3) a rich signalling infrastruc-
ture which enables the development of augmented services. The ‘openness’ in
OPENET consists of providing open APIs at various levels, as well as a highly
modular design to ensure easy module replacement.

It is shown how using P-NNI as both an inter-domain and intra-domain
solution, presents severe limitations. For example, current P-NNI is based on
extensive flooding of topology and utilisation information, using fairly large
packets of up to 300 bytes for every link state update. This either places
a heavy burden on network control processors or results in limitation of speed
and accuracy of information updates, if adopted as a universal solution. Similar
drawbacks arise from P-NNI’s use of UNI signalling (over the complex reliable
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data-link protocol known as Service Specific Connection Oriented Protocol),
which yields low throughput and high latency. Although the focus is on P-NNI
alone, OPENET advocates open control, observing that:

P-NNI lacks a publicized open interface, which makes it difficult
for switch vendors to incorporate extensions and advanced features
that they believe should be provided [Cidon95].

OPENET offers unrestricted multipoint-to-point and multipoint-to-multipoint
functionality. Multipoint-to-point connections take the form of source trees,
which multiplex cells of different sources at a single destination which receives
all of them with the same VCI value. This implies that an ATM adaptation
layer (AAL) that relies on VPI/VCI valiies alone (such as AAL5) cannot be
applied. The tree prescribes the use of unicell messages or of an AAL that
is able to deal with frame interleaving. Multipoint-to-multipoint in OPENET
works similarly and the same multiplexing drawbacks hold.

5.6.1.4 Xbind

In zbind [Lazar96a] a framework is presented for the creation, deployment
and management of multimedia services on ATM-based broadband networks.
Attention is given to end-to-end QoS guarantees. Services are created by in-
terconnecting (binding) abstract representations that model the local states
of network resources including links and switches. The implementation of the
binding architecture, which provides an open programmable environment, is es-
sentially a toolkit for building programmable ATM networks. ‘Programmable’
in xbind means that the architecture supports functional APIs for developing
useful services, which should be ‘high-level’ enough to allow the service specifica-
tion and creation process via a high-level programming language. Xbind service
abstractions also contain a so-called ‘Service Programming’ interface, which al-
lows customisation or modification to be made on the algorithmic component
of a service or service instance. It is unclear to what extent this functionality
has been implemented, how deep the customisability reaches and how access
control is executed. ' '

The binding architecture consists of an organised collection of interfaces,
called the Binding Interface Base (BIB). BIB interfaces provide an open and
uniform access to the abstract representation of the networking resources. Ser-
vice creation consists of binding network resources to create a service using the
corresponding binding algorithms. Xbind provides extensive modelling of the
various entities related to network control via the layered Extended Reference
Model (XRM). The model seems to include abstractions for almost any entity
and relationship in the network, from the physical resources and their oper-
ations, to ‘logical’ resources such as VCIs and elaborate network control and
management services.
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QoS is modelled explicitly in the architecture via a set of abstractions that
characterise the multiplexing capacity of networking and multimedia resources
under QoS requirements. These abstractions are derived from the physical
layer of the XRM in the form of multimedia networking capacity graphs. These
graphs consist of schedulable regions. For each QoS class that is supported, the
schedulable region indicates how many bindings of this class can be supported
by the resource, given that some possible combination of all other QoS classes
has been scheduled already. It is not clear how schedulable regions are derived
from the resources.

5.6.1.5 The Genesis Kernel

In [Campbell99b|, the recent Genesis project is discussed which enables recur-
sive partitioning of network resources in a way that strongly resembles netlets'6.
The partitions of network nodes, called “routelets”, are created by a parent con-
trol program, but controlled by an independent child control program. However,
the Genesis model is much more complex than that of netlets. Also, since Gen-
esis is related to xbind and uses the BIB to link together components that make
up the control code, routelets suffer from the same shortcomings as xbind. It is
necessary to specify in advance which resource abstractions and service model
the new control code will use.

More serious is that the hierarchy of nested routelets is reflected in the
datapath. Each routelet consist of a myriad of components and services and
part of this comprises the routelet’s transport module, which resides on the
datapath. The transport module includes a virtual input port, a forwarding
engine (that processes the data) and a virtual output port. An incoming packet
is classified, for example, as belonging to a specific (higher-level) routelet and
demultiplexed to the routelet’s transport module accordingly. It arrives at the
routelet’s virtual input port, is processed in the forwarding engine and sent out
on the virtual output port. However, it is not sent to the next node yet. It
first arrives at the virtual input port of its parent routelet. Here the process
is repeated and so on, until it arrives at the root routelet’s input port. Here
it is processed for the last time and finally forwarded to the next node in
the network. A similar repartitioning model, focused on active networks, is
described in [Brunner99].

This is very inefficient as the data is touched, not just once, but potentially
many times. This is an example of multiplexing at many layers. Contrast
this with the “flat” model of netlets. Here netlets form simple partitions of
lower-level netlets that can be controlled in arbitrary ways, e.g. by setting up
connections from one endpoint to another. The data simply flows through these
connections and is not touched at all. Multiplexing happens once and at the
lowest possible level.

18The first implementation of netlets was described in [Bos98a].



5.6. RELATED WORK 101

5.6.1.6 TINA

An initiative of the telecommunications industry, the Telecommunication In-
formation Networking Architecture (TINA) [Nilson95], aims at developing an
open control architecture for telecommunications in broadband services, whilst
preserving compatibility with existing ITU-T standards. For control it proposes
to use a DPE based on CORBA [Pavon98]. TINA extends ideas of the Infor-
mation Networking Architecture (INA) [Rubin94]. Similarities exist between
TINA and the Haboob, but TINA’s goals are much more ambitious. It appears
to try and develop a model that is able to incorporate all entities, parties, and
services, relevant to telecommunication as well as their relationships. Rigorous
partitioning and layering techniques are applied at numerous levels to separate
amongst others:

o functionality from engineering,

¢ data management functionality and also human interaction functionality
from other application-level functionality,

e equipment (network element) control functions (e.g. port connection/disconnection,

collection of resource usage data for a switch port, etc.) from service-
related functions (e.g. connection setup and release, billing and routeing),

e resource management from signalling.

Using extensive modelling, TINA approaches the problem of network con-
trol and management from a very high level. Instead of giving control over
the individual resources to the entities eventually using them, i.e. individ-
ual applications, TINA assumes that complete models of the relevant compo-
nents and their interactions are first developed, which then represent a ser-
vice to be used by applications. For network management, TINA uses the
managing/managed object paradigm and management protocols. A managed
object is an abstraction of a resource for management purposes. Managing
a resource therefore, involves representing the resource by a managed object
and performing management operations on the managed object. TINA com-
plies with the layers of the Telecommunication Management Network (TMN)
model [Raman99, Sidor98].

TINA services consist of service components which communicate using the
DPE. The service components include user and terminal agents that manage
profiles of terminals and users (and perform negotiation/session setup and end-
point session setup) respectively. Also, defining a session as the activity of orig-
inating or terminating a call, service components include service session man-
agers which manage sessions at user level and communication session managers
which manage sessions at terminal level and provide network connections. The
TINA network information model consists of a number of levels of abstraction
of network resources. Implementations of individual resources are described
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as simple elements, while at the highest level of abstraction the connectivity
between media flows is defined in terms of connection graphs. TINA’s all-
encompassing approach based on high-level modelling is very ambitious. Where
other, simpler approaches are being pushed into mainstream network control,
TINA, for all its complexity and extensive modelling, has not “yet produced
aggressive market deployments” [Decina97]. More critical still is [Redlich98]:

The most dramatic appearance of distributed object technology
in networking is, however, in the Telecommunications Information
Networking Architecture (TINA). [...] Unfortunately, in order to
present a complete structure TINA has become extraordinarily com-
plex. [...] The desire for clean separation is so strong that there are
more levels than network and service designers may wish to imple-
ment.

5.6.1.7 UNITE

In ATMF signalling, every flow suffers the overhead of end-to-end connection
setup (i.e. a full round-trip delay), even connections for best-effort traffic.
The fundamental contribution of UNITE is the separation of connection setup .
from QoS control [Hjalmtysson97b]. Data is allowed to follow the connection
setup message almost immediately (i.e. before the end-to-end connection has
been set up). This way the round-trip delay associated with connection setup
is eliminated. Things are optimised even further by using a single cell for
connection setup signalling messages. This results in light-weight signalling,
with very fast setup times for what is expected to be the most common case:
best-effort traffic. QoS negotiation, if needed, is done later. An additional
advantage of this approach is that different QoS (re-)negotiation schemes can
be easily incorporated. Routeing is based on very coarse QoS classes.

5.6.1.8 IP Switching

IP Switching [Newman97] is one of many approaches that use the fast switch-
ing technology offered by ATM to leverage IP performance. It combines IP
routeing with ATM switching by turning long-lived IP flows into ATM con-
nections. The IP switch controllers (augmented IP routers) have the task of
identifying flows in the IP traffic passing through the node. After flow identi-
fication, the down stream switch controller tells the upstream node that from
now it on it should stop sending the IP packets corresponding to the flow on the
default VC for IP traffic, providing it with a new, dedicated VC instead. For
this purpose, it employs the Ipsilon Flow Management Protocol (IFMP). IFMP
allows adjacent switch controllers to exchange information about the mapping
of IP flows onto ATM connections. IP Switching uses GSMP to set up and tear
down the actual connections on the switch. :
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5.6.1.9 Hollowman

The Hollowman open control architecture described in [Rooney98] strongly
influenced the development of Sandman. Its component model (which in turn
resembles somewhat the model proposed in [Rubin94]) formed the basis of
that of Sandman. Many of the components (e.g. the connection manager)
were rewritten from scratch, while others were incorporated almost unchanged
(e.g. naming and addressing). Hollowman provides operations for immediate
setup of best-effort unicast and multicast connections. The only resources that
are controlled are the VPI/VCI spaces on the switch and the Service Access
Points (SAPs) on the hosts. Hollowman further allows a limited amount of
programmability by enabling applications to load (Java) code controlling the
resources of a connection, into the network. For interoperability, Hollowman
employs a mechanism very similar to the simple hop-by-hop solution of Sec-
tion 6.3. For more details of Hollowman, see also Section 5.5.

5.6.2 Reservations in advance

Reserving resources in advance is a very active field in network control. The
related work presented here represents a cross-section of research in this area.

5.6.2.1 RSVP

The resource reservation protocol RSVP [Zhang93] was not designed for reser-
vations in advance. With minor modifications, however, RSVP’s functionality
could be extended for this purpose [Degermark95, Schill97]. RSVP shows
that concepts that were part of ATM from the outset are now finding their way
into IP as well. RSVP offers receiver-initiated reservation with support for het-
erogeneous receivers, different reservation styles and route changes. The nature
of the reservations is defined by soft state, i.e. state that disappears if nodes
do not periodically receives messages. In RSVP periodic messages flow both
downstream (from source to sinks) in the form of path messages and upstream
in the form of reservation messages. Path messages update path state, which
contains information about the incoming link upstream and the outgoing links
downstream from the node. The reservation messages update the reservation
state associated with the path state. This includes the amount of resources
reserved, the packet filters, the reservation style, the sender of the reservation
message, etc. Section 5.1.5.2 describes why soft state is not very suitable for
advance reservations.
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5.6.2.2 NAFUR

Negotiation approach with future reservation (NAFUR) is the name given to
a QoS negotiation mechanism which allows clients to specify the desired QoS
for a connection for a specific time interval in the future [Hafid97]. If the
requested resources are not available in the requested interval, NAFUR offers
counter proposals which consist of lower quality service in the requested interval,
as well as an indication of the time at which the requested quality would be
available. ‘

5.6.2.3 Distributed Advance Reservation in Tenet

In [Ferrari97] an advance reservation service is discussed within the context of
the Tenet Real-Time Protocol Suite 2, which is being developed for multi-party
communication. The reservations are implemented as interval tables which
represent resource schedules. This is similar to the way resource schedules
are stored in the Sandman. The tables are stored in a distributed fashion:
each server handles the interval tables for its own resources. The distributed
state, as acknowledged by the authors, makes fault recovery more complicated.
There is partitioning between immediate reservations and more efficient advance
reservations.

5.6.2.4 ReRA

A good model for advance reservation is given in [Wolf95] and [Wolf97]. Here,
as in [Ferrari97], immediate reservations are separated from advance reserva-
tions and reservations of finite durations are separated from reservations of
infinite duration. It is concluded that advance reservations are more efficient
than immediate reservations. One of the most difficult topics in resource reser-
vation in advance, according to [Wolf95], is the occurrence of failures. Failures
that occur after resource reservation but before resource usage are distinguished
from failures during resource usage.

5.6.2.5 Advance reservation in heterogeneous networks

In [Schill97] the case for advance reservations from the viewpoint of efficiency
is made once again. It presents implementations of RSVP and IP version 6 over
ATM. After that, design issues are discussed for an appropriate solution, includ-
ing: signalling, admission control and duration of flows. Finally an extension
to RSVP for reservation in advance is outlined. Advance reservation in RSVP
enables users to make advance reservations across heterogeneous networks.
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5.6.3 Measurement-based admission control

Much current research on MBAC, including the admission control scheme of
Section 5.2, is based on a branch of statistics known as large deviation theory
(LDT) [Weiss95]. An example of a mathematical derivation of admission cri-
teria is given in [Gibbens97]. In [Tse97], an MBAC scheme is analysed and
by simulation it is shown that the MBAC is a promising approach to admission
control. The goal for these solutions is to be able to estimate the EBW as
accurately as possible, without requiring a precise description of the sources a
priori, as was needed in the original effective bandwidth (and Gaussian approx-
imation) schemes [Guerin91]. LDT represents a rigorous basis for such CAC
mechanisms, as it allows one to give probabilistic guarantees, e.g. about CLR,
delay, etc. It should be pointed out, however, that early work on MBAC did
not employ such rigorous mathematical techniques. [Jamin85], for example,
proposes to measure at fixed intervals how much bandwidth a connection had
used in that interval. This value, X say, is then stored in a circular buffer. The
EBW estimate was taken to be the maximum value of X in the buffer.

In IP, an MBAC scheme which also deals with advance reservations is de-
scribed in [Degermark95]. It is based on the simple estimates of [Jamin95).
This is rather different in scope and objectives from the mechanism described in
Section 5.2, in that it focuses on bounding delay for predictive services in the In-
ternet, while the MBAC mechanism in the Sandman aims to manage bandwidth
in a general way. A comparison of various MBAC schemes for controlled-load
services is given in [Jamin97].

In [van der Merwe98|, estimates of effective bandwidth are used for the
management of resources of virtual networks. As part of this, the effective
bandwidth estimates are used for a “lower-level” admission control, namely
to decide whether or not new virtual networks can be added to the system.
The server that calculates the effective bandwidth of connections and groups of
connections is integrated with the switch divider.

5.6.4 Continuous media file servers

Most continuous media file servers are concerned with the problem of provid-
ing guaranteed data rate and possibly even end-to-end QoS guarantees as de-
scribed in [Anderson92, Jardetzky92, Chaney95, Holton95, Neufeld95,
Bosch96] and many others. In [Dan95] an interesting segment replication
scheme is proposed for load-balancing purposes. Here, overloaded file servers
replicate some of their segments on lightly loaded servers which will serve all
future requests for that particular segment. [Federighi94| proposes a hierar-
chical video distribution, whereby the most popular films are highly available
on fast and expensive storage servers such as disks, less popular videos reside
on slower CD-ROM and titles that are rarely selected are stored on very slow
but cheap tape archives. This is a distribution mechanism that is quite differ-
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ent and indeed orthogonal to first-segment replication (FSR) as described in
Section 5.3.6. Both policies could be employed in the same system.

Few papers recognise the problems associated with replication schemes when
dealing with potentially very large continuous media files. A notable exception
is [Lougher94]|, where it is suggested that video files are encoded using multi-
resolution encoding algorithms and where only the lower-resolution versions are
replicated (propagated) to remote sites, while the higher-resolution versions are
limited to the local network only. Again, this policy should be easy to combine
with F'SR to achieve even greater scalability.

5.7 Summary

Two types of elastic control architecture were discussed. The first, known as
Sandman, offers very advanced functionality in the form of advance reservations,
measurement-based admission control, resource repartitioning, etc., while also
allowing clients to specify application-specific policies regarding network con-
trol. It was shown how a simple distributed video server was built on top of
the Sandman. A different approach was taken in the Noman type of control
architecture. Noman is not a control architecture in its own right, but it of-
fers an API that allows DLAs to build their own control architecture (all in
dynamically loadable code).

Proprietary 9 Smndardised% Monoﬁthic% Multiple —_— Elastic

Monolithic, Closed Monolithic, Closed Open Control Architecures Control Architectures
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Figure 5.21: The control architecture in the evolution of network control

Figure 5.21 shows how the open, customisable control architecture fits in
the evolution of network control. So far, control architectures have only been
considered in isolation. However, when multiple control architectures are active
simultaneously, interoperability between different control architectures becomes
an important issue. This is not a trivial problem, as two control architectures
may have very different control primitives that must somehow be mapped onto
each other in order to let the two domains cooperate. The next chapter will
therefore look at the problem of interoperability.



Chapter 6

Interoperability

In an environment where multiple management and control architectures are
active simultaneously, interoperability between these control architectures be-
comes an important issue. For example, it should be possible to access services
that are located in another domain, controlled by an incompatible control ar-
chitecture. It is remarked in [Decina97] that:

Interoperability is the most important requirement of the infras-
tructure in an information and communication environment that is
rapidly evolving towards heterogeneity.

This chapter presents a solution to the problem of interoperability that is
different from other such solutions in that it takes into account that primitives
in one control architecture often do not map nicely onto those of another and
moreover, that there may be multiple possible mappings from one set of prim-
itives to another. The solution is only possible because of the elasticity of the
Haboob components and thus supports the thesis that elastic network control
eases the introduction of new functionality in the network. Given interoperabil-
ity, it is shown how network control and management policies can be established
that span multiple control and management domains.

6.1 Introduction

In Chapter 5, it was shown how clients were allowed to load application-specific
policies into the heart of the control architectures. Many applications, however,
extend beyond the boundaries of a single control and management domain. A
control architecture domain is defined as a set of switches controlled by a specific
control architecture. It is important that these applications should be supported
in a similar fashion. The challenge here is twofold.

107
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Firstly, different types of control architecture should be enabled to interop-
erate. Ideally, this should be possible without degrading the functionality of
two communicating feature-rich control architectures A and B, only because
an interconnecting control architecture C, located between A and B, does not
provide this rich functionality.

Secondly, clients should be allowed to take their policies across the do-
main boundaries. This way clients are able to exploit their specific knowledge
about the nature of their applications throughout the network, i.e. to install
application-specific policies spanning multiple control domains. One problem
here is that, although applications may be assumed to have knowledge about the
local domain (e.g. about the topology), no such knowledge can be assumed for
remote control architecture domains. Some support for enabling such policies
to find out information about their new environments is therefore required.

6.2 Assumptions and configuration

Sandman will be used to demonstrate the principles and as a proof-of-concept
implementation. It should be stressed, however, that the issues and solutions are
not specific to Sandman. They apply to interoperation between any two control
architecture domains. Rather than a discussion of a particular implementation
of interoperability, this chapter is meant to be a description of a principles for
advanced interoperability between control architectures that can be applied to
the design and implementation of many different types of control architectures.

Consider Figure 6.1, which shows four different control architecture do-
mains, three of which are controlled by instantiations of the Sandman, while
the one in the middle is controlled by some other control architecture, e.g. P-
NNI. This is called the CAx domain. There are only four types of inter-domain
interaction that are relevant:

1. both endpoints are in neighbouring Sandman domains;

2. the originating endpoint is in a Sandman domain while the other is in a
neighbouring CAx;

3. the other direction: the originator is in CAx, while the destination is in
the Sandman domain;

4. both endpoints lie in Sandman domain, which are separated by one or
more C Ax domains.

For these four types of interaction, it is sufficient to consider only the cases
where communication originates in Sandman-1 and CAx. It is assumed that
Sandman has only partial domain-level knowledge about the network topology
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Figure 6.1: Multiple interconnected control architecture domains

This means that Sandman-1 knows, or is able to find out, that endpoint 2 is
connected to Sandman-2, but not what the exact topology is within Sandman-2
(i.e. how many switches there are, what switch is connected to what switch,
etc.). Similarly, it knows that endpoint 6 is connected to the network controlled
by Sandman-3 and that it can be reached through CAx. The dashed line L1
between the Sandman-3 and C Ax domains indicates that there might be other
domains between Sandman-3 and CAx of which Sandman-1 has no knowledge.
When communication originates in CAy, it is not even required that CAx
has partial knowledge. It will be shown that to CAx, Sandman-1 behaves
exactly like another instantiation of C Ax, so that it can use its own proprietary
signalling to set up connections to endpoints in Sandman-1.

6.3 Simple interoperability between domains

As a start, a simple solution for interoperability between domains is discussed,
based on the one proposed in [Rooney98]. The next step is to identify the
problems associated with this solution and propose a new solution that over-
comes these problems. The simple solution is to associate gateway code with
a pseudo-endpoint that corresponds to the link connecting the two control ar-
chitectures. A pseudo-endpoint is a control gateway that translates signalling
messages from one control architecture into those of another. In Sandman do-
mains it takes the role of an endpoint, while to a neighbouring CAx domain,
it may look like a native C Ax switch controller.

As shown in Chapter 5, when both endpoints lie in the same domain, the
Sandman sets up a connection from one endpoint to another and then notifies
the endpoints that the connection is in place. Things change if one (or more) of
the endpoints lie outside the local domain. As an example, consider a point-to-
point connection connecting a local endpoint A with a remote endpoint B. This
is illustrated for two interoperating Sandman domains in Figure 6.2. When a
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request for such a connection arrives at the Sandman, the pseudo-endpoint C
of the appropriate outgoing link automatically takes on the role of the remote
endpoint B. In other words, whenever Sandman tries to set up a connection
to a remote endpoint, it really sets up a connection within its own domain, to
the pseudo-endpoint corresponding to the outgoing link and then notifies the
pseudo-endpoint that the connection is in place (and which VPI/VCI values
are associated with it).

@
P
—h Sandman-1 )_— ‘C’ is the control gateway.

When ‘A’ sends a ‘connect (A,B)’ request.
notify (B, vpi, vci) in Sandman-1, the control gateway acts as
- e a pseudo-endpoint in this control architecture
@'@ domain, i.e. to Sandman-1 it seems as if a
connect (C, B, vpi, vei) connection is set up to ‘C’. Meanwhile, ‘C’
also acts a pseudo-endpoint in Sandman-2.

——( Sandman-2 ]—— It translates the original request to something

Sandman-2 understands, specifying itself as
notify (B, vpi’, vci’) P &
®

connect (A, B)

the originating endpoint.

Figure 6.2: Pseudo-endpoints as control gateways

Upon receiving the notification, the pseudo-endpoint translates the setup re-
quest to whatever signalling protocol is used in the neighbouring domain (this
includes translation of addresses if necessary, e.g. into UNI4.0’s NSAP address
format [UNI4.0:94]). If the neighbouring domain happens to be another Sand-
man domain, it simply repeats the connection request, this time assuming the
role of endpoint A. If the neighbouring domain succeeds in setting up the rest
of the connection, the pseudo-endpoint returns the boolean value true to the
first Sandman. If not, all actions performed by Sandman-1 are rolled back also
and the initiating endpoint is notified of the failure.

Connections from CAx to the Sandman could be set up in the same way
(if such a control gateway has been implemented in the CAx domain). Alter-
natively, it is possible to let the Sandman offer the same sort of interface to the
CAx domain that would have been offered by another CAx domain. This is
illustrated in Figure 6.3. In this case, the CAx domain cannot tell that it is
actually communicating with a different type of control architecture. For exam-
ple, many control architectures have well known signalling channels for setting
up and tearing down connections, etc. ATMF UNI signalling uses a dedicated
point-to-point signalling VC with VCI = 5 and VPI = 0. It is not difficult to
direct this signalling channel to the control gateway which in turn translates -
the incoming signalling into Sandman control messages (this includes address
translation, if necessary).

This solution covers all four cases of interoperability mentioned in Sec-
tion 6.2. Henceforth, it will be called the hop-by-hop solution for interoperability
because each control architecture only communicates with its immediate neigh-
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Figure 6.3: Control gateway translates signalling messages

bour, translating each control message from its own domain directly into that
of the neighbouring control architecture.

6.4 Shortcomings of hop-by-hop solution

The simple hop-by-hop solution discussed in Section 6.3 provides very basic
interoperability between multiple control architecture domains. The solution

is attractive because of its simplicity but for the same reason limited in its
usefulness.

The main problem is that the signalling gateways reduce all possible inter-
connection to the lowest common denominator in terms of control architecture
functionality. Consider, for example, the case of interoperability between two
Sandman domains, connected by a CAx domain, such as between Sandman-1
and Sandman-3 in Figure 6.1. Although both Sandman control architectures
support the use of future reservations (as discussed in Section 5.1), it is impos-
sible to make use of this functionality in an inter-domain connection (assuming
that CAx does not support such service). This is because at the control gate-
way between Sandman-1 and C Ax, the future reservation request is translated
into the type of setup request that C'Ax understands, probably an immedi-
ate setup. After that it will never be ‘promoted’ to future reservation again.
Instead, at the boundary between CAx and Sandman-3, the C Ax immediate
setup request is translated into a Sandman immediate setup request. In other
words, any advanced functionality is reduced to the simplest common service on
the path between Sandman-1 and Sandman-3. This will be called the problem
of functionality degradation.

An additional problem is that the nature of the interoperation between two
domains is fixed. This makes it hard to exploit application-specific knowledge.
Taking again the example of future reservation, consider the case where end-
point 1 in Sandman-1 wants to reserve in advance for a connection from itself
to endpoint 4 in CAx. The Sandman domain first makes all local future reser-
vations for an interval [Tsiort, Teng] and then forwards the request to the CAx
domain via the control gateway.
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The control gateway has to translate the request into control operations that
CAx understands. One option would be to simply allocate the resources (i.e.
set up the connection) in the CAx domain immediately and keep it in place, so
that at least the future reservation is guaranteed. This is the right solution if the
guarantees regarding the availability of resources in [Tsqrt, Tend] are important
and the resources in C Ax are scarce. Alternatively, it may decide not to allocate
any resources in CAx at all and simply #ry to set up the connection when it is
needed (i.e. at Tyre). This may be the right solution if there is little risk of
other applications using the required resources in the meantime. The point is
that the gateway uses a static method of translating the requests. This method
may be acceptable in certain cases, but not in others. This will be called the
problem of fized interaction. If the application itself were able to decide on
the nature of the interoperation between two domains, then it could exploit
application-specific knowledge that is impossible to support otherwise.

6.5 Sandman control channels and tunnels

The problem of Sandman functionality degradation is addressed first. Assuming
that Sandman is the more feature-rich control architecture it can be observed
that functionality degradation only occurs when multiple Sandman domains
are on the paths between the endpoints and when these Sandman domains are
separated by non-Sandman control architectures.

6.5.1 Inter-Sandman signalling

When multiple Sandman domains are involved, it is possible to implement a
so-called inter-Sandman signalling channel (ISSC) between each two adjacent
Sandman domains (which may be separated by a number of unknown control
architecture domains). This is illustrated in Figure 6.4. As indicated in the fig-
ure, there is no need to dedicate a well-known VPI/VCI value to the signalling
channel. The channel can be set up using the hop-by-hop inter-domain com-
munication as described in Section 6.3 (lowest common denominator is good
enough for setting up signalling channels). All intermediate domains simply
pass on the Sandman control messages without understanding them or even
looking at them (tunnelling). As usual, the ISSC finds its endpoints in the
control gateways of both Sandman domains (i.e. the control gateways are the
entities that signal to each other).

Next, if Sandman-1 wants to communicate with Sandman-2, it sets up a
data connection between the two control architecture domains. Ostensibly, the
data connections also find their endpoints in the pseudo-endpoints described in
Section 6.3, so that the pseudo-endpoints (i.e. the control gateways) get notified
when connections are set up, which allows them to handle these connections
further (outside the local domain). The pseudo-endpoints take care of the



6.5. SANDMAN CONTROL CHANNELS AND TUNNELS 113

ISSC

vci=110

Sandman 2

/ vei=100

Sandman 1

Data channels

Figure 6.4: Interdomain signalling channel

administration and maintenance of these.connections. Inside the two Sandman
domains however, these inter-domain data channels can be connected in any
way the control architectures want to. So the data channels are really data
tunnels connecting two Sandman domains. The further connection of these
data channels on the remote side is controlled by signalling over the ISSC!. It
is possible to set up data channels in advance or leave them in place after a
certain application is done with them. This will be called tunnel cacheing.

So to take up the example again of a reservation in advance for a connec-
tion from endpoint 1 in Sandman-1 and endpoint 6 in Sandman-3 (see Fig-
ure 6.1), this now becomes a matter of grabbing (or setting up) a data channel
between the two Sandman domains and then making a local reservation in
advance in Sandman-1 which gets transferred over the ISSC to Sandman-3 (be-
cause Sandman-1 recognises that the destination endpoint lies in Sandman-3
and therefore lets the control gateway towards the destination domain han-
dle the reservation for the remote part). Sandman-3’s control gateway picks
up the reservation request and tries to make an advance reservation from link
L1 to the eventual destination. If successful, it sends the boolean value true
back to Sandman-1. If not, it returns false which indicates that the actions in
Sandman-1 should also be rolled back. At the start of the reservation interval,
the connections are set up locally on both sides and connected to the VPI/VCI
of the data channel. This will be called the local eztension of the connection.

6.5.2 Implementation

The way interdomain signalling has been implemented is illustrated in Fig-
ure 6.5. Control gateways run on general purpose workstations connected to
the switches. As described above, a control gateway serves as the pseudo-
endpoint of a switch port that connects the local domain to a neighbouring
domain. Such a switch port will be defined as gateway port. By definition this
is never the switch port to which the control gateway’s own host machine is

'However, it is still not necessary for one Sandman domain to have precise knowledge of
the topology of the remote domain: all routeing is local to the domains themselves.
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Figure 6.5: Interdomain signalling implementation

Each control gateway owns a number of slots representing service access
points (SAPs) for the gateway port it manages. Each SAP allows for a single
unidirectional connection. In other words, SAPs have a direction attribute
which indicates whether the connection represents a source to the domain (data
on the connection flows from the neighbouring domain into the local domain),
or a sink (the direction of the data is away from the local domain). It should be
noted that SAPs are not only allocated to control gateways, but also to every
other endpoint connected to the network. For endpoints, the available SAPs
determine how many connections can be set up simultaneously.

The control gateway is only unique in the sense that it also owns the gateway
port’s SAPs, i.e. SAPs for a switch port that is not the same as the one
connecting it to the switch. This is indicated in the figure by the fact that
there are no slots drawn for the gateway ports (instead, these are owned by
the control gateway). The SAPs allocated to the control gateway are shared
between the SAPs that are used for connections to and from the control gateway
(e.g. ISSCs) and those that are used for connections between endpoints that
cross the domain boundary (at the gateway port). For each unidirectional
connection across the gateway port a single SAP slot is taken.

Gateway SAPs have four possible states, which are illustrated in Figure 6.6.
If SAPs are free, they are not associated with any connection whatsoever. If
the state is reserved, it means that the SAP is associated with a connection in
progress. This is a temporary state. The connection can either be aborted (or
fail), in which case the state returns to free, or succeed, in which case the state
becomes either cached or active depending on whether the local extensions of
the connection exist or not. Active connections are connected end-to-end, as far
as the local control architecture domain is concerned. In reality, however, their
endpoints may lie in remote domains beyond the scope of the local control
architecture. So, an end-to-end connection in this context is defined as: a
connection from one link at the edge of the network to another link at the edge
of the network, where the links are connected either to real endpoints/hosts or
to neighbouring domains. Whether or not the connection is really end-to-end,
i.e. connecting endpoints, depends on the semantics of the control messages
that are sent over the ISSC. Removing and adding local extensions changes a
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SAP’s state from active to cached and back, respectively. Both the active and
the cached state reduce to free if the resources corresponding to the SAP are
explicitly released.

FR = set up connection to remote domain

RF = setup aborted / failure

RC = setup succeeded and no local extension exists
RA = setup succeeded and local extension exists
CA = local extensions are made

AC = local extensions are removed

CF = release / failure

AF = release / failure

Figure 6.6: Gateway SAP finite state machine

The state transition diagram of Figure 6.6 is oversimplified in two ways.
First, it ignores failures and errors. Currently all failure indications lead to a
teardown of the connection, and a return to the free state. Second, all SAPs have
an extra attribute indicating whether they have been reserved for some time
interval in the future. It contains a pointer to the advance reservation schedule
of the SAP. This allows for the possibility to make advance reservations for
SAPs as well.

As an illustration, consider again Figure 6.5. For simplicity, all connections -
are assumed to be best-effort. In the figure, a bidirectional ISSC connects the
two Sandman domains across a Q.2931 domain [ITU-T94]. This takes up two
SAPs at the control gateways (one source and one sink). At some point, EP1
wants to set up a unicast connection from itself to the remote endpoint EP2.
For this purpose, the control gateway has to set up a data channel between
itself and the remote Sandman domain. Now suppose that, because the control
gateway expects that a return channel will be needed shortly as well, and since
the connections in Q.2931 are bidirectional anyway, the control gateway requests
the Q.2931 domain to set up a bidirectional connection with the same metrics
for the return channel as for the outgoing connection.

If successful, there are now two unidirectional data channels. Ostensibly,
these data channels are connected to the pseudo-endpoints (indicated by the
dashed lines). In reality, local extensions are made for the outgoing channel to
connect EP1 with this connection at the gateway port, and on the other end,
to EP2 via the gateway port in the second Sandman domain. This becomes
an active connection. The return channel, however, is not used at the moment.
It enters the cached state. Whenever a best-effort connection in the reverse
direction is needed, this cached data channel (or: tunnel) can be used. All
that is needed to complete the connection are the local extensions in the two
Sandman domains.

There is now full interoperation between islands of Sandman domains, pro-
viding the full functionality of the control architecture, while being intercon-
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nected by simple connections that act as tunnels. It is not necessary to set up
ISSCs from an originating Sandman domain to all other Sandman domains on a
path between a source and destination. Instead, hop-by-hop interconnectivity
can be used for this, albeit of a somewhat coarser granularity. Each hop is
now a Sandman domain. Setting up connections end to end is done by sending
the appropriate control message along the ISSCs from one Sandman hop to the
next. Tunnelling of signalling messages has also been proposed as a solution
to connect two private ATM networks via a public network [Alles95]. This is
different from the ISSC solution in at least two ways:

1. it assumes the pre-existence of a private virtual path (PVP) connecting
the private ATM network across the public network (this PVP is set up
manually);

2. all traffic (both signalling and data) from private ATM network 1 to
private ATM network 2 is sent through this PVP tunnel.

In contrast, the ISSC solution is not only capable of creating its own inter-
domain signalling channels, but also of creating separate channels for individual
data streams. This offers more perspective for offering QoS to individual con-
nections.

6.6 Loadable interoperability

The ISSC solves the problem of functionality degradation between cooperating
domains, but does not address the problem of fized interaction. For example,
if a future reservation is made for a connection between a Sandman-1 endpoint
and a Sandman-3 endpoint, it was assumed that the data channel between the
two domains was set up immediately. This may be the right solution in certain
cases but not necessarily in others (as shown in Section 6.4). A connection’s QoS
metrics may be equally hard to translate, as QoS may have different meanings in
different domains [Cidon95]. Furthermore, setting up a specific return channel
with specific properties, may be useful in some cases, but not all.

This section proposes a simple solution to this problem. Essentially, appli-
cations are permitted to define their own pseudo-endpoints, if necessary with
their own ISSC and data channels. For this purpose, the technique of dynam-
ically loading code (in the form of DLA granules) is used. In other words,
users are allowed to load up their own gateway code dynamically. Of course,
some restrictions are necessary to avoid that an application-specific (and maybe
even faulty) implementation of a control gateway becomes the only available
option for all applications. This is solved by associating an application’s con-
trol gateway DLA with a particular netlet (assuming the netlet contains the
necessary resources on the gateway port). Then, whenever a connection to a
remote endpoint is made, the application’s own netlet control gateway is used
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to communicate with the neighbouring control architecture (as well as with the
remote Sandman, using the netlet ISSC). '

This allows applications to specify exactly the mapping between Sandman
operations and the operations supported by the neighbouring domain. For
example, a netlet gateway may decide not to map a future reservation onto an
immediate connection in the neighbouring domain, but instead to wait until the
start of the reservation interval with setting up the connection (for example,
because it knows that there is plenty of bandwidth available in CAx).

6.7 Global policies

Section 5.4 described how applications can inject application-specific code into
their local connection manager. In Section 6.5 it was shown how neighbouring
control architecture domains are able to interoperate. This is still not suffi-
cient, however, for implementing truly global application-specific policies. In
the interaction between domains so far, it was only possible to use the basic op-
erations of the control architectures. In other words, functionality degradation
across multiple domains has been prevented (where possible), but we still have
not enabled applications to implement their own functionality upgrades across
multiple domains.

For example, assume that two Sandman domains are interconnected, pos-
sibly via other domains, as illustrated in Figure 6.7. The nature of a simple
application that spans the two Sandman domains may be such that at all times
only one of the six endpoints shown in the figure is active as source, while all
the others are active as sinks. Which endpoint should be source changes over
time, according to an application-specific algorithm. Such multi-domain appli-
cations could be easily implemented if the application-specific code could be
distributed over the two domains. This section shows a simple way of doing
this.

Figure 6.7: Multi-domain applications
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6.7.1 Policy migration and replication

An interesting detail of the support for DLAs as discussed in Section 5.4 is that
it allows the loadable code itself to inject granules in other control architectures.
This follows from the fact that starting DL As/granules is part of the Sandman’s
secondary interface and the secondary interface is publicly accessible. So if there
are multiple Sandman control architectures in a large network, each is capable
of sending DLAs across the wire which will then be run in the remote control
architecture. In this way the DLA is able to migrate or replicate itself across
a larger network. This is illustrated in Figure 6.8. The various incarnations of
the DLA distributed over the network, as well as different DLAs, are able to
communicate using the SUFL.

SANDMAN-1 SANDMAN-2

DLA: migrate to
 Sandman-2 domain

‘ = — 4 I
P ’
77~ Newincarnation

1 T of the DLA N
7

-

Figure 6.8: Policy migration

It can be argued that a network operator running a control architecture in
a particular administrative domain may not want to permit DLAs from ap-
plications in different administrative domains to be loaded inside the heart of
its control architecture. Nevertheless, there are advantages in doing precisely
that and there is no intrinsic risk in doing so, provided the security issues de-
scribed in Section 3.3.3 are addressed. But even if DLAs are not allowed to
spread accross multiple administrative domains, this does not mean that they '
are not allowed to spread over multiple control architecture domains, as these
are very different things. A control architecture domain only consists of an in-
stantiation of the control architecture together with one or more switches which
it controls. In traditional systems there is a one-to-one relationship between
the switch controller and the switch. The Sandman control architecture is not
so different from traditional control architectures, except that it gives network
operators a choice of how many switches should be in a control architecture
domain. This could be a single switch as in traditional (integrated) systems,
or small clusters of three or four switches. This is illustrated in Figure 6.9.
As a result, there will generally be more than one control architecture domain
in a single administrative domain (which can be as large as a department or
campus). Within the adminstrative domain, it may be perfectly permissible to
have DLAs cross control architecture domain boundaries.
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6.7.2 Environmental awareness

It may be assumed that a DLA has rather extensive knowledge about the do-
main where it was created. For example, the topology of the network may be
known by the application injecting the DLA and hence programmed into it
(bardcoded topology knowledge). This assumption, however, is no longer true
when DLAs migrate through the larger network in order to implement global
policies. A DLA may know that certain endpoints are connected to a particular
control architecture domain, but it generally has no knowledge of the switches
and interconnections on the paths between these endpoints. This makes it im-
possible to exercise low-level control over the resources in this domain (using
netlets), unless the DLA has a way to learn about its new environment.

For this purpose, the Sandman’s tertiary interface contains a number of
operations that enable DLAs to acquire knowledge about the new domain. For
example, one of these operations returns to the DLA a detailed description of
a path between two endpoints (including switch names, port numbers, etc.). In
this way, the DLA learns about the part of the control architecture domain that
is of interest. And using this knowledge, the DLA can create netlets consisting
of these paths, allowing it the low-level control that it may require to implement
application specific policies in the new domain.

6.7.3 Example: mobile agents for mobile computing

To demonstrate the usefulness of global policies, consider the case of mobile
computing. A client may have very specific knowledge about the route followed
by, or the communication pattern associated with a mobile system M (see Fig-
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ure 6.9). Assume that there are multiple control architecture domains and that
‘the mobile system roams among these domains. Using the technique described
in the previous sections, it is now easy to install the client’s application-specific
knowledge across the entire administrative domain. It is even possible to have
a DLA ‘follow’ the mobile system as it travels from domain to domain (which
means it would not burden those parts of the network that mobile system M
is not even close to). The DLA can set up connections for the mobile system
(ensuring no loops arise in the connection), work out optimal routes and also
collect billing information. This is an example of application-specific control
using roaming policies. In a different context something similar was proposed
by [Biswas97]. As a demonstration, a very simple roaming mobile tracker was
built which migrates from Sandman domain to Sandman domain according to
some policy. Since no real mobile computing systems were available to demon-
strate the roaming policy, the mobiles were emulated using roaming agents.

6.8 Testing interoperability in practice

The implementation of the interoperability design uses the Sandman as the
feature-rich control architecture. For C Ax an implementation of .2931, called
Q.Port, was used [Bellcore97]. The Q.Port software consists of a front-end,
which clients connect to, and a back-end which was modified to set up con-
nections across a switch by calling the appropriate operations over the Ariel
interface.

In the tests, Q.Port controlled a single switch, located between two other
domains. The two other domains were controlled by Sandman control archi-
tectures. Since the address format in Sandman is not the same as the format
used in Q.Port, an address translation step is needed whenever inter-domain
communication is required. In the proof-of-concept implementation, address
translation is performed by an address-translation server which, given an ad-
dress in one format, returns the address in the other.

The easiest way to test the simple hop-by-hop solution is by establishing
an ISSC from a Sandman-1 to Sandman-2, across the Q.Port domain. This is
done automatically: whenever an endpoint in Sandman-1 attempts to establish
a connection to an endpoint in Sandman-2, an ISSC is set up. The existence
of the ISSC proves that the hop-by-hop solution works. Next, the ISSC is used
for signalling between the Sandman domains. As an example, it was demon-
strated how an advance reservation for a multicast connection in a netlet was
established across the two Sandman domains, while the reservation was mapped
onto either an immediate reservation, or no reservation at all, depending on the
interoperability policy corresponding to the netlet (and specified by a client).
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6.9 Related work

Efforts within the ATM Forum and the ITU-T have led to the definition of
signalling interfaces between switches called the Network-to-Network Interfaces
(NNIs). Of these, the ATM Forum’s Private Network-to-Network Interface is
intended for private networks and contains interfaces both for the exchange
of routeing information and for connection control [PNNI94]. The B-ISUP
public NNI developed by the ITU-T serves as a demarcation point between two
public networks. The ATM Forum’s version of the public NNI is called B-ICI.
Both private and public NNIs are discussed in Section 5.6.1.2.

The cooperation of various standards is the topic of the REFORM project
[Georgatsos99]. REFORM is part of the European ACTS programme and
combines elements of CORBA, TINA, PNNI, TMN, and ATMF UNI, which
all interact in the REFORM environment. The focus is more on making var-
ious solutions for different problems (e.g. PNNI routeing, TMN management,
UNI signalling, etc.) cooperate in a single framework, than making different
incompatible control architecture domains interoperate. 4

6.10 Summary

Interoperability was achieved between incompatible control architecture do-
mains. The starting point was a conventional hop-by-hop design, where sig-
nalling messages from one control architecture are translated into those of
another at the domain boundaries. Functionality degradation at the domain
boundaries and rigid function translation were identified as problems inherent
to the design. The hop-by-hop solution was therefore rejected, except as an
underlying mechanism to set up very simple connections (e.g. best-effort across
multiple domains). Inter-domain signalling channels were used to solve the
problem of functionality degradation. The problem of rigid function translation
was solved by allowing clients to specify the appropriate mappings themselves.
This is an example of functionality that would be impossible to support without
dynamically loadable code.
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Monolithic, Gos?Monolithic, Clos? Open 9 Control Architecures Interoperability
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Figure 6.10: Interoperability in the evolution of network control

Figure 6.10 shows how such elastic interoperability fits in the evolution of
interoperability in network control. So far, however, the discussion has focused
mainly on control architectures and their interoperability. As the goal was to
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introduce elasticity to all aspects of network control and management, the next
chapter will look at other components in the Haboob.



Chapter 7

Elastic switch interfaces,

~dividers and netbuilders

It was shown in Chapter 2, that the open switch control interface, known as
Ariel, allows non-proprietary solutions to the problem of switch control. Fur-
thermore, it was observed that in an environment where multiple control ar-
chitectures are expected to be active simultaneously, switch dividers play an
essential role. The switch dividers partition resources on a switch on behalf
of a netbuilder, which combines the partitions to form virtual networks. This
chapter talks about all three of these aspects of network control and man-
agement and shows how allowing extensibility of these components eases the
introduction of new network control mechanisms.

7.1 Introduction

Switch dividers have two primary tasks. Firstly, they partition resources on the
switch into switchlets, so that for example, each switchlet has its own VPI/VCI
range, buffer space, etc. Secondly, they instantiate Ariel implementations for
each of the switchlets. The Ariel instantiations are exactly the same as the
Ariel interface to the physical switch, except that access to resources is limited
to resources owned by the switchlet.

This chapter begins with a discussion of a switch divider in which the func-
tionality of both divider and switch interface is no longer fixed. The former
will be called elastic divider and the latter elastic Ariel. Similarly, netbuilders
to which code can be added dynamically will be called elastic netbuilders. Ex-
tensions and changes can be made on the fly, when and where appropriate. It
will be shown that this allows for functionality that would be very difficult to
achieve otherwise.

123
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7.2 Elastic Ariel

Ariel has been extended in two ways. The first allows applications to use what
are called native methods, i.e. methods that are not part of standard Ariel,
but which are supported by the switch. The second enables one to control and
modify Ariel operations from granules running in a switchlet’s Sandbox.

7.2.1 Native methods

The first extension that was made to Ariel in the course of this work concerned
the support for implementation-specific functionality. This is referred to as the
exposure of native methods. It entails the ability of applications to call functions
that are not in Ariel but are part of the API of the protocol over which Ariel is
implemented!. For example, if Ariel is implemented using GSMP, the GSMP
MoveBranch operation [Newman96] may be exposed as a native method.

The conformance check is the function of the divider that ensures that a con-
trol architecture only accesses resources that belong to its own switchlet. Such
a check must also be applied to native methods. Since native methods are pro-
vided by the implementation of Ariel, this implementation should also provide
the conformance checks. There is a logical separation between native methods
and Ariel operations and the conformance check for native methods is encap-
sulated in what is called a native object corresponding to a switchlet. To allow
exposure of native methods, it is required that their conformance checks are im-
plemented in the native object. Although the current implementation does not
support this, the conformance checks could be dynamically loadable in the form
of DLAs. In that case, only native methods for which a conformance function
was loaded, can be exposed. In the current proof-of-concept implementation,
only a small number of GSMP operations, such as the MoveBranch operation,
has been made part of the native interface.

Native methods should be used with care. In particular, control architec-
tures that may be used in many different environments with different equipment,
should be written so that they do not depend on native methods. This is similar
to the use of nmative methods in languages like Java in that whenever a Java
applet depends on native methods, it can no longer be considered portable. To
prevent naive use of native methods, they must be explicitly exported before
they can be used.

7.2.2 The Ariel Sandbox

One of the functions exported in the divider’s management interface allows the
creation of a switchlet with a Sandbox. Compared with the standard operation

!Or any other protocol that both switch and switch divider support.
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to create switchlets, it takes as extra argument the granule or DLA to run
in the Sandbox. The Sandbox is extended with an Ariel module, which allows
granules in the switchlet’s Sandbox to call any Ariel function that is available to
external clients. The Sandbox’s Ariel module also contains an operation called
override, which enables granules to override any of Ariel’s operations. The
override operation specifies both the operation to override and the override
procedure to replace it with. If an overridden operation is called, e.g. from an
external client, the override procedure is called instead.

7.2.2.1 Example: an application-specific viewer

As a demonstration, an Ariel Sandbox is loaded with a DLA that overrides
the operations for creating and deleting ¢onnections. The new createVC and
deleteVC operations still set up and tear down connections on the switch,
but also send event notifications corresponding to these operations to a DLA
running in a remote Sandbox. The remote DLA acts as a viewer and puts up
a graphical representation of a switch, showing all ports on which the control
architecture owns resources. Whenever it receives connection setup or teardown
notifications it updates the view and thus displays graphically the currently
active connections on the switch?.

and traffic measurements

K sends information about
connections to Node A
to Node B

Figure 7.1: Remote monitoring with micro control achitectures

The demonstration DLA which runs in the Ariel Sandbox is called a micro
control achitecture. It implements functions that can be called from external
clients—in short, it acts exactly like the control architectures of Chapter 5,
except that it is completely loaded into the switchlet Sandbox. Henceforth,

2 A more general viewer, showing the switchlets and connections of all control architectures
in the physical network, was implemented by Rebecca Isaacs of the Computer Laboratory
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this particular DLA will be referred to as micro control achitecture pCA-1. It
is shown graphically on the left in Figure 7.1 with an actual screenshot of the
viewer.

7.2.2.2 Virtualising the VPI/VCI space

The override operation, present in all Sandboxes discussed in this chapter, is
a powerful operation that allows for customisation and specialisation of opera-
tions that were previously fixed. Recall that switchlets constitute a partitioning
of (among other things) the VPI/VCI space. This means that control architec-
ture A obtains a different VPI/VCI range than control architecture B. However,
certain control architectures may want to use specific VClIs inside the network.
In that case, problems arise when a control architecture wants to use a VPI/VCI
value V that was already assigned to another switchlet for some switches inside
the network. This can be solved using the override operation in the Ariel
Sandbox, by overriding all control operations to map V' onto one of the switch-
let’s own VPI/VCI values V*. This is transparent to the control architecture
which continues to exercise control over the usual VPI/VCI value V.

In fact, it is possible to completely virtualise the VPI/VCI space3. A control
architecture can be given the entire spectrum of VPI/VCI values supported by
the switch and provide (or have provided for it) a simple mapping function,
which translates these virtual VPI/VCI values to real VPI/VCI values sup-
ported by its switchlet. The virtual VPI/VCI space is logical only and may
even include values outside the range supported by the switch, e.g. negative
VPI/VCI values. At the edges of the network, it is possible to “pin down” real
VPI/VCI values. The concept of virtual VPI/VCI spaces is almost identical to
that of virtual memory in operating systems.

7.2.3 Adding new operations to Ariel

Ariel can be easily extended with new operations. The operations are called over
the SUFI (unless they override existing Ariel functions in which case they are
invoked over Ariel). In the simplest case, one only uses the original Ariel APIL.
For example, it is possible to add an operation which creates a batch of connec-
tions, by taking as arguments the connection details for a set of connections,
which are subsequently translated into normal Ariel connection setups. Such
operations can improve performance considerably because each setup request
no longer has to travel over the network separately. However, it is also possible
to use native methods to provide new operations. In fact, new operations can
be built that consist of a combination of Ariel and native methods®.

3Thanks to Richard Mortier and Rebecca Isaacs of the Computer Laboratory for pointing
out the usefulness of virtual VPI/VCI spaces

4Use of native methods does not necessarily mean that the new operation is not portable.
For example, a DLA may probe the native methods to see if a particular method exists and
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For demonstration purposes, an operation was introduced to micro control
achitecture yCA-1 of Section 7.2.2.1 which, when invoked, periodically sends
statistics of the traffic on connections or ports to a DLA running in a remote
Sandbox. The remote DLA displays a scrolling graph of the statistics returned,
as shown on the right in Figure 7.1. Since such operations can be added to the
Ariel micro control achitecture from a remote client (in the form of granules
which are added to the micro control achitecture), this lends itself well for use
in remote monitoring, in the spirit of RMON [RMON97]. For example, if
there is an indication of network problems such as congestion, it allows one
to quickly add a granule that gathers statistics, possibly analyses them locally
and sends back results. This avoids having to send a lot of statistics over an
already overloaded network. If it is decided that different statistics (or different
correlations of the statistics) are needed, one simply replaces the granule with
another. The granule may even be able -to solve the problem locally, e.g. by
taking down certain connections, or destroying switchlets. This is a simple
implementation of network management by delegation [Goldszmidt95b).

7.2.3.1 Vertical integration

The above permits new forms of vertical integration. Since it is possible to load
both the control architecture and the application into an Ariel Sandbox, and
functionality to govern the working of the switch divider into a management
Sandbox, it is also possible to integrate these three functions into the same
address space. If on top of that, the divider is integrated with the switch this
allows for tight integration of network control, while retaining a modular design.

7.3 Elastic divider management

The divider elasticity is created by instantiating a Sandbox in the management
component of the divider. It is possible to distinguish between two possible
types of Management DLAs. The first type allows clients to customise or over-
ride operations for the entire divider. If a granule in such a DLA overrides the
operation to create a switchlet, then the DLA is triggered, each time a switchlet
is created. In other words, this type of Management DLA has far-reaching ca-
pabilities that affect all switchlets. The ability to install such DLAs should be
restricted to privileged clients (e.g. the system administrators). On request, a
single Sandbox is created for such DLAs. The Sandbox and its DLAs are persis-
tent in the sense that whatever switchlet management operations are executed
(e.g. to create or destroy a switchlet), the Sandbox will not be destroyed.

The second type only concerns the management operations for one partic-
ular switchlet. This type of DLA can be loaded as switchlet-specific manager,

use it if this is the case, while falling back on Ariel methods if not.
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before the actual switchlet is created. It is able to use and override the manage-
ment operations of this particular switchlet. Because this type of Management
DLA will not affect any other switchlets, its access control requirements are
much less strict. In principle, even the requesting control architecture could
install such a DLA. The Sandbox and its DLAs are transient, i.e. they are
destroyed with the switchlet. As an example, consider a Management DLA
that overrides the method to create a switchlet with an operation that not only
creates a switchlet, but automatically loads this switchlet with Ariel granules
as well, e.g. to override in turn the operations to create and delete switch con-
nections. The next section describes another example of Management DLAs.

7.4 Aggregate switchlets and delegated control

This section contains an example that addresses the problem of scalability. It
uses both Ariel Sandboxes and management Sandboxes. Remember that creat-
ing a switchlet normally comprises the execution of a single predefined function:
a switchlet is created and an interface reference to control it is returned. Now
consider Figure 7.2 in which a wide area virtual network is shown with two main
centres: one in London and one in Glasgow. In theory, it is possible to control
this network with a single controller (connection manager)®. As shown in the
figure, this presents the problem of overstretched control paths: each of the
switchlets in Glasgow is controlled separately by the single control architecture
in' London. This results, for example, in very long connection setup times.

/ :><

XD+~ =—12C /
C

London Office -=—— (long distance) ——  Glasgow Office

Figure 7.2: Large network: overstretched control paths

SFor clarity reasons, the example is somewhat extreme; for really long distances it is prob-
ably better to use multiple interoperating control architectures, as discussed in Chapter 6.
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7.4.1 Aggregating resources

There are many ways to solve this problem. A simple solution that does not
require changing the existing network control software (and can be added on
the fly) uses aggregate switchlets. This is illustrated in Figure 7.3. Aggregating
resources is a well-known technique to address scalability and is employed, for
example, in the P-NNI routeing algorithms [PNNI1.0:96]. In the example,
the resources of the five switchlets in Glasgow are aggregated into one meta-
switchlet called the aggregate switchlet. The London-based control architecture
only controls the local switchlets and the one aggregate switchlet. The aggregate
switchlet, meanwhile, picks up the requests sent by the control architecture and
translates them into the appropriate requests for its local constituent switchlets.
To the control architecture it seems as if it is communicating with a single (albeit ‘
rather large) switch. Another way of saying this is that control is delegated from
the central site to the aggregate switchlet.

X Her

Connection
Manager

N oo R
4

ASL = Aggregate Switchlet

London Offce -—— (long distance) ——  Glasgow Office

Figure 7.3: A more scalable solution using resource aggregation

The aggregate switchlet is created automatically by a switchlet-specific
Management DLA. Whenever a switchlet is created by an entity from Lon-
don, the DLA not only creates a switchlet on its own local divider, but on all
other dividers for the Glasgow part of the network as well. Additionally, the
DLA instantiates a DLA in the Ariel Sandbox which overrides all Ariel func-
tions so that when they are called by the control architecture, each request is
decomposed into the appropriate sub-requests for the constituent switchlets.
Destroying the aggregate switchlet will result in the destruction of all its con-
stituent switchlets. This is transparent to the control architecture (as well as to
the constituent switchlets). In this way a hierarchy of resource aggregation may
be created that is arbitrarily deep (i.e. aggregate switchlets may themselves be
aggregated). As an experiment, an aggregate switchlet was built, which con-
trolled all five switches of the local ATM testbed, while offering only a single
switchlet interface to a Noman control architecture.
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7.4.2 Remote monitoring and management by delegation

A slightly more conventional use of aggregate switchlets is remote monitoring
and “management by delegation” [Goldszmidt95a]. Instead of, or in addition
to, controlling the aggregate switchlet, the DLA for the aggregate switchlet can
monitor the individual switchlets under its control. For example, it can obtain
statistics periodically, or ping individual components to see if they are alive.
When there are problems, the DLA can generate alarms, or even try to solve
the problem independently. This is useful for two reasons. Firstly, the response
time to network problems is shorter, because the managing entity is close to
the switches. Secondly, if there is a network problem, it may be that part of the
network becomes unreachable, so that it becomes impossible to solve the prob-
“lem from the remote control architecture. As pointed out in [Goldszmidt95a],
making the control loop shorter by placing managing entities in the vicinity of
the switches, increases the probability that the management messages actu-
ally get to the appropriate places. Next, a simple example of such network
management which implements a degree of fault-tolerance is discussed.

Consider an aggregate switchlet that consists of a set of sub-switchlets in
such a way that all or most endpoints can be reached through multiple paths.
An example is given in Figure 7.4, where an aggregate switchlet spans five
physical switches. Suppose that in the aggregate switchlet a connection was
set up between link A and link B via switch S1. If, for some reason, it is
necessary to take switch S1 out of service (e.g. for maintenance), the aggregate
switchlet can decide to reroute the call via S1, without informing the control
architecture. In fact, the control architecture is aware neither of the fact that
one of the switchlets went down, nor of the fact that its connection was rerouted.
The problem of fault tolerance and automatic rerouteing is the topic of ongoing
research in the Computer Laboratory.

et > B Aggregate
A _;\_ == Sl =] ‘. y Switchlet
~ N \\ _>< ><_ /\

Figure 7.4: Fault tolerance using aggregate switchlets

7.5 Elastic netbuilders

The netbuilder not only implements the procedures to create virtual networks,
it also provides a host of functions that allow control architectures to discover
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useful information about the network, e.g. the addresses of endpoints, the
topology of a switch, etc. Until now, the exact operation of the netbuilder
procedures was decided once and for all at implementation time.

7.5.1 Shared and individual Sandboxes

In the Haboob, the netbuilder was extended with a Sandbox that is shared by
all clients of the netbuilder. In addition, individual Sandboxes that are owned
by specific control architectures can be created on request. The only difference
between shared and individual Sandboxes is the access control and scope of the
override operation. In the shared Sa,nd_b()xes, access to the override operation
is restricted to certain privileged clients, e.g. the system administrator. An
override at this level will modify the behaviour of the overridden function for all
clients. Individual Sandboxes, by contrast, may grant access to their override
operation to any client. The scope of the override is limited to this Sandbox.

The scope of the override in a shared Sandbox extends to the individual
Sandboxes as well. So, if the system administrator modifies the behaviour of
an operation F' and a granule in an individual Sandbox calls this operation, the
modified version will be invoked (unless the individual Sandbox also overrides
operation F'). Override operations in an individual Sandbox pertain only to
calls made from the Sandbox itself or calls over the Sandbox’s SUFI. All other
external invocations (i.e. invocations made from remote control architectures)
are only influenced by overrides in the shared Sandbox.

Both the individual and the shared Sandboxes have been extended with two
modules. The first module provides a set of operations that allow clients to find
out useful information about the network, e.g. about the topology of a switch
or the addresses of endpoints. The second allows DLAs to call (and override)
operations to create and destroy virtual networks, add switchlets to and remove
switchlets from existing virtual networks, etc.

7.5.2 Automatic aggregation of switchlets

To demonstrate the usefulness of elastic network building, a DLA was loaded in
the netbuilder’s shared Sandbox which redefines the operation to add a switchlet
to a virtual network. When the procedure to add a switchlet is called, the DLA
checks the name of the switch on which to create a switchlet and, depending
on the result, either simply creates a switchlet, or initiates the creation of an
aggregate switchlet as described in Section 7.4. The next two sections will
consider this in a little more detail.
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7.5.2.1 Implementation

Overriding the operation to create a switchlet allows for the use of logical switch
identifiers. These are names that seem to identify a single switch but in reality
map onto a number of physical switches. In this dissertation, the set of network
resources corresponding to such a logical switch will be defined as an aggregate
switch. The mapping to the physical network resources is transparent to the
clients of the netbuilder, who only “see” a single switch.

Suppose, for example, that a client requests the creation of a switchlet on
a switch called Aggregate_1. This is not a real switch. Instead Aggregate.1
serves as a logical switch identifier that triggers special actions in the netbuilder.
In the example implementation, the method to create a switchlet was overrid-
den, so the netbuilder executes the specified override function. The override
function recognises that Aggregate_1 is really an aggregate switch that maps
~onto a specific set of interconnected physical switches. It subsequently initi-
ates the necessary actions to create the corresponding aggregate switchlet. For
this purpose, it installs the switchlet-specific Management DLA described in
Section 7.4 in one of the dividers (the one that will handle all requests for the
logical switchlet). This DLA in turn creates all the other switchlets that cor-
respond to Aggregate_1 and instantiates a DLA in its local Ariel Sandbox to
override all Ariel functions in the appropriate ways. Finally, the netbuilder re-
turns the interface reference of the aggregate switchlet to the requesting control
architecture. This completes the discussion on aggregate switchlets.

7.5.2.2 Distributed netbuilders

The previous section assumed that all switches lie in the domain of a single
netbuilder. This will generally not be the case. Currently, netbuilders do
not provide automatic support for this problem. Therefore, a proof-of-concept
solution that was achieved in the Haboob makes extensive use of DLAs to make
up for this lack of functionality. To illustrate the point, it is assumed that the
physical network is partitioned into two domains, each managed by a different
netbuilder. It is also assumed that both netbuilders have been loaded with the
network-building DLA described below.

The DLA consists of two granules. The first granule, called the state ez-
change periodically sends state information to the remote netbuilder. This
information generally consists of topology information that it wants the remote
end to know about. For example, in the proof-of-concept implementation, both
DLAs tell the other side about the endpoints reachable through, as well as the
switches in their respective domains. These state messages are sent every five
seconds and also serve as so-called ‘heart-beat’ messages (if no state message is
received within a certain period, it is assumed that the remote side is down).

The second granule overrides the operation to create a switchlet on a switch.
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If it finds that the switch on which the switchlet is to be created lies in the
remote domain, it forwards the request to the remote netbuilder, together with
the VPI/VCI space needed on the switchlet (determined by the VPI/VCI space
of the adjacent switches). The remote netbuilder will try to create a switchlet
on the adjacent switch, provided that an overlap in VPI/VCI space between
adjacent switches is found.

This is a simple solution for the distributed netbuilder problem, which
doesn’t scale well to a large number of netbuilder domains. If the number of
domains grows, it will become too much of a burden to have all netbuilders
exchange such detailed topology information. Instead, some sort of infor-
mation aggregation is needed, e.g. similar to that used in P-NNI routeing
[PNNI1.0:96]. A general solution for the problem of distributed network
building is beyond the scope of this work. Nevertheless, the simple solution
just described demonstrates that it is possible to build virtual networks across
multiple netbuilder domains and also that elastic netbuilders allow very useful
functionality to be added to the existing implementation.

7.6 Example: active networks

This dissertation agrees with the active networks community that instead of

standardising the computation performed on every packet, standardisation should

focus on the computational model [Tennenhouse96]. It disagrees, however,
about where to apply this solution. The active networks’ approach is to treat
every packet on the datapath as a program [Tennenhouse96], or at least al-
low some of the packets to carry program code [Alexander98a)]. Instead, this
dissertation proposes not to interfere with the data path at all. If computa-
tion on the data packets is necessary this should be treated as the exception
rather than the rule (other packets should simply be switched at the highest
possible speed). Advantages of separating control from data are highlighted in
Section 3.8.4.

Despite these misgivings, the value of in-band computation, as advocated by
the active network community, in certain cases is recognised. In-band processing
is useful for the purposes of filtering, compression, encoding, transcoding, pro-
tocol enhancement and other such tasks that require manipulation of the data
itself. For example, [Marcus98] shows as an example how a protocol “booster”
can extend the functionality of a protocol on the fly, by adding forward error
correction (FEC) on the datapath when it is found that one of the links is very
slow and unreliable. The booster only affects that particular link. The idea is
as follows. Whenever communication takes place across an unreliable link L
with a slow (or non-existing) return channel (e.g. a satellite connection), it is
often cheaper to deal with data loss and corruption by employing FEC than by
using the more standard method of retransmissions. The default protocol has
no FEC functionality. Instead, “booster code” is installed in the active network
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nodes just before and just after link L. In the former, the FEC is added to the
data on the data path, while in the latter it is removed again. The FEC in-
formation only traverses link L. The endpoints still communicate via the base
protocol and need not even be aware of the fact that FEC has been employed.

Similarly, [Alexander97] shows how an “active bridge” between two Eth-
ernets segments allows for upgrading to new versions of network software with
minimal disruption. Related work at the University of Lancaster implements
what are called propagating filters [Yeadon96], i.e. filters that can be allocated
to network nodes dynamically. The idea is to allow transcoding of continuous
media streams and variation of QoS in multipoint communication in order to
support heterogeneous clients.

The problem addressed in this section is what to do when processing is
needed on the datapath. In the Haboob, this problem is dealt with in a simple
way: if and when necessary, an active network node is built on the fly. Fol-
lowing the model of Section 3.1, active network nodes are just special cases of
datapath components. This section shows how Ariel DLAs, together with an
additional datapath component running off-switch, are used to implement an
active network node.

Consider the example of the protocol booster. Whenever the decision is
made that a particular link is unreliable and needs FEC, it is simple to install
an Ariel DLA that reroutes the connection to a DLA in a Sandbox near the
switch®. The DLA adds the FEC and returns data and code to the data path.
The protocol booster mechanism is illustrated in Figure 7.5. This does not differ
in any way from the protocol boosters in [Marcus98]. In fact, a very simple
(off-switch) active node has been built. Packet classification is simple and only
based on the ATM cell’s flow label. Protocols such as ANEP [Smith99] are
not needed when cells or packets are switched into an active node based on flow

labels.
(Lossy Link)

A /\

remove FEC
Figure 7.5: Active protocol booster in the Haboob

For the purpose of building an active node, an ATM enabled datapath com-
ponent was implemented that includes a Sandbox with the means to manipulate
a connection’s transmit and receive buffers directly. An ATM data module was
added to the Sandbox, which allows DLAs to send and receive data on ATM
connections. DLAs are given access to the transmit and receive buffers directly,

8This FEC DLA can be automatically loaded by the Ariel DLA.
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i.e. without copying the data to DLA space (which would be unacceptably ex-
pensive, especially if the data concerns continuous media). This is a delicate
operation, because giving DLAs direct access to memory introduces the risk
that they will access and/or manipulate memory that is not theirs. This could
have disastrous results and completely destroy the Sandbox’s safety and security
mechanisms. It was solved by strictly limiting the DLA’s direct memory access
to those buffers that were explicitly created for it. Next, a DLA was loaded
in the Sandbox which adds FEC to the data on specific connection and sends
the FEC enhanced data back to the switch on the same VCI. In the current
implementation a simple Hamming code is used for FEC [Hamming80].

The conclusion is that, although technology and mechanism in both ap-
proaches are different, it is possible to build active networks with the Haboob.
Note that the inverse is not necessarily true: (capsule-based) active networking
technology is tied to the integration of control and data path. This makes it
impossible to build services that rely on the separation between these two tasks.

7.7 Summary

This chapter has shown some of the limitations of ‘static’ switch interfaces, di-
viders and netbuilders. It proposed to solve these problems by allowing code to
be added to these components dynamically, making them elastic. The advan-
tages of such an approach are that (1) functionality that is currently missing
can be added on the fly, without having to wait until it is implemented in the
components (e.g. distributed network building), (2) environment-specific knowl-
edge and functionality can be exploited (e.g. by using native methods in the
interface to the switch), and (3) functionality that is currently offered by the
components can be overridden to perform customised tasks (e.g. virtualising
the VCI space, or building aggregate switchlets). The viability of this approach
has been demonstrated by a working system. In particular, it was shown how
active network nodes can be built on the fly.

Proprietary Standardised Monolithic Multiple Haboob
Monolithic, Clos?Monolithic, Clos? Open — Control Architecures Components
— b A 1 L

-proprietary switch -proprietary switch -proprietary or standard-  -standardised switch | Fully elastic X
interfaces interfaces ised switch interface interface | -switch interfaces :
-one fixed service -"one" network -single network -multiple "networks" : -switch dividers I
-more or less fixed -control components -network/control 1 -netbuilders ;
network functionality = generally have fixed components have : -generic services !
functionality fixed functionality :_-ga;ta_pgt}_x components

Figure 7.6: Remaining elastic components in the evolution of telecommunications
network control

Figure 7.6 shows how the elastic components of the Haboob form the next
step in the evolution of network control. Compared to the OSSA components,
which allowed multiple control architectures to be active simultaneously, but
were themselves closed, all of the components in the Haboob are completely
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elastic, so that the process of partitioning resources, building virtual networks,
etc., can be customised. Whichever technology one chooses for the control and
management of networks, however, it will probably not be very successful if it
performs poorly. So, the next chapter will look at the Haboob’s performance.




Chapter 8

Performance evaluation

The previous chapters discussed in detail the way in which all-.components of
the Haboob have been made elastic. Some of the advantages of such an elastic
approach to network control were shown by various example applications. In
this chapter the performance of the Haboob is evaluated.

8.1 Introduction

As a measure of performance, the connection setup times incurred by the con-
trol architectures described in Chapter 5 will be compared with those published
in the literature. It will also be shown how using effective bandwidth (EBW)
estimation for CAC improves the resource utilisation. The ATM testbed used
to test and develop the network control and management implementations dis-
cussed in this dissertation currently consists of five ATM switches, namely one
FORE ASX-1000, two FORE ASX-100s and two FORE ASX-200s [FORE95a].
Connected to the switches are a number of SUN UltraSparc workstations run-
ning Solaris (versions 2.5 and 2.6), as well as a number of machines running the
Nemesis operating system [Leslie96]. Also connected are a number of cam-
eras plugged into FORE ATM Video Adapters (two AVA-200s and an AVA-300
[Pratt94]) and an ATM video display device (ATV). Figure 8.1 illustrates the
topology of the ATM testbed used in the experiments. Not all workstations
and equipment connected to the switches are shown, only those used in the
experiments. Since the switches are fully connected, it was possible to experi-
ment with networks of any topology by excluding certain links from the physical
network.
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Figure 8.1: Topology of the ATM testbed

8.2 SUFI overhead

First, the overhead associated with the SUFI is considered. The performance
measurements all used a Tcl implementation of the Gobi Sandbox (see Sec-
tion 4.5). In the experiments, the client and the server ran on different machines
(167 MHz UltraSparcs), which were shared by other users. The communica-
tion component of the Sandbox is built on top of OmniOrb [ORL97]. This
means that the native OmniOrb RPC times must be subtracted from the SUFI
invocation time, to get the overhead incurred by the SUFI administration.

Table 8.1 shows the invocation times of OmniOrb RPC and SUFI remote
evaluation as measured. The results were obtained by averaging over 100 in-
vocations. The best and worst invocation times that were measured are also
included. Null-RPC comprises the invocation of a remote operation with no
arguments, which returns immediately. A null-RPC call took approximately
0.8 ms on a reasonably loaded machine. It is not quite fair to use null-RPC
values for the analysis, because the SUFI provides additional functionality in
the form of capability-based access control. The second row in Table 8.1 shows
the communication overhead when a compensation is made for the capability
(e.g. the same capability is sent in the RPC call as well). The last row of Table
8.1 shows the time it takes from the moment a DLA initiates a SUFI remote
evaluation call with no arguments, until control returns to the DLA. It turns out
that the SUFI remote evaluation operation is approximately five times slower
than the OmniOrb RPC with the same arguments. The overhead comprises
access control and other administration, as well as evaluating interpreted code.
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| Type of call ‘| Min (ms) | Aver (ms) | Max (ms) |
OmniOrb null-RPC 0.7 0.8 1.1
OmniOrb RPC with SUFI data 0.9 1.2 1.8
SUFI ping from DLA to DLA 5.9 6.0 6.2

Table 8.1: Communication overhead of the SUFI and OmniOrb RPC

8.3 Connection setup and teardown times

This section looks at the connection setup latency, a metric that is often used
to compare control architectures, e.g. [Battou96]. The workstations used were
all 167 MHz UltraSparcs, while the DPE used for communication is OmniOrb.
Long connection setup times make a control architecture unsuitable in environ-
ments where short-lived connections are expected to be common. End-to-end
connection setup latency is comprised of (1) the time it takes to process the
call in the control architecture, (2) the time it takes to communicate with the
switches to actually set up the connections and (3) the time it takes to com-
municate within the control architecture.

8.3.1 Call processing overhead

The time it takes to process a call depends on the control architecture and on
the service requested by the client and is further influenced by the number of
simultaneous requests that are made to the control architecture. For example,
it makes a difference whether an advance reservation for a multicast connection
is requested or an immediate point-to-point call. To illustrate the point, the call
processing time of Sandman, the most complex control architecture discussed in
this dissertation, and a trivial Noman control architecture are compared. The
Noman control architecture hardly does any call processing at all. It checks a
static routeing table to find the switch ports corresponding to the connection,
makes sure that VPI/VCI pairs are available on them (and marks them as used)
and enters the connection details in a connection table. If the connection table
is empty initially, the call processing time for setting up a single connection
across a switch is 0.6 ms. In the Sandman experiment, the call processing time
was measured for an advance reservation for a connection across a single switch.
On average the overhead for making the advance reservation is approximately
1.4 ms (see Table 8.2).

8.3.2 DPE overhead

The time it takes to communicate with and within the control architecture (the
DPE time) varies depending on which DPE is used. For example, OmniOrb
claims an inter-machine null-RPC time of 0.7 ms [ORL97], while DIMMA
[Li95] does not get much faster than 1.5 ms. The DPE times measured here
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| Operation | Overhead (approx.) |

Noman call processing 0.6 ms
Sandman call processing 1.4 ms
DPE time for notification of endpoint 0.85 ms
DPE time for immediate setup RPC 1.4 ms
DPE time for loading simple DLA 6.2 ms
Minimum connection setup time (ASX-1000, GSMP) 15 ms

Minimum connection setup time (ASX-200, SNMP) 6.7 ms

Table 8.2: Summary of Haboob performance figures

were all achieved using OmniOrb. The optimal RPC figures published in
[ORL97], were never quite achieved. Table 8.1 shows some typical OmniOrb
RPC figures (as measured).

In Noman control architectures DPE time is strongly related to the SUFI
overhead of Section 8.2. Because the SUFI allows for remote evaluation, in
addition to traditional RPC, it is more difficult to estimate the DPE time.
For example, where a traditional RPC style interaction with a server (e.g. the
control architecture) required n invocations, the client in the Haboob can decide
to invoke only one remote evaluation of a granule, which from then on makes
all n invocations locally. The time to send a granule for remote evaluation will
be denoted by Trgy, while the overhead of an RPC will denoted by Tgrpc.
Although the one remote evaluation might be more expensive than a single
RPC, the total DPE time can be significantly reduced, if Trgy < n X Trpc-

Figure 8.2 shows the DPE time as function of the number of connections
that were created of both an RPC style interaction (which rises approximately
linearly with the number of connections) and a single remote evaluation to cre-
ate the same number of connections (which remains constant). The RPC style
interaction invokes a separate createVCI operation for each switch connection.
The remote evaluation creates all switch connections by local calls in the same
address space. Trry was measured to be 6.2 ms on average, while Tppc av-
eraged only 1.4 ms. The figure shows that the break-even point for setting up
multiple connections across a single switch (as far as DPE time is concerned),
lies around four connections.

The overhead incurred by the DPE depends on the number of DPE invoca-
tions made. The number of remote invocations can be less in a Noman control
architecture, because control architecture and application can be integrated to
a large degree (vertical integration). However, some DPE invocations are hard
to avoid. For example, it will always be necessary to notify endpoints of the
existence of a connection (providing the VPI/VCI values of the connection).
This notification time is the same for Sandman and Noman and averaged 0.85
10S.



8.3. CONNECTION SETUP AND TEARDOWN TIMES 141

DPE TIME AS FUNCTION OF THE NUMBER OF CONNECTIONS
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Figure 8.2: Remote evaluation outperforms RPC when the number of connections
increases

8.3.3 Creating connections on a single switch

This section considers the time it takes to create the actual connections, i.e. the
overhead generated by communication with the physical switches. For this
purpose, a number of experiments was conducted in which both the Ariel im-
plementation as well as the location of the initiating client was varied. The
various possibilities are illustrated in Figure 8.3, the letter codes of this figure
correspond to the first two characters of the scenario names in Figure 8.4.

into the divider’s Sandbox

SETUP/DELETE invoked by
___ _(load DLA in switchlet Sandbox) o c static C++ code in the
| ! Sandman
DLA DLA ! v (A)

(D) i , DLA-2 D DLA code running in the
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C++code) (C) : l A DLA code that s loaded

:
1
1
1
1
!

Ariel implementation

G GSMP (ASX1000 only)

-
=< S snwe

CONTROL ARCHITECTURE SWITCH

Figure 8.3: Options for client location (A, C, D) and implementation of Ariel (G, S)
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8.3.3.1 The experiments

Each experiment consisted of the setup and teardown of a thousand connections
across a single switch. The average duration of each create/delete pair was
recorded. Each experiment was repeated ten times and the best case, worst
case and average of these values was recorded. The experiment scenarios are
named as indicated in Figure 8.4. The switches used were a FORE ASX-1000
switch and a FORE ASX-200. The Sandboxes were all based on Tcl.

SCENARIO NAME DESCRIPTION

G-C-1 -Switch communication: Ariel over GSMP to ASX-1000

-Control architecture and divider independent processes

-All processes run on the same machine

-Time measured: from the moment ‘createVCI’ is called in static C++ code,
until the ‘deleteVCI‘operation returns to the C++ code (after 1000 setups
and teardowns)

G-D-1 -same as G-C-1, except that the time is measured from the moment ’‘createVCI’
is called in the DLA, until the ’‘deleteVCI’operation returns to the DLA
(after 1000 setups and teardowns)

G-A-1 -Same as G-C-1, except that the time is measured from the moment that the
control architecture DLA initiates the remote evaluation procedure to
load DLA-2 into the switchlet Sandbox (this includes creating the Sandbox)
until 1000 connections have been setup and torn down by DLA-2

G-C-2 ~Same as G-C-1, except that client and divider run on different machines.
G-D-2 -Same as G-D-1, except that client and divider run on different machines.
G-A-2 -Same as G-A-1, except that client and divider run on different machines.
S-C-2 -Same as G-C-2, except that Ariel is implemented over SNMP

S-D-2 -Same ag G-D-2, except that Ariel is implemedted over SNMP

S-A-2 -Same as G-A-2, except that Ariel is implemented over SNMP

S-C-200 ~Same as S-C-2, except that the experiment is now run on a FORE ASX-200
§-D-200 -Same as S-D-2, except that the experiment is now run on a FORE ASX-200
S-A-200 -Same as S-A-2, except that the experiment is now run on a FORE ASX-200

Figure 8.4: Experiment scenarios for measuring setup/teardown times

Figure 8.5 shows the results of these experiments. It is striking how much
faster the connection setup/teardown time is for an ASX-200, compared to the
ASX-1000. No GSMP server was available for the ASX-200 switch, so only
the SNMP implementation could be tested. In experiment S-A-200 on switch
fylde, the total time taken by a connection set up and teardown was on average
only 8.7 ms. Of this combined figure, 6.7 ms were taken up by creating the
connection, while tearing it down again took approximately 2 ms.

The are two reasons why the ASX-200 is so much faster than the ASX-
1000. Firstly, the nature of the control software on the ASX-1000 is dubious.
The switch image that was loaded into the ASX-1000 is quite flaky. The reason
why it was used is that it offered GSMP support. However, many spurious non-
GSMP messages are created and sent also (e.g. FORE SPANS messages), which
hampers the performance. Secondly, the control processor in the ASX-200 is
a Pentium II, which is more powerful than the ASX-1000’s Intel 1960. As ex-
pected, on the ASX-200 switch, scenario G-C-200 performed a little worse than
C-A-200, because there is an extra communication with the switch. G-D-200
was slightly slower still, because it suffers both from the extra communication
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overhead and from the overbead incurred by running interpreted code. Even
so, the performance is still very good (as will be shown in Section 8.3.3.2).

CONNECTION SETUP TIMES ACROSS A SINGLE SWITCH
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Figure 8.5: Total time for connection setup + teardown of single switch connection

On the ASX-1000, the average time for a combined connection setup and
teardown lies around 30 ms. Again, the fastest times, approximately 28 ms,
were achieved by the DLA running on the divider itself, as was expected. In
this case, the DPE time was negligible. Breaking down this figure revealed that
connection creation took approximately 15 ms, while tearing it down required
13 ms. In all other cases, the overhead includes DPE time incurred by the
communication with the divider process. This overhead outweighed that of
evaluating interpreted code. The results do not include the time needed to
notify the endpoints. Table 8.2 shows that notification takes 0.85 ms.

Another interesting result is that setups and teardowns where client and
divider ran on different hosts turned out to be slightly faster than if they ran
on the same host. This in spite of the extra communication overhead incurred
by the former. A possible explanation is that the DPE did not optimise well
for same-host communication, so that the calls had to travel all the way up and
down the protocol stack. Additionally, running two communicating processes
on the same host involves a context switch each time an RPC is made. This is
not necessary when the processes run on different machines.

On the ASX-1000, the SNMP implementation is a few milliseconds slower
than the GSMP version. This is not surprising, as GSMP was explicitly devel-
oped for switch control, while SNMP connection setup and teardown involves
walking the switch’s management information base (MIB) with SNMP get and
set operations. In fact, it was somewhat of a surprise that the difference be-
tween GSMP and SNMP was so small. Again, the reason can probably be
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found in the very poor implementation of the GSMP server on the switch.

8.3.3.2 Comparison

The connection setup times are compared with published performance figures.
The results are summarised in Table 8.3.

Xbind is somewhat comparable to the Haboob in that it uses an IP bootstrap
network and a CORBA DPE to implement off-switch control [Lazar97]. An
intrinsic call setup time of 16 ms is claimed with a GSMP implementation of
the signalling software running on a Sun SparcStation 10. It is not clear on
what type of switch this was achieved, or indeed what ‘intrinsic’ call setup time
means.

UNI signalling performance was tested for both wide area networks (WANs)
and local area networks (LANSs) in [Battou96]. On a single switch experiment
in the Naval Research Laboratory, a extremely long connection setup time of 53
ms was measured. The author speculates that the poor results was due to the
low priority that given by the switch to signalling requests, which meant that
most of the resources were used by the routeing daemon. This hypothesis was
supported by subsequent experiments. The switch hardware is not specified.

A first attempt at developing performance benchmarks for ATM signalling
is presented in [Niehaus97]. Although the work is aimed at providing a general
benchmarking framework for many different types of hardware and signalling
software, the figures presented so far only address UNI signalling on a small
number of switch types. Indeed, to present the control software with signalling
requests, a call generator was implemented which is built around a core formed
by the Q.Port signalling software [Bellcore97]. It shows that off-board control
using Q.Port over GSMP on a Linux machine proved to be as fast as on-board
signalling on a FORE ASX-200 Work Group switch. The ASX-200 BX rep-
resents newer hardware. The authors speculate that the significantly faster
signalling results of the BX were due to increased processing power of the CPU
supporting signalling. '

Switch Signalling Type of Setup
type software signalling | time (ms)
Unknown Xbind/GSMP ‘ off-switch 16
Unknown UNI ' on-switch 53
DEC AN/2 UNI (Q.Port/GSMP /Linux) | off-switch 21
FORE ASX-200WG | UNI on-switch 20
FORE ASX-200BX | UNI on-switch 10
FORE ASX-1000 Sandman/GSMP off-switch 15
FORE ASX-200 Sandman/SNMP off-switch <7

Table 8.3: Comparison of connection setup times across a single switch
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8.3.4 Multiple switches

Finally, the connection setup and teardown times across multiple switches are
considered. For this purpose, the topology of Figure 8.1 is arranged as a line
of switches, each of which has a potential endpoint connected to it. The source
endpoint is connected to grove. The first sink endpoint is connected to grove
as well, the second to fylde, the third to dovey, the fourth to aller and the fifth
to colne. Now the combination of a connection setup and teardown from the
source to each of the sinks is measured. The experiments involve one thousand
connections that are set up and torn down and all values are averages of these
thousand connections. The experiments are repeated ten times. The best, worst
and average case values are shown in Figure 8.6. For grove an implementation
of Ariel over GSMP is used, while all other switches are controlled using SNMP.
The results are shown in Figure 8.6.

Also shown in the same figure are the performance figures of setup times
across multiple switches using ATMF UNI published in [Battou96]. Note
that these figures represent connection setup only, while the Sandman figures
include both a setup and a teardown. In other words, creating a connection in
the Sandman and subsequently tearing it down again, is approximately twice
as fast as only creating a connection in [Battou96]!

CONNECTION SETUP TIMES ACROSS MULTIPLE HOPS
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Figure 8.6: Connection setup and teardown times for multiple hops
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8.4 Traffic servers and admission control

In this section, the traffic servers proposed in Section 5.2 and extended in
Section 5.4.2.3 are evaluated. Traffic servers are generic servers that can be
used (and extended) by any application. In this section, it will be shown how
they are used successfully for admission control. For this purpose a variety of
different sources is used, including JPEG video streams at various frame rates,
as well as data streams created by a traffic generator. The latter allows more
precise control over the burstiness and general shape of the arrival process.

8.4.1 Effective bandwidth of a single source

To see how estimating the effective bandwidth helps resource utilisation, con-
sider Figure 8.7. The figure shows a thirty seconds trace of a bursty source
(created by a traffic generator running on a Sun UltraSparc). The connection
is created approximately at ¢ = 12.5 and becomes active at ¢t = 14. All mea-
surements were conducted on a FORE ASX-100 switch with a buffer size of
256 cells. The switch is loaded with special-purpose software that periodically
sends measurements via the switch’s control port to a traffic server running on
a general-purpose workstation. In the first experiment, this period was set to
75 milliseconds. The traffic server calculates the effective bandwidth (EBW)
on connections of which it was previously notified that they are active. It also
calculates the aggregate effective bandwidth. The results of these calculations
are sent to the Sandman control architecture to be used for CAC decisions.

Theoretically, the peak rate for this source reaches 4700 cells per seconds,
but in practice this rate is seldom reached. Indeed, as shown by the trace,
during long intervals the rate stays well below 4000 cells per seconds and bursts
are relatively rare. The mean cell rate seems to lie somewhere around 3500
cells per second. Instead of using the peak rate, it is more efficient to use the
effective bandwidth, which, by definition, lies somewhere between the mean cell
rate and the peak rate. For illustration, Figure 8.7 also shows the connection’s
estimated effective bandwidth corresponding to a cell loss ratio of 1072, In this
case, when the effective bandwidth is used for admission control instead of the
peak rate, the gain in resource utilisation approaches 15%.

" It is interesting to note that like the measured traffic, the estimated effective
bandwidth starts at 0, but rises very rapidly the moment the source becomes
active at t = 14. Since the data rate jumps from 0 to almost 4000, the effective
bandwidth makes a large jump as well. After the initial jump, however, the
effective bandwidth remains within a small range, not far above the mean rate
and well below the peak. Where the effective bandwidth estimate stabilises is
a function of the target CLR. A smaller target CLR would push the effective
bandwidth estimate closer to the peak. After 43 seconds, the connection is
torn down. As the control architecture explicitly tells the traffic server that
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MEASURED AND EFFECTIVE BANDWIDTH OF A BURSTY SOURCE
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Figure 8.7: Effective bandwidth of a single bursty source

the connection has left, the measurements from the switch for this VPI/VCI
pair are now ignored and the effective bandwidth calculation for the connection
stops.

Figure 8.8 shows a similar trace for a JPEG video transmission. The video
data was generated by an ATM camera (FORE AVA-200 [Pratt94]). The video
was a full colour video stream with a frame size of 768x288 pixels and a Q
factor of 32. The frame rate was 10 frames per second. All video transmissions
that were used in the experiments had these same properties, except for the
frame rate, which was varied to differentiate between video streams. Again the
effective bandwidth stays well below the peak rate.

8.4.2 Effective bandwidth of multiple sources

Next, the aggregation of multiple sources is considered. For example, the short
trace in Figure 8.9, shows the measured and effective bandwidth of two JPEG
video streams. Both video streams are generated by ATM cameras with the
same properties as the video stream of Figure 8.8. The first stream had a rate
of 12 frames per second, while the second ran at 5 frames per second. The
first stream is active between t = 1 and ¢ = 15, while the second stream is
added at t = 5 and removed again at ¢t = 10. Again, it is noteworthy that
the effective bandwidth estimation shoots up quickly, the moment the second
stream is added and drops immediately after the second stream has left. This
is exactly the desired behaviour.
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Figure 8.8: Effective bandwidth of a single JPEG video stream

8.4.3 Using effective bandwidth for CAC decisions

As a simple demonstration of how the EBW estimates by the traffic servers
may influence CAC decisions consider the following scenario. A set of requests
is submitted to the Sandman. The resource of interest is a switch port shared
by all calls. The relevant parameters are shown in Figure 8.10. All three data
streams are created by traffic generators.

The sum of the peak rates of source 1 (5000 cells/s) and source 2 (4000
cells/s) exceeds the total capacity of the virtual network for this port (8000
cells/s). At ¢t =0, an attempt is made to reserve bandwidth for three calls, but
since at this point the CAC is based on peak rates only (no traffic has been
seen yet), the request for source 2 (which overlaps with source 1) is rejected.
Figure 8.11 shows the actual traffic of the flows!.

The total traffic on the port is shown in Figure 8.12. Also shown is the aggregate
EBW which lies well below the peak rates. Since the CAC algorithm uses
the EBW of active calls rather than their peaks, it makes a less conservative
admission decision some time after the first connection starts. For example, it
can be observed in Figure 8.10 that when another attempt is made to reserve
bandwidth for source 2, this time at ¢ = 50, the request is accepted (see also
Figure 8.12). The EBW of the active connection (< 4000) plus the peak of the
new request (4000) does not exceed the resource capacity. Figure 8.12 shows

! Although there are three connections, only two VCI values are used. Since the third
connection starts after the first connection has ended, it reuses its VCI.
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MEASURED AND EFFECTIVE BANDWIDTH OF TWO JPEG SOURCES

12000 T T T T T T | —
MRSt o
EBW ----
10000 i
8000 - .
@
2
©
&
I
5 6000 N
2
Z
3
4000 4
2000 -
0 1 : L. 1 1 1 1 1
0 2 4 10 12 14 16

8
TIME (s)

Figure 8.9: Effective bandwidth of two video streams
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Figure 8.10: Requests, peak rates and capacity

that the acceptance is justified—the total traffic never exceeds the capacity
and, even for such a small number of sources, resource utilisation improves
considerably.

Observe that the aggregate EBW rises logarithmically, when the second
source is added. If this plot is compared to previous diagrams, one might
suspect that the estimated aggregate effective bandwidth is not the same as the
sum of the effective bandwidths of the two individual connections. Indeed, it
is not: the aggregate EBW lies significantly below this sum. This constitutes
the multiplexing gain. Another interesting thing is the decay of the EBW in
the trace of the third source. This source starts with a burst of traffic, which
pushes the effective bandwidth up to well over 6500 cells per second. After this
burst, the data rate of the source drops. What is interesting is that the effective
bandwidth drops in an exponential way. The first drop is by a large step, but
after a while this tails off. This is similar to the way the effective bandwidth is
pushed up when the data rate increases.
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MEASURED TRAFFIC ON THE TWO VCI (FOR THREE SOURCES)

7000 ' ' ! T T T T T T
“Teattic on VOE 10T
"Traffic on VCI 101" -——

6000

SOURCE 1
5000

cells/s

4000 -

3000 ke e E ]
Sl E SOURCE 3
! i i

2000 | i ! I -
Prn I
U ' i

1000 -  SOURCE 2 —» T

0 1 1 1 1 FI 1 1
0 50 100 150 200 250 300 350 400 450 500

Time(s)

Figure 8.11: Trace of three traffic sources

Using an estimation of effective bandwidth based on online measurements
to make CAC decisions is an active research topic. Related work in the field
is discussed in Section 5.6.3. It has been shown that a traffic server’s effective
bandwidth estimates can help improve the resource utilisation considerably,
especially in systems that would otherwise use the declared peak rate of con-
nections for CAC. Making traffic servers elastic allows a client to specify exactly
what sort of measurements and estimates it wants and when it wants them.

8.5 Summary

The performance results discussed in this chapter show two things, namely that:
(1) running network control off-board need not be slower than running the con-
troller on the switch, and (2) control performed by (interpreted) DLAs need not
be slower than control performed by static C/C++ code, due to the possibility
to apply application-specific optimisations on the fly. The connection setup
times measured for the Haboob were faster than even the best results published
in the literature for comparable equipment. The call admission control experi-
ments show that using effective bandwidth estimates instead of peak rates for
CAC improves resource utilisation considerably.
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Chapter 9

Conclusion

In this dissertation, an open and extensible way to control and manage ATM
networks is presented. The aim is to allow for easier development and introduc-
tion of innovative network control and services than hitherto possible. This is
done by providing a set of basic components which users can combine, modify
and extend on the fly, according to their own needs.

9.1 Summary

The dissertation concerns itself with elastic network control, which is defined
as network control software that is distributed across a network and consists
of multiple interacting components. The interaction takes place across well-
defined interfaces, which are open and public. Elasticity means that the com-
ponents can be dynamically modified and extended. An implementation of
elastic network control has been described in the form of the Haboob.

In Chapter 1 the inadequacies of existing approaches to network control are
pointed out. Standards-based approaches are shown to be both too complex
and too limited. A more promising approach is what is known as open control
with support of multiple control architectures in the same physical networks. A .
first attempt at such control is made with the open system support architecture
(OSSA). Although the OSSA and related projects elsewhere are recognised as
important steps towards open network control, they lack flexibility in that it is
hard to extend or override the functionality of the components. However, this
type of flexibility is slowly emerging in active networks technology. This disser-
tation can be viewed as a bridge between active networks and open signalling.
This is illustrated in Figure 9.1. Chapter 2 summarises the Tempest and the
research context.

In Chapter 3, both the network model and the computational model for
dynamically loadable code are discussed. The network model consists of de-

152
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Figure 9.1: The Haboob in the evolution of communication networks control and
management

composing control in six independent levels, namely:

a generic switch control interface, known as Ariel;
switch dividers that partition switch resources into switchlets;
netbuilders that combine switchlets into virtual networks;

control architectures that perform the actual control over the virtual networks;

grom o=

generic services, such as traders and traffic servers, that can be used by all other
components in the system;

6. datapath components, which are either endpoints of data streams partaking in
control, or data processing units located on the datapath (in-band control).

The computational model is described following the Sandbox framework.
The Sandbox is an execution environment in which dynamically loadable agents
(DLAs) can be loaded and executed. Functionality in the Sandbox is provided
by modules that have well-defined interfaces. The basic execution environment
provides one standardised module, known as SUFI (for “simple uniform frame-
work for interaction”), which enables DLAs in different Sandboxes to interact.
Only interfaces are defined, so that as much implementation independence as
possible is retained. Inter-DLA interaction takes place either via RPC or re-
mote evaluation. An implementation of the Sandbox is discussed in Chapter 4.
DLAs execute in sand-boxed environments: their access to resources is limited
and they are not able to interfere with either the underlying system or DLAs
in different Sandboxes.

In Chapter 5, elastic control architectures are discussed. Control archi-
tectures can be extremely complex and many issues are touched upon in this
chapter in the context of an advanced home-grown control architecture, called
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Sandman. They include advance reservation of resources, call admission con-
trol based on measurements, and the problem of interdependent connections.
The call admission control algorithm admits or rejects requests based on de-
clared peak rate only, but uses an estimation of the effective bandwidth on
active connections as well. New connection types are introduced for restricted
multipoint-to-point and multipoint-to-multipoint connections. It is shown how
the resources owned by a control architecture can be repartitioned recursively
using netlets. An application that creates a netlet is considered the 'owner’ of
that netlet and is given low-level control over the netlet’s resources.

It is also permitted to load control code in a Sandbox in the control ar-
chitecture, in the form of a DLA that corresponds to a netlet. Netlets can be
seen as light-weight virtual networks. To prove the validity of the Sandman, a
distributed video server, called BigDisk, is implemented. BigDisk allows owners
of cheap and limited disk space to record feature-length video files, by chop-
ping the file up in segments and spreading the segments across several disks
on the local network, according to a load-balancing policy. The second type of
control architecture in this dissertation are control architectures of the Noman
family, consisting solely of dynamically loadable code. Noman is defined as a
programmable control architecture framework, which offers a simple API that
allows DLAs to build their own control architecture.

In Chapter 6, the problem of control architecture interoperability is tack-
led. Traditional approaches towards interoperability were shown to suffer from
two majors flaws. First, there is a problem of functionality degradation which
arises when requests from a feature-rich control architecture are translated into
those of a simpler control architecture at the domain boundary. As a solution,
simple interoperability is used to establish an inter-domain signalling channel
between two feature-rich control architectures. The second problem consists
of fixed functionality mapping. There are often multiple ways to map a re-
quest of a control architecture into that of another. In traditional solutions for
interoperability this mapping is predetermined and fixed. However, only end
applications know what the best mapping in their application area is. To solve
this problem, applications are allowed to specify their own code to perform the
interoperability mapping.

Elastic versions of the generic switch interface, the switch divider and the
netbuilder are discussed in Chapter 7. Starting with the switch interface, in the
Haboob, applications are permitted to load DLAs that run directly on top of
their switchlets, making calls to switchlet operations (over the Ariel interface)
in the same address space as the divider itself. It is also possible to extend
Ariel itself, using native methods. At the divider level, two types of DLA are
permitted. The first type controls the behaviour of the entire switch divider
and only privileged users should be allowed access to this Sandbox. The other
type is more forgiving, corresponding only to the management operations of a
particular switchlet. It is shown how aggregate switchlets could be built using
DLAs. The elastic netbuilder allows both system administrators and clients



9.2. FUTURE WORK 155

with fewer privileges to influence the way virtual networks are built. As an
example it is shown how “normal” active network nodes were built on the fly.

In Chapter 8, the proof-of-concept Haboob is tested for performance. It
is shown that the connection setup times of the Haboob compare favourably
with those of existing, commercial control architectures. It is also shown that
using effective bandwidth for call admission control increases network utilisation -
significantly.

9.2 Future work

One particular problem that needs to be addressed thoroughly concerns off-
switch call admission control. Vendors are generally reluctant to publish the
internals of their switches. This makes it hard to map QoS onto resources,
when performing CAC off-switch. This is a problem that is not specific to the
Haboob. All open signalling approaches that perform CAC externally suffer
from it. Furthermore, the call admission control experiments show that there is
a lot to be gained by using effective bandwidth estimates instead of peak rates

. for CAC. Open issues that need to be resolved, however, include pa,thologica.l,~

but still realistic, scenarios, e.g. in which many sources increase their resource
utilisation all at once and by a large amount.

It would be interesting to port the Haboob to other connection-oriented
network technologies. In the Internet, the RSVP protocol allows for resource
reservation on the datapath. It should be possible to allow networks supporting
a modified version of RSVP to be controlled by an IP version of the Haboob.
Similarly, IPv6 flows could be controlled with control components in the Haboob
[IETF98)]. In this case, it would be much harder to give strict QoS guarantees.
However, it would still allow the exploitation of application-specific knowledge.
As a first step in this direction, new versions of the Ariel and divider interfaces

have been designed, that allow a more general treatment of QoS issues and are
less ATM specific.

9.3 Conclusion

It is the thesis of this dissertation that open elastic network control provides
users and application programmers a convenient means to build applications
and control services that hitherto were difficult or impossible to realise. This
has been achieved in the sense that network control policies can be modified and
extended dynamically, down to the processing of individual packets (as in active
networks), while retaining in general the clear separation between control and
datapath. Recognising the limitations of previous approaches to open signalling,
it is an attempt to completely open up the control of networks. This includes not
only connection setup and such operations, but also partitioning of resources,
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building virtual networks, design and implementation of control architectures,
generic services and even datapath components.

In. particular, a carefully designed Sandbox, that is independent both of the
underlying implementation of the execution environment and of the language
used for the dynamically loadable code, allows elastic behaviour to be intro-
duced in many aspects of network control. Sandboxes contain a simple stan-
dardised module which allows them to interoperate. This functionality can be
extended easily with new modules. All interaction takes place via well-defined
interfaces, which allows independent development of the individual components.
This permits application-specific knowledge to be exploited at various levels of
network control. A number of examples, that to the author’s knowledge can-
not be implemented using existing network control, were built to support the
thesis. These include the possibility to program application-specific policing,
interoperability and reservation behaviour, of partitions of a network. It was
further shown, that performance need not suffer from elastic network control.
Furthermore, the additional functionality that is gained, equals or exceeds that
of other approaches to programmable network control.

It is concluded that the dissertation supports the thesis. Furthermore,
adding such flexibility as offered by the Haboob’s elastic network control is
essential, if the rapid development and deployment of application-specific ser-
vices and control mechanisms is important. This work is strongly at odds
with, and more flexible than, standardisation efforts which aim to provide an
all-encompassing control solution, using fixed functionality that is set in stone.




Appendix A

Estimating the effective
bandwidth

In Section 5.2, a call admission control (CAC) algorithm was described, which
was based (partly) on the estimation of the effective bandwidth (EBW) using
online measurements. This was called measurement-based admission control
(MBAC). The next two sections will mathematically derive an expression for
the EBW corresponding to a desired cell loss ratio (CLR).

A.1 Introduction

The Sandman EBW estimation is based on a branch of statistics known as Large
Deviations Theory [Weiss95]. The EBW estimate is similar to [Crosby95b]
with a few modifications. In this section, the relevant results are summarised. It
is important to realise that various other MBAC schemes have been proposed in
the literature. A discussion of related work on MBAC is given in Section 5.6.3.

In the following discussion, the next few parameters are very important.
The aim is to find r, the effective bandwidth of a connection, or group of
connections, which corresponds to a target CLR p. The target CLR p represents
the probability that a cell is lost due to buffer overflow. The size of this buffer
is denoted by b (for example, in a FORE ASX-100, the size of the switch buffer
is 256 cells).

A.2 Effective bandwidth estimation

In an environment where a buffer is served at constant rate 7y, the workload
process W; (which essentially denotes the total number of cell arrivals minus
the number of departures) is defined as:
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i
Wt:ZXi_t X Ttot

=1

where {X;} is the number of arrivals in interval ¢ and {X;} independent
and indentically distributed (iid)!. It is a well-known result from queueing
theory that the queue length @ of a buffer depends on W; as follows: @ =
maz {W; :t > 0}.

Under general conditions, a single-server queue has a queue length distribu-
tion (which is derived from the workload) with asymptotes of the form:

P(W; > ) < 1@
= P(Q>gq)=e™ (A1)

where I(z) is the rate function of the workload process and ¢ is called the
decay rate. It is not hard to see that J is a function of r. Note that setting ¢ =b
in equation A.1 yields the CLR, provided b is sufficiently large. Measurements
on real switches (with finite buffer space) have shown that for realistic buffer
sizes, the log linear approximation of equation A.1 holds. In that case, equation
A.1 gives a good approximation for the CLR. Now, the rate r that corresponds
to a specific CLR can be calculated. Define A, a transform of I called the scaled
cumulant generating function (SCGF), of the workload process as follows:

A(s) = tl_lf{.‘o % InE (eswt) (A.2)

which is related to I by the Legendre transform:

I(z) = mazs {zs — A(s)} - (A3)
Note that r is constant. In other words, W; = Zle X; —r xt. Then:
1
As) = lim - In B (e2(LX1))
t—oo t

- tl_i;go%lnE (es(zx)) —sxr
= Xa(s) —sxr (A.4)

Yin fact, this can be relaxed to ‘weakly dependent and stationary’, but this is beyond the
scope of this discussion
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where A4 is the SCGF of the arrivals process. So, given the arrivals SCGF
we can calculate § as function of r as follows:

o(r) =maz {s: As(s) < s xr} (A.5)

This result can be used to find r, the service rate corresponding to a par-
ticular 4, i.e. to the target CLR. The CLR is really the probability of buffer
overflow. Assuming the buffer size is b, we can use (A.1):

P(Q > b) < ¢%mb
lnC’LR)

= r=min (6(3) > —

From (A.5) we know that r > A(d)/d. Substitute § = —lnc%:

A (gm)

r= _InCLR
b

and it is easy to prove? that lambda(—z) = —lambda(z). So for a target
CLR of p, the required service rate can be calculated as follows:
=7 = (A((Inp)/b))/ ((Inp)/b) (A.6)

The function A(0)/6 is called the effective bandwidth. To estimate \ we
use the following: for a large class of arrival processes it is possible to find a
block length T' such that the aggregated arrivals At are approximately iid. The
arrival process is therefore broken up into intervals of length 7°. The number of
arrivals in the 5t block of length T is denoted by Ag,f) . Then:

As) ~ %mE (e*47)
. 1.1 & e
s0: Ms)==ln—Y er (A7)
T N i=1

gives an estimation A and hence of the EBW. The choice of block size
T is important. It should be large enough to make arrivals in the interval
independent, but not so large that short bursts are smoothed out. It is beyond
the scope of this dissertation to derive the ideal value for T'. In the experiments,
T was set to values between 75 and 200 milliseconds.

%X, iid, so simply work out lambda(—z) using equation A.2, in the same way as in A.4
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A.3 Discussion

From equation A.7, it becomes clear that according to theory the effective
bandwidth estimation relies on the complete history of all arrivals. In other
words, the aggregate EBW is estimated from all arrivals in all blocks of length
T since the start of day (observe though, that it is sufficient to store only the
partial sum, instead of the entire history). However, this means that also mea-
surements from connections that are really no longer active (even though the
switch connection may still be there) are included in the calculation of the ag-
gregate EBW. To remedy this, measurements are taken per active connection,
where the client of the traffic server determines when connections are activated

and deactivated. In this case, this client will be the Sandman control archi- -

tecture, but the traffic server is a generic service and could serve other clients
as well. Summarising, the traffic servers receive statistics from the switch for
each active connection individually (and also for the aggregate of all connec-
tions). When connections leave, the measurements corresponding to them will
be discarded.



Appendix B

Estimating the follow-up
latency

In Section 5.3.4, the latency in the BigDisk distributed video server was dis-
cussed. It was mentioned there that the estimation of the follow-up latency was
important to prevent glitches in the playback of a video. A brief sketch of the
mechanism for this estimation and its assumptions is given below.

The approach taken in an experimental version of the Sandman is to give
probabilistic upper (and lower) bounds on the follow-up playback latency, across
a single switch and potentially even end-to-end. What this means, is that
BigDisk clients are allowed to specify a latency probability bound (lpb) which
they submit to the control architecture. The control architecture is then able
to calculate the corresponding delay Dy,;. For example, an Ipb of 99% means
that the client wants to know the delay bound that 99 % of the traffic stays
under. In other words: P(delay > Djg9) < 0.99. This delay bound can be
used to determine the size of the buffer required to guarantee smooth playout.
The next few sections will detail how this is done.

B.1 Model and assumptions

Figure B.1 shows what components make up the follow-up latency. It is as-
sumed that the network-related follow-up latency is comprised of the following
components:

1. teardown time of the first connection on the cut-off switch;
2. communication delay for teardown message;

3. setup time on the cut-off switch (the connections on the other switches
on the path to the new source are set up just prior to the handoff);
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L = delay on link

Q = queueing delay in switch

S = time to set up a switch connection Thot
R = time to release a switch connection \I‘

Toomm = time to communicate with switch comm

Tt = notification of new source Toomm

Cut-Off Switch

Figure B.1: Follow-up latency model

4. communication delay for setup message;
5. delay incurred by notifying the new source;
6. end-to-end network delay of data:

(a) queueing delay in the switches;
(b) delay ‘on the wire’.

Consequently, the latency in the endpoints (e.g. of getting the data from
disk), is not included. This is only known at the application level and should be
dealt with there also. The following simplifying but not unreasonable definitions
and assumptions are made.

1. The time it takes to set up or tear down a connection on a switch i is
bounded by Ts(%).

2. The delay on link i is bounded by T;(z).

3. The communication delay for communication with a specific host/switch
i (or notification of host ) is bounded by Trpe(%).

4. The queueing delay on switch i is denoted by Tg(%) and is unknown.
5. There are Sit(i,j) switches between endpoints ¢ and j (and Si(3,7) + 1
links).

In reality, Trp. depends on the delay in the switches as well. Things have
been simplified here to keep the equations short, but it is not difficult to extend
the model to take this into account. Also, in reality the notification should
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take only 0.57;,c, as the new source will start sending immediately upon being
called back!.

B.2 Deriving latency

The teardown of the old source connection beyond the cut-off switch takes zero
time, because it is deferred until after the new source has started sending. We
can now define the latency L incurred by a source replacement. In Figure B.1,
source Al is replaced by A2 at cut-off switch s, and the sink is called B. Define
pathyy (4) as the ith element on the path from @ to b (this can be either a switch
or a link, depending on the context). The latency L is defined as follows:

L = Trpe(A2) + 2T7pe(sc) + 2T5(sc)
Stot(A2,B)+1
+ > Typathigp ()
=1
Stot(A2,B)
+ Y Ty(pathias g (i) (B.1)

i=1

The value of the variables in equation B.1 are constant and known, except
for the values of the queueing delay, which depend on the other traffic. In other
words, Liotar = Lconst + Loueue- FOTr Lgyene, a target probabilistic bound will be
derived, i.e. a bound of the form: ‘less than 100 ms with probability 0.95.

B.3 Large bounds on queueing delay

There are many ways to derive bounds on the queueing delay on switches.
Often a specific traffic model is presumed. This dissertation argues against the
validity of such an approach and in section A.2, a method to arrive at values for
effective bandwidth corresponding to a desired CLR was discussed, which does
not need such accurate source characterisation. The method was based on large
deviation theory, as described in [Weiss95]. A similar approach is used here,
to obtain probabilistic bounds on the queueing delay. Note that both CLR and
queueing delay depend on the queue length distribution. Define () to be the
length of a queue, D to be the delay that a cell in this queue experiences, B;
to be the size of the buffer? on switch 4, and rg.(i) to be the service rate of
this queue. As described in A.2, large deviations theory states that under very
general circumstances (and when g is sufficiently large):

1n fact, a similar optimisation could be made for communication with the switches, if
simple non-blocking messages are sent to the switches
*for the particular connection class of interest
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PQ>gme™
= P(D > d) ~ e %dTve (B.2)

So, if we pick d, the lower bound for delay switch 4, reasonably large (large
enough for large deviations theory to be applied), we can obtain the probability
distribution of the queueing delay across a single switch®. Define d; of a switch
i as the maximum queueing delay on this swifch. It can be easily seen that:
d; = B; /Tsve(i). And so the maximum queueing delay over n switches can be
defined as D = Y% d;.

Observe that the queueing process here is essentially a single server FIFO
queue. Things change somewhat if per-VC (or per connection class) queueing is
used. It is assumed that in such a case, each connection (class) has a relatively
fixed buffer size that is FIFO in nature and the service rate at which the queue
is drained is a relatively constant fraction (weight) of the total capacity. Under
these assumptions, the same methods can be applied as in the case of a single
FIFO queue (albeit with different buffer size and service rate).

It is now possible to get a handle on the probability distribution of the end-
to-end queueing delay. A simple demonstration for providing latency guarantees
was built, which made the simplifying assumption that the probability distribu-
tion of the queueing delay in the switches is independent®. Then the probability
that the delay across n switches is greater than tg, where tg > 37 d; follows:

P(Diwy >tg) < >, { 1I P(Dizdi)} (B.3)

tQSdSb dl+...+dp=d

where

P(D=d)=P(Q>dxXre)—P(Q>dXreg.+1) (B.4)

Using (B.2) and the derivations of 6 and A from appendix A, the desired
probabilistic upper bound on the end-to-end delay has been found. All variables
can be determined (see Appendix A.2). An application can tune its buffer to a
particular delay probability. It will look at the total latency and determine the
desired probability for buffer underflow, i.e. the buffer should be big enough

31t’s beyond the scope of this dissertation to determine the minimum value for d;. Inter-
ested readers are referred to [Weiss95].

4Although an over-simplification, it is not as unreasonable as it may seem: it can be
shown that it holds for both M/M/1 and Geom/Geom/1 queues (as demonstrated in [Hui90],
Chapter 7).
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to hold at least Lconst milliseconds of video plus the Lgyeqe that corresponds
to this desired underflow probability. Note that since d, the end-to-end delay
bound, should be larger than t; > >°7 df, we are only able to determine the
probability distribution for short end-to-end delays in connections with a small
number of hops. For connections with many hops, we only get the distribution
for relatively long delays. This is probably reasonable, as it matches the delay
we are likely to experience in the real world. The derivation of the probability
distribution of short delays (where large deviations theory cannot be aplied), is
the topic of ongoing research.




Appendix C

Example of temporary
reservations

In Section 5.4.4.2, CAC DLAs are introduced, which make temporary reserva-
tion at CAC time. A brief example illustrating the process is presented here.
When a new request arrives at the Sandman, i.e. when Sandman needs to make
a CAC decision for a switch port, it checks whether a CAC DLA was installed,
and if so, executes it. The loadable CAC code receives from the control architec-
ture the time interval [T, T;] corresponding to the new reservation request. The
DLA then makes temporary reservations according to its own reservation policy
for this time interval. After the loadable code has made all the reservations it
wants to make for this interval, it simply returns. The CAC algorithm now
makes its decision based on all reservations currently in the schedules, includ-
ing the temporary ones. The temporary reservations disappear automatically
when the CAC procedure returns.

As an example, consider a contrived application A; that wants to reserve
bandwidth proportional to what day of the month it is. So, if it is the first
of that month, the application reserves B bandwidth, next day it reserves 2B,
the day after that 3B and so on, until it wraps back to B, when the month
changes. Also assume that the application’s request to install loadable code
corresponding to this resource reservation behaviour on a certain switch port
was accepted. Suppose finally that the total capacity of that switchport is By,
that the amount of bandwidth reserved statically (in reservation schedules) is
Bisy and that the available bandwidth at some point in time is Bgyges. Now, a
new application Ap submits a request to reserve statically B¢ bandwidth on
this port from the morning of July the 5th until the night of the July the 6th.
What happens is the following:

1. The CAC procedure discovers that loadable CAC code exists for this port
and executes it.

2. The loadable CAC code makes temporary reservations for 5B bandwidth
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on the 5th and 6B bandwidth on the 6th of July and returns control to
the default CAC procedure.

" 3. The default CAC procedure now simply checks its schedules and accepts
the new reservation request if at all times during the two days of interest
Bayait = Biot — Bresv > Byeq, and rejects it otherwise.

4. The CAC result is returned (the temporary reservations disappear auto-
matically).

In this way, any application-specific reservation policy can be implemented.
The DLAS for different applications are independent and can be executed in any
order. An interesting problem is how one should charge for these reservations.
One option is to charge client charged a predetermined fee that is determined
when the DLA is loaded, pretty much like a contract. Alternatively, one could
opt for more adventurous schemes, e.g. to charge clients according to how often
their reservations overlap with those of other requests.
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