Technical Report A

Number 480

Computer Laboratory

Programming combinations
of deduction and BDD-based
symbolic calculation

Mike Gordon

December 1999

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1999 Mike Gordon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Programming combinations of deduction
and BDD-based symbolic calculation

Mike Gordon*
December 15, 1999

Abstract

Theorem provers descended from LCF allow their users to write com-
plex proof tools that provide high assurance that false theorems will
not be proved. This paper describes some experiments in extending
the ‘L.CF approach’ to enable BDD-based symbolic algerithms to be
programmed with a similar assurance. The deduction is supplied by
the HOL system and the BDD algorithms by the BuDDy package.

1 Introduction

LCF-style theorem provers [12] extend the ML programming language [19]
with two types: term representing logical terms! and thm representing the-
orems. Milner’s key idea was to make thm an abstract type whose only
theorem-creating operations correspond to rules of inference of a logic. Users
can program complex proof procedures in ML by calling the primitive oper-
ations of thm. The ML type discipline ensures that theorem-values can only
be created via sequences of primitive inferences. The set of theorems corre-
.sponds to a subset of the set of terms, namely those terms that are proveable.
The notation - t means that term ¢ is a theorem. There is a long-standing
controversy about whether the LCF-approach can achieve good enough ef-
ficiency. In a surprising number of cases it can [6]. However, programming

*Univerity of Cambridge Computer Laboratory, New Museums Site, Pembroke Street,
Cambridge CB2 3QG, United Kingdom, Email: mjcg@cl.cam.ac.uk
1Boolean terms represent predicate calculus formulae.

1

decision procedures and theorem provers in an LCF-style is more demanding
than just implementing them as algorithms. Thus, even if a pure LCF-style
solution is possible, it might be more cost-effective to use a simpler approach.
Modern LCF-style provers (e.g. HOL [11] and Isabelle [22]) allow ‘oracles’ to
create theorems. Such oracles can either be ML programs that operate di-
rectly on the data-structures underlying theorems, or they might be external
tools implemented in other languages (e.g. C).

Many successful automatic verification algorithms are based on computing
with Boolean terms represented as binary decision diagrams (BDDs for short)
[7]. There is a lot of work on combining general higher order logic theorem
proving with BDD-based verification oracles (e.g. [23, 5]). The approach
usually taken is to regard the oracle as a ‘black box’ invoked as a separate
process using translations between the formalisms of the two systems.

The work described here differs in that it aims to provide ‘LCF-style’ general
infrastructure enabling users to implement their own BDD-based verification
algorithms inside HOL. Thus, rather than link to an external black box model
checker one can program up a bespoke checker with an LCF-like assurance
of soundness.

Preliminary experiments described here suggest that not only can standard
state exploration algorithms be efficiently and securely programmed in HOL,
but that their tight integration makes it easy to combine algorithmic and
deductive methods to do things that are not possible with either component
in isolation. An example is using theorem proving to rewrite terms so that
the resulting BDDs are more tractable, then performing BDD calculations,
then converting the result back to a term and simplifying it.

The rest of this paper is structured as follows: first the combination of the
HOL theorem prover and the BuDDy BDD package is outlined, then some
basic programming techniques using the combination are described, then
some elementary reachability concepts are reviewed, and finally three case
studies are summarised: a treatment of the classical Missionaries and Can-
nibals problem, a simple autopilot (previously analysed using PVS) and an
asynchronous arbiter (previously analysed with Voss).

2 HOL-+BuDDy

As part of a project on formal verification of Verilog programs, Ken Larsen
interfaced Jgrn Lind-Nielsen’s BuDDy BDD package?, which is written in C,
to Moscow ML3. The BuDDy package provides state-of-the-art implementa-
tions of standard BDD algorithms [4]. The Moscow ML interface to BuDDy
provides ML functions for constructing and manipulating BDDs. The stor-
age management of ML and BuDDy is linked: for example, whenever a BDD
is garbage collected by ML, its reference count in BuDDy is decreased and
hence it may be subsequently garbage collected by the BDD package. BDDs
are made available in Moscow ML via an ML type bdd representing nodes in
BuDDy’s BDD space together with operations for creating and manipulating
ML values representing values of type bdd.

Building on the Moscow ML interface to BuDDy, a connection between BDDs
and higher order logic has been implemented [13]. How this works is discussed
in some detail later.? Two functions are provided:

termToBdd : term— bdd
bddToTern : bdd—term

The function termToBdd tries to represent a term as a BDD using a variable
ordering held in an extensible ML datastructure called the variable map and a
database of previously computed BDDs called the BDD table. An exception
is raised if a BDD cannot be computed. An explicit variable order can be
declared. Without such a declaration, variables are given the order in which
they are encountered. A side-effect of a call to termToBdd is to add any
previously unseen variables to the variable map. The function bddToTerm is
total and creates a nested conditional corresponding to a BDD. The functions
termToBdd and bddToTerm must be used carefully as they can cause enormous
structures to be generated that exhaust available space.

The oracle function
bddOracle : term—sthm

returns the theorem F t, if termToBdd ¢ successfully evaluates to the BDD
representing T and returns F —¢ if termToBdd t successfully evaluates to
the BDD representing F. This function is the only way that HOL theorems

2http://cs.it.dtu.dk/buddy/

3http://www.dina.kvl.dk/~sestoft/mosml.html

4The system described here is undergoing development and rationalisation and so the
details in this paper (such as identifier names) might change.

can be created via BuDDy. Theorems created using bdd0Oracle are marked as
having been created by BuDDy and this mark is propagated to any theorems
deduced from it, so that the provenance of theorems is explicit (i.e. whether
they are proved using only the rules of higher order logic, or proved from
theorems created using the BDD oracle).

To use BuDDy to check whether ¢; and t» are equivalent, it is sufficient to
check that bddOracle (t; = tp) evaluates to - t; = to. The ML function
EqCheck : term x term — bool, which is used later, is pre-defined to do this.
The domain of termToBdd includes quantified Boolean formulae (QBFs), that
is terms built out of variables and the constants T and F using propositional
operators =, A, V, =, =, V, 3 (the quantified formula Vb:bool. P(b) is equiv-
alent to P(T) A P(F) and 3b:bool. P(b) to P(T)V P(F)).

Specifications of systems are not normally single formulae, but are structured
hierarchically using components. For example, hardware designs are often
represented by hieraries of equations, such as

D(m) = Jv. D:(@,7) A -~ A D,(4,7)
Di(m,v) =3 ---
D,(@,7) =3 -

where ¥ is the tuple of variables internal to D. If the definition of D(@) can be
unfolded to a Boolean formula, (e.g. by rewriting with the definitions of D; and
their components), then the BDD of D(%) can be computed. However, this
can be a bad idea: (i) it might be that the term that results from unfolding
the definitions of all the components of D is too big to fit inside HOL, even
though the BDD of the term can be represented in BuDDy, and (ii) the BDDs
of the components might have already been computed (e.g. with optimised
variable orderings) and then it could be more efficient to compute the BDD of
D by applying standard BDD algorithms to the BDDs of D; than to compute
D’s BDD from scratch.

A new entry is added to the BDD table using the function

‘addEquation : thm — term X bdd

Evaluating addEquation(t ¢; = t;) applies termToBdd to %3 to compute a
BDD, b, say, and then stores the association {¢; —+ by} in the BDD table.
The pair (¢, by) is returned.® Normally addEquation is used on definitional
equations: ¢; is defined as equal to ¢, but the implemented mechanism

5The call of termToBddd may extend the variable map. An exception is raised by

4

currently supports arbitrary equations, as long as the right hand side, ¢,, can
be converted to a BDD (i.e. is built out of subterms that have already have
BDDs in the table).
It is anticipated that in some demanding CAD applications, it may be neces-
sary to compute a BDD directly inside BuDDy rather than going via terms.
A mechanism for introducing new constants to name such BDDs is planned,
but not yet implemented. This will provide a facility for making definitions
where the right hand side of the defining equation is an externally created
BDD rather than a term.
The implementation of termToBdd uses the BDD map to look up previously
computed BDDs. In the ML pseudo code below, note that termToBdd ¢ first
checks whether ¢ already has a BDD and returns the pre-computed BDD
if it exists. If £ doesn’t have a pre-computed BDD, then termToBdd checks
whether some other term that can be instantiated to ¢ has a BDD, and if
so the BDD of this term is appropriately instantiated (using BuDDy oper-
ations). The implementation of the BDD table is designed so that lookups
and search for matches are efficient. The algorithm used by termToBdd, in
outline, is
fun termToBdd ¢ =

if t is in the BDD table

then return corresponding BDD else

if t matches a term in the BDD table

then return corresponding BDD instance else

if t is a new wvariable :

then add variable to the variable map and then

return BDD corresponding to new wvariable else

if t is an ewisting variable in the wvariable map

then return corresponding BDD else

if t = ()\’U. tl)tz

then apply BDD composition to termToBdd t;, termToBdd t5, v else

if t = -t

then applly BDD negation to termToBdd t; else

if £t =1 op to

then apply BDD algorithm for op to termToBdd t;, termToBdd t, else

raise holToBddError
BuDDy provides algorithms for certain combinations of logical operators
(e.g. quantified conjunctions and disjunctions). The implemented termToBdd
detects such combinations and uses the optimised algorithm.

addEquation if it is not applied to an equation or if termToBdd fails.

5

The BDD associated with a term in the BDD table can be removed using
the function
deleteBdd : term—bdd

Removing terms from the BDD table may enable the BuDDy garbage col-
lector to reclaim space. Not all side effects resulting from adding a term to
the BDD table are undone by deleteBdd — in particular, any extensions to
the global variable ordering made when the term was added will persist.

2.1 Relation to Voss

Carl Seger’s Voss system [24] has been particularly influential on the work
described here. Voss consists of a lazy ML-like functional language, called
FL, with BDDs as a built-in datatype. Quantified Boolean formulae can be
input and are parsed to BDDs. The normal Boolean operations =, A, V, =,
V, 3 are interpreted as BDD operations. Algorithms for model checking are
easily programmed.

Joyce and Seger interfaced an early HOL system (HOLS88) to Voss and in a
pioneering paper showed how to verify complex systems by a combination of
theorem proving deduction and symbolic trajectory evaluation (STE) [15].
The HOL-Voss system integrates HOL deduction with BDD computations.
BDD tools are programmed in FL and can then be invoked by HOL-Voss
tactics, which can make external calls into the Voss system, passing subgoals
via a translation between the HOL and Voss term representations.

In later work Lee, Seger and Greenstreet [16] showed how various optimised
BDD algorithms could be programmed in FL. The arbiter example in Sec-
tion 5.2 is taken from this work.

The early experiments with HOL-Voss suggested that a lighter theorem prov-
ing component was sufficient, since all that was really needed was a way of
combining results obtained from STE. A system based on this idea, called
VossProver, was developed Carl Seger and his student Scott Hazelhurst. It
provides operations in FL for combining assertions generated by Voss using
proof rules corresponding to the laws of composition of the temporal logic
assertions verified by STE [14]. VossProver was used to verify impressive
integer and floating-point examples (see the the DAC98 paper by Aagaard,
Jones and Seger [1] for further discussion and references). After Seger and
Aagaard moved to Intel, the development of Voss and VossProver evolved into
a system called Forte that “is an LCF-style implementation of a higher-order
classical logic” and “seamlessly integrates several types of model-checking en-

6

gines with lightweight theorem proving and extensive debugging capabilities,
creating a productive high-capacity formal verification environment”. Only
partial details of this are in the public domain [20, 2], but a key idea is that
FL is used both as a specification language and as an LCF-style metalan-
guage. The connection between symbolic trajectory evaluation and proof is
obtained via a tactic Eval_tac that converts the result of executing an FL
“program performing STE into a theorem in the logic. Theorem proving in
Forte is used both to split goals into smaller subgoals that are tractable for
model checking, and to transform formulae so that they can be checked more
efficiently. Research with.Forte has resulted in major hardware verification
case studies.

The combination of HOL and BuDDy provides a similar programming en-
vironment to Voss’s FL (though with eager rather than lazy evaluation).
BuDDy provides BDD operations corresponding to —, A, V, =, V, 3 and
the HOL term parser plus termToBdd provides a way of using these to cre-
ate BDDs from logical terms. Voss enables efficient computations on BDDs
using functional programming. So does HOL+BuDDy. However, in addi-
tion it allows FL-like BDD programming in ML to be intimately mixed with
HOL deduction, so that, for example, theorem proving tools (e.g. simplifiers)
can be directly applied to terms to optimise them for BDD purposes (see
the description of ‘early quantification’ in the Section 5.2). This is in line
with future developments discussed by Joyce and Seger [15] and it appears
that the Forte system has similar capabilities. The approach described here
of adding Voss-like facilities into HOL is dual to adding deductive theorem
proving into Voss.

3 Transition systems

Many systems can be modelled by a state space, a set of initial states and a
state-transition relation. The state space can be represented as a type, states
say, the transition relation as a predicate R : states x states— bool, and the
set of initial states as a predicate B : states—bool. Here, bool is the type
of the two truth-values T and F. The term R(s, s') means ' is a successor
to s, and B s means s is an initial state. This representation in higher order
logic is similat to that used for integrating model-checking into PVS [23].

An example of a state transition system is a single machine defined by a
next-state function ¢ : states X inputs—states. The state transition relation

R for such a machine is defined by Rs(s,s') = Jinp. s = (s, inp).

A deterministic machine gives rise to a non-deterministic transition rela-
tion via existential quantification over inputs. This is called input non-
determinism. The autopilot example in Section 5.3 is an example of a single
machine.

A more interesting class of state transition systems corresponds to n machines
running in parallel. Assume n machines, each with states states;, ..., states,.
The combined state is the Cartesian product: states = states; X- - - X statesy.
Assume 1 transition functions: §; : states x inputs—states; (1 < i < n).
Write @ for the state (vy, ..., v,). The transition relation of the asynchronous
parallel composition of the n machines is defined by

R(T,7") = Jinp. v =061(T,inp) N vy =12 A+ A v =1,

<

vi=v; A vh=08(T,inp) A A vy, =g

o< R

\%

Vi =v; A vh=wvy Ao A), = 0,(T, inp)
An R-step is a d;-step for some 3. |
In any state transition system a state s is reachable in one R-step from a
state in B if Ju. B u A R(u,s). The set of states reachable in at most n
steps is defined recursively by

ReachBy O R Bs = B s

ReachBy (n+1) R Bs =
ReachBy n R B's V Ju. ReachBy n R Bu A R(u,s)

The set of reachable states is then defined as the set of states reachable in
some number of steps: Reach R B's = 3n. ReachBy n R B s.

4 Programming with BDDs in HOL

One way of applying BDDs to transition systems [18, 10] is to represent
the Boolean terms R(s,s’) and B s as BDDs, where the state vector s
and next state vector s’ are tuples of Boolean variables. The BDD of
ReachBy (n+1) R B s is computed from that of ReachBy n R B s using
standard BDD operations. As % increases ReachBy ¢ R B s represent in-

creasing sets, so if the set of states is finite then there must be an n such
that

ReachBy n R B s = ReachBy (n+1) R B s
It easily follows in HOL from the definitions of ReachBy and Reach that

I (ReachBy n R B's = ReachBy (n+1) R B s) =
(Reach R B s = ReachBy n R B s)

Thus if ReachBy n R B s = ReachBy (n+1) R B s then it follows by Modus
Ponens that Reach R B s = ReachBy n R B s.

The implementation in HOL+BuDDy of a function to compute Reach R B s
is described below. This takes a definition of a transition relation in the form
of a theorem - R(s,s’) = t; and a definition of a set of initial states in the
form of a theorem - B s = t, and returns a pair (¢, b), where ¢ is the term
Reach R B s and b is its BDD. As a side effect the BDD table is updated
with b as the BDD of ¢.

In the simplified ML definition that follows, the HOL inference rule SPEC
performs V-instantiation (i.e. SPEC ¢ (- Vz. P(z)) = F P(t)) and the HOL
inference rule MP does Modus Ponens (i.e. MP (F A=-B) (.A) = B)

fun ComputeReachableStates(F R(s,s') = t, F B s = &) =
let val ReachByThm =
- Vn. ReachBy (n+l) R B s =
ReachBy n R B s V
Ju. ReachBy n R B u A R(u,s)
val FixedPointThm =
F Vn. (ReachBy n R B s = ReachBy (n+1) R B s)

=
(Reach R B s = ReachBy n R B s)
fun Iterate n =
(addEquation (SPEC n ReachByThm) ;
if EqCheck(ReachBy n R B s, ReachBy (n+1) R B s)
then addEquation
(MP (SPEC n FixedPointThm)
(bddOracle
ReachBy n R B s = ReachBy (n+1) R B s))
else (deleteBdd(ReachBy n R B s);
Iterate(n+1)))
in addEquation F R(s,s') = t;;
addEquation - B s = iy;
addEquation - ReachBy 0 R B s = B s;
Iterate 0
end

This function is an intimate mixture of BuDDy and HOL operations. The
starting point is the HOL definitions of the transition relation and set of
initial states. The right hand side of these definitions are converted to BDDs
(using addEquation) and then a standard fixed-point computation is done us-
ing BuDDy. This mixes the application of HOL inference rules with BuDDy
BDD operations. For successive values of n, starting from 0, the BDD of
ReachBy (n+1) R B s is computed by adding SPEC n ReachByThm to the
BDD table, which forces a computation of ReachBy (n+1) R B s from the
already computed BDD of ReachBy n R B s and the BDD of R(s, s'). When
the EqCheck succeeds the fixed point has been reached and then bddOracle
is used to create a HOL theorem:

I ReachBy n R B s = ReachBy (n+1) R B s
and then by Modus Ponens with FixedPointThm the equation
 Reach R Bs = ReachByn R B s

is derived. Finally, this equation is added to the BDD table, so that the
BDD of Reach R B s is available.

A common verification problem is to show some property P is true in all
reachable states. This can be verified by checking whether ReachR Bs=P s
is a tautology. Because the BDD of Reach R B s is already in the BDD table,
its BDD can just be looked up. Only the BDD of P s needs to be computed
from scratch (and maybe even this is not even necessary as P s might already
have sub-terms that match terms in the BDD table).

Proving the equality of Reach R B s and bddToTerm(termToBdd Reach R B s)
using bddOracle results in a theorem giving an explicit formula for the set of
reachable states. This formula might be huge, but examples illustrating its
use are given in Sections 5.1 and 5.3 below. Since the BDD of Reach R B s
is already in the BDD table, termToBdd will just perform a lookup.
Because the fixed point may have been taken in a Boolean encoding of the
original problem (see the autopilot example below), further HOL deduction
may be needed to convert it back to the unencoded datatypes.

The Function ComputeReachableStates cannot produce wrong results as
long as the HOL system, the BuDDy system and the implementation of
termToBdd and addEquation are correct. This is in the spirit of LCF: the
architecture of the system makes it impossible for the user to prove false
theorems.

10

4.1 Counter-examples and other sequences of states

Suppose Reach R B s = P s is false. Then BDD calculations can be used
to find a shortest sequence of state transitions that lead to a reachable state
in which P fails to hold. Such debugging is perhaps even more useful than
verification.

The first step is to find a shortest path to a counter-example. Using a similar
fixed-point calculation to the one above, BDDs can be successively generated
for ReachBy ¢ R B s (¢ = 0,1,...) and for each i it can be checked whether
P s holds, that is whether the BDD of ReachBy ¢ R B s = P s is true.
Eventually a smallest n such that ReachBy n R B s = P s is not true will
be found.

The HOL4+BuDDy system provides an ML function

findModel : bdd—term

which finds values for variables in a BDD that make it true (an exception is
raised if the BDD is a contradiction). The term returned by findModel is
a conjunction of variables or negated variables. If t[vy,...,v,,] is a term
containing free variables vy, ..., v, then, abbreviating 7 = wvy,..., vy,
findModel (termToBdd ¢[7]) will return a conjunction of v; or —w; (for some
values of i), u[v] say, such that + u[v]=t[z]. From this it follows that t[d],
where €= ¢, ..., cn and ¢; is T if v; occurs positively in u[7] and is F other-
wise. :
Using findModel, a vector of values ¢, such that ReachBy n R B &, A -(Pe,)
can be found. A sequence of vectors representing states starting from an
initial state and ending in @, can then be generated by tracing backwards
from €,. Define

Prev R Ps = 3. R(s,s) A P &

Eq si 80 = (51 = s9)
then iteratively construct a sequence @,, ..., where, given C;, findModel
is used as above to compute ¢;_; from the BDD of

ReachBy (i—1) R Bs A Prev R (Eq ©) s

The BDDs for ReachBy i R B s (for i =0, 1,...,n) were previously computed
when searching for s,, so they are already available via the BDD table. The
BDD for Prev R (Eq T;) s is computed from the BDDs for R(s,s') and
Eq(si1, s2) by termToBdd.

The sequence @, ..., ¢, is a trace from an initial state to a counter-example.
The following properties can be deduced

11

F B¢

- ReachBy i R B¢ A R(Ti,Cit1) (0<i<n)

I ReachBy n R B¢, A —=(P ¢,)
For debugging, it seems overkill to verify that the computed sequence of states
to a counter-example is correct, since the purpose of the counter-example is
just to point at bugs. However, something similar to the procedure just
described could possibly be used to synthesize program code to achieve a
specification, and with this kind of application it may be useful to generate a
proof that it is correct, especially if the final code is obtained by transforming
the output of the raw BDD calculation into some different format. The
Missionaries and Cannibals example below is suggestive: a schedule of boat
trips is a kind of program.

5 Examples

Tn this section three rather different examples are outlined in varying de-
grees of detail. The Missionaries and Cannibals Problem is from the early
Artificial Intelligence problem solving literature [3]. The autopilot is a sim-
plified example of avionics system design validation, originally devised as a
tutorial example for the PVS theorem prover [8]. The arbiter is a hardware
verification case study [17, 16] used to illustrate BDD programming with
Voss.

5.1 Missionaries and Cannibals Problem
The original Missionaries and Cannibals Problem (MCP) is:

Three missionaries and three cannibals come to a river and find
a boat that holds two. If the cannibals ever outnumber the mis-
sionaries on either bank, the missionaries will be eaten.

How shall they cross?

This problem can be generalised to have n missionaries and n cannibals and a
boat of capacity k. Call this problem MCP(n, k). The problem stated above
is then MCP(3,2). If k > 2, then in the generalised problem it is assumed
that cannibals must not outnumber missionaries in the boat. Assume without
loss of generality that in the initial state, the missionaries, the cannibals and

6Problem statement from www—-formal.stanford.edu/jmc/elaboration/node2 Jhtml

12

the boat are on the left bank. Let a state (m,c,b) be represented by the
number m of missionaries on the left bank, the number ¢ of cannibals on the
left bank and the position b of the boat (where b being true means ‘boat at
left bank’).

The initial state is represented by (n,n, T) and the goal state by (0,0,F). A
predicate Bpscp characterizing the initial state is thus defined by

Buce n (m,c,b) = m=n A c=n A b
The possible state transitions are

MoveRight: move u missionaries and v cannibals to right bank
Moveleft: move u missionaries and v cannibals to left bank

Consider MoveRight. The boat must be on the left bank, so b. The people
embarking on the boat must be a subset of those who were on the left bank,
so u < mAv < c¢. Cannibals must not eat missionaries in the boat, so
=(0 < u < v). There must be at least one person to operate the boat, so
0 < u+wv. The capacity of the boat must not be exceeded, so u+v < k. If all
these pre-conditions are met, then a trip can take place and in the resulting
state m' =m—u A ¢ =c—v A -b. Thus MoveRight is .defined by
MoveRight n &k (u,v) ((m,c,b), (m',c, b)) =
bANuSmAv<cA-(0<uAu<v)AO<utv A utv <k
A
m =m—u A ' =c-v A b
Similarly Moveleft is defined by
Moveleft n & (u,v) ((m,c,b), (m,c, b)) =
bAuSn-mAv<Sn—cA-0<uAu<v)AO0<utv A utv<k
A
m =mtu Acd=ctv Al
Cannibals can also eat missionaries if there are more of them on either the
left bank (0 < m < ¢) or the right bank (0 < (n—m) < (n—c)) Define
Eat n (m, ¢) to be true if this can happen.

Eat n (m,c,b) = (0<m Am<c) V (0<(n—m) A (n—m) < (n—c))
Thus the transition relation is
RMC’P n k (8, S’) =
—Eatn ' A (Juv.u<n A v<n A MoveRight n k (u,v) (s,5))
A (Fuv.usn A v<n A Moveleft n k (u,v) (s,5))

13

The missionaries and cannibals problem MCP(n,k) is solvable if the goal
state (0,0, F) is reachable from the initial state, that is if

I Reach (RMC’P (1] k) (BMCP n) (0,0, F)

A few things are immediately obvious: MCP(n,0) is not solvable, because
the boat is useless; MCP(n,1) is also not solvable because one can never
get more than one person to the right bank (the first person to go to the
right bank will have to return as the boat needs at least one occupant). It is
also clear that MCP(n, k) is solvable if k > 4, since one missionary and one
cannibal can act as boatmen and ferry pairs of missionaries and cannibals
from left to right.

Let us consider MCP(n,k) where n and k are less than 16, (i.e. representable
with 4 bits). It is easy to convert the problem as stated above to a finite
state one by restricting m, ¢, u and v to 4-bit words.” If w is such a word,
denote its least significant bit by wo and its most significant bit by ws.

ComputeReachableState automatically gives

F Reach

(Rucp (n3,n2,m1,m0) (ks, ka2, k1, ko))

(Baep (n3,ng,na,mo) (ks, k2, k1, ko))

((0,0,0,0),(0,0,0, 0),F) =

if ns then k3 V ks

else (if n, then (if ny then k3 V ky else ks V ko V ki A k0)
else (if my then k3 V ka2 V kg
else n0A (l{?3 \ k‘z \% kl)))

Abstracting to numbers

n<l1l6 A k<16 =

Reach (RMC’P n I{Z) (BMC’P n) (0, 0, F) =

0<n AO<k A (k=2=n<4) A (k=3=n<E6)
This can be checked with n and k interpreted as 4-bit words. Work is in
progress to provide infrastructure to make it easy to prove it for numbers
(it’s just pure HOL deduction). |
From this it appears that there are four interesting solvable cases: MCP(2,2),
MCP(3,2), MCP(4,3) and MCP(5, 3). Finding solutions is just like find-
ing counterexamples. Using the method described earlier, HOL-+BuDDy
computes the following list of theorems for M CP(2,2)

TTo avoid overflow the condition u+v < k should be replaced by v < k—v A v < k,
and0<utvby0<u V 0<w. '

14

[FB(W42) (W42, W42, T),

FPrev (R (W42) (W42)) (Eq (W41, W41,F)) (W42, W42, T),
FPrev (R (W42) (W42)) (Eq (W42, W41, T)) (W41, W41, F),
F Prev (R (W42) (W42)) (Eq (W40, W41,F)) (W42,W41,T),
F Prev (R (W42) (W42)) (Eq (W40,W42,T)) (W40, W41, F),
F Prev (R (W4 2) (W42)) (Eq (W40, W40, F)) (W40, W42, T)]

Here W4 n is the 4-bit binary representation (ng,ns,n1,79). This list of the-
orems specifies the solution® 22T—11F—21T—01F—=02T—00F. The other
solutions found by HOL+BuDDy are

MCP(3,2):

33T—22F—=32T—30F—=31T—11F—=22T—02F—=03T—01F—=02T—00F
MCP(4,3)

44T—41F—42T—22F—=33T—03F—04T—01F—02T—00F

MCP(5,3)

55T—=52F—=53T—50F—=52T—22F—+33T—03F—04T—01F—02T—00F

The reachability calculations only check that for n < 16 there are no solutions
of MCP(n,2) when n > 4 and no solutions of MCP(n,3) when n > 6.
Anuj Dawar, on a flight back from Italy, came up with the following argument
showing that there are no solutions when k& < 4 and n > 2k. Suppose My,
and Cp are the numbers of missionaries and cannibals on the left bank,
respectively, and Mg and Cj are the numbers of missionaries and cannibals
on the right bank, respectively. Consider the last time My changes from
being 0. In the resulting state all the missionaries cannot have arrived at the
right bank, since there are more missionaries than the capacity & of the boat
(n > 2k). In fact, at most k missionaries can have arrived, so Mg < k. Thus
there must be some missionaries remaining on the left bank, and hence fewer
cannibals on the left bank. All the cannibals cannot be on the right bank,
because if they were they would eat the missionaries that have just arrived.
Thus there are missionaries and cannibals on both banks, hence My = Cy,
and M. R = C R
'Now, on the return trip of the boat, not all My missionaries may travel, as
this would contradict the assumption that My is henceforth non-zero. If any
missionaries travel, at least that number of cannibals must travel so that the
remaining ones are not outnumbered, and if any cannibals travel, at least that
number of missionaries must travel so that missionaries on the first bank are

8mcbh abbreviates (m, ¢, b).

15

not outnumbered. This means that exactly one missionary and one cannibal
can travel, (since k£ < 4).
This leaves My < k, and therefore My > n—k, i.e. My > k (since n > 2k).
Thus, all the remaining M; missionaries cannot travel on the next trip.
But then, an equal number of missionaries and cannibals must travel, which
means exactly one missionary and one cannibal travel, but this just reverses
the last move.
A nice exercise would be to perform this proof in HOL, thereby getting a
complete machine checked analysis of MCP(n, k), with all the finite number
of solutions computed using BDDs and the other cases shown to be impossible
by deduction. This would prove for all n and & that

Reach (RMCP n k)) (BMCP n) (0, 0, F) =

0<n ANO<k A (k=2=n<4) AN (k=3=n<6)

5.2 The Arbiter example

This is an asynchronous circuit for mutual exclusion modelled as the asyn-
chronous parallel composition of 22 machines. Each machine corresponds to
a circuit component. There is a state variable corresponding to the output
of each component, hence there are 22 state variables. The transition re-
lation is the disjunction of 22 terms, each specifying the behaviour of one
of the machines. Such a specification gives the next value of the state vari-
able corresponding to the machine’s output in terms of its current inputs,
together with a ‘frame axiom’ specifying that the other 21 state variables
don’t change.

For simplicity, consider three machines running asynchronously in parallel

B X
x
z ¥
X
Ez i4

16

This is modelled by
R((z,y,2), (2", ¢/, 2")) =
(2" = Bs(z,y,2) A Y=y N 2 =2
(#'=z AN ¢y =Ey(z,9,2) AN 2=z
: x

Let S(&,9, 2) abbreviate ReachBy n R B (2, ¢, £) then
3% § 2. ReachBy n R B (%,9,2) A R((Z,9,2), (z,y,2))
= 329 2 8(2,9,2) A R((&,9,2), (z,9,2))
= 3292 .82,0,2) N (z=Ee(&,0,2) Ny=9 AN z=23)V
(=2 AN y=E, (2,9,2) A z2=3) Vv
(,Z‘=§2 Ny=g A Z:Ez(j\:afgaé)))
= (3594 8@&9,2) A s=Ea(&,5,8) Ay=9 A 2=5)V
(32 g2 82,9,2) Nz=3% AN y=Ey2,9,2) AN 2=3)V
(3292 8E,9,2) Ne=% ANy=9 A z=E,(%,1,32))
= ((32. 8(2,y,2) ANz=Ey(3,y,2)) A 3. y=9) A (32 2=2)) v
((32. 2=2) A (3§. S(z,9,2) ANy=Ey(z,9,2)) A (8. 2=2)) V
((3.’% $:§7) A (3:& y:@) A (32 8(.'17,2],2)/\Z=Ez($,y, 2)))
= (3%. S(&,v,2) N = Ey(2,9,2)) V
(9. S(z,9,2) A y=E,(,9,2)) V
(32. S(z,9,2) A 2= E,(z,9,2))

The BDD of J% § 2. ReachBy n R B (£,9, 2) A R((%,9, 2), (z,y,2)) can thus
be computed without ever computing the BDD of R((%, 9, 2), (z,y, z)). This
technique is called early quantification® [18, page 45] and can be done by the
HOL simplifier. The definition of the function ComputeReachableStates is
simply modified to use early quantification by replacing ReachByThm with
the simplified equation for ReachBy (n+1) R B s.

The usual implementation of early quantification is by writing programs that
directly construct the BDD of the simplified term. The logical transforma-
tion corresponding to early quantification are thus encoded in BDD building
. code. The approach here is to deductively simplify the next-state relation
prior to invoking termToBdd. The advantages are that the simplification is
guaranteed sound.

It took HOL+BuDDy 4891 seconds to build the BDD of the transition rela-

®In the theorem proving literature early quantification is called ‘miniscoping’ and can
reduce proof length more than exponentially [21].

17

tion for the arbiter, which has 8,399,564 nodes (using the variable order given
in Lee’s thesis). Using early quantification to simplifiy ReachBy (n+1) R B s
resulted in the biggest BDD that needed to be computed having 5338 nodes.
The BDD of Reach R B s has 1768 nodes. It takes 46 seconds'® to compute
the set of reachable states, of which 36 seconds is HOL applying the early
quantification simplification and the 10 additional seconds to perform the 62
iterations needed to reach the fixed-point.

In Lee’s thesis [17] two arbiters are given: a correct one that is verified and
an incorrect one for which a counter-example is computed. The algorithm for
computing the counter-example trace employs hand coded Voss FL programs
to compute weakest pre-conditions [16].

Early quantification can also be used to find paths to counter-examples:
Prev R P s can be deductively simplified, so that its BDD can be computed
without having to compute the BDD of the transition relation R. Using
early quantification applied to Prev R P s we were able to generate the
same counter-example as Lee without any special weakest pre-condition BDD
algorithms.

5.3 A simple autopilot

The autopilot example has been used to illustrate requirements capture and
formal validation with PVS [9]. It has also been modelled and validated
with ACL2 [25]. The treatment in higher order logic outlined here derives
from a ‘port’ of the PVS specification and proofs to HOL by Mark Staples
and Konrad Slind. The autopilot is a single machine specified by a next
state function Next : states— (events—rstates), where the types states and
events (i.e. inputs) are specified abstractly as enumerated types. There are
576 states and 10 events. An initial set of states is specified by a predicate
Initial : states—sbool. The goal of the verification is to establish that all
reachable states satisfy a predicate Valid : states—bool. A transition relation
Trans is defined in the usual way: Trans(s,s’) = Je. s’ = Next s e.

It is easy to show by deduction that FVs. Reach Trans Initial s = Valid s. PVS,
ACL2 and HOL can all verify this automaticallly. Thus just for verification
there is no need to use automatic state exploration methods. However, using
them one can derive additional information that is hard to get from a theorem
prover. For example, it is possible to automatically compute a counter-

10 imes are for my year-old office PC running Linux.

18

example to Vs. Valid s = Reach Trans Initial s and to prove an equation
giving an explicit term for Reach Trans Initial s.

The specification of the autopilot is expressed in terms of high-level datatypes.
To apply BDD algorithms, these datatypes need to be encoded as tuples of
Booleans. This can all be done by deduction inside HOL. The details cannot
be explained without the complete definitions making up the autopilot, but
we shall try to give an outline.

The abstract type states can be encoded as a subset of rep_states, where

rep.-states =
boolx boolx boolx (boolx bool) x boolx boolx boolx (boolx bool)

The representation is characterized by functions

Rep_states : states—rep_states

Abs_states : rep_states—rstates

Dom.states : rep_states— bool

that satisfy

|- Va. Abs_states(Rep_states a) = a

F Vr. Dom_states 7 = (Rep.states(Abs_states 7) = r) .

The type rep_states and the representation, abstraction and domain func-

tions are defined automatically from the HOL definitions of the high-level

datatypes.

Versions of Trans, Initial and Valid that operate on Booleans are defined by

F Rep_Trans(r,7') = '
Dom_states 7 A Dom._states 7' A Trans(Abs_states r, Abs_states ')

F Rep_Initial r =
Dom_states A Initial(Abs_states r)

F Rep_Valid r =
Dom_states r A Valid(Abs._states)

Equations showing the validity of the representation can be derived by de-

ductive proof:

- Trans(s,s’) = Rep_Trans(Rep_states s, Rep_states s')

F Initial s = Rep_Initial(Rep_states s)

- Valid s = Rep_Valid(Rep_states s)

- Reach Trans Initial s = Reach Rep_Trans Rep_Initial (Rep_states s)

To find a counter-example to Vs. Valid s = Reach Trans Initial s the following

higher-order theorem is used

19

- VP. (Vs. P s) = Vr. Dom.states 7 = P(Abs states r)

This converts the problem of finding a counter-example to the abstract term
to the problem of finding a counter-example to the following Boolean term

Dom_states (vg, v1, V2, (V30, Vs1), V4, Us, Vs, (U70, Ur1))
=
Rep_Valid (vo, v1, V2, (v30, V31), V4, Us, Vs, (V70, V71))
= Reach
Rep_Trans
Rep_Initial
(vo, V1, Vg, (030, 7131), Vg, Vs, Vg, (V70 ’U71))
The counter-example found by findModel is
=71 A 279 A —31 A V30 A U2 A g

which abstracts via Abs_states to

(Altitude s = away) A

(AltEng s = mode_engaged) A

(FpaSel s =. off) A

(AttCws s = off)
This is not comprehensible without the context of all the definitions making
up the autopilot, but it perhaps gives an idea.
Similar methods yield an explicit formula for Reach Trans Initial s, namely
(again details incomprehensible) ‘

I Reach Trans Initial s =
if (AttCws s = engaged)
then (FpaSel s = off) A (AltEng s = mode.off)
else
if (FpaSel s = engaged)
then (AltEng s = mode.off) V
((AltEng s = armed) A
(AltDisp s = pre_selected) A
(Altitude s = away))
else (AltEng s = mode_engaged) A
((Altitude s = near_pre_selected) V
(Altitude s = at_pre_selected))

The autopilot example is so simple that there is no significant gain in using

20

BDDs for invariant verification.!! The added value of BDDs are the new kinds
of analysis that become possible: automatic generation of counter-examples
and explicit terms for reachability fixed-points.

Specialised systems such as SMV [18] have specification languages that pro-
vide hardwired translations from user-oriented datatypes to Boolean formu-
lae. With HOL+BuDDy, the user can define bespoke types in higher order
logic and then program up problem specific data encodings and use LCF-style
high-assurance deduction methods to transform problems into the domain of
BDD algorithms.

6 Conclusions

Our goal has been to extend the scope of LCF-style theorem proving to
include the ability to program derived rules and tactics that make use of
external algorithms. Here we have concentrated on BDD-based symbolic
state exploration. The results seem promising, but more case studies are
needed. Because the main verification calculations are done in an external
BDD engine (BuDDy) the efficiency is good. The relatively slow HOL code
(compared with C) only controls the invocation of BuDDy operations and so
is out of the critical performance loops.

HOL+BuDDy provides a secure platform to experiment with intimate mix-
tures of deduction and BDD-based symbolic calculation. It could be es-
pecially appropriate for experimenting with intricate optimisations, since
soundness is ensured.

Whilst we do not claim that user-programmed tight-integration is always the
best way to connect external tools, we think that the work described here
provides evidence of its potential benefits for some applications.

Acknowledgements

The implementation of the interface between Moscow ML and BuDDy was
* done by Ken Larsen with the support of EPSRC grant GR/K57343 enti-
tled Checking equivalence between synthesized logic and non-synthesizable
behavioural prototypes. Ken Larsen also implemented a prototype HOL or-

U The proofs take seconds with a theorem prover against fractions of a second with
BDDs. The fixed-point is reached after 8 iterations. The BDDs at successive stages have
sizes (number of nodes): 11, 34, 65, 82, 66, 56, 45, 20. The BDD of Trans has size 21,720.

21

acle that was the starting point for the work reported here. Special thanks
go to Jern Lind-Nielsen for making his BuDDy code freely available to us.
This work was also supported by ESPRIT Framework IV LTR 26241 project
entitled Proof and Specification Assisted Design Environments.

The author would like to thank Anuj Dawar, Tom Melham, Michael Norrish,
Konrad Slind and Mark Staples for discussions and help during this research.
Mark Aagaard, Mark Greenstreet, Joe Hurd, Paul Jackson, Ken Larsen, John
Matthews and Larry Paulson read drafts of this paper, pointed out errors
and made many useful suggestions (some of which will be implemented in
the next version).

References

[1] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Com-
bining theorem proving and trajectory evaluation in an industrial en-
vironment. In Design Automation Conference (DA C), pages 538-541.
ACM/IEEE, July 1998.

[2] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-fl:
A pragmatic implementation of combined model checking and theorem
proving. In Theorem Proving in Higher Order Logics (TPHOLs99), July
1999.

[3] Saul Amarel. On representation of problems of reasoning about action.
In Donald Michie, editor, Machine Intelligence 3, pages 131-171. Edin-
burgh University Press, 1971.

[4] Henrik Reif Andersen. An Introduction to Binary Decision Diagrams,
October 1997. Lecture notes for 40285 Advanced Algorithms E97. Avail-
able from: http://www.it.dtu.dk/~hra.

[5] David Basin and Stefan Friedrich. Combining WS1S and HOL. In
Frontiers of Combining Systems, Second International Workshop, Am-
sterdam, September 1998, Applied Logic Series. Kluwer Academic Pub-
lishers, 1998. To appear.

[6] R. J. Boulton. Efficiency in a Fully-Ezpansive Theorem Prover. PhD
thesis, University of Cambridge Computer Laboratory, New Museums

22

[14]

[15]

Site, Pembroke Street, Cambridge CB2 3QG, U.K., May 1994. Technical
Report 337.

Randall E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293-318, September
1992.

Ricky W. Butler. An introduction to requirements capture using PVS:
Specification of a simple autopilot. NASA Technical Memorandum
110255, NASA Langley Research Center, Hampton, VA, May 1996.

Ricky W. Butler. An introduction to requirements capture using PVS:
Specification of a simple autopilot. Technical Report TR 110255, NASA,
May 1996.

Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verifi-
cation of synchronous sequential machines based on symbolic execution.
In J. Sifakis, editor, Automatic Verification Methods for Finite State
Systems, LNCS 407, pages 365-373. Springer-Verlag, 1989.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a
theorem-proving environment for higher-order logic. Cambridge Univer-
sity Press, 1993.

M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of Lecture Notes in
Computer Science. Springer-Verlag, 1979.

Mike Gordon and Ken Larsen. Combining the Hol98 proof assistant with
the BuDDy BDD package. Technical report, University of Cambridge
Computer Laboratory, 1999. To appear.

Scott Hazelhurst and Carl-Johan H. Seger. Symbolic trajectory evalua-
tion. In Thomas Kropf, editor, Formal Hardware Verification, chapter 1,
pages 3-78. Springer-Verlag, 1997.

J. Joyce and C. Seger. The HOL-Voss System: Model-Checking in-
side a General-Purpose Theorem-Prover. In J. J. Joyce and C.-J. H.
Seger, editors, Higher Order Logic Theorem Proving and its Applica-
tions: 6th International Workshop, HUG’983, Vancouver, B.C., August

23

11-18 1993, volume 780 of Lecture Notes in Computer Sczence pages
185-198. Spinger-Verlag, 1994.

[16] Trevor W. S. Lee, Mark R. Greenstreet, and Carl-Johan Seger. Au-
tomatic verification of asynchronous circuits. Technical Report UBC
TR 93-40, The University of British Columbia, November 1993.

[17] Wing Sang Lee. ST to FL translation for hardware design verification.
Master’s thesis, The University of British Columbia, April 1994.

[18] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[19] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348-375, December 1978.

[20] John O’Leary, Xudong Zhao, Robert Gerth, and Carl-Johan H.
Seger. Formally verifying IEEE compliance of floating-point hard-
ware. Intel Technology Journal, First Quarter 1999. Online at
http://developer.intel.com/technology/itj/.

[21] Larry Paulson, private communication.

[22] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer,
.1994. LNCS 828.

[23] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-
checking with automated proof checking. In Pierre Wolper, editor,
Computer-Aided Verification, CAV 95, volume 939 of Lecture Notes in
Computer Science, pages 8497, Liege, Belgium, June 1995. Springer-
Verlag.

[24] Carl-Johan H. Seger. Voss - a formal hardware verification system:
User’s guide. Technical Report UBC TR 93-45, The University of British
Columbia, December 1993.

. [25] William D. Ydung. The specification of a simple autopilot in ACL2.
' Technical Report CLI Internal Note #327, Computational Logic Inc,
July 1996.

24

