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Summary

This dissertation studies the effects on system design when including

fault tolerance design principles within security services.

We start by looking at the changes made to the trust model within

protocol design, and how moving away from trusted server design principles

affects the structure of the protocol. Taking the primary results from this

work, we move on to study how control in protocol execution can be used to

increase assurances in the actions of legitimate participants. We study some

examples, defining two new classes of attack, and note that by increasing

client control in areas of protocol execution, it is possible to overcome certain

vulnerabilities.

We then look at different models in fault tolerance, and how their adop-

tion into a secure environment can change the design principles and assump-

tions made when applying the models.

We next look at the application of timing checks in protocols. There are

some classes of timing attack that are difficult to thwart using existing tech-

niques, because of the inherent unreliability of networked communication.

We develop a method of converting the Quality of Service mechanisms built

into ATM networks in order to achieve another layer of protection against

timing attacks.

We then study the use of primary-backup mechanisms within server de-

sign, as previous work on server replication in security centres on the use of

the state machine approach for replication, which provides a higher degree

of assurance in system design, but adds complexity.

We then provide a design for a server to reliably and securely store

objects across a loosely coupled, distributed environment. The main goal

behind this design was to realise the ability for a client to exert control over

the fault tolerance inherent in the service.

The main conclusions we draw from our research are that fault tolerance

has a wider application within security than current practices, which are

primarily based on replicating servers, and clients can exert control over the

protocols and mechanisms to achieve resilience against differing classes of

attack. We promote some new ideas on how, by challenging the prevail-

ing model for client-server architectures in a secure environment, legitimate

clients can have greater control over the services they use. We believe this

to be a useful goal, given that the client stands to lose if the security of the

server is undermined.
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Chapter 1

Introduction

1.1 Overview

In this chapter we give a brief outline of the dissertation, giving a small

overview of each chapter and a structure of how the work fits together.

1.2 Synopsis

In this dissertation we aim to study the use of principles used in fault toler-

ance within secure services. There is little work done in the field at present.

The work that has been done so far concentrates on the use of replication

to increase the resilience and availability of servers.

We aim to take a step back from the notions used in the existing work, in

order to see how the basic principle behind fault tolerance of using checks and

control of flow can help improve the security of protocols and services, and

also increase client control in some situations. We believe both of these goals

to be of potential use in many scenarios within security. The threat model

used in previous work maintains the assumption of a trusted server, but

that clients are allowed to be malicious. Previous work uses fault tolerance

predominantly as an internal feature of the server to improve the assurances

given to the client of the server’s reliability, and is not used to challenge

the client’s need to rely on the server. We try and turn this notion on its

head, allowing the client to define the trust parameters in the rest of the

system, and in doing so, providing them with some measure of control over

the system’s ability to tolerate failure.

1
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1.3 Structure

We now give a brief overview of the structure of our work.

Our work breaks down into three broad areas, and how they fit the

structure of this dissertation is shown in figure 1.1.

Chapter

2

Chapter Chapter

3 4

ChapterChapter

5 6

Chapter

Adapting Models

Chapter

7 8

Chapter

9

Trust & Control

Server Replication

Figure 1.1: Overview of the structure of the dissertation

The first area concerns itself with the adoption of the notion of fault

tolerance to security, both in terms of strictly adhering to fault tolerant

design principles, and also integrating the notion of checks and control that

is prevalent in the fault tolerance literature. These areas are encapsulated

by the work carried out in chapters three and four respectively.

The second area concentrates on the adaption of models other than those
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used purely for server replication, as most of the current work done on

integrating fault tolerance and security focus mainly on server replication.

We aim to see how this changes our design principles, and this covers the

work done in chapters five and six.

The third area of research looks at differing approaches to server repli-

cation. Current work focuses on state machine replication. We approach

server replication from two different angles in chapters seven and eight to

look at different methods to achieving replication securely under differing

threat models.

In the next section we provide a fuller overview of each chapter.

1.4 Summary

In the second chapter we give a brief overview of some of the work that

has both driven our research and inspired some of our discoveries. The key

points within fault tolerance are the developments of the notions of faults

and failures, the use of replication in services, and reliability measurement.

The areas covered within the security literature cover the existing work that

studies the use of fault tolerance, and also the notion of denial of service.

Our third chapter studies the effect that using fault tolerant principles

has on the notions of belief and trust that are prevalent in the protocol

design literature. We start by looking at what constitutes a fault within a

secure protocol, taking the definitions used in the fault tolerance literature

and developing equivalents for security.

To highlight our new definitions, we take the BAN logic for protocol

analysis. Their work relies heavily on the notion of trusted principals. We

relax this model by use of the classic N-model redundancy technique. We

modify the logic to accommodate this design in order to gain some insight

into what new design principles need to be incorporated for protocols to still

meet their security goals in the different environment.

In the fourth chapter, we draw the conclusion that the application of

checks and control that is inherent in fault tolerance can be embodied in the

controlling structure of a secure protocol. We study three variants of how

control of the protocol’s execution, and control of data flow in a protocol can

provide higher levels of assurance toward the protocol achieving its goals.

Our second example in the chapter provides us with evidence that, even

if protocols are currently designed to withstand certain classes of attack,

then by allowing the participant concerned with the attack to achieve a

greater degree of control over the protocol, we can increase the assurance

we have in the protocol.
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Our fifth chapter studies how models from the fault tolerant literature

– other than those currently used for server replication – adapt to use in a

secure environment.

The existing work on the use of fault tolerance in secure services centres

on the use of the state machine approach to server replication. We take

three other design principles within fault tolerance and carry them over for

use in security. Our goal is to see if changes need to be made to these three

models, and to try and understand any underlying principles we can derive

from the resulting changes.

In chapter six, we take the notion of timing checks and apply them

in a secure environment. Timing and replay attacks are prevalent in the

literature, and there already exist methods to thwart such attacks, but there

are some classes of timing attacks that can still be carried out because of

the inherent unreliability of networked communication.

We develop a technique that achieves another layer of protection against

timing attacks by utilising the quality of service mechanisms built into ATM

networks. We take an existing taxonomy of replay attacks and analyse how

well our method fares in defending against each case. We do not regard our

mechanism as a replacement for existing methods of defeating such attacks,

but notice that it complements existing techniques. As a by-product of its

behaviour, it can also provide a tool for detecting potential denial of service

attacks.

Chapter seven looks at the use of primary-backup strategy of server

replication. As stated above, the majority of work done to date on fault tol-

erance’s integration in security uses the state machine approach. Although

more robust, the state machine approach involves a higher degree of com-

plexity in the design.

We look at some instances where clients are willing to trust some replicas

more than others, and also where server replication can be used to increase

the availability of the service in the case of a benign crash, or a denial of

service attack, where the primary threat model is not concerned with the

malicious takeover of the server.

In chapter eight we provide a design for a server to reliably and securely

store objects across a loosely coupled distributed environment. The main

goal behind this design, was to demonstrate the ability for the client to exert

control over the fault tolerance inherent in a service.

The design principle we use is that of the state machine approach, but

differs from current work in this field which centres solely on the method’s

use as a means of increasing the assurance that the service is trustworthy.

Chapter nine provides an overview of the results drawn together in the
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remainder of the dissertation, along with an outline of some possible avenues

of research which we highlight from insights gained while carrying out our

work.



Chapter 2

Background

2.1 Overview

In this chapter, we review current work in security that has been of relevance

to our research, and also cover work done within fault tolerance which has

been an influence on our work.

We have arranged our discussion of current work into sections dealing

with particular themes.

2.2 Fault Tolerance

Fault Tolerance has been part of the computing community for quite a long

time, with quite a wide an varied set of literature. To clarify the building

of our understanding of fault tolerance, then we divide our discussion into

three sections. Firstly we cover some early work done in fault tolerance,

then look at some work done on group based communication, and conclude

with a look at a variety of loosely connected work within the field.

2.2.1 Core principles

Newcastle University developed some of the very early work in fault toler-

ance, through a group led primarily by Randell and Anderson. Their work

covers much of the early aspects of fault tolerance [AL81, ALS79, ALS78,

AL82, MR77, CAR83, DR86].

Anderson and Lee [AL82] set out to define fault tolerance terminology,

focusing on the difference between a fault, error and failure. These terms are

given strict definition in order to avoid their use interchangeably. They also

break down fault tolerance into four constituent phases of fault detection,

damage assessment, error recovery and fault treatment. Further on in this

6
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dissertation, we discuss how this terminology can be viewed from within a

security context, and the effect this can have on our design principles.

In an overview of the subject [AL81], they bring together some interest-

ing concepts which is an expansion of their work with Shrivastava [ALS79].

In [AL81] the discussion is broad and wide-ranging. Their description of

fault tolerance in the context of state transitions [AL81, pages 46–50] is in-

teresting, showing how the internal state of the system can be viewed as

valid or erroneous, and that if an erroneous state goes unchecked, then a

failure of the system can arise.

A section of their work [AL81, pages 72–77] overviews the principles of

Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR),

which are two core principles used in the study of fault tolerance in hardware

systems. Although there is a small body of work done by others [LBF+93,

Mea94, Mea95] covering the application of this work to software and security,

we believe these principles to be of little relevance to our work, and elaborate

on our arguments when covering their work in section 2.3.

In their section on recovery of distributed systems [AL81, pages 208–224]

they introduce the difference between recovery for systems where process are

competing and cooperating. They explain the difference as one of communi-

cation between the processes, and they note difficulty that the domino effect

can have on the cooperating model.

Anderson et al. in [ALS79, pages 179–190] and [ALS78] discuss the use

of recovery in multilevel systems. The main feature of their work that is

of interest to us is the definition of inclusive and disjoint recovery schemes.

These two schemes arise from the difference that arises from implementing

recovery across an interface, where the interface itself is an extension to a

lower level interface, and both interfaces are open to the calling module. The

difference lies in the fact that recovery is co-ordinated across the interface

without any need for intervention in inclusive, while the extension has to

independently carry out recovery in disjoint.

Merlin and Randell [MR77] discuss the difficulty in providing state res-

toration in a distributed system. Their model for recovery involves backward

error recovery, with information for interaction connections built in what

they term an “Occurrence Graph Model” which is an extension of Petri-

nets.

Campbell et al. [CAR83] make the interesting observation, that fault

tolerance in an asynchronous system is best implemented by using atomic

actions, as this provides a clean interface that works for the recovery irre-

spective of the timing in the communication model.

Dobson and Randell [DR86] discuss the effect of placing of the security
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perimeter in a processing environment, and note that the different security

boundaries vary according to whose view of the boundary we are interested

in.

2.2.2 Cornell

A significant portion of the work in software replication has come out of

Cornell University, and there are three aspects of their work of interest

to us. The first is with regard to the work done on group and multicast

communication, the second is the replication of services using the state-

machine approach, and the third is the recent movement to try and apply

fault tolerant techniques in the advent of mobile agents.

Group Communication

There has been work done in many places on the design and use of group

communication primitives. The most comprehensive and long running study

has come out of Cornell.

Their early work studied the bounds under which group consensus could

be achieved. This work was an extension of the seminal formulation of the

problem termed Byzantine Agreement [LSP82]. Their work [BT85, BT83]

demonstrated bounds for reaching consensus in an asynchronous environ-

ment under both benign and malicious failure.

The extension from their first results was the Isis toolkit [BSS91, RBG92].

The toolkit allows process groups to be formed, and then a number of primi-

tives are available for communication within the group. The main primitives

developed for group communication are a CBCAST protocol, which gives

all broadcasts within the group a causal order. On top of this was added

the ABCAST protocol, which allows for the causal order primitive to be

upgraded to an atomic ordering. These mechanisms allow for a virtually

synchronous group communication mechanism to be implemented directly

below the application layer, making it easier for the application programmer.

Their work was built on the assumption of benign failures only.

Their work in Isis was extended to Horus [vRBM96], which allowed

for a more flexible approach to the type of the services presented to the

application.

Another extension of the work done initially in Isis, but developed sep-

arately from Horus, was that of Rampart. This work was carried out by

Reiter [Rei96a, Rei94b, Rei94a] after he left Cornell, but the connection

with the history of Isis is clearly visible in the protocol structure. The main
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advancement Rampart achieved over Isis was the ability to tolerate malicious

failures of a given percentage of servers in a group.

State Machine Approach

Schneider [Sch90] proposes the use of the State Machine Approach in order

to replicate servers. The main goal is the ability to replicate a server in order

that it is resilient against the failure of a significant portion of the server

without compromising the service provided. The notion behind the design is

to have several instances of the server all with equal ability, communicating

to decide on the the next global action.

It shares many characteristics with other work done by Schneider re-

garding fail-stop processors [SS83, Sch84]. This work differs from the work

on state machines by the virtue that a set of processors are able to detect

that they are about to fail, and halt before any fault is visible to the outside

world. In order to achieve this, they require an underlying replication mech-

anism, such that correct processes in a group can determine that there is a

failure in the group, and gracefully disrupt the computation accordingly.

Although the work on the State Machine Approach was published after

the work on fail-stop processors, it is possible to see the underlying principle

is prevalent in the earlier work.

Secure Agentry

A growing area of interest in distributed systems is the use of mobile agents.

The algorithms they represent are calculated on machines not under the

control of the source of the code, but the originator still wants to be assured

of the the integrity of the results. To circumvent this problem, Schnei-

der [Sch97, JvRS96] looks at ways of implementing fault tolerance into the

agent structure. The protocols he derives are based upon having the agents

replicate themselves for each step of the computation, producing separate

results on different processors. These results are then used in a voting al-

gorithm for each of the replicas at the next step in the computation (the

assumption here is that a single agent would normally take several steps,

each executed on a different machine in order to complete its task, and that

each of steps is independent and is replicated autonomously by all agents).

Minsky et al. [MvRS96] describe the basic overview of their voting mech-

anism. The construction it uses is a secret sharing scheme, with the output

at round i providing the input for the vote at round i+1. When using secret

sharing, a minority of servers in separate rounds of the computation could

collude to re-compute the secret for another round, defeating this requires
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updating the secret before and after a round. As an alternative, they outline

a method that uses chains of authenticators.

2.2.3 Miscellany

We now overview some other work in fault tolerance which has influenced

our work.

A different method of replication to the state machine approach is the

primary backup approach [AD76]. This differs by having one server act as

the primary point of contact, with others acting as standby. We develop

upon this idea later in the dissertation for use in secure services. Work by

Gifford [Gif79] is interesting in its description of using different thresholds in

the read and write operations of replicated objects. The concept of weighting

different replicas is also considered in our work on primary backup.

The notion of primary backup has also been used to implement a file

system [MHS89]

Gong [Gon94] looks at adapting the concept of fail-stop processors for

security protocols. He goes on to further the work with Syverson [GS95].

The basic premise behind the work is that if a protocol can be shown to

conform to secrecy assumptions, and a malformed message arrives, then it

is desirable not to send any subsequent messages in the protocol. This result

is derived from not wanting to reveal any extra information to a potential at-

tacker. A comment made by Lomas [Lom] that the correct approach should

be to send a random string of the same length as the expected message,

and thus not even leak the information that the valid participant knows the

attack is in place. The problem with both of these scenarios is that they do

not address how to recover from such a situation. In the case of Lomas’s

scheme, it is then impossible for one side to know who started sending the

random strings in reaction to an attack.

2.3 Reliability Measurement

As noted in the section earlier by work on Anderson et al. [AL81, pages

72–77] the main metrics used in reliability measurement are Mean Time

Between Failure and Mean Time To Repair. These are derived from the

analysis of hardware faults, and were found to be lacking in the transition

to software assessment.

Another method of describing these attributes is seen as portraying them

as reliability and availability [SV97, Lit79]. Reliability is stated as the like-

lihood that a system will remain operational during a given period, and
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availability is the fraction of time that a system is operational. Little-

wood [Lit79] points out that these metrics, while worthwhile in their original

environments of hardware reliability, fall short of their expectations when

applied to software systems. He describes other methods of trying to predict

software failure by examining the relationship between the number of ‘bugs’

found over the working life of a piece of software, and trying to extrapolate

to its future working life.

There has been some work done by Littlewood et al. [LBF+93] and

Meadows [Mea94, Mea95] on trying to apply the models based on reliability

measurement to the security paradigm. We are not convinced that this is a

direction in which such cross disciplinary research should be aimed.

In [LBF+93] they argue that security faults arise from design faults which

are vulnerabilities on the system. While we agree with such a definition,

their motivation to study the injection of these on a statistical basis seems

flawed1. They also speak of the difference between accidental and intentional

faults. While the distinction is quite clear, there seems to be little that

can be gained by making the distinction. We argue this point because

an intentional fault injected into a system presents the same problem for

detection as an accidental fault because the resulting events are the same

when seen from the system’s point of view.

In her call for a model for security analysis, Meadows [Mea94] states that

any model that is built should have two attributes, firstly, it should be able

to characterise attacks, and secondly that it should be able to rank attacks in

order of their likelihood. She notes that the ranking of likelihood is going to

be an extremely difficult problem to address. To draw an analogy, in software

fault tolerance, the rate of finding ‘bugs’ is seen as a likely expression of

future failures, but with a secure system a vulnerability can be discovered

overnight and used to attack many systems. A good example of this is the

dissemination – via hacker sites on the web – of shell scripts that can trigger

newly discovered bugs in fielded code. This dynamic property of security

flaws can compound the generation of models. Meadows [Mea95] continues

by outlining a potential model for use in security. She divides security faults

into three areas, the first refers to faults in the security mechanism itself,

the second refers to hostile attacks, and the third refers to non-malicious

human interaction of the form studied by Anderson [And94]. She concludes

by stating that finding operational measures for many of these scenarios is

going be difficult. We agree with her observation that measurement of the

1Our reasons for stating this are the same for rejecting the use of fault injection [HTI97],

as stated in the last paragraph of this section.
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first type of metric is already reasonably straight forward (e.g., the capacity

of a covert channel, or the time taken to break a ciphertext), but these

measurements provide the least insight into breaks that have to be dealt

with once the system is up and running, as they tend to provide input

into the design stage (i.e., use of an algorithm of an appropriate bit length

depending upon the duration for which the ciphertext is expected to remain

secret).

One tool for reliability measurement that we believe to be of little use

in computer security is that of fault injection [HTI97]. Our position on this

is deduced from the impression that any fault injection process in security

offers little beyond the testing of code for bugs. While this is a valid pur-

suit, achieving any additional results within security is unlikely, given that

any fault that is to be injected has to be conceived before hand, and it

is notorious in the field of security that faults in protocols are difficult to

predict.

2.4 Denial of Service

The connection between fault tolerance and denial of service is one that

stems from the desired ability of a security service to continue providing

functionality in the face of an attack. Given the notion that an attack on

the security system can be modelled as a fault, the link between the two

is clear. Unfortunately, there is little in the literature that discusses the

threat of denial of service attacks. Needham [Nee94] provides comment

on the threat of denial of service to a burglar alarm, discussing attacks

on either the client, network or server. Gligor [Gli86] takes the view that

denial of service relates to a group of authorised users being able to increase

the Maximum Waiting Time (MWT) of a group of other authorised users.

While we agree that this is one aspect of denial of service, we do not believe

this to encompass all that denial of service reflects. Indeed, later on in this

dissertation we introduce a denial of service attack which is not encompassed

by this model, where the service itself tries to increase MWT for groups of

authorised users.

He also notes the difference between legitimate denial of service, and

other forms of denial of service. He classes legitimate denial of service as

instances where service is lost due to such things as system crashes. As they

tend to be temporary in nature, if there is a recovery procedure that allows

a crashed system to return before the MWT, then these can be ignored by

definition. He does note that when the return to service from a legitimate

crash cannot be guaranteed, inclusion in the model is warranted.
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Very little has been published about the study of denial of service attacks

on fielded systems, with the notable exception of the work of Schuba et

al. [SKK+97] which studies a SYN flooding attack on TCP/IP.

2.5 Various miscellany

We now abstract various other works in the field of security that have had

influence on our work in this dissertation, but that do not cleanly fit into

any of the preceding categories.

Syverson [Syv97] calls for a relaxation in the worst case scenario when it

comes to applying fault tolerant mechanisms within security2. He discusses

the use of a probabilistic method of surviving an attack on a communication

channel3. His argument then centres on viewing the correct processes and

attackers as a pair of competing networks, and places the discussion within a

game-theoretic model in order to try and calculate the processes’ advantages

in co-operating in groups against each other. While little is offered in the

way of providing a realistic measurement of the applicability of such a model,

we are not concerned with the implementation, but agree that models for

computation other than worst case scenario can be sought to improve upon

the application of fault tolerance within secure services.

One of the first papers to note the link between security and fault tol-

erance is by Turn and Habibi [TH86]. It sets out to deliver some minimal

answers to questions regarding the compatibility of the two disciplines and

the impact of the two design features on each other. Their first statement,

that a security function is fault tolerant, if given the presence of a fault,

the system’s security policy remains intact is a useful notion. They ask if a

security function can degrade gracefully, posing the question in terms of the

DoD security evaluation criteria. They note that it should be possible for

such graceful degradation to occur, if you allow for a downward migration

from the system’s evaluated division and class to function at a lower class or

division. They note that in practice, this would require a design mechanism

implemented with a high degree of modularity and diagnostics to test for the

module’s correct operation. They also make an interesting observation that

protective redundancy lends itself better to security than corrective redun-

dancy, although their use of the DoD criteria as a framework demonstrates

their bias toward secrecy as the overriding factor behind this statement.

Gong [Gon93a] gives the arguments for and against the replication / dis-

2A similar argument is made by Meadows [Mea95, Mea94].
3This is an extension of the two generals problem [Gra78, pp. 465–472].
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tribution of a secure authentication server. The main points made are, that

in a non-replicated environment, the service can become a bottleneck, but

in trying to design the system to avoid this, there needs to be careful con-

sideration so as to not compromise the security of the system. He proposes

an algorithm where the session key in a mutual authentication protocol is

not generated by a single server or group of servers, but by the participants

sending their candidate key through independent instances of the servers us-

ing a secret sharing scheme, and a concatenated hash of the two keys being

used as the session key.



Chapter 3

Belief and Trust in Fault

Tolerance

3.1 Overview

In this chapter we start by giving an overview of what we believe to be the

tenets of fault tolerance as they apply to security protocols. We then view

the differences that need to be taken into account when analysing belief in

protocol specification using a modification of the BAN logic as a vehicle for

our analysis. We conclude by looking briefly at a definition of trust used in

the literature and how this changes in our environment.

3.2 Faults & Protocols

Within the body of fault tolerant literature [AL82, AL81, ALS79], they deal

with a specific nomenclature when discussing the design principles in their

examples. In this section we look at how these definitions translate when

used in the context of security protocols. We use this as a stepping stone

to get an intuition of how to challenge existing principles in the design of

secure systems.

3.2.1 What is a fault?

When discussing a fault and its effect on the system we need to be clear about

what we mean. By drawing up a modification of the standard terminology

used in fault tolerance, we aim to shed some light on the principles that

underline the mechanisms we propose in the remainder of this dissertation.

15
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Our modifications are drawn upon the terminology proposed by Ander-

son et al. in various places [AL82, AL81, ALS79] which is used almost

universally within the fault tolerant literature.

Fault, Error & Failure

We work backwards through the terminology chain defined in the literature.

The final stage of error is referred to as a Failure. The definition as given

in the literature [AL82] is given here:

Failure A failure of a system is said to occur when the behaviour of the

system first deviates from that required by the specification of the

system.

This definition relies on the notion of a specification for system be-

haviour. What exactly are we looking for in the specification of a security

system? Taking a security protocol as an example, it has been noted in the

literature [BAN89] that the function of a protocol is to allow its participants

to achieve certain goals. In particular, we note that security protocols are

generally designed with the goals of specific principals in mind.

Using a two-party authentication protocol [NS78] as an example, we note

that A and B view the successful completion of a protocol as meeting certain

goals upon completion of the protocol. Conversely S has no goals to fulfil by

running the protocol. In this sense S is benign as far as the specification of

the protocol is concerned. We introduce the term Beneficiary to describe A

and B in relation to specification of the protocol, as they are the participants

who aim to achieve the specified goals by running the protocol.

With this in mind we amend the definition to apply to a security protocol

as follows:

Protocol Failure A failure of a security protocol is said to occur when the

beneficiaries do not achieve the goals stated in the protocol specifica-

tion.

In order for the system to fail there has to be an action prior to the

failure, which the failure can be attributed to.

The system is defined to be encapsulated by a set of states which are

changed by transitions. Both states and transitions are said to be either valid

or erroneous. With the set of states represented by si with and transitions by

ti, then the state transition graph flows as shown in figure 3.1. An erroneous

transition is one that moves the internal system state from a valid state to
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Figure 3.1: State transitions

an erroneous state. An invalid state is one which, if not transformed back

to a valid state will result in the failure of the system.

Re-defining these in terms of a security protocol, we define the message

content to encapsulate the state within the cryptographic protocol, and a

transition is subsequently the movement at a participant from and incom-

ing message to an outgoing message.

In the case of valid states and transitions, they are transitions which

follow the protocol specification. For their erroneous counterparts we arrive

at the following definitions:

Erroneous State A message, which could possibly allow a legitimate par-

ticipant to make a transition, and, if not detected would allow a ben-

eficiary to derive false goals.

Erroneous Transition A transformation from a valid message to an in-

valid message, taking the system into an erroneous state.

The terms used to describe the system prior to a failure are Fault and

Error, and are defined are follows [AL82]:

Fault A fault is said to occur in the system, when an internal state is

transferred from a legitimate state to an erroneous state.

Error An error is said to be when some internal system state is defective.

The four phases of fault tolerance [AL82] are identified as (i) error de-

tection, (ii) damage assessment, (iii) error recovery and (iv) fault treatment.
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We give a brief description of what each of these phases means in the con-

text of a security protocol when taking into account our above definitions

for states and transitions:

Error Detection Any participant in the protocol can perform error detec-

tion, but it is the beneficiary who is most likely to carry out this task.

As is it their security policy which is violated, then they are likely – in

some scenarios – to be the only participant in the protocol that notices

the goals have not been satisfied.

Damage Assessment Damage assessment in the case of a security pro-

tocol is a short task. It is unlikely that much can be derived about

what the “correct” state should be given the malicious nature of an

attacker.

Error Recovery In the case of protocols this is likely to be a re-initiation

of the protocol, with fresh state information (i.e., new nonces etc.)

Fault Treatment This is encapsulated by our definition of Error recovery,

as there is likely to be little that can be derived about what the correct

state of the system should be.

As noted in the section describing error detection, we believe that a

beneficiary is likely to be in the best situation to detect an error. With

regard to recovery and treatment, a beneficiary is also the principal who

is primarily concerned with the knowledge that the protocol has been, or

needs to be stopped or re-initiated. For this to be incorporated easily into

protocols, we briefly describe a principle we call Tightly Coupled Protocols

which allows for detection and recovery to be carried out by the beneficiary

with minimum disruption to the protocol. Although we briefly describe it

here, there are sections in the remainder of this dissertation which highlight

our principle well, notably section 6.5.2. The basis of the principle involves

the beneficiary acting as a ‘hub’ for the messages, with the beneficiary being

involved in several rounds. This provides them with maximum exposure to

the current state (i.e., message content). Although we do point out that this

is not an ideal design methodology for some protocols, we do demonstrate

in other parts of this dissertation scenarios where this can work effectively.
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To clarify our discussion, we use some of the more well known protocols

in the literature as examples:

Otway-Rees

Otway and Rees [OR87] proposed a simple authentication protocol. Us-

ing our definition above, the Otway-Rees protocol is tightly coupled around

B. This gives B the maximum control over the execution of the protocol.

This is counter-intuitive to the expectation in the majority of scenarios in

which such a protocol will be initiated, where A – as the initiator – is likely

to be the party most interested in successful completion of the protocol.

As both A and B are considered to be beneficiaries in this protocol, we

introduce the notion of a primary beneficiary and secondary beneficiary1. In

this case A can legitimately be regarded as the primary beneficiary, but is

not the principal whom the tightly coupling is centred around.

What this demonstrates is that under this protocol, it makes it difficult

for the primary beneficiary to carry out the constituent parts of fault toler-

ance (i.e., error detection etc.), because the protocol is not tightly coupled

around that principal.

If we estimate the inherent fault tolerance in a protocol as a measure of

the beneficiaries’ ability to carry out the tasks necessary for fault tolerance,

then we can conclude that this protocol does not contain a high degree of

inherent fault tolerance.

Needham-Schroeder

In Needham-Schroeder [NS78], the tight coupling is centred around A,

which is also the primary beneficiary in this example. This allows us to

conclude that there is a greater degree of inherent fault tolerance in this

protocol.

Wide-Mouth-Frog

The Wide-Moth-Frog [BAN89] is an example of a protocol that is not

tightly coupled at all, where neither beneficiary has a high degree of control

over the execution of the protocol.

1This can be expanded if more than two parties are regarded as beneficiaries.
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3.3 Belief

In their BAN logic paper, Burrows et al. [BAN89] use a notion of belief2

in order to analyse protocols. Their aim was to provide a means by which

the goals of a protocol could be formulated and tested against a set of pre-

conditions.

A strong assumption in their paper is that the principals involved in

the protocol must trust the other principals involved in the protocol to

behave correctly (e.g. that the Server in a Key Distribution Protocol does

not mis-use the keys available to it). This assumption works well in an

environment where the principals involved in a protocol trust each other to

behave correctly. Our aim in this section is to look at the way in which

these beliefs and goals have to change in an environment where assurance

in the actions of others does not necessarily hold.

3.3.1 Belief and N-Model Redundancy

As a focal point for our study, we use the canonical example within Fault

Tolerance of N-Model redundancy [AL81, pages 68–69]. This mechanism

is a method of circumventing the failure of a component by replicating the

component (N times) and then using a voter to provide a final result that

masks the failure of a subset of the components.

When using this mechanism in security, its primary motivation is to

allow the malicious failure of some subset of the components to be masked

by the non-malicious components. In order to accommodate this into a logic

such as the BAN logic, we need to make some changes to the structure of

the logic. If we can understand how a principal’s set of beliefs and actions

upon that set are changed, then we can better understand the changes we

need to make in the design methodology for such systems.

3.3.2 Key Distribution

To illustrate our example, we provide a simplified Public-Key Distribution

Protocol and naively modify it to follow the N-Model redundancy principle

mentioned above.

KDP protocol

(1)A→ S : {A, B}KS

(2)S → A : {A, B, CERTB, KB}K−1

S

2We note that this is not meant to imply belief in the real world meaning, but is meant

to dictate how a principal may act if a function were true.
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Where, A and B are the principals, S is the public key distribution

server, CERTB is S’s certificate on B’s public key, and KS and K−1

S are

S’s public and private keys respectively.

To modify this to a simple N-Model redundant service, let G be a group

of servers, where Si is an instance of the public key distribution server, where

i = 1 . . . N . Let ⇒ denote a simple broadcast send and receive mechanism

that A uses to contact the group of servers G.

N-Model KDP protocol

(1)A⇒ Si : {A, B}KSi

(2)Si ⇒ A : {A, B, CERTB, KB}K−1

Si

A then compares the results from each of the servers Si and if there is a

clear majority that agree on B’s key, then A uses that key to contact B.

3.3.3 Changes to the logical statements

As noted earlier, the postulates on which the BAN logic derives its goals are

built around a belief in the actions of principals. We now look at how those

beliefs change in the new environment.

The following postulates need no change in our revised model: P |≡ X

(P believes X), P � X (P sees X), #X (X is fresh), {X}K (X encrypted

under key K), < X>Y (X combined with formula Y).

The other logical postulates need some change in their definitions, and

we discuss each in turn below:

P |∼ X P once said X - This postulate needs re-working slightly, which is

necessitated by the notion of different types of principals we explore

below, and how to attribute ‘saying’ in our new environment.

P |⇒ X P has jurisdiction over X - This postulate also rests on the assumption

that a principal allowed to utter X during the protocol will do so

correctly. Again, this does not necessarily hold for our revised model,

and we will introduce new methods of achieving this later.

P
k
←→ Q P and Q may use the shared key K - In N-Model redundancy, we need

to differentiate between a server that is replicated and a member of

the group that forms the server. This means that we need to change

the assumptions by which a shared key can be used.
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|
k
→ P P has a public key K - We change this postulate to accommodate our

re-definition of principals explored below 3.

P
x
⇋ Q X is a secret known only to P and Q - This postulate clearly does not

stand between an individual principal and a set of principals.

To allow the original aim of the logic to be achieved, we need to ac-

commodate the points made above into the structure of the logic. We now

expand on the structure of the logic, modifying the notion of a principal

involved in a protocol and modifying the derivation rules to accommodate

these changes.

3.3.4 Re-defining principals

In the original BAN logic, all principals are considered trustworthy, and the

beliefs they derive are evolved from what are deemed to be the actions of

the trustworthy party. This assumption does not hold if we are to consider

faulty principals. We now re-define the types of principals in the model.

Introducing two new principals of group and group member:

P : Principal : P is a normal principal as defined in the BAN logic.

G : Group : A group is a collection of principals, which have a recognised

form to other members of the model. The abstraction of a group allows

us to derive beliefs about the action of a replicated service that are

otherwise unattainable if we independently assess the statements of

individual members.

Si : Group member : An identifiable member of a given group G. As

noted in the discussion above, their ability to speak with authority in

the terms of the logic is restricted, but their inclusion is necessary in

order to form beliefs about the actions of the group as a whole.

By analysing pairwise communications between each of the principal

types defined above, we define which of the logical postulates hold in each

case. The logical postulates we re-define are those that relate to the use

of keys and shared secrets, as these are the postulates from which we are

able to derive the other postulates (e.g. P says X). Table 3.1 gives the

relationships (A period is used to denote that the method of communication

is not supported in our model).

3Although there are mechanisms for sharing a secret key between a group of processes

in order to generate a shared signature, we do not explore the effect of this on our logic

here.
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Receiver

P G Sj

P
k
←→ P . P

k
←→ Sj

P |
k
→ P |

k
→ P |

k
→ P

P
x
⇋ P . P

x
⇋ Sj

. . .

Sender G . . .

. . .

Si
k
←→ P . Si

k
←→ Sj

Si |
k
→ Si |

k
→ Si |

k
→ Si

Si

x
⇋ P . Si

x
⇋ Sj

Table 3.1: Pairwise sender / receiver – key / secret belief postulates

The central row demonstrates that we are unable to associate anything

directly with a group G. To achieve these goals, we need to build beliefs

about what a group says, without a group being able to directly say any-

thing. To achieve this, we now form an extension to the rules that allow us

to derive belief.

3.3.5 Threshold operators

We now include two new operators into the logic to capture the nature of

group agreement protocols. These operators can then be used within the

logic with the same assumptions that current operators (e.g., encryption)

can be used, without needing to draw assumptions regarding concrete im-

plementation into the logic.

The two operators relate to the agreement of the output of the group

and to a threshold of response:

∐ - Signifies that a threshold of agreement between group members has

been reached

� - Signifies that the threshold for response has been reached

The second operator signifies that there is a sufficient number of re-

sponses such that agreement might have been reached (i.e., there may be

dissenting members in the group), and the first operator indicates that there
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are enough that agree on the same value in order that the value can be at-

tributed to the group 4.

3.3.6 New derivation rules

Here is a simple example of how the new principals can be used in existing

derivation rules:

P |≡ |
k
→ Si, P � {X}−1

K

P |≡ Si |∼ X

But as we do not allow Si to have jurisdiction, we cannot move forward

to achieve P |≡ X. In order to achieve this, we have to define a new rule.

The following rule is a modification of the existing jurisdiction rule, and

makes an assumption that all Si which once said something are all believed

by P to part of the same group G.

P |≡ G |⇒ X, P |≡ ∐Si |∼ X, P |≡ Si ∈ G

P |≡ X

That is, if P believes that group G has jurisdiction over X, and that a

threshold limit of members of the group Si agree on X, then P believes X.

We now demonstrate the threshold for response and how it affects P’s

beliefs with respect to what the group says.

P |≡ G |⇒ X, P |≡ �Si, P |≡6∐Si |∼ X, P |≡ Si ∈ G

P |6≡ X

That is, if P believes that G has jurisdiction over X, and that a threshold

of Si have responded, but that a threshold of Si have not said X, then P

will explicitly not believe X. This is stronger than P simply disregarding

X.

In order that P may reach some conclusion about the response of mem-

bers of G, then P needs to be convinced that Si |∼ X is current, in order to

achieve this we add a freshness rule.

P |≡ ∀Si |∼ (Xi, Y ), P |≡ #Y

P |≡ �Si

4The values used in these cases are going to particular to the voting protocols used.
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That is, if P believes that for all Si which said Xi, that they also say Y

(which is fresh – e.g., a request identifier) then P believes that a threshold of

Si have responded. Each Si is allowed to say a different X for the response

threshold to hold. We now give a rule (which we term the combination rule),

that is used to move from response threshold to agreement threshold.

P |≡ �Si, P |≡ ∀Si|Si |∼ X ∀Si|Si ∈ G

P |≡ ∐Si |∼ X

That is, if P believes that if a threshold of Si responded with the same

X, then the group G said X. It is this rule that allows us to derive belief

about what a group said.

message meaning

As stated earlier, we do not have an explicit means for a group to be able to

say anything, this is because we do not allow a key to be associated with a

group. We now expand on the message meaning rules for both private and

public key to include derivation rules that include group members.

private keys

P |≡ Si
k
←→ P, P � {X}K

P |≡ Si |∼ X

That is, if P believes that k is a good key between Si and P , and P sees

X encrypted under k, then P believes that Si said X.

The following two rules carry on from this, allowing Si to believe that P

and Sj said X:

Si |≡ P
k
←→ Si, Si � {X}K

Si |≡ P |∼ X

and:

Si |≡ Sj
k
←→ Si, Si � {X}K

Si |≡ Sj |∼ X
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public keys

P |≡|
k
→ Si, P � {X}K−1

P |≡ Si |∼ X

That is, if P believes that k is a good public key for Si and P sees X

encrypted under k−1, then P believes that Si said X.

This rule carries to Si, allowing Si to believe that P and Sj said X:

Si |≡|
k
→ P, Si � {X}K−1

Si |≡ P |∼ X

and:

Si |≡|
k
→ Sj , Si � {X}K−1

Si |≡ Sj |∼ X

shared secrets

P |≡ Si

Y
⇋ P, P� < X>Y

P |≡ Si |∼ X

That is, if P believes that Y is a good shared secret for Si and P , and

P sees X combined with Y , then Si said X.

This rule also carries to Si, allowing Si to believe that P and Sj said X:

Si |≡ P
Y
⇋ Si, Si� < X>Y

Si |≡ P |∼ X

and:

Si |≡ Sj

Y
⇋ Si, Si� < X>Y

Si |≡ Sj |∼ X
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3.3.7 Belief and control

The exercise of adapting the BAN logic to accommodate N-Model redun-

dancy was done in order to explore what happened to the belief of ordinary

principals (e.g. clients of a server S in the cryptographic key distribution

scenario) by adopting such a model.

We see from the changes we made to the logic, that the belief moves from

the actions of the principals themselves to the threshold mechanism. It is

the combination rule that allows a principal to move from merely observing

that members of the group said X to believing what they say. This is crucial

if we are to achieve goals such as A |≡ A
k
←→ B.

By looking at the authentication protocols listed in the literature, and

studying how they are able to achieve their stated goals, we observe that

they are derived from the construction of messages in such a manner that

a principal involved in a protocol run can use the evidence presented by

the mere fact that he knows the origin of the message to make judgement

about its correctness. Accepting the N-Model redundancy view presented

above, we note that this no longer holds. Instead, the belief now relies

on the principal’s understanding of the component of trust afforded to the

mechanism that combines the output (i.e., in a traditional N-Model scenario,

the voter).

By taking this mechanism for controlling the principal’s belief and plac-

ing it under the control of the principal, this gives the principal greater

confidence in the result achieved.

3.4 Trust

In their paper on trust, Christianson and Harbison [CH96] discuss several

things which trust is not. One of the points of their argument is that “Trust

is not Reliance”. In this they argue that just because A relies on a princi-

pal to carry out some action, this does not imply that A trusts that principal.

We agree with their conclusion.

The inclusion of techniques derived from fault tolerance in security pro-

tocols is there primarily as a goal of reducing this notion of A trusts B (or

A relies upon B) even further.

Given that A now does not even rely upon B to complete their actions

properly, where does this leave us?

As we see from our logic, A needs to have confidence in the mechanism

for indirectly determining confidence in the fact X (because B says so), as

she does not have confidence in X directly from the fact that B says X. In
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this sense A is moving her trust from B into the mechanism for scrutinising

B’s actions.

Given that A now trusts a mechanism in which we can detach from B,

the next logical step is to take the mechanism under A’s control directly, for

surely, if A is to trust anyone, then it must be herself.

Reverting to our use of N-Model redundancy as an example, figure 3.2

shows the difference we have between reliance in a standard cryptographic

protocol, and one in which fault tolerance is employed.

Reliance boundary

A B

A V

B

B

Figure 3.2: Reliance in cryptographic protocols

Dobson and Randell [DR86] criticise the Trusted Computing Base (TCB)

view of secure computing, because its model does not always describe the

user-perceived model of the security-critical behaviour of the system. They

also note that a TCB view is at odds with the concept of a distributed en-

vironment. If we regard the canonical key distribution mechanisms studied

in the literature, we note that they all follow this example of having a TCB.

By allowing the client in a distributed environment to control the security

interface in a manner which fits their security policy, we can move to a system

where there is less reliance on the TCB.

The notion of reducing reliance in single components is not new to se-

curity. What we believe to have illustrated with our example in figure 3.2,

is that the way in which a client can satisfy themselves that their security
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policy is being complied with, can exclusively be handled by the client in

some systems.

Such mechanisms are not achievable in every scenario. There are in-

stances where it may be impossible to move to a system where designing

the system to not have a single point of failure is impossible. Nevertheless,

it is an interesting proposition that we might be able to design secure sys-

tems that “farm-out” the ability to dictate the course of events on which

the client relies.

We conclude by noting that replication is currently used not to reduce

reliances, but to increase the assurances given about the existing reliances.



Chapter 4

Choice and control in

protocols

4.1 Overview

In this chapter, we look at ways in which the control of the protocol can

be used to offer advantages in terms of security. We start off by looking

at the well trodden path of timeliness in authentication, offering a new

perspective on the relative merits of timestamps and nonces. Secondly, we

offer a view on how anonymity can be improved by having those that wish

to communicate with each other control the structure of the communication

mechanism, and we conclude the chapter by looking at using anonymity as

a means of defending against a new class of denial of service attack.

4.2 Nonces v. Timestamps

It has long been a topic of discussion whether to use time-stamps or nonces

as part of an authentication protocol. The relative merits have seen the

light of day in many a publication [NS78, DS81, NS87], which highlights the

importance of choice in security protocols.

In their work on timestamps, Denning and Sacco [DS81] discuss the use

of timestamps in protocols. We propose another attack that re-enforces the

subtlety of the balance in this area.

If we consider an authentication mechanism similar to that used in Ker-

beros [NT94], there is a subtle management of trust in this scenario, where

the server is dependent on the authentication / authorisation mechanism

in more ways than one. We consider a novel yet enlightening attack that

allows the authorisation mechanism to hand off responsibility for its duties

30
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without compromising itself to the principal with which it colludes.

Many of these subtleties are only found in the protocols if we vary the

reliance placed in the players, which is rarely done in the literature with

regard to authentication and authorisation.

Consider a scenario where server S is expecting the authentication server

AS to handle all ticket requests, which S will then act upon in good faith.

If user A approaches AS for ticket, then S has to be sure that AS is doing

its duty correctly.

If we de-couple the trust that S places in AS, then we call attention to

a new attack which we coin the Lazy Warden Attack. Using a message

structure similar to that used by Kerberos, the normal protocol proceeds as

follows:

(1)A→ AS : A, S

(2)AS → A : {A, S, KA,S , {A, S, T, KA,S}KS,AS
}KA,AS

(3)A→ S : {A, S, T, KA,S}KS,AS
, {Y, A}KA,S

(4)S → A : {X, A}KA,S

Where Y and X are service defined parameters, and T is a timestamp.

In this case S does not want to have to manage all the authentication

mechanism itself, and is willing to rely on AS to provide some degree of

service, but does not want to rely on AS more than is required.

We now demonstrate a simple attack which AS can be a conspirator to,

while limiting the amount of control he is relinquishing.

AS is willing to provide the authentication mechanism, but does not

want to pay for the facility of providing a full on-line service, the attack

proceeds as follows:

AS comes to an agreement with a conspirator C to provide the on-line

portion of the service, while AS retains control of the generation of tickets.

We assume a system with a similar property to Kerberos, where the validity

window of the timestamp is quite large (typically 5 mins).

At the start of each period (e.g., once a day) AS generates a set of valid

tuples < A, S, T, {ticket} > (where {ticket} contains the information sent

in the second message of the above protocol). Each of these is encrypted

by KA,AS , which is not known to C. There are enough of these to allow C

to reply to a request on AS’s behalf without the other participants of the

protocol noticing that AS is not performing its obliged duty.

With memory being plentiful, it would take very little for C to store all

the tuples required to fake AS’s presence on the network.
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The important point we note about this attack, is that it is possible

to carry it out without AS being able to entrust any KA,AS to C. This

means C cannot by himself generate any new valid tokens. Also, the tokens

already in C’s possession are only of use to the users who they have been

validly formed for, and C gains nothing from having them in his possession.

It also means C never gets to see any of the KA,S session keys and thus

cannot eavesdrop on subsequent communications between the client and the

service.

We now present two alternatives to this protocol, reverting to a nonce

based mechanism. The first causes S to perform more communication steps

than the second, while still only requiring 4 messages. While the second

increases the message count to five, but has a number of different properties.

In both AS only deals with the same number of messages.

4.2.1 Variant One

In the first variant of our protocol to defeat this attack 1, we need to add

the following information:

NS - A nonce generated by S for each request for service.

G/R - A flag set by AS to denote if the authentication request has been

granted or denied.

The protocol itself is as follows:

(1)A→ S : A, S, Y

(2)S → AS : {A, S, NS}KS,AS

(3)AS → S : {A, S, NS , G/R, KA,S}KS,AS
, {A, S, KA,S}KA,AS

(4)S → A : {A, S, KA,S}KA,AS
, {A, S, X}KA,S

This protocol achieves the same goals as the first one, but has the draw-

back that Y is sent in the clear. This might be unacceptable in some situ-

ations. The problem arrives from the fact that A and S do not yet share a

session key. In order to solve this problem, we develop a second variant to

the protocol.

1The objective here is to ensure that AS is really live.
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4.2.2 Variant Two

The second variant uses a cyclic protocol structure, with Y being sent to

S in the same message as the session key, allowing Y to be encrypted for

secrecy.

(1)A→ S : A, S

(2)S → AS : {A, S, NS}KS,AS

(3)AS → A : {A, S, NS , KA,S}KS,AS
, {A, S, KA,AS}KA,AS

(4)A→ S : {A, S, NS , KA,S}KS,AS
, {A, S, Y }KA,S

(5)S → A : {A, S, X}KA,S

The G/R flag does not need to be used because of the implicit declaration

that the request has been granted when S receives a message with a fresh

nonce and key.

While this protocol increases the message count, the number of messages

the service needs to process stays the same as the previous protocol, but has

one advantage to the service. If A is refused authentication from AS, then

S only has to deal with two messages, while in the first variant, S has to be

party to three messages.

4.2.3 Discussion

The main disadvantage of this scheme is that the service has to be party to

all requests whether valid or invalid. This does not compare well with the

timestamp based protocol, where invalid requests are never brought to the

attention of S.

Our purpose in highlighting this new attack was:

• That the control offered by nonces in protocols can be used as a factor

in protocols to reduce the reliance that one participant in the protocol

has upon other members that take part in the protocol. In the example

we provide, the assumption is that S is willing to rely upon AS to

distribute tokens to correct members, but does not want to rely upon

AS in manner where AS can break a duty-of-care (i.e., AS can carry

out the above protocol with the aid of the a colluding third party

unbeknown to S, without AS compromising himself) which we believe

to be an interesting point in itself.
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4.3 Group anonymity

We present a protocol that allows members of a group to communicate

without external traffic analysis being able to discern which members are

communicating at any particular time. Our method is extremely lightweight

and has the advantage over existing MIX-net remailers in that the protocol

is invulnerable to analysis under duress, even to a complete compromise of

all other parties communicating in the system.

4.3.1 Introduction

We introduce a simple protocol that allows a community of users to commu-

nicate with each other that is resistant to traffic analysis. The primary goal

is to stop an external source form discovering which members of the group

are communicating pairwise, at any particular point in time. Our method

is resistant to external duress being applied in pursuit of this information.

It is of no significance to us that the external observer already knows the

group membership.

As a context to our discussion we examine the scenario where a group

of mobsters wish to communicate without the F.B.I. gleaning any details

regarding the information flow between the members.

The F.B.I. will already be aware of the internal membership of the group,

and the mob will know they are being watched. They could set up a ded-

icated communication network, but this would be expensive, and provide

an easy point at which to launch a denial of service attack. We propose a

method whereby they use nothing other than publicly available communi-

cation media.

There already exist different methods of supplying sender and receiver

anonymity. Chaum first proposed methods for providing anonymity through

the use of MIX-nets [Cha81], a mechanism already used in providing anony-

mous re-mailers. Although publicly available, we do not use them here for

one reason – the F.B.I. could obtain a court order forcing the owners of

the remailers to hand over their logs to the authorities. In these scenarios

the remailers are liable to be subject to duress by legal enforcement, and

subsequently the mobsters would be unable to rely upon the integrity of the

remailers.

A similar mechanism discussed in the literature that could fall in the

face of duress is Onion Routing by Syverson et al. [SGR97].

The second mechanism for providing anonymous communication put

forward by Chaum is that used to solve the dining cryptographers prob-
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lem [Cha88]. This offers an information-theoretically secure way of solving

the problem, but relies on the existence of a reliable broadcast network for

the participants to use. This is an unrealistic goal, and would force the

mobsters to use mechanisms other than those at hand. This idea has been

expanded upon by Waidner [Wai89] so that the network need not be reliable,

but at most fail-stop. This unfortunately has a high degree of complexity

in its implementation.

The method we use is in line with the idea described by Pfitzmann and

Waidner as RINGs [PW87]. It uses a similar mechanism to that used in

Token Ring networks, where the ability to write is passed around the ring

in a round robin fashion.

4.3.2 Basic structure

The communication ring is set up such that it is a cyclic graph containing

all group members. We assume that they can meet confidentially, but that

this itself is a difficult task to organise, and precludes the ability to meet

regularly enough to make it the choice method of communication.

At an initial meeting they all exchange their public keys (formed before

hand in private – in our example we will assume the use of R.S.A. public-key

encryption [RSA78]), and they organise the communication path by some

suitable means – such as drawing straws.

Before we describe the protocol itself we will introduce the notation:
B : a group of n mob members

Bi : the i -th member, where i = 1 . . . n

Ki & K−1

i : Bi’s public and private keys respectively

Mi : a message destined for the i -th member of the group

{Mi}Ki
: message encrypted under the public key of Bi

In practice, the encryption will be carried out with a shared key algo-

rithm and the secret key encrypted using the public key. We use the {Mi}Ki

abbreviation in order to save space in our description.

The protocol is implemented by passing a token round the ring. This

token implements the right to send on the channel, and the content of the

message stream in one. The token is received at Bi, processed and then

forwarded to member Bi+1.

We outline the content of the token below, where Pi is used to denote

padding added by Bi:

{{M1}K1
, {M2}K2

, . . . , {Mi}Ki
, Pi−1}Ki

When Bi receives the token he strips the outer layer of encryption and

does a trial decryption over all messages. In the above example, he finds
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a message in the content for himself (Mi) – we assume that the natural

redundancy in the plaintext will identify a message.

Bi replaces padding Pi−1 with a new padding Pi, and the whole packet

is then encrypted with Bi+1’s public key and sent on to him.

Bi does not remove Mi from the token. It is left for the sender to remove

once the token arrives back with him. This is done in order to stop a subset

of 4 members (Bi−1, Bi+1, Bs−1, Bs+1) from colluding in order to deduce

that Bs has sent a message to Bi. If need be Bs can require a receipt

of delivery from Bi by signing the message. Bi will then add a suitably

encrypted receipt to the token, which Bi will be responsible for removing.

The padding – chosen randomly for both length and content – is there as a

safeguard against eavesdroppers comparing message lengths on consecutive

links.

In this scenario, if the two members – Bi−1 & Bi+1 – either side of the

sender collude, they can compare the unencrypted contents of the token, to

see if there are any new messages. As a precaution against the F.B.I. having

been able to infiltrate the two mob members either side of Bi, he adds

random messages to the token, again removing the message on its return.

The frequency of such messages inserted into the token will be a function

of the amount of genuine traffic sent by Bi, with the number of messages

generated by a particular mobster over the course of a day falling within a

pre-determined distribution.

4.3.3 Additional details

We will now expand upon the functionality of the system, and give a simple

description of a how it could work in the real world.

One problem with the protocol as it stands is that if one group member

wishes to communicate the same message to all other group members, then

it will involve a large number of additional messages and computational

overhead. In order to avoid this problem, we have the group generate a

group key Kg, and each group member will retain a copy of this key. The

key would then be used to do a second set of trial decryptions over the

messages in the token. To provide a speedup, a conventional secret key

algorithm could be used for group messages.

Another addition to the protocol we make is that the token should have a

fixed processing time t at each group member. This time should be selected

according to the expected number of trial decryptions, and also allow for

the time to modify the token (adding new messages and padding etc.). This

will stop an eavesdropper from being able to deduce any useful information
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according to the duration the token was present at any given group member.

In the case where Bi+1 is unavailable, then Bi will send the message on

to Bi+2, with a group message in the token explaining Bi+1 unavailability.

If Bi is deliberately trying to leave Bi+1 out of the loop, then Bi+1will know

quite soon, due to the bounded circulation time of the token.

What makes this system so simple is its ability to be implemented on top

of existing mechanisms. An example would be to add this functionality to

an existing e-mail system. The majority of e-mail systems have a forwarding

function built in to them, this could be programmed to interpret the token

according to our given specification. E-mail encryption products are also

readily available, and could be linked to the forwarding software.

The protocol could be set up to run automatically, with the e-mail soft-

ware storing all incoming messages in a folder for the mobster to read at his

leisure. The software would check a separate folder for any messages to be

added to the token upon its arrival.

An extension that would allow us to keep the number of messages present

in the token bounded, would be to form a queue of outgoing messages in the

folder, with the software picking the head of the queue each time, thus keep-

ing the processing time to within a known envelope. If the queue was empty,

then the software could insert a garbage message. This would increase this

scheme’s resilience to traffic analysis in the face of internal members collud-

ing.

4.3.4 Conclusions

In this section we have detailed an extremely simple protocol that provides

anonymity to a group of users. We outline a scenario where the protocol

could be of particular use, notably where a group of users wish to commu-

nicate in a manner resistant to traffic analysis from external eavesdroppers,

but where the existing MIX-net remailers might not be able to provide the

resilience needed under duress.

The protocol only requires the participants to rely on those with whom

they wish to communicate. This reliance is limited to relying upon the other

group members to forward the token without disturbing messages that are

not intended for them.

An advantage of this mechanism it that is can be set up to run over

existing e-mail software, and provides a continuous messaging service within

a tn-window (where t is the pre-determined duration which a token must be

stationary at a group member, and n is the number of group members).
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4.4 Choice and Denial of Service

In this section we view the influence of choice and anonymity on preventing

a denial of service attack. Although noted in the literature as a concern

within security systems, little has been written on the subject of denial of

service, with the notable exception of work done by Needham [Nee94] and

Gligor [Gli86]. Currently, the major concerns within Denial of Service are

maintaining availability of the server (especially Needham’s work concerning

the vault) and maintenance of fair play between users of a service. Little

is said with regard to the problem of the server itself launching a denial of

service attack.

It is an interesting variant of this problem that we introduce and attempt

to solve.

Consider a system providing a service to a set of users. We are concerned

about a variant of denial of service, where the service can selectively deny

service to some portion of the users with a high degree of accuracy. We coin

the phrase Selective Denial of Service to describe this scenario.

More formally: A system is resilient to a Selective Denial of Service

attack if it consists of a service S (potentially a set of services S), and a set

of users U , where the service should not be able to selectively deny service to

any particular member A within the set of users U with greater probability

than random choice.

We do note two exception to the above definition:

• It its possible for S to deny service to A by denying service to all

members of U simultaneously, by closing down completely, but this

goes outside the bounds of selectivity used in our definition.

• It is also possible for S to deny service to A if it can manipulate the

group membership properties of U , such that A is the only member of

the group. Again, we consider this threat scenario beyond the scope

of our work.

4.4.1 Building a solution through anonymity

Our solution to this problem draws upon the use of anonymity mechanism

for use in different requirements. In his work on digital cash, Chaum [Cha82]

proposed a mechanism that allowed a user to generate electronic cash in a

manner that preserved the user’s anonymity during spending.

The building block of the system is that of blind signatures, where the

issuing bank is asked to sign one of a set of messages that have been con-

verted into unrecognisable values by the use of a blinding factor, where the
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factor is chosen by the user. The issuer of the digital money is allowed to

ask the user to un-blind a portion of the requests to ensure that they are not

about to sign a message allowing the user to spend more electronic money

than they should.

We take this mechanism presented by Chaum and modify it to provide

a solution to our problem.

Below we provide two solutions to the problem. Our first attempt,

although a more naive variant, has one interesting property which is not

present in the second. We developed the second after realising some of the

shortcomings of the first, to provide a more complete and robust solution.

4.4.2 A first cut

Before describing our protocol we first of all define the players involved in

our scenario:

Z The Authorisation server : Provides the users with the tokens that allow

them to use a service S.

N The Authentication server : Checks the authenticity of the users with

regard to their membership of the system.

S Server : Any of a set of servers S.

A User : A uniquely identifiable member of the set of legitimate users U .

G Group : A non-empty, identifiable subset of the legitimate users U , to

which A is a member.

In both our protocols, A wishes to receive some service from a provider

S. The messages that make up the first instance of our protocol are shown

in figure 4.1. The protocol is organised into three rounds. In each round the

user A communicates with Z, N and S in turn. The messages exchanged in

each protocol round and their significance are described below:

Round 1 : A to Z

This part of the protocol is used to allow A to request a ticket to use a

service S from the Authorisation mechanism for that service.

A starts off by generating a set of messages mi (where i = 1 . . . j) of

the form “I am a member of G and wish to access service S”. A then

generates 2j random numbers and splits them into two sets Ui and Vi, using

the product of the random numbers to generate the following:

A : ti = mKi
e mod n ; Ki = Ui ∗ Vi
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Figure 4.1: The first protocol to counter Selective Denial of Service

Where n and e are components of Z’s public key2.

A then sends to Z the set of ti’s and receives one of these raised to d

(the secret component of Z’s public key). For brevity we drop the section

of the protocol where Z requests for j− 1 of the messages to be un-blinded.

(1)A→ Z :< t1, . . . , tj >

(2)Z → A : tdr mod n

Round 2 : A to N

In this section of the protocol, A seeks to bind her authentication as a

member of a particular group G to the authorisation she has to use service

S.

A takes the message received from Z in the previous round and partially

un-blinds the message using one of the two random numbers used to blind

it to generate a new message m′.

A : m′ = tdr/Ur mod n

A then presents m′ to N along with her credentials that she is A and that

she is a valid member of G. A’s details are checked by N , and if satisfied, N

hands back a signed token that confirms A’s identity and membership of G.

Note that, even if Z and N collude at this point, they cannot correlate A’s

2As in the original work by Chaum we assume R.S.A. [RSA78] as the public key

cryptosystem.
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m′ to the original tr, because of the use of the two-phase random blinding,

this makes it impossible for them to selectively deny A access to S.

(3)A→ N : A, G, m′

(4)N → A : {A, G, m′}
K−1

N

Round 3 : A to S

In this section, A requests the service from S, providing S with all the

necessary information that both previous stages of the protocol have been

completed successfully, along with evidence that A is a member of G and

that as a member of G she is able to use S.

A does this by sending the token received from N at the end of the

previous round, and also revealing the second of the random numbers used

to blind the request. Q is any request dependent material, and T is the

response to Q. Although in some services message 6 will not be necessary.

(5)A→ S : {{A, G, m′}
K−1

N
, Vr, Q}KS

(6)S → A : {T}KA

The main drawback with this protocol, is that the server itself can still

mount a selective denial of service attack against A. This is because, when

we were first contemplated this attack, our main concern was the authenti-

cation and authorisation mechanism. One of the reasons for attempting a

second protocol was to negate the threat at all points in the system.

The second point that makes this protocol less desirable, is that the au-

thorisation is carried out before the authentication. This allows a corrupt

user of the system to potentially gather information about what groups were

able to use which services without actually being a member of the group.

There is also the problem that, by having authorisation before authentica-

tion, a user who is not even a member of the system can slow down the

authentication process for legitimate users3.

4.4.3 A second cut

In the second instance of our protocol, A’s interaction with the authorisation

and authentication services are reversed. We also highlight the fact that A

is potentially a member of a number of various groups, and indicate this

through explicitly adding a second group G′ into the description.

3We thank Bruno Crispo for highlighting the presence of this potential cause for harm.
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The new protocol design is shown in figure 4.2, the players are the same,

with the addition of the second group. The protocol proceeds with the

same three round structure as mentioned before, and we describe each of

the rounds below:

G

A

5

6

4

321

G’

N
Z

S

Figure 4.2: The second protocol to counter Selective Denial of Service

Round 1 : A to N

The reason we highlight the difference between G and G′ in this section

is that A needs to carry out each section of this protocol separately for each

group of which A is a member and for which she wishes to use the associated

“right” incorporated within the group at any given time period.

Thus ∀G : A ∈ G, A generates mi (where i = 1 . . . j) of the form “As a

member of G my pseudonym is ‘Fred’ ”. A then generates a set of j random

numbers (Ki), and then computes:

A : ti = miKi
e mod n

The set of all ti is then sent to the authentication service, with the singing

and un-blinding being carried out as before. Again, for brevity we omit the

part of the protocol which reveals the blinding.

(1)A→ N : A, < t1, . . . , tj >

(2)N → A : tdr mod n
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The main difference between this and the first protocol in this section is

the explicit use of a pseudonym4.

Round 2: A to Z

To reveal which pseudonym A has been left with, she then performs the

calculation:

A : mr = tdr/Kr mod n

A then sends this signed pseudonym, along with the name of the service

S she wishes to use to the authorisation server. Z then checks that a member

of G is able to use S and generates a valid token for A by signing the request

and sending it back.

Again, even if Z and N collude at this point they cannot recover any

useful information because of the blinding mechanism.

(3)A→ Z : S, mr

(4)Z → A : {S, mr}K−1

Z

Round 3: A to S

To use the service, A sends the valid token to S, along with the request

information Q as before. Note that, to secure the reply with T , A has to

include a session key for S to use in order to encrypt message 6, because A’s

own public key cannot be identified by S at this point.

(5)A→ S : {{S, mr}K−1

Z
, k, Q}KS

(6)S → A : {T}k

4.4.4 Discussion

We now discuss the relative merits of the two protocols described above.

As pointed out earlier, the first protocol has two problems associated

with it, namely that the authorisation is done before the authentication and

that the user has to rely on the service S itself not to carry out a selective

denial of service attack.

It does however have one distinct advantage over the second protocol. If

the system requires some form of per-user charging with regard to the use

of resources, then it is far easier to do with the first protocol. S can simply

4Although we use a name here for illustrative purposes, a 128-bit random number could

be used in practice.
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keep information on which members of U have used its services, which can

then be passed on to the charging mechanism.

Achieving the same with the second protocol becomes more compli-

cated, with some form of post-use un-blinding having to be done by the

charging mechanism, where S stores the pseudonyms instead of the actual

names. One way to enforce this would be to make authorisation of today’s

pseudonym reliant on the un-blinding of yesterday’s pseudonym.

Under the second protocol, in order to try and remove the threat of

accumulating usage statistics on each allocated pseudonym, which could be

used to generate patterns that can be used to try and detect user behaviour

– these patterns then being used to try and spot users in future runs – we

could have the first round only reveal a subset h (where 1 < h < j) of mi’s

with the remaining j − h being signed as valid pseudonyms (although this

will add overhead to the first round, as this is effectively a single sign-on

facility, it would only need to be carried out once every sign-on period, e.g.,

once a day).

4.5 Conclusions

Our aim in this chapter was to continue exploring the approaches by which

control over components within the protocol can act as a means to achieve

fault tolerance within a secure environment.

We started off by re-visiting the classic argument regarding the use of

timestamps v. nonces in authentication protocols. We highlight the fragile

nature of the trust relationships with a simple yet novel attack. We turn

the use of the nonce on its head. Originally used to assure the recipient of

the freshness of the message in a protocol with another trusted principal, we

use it here as a means to remove the need for one participant in the protocol

to wholly trust the other participant with regard to carrying out part of its

duty. What this shows is that by allowing a participant to control part of

the execution of the protocol, they can narrow the trust boundaries they

place with regard to other members of the system.

In our second analysis, we demonstrate the extent to which control of the

execution of a protocol can effect the guarantees provided by the protocol.

If a set of individuals wish to communicate anonymously, then there already

exist technologies that can deliver this with a reasonably high degree of

robustness. We use our notion of protocol control to go one step further,

providing water-tight guarantees even in light of the corruption of all other

participants in the protocol, which – in existing proposals – would render the
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legitimate players open to attack. The protocol we propose is lightweight

and efficient in terms of its execution.

We finish with an example which we consider to be a new variant of denial

of service attack. We place the client in a position to reduce the ability of

the service to act maliciously. By using a modified version of an existing

anonymity scheme, we demonstrate that by controlling the information flow

in part of the authentication mechanism, the client is able to satisfy himself

that the service cannot single him out in an attempt to deny him service.

At the same time, the authentication mechanism is still able to fully carry

out its duty.



Chapter 5

Adaption of Models

5.1 Overview

In this chapter we view different models and conventions used within fault

tolerance, and their adaption to security applications. We look at how some

of these models can be used to help security, and how some of the concepts

need changing in their transportation between environments.

5.2 Introduction

We look at 3 different conventions described in the fault tolerant literature

and see how their adaption into a security environment can add functionality

to security. We also notice, that while some conventions translate into their

new environment with ease, others require some changes to be made.

5.3 Call-back in revocation systems

Revocation in a distributed environment can be regarded as either being

on-line or off-line. On-line systems follow the practice of allowing a client

to query the revocation server directly to achieve a high degree of timeliness

with regard the assurance of the revocation. This is difficult to achieve in

practice, and in some circumstances can lead to the Certification Authority

(C.A.) being more susceptible to an attack. For this reason, most proposed

systems allow for an off-line mechanism, which allows the C.A. to generate

the revocation material, and then they periodically update the information

by sending it to a directory. These directories do not need to be trusted

as much as the C.A. and can also be replicated to provide high availability.

In off-line systems, there is a balance to be struck, between having a longer

46
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refresh period (thus allowing for cheaper update mechanisms), and a shorter

refresh period (providing a more timely service). We propose a mechanism

that can be used to augment any existing revocation service, which provides

the best of both worlds.

A well known mechanism in fault tolerance is to signal a process of an

undesirable external event in another part of the system, which is commonly

termed as an exception in the literature [AL81, pages 77–88]. This process

can then take any necessary corrective action internally.

Our proposal is based on the notion that by overlaying such signalling

mechanisms, we can have the same degree of granularity as an on-line system

using the structure of an off-line system. We note that these mechanisms

are only of real relevance for use in systems where the requests sanctioned

by servers on behalf of clients in the system are reversible.

5.3.1 Lists, Trees & Systems

We highlight some of the current literature on revocation mechanisms and

then show how our adaption can be incorporated into any of these. Three

current proposals are: work done by N.I.S.T on Certificate Revocation

Lists (CRL) [U.S95], work done by Micali on Certificate Revocation Sys-

tems (CRS) [Mic96] and work on Certificate Revocation Trees (CRT), ini-

tially demonstrated by Kocher [Koc] and expanded upon by Naor and Nis-

sim [NN98].

The standard players, commonly defined in the literature are:

• Certificate Authority (C.A.) - The trusted party who generates the

certificates, and is also responsible for issuing the revocation material.

• Directory - A relatively untrusted service, that is used as an on-line

repository of revocation material. Can be replicated to provide high

availability.

• User - The end user who queries the directory to find out the latest

revocation information associated with a certificate.

In each of the mechanisms (CRL, CRS, and CRT), the CA is the party

who issues the original certificates for a public key. It is also responsible for

issuing the revocation material if the validity of the public key is called into

question before the expiry period placed in the certificate itself.

This revocation information is then periodically disseminated to the

replicated directory. These provide the on-line part of the service with-

out the user having to trust them to do anything more than disseminate the

information.
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When the user requires to check the validity of a public key, they then

poll one of the replicated directories to retrieve the most up to date infor-

mation. The user will then receive, either a proof of revocation, or a proof

of an absence of revocation (depending on which revocation system is used).

The inherent problems with these mechanisms is striking the balance

between having a short timeout period for those that require high assurance,

and overloading the system with the CA to directory traffic, requiring the

CA to move closer towards an on-line mechanism.

The main feature of our amendment, is the ability for the user to require

a call-back mechanism if so desired. What this amounts to, is the user

having the ability to retrospectively receive a finer degree of granularity to

the information provided by the directory. If the existing mechanism used

an off-line verification mechanism which has an update period of T , then any

client unwilling to accept a high degree of risk, will have to wait until the

end of the current period before requesting a fresh version of the revocation

material.

Under this system a user can only receive information with a granularity

of T . Our adaption of these mechanisms allow for a degree of granularity

as fine as the service is willing to provide (say δt), while still allowing the

distribution of the bulk of information between the CA and the Directory

to occur with a period of T .

Take an example where A provides a service, and B approaches A with a

request for service. A checks the certificate handed to her by B and then calls

the distribution server to assure herself that B’s key has not been recently

revoked. If it is within A’s policy to require a finer degree of granularity

than that offered by T , and B’s request comes toward the end of an existing

revocation period, then A has to either accept a level of risk that is in

contradiction with her policy, or request B delay the transaction in order to

satisfy herself of the validity of B’s key.

Under existing systems the CA signs the revocation information for the

certificates with the period that the revocation is processed. By changing

this model to one where the CA signs each revocation with a timestamp

(some multiple of δt, and then signs the distribution of the superset times-

tamp (some multiple of T ), we can allow for users to receive more accurate

information about a particular revocation.

5.3.2 The new protocol

If A requires retrospective confirmation of the lack of revocation of B’s

certificate, then she includes a signal of this request in the initial service
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application.

The directory then builds an outgoing queue of these requests to be ser-

viced, and at the start of the next period, sends to A a second confirmation

or denial of the status of B’s certificate. If the result indicates a revocation,

the timestamp received by A will have granularity t, which will allow her

to make a retrospective decision as whether to remove the result of the B’s

transaction within the system.

We highlight the mechanism with an example as follows: The CA dis-

tributes a list at time t1, and subsequently receives notification to revoke

B’s certificate at time t2 (t2 > t1). It draws up the revocation information,

adding the timestamp t2 to this information. B approaches A for service at

time t3 (t3 > t2), and given the revocation information received by A from

the directory at this point, A decides to process B’s request. A also flags

the directory that she wishes to be notified after the next update of any

change to B’s status during the current period. At time t4, (t4 − t1 = T )

the CA issues a new set of revocation information to the directories, at this

point the directory processes the outgoing information queue and sends A

a copy of B’s new revocation status. The time-line is clarified in figure 5.1,

with the shaded area highlighting the period where B’s certificate has been

revoked, but that he is still able to perform requests throughout the system

with impunity.

T

t

time

t t
2 3 4

t
1

Figure 5.1: A revocation time-line example

We expand on this by describing a set of protocols to implement the

scheme. We use the CRL mechanism as our example, for ease of demonstra-

tion, although it could be used in conjunction with any of the other, more

efficient schemes.

There are three sets of protocols involved here. One protocol layer in-

volves the distribution of the revocation information between the CA and

the directories, and a second is the request from B to A. As our mech-

anism does not differ in these interactions from the standard schemes, we

do not give examples of the protocols here. The third protocol layer is the

interaction between A and the directory, and is described below.
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The protocol makes use of the following information:

• Di - An instance of the directory.

• CRj - A certificate of revocation for the public key of the user IDj . It

is a tuple containing tr (time of revocation, at fine granularity), and

IDj .

• RLd - A Revocation List, distributed to all Di at time td by the CA.

It is a signed set of all current CRj ’s and the additional timestamp tl
(time of dissemination of the list), in multiples of period T .

• F - A flag, used by A to communicate to Di the desire for a revocation

call-back on B’s status.

• tcr - The time of the issue of the request, this is only included if the

flag is set to require a call back.

The protocol itself is shown below, with A communicating with some

Di:

(1)A→ Di : {A, B, F, tcr}K−1

A

(2)Di → A : {A, B, RLd}K−1

Di

(3)Di → A : {A, B, RLd+1}K−1

Di

- dependent on F

The third message of the protocol is sent if the value of F is set in the first

message from A. This message is sent regardless of whether B’s certificate

had been revoked between time td and td+1. This allows A to receive both

the negative and positive acknowledgement of the action.

If A does not receive the third message from Di, at time td+1, after

requesting it in the first message (this could be due to Di crashing in the

meantime, or Di maliciously not replying to A), then A can issue another

one off request to some other instance of the directory server Dl (l 6= i), using

the same protocol as above, and not requesting a call-back. This works, as

A receives RLd+1 in both cases.

To make use of this revocation mechanism, it requires the environment

to have the following properties (the first is necessary throughout the whole

environment, but the second need only apply to servers who wish to use the

callback mechanism):
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1. Loose Clock Synchronisation - This property need not hold to

very tight bounds, but for A to make a decision with regard to the

validity of B’s certificate, by comparing tcr with tr, there should be

some degree synchronisation within the system.

2. Negatable Transactions - It is the nature of our extension that it is

of use to clients that run a system that allow for reversible transactions.

That is, all transactions are negatable over a set of input transactions

in a manner that the transactions can be re-done in order to eliminate

the effect of one of the transactions. This might seem like a heavy

requirement, but can be achieved in some services. Two systems that

can be engineered to meet the requirement are:

(a) An electronic money transfer system, where the system can inject

the inverse transaction to balance the transaction1

(b) A file system or database that allows for a generation of a log

file associated with transactions in order to remove the effects of

a change to the data. All transactions can be finally committed

at the end of the current time period, and the log files dropped

after A is satisfied that all transactions are valid.

We observe that our systems has a parallel in access control, notably that

of optimistic access control, with a post-hoc freshness certificate 2. Although

there is a difference in the push vs. pull strategy employed.

5.3.3 Comparison

In our proposed protocol, we aim to tackle the problem of balancing on-line

and off-line solutions to revocation. We now compare our method to others

proposed, notably those put forward in the context of CRLs in the N.I.S.T.

Public Key Infrastructure [U.S95].

The first approach they note is using Broadcast Revocation Lists, where

the CA broadcasts the lists to certificate using systems (cutting out the

use of the directory system altogether). This allows the CA to broadcast

on a finer timescale, lists for revocations considered more important. In

this scenario it requires a high degree of resilience from the CA, pushes the

system towards a virtual on-line system, and forces a high communication

1We note that this might sound like a strange design principle, but if we compare it to

current practice in a credit card system, where a card user is not charged for transactions

after notification of card theft, even when the revocation mechanism has not caught up

with the card revocation.
2We thank Bruce Christianson for brining this to our attention.
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cost directly from the CA. A notable difference between this and our design

is that the CA makes the decision on what are considered to be important

keys. In the case of a user offering a service, the decision on the relative

importance of a key should be met by the local security policy, as it is

likely to involve decisions regarding transaction information as much as key

material, and our mechanism allows for this.

They also mention two methods of updating their existing directory style

revocation structure. In Directory Updating, the approach is to have the CA

immediately remove the certificate from the directory when a revocation is

performed, doing this adds the overhead of securing the communications be-

tween the CA and the directory. With Trusted Directory, directory updating

is augmented by having the directory system become a trusted component

of the system.

The second of these is clearly less desirable, as a widely distributed

directory becomes a bigger target, and moves away from one of the reason

off-line systems were initially proposed, to remove the need to trust the

distribution mechanism. The first proposal increases the cost in terms of

computation and communication between the CA and the directory.

Our proposal does not require the directory to be trusted, this is a clear

advantage over trusted directory. Directory updating pushes the overhead

in cost into the CA to directory communication, while our protocol adds

overhead to the user to directory communication. One scenario where our

system is more efficient than theirs, is where T is relatively large in com-

parison to the transaction ratio on a client to service basis. For example,

if B were to conduct several requests with A in any period between CRL

updates, their mechanism would require A to communicate with the direc-

tory at every occasion, in our mechanism a single communication with the

directory is all that is requested, as all subsequent suspected revocations can

be handled by the call-back issued for the first transaction.

5.4 Communication across interfaces

In this section we study the problem inherent in communication across in-

terfaces that supply fault tolerance, and how that communication should be

regulated when it comes to security. We illustrate our discussion by using

an electronic commerce scenario. Our discussion demonstrates that an anal-

ysis of the effects have to be taken into account, and sometimes a change in

the model structure is needed when it comes to placing the model within a

security environment.
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In a system with an interface I, which provides a service, the interface is

deemed to provide fault tolerance if, by providing a service to a client C for

the objects maintained by the interface, there are some recovery mechanisms

associated with those objects [ALS78]. This is represented by the diagram

in figure 5.2.

Client

Recovery

data
Object

I

Figure 5.2: Fault Tolerance across an interface

The interesting element of this discussion from a security standpoint is

the communication model they express for the Interprocess Communication

(I.P.C.) external to the interface (i.e., two processes A and B whom are both

clients of the interface I).

In such a scenario they treat processes as either Competing or Cooperat-

ing. It is the difference held with regard to the system at this level that we

are interested in.

Anderson and Lee [AL81, pages 208–223] and Anderson et al. [ALS78]

describe the differences in the interface’s external information flow as follows:

Competing - Competing processes use the same interface, but have no

communication that affects the objects maintained by that interface.

Hence their view of the use and recovery of any objects maintained

by the interface can be regarded as private, though they were the sole

user of the interface. Thus if one process has to invoke recovery on an

object across an interface there is no need to share such information

with other processes that also use the interface.

Cooperating This implies the communication of information through the

use of shared objects across the interface directly for IPC. In this

scenario, there is a need for information exchange about the recovery

of objects maintained by the interface (i.e., if two processes use an

interface that provides recovery in a cooperating manner, then there
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is a need for information flow between the processes with regard to the

recovery of shared objects). A problem encountered with recovery for

competing processes – which we will not contemplate further here –

is the domino effect [AL81], where information flow between processes

that do not have a coordinated recovery strategy can end in system

state rolling back excessively.

When we come to applying fault tolerance to a security interface, we ar-

gue that there are environments where these conventions need to be changed.

In a secure environment, there can be a compelling need for clients who are

not deemed to be cooperating processes – by the above definition – to be

able to share information.

We do note however, that there exist other scenarios, where the above

model not only needs to be adhered to, but possible tightened – such as

a Multi-level secure environment, where information flow between users at

different levels (Top Secret, Secret etc.) is undesirable, regardless of their

status as either competing or cooperating.

To provide some ground for belief in our argument, we focus on the case

of electronic commerce, by looking at an electronic cash mechanism. In an

electronic cash mechanism, having some form of fault tolerance is desirable3.

Yahalom [Yah98] makes a compelling case for having a recoverable mech-

anism on a security service, under the assumption that perfect security is

unattainable, having a mechanism that can catch cheaters after the fact it

is just as desirable.

We look at such a principle applied to an electronic commerce scenario4,

with the following players:

C - A set of clients (where A, B ∈ C).

D - A set of n dealers (Di, i = 1 . . . n), providing a digital cash function,

which members of C use in a client-server environment5.

Mj - A set of p merchants (j = 1 . . . p), where members of C can spend the

digital money6

3If we look at the example of Mondex [SC98, Ber96], they have a backup transaction

protocol which can be deployed if the first is broken.
4Although we do not discuss a particular implementation.
5We assume that members of C are free to chose any Di and can change easily between

Di and Dk (i 6= k).
6For simplicity we assume that members of C only spend money with any Mj and do

not interchange with each other. This helps keep the model strict to the definition held

for competing processes.
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The reason for restricting the digital cash mechanism to clients, is to

adhere directly to the principle of competing processes, which helps simplify

our argument.

We require that the environment the clients operate in allow free move-

ment of the clients between potential dealers, otherwise there is no recourse

within the system, and a client, once having chosen a dealer, has no method

to change dealers if they are unhappy with the service. This is a realistic

assumption, but one that needs to be made explicit to enable our discussion.

Each of the dealers provide a digital cash mechanism, with the added

functionality of a recovery mechanism similar to that proposed by Yahalom.

A client which notices an error in the value of their digital cash will invoke

the recovery mechanism. In order to do this they will have collected the

relevant evidence they require to prove to their dealer Di that they have

been defrauded.

In a scenario where both A and B bank with Di, if A suddenly notices

she is having to use the recovery mechanism built in to Di’s cash system

more and more often, then she is likely to want to move to another dealer

Dk because of the inherent risk involved with banking with a dealer where

recovery is consistently required. Because A does not cooperate with B

across the interface provided by Di, by using the recovery mechanism, there

is no means by which they can share information regarding the objects

maintained by Di. In a security environment, where the client requires a

high degree of integrity from the interface, A may wish to provide B with

evidence of the recovery of her object on Di’s interface, which influenced her

subsequent decision to move to dealer Dk.

B might not necessarily take notice of A’s comments, which comes down

to B’s security policy, and there clearly needs to be a trust relationship

between A and B for such action to be taken.

If A does communicate with B with regard to the recovery of objects on

a common interface, then she is going to have to provide evidence to B of

such actions for B to be collected.

In Yahalom’s work, there is a requirement for evidence upon which B

can make his own decision before recovery can take place, such evidence can

also be used in the communication with B, but this requires careful design

of the evidence for B to be able to make use of such information with regard

to his policy decision7.

It is important that such an instrument does not become open to abuse

7If we take the earlier example of a multi-level secure system, where communication

might be undesirable, the converse is desirable. A should not be able to gather conclusive

evidence that she could present to B with regard to any recovery across the interface.
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by a client, otherwise a malicious client could generate false evidence that

objects maintained by Di were subject to recovery. This could cause Di to

lose business, in a form of denial of service attack.

5.5 Disjoint & Inclusive recovery

Continuing with the work from the previous section, the model of recovery

across an interface is expanded upon in the fault tolerant literature [ALS78].

The expansion is an extension of the simple recovery across a single interface

environment to an environment that has multiple interfaces. The term used

in the literature for such a design of this type is a multilevel system [ALS78]8,

and is split into two categories. The first is an interpretive multilevel system

and the second an extended interpreter multilevel system. The difference

between them is, that in the first, the abstractions provided between an

interface and the processes that use the interface are clean, in that the

process has no notion of the provision of those services provided below the

interface it sees. In the second case, the process has access both to the

extension and to the original interface.

It is this second concept of an extension on an original interface and the

different types of fault tolerance it provides which interests us here.

Anderson et al. [ALS78] describe two types of recovery scheme for this

environment. The first is disjoint recovery an the second is inclusive recovery.

The main difference between the schemes is the manner in which the calling

process is notified of the recovery. As an example, if we take process P ,

calling an extension E to an interpreter I with object O, in the disjoint

scheme, E is expected to take care of any recovery on the data it holds

internally with regard to O separate from the recovery data that I holds on

O. Thus, if P requires a recovery operation on O, E is expected to do its

own internal recovery with regard to this data. In the inclusive scheme, all

the recovery information E requires is also maintained by I, thus when P

recovers O, E does not have to carry out separate recovery on any internal

information.

The key to these differences is the transparency of the recovery across

the extension, and it is this transparency and its effect on security that we

discuss here.

8There is a clash of terminology here between a multilevel system in terms of security

and in terms of fault tolerance.
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5.5.1 In terms of security

We now take these conventions and adapt them to be applied in the context

of security mechanisms. Here we re-define these terms for our own use:

Disjoint A disjoint security interface is expected to provide recovery with-

out involvement from any information maintained by the client pro-

cess. Within the notion of transparency, this type of recovery is taken

care of without client intervention.

Inclusive An inclusive security interface is reliant on the client process for

some of the context with which to perform the recovery itself. In our

view of transparency, this method requires intervention from the client

process.

We make a connection here to an argument put forth by Gollman [Gol98],

where concern is made over the fact that the client might be facing a different

attack threat to that noted in the classical literature. It is also noted by

Needham [Nee94] that security protocols are usually deemed to “just work”,

without any consideration to the consequence of what should happen if they

do not.

The main issue we wish to propose here is, that if a security service is

to make use of fault tolerant recovery primitives (using recovery across an

interface as our model for this), then the type of error recovery needs to be

taken into account. We expand on this below:

The application of the type of recovery will be affected by two choices.

Firstly, what security functionality is the system delivering, (e.g., secrecy,

integrity etc.). Secondly, where does the trust boundary of the client using

the service lie.

Taking these in turn we discuss the implications on the choice of strategy

used.

Secrecy

Because of the very nature of secrecy, it is impossible for the interface

providing the service to recover without aid from the calling process. Thus,

using an inclusive recovery strategy is required for any interface that provides

secrecy.

Although an interface which provides secrecy must use an inclusive strat-

egy, there is one scenario where a disjoint recovery mechanism can function,

and that is for the secrecy of keys. It is feasible that, if an interface provides

a key management service, then re-keying on behalf of the calling process



CHAPTER 5. ADAPTION OF MODELS 58

can be done separately. Essentially this is what a session key set-up mecha-

nism is doing. In the example where a session key is used for a long period

of time, re-keying is already recommended practice, to reduce the possibil-

ity of some forms of cryptanalytic attack. This is an example of a scenario

where a disjoint mechanism can be recommended, although notification to

the client of re-keying would be advisable in the case of recovery.

Integrity

Here we will differentiate between what we regard as two types of in-

tegrity:

Absolute Integrity in the classical sense, where the data transmitted or

stored can be checked for tampering in transit or storage.

Relative Integrity of the process or procedure. This is more amorphous,

dealing with possible subjective context.

In the case of absolute integrity, there is a case to be made for the

recovery to be disjoint. This would allow for the recovery to be carried out

by the extension without the process needing to notice. Such a case would

be the re-sending of a secure data packet whose MAC had failed. Such a

recovery could be quietly handled without interference from the process.

Although the service might wish to notify the client in the case of recovery

taking place, but the client does not get involved in the actual process.

In the case of relative integrity, the recovery should be inclusive. This

is because of the subjective nature of the loss of relative integrity9, it is

necessary that the process is able act according to its own security policy.

Denial of Service

A security service that aims to provide resilience to a denial of service

attack will, by its very nature be designed to handle recovery in a disjoint

manner. This will allow the client to transparently use the recovery mecha-

nism of the service, which is its basic provision.

There is a counter argument to this, where a security service that pro-

vides for denial of service, but which is ultimately unable to provide those

goals should switch over to an inclusive recovery mechanism that allows the

process to try and handle the situation as best possible.

9To give an example, we view our work in chapter 8 as being an example of this form

of integrity.
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5.5.2 Policy related recovery

After noting which types of security mechanism the different conventions are

best tailored to, we note that a primary motivator can also be the security

policy of the client, and the amount of information that an interface will

supply to the client when it interacts with the service across an interface.

We illustrate our argument with a short example to highlight the poten-

tial for conflict:

If a security interface is going to provide a service for a client, it may keep

information regarding the service it provides separate from the information

it shares with the calling process, even though the information is linked.

In this type of scenario, it makes sense for the recovery mechanism to be

implemented as disjoint10.

On the other hand, it could be argued that an interface that provides a

security mechanism might be better served by allowing the client that uses

the interface to be involved in the recovery process (i.e., inclusive recovery).

This would then allow the process to use its security policy as an input to

the recovery process, providing an open environment, and allow the process

to have more faith in the recovery mechanism.

Although we only touch the description here briefly, we believe the use

of differing recovery policies across different types of interfaces to be a useful

abstraction that could provide for some interesting research in future.

5.6 Conclusions

Our goal in this chapter was to look at some of the mechanisms used within

the fault tolerant literature, adapt their use for secure services, and note how,

in crossing from one domain to the other their bounds needed to change,

and how we can use their goals to provide empowerment within services of

a secure nature.

Firstly, we adapted the notion of raising exceptions for use in a revoca-

tion mechanism. We find that given some constraints with regard to their

use (constraints which are inherent to the mechanism itself), we are able to

augment the functionality of revocation service. Particularly, we are able to

balance the benefits and drawbacks of off-line and on-line recovery mecha-

nisms – namely granularity v. timeliness. We find the notion of exceptions

fit neatly into the model without need for adaption.

10We note the similarity here to the information hiding principles underlying Object-

Oriented programming.
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Secondly, we studied the notion of information flow external to an in-

terface. Such information flow is regulated in its original environment by

the definition of cooperation, specifically with regard to its use within IPC

across an interface. We conclude that this model needs to be changed when

adopted within a secure service. We present evidence for our claim by pro-

viding an example where communication external to the interface, directly

related to the service provided by the interface, can be beneficial to the

client. Although we do note, that such changes are not necessary or desir-

able in all environments (e.g., multi-level secure systems).

We finish by looking at the notion of disjoint and inclusive error recovery

across and interface. Here we see that the model conveniently translates into

its new environment, but that we need to provide more emphasis with regard

to the motivation for its use – something that is given little thought in its

original environment. If we concentrate on our original premise of reduction

in trust, we conclude that the use of an inclusive recovery scheme in such

scenarios can be beneficial.



Chapter 6

Resilience to timing attacks

6.1 Overview

One of the many types of replication checks mentioned in the literature are

timing checks [AL81, pages 123–124]. They are a limited form of replication

check that can be applied if the specification of the component provides for

some form of timing constraint. They are quite flexible in that they can be

used in both software and hardware environments (e.g., replicated hardware

processors can ensure the availability of other processors, and watchdog

timers can be used in software to catch code segments that could have fallen

into an infinite loop).

In this chapter we describe a simple method of using Asynchronous

Transfer Mode (ATM) network technology to defeat attacks that rely on

the opponent’s ability to disrupt the timely delivery of messages within a

cryptographic protocol. Our method centres on ATM technology’s ability

to provide guarantees associated with the bandwidth and delay characteris-

tics over a connection. We manipulate these mechanisms to provide us with

timing checks on the delivery of cryptographic protocol messages, which can

be used to monitor for foul play in the message delivery process. We also

describe how this can be used to detect a denial of service attack. ATM

Quality of Service (QoS) is briefly described, along with a functional break-

down of a proposed design.

6.2 Introduction

This chapter describes a method of using Asynchronous Transfer Mode

(ATM) networks to defeat or detect various timing or replay attacks on

cryptographic protocols.

61



CHAPTER 6. RESILIENCE TO TIMING ATTACKS 62

Attacks on cryptographic protocols that use methods of disruption

within the timing of message delivery within a given protocol run are well

known in the literature. Work by various authors [Gon92, Gon93b, Syv94,

LG90, Aur97, Mit89, OP96] show the potential for such attacks on certain

protocols. Each of these attacks has its different form, requiring a differing

amount of knowledge about the messages and their content, in order to be

successful. What these techniques have in common is that they disrupt the

flow of the messages within the protocol run to some degree. Gong [Gon92]

makes clear that the main reason this is possible is down to the inherently

unreliable networks that are used in the majority of distributed environ-

ments. Networks that employ standards such as Ethernet – due to their

broadcast nature – are susceptible to dropping packets if the traffic is busy.

This means that if a given packet is lost on such a network, the act is un-

likely to be noted with any interest. This allows an attacker to interfere

with packet transmission with impunity.

O’Connell and Patel [OP96] give a model whereby the trip latency on

messages between two hosts is measured, this is then used to try and detect

message delay. Their work – although not requiring synchronised clocks –

relies on the measuring of real time, and reasonable measurement of clock

drift between the two hosts. A delay is calculated by a measurement from

when the start of the message is sent to when the end of the message is

received.

Gong [Gon92] also gives a clear example of how even a thoroughly studied

protocol such as the Kerberos authentication mechanism can fall foul to such

attacks under circumstances which are difficult to predict.

By removing this unpredictability from the underlying communications

infrastructure, we are able to reduce an attacker’s ability to launch such

attacks, also allowing a legitimate client to detect and respond to a potential

attack.

We use ATM as a network architecture to counter this problem because

of the bandwidth guarantee that can be obtained on a connection. This

design principle was introduced into ATM in order to service applications

that needed regular bandwidth (such as video phones). We hijack this for

our own ends in order to better regulate the passing of messages between

principals that take part in a cryptographic protocol.

The rest of this chapter is organised as follows – section 6.3 gives a

better overview of the bandwidth regulation methods implemented in ATM

and how we can use this to our advantage. Section 6.4 goes on to give

an example of how we could implement our proposal within the protocol

stack at a host, providing service to applications that use cryptographic



CHAPTER 6. RESILIENCE TO TIMING ATTACKS 63

protocols. Section 6.5 gives some examples of its use against attacks noted

in the literature, followed by our conclusions in section 6.6.

6.3 ATM Functionality

In this section we look at the functionality that an ATM [LM95] network

gives the operating system and applications that run on that network. We

then study this service from a security point of view, showing how we can

exploit its ability to give us guarantees on the delivery of cryptographic

messages. We end the section with two features of ATM (cell delay variation

and discard control) and discuss how they specifically affect our work.

6.3.1 Service guarantees and QoS

It is a feature of ATM networks that they allow a connection (called a Virtual

Circuit or V.C.) to have certain upper and lower bound characteristics with

regard to bandwidth and delay. These mechanisms were placed into the

network architecture in order to give users of time critical applications some

degree of protection against network delays. Combined with the application

level use of these features, this is generally known as Quality of Service

(QoS).

If an application is communicating via an ATM network, it can request

guaranteed bandwidth and delay on a V.C. that it wishes to set up. The

network then either accepts or rejects the request for the connection, de-

pending on the resources requested when balanced against current resource

allocation.

The ATM standards were – in part – designed to deal with shared media

over LAN’s that require low connection costs. It is the characteristics of

the type of connectivity required in these environments (i.e., low bandwidth

users and infrequent users) that we exploit in our aim to defeat timing

attacks.

6.3.2 Bandwidth division

Not all V.C.s are given guaranteed bandwidth on an ATM network. This

allows us to effectively segregate the bandwidth on a network into two com-

ponents.

By giving an application that requires the use of a secure protocol the

ability to request a V.C. with associated guarantees on bandwidth and delay,

we can accurately predict the delay experienced by any message sent. Any
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deviation from this delay indicates the possibility of an attack. This does

not always indicate an active attack – as no guarantee is absolute – but we

can make the probability arbitrarily high.

We abstract this as dedicating a portion of the bandwidth for crypto-

graphic protocols. Because of the nature of the majority of cryptographic

protocols – small number of messages, with little bandwidth consumption

and infrequent – they fit exactly into the category of application that ATM

QoS was designed to support.

This division should not disrupt the throughput for the majority of traf-

fic, as once the cryptographic protocol is complete, the guaranteed band-

width held by the principal is dropped.

6.3.3 Separation of function

It is a factor of other network designs that all communications on the net-

work suffer under high load. By taking advantage of a channel which has

its bandwidth and delay characteristics regulated, we are able to stop many

timing attacks. In essence, we are separating the communications infras-

tructure into different portions – separate secure and insecure channels –

each of which provides us with different functionality. Making use of this

secure channel does not address any other issues in terms of security; it does

not stop eavesdropping, and all checks for integrity and authenticity are still

be carried out by the cryptographic functions used by the application.

6.3.4 Cell Delay Variation and Discard Control

Information is physically sent using cells, the information distribution packet

used on a V.C. Because of the queueing involved along the route that a cell

travels from source to destination, the cells suffer from what is termed “Cell

Delay Variation” (CDV, also called jitter) [GB94]. On a “Constant Bit

Rate” (CBR) connection – which we use for the secure connection – the

cells are sent out at regular intervals. Some cells will experience a shorter

delay than preceding ones (causing clumping), and others will experience

larger delay (causing dispersion). It is the statistical representation of these

variations from cell to cell that defines the jitter. As the jitter on a given

channel is likely to change gradually through time, any radical change in

CDV around a secure connection will indicate the likelihood of an attack to

the receiving end.

An advantage of measuring CDV over straight message delay is that

cells should arrive at a roughly even distribution, subsequently any massive

clumping (e.g., the whole message in successive cells) would signal an attack.
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This forces an attacker to carry out an attack without knowing the message

content, because of the need to not disrupt the delay characteristics.

There is also a feature called Discard Control [LM95], which enables

the network nodes, in the face of severe congestion, to drop cells from the

same packet, as dropping random cells that come from different packets

causes greater disruption for the overall delay characteristics of the network.

Queueing mechanisms use priorities to decide which cells to pick when trans-

ferring cells from incoming to outgoing queues (thus affecting which cells

might get dropped). With some implementations, the application can allo-

cate a priority level to both delay and loss characteristics [CU95]. We would

need to allocate the highest possible priority to each of these to minimise

any disruption to our secure connection. The ideal circumstance would be

to have a priority mechanism which would ensure that secure V.C.s were not

dropped under any circumstance – although we are not aware of any ATM

queueing mechanism that would currently allow this.

6.4 Changing the protocol stack

A simple representation of the protocol stack used in ATM is shown in

figure 6.1 (from [LM95]). The proposed inclusion of a secure layer imple-

menting the desired functionality has been added to the diagram. This

could either be a new layer or be incorporated into an existing layer. For

the purpose of our discussion, we will assume it resides above the AAL-x

layer.

We describe an initiator of a secure V.C. to be the principal that requests

the creation of a V.C. in order to transmit a cryptographic message1. A

receiver is the recipient of the message.

The ability to be both an initiator and receiver of a secure connection

should be available to both client and server applications. This is necessary

because several authentication protocols (e.g., Needham-Schroeder [NS78])

have messages where both initiator and receiver are clients. Although we

are not aware of protocols where servers initiate the cryptographic protocol,

they frequently initiate a subsection of the protocol, sending a message to

the second client in an authentication protocol, after being contacted by the

first client (e.g., Wide-Mouth Frog [BAN89]).

We restrict the number of secure V.C.s that are allowed to be open at

any one time at a given host. This gives us an upper bound on the round trip

1We use the term cryptographic message to describe a single message sent from one

principal to another, that is part of a larger protocol (e.g., [A → S : A, B, Na] constitutes

a single message).
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Physical layer
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Figure 6.1: Current (and proposed) ATM layers in stack

delay for a message and its reply, because processing time at the receiving

end will be – amongst other things – a function of the number of connections

open. This is required in order to ensure that we are able to monitor the

connection accurately. This should not cause a problem as far as requesting

a secure connection is concerned, as cryptographic protocols are lightweight

in terms of modern communication and their time to completion is likely to

be quite small. Subsequently, a full input queue will be cleared quickly.

The required functionality this layer should exhibit is characterised be-

low:

1. Initiator Side

• Negotiate a secure V.C. from initiator to receiver with the under-

lying AAL-x layer.

• Notify the initiator of the connection time on a V.C. carrying a

message that has no response (such as the final message in the

protocol), and whether this delay is acceptable.

• Notify the client of the round trip delay of a message that is

followed by a response (this includes both the time spent in both

in-bound and out-bound connections and the processing time for

the server). A breakdown of V.C. connection time and processing

time should also be available.

• If a request for a secure connection is refused, then back off and

re-issue the request. This should be carried out a pre-set number

of times before giving up and signalling an exception to the calling

application.
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2. Receiver Side

• Notify the receiver process that an incoming V.C. is a secure

request.

• Notify the receiver if the delay on the incoming message falls

outside the negotiated window.

• Negotiate the response V.C. on a message in a protocol that re-

quires a response (e.g., the second message in a handshake).

• Notify the underlying AAL-x layer if the receiver already has the

maximum number of V.C.s open, in order that a request for a

new secure V.C. should be denied.

When negotiating for a secure connection, all parameters should be

within a constant window (i.e., for a given network, all secure connections

will have bandwidth and delay characteristics within a pre-defined enve-

lope). This ensures that all participants in a cryptographic protocol are

able to judge the outcome of their requests accurately. It would be ideal to

have these characteristics fixed, but on longer routes through a network it

would be implausible to guarantee the negotiation of discrete amounts.

Lam and Beth [LB92] state that a server should not hold any state if

possible 2. This is not of a great concern in our design for two reasons:

1. A server is limited by the number of connections it has open at any

particular time.

2. As the client is the initiator in the majority of cases, the client will

hold the state, reducing the burden of storage on the server, which is

also desirable from the point of view that we aim for the clients to be

in control of the protocol.

6.4.1 Function calls

Figure 6.2 shows an enumerated set of function calls to implement the

scheme, with their descriptions given below:

1. Initiator calls

1 : open link This is a call made by the application to the secure

layer, it includes the address of the server to send the request to

and includes the message content.

2We look further at the relevance of the state that a server maintains in section 7.4.
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Figure 6.2: Enumerated diagram for secure layer function calls

2 : close link This is the successful request return made by an ap-

plication. It includes a flag of whether the secure layer believes

the request has been delayed or not.

3 : link fail Informs the client that a connection for a V.C. was de-

nied more times than a pre-set threshold.

4 : link req The secure layer uses this to request a V.C. with the

required bandwidth.

5 : ref req A return signal to the secure layer indicating that the

request has been refused.

6 : return msg This is a return message from the receiver to the

initiator (if a response is part of the protocol). This is passed up

to the application as a return message.

2. Receiver calls

7 : deliver msg Delivery of the message body from the initiator and

flagged to indicate that it is a secure V.C. and if the delay is

acceptable for the negotiated connection.

8 : msg out Outgoing message from the receiver to initiator.

9 : conn req Signal for a request of a secure V.C. from an initiator.

10 : conn ref Return signal refusing the request for a secure V.C.

(due to a full incoming queue).

11 : conn acc Return signal accepting the request for a secure V.C.
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12 : return msg Passing on the outgoing message from the server

to the client.

When the secure layer receives a request from an application, it needs to

negotiate a secure V.C. with the AAL-x layer. If the connection is accepted,

then the secure layer starts a timer until the connection is closed by the

receiver end of the V.C. It then checks if the actual connection time falls

within the expected limits, flagging the result to the application.

Given that an attacker might try and give a false message to the receiver

before the initiator sends the message, it should be up to the secure layer

to wait for the whole duration that the V.C. is expected to be open before

passing the message up to the application layer. As the secure layer cannot

distinguish the difference – because any authentication is done at the appli-

cation level – all messages must be passed up to the application. Although

the arrival of more than one message on a secure V.C. is itself likely to signal

an attack.

6.5 Examples of usage

We now take a look at both replay attacks and denial of service attacks,

evaluating how our scheme helps to prevent and detect these types of attacks.

6.5.1 Timing and replay attacks

First of all we take a look at some of the replay attacks described by Syver-

son [Syv94]. In his paper he describes two separate taxonomies, an Origi-

nation taxonomy and a Destination taxonomy. Each of these is split into

subsections as follows:

• Origination taxonomy

1. Run external attacks (replay of messages from outside the current

run of the protocol)

(a) Interleavings (requiring contemporaneous protocol runs)

(b) Classic replays (runs need not be contemporaneous)

2. Run internal attacks (replay messages from inside the current run

of the protocol)

• Destination taxonomy

1. Deflections (message is directed to other than the intended recip-

ient)



CHAPTER 6. RESILIENCE TO TIMING ATTACKS 70

(a) Reflections (message is sent back to sender)

(b) Deflections to a third party

2. Straight replays (intended principal receives message, but mes-

sage is delayed)

We now look at each of the different threats noted above, and discuss

the usefulness of our technique at avoiding and/or detecting each of them

in turn.

Taking the interleaving attack described by Syverson (the BAN-Yahalom

protocol [BAN89] and the attack on it are shown below), it is possible to see

that A might raise the alarm in this situation. All principals involved in a

cryptographic protocol can assume that all messages on a negotiated secure

V.C. are sent and received. When A does not receive the message in round

3 of the BAN-Yahalom protocol, it is difficult for the attacker to cover the

attack. If the attacker does not tear down the legitimate protocol, then B

ends up receiving two versions of message 4 (one from A and one from Ea
3)

The BAN-Yahalom Protocol

(1)A→ B : A, Na

(2)B → S : B, Nb, {A, Na}Kbs

(3)S → A : Nb, {B, Kab, Na}Kas
, {A, Kab, Nb}Kbs

(4)A→ B : {A, Kab, Nb}Kbs
, {Nb}Kab

Attack on the BAN-Yahalom Protocol

(1)A→ B : A, Na

(2)B → S : B, Nb, {A, Na}Kbs

(1′)Ea → B : A, (Na, Nb)

(2′)B → Es : B, N
′

b, {A, Na, Nb}Kbs

(3) Omitted.

(4)Ea → B : {A, Na(= Kab), Nb}Kbs
, {Nb}Kab

Our system cannot defend against classic replays of the sort described

by Denning and Sacco [DS81]. Their attack is mounted by a masquerader

gaining access to an old session key, then initiating a fresh connection using

a replay of part of the protocol in which that key was issued. We cannot

3Where Ea is used to denote E masquerading as A.
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defend against this type of attack, primarily because of the off-line nature of

the attack 4. Although our design could be used to augment systems such

as those described by Lomas et al. [LGSN89] that do defend against such

attacks.

In the case of run internal attacks, we have a similar defense to the

interleaving attack described above. Due to the assurance that the principal

has of the delivery of messages, it can regard a breakdown of a protocol run

as suspicious.

Reflections and deflections can be detected if the attacker has to fal-

sify a dropped protocol to interrupt the connection, similar to the case for

interleaving.

In the case of straight replays, they are similar in concept to the suppress-

replay attack discussed by Gong [Gon92], where any message that is delayed

is going to be picked up as a potential attack by our design.

An interesting point to note, is that if one connection shows signs of being

tampered with, then it could be an indication of that connection being used

as an oracle in attack on another connection in the system (as demonstrated

from the BAN-Yahalom attack described above). The difficulty rasied by

this question is trying to reconcile to two instances, which could be an

interesting topic for further research.

6.5.2 Protocol Suitability

We take a brief look at how our scheme lends itself to different structures of

protocol design.

(1)A→ S : A, B, Na

(2)S → A : {Na, B, Kab, {Kab, A}Kbs
}Kas

(3)A→ B : {Kab, A}Kbs

(4)B → A : {Nb}Kab

(5)A→ B : {Nb − 1}Kab

By taking the enumerated description of Needham-Schroeder [NS78]

given above, we can see that each client is able to encapsulate messages

as pairs to and from another party in this protocol (e.g., A sees messages 1

& 2 as a pair to S). This means that they can make an accurate estimate

of the round trip delay of this small part of the protocol that they view.

In a protocol where clients are not involved in consecutive rounds of the

4It is not really a goal of our system to defend against off-line attacks.
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protocol, it is more difficult for them to accurately predict the total delay

expected until they receive their next message 5.

If we contrast this simple example to that used in the interleaving attack

above – where there are no message pairs – we rely to a greater extent

on the reliability of the communication in the case of the protocol studied

in the interleaving attack. We observe that our method is more adept at

monitoring a protocol where there is symmetry in the message structure of

the protocol (i.e., a protocol where a principal sends a message and receives

a response directly from the principal that the first message is sent to). If,

as part of a protocol, a client needs to send a message to another client, and

does not receive the reply for a number of rounds within the protocol, then

some inaccuracy in the calculation of the total round trip delay might be

experienced.

6.5.3 Denial of Service attacks

It is possible to use the methods that we describe in order to detect a denial

of service attack mounted against a cryptographic protocol. Indeed, in the

example given by Needham [Nee94] of the vault communicating with an

alarm company, it is noted that the communication path between the two

entities should have a guaranteed bandwidth.

As our design is more general, it is not possible to guarantee bandwidth

to all clients at all times, as would be needed in the example of a vault. This

leaves us requiring a method to monitor the use of secure channels. If the

server is refusing another connection (e.g., if its input queue was already full)

then as noted previously, the secure layer in the protocol stack would back-

off for a short period, then re-issue the request. Because of the infrequency

with which most cryptographic protocols are used, it is reasonably safe to

assume that a server is unlikely to have a full queue for long. If the client

end has to back-off more than a certain threshold, it would be reasonable to

assume that the client or server was coming under a denial of service attack.

The secure layer would then stop trying to establish the V.C., signaling an

exception to the application. The question of whether this was a denial of

service attack, or some more innocuous event could be answered by some

out of band means.

5It could be a policy that all connections through intermediaries are delayed for a pre-

defined time (which would be a function of maximum message delays on the network),

which would have the effect of re-synchronising the protocol at each step, although this

does leave itself open to hijacking if the intermediaries are not fully trusted.
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6.6 Conclusions

Timing and replay attacks are well noted in the literature. Other attempts

have been made to remove the possibility of replay attacks, most are cen-

tred around designing protocol messages in such a way as to try and prevent

rounds of a protocol from being forged. In this chapter we present a com-

plementary method of countering these attacks, by using the timing of the

connecting channel between the principals involved in the protocol.

We view our design as augmenting current mechanisms for defending

against timing attacks. In contrast to other work, ours does provide a

mechanism for detecting a denial of service attack which – with the no-

table exception of work by Needham [Nee94] – has little coverage in the

literature.

Our work has two distinct advantages when compared to that of

O’Connell and Patel [OP96]. Firstly, continued delivery can be measured

by using CDV to monitor cell by cell arrival, which has a distinct advantage

over single message timing. Also, messages are guaranteed to be able to

get through within a short time, independent of bandwidth usage by other

applications for non-secure V.C.s.

By requesting a V.C. with a given delay and bandwidth characteristics,

and then measurng the variance within the performance received, it is pos-

sible to monitor – to a high degree of probability – any interference in the

delivery of a protocol message. Any delay would signal the possibility of an

attack to the communitating applications.

We analysed how our design would detect the attacks mentioned in a

taxonomy by Syverson [Syv94], and show it handles on-line attacks (such

as an interleaving attack) effectively. We also discuss our design’s ability

to deal with denial of service attacks. We conclude that it would handle

this very efficiently. Any denial of service attack mounted against a specific

client or server would be difficult to hide, given that our mechanisms monitor

requests for service at either end of a V.C. and are not primarily concerned

with bandwidth consumption across an entire network.

We do not propose this method as a replacement for thoughtful and

correct design of protocols used to implement a secure service, but we do

see it as another tool that can be used to improve system security.

Building a working implementation of the secure layer would be interest-

ing, primarily to measure the potential occurence of false negatives received

under high levels of network load.

We would also consider implementing a new queueing mechanism. It

would have a priority level for cryptographic protocols in order that they
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would not be dropped under any circumstances, and given the highest pri-

ority through switching mechanisms. This should remove any possibility of

a false negative.

Policing of this mechanism for any abuse by applications would have to

be a concern. The security module within each host on the network could be

used to monitor for suspicious behaviour from any given application, raising

an alarm with the network manager if need be, although pursiuing this more

fully would provide interesting research.

Further work could be oriented towards the precise characterization of

the properties required by our design. These definitions could then be used

in the implementation of future networking standards, rather than shoe-

horning our requirements into exisiting mechanisms. It is a feature of most

implementations that they are designed with inadequate security features

in mind, and a set of clear design goals for channel security could be one

method of changing this.

To highlight the potential usefullness of our mechanism, we outline two

scenarios where we believe our mechanism could be used effectively.

The first scenario is where maintaining the physical security of the LAN

could be prohibitively expensive. Our mechanism could provide for a cheap

and cheerful means of monitoring for potenial foul play on the network.

The second scenario is where several LANs are connected via an ATM

backbone. The propsal for this type of network topology is increasing [Hal].

The physical security of the two LANs might be easily guaranteed, but

the backbone is a shared media with other untrusted entities. This type of

topology might be common in a commerical environment where the company

has many sites and wishes to provide a company wide network, without

incurring the cost of a the dedicated hardware to provide this. Commerical

espionage in this environment might provide a lucrative target.



Chapter 7

Using Primary-backup for

replication

7.1 Overview

In this chapter we develop the notion of using the Primary-backup approach

to replication as an alternative to the state machine approach in replicating

secure services. Although less robust than the state machine, we give some

scenarios where the more lightweight replication mechanism is better suited

to the task.

7.2 Introduction

In this chapter we use the Primary-backup approach as a method of pro-

viding replication within secure services. It is seen as a different method

of developing replication services to the state machine approach. In their

article, Guerraoui and Schiper [GS97] comment on the different types of

replication techniques for replicating servers – Primary-backup [BMST93]

and State-machine [Sch90] (termed Active replication in their paper). The

State-machine approach has already been used to develop replication meth-

ods for secure servers [Rei96a]. While these techniques may be appropriate

for services that require an extremely high degree of robustness, we show

that by using the Primary-backup method, we are able to provide a service

that gives less rigorous guarantees in scenarios where there might be a need

for some lightweight replication.

The argument for relaxing the security requirements in order to provide

a more lightweight mechanism has already been put forward in the litera-

ture by Syverson [Syv97]. His argument centres around the fact that not

75
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all scenarios in security take on the case where Byzantine failures [LSP82]

occur, and that by relaxing the need for tolerating such failures, we can sub-

sequently improve the efficiency of failure tolerant mechanisms in security.

We organise the rest of this chapter as follows – section 7.3 gives an

overview of the Primary-backup approach to replication. In section 7.4

we show the basic modifications we need to make in order to apply such

techniques to secure services. Section 7.5 gives our view of the different

type of trust scenarios that we envisage adapting the design to, and we then

go on in section 7.6 to supply some simplified high level designs for example

services, followed by our conclusions in section 7.7.

7.3 A description of Primary-backup

The Primary-backup approach to replication was first discussed in the lit-

erature by Alsberg and Day [AD76]. Their work was initially developed for

the sharing of resources. They describe a method where there are multiple

hosts, with one of the hosts becoming a primary host for the service and

the others are backups. Any of the hosts can serve as a primary, and can

take over if the primary is down. The main benefit their strategy has, is a

reduction in the number of messages in the replication mechanism.

This work has also been used by various other people since then [BMST92,

BMST93, BM92, MHS89, Gif79] with most of the work going into develop-

ing optimal approaches to the replication algorithm given the constraints

under which the system operates.

Each of these adjustments to the central idea is built around a different

scenario and uses a slightly different method of meeting the goals. They

also vary in how the methods allocate the primary, the change over policies,

and how the response is communicated back to the client.

7.4 Stateless and Semi-stateless servers

The first problem we encounter when applying this paradigm is the require-

ment to share information between the replicated servers. The cryptographic

means by which most protocols are secured do not lend themselves to sharing

information between many communicating hosts – i.e., if we use a shared se-

cret key to keep a channel between two communication parties confidential,

then it is not reasonable to share the key with other parties.

In order to circumvent this constraint, we need to apply the securing

mechanisms in an orthogonal manner to the information being manipulated
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by the servers in order to provide service to their clients.

In the strictest sense, there should be no shared state between servers

that make up our replication set. We define this property below:

Stateless servers A stateless server is one whose replication mechanisms

and use of state to provide the functionality of the group service is

not shared by other members of the group. This allows them indepen-

dence from each other, leading to a scenario where a malicious server

can reveal all his information to the world without compromising the

ability of other group members to continue delivering service.

It is clear to see from the above definition that it is going to be difficult

to implement such mechanisms in practice, as the limitation of information

flow between servers deprives us of much of the functionality of the backup

mechanism.

In order to impose less stringent constraints on the replication mech-

anism, we define a less stringent property which we term Semi-stateless

servers which allows limited information sharing between replicas. We de-

fine this property below:

Semi-stateless servers A semi-stateless server is one who shares a limited

set of information with other servers in the group, and whose shared

information is necessary to allow the replication procedure to provide

a richer set of operations. This shared information does not extend

to the state necessary to carry out the security critical section of the

application. This allows a bad player to broadcast all his secrets to

the world without compromising the ability of the other replicas to

provide a secure service.

We clarify these differences to demonstrate that services can be repli-

cated in a manner that does not jeopardise the service being provided. An

instance of this might be a server replicated purely to avoid a denial of ser-

vice attack, where the threat model does not include the compromise of the

server and its secrets, but an attack on the communication infrastructure

which can lead to a loss of service.

It is this second weakened definition that we will use in order to produce

a new model of replicating security mechanisms.

7.5 Design modification for security

The Primary-backup paradigm itself offers us a starting base from which we

develop different classes of replication. These different classes of replication
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deal with differing trust scenarios and different classes of threats. What

they have in common is the notion that one of a group of servers provides

service as a Primary and other backups are ready to take over providing the

service if the primary fails.

We order our mechanisms according the failure mode expected, from the

most benign failures that end in a denial of service, through friendly backup

to mutually distrusting parties.

The following four subsections provide an overview of each of these mech-

anisms, given constraints of their ability and general design criteria. The

section following the overview descriptions looks into example cases of each

of the mechanisms.

7.5.1 Denial of Service

The simplest threat scenario we envisage being able to contend with using

this mechanism is denial of service. If we trust the replicas not to divulge

secret information, we are only interested in surviving a crash of the replica

or an attack on the communications mechanism between client and server.

Each of the servers in a group can perform the same function and can

take over from the designated primary if it fails.

If the denial of service results from a communication failure between

client and primary, then the client can re-transmit the request to one of the

backups in order to receive service.

A server that is resilient to a denial of service attack is the closest ap-

proximation to traditional Primary-backup as described in the literature.

7.5.2 Friendly Backup

The next scenario we consider is when a primary is dedicated to providing a

function to a certain group of users. Each server that comprises the group is

providing the same service, but to a different group of clients. Each primary

then acts as a backup for a separate group of clients if the primary of that

group crashes or is not contactable.

This agreement is a reciprocal between primaries. More than one server

can act as a backup for a particular primary. We can then moderate the

level of fault tolerance provided by this service depending on the number of

backups each primary is allocated.

It is up to the primary of a given group of clients to inform the group

members which backups are available to them, should the normal service be

unavailable from the primary.
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More formally, we define a group of servers P such that for any i, there

is a server Pi that acts as a primary for a group of clients Gi. For each i

and j, there is a group of servers P j
i that act as backups for Pi.

The primary goal of this mechanism is to provide resilience at minimal

cost. Instead of providing multiple backups for each server which are then

redundant during normal operation, we split the overhead between each

functioning server. In implementing this mechanism we must be sure that

the loss of one primary is not going to cause noticeable adverse affect on

the clients whose primary takes on the role of backup. A method of getting

round this mechanism would be to spread the client base of a given primary

across multiple backups in the case of failure of the primary. Each client

would then have an order in which he tried different backups, moving on

to the next in the lists in case there was no contact with the allocated

backup. By suitably constructing these lists you could distribute the extra

load between multiple backups.

7.5.3 Mutual Distrust

In this scenario, we extend the threat model from attacks via denial of service

or server crash, to concerns about the potential integrity of the replicas

themselves.

The main goal of this type of replication is to provide service if the

primary is unavailable, where the client does not trust another server enough

to allow it to function as a backup on its own. In our scenario, if the

primary is unavailable, then we can transfer control to a group of servers

that collectively act as a backup. We thus do not need to assume total

integrity of the backups, but can still maintain a continued service, albeit

with a reduction in performance.

The idea of switching the service to a more resilient protocol depending

on the environmental constraints has already been seen in the literature,

where they term it adaptive fault tolerance [GGL93, GG94].

If we extend this scenario to one where the primary itself is not trusted,

then we can run the primary as a group, and if the group becomes unavail-

able, then we can move to the backup process group.

Having an untrusted primary and varying the groups depending on

whether the primary group is available or not takes us back toward the full

state machine approach, therefore we will not discuss this further here 1.

1Although we do cover work in this area in chapter 8.
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7.5.4 Segregation of duty

We also generalise this approach to provide some separation of duty be-

tween the primary and backups. If either turns into a bad player, they fail

to compromise the security of the service, but if one player does turn ma-

licious, then this also yields some degradation in performance. This could

ultimately lead to a complete service being unavailable. To breach the se-

curity, there would need to be collaboration between the servers that are

malicious. This particular scenario is impossible to guard against, thus a

decrease in overhead by using a primary-backup mechanism against state

machine is welcome, this arises from the split in functionality that comes

with segregation.

An example of such segregation of duty can be seen in the key certifica-

tion mechanism proposed by Crispo and Lomas [CL96] and we will not give

our own example here.

7.6 Simple examples

We now provide simple outlines of example implementations that we might

consider using a Primary-backup method for server replication. The ex-

amples we have chosen are two instances of a key server, a notarization

server and a recovery cache. We give some consideration as to which of our

replication types we wish to use in each case.

7.6.1 Key Server

We elaborate on two different types of key server. We do this in order to give

examples of constructing a server of the same functionality under different

constraints.

The first key server we discuss is of the friendly backup type where each

server is trusted by the clients in the system, but they each serve a different

group of clients – this could be because of locality, efficiency etc.

The second implementation we discuss is based on the mutual distrust

environment where each server acts as a trusted primary for a given group

of clients, but the client group does not completely trust any of the other

servers, although they are willing to combine an aggregation of trust between

a group of backups to provide continued service, albeit at a reduction in

performance.



CHAPTER 7. USING PRIMARY-BACKUP FOR REPLICATION 81

Several trusted Primaries

The scenario we envisage here is where a number of key servers provide

service to a large community of users. Implicit in our assumptions is that

all clients trust all key servers available to them.

We build our example around the Needham and Schroeder [NS78] pro-

tocol, which requires that each of the key servers has a communication key

with each group member. If the number of users in the group is n and the

number of servers is m this leaves us with m×n keys in the system. This is

not envisaged to be a problem, as n≫ m, which leaves us with much fewer

keys that in the n2 worst case.

To outline: There are a group of clients Ci (where i = 1 · · ·n) and a

group of servers Sj (where j = 1 · · ·m). Within the client community there

are m groups Gj who have Sj acting as their Primary. Each client has

stored locally a list Bi, which is a list of the servers which the client uses as

a backup in case their primary is unavailable. The permutation of servers

in each clients list will be diverse throughout each group Gj in order not to

flood a single server when Sj is unavailable.

Figure 7.1 shows the message interactions between a client C1 and its

primary S1 and a client and its first backup S2 where the client is trying to

obtain a session key to communicate with a second client C2.

1 S 2

C 1 C 2

S

5

1a 2a

1b

2b

3

4

Figure 7.1: Trusted Primary and Trusted Backups
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The content of each of the messages are as follows:

(1a)C1 → S1 : C1, C2, Nas1

(2a)S1 → C1 : {Nas1
, C2, Kc1c2 , {Kc1c2 , C1}Kc2s1

}Kc1s1

(1b)C1 → S2 : C1, C2, Nas2

(2b)S2 → C1 : {Nas2
, C2, Kc1c2 , {Kc1c2 , C1}Kc2s2

}Kc1s2

(3)C1 → C2 : {Kc1c2 , C1}Kc1s1
or {Kc1c2 , C1}Kc1s2

(4)C2 → C1 : {Nc2}Kc1c2

(5)C1 → C2 : {Nc2 − 1}Kc1c2

When C1 wishes to communicate with C2 he first of all sends message

1a to his primary (in this case S1), if he does not receive message 2a within

a pre-set time limit, he assumes that S1 is unavailable (due to either server

crash or communication failure). He then goes ahead and sends message 1b

to S2. In this example we will assume that the first backup is available, and

that he receives message 2b within the timeout period. The protocol then

continues as normal and both clients can communicate with Kc1c2 .

If message 2a is just delayed past the timeout period, C1 will then discard

message 2a upon its arrival.

We note that we initially decided to try and use the wide-mouth-frog

protocol [BAN89] in our example. The attraction of that particular protocol

was the simplicity of the protocol structure.

Unfortunately we found that this protocol was not suitable. The reason

being that, if C1 does not get an immediate response from S1 as part of

the protocol, then he does not know when to contact S2 as part of the

backup procedure. Having the protocol fail in this manner also puts some

ambiguity into the fault diagnosis, as C1 cannot be sure if it is S1 or C2

which is currently unavailable.

Single trusted Primary

In this example we have a scenario where a client Ci is willing to trust its

primary Sj , but is not willing to trust a single individual server in its list of

backups Bi.

We illustrate below with a protocol where C1 is requesting C2’s public

key.

Figure 7.2 shows the different runs of the protocol on the same diagram.

Messages 1a and 1b show the normal execution of the protocol if C1 is able
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to contact his primary. We highlight two options for a backup protocol. The

first is shown by messages 1b, 2b, and 3b, with the second shown by messages

1c, 2c, 3c and 4c. Both protocols use S2 and S3 together to increase C1’s

confidence in the result.

We omit the final part of the protocol interaction with the client C2 for

brevity.

All encryption is done via public key, with {M}
K−1

P
used to show the

encryption of message M under P ’s private key, and {M}KP
used to show

encryption of message M under P ’s public key.

1
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Figure 7.2: Trusted Primary and untrusted Backups

The message contents are as follows:

(1a)C1 → S1 : {{C1, C2, N
1
c1
}

K−1
c1
}KS1

(2a)S1 → C1 : {{C2, KC2
, N1

c1
}

K−1
s1
}Kc1

(1b)C1 → S2 : {{C1, C2, N
2
c1
}

K−1
c1
}Ks2

, {{C1, C2, N
3
c1
}

K−1
c1
}Ks3

(2b)S2 → S3 : {{C2, Kc2 , N
2
c1
}

K−1
s2
}Kc1

, {{C1, C2, N
3
c1
}

K−1
c1
}KS3

(3b)S3 → C1 : {{C2, Kc2 , N
2
c1
}

K−1
s2
}Kc1

, {{C2, Kc2 , N
3
c1
}

K−1
s2
}Kc1

(1c)C1 → S2 : {{C1, C2, N
4
c1
}

K−1
c1
}Ks2

(2c)S2 → C1 : {{C2, KC2
, N4

c1
}

K−1
s2
}Kc1

(3c)C1 → S3 : {{C1, C2, N
5
c1
}

K−1
c1
}Ks3

(4c)S3 → C1 : {{C2, KC2
, N5

c1
}

K−1
s3
}Kc1
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C1 begins by sending message 1a to his primary S1. If he does not

receive message 2a within a timeout period, then he starts the section of

the protocol involving the backup servers. In the case where the message

arrives after the timeout period, C1 will use the key received in message 2a

to communicate with C2, and does not use the key received by the backup

protocol. We use this mechanism in preference to the previous method of

dropping the reply from the primary because C1 trusts S1 explicitly.

If C1 can be sure that servers S2 and S3 are alive and are going to

talk to each other and himself, then he can use the the protocol mechanism

that delivers messages 1b, 2b and 3b in round robin fashion. This protocol

requires that C1 trusts S2 and S3 enough to respond and co-operate enough

with him, but not enough to provide him with a valid public key2. As this

is an unlikely scenario, it is more likely that he uses the protocol mechanism

that uses messages 1c, 2c, 3c and 4c. This is a more expensive protocol, but

if either backup is unavailable, then it means less overhead, as C1 can send

out messages to other servers on his backup list until he receives enough

replies to aggregate the trust to his satisfaction.

We have shown here a protocol that utilises only two servers as backups,

but in a real scenario, C1 would require a larger number in order to justify

which version of the public key he uses3. Explicitly, if the number of backups

he relies upon is odd, then it becomes a simple N -model redundancy method,

with an output only being accepted if greater than N/2 keys match.

7.6.2 Notarization

The type of server implementation we discuss here is one where the threat

is denial of service.

Notarization is discussed in the literature by Schneier and Kelsey [SK96]

and Haber and Stornetta [HS91].

In our example of notarization using a primary backup based method,

we sketch out a high level design for the computerisation of the patent

application mechanism.

It is an existing real world example of a service that – amongst other

things – needs to provide a reliable and secure notarization mechanism.

Some of the requirements put forward in the paper by Haber and Stor-

2We note the connection between this work and the discussion of protocol suitability

with regard to timing considerations from section 6.5.2.
3If the protocol uses just two backups and their replies do not match, then C1 is unable

to chose between returned values of the key. There is an exception to this rule, where the

reason C1 does not trust either backup explicitly is that either might not have C2’s current

private key, and compensating by using the key with the most up to date certificate.



CHAPTER 7. USING PRIMARY-BACKUP FOR REPLICATION 85

netta [HS91] do not have to be met when creating a notarization service for

the Patent Office. There is no need for long term secrecy4 (unless the gov-

ernment has some separate method for patenting devices not in the public

domain for military purposes), as clients registering patents will not con-

cerned about the secrecy of the documents registered with the timestamp-

ing service. This requirement is not necessary with the example of a Patent

Office. Also, their method of using hashes to overcome the storage problem

does not work, given that the Patent Office needs to hold a copy of all the

patent applications they receive.

There are other benefits to the Patent Office from having their system on-

line. Firstly, their methods of checking back through previous patents can be

improved with computerised information retrieval methods. Secondly, under

the system currently in place, they only provide stamps which authenticate

on which day the patent application was received, they would be able to use a

hash chaining method to demonstrate in which order all patent applications

arrived, achieving a finer degree of granularity.

There is good reason for the Patent Office to require its registration

application to be highly available, as they do not want any mad inventors

being upset at not being able to file the patent for their latest helpful-widget,

lest they get restless, and turn their minds to developing an anarchy-widget.

Our assumption in this scenario is as follows: The Patent Office is in

control of all the servers, and each server is implicitly trusted to provide a

current date stamp, and issue a valid certificate of receipt.

There are a variety of solutions to selecting the primary in the Primary-

backup approach. The differences are mainly focused around how they solve

the partitioning problem, Davidson et al. [DGMS85] give a discussion about

the various solutions in the literature. We will restrict ourselves to a solution

that only ever provides one primary. We do this in order to simplify the

mechanism used to generate the hash chain. The problem with allowing the

service to run more than one primary is the reconciliation of state across

the multiple primaries5.

To facilitate this solution, we require that in case of partitioning, greater

than half of the servers can form a majority (i.e., given N servers, at least

(N/2) + 1 servers can form a group). Once these recognise the fact that

they can form a group, they elect a new primary from their number. Any

other live servers that find themselves in a group which is not a majority

4Although the initial patent application should be secret to avoid an evesdropper gain-

ing access to the patent information before the request has been confirmed by the server.
5Reconciliation of hash chains across multiple primaries after partitions are reconnected

is in itself a difficult task without a highly accurate time service.
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wait until the fault is corrected and then join the majority partition.

When M (the resident mad inventor) decides to submit a patent for his

latest helpful-widget, he is required to send in the following information:

• Personal details - This will generally be in some list format, containing

such information as full name, address, etc.

• Patent - This will be an electronic copy of the full patent information.

• Hash of Patent - An electronic hash of the patent information. This

will be used by the service in the generation of the receipt.

The client then receives a receipt for his patent application from the

server. This will contain the following information:

• Personal details - In order to tie the receipt to the individual.

• PID (Patent Identification information) - A unique identifier that the

patent office uses internally to track applications, and the client uses

in future consultation.

• Hash of the Patent - A copy of the hash of the patent details.

• Date - The current patent issuing mechanism only gives granularity of

one day, thus we will imitate this here. Further control over granularity

is given in our system by use of linking the hashes together. This

removes the need for the patent service to have a reliable clock.

• Link information - A hash of some information from the previous

patent. This provides us with a mechanism to show which receipts

were given in which order.

The simplified protocol is shown below with M to denote the client

applying for the application, and S to identify the server. Cm is M ’s public

key certificate6, M.I.D. are the personal details, with P and h(P ) denoting

the patent and a hash of it respectively. Ln−1 is the link information to

the previous patent application. We outline below the content of this link

information, where h(Gn−1) is a global running hash updated with each new

patent application:

6It is not at first obvious that we need a full certificate of the public key here – who

would want to file a patent in someone else’s name? – but it does prevent some mad

inventor submitting a patent under a competitors name that has the men in dark suits

knocking on the competitor’s door.
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Ln−1 = P.I.D.n−1, h(P )n−1, h(Gn−1)

M → S : {Cm, {M.I.D., P, h(P )}
K−1

m
}Ks

S →M : {{P.I.D., h(P ), Ln−1, h(Ln−1), D}K−1
s
}Ka

Server details

In the above protocol we make the assumption of a single server, we will now

elaborate on the replication mechanism and how it affects both the client-

server communication, and each server’s handling of new applications.

In order to contact the patent office, the client picks one of the servers

at random7 (their addresses, along with current public key information, will

of course be published in a reliable public source such as “Mad Inventor

Monthly”). If the server is currently down or unreachable, then the client

will wait for a timeout period before trying one of the other servers.

Upon making contact with a live server, the client will receive one of

three replies depending on the situation of the server. Any live server will

be in one of three states. It will either be the current primary, a backup in

the primary partition, or a backup in a minority partition. The response

will be as follows:

Primary Processes the request as normal, replying to the client upon com-

pletion.

Backup (primary partition) Forwards the request to the primary for

processing, notifying the client that it has done so. This is to ensure

that if the primary is busy, and its response to the request delayed,

then the client does not assume that the backup he contacted is un-

available.

Backup (minority partition) Replies to the client, informing him that

as it is not in the same partition as the primary it is unable to deal with

the request further. It should also send back a list of those replicas

which are in the same partition as it, this will stop the client from

trying these unnecessarily.

How an update of the patent application state is carried out depends on

the method by which the information sharing is done between server replicas.

7In the literature, it is noted that the client should know which is the current primary,

this is feasible in a small environment such as a LAN, but in a large open environment such

as we envisage for this scenario, it would be difficult to keep all possible clients informed

as to which server is the current primary.



CHAPTER 7. USING PRIMARY-BACKUP FOR REPLICATION 88

We identify two possible means of maintaining state within the system.

The first method is where the servers each have access to a shared disk

mechanism, and the current primary is the only one with a token to access

the disk. Any writes to the disk will have to be done atomically. The disk

itself should also have some backup mechanism, although it need not be as

extensive as the server replication mechanism. The second method is where

each client stores their own copy of the current system state. This would

add overhead to the system, which could get unwieldy if a large number

of patent applications are made. We also envisage a compromise solution,

where the information needed to service a patent application request (copy

of the global hash etc.) is stored locally with each server, and the actual

patent content separated onto a global disk, with both sets of information

being reconciled when it comes to the task of manually checking the validity

of the patent’s claims. This task is, in effect, done off-line from the patent

application processing services.

Change of topology

Assuming a normal running scenario, we have a majority partition, with one

server acting as primary, then a number of things can happened from here.

Firstly, one of the backups can return into the group (if there was a prior

partition). This does not affect the running of the service, but it is the task

of the current primary to bring the new backup up to date with the current

system state.

Secondly, one of the backups within the partition can be lost from the

partition. This will either have no effect on the service (i.e., there is still a

majority of servers in the primary’s partition) or it will reduce the number

of servers within the current primary partition to below a majority. In this

case the primary will have to suspend acting as a primary, and the replicas

will have to wait until a majority partition is re-formed.

The third thing that can happen is that the primary can crash. If the

new partition is now below a majority, then the system has to wait until the

partition returns to a majority. If the new partition still holds a majority

of servers then there needs to be an election of a new primary. To make the

election easier, there is a number associated with each server, it is the server

with the highest number within the partition that takes on the role of the

primary.

If we assume that the processing of a patent application takes a relatively

short period of time in comparison to the expected inter-arrival time of new

applications, then we can assume that if the primary crashes, then there are



CHAPTER 7. USING PRIMARY-BACKUP FOR REPLICATION 89

either none or one applications that have yet to be processed to completion.

If the primary crashes with a queue of unprocessed requests, then unless

each of the backups has a copy of the information required, it is impossi-

ble to ascertain in which order the unprocessed requests should be dealt

with. To solve this, we can introduce a broadcast mechanism within the

group that currently hosts the primary. When a group member receives a

request it forwards it to the primary which then broadcasts it to the rest of

the group, such that each backup has knowledge of which order to process

outstanding requests. Care should be taken with the broadcast protocol,

in that the primary should sign the broadcasts, as the sequence should be

binding between each instance of the primary.

The complete system we envisage would operate in the following manner

(assuming the information is arriving at a live server in the same partition

as the primary):

1. Patent information arrives at the server.

2. The server logs the main patent details to a shared media such as a

disk, with its own backup facility.

3. The server forwards the details to the primary, who securely re-broad-

casts the order in which it receives them.

4. The primary processes the requests in the queue, reconciling the patent

application information with the patent itself on the shared media.

5. The primary broadcasts to the other members of the group when it

finishes the request8.

For added confidence in the system, the list of signed n-tuples containing

the patent application number, the hash of the patent information and the

global running hash could be published in a public media (e.g. “The Times”

or “Mad Inventor Monthly”).

Because of the on-line nature of such a mechanism, it means people will

be able to submit patents without having to travel to London if they do not

wish to incur the delay of postage, and it could also be a 24-hour system,

which would be an advantage, as all the best mad inventors do their best

work at night.

8Note that messages 3 and 5 can be piggy-backed for efficiency.
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7.6.3 Recovery Cache

We outline a simple idea of using the primary-backup mechanism as an

off-site secure recovery cache.

A server of this type would be able to provide a means of securing an

off-site backup in case of a dire emergency, possibly as part of some disaster

recovery mechanism.

It would be a simple mechanism where a client contacts the current

primary, and the primary then co-ordinates the update of the recovery in-

formation between the current backups.

When registering, the client is given information that allows him to re-

trieve the necessary recovery information at a future date when he needs it.

This would include an identifier token with an access capability, this would

then make sure that only a valid client would be able access the data. An-

other piece of information would be a hash of the stored information. This

would allow the client to check that the information retrieved was the same

as the information deposited. If the service was being paid for, the hash

would need to be signed in order that a client could pursue further damages

against the service in the case where the service was throwing away all data

received, and then returning random garbage in the case of a request.

Although we only briefly describe such a service here, it would be an

interesting area to research further. Particularly which type of replication

primitives would be best suited for such a task.

7.7 Conclusions

We look at the Primary-backup method of replicating servers as a method

of providing resilience in security servers. We have modified the standard

Primary-backup ideas in the literature for our own methods, outlining var-

ious changes to the general theme.

We then provide some examples of using Primary-backup in scenarios

where we believe our variations can help replicate servers in a reasonably

efficient manner.

We envisage developing this theme for providing servers and other secu-

rity mechanisms that can survive denial of service attacks in a lightweight

form of replication. We believe this opens up a promising avenue of research

which deserves to be explored more fully within the research community.

A further line of research in this area would be to see which qualities

we need to change in our design when it comes to building these types

of services. In our example on the key server, we see that protocols such
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as wide-mouth-frog are not very suitable for such mechanisms. It would

be interesting to discover what other properties are constrained by such

replication.



Chapter 8

A distributed object server

8.1 Overview

In this chapter we overview the design of a service for distributing an object

among many servers to provide for resilient access to the object. Our design

centres on a concept of providing the object owner with the ability to reg-

ulate the object management. The backbone to this design uses the State

Machine approach of replication. Our design differs from current designs

that adopt the approach to a byzantine environment, by allowing the client

to control the group management sections of the protocols.

8.2 Introduction

Our method uses an extension of some existing work in the area, with the

main modification being directed by our notion that the control of the fault

tolerance within the design can be regulated by the client.

Existing work in the area is predominantly that done by Reiter on Ram-

part [Rei96a, Rei94b, Rei94a]. His work is a natural extension of the work

on Isis[BSS91, RBG92] and is built around a set of group broadcast primi-

tives. These group broadcast facilities are based on view mechanisms that

are administered within the group.

The backbone of our work in this design is based upon our advances in

this direction, and takes up the majority of the remainder of this chapter.

The other sections of this chapter are concerned with the object manage-

ment, group structure management, and access control structures respec-

tively. We start off with a brief description of our computational model,

and then address each of these areas in turn.

92



CHAPTER 8. A DISTRIBUTED OBJECT SERVER 93

8.3 Computational model

Our computational model is based on an Internet style environment, where

there is a point-to-point asynchronous communication channel. Our interest

in this type of environment stems from the need for a client to have a reliable

distributed store external to their own domain. There is a similarity between

this and the motivation behind the Eternity server [And96], but our work

differs in the update properties provided, and the fact that the eternity server

provides for anonymity. The eternity server requires anonymous posting,

and an ability to post to the service, without the ability to delete. A similar

service was specified by Blaze [Bla96], but his system has a different set of

update properties.

We assume a global set of servers S that are accessible to a global set

of clients C. Each client cm wishing to use the service can then specify a

subset Scm of these servers to use in order to store an object (as shown in

figure 8.1).

1 S2 nS

1c c 2

S

c

S

m

Figure 8.1: System model: Client and server groups

We assume that a pre-defined number of servers in each group allo-

cated by a client will remain correct and that any others are allowed to be

byzantine faulty (i.e., exhibit arbitrary malicious behaviour). We assume

that within a group of servers selected by a client to act as a repository,

there will be at most ⌊n−1

3
⌋ faulty servers. This limit is tight within asyn-

chronous distributed systems, and an elegant proof is provided by Bracha

and Toueg [BT85].

We also assume that there is some public means by which a site can

securely notify their intent to provide service in this environment (e.g., a

globally accessible newsgroup).

8.4 Broadcast protocols

In this section we describe the underlying communication mechanism that

the service is built upon.
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In the environment we are designing for, achieving agreement is known

to be a difficult task. Fischer et al. [FLP85] demonstrate that even in an

asynchronous environment limited to crash failures (i.e., failures that are

benign in nature, and result in the loss of a process), it is impossible to

deterministically achieve consensus 1, even in the event of a single unan-

nounced process death.

Circumventing this impossibility result is done in one of two ways. Ini-

tially, this was achieved using randomised protocols [CD89, BT83, BO83,

BT85]. These work by allowing a possible non-termination at each round,

but demonstrate that if round iteration carries on for a period of time,

then termination is reached with probability 1. The second mechanism used

to circumvent the result is based on the notion of unreliable failure detec-

tors [CT96, MR97c] and demonstrates that if failure detectors can meet

certain realistic goals, then termination is possible.

Atomic broadcast is a related problem to consensus. One notable system

that has solved the problem of atomic broadcast in an asynchronous byzan-

tine system is the work done by Reiter on Rampart [Rei96a, Rei94b, Rei94a].

He achieves this by using membership changes in the group to allow the

atomic broadcast protocol to continue. Group membership was conjectured

to be possible in a totally byzantine environment, but since the completion of

this work, Chandra et al. [CHTCB95] demonstrate that group membership

itself is an impossible task in an asynchronous environment2.

Our method of achieving atomic broadcast is related to the work carried

out by Malkhi and Reiter [MR97c] on using intrusion detection for byzantine

consensus. We also use the randomness inherent in a network, defined by

Bracha and Toueg [BT85] as a fair scheduler, which allows a process group

to achieve consensus.

8.4.1 Reliable Broadcast

As a building block for our atomic broadcast protocol, we have a reliable

broadcast protocol. This work is a simple extension of the work done by

others [HT94, Rei94b]. A reliable broadcast protocol needs to satisfy the fol-

lowing properties. In the definitions, p, q and r represent processes which are

group members. Also m and m′ represent messages sent between processes.

bcast-send and bcast-receive are the primitives provided by the protocol. In

1We use consensus to mean an agreement reached by all correct processes, and not a

simple majority.
2Although they do note that is should be possible circumvent their impossibility result

using similar methods to those employed to circumvent the impossibility of consensus.
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these definitions and in the subsequent algorithm, we assume the existence

of underlying point-to-point mechanisms send and receive.

Integrity: For all p and m, a correct process executes a bcast-receive(m, q)

at most once and, if q is correct, only if q executed bcast-send(m).

Agreement: If p and q are correct and p executes bcast-receive(m, r), then

q executes bcast-receive(m, r).

Validity: If p and q are correct and p executes bcast-send(m), then q exe-

cutes bcast-receive(m, p).

Source Order: If p and q are correct and both execute bcast-receive(m, r)

and bcast-receive(m′, r), then they do so in the same relative order

and, if r is correct, in the order in which r executed bcast-send(m) and

bcast-send(m′).

In their work on consensus in distributed systems, Malkhi and Re-

iter [MR97c] also require their underlying broadcast protocol to provide

Causal Order. We exclude this criteria from our reliable broadcast primi-

tive for three reasons:

1. In their work on a modular approach to building broadcast primitives,

Hadzilacos and Toueg [HT94] demonstrate that Causality is not nec-

essary to achieve Total Order, and dropping the requirement makes

the protocol more lightweight.

2. Reiter and Gong [RG95] demonstrate that true Causality in a byzan-

tine environment may be unachievable.

3. Given our approach to solving total order has a leader propose the

next request to process based on external actions of the client, using

a causal mechanism within the group broadcast would be meaningless

without extending it to the client base, and this would increase the

complexity greatly3.

The algorithm for reliable broadcast is shown in figure 8.2, where all

messages are signed by the originator. The different message contents and

their meanings are summarised in table 8.1.

A process immediately receives any send which it makes as part of a

broadcast, and counts its own vote in the algorithm for bcast-send.

3In a loosely coupled system, this requirement could prove impossible.
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<B1, l, pi, m> pi sending m as l’th message

<B2, l, pj , pi, m> pj agreeing to having seen m as

l’th message from pi

Table 8.1: Message meanings in the reliable broadcast algorithm

pseudocode for bcast-send(m)

send <B1, l, pi, m> to all pj (j 6= i)

wait to receive ⌈2n+1

3
⌉ <B2, l, pj , pi, m>

forward <B2, l, pj , pi, m> to all pj

bcast-receive(m, pi)

pseudocode for bcast-receive(m,pj)

if receive <B1, l, pi, m>

send <B2, l, pj , pi, m> to pj

if receive ⌈2n+1

3
⌉ <B2, l, pj , pi, m>

bcast-receive(m, pj)

Figure 8.2: bcast-send and bcast-receive at process pi

8.4.2 Hybrid Atomic Broadcast

We use a hybrid approach to solve the atomic broadcast problem. We require

a hybrid approach in order to give our protocol two properties required in

an asynchronous distributed environment.

Liveness This property is required to ensure that the protocol can progress

in the face of unforeseen failure to a group member.

Termination This property is required to ensure that the protocol can

complete and that it does not enter an infinite run4.

To fulfill the first property of liveness, we employ the use of weak failure

detectors [CT96]. We only require that our failure detector satisfies the

4We highlight the difference between this and Terminating Reliable Broadcast [HT94]

where the broadcast should terminate even if the client initiating the broadcast does not

send the message, as this is impossible in an environment where the client requests are

unpredictable.
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criteria of Strong Completeness – that eventually every process that does

not send out a broadcast is permanently suspected by every correct process.

To fulfill the second property of termination, we rely upon the randomi-

sation inherent in the system, which is the design principles behind Bracha

and Toueg’s algorithm to provide consensus [BT85]. Their principle of a

fair scheduler states that, there is a constant probability that all processes

receive messages from the same set of correct processes. We believe that

such a property is possible in such a large scale distributed environment as

envisaged in our design.

Another choice we could have made in order to ensure termination would

be to accept the full specification of an eventually strong failure detector

(3S(bz)) 5 for a byzantine environment, which conforms to the added prop-

erty of Eventual Weak Accuracy – which states that there is a time after

which some correct process is never suspected by any correct process.

We believe an implementation of an eventually strong failure detector in

our environment to be a non-trivial task. For all correct processes in a group

to eventually reach a state of not suspecting the same correct process implies

that the failure detector shares state between correct processes6. We believe

this to be a drawback as it implies one of two things. Either the failure

detectors share state within the group and have regular updates, which goes

against our notion of a use-only group structure, or there is some global

state between all possible servers, where an update protocol which provides

the completeness required for total order would be prohibitively expensive.

A third choice we could have made would be to use randomness in the

protocol itself, which implies access to a good source of random numbers.

Methods of achieving consensus using random numbers have tended to use

a trusted distributor for a random coin [Per84, Rab83] – something we do

not want rely upon, or an underlying byzantine agreement algorithm to

decide the outcome of a global coin toss [FM85, BO85] – which would prove

prohibitively expensive 7.

In addition to the properties provided by the reliable broadcast protocol

and those dictated for liveness and termination, the atomic delivery protocol

has to provide total order [HT94] as defined below 8:

5As defined for a byzantine environment by Malkhi and Reiter [MR97c].
6Conversely, Strong Completeness is relatively easy to achieve using local time-outs

and no accumulation of global state.
7Given that the coin toss needs to be both random (itself relatively easy to achieve)

and unanimous amongst all correct servers.
8We assume the existence of mechanism a-deliver, which implements atomic delivery

at all correct processes.
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Total order If correct processes p and q both a-deliver messages m and

m′, then p a-delivers m before m′ if and only if q a-delivers m before

m′.

Client to server communication

When a client wishes to issue a request to the service, it forms a request

token, signs it, and forwards it to each member of the group. A malicious

client may send the token only to a subset of servers, this does not cause a

problem, any such discrepancies are dealt with in the inter-server section of

the broadcast protocol. The structure of the request token is shown below:

<O.I.D., C.I.D., Nc, To >

The O.I.D. represents the object identifier, the C.I.D. is the client iden-

tifier for the client issuing the request, Nc is a sequence number, and To is

the token that will be described in section 8.6.2.

The first two of these are easily verified by the service, and any request

that does not contain a valid pair is automatically rejected. The sequence

number is used only to ensure the freshness of the request in that it is not

a replay, and cannot be used be used by the service to asses the timeliness

of the request.

From here on we will talk in terms of the request identifier (R.I.D),

which is a concatenation of the object identifier, the client identifier and the

sequence number. The R.I.D. uniquely identifies a valid request.

When the servers enter the server-to-server section of the communica-

tion, they check to see if the request identifier has been used before. If a

malicious client issues a different To with the same concurrent request iden-

tifier, a server will discover the replay and then notify the other servers in

the group, and the request will automatically be denied.

Because a malicious server cannot falsify a request identifier, no threshold

is required to constitute proof of malicious action from a client.

Server to server communication

The server to server communication which provides the group with atomic

broadcast is based on a round robin based algorithm. This is an extension

of the work done by Malkhi and Reiter [MR97c], which is itself an extension

of the paxos algorithm [Lam89].

The basis of the algorithm is a round based mechanism, with a leader

in each round responsible for suggesting the next message to be delivered in
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the total order queue. The leader is rotated around the group in a round

robin fashion, in the order that the servers appear in the server list used by

the object owner when generating the object9.

Each server maintains a local queue, which holds valid requests received

from clients, as well as requests forwarded from other servers. Once delivered

by the atomic broadcast protocol, requests are taken from this queue to be

processed on the object. Figure 8.3 has a diagram of the input queue used

locally at each server to allocate incoming requests. When it is a correct

group member pn’s turn as leader it takes the next item off the head of this

queue and suggests it as the next transaction to process in total order.

Queue element = <R.I.D., Suggest Flag>

Queue element

directly from client or from another server.

Requests for queue added to tail, whether received

Figure 8.3: Overview of queue held at server for total order

The information stored in the queue is listed as following:

R.I.D. The request identifier.

Suggest Flag This flag is set on the request currently proposed for trans-

feral to the total order processing queue by the leader for the current

round.

When a server receives a request from a client (or when it receives a valid

request which it has yet to receive directly from the client from another group

member as a suggestion), then it places it on the tail of the queue. Once a

request is accepted, then it is taken from the incoming queue, and processed

by the server.

The algorithm for atomic broadcast is shown in figure 8.4, where all

messages are signed by the originator. The different message contents and

9Details of the formation of new groups is discussed later on in section 8.5.
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their meanings are summarised in table 8.2. Only the leader of round r can

form a valid proposal or rejection.

<A1, pi, r, R.I.D.> Propose R.I.D for total order

<A2, pi, r, R.I.D., ACK > Accept R.I.D. for total order

<A3, pi, r, R.I.D., NACK > Reject R.I.D. for total order

<A4, pi, r, R.I.D.> Suspect leader for round r

<A5, pi, r, R.I.D.> Suggest to add R.I.D. to queue

and start next round

Table 8.2: Message meanings in the total order algorithm

If any correct process receives a message from any other process that

they suspect the leader for a round r, and they also receive the evidence

from the leader for round r that is sufficient to accept the request into total

order, then they forward this evidence they received from the leader of round

r to the process that notified their suspicion.

If we regard the l’th request processed at a process p as pl and the leader

for that round is denoted leaderl, a proof of correctness for the algorithm

presented in figure 8.4 is outlined below. Theorem 8.1 demonstrates that the

algorithm provides the group with total order, and theorem 8.2 demonstrates

that the properties of liveness and termination are preserved.

Theorem 8.1 Any two correct processes p and q, that process R.I.D.1 and

R.I.D.2, process R.I.D.1 and R.I.D.2 in the same order.

Proof. (Sketch) Suppose that p processes R.I.D.1 as request pl and

request R.I.D.2 as request pl+1, then leaderl must have forwarded ⌈2n+1

3
⌉

<A2, pi, l, R.I.D.1, ACK >, and leaderl+1 must have forwarded ⌈2n+1

3
⌉

< A2, pi, l + 1, R.I.D.2, ACK >. Thus q must have received the same

proofs and also processed the requests in their respective rounds. 2

Lemma 8.1 For any round r in which all correct processes participate and

the leader is correct, then the leader can advance the total queue.

Proof. (Sketch) If a correct leader in a round can contact all processes in

a round, then leaderr receives <A2, pi, r, R.I.D., ACK > from each of all

correct processes, and can subsequently generate the necessary evidence to

promote the current R.I.D. from the input queue to the processing queue.

2
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if r mod n = i (pi is the leader) and queue not empty

send <A1, pi, r, R.I.D.> to pj (∀j 6= i)

wait for <A2, pj , r, R.I.D., ACK > from ⌈2n+1

3
⌉

forward <A2, pj , r, R.I.D., ACK > to all pj

accept R.I.D. and enable round r + 1

or suspect ⌊n+1

3
⌋

send <A3, pi, r, R.I.D., NACK > to all pj

reject R.I.D. and enable round r + 1

if r mod n 6= i (pi not the leader)

wait (<A1, pl, r, R.I.D.> from leader)

or ((queue not empty) and (suspect leader))

if leader proposes <A1, pj , r, R.I.D.>

send <A2, pi, r, R.I.D., ACK >

if leader sends ⌈2n+1

3
⌉ <A2, pj , r, R.I.D.>

accept R.I.D. and enable round r + 1

if leader sends <A3, pl, r, R.I.D., NACK >

reject R.I.D. and enable round r + 1

if not reply from leader and suspect leader

send <A4, pi, r, R.I.D.> to all pj

wait for <Mx, pi, r, R.I.D.> or suspect all

if receive ⌈2n+1

3
⌉ <A2, pj , r, R.I.D., ACK >

accept R.I.D. and enable round r + 1

if receive <A2, pl, r, R.I.D., NACK >

reject R.I.D. and enable round r + 1

if suspect all

bcast-send <A5, pi, r, R.I.D.>

if queue not empty and suspect leader

bcast-send <A5, pi, r, R.I.D.>

if bcast-receive ⌊n+1

3
⌋+ 1 <A5, pj , r, R.I.D.>

place R.I.D. queue and enable round r + 1

Figure 8.4: Atomic broadcast algorithm at pi
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Lemma 8.2 There exists a round r after time t, at which a correct leader

can contact all correct processes.

Proof. (Sketch) If the network behaves according to a fair

scheduler [BT85], then there is a positive probability that at any round,

any given correct processor does not suspect any other correct processor

within that round. Subsequently, there exists (with probability 1) a round,

after time t in which all correct processors do not suspect any other correct

processors. 2

Theorem 8.2 Eventually all requests from correct clients are processed.

Proof. (Sketch) If a correct client sends a request R.I.D.c to the service,

then a correct instance of the server (pr) will receive the request and place it

in their input queue. As the input queue of pr is FIFO in that pr will always

propose the head of the queue, and the liveness of the queue is guaranteed

from Lemma 8.1 and Lemma 8.2, then R.I.D.c will eventually be processed.

2

8.5 Group membership

Control of the group membership is handled by the owner of the object in

our system. Changes in group membership only happen when the object

owner wishes to change the group membership.

In previous work that uses group oriented systems [BSS91, Rei96b] they

call an instance of a group membership a view. Changes to a group view are

needed in order to overcome the impossibility result of Fischer et al. [FLP85],

but because we use a different method to overcome this result we need not

force view changes when a member of the group is unreachable.

8.5.1 Group initialisation

The initialisation of the group membership is carried out by the owner 10 of

the object. An owner who wishes to deposit an object with this service con-

sults the globally accessible directory to ascertain which servers are available

to store information.

The object owner then decides which of these information servers it is

willing to use in the creation of a group.

10The owner of an object is one of the set of clients in the system.
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Bracha and Toueg [BT85] highlight that a distributed agreement proto-

col should not start unless there is a threshold of servers that are party to

the protocol. Our protocol circumvents this problem in two ways:

1. The atomic broadcast protocol starts by having the group leader for

the initial round forward the group creation request to all members on

the server list. This will ensure two things:

(a) The number of group members that see the request rises above

the given threshold, thus allowing the agreement process to begin.

(b) It allows the proposed group members to check whether they are

party to a previous / concurrent request from the same client to

set up the same object identifier11.

2. Unless a threshold of servers (⌈2n+1

3
⌉) agree on the group composition,

then the atomic broadcast protocol does not progress past its first

round, and the group is not formed.

A server that detects an illegal (i.e., previous or concurrent group set-

up) for the same client / object pair, can forward the evidence to other

members of the existing proposed group. As the request is signed by the

client, a malicious server cannot falsify a bogus request. This means that it

does not require a threshold of group members to convince the other group

members of the illegality of the request.

8.5.2 Group updates

Group membership updates are likely to happen for one of three reasons:

1. The object owner no longer requires service from the object replication

service, and closes the group down, which deletes the instance of the

object from the service.

2. The object owner receives information from servers within the group

of the potential corruption of other group members.

3. The object owner receiver external information that members of the

group could be potentially corrupt.

11This can only be detected by the service if the client requests overlapping groups for

the same object identifier, which is a problem also covered in the next section of this

chapter.
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There is very little difference between the second and third instances,

except in the source of the information, and the level of integrity which the

object owner is willing to attribute to the information.

Object deletion This method is the simplest, with the client putting in

a legitimate request for object deletion. The honest members of the

server group then remove the instance of the object from their object

store, and make a note of the deletion, in case further access to the

object is requested, for which a reply can be given that the object no

longer exists.

Group Internal information In this instance, the object owner needs to

be sure that he can justify the decision to change the group structure.

The client will receive any reports about potential faulty group mem-

bers from other group members. If the client regards each member

with equal suspicion, then it will require a minimum of ⌊n−1

3
⌋+ 1 ac-

cusations against a particular member for the client to act. The client

can of course apply a greater weighting to the evidence of a smaller

number of group members if it is willing to trust any particular group

member more, but is primarily using the replication server as a means

of safeguarding against a group member suffering a benign crash. The

exact update policy with regard to object identifiers etc. is expanded

upon below.

Group External information This scenario is similar to the one above,

and uses the same update mechanisms, but the source of the informa-

tion need not have the same verification principles as those mentioned

above.

Controlling group update protocol

To update the object, it is important that we can update the object in place

without loosing reference to the state information. This is important in

case legitimate clients request information from servers which are no longer

members of the controlling group for the object. Our protocol outlined below

only works in the case of honest clients, as a malicious client can delete the

object and re-create it is an instance of a new object without leaving any

trace. Dealing with this is beyond the scope of our work12.

12We conjecture that stopping such an event is impossible when clients have local ma-

nipulation of objects combined with a creation process external to the control of the

server.
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A group membership for an object is made up of a list of servers:

serv list = {cs1
, cs2

, . . . , csn}

Where the number of servers is n. Each object has the following infor-

mation stored at each server that makes up the group:
C.I.D. : Client Identifier.

O.I.D. : Object Identifier.

A.C.I. : Access Control Information.

H.C.I. : History Control Information.
The C.I.D. identifies the client that generated the object, and the O.I.D.

is a unique identifier generated by the client for each object he registers

with the service. Together they form a unique identifier13 for each object

in the system. The A.C.I. is explained in section 8.6.2 of this chapter. The

H.C.I. is the information concerned with updating legitimate requests, its

properties and update procedure are described below.

The H.C.I. is a tuple <list<O.I.D.>, list<serv list>> containing the

information regarding the prior incarnations of the current object. The lists

form a chronological order of the different object identifiers and the server

lists which represented their group membership.

When a client deletes an object, he flags it as a full deletion or an update-

in-place. If the request is an update-in-place, the client gives the information

to the servers of the new object identifier, and new server list, which are

added to the tail of the H.C.I. In the cast of a full delete, a null entry is

included instead. The H.C.I. allows a server to extend the access control

information across incarnation boundaries if the object owner so wishes.

This can allow the server to grant access rights to an object which appears

in the history of a current object.

8.6 Object Control

In this section, we outline the mechanisms used to enforce object control.

First we look at maintaining secrecy in an environment where an object

needs to be replicated, and secondly at the access control structure used

above the replication layer.

13We do note however that this is unique only if the client generates a new identifier

for each object. There is nothing to stop a malicious client re-using an identifier, as

detecting the existence of to duplicated identifiers in a loosely coupled system without

using a trusted central administrator is a difficult task.
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8.6.1 Object replication

In order to maintain secrecy as part of an access control policy, we need

to have control of the information needed to gain access to the object split

between the various servers that make up the group. This guarantees that

a single malicious server – or small subset – cannot compromise the secrecy

of the object on its own.

To achieve this we make use of Shamir’s (k,n) secret sharing

scheme [Sha79] to distribute the encryption key between the group mem-

bers. Our reason for doing this is efficiency as a tradeoff against perfect

secrecy. We could secret-share the object itself, assuring that as long as no

more than ⌊n−1

3
⌋ servers give up their shares14, then the object remains se-

cret for ever. Unfortunately, this would give as an unwieldy computational

overhead for large objects. Our method relies on encrypting the object, and

secret sharing the key between each of the members. This provides us with

a lower computational overhead, while reducing the secrecy of the object

from perfect secrecy to the best known attack on the encryption algorithm.

We now describe the message content sent to the group members. The

following notation is used for the various data items included in the mes-

sages:
ko : Object encryption key.

kSi
: Si’s public key.

ki
o : Si’s share of the object encryption key.

The content of the packet sent to the service in the client to server

interaction protocol of section 8.4.2 is shown below:

{Obj}ko
, A.C.I., {h(D), k1

o}k1
s
, {h(D), k2

o}k2
s
, . . . , {h(D), kn

o }kn
s

A.C.I. is the access control information, and is described in the next

section. h(D) is a hash of the concatenation of the encrypted object, and

the access control information for integrity verification. There is little rea-

son to encrypt the access control information, as each server needs it in

order to carry out its task, which would allow a malicious server to leak the

information.

The reason for sending all servers a copy of every ki
o, rather than only

sending each piece to the server that requires it, is that if a server is isolated

due to severe network disruption, then it can contact the other replicas to

receive the most recent object state information.

14Because of the nature of the (k,n) secret sharing scheme, this figure could be arbitrary,

but is set to ⌊n−1

3
⌋ in order to match the requirement for the number of correct processes

in a group.



CHAPTER 8. A DISTRIBUTED OBJECT SERVER 107

We make an interesting observation regarding the use of Shamir’s plain

secret sharing method over a Verifiable Secret Sharing (VSS)

technique [GM95, CGMA85, Fel87]. VSS is a more powerful abstraction,

and it might be seen to be an advantage to have it over a normal secret

sharing mechanism. Unfortunately we do not gain anything from using it in

this scenario.

As the servers are incapable of checking the integrity of the encrypted

content of the object, the servers gain nothing from knowing if a share given

to them by a client is valid or not. The client who receives the shares when

performing a read on the object cannot prove after the fact that it was a

malicious client or malicious server that injected a false share into the system

either.

8.6.2 Access Control

Access control is structured predominantly around a capability based mech-

anism. The object owner generates the capabilities and hands them off to

other clients in the system.

The basic structure of the access control system is described in each of

the four following sections, each covering the token structure, access control

commands, client types, limited server storage and transfer of capabilities

in turn.

Token Structure

The basic structure of the access control token is shown in figure 8.5. The

token itself is signed by the owner of the object. We make use of an extension

to the principle of identity based capabilities presented by Gong [Gon89].

< O.I.D., server_list, control type,

transfer flag, recipient type, [C.I.D], [G.I.D.]>

Figure 8.5: Access control token

The sections of the token and the Object Identifier, the server list, the

control value of the token, a transfer / non-transfer flag and client or group

identifier.

The Object Identifier, and server list are those described in previous

sections. Each of the other values is described in its own section below, in

addition to section describing the server storage required to manage group

access to the object.
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Control Commands

There are three basic control commands for objects:

Read Allows the bearer of the token to have read access over the object.

Write Allows the bearer of the token to write a new value to the object

store in place of the current value.

Delete This allows the bearer to delete the object. Because of the conse-

quence of deleting the group, and the need for updating the reference

list for the object that is associated with this action it is dealt with as

a different permission than a standard write permission on most file

systems.

The capability can posses any mix of these three control sequences.

Bearer Types

There are two types of bearer type:

Named A named capability will contain a client identifier 15 for the client

to which the capability is issued.

Group A group capability will contain the identifier of the group as stipu-

lated by the owner of the object. How this is dealt with is described

in further detail in the section below describing server storage.

Global A global capability is by its very nature transferable, and the trans-

fer flag is set accordingly. This type of capability is generally issued

for reads when the object owner wishes to allow any other client to

read an object.

Server Storage

Even though we wish to use a capability based mechanism, there is a reason

for storing some of the access control state at the server as well. The two

types of information are:

Group control information A structure of a tuple containing a group

name and a list of the client identifiers which are members of the

group is stored at the server site. This is preferable to issuing the

15We assume a unique means of identifying a client, either globally, or from the point

of view that object owners can specify clients identifiable to themselves.
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group structure along with the capability, as it makes it possible for

the object owner to modify the structure after the capability has been

issued. When a client presents a group based capability, it has to

present its client identification as well, which is checked against the

current group membership.

Revocation list There are two types of information stored in the revoca-

tion list. The first is a list of client identifiers which have had their

capability revoked by the owner, and the second is a notification if a

global access has been revoked16.

Transfer Flag

When the transfer flag is set in named capabilities, the client identified

within it can generate another token to indicate that they are transferring

the rights present in the capability to another client. This is done by issuing a

new signed token containing the following information <O.I.D., N.I.D.>,

where N.I.D. indicates the client identifier to which the rights are being

passed. This can be repeated, generating an authorisation chain.

In the case of group capabilities, the client can generate the same token,

but when the server comes to verifying the access, then they interrogate the

identity of the original holder against the current group membership list.

In the case of global capabilities, the transfer flag is set by default.

8.7 Conclusions

In this chapter we design a global service which can provide resilient dis-

tributed access to objects, while retaining the control of the group manage-

ment structure in the hands of the object owner.

We provide a new atomic broadcast algorithm that allows for process

failure without having to resort to changes in group views. This is a benefit

over existing group-based mechanisms that require a view change to allow

the protocol to terminate. Providing for view changes in a system where

secrecy is an issue would vastly complicate the liveness section of the pro-

tocol, with a need for updating the secret sharing portion of the service,

potentially without any outside aid.

16Of the three access types, the name based and global based accesses are addressed by

the revocation list, where as the group based mechanism inherently provides a revocation

mechanism.
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Group updates themselves are dealt with by having the client dictate

the group membership and use the broadcast protocol’s ability to atomically

deliver messages in the face of failure to allow updates to take place.

Unfortunately, there is an inherent performance penalty in using our

broadcast algorithm. Our work is related to the broadcast protocols used in

Isis [BSS91] and Rampart [Rei94b], where a comparison between the message

delays demonstrate that strengthening the broadcast protocols to be secure

reduces their scalability greatly.

There are other mechanisms that provide for a more efficient broadcast

algorithm [MMS95, MR97b], but we do not believe these to be applica-

ble in our scenario. Their algorithms are built upon chaining mechanisms,

where correct processes acknowledge messages previously seen when forming

a broadcast. This allows processes to locally build directed graphs which

provide a total order. Unfortunately, their improvement in throughput is

measured as the delivery latency over a given number of messages, and as we

do not envisage a large traffic throughput in relation to the time to answer

a single query, their mechanism does not offer us a distinct advantage.

Another more lightweight replication mechanism which could be pro-

posed for a similar service is that of quorum based systems [MR98a, MR97a,

MRW97]. The difficulty of using such mechanisms for what we wish to

achieve is a similar problem to the one related to group changes, in that

maintaining object secrecy becomes a difficult task. This difficulty would

be compounded further by the quorum-based mechanism’s limited cross-

sections of process groups.



Chapter 9

Conclusions and Future

Work

9.1 Overview

In this chapter we overview the results obtained from the work presented

in this dissertation, and draw some conclusions from our study. We also

provide an overview into what we see as future work in the area given the

insights gained from our work to date.

9.2 Results

In the first section of our dissertation (chapters 3 & 4), we looked at the

notions of faults and failures and what they mean in terms of security pro-

tocols.

Our findings break down into two categories, which are related to the

flow of execution and the flow of information respectively.

Firstly, we believe the control of the flow of execution to be an integral

part of combining fault tolerance with security. In section 3.2.1, when trans-

lating the definitions of state into protocols, we end up with the message

content encapsulating the state within the cryptographic protocol. This

supports our notion that controlling flow is of relevance, because there sub-

sequently needs to be an ability to monitor the existing state in order to

carry out the constituent parts of fault tolerance (i.e., error detection etc.).

This gets translated into secure protocols by our definitions in section 3.2 of

the beneficiary and tightly coupled protocols.

Our notion that control of execution is an integral part of the ability

of providing fault tolerance in secure protocols is also clearly shown in sec-

111
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tion 4.3, where we expand upon the threat model faced by principals wishing

to communicate anonymously. We demonstrate that, if the vulnerability en-

visaged by the threat model is taken to its limit, then we are still capable

of surviving an attack if we allow the principals to govern the execution of

the protocol itself.

In the second instance, we believe the control of information flow to be

a method of achieving the goals of fault tolerance in a security environment.

In section 3.3, we note that the information required to enable a princi-

pal to derive “beliefs” with regard to a cryptographic protocol moves from

the information gained about actions of the other participants to the infor-

mation gained from the voting section of the protocol. In section 3.4 we also

notice that the reliance boundary moves, allowing the principal in essence

to not bestow reliance directly on the members of the replicated service.

Consequential to this move, the information that the client relies upon is

derived from a different source.

In sections 4.2 and 4.4 we show two different methods of using this notion

of controlling the flow of information to decrease the reliance on the service

by increasing the amount of control available to the client.

Section 4.2 provides a new twist on a debate that has already been

studied in the literature. The information that is being controlled here is

something that is of use to the service (notably the freshness of the request).

We believe the example studied in section 4.4 to be of greater interest,

where we demonstrate a new variant of a denial of service attack. The threat

model we use is closely linked to our motivation of using the principles of

fault tolerance to improve the security as seen by the client. The interesting

point with regard to the control of information used in this solution, as

opposed to the solution employed above, is that the information flow being

controlled is that which is of use to the service and not the client. By

controlling the information, the client has greater assurances with regard to

the outcome of the request, while not affecting the ability of the service to

carry out its duty.

It is usually a goal for the principal that uses the information necessary

to carry out the secure function (e.g., crypto key) to have control over it, but

what this section demonstrates, is that the control does not necessarily need

to reside with the party concerned with its integrity, and that in sharing the

control, two or more principals can achieve their respective goals.

In the second section of our dissertation (chapters 5 & 6), we study

the effects of applying various types of fault tolerant constructions within

security.

Our main goal in this section was to see how constructions other than
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server replication could be applied to security services. What we demon-

strate by our findings, is that the ability of a fault tolerant model to be

integrated within a security function without change depends on the moti-

vation behind its application, which demonstrates that conceptual transition

cannot be taken for granted.

We believe that fault tolerant models that are used to strengthen a se-

curity function that already exists within the system’s design (e.g., server

replication for a key server) can be integrated quite easily, without any great

need for changes in the design assumptions.

Conversely, we believe that if a model is being used to implement a

new security function directly (e.g., our notion of controlling the interface

communication in section 5.4), it is much more likely to require some degree

of change to its structure or assumptions.

In section 5.3, we look at the use of exception signalling to augment the

functionality of certificate revocation systems. Our results in that section

demonstrate that there is little that needs to be changed in the model, or

its structure.

Conversely, in chapter 6 and sections 5.4 and 5.5, we look at using models

within fault tolerance to generate new forms of functionality.

In section 5.4, we are interested in what effect recovery across an inter-

face has on the assumptions used when designing the flow of information.

When these techniques are used in their native environment, they restrict

the information flow between processes that are deemed to be competing on

the interface. We argue that this assumption needs to be revised in some

scenarios when used for security.

In section 5.5 we demonstrate that the use of information sharing across

a boundary, specifically for the act of recovery, requires some change in its

application. When adapted for security, we show that the control of both

the information and recovery process should be empowered to the security

policy of the principal concerned with the successful recovery, which moves

away from the direction of the work in its original environment.

Chapter 6 demonstrates the use of timing measurements to provide a

new means for defeating timing or replay attacks.

This provides secure and insecure variants of the same resource avail-

able to nodes on a network (notably the bandwidth division). This echoes

similar reserve partitions in processor design, with the distinction between

supervisor and user modes, and demonstrates that we require some under-

lying support from the medium which we are trying to segregate in order to

achieve the result.

Our mechanism is not able to stop all such attacks, but is most adept at
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detecting suppression type attacks. It is a side-effect of this result that we

are also able to counter denial of service attacks as well as our original goal

of stopping replay and timing attacks.

There might be a temptation here to say that denial of service attacks

are only a subset of timing attacks 1, but we believe this not to be true. We

back up our claim by the observation that not all denial of service attacks

use timing, and not all timing attacks require a denial of service.

Examination of the types of protocols which our design favours (in sec-

tion 6.5.2), strengthens our argument for our notion of tightly coupled pro-

tocols defined in section 3.2.1.

As an overall observation regarding this section of work, we believe the

dichotomy which arises when applying fault tolerance to a security function

is due to the nature of generating a new security function.

A mechanism that is used to increase the resilience of a security function

that has previously been designed into the system is less likely to require

modification, as it is being used to strengthen a policy that has already been

considered and implemented. In effect, the security model already in place

is acting as an abstraction to the fault tolerant model used beneath it.

In the examples where we use a fault tolerant principle to directly gen-

erate a new security mechanism – as in section 5.4 – we are likely to observe

conflicts. This is because the fault tolerant model is used openly by the

client accessing the secure mechanism and is not cleanly abstracted away,

which requires the assumptions used when initially generating the model to

be reevaluated.

In the final section of our dissertation (chapters 7 & 8), we look at

differing mechanisms for server replication. The driving force behind existing

designs is the increase in resilience of the service.

In chapter 7, we use primary backup replication, which provides a more

lightweight form of replication than state machine. Primary backup can be

of use in scenarios where the threat model is not a fully byzantine one, and

in chapter 8 we provide the design for a server that, even in a full byzantine

scenario, allows for client control over the group membership. This allows

the client to dictate its own policy when it comes to trusting various parts

of a replicated service.

We demonstrate in chapter 7 that it is possible to use a different repli-

cation mechanism – which uses a more lightweight technique – for scenarios

1Evidence that would back up this claim can be seen in the suppress-replay attack of

Gong [Gon92], which uses an initial denial of service to facilitate a replay attack within

the timing window of the Kerberos authentication mechanism. While this highlights a

direct link between the two, we believe them to be related and not subsets of each other.
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where the threat model does not include an attack that leaves the server in

a byzantine failed state.

What existing work there is on securing servers in a threat model which

does not extend to a byzantine failed server, uses the state machine ap-

proach, and like the work in Rampart focuses more on the design from the

server’s point of view rather than that of the client.

What we can demonstrate in chapter 7, is that a replication mechanism

can be generated such that the strength of the trust relationships between

the replicas can be dictated by the security policy of the client.

In chapter 8 we provide the design for a group replication mechanism

that is built above an atomic broadcast protocol. Our new atomic broadcast

algorithm does not need group updates to avoid the impossibility result of

Fischer et al. [FLP85].

Our new atomic broadcast protocol uses the notion of failure detec-

tors [CT96] coupled with earlier work on randomness in consensus proto-

cols [BT85] in order to achieve this result. There is a performance penalty

from using State Machine replication in such systems, but other options

such as quorum based systems [MR97a] would make update of objects that

require secrecy a complicated task.

What we aimed to achieve, and show in these two chapters is that it

is possible to give the client control over the replication mechanism. It is

unfortunate, but not surprising that such mechanisms increase the cost of

the algorithms needed to implement them.

An interesting point for potential work would be to search for more

lightweight means of giving the client control over replication schemes. We

believe that in widely distributed systems such as the Internet, increasing

the reliability of security services should be a common goal. Notably that

giving the client some degree of control over the actions of processes which

it is less likely to trust than in a local network should be studied further.

9.3 Conclusions

We now look at some conclusions that can be derived from our work which

are not dealt with explicitly in the findings of the previous section. These

results are not directly obtained from the initial motivation for our research,

but provide some insight into the problems faced by further work in this field.

Our first observation is based loosely on where in the OSI model the

functionality is placed, and is an extension of our notion of control.

Our work in chapter 6 provides timing measurements for increasing pro-

tocol resilience to timing and replay attacks. It would be impossible for the
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client to use this mechanism without trusting the machine which connects

them to the network. It is already well known that carrying out a secure

function on a machine that the client does not trust is futile. What we pro-

mote here in addition, is that in our design, due to the nature of controlling

the physical connection, it would be impossible for the client itself to control

the fault tolerant functionality without the aid of the machine on which they

are situated.

With the terminology of the OSI model in mind, if the security design

includes some fault tolerant functionality that requires the aid of the layers

below the application layer, then it requires the client to share the control

of the security protocol with the layers below. By sharing this control, it

moves away from our ideal scenario in which the client controls the whole

protocol.

We differentiate this from the need to trust the host on which the client

is situated. As mentioned above, the host needs to be trusted in any case,

but part of our goal in this dissertation was to provide control of the fault

tolerant mechanism to the client. In our observation above we note that

this might not be possible for reasons that have nothing to do with the trust

relationship with the other parties directly involved in the protocol. Thus it

might be entirely feasible for the trust relationship in the protocol to allow

for the client to receive more control, but that the physical implementation

prevents it, which is something we did not initially consider.

This observation might initially seem superfluous, as in our design, the

client has to trust the node on which it resides, but we claim it to be of

importance by highlighting possible future implementations, where the client

is logged on to a workstation, and the security function of the protocol is

carried out on a smart card connected to the workstation. In this scenario

the client does not necessarily trust the workstation, in which case, it would

be difficult to justify allowing the workstation to share control in the fault

tolerant part of a security protocol.

A second observation related to the first one, is that the fault tolerant

component of the design can be shared (e.g., in chapter 6 it is shared with

the host) while still not compromising the security functionality of the sys-

tem. This demonstrates that the security and fault tolerance portions of the

system design can be managed separately, even when integrated to achieve

improvements in the security service, which we believe to be an interesting

point.

A third observation we make is that of a parallel between our ability to

provide more lightweight replication using primary backup (in chapter 7)

and more recent work carried out by Reiter and Malkhi on quorum based
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systems for secure replication [MR98a, MR98b].

In their work on quorum based systems, they point out that secure repli-

cation using the state machine approach is not generally scalable. Their work

is scalable due to the lack of need for server to server communication. The

server to server communication is something that is also minimised in our

work on primary backup. Their work does however require server to server

communication to allow a state update, which increases the protocol com-

plexity. Their work on consensus objects [MR98b] does not require server

to server communication, but does require several rounds of communication

where the client forwards messages between servers, which has the same

overhead as a server to server protocol with one server acting as a relay.

The relation between our work and quorum based systems is highlighted

by the fact that reducing the functionality within the replication – in our

case a reduction of the byzantine threat model, and in theirs reducing the

main operation to a read – allows a reduction in the complexity inherent in

a full state machine approach. It would be interesting to see to which extent

different types of reduction in functionality can reduce the overhead of the

replication mechanism.

9.4 Future Work

In this section, we briefly outline areas of cross-over between fault tolerance

and security that we believe could provide other avenues of research given

the experience in our current work.

The first area we cover is that of timing in distributed computations. In

work done by others on primary backup approaches to server replication in

benign failure environments, one of the things studied [DGMS85, Ske82] is

allowing servers not within the primary partition group to provide service,

and then using an update merge policy to reconcile differences when the

partitioning ends. It would be interesting to see how such work could be

carried across to a secure environment, where byzantine corruption of the

servers is not the primary threat model, but where the service does provide

some security relevant functionality. What type of secure services could be

built to function on possibly divergent information, and still provide some

degree of service?

An inherent problem in asynchronous distributed computation in a byz-

antine environment is the use of consensus to achieve virtual synchrony. The

work of Dolev et al. [DDS87] – which is closely related to the work of Dwork

et al. [DLS88] on partial synchrony – provides a study of minimal levels of

synchrony needed with regard to various parameters of the system (namely



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 118

processor, communication, message order and transmission mechanism), and

how each affects the ability to achieve consensus. It would be interesting

to study protocols that achieve consensus under the different parameters in

a byzantine environment, and measure their trade-offs with regard to real

world estimates of methods of supplying the parameters.

In their work on using quorum systems, Malkhi and Reiter [MR98a,

MR98b] the rules regarding virtual synchrony are relaxed in order to provide

a more lightweight replication mechanism, while still allowing for a fully

byzantine environment. It would be interesting to find security functions

which could still provide service without a global sense of synchrony, but

replaced by the use of a client defined view of synchrony. A simple example

of this is the work done by Blaze [Bla96].

A second area we believe could provide interesting research is that of

failure detectors. In their work on unreliable failure detectors Malhki and

Reiter [MR97c] note that providing a fuller extension of the work carried

out by Chandra and Toueg [CT96] for a byzantine environment would be

useful.

Our work in chapter 8 only uses the Completeness property of failure

detectors [CT96], and does not touch on the use of Accuracy, because we note

the inherent difficulty of maintaining the state needed to achieve accuracy in

a loosely coupled distributed environment. There are two forms of order in

multicast protocols, local and global order [HT94]. It would be interesting

to study what effect trying to implement the two different primitives in a

byzantine environment would have on the properties needed for the failure

detectors.

A third area of research, not directly covered in our current work, is

the use of hardware mechanisms to improve the resilience and efficiency of

distributed server computations.

One of the problems with providing for distributed computation on the

Internet, is the inherent risk that a site could be hacked and the server

corrupted. If we were to use hardware at each of the sites to provide the core

security functionality, then all an externally compromised machine could do

would be to emulate a benignly failed machine.

Siu et al. [SCY98] provide a design for a mixed failure environment. If

we accept that some portion of corrupt servers could be directly under the

control of malicious entities, and another portion can only be compromised

from the outside, can we use the principles inherent in their mixed failure

mode design to increase the resilience of a distributed server on the Internet?

A further area of interest would be to study how best to design more

generic security protocols (e.g., authentication, key exchange etc.) and how



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 119

to make them recoverable from compromise. There is a small amount of

work done in this area already [HK95], and generalising it could prove to be

fruitful.
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