Technical Report A

Number 476

Computer Laboratory

Linking ACL2 and HOL

Mark Staples

November 1999

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1999 Mark Staples

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Linking ACL2 and Hol

Mark Staples
November 2, 1999

Abstract

This report describes ACL2PII, a system which dynamically links
the theorem provers ACL2 and Hol, using the PROSPER. project’s
Plug-In Interface to Hol. The focus of the system is on making ACL2
theorems available from within Hol. In a motivating example we show
how to transfer results from ACL2’s ‘small machine’ theory. This the-
ory highlights two of ACL2’s strengths: symbolic simulation and the
fast execution of operationally defined functions. This allows ACL2
specifications to be readily validated against real-world requirements.
The ACL2PII system allows Hol users to capitalise on results about
such ACL2 specifications. ACL2 and Hol are both general purpose
theorem provers, but Hol is slightly more expressive, and has grow-
ing infrastructure for interoperability with other systems. This report
assumes a passing knowledge of both ACL2 and Hol.

1 Introduction

ACL2 [8] and Hol [5] are two well-known mechanised theorem provers.
This report describes ACL2PII: a dynamic link for translating theo-
rems between two ‘live’ sessions of Hol and ACL2. We assuime a passing
knowledge of both ACL2 and Hol98'. The link uses the PROSPER
project’s Plug-In Interface to Hol [11], which allows Hol to interact with
external systems. ACL2PII allows a user to run ACL2 from within a
Hol session, and allows results from ACL2 to be interpreted in Hol.

ACL2 and Hol have different languages and different logics. ACL2
uses untyped s-expressions to represent first-order logic, whereas Hol
uses typed terms for higher-order logic. ACL2PII is based on a scheme
for translating ACL2 s-expressions to Hol terms. It is easy enough to
create a type of s-expressions in Hol, so that all ACL2 s-expressions can
be trivially translated to Hol. (Appendix A describes a Hol theory of
s-expressions.) However, this kind of translation is not usually useful.
For practical purposes, it is important to find a translation which allows
ACL2 theories to be interpreted in the environment of the standard
Hol theory libraries.

!Especially recent advances in Hol such as the oracle mechanism, and the automated
function and type definition facilities provided by BossLib.

Thus, ACL2PII’s translation scheme is ad-hoc—arbitrary transla-
tions can be given for different kinds of s-expressions. A set of de-
fault translations are available, so that appropriate s-expressions can
be translated into Booleans, natural numbers, integers, simple arith-
metic expressions, characters, strings, lists and tuples. New translation
clauses may be added so that new ACL2 theories can be translated into
Hol.

New translations are added in a variety of ways: by the use of
ACL2PII commands to translate definitions from ACL2, by specifi-
cation, or by hand-coding. Using translations to assert theorems in
Hol may introduce inconsistencies into Hol, so the authors of trans-
lations must be careful to avoid this problem. The danger of this is
reduced if users mainly rely on the automated transfer of definitions
from ACI2. Section 2 has an example of this for ACL2’s small-machine
theory [2, 10]. In Section 3 we describe how to specify and hand-code
translations. Section 4 lists the main commands for importing re-
sults into Hol. We discuss other work in Section 5 before presenting
concluding remarks in Section 6. Appendix A presents a Hol the-
ory of s-expressions, which can be used for default translations. Ap-
pendix B discusses system requirements and installation instructions
for ACL2PII. Appendix C describes commands for interacting with an
ACL2 session. Appendix D describes ACL2PII’s architecture and code
structure. Appendix E gives the source scripts for the small machine
example presented in Section 2.

2 Example: Small Machine

Here we demonstrate how to make a link from ACL2 to Hol. We
use as an example ACL2’s ‘small machine’ theory [2, 10], which is an
operational definition of a simple microcomputer. The theory show-
cases ACL2’s facilities for symbolic simulation and the fast execution
of concrete machines. We proceed as follows:

1. identify base ACL2 syntax required for our Hol investigation,
2. define base Hol constants for that syntax,

3. specify translations from ACL2 s-expressions to Hol terms, and
4, translate (automatically) ACL2 definitions and theorems to Hol.

We expand upon these steps below. The source scripts for this example
appear in Appendix E.

2.1 Identify Base ACL2 Syntax

The small machine theory defines many auxiliary functions and lemmas
leading up to interesting high-level properties about small machines.
Here we look at some basic functions on states.

The state of a small machine is a list (PC STK MEM HALT CODE)
of elements representing: the program counter PC, a stack of return
addresses STK, a memory of numbers MEM, a machine-halted flag HALT,

and a program part CODE which is a collection of named lists of in-
structions. States can be constructed with the STATE function, e.g.
(STATE PC STK MEM HALT CODE).

The small machine has eight instructions, including (MOVE A B)
which moves the contents of address B to address A, (MOVI A B), which
moves B to address A, (CALL A), which calls the first instruction of the
sub-routine named A, and (RET) which returns from a sub-routine or
halts the machine if the stack is empty.

2.2 Define Base Hol Constants

In Hol, we mirror the syntax above. First, we define a type for the
syntax of instructions:?

Hol_datatype ‘instr = MOVE of num => num
| MOVI of num => int

| CALL of string
| RET

We assume that in Hol, memory values will be represented as integers,
addresses within a program as natural numbers, and program names
as strings. States are represented as a tuple:

val state = ty_antiq (Type

“:(string # num) # (* PC %)
(string # num) list # (* STK %)
int list # (* MEM)
bool # (* HALT *)

(string # instr list) list®) (* CODE %)

2.3 Translation

We must say how ACL2 s-expressions are interpreted in Hol. There
are a collection of default translations provided in the base ACL2PII
system, so we need only give cases for the new syntax introduced above.

Translations can be specified using patterns. A pattern is a triple
of a string (representing an ACL2 s-expression), a corresponding Hol
term quotation, and a list of Hol term quotations representing side-
conditions on the translation.® The Hol term quotation contains free
variables whose names are used to do pattern matching of the ACL2
pattern with actual ACL2 expressions.

Here are four translation specifications for small-machine instruc-
tions:

("(MOVE A B)" , ‘MOVE A B , [1)
("(MOVI & B)" , ‘MOVI A B¢ , [1)

2Except where noted, throughout this example all teletype font indicates information
which must be manually entered by a user of ACL2PIL.

¥No new side-conditions are required for the small machine theory example here, and
so all side-condition lists are empty.

("(CALL A)" , ‘CALL A¢, , [D
(II(RET)" s ‘RET‘ R [])

Finally we give a translation for constructing states as follows:

("(STATE P SO M H C)" , ‘(P,SO,M,H,C):"state’ , LI)

2.4 Transfer Definitions and Theorems

Having established the initial infrastructure above, we can bootstrap
ourselves into a richer Hol theory of small machines, and transfer con-
crete executions and abstract theorems about small machines to Hol.

2.4.1 Base Constants

The evaluation of small machines is given by an operational definition
for (SM S N) which runs the machine for N clock cycles, starting from
an initial state S. The function SM is defined in terms of another func-
tion STEP. However, say that we are not interested in how SM is defined,
but only in some of its properties. To take a two-argument function
symbol SM as a typed given constant in Hol, we say:

mkbasefun "SM" 2
"SM" (Type ¢:"state_ty —-> num -> “state_ty‘)

This introduces an undefined Hol constant SM of the type above, and
sets up a translation from s-expressions (8M S N) to terms SM S N.
The Hol constant SM will only acquire properties by the assertion of
theorems translated from ACL2.

2.4.2 Definitions

The small machine theory defines an abbreviation for a multiplication
program. The program is reproduced here (comments start with a
semi-colon and continue to the end of the line):

(DEFUN TIMES-PROGRAM NIL
; instruction pc comment

) (TIMES (MOVI 2 0) ; 0 mem[2] <~ O
(JUMPZ 0 5) ; 1 if mem[0]=0, go to &
(aDD 2 1) ; 2 mem[2] <- mem[1] + mem[2]
(SUBI 0 1) ; 3 mem[0] <~ mem[0] - 1
(JuMP 1) ; 4 gotol
(RET))) ; 5 return to caller

We can transfer this to Hol by using the following ACL2PII command:

mkfun "TIMES-PROGRAM"
"TIMES_PROGRAM" (Type ¢:“string # (instr list)‘)

This translates the statement of the definition in ACL2, and declares
a new Hol constant with the translated definition as follows:

TIMES_PROGRAM =
("TIMES", [MOVI 2 0i; JUMPZ 0i 5; ADD 2 1;
SUBI O 1i; JUMP 1; RET])

A translation is added, which turns the s-expression (TIMES-PROGRAM)
into the constant term TIMES_PROGRAM.

2.4.3 Theorems

The small machine theory proves a theorem called SM-+ reproduced
here as follows:

(DEFTHM SM-+
(IMPLIES (AND (NATP I) (NATP J))
(EQUAL (SM S (+ I)
(S8M (SM s I) 1))

We can transfer this to Hol by calling getthm [] "SM-+", which re-
turns the Hol theorem: SM § (I + J) = SM (SM S I) J. The ‘typ-
ing’ conditions in the ACL2 theorem are satisfied by the types of the
terms I and J, and so have been simplified away.

The first argument to getthmis a list of type-guessing functions (see
Section 3.4 below). For example, the small machine theory contains a
theorem called j+j reproduced here as follows:

(DEFTHM J+J (EQUAL (+ J J) (* 2 1))

In Hol, this could apply to either natural numbers or integers. We can
import the natural number version by calling:

getthm [num_const_tg] "J+J"

which returns the Hol theorem J + J = 2 % J, and we can import the
integer version by calling:

getthm [int_comst_tg] "J+J"

which returns the Hol theorem J +_ J = 2i *_ J.

2.4.4 Executions

We have separately implemented an ML function mksexp_state which
creates ML representations of ACL2 s-expressions for small machine
states. For example we can create an initial state as follows:

val s = mksexp_state ("MAIN",0) [] [0,0,0,0,0] false

[("TIMES", ["(MOVI 2 0) ",
"(JUMPZ 0 5)",
"(ADD 2 1",
"(SUBI 0 1)",
"(JUMP 1)n’
"(RET)"1),

("MAIN", ["(MOVI O 10000) ",
"(MOVI 1 1000)",
"(CALL TIMES)",
"(RET)"]) 1;

In this program, the MAIN subroutine initialises two locations, and
then calls the TIMES subroutine to multiply those two values. We
have also separately implemented an ML function sm_conv—calling
sm_conv [] s 40007 executes the state s for 40007 clock cycles within
ACL2, and then returns the corresponding Hol theorem, as follows (the
program text is elided here):

SM (("MAIN",0),[1,[0i;0i;0i;04;0i];F;[...]1) 40007 =
(("MAIN",3),[], [0i;10001i;10000000i;0i;0i]1;T;[...]1)

3 Translations Explained

This section describes the ACL2PII’s scheme for the ad-hoc transla-
tion of ACL2’s s-expressions to Hol terms. Simple translations can be
specified in a declarative manner, and more complex translations can
be hand-coded. Side-conditions can also be attached to terms during
translation.

For some s-expressions there are many possible translations. For ex-
ample, the s-expression NIL is used in ACL2 where in Hol you might ei-
ther use the term F (falsity, for the Boolean type), or [] (the empty list,
for list types), or NONE (the empty option, for option types). ACL2PII's
translation scheme is type directed, so that each of these alternatives
can be generated, depending on the required type. For some transla-
tions, the type of sub-components is not unambiguously determined.
The translation scheme provides some support for guessing the type of
sub-components.

3.1 Translation Specifications

ACL2PII provides a simple method for specifying new translations,
based on matching s-expressions. Some example translation specifica-
tions have already been seen in Section 2. A translation specification
has an s-expression source pattern, a corresponding target Hol term,
and a list of any translation side-conditions (see Section 3.3 below).
Consider the following translation:

("(IMPLIES X Y)" , ‘X ==>Y¢ [I)

In the Hol term ‘X ==> Y*, the infix implication symbol is a constant,
and X and Y are the only variable names. These names are used as
variables for matching in the s-expression (IMPLIES X Y). That is,
the s-expressions matching X and Y will be (recursively) translated into
Hol terms, and then substituted for X and Y in the substitution pattern
‘X ==> Y*. This substitution pattern has type :bool, and so the entire
translation will only be applied when a Boolean term is required. The
types of X and Y are also both :bool, and so in the translation of
matching s-expressions, only translations producing Booleans will be
used. The empty list of terms in the translation specification indicates
that this translation has no side-conditions.

The variable names in the Hol term and the ACL2 s-expression
should all be upper-case, as corresponding ACL2 symbol names are

parsed as upper-case. Currently, the Hol term must be monomorphic—
the interpretation of translation specifications does not yet handle
polymorphically typed terms. Section 3.2 below briefly describes how
to hand-code translations for situations when a translation can not be
specified with a simple pattern and monomorphic terms.

3.2 Hand-Coded Translations

If a translation can not be specified using a simple s-expression pattern
and a monomorphically typed Hol term, then it is possible to hand-
code new translations. The type of a translation is:

(typeguess * term list * posttype * sexp,
term list * term) trans

The abstract type (a,b)trans supports dynamically extensible recur-
sive functions from a to b. The typeguess type is described in Section
3.4. The posttype type is a datatype isomorphic to Hol types, and
indicates the required type for translating the sexp value. The term
list on the left is the currently accrued logical context, and the term
list on the right is the collection of side-conditions.

3.3 Side Conditions

The translation of ACL2 s-expressions to Hol terms underlies the trans-
lation of the statements of theorems in ACL2 which are then asserted
as true in Hol. Section 4 describes the functions getthm, getexec
and getfun which all use Hol’s oracle mechanism to assert theorems.
Translations are extra-logical, and so the normal guarantees of sound-
ness provided by LCF theorem provers [4] do not apply. The authors
of translations must take care not to allow inconsistencies to arise in
Hol as a result of the translation process.

This danger can be mitigated if s-expressions are translated into
otherwise uninterpreted constants in Hol. For example, in Section 2,
the constant SM does not have any definition in Hol, and so any theo-
rems imported from ACL2 about the constant need only be mutually
consistent,.

ACL2PII’s translation scheme also provides for side-conditions on
translations. These are accumulated during the translation process,
are included as hypotheses on the theorem’s conclusion before the the-
orem is asserted in Hol. For example, consider a translation from an
ACL2 s-expression for subtraction (- X Y) to a Hol term of subtrac-
tion over the natural numbers X - Y. If X is less than Y, then the ACL2
s-expression will be a negative number, but the Hol term will be zero.
This semantic discrepancy can be avoided if we add a side-condition
Y <= X to the translation, which appears:

(n(_ X Y)", ¢x - Y‘, [(Y <= Xc])

Another source of problems is the difference in the level of spec-
ification between functions in ACL2 and Hol. For example consider
taking the tail of an empty list. In ACL2, the following is a theorem:

(EQUAL (CDR NIL) NIL)

However in Hol, the term TL [] is under-specified. That is, in Hol
it is impossible to prove any useful facts about the tail of an empty
list. Translating the ACL2 theorem to Hol would not introduce an
inconsistency into Hol, but it would introduce a new, unusual fact.
For the translation of s-expressions like (CAR L) into Hol terms TL L,
we add the side-condition L ~= [].

The guards on ACL2 functions are not translated to Hol. We can
rely upon guards being true of any s-expression we recover from ACL2.
However, as we only translate theorems from ACL2 and not to it, we
do not need to establish the translations of these guards in Hol.

3.4 Type Guessing

For many translations, the types of sub-components can be deter-
mined from the required type. However, sometimes it is necessary to
‘suess’ the type of a sub-component. For example, the s-expression
(EQUAL X Y) will translate to a Hol Boolean term, but we must guess
the types of X and Y.

There are various convenient ways to generate type-guessing func-
tions. The ML function num_const_tg recognises numerals to be nat-
ural numbers, and int_const_tg recognises numerals to be integers.
The function name_type_tg takes a list of string/type pairs, and for
s-expressions with one of those names, guesses the corresponding type.
These functions are listed in Appendix C.

Like translation, type guessing must be extensible, so that new
type-guessing heuristics can be added for new ACL2 theories. The cur-
rent scheme has an abstract type of type-guessing functions typeguess.
There are a collection of basic type-guessing functions provided in the
system, and these can be extended by using functions described in
Appendix C. This abstract type is implemented by the type:

(sexp,hol_type)trans

4 Importing into Hol

The translations discussed in Section 3 allow s-expressions to be trans-
lated to terms. Now we discuss how ACL2 theorems, executions, and
definitions are translated from ACL2 to Hol. These commands are
documented in Appendix C.

In the description of the commands below, we sometimes say that
ACL2 removes macros. In ACL2, the s-expressions visible to users will
be constructed from either defined functions, or from macros which
expand into defined functions. Macro expansion is arbitrarily com-
plicated, and so we let ACL2 expand all macros before translating s-
expressions. This improves our confidence in the correspondence with

*As the translation scheme is ad-hoc, we prefer to call this process type guessing, rather
than type inference.

ACL2, and also reduces the amount of work required to establish a set
of translations from ACL2.

4.1 Declaring Base Constants for Translation

It may not be necessary to import an entire ACL2 theory into Hol, but
instead just import definitions above some middle level of abstraction.
The function mkbasefun declares a Hol constant to correspond to an
ACL2 function. It introduces translation and type-guessing functions
for the new constant.

4.2 Importing Definitions

There are two commands for importing ACL2 definitions into Hol:
mkfun and getfun. Both take three arguments: a string which is the
name of the desired ACL2 function, a string which will be the name
of the corresponding Hol constant, and a hol_type which will be the
type of the Hol constant. The two functions are similar, in that they
both declare a constant in Hol, but mkfun introduces a definition using
Hol’s fundamental type definition principle (via Hol’s TFL library [12]),
whereas getfun merely asserts an equality ‘definition’ theorem using
Hol’s oracle mechanism.

As with the translation of theorems in Section 4.3, the statement
of the named definition is first recovered from ACL2, parsed into an
s-expression, macros are removed, and finally it is translated. The
translation will result in an equality term, and a list of side-conditions.
Hol does not support conditional definitions, and so the list of side-
conditions should be empty (or, equivalent to true after simplification).
For mkfun, the translated term is used to define a constant, and for
getfun, the translated term is returned as a theorem. Both functions
automatically add translations from the named ACL2 function to the
new Hol constant, and also add appropriate type-guessing functions.

Arguments of ACL2 functions can be translated to curried positions
or as tuple positions, depending on the required Hol type. For example,
ACL2’s small-machine theory declares a function CPLUS, which adds
two natural numbers. There are two alternative ways to import this
definition to Hol using mkfun:

mkfun "CPLUS" "CPLUS" (Type ‘:num -> num -> num‘)
mkfun "CPLUS" "CPLUS" (Type ‘:num # num -> num‘)

Either is acceptable, depending on the user’s preference. The resulting
translation and type-guessing functions will both work as expected.

4.3 Importing Theorems

Theorems in ACL2 can be imported into Hol by using the getthm
command. It recovers the statement of a named theorem from ACL2,
parses that into an s-expression, lets ACL2 remove macros, and then
translates that s-expression. The translation results in a term and a
list of side-condition terms, which are together asserted as a theorem

using Hol’s oracle mechanism. The oracle tag indicates that ACL2PII
was used, and also contains the name of the source theorem.

The command’s first argument is a typeguess list argument mainly
intended for guessing the types of numerals and free variables. The
command’s second argument is a string which is the name of the
theorem in ACL2.

4.4 Importing Executions

If a concrete instance of an executable function is given at the ACL2
command line, it will be executed. The command getexec takes an
ML s-expression, executes it in ACL2, parses the result, puts both sides
as arguments in an equality, lets ACL2 remove macros, translates that
s-expression, and asserts the resulting term using Hol’s oracle mecha-
nism. The command takes as its first argument a list of type-guessing
functions, which are used during the translation. This command un-
derlies the implementation of sm_conv mentioned earlier in Section 2.

5 Other and Future Work

Theorem provers can be connected to enable translations of many
kinds: between commands in user-level proof scripts, between theo-
rems, or between proof objects generated during the proof of those
theorems. A link between theorem provers could act either statically
on source files for theory definitions and proofs, or dynamically by
translating information between ‘live’ sessions of the theorem provers.
The ACL2PII system is a dynamic link which translates both theorems
and elements of theory definitions.

The ACL2 source text for an ACL2 theory is a sequence of s-
expressions. It may be possible to adapt ACL2PII’s transfer mech-
anisms to implement the static translation of ACL2 source files to Hol
source files. Hol’s automatic proof facilities are not as powerful as
those in ACL2, so the static translation of proof scripts may not be
completely automatic, but may nonetheless serve as a useful starting
point.

The translation of proof objects has been demonstrated by the
Hol/CLAM system [1], which translates proof plans from CLAM to
proof tactics which are re-run independently in Hol. It may be possi-
ble to similarly construct Hol tactics from information extracted from
ACL2 ‘proof-trees’. The ACL2PII system would serve as a useful base
from which to investigate this idea.

As part of the PROSPER project, many systems are being linked
to Hol through the Plug-In Interface. This interface allows Hol to be
used in a client or server role with respect to other tools. The ACL2PII
system is an example of a tool which uses Hol as the client for a server
ACL2 session. Other formal reasoning systems have been connected
as servers to Hol. For example, there are Plug-Ins for MONA [9] (a
system for deciding propositions in a finitary second-order logic), and
Gandalf [7] (a tableaux system for first-order logic). However these

10

systems operate on a fixed logic and hence their Plug-Ins do not need
to be extensible. ACL2 and Hol both support theory definition, and
so ACL2 is in this respect more similar to the Nuprl-Hol connection [6]
and the Hol/CLAM system, which work with arbitrary theory descrip-
tions.

The ACL2PII system is entirely focussed on using Hol as a client.
The PROSPER Plug-In framework also allows Hol to be used as a
server, and so it may be possible to feed results from Hol theories to
ACL2. Aspects of this translation would be simpler than in ACL2PIL.
For example, the types of Hol terms could be dropped, or turned into
guards or side-conditions on variables. However, translating Hol to
ACL2 would present problems of its own: some higher-order func-
tions may have no translation in ACL2’s first-order logic, and elements
of Hol’s expressive logic may not have simple counterparts in ACL2.
For example, real numbers are a type in Hol, but are not numbers in
ACL2 [3].

6 Conclusion

There are various reasons for linking ACL2 to Hol. Firstly, they are not
identical, so a link can to some extent allow each to trade on the other’s
strengths in automatic proof or logical expressiveness. Secondly, a link
may facilitate the sharing of application theories developed in the two
communities. Finally, a system for linking theorem provers may help
to cross-fertilise ideas within the theorem proving community.

The ACL2PII system enables Hol users to quickly import defini-
tions and theorems from ACL2. ACL2PII provides default translations
for strings, numbers, lists, and other basic datatypes, but this function-
ality can be incrementally extended, so that new theories developed in
ACL2 can also be imported into Hol. Translation in the system is
type-directed, so as to distinguish between ‘morally’ distinct uses of
ACL2 symbols. The types of sub expressions can often be structurally
determined, but for cases where that is not possible, ACL2PII provides
a framework for guessing the type of s-expressions.

The translation of ACL2 s-expressions to Hol terms is used to assert
theorems in Hol, and so translations require some extra-logical com-
mitment to the logical soundness of their results. This commitment
can be minimised by only translating to otherwise uninterpreted Hol
constants, or by adding logical side-conditions to translations.

Communication between ACL2 and Hol is established by the PROS-
PER project’s Plug-In Interface. The support provided by the PII has
facilitated the rapid incremental development of ACL2PII.

Acknowledgements

Mike Gordon, J Strother Moore, Michael Norrish, Jun Saweda, Susanto
Kong Wei and Konrad Slind have all greatly helped the author either in

11

the preparation of this document, or in the construction and debugging
of ACL2PII.

References

[1] Richard Boulton, Konrad Slind, Alan Bundy, and Mike Gordon.

[3]
[4]

[6]

[6]

[10]

[11]

An interface between Clam and HOL. In Jim Grundy and Mal-
colm Newey, editors, Theorem Proving in Higher Order Logics,
11th International Conference, TPHOLs’98, number 1479 in Lec-
ture Notes in Computer Science, pages 87-104, Canberra, 1998.
Springer Verlag.

Bob Boyer and J Moore. Mechanized formal reasoning about pro-
grams and computing machines. In R. Veroff, editor, Automated
Reasoning and Its Applications: Essays in Honor of Larry Wos.
MIT Press, 1996.

Ruben Gamboa. Square roots in ACL2: A study in sonata form.
Technical Report TR96-34, UTCS, November 1996.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of LNCS. Springer-
Verlag, 1979.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge
University Press, 1993.

Douglas J. Howe. Importing mathematics from HOL into Nuprzl.
In J. von Wright, J. Grundy, and J. Harrison, editors, Proceedings
of TPHOLs’96: The 9th International Conference on Theorem
Proving in Higher Order Logics, volume 1125 of LNCS. Springer-
Verlag, 1996. :

Joe Hurd. Integrating Gandalf and HOL. In Y. Bertot,
G. Dowek, Ch. Paulin-Mohring, and L. Théry, editors, Proceedings
of TPHOLs’99: The 12th International Conference on Theorem
Proving in Higher Order Logics, LNCS. Springer-Verlag, 1999.

Matt Kaufmann and J Moore. A precise description of the ACL2
logic. A working draft of a precise description of the base logic.,
April 1998. '

Nils Klarlund and Anders Mgller. MONA Version 1.3 User Man-
ual. BRICS Notes Series NS-98-3 (2.revision), Department of
Computer Science, University of Aarhus, October 1998.

J Moore. Symbolic simulation: An ACL2 approach. In
G. Gopalakrishnan and P. Windley, editors, Proceedings of
the Second International Conference on Formal Methods in
Computer-Aided Design (FMCAD’98), volume 1522 of LNCS,
pages 334-350. Springer-Verlag, November 1998.

PROSPER home page. http://www.dcs.gla.ac.uk/prosper/.

12

[12] K. Slind. Function definition in higher order logic. In J. von
Wright, J. Grundy, and J. Harrison, editors, Proceedings of
TPHOLs’96: The 9th International Conference on Theorem Prov-
ing in Higher Order Logics, volume 1125 of LNCS. Springer-
Verlag, 1996.

A Hol S-expressions

Hol data-type of ACL2 s-expressions

val packagename = Type ‘:string‘;
val name = Type ‘:string‘;

Hol_datatype
‘sexp = ACL2_SYMBOL of “packagename => “name"
| ACL2_STRING of string
| ACL2_CHARACTER of ascii
| ACL2_NUMBER of num
| ACL2_PAIR of sexp => sexp‘;

ACL2 numbers include integers, rationals, and complex rationals.
Currently ACL2 numbers are modelled as Hol natural numbers, but
we will use integers or rationals as support for them improves in hol98.

B Installing ACL2PII
ACL2PII is available from:

http://www.cl.cam.ac.uk/users/ms204/acl2pii.tar.gz

ACL2PII requires appropriate versions of:
1. MoscowML
2. hol98
3. PROSPER PII
4. ACL2

Complete installation instructions, including required version num-
bers for the above systems, are detailed in the file README.

C ACL2PII Command Reference

The ACL2P1luginBoss module contains functions which establish a link
with an ACL2 session, and which shadow many of the commands found
in ACL2. Below, we detail commands to:

1. establish a link,
2. run ACL2 commands over the link,
3. manage ACL2PII local context, and

13

4. transfer over the link.

Throughout this appendix we refer to a ML data-type of ACL2
s-expressions. It is defined in ACL2Data as follows:

datatype number = ratiomal of rat | complex of rat * rat
datatype sexp = character of char

| string of string

| number of number

| symbol of packagename * name
| pair of sexp * sexp

C.1 Establishing a Link
To establish a link, the following must happen:

1. the server (ACL2, running inside pii_harness) must be running,
and

9. the client (ACL2PIL, running in a Hol session) must be running.

The server can run either locally and communicate over unix sockets,
or remotely and run over internet sockets.

initialise_auto_acl2 : string -> unit
This sets up a local server with a pipe specified by the string
argument, and then sets an ACL2PII client going.

initialise_remote_acl2 : string -> int -> unit
This assumes that a remote server is running on a machine with
address given by the string argument, and that the server is lis-
tening on a port specified by the integer argument. It sets the
ACL2PII client going.

initialise_local_acl2 : string -> unit
This assumes that a local server is running and listening on a
pipe specified by the string argument. It sets the ACL2PII client
going.

C.2 Commands Over the Link

These functions allow commands to be executed on the ACL2 server.

command : string -> string
This is the basic control function, which executes the string ar-
gument as if it was typed at the ACL2 command line. The user
must be careful not to execute any command which changes the
prompt.

in_package : string -> unit
This changes the current package to a package specified by the
string argument.

include_book : string -> unit
This reads in an ACL2 book of definitions and theorems from a
file whose name is given by the string argument.

14

undo : unit -> string
This undoes the last ACL2 event. However, note that some
ACL2PII commands are composed of many ACL2 events.
print_event : string -> string
pe : string -> unit
These functions return or print information about named events
in ACL2’s event history.

C.3 Local Link Context

current_package : unit -> string
This returns ACL2PII’s idea of the current package in the ACL2
server.

current_imports :
unit -> (string * (string * string) list) list

This returns ACL2PII’s idea of the current imports in the ACL2
server.

current_packages : unit -> string list
This returns ACL2PII’s idea of the currently defined packages in
the ACL2 server.

update_imports : unit -> unit :
This re-establishes ACL2PII’s idea of ACL2’s current imports
and defined packages.

is_variable : (string * string) -> bool
This determines if a package name and symbol name constitute
a symbol which is an ACL2 formal variable [8].

normalise : sexp -> sexp
This normalise an s-expression w.r.t. the current context.

parse : string -> sexp
This parses a string as a normalised s-expression under the cur-
rent context.

pPp_sexp : sexp -> string
This pretty-prints an s-expression as string which could be re-
parsed as a s-expression under the current context. (i.e. the
package names of symbols are not printed if they are in or im-
ported in the current package.)

C.4 Transferring Over the Link

These commands are used for extracting information from the ACL2
server, and interpreting it within Hol.

getthm : typeguess list -> string -> thm
This imports a named ACL2 theorem into Hol. This is described
further in Section 4.3.

15

getexec : typeguess list -> sexp -> thm
This executes the s-expression in ACL2, and returns as a theorem

the translation of an equality between the given s-expression and
the result. This is described further in Section 4.4.

mkfun : string -> string -> hol_type -> thm

getfun : string -> string -> hol_type -> thm
This declare new constants in Hol, and automatically add trans-
lations and type-guessing. The first string is the ACL2 name,
and the second is the name of the corresponding Hol constant.
This is described further in Section 4.2.

mkbasefun : string -> int -> string -> hol_type -> umnit
Take a symbol of arity given by the int argument and name
given by the first string argument as a base translation to a
corresponding Hol constant whose name is given by the second
string argument and whose type is the hol_type argument.

translate :
typeguess list -> hol_type -> sexp —>
(term list * term)
This translates an s-expression to a term of the given type. The
typeguess 1list are auxiliary type guessing functions used for
the translation. The resulting term list is a list of side-conditions
for the translation.

add_translations :
(string * term_quote * term_quote list) list -> unit
This adds a list of translation specifications to the current collec-
tion of translations.

add_typeguess : typeguess -> unit
This adds a new type guessing function to the current collection
of type guessing functions.

num_const_tg : typeguess

int_const_tg : typeguess
These type guessing functions recognise ACL2 numbers as Hol
numbers and Hol integers (respectively).

name_type_tg : (string * hol_type) list -> typeguess
This gives a type guessing function to recognise s-expressions
which are function calls, where the function symbol name is given
by a string. For functions with more than zero arguments, the
given hol_type is a function type from the argument types to
the result type.

var_tg : term list -> typeguess
This adds a type guessing function so that for each variable in

the term list, a symbol with the variable’s name is recognised as
being of that variable’s type.

16

D ACL2PII Maintenance Reference

We first give an overview of the architecture for ACL2PII, and then
an introduction to the code structure.

D.1 Behind the Scenes

ACL2PII works by interacting with ACL2 just as a normal human user
would. Command strings are send to an ACL2 session, and output
strings are read up to ACL2’s next prompt. Figure 1 provides an
architectural overview of how users interact with Hol and ACL2PII,
and how those systems connect with the PROSPER PII and ACL2.

HOL

| 4

v | _l, PrROSPER PIT
ACL2PTT ol | \

K 0o wcd

commands results

ACL2

Figure 1: How ACL2 Talks with Hol

The results from ACL2 may be strings representing s-expressions
from normal execution, or they may be strings representing error con-
ditions in abnormal circumstances. ACL2PII attempts to catch these
error strings and reports them as exceptions in ML.

If the return string represents a normal behaviour, then ACL2PII
will often attempt to parse the string as an s-expression. Parsing ACL2
s-expressions should mostly be a trivial matter, but in an ACL2 inter-
active session, the package names of symbols in (or imported into) the
current package are not printed. ACL2PII keeps a local copy of this
part of ACL2’s logical context to enable parsed s-expressions to be
properly normalised.

D.2 Code Structure

Figure 2 shows dependencies for the source code files of the ACL2PII
system. It depicts the following modules (and also the PlugIn module
from the PROSPER Plugln system):

ACL2PlugInBoss presents an interface to single ACL2 session. It
keeps track of references about the session, as well as manag-
ing local logical context, translations and type-guessing func-
tions. This provides simplified versions of command functions
from ACL2PlugIn.

17

ACL2Plugln describes an abstract type acl2sn for interacting with
(possibly many) ACL2 sessions. This structure provides basic
functions for executing commands in ACL2 sessions and inter-
preting their results. It also provides many specialised functions
mimicking ACL2 commands.

ACL2SexpTerm defines abstract types for creating and extending
translation and type-guessing functions. It contains the function
new_sexp_term for interpreting translation specifications.

ACL2Parse is a parser for s-expressions. It exports two main func-
tions: parse for parsing s-expressions in files, and parse_str for
parsing strings. The parser is generated in the standard Moscow
ML way by using mosmllex and mosmlyac on the grammar and
lexer specifications in acl2yacc.grm and acl2lex.lex.

ACL2Data defines the ML datatype for s-expressions, as well as
derived constructors and destructors, pretty-printing, matching,
and normalisation for s-expressions.

ACL2SexpTheory is a Hol theory of s-expressions. The source file
ACL2SexpTheory.sml is generated from ACL2SexpScript.sml in
the normal way by using Holmake.

ACL2PlugInBoss
/ y
ACL2PlugIn ‘\\\\\\\\\

________ t-------l ACL2SexpTerm

X PlugIn, 1 i

| HarnessPlugIn ! \

! 1

S N]
ACL2Parse ACL2SexpTheory

/

ACL2Data

Figure 2: ACL2PII's Architecture

E ACL2PII Small Machine Example

This appendix contains the complete source files for the example link
described in Section 2.

E.1 Hol SM Theory Script

(* File: SMScript.sml
Author: Mark Staples
Last Modified: 6 July 1999

18

Copyright: University of Cambridge 1999
*)

local open integerTheory stringTheory in end;

open HolKernel bossLib Parse;

val _ = new_theory "SM";
val _ = Hol_datatype
‘instr = MOVE of num => num

| MOVI of num => int
| ADD of num => int

| SUBI of num => int
| JUMPZ of num => num
| JUMP of num

| CALL of string

| RET®;

(* Locations, Programs, and State types *)

val loc = Type ‘:string # num®;
val prog_ty = Type ‘:(string # instr list) list‘;
val state_ty = Type ‘:"loc # "loc list # int list # bool # “prog_ty‘;

val prog = ty_antiq prog_ty;
val state = ty_antiq state_ty;

val _ = adjoin_to_theory {
sig_ps = SOME ((C Portable_PrettyPrint.add_string)
"val state_ty : Type.hol_type;\n"),
struct_ps = SOME ((C Portable_PrettyPrint.add_string)
“val state_ty = Parse.Type \
\ ‘:(string # num) # (string # num) list # \
\ int list # bool # (string # instr list) list‘;\n")};

val _ = adjoin_to_theory {
sig_ps = SOME ((C Portable_PrettyPrint.add_string)
"val state : Term.term;\n"),
struct_ps = SOME ((C Portable_ PrettyPrint.add_string)
"val state = Term.ty_antiq state_ty;\n")};

val _ = export_theory ();

E.2 ACL2PII SM Library Source

open ACL2Data;
open ACL2PlugIinBoss;
open SMTheory;

val initSM = (fn () => (
add_translations
[("(MOVE A B)" , ‘MOVE A B¢ , [1),
("(MOVI A B)" , ‘MOVI A B° , [1),
("(ADD A B)" , ‘ADD A B¢ , [1),
("(SUBL A B)" , ‘SUBI A B* , [1),
("(JUMPZ A B)" , ‘JUMPZ A B¢ , [1),
(" (JUMP A)" , SJUMP A€ , 1),
(" (CALL A)" , ‘CALL A€ » 1),

19

(u (RET)" , ‘RET‘ s [])
1;
add_translations
[("(STATE PC STK MEM HALT CODE)", ¢ (PC,STK,MEM,HALT ,CODE) : “state‘, [1) 1;
add_typeguess (name_type_tg
[("STATE", Parse.Type ‘:(string # num) ~-> (string # num)list -> int list
-> bool -> (string # instr list)list ->"state_ty‘) D

));

(* Constructing sexps for machine states: *)

fun mksexp_state pc stk mem halt code =
mksexp_list I
[mksexp_pair (mksexp_symbol "SMALL-MACHINE", mksexp_num) pc,
mksexp_list
(mksexp_pair (mksexp_symbol "SMALL-MACHINE", mksexp_num)) stk,
mksexp list mksexp_num mem,
nksexp_bool halt,
mksexp_list (mksexp_pair
(mksexp_symbol “SMALL-MACHINE",
mksexp_list ((ACL2Data.normalise_sexp ("SMALL-MACHINE",[1)) o
(ACL2Parse.parse_str))))
code

1;

(* Recovering concrete executions from ACL2: *)

fun sm_conv tgl isexp n =
let val nsexp = number{rational(n,1))
val 1hs = mksexp_call (("SMALL-MACHINE","SM"),
[sexp_quote isexp,nsexpl)
in
getexec tgl lhs
end;

E.3 ACL2PII SM Example Script

load "Process"; load "FileSys"; load "SMLib";
open SMLib;

(* If you try either of the two optioms below, you must first
set pii_harness going with acl2. This is done automatically
when calling initialise_auto_acl2
initialise_local_acl2 "/tmp/acl2pii.soc";
initialise_remote_acl? "smelt.cl.cam.ac.uk" 4000;
initialise_auto_acl2
" /home/ms204/1ocal-project/acl2-pii/mospii/prosper/pii/c/pii_harness \
\ /home/ms204/bin/acl2";
*)

val PIIHARNESS = “/homes/ms204/projects/acl2-pii/mospii/prosper/pii/c/pii_harness";
val ACL2 = ShouldBelInHol.which "acl2";

initialise_auto_acl2 (PIIHARNESS ~ " " ~ ACL2);

jnclude_book ((FileSys.fullPath ".") ~ "/small-machine");

20

in_package "SMALL-MACHINE";

(* initSM sets up initial translations for those portions of the SM syntax
which correspond with HOL functions defined in SMScript.sml.

*)

initSMQ);

(* Now let’s add some more translations for various SM "typing" functions.
If you’d prefer, you could put these into initSM in SMLib.sml too...

These simple translations don’t define new HOL constants, but just
translate into pre-defined HOL constants.

*)

add_translations
[("(NATP X)", ‘(K T)(X:num)‘, []),

("(STATEP X)", ‘(K T)(X:"state)®, [1),

("(PCP X)*, ‘(X T)(X:(string # num))*, [1),

("(STKP X)", ‘(K T)(X:(string # num)list)‘, []),

("(MEMP X)", ‘(K T)(X:(int list))¢, [1),

("(CODEP X)", ‘(K T)(X:((string # imstr list)list))‘, [1)
13

(* Now we’ll declare (using mkbasefun), or define (using mkfun or getfun)
a bunch of new HOL constants, and their translatiomns from ACL2
s-expressions.

*)

(* Here are the state accessors, with definitions translated from ACL2. *)

val PC_def =]

mkfun "“PC" "pe (Type ¢:"state_ty ~-> (string # num)‘);
val STK_def =

mkfun "STK" "STK" (Type ‘:"state_ty -> ((string # num)list)‘);
val MEM_def =

mkfun “"MEM" "MEM" (Type ‘:"state_ty -> (int list)‘);

val HALT_ def =
mkfun "HALT" "HALT" (Type ‘:"state_ty -> bool); ;

val CODE._def =
mkfun "CODE" “CODE" (Type ¢:"state_ty -> ((string # instr list)list)‘);
(* Say that STEP is our main acl2-interpretation function: take is as basic. *)

mkbasefun “"STEP" 1 “STEP" (Type ‘:"state_ty -> “state_ty‘);

(* Now define SM, in terms of STEP. We use getfun instead of mkfun because
of a bug in TFL which should be fixed in hol98 Taupo 1 release and later...

*)

val SM_def = getfun "SM" “SM" (Type ‘: state_ty -> num -> “state_ty‘);

21

(* Now we can translate a demonstration execution. First construct an
ML s-expression for the initial state:

*)

val i = mksexp_state ("MAIN",0) [1 [0,0,0,0,0] false

[(“TIMES", ["(MOVI 2 0)",
"(JUMPZ 0 5)",
w(ADD 2 1)V,
"(SUBL 0 1)*,
"(JUMP 1)",
" (RET)"]),

("MAIN", ["(MOVI 0 10000)",

"(MOVI 1 1000)",
" (CALL TIMES)",
"(RET)"1) 1;

(* Now execute it, as below. sm_conv is a simple wrapper around the
ACL2PII function "getexec"
*)

val ir = sm_conv [] i 40007;

(* Now let’s tramnslate a slew of other functions from ACL2.

Note the difference between the types of CPLUS and CTIMES. That
demonstrates that you can translate ACL2 functions to either
curried or uncurried HOL functionms.

*)

val CPLUS_def =

mkfun "CPLUS" "CPLUS" (Type ‘:num # num -> num‘);
val CTIMES_def =

mkfun “CTIMES" "CTIMES" (Type ‘:pum -> num -> num‘);

val TIMES_CLOCK_def =
mkfun "TIMES-CLOCK" "TIMES_CLOCK" (Type :num —-> num‘);

val TIMES_PROGRAM_def
mkfun "TIMES-PROGRAM" "TIMES_PROGRAM" (Type ‘:string # instr list®);

val PI_def =
mkfun “PI" wpI" (Type ‘:string # instr list‘);

val ALPHA _def =
mkfun "ALPHA" “ALPHA" state_ty;

val BETA_def =
mikfun “BETA" "BETA" (Type ‘: int -> int -> int -> int -> int -> “state_ty‘);

(* Now let’s retrieve an abstract theorem from the ACL2 SM theory: *)

getthm [1 "SM-+";

(* Just because we’ve translated a theorem, that doesn’t mean we can’t

22

define more HOL constants and tramnslations from ACL2:

*)

val DEMO_STATE def = mkfun "DEMO-STATE" "DEMO_STATE" (Type ‘:"state_ty‘);

(* See, we can use that new DEMO-STATE to translate a new theorem: *)

getthm [] "DEMO-THEOREM";

(* We can still add new translatioms if we want to translate auxilliary
functions into standard HOL types... *)

add_translations
[("(INTS . X)*, ‘K T (X:int 1list)*, [1) 1;

(* Then transport more definitions, etc...%)

val INCPC = mkfun "PC+1" "INCPC" (Type ‘:string # num -> string # num‘);

(*
We can’t mkfun GET, because: ’
val GET_def = mkfun "GET"” (Type ‘:num -> int list -> int‘);
has an error because the tramnslation has side-conditions, namely:
“(MEM = [1)
\ “(N =0) ==> “(MEM = [])
Perhaps the first one shouldn’t have arisen, but for the second, should
we ditch it and leave GET underspecified in HOL? We might get "surprising"
theorems translated from ACL2, but probably not about any theorems we’de
be interested in.

*)
val GET _def = getfun "GET" "GET" (Type ‘:num -> int list -> int¢);
(* Similarly for FETCH: %)
val FETCH def = getfun "FETCH" "FETCH"
(Type ¢:(string # num) -> ((string # instr list)list) -> instr¢);
val CURRENT_INS = mkfun "CURRENT-INSTRUCTION" “"CURRENT_INS"

(Type ‘:"state_ty -> instr®);

val PUT_def = getfun "PUT" "PUT" (Type ‘:num -> int ~> int list =-> int list®);

23

