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Abstract

Previous research has indicated the significance of accurate classi-
fication of fluorescence in-situ hybridization (FISH) signals when im-
ages are captured in a fixed focal plane without relying on an auto-
focusing mechanism. Based on well-discriminating features and a
trainable neural network (NN) classifier, a previous system enabled
highly-accurate classification of valid signals and artifacts of two flu-
orophores. However, since training and optimisation of an NN re-
quire extensive resources and experimentation, we investigate in this
work a simpler alternative for the NN classifier — the naive Bayesian
classifier (NBC). The Bayesian methodology together with an inde-
pendence assumption allow the NBC to predict the a posteriori prob-
ability of class membership using estimated class-conditional densi-
ties. Densities measured by three methods: single Gaussian esti-
mation (SGE; parametric method), Gaussian mixture model (GMM,;
semi-parametric method) and kernel density estimation (KDE; non-
parametric method) are evaluated for this purpose. The accuracy of
the NBC employing data modelled by SGE is found to be similar to
that based on GMM, slightly inferior to that based on KDE but widely
inferior to that of the NN. Therefore, when supporting the two clas-
sifiers, the system enables a trade-off between the NN performance
and the NBC simplicity. Finally, the evaluation of the NBC accuracy

provides a mechanism for both model and feature selection.




1 Introduction

Fluorescence in-situ hybridization (FISH) allows the detection of specific
DNA sequences in intact cells and chromosomes. It enables selective stain-
ing of various sequences in interphase nuclei and therefore the detection,
analysis and quantification of specific numerical and structural chromosomal

abnormalities within these nuclei.

Digital microscopy in FISH allows the application of image analysis tech-
niques for automation of time consuming tasks, such as dot counting. Dot
counting, the enumeration of signals (also called dots or spots) within the
nuclei, is considered one of the most important applications of FISH. One
approach to dot counting relies on an auto-focusing mechanism to select
the ‘clearest’ image for the analysis [1, 2]. However, basing dot counting
on auto-focusing can have some shortcomings [3]. Instead, it has recently
been proposed [3] to base FISH dot counting on images that are sampled
at a fixed focal plane. This method is motivated by the assumption that
nuclei are approximately uniformly distributed in the sample, so that trans-
lations at a fixed focal plane will provide a statistically equivalent sample as
projections through different focal planes. The method enables most of the
shortcomings of auto-focusing to be overcome, since it shortens the length
of image acquisition and requires no special instrumentation. However, since

the system captures images that contain many more unfocused signals, its
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ability to distinguish between focused and unfocused signals needs to be bet-
ter than that of a system employing an auto-focusing mechanism. Therefore,
the developed system is based on the extraction of well-discriminating char-
acteristics of focused and unfocused signals [4], and a highly-accurate neural
network (NN) classifier of these signals into real (valid) signals and artifacts,
respectively [3].

Since the optimisation and training of the NN classifier require a large
amount of resources and experimentation, we are investigating in the present
paper a simpler, yet very powerful [5, 6], approach for FISH signal classifi-
cation, namely the naive Bayesian classifier (NBC). The NBC predicts the
a posteriori probability of class membership using Bayes’ theorem, an in-
dependence assumption and the class-conditional probabilities (for discrete
variables) or densities (for continuous variables) of each of its observable
variables. A pattern is then assigned to the class with the highest posterior
probability. If found accurate enough, the NBC may provide an attractive
alternative to the NN.

Section 2 of the paper describes the procedure we use to acquire FISH
images, while Section 3 depicts a methodology for multi-spectral FISH image
analysis and signal measurement. Sections 4 and 5 present, respectively, the
naive Bayesian classifier and three estimation methods for modelling the
classifier conditional densities. Finally, Section 6 describes the experimental

study and its results, while Section 7 summarises the work.
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2 Biological materials and methods

2.1 Slide preparation

The interphase nuclei preparations from amniotic fluid were made using the
method by Klinger et al. [7] with minor modifications. 1-2ml of amniotic
fluid was centrifuged and the cell pellet washed in PBS warmed to 37°C. The
cells were resuspended in 75mM Potassium Chloride (KCl) and put directly
on to slides coated with APES (Sigma) and incubated at 37°C for 15 minutes.
Evaporation of PBS was compensated with filtered distilled water. Excess
fluid was carefully removed and replaced with 100ml of 3% Carnoys fixative,
70% 75mM KCI at room temperature for 5 minutes. The excess fluid was
carefully removed and 5 drops of fresh fixative were dropped on to the cell
area. Slides were briefly dried on a 60°C hotplate, and then either used
immediately for hybridization or dehydrated through an alcohol series and

stored at —20°C until required.

2.2 Hybridization

Target areas were marked on the slides using a diamond tipped scribe. Tar-
get DNA was denatured by immersing in 70% formamide:30% 2xSSC at
73°C for 5 minutes. 10 pL of probe mix containing spectrum orange LSI
21 and spectrum green LSI 13 (Vysis UK) was applied to the target area

and a coverslip placed over the probe solution. Coverslips were sealed using
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rubber cement and slides placed in a pre-warmed humidified container in a
37°C incubator for 16 hours. Coverslips were removed and slides washed in
0.4xSSc/0.3%NP-40 solution at 73°C for 2 minutes. Slides were then placed
in 2x5SC/0.1% NP-40 solution at room temperature for 1 minute. When
completely dried 10 uL of DAPI II counterstain (Vysis UK) was applied to

the target area and sealed under a coverslip.

2.3 Fluorescence microscopy

Slides were screened under a Zeiss axioplan epifluorescence microscope using
x100 objective. Signals were viewed using appropriate filters and images
acquired using a CCD camera and SmartCapture software (Vysis UK). Slides
were scanned by starting in the upper left corner of the coverslip and moving
from top to bottom. Images were captured by stopping at random intervals.
Red and green signals were seen on blue DAPI stained nuclei, corresponding
to chromosomes 21 and 13 respectively. The focus and colour ratios were
adjusted for the first captured image from each slide, and then kept at those
values for all the following images from that particular slide. A total of 400

images were collected from five slides and stored in TIFF format.
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3 Colour image analysis and signal measure-

ment

In FISH preparation, multiple probes, labelled by different fluorophores, are
frequently combined. In the current study for instance, chromosomes 13 and
21 are detected as green and red signals respectively, whereas the nuclei are
indicated by blue. By analysing each of the three colour channels —red, green
and blue (RGB) of a FISH image separately and in various combinations,
image processing can be facilitated [8]. Nuclei can be analysed using the
blue channel of the RGB image, whereas the signals can be analysed using
the red and green channels.

Multi-spectral FISH image analysis is beneficial not only to facilitate pre-
processing and segmentation, but also to yield colour-based features that
contribute to an efficient signal classification [4]. In this work, RGB colour
is recorded during the acquisition stage because pre-processing, as well as
nuclei and signal segmentations, are performed more easily using this colour
format than using the conventional conversion of the image to gray-level
scale. However, as intensities of red and green signals, each measured in its
own channel, are very similar to each other, the RGB format is not suitable
for discriminating between signals of different colours. By contrast, signals
of different fluorophores represented by the hue parameter of the HSI (hue,

saturation, intensity) colour format can be easily resolved due to their dif-
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ferent hues [4]. Therefore, when measuring signal features we follow Ohta [9)]

and convert RGB to HSI format using

H = arctan 2(3Y%(G — B), (2R — G — B)), (1)
S =1- 3(min(r,g,b)) (2)

and
I =(R+G+ B)/3, (3)

where r = R/(R+ G+ B), g= G/(R+ G+ B) and b = B/(R+ G + B),
and R, G and B are the intensities in the three channels, respectively.

Segmentation on each of the three channels of the RGB image using
global thresholds yields the image nuclei and red and green signals [4]. Noise
elimination and boundary smoothing of nuclei, as well as spatial correlation
between nuclei and signals, complete the segmentation.

Following segmentation, signals are characterized by sets of pixel inten-
sities. A set (signal) can include one or many members (contiguous pixels).
Since the content and dimension of each set can vary dramatically from signal
to signal, raw data (intensities) are not considered discriminating enough to
act as features for classification. It is therefore necessary to determine a more
discriminating and compact representation of the data. One representation

can be derived by measuring a set of features of the signal. The features
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include Area (a size measure) and Eccentricity (a shape measure), which
have been previously suggested [1]. In addition, we measured a number of
spectral features [4]. We compute, at the specific colour plane, three RGB
intensity-based measurements: the Total and Average Channel Intensities
and the Channel Intensity Standard Deviation. We also compute four HSI
hue-based measurements: Maximum Hue, Average Hue, Hue Standard De-
viation, and Delta Hue. Delta Hue is the difference between the Maximum
and Average Hue normalized by the Average Hue. This last feature has been
added to the set because it was observed that the difference between values of
the Average and Maximum Hue for real signals is usually near zero, whereas
for some kinds of artifacts (e.g. overlap of two different fluorophores) this
difference is substantially large. Two additional features of the set are the
two coordinates of the eigenvector corresponding to the largest eigenvalue of
the red and green intensity components of the signal. The last feature is the
Average Grey Intensity, I; (Eq. 3). A motivation for choosing the last three
features is given elsewhere [4]. Table 1 lists and numbers the twelve features
to facilitate their identification in the rest of the paper.

Different single features and sets of features have been evaluated for
FISH signal classification using class-conditional probability density func-
tions, scatter plots, a specific scatter criterion and the probability of misclas-
sification [4]. The results of this evaluation are used in Section 6 to determine

the variables, and thereby the optimal structure needed by the naive Bayesian
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classifier. Then, the classifier is used to discriminate between signals of four

classes: ‘real red’, ‘artifact red’, ‘real green’ and ‘artifact green’.

4 The naive Bayesian classifier

For problems where the task is to assign test patterns to different classes,
such that the probability of misclassification is minimised, the naive Bayesian
classifier (NBC) provides a simple and clear method, while still enabling
impressive performance. The NBC is termed naive since it makes use of
a simplifying assumption that its observable variables, which represent the
pattern features, are conditionally independent given the class variable. The
classifier can be viewed as a special form of a Bayesian network [10], in
which all the edges are directed from the class variable to the observable
variables (Figure 1).

The NBC consists of a finite set U = {X1,Xs,..., X, C} = {X,C}
of random variables, where X1i,...,X,, are the observable variables that
represent the features, and C is the class variable with K states. The NBC
assigns a test pattern x to the class Cy (k = 1,...,K) with the highest

a posteriori probability

p(x|Cy) P(Cr)

PGl = p(x)

(4)
where p(x|C}) is the class-conditional probability density, P(Cy) is the a priori

probability for class Cj, and p(x), the unconditional density, normalises the
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posterior probability such that >, P(Ck|x) = 1.
Using the NBC independence assumption, and omitting p(x) which is
common to all the states of the class variable, the posterior probability can

be written as

P(Cilx) o p(X = XICOP(Cy) = [[p(X: = lCOP(C) ()

i=1

where X = x represents the event that X1y =21 AXo =22 A .. . A Xy = Ty
and TI™, p(X; = x;|Cy) is the likelihood for x. Both P(Cy) and p(x|Cy)
can be estimated from the data; The estimation of p(x|Cy) is described in
Section 5, while P(Cy) is the relative frequency of patterns belonging to Cy

out of all the patterns in the data.

5 Estimation of class-conditional densities

When modeling a Bayesian network such as the NBC for classification, we
need to estimate p(X,,|Cy), the one-dimensional class-conditional probabil-
ities (for discrete variables) and/or the one-dimensional class-conditional
probability densities (for continuous variables) for each class C} and vari-
able X,,. We use for this a finite number of data points x", n=1,..., N,
where N}, is the number of training patterns in class Cj.

Since the class-conditional densities are usually modelled by parametrized
functional forms, p(z|Cy) are referred to as likelihood functions for z. We

therefore use the maximum likelihood solutions for estimating the densities
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(probabilities) of the continuous (discrete) variables. For a discrete variable,
this solution is given by the sample frequency for each value of the variable
(that is the number of times the value is observed divided by the total number
of observations). For a continuous variable, we need to estimate the density

for the variable values.

The features of Section 3 include one discrete feature, Area, while all
the other features are continuous. Therefore, we model the Area probability
distribution using its sample frequency and estimate the probability densi-
ties for all the other features. We estimate densities using three methods
that assume different mechanisms of data generation. Single Gaussian es-
timation assumes the data are generated from a single normal distribution,
whereas kernel density estimation models the data using a linear combina-
tion of kernels around each of the training samples. The Gaussian mixture

model estimates the data using a few Gaussians with adaptable parameters.

5.1 Single Gaussian estimation (SGE)

In most previous work that dealt with continuous variables, data were ei-
ther discretized [6] or assumed to be generated by a parametric model that is
based on a single Gaussian distribution [5]. The assumption of normal distri-
bution has convenient analytical and statistical properties and it is suitable

in representing measurements of many natural phenomena. For each of the
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one-dimensional class-conditional densities of the NBC the normal density

function can be written as

plo) = a0 {5t ©)

where 1 and o are the mean and standard deviation of the distribution,

respectively. These two parameters satisfy

p=clo] = [ ap(@)do (7)
ot =clw— ) = [ (- wp(o)ds (8)

where €[ -] denotes the expectation.
The SGE for the mean and standard deviation of the normal distribution,

measured for example by the maximum likelihood procedure, is [11]

R A
~2 1 al ) ~\2
6t =~ > (" — i) (10)
n=1

where N is the number of training patterns (which is Ny when modelling
the class-conditional densities for each class C). This is the intuitive result
that the maximum likelihood estimates i and & of the mean and standard
deviation p and o of the distribution are given, respectively, by the sample

average and standard deviation.

13




5.2 Kernel density estimation (KDE)

Non-parametric techniques for probability density estimation do not specify
the functional form of the distribution beforehand but use the data to esti-
mate the density. One of the most common approaches to non-parametric
modeling is kernel density estimation. KDE models the one-dimensional

density as

N1 T—z

Ly (222) u
S5 )
using kernel functions

lt] < 1/2

(12)

Il

0 otherwise

with width h centred around each of the training data points z™.
By introducing normal kernel functions, we can overcome discontinuities

in the model, so

o S B

for each class-conditional density.

Non-parametric models can replace parametric models, which may not
hold for some domains where data are not normally distributed. For this
reason, John and Langley [5] suggested to replace SGE with KDE when
modeling the class-conditional densities of the NBC. Non-parametric meth-

ods model non-normal distributed data more accurately than parametric
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techniques but at the cost of storage and computational complexities as the
number of variables in the model grows linearly with the number of training

data points.

5.3 Gaussian mixture model (GMM)

Semi-parametric methods try to combine the benefits of both parametric and
non-parametric methods and to provide techniques that are not restricted to
specific functional forms, and yet where the model size depends only on the
problem complexity and not on the data size.

A GMM is one of the most powerful semi-parametric techniques. Simi-
larly to KDE, GMM estimates the data density using a linear combination
of basis functions. However, the number of basis functions M is a parameter
of the model, which is much less than the number N of data points. Based
on a linear combination of one-dimensional component densities p(z|j) with
some mixing coeflicients P(j), also called the prior probabilities, the model

for the density is [11]

M
p(z) = >_p(=lf)P(), (14)
=1
where P(j) satisfy the probability constraints (372, P(j) = 1and 0 < P(j) < 1)
and p(z|j) are normalized so that [ p(z|j) dz = 1.

Assuming the component densities are Gaussian distribution functions

with means 4; and standard deviations o, and using Equation 14, the density
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is modelled by

R e U] (15

The difficult part in estimating data using a GMM is to find its parameters,
g, 0j and P(j). Most of the methods for determining these parameters from
the data are based on the maximum likelihood procedure. One such method,
which makes use of the EM algorithm [12], is employed in the experiment
described in Section 6. More details on the expectation-maximization (EM)

algorithm can be found in [11, 12].

6 Experimental study

To evaluate the NBC capability in classifying FISH signals, we first have to
find an optimal network structure for the classifier. We can either search ex-
haustively within the network space for the ‘best’ structure, learn the struc-
ture from the data [10] or determine the structure using prior knowledge.
Such knowledge [4] suggests that several feature representations are preferred
for accurate classification of the signals into the four classes of Section 3. If
we select the class and observable variables of the NBC to represent these
classes and features, respectively, we can employ the NBC for FISH signal
classification. Then, we only need to estimate the class-conditional probabil-

ity densities (or the class-conditional probability for the Area feature if the
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Area variable is included in the structure) for each variable given each of the
four states of the class variable.

We estimate the class-conditional probability densities using the three
methods described in Section 5 — SGE, KDE and the GMM. Figure 2 and
Figure 3 show, respectively, two examples of class-conditional probability
densities for the Average Channel Intensity and Average Hue features given
the four states of the class variable when estimated by the three methods.
Figures 2 and 3 demonstrate that data modelling using SGE and GMM is
generally similar, where modelling using KDE is frequently spikier (especially
for the artifact classes) since it depends more on the actual training data
points. In the experiments, the width parameter h of KDE (Equation 13)
is set to 1/v/Ny, (where Ny is the number of training data points in Cy) as
this choice guarantees that the parameter shrinks to zero as the number of
instances goes to infinity [5]. Thus, when KDE is employed for data modelling
for the NBC, density estimation becomes increasingly local as the number
of training points increases. Ten Gaussians are selected by the GMM to
estimate the densities of each of the features. This number is considered to
be reasonable based on preliminary visualisation of the data. In addition, ten
iterations of the EM algorithm are found to be sufficient in order to achieve
convergence of the GMM parameters.

The experiments to evaluate the classification accuracy on the training

and test sets are conducted using ten-fold cross-validation (CV-10). That
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is, we randomly partitioned the data into ten disjoint sets, use nine sets
for training the NBC and the remaining set for the test. We then repeat
this procedure ten times using all the different possible test sets and average
the results. In each partition of the data, density estimation by the three
methods is performed using the same training data sets.

Table 2 and Table 3 show the NBC accuracy on the test set for differ-
ent single features (Table 2) and sets of features (Table 3) when the class-
conditional densities are modelled using SGE, KDE and the GMM. In the
tables, each single feature or set of features demonstrates a different structure
of the NBC, as each feature is represented by another observable variable.
The accuracy for each pattern is determined by comparing the class having
the highest posterior probability for this pattern with the class selected by
the cytogeneticist as the correct one. The posterior probability is the prod-
uct of the likelihood and the prior probability (Equation 4). The likelihood
is the product of all the individual class-conditional densities for the features
(Equation 5), whereas the prior probability is given by the relative frequency
of samples of each state of the class variable out of the total number of data
points.

The classification accuracy of the NBC can be utilised to compare the
benefits of using each of the estimation methods. The comparison, shown
in Tables 2 and 3 reveals that the accuracy of the NBC is usually similar

when density is estimated by the three methods with an advantage of KDE.
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However, for k features, n training samples and m test samples, KDE must
perform O(n?k) and O(nmk) evaluations during the training and the test,
respectively, where SGE, for example, needs only O(nk) and O(mk) evalua-
tions, respectively.

The accuracy of the classifier can also be used to evaluate the different
network structures and thereby the different features. It is demonstrated
in Table 2 and Table 3 that some of the features, such as the Average (7)
and Maximum Hue (6), as well as the Area (1) and Average Grey Intensity
(12), enable well-discriminating representations of the signals. Furthermore,
examination of the NBC performance using feature sets that contain depen-
dent features (e.g., {1,3,7,12} and {1,6,7}) reveals that even when the NBC
independence assumption is slightly violated the classifier still maintains its
accuracy.

Finally, the NBC accuracy is compared in Table 2 and Table 3 to that
achieved by a multilayer perceptron (MLP) neural network classifier [3, 4].
The MLP outperforms the NBC in every case and regardless of the den-
sity estimation method used by the NBC. As the number of dependent fea-
tures grows in the set, this superiority increases (see e.g. feature set ‘All’ in
Table 3). This is due to the increased violation of the independence assump-
tion by the NBC, whereas the MLP hidden layer extracts better and better
data representations for larger feature sets (even if they contain some corre-

lated features). The MLP configuration that is tested here is the ‘monolithic’
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strategy of Lerner et al. [3], in which classification of signals into the four
classes is implemented simultaneously. Other classification strategies have

succeeded in classifying correctly around 86% of this FISH data [4].

7 Discussion

We study the accuracy of a special Bayesian network, naive Bayesian classifier
(NBC), in classifying FISH signals. Accurate signal classification has been
found essential for precise dot counting where images are captured without
using an auto-focusing mechanism [3, 4].

The NBC consists of two elements. The first is the network structure,
which is determined in this study using previous knowledge about the pos-
sible states of the class variable and the significance of different features to
represent FISH signals. That is, variables representing the most significant
features are employed as the NBC observable variables. The second com-
ponent of the classifier is a set of parameters that quantifies the structure.
These are used to estimate the class-conditional probability densities of each
of the network observable variables given each of the states of the class vari-
able. The densities are employed under a Bayesian methodology to derive the
posterior probability for assigning an unseen signal pattern to the different
classes. The pattern is then assigned to the class with the highest posterior

probability among the classes.

20




Three approaches to density estimation are considered in this work. The
first approach uses a parametric method in which a specific functional form,
namely normal distribution, is assumed for modelling the density. Maximum
likelihood procedure provides the estimated mean and standard deviation for
single Gaussian estimation (SGE) as the sample average and standard devi-
ation, respectively. However, the particular form of the parametric function
chosen might be incapable of providing a good representation of the true
density. Non-parametric estimation techniques, like kernel density estima-
tion (KDE), do not assume a particular functional form, but allow the form
of the density to be determined entirely by the data. However, as the number
of parameters in the model and the number of evaluations grow (linearly and
quadratically, respectively) with the data size, the non-parametric model can
quickly become unwieldy. Semi-parametric estimation methods, such as the
Gaussian mixture model (GMM), try to achieve the best of both approaches.
They permit a very general class of functional forms in which more flexible
models can be built by increasing the number of adaptive parameters. This
number of parameters, however, can be varied independently from the data
size. Following the experiments, it is also expected that by employing dif-
ferent (carefully-determined) numbers of Gaussians to the estimation of the
different class-conditional densities, some improvement in the accuracy due

to the GMM may be achieved.

The three approaches are evaluated by their accuracy to estimate density
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for the NBC. They are also compared to the multilayer perceptron (MLP)
neural network, another semi-parametric estimation method. The three den-
sity estimation techniques achieve comparable performance (with some ad-
vantage to KDE), which is inferior to that based on the MLP. This inferiority
can be attributed to the (naive) assumption of independence of the NBC and
to the MLP architecture. The MLP combines in the output layer (class vari-
able) representations derived from hidden units that extract different non-
linear representations from the same features, and thereby enable richer and
more accurate modelling of the feature space.

Accurate modelling of probability densities of patterns of high dimension-
ality is extremely difficult. By making use of the NBC conditional indepen-
dence assumption we avoid this problem. We ‘break’ the high-dimensional
patterns into one-dimensional (single variable) patterns and estimate sep-
arately the class-conditional densities for these patterns. Employing FISH
signal features that are known to be independent from each other can there-
fore exploit the simplicity and the highest performance of the NBC. In other
cases where features are known to be correlated to each other, the indepen-
dence assumption is violated and the accuracy of the NBC may decrease.
Nevertheless, in our experiments as in other experiments [5, 6] the NBC is
found to maintain high classification capability even when the data present
some degree of dependency. Finally, the exploitation of the classification ac-

curacy of the NBC may be used to rank different network structures (sets of
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features), and thereby to provide a methodology for feature selection.
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Figure 1: The naive Bayesian classifier depicted as a Bayesian network in
which the observable variables (X1,X5, ... X,,,) are conditionally independent

given the class variable (C).
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Figure 3: Class-conditional density estimation for the Average Hue feature

given each of the four states of the class variable. Modelling is performed

using three methods — single Gaussian estimation (SGE), kernel density es-

timation (KDE) and the Gaussian mixture model (GMM).




Table 1: The set of features studied in the work. Numbers are used in the rest
of the paper to identify the features. Texture indicates standard deviation of
intensity (5) or hue (8). Eig. 1, 2 are abbreviations for the two coordinates of
the eigenvector corresponding to the largest eigenvalue of the red and green

intensity components of the signal.

Number | Feature Number | Feature
1 Area 7 Average Hue
2 Eccentricity 8 Hue Texture
3 Total Channel Intensity 9 Delta Hue

4 Average Channel Intensity 10 Eig. 1

5 Texture 11 Eig. 2

6 Maximum Hue 12 Average Grey Intensity
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Table 2: The naive Bayesian classifier accuracy (%), represented by the mean
and standard deviation (in brackets) when the class-conditional probabil-
ity densities for single features are estimated by single Gaussian estimation
(SGE), kernel density estimation (KDE) and the Gaussian mixture model
(GMM). Feature numbers are defined by Table 1 and results for the ‘best’
seven features, are arranged by the performance using KDE from best to
worst. The probability distribution (instead of density) is computed for the

Area feature (1). The accuracy is compared to that achieved by a multilayer

perceptron (MLP) neural network [4].

Feature Number SGE KDE GMM MLP
7 60.5 (2.8) | 63.4 (1.7) | 69.2 (2.6) | 69.5 (1.9)
6 62.7 (2.1) | 56.0 (2.7) | 65.4 (2.2) | 64.4 (2.8)
11 52.3 (2.3) | 52.8 (2.5) | 42.4 (11.1) | 53.3 (2.5)
12 474 (3.2) | 47.2 (3.3) | 47.7 (2.9) | 47.2 (3.1)
4 44.8 (2.6) | 45.4 (2.6) | 44.3 (2.7) | 45.2 (2.1)
9 27.9 (2.5) | 45.4 (1.9) | 45.1 (2.8) | 47.5 (1.6)
1 45.2 (2.8) | 45.1 (2.8) | 45.1 (2.8) | 45.1 (2.8)
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Table 3: The naive Bayesian classifier accuracy (%), represented by the mean
and standard deviation (in brackets) when the class-conditional probability
densities for different feature sets are estimated by single Gaussian estimation
(SGE), kernel density estimation (KDE) and the Gaussian mixture model
(GMM). Feature numbers are defined by Table 1 and results are arranged by
the performance using KDE from best to worst. The probability distribution
(instead of density) is computed for the Area feature (1). The accuracy is

compared to that achieved by a multilayer perceptron (MLP) neural net-

work [4].
Feature Combination SGE KDE GMM MLP

1,6,9, 12 65.0 (1.4) | 79.2 (2.2) | 71.1 (4.6) | 82.3 (2.5)
1,7,12 71.8 (2.1) | 79.1 (2.5) | 77.1 (1.5) | 82.0 (2.1)
1,3,7 12 74.7 (2.3) | 79.0 (2.7) | 79.0 (1.6) | 82.7 (2.2)

All 68.8 (3.1) | 78.7 (2.5) | 66.5 (5.8) | 84.9 (1.7)

1, 6,12 76.0 (1.8) | 78.6 (2.6) | 77.2 (2.1) | 81.0 (2.3)
1,6,7 75.6 (2.3) | 78.6 (2.3) | 76.4 (2.6) | 80.5 (1.8)

1,7 75.7 (2.1) | 77.9 (2.8) | 78.9 (1.8) | 78.0 (2.2)

1,4, 7 72.6 (2.8) | 77.7 (2.4) | 76.4 (2.4) | 81.3 (1.9)

1,4,6 73.7 (2.3) | 77.5 (2.3) | 75.7 (2.9) | 80.8 (2.2)

31




