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Abstract

Music learning describes the gradual process of acculturation through
which listeners in different cultures develop diverse sets of musical prefer-
ences and intuitions. This dissertation describes Maestro, a system designed
over the course of this research to simulate certain aspects of music listening
and learning.

In order to maintain the unbiased flexibility necessary for handling mu-
sic from different styles, Maestro does not incorporate any a priori style-
specific knowledge into its design. Instead, Maestro is based on a bottom-up
approach that maximises the use of the perceptual information present in a
performance.

Maestro’s operation involves four stages: it first segments a musical
performance on-line according to perceptual cues (segmentation), and con-
structs an appropriate model of the performance (modelling), based on the
context modelling paradigm. This model is simultaneously used to gener-
ate expectations about upcoming events (prediction) and to interpret events
once they have arrived (parsing).

Ambiguity is an essential aspect of music listening, especially in the
context of learning, and can cause multiple hypotheses of interpretation to -
arise. A novel multi-agent methodology is developed and incorporated into
Maestro for generating, maintaining, and reconciling these hypotheses. An
information theoretic approach, based on measuring two types of entropy,
is used to objectively evaluate the system’s relative prediction performance.
It is also found that entropy, along with a measure of agent activation, is
useful for identifying and classifying different types of ambiguity.

Experiments performed with a collection of 100 Bach chorale melodies
provide a basis for comparison with previous machine modelling research and
with data from human subjects. A much larger collection of roughly 8,000
folk songs from different cultures enables significant large-scale and pan-
stylistic music learning experiments to be performed. Perceptually guided
segmentation is argued to yield more cognitively realistic context models
than other methods, and is also empirically shown to yield more efficient
models for prediction. Additionally, an adaptive modelling strategy allows
appropriate multiple-step-ahead predictions to be generated. Finally, a dis-
tributed, agent-based parsing methodology is developed and implemented.

The system provides insights into what implications certain theories from
cognitive musicology have when put into practice. Maestro’s flexible design
together with the range of experiments performed and the diverse corpus of
musical data enable a thorough and systematic machine-simulated study of
key aspects of music learning to be carried out.



Acknowledgements

This work owes a great deal to a number of people.

William Clocksin of the Cambridge University Computer Laboratory
provided guidance and supervision throughout my time at Cambridge. -Ian
Cross of the Cambridge Faculty of Music advised on all matters musical.
Both reviewed the manuscript. ,

This work owes a great debt to the late Professor Helmut Schaffrath of
Essen University, whose life work assembling large corpora of folk songs is
still enabling research in computational musicology to be carried out. Don
Anthony and Eleanor Selfridge-Field at CCARH, Stanford University helped
to provide this much needed musical data, making this research possible.
Darrell Conklin provided data enabling the present research to be compared
quantitatively with earlier work.

This research benefitted from discussions along the way with Emilios
Cambouropoulos, Sandra, Trehub and Gerhard Widmer, and correspon-
dences with David Cope, Yuzuru Hiraga and Tan Witten. Benjamin El-
lis, Miki Grahame, Rivka Isaacson, Boaz Lerner and Fabien Petitcolas gave
constructive comments on the manuscript.

The first two years of this research were funded by The Marshall Aid
Commemoration Commission. The final year was sponsored by the Cam-
bridge Overseas Trust Marshall Commission Cambridge Scholarship. Thanks
to Catherine Reive at the Marshall office for the friendly help and assistance
throughout the three years.

Thanks to Cambridge University and the Computer Laboratory for pro-
viding an atmosphere conducive to productive research. Thanks to the gang
at the computer lab, particularly Mark Humphrys, Kona McPhee, Ian Lewis,
Mantej Dhatt, and the members of the Science and Music group.

Thanks to my officemate Boaz Lerner, who was always ready to listen,
help and advise.

Thanks to my friends at 3 Thompsons Lane, David for being there on
the phone Friday mornings, and Elliot and Jonny for making sure a sound
mind remained in a sound body.

Thanks to my sisters Tal, Chen, and Mor for their help along the years.
Finally, to my parents, who brought me up to appreciate those things in life
that are most important. This dissertation is dedicated to them.

iii




Declaration

This dissertation is the result of my own work and includes nothing
which is the outcome of work done in collaboration. This dissertation is not
substantially the same as any I have submitted for a degree or diploma or any
other qualification at any other University. No part of this dissertation has
already been, or is being currently submitted for any such degree, diploma
or other qualification. The text has fewer than sixty thousand words.

v



Contents

List of Figures

1

2

List of Tables
Introduction
1.1 Objective: Studying Music Learning . . . . . . ... ... ..
1.2 Research Approach: Machine Modelling . ... ... .....
1.3 Maestro . . . . . . .. e
1.4 Research Scope . . ... ... ... ... . ... ... ...,
1.5 Objectives and Contributions . . . . ... ...........
1.6 Dissertation Overview . . ... .. ... ............
Design Features
2.1 Flexibility and Learning Focus . .. ... ... ... .. ...
2.2 Cognitive Realism . ... .. ... ... ... .........
2.3 Summary . ... ... .. e
Segmentation
3.1 Background . . .. ... ... ... .. ...
3.2 Segmentation in Maestro. . . . .. ... ... ... ... ...
3.3 Summary . . ... .. e e e e
Modelling
41 Background . .. .. ... ... ... o
4.2 Machine Modelling . . . . ... ... ... ......... - ..
43 Context Models . . . . ... .. ... ... ... ...... .
44 Modellingin Maestro. . . . . ... .. .. ... ... ...
4.5 SUMMATY . . . o v v vttt e e e e e e e e e e e e e e

v

viii

xiii

12
15
17

19
19
22
29

30
30
32
43



5 Prediction
51 Background . ... ... ... ... ... o o
5.2 Performance Measure: Entropy . . . . ... ... .......
5.3 Prediction in Maestro . . . ... ... ... ... ... ...,

54 Summary . . . .. .. e e e e e e

6 Parsing
6.1 Background: Musical Parsing . . . .. ... ... .... ...
6.2 Parsingin Maestro . . . . ... ... ... ... ... -
6.3 Summary . . ... .. ... e

7 Single-Style Results
7.1 BachChorales. . . ... ... ... ... ... ... ......
7.2 Essen Folksong Collection . . . . ... ... ... .......

7.3 SUMMATY . . . . o v v e e e e e e e e e e e

8 Ambiguity Analysis Results
8.1 Overall Entropy vs. Agent Activation . ... .........
8.2 Prediction Entropy vs. Agent Activation . . . ... ... ...
8.3 Overall Entropy vs. Prediction Entropy . ... ... ... ..

8.4 Summary . ................ e e

9 Validating PGS
9.1 Formalising PGS . . ... ... ... ... . ...
9.2 Method: N-Note Segmentation Shifting . .. ... ... ...
9.3 Experiments: Short Term Memory . . . ... ... ......
9.4 Experiments: Long Term Memory . .. ............
9.5 Summary . . . ... .. e e e e e e e

10 Multi-Style Results
10.1 Style Switching and Comparative Listening . . . . ... . ..
10.2 Geographical Mapping . . . . . . . . . . ... ... ...,
10.3 Summary . . . . . ... e e e

11 Related Work
11.1 Theoretical Models Of Music . . . .. ... ... .. .....
11.2 Machine Models Of Music Learning . . . . . .. ... ... ..
11.3 Machine Models of Musical Ambiguity . . ... ... ... ..

vi

58
58
60
65
68

69
69
82
91

116
116
118
121
124

125
125
127
129
132
136

137
137
146
151



11.4 Agent-Based Models . . . . .. ... ... ... ... ..

11,5 Summary . . . . . .. e e

12 Conclusions

A Event Loop
B Listening Agent Class

C Data formats

C.2 Conklin and Witten’s format
C.3 The **kern Format . . . . . . . . . . . . . . v v ...

D Geographical Mapping Data

vil

174
175
177
178

180

181

183
183
184
185

189




List of Figures

1.1
1.2

1.3

1.4

2.1

2.2
2.3
24

2.5
3.1

3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1

5.2

The four stages of Maestro’s operation.. . . . . .. ... ... 7
Map showing different geographical musical influences. From
(Collaer and Linden, [25]). . . . . . . . .. o oL 11
Audio correlates of musical notation in the time domain.
From (Foster et al., [46]). . . . . ... .. ... .. ...... 12
Audio correlates of musical notation in the frequency domain.
From (Foster et al., [46]). . . . ... ... ... .. ...... 13
Map showing different tonality zones. From (Collaer and Lin-
den, [25]). . . . . ... 20
Standard musical notation. . . .. ... ... ... ... L. 22
The musical surface format used by Maestro. . . .. ... .. 23
Examples of visual ambiguity. From (Thomson, [120]) and
(Rosenthal, [98]). . . . .. . .. . .. 26
Examples of Musical ambiguity. . . . ... ... ... ..... 27

Maestro’s segmentation stage, consisting of three segmenta-

tionmodules. . . . . ... 34
Maestro’s segmentation of Bach Chorale number 2. . . . . . . 35
Maestro’s segmentation of Bach Chorale Number 6. . . . . . 36
Maestro’s segmentation of Bach Chorale number 13. . . . . . 39
No-overlap, full-overlap and partial overlap. . . . .. ... .. 40
The three types of musical memory modelled in Maestro. . . 45
Three alternative melodic storage formats. . . . . . . ... .. 47
Activated modelling. . . . .. .. e 55
Probability distributions and calculated entropy values. . .. 61
Agent-Based Prediction. . . . .. ... ... ... 0oL 66



6.1

6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9
6.10

7.1

7.2

7.3

74

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

Parsing an example sentence John ate the cat (top) using

a simple grammar (bottom). From (Allen, [3]). . ... . ... 75
An example of the drawbacks of greedy parsing.. . . . . . .. 77
An example of Chart Parsing from (Allen, [3]). .. ... ... 79
An example of cut-points encountered in parsing. . . . . . . . 80
Agent-based parsing. . . . . . ... ... ... 83
A parsing competition between two agents. . . ... .. ... 84
A parsing competition showing competition, cooperation and

retrospective listening. . . . . . .. . ... .. L L. 86
An example of a parsing competition. . . ... ........ 88
Another example of a parsing coinpetition. . ... ... ... 88
An example of the circularity problem. . . . . . ... ... .. 90

Note-by-note prediction entropy for Bach Chorale bc61. Three

sets of results are compared. . . . . .. ... ... ....... 94
Note-by-note prediction entropy for Bach Chorale bc151. Three
sets of results are compared. . . . ... ... ... ....... 95
Average prediction entropy per Chorale as Maestro listens to

100 Bach Choralesinseries. . . . . . ... ... ........ 99
The same prediction entropy results after randomising the
order of the Chorales (MIX 2).. . ... ............. 100
Ten re-shuffled runs of 100 Bach Chorales (top), and the re-
sulting average (bottom). . .. ... . ... ... ....... 101 -
Moving-average smoothing of one Bach chorale, compared

with the average of ten runs from Figure 7.5. . .. ... ... 102
A wider smoothing window leads to a better fit, but more
samplesarelost. . .. ... . . ... ... .. .. ..., 103
The size of the LTM context model as Maestro listens to 1,200
German folk songs. . . . ... ... ... ... ... 104
The size of the LTM context model according to different
segment lengths. . . . .. ... ... .. o 00 0L, 105
The size of the LTM context model as Maestro listens to 1,200
German folk songs. . . . . . . . ... 106

The rate of context model growth as Maestro listens to 1,200
German folk songs. . . . ... ... ... o o L. 107

The rate of context model growth, according to different seg-
ment lengths. . . . . . . ... L oL oL 108

The proportion of note-events on which one-step-ahead pre-
dictionsaremade. . . ... .. ... ... ... .. ..., 110




7.14 The average prediction entropy per song for one-step-ahead

7.15
7.16

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

9.1

9.2
9.3

9.4
9.5

9.6

9.7
9.8
9.9

9.10

10.1

predictions. . . . . .. ... ... oL e 111
The number of predictions made for different horizons. . . . . 112

The mean prediction entropy per song for different horizons. . 114

A scatter plot of overall entropy against agent activation for

600 German folk songs. . . . ... ... ... ... ... .. 117
The development over time of a scatter plot of overall entropy
against agent activation. . . . . . ... ... oo 118
A scatter plot of prediction entropy against agent activation
for 600 German folk songs. . . . ... ... ... .. ... .. 119
A slice-wise average of prediction entropy for different ranges
of agent activation, derived from Figure 8.3. . . . . . ... .. 119
A schematic representation of the different types of ambiguity
seenin Figure 8.4. . . . . ... ... ... ... . . 0L 120
A scatter plot of overall entropy versus prediction entropy for
600 German folk songs. . . . .. . ... ... ... ... .. 121
The development over time of a scatter plot of overall entropy
versus prediction entropy. . . . . . ... ..o oo, 122

Variance of note-by-note prediction entropy and overall entropy.123

S-points and o-points — part of the theory underlying percep-

tually guided segmentation. . . .. ... .. ... ... ... 126
N-Note Segmentation Shifting. . . . ... ... ... .. ... 127
The STM context model sizes resulting from different shifts,
relative to the zero-shift model size. . . . . . ... ... ... 129
Average STM context model profile for the 100 Chorales. . . 130
Average number of STM 1-step-ahead predictions made as a
result of different shifts for 100 Bach Chorales. . . . ... .. 131
STM 1-step-ahead average prediction entropy resulting from
different shifts. . . . . . .. . ... oo oo, 132
Relative LTM context model sizes resulting from different shifts.133
Final-state LTM context model profile. . . . . .. .. ... .. 133
Average number of LTM 1-step-ahead predictions made as a
result of different shifts. . . . . .. ... ... ... 0. 135
LTM 1-step-ahead prediction entropy resulting from different
shifts. . . . . . . 135

Context model growth rate per note-event for C and G (top),
also shown smoothed to reveal the trends (bottom). . .. .. 139



10.2 Difference in context model growth rate between C and G
during Phase IT. . . . . ... ... ... .. ... ... ...,

10.3 Number of predictions generated by C and G for forecast
horizons of (top to bottom) one through five steps ahead.

10.4 Difference in number of predictions made between C and G

during Phase II. . . . ... .. .. ... ... ... .. ..., '

10.5 Number of predictions of various orders made by C. . . . ..

10.6 Prediction entropy for both C and G shown for forecast hori-
zons (bottom to top) one through four steps ahead. . . . . . .

10.7 Difference in prediction entropy between C and G during
~PhaseIL............... e e e e e e e e e e e e

10.8 C’s prediction entropy for various forecast horizons, smoothed
with a moving-average to better reveal the trend. . . . . . . .

10.9 Relative prediction performance of Chinese-trained and German-

trained systems. . .. ... .. ... ... .. ...

10.10A close-up of the map of Europe. . . . . . ... ... .....

11.1 A sample analysis using the Generative Theory of Tonal Mu-
sic. From (Lerdahl and Jackendoff, [72]). . . . . ... ... ..

11.2 Variations of one of Mozart’s signatures, identified by David
Cope’s EMI system. From (Cope, [34]). . . ... .......

11.3 A training instance and its explanation in Widmer’s symbolic
music learning system. From (Widmer, [126]). . . . . ... ..

11.4 The multiple viewpoints used in Conklin and Witten’s context
modelling approach. From (Conklin and Witten, [26]). . . . .

11.5 Rhythm recogniser agents making sense of a rhythmic selec-
tion in Rosenthal’s system. From (Rosenthal, [98]). . . . . . .

11.6 Hierarchical music processing agents in the listener compo-
nent of Rowe’s Cypher system. From (Rowe, [103]). . .. ..

11.7 Auditory stream tracer agents. From (Nakatani, [85]). . . . .

B.1 Maestro’s listening agents are instantiations of the Listener
class, defined in this C++ class declaration. . . . ... .. ..

C.1 Conklin and Witten’s representation of a Bach Chorale used
in their music prediction experiments. . .. .. ... ... ..

C.2 MST representation of Bach Chorale number 6. . . . . . . ..

C.3 **kern representation of a German Folk song used in the
large-scale music learning experiments. . . . . . ... ... ..

xi

149

172



C.4 MST representation of a German Folk song used in the large-
scale music learning experiments. . . . . . ... ... ... ..

xii



List of Tables

7.1
7.2

10.1

10.2

D.1

Average prediction entropy for Bach Chorales bc61 and bc151. 96

Correlation coefficients calculated from the data in Figures

Tland 7.2, . . . . . e e 98
Data sets used for the Style Switching and Comparative Lis-

tening experiments. . . . . ... ..o L oL L., 138
The results of the Geographical Mapping experiments. . . . . 147

Essen Folk Song Collection reference numbers for the songs
used in the Geographical Mapping experiments. . . . . . . . . 190

xiii



Chapter 1

Introduction

When one day an arctic traveller played a recorded song by one
of the most famous European composers ... to an Eskimo singer,
the man smiled somewhat haughtily and stated, “many many
notes, but no better music” (Sachs, 1965).

People are affected by their previous musical experiences [68, 115, 127].
Consider the case of two identical twin brothers separated at birth — one
grows up in Beijing, the other in Berlin. Despite their initial similarities,
the twins develop significantly different sets of musical preferences and in-
tuitions as a result of the diverse musical cultures in which they grow up.
These differences might express themselves in the performance of certain
musical tasks, such as completing a partially-played tune or determining
the structure of a tune which is heard. Interesting experiments can be per-
formed to examine how musical experiences during childhood can shape the
twins’ different intuitions and preferences at maturity.

Consider further what would happen if at a certain point during devel-
opment the twin living in China moves to Berlin. To what extent will he
remain biased from his earlier experiences? To what extent will he incorpo-
rate the new musical surroundings into his intuitions? How does the degree
of similarity between the two musical styles affect these phenomena?

This dissertation describes research aimed at addressing these questions
and other related issues. A functional machine model of certain aspects of
music cognition and learning is developed. The model is designed according
to cognitive principles and is used to perform large-scale experiments in
music learning.

This introductory chapter will begin by formulating the problem to be
studied and the approach taken. It will then introduce Maestro, the machine
model developed over the course of this research to conduct a simulated
experimental study of music learning.
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1.1 Objective: Studying Music Learning

As people listen to piéces from a particular style, they acquire a set of
preferences and intuitions inherent to that style. Lerdahl and Jackendoff
[72] describe musical intuitions as the largely unconscious knowledge that
a listener uses in listening to a piece of music. This knowledge enables the
listener to organise and make sense of the patterns present in the music, to
identify elements of a piece as typical or anomalous, to recognize various
kinds of structural repetitions and variations, and generally to comprehend
a piece within the style.

Music learning is defined here as the process of developing a set of musi-
cal intuitions and preferences characteristic of a certain musical style, based
on listening to examples of that style. This learning enhances a listener’s
abilities to organise music into appropriate structures and to generate style-
pertinent expectations when hearing passages of music from a particular
style [127, p. 58]. Sloboda divides music learning into two categories. En-
culturation consists of a shared set of experiences which the culture provides
as children grow up. Training refers to formal instruction [115, p. 196].
While training is an important aspect of musical development [84, 116], this
research focuses specifically on the effects of enculturation.

The phenomenon of music learning is closely associated with the notion
of musical style. Therefore, before proceeding to explore music learning, it
is appropriate to clarify what is meant by musical style, and how different
types of learning relate to it.

1.1.1 Levels of Learning

Narmour identifies two levels of musical style [86]. Intra-opus style refers to
the commonalities shared by different parts of the same musical piece — for
example, the thematic motifs reappearing across the various movements in
a Beethoven symphony. Conversely, extra-opus style refers to the common-
alities shared by different pieces originating from the same composer, group
of composers, culture, geographical area, or time-period [80]. For example,
certain cadential patterns might be used repeatedly by Beethoven in many
of his different works, while looser, wider-scope commonalities may be found
between various pieces of Western Renaissance music, or even Western music
in its entirety.

Music learning can be said to take place on these two levels, both within
an individual piece, and, on a larger scale, over an entire musical style.
When hearing a new piece of music, a person must gradually learn to listen
to it. The more a person is exposed to that specific piece, the more he learns
to hear and discern, and thus the more he can detect and appreciate in the
music. This occurs with music that is new to the person, and continues
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even once the music becomes more familiar. This process is called intra-
opus learning. A person must also gradually learn to listen to and recognise
the stylistic invariants appearing across pieces of music from that style.
By listening to many sample pieces over time, the person internalises the
intuitions of the style. This process is called eztra-opus learning.

Jackendoff [61] states that one of the eventual goals of research in musical
cognition is to understand how a novice comes to be able to understand
music. Rosenthal takes this point even further and states that the issue
of music learning constitutes the “profound question” of music cognition
research [98]. Given this ample motivation for studying music learning, the
objective of this research is to study issues in music learning by performing
experiments with music from different styles.

1.2 Research Approach: Machine Modelling

1.2.1 Difficulties with Human Experimentation

Conducting music learning experiments with human subjects poses two main
problems. First, a person’s collected life-time musical experiences and the
resulting internalised intuitions are crucial factors in determining the out-
come of music learning and listening. Widmer [127] refers to this as the
individual listening history of a human listener, with all its related implica-
tions. These factors can be highly complex and would be extremely difficult
to monitor accurately in human subjects, let alone control in the systematic
~way necessary for proper experimentation.

The second problem involves studying the moment-by-moment percep-
tions of a listener. This is critical for attaining a deeper understanding of the
processes involved in music learning. Hiraga calls this incremental process-
ing, and explains that musical processing proceeds with the flow of music,
deriving results at every instant [55]. However, it is virtually impossible
to obtain a step-by-step record of a human listener’s ongoing perceptions
in a realistic musical context. Sloboda [115] explains that since the end-
product of listening to music is a set of fleeting, uncommunicable mental
images, the psychologist is at a considerable disadvantage when trying to
tap the moment-by-moment history of mental involvement with the music.
Sloboda concludes that this is the principal problem facing researchers in
music listening. Similarly, Krumhansl [68] points out that various experi-
mental methods for studying musical expectancy necessarily interrupt the
musical experience, and so generalisations to more typical listening con-
ditions must be made with caution. Berent and Perfetti [8] have similar
reservations about any experimental technique that necessarily terminates
the listening process.
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Sloboda notes an additional complication. Experiments are usually per-
formed with only short selections of music. This methodology may carry
with it certain implicit assumptions, and Sloboda cautions against extrap-
olating the findings of these experiments to longer, more realistic musical
contexts. With regard to performing experiments to study listening during
longer musical contexts, Sloboda comments that there is no satisfactory way
of tapping what goes on when music of more extended proportions is heard
[115, p. 191].

-1.2.2 Machine Modelling

Machine modelling addresses the main difficulties of human experimenta-
tion. First, total and exact control can be exercised over the prior musi-
cal experiences of the system. Second, continuous monitoring of the sys-
tem’s performance and perceptions throughout the experiments can be eas-
ily achieved. Conklin and Witten [132] point out that when using a com-
putational model it is possible to examine in detail how the model views
particular musical events by inspecting its inner workings at each stage of
computation. Additionally, Minsky [82] proposes that machine simulation
opens up opportunities that other, more formal analytic approaches do not.
He suggests that future machine simulations might raise simulated infants
in traditional musical cultures.

With the benefits inherent to the machine modelling approach, however,
come the significant challenges of modelling a music learning system.

1.2.3 Challenges: Learning by Listening

Music learning is not a holistic phenomenon whose results can only be de-
tected after learning is complete. Rather, it is a gradual process. Learning
takes place over an extended period of time, with incremental changes oc-
curring with each listening. As Meyer points out, musical expectations are
affected by one’s knowledge of the musical style, while at the same time new
musical experiences alter one’s expectations about the style as a whole. As
a result, the “internalised probability system” [61] is constantly undergoing
subtle change, and one’s expectations differ, even if slightly, on successive
rehearings of a piece. Music learning happens as a result of music listening,
and any attempt to model music learning by definition must rely on a model
of music listening.

The learning by listening approach has important implications for the
design of a machine model. Namely, the processes involved in learning, such
as storing information from previous experiences, should result directly from
the processes involved in music listening, such as segmenting and interpret-
ing the performance.
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Modelling music listening is a complex and challenging problem in its
own right. It involves the real-time processing of parallel, temporally or-
dered event sequences, and the identification of significant patterns present
at many levels in the data. The processing of the data is heavily dependent
on the context of the current piece as well as on the listener’s past musi-
cal experiences. Musical data itself is informationally rich, and is multi-
dimensional, including information on pitch, time, loudness, as well as other
parameters. Much is unknown about the immensely complex nature of mu-
sic cognition, and, as such, a complete cognitively realistic model of music
learning and listening is an obviously premature goal [72, p. 8].

1.2.4 Design Principles

Since a full model of music cognition is not realistic, this research adopts
a “functionalist” approach [61] that focuses on certain aspects of particular
relevance or interest. First, this research focuses on those aspects of music
cognition that are particularly relevant to music learning and thus necessary
for performing the experiments described above. These include maintain-
ing the flexibility to handle music from different styles and making analy-
sis decisions based on bottom-up perceptual cues rather than pre-encoded
knowledge. It also includes explicitly handling musical ambiguity which
is especially important in the context of learning. With regard to such a
focused approach, Rosenthal comments that machine models of music cog-
nition, while they are necessarily limited and rest on many assumptions,
they can nonetheless be implemented in sufficient detail to provide fresh
and interesting insights into the problem [98].

A second criterion is added in the present research in order to reduce the
number of limitations and assumptions referred to by Rosenthal: cognitive
realism. Previous research in machine learning of musical styles has focused
on achieving optimal results — be it for music prediction [132], style discrim-
ination [62, 125], music performance [73, 129], or composition in a certain
style [31, 91, 126]. In the present research, while results are measured by
gauging prediction performance, the goal is not achieving optimal results.
Rather, the focus is on developing and studying a more cognitively realistic
model of the music learning process.

To achieve this, the design of the system’s learning capability is guided by
principles derived from cognitive musicology and experimental psychology.
Perceptual cues are used to segment the music, and constraints are placed
on model growth rate and memory usage. Additionally, the data sets used
for training are of a significantly larger, more realistic order of magnitude.
These guidelines also serve to make the results produced by the model more
relevant to human music cognition.

These two design principles are elaborated into a detailed set of design
specifications in Chapter 2. With the objective of the research formulated
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and the approach to the problem laid out, the stage is now set for introducing
Maestro, the system designed to carry out this research.

1_.3 Maestro

This dissertation describes Maestro!, a system developed over the course
of this research to simulate certain aspects of music listening and learn-
ing. Maestro is designed primarily for performing large-scale music learning
experiments, described below in section 1.3.5. Since music learning is inex-
tricably tied with music listening, Maestro’s design also includes a mode] of
music listening with a learning focus. Maestro’s design is based on two key
principles: cognitive realism and a focus on flexibility and learning.

1.3.1 System Operation

Maestro is a program containing approximately 10,700 lines of C++ code,
running on a Pentium-based Linux system. The Tcl/Tk toolkit [88] is used
for graphically displaying the system’s output, as specified in about 1,100
lines of custom Tcl/Tk scripting code. Two additional utilities written to
assist the research are described in Appendix C.

Maestro has four main stages of operation (Figure 1.1): Segmentation,
Modelling, Prediction, and Parsing. Each is performed in turn when Maestro
processes a musical event. A detailed description of Maestro’s event-loop can
be found in Appendix A.

Maestro takes in music in a form derived from MIDI that includes pitch
information in semi-tones and onset times and durations (not necessarily
quantised into standard note-lengths). This can be interpreted as being
similar to a reduced form of the musical surface mentioned by Jackendoff
[60]. Maestro processes the music on-line, one note-event at a time.

A fresh instantiation of Maestro begins with no musical experience in its
knowledge base. Instead, it continually learns as it listens, building up an
internal model of the knowledge gained from its musical experiences. This
learning process involves two steps:

e Segmentation: Perceptual cues in the music are used to indicate
possible ways to break the music into salient chunks for storage in
memory.

e Modelling: A model that captures both the structure and content of
the musical data is constructed according to the various segmentation
possibilities.

!The name Maestro derives from the common acronym for Multi Agent System.
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Figure 1.1: The four stages of Maestro’s operation: The input is segmented
(1) and the resulting segments are stored into a model (2). This model is
then used to predict future musical input (3) and to label repetitions of
previously stored patterns (4).

As Maestro learns with experience, it simultaneously uses its developing
model to perform the following two musical tasks:

e Prediction: Appropriate multiple-step-ahead predictions are gener-
ated concerning what is to come next in the music.

e Parsing: The structure of the music is labelled according to the in-
terpretation arrived at using the model.

The learning process continues throughout listening as Maestro’s internal
model is constantly being updated. This is noticeable in the improving
prediction performance of the system.

By way of introduction, three key technical aspects of Maestro’s design
are now briefly presented: The modelling methodology, the use of agents
and the performance measures employed.
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1.3.2 Methodology: Context Models

Maestro stores musical information as segments of pitch intervals in a con-
text model, which keeps track of segments of pitches encountered in the past
for the purpose of predicting pitches in the future. Context models have
been used previously for studying music composition [14, 91] and music pre-
diction [27], and are formally introduced during the discussion of Maestro’s
modelling stage.

Maestro’s context model is designed to be more cognitively realistic than
its predecessors. More realistic constraints are placed on model size and
growth. Additionally, the model is capable of storing contexts of variable
lengths, providing it with increased flexibility, making it more efficient, and
allowing it to generate appropriate multiple-step-ahead predictions.

1.3.3 Activated Modelling: Listening Agents

Maestro incorporates the multi-agent system paradigm into its design. An
agent is an autonomous entity able to take certain actions to accomplish a
set of goals. A multi-agent system is a collection of independent agents, each
working toward its own goals. The agents in such a system might operate
alone, interact with each other, cooperate, compete, and can also learn.
From the actions and interactions of the individual agents, the complex
behaviour of the system as a whole emerges [40].

Unlike previous systems [102, 132], Maestro does not use its context
model to passively generate predictions. Instead, the context model is ac-
tivated through the instantiation of active listening agents that serve to
represent and advocate different possible hypotheses of musical interpreta-
tion.

The incorporation of the multi-agent system paradigm into Maestro’s
design serves two goals: First, this research follows the active listening ap-
proach — the view held by Reiss Jones [64], Minsky [82], and Rosenthal [98],
among others, that musical memory and musical processing are inextricably
connected. Through the use of agents, memory and processing are merged
into one. Second, this research follows the multiple hypothesis approach —
Jackendoff’s [61] theory that musical ambiguity is handled by maintaining
multiple hypotheses of interpretation. Agents are used to represent various
hypotheses of interpretation.

In Maestro, the prediction and parsing tasks mentioned above are actu-
ally performed by the individual listening agents in a distributed fashion.
Agents can generate conflicting predictions which must be integrated to
form the system’s prediction as a whole. A distributed agent-based parsing
algorithm is developed to handle parsing ambiguity. The agents compete
and cooperate with each other in performing these tasks, and the desired
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system-wide behaviour emerges from the interactions of the independent
agents.

The implementation of Maestro’s active listening agents takes advantage
of the object-oriented capabilities of C++. See Appendix B for a detailed
description of the C++ class declaration for Maestro’s listening agents.

1.3.4 Performance Measure: Entropy

In order for any experiments in music learning to be conducted, an ap-
propriate measure of performance is needed to monitor the progress of the
learning. In the particularly complex context of music, careful thought must
be given to choosing an appropriate performance measure. Three options
are considered:

The first option is the generative approach, which involves asking the
listener (in this case the system) to compose a new piece in the style of what
has already been heard. However, as pieces within the same style can often
differ significantly from one another, the evaluation of the stylistic adherence
of a certain piece can prove difficult [125], if not somewhat subjective. A
more objective measure is needed.

Another approach, used by Westhead and Smaill [125], is the recognition
of works in a style. The listener is trained with music from at least two
different styles and is then asked to classify a new piece as belonging to a
particular style. This approach requires presenting the listener with songs
from different styles every time a measurement of music learning is to be
taken, and makes difficult the continual tracking of learning during listening.
Furthermore, the purpose of the present research is to study the learning of
a musical style in its own right, and not only in relation to other styles. As
a result of these difficulties, this method is not chosen here. Still, the issue
of discriminating between music from different styles is addressed by the
present research in the multi-style experiments reported in this dissertation.

A third approach for measuring music learning is the prediction method,
or the sung continuation procedure: after hearing only part of a melody,
the listener is asked to predict what will come next. Adachi and Carlsen
(1] cite the view that this experimental method is best for reproducing the
spontaneity of the anticipation processes during actual music listening. Since
the prediction method is an objective measure that also allows for continual
measurement of musical learning, it is the method of choice in this research.

Conklin and Witten [132] measure prediction performance using an in-
formation theoretic approach that involves calculating a type of entropy.
In Maestro, two types of entropy are used, and experiments are performed
to explore various types of music learning from different perspectives. The
two types of entropy are also used to classify and study different types of
ambiguity experienced during listening.
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1.3.5 Experiments

Maestro is developed to conduct four basic types of experiments to study
music learning: Style Learning, Style Switching, Comparative Listening and
Geographical Mapping.

1. Style Learning experiments involve presenting the listener with many
examples of one style of music (e.g., the works of Bach). One can then
monitor the increasing understanding of the musical style by seeing
how well the listener predicts as-yet-unheard samples of the style. The
prediction should improve with additional listenings.

2. After being trained in one style of music, it is interesting to observe a
listener’s reaction to a totally different style of music, as well as how the
listener proceeds to develop an understanding of the new style. Such
Style Switching experiments address some of the issues introduced in
the “twins” example above.

3. Comparative Listening involves presenting the same piece of music to
two listeners from different musical backgrounds and comparing their
relative levels of prediction performance. This also provides informa-
tion regarding the way in which prior musical experiences affect music
listening. One would expect a native listener to outperform a foreigner
when listening to a native piece, as reported by Lynch et al. [75].
Similarly, Zielinska and Miklaszewski report that “culturally remote”
melodies are more difficult to memorise [133]. However, Blacking [18]
notes that a foreigner would still be able to make some sense of the
music without having to spend much time learning the new style. The
present research studies the extent to which experience through simple
exposure to certain musical styles prepares a listener for dealing with
music from other musical styles.

4. The final type of experiment is Geographical Mapping. Sloboda [115]
reports on experiments in which children were asked to judge whether
two musical selections were from the same piece of music. The re-
sults showed a greater ability to correctly differentiate ‘different’ pairs
when they came from widely different stylistic eras. For instance, sub-
jects were better at discriminating Boulez from Bach, with 300 years
between them, than Schumann from Brahms, who were contempo-
raries. It is also interesting to perform experiments where the musical
styles are separated geographically instead of éhronologically. Figure
1.2, taken from [25], shows one hypothetical relationship between ge-
ographical musical influence and musical stylistic similarity. These
relationships result from the musical influences of interacting cultures.
The Geographical Mapping experiments reported in this dissertation
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Figure 1.3: Audio correlates of musical notation in the time domain. From
(Foster et al., [46]).

attempt to identify correlations between musical similarity and geo-
graphical proximity of different musical styles.

1.4 Research Scope

Before reporting the work undertaken in the rest of this dissertation, it is
important to define clearly the topics addressed by this research, as well as
those that are not. Maestro is by no means a complete model of human music
cognition. Rather, it represents an attempt at modelling certain aspects of
music listening and learning in a way that is more cognitively realistic than
previous systems.

1.4.1 Focus on Learned Component

Musical intuitions consist of both learned and innate components [18, 68].
Many theorists point out that the innate component forms the basis for
the universal musical invariants found across all cultures [72, 115]. Based
on literature from experimental psychology [69] and music theory [86], it is
unrealistic to assume that an infant begins life with absolutely no innate
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Figure 1.4: Audio correlates of musical notation in the frequency domain.
From (Foster et al., [46]).

musical preferences. However, Maestro does not model people’s innate mu-
sical preferences, and this exclusion of innate knowledge allows this research
to focus solely on the learned component of music intuition — namely, those
effects resulting from experience.

1.4.2 Abstraction Away from Audio

Low-level audio aspects of music, such as timbre, attack and envelope are
essential to modelling the complete music cognition experience. A large
amount of complex processing goes on at this level that has certain crucial .
influences on the final perception of the music (e.g., Figures 1.3 and 1.4).
These effects are addressed by research in auditory physiology [13, 44] and
machine modelling of music cognition [16, 122, 123].

Low-level audio features are not included in the data representation used
by Maestro and this abstraction is an important limitation of the present re-
search. However, the field of audio processing is in itself so complex that its
inclusion would expand the scope of this project beyond a reasonable size.
Widmer suggests that a level of abstraction should be found which combines
transparency and simplicity with at least a minimum of musical and psy-
chological plausibility [127]. The approach taken here is that the musical
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information encoded in the “musical surface” format (see Appendix C) is
indeed sufficient to allow a relevant and effective study of music learning.

1.4.3 Monophony

Maestro deals only with monophonic melodies. Most music in the world to-
day is polyphonic, and takes advantage of the extra dimensionality polyphony
provides. However, the introduction of polyphony greatly increases the com-
plexity of the music listening and learning problem. The results reported
in this dissertation show that monophonic input, especially with large data
sets, is sufficient for conducting informative and meaningful experiments in
music learning.

1.4.4 No Explicit Tonality

Tonality plays a central role in the musical experiences of most world cul-
tures. Many researchers, including Cross [35, 38, 58] and Krumhansl [67)
have focused their efforts on studying pitch schemata, which can reach great
complexity and variety in different cultures [44, 121]. However, tonality is
for the most part style-specific, and an explicit representation of a system of
scales and chords would likely limit Maestro’s ability to handle music from
different styles. Therefore, this lies outside the scope of this research.

1.4.5 Limited Handling of Rhythm and Timing

Generating rhythm and timing expectations is a crucial aspect of human
music listening and much work has been done in computational modelling
of human rhythmic perception [23, 99]. Maestro makes use of timing in-
formation in its segmentation stage, as described in Chapter 3. However,
Maestro monitors, predicts and parses patterns of pitch only, and does not
store any timing information. This approach is consistent with Narmour’s
theoretical model which states that pitch expectations are generated solely
from previous pitch information and do not rely on timing information [68,
p. 60].

1.4.6 Exact Pattern Matching

Music cognition involves the ability to handle inexact pattern matches. Re-
garding the question of what constitutes a match, Hiraga [56] says that there
seem to be no definitive criteria, but that these may include persistence of
the pattern, strength of the match, temporal proximity and complexity of
the pattern itself. Overill [89] also discusses issues relating to inexact pattern
matching and describes various thresholds that need to be set to determine
the tolerance of the matching.
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The introduction of inexact pattern matching would, apart from adding
further complexity, make the objective prediction measurements used in this
research dependent on whatever arbitrary matching thresholds were chosen.
This would allow too much variability in measuring performance. Exact
matching, also used by Westhead and Smaill [125], proves sufficient for the
systematic and controlled study of music learning pursued in this research.

Having given a brief overview of system operation and project scope, this
chapter now concludes by highlighting the main contributions of the present
research and presenting a brief outline of the rest of the dissertation.

1.5 Objectives and Contributions

This research serves several objectives. First, it enables the simulated ex-
perimental study of music learning by developing a new model of music
cognition that is in certain ways more cognitively realistic than previous
research. As described above, attempting to take similar measurements and
to perform similar experiments with human subjects would prove extremely
difficult, if not impossible. A machine modelling approach is thus chosen.

Second, this research tests certain theoretical models of music cognition
by implementing them in a computer simulation. These include Minsky’s
agent-based music cognition paradigm [82] and Jackendoff’s parallel multiple
analysis model of on-line musical parsing [61].

Third, the research novelly combines context-model-based music learning
methods [14, 91, 132] with an agent-based simulation of music cognition
[55, 98, 103], both emerging areas of research in computational musicology
in which significant work remains to be done.

The following are the main contributions of the research presented in
this dissertation, presented in three groups: features of Maestro’s design,
experiments performed with Maestro and tools developed for analysis of the
experimental results.

1.5.1 Design Features

e A Clean Slate — Maestro is a machine model of music listening and
learning that incorporates no a priori style-specific knowledge in its
design. This endows it with a flexibility to learn music from many
different styles.

e Perceptually Guided Segmentation — Previous systems have segmented
music without regard for bottom-up perceptual cues or the segmenta-
tion ambiguity that these cues entail. Maestro’s segmentation stage
considers three perceptual cues and explicitly handles segmentation
ambiguity.
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Adaptive-Order Context Modelling — Previous research with context-
model-based systems has ignored certain cognitive constraints relating
to model construction and growth rate. A more cognitively realistic
context modelling paradigm is devised for music learning. The model
contains segments of variable order, each appropriate for the specific
musical context.

Agent-Based Prediction — An agent-based methodology for generating
and integrating various predictions is developed.

Agent-Based Parsing — A distributed implementation of bottom-up,
left-to-right, optimal, partial chart parsing is developed. The desired
parsing behaviour emerges from the interactions of the individual au-
tonomous listening agents, each suggesting its own parsing interpreta-
tion.

Handling of The Circularity Problem — Music can be grouped in two
ways — by searching for points of discontinuity, or by detecting repe-
tition or parallelism. Maestro’s segmentation stage handles the first,
while its parsing stage addresses the second. The inherent interdepen-
dence between these two methods of grouping leads to the circularity
problem mentioned by Hiraga [56] and Larson [70]. As described in
detail in the description of the parsing stage, Maestro uses a directed
search for patterns to address this issue.

1.5.2 Experiments

e Experiments in Music Learning — Previous systems studying music

learning have used relatively small data sets, and have only studied
the final state of a trained model. In the present research, large data-
sets allow for extensive controlled experimental study of the actual
process of music learning using a real-time, on-line listening and learn-
ing system.

Multiple-Style Experiments — Style Switching and Comparative Lis-
tening experiments are performed using samples from many different
musical styles.

Geographical Mapping — Experiments are performed to identify cor-
relations between musical similarity and geographical proximity.

Multiple-Step-Ahead Prediction — Previous systems have studied pre-
dictions generated only one note ahead of time. Maestro produces ap-
propriate multiple-step-ahead predictions on-line, based on its variable-
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order context model. A systematic experimental study of the predic-
tion performance is conducted for different forecast horizons and for
various levels of training.

e Perceptually Guided Segmentation — It is hypothesised that certain
points of segmentation are more meaningful and that a segmentation
strategy guided by perceptual principles results in models that are
more efficient for the purposes of prediction than other segmentation
strategies. Although hinted at in the literature, these hypotheses have
not been empirically tested. An experimental method is developed in
this research in order to validate this hypothesis.

1.5.3 Analysis Tools

e A Three-Fold Framework for Analysing Music Learning Experiments
— A three-fold analysis methodology that measures context model
growth, number of predictions generated, and prediction performance
is devised and used to analyse the results of large-scale music learning
experiments.

e Entropy-Based Ambiguity Classification — Two types of ambiguity are
identified: ambivalence and uncertainty. An analysis methodology
incorporating two types of entropy and a measure of agent activation
is developed to study and classify ambiguity into these two types.

e Entropy-Based Training Measure — A dual-entropy characteristic is
developed to gauge the level of experience, or maturity of a model.

1.6 Dissertation Overview

Following this introductory chapter, Chapter 2 elaborates on Maestro’s de-
sign principles of cognitive realism and a focus on learning and derives a
complete list of specifications, highlighting the important features of Mae-
stro’s design.

The next four chapters address the various stages of Maestro’s design
in detail. Each of these chapters consists of a review of the relevant cog-
nitive foundations and of previous work in machine modelling, followed by
a description of Maestro’s implementation. Chapter 3 covers the design of
Maestro’s segmentation stage, comparing different segmentation strategies
and addressing issues of segmentation ambiguity. Chapter 4 considers differ-
ent modelling strategies, memory types and storage formats for Maestro’s
modelling stage. Context models, the active modelling approach and the
implementation of listening agents are all described in detail. Chapter 5
deals with Maestro’s prediction capabilities, including prediction ambiguity

O
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and multiple-step-ahead predictions. Entropy-based performance measures
are formally introduced. Chapter 6 presents Maestro’s approach to pars-
ing, as well as the distributed agent-based parsing algorithm developed to
implement that approach, capable of handling parsing ambiguity.

The next four chapters include the main experimental portion of the dis-
sertation. Chapter 7 discusses the results of the various large-scale musical
learning experiments. Experiments with 100 Bach chorales used by Conklin
and Witten [132] provide a basis for comparison with earlier research and
with actual results from human subjects. Much larger data sets containing
thousands of songs are then used to study a more complete music learn-
ing process. A framework for analysing music learning is developed and
used. In Chapter 8, the relationships between different performance mea-
sures are analysed, and a method of classifying and identifying two types of
ambiguity is developed. A method is also developed to measure the level
of training, or maturity, of a model. Using a novel experimental method,
N-Note Segmentation Shifting, experiments reported in Chapter 9 provide
empirical evidence that Perceptually Guided Segmentation leads to more
efficient modelling for the purposes of prediction. Chapter 10 includes fur-
ther experiments involving music from different styles. Style Switching and
Comparative Listening experiments are performed. The full capabilities of
Maestro are then displayed in a set of Geographical Mapping experiments,
studying geographical relationships between musical styles.

Chapter 11 presents a review of relevant literature and compares Maestro
with other related research in the field. Machine models of music learning
and ambiguity are reviewed, and agent-based models of music cognition are
also presented. Finally, Chapter 12 summarises the main conclusions of the
research and highlights a number of opportunities for further work. The
Appendices include details of Maestro’s event loop, agent class declaration,
data representation, utilities developed over the course of the research, and
references for the data used in the Geographical Mapping experiments.

"Some of the design concepts have been implemented and tested on a pro-
totype system in the early stages of this research, reported in [92]. Portions
of this research have also been published in refereed proceedings in [93] and
[94], and presented at international conferences.



Chapter 2

Design Features

This chapter introduces the various features of Maestro’s design. The two
principles of cognitive realism and a focus on learning mentioned in Sec-
tion 1.2.4 are elaborated into a complete list of design specifications. The
motivation for each design specification is described, along with some previ-
ous attempts at addressing it, followed by a discussion of the way in which
Maestro deals with the issue.

2.1 Flexibility and Learning Focus

Maestro is a system developed primarily for studying certain aspects of
music learning. This focus on learning is expressed in three design specifi-
cations: pan-stylistic potential, a clean slate, and the use of large data-sets.
These three specifications are implemented throughout the various stages of
Maestro’s design, as described in Chapters 3 through 6.

2.1.1 Pan-stylistic Potential

People from different cultures appreciate and respond to very different styles
and systems of music. In a review of ethnomusicology, Titon [121] presents
a large assortment of music from different cultures from around the world.
Dowling also cites a number of illustrative examples of the extents to which
music varies throughout different parts of the world [44]. The wide diversity
of musical styles is clearly evident in these selections. Figure 2.1, taken from
[25], shows different systems of tonality in various geographical regions.
For each musical style found in the world’s cultures, there are people
who grow to internalise it into their musical preferences and intuitions. It
can therefore be inferred that the musical capabilities of humans are, at least
initially, flexible enough to learn the many different types of musical styles.

19
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In order to emulate the true human musical capabilities, a machine model
should be able to develop and learn to perceive different styles of music from
all over the world. In line with this approach, Conklin and Witten seek a
methodology that is capable of capturing regularities in different musical
genres [131]. Their impressive program of research into music learning and
prediction did not in the end reach this pan-stylistic goal [27]. Maestro is
aimed at addressing this goal.

2.1.2 A Clean Slate

Many music learning systems incorporate certain amounts of stylistic knowl-
edge a priori, whether in the form of a knowledge base [127], or as parameters
in a model [103]. This knowledge may include such items as common struc-
tural forms, tonality systems or chordal structures. Lerdahl and Jackendoff’s
Generative Theory of Tonal Music (GTTM) is described as modelling the
intuitions of an “experienced listener” [72, p. 230], and assumes that music
learning has already taken place. Similarly, both Rowe [103] and Conklin
and Witten [27] pre-program a developed sense of style-specific tonality into
their systems.

Endowing a system with style-specific elements a priori is known as
the knowledge engineering approach. While such information may help in
analysing music from a particular style, this optimisation also suffers from
three main drawbacks: over-specialisation, incompleteness, and rigidity.

First, the specialisation inherent to the knowledge engineering approach
typically limits a system’s ability to analyse music from other styles. Signif-
icant items may not be processed correctly, and preconceived notions might
instead be imposed inappropriately. A second drawback of the knowledge
engineering approach, according to Conklin and Witten [27], is that there
are too many exceptions to any logical system of musical description. It
will therefore be difficult to ensure the completeness of an intuited theory,
even for dealing with a single musical style. Third and finally, the knowledge
engineering approach by definition ignores modelling the music learning pro-
cess, which is the prime focus of this research. Flexibility is necessary for
learning, and a fixed, pre-set knowledge base is rigid and inflexible.

To model music learning of different styles, a system should not start
off with any style-specific information that in reality is only learned through
experience. Instead, the absence of pre-encoded style-specific information in
a system should endow it with the initial flexibility to learn music from many
different styles. Hiraga refers to this requirement as robustness, and states
that the design of a system should not be governed by a presupposition of
a particular style or cultural context [55].

Ponsford et al. [91] describe a system that maintains its generality by
minimising the use of music knowledge. Still, some musical knowledge is in-
cluded in their system, such as the rules of Western harmony in the prepro-
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Figure 2.2: Musical notation incorporating key signature, time signature
and functional harmony annotations. From (Aldwell and Shachter, [2]).

cessing stage and common phrase structure in the annotation stage. Bryson
et al. [17] also use little or no musical knowledge, and the function of their
system is kept to low-level chord generation. The present research attempts
to determine to what degree a system without any a priori stylistic infor-
mation is able to gain proficiency in any given musical style, as measured
by its ability to appropriately predict musical events. This general learning
approach is maintained throughout Maestro’s design and operation.

2.1.3 Large Data Sets

Previous studies in machine modelling of music learning have used medium-
sized corpora for training. Brooks et al. [14] used 37 hymn tunes, Ponsford
et al. [91] used 84 French Sarabandes, and Conklin and Witten [132] used
100 Bach Chorales.

Since the present research seeks to study a realistic music learning pro-
cess, it requires a more realistic musical experience base similar to one that
would be available to someone growing up in a certain musical culture. A
system presented with too few samples of a musical style cannot complete
the full learning process: Conklin and Witten mention that performance of
their prediction system improved in trials where additional training data was
used [132]. To this effect, the experiments performed with Maestro involve
much larger data sets containing thousands of songs.

2.2 Cognitive Realism

The second principle guiding Maestro’s design is cognitive realism. It is
important that a machine model of human music listening and learning be
based on some knowledge of how these capabilities operate in humans. First,
there is the issue of experimental relevance; if the model is made more cog-
nitively realistic, the results produced can reveal more about how humans
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Figure 2.3: The musical surface format used by Maestro, representing pitch
in semitones and time not quantised into standard note values. The example
is a Bach Chorale melody.

might perform in similar situations. Second, even if the goal were not to
study human music cognition, there is still the notion that dealing with
music in a vacuum, divorced from its human origins, is meaningless. As
Rosenthal points out, music is deliberately tailored to the mind’s cognitive
limitations and capacities [98]. Therefore, a study of music cognition that
ignores critical specifics of human music cognition would not be very mean-
ingful. The design of the system should therefore be guided by evidence
from the literature in the fields of experimental psychology and cognitive
musicology.

This design principle of cognitive realism is now elaborated into a list of
seven design specifications, including:

e Realistic input;

On-line processing;

Time and memory constraints;

Multiple-step-ahead prediction;

Ambiguity handling;

Retrospective listening;

e Active listening.

In the ensuing discussions, important features of Maestro’s design are high-
lighted.

2.2.1 Realistic Input

Many systems modelling music cognition rely on manual preprocessing or
annotation of performances before analysis by the system can take place.
This information can include bar lines [27, 98], tonality annotations [27],
and phrasing marks [27, 91]. However, as Jackendoff [61] states, the listener
in reality only hears a sequence of pitches with durations, while the notated
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key signature, time signature, bar lines and beams play no role in the musical
surface.

Pre-annotation of the input with the above information, such as the
standard music notation shown in Figure 2.2, ignores people’s ability to ex-
tract information on their own from the performance. Therefore, a system
attempting to more realistically model the listening process should take as
input only pitch and timing information, without extra higher-level annota-
tions. (As discussed in Section 1.4.2 above, other low-level audio qualities
of music are not handled by Maestro.)

Some previous systems quantise the timing information into durations of
eighth [98] or sixteenth notes [132]. Maestro takes as input only the musical
surface: pitch information in semi-tones' and timing information that is not
quantised into fixed note-durations. This presents the system with a more
realistic listening task. Figure 2.3 shows an example of a Bach Chorale in the
format used by Maestro. Maestro also performs all the segmentation on its
own, based on perceptual cues present in the musical surface, as described
in Chapter 3.

2.2.2 On-line Processing

When listening to music, people continually make analysis decisions, but are
limited to utilising only the information they have heard until that point.
Some computer music cognition systems rely on free access to the perfor-
mance in order to accomplish their analysis tasks, (e.g., [31], and to a cer-
tain extent [132]). The entire performance can be scanned before the system
makes any decisions. While this may lead to better speed or efficiency, in
a more cognitively realistic system analyses should be performed on-line,
with the data available only within a temporal window stretching back a
certain distance from the present. Future data should not be available until
it appears in the performance. Maestro is designed in accordance with this
approach.

Jackendoff emphasises that a theory of musical perception should contain
an account of how the listener applies certain principles in real time to derive
abstract structures for a piece as it is being heard [61]. Maestro labels the
performance on-line according to the structural interpretation suggested by
its previous experiences.

"While there exist musical styles that utilise finer-grain pitch information than semi-
tones, a majority of world music can be at least approximated by semitones, and so this
simplification is not considered to be a major limitation.
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2.2.3 Multiple-Step-Ahead Prediction

When listening to a piece of music, listeners use their previous musical ex-
periences to guide their expectations about what is to come next [68]. The
expectations can be of various time horizons, sometimes only predicting one
note ahead of time, at other times many notes. The forecast horizon depends
on the listener’s past experiences and on the current musical context.

As a simple example, consider any multi-note repeating motif, such as
the ones appearing in the well-known tune Twinkle Twinkle Little Star.
After hearing the two seven-note motifs in the beginning of the piece, a
listener knows what to expect at the end of the piece when the motifs begin
to appear again. At that point multiple-step-ahead predictions may be
generated. There are, on the other hand, instances when people can only
predict one step ahead — for example, at the penultimate note of a repeating
motif, or even zero steps ahead (no prediction) such as at the beginning of
a new piece.

Previous studies [27, 132] on music prediction have focused on one-step-
ahead forecasts. The present research studies the generation of appropriate
multiple-step-ahead predictions in accordance with the current musical con-
text.

2.2.4 Time and Memory Constraints

Humans have a limited capacity to process information in real time. For ex-
ample, there is a three-to-five-second-long audio window memory containing
information that disappears unless it is stored elsewhere [44, p. 180]. Also,
people are limited in the amount of information they can remember after
listening to a piece of music [115, p. 190]. Previous work in modelling
music cognition has ignored some of these limitations [27, 72]. Maestro’s
design takes these constraints into consideration in such tasks as storing
information into its model, and in performing on-line parsing.

2.2.5 Ambiguity Handling

While it is well known that ambiguity arises in the visual realm (Figure 2.4)
ambiguity is also an essential part of the musical listening experience. In the
paper Functional Ambiguity in Musical Structures [120], Thomson describes
various properties of a musical event, including harmony, timbre, texture,
form and melody, that can sometimes act together in building up implica-
tions in the listener. However, when these properties are not congruent with
one another, conflicting implications are created causing ambiguity to arise.
Dowling similarly states that ambiguity arises when there are conflicting
tendencies among certain musical invariants [44, p. 192].
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Figure 2.4: Examples of visual ambiguity. From (Thomson, [120]) and
(Rosenthal, [98]).

Ambiguity often emerges out of the interrelated and simultaneous pat-
terns present in the music. However, as Conklin and Witten [132] explain,
it is sometimes placed by the composer intentionally to introduce elements
of originality or surprise into a piece. Berent and Perfetti [8] state that am-
biguous passages can also be used as gradual transitions between passages of
different types. Kippen emphasises that there is a need for a better under-
standing and formalisation of ambiguity in musico-cognitive processing [66,
p- 329]. The present research seeks to address this need by incorporating
the handling of musical ambiguity into a machine model of music cognition.

Thomson provides examples of various types of musical ambiguity, two
of which are shown in Figure 2.5. While there are many different types of
ambiguity in music, this research focuses specifically on three types:

1. Segmentation ambiguity — A lack of clarity regarding how to break
up the music for storage into memory. In Maestro, this results from

conflicts in discontinuity-based segmentation, as discussed in Chapter
3.

2. Prediction ambiguity — A lack of clarity regarding what is to come next
in the piece. Maestro’s handling of prediction ambiguity is described
in Chapter 5. ’

3. Parsing ambiguity — A lack of clarity about how to structurally inter-
pret the piece once it has been heard. In Maestro this results from
conflicts in repetition-based segmentation, as discussed in Chapter 6.
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Figure 2.5: Examples of musical ambiguity. Top: Metric ambiguity caused
by contradictory stress and contour patterns. Bottom: Six potential group-
ings for measures 5-20 of Chopin’s Mazurke. From (Thomson, [120]).

Ambiguity is especially relevant in the context of music learning. A
well-trained system has a large set of learned biases and intuitions that it
can use to resolve ambiguity, while an untrained system has few. Davidson
et al. report experiments showing that in an ambiguous grouping context,
musicians tend to classify events according to higher-level schemata, while
non-musicians tend to classify events based on more primitive grouping cues
[37]. Similar results are cited by Sloboda [115, p. 187]. Maestro deals with
modelling an untrained listener, and therefore relies on bottom-up percep-
tual cues present in the musical surface in order to resolve ambiguity.

Musical ambiguity often leads to multiple hypotheses of interpretation:
more than one interpretation may be consistent with the music heard thus
far. According to Jackendoff [61], in the absence of sufficient information
during on-line listening, multiple hypotheses may have to be maintained
until enough information becomes available to resolve the ambiguity.
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However, almost all systems modelling music cognition ignore the ability
of humans to maintain multiple hypotheses when facing ambiguity. Instead,
either a judgement call is made by the human operator in the pre-processing
stages, or the ambiguity is clarified by a fixed system of rules [98]. Either
way, the ambiguity is immediately resolved, and only one interpretation is
maintained by the system. The ability to generate, maintain and reconcile
multiple hypotheses of interpretation is a central feature of Maestro.

Berent and Perfetti formulate what they refer to as the Parsing Problem:
given the limitations of working memory, the listener must arrive at decisions
almost immediately, but the input available to the listener at the time does
not lend itself to a unique representation [8]. Berent and Perfetti note that
this problem is, of course, solved by listeners. This deterministic approach
to resolving ambiguity is dealt with in Maestro’s parsing stage, as described
in Chapter 6.

2.2.6 Retrospective Listening

Often at ambiguous points in a piece, a decision about the final interpreta-
tion is delayed. When further information becomes available, a final decision
can be reached, and the listener goes back and “re-hears” the music accord-
ing to the new analysis. According to Jackendoff, this results in the listener
hearing the music with the proper structure, and projecting the structure
backwards to the point where the ambiguity originally arose [61]. Jackend-
off describes this phenomenon as “retrospective hearing” or “retrospective
reanalysis,” while Berent and Perfetti [8] call it “reinterpretation”. A sys-
tem capable of on-line handling of ambiguity should be able to exhibit this
phenomenon. Maestro’s parsing stage is designed to meet this requirement.

2.2.7 Active Listening

Listening is not a passive process. Rather, listeners actively engage with
a musical performance, segmenting it, storing it in memory, generating ex-
pectations, building abstract structures from the musical surface, and com-
paring it with previous pieces they may have heard. Jackendoff points out
that in order to make such a comparison, the processor has to be actively
comparing the presented music with the recalled music [61].

In a similar vein, Reiss Jones et al. [65] state that remembering is as-
sumed to involve a recapitulation of the original rhythmical activities that
were involved in attending to a melody. Reiss Jones [64] puts forth a the-
ory of dynamic attending, in which expectancy aids processing by directing
attentional resources to the appropriate range of pitches at specific times.
In discussing memory for rhythm, Rosenthal [98] states that memory and
process are contained in one structure. As Minsky [82] explains, in order
to understand how memory and process merge in listening, researchers have
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to learn to use much more “procedural” descriptions. This procedural ap-
proach, in which musical memory is intrinsically tied with music processing,
is also shared by both Blacking [18] and Hiraga [55], and is referred to here
as the active listening approach. Maestro’s design incorporates the multi-

agent system paradigm to implement this concept, as described in Chapter
4.

The multi-agent system paradigm serves an additional purpose. When
handling ambiguity, multiple active listeners must be present to simulta-
neously perform the above listening tasks according to the various inter-
pretations being entertained at that time. Maestro accomplishes this by
instantiating different active listening agents to represent different interpre-
tations of the music. Each agent independently and actively monitors and
responds to the music, generating predictions and attempting to parse the
musical surface.

2.3 Summary

This chapter has reviewed the main features of Maestro’s design. Maestro
focuses on studying music learning, and in order to maintain the flexibility
to handle music from many different styles, it includes no a priori style-
specific knowledge. Additionally, large data sets are used in experiments to
simulate a more realistic learning process.

Maestro’s design is guided by principles from cognitive musicology. Anal-
ysis is performed on-line, and no extra information is present in the input.
Maestro stays within certain realistic constraints of memory and timing,
and generates appropriate multiple-step-ahead predictions according to the
current musical context.

Ambiguity is an essential aspect of music listening, especially in the
context of learning, and Maestro is designed to deal explicitly with three
types of ambiguity, performing retrospective listening when appropriate. In
order to implement the active listening approach and to deal with ambiguity,
Maestro incorporates the multi-agent system into its design.

The next four chapters now turn to presenting a detailed account of the
various stages of Maestro’s design and operation, beginning with Maestro’s
segmentation stage.




Chapter 3

Segmentation

The purpose of segmentation, also called grouping or phrasing, is to di-
vide the musical surface into salient chunks for interpretation and storage in
memory. This chapter describes Maestro’s segmentation capabilities. First,
relevant background from cognitive musicology is presented and previous
machine models are reviewed. Then, the implementation of Maestro’s seg-
mentation stage is described, including multiple segmentation modules and
the handling of segmentation ambiguity. The concept of perceptually guided
segmentation is presented as a basis for Maestro’s approach. Finally, the cir-
cularity problem that is inherent to segmentation is introduced.

3.1 Background

Grouping can be viewed as the most basic component of musical
understanding. (Lerdahl and Jackendoff, [72, p. 13])

In the course of listening to a piece, a listener groups the performance
into salient chunks, building up an internal representation of the piece’s
structure. Dowling discusses the Gestalt principles that come into play
in music cognition, and includes proximity, similarity, common fate, and
good continuation [44, p. 154]. The law of proximity dictates that elements
grouped closely together on a particular dimension tend to be perceived as
a single unit, separate from other more distant elements [115, p. 187].

People tend to find group boundaries at points of discontinuity; as Tan-
guiane states, all the known ways of accentuation are based on breaking the
homogeneity in the music [118, p. 140]. Krumhansl and Jusczyk summarise
the various cues that are used in musical segmentation, including contrasts
of pitch range, dynamics, and timbre, lengthening of durations, changes of
melodic contour, and metrical, tonal, and harmonic stress [69].

30
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Lerdahl and Jackendoff put forth a detailed segmentation strategy in the
grouping analysis portion of their Generative Theory of Tonal Music [72]. In
[119], Thomassen outlines a model of melodic accent based on different types
of discontinuity in pitch. In [59], Huron and Royal compare eight competing
notions of melodic accent and state that their results are most consistent
with the perceptual model of melodic accent developed by Thomassen.

Maestro segments according to discontinuities in time and pitch, and
points of inflection in pitch. As Maestro does not handle polyphony, har-
monic accents and points of dissonance are not addressed by Maestro’s seg-
mentation stage. Additionally, as Maestro does not maintain an explicit
sense of meter, it does not segment according to strong metrical position, as
suggested by Lerdahl and Jackendoff [72].

Hiraga [56] mentions that identifying repeating patterns, or parallelism,
in music is also important for segmentation. This type of repetition-based
segmentation is a necessary component of musical cognition [63], and leads
to the circularity problem introduced at the end of this chapter. Repetition-
based segmentation is handled by Maestro’s parsing stage, as discussed in
Chapter 6.

3.1.1 Previous Machine Models

Previous systems have addressed the question of music segmentation. A
sample of relevant systems is now brought, presented in order of increasing:
levels of cognitive realism.

David Cope’s Ezperiments in Music Intelligence (EMI) system, devel-
oped to compose pieces in a learned style, scans pieces of music in search
of composers’ characteristic patterns or signatures. EMI segments music
in a fixed way, storing every chunk of n notes. The value n is set by the
pattern-size controller [34]. Cope’s approach ignores perceptual cues in
segmenting the music. This is understandable, as Cope sets out to imple-
ment. a computer system capable of generative style imitation, and not a
cognitively realistic model of music listening.

Conklin and Witten’s system [27], designed for their research in music
prediction, takes in music that is pre-labelled with bar lines and fermatas,
and these annotations are used to aid prediction. This input is not realistic
for modelling music listening because, as mentioned in Section 2.2.1, these
features do not appear in this ready form on the musical surface. Conklin
and Witten’s system then segments the music for storage, storing every
possible chunk of up to length three! [27]. As with Cope’s system, perceptual
cues are ignored in segmentation. Conklin and Witten set out to develop
a machine model of music prediction, not necessarily guided by cognitive
principles.

!Two is the maximum length in Conklin and Witten’s Short Term Memory model.
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In his research on artificial perception, Tanguiane’s system performs
segmentation based on a series of timing accentuation rules formulated by
Broda [118]. He discusses two levels of accentuation brought about by the
‘presence of relatively longer notes. Strong accentuation occurs when a short
note follows a long note, while weak accentuation occurs when two long
notes appear together. Tanguiane’s segmentation is thus based on temporal
perceptual cues in the music.

Rosenthal’s system for analysing rhythmic structures [98] takes in mu-
sic that is pre-annotated with bar lines, with accents placed on the first
notes in each measure. Rosenthal uses Lerdahl and Jackendoff’s grouping
preference rules [72], basing segmentation on time-based perceptual cues.
Rosenthal’s system deals with timing and rhythmic information and totally
ignores pitch. However, Rosenthal notes the usefulness of pitch for segmen-
tation, whereby large changes in pitch tend to accentuate certain notes, and
states that an improvement to his system would utilise pitch information
for segmentation. Rosenthal discusses segmentation ambiguity — situations
where more than one segmentation is possible. In dealing with multiple seg-
mentation solutions, Rosenthal’s system chooses the solution whose length
is closest to the previous chunk. While Rosenthal’s system immediately re-
solves segmentation ambiguity, he suggests as a possible improvement that
a system could keep multiple representations.

Of all the systems mentioned here, Rowe’s Cypher system [102] is the
one whose approach to segmentation is most based on perceptual cues. Seg-
mentation in Cypher is performed by searching for salient discontinuities of
density, register, speed, dynamic, duration, harmony, and beat. The individ-
ual discontinuities are calculated using the focus and decay method [102, p.
50], described below in Section 3.2.2. Once calculated, the presence of each
of these various discontinuities contributes a certain weight to Cypher’s total
discontinuity measure in accordance with a fixed weighting scheme. When
the accumulated discontinuity crosses a certain threshold, a segmentation
boundary is declared [101, p. 61].

While Cypher is an impressive implementation of perceptually based seg-
mentation, it has some limitations. First, Cypher incorporates an a priori
knowledge of tonality and uses it to help in determining phrase boundaries.
Second, when dealing with segmentation ambiguity, Cypher uses a fixed
weighting scheme to combine all the perceptual cues and arrive at one seg-
mentation, thus avoiding multiple segmentation hypotheses.

3.2 Segmentation in Maestro

Unlike previous systems described above, Maestro does not rely on pre-
segmented input that is manually annotated with phrase markings, nor does
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it incorporate any style-specific information. Instead, in keeping with the
cognitive realism approach, it uses perceptual cues present in the musical
surface itself to segment the performance into salient chunks. For this reason,
Maestro’s segmentation strategy is called Perceptually Guided Segmentation

(PGS).

3.2.1 System Operation

The operation of Maestro’s segmentation stage consists of three main steps:

e Input;
e Segmentation-point marking;

e Candidate Segment suggestion.

3.2.1.1 Input

Maestro receives its input in the form of a string of musical events, with
pitch in semitones, and onset time and duration information (not quantised
into standard note-lengths). See Appendix C for a detailed description of
Maestro’s data format. In keeping with the specifications set out in Chap-
ter 2, Maestro processes this input on-line. In the data available for the
experiments, information on dynamics (loudness) was either not available
or was found not to be very useful for segmentation. Therefore, dynamics
information is not dealt with in this research.

3.2.1.2 Segmentation-point Marking

Maestro identifies appropriate points of segmentation in the music by exam-
ining certain perceptual cues. Since there are multiple cues in the musical
surface, three different segmentation strategies operate in parallel within
Maestro’s segmentation stage. These strategies are implemented as three
separate segmentation modules (Figure 3.1):

1. Time Discontinuities — finds significant changes in inter-onset interval.
2. Pitch Discontinuities — finds significantly large leaps in pitch.

3. Pitch Inflection Points — finds significant changes in melodic direction.

The operation of each segmentation module is described in detail below
in Section 3.2.3. When presented with input, a segmentation module marks
points of segmentation on the musical surface. Segmentation marks are
placed automatically at the beginning and end of a piece, ensuring that
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TIME DISCONTINUITIES
PITCH DISCONTINUITIES
PITCH INFLECTION POINTS

SEGMENTATION
MODULES

Figure 3.1: Maestro’s segmentation stage, consisting of three segmentation
modules.
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Figure 3.2: Maestro’s segmentation of Bach Chorale Number 2. The three
rows of bars represent, from top to bottom: Time Discontinuity, Pitch Dis-
continuity, and Pitch Inflection Points. Lighter bars indicate segments that
are too long or two short, and thus are not suggested for inclusion in the
model.

all events are presented to the model for inclusion. This is consistent with
Jackendoft’s approach of placing a group boundary at the beginning of a
piece [61].

Recall that Rosenthal’s system [98] stores only timing information, and
therefore segments only according to timing information. In contrast, even
though Maestro only stores pitch information, it makes use of pitch as well
as timing information for the purposes of segmentation.

3.2.1.3 Candidate Segment Suggestion

A segmentation module generates a candidate segment from the notes lying
between a specific segmentation point and the previous segmentation point.
This portion of the melody is passed on to Maestro’s modelling stage for
possible inclusion in the context model.

In order to avoid very short or very long segments, upper and lower
bounds are placed on segment length. A segment is only suggested if its
length is greater than two notes and smaller than twenty notes. These
bounds were chosen to cover a wide range of segment lengths in order to
maintain flexibility across different styles.

Figure 3.2 shows Maestro’s segmentation of a Bach Chorale using its
three segmentation modules. Marks denoting segments of appropriate lengths
are coloured darkly, while marks representing segments which are too long
or too short, are drawn lightly. Even though only dark marks result in
the segment being suggested for addition to the model, both dark and light
marks are used as the beginning-points for the following segments.

3.2.2 Focus and Decay

Dowling notes that music is context dependent — local features have meaning
based on global features [44, p. 171]. With regard to segmentation, Thomson
[120] emphasises that phrase boundaries are determined by the events they
help to phrase. Since Maestro’s segmentation modules attempt to identify
significant discontinuities at which to declare segmentation boundaries, they
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Figure 3.3: The segmentation of Bach Chorale Number 6, showing focus
and decay operating in the pitch discontinuity segmentation module (middle
trace).

rely on a definition of which intervals or changes are considered significant.

To address this issue in the first two segmentation modules, Maestro
incorporates an adaptive approach based on the method of focus and decay,
used by Rowe in his Cypher system [103]. The determination of relative
significance in the third segmentation module is described below.

In the focus and decay methodology, the system keeps track of the max-
imum and minimum discontinuity magnitudes that it has seen so far. This
range (between minimum and maximum) is then used to judge the relative
magnitude of new discontinuities. With time, the minimum and maximum
bounds slowly decay towards the centre of the range, but they can be pushed
outwards again by a re-occurrence of an extreme value.

As a result of the adaptive nature of focus and decay, pieces with only
very subtle discontinuities can still be segmented properly, while those with
many large jumps will not trigger segmentation too often. This is in line
with Maestro’s focus on learning and flexibility, as Maestro must learn to
notice what is significant in each specific musical context.

The implementation of the focus and decay concept in Maestro is slightly
different from that of Rowe. Rowe maintains a small number of categories
into which a certain feature, say pitch, is classified. These categories are
stretched to cover the current maximum-to-minimum range. A discontinuity
is then declared whenever the melody crosses from one category of pitch
into another. Unlike Cypher, which maintains a range of pitches, Maestro
maintains a range of pitch interval sizes. A discontinuity is declared when the
current interval is greater than a certain percentage of the maximum interval
seen so far, as described below. Maestro imposes additional conditions on
declaring discontinuities, also discussed below.

Figure 3.3 shows focus and decay at work. The segmentation module
tracking pitch discontinuity (middle trace) at first does not view a jump of
two semitones as significant (e.g., after note 2 and after note 15). However,
after enough exposure to the step-wise nature of the melody, the threshold
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for pitch discontinuity significance decreases and the two-semi-tone interval
after note 18 is labelled as a segmentation boundary.

3.2.3 Segmentation Modules

The specifics of each of Maestro’s three segmentation modules are now dis-
cussed individually. Despite the design principle stressing flexibility, certain
values had to be chosen as initial settings. In an attempt to maintain flex-
ibility, the specific numbers reported below were set by trials with music
from different styles. Furthermore, many of the parameters are adaptive, so
the settings affect only Maestro’s handling of the beginnings of each piece.

3.2.3.1 Time Discontinuities

The first segmentation module examines the inter-onset interval (I0I) — the
difference in time between the starting points of two adjacent notes. Note-
duration is not examined directly, as it is included within IOI. Tanguiane
also looks at IOI and not at note-duration [118].

A set of maximum and minimum IOI values is maintained, and set ini-
tially to 1.0 and 2.0 respectively. The maximum and minimum values are
decayed by 10 percent for every event processed. This is a much faster decay
rate than is used by Rowe, who decays the boundary values by one semi-tone
every five seconds [102, p. 52].

Two conditions must be met for a discontinuity to be declared by this
segmentation module:

1. The current IOI must be greater than 80 percent of the maximum IOI.

2. The current IOI must be greater or equal to twice the previous IOL.

From test trials with segmenting music from various styles, both condi-
tions were found to be necessary. If only the first.condition is present, a series
of long notes in succession repeatedly triggers the segmentation module. Al-
ternatively, if only the second condition is present, a spurious discontinuity
is declared whenever a relatively short note is followed by a note of inter-
mediate length. Only by combining the two conditions are these situations
avoided. The first condition is an implementation of focus and decay. The
second condition is in line with Hiraga’s statement that a logarithmic basis
for comparing note length is prevalent, as in common music notation [55].

3.2.3.2 Pitch Discontinuities

The second segmentation module is similar to the first, but deals with pitch
instead of time. It examines the absolute pitch interval — the absolute dif-
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ference between the pitches of two adjacent notes. A set of maximum and
minimum absolute pitch interval values is maintained, and set initially to
0 and 5 semitones respectively. As with the first segmentation module, the
maximum and minimum values are decayed by 10 percent for every event
processed.

Two conditions must be met for a discontinuity to be declared:

1. The current interval must be greater than 80 percent of the maximum
interval.

2. The current interval must be greater than the previous interval.

From trials with segmenting music from a variety of styles, both condi-
tions were found to be necessary. If only the first condition is present, a
series of large intervals in succession repeatedly triggers the segmentation
module. Alternatively, if only the second condition is present, a spurious
discontinuity is declared whenever a relatively small interval is followed by a
medium interval. Only by combining the two conditions are these situations
avoided.

3.2.3.3 Pitch Inflection

The third segmentation module looks for changes in melodic direction, oth-
erwise known as points of inflection. An internal counter keeps track of how
many steps the melody has taken in the same direction (up or down) since
the most recent change in direction. Repeated notes (unisons) are ignored
by the counter.

The counter is initially set to zero. If three or more steps have been taken
in the same direction, a change in melodic direction causes a discontinuity
to be declared and the counter is reset to zero. If fewer than three steps
have been taken before a change of direction, the counter is simply reset to
zero and no discontinuity is declared.

Based on trials with music from different styles, the threshold of three
steps was found to prevent spurious inflection points from being declared
where the melody changes directions while no clear melodic direction has
been established.

3.2.4 Multiple Segmentations and Ambiguity

The usefulness of the three cues used by Maestro varies between different
pieces and different styles: for specific pieces, some methods of segmenta-
tion work better than others. For example, in Figure 3.3 the time-based
segmentation module (top-most trace) seems to yield the most intuitive seg-
mentation of the piece, breaking it up into similar-sized portions. However,
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Figure 3.4: Maestro’s segmentation of Bach Chorale number 13.

this time-based segmentation proves relatively useless in Figure 3.4, as the
melody there contains no temporal accentual information.

Maestro strives to maintain the ﬁexibility to handle music from many
different styles, thus relying on a bottom-up approach. By analysing all
these perceptual cues, (as opposed to, say, only pitch like Hiraga [55]), Mae-
stro maximises the use of the information available in the musical surface.
However, these multiple sources of information often suggest conflicting seg-
mentation hypotheses [120]. Meyer suggests that segmentation ambiguity
can be composed intentionally to serve a double purpose — Sloboda explains
that ambiguity can lead to the double result of articulation together with
forward-movingness by putting the various segmentation cues out of phase
with one another [115, p. 190].

Maestro handles segmentation ambiguity by storing all the segmenta-
tion possibilities, which are then used to construct a model of the data.
This approach is recommended by Rosenthal [98] (citing [74]) as a pos-
sible improvement to his system, which only stores a single segmentation
interpretation. This is also in line with Jackendoff’s general approach of
handling ambiguity by maintaining multiple hypotheses [61]. While Rowe
[103] combines all the possible segmentation hypotheses into one interpre-
tation, Maestro maintains them as separate hypotheses, storing multiple
segmentation interpretations into its model.

3.2.5 Perceptually Guided Segmentation

In anticipation of the discussion of Maestro’s modelling stage in the next
chapter, the issue of music segmentation is now addressed from a different
perspective: modelling efficiency and cognitively realistic modelling.
Consider the pattern ABCDEF, seen in the data. A model can store
ABC, BCD, CDE and DEF, capturing all possible three-note segmentations
of the data. Alternatively, a model can disallow overlapping segments and
instead store only ABC and DEF. Conklin and Witten [27] take the former
approach, full-overlap, while Rowe [102] and Cope [34] adopt the latter,
no-overlap. Figure 3.5 shows examples of these different approaches.

Each approach has its own advantages. The more contexts that are
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NO OVERLAP

FULL OVERLAP

Figure 3.5: Examples of three alternative approaches to segmentation and
modelling. From top to bottom: no-overlap, full-overlap and partial overlap.
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stored, the greater the robustness of the model for the purposes of prediction.
However, a full-overlap strategy can also lead to unacceptably large model
sizes, pushing the limits of memory. There is thus a trade-off between model
robustness and model compactness.

It is highly unlikely that people redundantly store all possible segments
up to a certain length when listening to a piece of music. Conklin and
Witten set out to construct an optimised machine model of music prediction,
and cognitive constraints are not a primary concern in designing their full-
overlap model. However, the present research is aimed at developing a more
cognitively realistic model of music segmentation.

An intermediate approach is proposed here which offers a beneficial com-
promise between model robustness and model compactness, and also leads
to more cognitively realistic segmentation and modelling. As mentioned
above, Perceptually Guided Segmentation (PGS) is the name given to the
segmentation implemented in Maestro, based on multiple perceptual cues in
the musical surface. Since the various perceptual cues do not always coin-
cide with each other, multiple possible segmentations are often suggested.
In such cases of segmentation ambiguity, as suggested by [98] and [74], all
segmentation possibilities are stored, leading to partial overlap in the model
(Figure 3.5, bottom).

This approach is more space-efficient than a full-overlap model, which
ignores perceptual cues and stores every possible segment. In accordance
with the aforementioned trade-off between size and robustness, with this
improvement in size-efficiency, one can expect a decrease in robustness and
prediction performance compared to the full-overlap strategy.

However, it is proposed that this expected drop-off in the robustness is
somewhat mitigated by the efficiency inherent to the perceptually guided
nature of the approach. The claim is that the segments delineated by per-
ceptual cues and selected using the PGS strategy are correlated with the
structurally salient patterns in the music. It is further proposed that these
structurally salient patterns are the ones most likely to repeat later in a
piece, and are therefore likely to be more useful for prediction. Therefore,
by storing only the more relevant segments, model efficiency is increased,
and a greater degree of cognitive realism is maintained.

This concept that some segments are more relevant than others is men-
tioned with varying degrees of explicitness in the literature. When discussing
segmentation, Sloboda states that listeners use certain cues to segment mu-
sic into manageable and “meaningful” short units [115, p. 190]. Rowe also
hints at this idea implicitly in a 1994 conference paper where he states that
input is segmented into phrases in the hope that pattern instances will be-
gin at phrase boundaries [101, p. 60]. Finally, Cambouropoulos explicitly
suggests that “perceptually-pertinent” local discontinuities should be used
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in guiding the search for “significant” patterns in the music [20, p. 46].
While this concept has been mentioned in the literature, to the author’s
best knowledge it has not been empirically tested.

Apart from the widely-supported view that people use perceptual cues
to segment music, there is also some evidence that people actually store
the music in this way. Sloboda reports experiments that studied subjects’
ability to recall patterns found in different parts of a tune. Some patterns
were taken from within the perceptually-delineated phrases in the tune,
while other patterns “straddled” phrase boundaries. The results indicate
that listeners were more likely to form accessible memory representations of
intervals within phrases. [115, p. 190]. Maestro’s strategy of constructing
the model directly from the results of the perceptually guided segmentation
process is in line with these findings.

Finally, in addition to resulting in more efficient, cognitively realistic
models for prediction, perceptually guided segmentation also fits better with
the “learning by listening” approach mentioned in Section 1.2.3, as learn-
ing (storing segments in the model) happens as a direct result of listening
(segmenting the musical surface).

It is thus hypothesised that PGS allows Maestro to capture the intrin-
sic structure of the music, and therefore leads to more efficient models for
prediction in light of the size constraints imposed by cognitive realism. To
validate these hypotheses, an experimental method called N-Note Segmen-
tation Shifting is developed and experiments are performed, as described in
Chapter 9.

3.2.6 The Circularity Problem

Maestro segments the musical surface according to local discontinuities and
points of inflection. Hiraga [56] points out that while this approach is effec-
tive in a wide variety of musical settings, it cannot handle certain instances
in which segmentation must rely on identifying parallelism (repetition of
patterns) in the music.

Repetition-based segmentation uses the re-occurrence of previously seen
patterns to inform the segmentation process. However, knowing which pat-
terns to search for usually relies on some sort of segmentation to generate
a set of patterns from the input stream, as a full search for all possible
patterns is not usually feasible. Therefore, segmentation relies on spotting
repetitions, while spotting repetitions in turn relies on segmentation. The
inherent circularity of this problem is noted by Hiraga [56] and Larson [70].

Maestro deals with repetition-based segmentation in its parsing stage,
and the circularity problem is addressed in full detail in the discussion of
parsing in Section 6.2.4.
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3.2.7 Comparison with Cambouropolous

The work of Emilios Cambouropoulos, specifically the Local Boundary De-
tection Model (LBDM) [19] is relevant to this discussion. Cambouropoulos
describes a system for segmenting musical input based on the Gestalt prin-
ciples of proximity and similarity, identifying discontinuities in both pitch
and time signals. While there are significant similarities with the present
work, the primary difference lies in the approach. Cambouropoulos’ LBDM
determines boundaries based on a local context of a few notes at a time. In
contrast, Maestro adopts the Focus and Decay approach which considers a
much larger context in making boundary decisions. Cambouropoulos’ work
is considered again in Section 6.2.4 during the discussion of the circularity
problem. :

3.3 Summary

Segmentation is a crucial component of music cognition. Listeners must
break up the musical input to interpret a performance and store it in mem-
ory. Evidence from cognitive musicology indicates that segmentation relies
heavily on perceptual cues in the musical surface. A number of previous ma-
chine models, such as Cope’s and Conklin and Witten’s, ignore perceptual
cues in performing segmentation.

In keeping with the general focus on cognitive realism, Maestro’s seg-.

mentation stage operates based on bottom-up perceptual cues in the musical
surface. Three perceptual cues are monitored by the individual segmentation
modules: timing discontinuity, pitch discontinuity, and points of inflection
in pitch. In determining the relative significance of various discontinuities, a
modified form of the focus and decay strategy used by Rowe is incorporated
to allow Maestro to adapt to the changing musical context.

Various cues can often lead to conflicting segmentation possibilities. In
contrast to previous systems, Maestro stores all possible segmentations in its
model. This is in keeping with Jackendoff’s general approach of maintaining
multiple hypotheses when faced with ambiguity.

It is proposed that Maestro’s perceptually guided segmentation strategy,
apart from being more cognitively realistic, leads to more efficient models
for prediction than other segmentation strategies.

Repetition-based segmentation and the circularity problem inherent to it
are dealt with fully in Chapter 6, which deals with Maestro’s parsing stage.




Chapter 4

Modelling

The purpose of modelling is to construct and maintain an internal represen-
tation of what the system learns from its musical experiences for future use.
This chapter describes Maestro’s modelling capabilities. First, the relevant
issues in cognitive musicology are presented, including a discussion of mu-
sical memories and musical storage formats. Then, different approaches to
storing music information are considered and context models are formally
introduced. Finally, Maestro’s modelling stage is described, including the
concepts of more cognitively realistic context models and of agent-based
activated modelling.

4.1 Background

The way one hears music is crucially dependent upon what one
can remember of past events in the music... A note or chord
has no musical significance other than in relation to preceding or
following events. (Sloboda, [115, p. 174-5])

When listening to a piece of music, people store information for use in
understanding that piece as well as in understanding future pieces. This
information is stored in different types of musical memory.

4.1.1 Musical Memory

As information accumulates in memory over time, the listener’s understand-
ing of a piece or of a style gradually increases. Therefore, the storage of infor-
mation in musical memory forms the basis for musical learning. It is widely
held that there exist at least three types of musical memory: Echoic Mem-
ory (EM), Short Term Memory (STM), and Long Term Memory (LTM). As

44
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Echoic Memory Short-Term Memory Long-Term Memory

Figure 4.1: The three types of musical memory modelled in Maestro.

their names suggest, these types of memory have different time-spans and
can be used for different purposes. Each of these is now described in turn.

4.1.1.1 Echoic Memory

Echoic memory keeps track of items heard in the very recent past, and ac-
counts for people’s ability to internally review an audio snippet shortly after
hearing it. Berz [9] describes a “musical inner speech” which is stored in a
“Music Memory Loop”, and Fraisse and Turner and Poppel (in [98]) describe
a small auditory buffer of around 3 seconds. Dowling states that the audio
memory usually contains information from the most recent 5 seconds, but
can extend as long as 10 seconds [44, p. 180]. This information represents
the psychological present. If people are asked to remember longer things,
they must first break them up into shorter segments. For this reason, Dowl-
ing states that phrase lengths in songs are commonly about 2.5 - 5 seconds
long.

Carroll-Phelan and Hampson [22] describe an “auditory buffer” for the
brief retention of relatively unprocessed auditory input . This accounts for
people’s ability to regroup recent musical events into phrases after already
having heard them, and thus forms the basis for the retrospective listening
phenomenon described in Chapter 2. Maestro’s parsing stage incorporates
this concept of echoic memory in its ability to perform parsing retrospec-
tively, as described in Chapter 6.

4.1.1.2 Short Term Memory

Short term memory is dynamic in the sense that it adapts to a particular
sequence [27]. STM keeps track of items that are particular to the current
piece being heard, such as themes and repeating patterns. This information
falls into Narmour’s category of intra-opus style. Berz cites evidence that
STM for music is at least 180 seconds in length [9]. Both Rowe [103] and
Conklin and Witten [132] assign STM the time-span of the current piece,
and Maestro adopts this approach.
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4.1.1.3 Long Term Memory

Long term memory can store information between listenings, and is associ-
ated with Narmour’s extra-opus style. Stylistic rules or trends that govern
items such as cadences or common progressions fall within the scope of LTM.
High level stylistic information seems to be associated with long term mem-
ory, and Berz cites evidence that people are able to perform certain high
level processing with musical information stored in LTM, but not with that
stored in STM [9].

When listening to a piece from a particular style, information about
the style is stored and updated in LTM. Therefore, with each listening, the
ability to understand and attend to more of the complexities of the style
increases. In this way, LTM forms the basis for the learning of musical
styles. Both Rowe [103] and Conklin and Witten [132] maintain separate
models for STM and LTM, as does Maestro.

4.1.1.4 Episodic, Semantic and Working Memories

Dowling draws a further distinction: Semantic memory records information
about global invariants that are generally true for a style, while episodic
memory stores specific local features and accounts for people’s ability to
remember specific selections of music, such that the next time that particular
piece is heard, it is recognised as familiar [44, p. 165].

The term Working Memory is sometimes used synonymously with echoic
memory, and sometimes with short term memory. However, it usually refers
to the set of resources utilised for performing certain tasks of memory in-
tegration and look-up. It can be thought of as a run-time sketchpad for
performing calculations that rely on the current musical input as well as
information stored in other memories. The interested reader is referred to
[9] for a recent theoretical model of working memory.

4.1.2 Forgetting

Almost as important as learning in music, is forgetting. Over time, the
presence of certain items fades in memory. Forgetting affects the various
types of memory differently.

In echoic memory, information is stored for only a few seconds. Whatever
is not stored elsewhere (i.e. in STM or LTM) within that time is lost. This
is implemented in Maestro’s parsing stage, where ambiguity can cause the
parsing of the music to be delayed for a short while, but not indefinitely, as
described in Chapter 6.

With short term memory, information is stored only for the duration of
a listening. At the end of a piece, or within a few minutes, the information
is forgotten, unless it is stored in long term memory. According to Berz,
information held in STM is easily lost if not rehearsed [9]. Conklin and
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3. E flat major; Begin on 6th scale degree; +2 +2 +1, -6.

Figure 4.2: Three alternative melodic storage formats of the opening of J. S.
Bach’s Muiskalisches Opfer (BWYV 1079). 1. Melodic contour, 2. Intervallic
representation (semitones), 3. Scale-step representation. Score taken from
(Fuller, [48)).

Witten explain that the short term model is transitory in the sense that it
is discarded after each song [27, p. 57]. Maestro’s implementation follows
this approach.

In LTM, information is lost over time. Rowe’s [102] system is designed
so that the strength of patterns stored in long term memory fades if they are
not reinforced through repetition. For reasons explained below in Section
4.4.1.2, Maestro does not implement forgetting in long term memory.

4.1.3 Format of Storage

There are different theories concerning how musical information is stored in
the various types of memory. Sloboda [115] considers three possible formats
for storing melodies, examples of which are shown in Figure 4.2:

1. Melodic contour — directional information of melodic progression.

2. Intervallic representation — exact information about both the direction
and magnitude of the pitch intervals.

3. Scale-step representation — information about the relative intervals in
terms of scale degrees.

It is well known that people can recognise melodies starting at differ-
ent pitches (transpositions) and played at different tempos [44, p. 128,
and so a format of musical storage must allow for this. In considering the
above three possibilities for musical storage formats, Sloboda discusses ex-
periments in which subjects are asked to compare different types of musical
transpositions. Sloboda states that when people store melodies, they record
the initial key and the relative scale degrees of the following notes.. Dowling
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[44] similarly suggests that people use an internal sense of musical scale to
store melodies in a movable do re mi format. He says that maintaining an
internal sense of scale allows the listener and composer to have the same
schematic model, which aids in communicating the message of the music.
As Maestro does not maintain an explicit sense of tonality, it cannot store
scale-based information. .

While Sloboda points out that melodic contour is “too crude” [115, p.
183] for most purposes, both he and Dowling note that storing melodic
contour can still be useful in certain contexts — particularly in atonal settings
where a clear tonal scale system is not present, or in the early parts of tonal
pieces when the key has not yet been established [44, p. 134]. Dowling
concludes that people use a combination of both scale steps and contour
in remembering a melody. However, when it comes to storing information
longer term, both Sloboda [115] and Dowling [43, p. 140] point out that
exact intervals are used in place of contour, as people have the ability to
distinguish between many similar-contour melodies they have heard in the
past.

In evaluating the various storage possibilities, it is also important to
consider developmental factors. People attain increasingly complex musical
capabilities at different stages over the course of development. It seems
that young children, who do not yet have a developed sense of tonality, rely
more on contour information. As they grow, their ability to handle tonal
information gradually develops, and they come to rely more and more on
tonality in processing and storing musical information. Dowling reports that
by age five, children have a sense of the tonal centre in a piece [44].

In [42], Dowling reports empirical evidence that inexperienced listen-
ers represent melodies as sequences of pitch intervals that remain invariant
across context shifts, while more experienced listeners appear to represent
melodies as scale-step sequences that are affected by context. Since Mae-
stro is intended as a model of an inexperienced listener undergoing music
learning, it stores melodies in the form of pitch intervals, which allows for
recognising melodies despite pitch transpositions or tempo changes.

4.2 Machine Modelling

A number of issues arise in designing a machine model of musical infor-
mation storage that is guided by cognitive principles. Maestro’s model is
used primarily for parsing and prediction, and these two purposes are kept
in mind when addressing the issues of modelling approach, representation
format, and model type.
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4.2.1 Approach to Modelling

The first issue in designing a machine model is the modelling approach.
There are two common approaches to prediction: statistical time-series
methods, and model-based methods [76, 108]. Time series methods look
for trends in the data and attempt to extrapolate them into the future. In
contrast, model-based approaches approach the task by developing a model
of the source that generates the data and then using this model to predict
what will come next. Since music cognition is widely believed to rely on some
forms of internal models of musical structures, the model based approach is
chosen for this task.

4.2.2 Representation

The second issue that needs to be addressed when designing a model is
how the data will be represented in the model. In a survey of musical
representation systems [130], Wiggins et al. state that proper evaluation of
musical representation systems should focus on the particular purpose for
which a representation will be used.

With this in mind, a major requirement of the present research is the
flexibility necessary for learning to listen to music from different styles. A
customised internal representation [95, 127] typically embodies certain as-
sumptions and thus restricts the flexibility of a model. In order to maintain
the generality of the model, Maestro instead uses the performance as a
model of itself, storing segments of the musical surface. This is in line with
Brooks’ theory’s of intelligence without representation [15], in which systems
handling information from the environment avoid symbolic processing and
instead use the environment as a model of itself. This general approach,
also adopted by Bryson et al. [17], leads to system robustness in real-world
noisy environments where hard-coded representations often prove too rigid
and fragile.

The only processing that Maestro performs on the music is the conversion
of absolute pitches to pitch intervals. As mentioned above, this allows for
recognising melodic fragments despite transpositions, a skill known to be
present in human listeners. Cope [34], Rowe [104], and Conklin and Witten
[132] also follow this approach. Other options for machine representations
of melody are reviewed by Cambouropoulos in [19].

4.2.3 Model Type

The third issue to consider is then: What type of model should be built?
The answer clearly depends on the type of environment that needs to be
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modelled — in this case, a melody. Maestro’s goal of enabling a study of
music learning requires that a model have the flexibility to learn music from
different styles, while maintaining the clarity of system operation necessary
for a careful study of the learning process.

Symbolic rule systems are generally rigid, and their flexibility in handling
music from different styles is limited by the initial design (see examples in
[72, 127] and a review in [97, Ch. 19]). On the other hand, connection-
ist systems offer more flexibility, but less clarity of system operation (see
examples in [10, 51] and a very recent and comprehensive review in [52]).

In contrast, the flexible yet clear structure of Markov models (explained
below) serves the purposes of this research well. Various types of Markov
models have been used in different ways for music composition, as reviewed
by Ames [4].

One final issue relating to modelling is now addressed: How complex
should a model be? A few options are considered. A Markov-1 environment
is one in which the next state relies solely on the information contained in
the previous state [96]. Such a model allows for predicting musical events
based only on the previous event received. This may be a good start, but is
probably too limiting, as people can clearly use more information in making
musical predictions.

A Markov-k environment is one in which the present state can be de-
termined by examining the previous k steps. This is a more reasonable
description of melodies, as it utilises the information present in larger musi-
cal structures for prediction. To model a Markov-k environment, a k-order
context model can be used.

More complex models can be considered. Finite state machines, stack-
based models or even general Turing machines are capable of performing
complex operations on stored musical data [96]. It is not clear that all these
capabilities are present in people’s musical abilities, let alone that they are
useful for the musical purposes of the present research.

Therefore, the modelling approach used here is the construction of con-
text models from segments extracted from the music. Context models, oth-
erwise known as N-grams, have been used for text prediction [36], text
compression [7], and game-playing (Pierre-Yves Rolland, personal commu-
nication). Context models have also been used for musical purposes. Con-
klin and Witten have conducted extensive research on musical prediction
with context models of Chorale melodies (most recent in [27] and [132]),
and have shown their machine results to be highly correlated with human
data. Brooks et al. [14] also designed a system to learn Chorale melodies
with context models, this time for the purpose of composition. Rowe uses
a form of context model for automatic accompaniment in his Cypher sys-
tem [103]. In more recent work, Ponsford el al. [91] use a context model to
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learn abstract stylistic harmonic progressions for the purpose of music com-
position in the learned style. For the present research, the context model
paradigm is chosen as appropriate for the task at hand.

4.3 Context Models

Context models are a subclass of the probabilistic finite-state, or Markov
class of grammars [27, p. 55]. They store previously seen sequences and use
them to predict future data values. A context model consists of three parts:

1. A database of sequences;
2. A frequency count attached to each sequence;

3. An inference procedure used to make predictions from the database.

Context models can learn with experience. When a new pattern of pitch
intervals is noticed in the input, it is added to the context model. A fre-
quency count is maintained for each pattern in the model, and the repetition
in the input of a pattern already stored in the model causes its frequency
count to be incremented.

In Maestro, each stored sequence is used as a context for the purposes of
matching incoming musical data and generating appropriate expectations.
For example, after the sequence ABC is seen and stored in the database, the
appearance of AB in the input will lead the model to predict C as the next
event.

Frequency counts are used as weiglits to integrate the various predictions
generated when multiple contexts are activated simultaneously. In this way
the context model can generate probabilities for different events occurring.
Learning with context models involves either adding new segments or in-
crementing frequency counts of existing segments. These are referred to
as structural and statistical learning respectively [27, p. 56]. For this rea-
son, according to Conklin and Witten, induction of context models can be
viewed as a hill-climbing search of a specialisation hierarchy of probabilistic
theories.

As mentioned in Section 2.1.2, the present research rejects the knowledge
engineering approach due to its dependence on the biases of the designer.
In contrast, context models are totally inductive, and the resulting model is
solely the product of the system’s musical experiences. According to Bell et
al. [7, p. 18] adaptive models discover for themselves the regularities that
are present, and do so more reliably than people. They are not influenced by
prejudice or preconception, but instead, their preconceptions are dictated
precisely and predictably by the kind of data used to train them.
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The length of the segments stored in the model is referred to as the
model’s order. Most context models have fixed-order — all stored segments
are of the same length. In determining which order is best suited for a par-
ticular task, two important trade-offs arise: model size and model generality.

4.3.1 Model Size Trade-off

The first trade-off in choosing the order of a context model concerns the
model size, and affects the training speed and prediction performance of the
system: Shorter contexts make use of less information to generate predic-
tions and thus generally lead to lower quality prediction performance. Still,
these lower-order context models remain small and are easy to train.

Conversely, longer contexts lead to better prediction, since the model is
said to have better resolution [7]. For example, using the context ABCDE
to predict E after seeing ABCD will be more reliable than using the context
DE to predict E after seeing D. However, due to to the exponential increase
of model size with increasing order, the model becomes much larger and
takes much longer to train. This trade-off is referred to as the best-match
problem in 7, Ch. 3].

4.3.2 Model Generality Trade-off

Apart from the issues of training time and model size, it is also important
to consider the generality of the model after learning. Conklin and Witten
[27] explain that very low order models are too general, and do not cap-
ture enough structure of the concept, while very high order models are too
specialised to the examples from which they were constructed, and do not
capture enough statistics of the concept.

4.4 Modelling in Maestro

Maestro’s modelling is a direct result of its segmentation strategy: after
segmenting the music according to perceptual cues, Maestro stores the de-
lineated musical information in its model. Dowling states that memory for a
piece is organised into a set of episodes of varying length, and that phrasing
is sometimes complicated by the overlap of perceptual cues [44, p. 165].
This is similar to the way in which Maestro’s segmentation leads to mod-
elling. In keeping with the general goal of using cognitive principles to guide
Maestro’s design, Maestro’s modelling stage is an attempt to develop a more
cognitively realistic context model.
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4.4.1 Context Modelling: Implementation

Maestro maintains separate context models for short term memory and long
term memory. Echoic memory is addressed during the parsing stage, as
described in Section 6.2.2.3. Model-building in Maestro consists of two main
steps:

e STM construction;

e STM to LTM roll-over.

4.4.1.1 STM Construction

Maestro’s segmentation modules suggest various segments to the modelling
stage for possible inclusion in the STM context model. If a suggested seg-
ment does not exist in the STM context model, it is added as a new segment.
If an identical segment already exists, the frequency count of the existing
segment is incremented. There is no minimum threshold for the number of
repetitions necessary for inclusion in the context model, as suggested by [7].

4.4.1.2 STM to LTM Roll-over

At the end of each piece, Maestro transfers the contents of the STM model
to the LTM model. This process again involves checking for duplicates to
determine whether new segments should be added to the model, or whether
the frequency counts of existing segments should be incremented.

The STM context model is completely reset at the start of each new
piece, and thus forgetting takes place in short term memory. This is similar
to the approaches of both Conklin and Witten [27] and Rowe [103]. However,
like Conklin and Witten, but unlike Rowe, Maestro does not implement
forgetting in long term memory. This would involve choosing a decay rate at
which old, unreinforced patterns fade from memory. As the present research
attempts to conduct a systematic study of music learning, an arbitrarily
chosen decay rate would have a direct influence on music learning, affecting
the results in an arbitrary way. Therefore, Maestro ignores forgetting on the
long term level. This is especially relevant to the multi-style experiments
described in Chapter 10, where experience with a previous style very much
affects listening to a new style.

4.4.2 More Cognitively Realistic Context Modelling

Sloboda notes that the strategy of storing all melodic segments can quickly
run into memory limitations. However, by capturing repetitions in the mu-
sic, storage can be made more efficient [115, p. 190]. The context modelling
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methodology is in line with this approach, and patterns that repeat are
stored only once.

As mentioned before, Conklin and Witten report some impressive results
with using context models for predicting Bach chorales [132]. However, Con-
klin and Witten’s is an optimised machine-based approach, as opposed to
a cognitively realistic one. Therefore, their system has a number of limita-
tions with regard to the specifications of cognitive realism pursued in the
present research. Conklin and Witten’s system ignores perceptual cues in
segmenting the music, and instead uses an exhaustive method that stores
an unrealistic amount of information after each listening. Moreover, Con-
klin and Witten encode a set of style-specific knowledge into their system
to assist in prediction, ignoring issues of pan-stylistic potential and music
learning.

The present research seeks to extend the context modelling-based ap-
proach of Conklin and Witten and make it more cognitively realistic. As
mentioned in Chapter 3, this is accomplished by allowing the lengths of the
segments stored in the context model to vary according to the perceptual
cues mentioned in Chapter 3. In this way modelling is intimately connected
with segmentation. This approach maintains the model’s flexibility to vary
the segment length appropriately, according to the current musical context.
This also leads to Maestro’s ability to generate appropriate multiple-step
ahead predictions, as discussed in the next chapter.

Maestro’s modelling strategy addresses the model size trade-off. As men-
tioned in the previous chapter, a key assumption in Maestro’s design is that
due to the relevance of the initial segmentation of the data, all the possi-
bilities for segmentation do not need to be considered for the purposes of
prediction. This keeps the model size down by storing only the more relevant -
segments of various lengths, without having to fill in the entire exponentially
expanding model space. Experiments performed to validate this approach
are reported in Chapter 9.

The model generality trade-off is also addressed in that contexts of var-
ious lengths are stored, thereby not biasing the model towards being too
specific, nor too general.

Although not called as such explicitly, Rowe’s system also incorporates
a variable order context model based on perceptual cues to aid in automatic
musical accompaniment. However, as discussed in Chapter 3, Rowe does
not store multiple segmentation hypotheses, and his system incorporates a
style-specific sense of tonality.
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Figure 4.3: Activated modelling. A context model segment labelled A is
shown (left), containing a pattern of three notes that has occurred twice
(frequency = 2). When this segment is activated, a listening agent is in-
stantiated (right), having the same label, the same three note pattern and
the same frequency.

4.4.3 Activated Modelling: Listening Agents

Maestro is based on the principle of active-listening discussed in Section
2.2.7. Maestro also follows Jackendoff’s [61] approach of maintaining mul-
tiple hypotheses when dealing with ambiguity. In implementing these two
approaches, Maestro incorporates the multi-agent system paradigm into its
design. Agents and multi agents systems were briefly introduced in Section
1.3.3. '

Unlike the works of Rowe [103], Conklin and Witten [132], Brooks et al.
[14] and Ponsford et al. [91], the context model stored in Maestro’s modelling
stage is not used directly for the purposes of prediction and parsing. Instead,
the model is activated, as illustrated in Figure 4.3.

The activated modelling approach involves four steps:

Segment activation;

Agent instantiation;

Agent-based prediction;

Agent-based parsing.

4.4.3.1 Segment activation

A segment in the context model is activated whenever its pattern of pitches
begins to match the pattern of pitches appearing in the input data. Specifi-
cally, if the current pitch interval in the input matches the first value stored
in the context model segment, the segment is activated.
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4.4.3.2 Agent instantiation

Upon activation of a segment, a reactive listening agent is instantiated from
that segment. A listening agent is an autonomous entity that monitors the
musical input and serves as a reactive embodiment of its template — the
segment from which it was instantiated.

The goal of an agent is to advocate the interpretation of the musical input
according to its template. It accomplishes this goal in two ways: prediction
and parsing.

Listening agents are activated separately from the STM and LTM mod-
els. Agents are instantiated with a template, a frequency count, and a
unique identification number. See Appendix B for a detailed description of
the agent class declaration. There are times when agents with identical tem-
plates can appear in both the STM and LTM models, but since prediction
and parsing are handled and recorded separately for STM and LTM, this is
of no consequence.

4.4.3.3 Agent-based prediction

In the first phase of its short life, the matching phase, an agent continually
compares its template with the input. If more than half of the template
is matched correctly by the input, the listening agent begins to generate
predictions based on the portion of its template still to be matched by the
input. Due to the perceptually-based variable-order context models, ap-
propriate multiple-step-ahead predictions are generated, as described in full
detail in the next chapter. If a mismatch occurs at any point, the matching
is halted and the agent terminates.

4.4.3.4 Agent-based parsing

If and when the input pattern matches the segment completely, the agent
enters the parsing phase, during which it attempts to label the just-heard
input pattern as being an instance of its template. A central contribution of
this research is the multi-agent system developed to generate, maintain and
reconcile multiple parsing hypotheses simultaneously and on-line. Parsing
is described.in full detail in Chapter 6.

4.4.3.5 Design Considerations

Maestro follows Minsky’s idea that learning involves the addition of new
agents [82]. Therefore, as a result of listening, a reactive model of the music
is constructed.
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In maintaining STM and LTM frequency counts, one option would have
been to increment the frequency counts whenever a duplicate segment is
suggested, similar to Conklin and Witten’s system. However, unlike Conklin
and Witten’s system, the segmentation in Maestro is not exhaustive, and
certain repetitions of a segment might be missed by the PGS segmentation
modules. Therefore, in Maestro, frequency counts are incremented whenever
an agent reports a complete match of the input with its template. This
is a more targeted search for repetitions, as Maestro examines only those
patterns originally delineated by perceptual cues, which according to the
hypotheses tested in Chapter 9 are the more relevant patterns.

Another possible modification to Maestro’s design is to immediately store
each new segment as an agent, without maintaining a separate context
model. This strategy is used by Rosenthal in [98], and the model he de-
scribes exists solely in the collection of rhythm agents. However, since it
only maintains one instantiation of each agent, Rosenthal’s system cannot
track two overlapping occurrences of the same pattern. Maestro, on the
other hand, maintains a separate context model from which listening agents
can be instantiated as needed. This allows for the tracking of multiple over-
lapping instances of a single pattern.

4.5 Summary

This chapter has reviewed Maestro’s modelling stage. When listening to-
music, people store information about what they hear for future use. This
information may be stored in different types of memory, each having a differ-
ent time-frame and function. Three types of musical memory are modelled
in Maestro: echoic memory, short term memory, and long-term memory.
Maestro follows the work of Conklin and Witten and stores melodic inter-
vals in separate short and long-term context models.

The focus of this research is to make the context modelling approach
more cognitively realistic. This is achieved primarily through the variable-
order contexts that result from perceptually guided segmentation. This
approach allows Maestro to generate multiple-step-ahead predictions. Addi-
tionally, Maestro’s model stays within more cognitively realistic constraints
on model size and growth, and results in more efficient models for prediction.

In keeping with the active listening approach, and with Jackendoff’s
theory of maintaining multiple simultaneous hypotheses when faced with
ambiguity, Maestro incorporates the multi-agent system paradigm into its
design. The context model is activated by instantiating various segments
into autonomous reactive listening agents. Once instantiated, the listening
agents predict and parse the musical information.




Chapter 5

Prediction

When listening to music, people generate predictions about what is to come
- next. This chapter describes Maestro’s prediction capabilities, which include
the generation of appropriate multiple-step-ahead predictions, and the han-
dling of prediction ambiguity. First, the relevant background from cognitive
musicology is reviewed. Then, entropy-based performance measurements
are formally introduced. Finally, Maestro’s prediction stage is described,
with a focus on the agent-based prediction methodology.

5.1 Background

Music theorists and experimental psychologists will certainly agree
that expectancy, both conscious and subconscious, plays a crucial
role in the perception and cognition of music. (Narmour, [86, p.

417])

The ability to generate expectations about upcoming events in a per-
formance is a central aspect of music cognition. When listening to a piece
of music, listeners use their previous musical experiences to guide their ex-
pectations about what is to come next [68]. This phenomenon is variously
referred to as prediction, prospective hearing, expectation, implication, or
anticipation. A review of the psychological literature about expectancy can
be found in [110].

Musical prediction is closely related to musical modelling. Adachi and
Carlsen cite experimental evidence that children internalise culture-specific
melodic prototypes that, in turn, are claimed to be a basis of musical ex-
pectancy [1]. Krumhansl points out that studies of musical expectancy
uncover a listener’s knowledge about musical patterns and the psychological
processes used to encode, organise, and remember music [68].
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The expectations for what will happen at a particular time in the future
can change as the piece progresses and more is learned about the music.
Krumhansl therefore adds that studies of musical expectation offer insights
into the dynamic processing of information over time, with continuously
changing expectancies for subsequent events [68, p. 57].

Predictions are influenced by a number of factors — three levels of infor-
mation used for making predictions are mentioned in the literature:

1. Innate: Narmour discusses bottom-up expectancies, resulting from
the perceptually immediate musical context [86, 87]. According to
Narmour, these expectancies are based on a universal set of innate
melodic implications.

2. Short Term Memory: This level concerns information specific to a
particular piece and is associated with Narmour’s Intra-Opus style.

3. Long Term Memory: This final level concerns information abstracted
from large number of sequences, and is associated with Narmour’s
Extra-Opus style.

As mentioned in Section 1.4.1, Maestro does not model innate musical
preferences. Instead, the focus here is placed specifically on the learned
aspects of musical intuition, and Maestro’s design therefore addresses levels
2 and 3 above.

An additional distinction can be drawn concerning the type of schema
used to generate expectations. The first type is a time-dependent event-
hierarchy of a sequence of notes seen before and predicted to occur again.
The second type is a time-independent tonal-hierarchy stipulating stability-
conditions of certain pitches in a tonal framework (see [44, p. 133]). As
Maestro does not maintain an explicit sense of tonality, only the first type
of schema is handled.

Dowling states that expectancies may not always specify exactly what is
to come next, but can instead be more general, allowing for small deviations
[44, p. 167]. Similarly, Jackendoff [61] suggests that a specific musical ex-
pectation places constraints only on a certain set of musical parameters or
features, leaving the others unconstrained. For example, a certain harmonic
progression in a piece of Western music could create the expectation that
the next chord be in the dominant scale degree. This constraint, however,
leaves a degree of flexibility for the actual pitch of the soprano note, and
does not in any way address the duration of the note or its loudness. With
regard to these issues, Maestro’s agents generate only specific predictions
regarding pitch.

People’s ability to generate musical predictions multiple-steps ahead of
time was described in Section 2.2.3. As explained below, Maestro is capa-
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ble of generating appropriate multiple-step-ahead predictions in accordance
with the current musical context.

5.2 Performance Measure: Entropy

In Section 1.3.4, it was concluded that prediction performance is an ob-
jective measure for monitoring the progress of a system modelling music
learning. The next question to address, then, is what method to use in mea-
suring prediction performance. One option is to have the system output a
single prediction about the upcoming note. This prediction can then be val-
idated against the actual observed data and the ratio of correct to incorrect
responses can be maintained.

While this method would reflect the progress of learning, it would not be
an appropriate measure for music prediction, as Carlsen suggests that ex-
pectancies select a set of tones rather than a single tone [68, p. 58]. Sloboda
also notes that an interesting melody has multiple, sometimes conflicting,
implications [115, p. 163]. Therefore, a method is needed in which credit is
appropriately assigned to these multiple predictions. For example, if a lis-
tener’s second-ranked choice ends up being correct, the listener should not
be evaluated as being totally wrong.

To this end, Conklin and Witten’s music prediction system does not se-
lect only one prediction, but instead generates a full probability distribution,
with probabilities assigned to all the different possible next-note values. The
segments in the context model that match the current musical context are
all used to generate predictions which are then integrated into one prob-
ability distribution. This integration is described below. The probability
distribution is not a general purpose one, but rather one that is customised
according to the specific musical context.

As a measure of performance, Conklin and Witten calculate the entropy
in order to evaluate how well the generated probability distribution matches
the actual observed note. Bishop discusses two interpretations of entropy
[11, pp. 240-245]. One views entropy as information content, the other as
a measure of disorder. These two types of entropy are used in Maestro for
different purposes. They are now formally described in turn.

5.2.1 Information Content: Prediction Entropy

Entropy can be interpreted as a measure of information content, or degree
of surprise. This type of entropy is referred to here as prediction entropy,
and is the entropy used by Conklin and Witten in [132].

Prediction entropy measures the degree of surprise experienced by the
system upon observing a specific event, and is given by the equation:
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Figure 5.1: Various probability distributions generated by Maestro when
predicting an upcoming pitch interval. The respective prediction entropy
and overall entropy values for each probability distribution are shown.
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E, = —loga(pn) (5.1)

where p,, is the probability assigned by the system to the event n occur-
ring in the input.

The value of prediction entropy depends both on the probability distri-
bution generated by the system and on the value that is actually observed.
(Entropy is calculated here using the hypothesis testing approach [26, 125],
in which the probabilities induced from the music heard so far (training set)
are used to generate a probability distribution which is then combined with
the incoming event (test set) in Equation 5.1.)

A totally certain event (probability of 1.0) leads to a prediction entropy
of zero, while an unexpected event leads to a higher prediction entropy.
Figure 5.1 shows examples of different prediction scenarios and the result-
ing entropy values when Maestro is predicting an upcoming pitch interval.
The better the prediction, the higher the probability assigned to the actual
observed value, and the lower the prediction entropy. Thus, the goal of a
prediction system is to generate probability distributions that result in the
lowest prediction entropy possible.

Prediction entropy is based on the landmark work in information the-
ory by Claude Shannon [114]. In extending Hartley’s earlier work, Shannon
describes a scenario where a message is being sent over a noiseless commu-
nications channel. Both the sender and the receiver share a model of the
set of probabilities of each message being sent. As a result of these proba-
bilities, each message can be said to have a certain amount of information
content: a high-probability message is expected by the receiver, and does
not contribute much information, while a low probability message surprises
the receiver, and is said to have a high information content. For efficiency in
transmission, those messages appearing frequently (high probability) should
be assigned shorter codes, while those appearing infrequently (low proba-
bility) should be assigned longer codes. Shannon’s noiseless coding theorem
states that the optimal length of a message in bits can be computed by the
entropy formula given above.

5.2.2 Degree of Disorder: Overall Entropy

The second interpretation mentioned by Bishop views entropy as a measure
of disorder and is referred to here as overall entropy. This measures the
certainty of the prediction, or alternatively, the sharpness of the probability
distribution generated by the system for the current musical context. Over-
all entropy is given by the equation:
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E, == pnloga(pn) (5.2)

where p;, is the probability assigned by the system to the event n occur-
ring in the input, and the sum is calculated over all possible observable
values n.

Unlike prediction entropy, overall entropy is independent of which note is
actually observed; it depends only on the probability distribution generated
by the system. A sharp distribution with all the probability mass placed on
one value, receives an overall entropy of zero. Conversely, a relatively flat
probability distribution, without any defined peaks (high uncertainty), re-
ceives a high overall entropy. Figure 5.1 presents some illustrative examples.

The highest overall entropy results from a totally flat distribution, with
all possible values assigned equal probability (chance). This maximum over-
all entropy value depends on the number of possible observable values in the
input. Conklin and Witten’s system chooses between 20 possible pitches
(middle C to G above the staff) [77], leading to a maximum overall entropy
of 4.32. In order to maintain the flexibility to handle a larger range of pitch
intervals occurring in different styles, Maestro chooses between 121 possible
pitch intervals (-60 semitones to +60 semitones), leading to a significantly
higher maximum overall entropy level of 6.92. The same maximum values
for the two systems (4.32 and 6.92) also apply to prediction entropy.

5.2.3 The Zero Frequency Problem

While both types of entropy prove to be useful measures, an important
complication arises: entropy is not defined for a probability of zero since the
logarithm of zero is undefined. In the field of text compression, this is called
the zero-frequency problem [7], which arises when a compression system us-
ing an adaptive model (based on Shannon’s coding theory) encounters a
value that it has not seen before. The model is unable to generate an ap-
propriate code for the value since it has a probability of zero. To get around
the zero-frequency problem, each possible value needs to be assigned a finite
probability. This applies even if the system has no reason to believe from
its experiences that a certain value will come next. In this way, the system
“covers all the bases.” Various ways of accomplishing this are described in
[7, Ch. 3].

In addressing the zero-frequency problem and distributing some of the
probability mass between all the possible values, a trade-off arises between
maximising the probability assigned to correct predictions on the one hand,
and minimising the damage of incorrect predictions on the other.
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Conklin and Witten [27] deal with the zero frequency problem by arrang-
ing that every possible next event have some non-zero probability. This is ac-
complished by blending using the partial match blending algorithm [132] to
address the zero frequency problem. In brief, this involves using lower-order
context segments when higher order context segments have zero-frequency.
Westhead and Smaill [125] use a similar method. Maestro approaches the
zero-frequency problem slightly differently, as explained below.

5.2.4 Musical Entropy

Entropy and information theory have been used for many years to address a
number of musical issues. Leonard Meyer [79], at least since the 1950’s, has
been a proponent of applying information theory to music. In the 1960’s,
Hiller and colleagues [53, 54] performed information theoretic analyses of
musical scores. More recently in 1992, Coffman [24] used information theory
to measure the originality of compositions produced by children before and
after formal instruction. Westhead and Smaill [125] also use entropy for the
purposes of style discrimination.

Following the work of Conklin and Witten [27], prediction entropy is
used as an objective measure for gauging prediction performance, which
depends in part on the system’s model. As Conklin and Witten explain,
the information content of each successive note in a piece of music is not an
intrinsic musical property, but instead depends on the listener’s own model
of the musical style [132]. As a model improves, so do the predictions,
thereby lowering the prediction entropy.

There is a limit to this improvement, however. Even expert human lis-
teners, well-trained in a particular musical style, do not achieve 100 per cent
(zero entropy) prediction. This is partly due to the notion that music con-
tains intentional surprises to keep even the well-trained listener interested.
As Minsky points out, music needs to strike a balance between “novelty”
and “nonsense” [82].

Conklin and Witten [132] identify three types of musical entropy:
1. Stylistic entropy refers to the disorder inherent in a musical style;

2. Perceptual entropy refers to the disorder resulting from the listener’s
model, and therefore fluctuates from one listener to another.

3. Designed entropy is the intentional surprise inserted into a piece by a
composer, over and above the baseline stylistic uncertainty.

While these are useful distinctions, Conklin and Witten caution that
unfortunately, it is not possible to distinguish between these measures in
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practice, and it is a matter of some debate whether the distinctions hold
even in principle.

Conklin and Witten state that their work addresses only perceptual en-
tropy - the level of surprise relative to the listener’s model. While this
research addresses perceptual entropy, it also studies stylistic entropy by
performing experiments with music from different styles in Chapter 10. Ad-
ditionally, designed entropy is measured by studying the inter-song variabil-
ity within musical styles in Chapter 7.

5.2.5 Entropy as a Measure of Performance

In the present research, entropy is used as a measure of prediction perfor-
mance. The next question then becomes: What is considered to be a “good”
level of prediction performance?

As Conklin and Witten explain, abstract measurements hold little mean-
ing if one does not know how well people perform the same task [132]. To
this end, Manzara et al. [77] conducted extensive experiments with human
listeners to obtain a set of reference entropy values. They found their ma-
chine model performed almost as well as the human subjects in predicting
Bach chorale melodies. More importantly, their machine-based results were
generally correlated with the human results - the model did well where hu-
mans did well, and made mistakes where humans made mistakes. Chapter 7
presents the results of experiments conducted to compare Maestro’s machine
output with the human measurements collected by Manzara.

While the absolute measurements of machine entropy are of little value
without the reference numbers of human performance levels, such human
data is difficult to obtain, and it is outside the scope of this research to collect
further human data. However, large sets of machine-generated prediction
entropy results are able to capture the gradual improvement resulting from
learning with experience. Such a relative measure of improvement is well
suited to Maestro’s focus on studying the process of music learning, and is
used in analysing the experiments performed over the course of this research.

5.3 Prediction in Maestro

Predictions in Maestro are generated by the individual listening agents.
Maestro is able to generate appropriate multiple-step-ahead predictions as
it receives each input event, and due to its on-line approach, Maestro can
report its changing perceptions and expectations as each note is received.

5.3.1 Agent-Based Prediction

Minsky describes the method of partial recognition, whereby, having already
occurred in the past, a certain pattern can be re-detected as it begins to
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Figure 5.2: Agent-Based Prediction. Agent A is shown having a three in-
terval (four note) pattern and a frequency of two. Upon matching the first
two intervals of its template with the input, the agent generates a prediction
that the final interval in its template will appear next.

appear again, and an expectation is generated suggesting that the pattern
will appear in full [82]. This method has been implemented by Rowe [102]
and Conklin and Witten [132], and is also used in the present research.

Predictions in Maestro are generated by the listening agents active in the
system at the time. When an agent notices that at least half of its template
has been matched by the recent musical input, it generates a prediction in
accordance with the remaining portion of its template pattern, yet to appear
in the input (Figure 5.2). No prediction takes place for the first note of a
piece, as there is no context from which to generate any predictions.

As described in Section 2.2.3, depending on the specific musical context,
people are able to generate predictions more than one step ahead. Mae-
stro predicts as far ahead as its current context allows. The number of
steps ahead, or forecast horizon, of each prediction depends on the listen-
ing agent’s template. For example, the agent with template ABCDE, after
seeing ABC, will generate the prediction DE (2 steps ahead of time).

The length of the prediction is thus determined by the length of the
original segment stored in the model. The optimal length of the context used
for prediction (the order of the model) can vary with the particular data
being examined. It is argued that by storing segments of various lengths
according to the perceptual cues in the musical surface, Maestro predicts
as many steps ahead as is appropriate for its currently activated musical
context. This is in keeping with Maestro’s focus on flexibility and learning.

Conklin and Witten perform their tésts only on predictions made one

step in advance [27]. Experiments in multiple-step prediction reported in
Chapter 7 show that it is worthwhile to store segments of various lengths for
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the purposes of generating longer-horizon predictions. The experiments also
study the effects of training and forecast horizon on prediction performance.

5.3.2 Prediction Ambiguity

Prediction ambiguity can arise when multiple contexts match the input,
causing multiple agents to be activated. Simultaneous, often conflicting,
predictions can then be generated. In Maestro, the different agents’ predic-
tions are integrated into an aggregate probability distribution, and weighted
according to two factors:

1. Reliability — The number of times this pattern has occurred before.

2. Certainty — The length of the context matched by the input.

The first factor is analogous to Conklin’s and Witten’s weighting de-
scribed in [27], and is based on the idea that patterns that have appeared
often in the past are more likely to appear again in the future.

The second factor has a basis in Bell et al. [7, p. 143], where once a model
is trained, higher order models are given more emphasis than lower order
models. This relies on the concept that matching a longer musical context
is less likely to happen by chance than matching a shorter one. Therefore,
predictions based on longer musical contexts are likely to be more accurate
than those based on shorter contexts. The certainty factor is similar in
function to the A weights described by Ponsford et al. [91].

The total weight of a prediction is given by the pattern’s frequency of
occurrence multiplied by the length of context matched so far: reliabil-
ity multiplied by certainty. When comparing predictions, weights for each
value predicted are accumulated such that multiple identical predictions,
each with a low weight, can combine to a greater overall probability than a
single prediction with a high weight. For example, two agents both indepen-
dently predicting A with weight 0.4 (total score 0.8) will result in a higher
probability than one agent predicting B with score 0.6.

Maestro integrates its various predictions into an aggregate discrete
probability density function (PDF). To deal with the zero-frequency prob-
lem, Maestro blends this PDF with a flat distribution, weighting the two
by 0.9 and 0.1 respectively. From this final blended PDF, overall entropy is
calculated as a measure of how certain Maestro is of its prediction. Once the
actual value is observed by the system, the prediction entropy is calculated
as a measure of the resulting level of surprise.
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Predictions are integrated independently for the various prediction hori-
zons. Predictions generated by STM and LTM agents are integrated sepa-
rately. Similarly, in measuring and reporting prediction performance, Mae-
stro keeps track of STM and LTM results separately. While Conklin and
Witten combine the STM and LTM models to achieve optimal prediction
results, the focus here is on studying the individual components of mu-
sic learning. This research focuses primarily on long-range music learning,
which has its basis in LTM. Therefore, most of the results reported in this
dissertation rely on the LTM context model, unless otherwise indicated.

Maestro’s prediction performance depends on the quality of its model.
As the model develops with experience, Maestro’s predictions improve, low-
ering the prediction entropy.

Apart from measuring prediction performance, entropy can also serve
as a good measure of perceptual complexity and cognitive load, which may
increase when handling ambiguous passages. Conklin and Witten state that
meaningful comparisons between individual pieces or styles can be under-
taken by objectively measuring perceptual complexity in terms of entropy
[132]. Experiments reported in Chapter 8 are conducted to study predic-
tion ambiguity. Three different measurements (prediction entropy, overall
entropy, and a measure of agent activation) are used to identify and study
different types of prediction ambiguity.

5.4 Summary

This chapter has reviewed Maestro’s prediction capabilities. When listening
to a piece of music, people generate expectations about what is to come
next. These expectations change over time and are determined both by the
performance itself and by the listener’s internal model.

Prediction in Maestro is performed by the individual listening agents.
Agents generate predictions using the partial recognition strategy. Previous
studies, such as Conklin and Witten’s, focused only on predictions made
one-step ahead. Due to the variable order contexts in Maestro’s model,
the listening agents generate appropriate multiple-step-ahead predictions,
according to the current musical context.

The predictions of the various agents are integrated into a probability
density function (PDF) and weighted according to the factors of certainty
and reliability. This PDF is combined with a flat distribution in order to
address the zero-frequency problem.

Whereas Conklin and Witten use one type of entropy to measure predic-
tion performance, two types of entropy are used in Maestro: overall entropy
indicates the flatness of probability distributions generated and thus the
certainty of the predictions, while prediction entropy reflects the degree of
surprise experienced when observing certain events.



Chapter 6

Parsing

Listening is an iterative process through which a person assembles a devel-
oping understanding of a piece of music. Maestro communicates its interpre-
tation of a musical performance through a process called parsing. Parsing
involves labelling a performance in accordance with the structural interpre-
tation suggested by Maestro’s model.

This chapter first presents some background on musical parsing, draw-
ing from the closely related field of Natural Language Processing. Various
machine models of musical parsing are then considered. Maestro’s approach
to parsing, which incorporates a distributed agent-based parsing algorithm

‘capable of handling parsing ambiguity, is described. Finally, issues of cog--

nitive load and musical tension are discussed, and the circularity problem
introduced in Section 3.2.6 is addressed in full.

6.1 Background: Musical Parsing

A piece of music is a mentally constructed entity ... the central
task of music theory should be to explicate this mentally produced
organisation. (Lerdahl and Jackendoff, [72, p. 2])

Like musical prediction, musical parsing depends on the listener’s stored
model of musical experience. Narmour states that musical understanding
occurs when the top-down schemata stored in a listener’s model match the
bottom-up perceptual information emerging from the musical surface [86, p.
11]. ,

Similar to other aspects of music listening, parsing is an online process
and can only make use of the information heard so far in a piece. The on-line
nature of parsing can lead to complications in situations of ambiguity since
there is often insufficient information available to decide between multiple
parsing interpretations. This problem is noted both by Jackendoff [61] and
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Berent and Perfetti [8]. Jackendoff explains that at a later point in the piece
enough information may become available to resolve the ambiguity and the
listener can go back and reinterpret the music, thus resulting in the effect
of retrospective listening described in Section 2.2.6.

Music parsing poses a number of significant challenges to machine mod-
elling. It depends heavily on the listener’s internal model, is performed
on-line, and often involves dealing with ambiguity and performing retro-
spective listening. Maestro’s parsing stage addresses all these issues. Before
discussing Maestro’s design, it is appropriate to review a closely related and
well developed field — Natural Language Processing, and examine how the
issues addressed relate to Maestro’s handling of musical parsing.

6.1.1 Music and NLP

Natural Language Processing (NLP) research focuses on improving the abil-
ity of computers to handle human language and grammar. As there are
many similarities between the human perception of language and the hu-
man perception of music [91], many researchers have developed grammatical
models of musical understanding. Jackendoff states that the perception of
music parallels the perception of language; it involves the unconscious con-
struction of abstract musical structures, of which the events of the musical
surface are the only audible part. These abstract musical structures are
what account for one’s musical understanding and are what make listening
to music more than just hearing a sequence of pitch events [61].

This section will first review some relevant aspects of human linguistic
processing and parsing, and relate them to musical concepts. Then, drawing
from the NLP literature, different issues in designing machine parsers will
be presented in light of these considerations.

6.1.1.1 Human Language Parsing

It is widely believed that people have an internal grammar which they use
to understand and generate language [3]. People can use a grammar to
determine whether or not a spoken sentence is grammatical. This task is
called recognition. For example, consider the two sentences:

I own a car.
I car a own.

The first sentence is grammatical while the second is obviously not. Gaz-
dar and Mellish point out that while determining the grammaticity of a
sentence is an important and challenging task, it is completely dwarfed in
practice by a much more serious problem, that of pervasive natural language
ambiguity [50, p. 169].
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Ambiguity When parsing sentences of natural language, people must deal
with various types of ambiguity. Gazdar and Mellish mention three types
of ambiguity [50, pp. 169-177], referred to here as Lexical, Structural, and
Parsing Segmentation ambiguity:

1. Lexical Ambiguity — The meaning of a word or group of words is
unclear.

I walked to the bank.

bank can refer to a monetary institution or to a river’s edge. In either
case, however, it is clear that it indicates the destination to which the
subject has walked.

2. Structural Ambiguity — The function of a certain word or group of
words in the sentence is unclear.

I observed the boy with the telescope.

Either the boy is described as having a telescope, or the telescope was
used to observe the boy. The meaning of the individual words is clear,
but their function is not.

Both lexical and structural ambiguity can also appear together in one
sentence.

I saw her duck.

Lexically, the meaning could be either ‘I saw her bend down’, or ‘I saw
the bird belonging to her’. Structurally, the direct object of saw could
be her or duck respectively.

3. Parsing Segmentation Ambiguity — In processing written text, separate
words are delineated by spaces. However, in natural spoken speech,
determining the word boundaries is sometimes difficult [50], as in:

Madam, I’m Adam Ant.
Madam, I’m adamant.

In the spoken speech signal, it may be unclear which of the above two
sentences is being spoken. People can rely on previous experience in
resolving this type of ambiguity [69].

Having outlined three types of ambiguity, it now remains to determine
which, if any, are also relevant in the musical domain. As there is no widely-
agreed upon method of assigning formal meaning in music, lexical ambiguity
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does not readily apply in the musical realm. In grammar-based systems
that construct hierarchical structures from music, structural ambiguity is
relevant. However, Maestro does not do this.

Unlike the first two types, parsing segmentation ambiguity is relevant to
Maestro’s handling of music. Russell and Norvig [105] state that the first
stage of a text understanding system is tokenisation — breaking the input
up into words, or atoms for the system to deal with. This is a difficult task
in music because there is ambiguity as to which notes should be grouped
together to form the atomic musical segments. Parsing segmentation ambi-
guity is dealt with by Maestro’s parsing stage.

It is important to clarify the distinction between two closely related types
of ambiguity addressed by Maestro: the segmentation ambiguity described
in Chapter 3 and the parsing segmentation ambiguity described here:

1. Segmentation Ambiguity — This exists in the context of discontinuity-
based segmentation (segmentation), and arises when various percep-
tual cues suggest conflicting ways of segmenting the data.

2. Parsing Segmentation Ambiguity— This exists in the context of repetition-
based segmentation (parsing), and arises when the repetitions of two
previously seen patterns overlap with one another in the music.

Maestro’s handling of the former was described in Chapter 3. The latter
is addressed below in Section 6.2.

Parsing ambiguity poses additional complications in cases where a de-
cision needs to be made before sufficient information is available. This is
known as deterministic parsing.

Human Deterministic Processing Human parsing is deterministic [3,
61]. People use the information present at the time to arrive at the best
possible understanding of a sentence. In ambiguous situations, people may
entertain multiple simultaneous interpretations for a short while. However,
if the ambiguity persists, one of the interpretations must be chosen before
proceeding on to the rest of the sentence.

A common result of human deterministic parsing is the garden path ef-
fect. Certain sentences are said to mislead people on a first reading, as if
‘leading them down the garden path.” The result is a breakdown in parsing,
and the person must then start over again from the beginning:

The horse raced past the barn fell.
The prime number few.
The granite rocks during the earthquake.
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People usually start off understanding the first sentence to mean that
the horse ran past the barn, only to find that the word fell cannot be made
to fit with this reading. They then go back and read the sentence again,
this time understanding that:

The horse, [that was] raced past the barn, fell.

Had the person simultaneously maintained both interpretations of the
word raced until the end of the sentence, the word fell could have been
incorporated successfully into one of them. However, since the alternate
meaning of the word was pruned away at some stage, parsing broke down at
the end of the sentence, and parsing had to be restarted from the beginning.
Jackendoff cites this as evidence that the human parser is deterministic [61].

Deterministic parsing means that people must choose one of the possible
interpretations, even though there is insufficient information to decide the
matter conclusively. People must therefore employ certain selection factors
or heuristics to choose between the various interpretations and resolve the
ambiguity.

Selection Factors Allen [3, pp. 161-164] discusses certain general prin-
ciples concerning the way people resolve ambiguities:

1. Minimal Attachment — People prefer the understanding with the sim-
plest structure, namely the one that leads to least complex or convo-
luted parse tree. For example:

We painted all the walls with cracks.

Against common sense, minimal attachment results in a tendency to
read this sentence as meaning that the cracks were painted on to the
walls, or that the cracks were used as an instrument to paint the
walls. The intended meaning is that the walls with cracks on them
were painted.

2. Right Association or Late Closure - New constituents tend to be in-
terpreted as part of the current constituent under construction:

George said that Henry left in his car.

While two meanings are technically possible, most people understand
that Henry left in his car rather than that George spoke in the car.

Sometimes the above two principles are in conflict with each other.

The man kept the dog in the house.
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The sentence could either be answering the question: “Which dog did
the man keep?”, or the question “where did the man keep the dog?”
Right association prefers the former reading while minimal attachment
prefers the latter. A third principle is needed to decide between them:

3. Lexical Preference — Certain words are more commonly used in some
settings than others.

I chose the dog in the house.
I put the dog in the house.

Depending on the verb used, the preferred meaning changes. This
method of resolving the ambiguity relies on a formal framework for
representing this lexical knowledge. This knowledge can encode a set
of probabilities indicating which readings are more likely in various
contexts.

How does each of the principles used to resolve ambiguity relate to Mae-
stro’s handling of music? In grammar-based systems that construct hi-
erarchical representations from the music, minimal attachment would be
relevant, and would prefer the least complex structures. As stated above,
Maestro does not deal with hierarchies, so this is not relevant to the present
research.

Right association is relevant to Maestro’s parsing of music. Maestro’s
parsing stage prefers longer patterns to shorter ones.

The concept of lexical preferences does not directly apply to the musical
realm, as there is no clear framework for assigning formal meaning in music
[120]. However, musical parsing is compatible with the general strategy of
maintaining a set of probabilities to indicate which readings are more likely.
This approach is embodied in Maestro’s context model, and is used in the
parsing stage, where patterns occurring more frequently are preferred to
those occurring less frequently.

Thus, both right association and the probabilistic aspect of lexical pref-
erences are used by Maestro in resolving parsing ambiguity, as described in
more detail in Section 6.2 below.

So far, this chapter has covered different types of ambiguity and the
human preferences in dealing with ambiguity deterministically. These issues
are now addressed in the context of designing a machine model of parsing.
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Figure 6.1: Parsing an example sentence John ate the cat (top) using a
simple grammar (bottom). From (Allen, [3]).

6.1.1.2 Issues in Machine Parsing

According to Gazdar and Mellish, parsing involves interpreting the input
through computing the structures assigned to a given phrase by a given
grammar [50]. B

A grammar is a set of rules or transformations that indicate which syn-
tactic forms are permissible in constructing sentences. When presented with
a sentence, a system can parse it by attempting to label the various words
or groups of words using the rules in the grammar. A simple grammar and
parsing example are given in Figure 6.1.

A number of issues need to be addressed when designing a machine
parser, including:

left-to-right versus right-to-left;

top-down versus bottom-up;

breadth-first versus depth-first;

partial versus complete parsing.

Each of these is now discussed in turn.

Left-to-right versus Right-to-left A parser can proceed through the in-
put from left to right or from right to left. Alternatively, it can be permitted
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random access to the input, allowing the parser more flexibility in perform-
ing its task. However, as Gazdar and Mellish note, parsers that attempt to
parse a natural language as it is being produced, whether as it is spoken or
as it is typed, are forced to adopt a strategy that is basically left-to-right
[60, p. 151]. As music is also processed as it is being produced, Maestro, a
cognitively realistic musical parser, must process the input left-to-right.

Bottom-up versus Top-Down In attempting to construct appropriately
structured hierarchical parsing trees from the input, a parser may proceed
in two ways.

Top-down parsing starts off with a set of possible goals (high level struc-
tures) and tries to fill them with the given words. For example, a parser
might start out with the high level description of a sentence ‘NOUN-PHRASE
VERB-PHRASE’, and then attempt to fit this general form on the words ap-
pearing in the sentence. If this high level form does not work, another may
be tried. The top-down approach may be analogous to an experienced hu-
man listener who tries to use common and familiar forms to parse the music,
and is similar to the time-span and prolongational reductions described by
Lerdah! and Jackendoff [72].

In contrast, bottom-up parsing begins with the words appearing in the
input, and various possible higher-level forms that fit with the input are
constructed. The parser then searches through the space of alternatives to
try and build a consistent high-level understanding of the sentence. Not
all of the possibilities lead to a solution and it is also possible to arrive at
multiple solutions, giving rise to parsing ambiguity.

As Maestro does not explicitly deal with hierarchical structures, an ef-
fectively bottom-up approach is chosen for Maestro’s parsing stage.

Breadth First versus Depth-First A comprehensive parser often needs
to investigate many possible interpretations, all of which can be represented
in a search tree. The parser can either search this tree breadth-first or
depth-first. Depth-first search entails following through with a single in-
terpretation completely before proceeding to the next one. In contrast, a
breadth-first strategy involves maintaining a number of hypotheses simulta-
neously, advancing each in turn by a single step.

While a depth-first approach uses less memory and requires less book-
keeping than a breadth-first strategy, it suffers from a pervasive need for
backtracking. As seen from the parsing breakdown experienced when pars-
ing garden path sentences, people do not seem to be able to backtrack sig-
nificantly. Therefore, a breadth-first strategy is chosen in Maestro.
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Figure 6.2: An example of the drawbacks of greedy parsing. A greedy
algorithm would choose the bottom parsing interpretation even though the
top one is better overall.

Partial versus Complete Parsing Usually, the goal of a parser is to
find a grammatical expression spanning an entire sentence. However, this
is not always possible. It may be that a grammar is not developed enough
to handle the input, or that the input itself is simply not reducible to one,
overall complete parse.

Under the complete parsing approach, a sentence is declared ungram-
matical unless a full spanning solution is found. On the other hand, partial
parsing attempts to build up solutions for different parts of the input, and
integrates them to whatever extent possible.

Lerdahl and Jackendoff discuss partial parsing in the framework of mu-
sic and state that a fundamental feature of musical understanding is that
it functions simultaneously in varying degrees of fragmentation and inte-
gration. An undeveloped or inattentive listener might hear only partial
structures, either unconnected or insufficiently integrated with each other
[72, p. 197].

Especially in the context of music learning, where a grammar may not
be fully developed, the partial parsing approach is more appropriate, and is
thus chosen in this research.

6.1.2 Machine Handling of Parsing Ambiguity

As mentioned above, parsing often involves dealing with ambiguity. In de-
signing a machine parser, the issue of ambiguity handling must be addressed.

6.1.2.1 Greedy versus Optimal

In parsing ambiguous input, Bell et al. draw a distinction between two strate-
gies: greedy and optimal [7]. Greedy parsing proceeds from left to right.
Whenever it is faced with an ambiguous situation, in keeping with the princi-
ple of right association, a greedy parser chooses the longest segment possible
for the immediate context. However, this may lead to inefficiencies, as shown
in Figure 6.2, where the greedy strategy ends up choosing a solution with
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many short segments. The better solution is rejected because it happens to
begin with a shorter segment.

As the name suggests, an optimal parser attempts to find the best overall
solution. In order to find the optimal solution, intermediate results are
stored by the parser when processing the data, before deciding on-a final
interpretation.

6.1.2.2 Storing Intermediate Results

When going through the search tree, a parser can keep track of what it
has discovered in order to avoid rechecking those options that lead to fail-
ure. Storing intermediate results also allows for the maintenance of multiple
simultaneous interpretation hypotheses. Gazdar and Mellish [50, Ch. 6]
discuss two strategies for storing intermediate information: Well Formed
Substring Tables (WFSTs) and Charts.

WFSTs will not be discussed here in detail, and the interested reader is
referred to Chapter 6 of Gazdar and Mellish [50]. WFSTs can store partial
analyses and thus help a parser to avoid rechecking specific sections of the
input. However, since various larger scale parsing hypotheses and goals
are not encoded into the WFSTs, there is nothing to stop a parser from re-
investigating certain higher-level hypotheses it has already attempted before.
In order to represent parsing goals, another method of storing intermediate
results is necessary.

6.1.2.3 Chart Parsing

Charts are data structures that capture both parsing goals and structural
information. Charts contain arcs called edges. Each edge is decorated with a
grammar rule, and a ‘dot’ indicating how much of the rule has been matched
by the input.

A chart parser proceeds through the input and examines different ways of
grouping words in an attempt to come up with a parsing solution [3]. A chart
parser uses a chart to keep track of intermediate results, thereby avoiding the
need for backtracking as well as avoiding the need to re-investigate options
it has already examined. Figure 6.3 shows an example of chart parsing.

Edges can be either active or inactive. Inactive edges are those which
have been completely matched by the input. Active edges are those that
have not been completely matched by the input, and represent a parsing
hypothesis that still needs to be confirmed or rejected with respect to the
input.

When the first part of a rule in the grammar matches the input, an
edge is added to the chart. The key strategy of a chart parser is to find
which inactive edges can be used to complete the active edges. Thus, large
scale, hierarchical parsing structures are constructed. Chart structures are
completely neutral with respect to parsing strategies. In left-to-right chart
parsing, simultaneous on-line parsing hypotheses are maintained.
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Figure 6.3: An example of Chart Parsing from (Allen, [3]). The input is
shown at top labelled with certain parts of speech. The rules of the grammar
are shown at the bottom. The edges (all active) generated from the input
and grammar by the chart parser are shown in the middle.

6.1.2.4 Deterministic Approaches -

As mentioned above, human parsing is deterministic. Therefore, a ma-
chine model of human parsing should also be deterministic. Gazdar and
Mellish explain that from an engineering perspective, one could design a
non-deterministic parser that never breaks down on well-formed strings [50,
p. 175]. Thus an approach less concerned with cognitive realism can achieve
greater levels of optimisation. However, for a more cognitively realistic, de-
terministic system, sentences that people tend to misparse will be misparsed
by the system [3, p. 159].

When faced with persistent ambiguity, a deterministic parser must often
make decisions based on insufficient information. In order to resolve the
ambiguity, certain selection criteria or heuristics must be employed. The
discussion above mentioned three principles used by humans in determin-
istically resolving natural language ambiguity: minimal attachment, right
association, and lexical preferences.

Gazdar and Mellish suggest that a deterministic parser can use heuristics
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Figure 6.4: An example of cut-points encountered in parsing, indicated by
the arrows. Ambiguities are contained within the regions lying between the
cut-points.

based on the relative frequencies of different constructions [50, p. 175]. In
a similar vein, Allen discusses the use of estimated probabilities of different
constructions, derived from a large enough sample of data. This use of prob-
abilities is related to the lexical preference principle described above. Mae-
stro’s heuristics for disambiguation include right association (longer patterns
preferred), and the use of a set of probabilities similar to lexical preference
(more frequent patterns preferred).

Once a set of heuristics is chosen, there still remains the issue of when
disambiguation should be forced — how long must an ambiguity persist before
the parser resolves it, despite having insufficient information?

One option would be to set a fixed limit, either in terms of time, or
number of events [8]. Another option commonly used in parsers is to rely
on cut-points. Cut-points are locations in the input stream where there are
no overlapping parsing possibilities. Even though ambiguities may persist
in regions lying between two cut-points, they are contained within those
regions, and their resolution is independent of ambiguities elsewhere (Figure
6.4).

Jackendoff cites experimental evidence that multiple syntactic analyses
are computed in parallel by humans, and that the clause boundary is the
point at which all but the most salient analyses are discarded [61]. In this
way, a clause boundary serves as the cut-point in language processing. The
concept of cut-points is also relevant in the context of musical parsing, as
Lerdahl (cited by Jackendoff in [61]) suggests that cadenced group bound-
aries are points where less stable analyses are pruned.

Maestro follows this approach and resolves parsing ambiguities at cut-
points. The distributed parsing algorithm described below results in multi-
ple hypotheses being maintained within the regions specified by cut-points.

So far the discussion of Natural Language Processing has yielded a num-
ber of interesting issues relevant to Maestro’s handling of musical parsing.
First, parsing segmentation ambiguity seems to be most relevant for this
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research. Second, parsing is performed on line, and ambiguity must often
be resolved based on certain heuristics. Third, a resulting delay in process-
ing can lead to retrospective listening. Fourth and finally, the deterministic
heuristics of right association and lexical preference are relevant to Maestro’s
parsing stage. The next section will deal with machine modelling of musical
parsing.

6.1.3 Machine Models of Musical Parsing

Berent and Perfetti note the importance of the real-time processes involved
in the on-line parsing of music to developing an accurate psychological ac-
count of the listening process [8]. Jackendoff notes that the original Gen-
erative Theory of Tonal Music published in 1983, does not account for the
ways in which various musical structures are assigned to the musical sur-
face on-line. In his 1991 paper Musical Parsing and Musical Affect [61],
Jackendoff addresses the question of on-line musical parsing. In addressing
the issue, Jackendoff considers three types of parsers: serial single choice,
serial indeterministic, and parallel multiple analysis. Each is now described
in turn.

Serial Single Choice Parser The first parser considered by Jackendoff is
a serial single choice parser. When facing ambiguity, the parser chooses only
one possibility — the one it considers to be most likely. If this choice proves
to be wrong, the parser backtracks and chooses another. Jackendoff notes a
problem with this approach — the parser would spend an unrealistic amount
of time backtracking while, in the meantime, new music is streaming in. As
backtracking is time consuming, the processing load imposed by the music
must be borne by increasing speed of the parser. Therefore, Jackendoff
rejects this parsing model.

Serial Indeterministic The second option considered by Jackendoff is
a serial indeterministic parser. This approach delays decision until enough
information is available. The parser computes preliminary analyses of local
parts of the input, but does not integrate them into a global analysis until
a single correct structure can be determined for the whole selection. The
benefit of this delayed analysis approach is that it avoids the onerous back-
tracking that plagues the serial single choice parser. However, Jackendoff
notes that this extended delay in parsing is not realistic. For example, peo-

ple clearly have metrical intuitions long before the definitive evidence arrives
[61].

Parallel Multiple Analysis The third and final parsing model consid-
ered by Jackendoff is the parallel multiple analysis model. According to
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this approach, when the parser encounters ambiguity, processing splits into
multiple simultaneous branches to represent the various interpretation pos-
sibilities. When a particular branch drops below some threshold of plausi-
bility, it is abandoned. Whichever branches remain at the end of a piece
then contain viable structures for the piece as a whole [61, p. 213].

Jackendoff cites evidence from linguistics research that multiple mean-
ings are active immediately after ambiguous words are heard; many words
have multiple meanings, yet the listener must select the correct meaning for
the context of the sentence in which the word occurs. Jackendoff suggests
that in cases of unresolved ambiguity, multiple analyses are maintained for
a period of time, but are eventually pruned to a single sense, usually the
more common one — even if still ambiguous from the input itself. In this
way, the parser is deterministic.

Jackendoff presents a theory of on-line musical parsing based on lin-
guistics and cognitive musicology. While he proposes a general approach, he
does not give many technical specifics, nor is an implementation carried out.
Maestro’s parsing stage is designed to fill this void, and is an implementation
of certain key aspects of Jackendoft’s theory.

6.2 Parsing in Maestro

The present research is concerned with building a basic working implemen-
tation of Jackendoff’s musical parsing theory and testing it with musical
input.

6.2.1 Agent-Based Parsing

In Maestro, parsing is performed in a distributed fashion by the individual
listening agents. A listening agent, upon successful matching of its entire
template with the musical input, labels the appropriate part of the musical
input with its unique identifier. This is called making a parsing attempt
(Figure 6.5), and by doing so, the agent reports its interpretation of the
input — how it believes the music should be parsed.

The overall goal of parsing is to formulate a consistent parsing interpre-
tation of the performance, in which none of the labelled segments overlap
with one another. However, the templates of different agents often overlap
in the musical input; certain notes may fall into a number of different agents’
parsing attempts. This leads to parsing ambiguity, more specifically to the
parsing segmentation ambiguity discussed above.

Parsing segmentation ambiguity may occur either because patterns stored
in the model happen to be similar, or because multiple overlapping segmen-
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Figure 6.5: Agent-based parsing. Upon successfully matching its entire
template with the input, the agent labels the occurrence of the pattern with
its label.

tation hypotheses of the performance were originally stored in the model.
Whatever the reason, such parsing ambiguity arises frequently, and in keep-
ing with Maestro’s design principles and Jackendoff’s theory, multiple inter-
pretation hypotheses are generated and maintained in the form of listening
agents.

To reconcile competing parsing interpretations, Maestro takes advantage
of the inherent suitability of multi agent systems for carrying out competi-
tions between various agents. The specifics of the parsing competition are
described below. Agents can compete and cooperate with each other, as
each pursues its own goals. From the simple actions and interactions of
the various agents, the complex parsing behaviour of the system as a whole
emerges, yielding a unified, consistent parsing of the performance.

6.2.2 Parsing Competition

The C++ class description for a Maestro listening agent is shown in Ap-
pendix B. The functions included there are used to implement the parsing
competition described in this section.

Agent based parsing consists of three main steps:

¢ Instantiation;
e Matching phase;

e Parsing phase;
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Figure 6.6: A parsing competition between two agents, Aand B.1,1Tand IIT
show the progressing steps of the competition. A is threatened by B (B has
a higher frequency) and so A adds B to its list of threatening competitors,
indicated by the () symbols. When B encounters a mismatch between
its template and the input, A wins the competition, as indicated by the !
symbol.

6.2.2.1 Instantiation

In order to resolve ambiguity, selection factors are needed. To this end, in
Maestro, one listening agent is said to be preferred to another. Preference is
determined at the time of instantiation by which agent has a longer pattern
(Right Association), or in the case of equal pattern length, which has a
higher frequency (Lexical Preference). If both these characteristics are equal
between the two agents, the agent with the earlier instantiation time is
preferred. In this way, preference is a universally agreed-upon relation.
If two agents overlap, the more preferred one is said to threaten the less
preferred one. As soon as an agent is instantiated, it starts to maintain two
lists. The first list contains those agents who threaten it, and the second
list contains those agents whom it threatens.

6.2.2.2 Matching Phase
Once instantiated, a listening agent’s life cycle consists of two parts: the

matching phase and the parsing phase. During the matching phase, the
agent compares its template against the musical input and generates predic-
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tions as appropriate. If at any point there is a mismatch between template
and input, the agent terminates. As it terminates, it notifies all agents whom
it threatens that it no longer poses a threat to them so that they can stop
tracking it.

6.2.2.3 Parsing Phase

If an agent succeeds in matching its template fully against the musical input,
it enters the second phase of life — parsing. The agent’s sole goal now
becomes to have its parsing attempt chosen as that of the system as a
whole. This is only possible if the agent does not have any other agents
threatening it. In such a case, the agent notices that its first list is empty
and thus proceeds to win the parsing competition. This is called winning a
parsing attempt. The winning agent tells the agents threatened by it that it
has won, and that they should all terminate.

A threatening competitor can be removed in two ways: either the threat-
ening competitor encounters a mismatch between its template and the input,
or a third agent beats the threatening competitor, causing it to terminate.
An example of each scenario is now given:

1. Figure 6.6 shows two agents A and B.

e (I) A is instantiated when the pattern it represents begins to
appear in the music.

e (II) A notices that it is being threatened by agent B who has
a higher frequency and therefore adds B to its list. A does not
immediately give up and terminate, as there is still the chance
that B’s template will not fully match with the musical input,

and B will terminate on its own, thus ceasing to pose a threat to
A.

e (III) B indeed terminates prematurely upon finding a mismatch,
and agent A removes B from its list. A finds that its list is empty
and wins the parsing attempt.

2. Apart from a competitor failing to completely match its template to
the input, threats may be removed in a more complex way. Figure 6.7
shows three agents A, B and C.

e (I) A is instantiated when the pattern it represents begins to
appear in the music.

e (II) A notices that it is being threatened by agent B (higher
frequency and longer template) and adds B to its list.
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Figure 6.7: A parsing competition showing competition, cooperation and
retrospective listening.
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e (III) B notices that it is being threatened by agent C (higher
frequency) and adds C to its list. This leads to a three-way

competition in which A is waiting for B, while B is in turn waiting
for C.

e (IV) C completes its match and declares a win because it has no
threatening competitors. Upon seeing this, B gives up, clearing
the way for A to go ahead and also declare a win.

Thus, the results of a competition can propagate across agents who are
not in direct competition with each other through an agent who is a
competitor of both. This is referred to as masking, as C is said to mask
B for A’s benefit. In this way, A and C are indirectly cooperating.

Minsky proposes that agents can cooperate through one agent lowering
the activation threshold of another agent, thus allowing the latter to
perform a task in a case where it otherwise would not have been able
to [82]. The masking described here is in certain ways similar to this
approach.

In the second example above, Agent A waits for a competitor B to
decide, while B in turn waits for the results of yet a third agent C. Through
this delay in processing, Maestro displays retrospective listening, making
its parsing decisions on the basis of information that arrives later in the
performance. This is in keeping with Jackendoff’s theories of retrospective
listening, described in Section 2.2.6.

From the perspective of modelling, this phenomenon can be viewed as an
implementation of the echoic memory mentioned in Section 4.1.1.1. Maestro
can go back and re-process recent musical events it has heard. No explicit
limit is placed on how far back Maestro can go. Instead, the maximal
distance allowed is back to the most recent cut-point.

If all threats are removed in one of the above two ways, A’s first list
becomes empty and it can proceed to win the competition. However, if at
any point during A’s parsing phase, one of the agents threatening A declares
a win, A immediately gives up and terminates. When terminating, it notifies
all the agents on its second list that it no longer poses a threat to them.

Only the agent that finds itself with no competitors remaining proceeds
to determine the final parse of the system for that portion of the input.
Out of the various inter-agent interactions, a desired system-wide parsing
behaviour emerges. Examples of Maestro’s actual parsing output are shown
in Figures 6.8 and 6.9.

The listening agents, with their templates and their internal pointers
used to keep track of what portion of the template has matched the input,
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Figure 6.8: An example of a parsing competition. Various parsing attempts
are shown below the music, while the successful parses are shown above.
Agent 1 has a higher frequency of occurrence than agent 0. Therefore,
Agent 1 wins the parsing competition at the end of this selection.
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Figure 6.9: Another example of a parsing competition. Agent 2 defeats
agent 1, thus clearing the way for agent 0 to be chosen. This shows indirect
agent cooperation (between 2 and 0) and retrospective listening (0’s claim
is delayed).
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are in many ways similar to edges in a chart parser described in Section
6.1.2.3. Agents in the matching phase are similar to active edges, while those
in the parsing phase are similar to inactive edges. The parsing competition
is, in effect, a distributed implementation of breadth first, bottom-up, left-
to-right, partial, optimal chart parsing. The primary difference between
standard chart parsing and Maestro’s parsing methodology is the distributed
nature of Maestro’s approach. Instead of monolithic, centrally-controlled
processing, the individual agents act autonomously, and all decisions are
made independently by the individual agents.

The distributed nature of this approach can be argued to be more func-
tionally similar to parallel distributed processing. This is in also line with
Jackendoff’s [61] suggestion that, all analyses are undertaken, and they are
abandoned independently of each other, léaving the field to whatever anal-
yses remain active.

6.2.3 Agents and Cognitive Load

As Maestro’s distributed parsing approach relies on the instantiation of mul-
tiple listening agents, it is important to address the question of cognitive
load: what is the implication of many agents being active at one time? This
issue is now addressed from the perspective of musical tension.

When describing his agent-based rhythmic parsing system, Rosenthal
[98] states that the number of recogniser agents (Section 11.4.2) waiting to
be parsed by the system is correlated to “tension” in music. This issue
is also addressed by Jackendoff, who notes that musical complexity can be
measured by the degree of embedding and ambiguity, and draws a connection
between simultaneous conflicting hypotheses and musical tension [61].

Therefore, there are grounds to view multiple competing agents as cor-
relates of musical tension. The next question to address is then: how many
hypotheses can the system maintain simultaneously, without overloading or
breaking the constraints of cognitive realism? Jackendoff states that since
little is known about space limitations in the brain, it is hard to evaluate
how many parallel analyses can be maintained at once. However, Jackendoff
states that this limit should be susceptible to experimental study [61].

As no clear limits are available, Maestro does not place any limits on the
numbers of agents active in the system at one time. However, Jackendoff
notes that the complexity of the Bach analysis presented in [61] puts a
surprisingly large lower bound on the number of hypotheses the parser must
be able to entertain at once without appreciable stress.

This general view of tension is adopted in this research. Additionally,
experiments studying the relationship of agent activation levels to ambiguity
are reported in Chapter 8. It is shown that, with training, multiple agents
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t

Figure 6.10: The tune Frere Jaques shows the necessity for repetition-based

segmentation in certain cases where discontinuity-based segmentation is in-
sufficient. The notes shown are CDE CCD E C.

activated together cause “ambivalence” in the system, leading to less risky
predictions being made.

6.2.4 The Circularity Problem Revisited

One final issue involved in parsing is the circularity problem, introduced in
Section 3.2.6 during the discussion of segmentation. There are two methods
commonly used for segmenting music: local discontinuities and repetition.
While searching for discontinuities can yield very impressive results, Hiraga
points out that discontinuity alone is not enough [56]. Both he and Cam-
bouropoulos [20] note that the first two phrases in the popular tune Frere
Jaques would not be noticed as distinct based on discontinuity alone, but are
only noticed by searching for the repeating pattern C D E C (Figure 6.10).
Hiraga concludes that identifying repetition is a prevalent and autonomous
cognitive process, to be regarded as a primitive operation working at the
same level as the segment detectors.

Herein lies the circularity problem mentioned by both Hiraga [56] and
Larson [70]: segmentation relies on finding repeating patterns, which in turn
relies on segmentation to determine which patterns to look for.

One solution to this would be to keep track of all possible patterns up to
a certain length, thus not requiring a specific segmentation strategy. Apart
from placing a limit on the length of the patterns, this method involves a
brute-force full search, and is inefficient. In designing a real-time interac-
tive music system, Rowe notes that such an exhaustive search would quickly
overwhelm the available processing [101]. Cambouropoulos’s [19] work de-
scribes such a full-search approach. However, he readily states that this is
not designed to comply with the restrictions of cognitive realism.

Instead of a full-search, Maestro deals with this inherent circularity by
performing a directed search for patterns. The otherwise overwhelming
search space is cut down by examining only those patterns that are suggested
by perceptual discontinuity cues — Maestro’s segmentation and modelling



6.3. SUMMARY 91

stages. This approach thereby integrates both discontinuity-based segmen-
tation and repetition-based segmentation. A similar method of integrating
these two is also suggested by Cambouropoulos in [19, pp. 128-9].

According to this approach, patterns can never be found based on repe-
tition alone if no segmentation cues lead to their identification at any point
during the piece. However, after the pattern is noticed once due to segmen-
tation cues, it can be noticed later on in the piece even in the absence of
segmentation cues during the repetition of the pattern, as Maestro’s parsing
stage is thereafter able to notice a repetition of the pattern and to label the
data accordingly.

When discussing the problem of finding word boundaries in spoken lan-
guage (related to parsing segmentation ambiguity), Krumhansl and Jusczyk
highlight the special ability of a native speaker of a language to analyse
utterances into a hierarchy of discrete units despite the fact that pauses be-
tween successive units are often absent from the acoustic signal [69, p. 70].
This ability is based on using previous experience and higher level struc-
tures to resolve the ambiguity. In a similar way, Maestro’s parsing stage
uses structures learned from previous experience (i.e. the patterns stored in
its model) to resolve parsing segmentation ambiguity in music.

6.3 Summary

This chapter has reviewed Maestro’s parsing capabilities. Parsing is the
process through which people are said to achieve understanding of a piece
of music. It involves organising the musical surface according to the lis-
tener’s internal model. Musical parsing is in many ways related to natural
language parsing. Of the various types of ambiguity present in natural lan-
guage parsing, parsing segmentation ambiguity, related to repetition-based
segmentation, is shown to be relevant to Maestro’s handling of music. Mae-
stro handles this ambiguity in its parsing stage.

People parse deterministically; when dealing with parsing ambiguity on-
line, they must sometimes resolve an ambiguity before sufficient information
becomes available to do so conclusively. Of the selection factors commonly
used by people in resolving natural language ambiguity, right association and
lexical preference are shown to be related to Maestro’s handling of music.
Maestro employs both of these criteria in resolving ambiguity. Jackendoff
proposes the parallel multiple analysis model for musical parsing, capable
of maintaining multiple simultaneous hypotheses on-line when faced with
ambiguity. Maestro implements certain key aspects of Jackendoff’s theory.

Maestro’s parsing is performed in a distributed fashion by the various
listening agents. It is, in effect, a distributed implementation of breadth
first, bottom-up, left-to-right, partial, optimal chart parsing. Various agents
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compete and cooperate with each other, while each pursues its own parsing
goal. Out of the interactions between the individual agents, the desired
system-wide parsing behaviour emerges.

Maestro addresses the circularity problem raised by Hiraga and Lar-

son by performing a directed search for patterns, based on its perceptually
guided segmentation.



Chapter 7

Single-Style Results

With all four stages of Maestro’s design fully described, the large scale ex-
periments in music learning for which Maestro was primarily designed are
now presented. This chapter presents experiments involving music from a
single style. As a means of continuing from where previous research left off,
experiments are performed with the same 100 Bach Chorale melodies used
by Conklin and Witten. Results are compared with human data and perfor-
mance is studied both on the level of single notes and on the level of entire
pieces. Learning experiments with much larger data sets are also performed
and multiple-step-ahead predictions are studied. A three-fold framework
for analysing music learning data is developed and tested, measuring con-
text model growth, the number of predictions generated and the prediction
performance.

7.1 Bach Chorales

Conklin and Witten [132] analysed the final state prediction capabilities of
a context-model-based music learning system after it had listened to nearly
100 Bach Chorales. Their results show that their machine model performs
almost as well as human listeners, and that the responses of the machine
model and of humans to various musical selections are highly correlated. A
first set of experiments was performed here with the same data to continue
from where Conklin and Witten left off.

7.1.1 Comparison With Previous Work

In [132], Conklin and Witten compare the prediction performance of their
machine model to that of humans. A data set containing 100 Bach Chorales
(selected from Bach Chorales bel through be285) is used. Out of the data
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PREDICTION ENTROPY FOR BACH CHORALE 61
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Figure 7.1: Note-by-note prediction entropy for Bach Chorale bc61. Three
sets of results are compared: the human and machine data reported by
Conklin and Witten [132], and Maestro’s data.
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PREDICTION ENTROPY FOR BACH CHORALE 151
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Figure 7.2: Note-by-note prediction entropy for Bach Chorale bc151. Three
sets of results are compared: the human and machine data reported by
Conklin and Witten [132], and Maestro.
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Average Prediction Entropy
Chorale bc61  Chorale bc151

Human 1.1357 1.1622
Conklin and Witten 1.7362 2.0326
Maestro 2.6627 3.7596

Table 7.1: Average prediction entropy for Bach Chorales bc61 and bc151.
Results are compared for the human and machine data reported by Conklin
and Witten [132], and for Maestro.

set they choose two (Chorales bc61 and bc151) to serve as the test set. After
training their machine on all the other Chorales, they calculate the note-by-
note machine prediction entropy for Chorales bc61 and bc151. Prediction
entropy is used as a measure of prediction performance, as introduced and
described in depth above in Chapter 5. Recall that a high prediction en-
tropy reflects poor prediction performance, while a low prediction entropy
indicates good prediction performance. Conklin and Witten compare these
results with experiments in which human subjects were asked to perform the
same prediction task, and a corresponding set of human prediction entropy
values were calculated.. (The reported human data is actually a weighted
average of a number of listeners, as reported in [77] and [132].)

Conklin and Witten’s results show that the average human level of per-
formance is better than that of the machine. This is to be expected, as
their system deals with only 100 Chorales, while the human subjects have
had decades of prior listening experience. Additionally, the machine is only
a limited, computational model, which can by no means be compared with
the complex, powerful and little-understood capabilities of a human brain.
However, the important outcome discussed by Conklin and Witten is that
the two sets of results are correlated: the machine model does well where
humans do well, and does poorly where humans do poorly [132].

In the first experiments reported here, in order to compare Maestro’s per-
formance with these results, Maestro was presented with the same training
and test Chorales used by Conklin and Witten, and the prediction entropy
was calculated. Before presentation to Maestro, the extra information about
key signature, time signature and fermatas was removed (See Appendix C).
While Conklin and Witten make use of this information to aid in predic-
tion, its inclusion here would violate Maestro’s realistic input specification,
as discussed in Section 2.2.1.

Figures 7.1 and 7.2 show the results compared for the human and ma-
chine data reported by Conklin and Witten (kindly provided by Darrell
Conklin), and for Maestro.

First, the relative levels of performance are examined. Table 7.1 shows
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a comparison of the average levels of prediction performance. In both cases
Maestro performs less well than both the human results and Conklin and
Witten’s machine models. This is to be expected. As described in Section
3.1.1, Conklin and Witten build their model storing every possible context
segment of up to length three. Additionally, they include a priori stylistic
information such as tonality and rhythm to improve their machine’s per-
formance, as described later in Section 11.2.4. In contrast, Maestro builds
its model in a less brute-force way, according to more realistic cognitive
constraints, and also uses no a priori stylistic information in making its
predictions. Thus, memory usage is much lower in Maestro, where only
specific PGS-derived segments are stored and analysed as opposed to all
the possible segments as in Conklin and Witten’s work. Also, Conklin and
Witten’s system chooses between 20 possible notes [77] that appear in the
Chorale melodies, while Maestro chooses between 121 possibilities in order
to maintain greater flexibility, thus starting at a much higher chance pre-
diction entropy level (6.92 for Maestro vs. 4.32 for Conklin and Witten).
Finally, Conklin and Witten integrate predictions made from a short term
context model with those generated from long term context model. While
this approach would improve Maestro’s predictions as well, long term predic-
tions in Maestro are studied alone in order to better focus on the long-term
learning occurring in the system.

It is therefore to be expected that Conklin and Witten’s optimised ma-
chine prediction model results in better prediction performance than Mae-
stro, the design of which is more focused on the flexibility and the constraints
of cognitive realism. The second question to explore then is to what extent
Maestro’s predictions are correlated with the human results.

The correlation coefficients between the various sets of results are cal-
culated. For the case described here, where two sets of prediction entropy
results are represented by two one-dimensional vectors x and y, the corre-
lation coefficient 4y is defined as:

2
Oy
= 7.1
"oy 020y (7.1)
where the covariance agy is given by:
N
1 - —
o2y = N_1 > (@i — 2)(yi — ) (7.2)
=1

and where N is the length of the vector (i.e. number of notes in the Chorale,
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Correlation Coeflicients
Chorale bc61 Chorale bc151

Human vs. Conklin and Witten  0.5280 0.5979
Human vs. Maestro 0.5233 0.2797
Conklin and Witten vs. Maestro 0.4754 0.5405

Table 7.2: Correlation coefficients calculated from the data in Figures 7.1
and 7.2, comparing the human and machine data reported by Conklin and
Witten [132], and Maestro.

the same for both vectors) and Z is the average for the vector (average pre-
diction entropy for that set of results). The standard deviation o is given
by:

1 N

Og = \J N_1 i:1($i - z)? (7.3)

Table 7.2 shows the correlation coefficients calculated for the various
prediction results. For Chorale bc61, Maestro shows about the same high
level of correlation with the human data as does Conklin and Witten’s model
(0.5233 and 0.5280 respectively). It is impressive that Maestro, despite its
constraints, is able to achieve the same general level of correlation with the
human data. It is proposed that although Maestro is slower in building up
its model and does not incorporate any.style specific knowledge, its more
cognitively realistic modelling strategy causes its prediction performance to
be similar to that of humans.

For Chorale bc151, however, Maestro shows a lower (but still posi-
tive) correlation with human results than does Conklin and Witten’s model
(0.2797 and 0.5979 respectively). This result is to be expected due to the
limitations of Maestro’s model stated above.

The variability in correlation results between the two Chorales highlights
the fact that a test set containing two Chorales is indeed very little data for
determining correlations between different sets of prediction results. Data
from many more Chorales would be needed in order to calculate a set of
conclusive figures. However, Manzara et al.’s original experimental work
[77], which was the basis for Conklin and Witten’s experiments, produced
measurements for only two Chorales. Human data of this sort is extremely
laborious to obtain, requiring many subjects and long hours of experimen-
tation. Still, it is fortunate that these human results are available at all,
keeping in mind that, as discussed in Chapter 5, the only absolute bench-
mark for evaluating prediction performance levels is direct comparison with
human results.
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Figure 7.3: Average prediction entropy per Chorale as Maestro listens to 100
Bach Chorales in series. The Chorales were presented to Maestro in a certain
order (MIX 1), and the numbers 1-100 on the X axis simply correspond to the
order of presentation (rather than the actual names of the specific Chorales).

This first set of results helps to place Maestro in its proper research con-
text by comparing its performance with experiments conducted by previous
researchers. Additionally, the direct comparison with human data helps to
validate Maestro somewhat as a functional model of certain aspect of music
cognition and learning, capable of producing meaningful results. Further
experiments are described below that would be difficult to perform with hu-
man subjects, and so validation would be even more difficult. The results
of these later experiments therefore can be considered in light of this initial
validation study.

7.1.2 Learning Process

Conklin and Witten study the final-state prediction capabilities of a context-
model-based music learning system, after it had listened to nearly 100 Bach
Chorales. It is also interesting, however, to study the learning process itself.
In what ways does the system’s performance change as it gains experience?
As Maestro is designed to be a more cognitively realistic model of certain
aspects of music learning, it can be used to investigate these issues experi-
mentally. The results obtained in these experiments are interpreted in light
of the theories embodied in Maestro’s design.

In this set of experiments, the 100 Bach Chorales used by Conklin and
Witten were given to a fresh instantiation of Maestro, and the performance
was measured using prediction entropy. Figure 7.3 shows the average pre-
diction entropy per Chorale, over the course of listening to 100 Chorales in
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Figure 7.4: The same prediction entropy results after randomising the order
of the Chorales (MIX 2), compared with results of Figure 7.3 (MIX 1).

series. The Chorales were presented in a certain order, called here MIX 1.
Note that unlike the results reported above on note-by-note basis, these and
the remaining results reported in this chapter are reported on an average,
per-Chorale basis.

A gradual decrease in prediction entropy can be noticed in the beginning
of the graph, indicating that the system is learning with experience. How-
ever, due to the large inter-song variability in prediction entropy, studying
the actual learning process is difficult.

It is postulated that this variability arises from the intrinsic entropy of
the specific Chorales (see Section 5.2.4). To verify this, the 100 Chorales
were shuffled around (MIX 2) using a pseudo-randomiser program. The ex-
periment was then performed again.

Figure 7.4 shows that while the general learning trend remains, inter-
song variability is indeed specific to the Chorale: the largest peak in both
cases represents the average prediction entropy resulting from Chorale refer-
ence number bc120. Despite its different place in the order of presentation,
the inherent entropy of bc120 causes the prediction of the notes to be more
difficult, resulting in higher prediction entropy. This confirms that the in-
ter song variability is in large part a result of the inherent entropy of the
individual songs.

Before proceeding with further experiments, the issue of data visuali-
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Figure 7.5: Ten re-shuffled runs of 100 Bach Chorales (top), and the resulting
average (bottom).
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Figure 7.6: Moving-average smoothing of one Bach chorale, compared with
the average of ten runs from Figure 7.5. MA(7) indicates that moving-average
smoothing was performed with a sliding window size of seven.

sation needs to be addressed: given the inter-song variability, what is the
best way to view the general learning trend? One approach is to average
together many runs, each based on a different ordering of Chorales. Figure
7.5 shows ten such runs overlaid on each other (top), and then averaged
together (bottom). The averaging almost completely removes the inter-song
variability, and a smoother learning curve remains.

Another method of visualising the learning trend is also explored: smooth-
ing by moving-average. Conklin and Witten use smoothing for visualising
medium term prediction entropy trends within pieces [132, p. 78]. Specifi-
cally, they use a seven-note, triangular sliding window for smoothing. Here,
a flat window of appropriate length is used, as specified in the various graphs
below.

Figure 7.6 shows that moving-average smoothing yields similar results
to averaging many runs. However, moving-average smoothing leads to loss
of samples at either end of the data. The wider the smoothing window, the
better the fit to that of averaging many runs, but the more samples are lost
towards the edges (Figure 7.7). Moving-average smoothing is used for the
remaining experiments.

The experiments performed with the Bach Chorales allow the present
research to pick up where Conklin and Witten left off. Extending Conklin
and Witten’s work that analysed only the final state prediction performance
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Figure 7.7: A wider smoothing window leads to a better fit, but more sam-
ples are lost.

of the system, the experiments here reveal a clear learning process occurring
during training. To the author’s best knowledge, this type of analysis has
not been reported elsewhere, and thus constitutes a major contribution of
this research.

In the graphs presented so far, it appears that learning drastically slows
down after the first 30 Chorales. The experiments reported in the next
section show that significant learning continues to take place long after these
first few songs. This confirms that in order to study the full learning process,
larger data sets must be used.

7.2 Essen Folksong Collection

To meet the need for larger data sets, the Essen Folk Song Collection (EFSC)
[106] was used. The collection is the result of the life work of the late Pro-
fessor Helmut Schaffrath at Essen University in Germany. It is currently
distributed by the Centre for Computer Assisted Research in the Humani-
ties (CCARH) at Stanford University [107]. The EFSC contains over 5,100
German folk songs, and over 600 other folk songs from around the world.
An additional 2,200 Chinese folk songs, not yet in the standard distribu-
tion, were also obtained with the kind help of Don Anthony and Eleanor
Selfridge-Field at CCARH.

}
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Figure 7.8: The size of the LTM context model as Maestro listens to 1,200
German folk songs.

The large number of tunes from different styles allow large-scale stylistic
learning experiments to be performed. These corpora constitute a more
realistic musical experience base, enabling a fuller study of the music learning
process. Additionally, longer range trends are less affected by intra-style
(inter-tune) variability, making visualisation easier.

To begin, a collection of 1,200 German folk songs was used (EFSC ref-
erence numbers deut0567-deut1766). These were presented to a fresh in-
stantiation of Maestro, and results were collected throughout the system’s
processing of the 1,200 songs. In order to conduct a thorough study of long-
term music learning, a framework for studying music learning was developed
over the course of this research. Three different types of analysis were per-
formed and are now presented in turn: context model growth, the number
of predictions made, and the prediction performance.

7.2.1 Context Model Growth

Figure 7.8 shows the overall size of Maestro’s LTM context model over the
course of listening to the 1,200 folk songs. Maestro learns by adding seg-
ments to its context model, and the increase of model-size with experience
is readily evident from the graph.

Maestro’s context model consists of segments of various lengths. Graphs
of model size by segment length are shown in Figure 7.9. Different model
sizes are evident for the different segment lengths. The number of six-
interval-long segments grows the fastest and is the largest.
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Figure 7.9: The size of the LTM context model according to different seg-
ment lengths, as Maestro listens to 1,200 German folk songs.



106 CHAPTER 7. SINGLE-STYLE RESULTS

LTM CONTEXT MODEL PROFILE, 1200 GERMAN SONGS
1500 T T T T T T T T T

NUMBER OF SEGMENTS
8
=]
T

o
Q
=]

0 2 4 6 8 10 12 14 16 18 20
SEGMENT SIZE .

Figure 7.10: The size of the LTM context model as Maestro listens to 1,200
German folk songs.

To provide another perspective, the final state histogram of model size
by segment length is shown in Figure 7.10. The number of segments of
each length depends on Maestro’s segmentation stage, which generates more
candidate segments of some lengths than of others. The histogram of context
model size is analysed in more depth in Section 9.4.

The development of the context model can be examined further by look-
ing at the context model growth rate — the rate of addition of new segments
to the model. As the number of notes per tune varies between the various
folk songs, calculating the model growth rate per song would not be appro-
priate. Instead, the context model growth rate is calculated as the average
number of new segments added per note-event processed.

Figure 7.11 shows the context model growth rate per note-event pro-
cessed for the 1,200 folk songs, averaged for each song. The graph clearly
shows that with increased training on a homogeneous corpus, fewer new seg-
ments are added to the model: the model captures many of the stylistically
common segments present in the earlier songs. When it sees them again
later, it does not need to add them as new segments, but instead simply in-
crements the frequency counts of the segments already stored in the context
model. Therefore, this learning process is reflected by a decreasing context
model growth rate.

Figure 7.12 shows the context model growth rate by segment length.
The number of shorter segments is saturated sooner (indicated by decreas-
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Figure 7.11: The rate of context model growth as Maestro listens to 1,200
German folk songs (top), also shown smoothed to better reveal the trend
(bottom).
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Figure 7.12: The rate of context model growth, according to different seg-
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ing growth rate), as there are fewer possibilities for shorter segments (the
combinatorial space of possibilities is smaller). In contrast, the number of
longer segments continues to grow at a fairly steady rate.

7.2.2 Number of Predictions Made

Maestro generates predictions from the segments stored in its context model.
As its context model grows with training, Maestro is able to generate more
predictions in a larger number of musical contexts.

The average number of one-step-ahead predictions made per note-event
is shown in Figure 7.13. As expected, with increased training, more predic-
tions are made. This effect is visible during the first 50 songs or so, and the
early saturation of this phenomenon is addressed further in Section 7.2.4
below. However, even after Maestro is well trained, there are still certain
difficult points in some songs, during which no predictions are made.

7.2.3 Prediction Performance

In order to gauge the quality of Maestro’s predictions, the prediction en-
tropy is calculated. Figure 7.14 shows Maestro’s one-step-ahead prediction
entropy when listening to the 1,200 German folk songs. The dashed line at
6.92 indicates chance level — when the prediction entropy is based on a flat
probability distribution. This occurs when no information is available from
the contexts in the model in order to make a prediction.

Though starting at the level near chance, prediction performance then
improves with training, exhibiting an exponential-like learning curve. A
more complete picture of the learning process can be seen in these results,
extending well beyond the first 100 songs.

It is also significant to note how the gradual reduction in one-step-ahead
prediction entropy is qualitatively similar to the gradual decrease in context
model growth rate seen in Figure 7.11. As the system gains familiarity with
the style, fewer new segments are added and better predictions are made.
These two effects both exhibit quick improvement initially, and with time
gradually settle to a steady state.

7.2.4 Multiple-step Predictions

As described in the preceding chapters, due to the variable-length contexts
stored in its context model, Maestro is capable of generating appropriate
multiple-step-ahead predictions. The number of predictions generated and
the prediction entropy are now both re-examined for multiple forecast hori-
ZOnS.
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Figure 7.13: The proportion of note-events on which one-step-ahead predic-
tions are made, as Maestro listens to 1,200 German folk songs (top), also
shown smoothed to better reveal the trend (bottom).
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Figure 7.15: The number of predictions made for different horizons as Mae-
stro listens to 1,200 German folk songs (top), also shown smoothed to better
reveal the trends (bottom).
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Figure 7.15 shows the number of predictions made for various forecast
horizons. Within each forecast horizon, the number of predictions increases
with training, showing that the short learning trend seen above for one-step-
ahead predictions (Figure 7.13), carries through to longer-range predictions.

An additional trend is also visible. As forecast horizon length increases,
the number of predictions decreases and the rate of growth of the number
of predictions slows down. Longer-range predictions rely on larger contexts
being stored in the model, as well as longer matches between these seg-
ments and the input. It is therefore understandable that fewer longer range
predictions are generated.

The prediction entropy for various forecast horizons is shown in Figure
7.16. The prediction quality decreases with increasing forecast horizon. This
effect is to be expected, as it is generally more difficult to predict what
will happen further in the future. Additionally, the quality of predictions
increases with training within each forecast horizon.

The prediction entropy for four and five steps-ahead predictions stays
near the chance level (6.92). This observation indicates that for the present
learning strategy and corpus size, the maximum useful forecast horizon
seems to be three steps ahead. This does not imply, however, that con-
texts longer than three events are of no use. Recall that in order to generate
a three-step-ahead prediction, a context of length six or higher is needed.
This is because, as mentioned in Chapter 5, a listening agent waits until
at least half of its template has been matched before generating a predic-
tion. Many useful one to three-step-ahead predictions can also be generated
from the final portions of much longer contexts stored in the model. (These
predictions will be assigned very large certainty weights, as described in Sec-
tion 5.3.2.) Therefore, even though only predictions of up to length three
are useful in the present set-up, contexts of all lengths are still important.

Three methods of analysis have been used here to analyse the results:
the context model growth rate, the number of predictions made by forecast
horizon, and the prediction performance by forecast horizon. Together, these
serve to characterise the process of music learning. They are proposed as a
general framework for the study of music learning, and are used to analyse
the results of further experiments in the following chapters.

7.3 Summary

This chapter has presented experiments performed with music from a single
style. Extending the work of Conklin and Witten, Maestro was used to
study the learning process that occurs when listening to 100 Bach Chorales.
A positive correlation between Maestro’s results and those obtained from
humans helps to validate Maestro as a functional model of certain aspects of
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music learning. The music learning process is formally studied, and moving-
average smoothing is shown to help in visualising trends in light of inter-song
variability.

In order to study a more complete learning process, much larger-scale
music learning experiments were conducted with 1,200 German folk songs
from the Essen Folk song collection. Multiple-step-ahead predictions are also
investigated. Prediction performance improved with training, but decreased
with longer forecast horizons.

Three methods are used to analyse the results: context model growth
rate, the number of predictions generated, and the prediction performance.
Together, these three methods are proposed as a general framework for
studying the process of music learning.




Chapter 8

Ambiguity Analysis Results

As described in Section 2.'2.5, ambiguity is an essential aspect of music
listening, especially in the context of learning. This chapter presents an
experimental study of musical ambiguity performed with Maestro.

Three measures of system activity were introduced in Chapters 5 and
6, the first two of which depend on the probability density function (PDF)
generated by Maestro’s prediction stage:

1. Overall Entropy — related to the sharpness of the prediction PDF.
2. Prediction Entropy — related to the accuracy of the prediction.

3. Agent Activation — the number of agents active at one time.

The relationships between these various measures can be used to inves-
tigate certain aspects of Maestro’s behaviour, particularly its handling of
ambiguity. A collection of 600 German folk songs were used for these exper-
iments. (EFSC reference numbers deut0567-deut1166). The songs contain
roughly 26,000 individual note-events, and the following plots present results
consisting of note-by-note data points (not averaged together by piece).

8.1 Overall Entropy vs. Agent Activation

Maestro was presented with 600 German folk songs and the overall entropy
and agent activation were recorded for each note processed. Figure 8.1 shows
a scatter plot of the overall entropy plotted against agent activation for each
of the notes in the 600 folk songs.

It is clear from the plot that the more agents that are active in the
system, the less sharply focused the PDF becomes. This is the expected
behaviour, as the different agents make independent, often conflicting pre-
dictions, thereby flattening the PDF. What is not so obvious, however, is

116
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Figure 8.1: A scatter plot of overall entropy against agent activation for 600
German folk songs.

that there is a limit to the flatness. After a certain point, despite the in-
creasing number of agents, the overall entropy asymptotically reaches an
upper bound of around 3.5. This is likely due to the fact that since all the
agents’ patterns have been derived from the same corpus, many of them
make similar predictions. Therefore, after a certain point in training, the
additional agents make similar predictions to existing ones and the PDF
does not get significantly flatter.

The PDF only becomes totally flat (i.e. chance: overall entropy equal to
6.92) when very few agents are active and no predictions are generated. In
such a case, the flat distribution (introduced to deal with the zero-frequency
problem, Section 5.3.2) ends up being blended with an empty distribution,
resulting in yet another flat distribution.

The development of the relationship between overall entropy and agent
activation can be studied over time. Figure 8.2 shows four scatter plots of
overall entropy vs. agent activation sampled over specific time slices during
training. It is evident that with experience, the PDFs become less sharp. As
the model becomes better trained, more agents are instantiated, generating
more predictions. As the various predictions are often different, this leads
to flatter PDF's.




118 CHAPTER 8. AMBIGUITY ANALYSIS RESULTS

SONGS 50-94 SONGS 185-228
2000 2000

Py
(4]
o
[=]

NUMBER OF AGENTS ACTIVE
g §
o

NUMBER OF AGENTS ACTIVE

(=]
o

1 1 3 4
OVERALL ENTROPY OVERALL ENTROPY
SONGS 359-407 SONGS 540-583

2000

g
o

-
3
=
-
o0
Q
Q

3
=]

NUMBER OF AGENTS ACTIVE
-
8
=]

NUMBER OF AGENTS ACTIVE

=]

.
o o % us ;
1 2 3 4 (] 3 4

1
OVERALL ENTROPY OVERALL ENTROPY

o

Figure 8.2: The development over time of a scatter plot of overall entropy
against agent activation for 600 German folk songs, shown at four progressive
stages throughout the experiment.

8.2 Prediction Entropy vs. Agent Activation

Having examined the relationship between overall entropy and agent acti-
vation, the focus now moves to the relationship between prediction entropy
and agent activation. Figure 8.3 shows a scatter plot of prediction entropy
versus agent activation. The collection of points at prediction entropy equal
to 10.24 represent those note-events for which none of Maestro’s predictions
were correct. The data-points at prediction entropy equal to 6.92 repre-
sent those note-events for which no predictions were generated by Maestro’s
context model and a flat distribution was used.

The only trend clearly visible in this scatter plot is that the lower limit
of prediction entropy increases with the number of agents (the near-vertical
trend seen on the left-most side of the graph). Before analysing this trend,
since the scatter-plot does not reveal relative densities of highly crowded
regions, it is necessary to display the data from a different perspective.

To permit further analysis, the data in Figure 8.3 was divided into 100
horizontal slices (different ranges of agent activation), and an average pre-
diction entropy was calculated for each slice. The results are shown in Figure
8.4. As before, with increasing agent activation, the prediction entropy gets
slightly higher. However, with this view of the data, another trend becomes
visible. At low agent activation levels, the prediction entropy becomes dra-
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Figure 8.3: A scatter plot of prediction entropy against agent activation for
" 600 German folk songs.

600 GERMAN SONGS, PREDICTION ENTROPY VS, AGENT ACTIVATION

i

>
8

3 &

NUMBER OF AGENTS ACTIVE
[+:] [+] >
g 8§ 8

T T T

8

n

Q

=]
T

I 1 M
25 3 35 4 45 5 5.5 6 6.5 7
PREDICTION ENTROPY

Figure 8.4: A slice-wise average of prediction entropy for different ranges of
agent activation, derived from Figure 8.3.




120 CHAPTER 8. AMBIGUITY ANALYSIS RESULTS

AMBIVALENCE

f

NUMBER OF AGENTS ACTIVE

NORMAL

= UNCERTAINTY

PREDICTION ENTROPY

Figure 8.5: A schematic representation of the different types of ambiguity
seen in Figure 8.4.

matically higher with decreasing agent activation.

These two trends are identified with the following two types of ambiguity,
as shown schematically in Figure 8.5:

1. Ambivalence — “This has occurred many times before, and it could be
any one of a number of things.”

The system has observed the current musical context many times be-
fore, and the current situation has been resolved in many different
ways in the past. This situation leads to many agents being activated,
generating different predictions. The allocation of probability density
amongst the various predictions results in a somewhat flatter PDF,
and the prediction entropy usually becomes slightly higher. Stated
differently, since the probability is spread around to cover more possi-
bilities, the correct answer ends up with less probability assigned to it.
This effect is associated with the first trend above, where increasing
numbers of agents leads to a slight increase in prediction entropy.

2. Uncertainty — “This has not occurred many times before, and there is
little basis to know what to expect next.”

The system has observed the current musical context only a few times
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Figure 8.6: A scatter plot of overall entropy versus prediction entropy for
600 German folk songs.

before, if at all. Therefore, few agents are activated, and predictions
are often based on an under-sampled model of the music. The poor
quality of the predictions generated leads the prediction entropy to
become significantly higher. This effect is associated with the second
trend mentioned above, where very low numbers of activated agents
lead to significant increases in prediction entropy.

Most of the data points in this experiment seem to be concentrated in the
region labelled “NORMAL” in Figure 8.5. By analysing prediction entropy
and agent activation, deviations from this region can be classified into the
two different types of ambiguity described here.

8.3 Overall Entropy vs. Prediction Entropy

Having analysed each type of entropy with respect to agent activation, the
relationship between the two types of entropy is now investigated. Figure
8.6 shows the overall entropy plotted versus the prediction entropy for the
all the notes of the 600 folk songs.

The data at (6.92 , 6.92) results from flat distributions when no pre-
dictions are generated by Maestro. The points where prediction entropy is
equal to 10.24 are those where predictions were generated, but none were
correct.
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Figure 8.7: A scatter plot of overall entropy versus prediction entropy for
600 German folk songs, shown at different stages throughout the run.

The data in the figure shows a clear trend: for low levels of prediction
entropy, (the bottom-most horizontal portion of the graph), the sharpest
predictions achieve the best prediction performance (lowest overall entropy
leads to lowest prediction entropy). Stated differently, in cases when Mae-
stro’s first choice prediction is correct, better results are achieved if other
(incorrect) predictions are not given much weight in the PDF. This effect is
fairly straightforward.

However, sharper predictions are not always beneficial. Figure 8.6 can
also be analysed from the perspective of overall entropy. For low levels of
overall entropy (the left-most vertical portion of the plot), a well defined
limit-curve is evident. The very sharp PDFs represented in this portion of
the graph are risky: if correct, they pay off (very low prediction entropy),
but if wrong they can be disastrous (very high prediction entropy). For this
range of values, there are no data points in the intermediate region, indicat-
ing that, as expected, very sharp predictions yield only extreme prediction
entropy values, but not intermediate ones.

On the other hand, moving right along the graph, higher overall entropy
means that the system is “playing it safe” with flatter PDF's, thus resulting
in intermediate prediction entropy results. At these higher overall entropy
values, data points are found along the full range of prediction entropy.
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entropy (bottom) during the course of listening to 600 German Folk songs
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The development of this relationship can also be studied over time. Fig-
ure 8.7 shows four scatter plots of overall entropy versus prediction entropy,
sampled over certain time slices during training. From these plots it ap-
pears that the model undergoes gradual convergence. This is especially
visible when comparing the left-most portions of the first and final graphs.
With training, this dual-entropy characteristic of the model becomes more
focused around a central operating regime.

To quantitatively measure this convergence, the variances of both the
prediction entropy and overall entropy over time are plotted in Figure 8.8.
A gradual and steady drop in variance for both types of entropy is clearly
visible during the course of listening.

As Maestro learns, fewer risky predictions (both correct and incorrect
ones) are made, replaced instead by more balanced predictions. It is pro-
posed that the dual-entropy profile developed here can thus be used to mea-
sure the level of training, or maturity of a model. Untrained models make
risky predictions that result in extreme prediction performance levels, while
more mature models make fewer risky predictions, leading to more moderate
values of prediction entropy.

This effect clearly depends on the nature of the corpus used for training.
A very homogeneous corpus containing many instances of a few repeating
patterns would lead to sharp probability distributions that do not flatten
out with time. However, with a large realistic corpus, this is not expected
to be the case.

8.4 Summary

This chapter described experiments performed to study ambiguity. Two
types of entropy and a measure of agent activation are used.

Overall entropy is compared with agent activation, revealing that with
training, more agents are instantiated, generating more predictions, and
flattening the prediction PDFs. This flattening reaches a point of saturation
likely due to the homogeneous nature of the training corpus.

A plot comparing prediction entropy with agent activation is shown to
identify two types of ambiguity: ambivalence and uncertainty. Most of the
data points are found in a central operating regime, deviations from which
can be classified as different types of ambiguity.

The entropy characteristics of the model are shown to develop with ex-
perience. A dual-entropy profile is shown to provide a measure of the level
of training, or maturity of a model. With experience the model generates
less risky predictions and achieves more consistent prediction entropy results
that are better overall.



Chapter 9

Validating PGS

As described in Chapter 3, the design of Maestro’s segmentation stage is
based on the theory that Perceptually Guided Segmentation (PGS) leads
to more efficient models for prediction than other segmentation strategies.
This chapter reports on experiments performed to empirically validate this
theory.

After reviewing and formalising the theory behind PGS, an experimen-
tal method developed to verify this theory is described. The experimental
results from using this method are then reported and analysed.!

9.1 Formalising PGS

Prediction using context models relies on repetition in the data — once a
pattern is seen, it can be predicted correctly if seen again.. Repetitions in
music are often re-appearances of structurally salient patterns in the piece. It
is therefore conjectured that the most useful segments to store for prediction
would be those that correspond to these structurally salient patterns; since
they are correlated to the intrinsic structure of the music, these segments
would be more likely to reappear in-full later on in the piece. Conversely,
segments that do not lie on these structural boundaries are less likely to
reappear in full, and are therefore less likely to be useful for prediction. If
the more useful segments are kept, and the less useful ones are ignored, it
is argued that the overall efficiency of the model for prediction, considering
both model size and robustness, is improved.

Recall from the discussion in Chapter 3 that there is a trade-off inher-
ent to fixed-order context models: higher-order models generally perform

'An earlier version of this work appears in [94]. The results reported in [94] vary from
the present research in that a different method was used when combining the probability
distributions generated by Maestro’s prediction stage. The results reported in this chapter
are consistent with the implementation described in the rest of the dissertation.
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Figure 9.1: Part of the theory underlying perceptually guided segmentation:
Segmentation according to s-points (top) leads to models with better predic-
tion performance than segmentation according to o-points (bottom). The
model at the top captures the salient patterns present in the music, and is
therefore able to spot repetitions even when they appear in a different order.
Conversely, the model resulting from the bottom segmentation cannot.

better, while lower-order models are smaller and easier to train. Maestro’s
approach attempts to draw a compromise between them by storing segments
of various lengths, as a result of the perceptually guided segmentation. This
way, more costly, longer segments are only stored in the model when it is
appropriate and beneficial to do so. Furthermore, it is argued that these
salient patterns are more appropriate for use in parsing the music. Finally,
using this approach, learning and listening truly arise from one and the same
process.

The concept of perceptually guided segmentation can be formalised into
the following two hypotheses:

1. It is hypothesised that there exist certain points of segmentation in a
piece, named here s-points, which lead to a context model with better
prediction performance. Other points, o-points, lead to context models
with worse prediction performance (Figure 9.1).

2. It is further hypothesised that the segmentations suggested by a per-
ceptually guided segmentation strategy such as Maestro’s PGS corre-
spond to the s-points in the music.

The goal of the experiments reported in this chapter is to validate the
existence of the concept of s-points. It may very well be that there is,
in fact, no systematic correlation between the points at which the music
is segmented and the efficiency of the resulting model for prediction. If,
however, the reverse is true and s-points do indeed exist, the experiments
have a further aim of testing whether or not Maestro’s PGS strategy — and
by extension other similar perceptually-based segmentation strategies — is
correlated with the s-points in the music.
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Figure 9.2: N-Note Segmentation Shifting. In the example shown, the seg-
mentation suggested by PGS (top) is shifted back by one note (bottom) and
then stored in the model.

9.2 Method: N-Note Segmentation Shifting

" In order to test the above hypotheses, the prediction performance of a sys-
tem based on PGS needs to be compared with systems based on different
segmentation and modelling techniques. Ideally, one would want to compare
PGS with other, non-perceptually guided segmentation strategies from the
literature such as Conklin and Witten’s, or with a totally random segmen-
tation strategy.

Unfortunately, a complication arises: other strategies result in models
with different numbers of segments and different distributions of segment
lengths. Since both of these factors affect prediction performance, a proper
systematic comparison cannot be made with the PGS model to judge ef-
ficiency: a large inefficient model might easily outperform a smaller, more
efficient model. Thus, a truly fair comparison would involve two models of
a similar size and similar distribution of segment lengths?.

In order to address these issues, an experimental method called N-Note
Segmentation Shifting (NNSS) is developed. As the name implies, whenever
a specific segment is suggested by the PGS strategy for storage in the model,
the system stores a segment of the suggested length, but shifted back by n
notes (Figure 9.2). This leads to the same number of segments and same

*One method of achieving this would be to measure how large the PGS model gets,
and set this as the upper limit on the random-segmentation model size. Unfortunately,
this too causes difficulties, since in trials a random model reaches this upper limit well
before the corpus is fully processed. The random segmentation model is then only trained
on a narrower data set, and again, a proper comparison cannot be made.
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segment length distribution being suggested to each model, as well as both
models drawing segments from the same range of training data. Slight dif-
ferences in model sizes can result if one segmentation strategy leads to more
repeated patterns being suggested, and thus one model can end up slightly
smaller. However, model efficiencies can still be compared, as described
below.

How would the results of NNSS relate to the PGS hypotheses? If both
of the hypotheses mentioned in the previous section are correct, PGS would
suggest segmentations aligned with the s-points in the music. The delineated
segments would thus be correlated with the underlying structure of the piece,
and would therefore be more likely to repeat later in the music. Therefore,
the PGS strategy should lead to a model with better prediction performance
than a model produced by a shifted-PGS strategy (NNSS). Additionally,
since PGS would capture more repetitions, the total model size should be
smaller. These are called here the direct effects of PGS.

If, however, the second hypothesis is false, then the PGS model should
not produce significantly better.prediction performance, as it would not
take advantage of the s-points in the data. Furthermore, if both of the
hypotheses are false and there are no such entities as s-points, then no
significant corresponding trend should appear in the data.

Another set of observations can be made. If PGS theory is correct,
smaller shifts should have more drastic effects than larger shifts. When
beginning at an s-point, a small shift (of say, one note) makes it unlikely
that another s-point might be reached. Therefore, the system will most likely
store all its segments beginning and ending on o-points, and prediction is
expected to be significantly worse. On the other hand, when shifting a
longer distance away from an s-point, while it is still possible that an o-
point will be reached, it is more likely than before that another s-point will
be reached. This more even mix of s-points and o-points would lead to a
somewhat intermediate prediction performance. In general, the larger the
shift distance used, the smaller the phase correlation between the starting
s-point and the point reached by the shift, and thus the less drastic the
effect of the shift is expected to be. This is called the PGS phase effect,
and is used along with the direct effects of PGS to analyse the results of the
following NNSS experiments.

It is important to emphasise that the main aim here is to test whether
or not there exist optimal points for segmenting music for the purpose of
prediction (s-points). From this perspective, NNSS can be seen as a per-
turbation test: by perturbing the segmentation strategy from the original
setting, one examines whether or'not the original setting is an optimal one.
If performance degrades with perturbation, the original setting is at least
a relative optimal point and the hypothesis is supported. However, if no
clear correlation between perturbation and performance is observed, then
the original setting cannot be said to be a relative optimal point and the
hypothesis is not supported.
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Figure 9.3: The STM context model sizes resulting from different shifts,
averaged over the 100 Chorales, relative to the PGS (zero-shift) model size.

9.3 Experiments: Short Term Memory

The repetition of certain segments of notes is more pronounced within a
single piece than across a musical style. Therefore, in order to better observe
the potential effects of PGS, the STM model is examined first.

The 100 Bach chorales used by Conklin and Witten were presented to
Maestro, and the usual perceptually-guided segmentation strategy was used.
The experiment was then re-run another six times on the same 100 Chorales,
but these times with increasing segmentation shifts of one through six notes.
(For these experiments, Maestro was configured to read in the shift param-
eter at run-time.)

The results from this experiment are analysed using the framework de-
scribed in Chapter 7 for studying music learning: model growth, the number
of predictions generated, and the prediction performance.

Figure 9.3 shows the relative sizes of the STM context models result-
ing from the various segmentations, averaged over the 100 Chorales. The
following observations can be made:

e PGS results in by far the smallest model size. This is a result of PGS
picking up the most repetitions, and is consistent with both hypotheses
stated above.
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Figure 9.4: Average STM context model profile for the 100 Chorales.

e While all shifts lead to larger model sizes, the smallest shift has the
most significant effect, resulting in the largest model. This result is
consistent with the PGS phase effect.

The average model size histogram of the zero-shift STM context model
for the 100 chorales is shown for the various segment lengths in Figure 9.4.
For the STM models, there are many segments of length two. Therefore a
shift of one note should be very significant, while greater shifts should, on
the whole, produce less drastic effects. This is because, according to PGS
theory, larger shifts may well lead to other s-points. The data is consistent
with this theory.

Moving on to the next method of analysis, Figure 9.5 shows the relative
number of predictions generated from the models resulting from the various
segmentations.

e The PGS model makes the most predictions, despite having the small-
est model size. This otherwise unlikely result is consistent with the
idea that PGS results in more efficient models for prediction.

e The model resulting from a shift of one, despite having the largest
model size, makes the fewest predictions. This result is also in stark
contrast to what would otherwise be expected, and is strongly consis-
tent with the PGS phase effect.
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Figure 9.5: Average number of STM 1-step-ahead predictions made as a
result of different shifts for 100 Bach Chorales.

These two observations provide strong support that PGS leads to more
efficient models for prediction. Why else would the smallest model generate
the most predictions and the largest model the fewest? ‘

Finally, Figure 9.6 shows the relative levels of prediction entropy result-
ing from the various segmentations.

e The PGS model has the best prediction performance, despite having
the smallest model. This is consistent with PGS theory.

e The models resulting from shifts two and three make the worst pre-
dictions. This is not fully consistent with the PGS phase effect, which
would have predicted that the one-shift model would make the worst
predictions.

On all three counts mentioned above, the results are consistent with the
direct effects of PGS — the PGS-based model consistently performs best,
despite having a smaller model size. As stated above, these results would
be hard to explain otherwise. Additionally, on two of the three counts
the results are consistent with the PGS phase effect, and the trends are as
expected. Therefore, the STM experiments provide strong support for the
PGS hypotheses. The evidence suggests that there do indeed exist optimal
points for segmenting music for the purposes of prediction, and that these
points are correlated with perceptual segmentation cues in the music.
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Figure 9.6: STM 1-step-ahead average prediction entropy resulting from
different shifts.

9.4 Experiments: Long Term Memory

Unlike short term memory, long term memory stores information from one
song to the next, and it is not necessarily the case that storing specific
patterns from one song will be beneficial in dealing with patterns from other
songs as well. To test if PGS theory applies to extra-opus information, the
LTM context models were examined for the same experiments performed
above with the STM context models.

Figure 9.7 shows the relative sizes of the context models resulting from
the various segmentations.

e PGS results in by far the smallest model size. This is caused by PGS
picking up the most repetitions, and is consistent with both hypothe-
ses.

e While all shifts lead to larger model sizes, the smaller shifts as a whole
have slightly more significant effects, resulting in larger models. This
is consistent with the PGS phase effect, but is not as pronounced as
in the STM results.

Figure 9.8 shows the histogram of the LTM context model at the end
of listening to 100 chorales. The lower end of the histogram is shaped
differently than in the STM histogram. Unlike STM, the LTM context
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Figure 9.7: Relative LTM context model sizes resulting from different shifts.
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Figure 9.8: Final-state LTM context model profile.
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model is not reset at the end of each piece. Therefore, while a segment
that often repeats is incorporated into numerous STM context models (and
therefore contributes repeatedly to the average profile), it is only added
once to the LTM model. This comparison indicates that shorter segments
are recommended for inclusion in the model more often than longer ones. It
is only the smaller number of combinatorially possible short segments that
keeps down their number in long term memory.

For the LTM model, there are many segments of length four through
eight. Therefore small shifts of one to three notes should be more significant,
while greater shifts should on the whole produce less drastic effects. This is
consistent with the data.

The significantly larger sizes of the shifted-PGS models are highly sup-
portive of PGS theory: o-points lead to fewer repetitions being captured,
and thus larger model sizes. Note that the difference in LTM model sizes
seen here between PGS and the shifted models (roughly 8 - 10 percent) is an
order of magnitude larger than the difference seen in the STM model sizes
shown in Figure 9.3 (roughly 0.8 - 1.4 percent). This is a crucial point.

Over the course of listening, a shifted model accumulates many non-
ideal segments, namely, those aligned with o-points. In small numbers (i.e.
in STM) these do not add much to the predictive abilities of the model. How-
ever, the LTM model stores them permanently, and over time, the number of
extra non-ideal segments in LTM becomes very large (an order of magnitude
greater in LTM than in STM). Enough residual information is contained in
these non-ideal segments to prove useful in the long run, and the shifted
models can outperform the PGS model simply due to their much larger size.

Recall however, that the theory being tested is that PGS leads to models
that are more efficient for the purpose of prediction. The fact that much
larger models perform better than PGS is by no means inconsistent with the
PGS hypotheses. Relative efficiency can only be compared between models
of similar size. Brute size can win out over a more efficient, but much smaller
model. With this in mind, the remaining results are analysed.

Figure 9.9 shows the relative number of predictions generated from the
models resulting from the various segmentations:

e PGS leads to the fewest predictions being made. This is likely the
result of the great difference in model sizes, which serves to override
any of the effects that PGS may or may not have, as explained above.

e The models resulting from the smaller shifts make fewer predictions,
despite having larger model sizes. This result is consistent with the
PGS phase effect, although not as pronounced as in STM.

Figure 9.10 shows the relative levels of prediction entropy resulting from
the various segmentations:
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Figure 9.9: Average number of LTM 1-step-ahead predictions made as a
result of different shifts.
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Figure 9.10: LTM 1-step-ahead prediction entropy resulting from different
shifts.
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e PGS leads to the worst predictions. Again, this is likely due to the
overwhelming difference in model sizes.

e The models resulting from smaller shifts on the whole make worse pré—
dictions than those resulting from larger shifts, despite having larger
models. This is consistent with the PGS phase effect.

The large difference in model sizes and the presence of the PGS phase-
effect suggests that PGS is playing a role in LTM, but that the difference
in model sizes is simply too great to allow detection of the two other direct
effects of PGS (number of predictions and prediction entropy).

The experimental work cited by Sloboda in Section 3.2.5 suggests that
humans store melodic information in segments delineated by perceptual
cues. The results presented here provide the first empirical evidence sug-
gesting that this strategy is actually more efficient for prediction, and thus
constitute a major contribution of this research.

With regard to long term memory, an additional point needs to be con-
sidered. In Maestro, once information is stored in short term memory, it is
rolled over into long term memory at the end of the piece. This flow from
one memory to another seems more likely in humans than there being an
independent segmentation strategy for each one. Therefore if PGS is likely
to be present in STM, as the results suggest, the same model would likely
be rolled over into LTM.

9.5 Summary

An experimental method named N-Note Segmentation Shifting is developed
to verify the hypotheses underlying the theory of Perceptually Guided Seg-
mentation.

Experiments with short term memory are highly consistent with PGS
theory, and some of the more unlikely results are difficult to explain other-
wise. Experiments with long term memory are still consistent with parts of
PGS theory, but the large differences in model sizes prevents a fair compar-
ison of efficiency from being made.



Chapter 10

Multi-Style Results

Whereas the previous three chapters presented experiments performed with
music from a single musical style, this chapter presents experiments per-
formed with music from multiple styles. First, the Style Switching and
Comparative Listening experiments proposed in Chapter 1 are carried out
and the results are analysed and discussed. Then, a series of Geographical
Mapping experiments are performed, taking advantage of the capabilities of
Maestro, as well as the great diversity of music present in the Essen Folk
Song Collection.

10.1 Style Switching and Comparative Listening

As described in Section 1.3.5, Style Switching involves training a listener in
one style and studying how that listener responds to another. Compara-
tive Listening involves presenting the same piece to two listeners who have
different musical backgrounds.

To re-invoke the twin analogy introduced at the beginning of this dis-
sertation, consider two twin brothers separated at birth and brought up in
different countries — one in China (call him C), the other in Germany (G).
At a certain stage of development, the brothers are reunited in Germany and
C moves in with G. Two specific questions can be asked: How will C deal
with his new musical surroundings (Style Switching)? Also, what advantage
will G have over C, having grown up in the native German musical culture
(Comparative Listening)?

To investigate these issues, two fresh instantiations of Maestro (for the
sake of simplicity, hereafter referred to as ‘listeners’) were presented with
the data sets shown in Table 10.1. Music from German and Chinese styles
was chosen for training the two instantiations of the system, as these styles
are known to be different from one another, and are also abundant in the

137
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Listener Phasel Phase II
C 600 Chinese songs 600 German songs
G 600 German songs 600 German songs

Table 10.1: Data sets used for the Style Switching and Comparative Listen-
ing experiments.

EFSC data sets available.

In one of the few articles published about the EFSC, the late Helmut
Schaffrath notes some of the significant differences between the German and
Chinese folk songs. He notes that:

1. German folk songs generally skip more often up than down; in the
Chinese pool the opposite applies.

2. Chinese songs use descending.interva,ls of a third 456% more often than
German songs do, and this might be explained by the preference for
pentatonic scales.

3. German songs use the interval of a fourth 51% more often than Chinese
songs do. This may be explained by the preference for tonic and
dominant scale degrees in the European tonal system and by the high
incidence of upbeats in German folk songs [106, pp. 107-8].

Due to these differences, these two groups of songs were selected for
use in the present research. The Chinese songs used have EFSC reference
numbers han0001-han0600, and the groups of German songs used for Phase
I have reference numbers deut0567-deut1166 and deut1167-deut1766 for
Phase II.

The same framework developed in the previous chapters to analyse long-
term music learning is also used here to investigate the results of multi-style
experiments: context model growth, number of predictions generated, and
prediction performance.

10.1.1 Context Model Growth

To begin, the context model growth rate of both listeners is examined (Fig-
ure 10.1). Both listeners independently show model growth gradually slow-
ing down in Phase I. Since different data is being processed by each one, the
graphs are uncorrelated.
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Figure 10.1: Context model growth rate per note-event for C and G (top),
also shown smoothed to reveal the trends (bottom).
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Figure 10.2: Difference in context model growth rate between C and G
during Phase II, smoothed with a moving-average to better reveal the trend.

With the onset of Phase II, the model growth of C suddenly increases to
deal with the new, as yet unseen, information. Meanwhile, G continues its
slow gradual decrease in context model growth, since from G’s perspective
the music has not changed significantly from earlier experiences.

In Phase II the two plots are clearly correlated, as both listeners are now
listening to the same music. While the two listeners have different overall
levels of competence, the songs themselves display an inherent entropy of
their own that affects both listeners in a similar way.

Additionally, during Phase II, C begins to learn the German style and
the responses of the two listeners gradually converge with experience. Figure
10.2 shows the difference between the context model growth rates of C and
G during Phase II, highlighting this convergence.

10.1.2 Number of Predictions Made

Next, the number of predictions generated by each listener is analysed. Fig-
ure 10.3 shows that for both C and G, the number of predictions gradually
increases for all horizons during Phase 1. Again, the graphs are uncorrelated
since each listener is processing different pieces of music. With the onset
of Phase II, the number of predictions generated by C suddenly drops since
many of the musical contexts from the new style are unfamiliar. On the other
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Figure 10.3: Number of predictions generated by C and G for forecast hori-
zons of (top to bottom) one through five steps ahead.

hand, G continues the gradual increase in the number of predictions made,
as no significant change has occurred in the music from G’s perspective.

Figure 10.4 shows the difference in the number of predictions generated
by C and G for various forecast horizons during Phase II. With experience,
C learns the new style and the responses of the two listeners gradually
converge.

Figure 10.5 shows the data for C alone, to better highlight the sudden
drop in the number of predictions brought on by the change in style between
Phase I and Phase II.

10.1.3 Prediction Performance

Finally, in Figure 10.6 the prediction performance is examined using predic-
tion entropy as a measure. Both C and G independently show the prediction
quality gradually improving for all horizons during Phase 1. The graphs are
uncorrelated since different data is being processed by each listener.

With the onset of Phase II, C’s prediction performance suddenly dete-
riorates since C does not recognise the music from the new, as yet unseen,
style. Meanwhile, G continues the gradual improvement in prediction per-
formance. '

Figure 10.7 shows the difference in prediction entropy between C and G
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Figure 10.4: Difference in number of predictions made between C and G
during Phase IT, smoothed with a moving-average to better reveal the trends.

for various forecast horizons during Phase II. With experience, C learns the
new style, and the performance levels of the two listeners gradually converge.

Figure 10.8 shows C’s prediction entropy alone to better highlight the
sudden degradation in prediction performance brought on by the change in
style.

10.1.4 Discussion

These results are revealing about the nature of the responses brought on by
a drastic change of musical style. From the perspective of Style Switching
(looking only at listener C), a change in style causes three drastic changes:
the context model growth rate increases, the number of predictions gen-
erated drops and the prediction entropy increases. All these effects then
gradually diminish as the new style is learned.

From the perspective of Comparative Listening, both C and G are anal-
ysed during Phase II. The results show that as expected, previous experience
with the musical style proves to be an advantage for the native listener over
the foreign listener. However, even though each listener has an independent
level of competence, the results of the two are still correlated due to the in-
trinsic entropy of the individual pieces. With experience, the foreign listener
(C) learns the new style, and the difference in performance level between
the two listeners gradually diminishes.
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Figure 10.6: Prediction entropy for both C and G shown for forecast horizons
(bottom to top) one through four steps ahead.
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Figure 10.7: Difference in prediction entropy between C and G during Phase
II, smoothed with a moving-average to better reveal the trend.
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Figure 10.8: C’s prediction entropy for various forecast horizons, smoothed
with a moving-average to better reveal the trend.

As mentioned in Section 4.4.1.2, the concept of forgetting is not imple-
mented in Maestro’s long-term memory. Forgetting would have a significant
effect on the above experiments, as the foreign listener would be quicker to
adapt to the new style if biases from previous experiences diminished with
time. While it is likely that forgetting plays a role in people’s long term
musical memories, there is no clear value known for the rate of decay in-
volved. Therefore, since setting the decay rate to an arbitrary value would
affect the results arbitrarily, it was considered best simply not to implement
forgetting, and then interpret the results with this qualification in mind.

Style Switching and Comparative Listening experiments have been per-
formed and the results analysed. Consider now what would happen if, in
the above experiments, the second musical style were not so drastically dif-
ferent from the first. Would the dramatic responses seen in C’s results be
attenuated? How would the relative geographical proximity of the origin of
the two musical styles affect the magnitude of the responses? Drawing on
the wide variety of music available in the Essen Folk Song Collection, Mae-
stro is configured to perform one final set of experiments to address these
questions.
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10.2 Geographical Mapping

Returning one last time to the musical twins analogy, consider what would
happen if, instead of C moving to Germany, both brothers embarked on a
world-wide tour. Having grown up in two significantly different musical cul-
tures, each claimed that his native musical upbringing had better prepared
him for listening to the music of the world’s different cultures. To settle the
score, C and G decided to try their hand at predicting music from different
parts of the world over the course of their travels.

To perform this Geographical Mapping experiment, each instantiation of
the system was trained on 600 songs of the respective native style, exactly as
in Phase I above. Then, sets of songs from 33 different styles, originating in
28 different countries were presented to both systems and the average pre-
diction entropy was calculated for each style. The EFSC reference numbers
of songs used in this experiment are given in Appendix D.

For these experiments, learning was switched off after the first 600 songs
to ensure that the system was not affected by any music other than the
original country of training. As a result of this, the order of presentation of
the other musical styles does not matter. The results of the experiment are
given in Table 10.2.

Different numbers of songs were available for the various countries, as
indicated in the ‘SAMPLES’ column. In cases where a large number of songs
were available, a maximum of 50 were used. The results from multiple styles
originating in a single country were combined in a weighted average to arrive
at an overall prediction entropy value for that country.

Before analysing the results, the observations made here must be quali-
fied by the extent to which the samples used are representative of the music
from the specific region. Krumbhansl [68] reports that excerpts from dif-
ferent musical styles can reflect actual stylistic differences or simply differ-
ences in the specific excerpts. Similarly, Meyer in the book Style and Music
notes that the probability relationships involved in understanding a piece
of music depend upon the breadth of the sample on which probability es-
timates are based [80, p. 61]. Westhead and Smaill also report that good
style-discrimination performance is achieved with their system when a large
enough number of pieces is used for training [125]. This qualification is
related to the general statistical consideration of small-sample variability.
While the qualification might be relevant for countries with few samples,
the data sets containing 50 samples are likely representative. With this in
mind, the results are now analysed.

As an initial sanity check, it is encouraging to note that each listener
performs significantly better on music from its native culture. Addition-
ally, multiple styles originating in the same country yield similar prediction
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COUNTRY SAMPLES CHINESE GERMAN DIFFERENCE
Austria 50 4.65 4.00 0.65
Bragzil 1 2.91 3.08 -0.17
Canada 1 4.21 3.53 0.68
{hins -~ Han 36 R 3.98 -{3.95
Ching - Nofmin 5 3.4% 4.02 3,64
{hing - Bhnaxt 5 311 3.54 RINE
Ching - Xinuba 16 3.45 4,04 ~{3.54
China 160 3.20 3.94 -0.75
Czech Republic 43 3.95 3.56 0.39
Denmark 9 4.11 3.63 0.48
Franoe - {xeneral 14 4. 14 2,63 (LE2
Frapne - | 5 4.02 5.37 .65
France 64 4.05 3.43 0.62
Germany 50 4.10 3.40 0.70
Hungary 45 4.02 3.55 0.47
1 2.94 3.03 -0.09

8 4.26 3.70 (.50

14 512 4.83 (.48

22 4.78 4.29 0.49

1 5.54 4.71 0.83

1 4.92 4.00 0.92

Luxembourg 8 3.60 2.99 0.61
Mexico 4 3.82 3.32 0.51
Netherlands 50 3.73 3.20 0.53
Poland 25 4.12 3.58 0.54
Romania, 28 3.83 3.46 0.38
Russia 37 3.82 3.37 0.44
Saudi Arabia 1 4.34 3.39 0.95
Sweden 11 4.01 3.39 0.63
Switzerland 50 4.32 3.67 0.66
Syria, 1 3.34 2.77 0.57
Turkey 1 3.14 3.03 0.11
Ukraine 13 3.95 3.54 0.40
United Kingdom 4 4.19 3.35 0.84
USA 7 3.56 3.60 -0.05
Yugoslavia 50 4.05 3.32 0.73

Table 10.2: The results of the Geographical Mapping experiments. Mu-
sic from 33 different styles was presented to two instantiations of Maestro,
one trained in Chinese music, the other in German. The first and second
columns show the style and the number of sample pieces used. The next
three columns show the corresponding prediction entropy values for each
listener, as well as the difference between the two listeners. Multiple styles
from different countries are shown in grey, with the weighted average total
for the country shown in black.




148 CHAPTER 10. MULTI-STYLE RESULTS

results for a given listener.

Looking at the rest of the data, two overall trends emerge. First, each
style has its own intrinsic entropy. For example, Japanese and Swiss music
seem intrinsically difficult for both the Chinese (5.54 / 4.32) and German
(4.71 / 3.67) listeners, while Brazilian and Turkish music are relatively easy
to predict (2.91 / 3.14 and 3.08 / 3.03 respectively). Therefore, to compare
the two listeners’ performance across the various musical styles, the differ-
ence in prediction performance between the two listeners is calculated and
reported in the final column of Table 10.2.

A map can be drawn to indicate to what extent one listener out-performs
the other. Such a map is shown in Figure 10.9. The lighter shading indi-
cates countries where the Chinese-trained system performed better, while
the darker shading indicates where the German-trained system performed
better. Countries shown in green are those for which no data was available.

In measuring the difference between the two systems’ performance, a
second trend becomes noticeable. The German-trained system out-performs
the Chinese-trained system in almost all cases. This is likely due to the
fact that most of the music available in the Essen Folk Song Collection is
from Western countries, which share a distinctly closer musical heritage with
German music than with Chinese music.

As much of the data comes from the European continent, a close-up
map of Europe is also drawn for clarity (Figure 10.10). Since the German
system out-performs the Chinese system in all of the European countries,
the shading is drawn slightly differently, here indicating to what extent the
German system out-performs the Chinese system.

Baroni et al. state that a correct description of European melody must
take into account the presence of different repertoires [6]. The results of the
Geographical Mapping experiments show that although most of the Euro-
pean prediction results are within the same range, there is still significant
inter-European variability between the music from the different European
countries. For example, the listener with a German musical training predicts
Italian music (4.29) significantly worse than Dutch Music (3.2).

This methodology also allows for a geographical analysis to take place.
For example, on the world map India is close to China both geographically
and musically, and Europe as a whole is both musically and geographically
closer to Germany. Furthermore, the European map shows that the coun-
tries geographically further from Germany also tend to be generally more
distant musically.

There exist exceptions, and more experiments should be performed with
additional samples of music from the various styles. Still, it is proposed
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that this general methodology is useful for finding correlations between ge-
ographical, cultural and musical distances.

10.3 Summary

This chapter describes experiments performed with music from multiple
styles. The Style Switching experiments show how previous musical ex-
perience affects the prediction performance when dealing with music from
non-native style. The results also show that with extended exposure, a non-
native listener gradually adapts to the new style. A Comparative Listening
analysis reveals how native listeners have an advantage over foreign listeners
when listening to the same piece.

The Geographical Mapping experiments study how machine listeners
from two different musical backgrounds fare in predicting music from 33
different styles. The results show that, in general, native listeners perform
better than foreign listeners when listening to native music. Additionally,
styles originating from the same country lead to similar performance levels.
Finally, the geographical distance of musical origin is generally correlated
with differences in levels of prediction performance.




Chapter 11

Related Work

This chapter presents work related to the present research. Theories of music
listening and learning are discussed with a focus on a cognitive approach.
Then, various machine models of musical learning and musical ambiguity
are discussed in relation to Maestro. Finally, multi-agent-based models of
music cognition are also presented.

11.1 Theoretical Models Of Music

Although much has been written on music cognition {13, 39, 44, 47, 58, 67,
112], there is to date, no single universally accepted theory. This is due in
part to the complexity of the topic, the vast diversity of musical styles, and
the dearth of knowledge about cognition in general.

"11.1.1 Classical Music Theory

For most of the past few centuries, the study of music theory has focused
on developing systems of rules to describe trends and norms occurring in
specific styles of music. For example, Aldwell and Shachter’s Harmony and
Voice Leading [2] presents a detailed account of rules governing composition
in the classical Western style.

Formal description of musical style is extremely useful for the pedagogical
purposes of transmitting the specifics of a musical style to the next gener-
ation of musicians. It is also useful for communicating ideas about music
from a specific style between two musicians. (See the discussion in Cook [28,
p. 3]). However, the limitation of this general approach is that it ignores,
according to Lerdahl and Jackendoff [72, p. 2], the obvious fact that music
is a product of human activity. Camurri et al. similarly remark that several
fundamental aspects of common-sense music understanding have their roots
in the structure and behaviour of the human auditory system, and not in

152
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the axioms or textbooks on music theory [21]. Additionally, Blacking writes
about music as a human capability and invokes Clifford Geertz’s statement
that “art and the equipment to grasp it are made in the same shop” [18, p.
225].

Maestro approaches music modelling from a cognitive perspective. Two
major theories of music that share this cognitive view are now presented.

11.1.2 Grammar: Lerdahl and Jackendoff

The Generative Theory of Tonal Music (GTTM) [72] was proposed by Ler-
dahl and Jackendoff in 1983. The theory is elaborate and complex, and only
an outline of the relevant features is presented here. Lerdahl and Jackendoff
view the process of listening to music as one of generating appropriate struc-
tures from the musical surface (the audio signal). To this end, their theory
consists of a musical grammar [5] containing pre-defined rules which are used
to analyse music by organising it into mostly-rigid hierarchical structures.

The grammar consists of well-formedness rules that dictate the struc-
tures that are allowed, and preference rules that indicate which of the al-
lowed structures is the most desirable. Although Lerdahl and Jackendoff
state in some places which preference rules take precedence over others, in
many cases this matter is left undecided, or up to human intuition. There
are also transformational rules, which apply distortions to the otherwise
strictly hierarchical structures. '

A sample analysis is shown in Figure 11.1. In the process described by
Lerdahl and Jackendoff, the musical data is first grouped and metrically
analysed. Grouping structure refers to the hierarchical segmentation into
motifs, phrases and sections, while metrical structure refers to the regular
alternation between strong and weak beats at different hierarchical levels.
Jones et al. [63] have developed GTSIM, a system which simulates the metric
and grouping stages of GTTM.

Two reduction trees are then generated. The Time Span Reduction in-
dicates the relative structural significance of elements in the piece. This
takes into account non-hierarchical elements, such as timbre, dynamics, and
motivic-thematic processes, but does not formalise them. The second type
of tree is the Prolongational Reduction which tracks nested progressions of
tension and release. Prolongational reduction takes into account the struc-
tural significance of events as presented by the time-span reduction.

Grouping is addressed by Maestro, but meter is not. Tension and relax-
ation are monitored in Maestro by tracking entropy and agent activation, as
described in Section 6.2.3. Since Maestro does not maintain an explicit in-
ternal sense of tonality, it cannot generate a prolongational reduction since,
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Figure 11.1: A sample analysis using the Generative Theory of Tonal Music.
From (Lerdahl and Jackendoff, [72]).

according to Jackendoff [61], a prerequisite for deriving a reductional struc-
ture in real time is deriving a sense of tonality. Similarly, since Maestro does
not track metric information, it does not generate a time-span reduction.

The benefit of Lerdahl and Jackendoff’s rule-based theory is that, like
other symbolic models of music cognition, it offers a clear representation of
the data structure. This is particularly well suited for the highly structured
music in the Western style, for which the rule set was developed. While there
is evidence for hierarchical structure in music [41, 113], significant criticism
has been-levelled against GTTM for enforcing its uniform hierarchical struc-
tures on large pieces of music, where it is far from clear that they exist in the
music, let alone in listener’s minds [81, 117]. Jackendoff comes to terms with
some of this criticism in a 1991 paper [61]. Lerdahl and Jackendoff state
that their theory is aimed at examining the hierarchical aspects of music.
Western tonal music has very rich hierarchies, and is thus very well suited
for their approach. Other styles do not have as much inherent hierarchical
organisation, and may well be more amenable to different types of analyses.

Lerdahl and Jackendoff state that many of their rules are innate and

thus universal, and could in theory apply to all musical styles. However,
sometimes the stylistic norms of the idiom simply do not give the rule op-
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portunities to apply [72, p. 279]. Despite this qualification, many of the
rules in GTTM are definitely idiom-specific. As Lerdahl and Jackendoff
state clearly:

In what follows, we can take as given the classical Western tonal
pitch system — the major-minor scale system, the traditional
classifications of consonance and dissonance, the triadic har-
monic system with its roots and inversions, the circle of fifths
system and the principles of good voice leading. Though all of
these principles could and should be formalised, they are largely
idiom-specific, and are well understood informally within the tra-
ditional disciplines of harmony and counterpoint. Nothing will
be lost if we conveniently consider them to be an input to the
theory of reductions [72, p. 117].

Lerdahl and Jackendoff state that they focus their work on one particu-
lar style, with the hope that it will raise ideas about a pan-stylistic theory.
Maestro, on the other hand, begins with no style-specific information en-
coded into the system, giving it the flexibility necessary for handling music
from different styles.

In GTTM, Lerdahl and Jackendoff ignore the process of learning. In-
stead, they take the goal of a theory of music to be a formal description of
the musical intuitions of a listener who is experienced in a musical idiom [72,
p- 1]. As the goal of the present research is to study music learning, Maestro
focuses on the learning process, and begins by modelling an inexperienced
listener.

Lerdahl and Jackendoff envision the process of learning as that of de-
veloping a grammar [72, p. 296]. Maestro’s learning follows this general
approach, as its context model is a form of probabilistic grammar, as dis-
cussed in Chapter 4.

Finally, GTTM, instead of describing the listener’s real-time mental pro-
cesses, is concerned only with the final state of his understanding [72, p. 4].
This was done to simplify the original problem, and the issue of the processes
involved was addressed a few years later by Jackendoff in [61], as described
in Section 11.3.2 below. Maestro models the on-line processes involved in
music listening, and this approach takes a central role in Maestro’s design.

11.1.3 Bottom-Up: Narmour

Another widely cited theory in the field of music cognition is Eugene Nar-
mour’s Implication-Realisation Model, put forth in [86] and expanded in [87].
In contrast to Lerdahl’s and Jackendoff’s top-down approach of assigning a
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hierarchical reduction tree to a piece of music, Narmour adheres to a more
bottom-up approach.

Narmour’s is a very complex melodically-based theory, a full description
of which is beyond the scope of this discussion.” In brief, Narmour theorises
that a set of local melodic relations exist between nearby tones in a piece of
music. Notes in a melodic line that form a relation can be grouped into a
segment. This segment can then be reduced to only its beginning and ending
“structural” notes. Narmour states that this reduction mechanism can be
re-applied to the structural notes themselves, thus leading to a hierarchical
representation of the music. The same relations used to analyse the first level
of the musical surface can be used in turn to analyse the reduced version,
one level up in the hierarchy.

Narmour’s attribution of greater importance to the lower levels of a
melodic hierarchy — consistent with his generally bottom-up view — lies in
contrast to Lerdahl and Jackendoff’s emphasis on the importance of informa-
tion which appears in higher levels of the hierarchy. Additionally, Narmour
describes a looser form of hierarchy, which he calls a tangled hierarchy, in
contrast to Lerdahl and Jackendoft’s more rigid, strongly reduced tree struc-
tures.

Narmour describes a top-down style system which consists of learned,
replicated complexes of syntactic relations regarding such things as when cer-
tain tones or scale-steps are allowed. This operates in conjunction with the
bottom-up automatic processes which are innate to all listeners. Narmour
discusses the interaction of top-down schematic information with bottom-
up musical surface analysis. He states that while the bottom-up analysis is
always operating, it can at some points activate a top-down schema. This
happens when the music closely enough matches the details of the schema
representation. In such an instance, the music can be viewed top-down as
well, and expectations can be generated according to the specific rules of the
schema. This activation of top-down schemata leading to the generation of
expectations is very similar to the approach taken to prediction and parsing
in Maestro, as described in Chapters 5 and 6.

Narmour claims that his approach to bottom-up processing is general
enough to be applied to music from all styles, and he presents sample anal-
yses of music from different styles. Maestro is similar in its pan-stylistic
aims.

Narmour’s theoretical description of people’s innate musical preferences
have been empirically tested with some favourable results [68]. Interestingly,
Schellenberg found that the implication-realisation model can be simplified
somewhat without losing its predictive capabilities [109].

Narmour’s work is impressive in its wide scope and the number of fea-
tures of bottom-up music cognition for which it can account. However,
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Figure 11.2: Variations of one of Mozart’s signatures, identified by David
Cope’s EMI system. From (Cope, [34]).

his theory does not address the learning processes involved in deriving the
top-down style-specific schemas. Maestro’s design focuses on handling these
learned components of music intuition.

11.2 Machine Models Of Music Learning

The present research focuses on studying music learning. In recent years,
machine models of music cognition have been developed to address the issue
of music learning from a number of perspectives. A representative sample is
presented here, including statistical, rule-based, connectionist and context-
model-based approaches:.

11.2.1 Statistical: Cope

In his extended programme of research, Fzperiments in Musical Intelligence
(EMI) [30, 31, 32, 33, 34], Cope focuses on off-line style induction from mu-
sical examples, with the goal of automatic composition in that style. He
describes a statistical analysis method for finding a composer’s “signatures”
— the set of characteristic patterns in the musical surface that can be ex-
tracted from large samples of the composer’s work (Figure 11.2).
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A pattern is considered part of a composer’s signature if its degree of
repetition is above a certain threshold. The data to be searched is repre-
sented as strings of intervals, allowing for transposed repetitions to be no-
ticed. Cope’s off-line strategy lies in contrast to Maestro’s more cognitively
realistic on-line approach.

In searching for patterns, Cope’s system makes no use of perceptual
cues, but instead segments the input at fixed regular intervals. This fixed-
length, non-overlapping approach may miss many patterns, and Cope says
that discovery of the right value for this fixed length is difficult {34, p. 38].
Maestro addresses this issue by using adaptive pattern lengths based on
perceptual cues in the music, as described in Chapter 3.

Cope’s pattern matching techniques include capabilities for handling
noise and variability in the data. He defines range tolerance as the abil-
ity to match intervals to within a certain number of semi-tones, and error
tolerance as the ability to handle a certain number of out-of-range points
before a match fails [32]. These parameters, or controllers, are set manually
for each run of the system. As described in Section 1.4.6, Maestro performs
only exact pattern matching.

Style dictionaries containing the characteristic signatures are assembled
by EMI. Cope [31] then describes a top-down composition method based on
Augmented Transition Networks (ATN) that contain functional descriptions
of different musical sections. In general, this involves first laying out a high-
level plan for the musical flow of the piece, and then filling it in with the
appropriate signatures drawn from the style dictionary.

The performance of Cope’s system is judged using the generative ap-
proach — namely, to what degree human listeners judge the newly composed
piece as sounding like the original style. In this regard, Cope has achieved
impressive results. In line with this approach, Cope comments that in mu-
sic there is no right or wrong, rather, some music just sounds better [34, p.
17]. From the perspective of the present research, however, this generative
method of evaluation is, at best, somewhat subjective. Maestro therefore
uses the more objective measure of prediction performance to evaluate and
track music learning.

Cope points out that his system is able to imitate a style more convinc-
ingly given a larger number of examples [33, p. 405]. Maestro’s use of large
data-sets for learning is in line with this observation.

Due to its purely statistical learning approach, Cope’s system is able
to handle music from different styles. He claims that the results obtained
from EMI suggest that one way of defining musical style is through pattern
recognition, and that musical style can be imitated if one can find what
constitutes musical patterns [31, p. xii]. This claim is empirically tested
and confirmed by Westhead and Smaill [125], who use statistical methods to
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Figure 11.3: A training instance and its explanation in Widmer’s symbolic
music learning system. From (Widmer, [126]).

successfully learn to discriminate between different styles of classical Western
music. They express the need for studying whether or not this claim also
holds true for other musical styles. The present research partially addresses
this need by performing experiments with music from many different styles.

Much human input is needed in the composing of new work using Cope’s
system. EMI was developed as a tool to assist a human composer, and still
relies on human input and tweaking to achieve good results. In contrast,
Maestro performs all the learning on its own, based on its musical experi-
ences.

11.2.2 Rule-Based: Widmer

Many researchers [29, 45, 57, 90] have studied the use of rule-based systems
for modelling music understanding. In [127, 126], Widmer notes that “intelli-
gent” learning requires a considerable amount of domain specific knowledge.
He proposes that human music cognition and learning rely on a knowledge-
base shared by a group of listeners called musical common sense.

This knowledge-base includes specific information on such things as notes,
keys and scale structures, and can serve as a foundation to be built upon in
gaining further musical knowledge. Widmer’s system stores the information
in a hierarchical knowledge base that contains representations of different
layers of musical structure. As a sample task, Widmer has his system learn
the rules and constraints of two-voiced counterpoint composition (Figure
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11.3). Widmer’s more recent work [128, 129] focuses on learning rules for
expressive musical performance.

Widmer describes three methods of learning which his system applies
to the existing knowledge-base and the incoming musical data in order to
generate new knowledge: Deductive rules, Determinations, and Plausibility
Heuristics. The first method uses Explanation Based Learning (EBL) to
extract general rules from examples, given a set of initial rules. Determina-
tions are statements of general dependencies between attributes which can
be used to generate possibilities in the search for new rules. The general
kinds of determination to be made are established beforehand. Finally, plau-
sibility heuristics are used to encode general, non-specific knowledge about
the musical style, which is helpful in narrowing down the search space for
rules.

Widmer’s system does not model the real-time dimensions of listening
[127, p. 65], but instead focuses on a a kind of a posteriori understanding
of a piece after it has been heard [127, p. 52]. In contrast, one of Maestro’s
principle aims is to model the real-time processes of music listening.

The clear knowledge representations and well-defined processing meth-
ods inherent to symbolic systems such as Widmer’s make their operation
easy to follow. A symbolic system can be endowed with a rule-base that
allows it to perform complex, hierarchical analysis on musical data. For the
purposes of musical learning, however, these rules can also have the unde-
sirable effect of limiting systems to the specific style they were designed to
analyse, and this makes the systems less flexible toward processing music
from different styles. The design of such rule-based systems requires a very
detailed understanding of the environment in which the intended learning
is to take place. The inherent uncertainty and variability of the learning
environment that is music, and the lack of a unified pan-stylistic theory of
music cognition, together demand a flexibility which the symbolic approach
cannot easily provide.

With respect to the present work, it is important to note that while Wid-
mer’s model does show evidence of learning, it starts out with the fundamen-
tal information about a style already present in the form of the knowledge
base. In contrast, the present research focuses on learning to listen to music
from a certain style without possessing this knowledge ahead of time, but
learning it from experience instead.

Widmer states that his work can also be useful in testing theories of
music by encoding them into rules and seeing how well they perform. An
analogous approach is taken in the present research; Maestro is an attempt
to see how well certain theories of music learning perform when implemented
in a machine model.
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11.2.3 Connectionist Approaches

At the other end of the machine learning spectrum are connectionist systems,
which have been widely used in recent years for modelling music cognition.
Artificial neural networks have been used in efforts to learn systems of tonal-
ity by deriving mappings between pitches and chords or keys [10, 51]. Gang
and Berger use a connectionist model to study music expectation [49]. A
good review of these and other uses of neural networks is found in Leman
[71], as well as the very recent collection by Griffith and Todd [52].

Connectionist systems boast good performance in their various learning
tasks, and it can be argued that these systems are in fact successfully picking
up elements of the style information from their training data. Another
advantage of connectionist systems is the somewhat improved flexibility for
dealing with music from different styles.

However, the general drawback of the connectionist approach is that it is
often difficult to understand how or what the machine is learning. A goal of
this research is to study how the system is going about learning the specific
characteristics of a musical style. This type of analysis is made difficult by
the holistic approach of connectionist systems. Another drawback of the
connectionist approach, according to Jackendoff, is that complex structures
are more difficult to represent [61, p. 201]. Maestro’s (non-connectionist)
design allows it to learn in many environments, while maintaining clarity as
to what and how it is learning at each stage.

11.2.4 Context Models: Conklin and Witten

In their seminal program of research into music prediction stretching over
a few years [26, 27, 77, 131, 132], Conklin and Witten set out to develop a
machine model that learns to predict melodic pitches based on past listen-
ing experiences. The system achieves impressive results in predicting Bach
Chorale melodies, performing almost as well as human subjects given the
same task, and displaying a high correlation with human performance.

Conklin and Witten’s system stores segments of pitch information into a
context model (Chapter 4) and the performance is evaluated using an infor-
mation theoretic framework based on calculating a type of entropy (Chapter
5).

In [132], Conklin and Witten compare the music prediction capabilities
of humans and computers. They perform their tests only on one-step-ahead
predictions. Due to its variable order context model, described in Chapter
4, Maestro is able to generate appropriate multiple step predictions.

The input to Conklin and Witten’s system is pre-segmented with fer-
matas, and they state that this provides very strong clues about the prop-
erties of the next event. They assume that the beginning of a phrase is the
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Figure 11.4: The multiple viewpoints used in Conklin and Witten’s context
modelling approach. From (Conklin and Witten, [26]).

event immediately following an event under a fermata! [27, p. 62]. On the
other hand, segmentation in Maestro, as with humans, is performed by the
system on-line according to perceptual cues.

Conklin and Witten do not only store pitch in their context model. In-
stead, they adopt a multiple-viewpoint approach [27] in which the data is
stored in a number of different representations (Figure 11.4). The different
viewpoints include pitch, time signature, key signature, fermatas, start time,
and duration. According to Conklin and Witten [131], it is logical to expect
predictions to improve when various sources of knowledge about an event
stream are correlated and used together.

The problem with this approach from the perspective of music learning
is that some of these viewpoints rely on information not readily available
in the musical surface. For example, human listeners derive the time and
key signatures on-line from the time and pitch information, but Conklin and
Witten pre-annotate the input with this information. This goes against the
realistic input specification of Maestro’s design, described in Section 2.2.1.

! Apart from this pre-segmented phrasing used for deriving some viewpoints, Conklin
and Witten’s system uses a brute-force segmentation strategy for storing data in the
context model, as described in Chapter 3.
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Conklin and Witten also describe a set of derived types, which are ad-
ditional viewpoints created from the basic ones listed above. There are too
many to discuss here, but many rely on style specific knowledge for their
derivation. As Conklin and Witten explicitly state, the central idea behind
viewpoints is to use background domain knowledge to derive new ways of
expressing events in a sequence [27].

The rhythm, key, time and fermata information for the current event,
in addition to all previously predicted complete events, is available to the
system before predicting a certain pitch (Darrell Conklin, personal commu-
nication). While Maestro also predicts only pitch, it does not have access
to any auxiliary information ahead of time.

Conklin and Witten actually view the fact that they do not incorporate
further background information into their system a “shortcoming” [132, p.
78] — since their aim is optimal prediction performance from a machine model
(see [131, p. 57] and [132, p. 79]), they welcome any extra knowledge that
aids prediction. Conversely, the goal of the present research is the study of
a more cognitively realistic system for music learning. Since this a priori
knowledge is in fact the subject of the learning, it is not appropriate to
include it in a learning system.

Due to the style-specific knowledge encoded in it, Conklin and Witten’s
system lacks the flexibility to handle music from many different styles. While
in an earlier paper they state that their goal is to devise a methodology
capable of handling different genres, [131, p. 62], in their last paper they
point out that this goal has not yet been reached and that in order to be
significant as a general-purpose machine learning tool for music, the system
should be applied to musical domains wider and more adventurous than the
Bach Chorale melodies [27, p. 71]. The Bach Chorales are chosen in part due
to their general display of good melodic form [27], and this makes the task
and study of music style induction easier. However, people are capable of
learning different styles, and in keeping with this, experiments with Maestro
are performed using music from many different styles.

Finally, Conklin and Witten remark that system performance improves
as more training Chorales are seen [132]. Thus, the 100 Chorales on which
their system is trained are not sufficient for studying the complete process
of music learning. As the aim of Maestro is to study music learning, much
larger data-sets containing thousands of pieces are used to ensure that the
system undergoes a more complete process of learning.

11.3 Machine Models of Musical Ambiguity

Ambiguity plays a central role in music listening, especially in the context
of learning. Two representative approaches to handling ambiguity in music
are now presented.
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11.3.1 Tanguiane

Tanguiane’s work on artificial perception [118] focuses on real-time auto-
mated notation of performed music. His system deals with segregating dif-
ferent instruments from a sound stream as well as tracking rhythms and
tempos.

Tanguiane’s work is based on two principles: grouping and simplicity.
The grouping principle states that similar configurations of stimuli in the
data can be located and used to form high level configurations. Gestalt
principles such as parallel motion and continuity are used to organise the
data. From these Gestalt principles, grouping ambiguity often arises, sug-
gesting a number of possible representations of the data. The simplicity
principle states that the ideal representation of the music is the one that
is least complex according to the Koglomorov minimum representation —
the one that uses the least memory. Tanguiane thus formulates the prob-
lem of musical perception in terms of optimal data representation. Data
is stored as generative sound elements and their transformations. Guided
by the simplicity principle, these representations are built up into hierar-
chies. Tanguiane claims that these hierarchies are a first step to musical
understanding.

The driving force in Tanguiane’s system is finding optimal representa-
tions. In contrast, Maestro determines the structure of the music based on
finding repeating patterns in the input, as described in the discussion of
Maestro’s parsing stage in Chapter 6.

Tanguiane’s system has no long-term learning, which is Maestro’s pri-
mary focus. Tanguiane’s methods are applied to low-level audio signal trans-
duction for automatic notation of music. They are not necessarily suited for
the task of higher level music cognition considered here.

Most importantly, in handling ambiguity, Tanguiane’s system immedi-
ately resolves it, while Maestro maintains multiple hypotheses of interpreta-
tion. The motivation for Maestro’s approach to ambiguity comes primarily
from the work of Jackendoff, described next.

11.3.2 Jackendoff

Following up on the original GTTM work, Jackendoff published a paper in
1991 entitled Musical Parsing and Musical Affect [61], pointing out some
limitations of the original work. In it, he states that GTTM is intended
as an account of the experienced listener’s final-state understanding of a
piece — the structures that the listener can attain, given full familiarity with
the piece and with the style, and no limitations of short-term memory or
attention [61, p. 200].

Jackendoff emphasises that listening is an on-line process aimed at de-
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riving appropriate structure from the musical surface through a process he
calls “musical parsing”. He points out, however, that GTTM only reports
the final state of this structure and in no way addresses how it is derived
over the course of listening to the piece. Jackendoff thus arrives at the need
for a “processing model” able to show how the principles of the listener’s
internalised musical grammar can be deployed in real time to build musical
representations.

Jackendoff discusses the issues faced by such a model, focusing especially
on on-line parsing and ambiguity handling. He says that one of the funda-
mental problems facing the processor is the indeterminacy of the analysis
at many points — an indeterminacy that sometimes cannot be resolved until
considerably later in the music [61, p. 210].

After considering three different types of parsers to deal with this am-
biguity (see Section 6.1.3), Jackendoff chooses the parallel multiple anal-
ysis model: when handling ambiguity, processing splits into simultaneous
branches, each of which computes an analysis for one of the possibilities.
When the plausibility of a particular branch drops below a certain thresh-
old, it is abandoned. The branch remaining at the end represents the best
analysis of the music.

Jackendoff also deals with the issue of cognitive load, and how many
interpretations can be maintained by the listener at once. To choose between
different hypotheses, a selection function is employed, based on frequency,
plausibility or structural simplicity. These issues and others are discussed
more fully in the discussion of parsing in Chapter 6.

In dealing with ambiguity, Jackendoff’s general approach of maintain-
ing multiple hypotheses lies in contrast to Tanguiane’s immediate-resolution
method. Inkeeping with its cognitive realism design principle, Maestro bases
its strategy of handling ambiguity on Jackendoff’s approach.

Both the original GTTM work and Jackendoff’s 1991 work have the
system start out with an initial set of knowledge in the form of a rule base.
Maestro departs from Jackendoff’s approach here in that it aims to learn
this information from experience.

11.4 Agent-Based Models

This research draws on and extends the recent work in agent-based music
cognition systems [55, 82, 102, 103]. As the term agent is used in a wide
variety of contexts [40], it is appropriate to begin this discussion with some
definitions:

Agent An autonomous entity able to take certain actions to accomplish a
set of goals.
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Multi-Agent System A collection of independent agents, each working
towards its own goals. The agents in such a system might operate
alone, interact with each other, cooperate, compete, and can also learn.
From the actions and interactions of the individual agents, the complex
behaviour of the system as a whole emerges. (See [40]).

The concept of societies of agents arose from the work of Minsky and
Papert. In The Society of Mind [83], Minsky proposes a theoretical frame-
work of many interacting agents, each performing different tasks. A group
of agents performing related tasks can come together to form an agency.

A number of the intrinsic properties of multi-agent systems make them
highly suitable for the study of music cognition and learning [82, 103],
namely: competition, cooperation, and emergence. Agents with different
views of the music compete with each other to make themselves heard.
Agents can also cooperate to help each other to achieve common goals. Out
of the interactions of the various agents, the desired system-wide behaviour
emerges.

Within agent-based models of music cognition, an important distinction
can be made between processing agents and representative agents. In the
first approach, the various processes of music cognition are divided up among
different agents. This approach describes the agents in Rowe’s system [103]
as well as the Knowledge Sources used by Jones et al. in [63]. In the second
approach, individual agents not only process music, but actually represent
different interpretations of the music and compete with each other to have
their view chosen as that of the system. Maestro is designed according to
this latter approach.

Agents are not just passive data structures. Their ability to perform
actions to achieve their goals makes them well suited for implementing the
active listening approach introduced in Section 2.2.7. As Rosenthal states,
memory and process are contained in one structure [98, p. 318].

Learning within multi-agent systems is also an active area of research
[12, 40, 124]. Inter-agent and intra-agent learning techniques can be used to
improve the system’s performance with experience.

As the multi-agent system paradigm is a broad, general approach, it is
sometimes difficult to formalise its contribution to a system’s design. Rosen-
thal explains:

The idea of a society of agents has strong implications for the
structure of our model. First of all, rather than thinking of the
model as a single, integrated process that produces, say, encoded
descriptions of rhythms from raw data, we may think of the
model as a collection of independent, specialised processes, each
of which attacks the part of the incoming data that corresponds
to its speciality. Although this is perhaps more a difference in
how the workings of the model are explained than a difference
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in the workings themselves (because most computer programs
‘may be thought of as being composed of smaller pieces), the
distinction is nevertheless a valuable one and has a profound
effect on how one thinks about and proceeds to build such a
model [98, p. 317].

Moreover, the incorporation of the multi-agent system paradigm into
Maestro’s design provides for the explicit maintenance of multiple simulta-
neous interpretation hypotheses when handling ambiguity. In keeping with
Jackendoff’s approach, Maestro also contains a distributed agent-based pars-
ing algorithm that maintains multiple simultaneous hypotheses of interpre-
tation.

11.4.1 Minsky

In Music, Mind and Meaning [82], Minsky proposes a theoretical model of
music cognition, focusing on a procedural description of music. He argues
that the attempts to find a unified theory of music accounting for all musical
styles have failed because music universals cannot be found on the musical
surface level. Rather, the universals are found in the processes that generate
and perceive the musical surface.

In keeping with this approach, Minsky proposes a model in which differ-
ent agents process the music in parallel, building up multiple representations
of the music in the system. Agents represent different views of various pat-
terns occurring in the music, and so similar patterns in the music activate
similar agents.

According to Minsky, learning occurs through the addition of new agents.
Some agents can serve to connect other agents, and agents can cooperate.
For example, one agent’s activation can reduce the threshold of activation
for another agent, whose pattern is expected to occur in succession.

Minsky’s is only a theoretical model, and is not implemented into a
system. Maestro is designed to test certain key aspects of Minsky’s theory
by implementing them into a working system and performing experiments
with real musical data.

Minsky also proposes some experiments that involve raising simulated
infants in traditional musical cultures. From here stems the motivation for
some of the multi-style experiments performed in Chapter 10.

11.4.2 Rosenthal

In extending Minsky’s work, Rosenthal describes an agent-based system for
modelling and structuring rhythmic information in music [98]. The system
records previous rhythmic patterns it has seen, and creates agents called
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Figure 11.5: Rhythm recogniser agents making sense of a rhythmic selection
in Rosenthal’s system. From (Rosenthal, [98]).

recognisers to track these patterns when they reappear. Since memory and
process are contained in one structure, the hierarchically organised recog-
nisers constitute a structural description of the rhythm in the piece (Figure
11.5).

Rosenthal uses the GTTM grouping rules to segment the rhythmic in-
put in order to determine when recognisers should be created. Even though
Rosenthal states that humans make use of pitch information to aid in rhyth-
mic processing, pitch information is entirely ignored in Rosenthal’s system.
Similarly, Maestro predicts pitch, but does not store timing information.
However, Maestro does make use of timing information for the purposes of
segmenting the pitch data for storage.

In order to organise the recognisers into an appropriate structure, Rosen-
thal’s system relies on the law of return — two occurrences of the same pat-
tern, interrupted by other rhythmic material. This configuration is said
to form a structural unit which is then able to be organised hierarchically.
Rosenthal makes an interesting observation with regard to this method:

“Tension” rises in the model when there is a proliferation of
recognisers that are not yet organised into a higher level struc-
ture. In a human, this corresponds to having more items in
short-term memory than one can comfortably handle. [98, p.
327]

This idea is adopted and extended in the present research. Maestro mea-
sures ambiguity and tension by monitoring the number of listening agents
active and predicting at any one time. This is discussed further in Chapter
6.

In handling ambiguity, Rosenthal’s system does not maintain multiple
hypotheses. Instead he notes that a limitation of the model is that it only
retains one interpretation of what it has heard. However, as a possible
improvement to the system, Rosenthal suggests that several possibilities
could be stored in the expectation that subsequent events would confirm

\



11.4. AGENT-BASED MODELS 169

Figure 11.6: Hierarchical music processing agents in the listener component
of Rowe’s Cypher system. From (Rowe, [103]).

one of them. This is the approach taken by Maestro.

Like Minsky, Rosenthal sees music learning as a process of using existing
agents and adding new agents. Rosenthal does not run his model on music
from other styles, and therefore he states that it is not clear to what extent
the program models listening to music in general and to what extent it
is limited to the context of the Western musical tradition. The present
research addresses this issue by performing experiments with music from
different styles.

11.4.3 Rowe

Rowe’s Cypher system {100, 102, 103, 104] was developed as a real-time,
interactive agent-based machine system, capable of listening to and accom-
panying a live musical performance. Cypher consists of two main modules
— a listener and a player. The listener processes the incoming musical data
and communicates certain information to the player, which then uses this in-
formation to control the accompaniment. Cypher also has an internal critic
that monitors the system’s output using a pre-programmed set of aesthetic
preferences.

In Cypher, different agents are used to perform the various tasks in-
volved in interactive music listening and composition. The listener module
is hierarchical and has two main levels of listening agents. The first level
consists of feature agents that produce feature streams containing density,
speed, loudness, register, duration, and harmony information from the mu-
sical surface. This is similar to the multiple viewpoint approach discussed
by Conklin and Witten.
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The second level consists of key and chord agents that rely on data
from the level-one feature agents in order to determine the appropriate key
and chord information. Thus, in Rowe’s system agents are arranged into
a processing hierarchy, instead of a data-representational hierarchy (Figure
11.6).

The Phrase Agency, a group of related agents, is responsible for seg-
menting the musical data into phrases for storage into memory. The phrase
boundaries are determined according to the discontinuities in the various
feature streams. The focus and decay method is used to adaptively adjust
to the changing musical dimensions, as described in detail in Chapter 3.
The magnitudes of discontinuity from the various feature streams are com-
bined using a fixed weighted average. Thus, Cypher immediately resolves
any segmentation ambiguity. A similar method of finding phrase bound-
aries is used in Maestro’s segmentation stage, except that the segmentation
cues from the various feature streams are not integrated using a weighted
average. Instead, each stream is dealt with independently, and the resulting
multiple segmentation hypotheses are all stored by the system. In this way,
Maestro handles segmentation ambiguity.

Cypher is also equipped with certain limited pattern processing capabili-
ties [102, Ch. 6]. The listener component maintains a codebook (effectively a
context model) of monophonic pitch patterns and harmonic progressions de-
tected in the data and segmented as above. It then employs a noise-tolerant
pattern matching technique.

Predictions are made when previously spotted patterns begin to appear
again in the input. The listener communicates expectations to the player
when it detects patterns recurring. A long-term memory stores patterns
from one piece to the next and deletes patterns if they are not used for a
long time.

Rowe mentions ([102, p. 163]) that spurious phrase boundaries could
interrupt the system from noticing a desired pattern. He also points out
that patterns spanning across phrase boundaries simply cannot be found.
These issues pose less of a problem in Maestro, where multiple segmentation
hypotheses are maintained.

The agents in Rowe’s system are designed to function with Western mu-
-sic. For example, the chord and key agents have the Western system of tonal-
ity hard-coded in their internal analytic processes. This affects Cypher’s
ability to deal with music from other styles. Cypher allows for some of
the rules controlling composition to be manually tuned by adjusting con-
nections between various listening and composing agents. This learning,
however is not driven by the system’s experiences, as would be necessary for
a self-contained model of music learning.
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11.4.4 Hiraga

" Hiraga [55, 56] explores the use of representative agents for handling pitch in-
formation in melodies. Coarse receptor agents are used to identify structure

for the purposes of segmenting a melody. The agents monitor a melody en-
tered as streams of pitch and time information. Each agent represents a dif-
ferent primitive relationship between pitches or time spans: same, sequence-

up, sequence-down, remote-steps-up, remote-steps-down. Hiraga states that
these primitives are congruent with aspects of Narmour’s Implication-Realisation
model. ‘

Hiraga sets out three design requirements for his system:

e Incremental processing — the system continually reports (partial) re-
sults as it processes the music.

e Robustness — the system can handle change, errors and different styles,
and is not governed by the presupposition of any musical style.

e Minimal framework — as an initial study, the data is kept simple, lim-
ited to only pitch and onset times of notes.

These three factors all play a major role in Maestro’s design.

Hiraga’s agents are instantiated whenever the relationship they embody
accurately describes the current notes. The activation of an agent over
a group of notes (e.g., the sequence-up agent over the sequence ABCDE)
suggests that those notes should be grouped together.

Segmentation is thus performed by agent activation and interaction. If
all the active agents agree, the segmentation is clear. If, however, the agents
disagree, this leads to ambiguity. In keeping with Meyer’s view [115, p. 190],
Hiraga comments that segmentation ambiguity enables continuous flow in
the music. Ambiguity is resolved using judgements that are dynamic and
context dependent, such as the relative metric weight of notes.

Maestro’s method of agent activation is similar to Hiraga’s in that agents
are dynamically generated and invoked by the relation they respond to [55].
Additionally, Hiraga’s method of grouping by agent activation is also similar
in approach to Maestro’s parsing stage.

However, Hiraga uses agents representing pre-encoded primitive relations
to segment the data, while Maestro, focused primarily on studying music
learning, uses agents representing learned patterns to parse the data accord-
ing to the system’s previous experiences.

In his later work [56], Hiraga focuses on pattern matching as an essential
component of music cognition, and addresses the circularity problem that
results from the interaction between discontinuity-based segmentation and
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Figure 11.7: Auditory stream tracer agents. From (Nakatani, [85]).

repetition-based segmentation. The circularity problem is formally intro-
duced in Section 3.2.6 and addressed in Section 6.2.4.

11.4.5 Nakatani

Nakatani et al. [85] present a system of agents used to track multiple streams
in analog audio signals. Tracer agents are created by generator agents to
track multiple audio streams which rise and fall in pitch. A key feature
of Nakatani’s system is subtractive competition, whereby each tracer agent
subtracts the stream it is modelling from the overall signal, thus not allowing
other agents to see it, lest they too begin to track it (Figure 11.7).

Separate monitor agents control the agent population. Tracer agents
with nothing to track are attenuated, and those modelling the streams of
others are terminated. After all the current tracer agents have subtracted
their modelled streams from the data, if a significant residue remains, a new
tracer agent is launched by a generator agent to track it.

Maestro is closely related to the work of Nakatani. In both systems,
agents are used to both process and represent the data. Agents with different
goals compete in performing the overall system-wide task. Nakatani’s system
is focused on stream segregation, while Maestro is focused on prediction and
parsing. One possible application of Nakatani’s subtractive competition
would be to upgrade Maestro to process polyphonic musical data. The
stream segregation capabilities would be then be useful for tracking patterns
in the different voices.

11.5 Summary

Classical music theory often ignores the essential connection between music
and the humans that create and appreciate it. More recent work, such as
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that of Narmour and Lerdahl and Jackendoff, approaches music theory from
a more cognitive perspective. Maestro follows this cognitive approach.

Machine models of music learning such as Conklin and Witten’s have also
been designed in accordance with some cognitive principles. However, for
the most part these systems are primarily intended for achieving optimal
machine performance at the expense of cognitive realism. Maestro is an
attempt to develop a model of machine learning that is guided by cognitive
principles.

Recent work also directly addresses musical ambiguity. Specifically,
Jackendoff proposes that multiple, simultaneous hypotheses are maintained
in dealing with ambiguity. Maestro is in part intended as an implementation
of certain key ‘aspects of Jackendoff’s theory.

The intrinsic properties of multi-agent systems make them highly suit-
able for modelling music cognition, especially in the context of ambiguity
and active listening. Based on the ideas of Minsky, Rosenthal, Rowe and
Hiraga have explored ways of using agents to model certain aspects of music
cognition and learning. Maestro extends this work, focusing specifically on
music learning and cognitive realism.




Chapter 12

Conclusions

Maestro has been developed as a machine model of music cognition and
learning. It is designed primarily to enable the performance of music learn-
ing experiments that would be virtually impossible to conduct with human
subjects. To this end, machine modelling provides the necessary control
over prior musical experiences and the ease of continual monitoring that are
required for a systematic study of music learning. Maestro also tests certain
theories of music cognition and learning by implementing them in a working
system and performing experiments with actual musical examples.

Maestro is an attempt to develop a model of machine learning that is
guided by cognitive principles, and is not intended for achieving optimal
machine performance at the expense of cognitive realism. The experiments
described in this dissertation utilise large data sets of music from differ-
ent styles, thus enabling the study of a more realistic music learning sce-
nario, and allowing multi-style experiments to be carried out. It has been
common practice in other programmes of research to incorporate a prior:
style-specific information in order to help achieve optimal performance with
a specific musical style. In order to maintain its pan-stylistic capabilities,
Maestro does not include any such style-specific information e priori.

Ambiguity is an essential aspect of music cognition, especially in the con-
text of learning. Maestro handles three types of ambiguity: segmentation
ambiguity, prediction ambiguity and parsing segmentation ambiguity. The
intrinsic properties of multi agent systems make them highly suitable for
modelling music cognition, especially in the context of ambiguity and active
listening. Based on the ideas of Minsky and systems such as Rosenthal’s,
Rowe’s and Hiraga’s, Maestro extends the research into ways of using agents
to model certain aspects of music cognition and learning, focusing specifi-
cally on music learning and cognitive realism.

174
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12.1 Contributions

The following are the main technical contributions of the research presented
in this dissertation:

- ® Bottom-up Segmentation: Maestro’s segmentation stage is based on
tracking three bottom-up perceptual cues, and does not utilise any
pre-annotations or a priori style-specific information as in previous
systems. The focus and decay methodology used by Rowe is adopted
for this purpose, and modified to better avoid finding spurious phrase
boundaries. -

o Segmentation Ambiguity: In contrast to previous systems, Maestro
stores all possible segmentations in its model. This partial overlap
strategy is in keeping with Maestro’s general approach of maintaining
multiple hypotheses when faced with ambiguity.

o Perceptually Guided Segmentation: It is hypothesised that certain seg-
mentation points result in models that are more efficient for the pur-
poses of prediction, and further that Maestro’s perceptually guided
segmentation strategy identifies such points of segmentation. An ex-
perimental method, N-Note Segmentation Shifting, is developed to
compare the efficiency of different segmentation strategies for mod-
elling for prediction. Experiments with short term memory context
models are highly consistent with PGS hypotheses, and some of the
observations would be difficult to explain otherwise. Experiments with
long term memory are still consistent with PGS theory, but the large
differences in model sizes prevents a fair comparison of efficiency being
made.

e More Realistic Context Models: The present research attempts to
make the context modelling paradigm used by Conklin and Witten
more cognitively realistic. This is accomplished primarily by storing
the variable order context segments suggested by Maestro’s percep-
tually guided segmentation. This strategy allows Maestro to gener-
ate appropriate multiple-step-ahead predictions and to perform proper
repetition-based parsing. Additionally, Maestro’s model stays within
more realistic size constraints.

o Activated Modelling: In keeping with the active listening approach
and with Jackendoff’s theory of maintaining multiple simultaneous hy-
potheses when faced with ambiguity, Maestro incorporates the multi-
agent system paradigm into its design. The context model is activated
by instantiating various segments into autonomous reactive listening
agents, which then go on to predict and parse the musical information.
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The active modelling approach implements many of Minsky’s theories
into a working system and tests them with actual musical examples.

Multiple-Step-Ahead Prediction: Previous studies focus only on pre-
dictions made one-step ahead of time. Due to the variable order con-
texts in Maestro’s model, the listening agents generate appropriate
multiple-step-ahead predictions, in accordance with the current musi-
cal context.

Extended Entropy-Based Performance Measures: Conklin and Witten
use one type of entropy to measure prediction performance. Two types
of entropy are used in Maestro: overall entropy measures the flatness
of the generated probability distributions, while prediction entropy re-
flects the degree of surprise experienced when observing certain events.
To allow entropy to be measured, the zero-frequency problem is ad-
dressed by blending the system’s predictions with a flat probability
distribution.

Agent-Based Parsing: Maestro’s parsing is performed in a distributed
fashion by the various listening agents. It is, in effect, a distributed
implementation of breadth first, bottom-up, left-to-right, partial, op-
timal chart parsing. In keeping with Jackendoff’s theory, multiple
parsing hypotheses are maintained and reconciled by the agents, who
compete and cooperate with one another, each pursuing its own pars-
ing goal. The desired system-wide parsing behaviour emerges from the
interactions between the individual agents.

Realistic Deterministic Musical Parsing: Humans use certain selection
factors to resolve situations with persistent ambiguity. For resolving
parsing ambiguity, Maestro uses preference rules related to right as-
sociation and lexical preferences, adopted from the field of Natural
Language Processing.

Retrospective Listening: Ambiguity often leads to delays in on-line
processing, and both Jackendoff and Berent and Perfetti state that
this can lead to retrospective listening. Maestro’s parsing stage is
capable of displaying retrospective listening when faced with persistent
ambiguity.

Large Data-Sets: Previous work on music prediction has used corpora
containing on the order of 100 songs. Much larger-scale music learning
experiments are conducted here with corpora containing thousands of
songs taken from the Essen Folk song collection. These constitute an
experience base more similar to that of a human listener growing up
in a certain culture.
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o Three-Fold Analysis Framework For Music Learning Experiments: Three
methods are developed and used to analyse the results of the music
learning experiments: context model growth, the number of predic-
tions generated, and the prediction performance. This framework is
also used to analyse predictions of various forecast horizons.

o Prediction Ambiguity: Different agents generate various predictions,
as suggested by the current musical context. These predictions are
integrated into a probability distribution, thus assigning credit for
multiple simultaneous predictions. Predictions are weighted by two
factors: reliability and certainty.

o Entropy-based ambiguity classification: Two types of entropy and a
measure of agent activation are used to study ambiguity. A plot com-
paring overall entropy with agent activation is shown to identify two
types of ambiguity: ambivalence and uncertainty.

o Model Maturity: A dual-entropy profile is shown to provide a measure
of the level of training, or ‘maturity’ of a model.

o Circularity Problem: Segmentation can rely on finding repeating pat-
terns in the data. Maestro deals with the circularity problem inherent
to repetition-based segmentation (parsing) by performing a directed
search for patterns, based on perceptually guided segmentation.

12.2 Lessons Learned

Maestro’s capabilities enable large-scale music learning experiments to be
performed. The following note-worthy results were obtained:

o Study of the Learning Process: Unlike previous research which focused
on analysing the final state of a trained music learning system, experi-
ments performed with Maestro study the learning process that occurs
when listening to music. The results show clear learning curves: with
training, the model growth rate decreases, the number of predictions
increases and the prediction performance improves.

e Larger data sets: The larger data sets used for experimentation enable
the study of a more complete music learning process. The results
show a learning limit that is approached asymptotically with increased
training.

o Multiple-Step-Ahead Predictions: The results show that, as expected,
prediction performance drops with increasing forecast horizon. For the
learning set-up used in these experiments, it appears that predictions
up to three or four steps ahead were useful.
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e Style Switching: The Style Switching experiments show how previous
musical experience affects the prediction performance when dealing
with music from non-native style. The results also show that with ex-
tended exposure to a new style, a non-native listener gradually adopts
to the new style.

e Comparative Listening: The Comparative Listening experiments study
how two listeners with different musical backgrounds perform when lis-
tening to the same piece. The results show that the native listener has
an advantage over the foreigner, and that the results of the two listen-
ers are correlated due to the intrinsic entropy of the individual songs.

As the foreign listener learns the new style, the performance levels of -

the two listeners gradually converge.

e Geographical Mapping: The Geographical Mapping experiments study
how machine listeners from two different musical backgrounds fare in
predicting music from 33 different styles. The results show that train-
ing with related musical styles better prepares a listener for listening
to a new style. The results also show that the geographical distance
of musical origin is correlated with differences in levels of prediction
performance.

12.3 Opportunities for Future Work

Significant contributions have been made over the course of this research,
and the potential for further research is promising. Maestro could be ex-
tended to perform inexact pattern matching, allowing for a certain level
of tolerance when matching the input to previously stored patterns. This
would improve the cognitive realism, but would raise new issues such as
how dissimilar two patterns must be to justify the instantiation of separate
listening agents.

If polyphony is considered, the dimensionality of the problem would be
significantly increased. Many interesting issues would arise, such as mod-
elling interactions between the various voices. Explicit models of harmony
and tonality can also be added. To maintain Maestro’s pan-stylistic po-
tential, these would have to be general enough to learn the regularities of
different tonal systems.

Maestro can be developed further to handle hierarchical musical struc-
ture. Hierarchical linking agents could represent the concept that one listen-
ing agent is typically activated after another. Prediction horizons can thus
be extended, and parsing competitions can be modified to prefer hierarchical
structures.

The context models can be examined to see if Narmour’s innate princi-
ples of melodic implication (Registral Direction, Interval Difference, Regis-
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tral Return, Proximity and Closure, mentioned in [68]) emerge from listening
to music of various styles.

The system could be configured for real-time interaction with a live MIDI
device. Maestro is already prepared for such an interaction. As it takes in
only the musical surface, no significant pre-processing would need to be
done. The adaptive capabilities of focus and decay should prove capable of
handling realistic user input. Maestro’s segmentation stage could then be
upgraded to deal with dynamics information, which was found not to be
useful in the experimental data available for this research.

Further experiments could be performed. The system could be trained
in a number of different styles, while being told which style each selection
is from. It could then be asked to perform Style Discrimination, classifying
new pieces as belonging to one of its known styles. This would probably be
done by maintaining separate, well-trained context models for the various
styles, and then determining the style of a new piece by selecting the model
with the best prediction performance. This would extend the indirect style
discrimination work discussed in the Geographical Mapping experiments.

Finally, the system can also be configured to generate music. Once
trained in a certain style, Maestro could be given a starting interval and
asked to predict what would come next. Its prediction for this note would
then be fed back to it for use in generating the next prediction. This type of
‘inspired composition’ is mentioned by Conklin and Witten, and is similar
to Cope’s EMI work.

Computer modelling of music learning is only beginning to be explored,
and prospects for the future are encouraging for both computer scientists and
cognitive musicologists alike. This research has tried to explore a number of
the more challenging and interesting aspects of the field.




Appendix A

Event Loop

Maestro p‘erforms eight steps when processing each musical event. Each step
is presented below along with the name of the relevant Maestro functions:

1.
2.

Read Next_Value() —The next input event is read in.

Do_Segmentation() — (Segmentation Stage) The segmentation mod-
ules check for a segmentation boundary at the new event and, if appro-
priate, suggest candidate segments for inclusion in the context model.

LTM Verify Predictions() and STM Verify Predictions() — (Pre-
diction Stage) Once the new event is read, the predictions made during
the previous event are compared with the actual value present in the
music.

. Activate_Agents () — (Modelling Stage) Segments in the context model

whose first value matches the current pitch interval in the input are
instantiated into listening agents.

. Process_Agents() — (Prediction Stage) The currently active agents

process the new event, matching the input against their internal tem-
plates and generating appropriate predictions.

. Parse_Agents() — (Parsing Stage) The agents monitor and interact

with any other agents with whom they are engaged in a parsing com-
petition.

Terminate_Agents() — Agents who have mismatched the input or who
have lost a parsing competition are terminated.

LTM_Integrate Predictions() and STM_Integrate Predictions()
— (Prediction Stage) The predictions of the various agents are in-
tegrated to generate the probability distribution of the system as a
whole.
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Listening Agent Class

Figure B.1 shows the class declaration file for Maestro’s listening agents.
A listening agent has two main callable functions. In the first, Process(),
the agent compares the input with its template and generates predictions as
appropriate. This represents the agent’s matching phase.

In the second function, Parse(), the agent monitors and interacts with
the other agents involved with it in a parsing competition. This repre-
sents the agent’s parsing phase. The agent keeps track of the other com-
petitors using the two doubly-linked lists I_Threaten and Threatened By.
Ignore Me() and Persist () are used to remove agents from these two lists
respectively. If an agent loses a parsing competition, a call to Give Up() is
made. If it wins, the agent calls Win().
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#define La DLList <Listener *>

class Listener

{

public:
// Variables set upon instantiation:
int parentid; // ID of context segment
int id; // ID of specific instantiation of context segment
int sIndex; // Starting time
int Template[20]; // Template
int Len; // Length of template
int memtype; // Instantiated from STM or LTM context model
int Tindex; // Template index pointer

// Signals indicating the state of the agent.
int START, ON, FINISH, KILL;

// Doubly-linked lists used for tracking other agents in Parsing Competitions
La I_Threaten; // List of threatened competitors
La Threatened By; // List of threatening competitors

// Callable functions

Listener(); // Constructor

Listener::Listener(int idnum, int st, int len, int *tlate, int mtype);
// Constructor with init

void Process(void); // Process data

void Parse(void); // Parse data

void Persist(int); // Remove a former threat from Threatened By list

void IgnoreMe(int); // Remove a former competitor from I_Threaten list
void GiveUp(void); // Competitor wins, report termination to others.

void Win(void); // Claim parse

void Clean Up(); // Clean up tcl variables and others

}s

Figure B.1: Maestro’s listening agents are instantiations of the Listener
class, defined in this C++ class declaration.




Appendix C

Data formats

C.1 MST

Maestro takes in data in the custom MST format (derived from an abbre-
viated form of the name Maestro), which contains information pertaining
to the musical surface. Each note event is represented by a data triplet:
onset-time, pitch, duration. This is very similar to MIDI, but no ve-
locity information is included (see Section 3.2.1.1). Each song begins with
a text string indicating the song name, followed by a series of data triplets
representing the note-events of the melody. Each song is ended with the
termination sequence: -999 -999 -999.

To prepare a corpus for experiments, multiple songs were concatenated
into a single file in the desired order of presentation to Maestro. For example:

Song_1
<onset-time, pitch, duration>
<onset-time, pitch, duration>

<onset-time, pitch, duration>
-999 -999 -999

Song 2

<onset-time, pitch, duration>

Song N
<onset-time, pitch, duration>

<onset-time, pitch, duration>
-999 -999 -999
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(6

((st 12) (pitch 65) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 16) (pitch 69) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 20) (pitch 67) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 24) (pitch 69) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 28) (pitch 70) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 32) (pitch 72) (dur 8) (keysig -1) (timesig 16) (fermata 0))
((st 40) (pitch 69) (dur 4) (keysig -1) (timesig 16) (fermata 1))
((st 44) (pitch 74) (dur 4) (keysig ~1) (timesig 16) (fermata 0))
((st 48) (pitch 72) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 52) (pitch 70) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 56) (pitch 69) (dur 4) (keysig -1) (timesig 16) (fermata 0})
((st 60) (pitch 87) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 64) (pitch 69) (dur 8) (keysig -1) (timesig 16) (fermata 1))
((st 76) (pitch 72) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 80) (pitch 74) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 84) (pitch 76) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 88) (pitch 77) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 92) (pitch 76) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 96) (pitch 74) (dur 8) (keysig -1) (timesig 16) (fermata 0))
((st 104) (pitch 72) (dur 4) (keysig -1) (timesig 16) (fermata 1))
((st 108) (pitch 69) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 112) (pitch 70) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 116) (pitch 69) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 120) (pitch 67) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 124) (pitch 67) (dur 4) (keysig -1) (timesig 16) (fermata 0))
((st 128) (pitch 65) (dur 12) (keysig -1) (timesig 16) (fermata 1)))

Figure C.1: Conklin and Witten’s representation of a Bach Chorale used in
their music prediction experiments. Chorale number 6 is shown.

As mentioned in Chapter 7, the order of songs in MST files was shuf-
fled around using a pseudo-randomiser program called reshuffle written
specifically for this purpose (C code). Since music from various sources was
used, data had to be converted from the various original formats to the MST
format, as described below.

C.2 Conklin and Witten’s format

The 100 Bach Chorales used by Conklin and Witten were obtained in the
form shown in Figure C.1. The shortest Chorale is shown due to space
considerations. This format includes information not readily present in the
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chorale 6
12 65 4
16 69
20 67
24 69
28 70
32 72
40 69
44 74
48 72
52 70
56 69
60 67
64 69
76 72
80 74
84 76
88 77
92 76
96 74
104 72
108
112
116
120
124
128 65 12
-999 -999 -999
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D
©
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Figure C.2: MST representation of Bach Chorale number 6.

musical surface: pitch signature, time signature and fermatas.

In keeping with Maestro’s design specification of realistic input (Sec-
tion 2.2.1), this extra information was removed from the files, yielding the
corresponding MST file shown in Figure C.2.

C.3 The **kern Format

The data in the Essen Folk Song Collection was obtained in the Humdrum
**kern format, which is capable of representing underlying syntactic infor-
mation in the music [107]. An example is shown in Figure C.3.

The **kern representation contains phrasing information, (indicated by
the ‘{’ symbols) and bar lines (‘="). Additionally, a significant amount of his-
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torical and descriptive information about an individual piece is included. All
these had to be removed, and the actual musical data had to be translated
before processing by Maestro was possible.

The **kern data was first preprocessed with tools from the Humdrum
toolkit, available with the EFSC distribution [107]. Then, a utility called
bproc was used (written in C, roughly 200 lines of code) to convert the
musical data to the MST format used by Maestro (Figure C.4).
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I't!0TL: SO MUSS ER UNSER SCHWAGER SEIN
'11ARE: Europa, Mitteleuropa, Deutschland
111SCT: E09464A

'1YYEM: Copyright 1995, estate of Helmut Schaffrath.
*kern

ICvox

Ivox

M4/4

G:

{444

=1

4b

4g

4a

4g
4g
4g}
{44d

4dd

4dd

444

4dd

=4

4dee

4dd

4b}

!11AGN: Tanz - Lied, Reigen
!! Fragment

!110NB: ESAC (Essen Associative Code) Database: ERK2
!11AMT: simple quadruple
PYIATN: vox

'Y 1EED: Helmut Schaffrath
!'11EEV: 1.0

Figure C.3: **kern representation of a German Folk song used in the large-
scale music learning experiments. (EFSC reference number deut1527.)




188

deut1527
8 74 8

16
24
32
40
48
56
64
72
80
88
96

104 74 8
112 76 8
120 74 8
128 71 8
-999 -999 -999

71
67
69
66
67
67
67
74
74
74
74

00 00 CO 00 00 00 00 0O OO0 00 OO

APPENDIX C. DATA FORMATS

Figure C.4: MST representation of a German Folk song used in the large-
scale music learning experiments. (EFSC reference number deut1527.)




Appendix D

Geographical Mapping Data

Table D.1 shows the reference numbers for the songs used in the Geograph-
ical Mapping experiments reported in Chapter 10. Where many songs were
available from a single style, a maximum of fifty were used. In such cases
(e.g., Netherlands, Yugoslavia, etc.), instead of simply using the first fifty
songs, fifty songs were selected from a distribution across the entire corpus.

Due to space constraints, the individual reference numbers for the songs
from the Chinese styles are not listed. Rather, the reqular ezpressions used
to select the files are given instead.
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COUNTRY
Austria:
Brazil:

Canada:
China:

Czech Republic:

Denmark:
France:

Germany:
Hungary:
India:
Italy:

Japan:

Java:
Luxemberg:
Mexico :
Netherlands:
Poland:
Romania:
Russia:
Saudi Arabia:
Sweden:
Switzerland:
Syria:
Turkey:
Ukraine:

United Kingdom:

USA:
Yogoslavia:

APPENDIX D. GEOGRAPHICAL MAPPING DATA

EFSC REFERENCE NUMBERS
oestr010-019,030-039,050-059,070-079,090-099
brasilOl

canada0O1

han0[1,2,3,4,5]70
natmn{0]?[1,3,5,7,9]
shanx[1,3,5,6,7170
xinhua01-10

czech01-43

danmark1-9

france01-14,
elsass10-19,30-39,50-79

50 from erkl collection
magyar01-45

india01

italia01-08,

tirol01i-14

nippon01

javaOl

luxembrg01-08

mexico01-04
neder010-019,030-039,050-079
polska01-25

romania01-28
ussr1-36,rossiyal

arabicO1

sverige01-11
suissel0-19,30-39,50-59,70-89
ashshami

turkiyel

ukraina01-13

england1-4

usa01-07 .
jugos010-019,030-039,050-059,070-079,090-099

Table D.1: Essen Folk Song Collection reference numbers for the songs used
in the Geographical Mapping experiments.
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