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Abstract

Fast and accurate analysis of fluorescence in-situ hybridization
(FISH) images will depend mainly upon two components: a classifier
to discriminate between artifacts and valid signal data, and well dis-
criminating features to represent the signals. Our previous work has
focused on the first component. To investigate the second component,
we evaluate candidate feature sets by illustrating the probability den-
sity functions and scatter plots for the features. This analysis provides
insight into dependencies between features, indicates the relative im-
portance of members of a feature set, and helps in identifying sources
of potential classification errors. The analysis recommends several
intensity and hue-based features for representing FISH signals. The
recommendation is confirmed by the probability of misclassification
using a two-layer neural network (NN), and also by a feature selection
technique making use of a class separability criterion. Represented
by these intensity and hue-based features, 90% of valid signals and

artifacts are correctly classified using the NN.

1 Introduction

Fluorescence in-situ hybridization (FISH) allows the detection of specific
DNA sequences in intact cells and chromosomes. It enables selective staining

of various sequences in interphase nuclei and therefore the detection, analysis




and quantification of specific numerical and structural chromosomal abnor-
malities within these nuclei. FISH is a widespread and diversely applied
technology. Among the fields of biology in which FISH is employed include
karyotype analysis, gene mapping, DNA replication and recombination, clin-
ical diagnosis and monitoring of disease, radiation dosimetry, gene transcrip-
tion and expression and the study of chromatin organization and structure
[1]. This diversity of applications is complemented by a similar diversity in
the types of probes, detection systems and multi-waveband epifluorescence
filter cubes that are currently being employed for FISH.

Digital microscopy in FISH allows the application of image analysis tech-
niques for automation of time consuming tasks, such as dot counting. Dot
counting, the enumeration of signals (also called dots or spots) within the
nuclei, is considered as one of the most important applications of FISH. One
approach to dot counting relies on an auto-focusing mechanism to select the
‘clearest’ image for the analysis [2, 3]. However, basing dot counting on
auto-focusing can have some shortcomings [4]. First, special instrumenta-
tion is required to focus the stage under computer control. Second, as image
acquisition depends upon finding a single ‘optimal’ image, it can fail if the
mechanism focuses on artifacts such as debris or background fluorescence, or
if the field of view is empty. Manual inspection for discarding such images is
sometimes inevitable. Moreover, even if the ‘clearest’ image is found, it can

only represent a section of a three-dimensional image, where signals in other
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sections, which are above or below that section, are out of focus. Finally,
automatic focusing is found to be both time-consuming and a source for a
large percentage of the total error rate of the analysis.

Recently, it has been proposed [4] to base FISH dot counting on images
that are sampled at a fixed focal plane. This method is motivated by the as-
sumption that nuclei are approximately uniformly distributed in the sample,
so that translations at a fixed focal plane will provide a statistically equiv-
alent sample as projections through different focal planes. Images can be
captured by any scanning method of the slide, and the microscope stage can
stop for collecting images arbitrarily, even at random. Randomly-captured
images in a fixed focal plane ‘intersect’ nuclei on the slide at random sections,
which are equivalent to those encountered by the auto-focusing mechanism.
This method enables most of the shortcomings of auto-focusing to be over-
come, since it shortens the length of image acquisition and requires no special
instrumentation. However, the system needs to acquire sufficient analysable
images and to exploit most of the information contained within these images
in order to enable dot counting. It may have to deal with more unfocused
nuclei and signals, and so its ability to distinguish between focused and un-
focused signals should be better than that of a system employing an auto-
focusing mechanism. Therefore, the proposed system is based on extracting
characteristics that discriminate between focused and unfocused signals, and

on a highly-accurate classifier, trained using large numbers of examples of
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the two classes. A two-layer perceptron neural network (NN), trained by a
scaled conjugate gradient algorithm, was found [4] to be a highly-accurate
classifier of FISH signals into real (valid) signals and artifacts of two fluo-
rophores. In the present paper we aim to find well-discriminating feature
representations of FISH signals to ensure an efficient and accurate classi-
fication. Together, the two components provide a complete framework for
automatic signal classification in FISH images.

Section 2 of the paper describes the procedure we use to acquire FISH
images, while Section 3 depicts a methodology for multi-spectral FISH image
analysis. Sections 4 and 6, respectively, describe the applications of feature
extraction and feature selection to signal measurements, which are introduced
in Section 5. Section 7 presents an NN-based classifier of signals into valid
and artifact signals of two colours. An evaluation of feature representations
for FISH signals by visual analysis of scatter plots and probability density
functions, as well as by a scatter criterion and the classifier probability of
misclassification, is given in Section 8, whereas conclusions for the paper are

discussed in Section 9.




2 Biological materials and methods

2.1 Slide preparation

The interphase nuclei preparations from amniotic fluid were made using the
method by Klinger et al. [5] with minor modifications. 1-2ml of amniotic
fluid was centrifuged and the cell pellet washed in PBS warmed to 37°C. The
cells were resuspended in 75mM Potassium Chloride (KCl) and put directly
on to slides coated with APES (Sigma) and incubated at 37°C for 15 minutes.
Evaporation of PBS was compensated with filtered distilled water. Excess
fluid was carefully removed and replaced with 100ml of 3% Carnoys fixative,
70% 75mM KCl at room temperature for 5 minutes. The excess fluid was
carefully removed and 5 drops of fresh fixative were dropped on to the cell
area. Slides were briefly dried on a 60°C hotplate, and then either used
immediately for hybridization or dehydrated through an alcohol series and

stored at —20°C until required.

2.2 Hybridization

Target areas were marked on the slides using a diamond tipped scribe. Tar-
get DNA was denatured by immersing in 70% formamide:30% 2xSSC at
73°C for 5 minutes. 10 pL of probe mix containing spectrum orange LSI
21 and spectrum green LSI 13 (Vysis UK) was applied to the target area

and a coverslip placed over the probe solution. Coverslips were sealed using
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rubber cement and slides placed in a pre-warmed humidified container in a
37°C incubator for 16 hours. Coverslips were removed and slides washed in
0.4xSSc¢/0.3%NP-40 solution at 73°C for 2 minutes. Slides were then placed
in 2xSSC/0.1% NP-40 solution at room temperature for 1 minute. When
completely dried 10 puL of DAPI II counterstain (Vysis UK) was applied to

the target area and sealed under a coverslip.

2.3 Fluorescence microscopy

Slides were screened under a Zeiss axioplan epifluorescence microscope using
x100 objective. Signals were viewed using appropriate filters and images
acquired using a CCD camera and SmartCapture software (Vysis UK). Slides
were scanned by starting in the upper left corner of the coverslip and moving
from top to bottom. Images were captured by stopping at random intervals.
Red and green signals were seen on blue DAPI stained nuclei, corresponding
to chromosomes 21 and 13 respectively. The focus and colour ratios were
adjusted for the first captured image from each slide, and then kept at those
values for all the following images from that particular slide. A total of 400

images were collected from five slides and stored in TIFF format.




3 Multi-spectral FISH image analysis

3.1 Motivation

Colour systems such as colour television and colour photography usually
follow the human visual system and describe and synthesize colour images
using the three primary colours— red, green and blue (RGB). Similarly, a
tricolour digital image can be considered as a two-dimensional image having
three intensity levels (red, green and blue) at each pixel [6]. By analysing
each of the three colour channels of the RGB image separately and in various
combinations, pre-processing and segmentation of multi-spectral images can
be facilitated.

In FISH preparation, multiple probes, labelled by different fluorophores,
are frequently combined. In the current study, for instance, chromosomes
13 and 21 are detected as green and red signals respectively, whereas the
nuclei are indicated by blue. Although the position in the image and the
characteristics of the fluorophores are of importance, much previous analy-
sis [2, 3, 7] usually converts colour information into a gray-intensity scale,
and FISH image analysis is then based on brightness contrast. However,
difficulties encountered during the analysis of intensity-based FISH images
can be avoided if colour information is maintained and used [8]. Nuclei can
be analysed using the blue channel of the RGB image, whereas the signals

can be analysed using the red and green channels. In our case, for example,
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red and green signals are analysed separately using the red and green chan-
nels of the RGB image, respectively. Multi-spectral FISH image analysis is
beneficial not only to facilitate pre-processing and segmentation, but also to
yield colour-based features that contribute to an efficient signal classification.
Finally, the benefit of using multi-spectral analysis is expected to increase

with the number of fluorophores involved in the analysis.

3.2 Colour specification

Using the RGB colour format, which is the most basic quantitative descrip-
tion of a colour image, we represent colour by the scaled (usually between
zero to one) red, green and blue intensities of each image pixel. In the HSI
(hue, saturation, intensity) format, which is more suitable for approximat-
ing human colour judgements, the colour of a pixel is represented by its hue
and saturation, whereas the intensity indicates the pixel overall brightness,
regardless of its colour. If we wish to compare the two formats geometri-
cally, we would describe, using the RGB format, a pixel as a point within
a cube, whose three edges coincide with the red, green and blue axes of the
RGB space. In three of the cube corners— (1,0,0), (0,1,0) and (0,0,1) one
primary colour reaches its maximum value, say 1, and the other two colours
reach their minimum values, say 0. Two other corners of the cube- (0,0,0)

and (1,1,1) represent, respectively points of no brightness at all (‘black’) and
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of full brightness of all the three primary colours (‘white’). Geometrically
speaking, the HSI space can be considered as a cylinder whose vertical axis
represents the intensity from black at the bottom to white at the top. Satu-
ration and hue are expressed within the cylinder bottom, as the radius of a
point from the origin of the colour circle and the angle between this radius
and the x-axis, respectively [6].

In this work, RGB colour is recorded during the acquisition stage because
pre-processing and nuclei and signal segmentations are performed more easily
using this colour format than using the conventional conversion of the image
to gray-level scale. However, as intensities of red and green signals, each
measured in its own channel, are very similar to each other, the RGB format
is not suitable for discriminating between signals of different colours. By
contrast, signals of different fluorophores represented by the hue parameter
of the HSI colour format can be easily resolved due to their different hues.
Therefore, we use the HSI format when measuring signal features.

To convert RGB to HSI format, we use a coordinate system in which the
RGB cube is rotated so that its main diagonal (1,1,1) lies along the z-axis
(the vertical axis of the HSI cylinder) and its R-axis lies in the xz-plane [6].
We then convert to cylindrical coordinates and following some normalization

we obtain the equations for the required conversion as [9],

H = arctan 2(3"/%(G - B), (2R — G — B)), (1)
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S =1-3(min(r,g,b)) (2)

and

I=(R+G+ B)/3, (3)

where 7 = R/(R+ G + B), g =G/(R+ G+ B) and b = B/(R+ G + B),

and R, G and B are the intensities in the three channels, respectively.

3.3 Colour image segmentation

The first step of processing the image is to perform segmentation on each of
the three channels of the RGB image. Global thresholds are applied to seg-
ment objects, which are then employed as candidates for nuclei and red and
green signals. Finding thresholds is straightforward compared with thresh-
olding an intensity image since only red (green, blue) objects are found in
the red (green, blue) channel, and intensities of objects (nuclei and signals)
and background pixels in each of the channels are well separated. Noise elim-
ination and boundary smoothing of nuclei, and spatial correlation between
nuclei and signals complete the segmentation. A signal whose area is larger
than 5% of the area of the corresponding nucleus is rejected as ‘background
fluorescence’. Since our interest in this work is signal classification, we allow
the system to accept signals of nuclei of irregular shape or which are part of

a cluster. For dot counting, such nuclei, as well as unfocused nuclei, can be
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rejected.

4 Spectral feature extraction

Following signal segmentation, the next step is to characterize signals by sets
of pixel intensities. A set (signal) can include one or many members (pixels).
Since the content and dimension of each set can vary dramatically from signal
to signal, raw data (intensities) are not considered discriminating enough to
act as features for classification. It is therefore necessary to determine a more
discriminating and compact representation of the data. One representation
can be derived by measuring a set of features of the data. This representa-
tion can be further refined by applying feature selection to the set in order
to select a subset of features which maximizes a separability criterion. In
addition, another representation can be obtained by feature extraction that
maps the intensities into more effective features. A simple, yet very effective,
method for doing this, is to transform the data linearly using principal com-
ponent analysis (PCA) [10, pp. 400-403]. In PCA, we represent samples of
a distribution (e.g. intensities) with a small subset of linear combinations of
the samples. These linear combinations are formed by the projection of the
samples onto principal axes, which maximize the data variance. We use the
mean-square error as a criterion to evaluate the effectiveness of the subset.

Let X = f(Y) be a linear mapping of a random vector Y, Y € R%, X € R™
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and m < d. The approximation,
N m
i=1
with the minimum mean-square error,
e=EB{(Y -Y)"(Y -Y)}, (5)
is obtained when ¢; (Vi = 1,m) satisfy
Yy di = Nidhi. (6)

The m most effective principal axes ¢; are those eigenvectors associated with
the m largest eigenvalues A; (A > Ay > ... Ay > ... A\g) of the covariance
matrix of the mixture density Sy. @; = ¢7Y are the projected values of Y’
on ¢;.

PCA is applied here to signal intensities. Red and green signals have in-
tensity components also in the blue channel of the RGB image, as the signal
is part of a nucleus. To find projections which are capable of discriminating
between red and green signals and artifacts, we apply the PCA only to the
intensities in the red and green channels. We would expect that the principal
axes of red and green real signals will coincide with the R and G-axes, since
the signals have intensities in only one channel (R or G). Overlap between
signals of different fluorophores, or between a signal and background fluores-
cence due to other fluorophores, is frequent in multi-spectral FISH images.

This overlap leads to artifacts in which principal axes are expected to be
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between the R and G axes. Using the eigenvectors as features can there-
fore improve the ability to distinguish between real signals and artifacts of
different colours.

Other research [9] has shown that PCA-based features are very effective,
yet computationally demanding, for colour image segmentation. In an effort
to find a projection with the same characteristics as PCA but which is less
costly to compute, the three eigenvectors of typical colour images were exam-
ined. Projection of the image along the eigenvector which corresponds to the
largest eigenvalue captures most of the variance (information) contained in
the image. For typical colour images, this eigenvector has a value of around
(1/3,1/3,1/3)T, which remains similar across different images [9]. Therefore,
projecting a typical colour image onto its first eigenvector is equivalent to
computing

I =(R+G+ B)/3, (7)
which is the intensity of the image. The other two eigenvectors are typically
(1/2,0,—1/2)T (or (~1/2,0,1/2)T) and (—1/4,1/2,—1/4)T and are also sim-
ilar across different images. Likewise, the projections of the image onto these

eigenvectors are equivalent to the computations of the intensities,
I, =(R—- B)or (B—R) (8)

and
I; = (2G - R— B)/4. (9)

14




Therefore, the computation of these three intensities provides effective colour

features such as those computed by a PCA but with only little computation.

5 Signal measurement

The next step is to measure a set of features for each of the segmented sig-
nals. These include area (a size measure) and eccentricity (a shape measure),
which have been previously suggested [2]. In addition, we measure a num-
ber of spectral features. We compute, at the specific colour plane, three
RGB intensity-based measurements: the total and average intensities and
the intensity standard deviation. We also compute four HSI hue-based mea-
surements: maximum hue, average hue, hue standard deviation, and Delta
hue. Delta Hue is the difference between the maximum and average hue
normalized by the average hue. This last feature has been added to the set
because it was observed that the difference between values of the average and
maximum hue for real signals is usually near zero, whereas for some kinds
of artifacts (e.g. overlap of two fluorophores) this difference is substantially
large. Two additional features of the set are the two coordinates of the eigen-
vector corresponding to the largest eigenvalue of the red and green intensity
components of the signal. The last feature is the average intensity, I; (Eq. 7),
which in other colour image interpretation tasks [9], is found to be superior

to the other intensities (Egs. 8, 9).
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Table 1: The set of features studied in the work. Numbers are used in the rest
of the paper to identify the features. Texture indicates standard deviation of
intensity (5) or hue (8). Eig. 1, 2 are abbreviations for the two coordinates of
the eigenvector corresponding to the largest eigenvalue of the red and green

intensity components of the signal.

Number | Feature Number | Feature
1 Area 7 Average Hue
2 Eccentricity 8 Hue Texture
3 Total Intensity 9 Delta Hue

4 Average Intensity 10 Eig. 1

5 Texture 11 BEig. 2

6 Maximum Hue 12 Average Intensity (I;)

Table 1 lists and numbers the twelve features to facilitate their identifi-

cation in the rest of the paper.

6 Feature selection

Once a sufficient set of features is measured, we can use each one or even all
of them to classify signals into ‘reals’ (valid signals) and ‘artifacts’. However,
the ‘best’ single feature may not be sufficiently discriminating for an accurate

classification. For example, there is no reason to believe that the area feature
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alone can discriminate between red and green real signals. On the other hand,
because of the ‘curse of dimensionality’ [11, pp. 7-9], classification based on
whole or most of the set may be complex, costly to compute, and inaccurate.
Moreover, some of the features can be found to contribute very little to the
classification accuracy.

The purpose of feature selection is to select a (small) subset of the feature
set that yields an accurate classification in minimal computational cost. In
practical problems and for a not very large feature set, we can search among
all the possible feature subsets and evaluate each one of them using a crite-
rion of class separability. The subset that achieves the highest value of the
criterion is then selected to represent the patterns to the classifier.

The criterion of separability that is considered here, called Ji, is based

on the within-class scatter matrix [10, pp. 446-447],

L L
Sw =S PBE{(X — M})(X — M;)"|w;} = ; Py, (10)

i=1

and the between-class scatter matrix,

L
Sp=>_ Pi(M; — Mp)(M; — Mp)”, (11)
i=1
where
L
My =E{X}=>_ PM, (12)
=1
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is the mean pattern of the mixture distribution. X|w; are patterns of class
w; (i = 1, L) with mean M;, covariance matrix ; and a priori probability F;.
The criterion

Ji = tr(S;1S), (13)

where tr(A) is the trace of matrix A, is expected to be larger when the
between-class scatter matrix is larger and/or the within-class scatter matrix

is smaller.

7 Signal classification

In [4] we demonstrated the feasibility of automatic signal classification of
randomly-captured FISH images. The signal classification method for the
current application is briefly summarised as follows. Signals are classified
into four classes— ‘real red’, ‘artifact red’, ‘real green’ and ‘artifact green’.
Within the ‘artifact’ classes we expect to find mostly unfocused and overlap
signals, and signals which are the result of background fluorescence. These
signals will have patterns with different values of features than those of real
signals, and hence will be classified as artifacts. Labels for the patterns, as
belonging to one of the four classes, are needed to train the classifier, and
they are obtained by an expert cytogeneticist using a custom-built graphical
user interface for labelling FISH images [12].

Before performing each classification experiment, outliers (around 3% or
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less of the data) are automatically removed from the data and the features
are then normalized to zero mean and unit variance. Patterns are divided
randomly into training and test sets and classification into one of the four
classes is implemented using cross-validation [11, pp. 374-375]. The classifier
is a two-layer perceptron NN [11, Ch. 4] trained by the scaled conjugate
gradient algorithm [11, pp. 282-285]. A validation set which is drawn from
the training set assures that the classifier is not over-trained. It also allows
the selection of a minimal network configuration based on only a few hidden
units. Both factors ensure rapid training and improved generalization.

The three classification strategies in [4] are examined also here. In the
first, called the ‘monolithic strategy’, patterns are classified into the four
classes using a single NN. In the second, termed the ‘independent strategy’,
patterns are classified into ‘red’ and ‘green’ classes using the ‘colour network’
and independently by a second network, the ‘real network’, into reals and
artifacts. Classification of a pattern into one of the four classes is achieved by
a common decision of both networks. In the third strategy, called ‘combined’,
patterns are first classified into ‘red’ and ‘green’ classes using the ‘colour
network’ and then based on the results of this network they are classified by
two other networks, the ‘real-red network’ and the ‘real-green network’, into

reals and artifacts of the two colours.
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8 Experiments and results

A few experiments to study feature sets to represent FISH signals are per-
formed. Before the experiments, we created a database of 400 FISH images,
which were randomly-captured from five slides. Following nuclei segmen-
tation, the system identified 944 objects within these images as nuclei, of
which 613 also contained signals. Following signal segmentation, 3,144 ob-
jects within the above nuclei were identified as potential signals and features
were measured for them. Based on labels provided by expert inspection
(Section 7), 1,145 of the signals were considered as ‘reals’ (among them 551

were red) and 1,999 as ‘artifacts’ (among them 1,224 were red).

Features are first analysed visually using probability density functions
(pdfs). Figure 1 shows examples of histogram estimates of one-dimensional
conditional pdfs for three features— area, average intensity and average hue.
In the first three examples, red signals— reals and artifacts are compared,
whereas in the last example real signals— red and green are evaluated. From
the first example (Fig. 1a), we can see that the value of the area parameter
of real signals is much more confined than that of artifacts. However, overlap
between the two distributions for most values of area implies that classifi-
cation of reals and artifacts could not be based on the area feature alone.
The two distributions for the average intensity (Fig. 1b) indicate less overlap

between distributions of reals and artifacts, where values of artifact intensi-
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ties are usually lower. Average hue is found in Fig. 1c and Fig. 1d to be a
well-discriminative feature for distinguishing between red and green signals
and even between reals and artifacts. Similar graphs to Fig. la-c are also
derived for green signals. In summary, the large extent of overlap between
distributions in these estimates demonstrates some of the difficulty in clas-
sifying signals into reals and artifacts of two colours. However, as estimates
for other features reveal a higher degree of overlap between the distributions,
the pdfs of Fig. 1b-d suggest the superiority of the corresponding features
for classification.

To extend the evaluation of single features for signal classification we
perform additional experiments using two classification criteria. In the first
experiment, feature selection (Section 6) is applied to the set of twelve fea-
tures. Criterion J; (Eq. 13) is computed for each and every feature to give
an indication for the amount of class separability the feature provides. In the
second experiment, a second classification criterion— the probability of mis-
classification is employed by the ‘monolithic’ strategy (Section 7) to classify
signals, represented using each of the features. For each feature represen-
tation, the optimal configuration of the NN classifier is determined by a
validation set, and training continues for 200 epochs. Table 2 shows, for each
of the features, the value of Jy, the rank of the feature among all the features
according to Jy (‘highest’ is ‘best’), the configuration of the classifier and the

probability of success on the training and test sets. We can draw two main
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Figure 1: Histogram estimates of the one-dimensional conditional pdfs for red

signals— reals vs. artifacts (a,b,c) and for reals— red vs. green (d). Density

functions are plotted for the features: (a) area, (b) average intensity and (c)

and (d) average hue.
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conclusions from Table 2. First, there is a general agreement regarding class
separability between criterion J; and the probability of success. The three
features with the highest values of J; (average hue (7), maximum hue (6) and
Eig. 2 (11)) are those with the highest probabilities of success. For the rest
of the features, there is a weaker agreement, probably since the difference be-
tween two probabilities of success, or two values of J;, is sometimes marginal.
The second conclusion is that in order to achieve signal classification which
is sufficiently accurate, we would need more than a single feature. Classi-
fication based on most of the single-feature representations failed since the
representations could not discriminate between signals of two colours. Only
representation by the maximum or average hue could yield correct classifi-
cation of red and green signals, and in some of the cases even of reals and
artifacts. Table 2 also strengthen results shown in Fig. 1 about the relative
importance of features 1 (area), 4 (average intensity) and 7 (average hue).
Visual analysis of scatter plots for the features may help in evaluating
the impact of adding more features to the classification process. Figure 2
shows scatter plots for four pairs of features. To facilitate the analysis, only
200 patterns of each of the four classes are randomly selected and presented.
In Fig. 2a, the average hue reveals good colour discrimination, whereas the
area is not able to resolve overlap between reals and artifacts. The linear
dependency of the average intensity on the hue feature in Fig. 2b, and the

‘tendency’ of points on the graph toward points of the other colour require
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Table 2: Evaluation of single features for signal classification by two criteria.

The table includes values of J;, ranks according to Jy, configurations of the

‘monolithic’ NN classifiers and the corresponding success rates on the training

and test sets in classifying the signals into the four classes. Feature numbers

are defined by Table 1.

Feature Number | J; | Rank | NN Configuration | Training (%) | Test (%)
1 0.0048 | 10 1:1:4 45.9 45.9
2 0.1058 7 1:2:4 46.5 46.6
3 0.0048 11 1:2:4 48.2 48.2
4 0.3237 5 1:3:4 46.4 46.3
5 0.1801 6 1:2:4 42.8 42.5
6 1.1398 2 1:7:4 65.8 65.4
7 1.1649 1 1:4:4 70.6 70.6
8 0.0013 12 1:9:4 44.9 44.5
9 0.0061 9 1:10:4 47.8 47.5
10 0.3534 4 1:2:4 41.3 40.8
11 0.6690 3 1:6:4 53.8 53.7
12 0.0704 8 1:3:4 49.2 49.0
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some explanations. Equation 1 shows that the hue of a signal non-linearly
depends upon the intensity according to an arctangent function. However,
those intensity values which we find in the RGB channels of FISH images,
fall onto the linear section of the arctangent function. Therefore, in our case,
hue changes linearly with the average intensity. In addition, since artifacts
are mostly the result of unfocused signals, their intensities are weaker than
those of real signals. As the intensity of such an artifact signal, say red,
decreases, it means that its main component, say R, decreases while the
other two components remain the same (G=0 and B=1 in this example).
Based on Eq. 1, the outcome is that the signal ‘changes’ its colour toward
the other colour as its intensity decreases. ‘Shift’ of colour is observed for
both red and green signals, and having very weak intensities, signals of the
two classes may have almost similar hues (Fig. 2b).

This also explains the dependency in Fig. 2c of the average intensity
(I1) on the maximum hue. In this case, however, lines have different slopes
as the average intensity (I;) depends on the intensity according to Eq. 7.
The two major clusters in Fig. 2c are mostly due to real signals. These
signals have almost fixed values of I3, since all their three colour components
are fixed (for red signals, e.g., R=1, G=0, B=1). Other artifacts that are
caused by overlap of signals of different colours (or signals and fluorescence
background of the other colour) create some anomaly in the graph, which

was not seen in Fig. 2b. These artifacts have an additional intensity of the
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Figure 2: Scatter plots for four pairs of features: (a) area vs. average hue,
(b) average intensity (RGB) vs. average hue, (c) average intensity (I1) vs.
maximum hue and (d) the two coordinates of the eigenvector corresponding

to the largest eigenvalue (Eig. 1, 2).
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occluded signal that increases the average intensity (I1) according to Eq. 7
(but not the average intensity (RGB) in Fig. 2b). However, as the intensity
of the top signal is much stronger than that of the occluded signal, hue
is almost unchanged, although the intensity of the signal increases. These
artifacts are responsible for the two almost ‘x=constant’-lines in Fig. 2c.
In addition, within these two lines we can find points that ‘swap classes’.
This interesting phenomenon can be again explained by Eq. 1. When one
intensity component, say G, of a mixed-colour signal, is larger than the second
component, say R, and the two are large, there is an agreement between
visual analysis and analysis based on Eq. 1 about the signal hue, say green.
Therefore, both the system and the expert cytogeneticist will agree on the
signal hue. However, when the two components are small (for G > R) or close
to 0.5 (for R > G), the expert will still judge the hue by the top (stronger)
signal, but as Eq. 1 predicts, hue will ‘shift’ toward the colour of the occluded
(weak) signal, and the system will decide on that latter colour.

Finally, in Fig. 2d, the two coordinates of the eigenvector corresponding to
the largest eigenvalue are plotted against each other. Real signals have only
one colour intensity component, either R or G, and therefore, are projected
onto either (1,0) (or (-1,0)) or onto (0,1) (or (0,-1)). Colour-mixed artifacts
are projected in between. As PCA (Section 4) cannot be applied to single-
pixel signals, these signals are projected artificially on (0,0).

Based on the complete visual analysis, we find that average intensity,
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maximum hue, average hue, average intensity (I;), the two coordinates of
the eigenvector of the largest eigenvalue and (slightly) the area each provides
reasonable discrimination capability between the four classes. Therefore,
these features are utilized to combine a few combinations of feature sets to
be tested in another experiment by the three classification strategies (Sec-
tion 7). Input and output dimensions for each of the NN classifiers are set
by the feature space dimension and the number of classes, respectively. The
number of hidden units is determined such that the network has the highest
generalization capability. This is achieved by evaluating networks of differ-
ent numbers of hidden units on an independent validation set drawn from
the training set [4]. The network which has the lowest error measured on
the validation set is selected for training. Training of each of the networks,
in each of the experiments reported here, is continued for 200 epochs and
using three random network initializations. The results are averaged over
these initializations using the cross-validation (CV-5) technique. Each of
the strategies, classifying signals represented by each of the feature sets, is
checked using its own optimal configuration and the results are shown in
Table 3. Table 3 reveals that unseen signals, represented by different combi-
nations of features, can be classified as reals or artifacts of two colours with
accuracies higher than 80%. In addition, the ‘combined’ strategy is found
to be the best among the three classification strategies, even when inferior

feature sets are employed (see e.g., features 1, 4, 12). Finally, feature sets
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consisting of the area (1), average intensity (4), average hue (7), the two
coordinates of the eigenvector (10 and 11) and the average intensity (Iy)
(12) are found in Table 3 to provide the best representations for the signals.
We examined, although not shown here, the probabilities of success of the
‘colour’ and ‘real’ networks (Section 7), which are responsible for the results
of the ‘independent’ and ‘combined’ classifiers in Table 3. The examination
reveals that the hue-based features (6, 7) are crucial for separating signals
of the two colours while the intensity-based features (4, 12) are essential for
separating real signals from artifacts.

We also apply feature selection, using criterion Ji, to evaluate feature
sets chosen from the features of Table 1. However, before this application,
we remove the two coordinates of the eigenvector corresponding to the largest
eigenvalues (features 10 and 11) from the data. This is done since coordi-
nates of single-pixel signals are determined artificially to be (0,0), as the
PCA cannot be applied to single-element vectors (as explained for Fig. 2d).
Therefore, many of the artifacts and some of the real (single-pixel) signals
get those values, thereby contributing a bias of the J; criterion toward these
features. Since only ten features are included in the reduced feature set, we
can allow exhaustive search for the ‘best’ (according to criterion .J;) subset
of, say three features. This search is done quickly since it involves the eval-
uation of only 120 subsets. Values for J; and ranks of the ten combinations

of three features with the highest values of class separability criterion (J;)
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Table 3: Accuracy of the three strategies in classifying FISH signals, repre-

sented by different combinations of features. Features are defined by their

numbers according to Table 1. Reported are the number of hidden units

in the NN classifier (hid.) and the per cent probabilities of success on the

training (Tr.) and test (Tst.) sets for each of the strategies— ‘monolithic’,

‘independent’ and ‘combined’. The two values under hid. for the ‘indepen-

dent’ and ‘combined’ classifiers are the numbers of hidden units in the ‘color’

and ‘real’ networks, respectively, which make up these two strategies.

Feature ‘monolithic’ ‘independent’ ‘combined’

Combination hid. | Tr. | Tst. | hid. | Tr. | Tst. | hid. | Tr. | Tst.
4,7, 12 7 |79.0 782 3,11 | 785|777 | 3,11 | 819|814
4,5, 6 16 | 79.0 773 | 12,7 (791|773 | 12,7 | 824 | 813
6,9, 12 21 [80.4]79.3| 88 |799|79.0| 8 8 |83.8|834
1,4,12 9 | 568|549 1,4 |55.7|546| 1,4 |89.5]89.0
1,4,7 15 | 84.383.0| 1,14 | 821|815 1,14 | 88.3 | 87.5
1,4,7,9 20 | 85.3|83.4 13,13 858|839 |13,13|88.9 |88.1
1,4,7, 10, 11 19 [ 869841 | 9,6 |86.2|838| 9,6 |89.4]879
1,4,7, 12 20 | 88.4(86.3| 12,7 |88.2|86.3] 12,7 |89.9|89.2
1,4,6,7, 10-12 | 15 | 89.0 | 874 | 7,12 | 83.3|87.0| 7,12 | 90.5 | 89.1
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are given in Table 4. The table also presents values for the combinations of
three features of Table 3. Table 5 shows the percentage of times each of the
ten single features appears in the 30 ‘best’ (according to J;) combinations.
Both Tables 4 and 5 demonstrate the superiority, regarding criterion Ji, of
the features: average intensity (4), maximum hue (6) and average hue (7).
In each of the ten ‘best’ combinations, the average intensity and either the
maximum or average hue are selected.

A comparison of the last three tables shows that the average intensity
(4) and the average hue (7) (or the maximum hue (6)) are the most dis-
criminating features, and inclusion of these two in a feature set guarantees
successful classification of FISH signals. Some agreement between the prob-
ability of success and J; is shown by the relatively high rank (14) that the
subset of three features with the second best classification performance (1,
4, 7) achieves. The comparison however reveals that this is not necessarily
the case with other combinations (compare, for example, the probability of
success of the two combinations with the highest J; (first two rows in Ta-
ble 3) with other combinations in Table 3). This may suggest that J; is not
the best criterion to measure class separability of signals represented by the

proposed feature sets.
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Table 4: Evaluation, using criterion Ji, of combinations of three features for
signal classification. The table includes results for the ten combinations with
the highest values of J; and for other combinations of three features from
Table 3. For each combination, the rank among the 120 subsets according to
Ji is given. To be consistent with previous feature numbers, we keep number
twelve for the average intensity (I;), although only ten features are involved

in the selection.

Feature J1 rank
Combination

4,7,12 1.75643 | 1
4,5, 6 1.6789 | 2
4,5, 7 1.6580 | 3
4,6,7 1.6046 | 4
4,7,8 1.6022 | 5
4,6, 12 1.5781 | 6
2,4,7 1.5699 | 7
4,7,9 1.5692 | 8
2,4,6 1.5511 | 9
4,6,8 1.540 | 10
6, 9, 12 1.2218 | 56
1,4, 12 0.4342 | 74
1,4,7 1.4958 | 14
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Table 5: The percentage of times in which each of the ten features of Table 1
(excluding features 10 and 11) appears in the ‘best’ (according to Ji) 30

combinations.

Feature Number | 1 2 3 4 5 6 7 8 9 | 12

(%) 22(6.7(33(16.7|122|17.8|200|6.7|55 |89

9 Discussion

This paper has explored suitable feature representations for FISH signals
making use of an existing signal classification methodology. For this purpose,
a family of features, consisting of measurements of size, shape, intensity, tex-
ture and colour, has been examined. In addition, the application of feature
extraction to signal intensities has provided features which are capable of
improving the accuracy of the classification, mainly due to the identification
of artifacts resulting from signal overlap of two types of fluorophores. More-
over, the intensity derived using the HSI format, which can also represent

the projection of the image on its principal axes, has been measured also.

A set of twelve measured features has been evaluated by different crite-
ria. Histogram estimates of probability density functions and scatter plots
provide preliminary visual insight into dependencies between features, and
their relative importance for the classification. Moreover, these tools per-

mit the identification of sources of errors when specific features are used.
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Feature selection enables the choice of feature sets of any type and number,
which maximizes class separability criterion J;. The ultimate criterion for
evaluating features for classification, however, is the probability of misclassi-
fication. Mismatches in selecting optimal feature sets, according to the two
different classification criteria, can be partially attributed to the additional
feature extraction stage performed by the hidden layer of the NN classifier.
In addition, introducing feature selection and feature extraction into the clas-
sification process guarantees the selection of an optimal feature set in terms
of both discriminative power and dimensionality. This set enables the classi-
fier to utilize the maximum information contained in the data to accomplish
high classification accuracy.

Both the qualitative and quantitative analyses have demonstrated the
superiority of hue and intensity-based features. When features of the two
families are combined together, even a single hue-based feature can separate
completely signals of two fluorophores, leaving the task of discriminating real
signals from artifacts to an intensity-based feature. Consequently, feature
sets consisting of both hue and intensity-based features enable an NN-based
hierarchical strategy to classify nearly 90% of the signals as reals or artifacts

of two fluorophores.
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