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A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard
Zermelo-Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of
function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly
infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution
lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel’s,
but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a
functor is its greatest fixedpoint.

Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered,
as well as final coalgebras defined with respect to parameters. The disjoint sum construction is
replaced by a smoother treatment of urelements that simplifies many of the derivations.

The theory facilitates machine implementation of recursive definitions by letting both inductive and
coinductive definitions be represented as fixedpoints. It has already been applied to the theorem
prover Isabelle (Paulson, 1994).
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1. Introduction

A recurring issue in theoretical computer science is the treatment of infinite computations. One
important approach is based upon the final coalgebra. This category-theoretic notion relates to the
methods of bisimulation and coinduction, which are heavily used in concurrency theory (Milner,
1989), functional programming (Abramsky, 1990) and operational semantics (Milner and Tofte,
1991).

Aczel and Mendler (1989) and also Barr (1993) have proved that final coalgebras exist in
set theory for large classes of naturally occurring functors. This might be supposed to satisfy
most people’s requirements. But Aczel (1988) has argued the case for a non-standard set the-
ory in which infinite computations, and other non-well-founded phenomena, can be modelled
directly. He proposes to replace set theory’s Foundation Axiom (FA) by an Anti-Foundation
Axiom (AFA) that guarantees the existence of solutiong te- {x} and more generally of all
systems of equations of the fomn = {x;, xj, ... }. His general final coalgebra theorem serves
as a model construction to justify AFA.

Under AFA, a suitable functdf does not merely have a final coalgebra. That final coalgebra
equalsF’s greatest fixedpoint. This is the natural dual of the theorem that a functor’s initial
algebra is its least fixedpoint. These fixedpoints are exact, not up to isomorphism.

The elements of the final coalgebra are easily visualized. For instance, the fénetor
(the functorF such thatF(Z) = A x Z on objects) yields the set of streams o¥erThe final
coalgebra is also the greatest solutiorSeE A x S. If s € Sthen

S:(alﬂsj.>7 S].:(a2552>7 82=<a37s3)7"';

thuss is the infinite streanday, (az, (ag, ... ))).

In standard set theory, FA outlaws infinite descents under the membership relation. Under the
standard definition of ordered pair, we haves {a, b} € (a, b). Infinitely nested pairs such
ass above would create infinite-descents, and therefore do not exist: the greatest fixedpoint of
A x — is the empty set. This is not the final coalgebra (which does exist).

The approach proposed in this paper is not to change the axiom system but to adopt new
definitions of ordered pairs, functions, and derived concepts such as Cartesian products. Under
the new definitions, the stream functor’s final coalgebra is indeed its (exact) greatest fixedpoint
and each stream is an infinite nest of pairs. Recursion equations are solved up to equality.

The approach handles non-well-founded tuples, and more generally ordered structures. But it
does not model true non-well-founded sets, such as solutions-ofx}. It does not work for the
powerset functor, even with cardinality restrictions. Ironically, the approach requires FA.

Outline. The strategy is to construct a final coalgdbtavhich plays the same role as the uni-
verse {/) under AFA. Then we can re-play the categorical proofs of Rutten and Turi (1993),
generalizing them along the way. Section 2 presents basic motivation—Quine’s ordered pairs
and their generalization to functions—and proves some lemmas about the cumulative hierarchy,
V,. Section 3 defines the funct@ and its greatest fixedpoitd and proves that) is a final
O-coalgebra. Section 4 proves the solution and substitution lemmas for set equations and the
special final coalgebra theorem. Section 5 discusses functors that are (or are not!) uniform on
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maps. Section 6 considers final coalgebra definitions that take parameters. Section 7 discusses
applications of the theory to machine proof. Section 8 presents conclusions.

2. An Alternative Definition of Pairs and Functions

Let us begin with informal motivation based on the work of Quine. The following section will
make formal definitions.

2.1. Quine’s Ordered Pairs

In ZF set theory, the ordered paa, b) is usually defined to bgaj}, {a, b}}. The rank of(a, b) is
therefore two levels above thoseao&indb; there are no solutions to= (a, b). Quine (1966) has
proposed a definition of ordered pair that need not entail an increase of rank. Quine’s definition
is complicated because (amongst other things) it avoids using standard ordered pairs. Retaining
standard pairs lets us define Quine-like ordered pairs easily.

Let (a, b) denote the standard ordered pairaofndb. Let tuples of any length consist of
ordered pairs nested to the right; thias, ... , a,) abbreviatega, ... , (an—1, an)) forn > 2.
Let A x B denote the standard Cartesian produatb) | a € AAb e B}.

Define the variant ordered paig; b) by

(a; b) = ({0} x @) U ({1} x b).

Note that(a; b) is justa + b, the disjoint sum o& andb (in set theory, everything is a set). The
new pairing operator is obviously injective, which is a key requirement. Also, it admits non-well-
founded constructions: we hay@ 0) = 0 for a start. (As usual in set theory, the number zero is
the empty set.)

The set equatioA; z) = z has a unique solution, consisting of every (standard!) tuple of
the form(1, ..., 1, 0, x) for x € A. The infinite stream

(Ao At ... 5 Ans el )
is the set of all standard tuples of the form

(1,...,1,0,x)
——
n

forn < wandx € A,. Now (a; b) is continuous ira andb, in the sense that it preserves arbitrary
unions; thus fixedpoint methods can solve recursion equations involving variant tupling.
Variant pairs can be generalized to a variant notion of function:

XxeAbx = U{X} x bx
xXeA

Note thatkyeaby is just Sxcaby, the disjoint sum of a family of sets. Also note thag; by) is
the special casgjcob;, since 2= {0, 1}. Replacing 2 by larger ordinals such agjives us a
means of representing infinite sequences. More generally, non-standard functions can represent
infinite collections that have non-well-founded elements.
Variant functions are not graphs. Merely replacixgby) by (x; by) in the usual definition
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of function, obtaining{(x; bx) | x € A}, would not suffice. It still yields only well-founded
constructions because the rank of such a set exceeds the rank obgveor example, it =
{{(0; b)} then{1} x b € b, violating FA; thusb = {(0; b)} has no solution.

Application of variant functions is expressed using the image operator “. It is easy to check
that(Axeaby) “ {a} = ba if @ € A. Also if Ris a relation with domai, thenR = Ayea R {X}.
Every standard relation is a variant function, and vice versa. The set

{f S Ax|JB|Vxea f*{x}eB)
consists of all variant functions frorA to B and will serve as our definition of variant function
spaceA > B.
Sinceixeaby is not the function’s graph, it does not determine the function’s domain. For
instanceiyca0 = A x 0 = 0. Clearlyiyeca0 = Ayxeg0 for all AandB. If 0 € B thenA=> B

will contain both total and partial functions: applying a variant function to an argument outside
its domain yields O.

2.2. Basic Definitions

Once we have defined the variant pairs and functions, we can substitute them in the standard
definitions of Cartesian product, disjoint sum and function space. The resulting variant operators
are decorated by a tilde:, +, >, etc. Having both standard and variant operators is the simplest
way of developing the theory. The standard operators relate the new concepts to standard set
theory and they remain useful for defining well-founded constructions. But the duplication of
operators may seem inelegant, and it introduces the risk of using the wrong one.

Definition 2.1. Thevariant ordered pair(a; b) is defined by
(a; by = ({0} x a) U ({1} x b).

If {by}xen is anA-indexed family of sets then thariant functioniyec by is defined by

AxeAby = U{X} x by
xXeA

Thevariant Cartesian product, disjoint suamdpartial function spacéetween two seté andB
are defined by

AXB={(Xx;y)|Xe Arye B}

AFB={1xAUW{LLD} xB)

A>SB={f gAxUB|VXEAf“{x}eB}

The operatorsc and=> can be generalized to a family of sets as usual.

Definition 2.2. If {Bx}xca is an A-indexed family of sets then thaerariant sumandproductare
defined by

S Be={(xy) |xeArye By

xXeA
[1Bc=1f < Ax(JUJBO IVxeat* (x} € By
xXeA xeA



2.3. The Role of Atoms

A first attempt at exploiting these definitions is to fix an index ke&tnd solve the equation
U = | 3> U. There is at least one solution, nameély= {0}, sinceijc; 0 = 0. But we cannot
build up variant tuples starting from 0 as we can construct the distinc{@et0, {0}}, ... . A
variant tuple whose components are all the empty set is itself the empty set.

Sincel > 0=0if | #£ 0, one possible solutiontd =1 5> U isU = 0. Alsol = {0} = {0}.
As it happensl = {0} is the greatest solution.

Proposition 2.3.1f U = | =5 U thenU =0 orU = {0}.

Proof. Suppose not, for contradiction. Thé&h contains a non-empty element; there exigt
andxg with yp € Xo € U. By the definition of= it follows thatyy = (i, y1) wherei € | and
y1 € x1 € U for somex;. Repeating this argument yields the infingedescentyg = (i, y1),
y1 = (i, ¥2), Y2 = (i, y3), ..., contradicting FA. O

If tuples are to get built up, we must start with some atoms. To keep the atoms distinct from
the variant tuples, each atom should contain some element that is not a (standard) pair. My
earlier work (Paulson, 1995a) regarded one atom as sulfficient, choosing 1 sinf@® and the
empty set is not a pair. It presented a final coalgebra theorem based upon the greatest solution of
U = {1} U (I 5 U). The subsequent development closely followed Rutten and Turi (1993).

Aczel relies on urelements, as do other researchers (Moss and Danner, 1997), to formulate
key results such as the solution lemma. He justifies this ‘expanded universe’ by a disjoint sum
construction (Aczel, 1988, page 16), which Rutten and Turi (1993) neatly express as the great-
est solution ofVx = P(X + Vx). However, they take this as the definition 8%, replacing
the expanded universe by its disjoint sum model. Abandoning urelements has many drawbacks.
Desirable properties such & C Vx andVx x Vx C Vx fail, requiring the frequent use of
embeddings.

A more streamlined approach is to incorporate an arbitrar)Xsett atoms into the construc-
tion. The final coalgebréx is the greatest solution dfx = Atoms(X) U {1} U (I = Uy),
where AtomgX) is a suitable injection. These atoms are analogous to urelements, juigtias
analogous td/x, but we always work in standard ZF. The solution and substitution lemmas can
be generalized to allow more than one set of indeterminates: we often worldwitnd Uy,
where possiblyy = 0, and writeUg asU .

2.4. Basic Properties of the Cumulative Hierarchy

The following results are needed to prove closure and uniqueness properties in Seat., 3 Let
range over ordinals and w over limit ordinals. Theeumulative hierarchpf sets is traditionally
defined by cases/y = 0, Vy11 = P(Vy), and if u is a limit ordinal,V,, = | V,. More
convenient is the equivalent definition

V, = U P(Vp).

B<a

o<

Kunen (1980), Chapter lll, is useful background reading; he wikes) for V. Here are some
well-known facts.



Lemma 2.4.If « is an ordinal angl is a limit ordinal then
a CV,
Ve X Vg € Vg2
V, xV, CV,
Viu+V,CV,
The setV,, is closed under the formation of variant tuples and functions.
Lemma 2.5.If A C V, andby C V, for all x € Athenixcabyx C V,,.

Proof. This follows by the definition of, monotonicity and the facts noted above:
dxeabe = | ) xbx € [ J X} x Vu SV x VSV,
XeA XeVy,

O

ThusV,+1 has closure properties for variant products and sums analogous to thdgéaof
standard products and sums. It is even closed under variant function space.

Lemma 2.6.Let u be a limit ordinal.

(@ If A gNV,L thenA = V11 € Vq1.
(b) Vis1 X Vut+1 € Vut1.
(C) V;L+1 + V;H—l c V;H—l-

Proof. Obvious by the definitions and the previous lemma. O

These results will allow application of the Knaster-Tarski fixedpoint theorem to construct a
final coalgebra. The next group of results will be used in the uniqueness proof.

Lemma 2.7.If ANV, C B for every ordinakx then A C B.

Proof.By the Foundation AxiomY = | J, Vo, whereV is the universal class. Thus= [, (AN
Vo). If ANV, € Bforall « thenl J,(ANV,) € B and the result follows. O

Using this lemma requires some facts about intersection With

Definition 2.8. A set A is transitiveif A C P(A).

Lemma 2.9.V, is transitive for every ordinat.

Proof. See Kunen (1980), page 95. O
Now we can go down the cumulative hierarchy as well as up.

Lemma 2.10.If (a, b) € V,41 thena € V,, andb € V,.

Proof. Suppos€a, b) € V,1; this is equivalent t¢{a}, {a, b}} € P(V,). Thus{a, b} € V,, and
sinceV, is transitive{a, b} C V,. O
Lemma 2.11.1f {bx}xea is anA-indexed family of sets then

(a) (Z\xeAbX) N Va+1 - Xxeﬁ:(bx N Va)

(b) (Axeaby) NV, C Uﬂ<0¢ Axea(bx N Vp)



Proof. For (a) we have, by the previous lemma,

():XeAbX) N Va+l = {(X, Y> | XeAA ye bx} N Voz+l
S{x,y)Ixe Anyebcny eV}
zixeA(bX ﬂVa)-

For (b) we have, by the definition &, and properties of unions,

(hxeabx) N Vi = Gixeabs) N | P(Vp)

B<a

= U (Axeabyx) N Vg1

B<a

C U Axen(bx N Vp).

B<a

The last step is by (a) above. O

3. AFinal Coalgebra

Rutten and Turi (1993), an excellent survey of final semantics, includes a categorical presentation
of Aczel's main results. Working in the superlarge category of classes and maps between classes,
they note that FA is equivalent t&/*is an initial P-algebra’ while AFA is equivalent toV is

a final P-coalgebra.’ Put in this way, AFA certainly looks more attractive than the other anti-
foundation axioms.

The present treatment of final semantics takes theirs as a starting point. Instead of assuming
that V is a final P-coalgebra, we can define a funct@, wherel is an arbitrary index set,
and construct a fina@' -coalgebra, callet ', and obtain generalized forms of the solution and
substitution lemmas. We finally arrive at the special final coalgebra theorem.

We shall work not in the category of classes but in the usual categetyf sets, which has
standard functions as maps. While the former category allows certain statements to be expressed
succinctly, it also requires numerous technical lemmas concerning set-based maps, etc. From the
standpoint of mechanized proof, one must also bear in mind that classes have no formal existence
under the ZF axioms, and class maps are two removes from existence.

3.1. The Bifunctor@ and the SetUx

Let | be anindex set, which will remain fixed throughout the paper. A typical choicevauld
be some limit ordinal such as Note thatw = A contains alkv-sequences ovek; we shall find
thatU® contains allw-sequences over itself. Moreover, finite sequences can be represented by
w-sequences containing infinitely many 0s, becaused (see remark 3.7 below).

Incorporating atoms (urelements) requires an injection whose range is disjoint frdm all
sequences. It suffices to include an element that is not a (standard) pair in its result, since every
variant function is a standard relation.



Definition 3.1. The operators atm and Atoms are given by

atm(x) = {2} U ({0} x x)
Atomg(X) = {atm(x) | x € X}.
Much is arbitrary in the definition of atm, but it is clearly injective, and &timis never a
standard relation. Moreover, afr) # 1. The next step is to define the bifunc@&(Y), where
| is fixed andX andY are sets. The intuition is th@'x(Y) includes a copy oK (the atoms)
and also include$-sequences ovef. It also includes the element 1 to start things off, in case

X = 0 (recall prop. 2.3). Its effect on a pair of maps is to apply one to the atoms and the other to
the sequence elements.

Definition 3.2. The bifunctorQ'X : Setx Set— Setis defined on objects by
Q4 (Y) = Atomg(X) U {1} U (I 3 Y)

and on maps as follows. If : X — X andg : Y — Y"thenQ\(g) : QL(Y) — QL.(Y)
satisfies

ol (g)atmx)) = atm(f (x))  forx e X

Qi@ =1

QL (@ (Riet Yi) = Xiel 9.

Also, Ox(g) abbreviate®Qjg, (9).

It is easy to check that the functor preserves the identity map and composition. The next step
is to define a st} to be the greatest solution bi, = Q! (U}) and prove that/ is a final
0! -coalgebra. Sincel}, = Atoms(X) U {1} U (I = UJ) we may regard the elementsld, as
nested -indexed tuples built up from 1, with further atoms frofn

To solveU), = QL (U)) we may apply the Knaster-Tarski fixedpoint theorem. This gives an
explicit definition.

Definition 3.3. Let u be a limit ordinal such that € V,, andX < V,,11. Then
Ux=JiZIZ< QW@ AZ S V)

Henceforth let us regartl as fixed and drop the superscripts. The next two results indicate that
Ux really is a fixedpoint ofQy, in fact the greatest post-fixedpoint. This justifies proof by co-
induction onUx. The second result also confirms that the choice of the ordinales not matter,
provided it is at least the minimum specified.

For the remainder of this section, assuKi& V1.

Lemma 3.4.Atoms(X) € V,,41.
Proof.If x € X thenx C V,,, and{2} U ({0} x x) € V,, by lemma 2.4. So at®X) € V,,11. O
Proposition 3.5.Ux = Ox(Ux).

Proof. Lemmas 2.6 and 3.4 imply th@x (V,.+1) S V,+1. S0Qx is an operator over the pow-
erset ofV,, and it is clearly monotone. The result follows by the Knaster-Tarski theorenmo

Proposition 3.6.1f Z € Qx(Z) thenZ C Uy.



Proof. The result follows by the definition dfx if we can establistz < V,, ;1. By lemma 2.7 it
suffices to prov&/zcz zN'V,, €V, for all . Proceed by transfinite induction on the ordiaal
Letz e Z. Thenz € Qx(Z) = Atoms(X) U {1} U (I > Z). The case = 1 is trivial, and if
z € Atoms(X) thenz € V,, by lemma 3.4. So we may assume= Xicl Zi, wWith z € Z for all
i € l.Inthis case we have
(hie1 2) N Ve S | Rier @ N Vp)
B<a
- U hiel Vyu
B<a
CVy
by lemma 2.11, the induction hypothesis #rand lemma 2.5. Sincen V, < V,, for all o we
havez C V, forall z e Z. This establisheZ C V, ;1. o

Remark 3.7. Using this result, we can check thdi is nontrivial. Clearly Oe Ux because
{0} = | S {0} € Ox({0}). We also have inclusions such{@s 1} U (I = {0, 1}) € Ux.

3.2. Uy is a Final @x-Coalgebra

Proving thatUx is a final Qx-coalgebra requires showing that for every mfap A — QOx(A)
there is a unique magp : A — Uyx such thattr = Ox () o f:

Ox(A) _Q_ - -)> Ox(Ux)

x (7

For the remainder of this section, let the geaind the mapf : A — Qx(A) be fixed.
Lemma 3.8.There existsr : A — Uy such thatr(a) = Qx(7)(f(a)) foralla € A.
Proof. The functionr is defined byr(a) = |,,_, 7n(8), where{mn}n, iS @ monotonically
increasing series of functions:

np(@) =0
mnt+1(@) = Ox(mn)(f(a))
Supposea € A, and considerr(a) = Qx(n)(f(a)) by cases. Iff(a) = 1 or f(a) €

Atoms(X) then the equation reduces f@a) = f(a). If f(a) = Ai¢| a then simple continuity
reasoning establishes the equation:

m@ = | J m@ = | 1)

n<w n<w

= U 9xm)(f@) = [ %ict m(@) = ier | m(@)

n<w n<w n<w

= hicl T(@) = Ox (M) (hicl &) = Ox(m)(f (@)



To shown : A — Uy, use coinduction (prop.3.6). L&t = {r(a) | a € A} and prove
ZC Qx(2).Ifze Zthenz=n(a) = Qx(7)(f(a)) forsomea € A. If f(a) =1or f(a) e
Atoms(X) thenf(a) € Ox(Z) andz = f(@). If f(a) = Aic| & thenz = Aic| 7(a) € Ox(2).
SinceUx is the greatest post-fixedpoint §fx, this establisheZ C Ux. And sinceZ is the
range ofr, this establishes : A — Ux. |

Lemma 3.9.If # = Qx () o f andn’ = Ox (') o f thenm = n’.
Proof. Again using lemma 2.7, apply transfinite induction on the ordinal proveVaea 7 (a) N
Ve C 7’ (a).

Leta e A. If f(a) = 1or f(a) € AtomsX) thenw(a) = 7'(@) = f(a). If f(@) = Aic| &
then

7@ NVe = Gier 1@) NV € | hier (@) NVy) € | hier ' @) = 7'(a)
n<é& n<§

using the hypothesis, lemma 2.11, the induction hypothesig fo& and monotonicity of..
Sincer(a) N Vg € 7' (a) for every ordinak, we haver(a) € 7'(a). By symmetry we have

7'(a) € m(a) and thereforer(a) = '(a) foralla € A. O

Theorem 1.Ux is a final @x-coalgebra.

Proof. Immediate by the previous two lemmas. O

Proposition 3.10.If f : X — Y then there is a unique mdp: Ux — Uy such that = Qs (h).
Calling this mapJ 1 makes the operatiod_ a functor.

Proof. The map exists by the universal propertyJsf. Routine calculations show that it preserves
identities and composition. O

When X = 0 we may omit the subscript, writind = Q(U) instead ofUg = Qo(Up). It is
easy to see thal_ is monotone, and in particular thdt C Uy.

Lemma 3.11.Let O[X] be the unique map from the empty set ifto ThenUgx; : U — Ux
equals the inclusion map uy.

Proof. Abbreviateiy u, as:. We find that.(v) = Qoixj(1)(v) forv € U, for if v = 1 then
(1) = 1= Qopx (1 (1), and ifv = Aj¢| vi then

t(hiel Vi) = Aiel Vi = Ajel L) = Qopxg (D (Rier vi).

The result follows by the uniqueness part of prop. 3.10. O

4. Solutions of Equations

In his development of set theory with AFA, Aczel (1988) defines systems of set-equations and
proves thesolution lemmaeach system has a unique solution. Aczel introduces a Xask
variables and a clasgx of sets built up from variables (but not themselves variables)sHiis
stitution lemmasays that any assignmeht: X — V of sets to variables can be extended to a
substitution functionf : Vx — V. Aczel uses these lemmas to exhibit a unique morphism for
his special final coalgebra theorem.

Aczel proves the solution and substitution lemmas using concrete set theory, but in Rutten and
Turi’'s categorical presentation the proofs are much shorter. A key fact in their development is
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thatV is (assuming AFA) a finaP-coalgebra. My presentation is similar, replacwidy U, Vx
by Ux, P by Q and AFA by theorem 1. One improvement over Rutten and Turi (1993) isthat
is simplyUg rather than a separate construction. (Sect. 2.3 discusses the advantages at length.) In
this setup, the solution and substitution lemmas nicely generalize to relate two sets of variables.
Equations inX andY can be solved with respect ¥, and substitutions can be iterated. Also—a
matter of taste—I replace the category of classes by the category of sets.

Note thatVx does not include atoms amongst its elements—they are only allowed in sets—
while Uy includes AtomsgX). This deviation from Aczel will affect many definitions below. The
setQ(Uyx) makes a better analogy witfx: it does not include a copy of the atoms.

4.1. Expressing Maps o@x (Y)

SinceQx (Y) = Atoms(X)U{1}U(l = Y) andQ abbreviate®g, we can write the sédx (Y) as
the union of the disjoint sets Atorg¥) andQ(Y). Some notation will simplify later calculations.

Definition 4.1.1f A andB are sets witB disjoint from AtomgA), then
AW B = Atoms(A) U B.

If moreoverf : A— Candg: B — C are functions, then{, g] : Aw B — C is the unique
function such that

[ f,g]l@mx) = f(x) xe A
[f.al(y) =a(y) (y € B)

Typically f : X — Uy andg : Q(Ux) — Q(Uy). Strictly speaking, the two maps should
have the same codomain. Abusing the notation, we can omit the inclusion:nétyy) — Uy,
abbreviating [f, ¢ o g] as [f, g]. Note that [f,g] : Ux — Uy becauseX ¥ Q(Ux) = Ux.
Making: explicit, a typical calculation is

[j.Klo[atm.cog] =[[j.k] catm[j. k] ccog] =[j.kogd].

The mapQ+ (g) can be written as [atmf, Qg], which is sometimes clearer.

4.2. Solution and Substitution Lemmas

Let f : X — Uy be a function. Then the substitution functidh: Ux — Uy recursively
traverses its argument. Given an elemenXaf Uy, it appliesf or f as appropriate, replacing
everything of the form atitx) by f (x). We have the case analysis

f (@atmx)) = f(x)
f(y=1
f(hier z) = dial T(@),
which may be put more succinctly ds= [ f, Q f].

Remark 4.2.In situations where the hat is too short, suchf?i-s?g, the notationf o g may be
used instead.
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If X is a set of variables, then a function X — Uy W Q(Ux) defines a system of equations
of the formx = v(x) for x € X. Each left-hand side is a variable drawn frofn Each right-
hand side is either an expression involving variables fior aguardedexpression involving
variables fromX. By guarded | mean that the expression must consist of more than just a variable;
this restriction excludes degenerate systems of equations sygh=ax}xcx, Whose solutions
are not unique.

A system of equations has a unique solution X — Uy that preserves the right-hand sides
involving Y while solving for the variables irX. In other words, we requird (X) = v(x) if
p(X) € Atoms(Uy) and f(x) = O(f)(v(x)) otherwise. More concisely, a solution satisfies
f =[idy,, Qf] ov.

Lemma 4.3. (Solution)Letv : X — Uy W Q(Ux) be a function. There exist unique functions
f: X — Uyandf :Uyx — Uy such thatf = [idy,, Qf] ovandf =[f, Qf].

Proof.Let: : Q(Ux) — Uy W Q(Ux) be an inclusion and leh be the map
Uy W Q(Ux) = Qv (Uy) W Q(X & Q(Ux))

[Qv(atm), O([v, )]

Qv (Uy W Q(Ux))
Now consider the diagram

Vv b/

X Uy & QUx) ----"--- ~ Uy

Qy(Uy W QUx)) ----» Qy(Uy)
Qv ()

Since(Uy W Q(Ux), m) is a Qy-coalgebra, finality yields a unique coalgebra morphisimto
Uy. The diagram commutes, and we calculate

7 = Qv(r) om=[Qy () o Qv (@atm), Qy(m) o Q([v, 7w o D]
=[Qy(x ocatm), Q([ ov, m o])]-

Sox o atm= Qv (r o atm) : Uy — Uy, and the uniqueness part of prop. 3.10 yietdsatm =
Uig, = idy, . Furthermorer o« = Q([7 o v, o (]).

Now put f = [r ov,m o and f = 7 o v. Then f and f satisfy the claimed properties
becauser = [idy, . Qf]. In particular,

f=[f [idy,.Qflod =[f Qf].

As for uniqueness, suppose there are functignsX — Uy and§ : Ux — Uy such that
g = [idu,, Q8] ov and§ = [g, Q4]. Let =’ = [idy,, Q4]. Theng = 7’ o v, andx’ also

11



makes the diagram commute:

Qv(r)om=[Qv(x' catm), Q([z" ov, 7" o 1])]
=[Qv(idu,). Q9. 24D]

= [iduy. Q4]
= 7'[/
Uniqueness of the final map yiela$ = = and thereforgy = f andg = f. O

The following lemma justifies the’ notation for substitution byf. The idea is to convert
f : X — Uy into a trivial system of equations and then to solve them.

Lemma 4.4. (Substitution)Let f : X — Uy be a function. There exists a unique functibn
Ux — Uy such thatf = [ f, Qf].

Proof.Letv : X — Uy W Q(Ux) be the map atm f. The solution lemma yields unique maps
g: X — Uy andg : Ux — Uy such thag = [idy,, Q4] o v andg = [g. Q4d]. Putting f = g
gives f = [ f, O f] because

g = [idu,. Q§] o atmof = idy, o f = f.
As for uniqueness, i = [ f, 9h] thenh = [g, Oh] and soh = § = f by the uniqueness of
solutions. O
Lemma 4.5. (Commutativity) If f : X — Uy andg:Y — Uz, theng/o\f =go f.

Proof. By unigueness of substitution, fif = [§ o f, Qh] thenh = g/o\f. The result follows
because

Gof=golf, Of] =[§o f, [9, Q1 0 Qf] =[go f, Q@Go DI

Lemma4.6.1f f : X — Yandg:Y — Uz, thengo f = §oUs.

Proof. By uniqueness of substitution, if = [g o f, @h] thenh = g/o\f. The result follows
because

goUf =G0 Qs(Us) =§oatmof, Q(U+)]
=[§oatmof,[g, Qf] o QU] =[go f, Q(GoUs)].
O

In earlier work (Paulson, 1995a), following previous authors, | defined substitution for a map
f : X — U, with no indeterminates in the codomain. The ability to deal with different sets of
variables turns out to be useful. We can recover the original solution and substitution lemmas by
applying them withY = 0. The embeddingx : U — Ux becomes the inclusiodgx; in the
present framework.
Lemma 4.7.0[Ux] = Ugx]-
Proof. The result follows by the uniqueness aspect of prop. 3.10, since

O[Ux] = [0[Ux], QO[UxD] = Qofux)(O[Ux]).
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Lemma 4.8. (Inclusion)If f : X — Uy then fo Uorx; = Uopy), and thusf (v) = vforv e U.

Proof. By the previous lemmasf o Ugix; = foO[X] = O[Uy] = Ugy;. If v € U then
f(v) = f(Uopxg(v) = Uopvy (v) = v by lemma 3.11. O

4.3. Special Final Coalgebra Theorem

We shall no longer work in the categoBetof sets but rather in the full subcateg®@gy, whose
objects are the subsetsdf Recall thatJ, in turn, depends upon the choice of index ketve
can makeJ as large as necessary.

For a suitable functor, our goal is to show that its final coalgebra coincides with its greatest
fixed point. Let us only consider functors that preserve inclusion maps. This is a natural re-
striction since all functors preserve identity maps, and inclusion maps are identity maps when
regarded as sets. All such functors have a greatest fixedpoint.

Lemma 4.9.If the functorF : Sely — Sef, preserves inclusions then there exists an ob-
ject J[F] : Sety such thatJ[F] is the greatest fixedpoint and greatest post-fixedpoiifit.of

Proof. Apply the Knaster-Tarski fixedpoint theorem to the lattice of subselts. dthe functorF

is necessarily monotone because it preserves inclusio#s:d4f B then F(toB) = (FAFB,
giving FA C FB. O
Definition 4.10. A functor F : Seyy — Set{y is uniform on mapsf it preserves inclusions and
for all A such thatA C U there exists a mappinga : FA — Q(Up) satisfyingFh(w) =
(QF\ o¢a)(w) forallh: A— U andw € FA. The mappingpa is called theJ  translation

Remark 4.11.The condition above can be abbreviatedrag) y o Fh = Ohoga, wheretguy,u
is the inclusion map fronk (U) into U. And since the domain df includes that o©©h, we have

h(@a(w)) = [h, Q] (pa(w)) = Qh(paw)) = Fh(w).
The main theorem applies to functors that are uniform on maps. This notion is due to Aczel
(1988), but the presentation owes much to Rutten and Turi (1993).

Theorem 2. (Special Final Coalgebra)f the functorF : Se{y — Set is uniform on maps,
thenJ[F] is a final F-coalgebra.

Proof. Let (A, f) be anF-coalgebra. We must exhibit a unique map A — J[F] such that
h=Fho f:

FA -—-~ FJJ[F
Eh (J[FD

SinceF is uniform on maps, there is@a-translationpa : FA — Q(Up). Lett : QUp) —
U W Q(Up) be an embedding and apply the solution lemma witk ¢ o ¢pa o f. We obtain a
unique maph : A — U such thath = [idy, Qh] oto¢pao f = Qhopao f. Soh(@) =
(Oho ¢a)(f(@) = Fh(f(a)) fora e A.
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Regarding the maps as set-theoretic functions, a standard coinduction argumentpeoves
A — J[F]. Writing h “ A for the image ofA underh, we have

h* A=(Fho f)*A=Fh“(f*“A CFh*“ FAC F(h* A)

sincehe A— h“ AandFhe FA— F(h*" A).
The range oh is thus a post-fixedpoint df and is included in the greatest post-fixedpoint,
namelyJ[F]. O

5. Existence of Functors Uniform on Maps

If F is uniform on maps then, in essence, its effect upon a mapA — U can be expressed
as the substitution dfi over a pattern derived from the argumentuife FA thenFh(w) =
Oh(¢a(w)). Most natural functors are uniform on maps, but there is one glaring exception. Let
us examine some typical cases, starting with a trivial one.

This section illustrates the advantages of construdfingo include atoms, or (assuming AFA)
having urelements. If instead we useéd = P (X + V), then the failure oVx x Vx C Vx and
Vx + Vx C Vx would complicate the translations and the proofs.

5.1. The Constant Functor

If C € U then let Kz be the constant functor such thagKA) = C for all A : Se{; and such
that Ko (f) = idc for all mapsf : A — A.

Proposition 5.1.1f C : Se{y then the constant functord: Set; — Sety is uniform on maps.

Proof.Let A C U. NowC C U = QU C Q(Up), so we can defines : C — Q(Up) by
¢a(c) =cforceC. Now (Qh o¢pa)(C) = Oh(c) = ¢ = Ke(h)(c) forallc e C by lemma 4.8.
O

5.2. Binary Product

The setU satisfies the inclusiod X U € U. So itis easy to see that : Se{y x Sely — Sey
is a functor when extended to maps in the standard waf. IfA — A" andg : B — B’ are
maps thenf x g: Ax B — A’ x B’ is the map that take@; b) to ( f (a); g(b)).

Proposition 5.2.1f F, G : Se{y — Sei, are uniform on maps, then the functef—) x G(-) :
Sely — Sey is uniform on maps.

Proof. Let A be a set such thak : Sety, or equivalentlyA € U. Clearly we haveF A X GA :
Sety. SinceF andG are uniform on maps there exid translations

éa: FA— Q(Ua) such thatFh(u) = (Qh o ¢a)(U) and
¥a ' GA— Q(Up) such thaGh(v) = (Qh o Ya)(v)

forallue FA,ve GAandh: A— U.
To define theUa translation forF(—) x G(—), putfa = ¢a x Ya. Thusoa((b;c)) =
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(pa(b); ya(b)) forallb e FAandc e GA Now for (u; v) € FA X FB,
(F(=) % G(=)(h)((u; v)) = (Fh(u); Gh(v))
= (h(paW)): A(WYA®)))
({paW): Ya()))
Oa((u; v)))

by remark 4.11. Sé is the desired) o translation. O

oh
oh

5.3. Binary Sum

Recall thatf is the variant form of disjoint sum, defined By B = ({1} x A) U ({{1; 1)} x B).
We havel + U < U becauseJ is closed undek and contains 1 anQL; 1) as elements.

Variant sum is a coproduct in botBet and Sey,. The injectionsinl : A — A + B and
Inr : B — A ¥ B are defined in the obvious way. For every pair of mdps A — C and
g : B — C, there exists a unique mag,[g] : A+ B — C such thatf,g] o Inl = f and
[f, g] o Inr = g. Another useful law s o [ f, g] = [ho f,hog].

To makef into a functor, we must define its action on mapsj. tfA — A andk : B — B’
thenj + k: AF A — B J B’ is defined (as usual) by + k = [Inl o j, Inr o k].
Lemma 5.3.1f f : A - U andz € Ua then Qh(Inl(z)) = Inl(h(z)) and Qh(Inr(z)) =
Inr(h(z)).
Proof. Calculate

Qh(Inl(2)) = Gh({L; 2)) = (hL; h(2)) = (1; h@)) = Inl(h(2)).

The treatment ofnr(z) is similar, sincen((1; 1)) = Qh((1; 1)) = (h1; h1) = (1; 1). O

The tags of the disjoint sum are arbitrary distinct sets, usually 0 and 1. However, 0 has compli-
cated properties in our framework because Q.| 0. Using(1; 1) simplifies the proof above.
In fact, 0 would work too. Fronf(0) = Qh(0) = X<, h(0) we geth(0) = 0, but making this

argument rigorous requires establishing a coinduction principle for equations. That would be a
distraction.

Proposition 5.4.1f F, G : Se{y — Sei, are uniform on maps, then the functef—) + G(-) :
Seiy — Sey is uniform on maps.

Proof.Let AC U. ThenFA+ GA: Sey and for allh : A — U there existJ 4 translationspa
andy a as in the proof of prop.5.2. Léta = ¢a + ¥a andw € FA+ GA. If w = Inl(u) for
u € FA, then

(F (=) + G(=)hy(nl(w)) = InI(Fh(u))
= Inl(h(pa(w)))
= Qh(Inl($a(W)))
= Qh(@A(INl(U)))

by lemma 5.3 and remark 4.11. 8g is the desired translation. The case= Inr(v) follows by
symmetry. ]
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5.4. Sum of a Family of Sets

Let {Bx}xec be aC-indexed family of sets. L € U andBy < U for all x € C then we
have)",.c Bx < U. Note that)",.c By is the usual generalization & X B to allow B to
depend uporx € C; the two functors have a similar effect upon maps. @ﬁs less general
than x in one key respect: the index set is not given by a functor but is constant. Nﬁtlmmr
% supersedes the other.

Proposition 5.5.1f C : Sey and if {Fx : Sey — Sey }xec is aC-indexed family of functors
that are uniform on maps, then the functor

3 Fe(-) : Sey — Se
xeC

is uniform on maps.
Proof. Let A € U. For eachx € C there exists & translationgy A : Fx(A) — Ua such
tbat Fx(h)(y) = (ho ox.A)y) forallh : A — U andy € Fx(A). TheUp translation for
> xec Fx(—), calledda, is defined by

Oa({X; Y)) = (X; dx,A(Y))
forall x € C andy € Fx(A). Now, we have

(Z Fx(=) M (X y) = (X Fx()(¥))

xeC
= (h(x); N(gx, a(Y)) = QEAUX; Y)))

by lemma 4.8. O

5.5. Product of a Family of Sets

Again let{By}xec pe aC-indexed family of sets. IC C | (notC C U as above) an®y C U
forallx e Cthen[[,.c Bx S| > U c U.

Thus]:[ : Set, — Sey is afunctor whose effect on maps is as followd.fif : Bx — Bj}xec
is aC-indexed family of maps then

[T [18~ []B

xeC xeC xeC
is the usual pointwise map that takeg.c by t0 Axec fx(bx).
Proposition 5.6.1f C C | and{Fyx : Se{; — Sey }xec is aC-indexed family of functors that
are uniform on maps, then the functor

[T Fx(-) : Sets — Set,

xeC

is uniform on maps.

Proof.Let A € U. For eaclx e C there exists & a translationpy_a as in the proof of prop. 5.5.
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LetOa = [Tyec dx.a- If w € ([Tyec Fx(—)(A) thenw = ixec wy, and

(T Fx=) M) Gixecwy) = ixec Fx () (wy)

xeC
= Jxec (h o ¢ A) (wx)
= ON(ixecex, A(w))
= (Qh 0 Ha) (xecwx)
andfp is the desiredJ 5 translation. O

5.6. Composition of Functors

That the compositiorr o G should preserve uniformity on maps seems obvious, but the proof
requires the notion of iterated substitution of lemma 4.4.

Proposition 5.7.1f F, G : Sey — Se{, are uniform on maps, then so is the funckep G :
Sey — Seyy.

Proof.Let A C U. SinceF andG are uniform on maps, there exldf andUg a translations
Ya: GA— Q(Up) suchthatgyuy o Gh= Qﬁ oya and
¢ca: FGA— Q(Ugp) such thatry y o Fj = Qj o g

forh: A— Uandj: GA— U.
Let:: Q(Ua) — Ua be aninclusion map and p@k = Q(to a) o pga. If h: A— U and
u e FGAthen

F(Gh)(u) = F(Qho ya)(u)
=F(hotoya ()
= (Q(horoya) o pemW)
= (Q(h o1 o) 0 pa A (U)
= (Qho Qo Ya) 0 pa A (L)
= (Qhoha)(u)

by commutativity of substitution (lemma4.5). The first equality, in whigh is replaced by
@h o ¥ra, holds becaus€ preserves inclusions. O

5.7. The Identity Functor

These results suggest that any functor that operates on constructions in a pointwise fashion is
uniform on maps. But there is one glaring exception.

Proposition 5.8.The identity functor Id Seiy — Sety is not uniform on maps.

Proof. Suppose Id Sety — Sety is uniform on maps. Then iA € U then there is a mapping
éa: A— Q(Up) such thah(w) = Qh(¢a(w)) forallh: A— U andw € A.
Let A = {1} and definehs, ho : {1} — U by hy(1) = 1 andh2(1) = (1;1). Then 1=
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Q(Fﬁ)((bA(l)), sopa(l) = 1 by the definition ofQ. Also (1; 1) = Q(ﬁ})(ngl)), which implies
¢a(1) = (a; b) for somea, b € Ua. But then 1= (a; b), which is absurd. O

An alternative proof uses the special final coalgebra theorem. If Id is uniform on maps then
J[Id] is a final Id-coalgebra. But a final Id-coalgebra must be a singleton set, Widé = U
andU contains 1 andl; 1) as elements.

This circumstance is awkward. The natural way of constructing suitable functors is to combine
constant and identity functors by products, sums, etc. Since the identity functor is not uniform
on maps, this approach fails. Various similar functors are uniform on maps, suck &so; and
— x —; both have the singleton sg} as their greatest fixedpoint. One can prove variants of the
lemmas above, for example thatffis uniform on maps then so B(—) x —. Assuming AFA
does not help; the identity functor is not uniform on maps in Aczel's system either.

6. Final Coalgebras with Parameters

Section 1 discussed the s@bf streams oveA, which satisfiesS = A x S. But ‘streams over
A’ should be a construction taking as a parameter. Can we define it as a functor that can itself
be used in further constructions?

SupposeF is a bifunctor. If A is an object ther-(—, A) is a functor, which we abbreviate
to Fa. If Fa has a final coalgebra[Fa] for every A, then the mapA — J[Fa] determines a
functor. The idea is to show that this functor is uniform on maps and to express other functors
in terms of it. For example, the functor of streams o¥erstreaniA), is uniform on maps. It
can express the functor af-branching trees as the final coalgebra of the bifunEto#', A) =
A x streanfA), etc.

Our existing machinery already suffices to handle mutually recursive coinductive definitions,
finding greatest fixedpoints in the product categ8sty x Sety. The idea is to generalize the
special final coalgebra theorem, applying the solution lemma to a set of indeterminates of the
form A; + A,. But it is more general to handle definitions that have parameters. This topic
appears to be little discussed in the final coalgebra literature, but see Hensel and Jacobs (1997),
who work in total categories of fibrations. The approach outlined below is simple and applies
(making the obvious changes) to approaches based on AFA.

Definition 6.1. A bifunctor F : Sety xSet{y — Se{ isuniform on map# it preserves inclusions
and for all subsetsA, B of U there exists a mappinga s : F(A, B) — Uuzp such that
F(f,9)(w) = ([f, gl oppip)(w)forall f: A— U,g:B— Uandw e F(A, B).

In this section A and B range over subsets bf. If the bifunctorF is uniform on maps then so
are the functor$(—, B) andF (A, —) for objectsA andB. To prove this, we need a few more
results.

Lemma 6.2.For every mam : B — Q(U,zp) there exists a unique map Out][: Up:g —
U a such that

Outl[¢] = [atm, O(Outl[$]) o ¢].
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Proof. Let m be the map

Upig =—— (A+ B)W QUp1p)
[fatm, ¢], Q(idy,. )]

AW QUprp)

Now consider the diagram

Unig) - - = QaU
OaUpzp) On) 9aUn)

Since(U 1. M) is aQa-coalgebra, there is a unique mapnto the final coalgebrél A making
the diagram commute. Now
T = QA(JT) om
=[Qa(m) o [atm, ¢], Qa() o Q(idu,. ;)]
= [[atm, Or o ¢], Or].
By the substitution lemma (4.4), the desired map @il 7. (Note: Qa(;r) becomeLr after
composition with the implicit inclusion map f@(U p15) € AW Q(Up1p) = Qa(Upip).) O

Lemma 6.3.For every mag : A — Q(U ;) there exists a unique map Oui[: Up;p —
Ug such that

Outr¢p] = [Q(Outr[p]) o ¢, atm].
Proof. As above, by symmetry. O
Lemma 6.4.If f : A— U thenf o Outlig owu,, ] = [T.ta.U].

Proof. Abbreviate:g o, ,) ast. SinceB € U = QU € Q(Up;p), we have = Q(Uga1g)) 0
tg,u- Lemmas 6.2 and 4.8 give

Outl[t] o Ugiazg) = [atm, Q(Outl[t]) o ¢ o Ugraz gy = UorA]- 1)
Apply (1) and lemma 4.8 in a preliminary derivation:
f o [atm, QOutll)]) o1] = [f o atm f o QOutl[i]) 0 Q(Ugrazg)) © tB.U]
=[f. [f.Qf] o QOutl[] o Upasg)) © tB.u]
=[f, Q(f o Ugpay) o tg.u]
= [f, Q(idu) o tg.u]
=[f, gul
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And so, applying lemmas 4.4 and 4.5, we obtain

f o outll] = f o [atm, Q(OUt[]) o

f o [atm, Q(Outl[]) o (]

=[f, sul.
|
Lemma 6.5.If g: B — U then§ o Outrfia ou . )] = [tau, 0]
Proof. By symmetry in the previous proof. O

Proposition 6.6.If the bifunctorF : Set; x Sety — Set, is uniform on maps, then so are the
functorsF(—, B) andF (A, —) for A, B : Sety.
Proof. SinceF is uniform on maps, it hasld 1 g translationpa g : F(A, B) — Q(Uxip)-

Let B C U be fixed and consider the functb—, B). Then, forA C U, we shall see that the
Ua translation forF (—, B) is Q(Outl[zB,Q(UA;B)]) o¢gap.- Forh: A— Uandw € F(A, B),
we have by lemma 6.4

(Qh o Q(Outllig o, 5)]) © Pa.B) (W)
= (Q(ho Outllig o, )] © Pa.B) (W)
= (Q(h, tguD 0 ¢aB) (W)
= F(h,tsu)(w)
= (F(idu, tp,u) o F(h,idg))(w)
= F(h,idg)(w),

sinceF preserves inclusions.
If A C U isfixed, theU p translation for- (A, —) is Q(Outr[LA,Q(UA;B)])oqu, B, by symmetry.
O

I do not know whether the converse of this proposition holds. This question might be consid-
ered in future research.

Theorem 3.Let F : Sety x Sety — Sety be a bifunctor that is uniform on maps. Far. Sety,
let Fa abbreviate the functdf (—, A). ThenJ[Fa] is a final Fa-coalgebra, and the mafy —
J[Fa] determines a functor that is uniform on maps.

Proof. If A C U then the functor-4 is uniform on maps by prop. 6.6. By the special final
coalgebra theorem][Fa] is a final Fa-coalgebra. The fixedpoint property yield§Fa] =
FQI[Fal A.

As is well known, the mafA — J[Fa] determines a functor. Givelm: A — B, finality of
J[Fg] yields a unique ma@d[F] such thatJ[Fn] = F(J[Fn], h). By unigueness, it is easy to
check thatl[id o] = idy[r, andJ[f o g] = J[f] o J[g].

The functor also preserves inclusionsAfC B thenJ[Fa] € J[Fg] by monotonicity of the
greatest fixedpoint operator. SinEepreserves inclusions; (¢ 3[F ], J[Fs]> LA.B) = LJ[Fal,J[Fs]-
By uniqueness][F,, g] = tJ[Fa].J[Fg]-

Let A € U be given. To show that the functdf F_] is uniform on maps, it remains to exhibit
aUp translationda such thatoh o Oa = try,u o Fhforh : A — U. AbbreviateJ[Fa] as J.
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Letgza: F(J, A) — Q(U;;1,) be the translation for the bifunctét; sinceJ = F(J, A), we
havep;;5:J = QWU;1)-
The required translation & = Q(Outrfp ;1) 0 @j7a. If h 2 A — U then by lemmas 6.3
and 4.5,
Qhoba = Q(hoOutrlps;al) o ¢y7a

= Q(h o [Q(OUtrfp31Al) © P37 a AIM) 0 Gy a

= Q(h o [Q(Outrlpy: A © dyzar AMD 0 G35 a

= Q([Q(hoOutrfps;a) 0 ¢y D 0 dy5a

= tFu,u).U © F(Q(hoOutrpy7 A1) 0 1, )

= lFU.U)U © F(QF] o0a, h)

becausd- is uniform on maps.

It remains to eliminate the inclusion map. Consideridlgo 6 as a set theoretic function, its
rangeR satisfiesR = F(R, U), but the greatest solution to that equatiod j§y]. So Qhoda =
t3[Fy]U © | forsomej : J — J[Fy]. SinceF preserves inclusions, we find

LRU © § = Qhofa = tru.u)u o Farlu © §. h) = wagrglu o F(j, h)
and soj = F(j, h). By uniquenessj = J[Fn]. Summarizing, we have
Qho 6 = Qhoba = tjry).u © I[Fn),
andbp is the requiredJ p translation. O

How do we create bifunctors that are uniform on maps? It would not do to rehearse the proofs
of Sect. 5, but they clearly apply with obvious changes, repldtingd — U by [f, g] : AFB —
U. Ordinary functors give us material to start with.

Proposition 6.7.1f G : Se{y — Sel is uniform on maps, then so are the degenerate bifunctors
F andF’ defined byF (A, B) = GAandF/(B, A) = GA.

Proof. Let A andB be objects oety, and letpa : GA — Ua be theU 4 translation forG. We
shall see that thg 5 ; g translation forF is Q(U 7)) o ¢a.
Supposéh: A— U, j: B— Uandw € F(A, B). Of coursew € GAand, by lemma 4.6,
(Q([h, jD o QU5 0 pa)(w) = (Q([h, j] o U7 o pa)(w)
= (Q([h, jloInl) o pa)(w) = (Qh 0 pa)(w) = Gh(w) = F(h, })(w).
The translation foF" is Q(U,-) o ¢a, and the proof follows by symmetry. O

If another example is needed, the bifunckois uniform on maps with translatiaf: Ax B —
Q(U a1 p) defined by

$((x; ¥)) = (atm(Inl(x)); atm(Inr(y))).

It seems clear that uniformity on maps could be defined for functogefh) — Sety, general-
izing the proofs of Sect. 5 to an arbitrary positive integer
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7. Applications to Machine Proof

The context for this work is my mechanization of ZF set theory, using the theorem prover Isa-
belle (Paulson, 1993). Proof tools should allow users to define sets inductively. Adding induction
principles to the formalism is popular (Paulin-Mohring, 1993), but is not suitable for ZF set the-
ory, where strong induction principles can be derived from the axioms. | have put much effort
into supporting inductive definitions in Isabelle/ZF, basing the representation on least fixedpoints
(Paulson, 1995b).

Coinductive definitions should also be supported. The simplest approach is to base the rep-
resentation on greatest fixedpoints. If the bulk of the implementation works for any fixedpoint,
admitting coinductive definitions will cost almost nothing.

AFA could be the basis for a greatest fixedpoint approach in Isabelle/ZF. It would be straight-
forward to separate FA from the other ZF axioms and to move most of the formalization into
the resulting theory of ZF. Isabelle can support parallel developments in ZF and ZFAFA.
However, implementation of AFA would require much further work. The axiom and its con-
sequences, such as the solution lemma, would have to be mechanized in a form suitable for
constructing particular coalgebras (as opposed to developing metatheory).

My approach to final coalgebras is easy to mechanize. Most of the facts required of greatest
fixed points are obtained by dualizing facts already proved about least fixed points. The defini-
tions of variant pairs, products, sums, etc., are elementary. Their properties are easily established,;
many proofs can be adapted from those for the standard operators. A set (analdgpakted
under the most important constructors can be defined in termvg, ofvhose theory is already
needed for the inductive case.

This fixedpoint approach has been implemented as an Isabelle package (Paulson, 1994). In
order to admit both inductive and coinductive definitions, the package takes the relevant notions
of products, sums, etc., as parameters. The package does not prove that particular coinductively
defined sets are final coalgebras, but the script needed to generate such a proof is fairly short. It
was by developing this script that | obtained the ideas underlying lemma 3.9.

Frost (1995) has used the package to mechanize a substantial example taken from a tutorial
on coinduction (Milner and Tofte, 1991). The semantics of a simple functional programming
language is defined an unusual way: recursive functions are modelled as non-well-founded ex-
pressions. The theorem relates the dynamic and static semantics—values and types—via a cor-
respondence relation that is defined coinductively. The chief difficulty in the mechanization is to
justify the basic definitions, which involve mutual recursion and variant functions; fortunately,
the package does most of the work. The proofs themselves are routine. The full development
takes just over a minute to run.

Recall that the identity functor is not uniform on maps. The corresponding declaration in
Isabelle/ZF turns out to have the wrong properties: the greatest fixedpbintvigen it should be
a singleton.

8. Conclusions

Researchers in semantics seldom worry about how an object is constructed, provided it has the
right abstract properties. From this point of view, the general theorems of Aczel and Mendler
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(1989) and Barr (1993) yield final coalgebras for a great many functors, using techniques such
as inverse limits and quotienting.

But there is an undoubted interest in the special final coalgebra theorem of Aczel (1988),
proved using AFA. This theorem is weaker but concrete. The set of stream# avsimply the
greatest fixedpoint of the funct@ x —, which is also that functor’s final coalgebra. Its elements
are easily visualized objects of the fogan, az, a2, .. . ).

The original motivation for my work was to treat streams and other infinite data structures. |
wished to use the standard ZF axiom system as it was automated using Isabelle. Thomas Forster
suggested that Quine’s treatment of ordered pairs might help. Generalizing this treatment led
to the new definition of functions (and thus infinite streams), in order to compare the approach
with AFA. This part of the work closely follows Aczel (1988) and Rutten and Turi (1993), from
the substitution lemma onwards. As Aczel has pointed out to me, this reuse of the development
suggests general conditions under which a category possessing final coalgebras analdgous to
andUy satisfies a special final coalgebra theorem.

Compared with my early paper (Paulson, 1995a), the present development is more streamlined
and goes further. Its treatment of urelements eliminates most embeddings, simplifying the deriva-
tions. New laws govern iterated substitution and maps of the fogmFinal coalgebras may be
defined with respect to parameters. Much of the new material is relevant to systems based upon
AFA.

My version of the theorem is less general than the version using AFA, especially for modelling
concurrency. Here is a typical example. &t be the finite powerset operator, which returns the
set of all finite subsets of its argument. L&tbe a set of actions, and consider the Bebf
processes defined as the final coalgebr&®efA x —). With AFA the final coalgebra is the
greatest solution oP = P (A x P), andifp € P then

p={(as p1),..., (@n, pPn)}

withn < w,a;,...,a, € Aandp, ..., pn € P. Herep represents a process that can execute
actiona; and become procegs, with no restriction thagy, ... , a, are distinct. In this way,

Aczel (1988) modelled the transition systems of SCCS, and other process algebras require at
least as much generality.

My approach does not handle general set constructions, only variant tuples and functions; |
do not know how to modeP; respecting set equalities suchfasy} = {y,x} = {X,V, Xx}.
However, it is not entirely useless for modelling concurrency. In the UNITY formalism Chandy
and Misra (1988), nondeterminism lies only in the choice of action, the actions themselves being
deterministic. We could model UNITY by the set of the non-well-foundetiranching trees,
but not by the greatest solution & = A = P, which is trivial (prop. 2.3). Instead we should
use the greatest solution 8 = {1} U (A > P), which is of courséJ A, taking A as the index
set.

The approach works best in its original application, infinite data structures. We can model the
main constructions iV “. SinceU® C V,.1, each infinite data structure is a subse¥gfand
thus is a set of hereditarily finite set§ection 2.1 discussed infinite streams. TheSswtstreams

* An hereditarily finite sets one built in finitely many stages from the empty set. There are countably many of them.
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over A is the greatest solution @ = A x S, and is the final coalgebra of the functarx —.

The construction is parametric i, yielding the functor streat\) that can be used in further
definitions. Another possible application is the modelling of object-oriented languages (Hensel
et al, 1998).

Thus we have an account of non-well-founded phenomena that is concrete enough to be under-
stood directly, and simple enough to use in machine proof. One can argue about the constructive
validity of the cumulative hierarchy, b, is uncontroversial even from an intuitionistic view-
point. An infinite data structure is represented by a countable set of elementary objects.

Aczel has shown that by adopting AFA we can obtain final coalgebras as greatest fixedpoints,
dualizing a standard result about initial algebras. My approach is another way of doing the same
thing, though for fewer functors. Whether or not one choose to adopt AFA hinges on a number of
issues: philosophical, theoretical, practical. Variant tuples and functions are a simple alternative.
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