Technical Report R

Number 456

Computer Laboratory

An evaluation based approach
to process calculi

Joshua Robert Xavier Ross

January 1999

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1999 Joshua Robert Xavier Ross

This technical report is based on a dissertation submitted July
1998 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Clare College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-456

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-456

Abstract

Process Calculi have, starting with Milner's CCS, traditionally been
expressed by specifying the operational semantics in terms of action-labelled
transition relations between process expressions. Normally this has been
done using transitions that are inductively defined by rules following the
structure of the process expressions. This approach has been very successful
but has suffered from certain problems. One of these is that the construction
of weak, branching-time congruences has not been as simple as one might
wish. In particular the natural weak bisimulations are not congruences,
typically shown up by the introduction of summation. Secondly this method
has not lent itself to the development of congruences for calculi that combine
features of concurrency and higher-order functional languages. Another
problem is more aesthetic. It is that in order to write these transition relations
we need to use silent (7) actions which are supposed to be unobservable.
However we need to represent them explicitly and make explicit reference to
them in defining the congruence relations.

In this thesis, an approach to process calculi based on evaluation
to committed forms is presented. In particular two process calculi are
given. The first is a first-order CCS-like calculus, NCCS. This demonstrates
the possibility of giving natural weak branching-time éongruences, with
such features as sumimation, without the use of explicit silent actions.
Various bisimulations are defined on NCCS, and these are related to existing
equivalences for CCS. The second is a higher-order calculus, based on CML; a
higher-order functional language extended with concurrent features. Again it
is shown that a natural weak branching-time congruence exists. In both cases
a transition relation is also given and the relationship between evaluation

and transition is shown.

Contents

List of Figures

1 Introduction
1.1 Background

1.1.1 Evaluationvs Transition
1.1.2 First-ordercalculi
1.1.3 Higher-orderCalculi
1.1.4 Reduction based Equivalences
1.1.5 OtherEquivalences
1.2 Contribution of the Dissertation

1.3 Outline of Dissertation
1.3.1 PartI—NCCS-
1.3.2 Partll—CML,

I NCCS

2 Process syntax
2.1 Syntaxof NCCS ...
2.2 Structural equivalence

onNCCS...........0.0co.o..

2.3 EvaluationrelationforNCCS...................
24 Syntaxof TNCCS it i i it
2.5 Transitionrelation for7TNCCS
2.6 Translations between NCCSand7NCCS

3 Bisimulations

3.1 Evaluation Bisimilarity

o G B W e

10
12
13
14
15
16

19

21
22
24
25
31
33
35

39
42

32 Weak -bisimilarityottt

II

3.3 Barbed |-bisimilarity,
34 Strong —-bisimilarity
35 Weak—-bisimilarity
3.6 Deléy —-bisimilarity

Proof of congruence of =~}

4.1 Auwuxiliaryrelation
42 Initiallemmast i ittt
4.3 Closure of AuxiliaryRelation
44 Symmetry of the Auxiliary Relation
45 Congruence for Evaluation Bisimulation

Link between evaluation and transition

5.1 Transitionto Evaluation
5.2 EvaluationtoTransition
53 Summaryofrelationship

Relationships between the bisimilarities

6.1 Inclusions between variousrelations
6.2 Coincidence of weak bisimulations
6.3 Equivalence of weak and barbed bisimulation
6.4 Equivalence of evaluation and delay bisimulation

6.5 Inequalities between bisimilarities

Equational Theory
71 Standardforms.,
72 EquationalLaws

7.3 Characterization of Evaluation Bisimulation

CML,

The Calculus for CML
8.1 IntroductiontoCML0 uuuenu..
82 Syntaxof CML,0 0.,

43
45
46
47
48

51
52
52
55
60
64

65
65
69
71

73
73
74
76
79
83

85
85
86
89

95

97
97
98

8.3 Structural congruenceonCML,
8.4 EvaluationRelation0.....
85 ExampleCML,programccoo....

9 Transition relation for CML,
9.1 Imitiallemmas..............c0uuuiienenenne..
9.2 Link between evaluation and transition
9.2.1 Evaluationto Transition
9.2.2 TransitiontoEvaluation

10 Bisimulation on CML,
10.1 OutlineoftheChaptervvuu...
10.2 Aspirations foranEquivalence
10.3 Equivalentornot?ttt
10.4 Equivalence —extendedproblem
10.5 Evaluation BisimulationforCML,
10.6 Strong BisimulationforCML,,
10.7 Properties of Strong Bisimulation
10.8 Properties of Evaluation Bisimulation.
10.9 Some basic examples of equivalent expressions
10.10 RelationshiptopuCML oo,

11 Auxiliary Relation for CML,
11.1 Auxiliaryrelation
11.2 Initial properties of the auxiliaryrelation

12 Congruence of Evaluation Bisimulation

III Conclusion
13 Conclusion

Bibliography

119
129
136
136
138

143

143

144
146
147
151 -
153
156
163
169
174

177
178
179

181

195

197

201

List of Figures

21 Syntaxof NCCS 0. 22
2.2 Evaluationrelationfor NCCS. 26
2.3 Committed formsfor NCCSo vvnvenn. .. 26
24 Syntaxof TINCCS i 32
2.5 Transitionrelationfor7NCCS 34
4.1 Auxiliary relation for Evaluation Bisimulation 53
7.1 Structural Equations for Equational Theory . F 86
7.2 Expansion Equations for Equational Theory 87
7.3 Summation and 7 Laws for Equational Theory 87
7.4 Equational Theory for Evaluation Bisimulation 88
8.1 Syntaxof CML, e 99
8.2 Constantfunctions 000, 102
8.3 Free and bound names and variables 103
84 q-conversionforCML, i, 104
8.5 Structural CongruenceforCML, 105
8.6 Evaluation Contextsfor CML, 107
8.7 Evaluation Relationon CML, —Axioms 107
8.8 Evaluation Relation on CML, — GuardingRules 108
8.9 Evaluation Relation on CML, — RestrictionRules 109
8.10 Evaluation Relation on CML, — StaticRules 110
8.11 Evaluation Relation on CML, —BigStepRules 111
8.12 Evaluation Relation on CML, —Constants 112
8.13 Example evaluation —Initiator 115
8.14 Example evaluation — Relay, disable 117

vii

8.15 Example evaluation —Relay,listen 118

9.1 - Transition Relationon CML, —Axioms 119
9.2 Transition Relation on CML, — GuardingRules 120
9.3 Transition Relation on CML, —RestrictionRules 120
9.4 Transition Relation on CML, — Static Rules e 121
9.5 Transition Relationon CML, —SilentRules 122
9.6 Restriction Contextsfor CML,, 123
10.1 Example functionevaluation. 147
10.2 Evaluation derivationfor GF 149
10.3 Evaluation derivationforGF' 150
11.1 Auxiliary Relation for Evaluation Bisimulation —Part1l 178
11.2 Auxiliary Relation for Evaluation Bisimulation —Part2 179

Chapter 1

Introduction

Examining the current mainstream programming languages one might be
forgiven for wondering whether people can perform more than one action
at once. An issue that has perplexed psychologists is whether the brain is
a truly parallel “computer” or whether it merely switches between tasks so
well that we cannot tell the difference. Independent of whether the brain
does work in a truly parallel manner, in reality we often appear to deal with
more than one situation at once. We may also work in cooperation with
other people, and all of us may work at once, not requiring other people
to stop while we are working. This ability to cooperate contrasts with the
way current programming languages work. These languages may have been
suitable while individual computers sat on a desk on their own, isolated from
everything except for a printer. However as computers are now increasingly
being connected together the approach needs to become one that is not so
isolationist.

In his Doctoral Thesis, [Gor94], Gordon gives an implementation of
a functional language with input and output. His justification for the
desirability of such a language is that functional languages are easier to
reason about, but input and output are needed. Input and output complicate
language design, and make reasoning more difficult. His language, however,
does not involve concurrency, but merely extends the functional language
with primitives for input and output. To deal easily with a multiplicity of
possible machines that may wish to communicate with us, we would prefer

to be able to use a concurrent language. Then we could allow parts of the

1

2 CHAPTER 1. INTRODUCTION

program to “lie dormant” until an external source wishes to communicate
with us. A part of the program could then be awakened to deal with the
request, or interact with the larger program in order to deal with the request.
Once such communication is possible we may also want to have the ability
to split our program into completely separate segments. These parts would
only be able to communicate using the same mechanisms that were used
to receive the original request. Such a symmetric approach would allow
easy integration of our programs into the larger environment of the network.
However we may also desire the ability to communicate privately between
various parts of a program, in order that external machines are not able to
affect execution of the program more than we wish to allow. All these ideas

suggest that we need to consider concurrent programming languages.

There is however a problem with desiring such concurrent languages.
There needs to be a good theoretical basis for such languages, and while
imperative languages may be hard to reason about, concurrent programs
have additional problems with non-deterﬁﬁnism. There are also problems
with writing programs that are genuinely concurrent-safe. It is all too easy
to write a program that appears to be safe, but is in fact fatally flawed. An
example of this is the problem of a company with several telephone lines.
Let us say they have six lines. Company rules state that only five lines may be
used at once, so that there is always a line free in the case of an emergency.
The following solution is proposed. A central counter is kept of how many
lines are currently in use. If less than five are being used when a call is
requested, one is added to the counter and the telephone call is started. Once
the call is finished, the counter is reduced by one. There are two problems
with this. The first is that two people might start telephoning at the same
time. Both check that there are less than five people using a line, and both
discover that there are exactly four people using the lines. They both add
one to the counter and make a telephone call. The company is left without
an emergency line. However as soon as the first person finishes his call the
situation becomes safe again. The second problem is much worse. Again,
two people try starting a call at the same time. Both read the value of the
counter, and both add one to the value they “know” the counter has. Both

1.1. BACKGROUND 3

then update the counter to their “correct” value. The situation is now that
all six lines are in use, but the counter only reads five. This situation will
not remedy itself when one of the lines becomes free, and even worse it will
now allow any person to accidentally block the emergency line by taking
what they consider to be the fifth line. The same problem occurs with the
reduction of the counter phase if two calls end simultaneously. The system
could end up in a state whereby only one person could use the telephone at

once!

Thus we come to the conclusion that we need some tools to help us to

reason about programs, since there are so many pitfalls.

1.1 Background

Much work has been done to analyse programming languages, particularly
functional ones. The A-calculus has been studied widely as the basis of
functional languages. Possibly the best known example of a large scale
operational semantics is the definition of Standard ML [MTH90]. It has
seemed natural to use a “big step” reduction relation for the operational
semantics of functional languages. This is because purely functional
languages are deterministic, because of the idea that functions take a value

and return a value, and because the intermediate steps are not of interest.

In contrast to functional languages, the operational semantics of
languages for concurrent communicating processes have traditionally
been specified by action-labelled transition relations between process
expressions. These transition relations usually include a “silent action”, often
denoted 7. Ideally, these transition relations have been inductively defined
by rules following the structure of expressions. There are various reasons for
using a transition relation. One of these is that concurrent languages do not
operate on the model of taking a value and returning a value. In general their
programs may never terminate, but instead continue to interact indefinitely

with the environment.

4 CHAPTER 1. INTRODUCTION
1.1.1 Evaluation vs Transition

We have two different approaches to designing reduction relations. The
first, from concurrent communication processes, is that of using a “small
step” reduction relation or transition relation. The second, from functional
languages, is that of using a “big step” reduction relation or evaluation
relation. Since there are differences between evaluation and transition
relations we need to examine the advantages and disadvantages of the two

approaches.

The most obvious difference is that a transition relation is more fine
grained than an evaluation relation. This may be viewed as either an
advantage or a disadvantage depending on your point of view. If we want to
consider the overall position of a program then we want to deal with as little
information as we can, whilst still being able to get the information about
the program that we need. Typically, the more information we are presented
with, the harder we find it to determine the facts that we need. We tend to
“lose the forest for the trees”. On the other hand, we do not want to reduce
the amount of information that we have to deal with to the extent that we do

not have the information that we do need.

Another difference between evaluation and transition is the use of silent
actions. An important question is whether silent actions are truly silent or
not. This could be considered to be a question of whether we can deduce that
one or more silent actions are being performed by the time that a program
takes to execute. However this suffers from the problem that it is unusual
for two different “silent actions” to take the same length of time to execute.
Also one might argue that one of the uses of equivalences is in optimising
programs. This may be done by hand, or by a compiler that has been taught
various equivalences. Using such a technique one might write a program
that is simple to reason about, but use a faster optimised version to execute.
An example of this is that various C compilers will transform tail, and some
other forms of, recursion into a loop [SS76]. Tail recursion is sometimes an
easier way to write a program but is slower to run, due to the overheads of
the function call.

There is also an ideological reason to suggest that there should not be

' .

1.1. BACKGROUND 5

silent actions in the language. If they are truly silent thén they should not
be observable. This may also be reasoned from the idea, suggested above,
that actions do not all take the same time to execute. Another suggestion
is that there may be other programs running on the same machine so it is
not known whether the slowness is caused by the program, or if the problem
results from too many programs running at once. Whatever the reason, or
mixture of reasons, silent actions may not be observed. If we cannot, or
refuse to, observe silent actions, then why should they be included in the

reduction relation?

1.1.2 First-order calculi

The A-calculus has formed the basis for analysing functional programming
langﬁages. In a similar way CCS, first in [Mil80] and then updated in
[Mil89], has formed the basis for reasoning about concurrency. Although
the communication in CCS is limited to synchronisation, it still has sufficient
power for some applications. A simple example is to define the following
agent, in the notation of CCS (recalling that r.P means “input on channel r

and then become process P”):
A=reA

Returning to the problem of the company having six telephone lines, we then

let the rules on using the telephone be as follows.
e Attempt to transmit on r.

e Wait for the transmit on r to be matched by an input on r, or give up

and stop trying to use the telephone for now.
¢ Make the telephone call.

e Attempt to transmit on e, possibly spawning off another process to do
this.

These are combined with an additional rule that no other reference may be

made to the channels e and r.

6 CHAPTER 1. INTRODUCTION

This could be implemented as the process (remembering that 7 means

output on channel r)

7. < Telephone Call > .(€.0| < Rest of the program >)

The possibility of giving up can be introduced using the choice, or
summation, operator. The number of lines available for non-emergency
use is given by the number of repetitions of A in AJA|...|4, the central
(or possibly distributed) set of line controllers. This implementation may
be reasoned about relatively easily, if it is assumed that everyone using the
telephone system obeys the rules described above. Of course there will
be problems if someone decides to abuse the system, for example by not
releasing the line after use.

There have been other similar calculi. For example CSP [Hoa85], which
is again based around the concept of indivisible interaction. There has also
been a process algebra approach, for example ACP and ASP used in [Wei89].

Milner shows in [Mil89] that the passing of a fixed set of values can be

encoded within CCS, and so does not increase the expressive power of CCS.

1.1.3 Higher-order Calculi

The question of what happens to the power of the calculus when channel
names may be passed over channels lead to the creation of the n-calculus
[MPW89, Mil91]. Although at first sight this does not give all that much extra
power, it does in fact add as much power as we may want. For example Milner
has shown in [MPWB89] that numbers can be encoded in the w-calculus in
the style of Church numerals. In [San92, San93a] Sangiorgi defines HOx that
allows the passing of processes, or agents. He then goes on to show that the
w-calculus can be encoded in HOx. What is slightly more surprising is that he
shows that HOn can be encoded in the 7-calculus. An intuition for this may
be seen as follows: A function may be implemented as a replicated process,
which reads in a value, and sends out a value at the end. This is slightly

complicated by the need to ensure that the reply, and other communications,

go to the correct process. This may be ensured, using the mobile nature of the

w-calculus, by creating a new private channel name and passing that as the

1.1. BACKGROUND 7

first value given to the function. All further communication may then use

this private channel. For a further examination of this issue see [San93b].

All this would suggest that the 7-calculus should be taken as basic and the
basic building block for concurrent programming languages, in the same way
that the A-calculus has been for functional languages. However there is still
the question of exactly which 7-calculus should be counted as basic. There is
the issue of whether it should be polyadic or monadic. It is easily shown that
the polyadic w-calculus can be encoded in the monadic r-calculus [Mil91]. In
[Bou92] Boudol introduces the asynchronous mw-calculus and shows that is is
equivalent to the synchronous r-calculus. Honda and Tokoro present a very
similar asynchronous r-calculus, aiihough with with a more complicated
encoding of the synchronous w-calculus, in [HT92]. |

In [Wal92] Walker gives another example of the power of the 7-calculus.
He shows that it can encode POOL [AdBKR92, Rut92], a parallel object
oriented language.

This does not mean, however, that the =-calculus is the correct language
to use in all circumstances. Indeed if one was to suggest to a programmer that
he should program in hexadecimal, since “it can encode the language you
are currently using”, he would reply that hexadecimal is not an appropriate
language to work in. Similarly, using a higher-order language will allow
increased clarity, and ease of reasoning than programming by encoding into
a first-order language. It does however have the advantage of a large body of

theoretical knowledge and a number of different approaches to equivalences.

One example of a programming language built upon the w-calculus is
PICT [PT97]. Pierce and Turner describe how a programming language
can be created by using a powerful type system, based on [PT94], and
the asynchronous =-calculus. The asynchronous =-calculus is used to aid
efficiency and the type system is used to eliminate run time errors. This
language runs efficiently but is like programming in “concurrent machine
code”. This is one example where a minimalist approach is not necessarily

the best one.

This leads us to consider explicitly higher-order calculi. Various different
higher-order process calculi have been studied, including Concurrent Clean

8 CHAPTER 1. INTRODUCTION

[AP93, AP95b, AP94, AP95a], a concurrent extension of Clean which is a
lazy functional language which includes I/0. It was designed to implement
and interface with a Graphical User system. This shows that a concurrent
extension to a functional language can create a useful language. However no

theoretical foundation is given for the language Concurrent Clean.

Concurrent Haskell [JGF96] is another example of a lazy functional
language which has had concurrent primitives added to provide better
support for sophisﬁcated I/0 performing programs. The language is
stratified into a deterministic layer and a concurrency layer and is specifically

a functional language with added concurrency.

CHOCS [Tho93], in which communication always involves the sending
of a .process is a higher-order language which does have a theoretical
foundation. It takes the different approach of extending a concurrent
language with higher order primitives. HO~# [San93a], in which both
processes and names may be sent also has a good theoretical foundation.
Sangiorgi also gives various equivalences for HOz. Again it is created by
extending a concurrent language to include higher-order primitives. As a
result of being extensions of concurrent languages neither CHOCS nor HOxn
have functions explicitly. This is not a problem for the r-calculus and its

derivatives as discussed above.

CML [Rep92, FHJ95, BMT92] is a calculus obtained by extending ML
with concurrency and communication primitives. It has functions, as well
as names and delayed expressions, as first class values. Any value may be
transmitted over channels. There has been some work done on showing
that CML is a useful language to work with, in particular by Reppy [Rep92].
Similarly various different aspects of the theoretical foundation for CML have
also been studied. Just as Reppy uses CML for practical utility, Berry, Milner
and Turner use it in [BMT92] because of its simple semantics. This suggests
that this set of primitives is natural. They go on to show that the semantics

preserves the behaviour of sequential expressions.

In [FHJ95] Ferreira, Hennessy and Jeffrey give versions of core CML called
pCML and pCML*. These however do not include dynamic channel name

creation (or private or restricted channel names). This is a serious limitation

1.1. BACKGROUND 9

since many of the encodings of one version of a language into another require
dynamic name creation. It may be argued that since CML already has higher-
order functions and may transmit functions, names and delayed expressions
that this does not matter. However the encoding of, for example, an object
oriented approach to programming requires dynamic names to be natural.
The addition of dynamic name creation is, unfortunately, not as easy as
it might appear at first sight. Similarly in [Jef98] Jeffrey defines xCMML
(Concurrent monadic ML) which is a version of xCML with a much more
explicit order of evaluation. The argument used is that this simplifies the
semantics and gives better equational properties. Any uCML expression
may be translated into xCMML. Agam there is no dynamic channel name

creation.

In [NN95] Neilson and Neilson discuss strategies for allocating processes
to processes in a concurrent higher-order programming language such as
CML or FACILE, with particular focus in this case on CML. They consider how
best to match the network configuration to the communication topology of
the program. The two methods are static allocation, or allocation at compile
time, and dynamic allocation, or allocation at run time. The former method
is used in the current implementations of FACILE, although the second,

which is developed in the paper, gives a finer grained control.

Another higher-order concurrent functional language is FACILE [GMP89,
TLP*93]. This is a language which has been developed by working both from
the theoretical side and from the practical programming side. The theoretical
side keeps the language to one which can be given a good theoretical basis
and the programming side keeps it useful. It is built upon ML and aims to
maintain a symmetry between functions and processes. Each part refers
to the other but doesn’t subsume it. This is in contrast to our method of
integrating processes and functions into one whole calculus. In [Ama95]
Amadio considers the core of FACILE in a parallel way to [FH]95] for CML.
He gives the barbed bisimulation and shows, by proving the adequacy of a
natural translation of FACILE into the w-calculus, that this equivalence deals
with restriction in a more satisfying way. He also introduces an asychronous
version of FACILE.

10 CHAPTER 1. INTRODUCTION

One significant difference between our appr\oach to CML and the
approach to the various calculi described above is that of the reduction
relation. In each case the reduction relation is defined in terms of a
transition, or small-step, relation for the concurrent part of the language. In
our approach we show that we may use an evaluation, or large-step, relation

for both the functional and concurrent aspects of the language.

1.1.4 Reduction based Equivalences

Various reduction based equivalences have been defined for CCS and CCS-
like calculi. The most popular method for establishing such reduction based
equivalences tends to be the use of a bisimulation relation. A bisimulation
relation, R, progresses to itself under the reduction relation. In fact such an
approach is not restricted to concurrent communicating calculi. In [Gor95]
Gordon describes how the bisimulation approach may be used instead of
the more usual contextual equivalence for functional languages. He goes on
to show the equivalence of the bisimulation and the contextual equivalence
for FPC and hence that co-inductive proofs may be used to prove desired
properties.

There are many different equivalences that have been suggested for
concurrent communicating calculi. They may be broadly split into two
groups. The ﬁrst, strong equivalences, depend on being able to count the
number of silent actions that a process performs in any given reduction.
The second, weak equivalences, do not generally allow silent actions to
be counted. They may either allow silent actions before and after visible
actions, as in the case of CCS’s observation equivalence, found in [Mil89],
or only before the visible action, as in the case of delay bisimulation in
[Wei89], but ascribed there to [Mil85]. This could be viewed as a process
evaluating until it either requires some form of input or wishes to output.
Such a communication could be an interaction with a person or with another
process. In either case it does not continue evaluation until the desired
communication has taken place.

The strong equivalences are smaller, as the name suggests, but generally

have better properties of substitutivity. Weak equivalences, however, are

1.1. BACKGROUND 11

larger and include the idea that silent actions are invisible.

Once the communications are not restricted to synchronisations, as is
the case in CCS, CSP or ACP then the possibilities for defining different
equivalences become much greater. Far more different decisions may be
taken about exactly what is required for two expressions to match each
other’s actions.

In [MS92] Milner and Sangiorgi suggest barbed bisimulation as a possible
general bisimulation. It does not depend on the particular calculus, or even
on whether the calculus is first or higher-order. In the strong case, two
processes that are equivalent must be able to match each other in performing
a silent action, and remain equivalé;lt. Furthermore if either can perform a
visible action then the other must also be able to perform a visible action
(although not necessarily the same action). It is worth noting that the visible
actions are not compared, and the processes are not required to remain
equivalent after the visible action. In the weak case they need only match
each other in the number of visible actions they may each perform. This is
too weak to be of general use and so one of two methods is used to strengthen
the equivalence. The first is to quantify over all contexts, or sometimes
over a restricted set of contexts. The second is to partition the set of visible
actions and allow the observer to know which partition the visible action is
in. Sometimes a combination of these two approaches is used!. However,
whichever approach is used, weak barbed equivalences effectively always
allow silent actions after a visible action.

Various different approaches have been suggested for the different
versions of the 7-calculus. One method, as in [Mil91], is to define a reduction
equivalence? and then to define the related reduction congruence by stating
that two processes are reduction congruent if they are reduction equivalent
for all contexts with a single hole. This has the disadvantage of having a
quantification over essentially all processes, making proofs difficult.

In [ACS96a, ACS96b] Amadio, Castellani and Sangiorgi describe various

bisimulations for the asynchronous w-calculus. The first they give is a version

'At times these approaches are also used with a strong barbed equivalence. For example

to recover strong equivalence. See [MS92]. -
?In this case using a barbed bisimulation like equivalence.

12 CHAPTER 1. INTRODUCTION

of the barbed bisimulation, in which the observable actions are those which
output and only the channel name is observable. A more refined version,
called or-bisimulation, is then proposed in which output transitions, and not
just the channel name of output, are observable. However both the barbed
bisimulation and the o7-bisimulation are too weak. The barbed bisimulation
is refined again, to the barbed equivalence, this time by quantifying over
parallel contexts. A refined version of the or-bisimulation is then presented
and shown to be equivalent to barbed equivalence. It is also shown that the
barbed equivalence is a congruence relation. This case has the advantage
that the quantification is only over parallel contexts and not all contexts,
which simplifies the proof of equivalence of pairs of processes.

In [Jef98, FHJ95] various bisimulations are given for nCML*. These
vary from requiring actions to be ideﬁtical to be considered as matching
to requiring only that the visible, or not silent, parts of actions be related.
In each case, however, the equivalence§ depend on comparing actions on
their own. That is the actions must b‘é related in some way that requires
comparison of channel names. This will cause problems once private
channel names are used, particularly if they are dynamically created.

One possible solution to this is to use a version of the barbed
bisimulation, since we may either choose to equate all actions, or to
differentiate between actions on the bas-is of the channel on which the value
was received or transmitted. Another approach, that of context bisimulation,
is suggested by Sangiorgi in [San94] and revised in [San95]. This approach
leads to a b.isimulation that is a congruence and only discriminates between

expressions that we would like to be diffgérent.

1.1.5 Other Equivalences

However, reduction based equivalences are not the only type of equivalence
that are used for concurrent communi:cating calculi. One alternative ap-
prdach is that of denotational semantics. This is used by Hennessy in [Hen96]
for the 7-calculus and in [Hen94] for higher-order calculi, in this case an
extended version of CHOCS. In each case he shows that two processes being

denotationally equal implies (and is implied by) them being behaviourally

1.2. CONTRIBUTION OF THE DISSERTATION 13

equivalent for some behavioural preorder. The difficulty with this method
is that it is not necessarily any easier to see whether two processes have the
same denotation than to show that they are equivalent in the reduction based
equivalence.

A different approach is given in [HL92] where Hennessy and Lin extend
the idea of a transition graph to that of a symbolic transition graph. This
allows the definition of symbolic bisimulations and the equivalence with a

reduction based bisimulation.

1.2 Contribution of the Dissertation

The main aim of this dissertation is to examine the use of an evaluation, or
big-step, approach to process calculi rather than the small-step approach
that is often used with more usual presentations of process calculi. One
advantage of having an evaluation based approach would be that the
integration of functional and concurrent aspects of programming languages
could be achieved without separating the two aspects. To this aim we
present two calculi. The first, a lower-order calculus, is a version of CCS
with summation restricted to guarded summation, which we call NCCS. The
second is a higher-order calculus based on CML, which we call CML,. We
consider the core of the language, but still include dynamic name creation
and recursive higher-order functions. In each case both a transition and
an evaluation relation are defined and the relationship between the two
explored. The evaluation relation for NCCS and both reduction relations for
CML, use a structural congruence relation in the style of CHAM [BB92] to
reduce the number of rules required for the reduction relation. We show that
an evaluation based approach is indeed possible.

We also define various equivalences for both NCCS and CML,. In each
case an approach involving quantifying over various parallel contexts is
used to define the bisimulations. For NCCS we show that we may give
bisimulations that are equivalent to many of the standard CCS equivalences.
The exception is strong equivalence which we should not expect to be able to

define since the calculus implicitly ignores silent actions. We then show that

14 CHAPTER 1. INTRODUCTION

in each case the parallel contexts may be restricted further and that only very
simple parallel contexts are required. For CML, we use an approach similar
to the context bisimulation of [San95]. The differences arise in the definitions
because in CML, values may be returned as well as being transmitted over
channels. In each case we again show that we may restrict the parallel
contexts required. We also show that all the bisimulations, both for NCCS
and CML,, are congruence relations.

We have thus defined two process calculi that use an evaluation relation
and have shown that bisimulation relations that are also congruence
relations may be defined. We have related them to similar calculi using a
transition based approach. We have also defined a symmetric evaluation
based calculus for a CML like language :v{zith dynamic name creation.

For the finite fragmentvof NCCS'Twe give a complete axiomatisation
and use a slightly different method : fbr proving the correctness of the
axiomatisation. This method may be of use in cases where the standard
method of saturation[Mil89] will not work, however the author does not

know of any examples where it has this advantage.

1.3 Outline of Dissertation

The main theme of this dissertation is that of using a reduction relation that
is “big step” in nature, i.e. an evaluation relation. This allows languages to
be developed without the recourse to using explicit silent actions. Thus it
is possible to model the concept of a process evaluating until it desires to
communicate with the environment, whether the communication be with
the user or another process. This usage of evaluation is linked to the idea of
using a delay-like equivalence. '

The evaluation based approach is examined for two very different calculi,
and hence the dissertation is split into two main parts. The first deals with
the lower-order calculus NCCS, which is a CCS like calculus, and the second
with CML,, a version of CML. In each case an evaluation relation is given for
the calculus. Each part is described below, and the dissertation ends with

some conclusions that may be drawn from the work.

1.3. OUTLINE OF DISSERTATION 15

1.3.1 PartI—NCCS

In chapter 2 the calculus Normal CCS, or NCCS3, is presented, together with
the extended calculus of TNCCS. Tﬂé'latter is basically the same as CCS with
summation restricted to guarded summation. The former may be viewed as
the 7 free fragment of CCS with summation restricted to guarded summation.
An evaluation relation, based on the idea of committed forms, as suggested
by Pitts, is defined for NCCS, and a transition relation, equivalent to the
transition relation of CCS, is gi\}en for TNCCS. The chapter concludes with
translations between the two calculi.

Chapter 3 gives various bisimulations defined for both NCCS and rNCCS.
The bisimulations include both the strong and weak equivalences of CCS,
and also a version of weak barbed bisimulation. In addition to these, a weak
delay-like bisimulation called Evaluation Bisimulation, again suggested by
Pitts, is given. The basic properties of the bisimulations are given, together
with the relationship between them. This chapter may be viewed as a
sumimary chapter since the proofs of the properties and relationships are
given in chapters 4 and 6.

The proof of congruence for Evaluation Bisimulation takes the whole of
chapter 4 and uses an adapted version of Howe’s method [How89]. This is an
extended example of using Howe’s method in the concurrency context, and
includes the modifications required to deal with non-determinism, the use
of a bisimulation rather than a simulation, and the presence of a structural
congruence relation. |

The relationship between the evaluation relation for NCCS and the
transition relation for TNCCS is examined in chapter 5. It is proved that
evaluation very nearly corresponds to a sequence of silent actions followed
by a visible acﬁon in the transition relation. The reason for the imperfect
match is two-fold. The first is that a structural congruence relation is used
for the evaluation relation but not for the transition relation. Therefore
the bracketing of processes and the scope of the restriction operator may
vary. The other reason is that a translation has to be used and, as shown in

chapter 2, going from 7NCCS to NCCS and back again does not necessarily

3The design of NCCS was joint work with my supervisor Andrew Pitts.

16 CHAPTER 1. INTRODUCTION

result in an identical process, but only in a process that is equivalent, using
any equivalence given in chapter 3. The relationship between evaluation
and transition is then used in chapter 6, in which the various relationships
between the bisimulations are proved.

This part of the dissertation concludes with an equational axiomatisation
for Evaluation Bisimulation on the finite fragment of NCCS. This
axiomatisation is shown to be both sound and complete. The
axiomatisations for both the strong and weak equivalences of CCS are
given in [Mil89] and may be easily translated into the syntax of 7TNCCS. Thus
we have a complete set of axiomatisations, since it has already been proved
in chapter 6 that all the bisimulations defined in chapter 3 coincide with one

of Evaluation Bisimulation, strong equivalence or weak equivalence.

1.3.2 Partll—CML,

The second part, dealing with a calculus based on CML, proceeds in a similar
manner to the first part. It starts in chapter 8 with the syntax of CML,. This
forms a core of CML and includes higher-order functions and concurrency
constructs. The evaluation relation is then given and an example of a small
CML, program is worked through to help understand the calculus together
with the evaluation relation. To help with an understanding of CML,, and its
evaluation relation, the corresponding transition relation is given in chapter
9. This transition relation is in fact the same as the one given in [FH95]
with the addition of rules for restriction and without the A (always) operator.
Various results are derived, including the correspondence of evaluation with
a sequence of silent actions followed by a visible action in the transition ‘
relation. In contrast to NCCS there is no mismatch between the evaluation
relation and the transition relation, due to both the inclusion of the structural
congruence in the transition relation, and to not having to translate between
calculi.

A set of requirements for bisimulations for CML, are given at the
beginning of chapter 10 and then a few examples of equivalent and
inequivalent programs are given. An extended example of the possible

complications with determining equivalences is then given, which also acts

1.3. OUTLINE OF DISSERTATION 17

as a further guide to writing program fragments in CML,. The Evaluation
Bisimulation is then stated for CML,. The Strong Bisimulation for CML,, is
also introduced, together with its relationship to Evaluation Bisimulation.
Various results required for the proof of congruence are then given. The
chapter concludes with two sections. The first of which gives various
example equivalences and the second considers the relationship with the
weak higher-order bisimulation of [FH95]. The congruence proof for
Evaluation Bisimulation takes the whole of chapters 11 and 12. This again
follows Howe’s method but is even more complicated than the previous

adaptation.

Partl

NCCS

19

Chapter 2

Process syntax

In this chapter we present a subset of CCS [Mil89] which we call normal CCS
(NCCS), together with the operational semantics. We also give an extension
(TNCCS) of this calculus, which includes silent actions, together with its
operational semantics, and then proceed to give translations between these
two calculi. The operational semantics are compared and the relationship
between them is then given in chapter 5. In chapter 3 we give various notions
of equivalence, including some corresponding to known equivalences for
CCS, showing that each one is a congruence.

NCCS is based on the concept of committed forms to which processes
may reduce. It is thus natural to consider a “big step” evaluation style
with processes reducing to committed forms. 1t also only allows guarded
sumrmation and this carries over into 7NCCS, in which we allow both labels
and silent actions to act as guards. At the end of section 2.3 we consider how
we could extend the syntax to allow unguarded summation and comment on
why we don't.

An ideal for equivalence relations for processes in NCCS would be
that two equivalent processes may be swapped in programs wherever they
occurred. That is, we desire that an equivalence relation should be a
congruence relation. The equivalence relations we give are co-inductively
defined bisimulations and are based on the idea that the primary construct
in concurrent communicating processes is that of (parallel) composition.
We therefore use the notion of contextual equivalence as the basis of the

bisimulations, restricting the contexts to parallel compositions of varying

21

22 : CHAPTER 2. PROCESS SYNTAX

degrees of freedom. We go on to prove that these seemingly restricted
conditions do indeed allow two equivalent processes to be exchanged in a
program.

7NCCS, defined in section 2.4 on page 31, is essentially just CCS with
summation restricted to action-prefixed summation. In section 2.5 on
page 33 we give a “small step” labelled transition relation which corresponds
to the labelled transition relation of CCS.

2.1 Syntax of NCCS

The syntax of NCCS is based on CCS. The differences are that there are not
explicit silent actions and summation is restricted to guarded summation.

The syntax for processes in NCCS is given in figure 2.1.

P = X variable
| PP binary composition
[S summation
| vn.P restriction
| recX.P recursion
S u= (§+29) binary summation
| G guarded process
| 0 null process
G == P input guarded process
| n.P output guarded process

where
X € VAR, countably infinite set of variables
n € NAME, countably infinite set of (channel) names (disjoint from Var).

Figure 2.1: Syntax of NCCS

Note 2.1
We may interchangeably write PQ and P|Q to mean the same process.

We will normally write PQ), using bracketing where necessary.

2.1. SYNTAX OF NCCS 23

Note 2.2

For any name n then 7o = n and so for any co-name 7 then7 = 7.

Definition 2.3

The free names of a process P, fn(P), are defined as follows:

fn(0) =0
fn(X) = 0
fn(n.P) = {n,n}U(P)
fn(n.P) = {n,n}U(P)
- f(PP) = fn(P)Uf(R)
(S F) £ Uifa(B)
fo(rec X.P) = fn(P)
fo(vn.P) = fo(P)\ {n,n}

The bound names, bn(P), are defined in a corresponding manner to be those
names which are bound by the restriction operator. We have corresponding
definitions for free and bound variables, fv(P) and bv(P), with rec binding

variables instead of v.

Note 2.4
A name (variable) may be both free and bound in a given process. The
two names are distinct since any bound name (variable) may be renamed

using a-conversion.

Definition 2.5)
We say that a name n is fresh for P if it does not appear in P, either as a
free name or a bound name. We typically don'’t specify P when it is obvious

from the context and take the most general P possible.

Note 2.6
Name restriction is written vn.P, rather than P\n as used in CCS. This
is because we prefer to view it as a binding action: free occurrences of n in
P become bound m vn.P. Also we write the CCS expression fix(X = P) as
rec X.P.
We observe that all processes in NCCS are 7-free; that is, they have no

explicit silent actions.

24 CHAPTER 2. PROCESS SYNTAX
2.2 Structural equivalence on NCCS

Starting with the “chemical abstract machine” of Berry and Boudol [BB92],
structural congruences have been used to simplify the specification of
operational semantics. We use one here to help reduce the number of
rules required to define the operational semantics for NCCS. Also, the
structural congruence identifies pairs of processes that we would expect any
reasonable notion of process equivalence to identify. The associativity and
commutativity of composition are used because we regard all unguarded
processes as being able to take part in reductions. Similarly we regard any
part of a (possibly deeply nested) summation as being available. The rules
affecting restriction are present because we regard name restriction as being

a static construct, not a dynamic one.
Definition 2.7

We let =, be the smallest congruence for NCCS containing:

rec X.P =, recY.P[Y/X] Y ¢v(P)
vn.P =, vm.Plm/n] m & n(P)

Definition 2.8
We let = be the smallest congruence for NCCS containing:

P = Q P=,Q
(PQ)IR =- P(QR)
PQ = QP
PO = P
P+Q = Q+P
P+(Q+R) = (P+Q)+R
vn.(PQ) = wn.P)Q n & fn(Q)
vn.vm. P = vmaun.P

I
o

vn.0

2.3. EVALUATION RELATION FOR NCCS 25

Note 2.9

We observe that the structural congruence is defined for process
expressions and the contexts are processes with process holes. The structural
congruence for summation is not included since it is implicit within our

definition of summation.

Lemma 2.10
For any NCCS processes P and @Q then P = @ implies that fn(P) = fn(Q).

Proof
No rule used in the definition of structural congruence changes any free

name. (]

Lemma 2.11 Substitutivity for=
For two (possibly open) NCCS processes P;, P, with P, = P, and a NCCS
process Q then P, [Q/X] = P[Q/X].

Proof
The result follows by induction on the derivation of P, = P,. O

2.3 Evaluation relation for NCCS

Note 2,12

If i = {ny,ng,...ny} then we write v# as shorthand for vn,.vns. ... vng,.
In particular m may be 0 in which case 77 = () and there are no names being
restricted.

The operational semantics of NCCS are specified by the inductively
defined “big step” evaluation relation, given in figure 2.2 overleaf, where [
ranges over names, n, and co-names, 7.

The elements of the relation are of the form
PiC

where P is a process and C is a committed form. The committed forms,
which are given in figure 2.3 on the next page, are those processes which are

committed to performing a particular input or output.

26 CHAPTER 2. PROCESS SYNTAX

(J PRE) vit.(I.P + 8)Q) | L.vii.(PQ) (Lt
(1} COMP) PULP QUI1.Q via(PQYiLC
vit.(PQ) || C
(I REC) vit.(Plrec X.P/X|Q) | C
vit.((rec X.P)Q) | C
(1 STRUG) P=Q QULQ Q=P

PyLP

Figure 2.2: Evaluation relation for NCCS

Figure 2.3: Committed forms for NCCS

2.3. EVALUATION RELATION FOR NCCS 27

Note 2.13

One effect of using this “big-step” evaluation relation is that we must
have an input or an output to create a committed form. This means that
va.(@.0a.0) cannot commit to anything since it cannot input or output on

channel g, and 0 is not a committed form.

The evaluation rules need some explaining since there are other, possibly
more obvious, rules that we might want to use. We use the (STRUC)
rule to explicitly introduce the structural congruence. This allows us to
specify exactly when the structural congruence has been used, and will later
aid our reasoning about the possib"ié evaluations that a given process may
perform. The (COMP) (composition) rule is fairly obvious, having two
processes communicating and then continuing to evaluate to C. The (JREC)
(recursion) rule may seem slightly odd. A possibly more obvious rule may

have been (if we had also added an explicit rule for parallel composition):

Plrec X.P/X] | C
rec X.P | C

(I REC)

However this does not give the desired or expected behaviour for some

processes. For example (remembering note 2.13):

a.0|rec X.(b.0(b.0 + b.X)) ¥ a.0

One might also have thought that having a rule for summation rather than
including it in (/PRE) would have been a good idea. There are two rules for
summation that come to mind (remembering the problems with recursion).
We introduce them, temporarily, as examples of what may occur. One of
them is

S51Q4C
(S1+82)QyC

(I SUM)

~ This however doesn't give the behaviour of + we desire. We may observe
that '

28 CHAPTER 2. PROCESS SYNTAX

(a.0 + b.0)c.0 | c.a.0
which is characteristic of internal choice ®! and can in fact be encoded as
S16 5, = vn.(1.0(n.S1 + n.S2)) nfresh

We observe from the following derivation that our encoding does allow the
derivation given by (,SUM), noting that we may assume that » is not free in

Q since n is bound:
70y n0 (n.S;+n.5)Q I n.(51Q) vn(51Q)|C’
vn.((@.0(S1 + 52))Q) 4 C’
(vn.(m.0(S1 + 52)))Q I C
where if C = [.P then ¢’ = [.vn.P and vn.(5:Q) | C’ may be derived from

51Q | C.2. The characteristic of internal_ choice is that neither S; nor S5 need

(I COMP)
(It STRUC)

reduce in order for the choice to reduce to one or the other. It is easy to see
that (. SUM) defines an internal choice in the manner of [Hen88].
The other version of SUM that we might consider is
sum) —¥C
S1HS | C
If we also add the following rules for restriction, parallel composition and a

simplified base rule, then we get the same evaluation semantics as given in

figure 2.2 on page 26.
(4 COM) I.PJILP
GRES) — T T4
vn.P | lwn.P
(4 PAR) PlILP
PQ L 1.(P'Q)

IThe idea of internal choice has been presented in various papers, including [BB92] and

[Hen88].
2This is shown formally in lemma 2.14. Note that we don't use anything here in the proof

of lemma 2.14!

2.3. EVALUATION RELATION FOR NCCS 29

Any derivation using the rules in figure 2.2 on page 26 can also be derived
using the rules ({,COM), (RES), (JREC), ({COMP), ({SUM/), (JPAR) and
(STRUC), since (| PRE) can be written in terms of (JCOM), ({SUM’), ({,PAR)
and (RES). The converse of this, and hence the fact that we may use the
smaller rule set, is given by the following lemma, having noted that all sums
are guarded:

Lemma 2.14
IfP |} 1.P' andl,] # n, then vn.(PQ) | l.un.(P'Q).
Proof
This follows by induction on de;‘jyation of P | I.P. a

We can also show that we can remove name restrictions as well, but first

give a lemma about structural congruence that will aid the proofs.
Lemma 2.15
1. fvn.P = P, P, then either

o there exists P/ withvn.P] = P, and P = P||P;.

o there exists P, withvn.Py = P, and P = P, |P;.
2. If vn.P = viii;. P’ then one of the following must hold

o there exists a P with vn.P" = P'and P = vrii;.P" .

o there exists a j with m; = n, P = v P’ and vn.vm".P' = vrii;. P!
where " = 118; \ Uy, =n M-

e there exists an m; and a fresh name m/' such that

m;, = m ifm;=n

m; otherwise
m' = U m;
1#£]

=1

P = v .P'[n/mj,m' [n] and vn.vm” .P'[n/m;,m’ /n] = vii,;.P'.

Proof
The first part follows easily from the definition of structural congruence.
Once it is observed that the definition of 71" is that it renames n to a fresh

name and m; to n then the second part also follows easily. O

30 CHAPTER 2. PROCESS SYNTAX

Lemma 2.16

For any NCCS expressions P and P’ and any label ! with P | [.P’ then for
any name n and expression P; with P = vn.P; then there is an expression P;
with P, | [.P] and vn.P] = P'.

Proof

We proceed by induction on the derivation of P | [.P'. The last rule used

in the derivation was:

JPRE Therefore P = vmi.((I.P" + S)R) for some 771, P”, S and R. We also see
that P’ = vmi.(P"|R). The result now follows from lemma 2.15.

JCOMP Therefore P = vmi.(Q1|Q2). By lemma 2.15 part 2 there are three

cases.

e Thereisa P, with vn.P, = Q1 |Q2 and P; = vm.Ps. Then by lemma
2.15 part 1 there are two cases. These cases are essentially the same
so we only give the first case, where there is a P; withvn.P; = Q1, n
not free in Q2 and P, = P;|Q». The second, where there is a P; with
vn.P; = 9, nnot free in Q; and P, = Q1| P;, follows in exactly the
same way. So Q; | !'.Q} and hence by induction hypothesis there
isa P} with vn.P} = @, and P; |} I'.P}. But we know that Q, | 7.Q}
for some 5. Then, possibly using a-conversion on the names in
m, we get vn.vm.(P3|QYy) = vm.(Q1|Q%). The result now follows by

using the induction hypothesis.

e Hence there are 7’ with P, = vt.(Q1]|Q2) and vnyv' .(Q1|Q2) = P.
Then, as above, Q1 | I'.Q] and Q2 | Z’.Q; for some Q] and Q5.
But we see that vn.vm'.(Q} Q%) = vm.(Q}|Q5,) and hence the result

follows from the induction hypothesis.

e This case follows in the same way as the previous case.

UREC This follows in essentially the same way as the | COMP case above.

2.4. SYNTAX OF TNCCS 31

USTRUC Hence P = Q and P’ = @Q'. Therefore vn.P; = Q. Therefore by
induction hypothesis there is a P with vn.P] = Q' and P, |} I.P]. Hence

P| = P’ as required.

O
Corollary 2.17
Ifyn.P | [.P' then there exists a P” with P |} [.P" and vn.P" = P'.
Proof
Follows as a special case of lemma 2.16. i

Using the evaluation rules given in figure 2.2 on page 26 we are implicitly
restricted to only permitting guarded summation in the calculus. However,
by using the alternative characterisation of evaluation given above, we are
not so restricted. One might then ask why we restrict the syntax to only
allowing guarded summation. There are two principal reasons for accepting
this restriction.The first is that the tie up, given in section 6 of this chapter,
and also in chapter 5, between the “big step” evaluation relation and the
“small step” transition relation, is closer with this restriction. The second is
that the equivalence relations given in chapter 3 are all congruences under
this restriction, while some, for example the weak |/-bisimilarity given in
definition 3.8 on page 44, are not congruences in the presence of unguarded
summation. This is the principal reason why we have adopted guarded

summation for use in NCCS.

2.4 Syntax of TNCCS

We define 7NCCS similarly to NCCS, changing the definitions of S and G to
give the syntax of TNCCS processes as given in figure 2.4 on the next page.
Using X-notation for summation may not seem natural. The reason for
using this form of summation, rather than the binary summation used in
NCCS, is that it simplifies both the translation of 7NCCS into NCCS, and
the equational theory for NCCS given in chapter 7. The removal of the null
process from the list of possible values for S is a slight of hand, since we may

retrieve it simply by having an empty sum. For convenience we may split up

32 ‘ CHAPTER 2. PROCESS SYNTAX

P = X variable
| pPp binary composition
[S summation
| vn.P restriction
[rec X.P ‘recursion
S u= > G; (1finite) finite summation
icl
G = n.P input guarded process
[n.P output guarded process
| T.P 7 guarded process

Figure 2.4: Syntax of TNCCS

sums thus:

OEEDIED

ST el JjeJ

By using this notation, we implicitly have associativity and commutativity of
summation. It also allows sums that include the null process 0, having noted
that:

ZR’ZZH‘—FZPJ-:ZB’-i-O
T I 9 I

One might wonder whether we do want to enforce associativity and
commutativity of summation. Certainly a semantics which does not
have associativity and conimutativity of summation would be considered
dubious, but we might prefer these properties to be derivable. We could
give the syntax of 7NCCS in terms of binary summation and then replace the
reduction rule for summation ((—+SUM) in figure 2.5 on page 34) with two

new rules:

2.5. TRANSITION RELATION FORTNCCS ‘ 33

pap

(—) SUMl) —
P+P3P

P3P

(= SUM,) 27~
P1+P2—(—!)P

Then for any reasonable idea of equivalence, these two versions are
equivalent. So we could write (or encode) the syntax and reduction relation

in terms of binary sums and derive the desired properties.

Although we have associativity and commutativity of summation
enforced implicitly, we do not have a structural congruence relation to

enforce other properties.

Definition 2.18
We extend definition 2.3 to 7NCCS by adding the following additional
rule and repeatedly splitting up sums until they are binary sums.

fo(r.P) = fu(P)

We observe that 7TNCCS is essentially the syntax used for CCS[Mil89] with

the restriction to guarded summation.

2.5 Transition relation for TNCCS

The evaluation semantics for 7NCCS are specified by the inductively defined
“small step” labelled transition relation given in figure 2.5 on the next page.

Note 2.19

The reduction relation given in figure 2.5 is the same as the reduction

relation for CCS, once the syntax has been translated.

34 . CHAPTER 2. PROCESS SYNTAX

(— ACT)

aP3 P
G; 2 p
(— SUM) Z G S P
el
P3P
(— COMM;) ——
P1P2 — P{Pg
P, % P}
(- COMM;) ——=2 "2
PP 5 PP,
I RPN
(-commM,) PP Q-4
PQ 5 PQ
& !
(= RES) _P=F
vn.P % vn.P
&7 !
(= REC) Plrec X.P/X]| = P

rec X.P 5 P!

(n & {a,a})

Figure 2.5: Transition relation for TfNCCS

2.6. TRANSLATIONS BETWEEN NCCS AND TNCCS 35

2.6 Translations between NCCS and "NCCS

Firstly we note that NCCS is contained in 7NCCS by an essentially trivial
translation. All we have to do is flatten out the binary sums into a single finite

sum, noting that the null process, 0, is just encoded as an empty sum.
Definition 2.20
Given an NCCS process P, (P)T is the TNCCS process obtained by

expanding out nested binary sums into a single flat sum.

Note 2.21
In general we don't write (—)7 explicitly; we just assume it whenever we

have an NCCS process and want a TNCCS one.

We do however need a translation, (—)¢, to convert TNCCS into NCCS.
We obtain this by extending the well-known encoding of . P as vn.(n.0|n.P),
where n is a fresh name.

Definition 2.22
(—)t is inductively defined by:

Xt = X
(vm.P)t 2 vm.(P)t
(PPt 2 (P)t|(Py)t
(rec X.P)t 2 rec X.(P)t
(CyaP)t 2 (P +..) +an(P)Y) 7€ {ci}
(5, 00.R)t 2 (wn. (70| T, . P))t € {oy}
where
a, = n ;=T
= o a; #FT

and n is a fresh name.

Note 2.23

We observe that the same fresh name, n above, may be used throughout.
It does not stay fresh, but it never becomes a free name and hence it can be
renamed using a-conversion. Also note that since it is fresh in the original
process expression, the restrictions will never bind a name that is free in the

original expression.

36 CHAPTER 2. PROCESS SYNTAX

Since we do not turn vn.(7.0n.P) into 7.P where appropriate in (—)7,
we do not attain a perfect match between NCCS and 7NCCS3. Also having
a structural congruence in NCCS and not in 7NCCS will cause other possible
mismatches. ,

Before turning to the relationships we do have we need to recall some
properties of CCS strong equivalence that will carry over into 7NCCS.
We formally define CCS strong equivalence for TNCCS, calling it ~_;, in
definition 3.15 on page 47, but for now we will limit use to the properties
proved in chapter 4 of [Mil89]. We will use the following properties of CCS

strong equivalence:

¢ Itis a congruence relation [from section 4.4].

e The static laws show that each of the relationships in the structural
congruence for NCCS holds for ~_,. [from Proposition 8]

e The expansion law holds. [from Proposition 9]

The expansion law, together with the static laws, will be used particularly
to show that:
vn.(n.0n.P) ~_, 7.P n ¢ M(P)

and also for the generalized version for sums.

We can now state some useful relationships we have:

Lemma 2.24
1. If P € NCCS, then PT* = P
2. IfQ € TNCCS, then Q ~_, QT

3. If P = P! in NCCS, then PT ~_, P'T in TNCCS.

Proof
(1) follows naturally from the definition, noting that any sums may have

been reordered. (2) uses the expansion law and (3) uses the static laws. O

$We could generalize (—)7 to give many possible results and then claim a better match
than we currently have. However we gain very little since we still would not get a perfect

match.

2.6. TRANSLATIONS BETWEEN NCCS AND TNCCS - 37

Corollary 2.25
For any 7NCCS process P, there is an NCCS process @ such that:

P~y (@)
Proof
WeletQ = (P)*. A O

Lemma 2.26
For any TNCCS process @ and any open 7NCCS process P with X free we

have:

(PIQ/X)) = (P)[(Q)/X]

Proof

This follows by induction on the structure of the process expression
P, again noting that the order of sums may be different between the two
translations. '

|

Theorem 2.27

If R is an equivalence relation on NCCS for which P = @ implies that
PRQ, then for any congruence relation, S, on 7NCCS

PSQ = P'RQ

and
PRQ = PTSQT

implies that R is a congruence relation.

Proof
For any (possibly open) NCCS processes P, @ and C[—] with PRQ then
(C[P))T = CT[PT). Similarly (C[Q])T = CT[QT]. Therefore (C[P])TS(C[Q])T
since S is a congruence and PTSQT. Hence we have (C[P])T*R(C[Q])T". But
(C[P))** = C[P] and R is an equivalence relation, so by transitivity (twice)
and symmetry of R we have C[P]RC[Q]. Hence R is a congruence relation.
O

Chapter 3

Bisimulations

We now turn our attention to the notion of equivalence on NCCS and 7NCCS
processes. We base our equivalences upon the intuitive idea that processes
should only be distinguishable by the communications with which they may
interact with the environment. In particular we do not wish to observe silent
action. This does however present some problems. It may in fact lead to
problems with our equivalences not being congruences. We will need to
refine this concept since the following two processes are indistinguishable
under this intuitive idea:
a.0|a.0
a.a.0 +a.a.0

Both these processes can either input or output on channel ¢ and become @.0
or a.0 respectively. However we observe that «.0[a.0[b.0 | 5.0 because of the

following (example) derivation tree:

2.0 J a0 5.0 4 .0
@.0b.0 4 @.(0[6.0) 0[b.0 4 b.(0]0)
a0l a0 . a0/6.0yabo 0[6.0 4 6.0
a.0[@.0[p.0 | 6.0

(using (}PRE) threé times, ({{STRUC) twice and ({{ COMP) once)

But (a.@.0 + @.a.0)|b.0 cannot evaluate in one step to 5.0. We may also
observe that the above two processes have identical traces. Branching
time congruences have been useful in practice for CCS-like calculi. We
present a modification of this method for NCCS involving parallel contexts

39

40 CHAPTER 3. BISIMULATIONS

of varying degrees of freedom. We also give the relationship between these
equivalences and varioué others based on CCS-like languages.

In this chapter we summarise the main results, giving forward references
to the proofs. The two main results that are not included are the relationship
between evaluation and transition, given in chapter 5, and the equational
characterisation of evaluation bisimulation (see definition 3.4 on page 42)
which we give in chapter 7. As a basic requirement of our bisimulations
we desire that two bisimilar processes may be exchanged within a program
such that the two versions of the programs cannot be distinguished by
the corresponding bisimulation, i.e. we desire that our bisimulations
are congruences. Before defining the bisimulations we present various
definitions.

Definition 3.1

We extend a binary relation R C closed (7)NCCS x closed (7)NCCS
to a binary relation R° C (7)NCCS x (7)NCCS by substitution of closed
processes for free variables. That is for any processes P, Q if PR°Q then for
X; € tv(P) W v (Q)

VR; € closed (r)NCCS P|[R;/X;JRQ[Ri/Xi]

We call R° the extension of R to open processes.

Definition 3.2
A binary relation R C (7)NCCS x (7)NCCS is a congruence if it is
an equivalence relation and for any (7)NCCS processes P, @ and an open

(7)NCCS process C with at least one free variable X
PRQ = C[P/X]RC[Q/X]

The substitution of P/Q for X allows for free names and variables in P/Q),
respectively, to be bound by C.

The presence of parallel composition and communication introduces
non-determinacy into (r)NCCS. This means that we are led to take a number
of decisions about what provides a useful equivalence. The first is whether we

are to regard two equivalent processes as behaving the same way in terms of

41

must or may. Having non-determinacy, there are processes which will not be

equivalent to themselves in must terms. For example the following process:

va.(a.0|a.b.0a.c.0)

which may either output b or ¢ and then become the null (or dead) process.
As a consequence of this we construct our equivalences in may terms.
The second of these decisions concerns whether we are interested in one
sided simulations, constructing our equivalences in terms of simulations,
or whether we needs to start with bisimulations. Again the choice here is
a consequence of non-determinacy. We may have two processes such that

each can simulate the other, but which are not bisimilar!! For example

P =a.b.0 + a.vn.(n.0|(n.b.0 + n.c.0))
Q = a.c.0 + a.vn.(n.0|(n.b.0 + n.c.0))

can both simulate each other if we take our simulation to be half the
bisimulation defined in definition 3.4 overleaf. However if P | a.b.0
then we must have Q | a.vn.(7.0|(n.b.0 + n.c.0)) for Q to simulate P, but
vn.(7.0/(n.b.0 + n.c.0)) § ¢.0 which 5.0 cannot do. Therefore, in order to
get evaluation based characterisations of branching time congruences, we

construct our equivalences in terms of bisimulations.

Definition 3.3
For a function F, over binary relations, R, on (7)NCCS, such that F is
monotonic, thatis R; C Ry implies F(R;) C F(Rs), then

e Risa fixed pointif R = F(R).
e R isa post-fixed pointif R C F(R).

o VR.F(R) is the greatest post-fixed point. This will be a fixed-point since
F is monotonic. This exists by Tarski’s fixed point theorem [Tar55].

1 This has been observed by among others Milner. See Exercise 14 in [Mil89].

42 CHAPTER 3. BISIMULATIONS

3.1 Evaluation Bisimilarity

Having taken the premise that the basic operation in process calculi is
parallel composition, the natural way to define a notion of equivalence is
by allowing testing in the presence of a parallel context. The following
definition gives our basic bisimulation on NCCS, which we go on to prove

is a congruence in chapter 4.

Definition 3.4 Evaluation Bisimulation
Given R € NCCS x NCCS, deﬁne

P{R}Q & VR,,P' PRYLP =

3Q" (QR{1L.Q" & P'RQ)
& VRI1,Q QRU1Q =
AP’ (PR 1.P' & P'RQ")

Let ~; be vR.{R}, and ~° be the extension to open processes. We shall call

=~ evaluation bisimulation.

Note 3.5

We often write ~ as ~ where the context allows.

Working with unrestricted contexts gives rise to an equivalence that has
all the desired properties, but is extremely difficult to work with. We can
however restrict the contexts and we prove in chapter 6 that ~, defined

below, is equivalent to ~, defined in definition 3.4.

Definition 3.6 Restricted Evaluation Bisimulation
Given R C NCCS x NCCS, define

P{R},Q & vz¢m(P,Q),l,P Plz.0yl.P =
3Q' (Q|z.0 4 1.0’ & P'RQ')

& VYog P Q),,Q Qz0ylLQ =
AP’ (P|z.0 || I.P' & P'RQ")

Then let ~ be vR.{R},.

3.2. WEAK \}-BISIMILARITY 43

Theorem 3.7

1. ~{ is an equivalence relation. - .
2. ~{ is a congruence relation.

3. = coincides with ~],
Proof

1. The identity relation is certainly reflexive and is also a post-fixed point
since any process can do the sathie as itself. Therefore the greatest post-

fixed point is reflexive.

If R is a fixed point of { -}, then for anyprocesées P,Q, Rwith PRQ and
QR R we can deduce that PR R by “chaining together” the relations. We
do this using the same context, and substitutions if the processes are
open. This will mean that we may deduce an evaluation for R from an

evaluation for P via an evaluation for Q). Therefore R is transitive.

Symmetry follows by observing that if R is a fixed point then R~! is
also. Therefore R U R~! is also a fixed point. Since =~ is the greatest
post-fixed point it must be equal to ~§ U(zﬁ)‘l which is symmetric.

2. We prove this in chapter 4.

3. We prove this, in passing, in section 6.4.

3.2 Weak ||-bisimilarity

We also provide various bisimulations that relate to well known equivalences
in other calculi. The first we give here is weak bisimilarity defined for NCCS.
We will prove that it is the same as CCS weak equivalence. However, in
NCCS, summation is restricted to label guarded summation so it will be a

congruence.

44 CHAPTER 3. BISIMULATIONS

Definition 3.8 Weak Bisimulation
Given R C NCCS x NCCS define {R},, C NCCS x NCCS by:

P{R}wQ & VI,P'Vngf(,P,Q,P) Plin0ynP =

20 (QLn.0 4 n.Q) & P'RQ)
& VI,Q' Vné(,P,Q,Q) QnolnQ =
3P (P|ln.0 4 n.P' & P'RQ')
& VP'Vn¢f(P,Q,P') Pln0|nP =
3@ (@0 Y nQ & PRQ)
& YQ'Vném(P,Q,Q) QnolnQ =
3P (Pjn.0 Y n.P' & P'RQ)

Let =y be I/R.{R}w.

Note 3.9

We will often write ~ as ~.

Theorem 3.10

=%y is a congruence relation.

Proof
=2, is an equivalence relation, with the proof following in the same way as

theorem 3.7(1). We prove congruence in section 6.2. i

Theorem 3.11
! For NCCS processes P and Q P ~ Q implies P =~ Q.

Proof
For P ~ @}

o If P|i.n.0 | n.P' then thereis a Q' with Q|l.n.0 || n.Q' and P’ ~ @’ since
P~Q.

e If P|n.0 | n.P’ then there is a Q' with Q[n.0 | n.Q’ and P’ ~ Q' since |
P~qQ. '

~ is a post-fixed point of {—},, by a symmetric argument. Therefore P ~ Q)
implies P =~ @ as required (noting results in definition 3.3 on page 41). !

3.3. BARBED |}-BISIMILARITY 45

We may wonder whether the inclusion ~C=: is strict. It is, as shown by the

following pair of processes:

P = a.(vn.(7.0|(b.0 + n.c.0)))
Q = a.(vn.(7.0{(b.0 + n.c.0))) + a.c.0

These may be clearer when written in 7TNCCS where they are:

P' = a.(b.0 + 7.¢.0)
Q' = a.(b.0 + 7.¢.0) + a.c.0

Then we note that P % Q but P ~ Q.2

3.3 Barbed |}-bisimilarity

The next bisimulation we give is a weak version of the notion of the barbed
bisimulation of Milner and Sangiorgi, described in [MS92]. The barbed
bisimulation is an attempt to provide an equivalence that can be used in
various calculi, both lower and higher order, and hence enable comparisons
between calculi. A consequence of the evaluation relation being a “big
step” relation is that we cannot define the strong barbed bisimulation. Two
methods of extending barbed bisimulation to the weak case are given in
[MS92]. One is to increase the power of the observer by partitioning the
visible actions into subsets and then allowing the observer to discriminate
between visible actions from different subsets. This approach is followed in
[San92] in which he shows that his weak barbed bisimulation is the same
as weak CCS equivalence. The other approach is to allow a set of possible
contexts for which the relation holds, with one equivalence for each different
set of allowable contexts. This approach leads to an equivalence for which it
is harder to show that two processes are equivalent, since we have to do this
over a possibly infinite set of contexts. We will however follow this approach
and show that we can restrict the contexts to some very simple cases. We shall
also prove that weak barbed bisimulation is the same as weak bisimulation
for NCCS, which in turn is the same as weak CCS equivalence (theorem 3.21
on page 48).

2This is just one of the 7 laws in [Mil89].

46 CHAPTER 3. BISIMULATIONS

Definition 3.12 Barbed Bisimulation
Given R C NCCS x NCCS define {R}; C NCCS x NCCS by:

P{R}@Q VC[-] C[P] = ClQ]{

vC[-] C[Q] ¥= C[P] |

VC[-], P' Vn & fn(P,P',Q,C) C[P||n.0§ n.P' =
3Q' (C[Q]In.0 ¥ n.Q' & P'RQ")

VC[-],Q@ Vn & (P, Q,Q',C) ClQ]In.0 n.Q' =
3P’ (C[P]|n.0 § n.P' & P'RQ’)

g & v

&

where P || means 3/, P’ s.t. P || [.P’ and C[—] is any context.
Let ~ be vR.{R}s.

Note 3.13

We will often write zﬁ as ~.

Theorem 3.14
1. =} is a congruence relation and coincides with .

2. If C[-]is restricted to be of the form vi.(—|l;.12.0{l5.13.0), where I, I5 are

fresh names, then the relation remains the same.

Proof

We prove both parts in section 6.3. O

3.4 Strong —-bisimilarity

We turn our attention to 7NCCS. In section 3.6, we give a version of Weijland'’s
delay bisimulation from his PhD thesis [Wei89]. We first define the strong and
weak equivalences from CCS. The operational semantics of CCS and 7TNCCS
being essentially® the same mean that we may just give the equivalences
and use the results already known about them. Firstly we define Strong
—-bisimilarity, also known as strong equivalence in CCS[Mil89].

3As discussed in section 2.4 on page 31 the summation notation may be interchanged with
binary summation.

3.5. WEAK —-BISIMILARITY 47

Definition 3.15 Strong CCS Equivalence
Given § C TNCCS x 7NCCS, define [S] C 7NCCS x 7NCCS by:

P[SIQ & Va,P' (PSP =3Q(Q3¢Q & PSQ))
& Vo, (@3 Q =3P (P3P & P'SQ))

Let ~_, be vS.[S].

Note 3.16

We normally write ~ instead of ~_, where the context allows it to be clear.

Theorem 3.17

~_, is a congruence relation.
Proof

This is just the strong congruence of CCS[Mil89]. O
Lemma 3.18

For any TNCCS processes P and Q, P ~ @ implies P? ~ Q*
Proof

This is one part of lemma 6.1. O

One may ask whether the converse of theorem 3.18 is also true. It is not
since (a.0)! ~y (7.a.0) but a.0 # 7.a.0. |

3.5 Weak —-bisimilarity

We now define ~_, which is also known as weak equivalence in CCS.
Definition 3.19 Weak CCS Equivalence
Given § C TNCCS x TNCCS define [S],, € YNCCS x 7NCCS by:

V,PPLP =30 Q"% @ & PSQ)
VI,Q QL Q=3P PSP & PSQ)
VPPLP =30 Q5 Q & PSQ)
VQ' Q5 @ =3P (P P & P'SQ)

P[SluQ

e I

Let~_, be vS.[S],.

Note 3.20

We will write ~_, as ~ where the context allows.

48 CHAPTER 3. BISIMULATIONS

Theorem 3.21
1. ~_, is a congruence relation,

2. For NCCS processes P and @ and 7NCCS processes R and S then
P =~ @ implies that PT ~_, QT and R ~_, S implies that R* ~ S’

Thus ~y and ~_, coincide under translation.

Proof

1. ~_, is just the CCS weak equivalence which is a congruence when

summation is restricted to guarded summation. See [Mil89] for details.

2. This is given in section 6.2.

3.6 Delay —-bisimilarity

Weijland introduces the idea of delay bisimulation in his thesis [Wei89]4.
Translating between notations, his delay bisimulation excludes the following

relation:

a(r.P+Q)=a.(r.P+Q)+a.P

where we assume that @) is a sum. This is a valid relationship in weak
bisimulation. It is not in delay bisimulation because we “take a snapshot”
of the processes as soon as the input or output happens. Hence the right
hand side cannot input on channel o and then become P; it must become
TP+ Q.

We give here the equivalent notion for TNCCS and will go on to prove that

itis the same as ~j.

“Note that in his thesis he uses az to mean a.r and a || b where we use ab or alb. Also
he allows processes to be prefixes of processes, removing the guard once they have finished

executing.

S

3.6. DELAY —-BISIMILARITY 49

Definition 3.22 Delay Bisimulation
Given S C 7NCCS x 7NCCS define [S]; C TNCCS x TNCCS by:

PSlQ & WP PLP =30 QT4 Q & P'SQ)
& VL,Q QL@ =3P PIhp & P'SQ)
& VPPLP =3Q(Q5Q & PSQ)
& V@ QL Q =3P (PL P & PSQ)

Let ~¢, be 1/8.[S]..

Note 3.23

As usual we will often write ~¢, as just ~ where the context allows. Also
the resulting equivalence differs from Weijland’s delay bisimulation due to
differences in syntax between 7NCCS and his calculus.

Theorem 3.24
1. ~¢, is a congruence relation.
2. ~4, coincides with ~

Proof
The proofs for both parts are given in section 6.4. O
To summarise the relationship between the equivalences we have the

following chain of inclusions:

~C>y SN

~!
-
Hence we can see that it is reasonable to refer to the equivalences merely as

~, ™ OT & as appropriate.

Chapter 4

Proof of congruence of :ﬁ

We will proceed using a modified version of Howe’s method [How89], but
also see [How96]. One might wonder why we use such a method rather
than a direct proof. The main reason is that for any evaluation P | C, C
can be structurally very different from P. This is sharply different from the
case involving a labelled transition relation where for P % P’, P and P’ are
structurally similar. This difference in structure would make a direct proof
extremely difficult.

The method we use is based upon defining an auxiliary relation which
is easier to work with and then proving that it is equivalent to the original
relation. In this case, due to the non-determinism and the use of a structural
congruence in NCCS, the proof is longer and more complex than in [How89].

It proceeds in this case in the following manner:

1. We define an auxiliary relation (~*). We do this in section 4.1 as well as

proving various lemmas which will be useful later in the proof.

2. We show that ~§ is included in ~* and that ~* has a substitutivity

property and that it is reflexive. This is done in section 4.2.

3. ~* is then shown to be preserved under the evaluation relation. This

occurs in section 4.3.

4. We then prove that ~* is symmetric under transitive closure. We do

this rather than showing directly that it is symmetric because it is easier

51

52 : CHAPTER 4. PROOF OF CONGRUENCE OF :g

and doesn't increase the complexity of the rest of the proof significantly.

This comes in section 4.4.

5. Finally we can prove the main result that ~* and ~° coincide and hence

that ~° is a congruence. This is in section 4.5.

4.1 Auxiliaryrelation

We now define the Auxﬂlary relation £ ~* F. It is defined in terms of ~°
such that we can deduce the last rule used in the derivation of £ ~* F,
apart from (STRUC), from the structure of E. This allows us to prove various
results more easily since we have a stronger grasp on the relation between the
two processes. To overcome the problems of having a structural congruence
relation we include the (STRUC) rule. ‘T his however causes problems with
structural induction proofs which rely on knowing the last rule used in the
derivation of E ~* F. We remove this difficulty by showing that we may
restrict derivations to having the (STRUC) rule used at most once, and then
as the last rule of the derivation. As a consequence of this we generally prove
results in two stages. First we prove the result for £ ~* F whose derivation
does not use (STRUC) at all, and then extend the result to the general case.

Definition 4.1
We inductively define the auxiliary relation ~* using the rules given in
figure 4.1 on the next page.

4.2 Initial Lemmas

We' start by examining the restrictions we may place on the required
derivations of E ~* F. We first define two restrictions on derivations and

then prove that all derivations are equivalent to one or the other.

Definition 4.2

A derivation of £ ~* F' is normalif the (STRUC) rule is used at most once,
and then as the last rule of the derivation. Furthermore, it is simple if it does
not use the (STRUC) rule at all. We say that £ ~* F is normal/simple if the

derivation we will use is normal/simple.

4.2. INITIAL LEMMAS 53

(NULL) o7 if 0 f F
(VAR) X F fX~f F
E~*F'
(COM) it if LB =3 F
I.LE~*F
, E~*F'
(REC) S ifrecX.E' ~) F
recX.E ~* F
E| ~*E, FEy~*F}
(CoMP) —~— "L "2~ "% ifEE ~0 F
E1E2 ~* F
E, ~* E} Fy~*E}
(SuM) —— 1 2= "% i@ By ~o F
Ei+E,~F
~F !
(RES) BB ifvn.B' ~f F
vn.E~*F
E'~*F
(STRUC) ifE=FE
E~*F

Figure 4.1: Auxiliary relation

Lemma 4.3

If E ~* F then there exists a normal derivation for it.

Proof

The (STRUC) rule may be “pushed down” through all the other rules since
= is a congruence. Also, since = is transitive, two sequential (STRUC) rules
may be unified into one. o

We now justify that the -auxiliary relation contains Evaluation
Bisimulation. This is the first criterion for the auxiliary relation to be
useful. The other parts are that the auxiliary relation has a substitutivity
property and that the auxiliary relation is preserved under the evaluation
relation, and hence that Evaluation Bisimulation contains the auxiliary

relation. In fact we prove a slightly weaker result. We show that the transitive

54 CHAPTER 4. PROOF OF CONGRUENCE OF zﬁ

closure of the auxiliary relation is preserved under the evaluation relation.
This is because we need symmetry which is easier to prove for the transitive

closure.

Lemma 4.4
lL.Ex*F & F{F' = E~"F
2. E~*FE
3. Ex{F=E~F

Proof

1. Use transitivity of ~} and the fact that we may assume that £ ~* F is

normal.
2. FE :ﬁ E, then use induction on structure of E.

3. Follows from 1 & 2.

O

We now prove the main result of this section; that the auxiliary relation
has a substitutivity property. We already know that Evaluation Bisimulation
is an equivalence relation. Then, once we have proved that Evaluation
Bisimulation contains (the transitive closure of) the auxiliary relation, we will

be able to read off congruence for Evaluation Bisimulation.

Lemma 4.5 Substitutivity for ~*
(B'~* F' & E~* F) = E'|E/X] =~ F'[F/X]
Proof
The result follows by induction on derivation of £’ ~* F’,lemma 2.11 on
page 25 and that if B’ ~§ F” then E'[F/X] ~§ F'[F/X]. O
We will also need a very limited form of substitutivity for ~°.
Lemma 4.6

For any NCCS processes P;, P2, P; with P; ~° P, and any channel n
1. P1P3 ~0 P2P3

2. vn.P =°vn.Py

4.3. CLOSURE OF AUXILIARY RELATION 55

Proof
The first part follows trivially from the definition of ~ (definition 3.4 on
page 42). The second part follows from lemma 2.14 and corollary 2.17. O

Finally we need to show that we may work our way up a derivation tree
for the proof of E ~* F in a “structure preserving” manner. The following

lemma shows this. We will use the results in section 4.3.

Lemma 4.7
For E ~* F simple then:

1. yn.B' ~* F = 3AE" (B' ~* B" & vn.E" =~} F)

2. B\Ey~* F = 3B}, B} (B ~* E| & By~*Ej & E{Ey =~} F)
3. LE'~* F = 3E" (B' ~* E" & L.E" = F)
4. 1ecX.E' ~* F = 3E" (B' ~* E" & 1ecX.E" =) F)

5. i+ By ~* F = 3E, By (B1 ~* E| & Ey~* E} & E| + Ey =} F)

6. B, ~* E| & E,~* Ey= E\E, ~* E\E}

Proof

1, 2, 3, 4 and 5 all follow directly from the last rule used in the derivation
of E~*F.

6 follows from the definition of ~* (definition 4.1 on page 52) plus
reflexivity of ~§.

4.3 Closure of Auxiliary Relation

In order to prove Evaluation Bisimulation contains the auxiliary relation, we
need to show that the auxiliary relation is closed under evaluation, i.e. that if
E~*Fand F || [.E' then F |} [.F' with E' ~* F’. We do not need to quantify
this over all possible parallel contexts since we already know that the auxiliary
relation is closed under such contexts. We proceed by first proving the result
by tedious case splitting for F ~* F simple, and then extend the result to the

general case.

-

56 CHAPTER 4. PROOF OF CONGRUENCE OF sz

Lemma 4.8
For closed NCCS processes P, P’ and @ and label [then P || [.P' and
P ~* () simple implies that there is a Q' with Q | [.Q' and P’ ~* @)'.

Proof
We proceed by induction on the derivation of P |} I.P’. Use case by case
analysis:
UPRE P = vii.((I.E) + Es)Es)
By (multiple uses of) lemmas 4.7(1) and 4.6 3Q" s.t.
vt Q" = Q 4.1)
(I.By + E3) B3 ~* Q" 4.2)

Using lemma 4.7(2) and (4.2) 3Q1, Qs s.t.

Q1Q2 ~f Q" (4.3)
LBy + By ~* Qy 4.4)
E3 ~* Q)2 (4.5)

Using lemma 4.7(5) and (4.4) 3Q11, Q12 s.t.

Qu + Qu2 > Q1 (4.6)
l.El ~* Qll (47)
Eg ~* ng (48)

Using lemma 4.7(3) and (4.7) 3Q}; s.t.

1.QY = Qu 4.9
B~ Q) 4.10)

We must have [.Q)}; | [.Q}; and so by (4.6), there is Q7; such that

Qu 1 1.Q1, (4.11)
Q1 =~y QT 4.12)

From (4.11) we can deduce

vit((Qi1 + Q12)Q2) I L.vii.(Q1,Q2) (4.13)

4.3. CLOSURE OF AUXILIARY RELATION 57

Then by lemma 4.6, transitivity of :ﬁ (theorem 3.7) and (4.1), (4.3) and

(4.9) we derive

vit((Qu + Q12)Q2) ~y @ (4.14)

Hence by (4.13) and (4.14), there is some Q' such that.

QLY (4.15)
l/fi(leg) l-’U QI (4.16)

Observe that by (4.10), (4.12) and lemma 4.4(1) we have
By ~* Q'l’l (4.17)

So by (4.5), (4.16) and (4.17) and the definition of ~* (definition 4.1 on
page 52) we have vii.(E1 E3) ~* Q'. Thus P’ ~* (0, as required.

JCOMP P = vii.(P, P;) where:

P yl.P (4.18)
P, | 1.P} (4.19)
vii.(P/P}) | I.P' (4.20)

By (multiple use of) lemmas 4.7(1) and 4.6 3Q" s.t.

vit.Q" =} Q (4.21)
PPy ~* Q" (4.22)

Using lemma 4.7(2) on (4.22) gives:

Qi1Q2 ~§ Q" (4.23)
P~ Q; (4.24)

Using the induction hypothesis on (4.18), (4.19) and (4.24) gives Q, @)

S.t.

Q14 1.Q} (4.25)
Q2 I 1.Q% (4.26)
PlarQ), (4.27)

58 CHAPTER 4. PROOF OF CONGRUENCE OF :3

(4.27), lemma 4.7(6) and RES give:
vii. (Pl PY)~*vit.(Q,Q)) (4.28)
(4.21), (4.28) and induction hypothesis show that 3@’ s.t.

vit.(Q1Q3) 4 1.Q' (4.29)
Pl (4.30)

(4.25), (4.26), (4.29) and COMP gives v7i.(Q1Q2) | 1.’ and then (4.21)
and (4.23) gives Q |} [.Q' as required. '

JRES P = vii.(recX.E|P»)

Since vii.(recX.E|Py) ~* @, by (multiple uses of) lemmas 4.7(1) and 4.6

3Q" s.t.
vi.Q" ~§ Q (4.31)
recX.E|Py ~* Q" (4.32)
Bylemma 4.7(2) 3Q;, Q2 s.t.
Q1Q2 ~f Q" (4.33)
recX.E ~*)y (4.34)
Py ~* (o (4.35)

By lemma 4.7(4) and (4.34) 3Q s.t.

E~*Q, (4.36)
recX.Q) ~f Q1 (4.37)

Using REC and (4.36) gives:
recX.E ~* recX.Q) (4.38)

Then lemma 4.5, (4.36) and (4.38) gives:
E[recX.E/X] ~* @Q}[recX.Q}/X] (4.39)
Then lemma 4.7(6), (4.35) and (4.39) gives

ElrecX.E/X|Py ~* Q| [recX.Q}/X]Qo (4.40)

4.3. CLOSURE OF AUXILIARY RELATION 59
Then applying RES (multiple times) gives:
vit.(B[recX.E/X| P, ~* vii.(Q)[recX.Q}/X]Q2) (4.41)
P |} I.P' was derived from:
vii.(E[recX.E/X|P; | I.P' | (4.42)

Induction hypothesis on (4.41) and (4.42) shows that 3Q" s.t.

vii.(Q}[recX.Q} /X]Q2) U 1.Q" (4.43)
PI,:*QIII (4_44)

(4.43) and JREC implies:
vii.(recX.Q|Q2) 4 1.Q" (4.45)

(4.31), (4.33) and (4.37) and lemma 4.6 gives:
vit.(recX.Q1|Q2) ~§ @ (4.46)
(4.45) and (4.46) implies @ | [.Q' with:
Q" ~j Q' (4.47)
Then (4.41), (4.47) and lemma 4.5(1) implies P'~*@Q' as required.

JSTRUC

EIP1,P2 s.t. P1 =P, P = P2 and
P ULP (4.48)

Now P = P, = P; ~* Q hence 4.48 and induction hypothesis give Q'

S.t.

Py~*Q)! (4.49)
QLY (4.50)

P =P =P ~*P @19 pr ~*@)' as required.

60 CHAPTER 4. PROOF OF CONGRUENCE OF :ﬁ

Corollary 4.9

For closed NCCS processes P, P’ and Q and label [then P | [.P’ and
P ~* @ implies that there is a @' with Q |} [.Q’ and P’ ~* @'.
Proof

If P ~* @ is simple then the result follows from lemma 4.8. Otherwise
the last rule used was (STRUC) (since we may assume by lemma 4.3 that
it is normal). Hence there exists P = P and P” ~* () and this is simple.
Also P” || I.P' using ({,STRUC). Hence using lemma 4.8 we get Q | [.Q' and
P’ ~* (' as required. |

4.4 Symmetry of the Auxiliary Relation

Due to the fact that Evaluation Bisimulation is a bisimulation and not just a
simulation, we need to be able to prove that, for £ ~* F, the auxiliary relation
is closed under reductions of both E and F. Showing that ~* is closed under
reductions for E has been shown in corollary 4.9. Showing that ~* is closed
under reductions for F' is extremely hard. Instead we follow Howe in [How96]
and prove that the auxiliary relation is symmetric under transitive closure.
This is straightforward, proceeding by a simple case split.

Definition 4.10
For any binary relation R, the transitive closure R%* is the binary
relationship generated by R under the following properties:

PRtC P/ Pl R PII
Pth P Pth PII
Lemma4.11
E ~* F = Fo*E
Proof

We proceed by induction of the derivation of £ ~* F using the symmetry
of =~ (theorem 3.7 on page 43) . We use lemma 4.4 on page 54 many times

without comment. Last rule used was:
NULL Bylemma 4.4(3) and symmetry of ~.

VAR Similar to previous case.

4.4. SYMMETRY OF THE AUXILIARY RELATION 61

COM E = a.G implies that there is an E’ s.t.

G~*F (4.51)
l.E ~y F (4.52)

Then by induction hypothesis on 4.51 implies that
) ESE (4.53)
and then using (COM) multiple times implies that
I.E'~*".G (4.54)
Then symmetry of ~§ and 4.52 imply that
F) LE (4.55)
and then by lemma 4.4(3) we derive that
F ~*|.FE (4.56)
Then 4.56 and 4.54 imply that F~**“a.G = E, as required.
REC FE = recX.G implies that there is an E’ s.t.

G~*FE (4.57)
recX.E’ :ﬁ F (4.58)

Then by induction hypothesis on 4.57 and then (REC) multiple times

we get
recX.E' ~**recX.G (4.59)
By symmetry of :ﬁ on 4.58 and then lemma 4.4(3) we may derive that
F ~* recX.F' (4.60)
But 4.60 and 4.59 imply that F~**recX.G = E, as required.
RES E = vn.G implies that there is an E’ s.t.

G ~* FE' (4.61)
vn.EB' '_Vﬁ F (4.62)

62 CHAPTER 4. PROOF OF CONGRUENCE OF :ﬁ

Then by induction hypothesis on 4.61 and then (RES) multiple times we
get

vn.E'~**yn.G (4.63)
By symmetry of ~§ on 4.62 and then lemma 4.4(3) we may derive that
F ~* yn.E’ (4.64)
But 4.64 and 4.63 imply that F~**uyn.G = E, as required.

SUM E = E; + E, implies that there are E7, E} s.t.

B + E) ~O.F (4.65)
By ~* B! (4.66)
By ~* E (4.67)

By symmetry of ~} on 4.65 and then lemma 4.4(3) we may derive that
F ~* E] + E} (4.68)
The induction hypothesis on 4.66 and 4.67 imply that

E|~p, (4.69)
Eh~*C Ry (4.70)

Then (SUM) multiple times on 4.69 and 4.70 implies that
E!| + By~**E) + Ey (4.71)
Then 4.71 and 4.68 imply that F~*"*E; + E, = E, as required.

COMP FE = E, E, implies that there are E}, Ej s.t.

BBy~ F (4.72)
By ~* B, (4.73)
By ~* B} (4.74)

By symmetry of :ﬁ on 4.72 and then lemma 4.4(3) we may derive that

F ~* BB} (4.75)

4.4. SYMMETRY OF THE AUXILIARY RELATION 63
The induction hypothesis on 4.73 and 4.74 imply that

E|~*°E, (4.76)
Ei~*E, 4.77)

Then using (COMP) multiple times on 4.76 and 4.77 implies that
E!|E\~*“E,\ E, (4.78)
Then 4.78 and 4.75 imply that F~**E; E, = E, as required.
STRUC E = E’ implies that

E' ~*F (4.79)
E=F (4.80)

Then by induction hypothesis on 4.79 we derive that

F*iep! (4.81)
Symmetry of =, then lemma 4.4(2) and then (STRUC) gives

E ~*FE (4.82)

Then 4.82 and 4.81 imply that F~**°E, as required.

Corollary 4.12
1. PP & P~**Q=3Q (Q1.Q & P'~%Q"
2. QU 1.Q & P~*Q =3P (P|I.P & P'~%Q"
Proof

1. Follows from Corollary 4.9 and the definition of transitive closure.

2. Follows from (1) and Lemma 4.11.

64 CHAPTER 4. PROOF OF CONGRUENCE OF ~{
4.5 Congruence for Evaluation Bisimulation

Having derived the difficult results we may easily read off the equivalence
of Evaluation Bisimulation and the auxiliary relation, and hence the desired

congruence property.
Corollary 4.13
z>(<tC C { l_,*tc }

Proof
This follows directly from the definition of Evaluation Bisimulation
(definition 3.4 on page 42), lemma 4.5 and Corollary 4.12 overleaf.

Restatement of Theorem 3.7
1. ~§ is an equivalence relation.
2. ~} is a congruence relation.
3. ~y coincides with ~}.

Proof of Theorem 3.7(2)
Lemma 4.4 implies that ~jC~". Then by the definition of transitive

closure we see that ~*C ~*%,

For any closed NCCS processes P and
with P~**Q) then by corollary 4.13 we see that P ~; . But for any
(not necessarily closed) NCCS processes P and @ with free variables X;
and P~**°Q) then by lemma 4.5 for any closed NCCS processes R; we may
deduce that P[R;/X;]~*"*Q[R;/X;]. Hence we see that P ~¢ @ and hence
~*C ~** C~4. Therefore SES

We already know that ~ is an equivalence relation, and now we have that
it is closed under the various NCCS constructs (because ~* is), hence :ﬁ isa

congruence relation. O

Chapter 5

Link between evaluation and

transition

As has been noted before, it has been traditional to define reductions on
calculi, particularly those used for concurrency, in terms of a (labelled)
transition system. To show how NCCS relates to other calculi we now present
the relationship between evaluation on NCCS and transition on 7NCCS. This
will also help our understanding of what evaluation is and show that it is just
a big step version of transition.

We firstly look at the translation of the transition relation on 7NCCS into
the evaluation relation on NCCS, seeing that any delay-like! sequence of
transitions may be translated into a single evaluation. We then examine the
translation of the evaluation relation on NCCS into the transition relation on
7NCCS and conclude, using the properties of strong CCS equivalence, that
all evaluations may be seen as a delay-like sequence of transitions modulo

strong equivalence.

5.1 Transition to Evaluation

Recall from section 2.6 on page 35 the definitions of the translations, (—)! and
(—)7, between NCCS and 7NCCS.

!A sequence of transitions is delay-like if it consists of zero or more silent actions followed

by an input or output.

65

66 CHAPTER 5. LINK BETWEEN EVALUATION AND TRANSITION

We would like to show that if P -5 P' then P* | I.P'"*. However this is not
quite true. In fact P* |} I.R for R = P" or R = (vn.7.0)P"*. In order to show
this we first prove that P L p implies that Pt || I.R, with R as above. We
then extend the result. Both steps follow by simple case splitting.

Lemma5.1
If P 4 P in 7NCCS then P* | IR in NCCS, where R = P" or

R = (vn.7m.0)P".

Proof

We proceed by induction on the derivation of P 4 p.

—ACT P=1[.P'

Then P* = L.(P')! | .(P')* by ({PRE)
—COM, P = P,P;, P' = P!P, and P, 5 P!. By induction hypothesis:
(P1)* Y 1.Ry
so by lemma 2.14, for any fresh name n:
(vn.(PR)) = vn.((P)Y(P2)") 4 1.(vn.(R1(P2)"))
Then using (| STRUC) we get
(PP)! = (P)!(P2)" Y 1.(R1(P2)")
Then if R = P!’ we have
R(R)' = (PP)' = (P')!

otherwise

R(P)' = (vn.m.0) (P P2)* = (vn.m.0)(P')*
so (P, P;) | I.R as required.
—COM,;, Follows symmetrically.

—COM; Cannot occur since ! # 7.

5.1. TRANSITION TO EVALUATION 67

—~SUM P =S0;.P, | = aj, P' = P;and.P' 5 P'.

We case split again according to whether any of the «; are 7 or not. If not
then (P)* = I;.(P;)! + Q, where Q is the (translation of the) rest of the
sum. Then by (/ PRE) and (4 STRUC) we have (P)* | I,.(P;)* as required.

Otherwise (P)! = vn.(n.0/(l;.P; + Q)) where Q is the (translation of
the) rest of the sum and » is a fresh name. Then (P)¢ | l.vn.(n.0|P')
by ({STRUC) and ({PRE). But vn.(R.0|P") = (vm.m.0)(P')t and so
(P)t | (vm.m.0)(P")t as required.

—RES P =vn.P;, P'=vn.Pland P, 5 P! (1,1 #n)

By induction hypothesis (P;)? | I.R;, so by lemma 2.14 (P)¢ || l.un.R;.
But vn.R; = (vm.m.0)vn.P; and using (JSTRUC) P! | I.R as required.

—REC P = recX.E and E[P/X] & P'
By induction hypothesis:
(E[P/X])' Y L.R
But by lemma 2.26:
(E[P/X])" = (B)'[(P)*/X] = (E)'[recX.(E)"/X]

So (P)t = recX.(E)* | I.R using ({REC).

Lemma 5.2
P 5 P'in TNCCS and vit.((P'):Q) | 1.Q' in NCCS, then vii.((P)!Q) | 1.Q'.
Proof

We proceed by induction on the derivation of P 5 P'.
—ACT P=r71.P

So (P)* = vm.(m.0lm.(P')!) where m ¢ fn(P',Q,Q') U {#i}. Then we
have the following derivation:

‘IH.
vit.(P)'Q) Y 1.Q'

moym0 m.(PYQIm.(P)Q) vim.(0(P)Q) | lvm.Q
vitm.(m.0lm.(P)!|Q) | l.um.Q'

68 CHAPTER 5. LINK BETWEEN EVALUATION AND TRANSITION

But
vitm.(m.0lm.(P')!|Q) = vir.((P)'Q)

The result then follows by noting that vm.Q’' = Q' since m ¢ fn(Q').
—COM, P = P\P;, P' = P/Pyand P, = P!

If vit.(P)!Q) | 1.Q'" then vii.((P])'((P2)!Q)) | [.Q' so by induction
hypothesis on P 5 P!

vit. (P ((P2)'Q)) 4 1.Q
ie vi.(P)Q) 4 1.Q'.
—COM; symmetrically.
~COM; P = PP, P' = PP}, P, > Pl and P, % P,
Bylemmab5.1 (P;)! |} I'.(P{)! and (P,)* | I".(P;). So if
vit. (P (Py)'Q) 4 1.Q'
then by | COMP and Lemma 2.14 we get the required result:

vit. (P (P2)'Q) 4 1.Q'

—SUM P =Y «;.P,P'=Pj,a;j=7and P 5 P'.

Then for some fresh name m (hence also different from all 7)
(P)t = vm.(M.0(m.(P')" + R))

where R is the translation of the rest of the sum. Then the result
follows from the following derivation and by noting that m ¢ fn(Q’) and

viim.(m.0|(m.(P')! + R)Q) = vi.((P)'Q).

' LH.
vii.((P')'Q) 4 1.Q'
moUm0 (m.(P)+R)QIm.(P)Q) vim.(0(P)Q)|lvm.Q
vitm.(m.0(m.(P')* + R)Q) | lL.ym.Q'

5.2. EVALUATION TO TRANSITION 69

—RES P =vm.P;, P = vm.P,and P, > P}
Ifvi.(P)Q) U 1.Q" and vii.((P')!Q) = viim.((P])!Q) then by induction
hypothesis on P, = P/,

vitm.(P)'Q) I 1.Q"
Therefore vii.((P)'Q) 4 1.Q".

—REC P =recX.E and E[P/X] 5 P'

By induction hypothesis, if v#i.((P')!Q) | 1.Q' then we get

vit.((E[P/X])'Q) 4 1.¢

Hence
vit.((E)'[recX.(E)!/X1Q) | 1.Q'
Therefore we get

vit.((recX.(EY)HQ) | 1.Q'
Le. vi.(P)'Q) I 1.Q".

Theorem 5.3
If P =4 P'in 7NCCS, then in NCCS Pt || I.R where R = (P') or
R = (vmm.0)(P")t. |
Proof
Combine lemmas 5.1 and 5.2. i
We may observe that vm.m.0 is essentially the same as the null process 0.
Then we may see that the evaluation relation is a “delay” reduction relation, |

in that the evaluation relation ignores silent actions before a visible action,

but not afterwards.

5.2 Evaluation to Transition

Recall from [Mil89] that CCS strong equivalence, ~_, (definition 3.15 on
page 47), is a congruence relation (section 4.4 on pages 97-101 of [Mil89]).

70 CHAPTER 5. LINK BETWEEN EVALUATION AND TRANSITION

We will use this frequently and without comment in the proof of the next

theorem.

Theorem 5.4
IfP | i.P'in NCCS then P ol @ in TNCCS for some @@ ~_, P'. Bylemma
2.24(2) we may assume that ¢ € NCCS.

Proof

We proceed by induction on the derivation of P || . P’

UPRE P = vii.((I.Py + P3) ;) and P' = vii.P,| P, wherel,] ¢ {#}.

Then we get
P = vil.(IL.P, + P3)P3) 5 vit.(PLPs)

by (—-ACT), (=SUM,;), (-COMM;) and (—RES)*. Therefore we take
Q = vit.(PLPy) = P.

JCOMP P = vii.(P,P,), P, 4 I'.P!, P, | T.P} and vii.(P/P}) | L.P'.

By induction hypothesis:
Py f—l; Ql ~— Pll
Py L @ ~, P
vin(PIP) % @ ~, P

For some @1, Q2 and ¢’. Then:
+
PP, 5 Q1Q2 ~— PIP;
SO
+ —
I/Y—i.(Plpg) T—) I/’fi.(Qng) ~_y I/’I’L(PIIPQI)

hence
vil. (P1 Pg) Iﬂ) Q

for some Q ~_, Q' ~_, P'.
IREC P = vii.((recX.E)P,) and vii.(E[recX.E/X|Py) | I.P'

Hence by induction hypothesis

vit.(E[recX.E/X|Py) =5 Q' ~_, P'

5.3. SUMMARY OF RELATIONSHIP 71

for some Q’'. But
vit.(E[tecX.E/X|Py) ~_, vii.((tecX.E)Py) = P
Hence we get P ol Q ~_ Q' ~_, P'forsome Q.
USTRUC P=P,, P, |} I.P/and P! = P'.
By induction hypothesis:
LI Qy~, P
for some () and bylemma 2.24(3) P| ~_, P’ and P ~_, P;. So we get:

*l
PT_>QN—)Q1N—>P{N—>PI

5.3 Summary of relationship

We now summarise the results of this chapter because they will be used
repeatedly in the next chapter. We also give various conclusions from the

above theorems that will be useful in different cases.
Theorem 5.5

1. For P, @ NCCS processes with P |} [.Q), there exists @' € TINCCS with
Q~_ Qand P 4 (.

2. For P, Q TNCCS processes with P KAty Qthen

(a) there exists Q' where Q' is either @ or (vn.7.0)Q! and P* || 1.Q'.
(b) there exists Q' with Q' ~; Q*, Q' ~_, Q and P* || 1.Q'.

Proof

Part 1 is just theorem 5.4. Then (a) is just theorem 5.3. (b) follows in two
parts. Firstly we note that (vn.n.0) P ~_, P for all P (and remember from note
2.21 that we do not bother writing the translation from NCCS to TNCCS). The
other part will follow from the fact that P = Q implies P ~; Q? and from

lemma 6.1 in the next chapter. a

%This is easy to see by taking R = {(P,Q) s.t. P = Q} and noting that if P |} .P' then
Q 4 I.P' by (USTRUC) and that P = P. Hence R is a post-fixed point of definition 3.4 on
page 42.

N

Chapter 6

Relationships between the

bisimilarities

In chapter 3 various bisimulations were presented. We now look at the
relationships between them and using these relationships we derive the

proofs that the bisimulations are all congruences.

6.1 Inclusions between various relations

We first consider the relationship between strong CCS equivalence and
evaluation bisimulation. From chapter 5 we may well expect that strong CCS
equivalence (defined in definition 3.15 on page 47) is contained in evaluation
bisimulation (defined in definition 3.4 on page 42) and this is indeed correct.

Lemma 6.1

L. P~y Q= (P)f ey (Q)F

2. P~ Q= (P) =~ (Q)F

Proof

We only use those parts of theorem 5.5 on page 71 that we have already
proved and not the part that depends on this lemma.

LetR = {(P,Q) € NCCS | P ~_, Q}. Then if PRQ and PR | [.P’ then by
theorem 5.5(1) PR =% P" ~_, P', for some P" € NCCS. Then by theorem

73

74 CHAPTER 6. RELATIONSHIPS BETWEEN THE BISIMILARITIES

3.17and P ~_, Qwehave QR Tk Q" for some Q" ~_, P" and so by theorem
5.5(2a) we get QR = (QR)? | 1.Q' with Q' ~_, (Q")!. Then by lemma 2.24(2)
weget Q' ~_, (Q") ~, Q" ~_, P" ~_, P'and hence that (P',Q’) € R.

The symmetric case is identical. Thus R C {R} and so ~_,C~. Hence
the result follows. The second case follows similarly. O
. We continue this rather short chain by showing that evaluation bisimulation

is contained in weak bisimulation.

6.2 Coincidence of weak bisimulations

We first prove that ~, is identical to ~_,. Recall that theorem 3.21 on page 48
states that ~_, is a congruence relation that is identical to ~.
Restatement of Theorem 3.21

1. =~_, is a congruence relation,

2. For NCCS processes P and @ and TNCCS processes R and S then
P =~y Q implies that PT ~_, QT and R ~_, S implies that R* ~; S".

Thus = and ~_, coincide under translation.

Proof of Theorem 3.21(2)

P =) Q = P = Q
LetS = {(P,Q) € TNCCS x 7NCCS | P! ~y Q'}.
IfP -5 P and (P,Q) € S then

P|(in.0) = P' n¢f(P,P) (6.1)

Then by theorem 5.5(2b) there is a P” with Pt(I.n.0) | n.(P')! and

P" ~, (P')*. However we have P’ ~ Q" sowe get
Qt(1.n.0) 4 n.Q" (6.2)

with (P')t ~y P" =~ Q". Therefore by theorem 5.5(1) Q*[I.n.0 o Qm
with Q" ~_, Q". But Q' ~_, Q (by lemma 2.24(2)) so there is a Q' with

Qli.n.0 23 Q|0 (6.3)

6.2. COINCIDENCE OF WEAK BISIMULATIONS 75

and Q" ~_, @' (because — is structure preserving and n is not free
in @). But Q|0 ~, @ and so Q' ~_, @Q”. Then by lemma 6.1 and
theorem 3.11 we have Q"* ~y Q"'. Transitivity and symmetry of ~
gives P =~y Q", so (P',Q') € S. Then (6.3) shows that

Q.o Q|0 6.4)

because — is structure preserving and n is not a free name of P and
hence not a free name of). Similarly we may see from (6.4) that

Q ™% @' as required.

IfP 5 P and (P,Q) € S then
P|(n.0) == P' n¢f(P,P) (6.5)

Then by theorem 5.5(2b) there exists P” with P*|(n.0) | n.P” and
(P")t ~ P". Since we have P x| Q* there is a Q" with Q?|(n.0) | n.Q"
and P" =~y Q". Hence by theorem 5.5(1) there is a Q' with Q|n.0 Akl Q0
and Q' ~_, @Q". Thus Q AN Q. But Q@ ~_, Q" implies (by lemma
6.1 and theorem 3.11) that Q"* ~; Q"*. Then using transitivity and
symmetry of ~ we get P~ Q" as required.

The symmetric cases follow in the same way because both relations are

symmetric. Hence [S],, C Sandso P =, Q = P ~_, @ as required.

LetS = {(P,Q) € NCCS x NCCS | P ~_, Q}.

If P|(n.0) | n.P',n & fu(P, P') and (P,Q) € S then by theorem 5.5(1)
P(n.0) k3 P"|0 with P! ~_, P". Therefore P s P" and so Q N Q"
with P” ~_, @Q". Hence Q|(n.0) R Q |0 and so by theorem 5.5(2b)
there is a Q' with Q|(n.0) | n.Q' and Q' ~_, Q". But Q' ~_, Q" implies
that Q" ~_, Q' and so using transitivity of ~_, (twice) we get P' ~_, Q'
as required.

If P|(I.n.0) | n.P' withn ¢ fn(P,P') and (P,Q) € S then by theorem
5.5(1) P|(I.n.0) =53 P"|0 with P' ~_, P". Hence P —% P" and so
Q ™% Q" with P" ~_, Q". Hence Q|(I.n.0) 3 Q”|0 and so by theorem

76 CHAPTER 6. RELATIONSHIPS BETWEEN THE BISIMILARITIES

5.5(2b) there exists a Q' with Q" ~_, Q' and Q|(I.n.0) | n.Q’. As above
this then implies that P’ ~ Q' as required.

The symmetric cases follow in the same manner, since both relations

are symmetric. Hence {S},, C Sandso P ~_, Q = P = Q asrequired.

HenceVP,Q e NCCS P~y Q< P=_ Q. m]

Restatement of Theorem 3.10

~ is a congruence relation.

Proof of theorem 3.10
Theorem 3.21 tells us that ~_, is a congruence and that ~; and ~_,

coincide. Then theorem 2.27 gives the resuit.

6.3 Equivalence of weak and barbed bisimulation

We now turn to examining barbed bisimulation. The barbed bisimulation we
have deﬁned is weak in style since we have a “big step” evaluation semantics.
Hence we should not expect it to be equivalent to strong CCS equivalence, as
is the case when we express it in terms of a “small step” transition relation in
which we may count the number of 7-steps. However we can prove that it is
the same as CCS observation equivalence. We do this by first showing that
it is equivalent to weak |-bisimulation. We first show that it contains weak
bisimulation and then the converse. In doing this we end up showing that we
do not need to use all possible contexts and can restrict them as described in
theorem 3.14 on page 46.

We first prove a useful lemma.

Lemma 6.2
For any NCCS processes P, P' and fresh name n then P|l.n.0 | n.P’
implies that there exists a P with P || [.P".

Proof
If P|l.n.0 | n.P’ then by theorem 5.5(1) there is a Q with Q ~_, P’ and

P|l.n.0 A Q|0 for some i (since — is structure preserving and » is not free

6.3. EQUIVALENCE OF WEAK AND BARBED BISIMULATION 77

in P). If we let Py = P|l.n.0, P;;; = Q|0 and the other P; be the intermediate
steps then there must be a j less than i s.t. P; cannot input on channel n but
Pj; can. Hence P; = PJ4|7.n.0 and Pji1 = Pj,4|n.0. Therefore P % P} and
P 4 P[.,. Therefore by theorem 5.5(2b) and (JSTRUC) there is a P" with
P | I.P" as required. |
Lemma 6.3

Proof _

LetR = {(P,Q) € NCCS x NCCS | P =~y Q}. Then for each (P, Q) € R we
deal with the different cases:

For all C[—], if C[P] | then there exists [, P’ s.t. C[P] | [.P'. Hence
C[P)(I.n.0) | n.P' withn ¢ fn(P, P, Q,C). Then C[P] ~y C[Q] since P =~y Q,
because = is a congruence relation, and C[Q](I.n.0) | n.Q’'. Hence by lemma
6.2 C[Q] | as required.

For all C[—], if C[P](n.0) | n.P’ then C[Q](n.0) | n.Q’ and P' =y Q' (again
using congruence of ~). Hence (P, Q') € R as required.

The symmetric cases work similarly. Hence R C {R}; and so

quéPzﬁQ

as required. O
Lemma 6.4

P~ Q=PryQ

Proof
LetR = {(P,Q) € NCCS x NCCS | P =} Q}. Then for each (P, Q) € R we

again deal with the difference cases:

P(n.0) § n.P' withn & fn(P, P',Q).
So Q(n.0) | n.Q' and P’ zﬁ Q.

P(a.n.0) § n.P' withn ¢ fu(P, P, Q).

So P(a.n.0)(m.n'.0)(n'.0) | n'.(P'(n'.0)) with n' ¢ fn(P,P’,Q). Hence
Q(a.n.0)(m.n'.0)(n'.0) | n'.(Q") and P'(n'.0) zﬁ Q". We now consider

what @” may be. Since n’ is a new name there must be exactly one

78

CHAPTER 6. RELATIONSHIPS BETWEEN THE BISIMILARITIES

occurrence of n’ in @”, so it can only be one of the following three
options:
Q" = Q'(an.0)(n.n'.0) (1)
or @'(n.0)(m.n'.0) (2)
or @'(n.0) (3)

We let m» = f(P’',Q). Then we observe that vmna.(P'(n'.0)) §
but vrin'a.(P'(n'.0)) §. Therefore since P’ =§ Q" we must
also have vmna.Q” {§ and vmn'a.Q" J. If Q" is structurally
equivalent to the form (1) then viina.(Q'(a.n.0)(m,n'.0)) | implies
that for some Q" we have vna.(Q'(a.n.0)(m,n'.0)) § »'.Q" since
n' is the only free name. By corollary 2.17 on page 31 we have
vma.(Q'(a.n.0)(m,n'.0)) | n'.R for some R and hencelemma 6.2 implies
that vnia.(Q'(a.n.0)) § n.R' for some R'. This in turn means that
vma.(Q'(a.n.0)(m,n'.0)) | n'.(R(7,n'.0)) bylemma 2.14 on page 29. But
this is a contradiction. So Q" cannot satisfy (1). Similarly it cannot
satisfy (2). Therefore Q" = Q'(n’.0) zﬁ P'(n'.0). Hence we know that

Q(a.n.0)(m.n'.0)(n'.0) § n'.(Q'(n'.0))
Therefore by theorem 5.5(1) we have R and i with
Q(a.n.0)(@.n'.0)(n.0) == R|0[0n".0

and R|0[0|n’.0 ~ Q'|n’.0! (again since — is structure preserving and n, n/
are not free in Q). We let Ry = Q(a.n.0)(m.n'.0)(n'.0), R;+1 = R|0|0|n’.0
and the other R; be the intermediate values. There is is a j; with R;, 1,
able to input on channel »n but an input on channel » not possible for
R;,. Then
Rj, = R} (a.n.0)(m.n'.0)(n'.0)
Rj, 11 = R} 11(n.0)(m.n".0)(n".0)

Similarly there is a j> with R;, able to input on channel n but R;, 1

cannot. Then)
Rj, = R}, (n.0)(n.n'.0)(n'.0)

Rj2+1 = R;2 (’I’L'.O) (‘nl.O)

Actually we could have R|0|n’.0[0 but this won't make any difference. Hence we only

follow one of the two possibilities through.

6.4. EQUIVALENCE OF EVALUATION AND DELAY BISIMULATION 79

By examining the rule of the transition relation we may see that if
P|Q = P'Q then we also know that P % P'. Therefore

S
Q(a.n.0) — R ;(n.0)
Ti2—i1—1

R} 1 (n.0) "3 R} (n.0)
i—jo—1
R, (n.0) "5 R(n.0)

Therefore Q(a.n.0) % R. However we know that ~ is a congruence
relation so R ~ vn'.(R|0[0[n'.0) ~ vn'.(Q'|n'.0) ~ @'. Then theorem
5.5(2b) shows that there is a Q" with Q(a.n.0) | n.Q" and R ~ Q"
Hence Q' ~ Q" which in turn means that Q’ zﬁ Q" bylemmas 6.1 and
6.3 and theorem 3.11.

We also note that since zﬁ is a congruence relation we have
vn/.(Q'(n.0)) = vn/.(P'(n'.0)). But vn'.n'.0 =2 0 and so we have
4 4

P' =t @'. The transitivity of ¢ gives P’ ~0 Q" as required.
U y 8t 4 q

The symmetric cases follow similarly. Therefore R C {R},, and hence the
result follows.]
Proof of 3.14

This follows directly from lemmas 6.3 and 6.4. The second part can be
seen from looking at the proof oflemma 6.4 and noting that we only use these
cases. O

6.4 Equivalence of evaluation and delay bisimulation

We prove the equivalence of delay bisimulation and evaluation bisimulation.
In doing so, we will also prove that we may restrict the parallel contexts
for evaluation bisimulation as described in definition 3.6 on page 42. We
proceed by showing a cycle of inclusions. It is obvious that the ~, is included
in ~), since we cover all the required cases. We go on to prove firstly that
restricted evaluation bisimulation is included in delay bisimulation and then
we complete the cycle by showing that delay bisimulation is included in
evaluation bisimulation.

First we prove a couple of useful lemmas:

80 CHAPTER 6. RELATIONSHIPS BETWEEN THE BISIMILARITIES

Lemma 6.5
VYR P~% Q= PR=~% QR

Proof

We follow a very similar method to that used in [Mil89] for proving the
equivalent result for strong equivalence. Let S = {(PR, QR) st. P~4, Q}. If
(PR,QR) € Sand PR 5 T then there are three cases to consider.

1. P PlandT = P'R.

Then because P ~¢, Q we have Q % O with P/ ~¢ @Q'. Hence

QR = Q'Rand (P'R,Q'R) € S.

2. R3 R andT = PR'.

Then QR % QR and (PR',QR') € S.

3.a=rP5P RYLHQ andT = PR

Then because P ~%, Q we have Q Raly Q' with P’ ~¢, @'. And so we get

QR =5 Q'R'and (P'R',Q'R') € S.

Using a symmetric argument the result follows. =

Lemma 6.6
For all P, Q then P ~ Q implies that vn.P ~, vn.Q for any channel

name n.

Proof .

Welet R = {(P,Q)st.P = vn.P,Q = vnQ & P =~ Q'}. Soif
vn.PRvn.Q and vn.P|z.0 | I.P' with z fresh in vn.P (and hence in particular
different from n), by corollary 2.17 on page 31, there is a P” with P|z.0 | [.P"
and vn.P” = P'. But P =~ Q and so we also have Q" with Q|z.0 | [.Q" and
P" ~, Q". Then by lemma 2.14 on page 29 vn.Q|z,0 | L.vn.Q" (since is not
n) and P'Rvn.Q". '

The symmetric case follows identically. Therefore R C, which gives the
result. O

Lemma 6.7
For any NCCS processes P and Q@ P =~} @ implies P|vn.n.0 ~| Q

6.4. EQUIVALENCE OF EVALUATION AND DELAY BISIMULATION 81

Proof

We first observe that vn.n.0 ~ 0. Then by theorem 3.17 we may derive
that PT|vn.n.0 ~ PT|0 ~ PT. Then'lemma 6.1 implies that Plyn.n.0 ~| P.
By transitivity of ~|, we get P|vn.n.0 ~} @, as required. O

Lemma 6.8
VP,Q,z & fIn(P,Q) P|z.0 :h Qlz.0=P :h Q

Proof
Bylemma 6.6 vz.(P|z.0) ~ vz.(Q|z.0). Hence

vz.(P|z.0) ~| Plvz.x.0 ~ P

using lemma 6.7 and the fact that P = @) implies that P ~, Q. Similarly
vz.(Qlz.0) ~| Q and therefore P ~ Q as required.

Lemma 6.9
P~ Q=P ~? Q

Proof
LetS = {(P, Q) sit. P~ Q}. Then if (P, Q) € S there are two cases

P 5 P' Thenforz ¢ fn(P, Q) thereis a P” with P|z.0 | z.P” and (P')! ~, P"
(using theorem 5.5(2a) and lemma 6.7). Therefore Q|z.0 || z.Q" with
P" ~ Q" and thereisa @' s.t. @' ~ Q" and Q|z.0 s Q’'|0. Hence
Q@ 5 Q' as desired (and (P')! ~, @".

P - P' Hence P | I.P" for some P" ~ P'. Therefore P|z.0 | I.(P"|z.0), for
some fresh name z, which implies that Q|z.0 { [.Q" with P"}z.0 ~, Q".
But Q" = Q"'|z.0, for some Q", (since z is not free in Q) and hence
Q|z.0 § 1.(Q"]z.0). Using lemma 6.8 gives P" ~|, Q"'

Then by theorem 5.5(1) there is a Q" with Q|z.0 =% Q" and
Q" ~ @"|z.0. Again since — is structure preserving and z is not free
in Q there must be a Q' with Q" = @Q'|z.0. Then Q T Q.

*This follows easily by induction on the number of steps. If there are none then the
result may be read off. Otherwise it is obvious from the definition of the transition rules that
isz|:L'0 —T) Q{H‘l then Q;:+1 = Qi+1|$.0.

82 CHAPTER 6. RELATIONSHIPS BETWEEN THE BISIMILARITIES

But Q' ~ vz.(Q'|2.0) ~ vz.(Q"[2.0) ~ Q" =~ P”, therefore P" ~| Q' as

required.

Using a symmetric argument we see that S C [S]; and so S C~¢,.
Therefore P ~ @ implies that P ~¢ @, as required.

Lemma 6.10 _
P:‘i, Q=>P~Q

Proof

LetS = {(P,Q) s.t. P~% Q}. Thenif (P,Q) € S and PR | o.P' then,
by lemma 6.5, PR ~% QR. Hence we have PR '8 p" with P' ~ P" and
so QR g Q" with P :“i, Q@". Therefore by theorem 5.5(2b) there is a Q’
with Q" ~ Q' and QR | o.Q'. Noting that P’ ~ P" ~¢ Q" ~ Q' implies
that P’ ~¢, @' gives the desired result. A symmetric argument completes the
proof. O

Restatement of Theorem 3.7
1. ~{ is an equivalence relation.
2. ~j is a congruence relation.

3. =~y coincides with ~}

Restatement of Theorem 3.24
1. ~% is a congruence relation.

Nd . . . ~
2. ~¢, coincides with ~

Proof of 3.7(3) and 3.24
Observe that P ~;, Q = P :1} Q. Then lemmas 6.9 and 6.10 show that

2y Cy el Oy

The results then follow easily using theorem 3.7(2) and theorem 2.27 for the
congruence part of the proof. O

6.5. INEQUALITIES BETWEEN BISIMILARITIES 83

6.5 Inequalities between bisimilarities

We have now shown all the inclusions and equalities of relationships given at
the end of chapter 3. We still however need to show that the bisimilarities are
not all equal. The following examples show that the bisimilarities do indeed
split into three groups. Firstly we observe that

vn.(7.0|n.a.0) % a.0

but by considering the definition of delay bisimulation (definition 3.22 on
page 49) we may see that

vn.(n.0[n.a.0) ~ a.0

The remaining inequality is shown by considering delay bisimulation and

observing that if
P = a.(vn.(n.0[(b.0 + n.c.0))) + a.c.0 (6.6)
Q = a.(vn.(7.0|(b.0 + n.c.0))) (6.7)
then
P%c0=P (6.8)

but then the only thing that () can do to match this is to use the following

transition:
Q > vn.(7.0/(6.0 4+ n.c.0) = Q' (6.9)
But now
Q' > vn.(m.0/0) (6.10)

and P’ cannot match this. Therefore P £, Q.
By noticing that the left hand side is essentially just a.(6.0 + 7.c.0) + a.c.0
we may see that the following is true (also from section 7.4 of [Mil89] which

gives the axioms, of which this is a special case, for finite processes):

a.(vn.(7.0/(6.0 + n.c.0))) + a.c.0 = a.(vn.(7.0](6.0 + n.c.0)))

Chapter 7

Equational Theory

We let the set of finite processes, called the finite fragment of NCCS, be
the subset of NCCS that does not involve rec terms. Notice that all these
processes have finite traces, but not all processes that have finite traces are
finite processes. For example a.rec X.(b.vn.(n.X)) has a finite trace.

We present an equational theory for Evaluation Bisimulation on the finite
fragment of NCCS. We do not present here a theory for Weak Bisimulation.
We may simply translate the equational theory for weak equivalence given in
[Mil89]. '

We give the equational theory in terms of 7NCCS since this makes the
presentation clearer. We could use the technique of using saturated normal
forms, as in [Mil89], but instead we present a different method that may
be a useful alternative in some situations. This method uses a two stage
process for defining the equational theory. The first of these is a conversion
of processes to a standard form. The second of these gives a set of equations
over processes in standard form, which we will show to be equivalent to

Evaluation bisimulation over processes in standard form.

7.1 Standard forms

Definition 7.1

We define the standard form on finite processes as follows:
N == Y o;.N;

85

86 CHAPTER 7. EQUATIONAL THEORY

Note 7.2

First observe that 0 is a process in standard form, by taking an empty sum.
Secondly note that we automatically have associativity and commutativity
of + due to using the summation notation. We tend to write processes in
standard form as K, L, M or N.

7.2 Equational Laws

We split the equations that we use to convert a process to standard form into
two sets. The first of these are those that mirror the structural congruence
relation on NCCS. The second set allow us to expand parallel contexts into a

single large sum.

P (PPs) =, (PiP)Ps (S1)
PP, =, PP (52)
PO =, P (S3)
vn.(PLP) =, (vn.P)P. nég(P) (S4)
vni.vng. P =2, vnawni.P (S5)
vnd =, 0 (56)

Figure 7.1: Structural Equations

The equations dealing with the structural congruence are given in
figure 7.1. We might be surprised that some rules seem to be missing. We
have no rules for +, but these are included in the definition of standard forms

as commented on in note 7.2.

Lemma 7.3
P2, Q=P~Q

Proof
Observe that all the structural equations are instances of the structural
congruence, and that two processes that are structurally congruent are
evaluation bisimilar and hence also delay bisimilar. O
Figure 7.2 on the next page gives the equations that allow us to convert a

general finite process into one in standard form.

7.2. EQUATIONAL LAWS 87

z/n.Zai.Pi = Z a;.vn. B (E1)

7 i ¢{n,m}
> Pl BQ; . Zaz (Pi Z:Bj-@j)
+3° 8- (Xanhles) (B2

+ Y - (plo)

o =0;

Figure 7.2: Expansion Equations

Lemma 7.4
P2, Q=>Px~Q

Proof

Observe that (E2) is just the expansion law from CCS. Thus we know that
the LHS is Strong CCS Equivalent to the RHS and hence they are Evaluation
Bisimilar by lemma 6.1 on page 73. It is easy to see from the definition of
Strong CCS Equivalence (definition 3.15 on page 47) that if P =5, Q' then
P ~ Q. The result then follows by lemma 6.1. a

We have one further set of equations. They first deal with summation and
the 7-laws. They are given in figure 7.3. While these rules are true for general

processes, we will only apply them to processes in standard form.

N =, N+0 (P1)
N+N =, N+N+N (P2
N & 71.N (T1)
rTN+N 2 rN+N-+N (T2

Figure 7.3: Summation and ~ Laws

We do not need rule (P1) since it is contained within the definition of
summation, however we include it for clarity. The presence of N’ in (P2) and
(T2) may seem a little surprising. It is there because we will later restrict the

contexts in which the various equations may be used. Therefore to be able to

'P=p Qif P=vn. 3, 0;.P; forsomen, o and Piand Q = 3., o 7y @i-vn. P

88 CHAPTER 7. EQUATIONAL THEORY

allow (P2) and (T2) to be used in any sum we must have the N’ term there.
Another possible problem is how to show that, for example N = N + N. This
will follow using (P1) to get N + 0, then (P2) to get N + N + 0, followed by
(P1) to get N + N as required. We might be surprised. that there is not an N’
term in (P1) and (T1). In the (P1) case this is because it is not needed. We
just view N as “N + N'”. For (T1) we do not have N’ since the result is no
longer true with it there. Notice that a.0 ~ 7.a.0 (from the definition of delay
bisimulation) but a.0 + 5.0 % 7.a.0 + 4.0, since 7.a.0 + .0 = a.0 while ¢.0 + .0

cannot do anything equivalent and end up bisimilar to «.0.

Lemma?7.5
1. PE,Q=>P~Q
2. P2, Q=>P~Q

Proof

Observe that (P1) and (P2) are both contained within Strong CCS
Equivalence and hence are in Evaluation Bisimulation. (T1) and (T2) both
follow easily from the definition of delay bisimulation (definition 3.22 on
page 49). O
Definition 7.6

We let %) be the union of =, =, =, and ;.

We can now define the equational theory for the finite fragment of rNCCS.

Pg[sept] Q
ClP/X] = ClQ/X]

C[X] open TNCCS process

P2Q Q=R P~Q
P=R QEP

Figure 7.4: Equational Theory for Evaluation Bisimulation

Definition 7.7
For closed TNCCS processes we let = be defined as in figure 7.4. -

It may look as though our definition is overly restrictive in only allowing

one substitution of a process at a time. Because we have transitivity this

7.3. CHARACTERIZATION OF EVALUATION BISIMULATION 89

does not matter. We can encode a polyadic version in terms of the above
definition. We do not define = over processes with free variables. The only
way to bind a free variable is by using a rec term. However we may not have
arec term in a finite process so this case cannot occur. We therefore would
not add anything by allowing free variables.

Lemma 7.8
For P, @ in the finite fragment of TNCCS P =2 Q = P ~ Q

Proof

We know that ~ is a congruence relation. The result then follows from
lemmas 7.3, 7.4 and 7.5. m]

7.3 Characterization of Evaluation Bisimulation

In order to show that the equational theory characterizes Evaluation
Bisimulation on Finite Processes we now proceed by a two step argument.
We first show that any Finite Process is equivalent, in the equational theory,
to one in Standard form. We will then show that Evaluation Bisimularity
on Standard Forms implies that the two processes are equivalent in the

equational theory.

Lemma 7.9

For any Finite Process P there is a process, N, in standard form with
P=N.
Proof

We use the following three step method (noting that we use a-conversion

without comment):
1. Use (S2), (S4), (S5), (S6) and (E1) to pull out all restrictions.
2. Use (S3) and (E2) to expand out all parallel contexts into a single sum.

3. Use (S6) and (E1) to push all restrictions in, discarding restrictions that
do not restrict any channels and removing elements of sums that are

restricted out.

90 CHAPTER 7. EQUATIONAL THEORY

O

Note 7.10
We do not use the rule (S1) in lemma 7.9. This is principally because
it does not matter in what order parallel composition is expanded out since

summation is commutative.

We need to define the depth of a process in Standard Form that we will

use in various proofs.

Definition 7.11
We define the depth d(NV) of a standard form as:

d(0)
d(a.N) = 1+d(N)
d(3°N;) = max(d(N;))

I
o

We now prove various lemmas which we will use later.

Lemma 7.12
For any process, N, in standard form fn(NV) = (implies that N = 0.

Proof

We prove this by induction of the depth of N. If d(N) = 0 then we are
done. Otherwise N = 7.N; since it must be) «;.N; and o; must be 7.
Then by induction hypothesis each N; = 0 and hence N =), 7.0. Then the
result follows using (P1), (P2) and (T1). O

Lemma7.13
For processes N, N’ and M in standard form then

1. 7.N 5 N implies that 7. N + M =2 7.N + N' + M.

2. .N 78 N’ implies that 7.N + M = 7.N + a. N’ + M.

7.3. CHARACTERIZATION OF EVALUATION BISIMULATION 91

Proof
These both follow from using induction on the number of 7 steps and
(T2) multiple times, or (P2) is there are no 7 steps. In particular if N N
and
N=Ny5N;... 5 N;=N'

then
i = 1 The result follows immediately using (T2).

i>1 Then Ny 5 Noand N; = 7.No + Nj. Using the induction hypothesis on
7.Ny + N + N{ + M gives the result.

The second part follows identically. ‘ O

Note 7.14

We write 71 as shorthand for 77*. Thus it denotes one or more 7’s.

Corollary 7.15
For processes N, N, M and M’ in standard form with N’ = M’ then

1. N3 N'implies that N + M = N + M’ + M.
2. N 7% N’ implies that N + M = N + o.M’ + M.

Proof
We let N =3 ¢;.N;. If there are no 7 steps, which can only occur
for part (2), then N’ = ¢;.N; for some i. The result then follows using
(P2) and the fact that N + a.N' + M & N + a.M' + M. Otherwise there is
an ¢ with ¢; = 7 and 7.N; T 7.N' (or 7.N; 75 a.N' for part (2)). Then by
lemma 713 N+ M2 N+7.N' +M (or N+ M =N+ a.N'+ M for part
(2)). Therefore N+ M =2 N+7.M' +M (or N+ M= N+ o.M + M, as
required, for part (2)). Hence N + M = N + M' 4+ M, as required, using (T2)
and N + M= N+7.N' + M.
O
We now finish proving theorem 7.17. We proceed by a rather complicated
induction proof, in which we use the properties of delay bisimulation

without comment (see definition 3.22 on page 49). If M ~ N then we assume,

92 CHAPTER 7. EQUATIONAL THEORY

without loss of generality, that d(M) > d(N). The induction proceeds on the
lexicographic ordering on (d(M),d(N)). This may look like a rather strange
ordering, but the proof proceeds by showing that we can transform M into
N using only the equations given in figure 7.3 on page 87 and figure 7.4 on
page 88. The main idea, used repeatedly throughout the proof, is that if
M 5 M’ then there must be a N such that N 5> N’ with M’ ~ N'. But
d(M') < d(M) so by the induction hypothesis M’ = N'. Using this (possibly
multiple times) will often allow us to reduce the lexicographic depth. We also
use a similar idea with M = M’. We find that the proof proceeds easily if
d(M) # d(N) so we only comment further on the case when d(M) = d(N).
In this case we cannot necessarily reduce (in the lexicographic ordering)
(d(M),d(N)). If we cannot easily reduce the lexicographic depth then we
show directly that M = M + N (and similarly that M + N = N using
symmetry). From this we may deduce that M = N.

Lemma 7.16

For P, @ in the finite fragment of TINCCS P~ Q = P = Q

Proof
We proceed by induction on the lexicographic ordering on (d(M), d(N)).
We assume w.l.o.g. that d(M) > d(N). Then, possibly using (P1), we let
M = Z ;. Mq; + ZT.MQJ'

‘ai¢‘r
N = Z ap. Ny + ZT.NQ[

apFT

We now split into four cases.
d(N)=0
So we have N = 0 and hence N 4. Therefore we cannot have M ka1

with @ # 7 and hence (because M is in standard form) fn(M) = 0.
Therefore by lemma 7.12 M = (.

d(M) > 1+d(N)
Since M ~ N and M 5 M, for each j, we get N AN Nj; ~ Ma;.
Similarly we get Nj, ~ M;j; for each i. By induction hypothesis
M;; = Nj;andhence M = M' =37 o;. N1;+ 3 7.Ny; and d(M') < d(M).
Hence M’ = N by induction hypothesis, giving M = N as required.

7.3. CHARACTERIZATION OF EVALUATION BISIMULATION 93

d(M) =1+ d(N)

The same argument works as in the previous case unless there is a j s.t.
d(N3;) = d(M) — 12 in which case N;; = N and My; ~ N. This implies
that M,; ~ M and by induction hypothesis M,; = N. Then M = My;
by using corollary 7.15 once for each M,;, j' # j and once for each Mj;.
Therefore M = N as required.

d(M) = d(N)

If there is a j s.t. M 5 My, with My; ~ N then we are done since
d(Ma;) < d(M) andso My; = N and M = M,; using the same reasoning
as the [d(M) > 1+ d(N)] case.l Similarly if there is a Ny, with N 5 Ny,
and M ~ N, we are also done. Otherwise we show that there is a M’
suchthat M & M’ = N.

Welet M’ be M + N. So

M = Z o;.My; + ZT.MQJ' + Z ap. Ny, + ZT.NQ[

o FET ap#£T

We want to show that M = M'. We let My = M, M}, = M' and M has

one more term in the sum than M;_,. Then:

i=0
M = M].

0<i<n
So M! = M! | + o.L, where may be 7. f o = 7then N 5 L
and so there is a K s.t. M 7> K3 with K ~ L and hence by outer
induction hypothesis K = L. Therefore we also have M/_, =K.
Hence by corollary 7.15 M]_; = M]_, + a.L, since K = L. Hence
M]_, = M]_, + o.L as required.
Otherwise we have o # 7. Then we have N % L and so we also

have a K st. M ﬂ‘) K, for some j and K ~ L. So we also

have M]_, 74 K and also by outer induction hypothesis we have

*Notice that d(Ny;) < d(IV) for all s.
3We know that we must have at least one 7 here since otherwise we come back to the case
described above which we have already dealt with.

94 CHAPTER 7. EQUATIONAL THEORY

K = L. Therefore by corollary 7.15 M]_;, = M; , + L = Mj], as

required.

The same argument, but taking M = N, shows that M’ = N. Therefore

M = N asrequired.
m]
Theorem 7.17
For P, in the finite fragment of TINCCS P = Q < P ~Q
Proof
This follows from lemmas 7.8 and 7.16. O

By Theorem 7.17 we have an equational characterization of Delay
Bisimulation, which is sound and complete. @ We can also get a
characterisation of Evaluation Bisimulation on NCCS by using the translation

given in Definition 2.22 on page 35.

Part 11

CML,,

95

Chapter 8

The Calculus for CML

In this chapter we first present the background of CML. We then go on to give
the syntax and operational semantics of CML,,.

8.1 Introduction to CML

Concurrent ML (CML) is a fully concurrent higher order functional language.
It has all the properties normally associated with higher order functional
languages. In particular it has higher order recursive functions, and values
include not just integers and booleans, but also functions. The functions
are evaluated using a call-by-value semantics. The higher order function
constructs are augmented with primitives for concurrency. These include the
spawning of new processes and the ability of processes to communicate via,
possibly dynamically created, channels. These dynamically created channels
may also be viewed as private channels, over which only those to whom the
channel name has been divulged may communicate. The language is further
extended by adding delayed computations. These are also values and may be
communicated between processes, along with any other values.

It has already been shown in various contexts, e.g. [Mil90, San93a], that
the ability to communicate private channel names, combined with dynamic
name creation and recursion, together give enough power to encode both
higher order languages and object oriented languages. All these elements are
present in CML. However as Sangiorgi mentions in [San93a], while a first-

order paradigm should be taken as basic, a higher-order calculus can be very

97

98 CHAPTER 8.’ THE CALCULUS FOR CML

useful for reasoning at a more abstract level.

Reppy suggests in [Rep92] that there are three important aspects to good
language design. The first two are that there should be a real problem that
needs solving, and that the language should solve it. The third is that there
needs to be a firm theoretical foundation for the design. He also requires that
the design should be demonstrated in practice. He gives various problems for
which a concurrent, rather than just parallel, language would be useful and,
having implemented CML, he constructs a multi-threaded X window sysfem
toolkit (eXene). He also shows that CML compares favorably with nSystem,
a C light-weight process library. He thus shows that his implementation
of CML is a practical language to consider working in. He has also shown
that CML solves some real problems. He gives an operational semantics for
Aev- This is a language which embodies the main concurrency features of
CML. The operational semantics requires the use of two reduction relations.
The first is a polymorphically typed version of Plotkin’s A, calculus. The
second, which extends)\, to)\, deals with the concurrent aspects of the
language. The overall reduction relation is based on whole programs and not
on program fragments. This means, in particular, that the semantics is not
compositional. He also does not consider equivalences between processes.
These would be useful for ensuring the validity of possible optimisations that
may be used.

In [FH]95] Ferreira, Hennessy and Jeffrey give a calculus, xCML, which
contains the core concepts in CML. They give an operational semantics
which is compositional and furthermore uses one unified transition relation.
Having defined 4CML they then give various equivalence relations on
processes. However the calculus does not allow dynamic creation of channel

names.

8.2 Syntax of CML,

We base CML, on uCML* given in [FH95] with some small variations. The
syntax of CML, is given in figure 8.1 on the opposite page. The main
differences between ;CML* and CML, are that CML, has dynamic name

8.2, SYNTAX OF CML,

-99

Exp, e

Val, v

GEzxp, g

v
ce
if ethenecelsee
(e,e)
let z=eine
ee
g
ele

vn.e

fix (z=fny=¢)
<v,v >

[9]

)
v?
g=v

909

vn.g

true

false

0

Value

Constant application
Conditional

Pairing

Local declaration
Function application
Guarded expression
Parallel composition

Channel restriction

Literal

Recursive functions
Evaluated pair
Delayed expression
Variable

Output

Input

Wrapper

Binary summation
Null process

Channel restriction

True

False

Channel names
Unit value
Integers, i € N

Figure 8.1: Syntax of CML,

100 CHAPTER 8. THE CALCULUS FOR CML

creation, using the restriction operator v, and does not have the always
operator A. The former adds to the power of the language, while the lack
of the always operator A does not reduce the expressibilfty of the language.
We leave out A so that we may mirror the guarded nature of summation in
NCCS.

We describe the syntactic categories bottom up.

Lit The literals are made up from various base types. These include booleans
and integers. We also include a countable number of channel names.
There is also the unit value which is used to build more complicated

functions.

GExp The guarded expressions, written either g or ge, are those which must
input or output before reducing to anything else. These correspond to
the label guarded summation of NCCS. The null process A is included
here since we will want to allow summation of a guarded expressions
and the null process. It also allows us to deal simply with equivalences,
such as A being equivalent to vn.nlv. Channel name restriction
is included so that the structural congruence may work freely. In
particular we wish to have guarded expressions, such as vn.mln, in
which we may output a private name. Wrappers are used to allow
prefixing. A process may input or output a value on a channel and then
continue to behave as the second part of the wrapper. The second part
will normally be a function which takes one argument. In the case of
input this argument will be the value received. When name restriction
is used in conjunction with wrappers we may express mobility. This
may be done by generating new channel names and then sending them

to other processes.

Val The values are those expressions which are valid results from functions.
We also regard them as the set of expressions that may be transmitted
over channels. It is easily seen that all literals are reasonable results for
functions or for output on a channel. As already mentioned (recursive)
functions are regarded as acceptable values, since we may well apply

a higher order function to a function. Allowing functions as values also

8.2, SYNTAX OF CML, 101

allows us to have higher-order types. Only pairs in which both elements
are values are considered values. Delayed expressions are included
in the calculus particularly so that we may communicate processes
over channels. In order to do this we wrap up expressions as delayed
expressions, which may then be communicated to other processes.
These delayed expressions may be evaluated once, many times or
never, depending on the process that inputs the delayed expression.
Variables are included so that values are replaced by values in function
application. This will also apply when a process inputs a value since
this will be based on function application.

Exp Expressions may be regarded as being programs, whether whole or
fragments. We define our reduction relations on expressions. The
categories may be split into two parts, those associated with the aspects
of the language to do with higher-order functions, and those associated
with the concurrent aspects of the language. Values may be regarded
as being in either part, depending on whether they are functions or

communications.

The higher order function constructs include function application,
both that of constant application and that of applying a (possibly
higher order) function to a value. More discussion of constants is
included below. There are also primitives for conditional execution
of expressions. Pairing is used both for sequencing evaluation of

expressions and also for giving results of more than one value.

The constructs used in the concurrent aspect of the language are based
mainly on the communication channels. We have guarded expressions
which, as described above, are guarded by either an input or an output.
There is also name restriction, with the associated concept of dynamic
name creation. In addition to these we allow processes to occur in

parallel, so that they may communicate with one another.

Figure 8.2 on the next page gives the constant functions which we will use
throughout the consideration of CML,. The only constant function that is
included that was not in xCML* [FH95] is the match function. We include

102 CHAPTER 8. THE CALCULUS FOR CML

this for convenience and because we may need to compare restricted names.

o fst First value of an evaluated pair.

e snd Second value of an evaluated pair.
e add Addition of two integers.

e mul Multiplication of two integers.

e leq Less than or equal to.

e transmit OQutput a value on a channel.
ereceive Input a value on a channel.
e choose Binary choice.

e spawn Create a new process.

e sync Launch a delayed computation.
e wrap Combine delayed computations.
e never Delayed computation which deadlocks.

ealways Delayed computation which immediately evaluates
to a value.

e match Test for equality of names.

Figure 8.2: Constant functions

We could also include more complicated arithmetic or boolean functions
and primitives for channel name creation. However we will concentrate on

the core calculus.

Definition 8.1
We define the free and bound names (and variables) in figure 8.3 on the
opposite page.

Definition 8.2
We say that a name, n, is fresh in e if it does not appear in e as a free or
bound name or variable. We typically do not specify e when it is obvious from

the context, and take the most general e possible.

Some of the rules for determining the free names and variables may look
unconventional at first sight, in particular the rule for v;!ve. The reason for

this is that »; may well be a variable, not a channel name. This may occur, for

103

8.2. SYNTAX OF CML,

Expression fn bn fv bv
ce fn(e) bn(e) fv(e) bv(e)
if e; then e, else e3 U; fn(e;) U, bn(e;) U; fv(es) U, bv(es)
(e1,e2) U fafe:) U; ba(e:) U, fv(e) Usbv(e)
let z=e in €2 U; fn(e;) U, bn(e;) (fv(e2) \ {z}) Utv(er) | U; bv(e;) U ({z} Nfv(e2))
e1en Ui fn(e:) U; bn(e:) U; fv(e:) U; bv(e:)
erles Uy fn(e) U; ba(e:) Ui v(e) U; bv(e)
vn.e fn(e) \ {n} |bn(e) U ({n}Nin(e)) fv(e) bv(e)
fix (z=fny=e) fn(e) bn(e) fv(e) \ {z,y} bn(e) U ({z,y} Nfv(e))
< vi,ve > U; f(vs) U, bn(v;) U, fv(vi) U; bv(vs)
[gel fn(ge) bn(ge) fv(ge) bv(ge)
T 0] T 0
vilvs U; fn(vs) U; bn(ws) Ui fv(vi) Ui bv(vi)
v? fn(v) bn(v) fv(v) bv(v)
ge = v fn(ge) U fn(v) bn(ge) U bn(v) fv(ge) U fv(v) bv(ge) U bv(v)
ger & ges Us alges) U; bn(ge) Us fv(ges) U; brige:)
A 0 0 0 0
true, false) 0 0 0
n n 0 0 0
0 0 0 0 0
i 0 0 0 0

Figure 8.3: Free and bound names and variables

104 CHAPTER 8. THE CALCULUS FOR CML

example, in the following type of expression:
a? = fix (z=fny= yltrue)

In this case, the channel name over which true should be return is received
on channel a.
Note 8.3

When z is not a free variable in e we will write fn (y =) as shorthand for

fix (z=fny=e).

Definition 8.4 _
We call a CML, expression a process if it does not have a paraliel
composition at the outer level. We let closed CML, expressions be the set

of CML, expressions that have no free variables.

8.3 Structural congruence on CML,

As in NCCS we are going to use a structural congruence to simplify the

reduction relations.
vn.e =q vm.e[m/n] m ¢ fn(e)
letz=ecin f =, let y=ein f[y/z] y € tv(f)

fix(z=fmz=e) =, fix (y=fmhw=ely/z,w/2]) y,w & fv(e)

Figure 8.4: «-conversion for CML,

Definition 8.5
The structural congruence, =, is defined to be the smallest congruerice
containing the rules given in figure 8.5 on the next page, using the definition

of a-conversion given in figure 8.4.

The side conditions for a-conversion at first sight may look to be rather
over-restrictive. They are required to ensure that only the names or variables
bound by the outermost binder may be changed. The over-restrictiveness

is rather ephemeral because we may use a-conversion on the inner parts of

.the expression, before using the required rule, to ensure the side conditions

8.3. STRUCTURAL CONGRUENCE ON CML, 105

hold, and then afterwards to return the bound names and variables of the
inner expressions to the required values. It is also worth recalling that names

and variables are distinct, being of different syntactic types.

e = f e=q f
Ale = e
vnA = A
(eoler)lez = eol(er]e2)
vn.vm.e = vm.rn.e
vn.(erles) = (vn.er)les n & fn(ey)
vn.(etles) = erjvn.es n & fn(e;)
vn.(ce) = c(vn.e)
(el, e2) = (vn.ep,er) n & fn(es)
vn.(ey,e2) = (er,vn.es) n & fn(e;)
vn.(eres) = (vn.ei)es n & fn(es)
vn.(etes) = ei(vn.es) n ¢ fn(e1)
vn.(letz=e;iney) = letz=e; invn.e; n & fn(e;)
vn.(letz=e;ine;) = letz=vn.e;iney n & fn(ez)
vn.(if eg then e; else es) = if vn.ep then e; else ey n & fn(e, es)
vn.(if eg then e; else e;) = if ey then vn.e; else vn.eg n ¢ fn(eg)
vn(g=v) = (vng)=v n & fn(v)
vn.(g1@92) = vn.gi ®go n & fn(g2)
vn.(g1®g2) = g1 ®vn.ge n ¢ fn(g1)

Figure 8.5: Structural Congruence for CML,,

The structural equivalence may be split into three parts. The first deals
with a-conversion and is given in more detail in figure 8.4 on the opposite
page. The second includes the treatment of the dead process A. We allow
the deletion of the dead process, but only when it is not the rightmost
process in the expression! This might look rather peculiar. The rightmost

process is special, in that it is the only process that may return a value.

106 ‘ CHAPTER 8. THE CALCULUS FOR CML

It may be viewed as the controlling or »original process, which returns the
result of the program to the environment. We also include the notion that
restricting a name in the dead process does not do anything, so the restricted
and unrestricted versions may be regarded as the same. In this part of the
structural congruence we also include the enforcement of associativity on
parallel composition.

The third part deals with the scope of name restrictions. Alternatively
this may be viewed as an expression of the context which knows about a new
dynamically created name. We allow the scope to be changed so long as we
do not bind any previously free names, nor free any previously bound names.

Observe that we do not have a rule vn.e = e with the side condition that

n ¢ fn(e). This is because it is derivable thus (remembering that »n ¢ fn(e)):

e = Ale = (vn.A)|le =vn.(Ale) = Alvn.e =vn.e

8.4 Evaluation Relation

As well as using a structural congruence we also employ evaluation contexts.
These are essentially the contexts which do not block a reduction. These
correspond to the v7i(—) in the (JCOMP) rule in NCCS (see figure 2.2 on
page 26). It is merely that for CML, we will have more complicated contexts,

and use them in more rules.

Definition 8.6

The evaluation contexts are given in figure 8.6 on the next page.

Examining the evaluation contexts it is obvious that they do not contain
all possible contexts. For example the context (e, £[—]) is not included. This
is because we want to ensure evaluation proceeds such that the left-hand
part of a pair evaluates before the right-hand part. One might also wonder
why we do not have a context such as (v, £[—]). Instead of using this context
we follow [FHJ95] and reduce (v,e) to “letz = ein < v,z >”. Similarly
we want to ensure that we evaluate a function value before evaluating the
argument. Again rather than including a context v£[—] we allow ve to reduce
to “let y=ein f[v/z]” wherev = fix (z=fny=> f). In both cases we only allow
these reductions if the resulting expression, possibly in the presence of an

8.4. EVALUATION RELATION 107

if £[—] then e; else e

El-] == -

| vn.E[—]
| El-lle

| el€[-]

| cf[-]

| El-le

l (€[-]e)
|

|

let z=&[—]ine

Figure 8.6: Evaluation Contexts for CML,

evaluation context, can then evaluate to a committed form. The committed

forms are given in the next definition.

Definition 8.7

We let «, being any input or output, range over nlv and n?z for any
channel name 7, value v and variable z. We let [, being any label, range over
any « and /v for any value v. We then let the committed forms C be of the
form vr.l.e with the restrictions that {m} = 0ifl = n?zandn ¢ {m} if
I = nlv. These restrictions will be enforced by the evaluation relation.

We now define the “big step” evaluation relation for CML,.. The rules are
divided into five groups. The first, given in figure 8.7 are the axioms.

VAL IN

_— ouT —— _
v v.A nlv { nlv.() n? | nlz.x

Figure 8.7: Evaluation Relation on CML, — Axioms

These rules are fairly self-explanatory. The first, (VAL), shows that a value
may evaluate to return itself, and then continue as the dead process. The
other two rules output or input a value on a channel respectively. (OUT)
continues with the unit value, which is a simple value, so that prefixing

is possible using wrapping. When a process inputs a value, using (IN), it

108 CHAPTER 8. THE CALCULUS FOR CML

continues with the value, which may then be passed to a function using

wrapping.

gel | vii.a.e
SUM; - {71} Nin(gex) =0
ger D ges | vii.a.e

ges | vil.a.e
SUM: {7t} Nn(ge;) =0
ge1 ® ges | vii.ane

WRAP ge Y viiue {@}Nfn(v) =0

ge = v || vii.a.ve

Figure 8.8: Evaluation Relation on CML, — Guarding Rules

The second group, given in figure 8.8, are those dealing with guarded
processes. We do not give the rules for restriction here, but instead collect
them together in figure 8.9. The two (SUM) rules indicate that & is choice,
and in particular not internal choice. The rule for wrappers (WRAP) applies
a function value to an expression. This function value may be the received
value from an input, the trivial function from an output, or the result of

another wrapped expression.

The third group, given in figure 8.9 on the opposite page, are those deal-
ing with the restriction operator. We include the (STRUC) rule because the
structural equivalence deals mainly with the scope of restriction. The other
rules deal with the different cases depending on whether the process outputs
or returns a value, and whether the name being restricted is used in the value.
~ Aname is only allowed in the initial restriction if there is a free variable of the

same name in the value that the process outputs or returns.

In figure 8.10 on page 110 we give the static rules. These are the rules
where a larger context does not inhibit the reduction of an inner part of
the process. It is slightly more restrictive than evaluation contexts for two
reasons. The first reason is that a value may only be returned from the
rightmost process. The second is that, apart from (PAR), the value will be
used by the context. These two reésons mean that we only allow a value in
rule (PAR;). '

8.4. EVALUATION RELATION 109

f=e elvile €=f

STRUC
fevilf
el nlz.e
RES; n#m
vm.e | n?z.vm.e
= !
el vim.\Jv.e
rRES,, ¢ v n € fn(v) \ M

vn.e || vn.vm./v.€

e | vim.nlv.e , , .
IRES; - - - n#Fm!, m'efn(v)\m
vm'.e J vm .vm.nlv.e

= !
uRES,/ ¢y vive n ¢ f(v)

vn.e | vm./v.vn.e

e | vm.nlv.e
uRES, . ﬁ — — m' & {n,n(v)}
vm'.e | vim.nlv.vm'.e

Figure 8.9: Evaluation Relation on CML, — Restriction Rules

The final set of rules are contained in figure 8.11 on page 111. These
are the rules that give the evaluation relation its “big step” nature. They
are mainly rules where a result is produced by an inner process and used
by its context to determine how the evaluation will proceed. There are two
main, related, points to note. Firstly, as in the evaluation relation for NCCS,
a subterm may only reduce if the whole term then has an action which it
may perform. In general a subterm which may evaluate to a value does not
necessarily have a continuation which may further reduce. The second point
is that of the evaluation contexts which deal with this apparent problem. As
previously mentioned, the evaluation context is such that it does not inhibit
reduction of the inner term. Here it is being used to show that if the inner
term performs a reduction then the whole term may perform that reduction
and then continue, but only if the whole term (after the reduction) has an
action that it may perform.

We also require a definition for § which is used in (CON,/). Obviously ¢

depends on what constant functions there are. We give, in figure 8.12, the

110 . CHAPTER 8. THE CALCULUS FOR CML

PAR el vil.ée () -
At Nin(f) =
1 fle 4 vil.(fle")
PAR el vit.a.e i) — 0
it Nin(f) =
’ e|f I vi.a.(€|f)
con, eviad
ce | vit.a.(ce')
APP el vi.a.e 0 f' o
i ef I vit.a.(e' f) ny P =
PAIR,, el vi.a.e 1 i) ¢
A Nfn(f) =
(e, f) Y vit.a(€, f)
I el vita.e (. g) 0
® ifethen f else g |} vii.ca.(if € then f else g) iy Nin(f,g) =
el vi.a.e :
Lol {7} N a(f,9) = 0

let z=ein f | vii.a.(let z=¢€ in f)

Figure 8.10: Evaluation Relation on CML, — Static Rules

evaluation of § expressions for the constant functions given in figure 8.2 on
page 102.

The only difference from [FHJ95] is in dealing with the constant always.
This is because we do not have A in our calculus. We could add A into CML,,
with Av being a guarded expression, for any value v. The evaluation relation
would then need to be augmented with the following rule:

v{ C
Av|C

ALW

This differs from [FHJ95] in that we combine two steps, the first being
“Av — v” and the second being the evaluation of v || 1/v.A. We know that Av
can always evaluate since v can always evaluate to \/v.A.

Alternatively we may view Av as being “r.v". This is essentially how A is

seen in [FHJ95]. We may then translate expressions involving A in a similar

somy da1s 81g — “TIND UO uoneEYy uoneneay 1 1°g amsar]

111

8.4. EVALUATION RELATION

0= ()gu{w} O 1 /el SINOD
o1 [(f\z/alp)wals Jawwad { pagufo
0= (D {w}) A oD

O [([z/alflp)ywalz fragutf pojuwadfs

] D [GourTo=z307]3 A
0= (omu) ot (/o yuds woppae

AmmAH\mﬂ |Hvun —apuen= AMM“NQVQ A_EM oM ﬁmmﬂww.\w »
}= g=ap 0= JU U D‘:,:ﬁ&\@_mmﬂm to=~R uozmmv..@&.\w mm.a\/..@h‘:ﬁw ddVv

_ (@)U (1) O [(%019)]2 A
p= IR O l(<zta>urto=z3ey|p)udz Jprafuatfls Hvd

O 1 [fo ospe 2 moy 2 313

|
ot T,m_\m_m posrey/M o
O ft [fo espe %o ueyy 2 3|3)
|
o[l plz prenayf fra
o 1 [29]2 A
NOD

D 1 [((a9)9lp)udlz paffuafa

112 CHAPTER 8. THE CALCULUS FOR CML

ifst,<v,w>) = v é(snd, <v,w>) = w
d(add,<m,n>) = m+n d(mul,<m,n>) = mxn
d(leq,<m,n>) = m<n
d(transmit, < k,v >) = [klv] d(receive, k) = [k7]
d(choose, < [ge1],[ge2] >) = [ge1 @ gea] d(never,()) = [A]
d(wrap, < [ge],v >) = [ge = v] d(always,v) = v
(spawn,v) = wv()|() d(sync,[ge]) = ge
d(match, < m,n>) = true ifm=n

false otherwise

Figure 8.12: Evaluation Relation on CML, — Constants

manner to the translation of TNCCS into NCCS (see definition 2.22). There

are various possibilities including a generalised form of
Av 2 vn.(nlv|n?)

where n is a fresh name. This may then be extended so that Av may be part

of a sum or a wrapped expression. For example:
G & (Av = v') 2 vn.(nl|G @ (n? = v')

In this particular case one fresh name would be used for each A.. If we wished
to reduce the number of fresh names needed we could instead translate Av
by

AvE vn.({n? = fn (z = A)}|{nltrue = fn(z = v)})

where z is not a free name or variable in v.

If we use this encoding then it can also be extended, for example:

G® (Av = ') 2 vn. ({n? = fn (z = A)} |G @ {nltrue = fn (z = v)})

8.5 Example CML, program

As an example we will consider the problem of a paranoid executive. He is the

manager of a large, hi-tech company. Not only is he fed up with unwanted

8.5. EXAMPLE CML, PROGRAM 113

e-mail but he is also worried about the possibility of unsolicited telephone
calls. A solution that he is considering is that when a customer wants to
phone him they are issued with their own private (internal) telephone code.
This number will connect them to a relay which is, in turn, connected to the
executive’s telephone. The reason for the private number is that the executive
wants to be able to track the number if it is passed around. An additional
requirement is that the executive must be able to disable the relay. This will
mean that if someone gives their private number out then the relay can be
disabled and they will be unable to connect to the felay in future.

The following is presented as a possible solution, together with some
discussion about the problems with it. We regard all of the executive’s side
of the problem as being dealt with by a “manager expression”. This will log all
requests for a new private number, together with the information required to
disable the relay. We do not concern ourselves with the manager expression
but merely look at a function which we will call the Initiator, In. In order
to set up the Initiator we assume that there are two spéciﬁc channel names.
These are m and m/. The first is used as a control channel. It is used for
communication with the manager expression. The second is the executive’s
real “telephone” number. Neither of these should be viewed as public, but
we do not specifically restrict them. The main reason for this is that we do
not want to include the manager expression. This will allow us to focus on
the Initiator function.

The expression In is a function which will do two jobs. It will set up
the relay, R, and return the private “telephone number” (channel name). It
also communicates the details of the relay to the manager expression. The
function takes one argument, which is the “telephone number” of the person
who wishes to set up the link. This “telephone number” will be used to send

messages back from the executive to the customer.

In=fn(z = vprd.(m! << p,d >,z >= fn(y = R|p)))

Informally the function takes one argument, the customer’s “telephone
number”, and then creates two private channel names, p and d. The first is the
private number and the second is used to disable the relay. It then tells the

manager expression about both these private channel names, as well as the

114 CHAPTER 8. THE CALCULUS FOR CML

) &

customer’s “telephone number”. After this it starts up the relay and returns
the private “telephone number” which the customer should use to telephone
the executive.

More formally in figure 8.13 on the opposite page we give a possible evalu-
ation. Noting that R, given below, contains no free variables, we use (in order
from top to bottom): (OUT), (WRAP), (rRES,) twice, (STRUC), (LET, /), (APP)
and (VAL) twice. First a nested pair, containing the two new names and the
argument to C, is outputted on channel m; shown in step 1. We remember
that m should be viewed as a restricted channel, and so the manager expres-
sion will need to input the nested pair. The continuation can then evaluate as
shown in step 2, using (VAL) three times, (PAR;), (uRES v)» ((RES /), (STRUC),
(LET) and (APP /). Here the relay R is spawned and the “private telephone
number” is returned. We note that the remaining continuation cannot now
produce any more values, but this does not mean that it cannot do anything.
The relay is still active. This is an example of an expression that can start up
a “background process”. |

There is an obvious problem with this function. This is that, being a
function, it can be used many times. This could easily be remedied by making
the “manager expression” input on channel name m only once. This would
require making a new channel name for each function. However that is not
a problem since we have dynamic name creation. We have to create a new
name anyway since we want m to be a private name.

We now consider the implementation of the relay R. We divide R into
three different parts. The first, D (Disable), allows the relay to be disabled.
The other two, L (Listen) and A (Answer) act as the relay.

‘R == fix(z=fmy= (Do L)d A))()

D == d?=fn(z=A)

L = p?=f(z= (m'<p,z>=fn(w= 1))
A = m'?7=1fn(z= (tlz = n(w= 7))

Again we describe the expression informally first. We will first describe
the expressions, D, L and A, starting with D. D will read in a value on channel
d and then become the dead process. In this way the “manager” may send a

message to the relay on channel d and the channel will then die. L reads

115

8.5. EXAMPLE CML, PROGRAM

m! << p,d>,t>)m! <<p,d>t>.()
Ip)) 4 m! <<p,d>,¢t>.{fn(y = (Rlp)) ()}
[p))} 4 vd.m! <<p,d>,¢t>.{fn(y = (Rlp)) O}
vp.vd. {m! << p,d >,t >= fn(y = (R|p))} I vpvdm! << p,d >,t > . {fn(y = (R|p)) ()}
tyVEA AlAlvpwd. {m! <<p,d >,z >= fn(y = (R[p))}[t/z] } vp.rd.m! << p,d >,t> . {fn(y = (RIp)) O}
Inl /In.A Allet z=t invp.vd. {m! << p,d >,z >=> fn(y = (R|p))}In/z] § vp.vd.m! << p,d >,t > . {fn(y = (R[p)) O}
(In)t § vp.vd.m! << p,d >,t > .{fn(y = (R|p)) O}

m! << p,d >t >=fn(y =

(R
vd. {m! << p,d >,t >=fn(y = (R
(R

Step 1

pdvpA
Rlp I v/p.(R|A)
vd.(R|p) | v/p.vd.(R|A)
vp.vd.(R|p) | vp./p.vd.(R|A)
04v0-A vpwd(AA|(RIP)[0/Y]) 4 vp.v/p.rd.(RIA)

fu (y = (Rlp)) 4 vin(y = (Rlp)) .A vp.vd.(Allet y=() in (R|p)) § vp.v/p.vd.(R|A)
vp.vd.fu (y = (Rlp)) () § vp.v/p.vd.(R|A)
Step 2

Figure 8.13: Example evaluation — Initiator

116 CHAPTER 8. THE CALCULUS FOR CML

in a “message” on channel p, sends the “message” to the manager and then
becomes R. Similarly A reads in a message from the “manager”, sends it out
on channel ¢, and then becomes R. R, then, may do any one of D, L and A.
Since D ends up with the dead process and not R, we see that it does indeed
disable the relay.

To look at the relay more formally we consider it receiving a value on
each of the three channels, d, p and m'. To reduce repetition we let R’ be
the function such that R = R'(). For case D there are two steps; input on
channel d and then a clean-up step, both given in figure 8.14 on the next
page. The latter does not input or output so we need another process to
generate a committed form. The input step uses rules (IN), (WRAP), (SUM;)
twice, (STRUC), (LET,)), (APP /) and (VAL) twice. The clean-up step uses
(OUT), (PARy), (STRUC), (LET,)), (APP, /) and (VAL) twice. We can see from
the derivations that K does indeed do what was claimed. L and A both have
a three step sequence of evaluations. First they read in a value on p (m')
and then output on m’ (¢ respectively) followed by a clean-up step. When
a sequence of values is sent, the clean-up step may be joined onto the front
of a read step, however we keep them separate for clarity. Because A and L
are essentially the same, we only give the steps for L.

From the derivations given in figure 8.15 on page 118, we see that the
listen (and similarly the answer) part of the relay behaves as required. The
derivations proceed using: (IN), (WRAP), (SUM,), (SUM,), (STRUC), (LET),
(APP,)) and (VAL) twice for the input step. Then (OUT), (WRAP), (STRUC),
(LET,)), (APP /) and (VAL) twice are used for the output step. Finally, (OUT),
(PARy), (STRUC), (LET,)), (APP /) and (VAL) twice are used for the clean-up
step. One point to note is that when a message is sent on m/, it is paired
with the channel name that it was originally received on. This means that the
executive can tell who sent the message. At least he can if the customer has
not shared his code, in which case he only knows who the code was originally
given to.

There are also problems with the relay. One is that m’ is not a private
name. This could be overcome by restricting the name. Alternatively the

relay could be started up by the “manager” expression.

117

8.5. EXAMPLE CML, PROGRAM

d? | dtw.w
K| dwn(z=A)w
K& LR /z] | d?w.fn(z = A)w
(K ® L[R/z]) ® A[R'/z])[()/y] ¥ d?w.fn (z = A) w
O0v0-A AA((K & LIR /z]) @ A[R'/z])[()/y] 4 d?w.fn (z = A) w
R | /R A Allet y=() in (K ® L) ® A)[R//z] § d?w.fn (z = A) w
R () § d?w.fn (z = A)w

Value sent on d — Input step

altrue | altrue.()
a'true|A |} a'true.(()|A)
w { Vw.A altrue|A|A|A[w/z] | altrue.(()|A)
fn(z=A) | Vin(z2=>A).A altrue|A|let z=w in A[K/z] |} altrue.(()|A)
altrue|fn (z = A) w | altrue.(()|A)

Value sent on d — Clean up step

Figure 8.14: Example evaluation — Relay, disable

CHAPTER 8. THE CALCULUS FOR CML

118

ua)s ‘Ae[oy — uoneneas a[durexy :G1°g 8Ly

dais dn uea[D) — d uo Juas anfep

(41())-enayo f () A\mw = SV uj|onagjp
(A10)enay t 2/ 3 (m)ug oy wr)=m gorylonasip v (q < @) WA (g < 0) g
(&10)enagip ft [n/(]glvivlenao v/ 1 ()
(A1())-onayp f 27lonayiv

()-onxgjv {} anayjv

dos ;ndinQ — d uo Juas anfep
(((F = m)uwg << z'd > jw) < z)uj = T a1YM
0O A\mw = SV uy <nd>jwfn AAANN <~ Sv uf =< zd > jw) < Nv uj
(O (1 < m)uy <nd > ((< o) g << z'd > jw) arm=z39]|y VAN T
O(g<n)uy <nd>jwtz/n)((g €n)uye<zd>uw)yly vapfn
V(en)uy <nd>uf (g <n)uge<nd>jw

() <nd>jwH<nd>jw

days mduj — d uo Juas anfep

n((((F < m)wg =< z'd > jw) « z) w)nid f ()7
n((((H < m)ug << z'd > jw) < 2) wg)nd f [2/ 4]y & (7 1)) wr ()=A 1]y VM

n((((4 <) g << zd> jw) < z)ag)nid 1 [B/ 1=/ glv & (z/glTe x)viv. v 00

n(((H < m)wg =< z'd> jw) < 2) wg)ngd) [8/)([z/ gy © ([2/ 1)1 & 31))
n((((F < @) wy << z'd > jw) < z) yg)nyd 1§ [2/ g7 @)
n((((g < m)ug =< z'd > jw) < z) wg)nid f [3/ 41T
nnidf ;d

Chapter 9

Transition relation for CML,,

Definition 9.1
In the same manner as in definition 8.7, welet a; = nlv[n?z|7,l = a;|\/v

and C = vitl.ewith {fi} = 0ifl =n?zorl = 7.

We now define the “small step” transition relation for CML,.. Again, we

define it in terms of the same five groups as for the evaluation relation.

VAL

———— OUT IN
v \y VU.A nlv N\ nlv.() n? \yn?z.x

Figure 9.1: Transition Relation on CML, — Axioms

The rules for axioms are the same as those used in the evaluation relation.
This is because we are using the same syntax for both the evaluation relation
and the transition relation.

Similarly the rules for guarded expressions are essentially the same as for
the evaluation relation, as are the rules for restriction and the static rules.

The “small step” nature of the transition relation follows from the silent
rules. Instead of continuing the reduction in the presence of an evaluation
context, the reduction stops. We observe (in lemma 9.30 on page 136) that
not having the evaluation context in the silent rules does not reduce the
possible transitions.

We use the same evaluation relation for ¢ as given in figure 8.12.

119

120 CHAPTER 9. TRANSITION RELATION FOR CML,

e1 \ Vii.a.e
sum, — 2> {7} N fn(ges) = 0
ge1 @ ges \ vii.a.e

ges \(Vit.a.e
SUM, ~ {7t} Nin(ge1) =0
ge; @ ges \ vii.a.e

ge \ vii.a.e
WRAP {7} Nnin(v) =0
ge = v\ vit.a.ve

‘ Figure 9.2: Transition Relation on CML, — Guarding Rules

f=e eNvnle e=f

STRUC
FN il f
e\ n?z.e
RES; L n#m
vm.e \ nlz.vm.e
i
‘ e\ U\ /v.€/
| TRES, R L’ n € fn(v)
‘ vn.e \, vn.vm./v.e
e\, vm.nlv.e/

IRES, n#m', m e€mv)
vm/.e \ vm/ .vim.nlv.e

— !/
Av.e
uRES,/ ¢ v n ¢ f(v)
vn.e \ vim.\/v.vn.e

e \, vm.nlv.e’
uRES; m' & {n,fn(v)}

vm/.e \, vi.nlv.vm'.e

e\, 7.€e

RES _
! vn.e \, T.vn.e

Figure 9.3: Transition Relation on CML, — Restriction Rules

121

PAR,

PAR,

CON,

PAIR,,

LET,

e\, vitl.e

fle\ovitl(fle)

e\ vii.a;.€

elf N Vﬁ-a’r-(ellf)

e\ vi.a,.€

ce \, vit.a;.(ce')

e \ vii.a,.€

ef \ vit.a (€' f)

e\, vi.a;.e

(e, f) \vitaz.(¢, f)

e\, vit.a,.€

if e then f else g \, vii.a,.(if € then f else g)

e\ vir.a;.€

let z=ein f \ vii.a,.(let z=¢'in f)

{fi}nin(f) =0

{fi} Nin(f) =0

{n} Nfn(f) =0

{n}nin(f) =0

{fi} Nin(f) =0

{ﬁ} ﬂfn(f,g) =0

{71} nn(f,g) =0

Figure 9.4: Transition Relation on CML, — Static Rules

122 CHAPTER 9. TRANSITION RELATION FOR CML,

CON e\ vit/v.€
v ce \ T.vii.(€¢'|6(c,v))
- e\, virue.e
' if e then e, else e \, 7.(¢'[e;)
I e\, v/false.¢’
d if e thene; else ey \, 7.(¢'|ef)
d 1 .
e1 \ Uit.\/v.e
PAIR i e (@) N fa(es) = 0
(e1,e2) \, T.vii.(€/|let t=e3 in < v,z >)
= !
e1 \ Vit.\/v.e
APP,, ki (@) N fn(es, e3) = 0

eres \ T.vii.(€]|let y=es in e3[v/z])
and v = fix (z=fny=e3)

— /
e1 \y Vii.\/v.e
LET,, L VR {7} Nin(es) =0
let z=¢e; in ey \, T.U73.(€} |e2[v/z])

CoM, e\ vm.nlve fN\;nlz.f (7} N fa(f) = 0

elf N (€| f'[v/2])

com eNynlz.e [N\ vmnl.f {m}Nin(e) =0
2 elf \y Tvm.(e'[v/z]|F)

Figure 9.5: Transition Relation on CML, — Silent Rules

Definition 9.2
We write e \, 7*.¢’ to mean that there are ¢; such thate = ¢, ¢ = e,
and e; \, 7.e;;1. Similarly we write e \, 7*v7i.l.¢’ to mean that e \, 7*.¢"” and

e’ \ vii.l.e.

Definition 9.3 ,

A derivation of e \, v7i.l.¢' is normalif the (STRUC) rule is used only once,
and then as the last rule of the derivation. Furthermore, it is simpleif it does
not use the (STRUC) rule at all. As in definition 4.2 we say that e \, v7i.l.e' is

normal/simple if the derivation we will use is normal/simple.

123

We will now define the restriction contexts which will be used in various
proofs. These are essentially those contexts which restrictions can be pulled
out of or pushed into.

Definition 9.4
The restriction contexts, R[] are given in figure 9.6.

R[] == —

(R[=],e)
(e, R[-])
if R[—] thene; else ey
if e then R[] else ey
if e then e; else R[—]
let z=R[—]ine
let z=ein R[]

gl-] == - — is a guarded expression
| 90 G[-]
| gl-log
| G-]=w

Figure 9.6: Restriction Contexts for CML,

Lemma 9.5

For any CML, expression e in which all bound names are distinct and

distinct from all free names then e = R[vn.¢'] implies that e = vn.R[¢/].

Furthermore, ife \, v7.a..€” has a derivation that does not use a-conversion

then either n € {7} ore” = vn.e"” for some e’.

124 CHAPTER 9. TRANSITION RELATION FOR CML,

Proof

The first part follows by noting that we may pull out a restriction from
any restriction context, remembering that all bound names are distinct and
distinct from all free names. The second part follows from a simple induction
on the depth of the derivation tree. O

Lemma 9.6

For any CML, expressions vn.e and ¢/, names 7 and label o, then if e
has all bound names distinct and distinct from all free names, and there is a
derivation for vn.e N\, vii.a,.€’ which doesn’t use any a-conversion STRUC
rules, then there is a derivation of vn.e N\, vni.a,.¢” that doesn't use any
a-conversion STRUC rules nor any STRUC rules that move the restriction of
the name n, where ¢” is e’ if n € {mi} and vn.e"” = ¢’ otherwise. Also if STRUC
rules are ignored then the last rule used in the derivation is the RES rule that
introduces the restriction of the name n.
Proof

This follows easily from lemma 9.5. ad

Notation 9.7

For labels ! and I’ we write [= !’ to mean
e | =r7ifandonlyif! = 7.

e | =n?zifand onlyif!’ = n?z.

e | =nlyvifand only if I’ = nlv' and v = ¥

e | = /wifandonlyif!’ = /v’ andv =v'.

We now present the main lemma of this section. It will be used many

times in the rest of the section and also in chapter 12.

Lemma 9.8

If e N\, vii.l.e' then there are f and f' with f =, e, f'=¢€,1 = I’ and
f N\ vi.l'.f' simple, wheree, ¢/, f and f’ are CML,, processes. Furthermore, if -
all bound names are distinct and different from all free names then we may
take f = e.
Proof

We proceed by a 6 step method. We give an outline of each step:

125

1. We a-convert to ensure that all bound names are distinct and distinct

from all free names.
2. We pull out restrictions.

3. We replace STRUC rules that introduce A’s with PAR; rules (or change
the expression involved in the PAR; rule already used).

4. We remove the need for STRUC rules that rebracket expressions by
reordering PAR and COM rules.

5. We now replace the STRUC rules that delete A’s by not introducing the
A in the first place.

6. Finally we push RES rules into their correct position so that we don't
need any STRUC rules that deal with the repositioning of channel name

restrictions.

(

The result is that the only part of STRUC that is needed for the left-hand

side of the expression is a-conversion. We now give the details.

1. We first a-convert e so that all bound names are different from all free
names and all other bound names. This may be done syntactically
by ensuring that no restriction operator uses the same name as any
other or any free name. In doing this a-conversion we ensure that
we do not change any bound names which are in 7!. We call this
new expression f. We split each STRUC rule into two; one which
deals with a-conversion and one which deals with the other parts of
structural congruence. We split the a-conversion part into two, the first
is the parts that deal with the left-hand part of the transition and the
second deals with the right-hand part. We push this first part up the
derivation tree?, adding a STRUC rule each time for the right-hand part
of the transition. This follows easily by induction on the depth of the

derivation above the last use STRUC rule dealing with a-conversion of

'We may do this since no name in 7 may occur free in e, and they must all be distinct.
*N.B. the requirement that all bound names are distinct and distinct from all free

names is used heavily here since otherwise we might “a-convert” expressions such as

vn.(altrue|nltrue) into va.(altruelaltrue) which is not allowed.

126

CHAPTER 9. TRANSITION RELATION FOR CML,

the left-hand part of the transition. We then push all the a-conversion
uses of the STRUC rule down through the derivation. Again this follows

easily by induction on the distance to the bottom of the derivation.

. We now pull out all restrictions (apart from those enclosed in fix

expressions). This may be done by lemma 9.6. We are left with a
derivation that doesn’t use a-conversion apart from the last rule, nor
does it use STRUC rules to move restrictions, again apart from the last
rule. The last rules in the derivation, ignoring STRUC rules, are now all
RES rules.

. We now consider those parts of the STRUC rules that deal with the

introduction of A’s and will turn each one into a PAR; rule (or are
absorbed into an alreé.dy present PAR; rule). We split each STRUC
rule into two. The first part deals with the introduction of A’s, and
the second part is for the rest of the STRUC rule. We then split each
STRUC that introduces a A into one rule for each A that is introduced.
We now push each rule up to the bottom of the block that it affects. If
the structural congruence rule is e = A|e we split e into e;'s where no

e; contains a parallel composition at the outer level and e = e;]. .. |e,.

'Then we observe where, in this block e; is introduced. Ifit is introduced

in a PAR rule then we replace e¢; with A|e;. Otherwise e; must occur on
it's own, at the top of the block. We then add an extra PAR; rule which
merely adds A. Whichever way the A is added we also add a STRUC
rule to return the right-hand side of the transition to it's original form,
and then push this STRUC rule down the derivation tree. The first part
follows by noting that it may all be done syntactically. We may freely
push down STRUC rules that do not deal with a-conversion since all

bound names are distinct from each other and from all the free names.

. We now consider each block that is made up of PAR and COM rules.

These are delimited by all other rules apart from the STRUC and RES
rules. These blocks allow bracketing to be rearranged, either by use of
STRUC rules or by the order in which the PAR and COM rules occur.

We split each STRUC rule up into several rules, each of which deals

127

with rebracketing of one block, plus one extra rule that deals with all
the other uses of the structural congruence. We push the STRUC rule
dealing with each block to the-end of the set of PAR and COM rules that
it deals with. We then split each rule up into many rules, each of which
uses only one rule given in figure 8.5 on page 105. We then push each

rule up the block as far as it can go. We have three cases to consider.

¢ The first is that the rebracketing occurs in an expression that is
introduced by a PAR rule, in which case we merely rebracket the
expression as it is introduced at the cost of a STRUC rule that
rebrackets that right-hand side of the transition. This new STRUC

rule is then pushed down the derivation.

e The second is that the last two rules before the STRUC were either
both PAR rules or one was a PAR rule and the other was a COM

rule. In each case we may rearrange the derivation as follows:
e\ ar.€
elf \ar.(€|f) —
(elNlg N ar.((€'1f)]g)

e\ ar.e
el(fl9) \ ar.(¢'|(flg))

f\,zaT-f, f\la'r-f,
elf \ta'r-(elf,) — flg \O‘T'(fllg)
(el£)lg v ar-((elf)g) el(flg) « ar.(el(f'lg))
e\ a.c g\ ag
elf \va.(elf) gNad — eNae flg\a(fld)
(el g (€' H)]g) el(flg) \« 7-(¢|(f1g")
f\af f\af g\ag
elf \ca.(elf) gN\agd — flg e 7.(f'lg")
(el)lg e -((elf)]g) el(flg) N« 7-(el(f'lg"))
eNva.e fN\a.f f\af!
elf \«7.(e'f") — eNcae flg\a.(f'lg)
(el H)lg e 7-(('1f)g) el(flg) \« 7-(¢'|("]9))

The other cases occur symmetrically. Again we have to introduce a

128 CHAPTER 9. TRANSITION RELATION FOR CML,

STRUC rule to rebracket the right-hand side of the transition. This
STRUC rule is again pushed down the derivation tree.

e The third case occurs when we have (¢|(f|g)) and one PAR rule
introduced both f and g at once. In this case we perform the

following transformation:

g\ arg 1o
T : flg \a-.(flg)
(el Nl ar-((elf)lg) el(fl9) e ar-(el(£1g)

Again the symmetric case occurs similarly and we need an extra
STRUC rule to rebracket the right-hand side of the transition. This
STRUC rule is again pushed down through the derivation tree.

5. We now consider the STRUC rules, that deal with the removal of A’s,
splitting where necessary. We push these rules that remove A’s up the
derivation tree until they reach the PAR rule that introduces them. The
rule is then either removed if it only introduces the A or the relevant A

is removed from the expression introduced by the PAR rule.

6. By considering the bracketing of the final expression on the left-hand
side of the transition and the placement of the restriction operators,
we move the restriction rules up the derivation tree until they are in
the correct position. There won'’t be any problems with bound names
becoming free because of step 1. We note that we can put the rule in
the exact position required because of the bracketing, although this
may involve merging a RES rule with a PAR rule if the restriction only
appears in the expression introduced by the PAR rule. As in the previous
step we add a STRUC rule to move the restriction operators to their
correct places on the right-hand side of the transition. This STRUC rule

is again pushed down through the derivation.

This gives us the required simple derivation tree and f’. The second part
of the lemma follows by observing that we do not need to a-convert e in order
to ensure that all bound names are distinct and different from all free names.

O

9.1. INITIAL LEMMAS 129

Lemma 9.9

Given any normal derivation of e \, v7.l.e/, for CML, processes e and
¢/, names 7 and label /, then for any label I’ with [= !’ there is a normal
derivation of e \, v7i.l'.€'.

Proof

If [is an input or a 7 action then the result follows trivially. Otherwise [
is nlv or \/v and I is nlv’ or \/v' respectively. The result follows by replacing
v by ¢/ in the first (topmost) rule used in the derivation and adding an extra
STRUC rule at the end, noting that two STRUC rules may be combined into

one. o
Lemma 9.10

Ife N\, vri.l.e’, where e and ¢’ are CML,, processes, then there is a normal
derivation for it.
Proof

The result follows trivially from lemmas 9.8 and 9.9. O

9.1 Initial Lemmas

We prove various lemmas that we will use later. Each lemma follows the same
method so we give the general method here and only the particular details of
each lemma in its proof. In each case the assumptions and conclusions are
only given up to the structural congruence shown in figure 8.5 on page 105,
and each lemma involves a single step transition. We only prove these
lemmas for CML, processes. We first prove the lemma assuming that the
transition is simple. This means that the transition is structure preserving,
and we will use this property many times. We may then extend the lemma
to the case where the transition is normal, since the assumptions and
conclusions involve the structural congruence. We use lemma 9.10 to show

that this is enough to prove the lemma for the general case.

Note 9.11
We will use lemma 9.9 many times in this section without explicit

reference.

130 CHAPTER 9. TRANSITION RELATION FOR CML,

Lemma 9.12

For any CML, expressionse, f and ¢’ and fresh name m then m!true|f = e
and e N\, 7.¢’ imply that there is an f’ with ¢’ = m!true|f’ and f \, 7.f’.
Proof

We let ¢ =, f with the additional restrictions that all bound names in
g are distinct and different from the free names of ¢ and the fresh name m.
Then, using (STRUC), by lemma 9.8 on page 124 there is a simple derivation

no—

mltruelg \, 7.¢" with ¢ ¢/. Then, noting that the name m occurs only
once in m!true|g, we observe that m!true must have been introduced by the
last PAR; rule used (taking the whole of the left-hand branch of a COM rule
to be later than the right-hand branch). Thus, by deleting this rule if it only
introduces m!true or deleting the m!true from the rule if not, we obtain a
derivation of g \, 7.¢’ where ¢g" = ml!true|g’. We let f' = ¢’ and then one use

of STRUC shows that f \, 7.f’, as required. O
Lemma 9.13

For any CML, expressionse, f and ¢’ and fresh name m then m!true|f = e

and e \, m!true.¢’ imply thate’ = ()|f.

Proof

We let ¢ =, f with the additional restrictions that all bound names in
g are distinct and different from the free names of g and the fresh name m.
Then, using (STRUC), by lemma 9.8 on page 124 there is a simple derivation
mltrue|g \, m!true.g” with ¢" = ¢'. Then, noting that the name m occurs
only once in mltrue|g, we observe that the first rule used must have been
OUT, and that all the other rules used were PAR,. Therefore we see that
g" = ()|g and the result follows by chasing structural equivalences. m]

Corollary 9.14

Forany CML, expressionse, f and ¢’ and fresh name m then m!true|f = e
and e \, 7*.mltrue.¢’ imply that there is an f' with ¢’ = ()| f' and f \, 7*.f'.
Proof

This follows directly using lemma 9.12 multiple times and lemma 9.13
once. O

We now show that, given any transition, we may remove the outermost

restriction operators.

9.1. INITIAL LEMMAS 131

Lemma 9.15
For any CML expressions vii.e and ¢/, label ! and names i then
vii.e \, v.l.e implies that there is an ¢’ s.t. e N\, vm/.l.e" and ' = vm".€",

wherem/ = m \ 7and m” =7 \ M.

Proof

By lemma 9.8 there are f =, e and f' withe=, f, ¢ =f,1 = I’ and
f N\ vm.l'.f' having a simple derivation®. We now consider this derivation.
The last rules used must have been the RES rules, which may have been of
various different types, that introduced v7. Removing these rules givés usa
(simple) derivation of g \, vm'.l'.¢', where g =, e and vm".¢' = ¢'. Therefore
taking e’ = ¢’ and using STRUC once, and lemma 9.9, we derive a, normal,

derivation of e \, v77i'.l.€", as required. O

We now turn our attention to considering what further details we may
observe about transitions of parallel compositions of processes. We first
show that if a transition is not silent then only one part of the parallel
composition is changed*. We then go on to describe the various cases that

can occur when the transition is silent.

Lemma 9.16
For any expressions e, f and g, label I # 7 and names 7i then e|f \, v7i.l.g
implies that there is a ¢’ with either e \, vii.l.¢, (vii.¢')|f = vii.g and ! # /v

foranywvor f \ v7i.l.g' and e|v7i.(¢') = vii.g.

Proof

By lemma 9.8 there is a simple derivation of A \, v#.l'.h’ for some
h=qe|f,! = l'and ¥’ = g. But we may see that h must be €'|f’ for some
¢’ and f’, with bn(e') Nbn(f') =0, e =, f' and f =, f'. The last rule used in
the derivation must have been either PAR; or PAR,. The two cases now follow
easily, using the fact that bn(e') Nbu(f') = 0, lemma 9.9 and STRUC. O

3Notice that we may ensure that no name in 7 is a-converted since they can’t be the same

as any free name.
“We define two processes that are structurally congruent to be the same in this context.

132 CHAPTER 9. TRANSITION RELATION FOR CML,

Lemma 9.17
For any expressions e, f and g then e|f \, 7.¢g implies that one of the

following four cases must hold:
1. There is an expression f’ with f N\, 7.f" and e|f’' = g.
2. There is an expression ¢ withe \, 7.¢’ and ¢'|f = g.

3. There are expressions ¢’ and f/, value v and names 7: C fn(v) and n with
e\ vm.nlv.e, f \yn?z.f andvmi.(¢'|f'[v/z]) = g.

4. There are expressions ¢’ and f’, value v and names 77 C fn(v) and n with
eN\yn?z.e, f \ vm.nlv.f andvm.(e'[v/z]|f') = g.

Proof

By lemma 9.8 there is a simple derivation of 4 \, 7.4’ for some h =, e|f
and b’ = g. But we may see that » must be ¢"|f” for some ¢” and f”, with
bu(e”) Nbn(f") =0, e =, €” and f =, f”. The last rule used in the derivation
must have been one of PAR;, PAR 5, COM; and COM;,. The four possible
rules correspond to the four possible cases, and in each case the result follows

immediately. m

We concentrate on how values behave in various parallel contexts. We
start by demonstrating that values which are not the rightmost process in an
expression behave essentially as if they were “inert”, only being subject to a-
conversion. We will later show in lemma 10.27 that we may regard the value

as not even being there.

Lemma 9.18
For any CML, expressions e and f, value v, label / and names 7 then
vle \, v7i.l.f implies that there is an f’ with e N\, vi.l.f' and f = v|f".

Proof . .

As in lemma 9.16 overleaf, using lemma 9.8, there are ¢/, I’ and ¢’ with
vV =q v,l =1'and ¢ =, e and v'|e’ \, h for some h = v7i.l'.f. Then the
last rule used must have been PAR;. If this rule only introduced +’ then the
result follows easily. Otherwise we remove the v’ from the left-hand side of
the introduced expression and the result then follows easily. In each case we

use the STRUC rule at most once to a-convert v’ back to v. The result then

9.1. INITIAL LEMMAS 133

follows using lemma 9.9. |

Corollary 9.19

For any CML, expressions ¢, f and ¢/, value v, names 7 and 7 and
label | then e = wvm.(v|f) and e \, viil.e imply that there are f’,
m' and m" with vi.e' = v/ v/ .(V|f), vm.(flv) ¢ v/ .Lom”.(f'|v) and

vm. f N\, v Lom” . f.

Proof
This follows directly from lemmas 9.15 and 9.18. O

Corollary 9.20

For any CML, expressions e, f, g and ¢, value v, label | and names 7
and 7 then e = vm.(f|v|g) and e N\, vfi.l.e’ imply that there are f’, ¢/, M/
and m" with vii.e' = v/ v .(f'|vlg'), v (flvlg) N\ v/ Lom".(f'|v]g") and

vm.(flg) N\ v/ Lo .(f'|g').

Proof

First we observe that e = vmi.(f|(v|g)) and hence that one use of STRUC
implies that v.(f|(v|g)) \\ v7i.l.¢'. The result then follows from lemmas 9.15,
9.16 and 9.17 and corollary 9.19. O

Corollary 9.21

For any CML, expressionse, f, g and ¢/, label /, names 7z and 7 and value

v then

l. e = vm.(vlf) and e \, 7*wvii.l.e’ imply that there are f/, m' and
m” with vii.e' = v/ v . (v|f"), vim.(v|f) ¢ TFom Lvd” . (v|f') and

vin.f Ny T*vm! Lom” . f'.

2. e = vm.(flvlg) and e\, 7*.v7i.l.¢’ imply there are f/, ¢/, 7' and m"
with vii.e' = v/ v .(f'|v|g'), v (flvlg) \ 75 v/ Lvm".(f'|v]g') and
v (flg) \y TF v/ Lo . (f'|g).
Proof

These follow directly from corollaries 9.19 and 9.20. 0

We have now considered the case when the value is not the rightmost

rocess and observed that it acts in an “inert” manner. We may also wonder
y

134 CHAPTER 9. TRANSITION RELATION FOR CML,

how processes behave when they have a value as the rightmost element of
the expression. We show that for a process e|v then either e may reduce or
the result may reduce to the value v.
Lemma 9.22
For any expressions e¢, f and ¢, value v and names 7 and

m then e=vm.(flv) and e\, vii.a,.¢/ imply that there are f/, m'
and m" with vi.e' = v/ v .(f'v), vm.(flv) \ v .c,.vm".(f'|v) and
v f \ v .o vm” f.
Proof

This follows in the same way as Corollary 9.19. O
Lemma 9.23

For any expressions e, f and ¢/, values v and +' and names 7 and 77 then
e = vit.(flv) and e N\, vi.\/v'.€ imply that 7 C 7, v = v' and €' = vii/.(f|A),
where m' = 7 \ M.
Proof

This follows from lemma 9.8 noting that the Simple derivation must be

one use of VAL, then one use of PAR; and then various RES rules. O

Having shown how values behave in an “inert” way when in the middle of
an expression, we now show that we may introduce a value, or more generally
any expression, in the middle of a parallel composition. We also show that we
may reorder processes under certain conditions.

Lemma 9.24

For CML, expressions e, f, g and €/, label | and names 7 and 7 then
e =vm.(f|g) and e \ vii.l.e’ imply that there are f/, ¢’ and 7' such that
e =vii'.(f'|¢"). Then for any h, vm.(f|h|g) \ va.l.vi'.(f'|hlg) .
Proof ’

The first part follows directly from lemmas 9.15, 9.16, 9.17 and then 9.9.
The second part then follows in a similar way, with additional use of either
the PAR; or PAR; rule. o

Lemma 9.25 ,

For CML, expressions e, f, g, h and ¢/, label ! and names 7i and 7 then
e = vm.(f|g|h) and e\ v7i.l.¢’ imply that there are f/, ¢’, #’ and 7’ such that
e =vit' .(f'|¢'|W) and vir.(g|f|h) Ny viLvi (¢ |f|R).

9.1. INITIAL LEMMAS 135

Proof
The first part follows from lemmas 9.15, 9.16 and 9.17. The second part

follows by piecing together the various bits given as a result of the lemmas
used in the first part. O

Lemma 9.26
For CML, expressions e and ¢/, names 7 and value v then e \, v7i.\/v.¢/
implies that there is an f with e = v7i.(f|v) and e’ = f|A.

Proof

This follows easily by induction on the derivation of e \, vi. /v.€'. O

Lemma 9.27
For CML, expressions e, ¢’ and e”, names 7; and 17, label / and value v then
e\, vii./v.€' and v7i.e’ \ vr.l.e” implies that there is an "’ with e N\, vmi.l.e"

and vmi.e” \, vii.\/v.€".

Proof
By lemma 9.26 there is an f with e = vAi.(f|v) and ¢’ = f|A. Then

by lemmas 9.15 and 9.16 we see that there are g and 7' with e’ = vii'.g|A,
A =nnNm,n" =xn\mandvi.f \, v.lvi'.g. Wenow let e” = vii'.(g|v). The

result follows using various RES and PAR rules. O

Lemma 9.28

For CML, expressions ¢ and ¢, names 7 and m and value v then
e \(vii.mlv.¢’ implies that for any names 7’ with 7’ N fn(e) = 0 and a 1-1
mapping between 7i and 7’ then e Y\ Vit .mlv[ii' /R).¢/[7' /7). Similarly if
e \, vii./v.€’ then e \, vit'.\/v[@i’ [7i].€'[7i’ [7i].

Proof

Firstly we note that 7' N fn(e) = () implies that m & 7', 7' N fn(vii.e’) = 0
and 7' N fn(vii.w) = 0 as well. We consider the (normal) derivation of
e \, vii.mlv.€/. (By lemma 9.10 such a derivation exists.) We then just relabel
all names according to the 1-1 map. Finally we use alpha-conversion to

restore bound names in e, v and ¢’ to finalise the result as required. O

136 CHAPTER 9. TRANSITION RELATION FOR CML,

9.2 Linkbetween evaluation and transition

We now come to the main result of this chapter. This is the equivalencé of
evaluation and transition. We first give the main result, and then split the
proof into the two directions.

Theorem 9.29

For CML, processes e and ¢/, e | vii.l.e' implies and is implied by
‘ e\, Tvi.l.e.
We give the proof near the end of this section, with most of the section being
given over to the lemmas required for the proof.

If we compare theorem 9.29, above, with the corresponding result for
NCCS (theorem 5.5 on page 71) then we see the result for CML, is much
cleaner. There are two main reasons for this. The first is that we do not
have an explicit silent action, 7, in the syntax of CML,. Nor do we have an
extended syntax that includes silent actions. The second reason is that we
also have the (STRUC) rule in the transition relation. In particular, if the
unfolding of recursive processes is added to the structural congruence for
NCCS, the strong CCS congruence in theorem 5.5 may be replaced by the
structural congruence, =. We do not have recursive processes in CML,,, only
recursive functions which expand as a silent step in the transition relation,

so this problem does not occur in CML,,.

9.2.1 Evaluation to Transition

We first prove some initial lemmas.
Lemma 9.30

For each evaluation context £[—] (cf. figure 8.6) e N\, 7.¢' = E£[e] \ 7.€[€’]
Proof

We proceed by induction on the structure of £[—]. In each case if e \, 7.¢/
then E[e] N\, 7.£[¢'] follows using the appropriate reduction rule. O
Lemma 9.31

el vitle = e\ vl

Proof

We proceed by induction on the derivation of e |} v7i.l.¢'. Last rule used:

9.2. LINK BETWEEN EVALUATION AND TRANSITION 137

VAL Hence e = v. Hence v \, /v.A.

OUT Hence e = nlv and nlv \, nlv.().

IN Hencee =n?andn? \ n?z.z.

SUM; Hencee = ge; G ges and ge; | vii.c.€’. Hence by induction hypothesis
ge1 \, T*.vii.a.e'. Observe that ge; X, 7.€” because of the restrictions on
the syntax of guarded expressions. Hence ge; \, vii.a.e’ and e \, vii.c.€/
using SUM;.

SUM; Follows in the same way as SUM;.

WRAP Hence e = ge = v, ge | vii.a.e” and e | vii.a.ve”. Then by induction
hypothesis and the same argument as in SUM; ge \, v7i.a.¢’’ and hence
using WRAP, e \, vii.a.€'.

STRUC Hencee = f, f | vii.l.f', and f’ = €'. Hence by induction hypothesis

N\ Trvnd fl o But3f; st f = fo, fi ¢ 7-fiv1 and f, \, v7i.l.f'. Then
applying STRUC to the first and last in the sequence gives e \, 7*.v7i.l.€/

as required.

RES (of all types) Hence e = vm.f. By induction hypothesis f \, 7*.v7.l.f’
where f' is ¢’ without the added restriction. Defining f; as above, we get
that applying RES; to f; \, 7.fi+1 for i < n and the corresponding RES

when i = n gives e \, 7*.vii.l.€’ as required.

PAR; Hencee = fles, f | vAi.l.f' and ¢’ = f’|e;. By induction hypothesis
f N\ Twi.l.f'. We define f; as above. Then fori < n, f; \, 7.fis1
implies that f;lea ~\, 7.(fi+1|e2) using PAR;. Also f, \, vi.l.f' implies

that fp,|es \ v7i.l.(f'|e2) and hence we have e \, 7*.v7i.l.€’ as required.
PAR, follows in a similar fashion to PAR;.
CON,, follows in a similar fashion to PAR;.
APP,, follows in a similar fashion to PAR;.
PAIR, follows in a similar fashion to PAR;.

IF, follows in a similar fashion to PAR;.

138 CHAPTER 9. TRANSITION RELATION FOR CML,

LET, follows in a similar fashion to PAR;.

CON, Hence e = E[cf], f | vm./v.f' and Evm.(f'|é(c,v))] | viil.€.
Therefore, using the induction hypothesis we get f \, 7*.vm.4/v.f’ and
Elvm.(f'|6(c,v))] ¢ 7*.vii.l.e’ Again we define f; as above. Then for
i < n'we use CON,, and lemma 9.30 to get that £[cf;] \, 7.€[cfi+1]. Then
fn \y Vv f! implies that ¢f, \, 7.vm.(f'|6(c,v)) and then applying
lemma 9.30 to this gives E[cf,] \(T.E[vm.(f'|d(c,v))]. Putting these all

together we get e \, 7*.v7i.l.¢’ as required.
IF; follows in the same way as CON,.
IF; follows in the same way as CON,,. -
PAIR , follows in the same way as CON .
APP , follows in the same way as CON_,.
LET,, follows in the same way as CON,,.

COM; Hence e = £[f1|f2] and there are f], f5, m’, m and v with fo | m/'?z.f3,
A vmm.f], and Evm.(fi|fslv/z])] | wvile. By induction
hypothesis f1 \, 7*.vm.m'lv.f{ and fo \,7*.m'?z.f5. We define
fii and f»; in the obvious manner with fi, \, vm.m/lv.f{ and
fom \ym'?z.f5. Using PAR; and lemma 9.30 (multiple times) we get
E[f1lf2] \« T*.E[f1n|f2] and then using PAR; and lemma 9.30 (multiple
times) we get £[f1,|f2] \v 7*E[fin|fom]. Then using COM; and lemma
9.30 gives & fin|fom] \« TE[vM.(f1|f3[v/z])]. Then induction hypothesis
on Elvm.(filfs[v/z])] 4 viil.e' gives E[vm.(f1|falv/z])] \ TFviil.€.
Putting these all together gives the required result.

COM; Similar to COM;.

9.2.2 Transition to Evaluation

Lemma 9.32
e\ vinde & l#T=>elvile

9.2. LINK BETWEEN EVALUATION AND TRANSITION 139

Proof

The derivation of e \, v7i.l.€’ gives a derivation of e | v7i.l.e’ using the
same rules, observing that once a 7 transition is introduced it remains. O
Lemma 9.33

eNT.€ & E[]IC=E]C

Proof

We proceed by induction on the dérivation of e \, 7.¢'. Last rule used:
VAL Cannot occur since \/v # 7.
OUT Similarly cannot occur.
IN Cannot occur.
SUM; Cannot occur since ge X, 7.¢'.
SUM; Similarly cannot occur.
WRAP Cannot occur for same reason as above.

STRUC Hence we have e = Hf N\ r.f and f' = €. E[€] = £[f'] implies
that £[f'] | C using STRUC. Hence by induction hypothesis £[f] | C.
Then e = f implies that £[e] = £[f] and hence using STRUC again we
get £[e] | C asrequired.

RES,; (N.B. this is the only possible RES rule that can occur.) Hence we have
e =vn.f and e’ = vn.f'. E[vn.f'] is an evaluation context and hence by

induction hypothesis £[vn.f] | C as required.
PAR; Follows in a similar manner to RES;.
PAR; Follows in a similar manner to RES,.
CON,, Follows in a similar manner to RES...
APP, Follows in a similar manner to RES,.
PAIR, Follows in a similar manner to RES...

IF, Follows in a similar manner to RES,.

140 CHAPTER 9. TRANSITION RELATION FOR CML,

LET, Follows in a similar manner to RES,.

CON,, Hence we have e=cf, ¢ =uvi.(f'|(c,v)), f\ vit.\/u.f' and
Eva.(f'|6(c,v))] § C. By lemma 9.32 f || vii.\/v.f' and hence using
CON,, we gete = cf || C as required. '

IF; Follows in similar fashion to CON,,.

IF; Follows in similar fashion to CON,,.
PAIR,, Follows in similar fashion to CON,,.
APP , Follows in similar fashion to CON,,.
LET , Follows in similar fashion to CON,.

COM; Hence we have f, \ vi.nlu.f], foN\yn?z.f;, e= fi|fe and
Elvm.(fi|fslv/z])] 4 C. Then using lemma 9.32 twice and COM;

gives e || C as required.

COM,, Follows in similar fashion to COM;.

Lemma 9.34
e\ 7ruile = el vil.e
Proof

Follows from lemmas 9.32 and 9.33 using induction on the number of 7

steps. O

Restatement of Theorem 9.29
For CML, processes e and ¢/, e | vii.l.e/ implies‘ and is implied by

e\, 7*.vil.e.
Proof ,

This follows from lemmas 9.31 and 9.34. O
Corollary 9.35

For CML, expressions ¢, f and g, names 7 and 77, value v and label [then
e § vii./v.f and vii.f | vm.l.g imply that there is an h with'e | vm.l.h and
vim.h N\ vit.A/v.g.

9.2. LINK BETWEEN EVALUATION AND TRANSITION 141

Proof

e || vii.\/v.f implies that there are eg, ey, .. ., e, With e = eg, ep \, v7i.\/v.f
and e; \, 7.e;4+1. Similarly there are f, fi, ..., fywith f = fo, f, \, v/.l.g and
fi \¢ 7.fi+1. The result follows by applying lemma 9.27 ¢ + 1 times. O

Chapter 10

Bisimulation on CML,,

We now turn our attention to the bisimulations we intend to give for CML,,.

This is a fairly long and mixed chapter so we give an outline of its layout.

10.1 Outline of the Chapter

The main content of the chapter starts in section 10.2 with a discussion of the
various aspirations we may have for any equivalences we define on CML,,.
We then have a look at various simple expressions and consider whether we
would like them to be equivalent. This is in section 10.3. In the following

section we consider a particular pair of expressions which give us some

- deeper understanding of some of the issues involved in deciding whether

two expressions should be equivalent. This also allows us to have a look at
the issue of privacy of channel names. One idea that sometimes helps us to
understand the concept of dynamic channel creation is that such a channel
is “private” and only accessible to those expressions to which this “private”
channel name is passed. We consider how “private” a dynamically created
channel name is.

In section 10.5 we define Evaluation Bisimulation, our main, and
weakest, equivalence relation for CML,. We then go on in section 10.6
to define Strong Bisimulation for CML, and continue by giving a reduced
version of Strong Bisimulation. This reduced version is then proved to be
equivalent to the original version. In section 10.7 we prove various useful

properties of Strong Bisimulation. These properties will be used to prove

143

144 CHAPTER 10. BISIMULATION ON CML,

the equivalent properties for Evaluation Bisimulation and to mirror all the
results given in the section on properties of Evaluation Bisimulation that
will be used in the proof of congruence for Evaluation Bisimulation. We
then give the corresponding proofs for Evaluation Bisimulation in section
10.8. The chapter concludes with two final sections. The first gives some
basic examples of equivalent expressions and the second describes the

relationship of our equivalences with those given in [FHJ95].

10.2 Aspirations for an Equivalence

In section 8.1 we mentioned that Reppy did not define an equivalence
between processes. Having defined CML, we now turn our attention to
defining an equivalence for expressions in CML,. We first consider what

properties we want our equivalence to satisfy.

1. The first criterion that we desire is that the equivalence is closed under
reduction, in particular under evaluation. If we wish to replace one
expression with another, possibly under restricted circumstances, we
do not want the replacement to cease to behave the same way after just

one evaluation step. We wish it to be able to mimic the other forever.

2. A second criterion is that we wish to replace one expression by another
that does not just mimic the other, but also does no more than
the expression it is replacing. It is therefore desirable that the two -
expressions be completely interchangeable, i.e. we wish to have a

bisimulation and not just a simulation.

3. Thirdly we would like bisimilar processes to be exchangeable in as
many contexts as possible. Ideally we want the bisimulation to be a

congruence relation.

4. We also wish the bisimulation to be an equivalence relation, and in
particular it should be reflexive. Since there is non-determinism in the
language, we only require that one expression may mimic another, and

not that it must! mimic the other.

1For a more detailed discussion of may and must see, for example, [Hen94].

10.2. ASPIRATIONS FOR AN EQUIVALENCE 145

5. Finally we would like the equivalence to be as weak as possible without
allowing the two expressions to be observably different. This leads us
to another question, which is “what do we consider to be observable?”

We take the following decisions about what we may observe:

(a) The returning of a value is observable. However it is less obvious
whether the value itself should be observable. In particular, if
the value is restricted, that is it has restricted channel names as
part of it, then the values possible (in)equivalence with another
value, which may also have restricted names, may depend on
the expressions which returned them as values. We give some
examples of this in section 10.3. However, just ignoring the
returned value is too weak. Therefore we allow the value to be

applied to a function in the context of the returning expression.

(b) An expression that commits to transmitting a value on a channel
is also taken to be observable. The channel upon which the value
is transmitted is also observable. However, for the same reasons
given above, the value is only observable by being applied to a

function in the context of the returning expression.

(c) An expression committing to receiving on a specified, unrestricted
channel is regarded as being observable. Indeed we will view it as
being the case in which we may not only know the name of the
channel, but we may also “reply” to the “request” for an input, and

send a value on the channel to answer the “request”.

(d) A further question is whether any silent actions should be
observable. We might regard all actions as taking a fixed length
of time and so we can observe silent actions by watching a clock.
However the very name “silent actions” suggests that they should
not be observable. Indeed this is part of the background to
evaluation. We could well argue that a practical use of equivalence
is to replace one slow process by another faster one. The main
difference may be in terms of the number of silent actions that

each performs.

146 CHAPTER 10. BISIMULATION ON CML,

10.3 Equivalent or not?

We now present various pairs of expressions which we may wish to be

equivalent or not. The first pair to be considered are:

[R-r>

v|A A

for any value v. At first it may seem that we do not want these two to be

equivalent, however neither can do any evaluation or transition.

We now consider another case:

fn (z = if n? then true else false)

[[Ree

fn (z = if n? then false else true)

These are two expressions which we intuitively say should not be equal. This
is because if they are sent either true or false, having been applied to any
value, then they each give a result. However the results will be different. We

now consider a modified version:

A = vn.(n!true|fn (z = if n? then true else false))

[1=e

B = vn.(n!false|fn (z = if n? then false else true))

We now have the situation where each expression will give a result
which is a restricted value. The unrestricted versions of the values are not
equivalent, as noted above. However this does not necessarily mean that
they are inequivalent. We might ask whether there is a CML, function which
will return true if given expression A and false if given B. This function will
take the function returned by A (or B) as an argument, and then may create
as many copies as it wishes. However each will have the channel name n
restricted. Each copy would use the same n though. However there can
only be one copy of n!true (or n!false). This may suggest that the two are
equivaleht. It certainly suggests that restriction complicates the question of

equivalence.

10.4. EQUIVALENCE — EXTENDED PROBLEM 147
10.4 Equivalence — extended problem

We will consider a version of an example used by Stark in [Sta95] to show how
hard it is to give a precise notion of privacy. We define two expressions F' and
F' below:

F
FI

vy.vz.(fn(z = if (match < z,y >) then z else y))

e e

vy.vz.(fn (z = if (match < z,z >) then z else y))

The idea is to consider how private “private names” are. If the names y
and z were completely private in F' and F’ then the two expressions should
be equivalent. Therefore the study of these two expressions gives us some
indication about how strong privacy is.

The main question is whether F and F' should be thought of as
equivalent. Both F' and F’ can evaluate to functions, which are values. These
functions each have two restricted, or private, names y and ». However, for
the moment we will give an example of an evaluation for F when it has been

applied to a name, n. We recall that names are also values.

false || (/false.A _
A = <ny>lV/<ny>.A Alfalse | /false.A y 4 Vy.A
match < n,y >| /false.A Aly 4 Vy.A

if (match < n,y >) then zelsey | /y.A

A
nl /n.A Alif (match < n,y >) thenzelsey | \/y.A
B = let u=nin (if (match < u,y >) then z else y) | /y.A

)
vz.(let u=nin (if (match < u,y >) then z else y)) | Vy.vz.A
vy.vz.(let u=nin (if (match < u,y >) then z else y)) | vy.\/y.vz.A

vy.vz.(Allet u=nin (if (match < u,y >) then z else y)) | vy.\/y.A

F | vywvz. /fix (v=fz= (if (match < z,y >) then z else y)) .A B
Fnl vy /y.A

Figure 10.1: Example function evaluation

148 CHAPTER 10. BISIMULATION ON CML,

The derivation for Fn | vy../y.A is given in figure -10.1. We may
observe that the function F is deterministic since it does not have any
communications and, although it accepts any value, it only evaluates if the
value it is applied to is a name. We may see in a similar manner that F'n
evaluates to vy. /y.A as well. This may lead us to think that 7 and F’ are
equivalent. They can both be applied to a name, and only evaluate when the
value they are applied to is a name. When they are applied to a name they
both return the same result, noting that both y and z are private names.

However this suggestion leads us to the wrong conclusion. The following

expression returns a different result when applied to F' and F”:
G=fn(f = [letu=fnin (let v=fuin [match < u,v >])])

We will write F; for fn (z = if (match < z,y >) then z else y) and Fj for
fn (z = if (match < z,z >) then z else y). We may then write F as vy.vz.Fy
and F' as vy.vz.F]. Using a derivation very similar to the one in figure 10.1

we can show that Fin | 1/y.A. Similar derivations also show the following:
e Finl \/y.A
e Fiy | z.A

o FlylyyA

We give the derivation trees for GF | /false.A and GF' || /true.A in
figures 10.2 and 10.3 respectively. From this we may see that it is possible
to differentiate between F and F’. This is in accord with [Sta95]. There is a
requirement to be allowed to use higher order functions in order to be able
to show the difference between F and F'. The bisimulations we define in
sections 10.5 and 10.6 can both show that F and F’ differ.

Therefore, returning to our original question about how private “private
names” are, we see that private names are not perfectly private. Any
expression which wishes to have a private name must itself ensure that it
does not allow it to be given away to another expression. We see, just as Stark

did in [Sta95], that privacy is a very difficult concept to quantify.

-149

10.4. EQUIVALENCE — EXTENDED PROBLEM

A5 10} UOTIBALIOp uonen[eay :z°01 a3y

v-osrer/M t 1O

vosresM 1 ([([< a‘n > yoyewr] urnf=a 9a1) uruf =n 3af] ut Ly = f y9[|y)21'fin

Vot o

vostesM 1 ([([< a‘n > yoyewr] ur nf =a 9o]) ur uf =n 3oy ur Ly = f y91) 21fin

vosresM 1 (([< a‘n > yoyewr| ur nly =a 3o]) ur ulyy =n joy|y)-z1fia Vg zafiaf g

v-osre; ft (([< a‘n > yoyewr] ut nly=a jo1) ur ulg =n 3a[)z1'fin

vosreiN ft ([< a‘fi > yoyewr] ur Aty =a yo1|y) 21fia VAN uly

vostesS 1t ([< a‘f > yogewr| ut iy =a y9)) 24 fia

vosreiNM ft (< z A > yoyew|y)-zafia vzNM A

vosrej i< 2 ‘A > yoyeurzmfin

v-osrey/ 1 (este3|y) zafia V<zh> MP<zi >

V-os[ey/ f asyej

CHAPTER 10. BISIMULATION ON CML,

150

5 10J UOTIRALISP uonenreaq g1 am3ry

venu/ it 49

yoennA 1 ([([< a‘n > yoyewr| ur n g =0 33[) w1 u,J =n 39]] ut Ly = 4 W1|y) z1fin

vortto

venxnN 1 ([([< a‘n > yoyewr| ur n =0 99[) UL U, J =0 39]]| UL L7 = 4 301) 21 fin

venx/M f (([< a‘n > yoyewr| urnly=a 991) uruly =n jay|y)zafia Vigzafiag g

vennN f (([< a‘n > yoyewr| ur nly=a g91) ur uly =n o) z1fin
venn/ ([a‘fi > yoyew| ur ilg =a yo1|y) 21 fin . VAN ulg

voeniM f ([< a‘fi > yoyewr| ur ily =a yoy)-zafin

venuN (< fi‘fi > yoyew|y) zafin VN kg

vennN < fi‘fi > yoyewrzafin

vonaA 1 (enay|y) zafin V<AA>NM <A >

yeni /N { enag

10.5. EVALUATION BISIMULATION FOR CML, 151

10.5 Evaluation Bisimulation for CML,

We follow Sangiorgi [San92] in generalising Milner’s ideas of concretion and
abstraction in [Mil91]. We let concretions be of the form vii < v,e >, and
abstractions be (z,), where 7 is a, possibly empty, set of channel names, v is

avalue, z is a variable and e is an expression. We also require that 7 C fn(v).

Notation 10.1
We let C, D represent concretions and A4, B represent abstractions.
Then, if C is vii <v,e’ > and A is (z,¢€'), we write e |} m!C as shorthand for

e vi.mlv.e/, el /Cfore | vii.\/v.e’ and e || m?Afore | m?z.¢'.

Notation 10.2
We write CML, to mean the set of closed CML, expressions where the
context makes it clear that we are talking about expressions rather than the

name of the calculus.

Definition 10.3
We also extend Milner’s pseudo-application Mil91]. If A = (z,e) and
C = vii<wv, f> then using a-conversion to ensure that z ¢ 7 and fn(e) N7 = 0
we define
AeC =vii(ev/z]|f)
C e A=vi.(fle[v/z])

We may now define Evaluation Bisimulation. We recall from section
8.4 that the rightmost part of a parallel expression is special, in that it is
the only part that may return a value. All other parts may only receive
or transmit values. When we defined Evaluation Bisiinilarity for NCCS in
section 3.1 on page 42 we restricted the contexts used to distinguish between
inequivalent expressions. In particular we restricted the contexts to be
parallel NCCS expression. In the CML, case we might think that in order
to have our equivalence being a congruence relation we would require the

contexts to be more complicated. In fact we will define our bisimulation

~ using only contexts which have a single CML,, expression added in parallel,

and furthermore it will be added on the left. In the NCCS case we merely

required that the continuations of the two expressions remained equivalent.

152 CHAPTER 10. BISIMULATION ON CML,

As we have already discussed in section 10.2 this would be too weak for
CML,. Instead we allow returned or transmitted values to be received by
a CML, expression, and require that the expressions in parallel with the
corresponding continuations continue to be equivalent.

We will see in corollary 10.22 that the order of expressions in a parallel
composition doesn't matter as long as the rightmost expression remains as
the rightmost one. This means that we may view a parallel composition
of CML, expressions as if the rightmost one is the A“controlling” expression
which interacts with the user by refuring a value. The other expressions are
like Unix background processes, or DOS TSR? programs. The bisimulation
merely adds more “background processes”. This may appear to be quite
weak, however we prove in Theorem 10.5 (using chapters 11 and 12) that

Evaluation Bisimulation is indeed a Congruence relation.

Definition 10.4 Evaluation Bisimulation for CML,
Given R C CML, x CML,, define e;[R]e, to hold if and only if for any f,

a closed CML, expression, and n, a channel name, then:

fle Un!C = ID[flez4n!lD & VA (AeC)R(Ae D)
& fleel/C = 3D[fleadl/D & VA (AeC)R(AeD)
& fleyn?4 = 3IB[flea I n?B & VC (Ce AR(C e B)

-

& fleednlD = 3C[fler 4n!C & YA (AeC)R(AeD)
& fleedvD = 3IC[fles}vC & YA (AeC)R(AeD)
& fleahn?B = 3JA[fler 4 n?A & VC (Ce A)R(C e B)

N
™

BN
)

Then we let ~ be vR.[R]. We let ~° be the extension to open processes by

substitution of closed values for free variables.

Theorem 10.5

Evaluation Bisimulation is a congruence relation.

Proof
We split this into two parts. Firstly we observe that Evaluation

Bisimulation is an equivalence relation following the same logic as theorem

2Terminal Stay Resident.

10.6. STRONG BISIMULATION FOR CML, 153

3.7(1). We prove the other (compatibility) properties of congruence in
chapter 12.

10.6 Strong Bisimulation for CML,

Before we go on to proving properties about Evaluation Bisimulation we will
define Strong Bisimulation. This will be useful as a tool in proving various
properties of Evaluation Bisimulation.

Here we define Strong Bisimulation, together with a reduced version. We
then show that the two versions are equivalent. The two versions can then be
used interchangebly, which will simplify some of the proofs of the properties
given in the next section.

The definition of Strong Bisimulation corresponds almost exactly to
the definition of Evaluation Bisimulation (definition 10.4 on the previous
page) with evaluation being replaced by transition. There is also an extra
condition added when there is a 7 action. The same considerations about
symmetry apply as for Evaluation Bisimulation and again we will show that
the definition is not too weak.

Definition 10.6 Strong Bisimulation for CML,
Given R C CML, x CML,, define ¢;{R }e, to hold if and only if for any f,

a closed CML, expression, and n, a channel name, then:

flet \(n!C = 3D [flea \yn!D & VA (AeC)R(As D))
& flet \(v/C =3D[flea\vvD & VA (AeC)R(Ae D)
& fleg \yn?A= 3B [flea \y\n?B & VC (Ce A)YR(C e B)]
& fleg \y 7€l = ey [flea \(Teh & € Reh]
& flea \yn!C = 3D [fle; \yn!D & VA (AeC)R(AeD)]
& fleae\y+v/C=3D [fles \\vD & VA (AeC)R(AeD)]
& flea \yn?A= 3B [fles \yn?B & VC (Ce A)R(C e B)]
& flea \y7.eh = 3e] [fle1 \y7.e] & € |Reb)

Then we let ~ be vR.{R}. We let ~° be the extension to open processes by

substitution of closed values for free variables.

154 CHAPTER 10. BISIMULATION ON CML,

Theorem 10.7

Strong Bisimulation is a congruence relation.

Proof

We split this into two parts. Again we observe that Strong Bisimulation
is an equivalence relation following the same logic as theorem 3.7(1). We do
not give the proof of the compatibility parts of congruence, but it follows in a
corresponding way to the proof of crongruence for Evaluation Bisimulation
given in chapter 12. Corresponding versions of all lemmas used in section

10.8 are proved in section 10.7.

Definition 10.8 Reduced Strong Bisimulation for CML,
Given R C CML, x CML,, define e; {RR},e, to hold if and only if for any

n, a channel name, then:

e \nlC = 3D ez \ 1D & VA (AeC)R(A D)
& e1\v/C=ID[es /D & VA(AeC)R(As D)
& ee \(n?A=3B[ea\yn?B & VYC (Ce AYR(C e B)]
& e \(T.€]l = Jehlea\yTehy & € \Reh]
& e3\ynlC=3D[e; \,nlD & VA (AeC)R(Ase D)
& eaN\v/C=3D[e1 \\vD & VA (AeC)R(AeD)]
& eo\yn?’A=3Be;\(n?B & VYC (Ce A)R(C e B)]
& ea\ T.eh = el [e1 \(T€] & €Reb]

Then we let ~, be vR.{R},. We let ~2 be the extension to open processes by

substitution of closed values for free variables.

Lemma 10.9

~? is an equivalence relation, and e = f implies thate ~2 f for any CML,
expressions e and f.
Proof

This follows in the same way as the equivalence relation part of Theorem
10.7. O
Lemma 10.10

For any CML, expressionse, f and g then e &ﬁ f implies that gle ~2 g|f.

10.6. STRONG BISIMULATION FOR CML, 155

Proof

We let R = {(gle,g|f) st.e ~, f}, and we need to show that R is
closed under {—},. Then if (gle, g|f) € R we éase split on what trasition gle
performs. .

If gle \, n?z.¢' for some n and ¢’ then by lemma 9.16 either g \, n?z.¢'
for some ¢’ with ¢ = ¢'leore \, n?z.¢’ and ¢’ = g|¢’. In the first case
PAR; implies that g|f \, n?z.(¢'|f) and for any concretion C we see that
(Ce(z,g')|e,C o (z,9')|f) € R. Therefore (C o (z,4'|e),C o (z,¢'|f)) € R for
any C. Otherwise e ~, f implies that f \, n?z.f’ and for any concretion
C, (Ce(ze€),Ceo(z,f)) € R. Thusif C = vm. < v,h > then letting
C' = vin. < v,hlg >% we see that (C' e (z,¢'),C" o (z, f')) € R which shows
that (C e (z,9|e'),C o (z,g|f')) € R, as required.

If gle \y vii.mlv.¢' for some 7, m, v and ¢’ then by lemma 9.16 either
g\ vit.mlv.g' for some ¢’ with ¢ = g'|e or e \, vii.m!v.¢’ for some ¢ with
¢’ = g|g’. In each case the same reasoning as used above follows.

If gle \, vii.\/v.€¢' for some 7i, v and ¢’ then by lemma 9.16 ¢ \, vii.\/v.¢'
for some ¢’ with e’ = g|¢’. The same reasoning as above still follows.

If gle \, 7.¢/ for some ¢’ then by lemma 9.17 there are four possibilities.
Ife N\, 7.¢” with ¢’ = gle” then f \, 7.f”, for some f”, and e ~, f. But then
(gle”,glf") € R, asrequired. If g \, 7.¢’ and &’ = ¢'|e then (¢'le, ¢'|f) € R), as
required. Ife \, n?z.¢' and g \, vmi.nlv.g' for some n, z, ¢/, 7, v and ¢’ then
f ¢« n?z.f' for some f’ and for any C we see that C e (z,¢') ~, C o (z, f').
In particular C = v < v,¢’ > and so Alvmi.(¢'|€'[v/z]) ~, Alv.(¢'|f'[v/x))-
Therefore (vmi.(¢'|¢'[v/z]), vR.(¢'| f'[v/z])) € R, as .required. The last case
where g N\, n?z.¢’' and e \, vm.nlv.¢’ for some n, z, €, 1, v and ¢’ follows in
the same way.

The symmetric cases all follow in the same way. Therefore R is closed

under {—}, and so R C~?, as desired. 0O

Corollary 10.11

~° and ~¢ coincide.

Proof

Follows directly from lemma 10.10. O

3a-converting if necessary.

156 CHAPTER 10. BISIMULATION ON CML,

Therefore we may freely use either ~° or ~2 interchangeably. This will be

of much use in the proof of various lemmas.

10.7 Properties of Strong Bisimulation

This section starts with a couple of simple properties. These are that
Evaluation Bisimulation is strictly weaker than Strong Bisimulation and that,
upto Strong Bisimulation, we may swap expressions in a parallel composition
apart from the rightniost expression.

We then consider how the left-hand part of a parallel composition may be
pushed in or pulled out in various contexts, again upto Strong Bisimulation.
This will be used in the proof of the compatibility parts of congruence, and
also in proving the corresponding lemma for Evaluation Bisimulation.

Next we give a slightly surprising lemma (lemma 10.17). We show that for
any CML, expressions e, f and g that e ~ f implies that e|g ~ f|g. This is
surprising because the rightmost expression in a composition is special and
we do not introduce a new expression on the right anywhere in the definition
of Strong Bisimulation.

The section then concludes with some specific consequences of lemma
10.17 which will be used in the proof of the compatibility parts of congruence

for Strong Bisimulation.

Lemma 10.12
For CML,, processes e and f then e ~° f implies thate ~° f.

Proof
This follows from the definitions of the two bisimulations (definitions
10.4 and 10.6) and from theorem 9.29.]

We now show that, upto Strong Bisimulation, we may swap the order of

parallel compositions as long as we leave the rightmost expression alone.

Lemma 10.13

vii.(e1]eales) ~° vii.(ezeres)

Proof
This follows directly from lemma 9.25. i

10.7. PROPERTIES OF STRONG BISIMULATION 157

Corollary 10.14
Let[Je; = ei]ez|. .. |en, where we may reorder the e;. Then we may write

any process in the form v7. (H e

f) with the order of the e; being irrelevant
up to Strong Bisimulation.

Proof
Using lemma 10.13 we may reorder any processes as long as they do not

include the rightmost process. For example
e1lealeses ~° ezler]esles ~° er]esleales

using lemma 10.13 twice. O

We may also, again upto Strong Bisimulation, push or pull the lefthand
part of a parallel composition in or out under certain circumstances. We give
the various cases that we will need later in the next lemma.

Lemma 10.15

For any CML,, processes e and f and names 7i then:
1. For any constant function c then c(vii.{e|f)) ~ vii.(e|cf).
2. For any recursive fuﬁction g then vi.(g(e|f)) ~ vii.(e|gf)-
3. For any CML, process g then vii.(gle, f) ~ vii.(g(e, f))-

4. For CML, processes g; and g; then
vii.(if e|f then g; else g¢) ~ vii.(e|if f then g; else gf).

5. For variable z and CML, process g then
vii.(let z=e|f in g) ~ vii.(e|let z= f in g).
Proof

Each case follows in essentially the same way. We give the proof of the
first part as an example. We let

R = {(e, f) € CML, x CML, | e = vii.(e1|c(ez]e3)) & f=vii.(e1](ez2]|ces))}
R' =R U{(e, f) € CML, x CML, | e = f}

For CML, processes e and f with (e,f) € R’ we know that
e=vii.(e1|(c(ez]es))) and f = wvri.(e1lez|ces)) for some 7, e, ex and es.

We case split twice. First on whether we need to show that f can emulate e

158 CHAPTER 10. BISIMULATION ON CML,

and remain in the relation, or whether e can emulate f. We will deal with the
first of these cases as an example since the second follows in the same way.

The second case split is on what e (or f in the second case) reduces to.

[e \ vii.m/lv.€'] Hence e = vii.(e1|(c(ez2]es))) ¢ vm.m'lv.e/. By lemma 9.15
there are ¢” and 7" with e;j|(c(ezle3)) \ v . m'lv.e”, m" = m\ @
and ¢ = vm".¢", where " = 7 \ m. Then by lemma 9.16 there

> 1

is a g with either e; vm” mlv.g and v .g|lc(ez]es) = v .e" or
g

c(ezles) \, v .mlv.g and e; v .g = v €. We case split again.

[e1 \, v/ .m'lv.g] Therefore e;|ez|ces N\, vm'.m'lv.(g|ez|ces), and so
vii.e1|ez|ces \ vim.m'lw.vm™.(gles|ces). But €' = v .(gc(ez]es)).
Hence f N\, vim.m/lv.f', with f' = vm".(g|es|ces). Then for any

abstraction 4, (Ae v/ < v, >, Aevit! <wv,f' >) e R.

[c(ezles) \ vm".m'lv.g] By lemma 9.8 there are e, e}, v’ and g’ with
e2 =q €h, €3 =q €5, v = v, g = ¢’ and c(ehlef) \ v . m'l' g,
The last rule used in the (simple) derivation must have been
CON,. Therefore ¢’ must have been cg” for some ¢”, and
ehles N\ vm”.m'W'.¢". Then by lemma 9.16 (again) there is an
h with either e, , vm’.m/W'.h and vm".hlef} = vm".¢" or

e \, v .m/W' .h and ef|vm”.h = v .g". We case split yet again!

[eh N vm"”.m/lv'.h] Then using PAR, we derive that
eh|cel N\ v .m'lv’.(h|ce}). Then by lemma 9.9 and STRUC we
see that e;|ces \, v”.m'lv.(h|ces). Then by PAR; we obtain
e1lez|ces \, v .m'lv.(e1|h|ces). - Finally using RES rules we
observe that v7i.(e;|ez|ces) \, vm.m'lv.um™.(e1|h|ces). Again

we observe that ¢/ = v .(ej|e(hles)). So f N\, vm.m . f!

where f = wvm".(e1]hlces). So for any abstraction A,
(Aev/ <wv,e > Aevm/ <v,f' >)ER.

fes N\ Q/m" .m'lv'.h] Then using CON, and PAR; we derive that
ehlcel N\, vm”.m'Ww'.(eh|h). Then by lemma 9.9 and STRUC we
see that es|ces \, vm".m'v.(e2|h). Then by PAR; we obtain
e1lez|ces N\, v .m'lv.(e1]ez|h). Finally using RES rules we

observe that vii.(ejlez|ces) \, vm.m/lv.vm™” .(e1]ez|h). Again

10.7. PROPERTIES OF STRONG BISIMULATION 159

we observe that ¢/ = vm”.(e1|e(ez}h)). So f \, vm.m'lv.f’
where f' = wvm”.(ei|lez]h). So for any abstraction A,

(Aev! <v,e >, Aevi < v, f' >) eR.
[e \ v7i.4/v.€¢'] This cannot occur.

[e \, n?z.€'] This follows in the same way as the e \, vm.m'lv.¢’ case, with
the change of abstraction to concretion and the lack of the need to use

lemma 9.9.

[e \; 7.¢'] Hence e = vii.(e1|(c(ez]es))) ¢ 7.€/. By lemma 9.15 there is an e”
with ¢/ = vmi.e” and e;|(c(ez]es)) \ 7.¢”. We then use lemma 9.17 and

see that one of the following cases must occur:

[er \(T.€] & e§|c(e§|e3) = ¢"] for some e]. Then, using PAR,,
e1|ea]ces N\, 7.(e}|e2|ces. Then, possibly multiple uses of, RES,
gives vii.(e1|ez|ces) N\ T.v7i.(€]|ea]ces). But €' = vii.(ef|c(ez]es)).
So f \, 7.f' where f’ = v1i.(€]|ea|ces) and (¢, f') € R.

[c(es]es) \(7.9 & e1|g = €] for some g. By lemma 9.8 there are €}, €}
and ¢’ with e, =, eq, €§ =, e3, ¢ = g and c(ey|e}) \, 7.¢" simple.
The last rule used in (simple) derivation must have been either

CON,, or CON,,. We case split again!

CON, Hence éjlef N\, 7.¢" with ¢’ = c¢”. The previous rule used
must have been one of PAR;, PAR;, COM; or COM,. We case
split one more time.

PAR; Hence there is an e with ef \, 7.e§ and ¢" = eje}.
Therefore, using CON,, PAR; twice, STRUC and RES
rules, we get vii.(ejlea|ces) \, T.vii.(ei]ez|cey). But
¢ = vi.(ei|c(ez]es)). Therefore f ~, 7.f' where
[’ = vii.(e1|ez|ced) and (¢, ') € R.

PAR; Hence there is an e} with e, N\, 7.€j and ¢" = ef|e5.
Therefore, using PAR,, PAR;, STRUC and RES rules, we get
vit.(e1]ea|ces) \ T.v7i.(€1]€h|ces). But e = vi.(ei|c(ehles)).
Therefore letting f' = vii.(e1|e)|ces) gives f N\, 7.f' and
(e, f) eR.

160

some v, m', €}, e

CHAPTER 10. BISIMULATION ON CML,

COM; Hence there are ¢, ej, 7/, n” and v such that
ey \vit'.n"lvey, e N\, n"?z.ef and vit'.(ef|ef[v/z]) =
g". Then CON,, CON;, PAR;, STRUC and RES rules give
vii.(e1]ez]ces) N\, T.wvi.(er|vii'.(ef|c(ef[v/z]))). We now
let f' = vii.(ei|vit'.(ef|c(ef[v/z]))). Therefore f \, T.f'.
We also observe that ¢ = vri.(e;|vit’.c(ef|ef[v/z])) and
therefore that (¢/, f') € R.

COM, Hence there are €, ¢, 7/, n” and v such that
en N\« n"?z.ey, e5 \ vit'.n"lv.ey and vii'.(eh[v/z]|ef) =
¢". Then CON,, CONj, PAR;, STRUC and RES rules give
vii.(e1|ez|ces) N\, T.wii.(er|vrt’.(eh[v/z]|cey)). We now let
[=vii.(e1|vi'.(e5]v/z]|cef)). Therefore f \, 7.f'. We also
observe that ¢ = vii.(e;|v7i’.c(ef[v/z]|e}4)) and therefore
that (¢/, /') e R.

CON,, Hence ejles \, vit'.\/v.g", with ¢ = vi'.(8(c,v)|g").

The previous rule used in derivation must have been
PAR; and so ¢" = éehlef for some e with ef \, v7i'.\/v.€}.
Therefore cej \, 7.vit’.(e5|6(c,v)), and PAR; gives
ehlees N\, T.eh|vit' . (ef|6(c,v)). We use STRUC to derive
ealces N\, T.vit'.(eslef|d(c,v)). So using PAR; again we get
e1lez|ces N\, T.e1|vii’.(e2]ef|d(c,v)). Then using RES rules we
derive vii.(e;|es|ces) N\, T.vii.(e;|vit'.(es|el]6(c,v))). But we
observe that ¢ = vfi.(e1|v7’.(e2]e4|d(c,v))). Therefore by
setting f' = vii.(e1|vi'.(e2]ef|d(c,v))), we get f N\, 7.f' and
e/ = f'. Therefore (¢/, f') € R'.

[er \yvm.m'lv.e] & c(ezles) \ m'?z.e" & vmi.(e}|e"[v/z]) = €"] for
some v, m/, ¢}, ¢’ and m C fn(v). This now follows in the same

way as the e \, n?z.€’ case above, starting part way through.

er \ym'?z.€] & c(ezles) \yvm.m'lv.e” & vm.(e|[v/z]|e") = €"] for

" and m C fn(v). Similarly this follows in the same

way as the e \, vmi..m/lv.¢’ case above.

10.7. PROPERTIES OF STRONG BISIMULATION 161

Definition 10.16
The set of channel names contains a (countable) subset sg, 31, 32, We
define an embedding —¢, on expressions and names, by rewriting all names

in — according to the following rules:

8; = 841

n = n n # s; forany

Similarly we define — to be the inverse of —¢, with the restriction that s, may
not appear in —.

The main use of definition 10.16 is that we may ensure that there is one,
or more, specific name that cannot occur in an embedded expression. We
note that if e \, /C then e® \ /C* (and similarly for output, input or silent
transitions) by observing that we can rewrite the derivation tree by the literal
replacement of s; with s;,; everywhere.* We also note that if e ~° f then
et ~O fe5

We use this to prove the following “surprising” lemma which also gives
the useful results of lemma 10.18.

Lemma 10.17

For any CML, expressions e and f with e ~° f then for any CML,
expression g we may deduce that e|g ~° f|g. Also for any values v and »’
and names 77 and 77 then VA Aevii < v,e >~° Aevm < ¢/, f > implies
that for any CML, expression h with z as a free variable we may deduce
vit.(elh[v/z]) ~° vi.(f|h[v'/z]).
Proof

We will prove the first part as a special case of the second part. We let

R= {(Vﬁ.(elh’),w'i’.(f|h")) st.
vite.((let y=H' in soly)[e?) ~ vite.((let y=h" in soly)| fe)}
We will show that R C {R},. There are eight cases given by definition 10.8.
We will only give one case since the others all follow in a similar way, as a
special case of the one given. We consider the case where v7i.(e|h1) N\, 7.€".
Therefore by lemma 9.15 there is an ¢” with elh; \, 7.¢” and vii.e” = €.

Therefore by lemma 9.17 there are four possible cases:

“Similarly for .
SSimilarly for ~°.

162 CHAPTER 10. BISIMULATION ON CML,

[h1 \(7.h3] and €’ = e|hs. Therefore, using LET,, PAR, and RES, many
times®, gives let y = A¢ in solyle® \, 7.let y = h§ in solyle. Therefore
vit®.((lety = h§in soly)|f¢) ¢ 7.f' and lety = h§insplyle ~ f.
Therefore by lemma 9.15 we see that there is an f” with v7i'.f" = f
and (let y=~h§ in soly)|f¢ \y 7.f”. Then by lemma 9.17 there are four

cases:

[let y="h§ in sply N\, 7.h4] and hy|f¢ = f”. By lemma 9.8 there are g
and ¢’ with lety = h§insply =, lety = ginsgly, ¢ = hy and
let y=g in soly \, 7.¢' simple. The last rule used in the derivation
must have been LET, and so there is a ¢ with g \, 7.¢"” and
g =lety=¢"insgly. But g =, h§. Therefore hy \, 7.9""
So vii'.(flhe) \y T.vi.(f|¢""). We can see that, as required,
vite.((let y=hS in soly)[e®) ~ vit®.((let y=hY® in soly)|£°).

[fe N\ 7.f"] and (lety = h§insoly)|f"” = f". Therefore we deduce
that v7'.(f|he) \, vit'.(f"%|h2). We then also see that, as required
vit.e.((let y=h§ in sply)|e®) ~ vii'®.((let y=h$ in soly)|(f"")®).

[fe N\ m?z.f"] let y=h§ in sply N\, v/ . mW” .hg and v’ .(hs| f"' [v" /2]),
for some m, 7’ and v". Using the same logic as above we see that
hs = lety = hgin soly and h§ N\, v’ .mWw"”.hs. The result now
follows easily in the same way as the [let y = hS in soly \, 7.h4]
case above.

[let y=h$ in soly \y m?z.hg] f€ \, v/ mW". f" and v’ (hs[v" /]| f"),
for some m, m' and v”. This follows in the same way as the previous

case.

Other cases The other three cases follow in the same way. In each instance
we derive that let y = h{ in soly|e® N\, 7.let y = h§ in splyle. The result

then follows as in the [h; \, 7.h3] case.

The only other case (and it's symmetrical case) we need to consider
is when vii.(e|h1) ¢ vm./v".e’. Using the same logic as above we may
deduce that there are 7' and h3 with ¢ = v/ .(e%|hs), M/ = 7@ \ m and

vit.((let y = h{ in s,ly)[e®) \, T.vm.solv”.vm.(hs|()|e?). Hence we may derive

®And the embedding —*

10.8. PROPERTIES OF EVALUATION BISIMULATION 163

that vii.((let y=~h$ in s,ly)|f€) \y T.om".solv” v .(h4|()]f¢) and for any
abstraction A then A e v < v, vt (h3|e?) >~ A e vt < v vt (hy|f€) >,
" and m" with " = @ \ m”. We then see that
i’ (flh2) N\ v /o" v (f|h}f|A). Recalling lemma 9.26 on page 135 we
see that ¢’ = €/|A. Therefore by using corollary 10.14 twice we see that for
any abstraction A then A e v < v", ¢ >~ A e v <" v .(f|h§|A) >
Therefore R C~, and hence by corollary 10.11 R C~. We extend the

for some v

result to ~° by substitution of closed expressions for free variables. The
result now follows by letting the initial ' = hfv/z], A’ = h[v'/z] using
A = (z,let y=hin sly), where s is fresh in e, f and h. The first case follows
by setting A = (z, g), where z ¢ fv(g).

Lemma 10.18

For any CML, expressions e and f with e ~° f then for any 7,
m, v, v, € and f’ with e \, vii.\/v.e/, f \ vm./v.f" and for all A
Aevii <wv,e >~° Aoy <o, f' > then:

e For any constant function ¢, v7i.(e'|6(c,v)) ~° vmi.(f'|6(c,v")).
e Foranyg, vi.(¢'|let z=gin< v,z >) ~° vi.(f'llet z=gin < v,z >).

e Forv = fix (z=fny=e;) then v’ = fix (z=fny= f,) and for any CML,
expression g, vii.(e'|let y=ginei[v/z]) ~° vm.(f'|let y=gin fi[v'/z]).

e For any CML, expression g with z as a free variable
vii.(€'lglv/x]) ~° vi.(f'|g[v'/=]).
Proof
This follows directly from lemma 10.17, using various different
abstractions A.

10.8 Properties of Evaluation Bisimulation

We now give various properties of Evaluation Bisimulation. Many of these

will be used in the proof that ~° is a congruence relation, while others are

"Since vii.(e|()|f) ~ vii.(e|f) forany 7, e and f.

164 CHAPTER 10. BISIMULATION ON CML,

merely useful observations. We start with two very simple lemmas that show
that Evaluation Bisimulation is closed under the structural congruence and

under reordering of processes within an expression with certain restrictions.

Lemma 10.19.

For any CML, processes e; and e;, e; = ey implies that e; ~ es.

Proof

If e; and e; have no free variables then for any CML, expression f,
flex 4 C implies that flez | C using (STRUC), and ~° is an equivalence
relation. If e; and e; do have free variables then the previous argument

applies for all substitutions of values for free variables. O

Lemma 10.20
For any CML, expressions e, f and g then e ~° f implies that gle ~° g|f.

Proof
This follows easily from the definition 10.4, observing that we are just
restricting the parallel contexts. O

Lemma 10.21

w’i.(el |62 |63) ~0 V’I’-i.(62 |61 |63)

Proof
This follows directly from lemmas 10.13 and 10.12. O

Corollary 10.22

Let[]e1 = e1lez] ... |en, where we may reorder the e;. Then we may write

any process in the form v7i. (H elf) with the order of the ¢; being irrelevant

up to Evaluation Bisimulation.

Proof
Using lemma 10.21 we may reorder any processes as long as they do not

include the rightmost process. For example
61|62[e3|e4 20 62|61|63|€4 20 61l63|62|€4

using lemma 10.21 twice. O

10.8. PROPERTIES OF EVALUATION BISIMULATION 165

We now show that Evaluation Bisimulation implies that if an expression
can do a 7 action then an equivalent expression can match it with zero or

more 7 actions and the continuations remain equivalent.

Lemma 10.23
For any CML, processes e and f, e ~ f and e \, 7*.¢’ implies that there
isan f'such that f \,7*.f'and ¢’ ~ f'.

Proof

We consider e N\, 7%.¢/. Ifi = 0 then the result follows trivially.
Otherwise we take a fresh name m and m!truele \, 7*.m!true.(()|¢’). Then
by lemma 9.34 m!true|e | ml!true.(()|¢’). Hence, using the abstractions
(z,if z then m'!ltrue else m”!true) and (z,A) for fresh names m' and m”,
miltrue|f | ml!true.f’ with ()|¢’ ~ f'. By lemma 9.12 there is an f” with
' =0|f"and f N\, 7*.f". Bylemma 10.27 ¢’ ~ ()|¢’ and f’' ~ f” using lemma
10.19 as well. Therefore ¢’ ~ f” as required. O

We now extend lemma 10.20 to show that, just as we could for Strong
Bisimulation, we can define Evaluation Bisimulation without having a

parallel context.

Definition 10.24 Reduced Evaluation Bisimulation for CML,
Given R C CML, x CML,, define e;[R],e; to hold if and only if for any n,

a channel name, then:

e1\nlC=3D[e; yn!D & VA (AeC)R(Ae D)
& e1N\vC=3D[e2 /D & VA (AeC)R(AeD)
& er\n?A=3Ble; yn?B & VC (CeAR(C s B)]
& ep \(T.€) = Jeh[ea \ Ty & €[Reh)
& ea\nlC=3D[eg§n!D & VA(AeC)R(AeD)]
& e\ vC=ID[et 4D & VYA(AsC)R(AsD)]
& es\yn?A=3Ble; yn?B & VYO (Ce AR(C e B)]
& ea \yT.eh = el [e1 \(yTre] & €|Re)]

Then we let ~, be vR.[R],. We let ~¢ be the extension to open processes by

substitution of closed values for free variables.

166 CHAPTER 10. BISIMULATION ON CML,
Lemma 10.25
For any CML, expressions e, f and g then e ~2 f implies that gle ~2 g|f.

Proof

This follows in the same way as lemma 10.10. O

Corollary 10.26

~° and ~¢ cooincide.

Proof
This follows directly from definitions 10.4 and 10.24, lemmas 10.23 and
10.25 and theorem 9.29. o

Most of the rest of the results in the chapter are used in the proof of
congruence. They depend heavily on the transition relation, and the lemmas

in chapter 9, for their proofs.

Lemma 10.27]
For any CML, expressions e and f, value v and names 7 then

vii.(elv|f) ~° vii.(e|f).
Proof

We proceed by a two step method. If v7i.(e|v| f) has no free variables then
welet R = {(g,h) s.t. Te, f, 77 g = vii.(e|f) & h = vii.(e|v|f)}. We show that
R is a fixed point of [—] using corollary 9.21 and lemma 9.24, and hence that
R is contained in ~. We then extend the result to ~° since the argument still

holds for any substitutions of closed values for free variables. 0

Lemma 10.28

For any CML, processes e and f and names 7 then:
1. For any constant function c then c(v7i.(e| f)) ~ vii.(e|cf).
2. For any recursive function g then v7i.(g(e|f)) ~ vii.(e|gf).
3. For any CML, process g then vii.(gle, f) ~ v7i.(g|(e, f))-

4. For CML, processes gt and gf then
vii.(if e| f then g; else g¢) ~ vii.(e|if f then g; else gy).

5. For variable x and CML, process g then

vii.(let z=e|f in g) ~ vii.(e|let z=f in g).

10.8. PROPERTIES OF EVALUATION BISIMULATION 167

Proof

These all follow directly from lemmas 10.12 and 10.15. |

* The next two lemmas are required to prove the Evaluation Bisimulation

version of lemma 10.17.
Lemma 10.29

For any value v, expression e, names 7 and any constant function ¢ then
vii.(e|cv) ~° vii.(e|d(c, v)).
Proof

Welet R = {(f,g) st f = vi.(ejev) & g = vit.(e]d(c,v))}. We then
letR' = {(f,g) s.t. f = gor(f,g) € R}. For any f and g with (f,g) € R then
there aree, v, i and c with f = vi.(e|cv) and g = v7i.(e|6(c, v)). For any names
m, label | and expression ¢/, then g \, v7i.l.¢' implies that f \, r.vm.l.g'
and (¢',¢') € R'. Therefore we only need to consider what transitions f may
make. We case split.

[f Ny m?z.f'] Bylemma 9.15, remembering that f = v7i.(e|cv), there is an f”
with e|cv N\, m?z.f"” and f’ = vi.f"”. Then by lemma 9.16 we see that
there is an ¢’ with e N\« m?z.¢ and f” = €'|cv (since cv cannot input).
Therefore vii.(e|6(c, v)) \y m?z.vii.(¢'|6(c,v)) and' for any concretion C
then (C e (z, f'),C o (z,vii.(€'|6(c,v)))) € R.

[f \ v’ .mlv'. f'] Bylemma 9.15, remembering that f = v#.(e|cv), there are
f", ' and 7" with e|cv N\, v7'.mlv.f" and f' = vi". ", where 7t = ' \ it
and 7" = 7\ m'. Then by lemma 9.16 we see that there is an ¢’ with
e\ vit'.mlv.e’ and f” = ¢€'|cv (since cv cannot output). Therefore
vii.(e|é(c,v)) \ vii'.mlv.vii”.(¢'|6(c,v)) and for any abstraction A then

(Aevm <w, f' > Aevit! < v,vi".(e'|6(c,v)) >) € R.
[f \ vm./v'.f] Cannot occur.

[f \¢7.f'] By lemma 9.15 there is an f" with e|cv \, 7.f" and f' = vii.f".
Then by lemma 9.17 either e \, 7.¢/, for some ¢’ and f” = €'|cv or
cv \(7.A|é(c,v) and f” = e|d(c,v). In the latter case we have ' = ¢
and so (f',g) € R'. In the former case, using PAR, and RES,, we derive
that v7i.(e|d(c, v)) \ 7.v71.(¢'|6(c,v)) and (v7.(€¢'|cv), vii.(€'|6(c,v))) € R

as required.

168 CHAPTER 10. BISIMULATION ON CML,

Therefore R’ C~2 and hence the result follows by corollary 10.26. O
Lemma 10.30

For any CML, expression e, value v and names 7#i and m then
vit.(let z=v in mlz|e) ~° vii.(mlvle).
Proof
The proof follows in the same way as lemma 10.29, except that the case
where a value is returned can occur. However this follows in just the same
way as the output case above. O
Lemma 10.31
For any CML, expressions e and f with e ~° f then for any CML,
expression g we may deduce that e|g ~° f|g. Also for any values v and v’
" and names 7 and 7 then VA A e vii < v,e >~° Ao < v/, f > implies
that for any CML, expression h with z as a free variable we may deduce
vit.(elhlv/x]) ~° vri.(flg[v' /=]).
Proof
This follows in the same way as lemma 10.17 with the addition of the use

of corollary 9.35 and lemma 10.30. O
Lemma 10.32

For any CML, expressions e, ¢/, f and f’, names 7 and 7 and values
vand o withe ~° f, e { vi e, f | vmy2.f and for all A,
Aevii <v,e >~° Aevia <o, f' >then:

e For any constant function ¢, v7.(e'|6(c,v)) ~° vim.(f'|6(c,v")).
e Foranyg, vii.(e'|letz=gin< v,z >) ~° vi.(f'letz=gin <o,z >).

e Forv = fix (z=fny=>e;) then v' = fix (z=fny= f,) and for any CML,
expression g, vii.(e'|let y=ginej[v/z]) ~° vm.(f'llet y=gin f1[v'/z]).

e For any CML, expression g with z as a free variable
vii.(¢'|g[v/z]) ~° vin.(f'glv" /<))
Proof

This follows directly from lemma 10.31, using various different
abstractions A.

10.9. SOME BASIC EXAMPLES OF EQUIVALENT EXPRESSIONS 169
10.9 Some basic examples of equivalent expressions

In this section we give some examples of equivalent expressions. We
first start by examining, three monad laws from Moggi’s [Mog91] monadic
metalanguage, and showing that they are Evaluation bisimilar. These are the

left unit, the associativity and the right unit equations.

Lemma 10.33

For CML, expressions e, f and g, value v and variables z and y then
1. let z=vine ~¢fv/x]
2. lety=(letz=ein f)ing ~ let z=ein (let y=f in g)

3. letz=einz ~e

Proof

For the first part we let R = {(let z=wvine,e[v/z])} U {(f,9) s.t. f = g}.
We then show that R is closed under [~],. letz = vine only has one
possible transition and that is to e[v/z]®. e[v/z] can match this by doing
nothing and (e[v/z], e[v/z]) is in R. Furthermore two structurally equivalent
expressions can always continue to mimic each other. In the other direction,
if e[v/z] \ n!C for some n and C then let z = vine \, 7.n!C. Similarly for
e[v/z] \y n?4, e[v/z] \, v/C and e[v/z] \, 7.¢'. In each case we end up with
identical expressions.

For the second part we prove the stronger result that
lety=(let z=ein f)ing ~let z=ein (let y=f in g)

This result follows in exactly the same way as the proof of lemma 10.15. To
prove the stated second part we then use lemma 10.12.
The third part follows by using the same method as is used in the proof of
lemma 10.29. O
We next go on to show that we may introduce a “new” control operator
to the language together with it's own evaluation and transition rules. This is
the ! operator that is used in various languages, for example in the 7-calculus

and the associate language Pict. Essentially !e is the same as having as many

80r any structurally equivalent expression.

170 CHAPTER 10. BISIMULATION ON CML,

copies of e as needed. We will show that this is in fact just an encoding of a
particular recursive function. The evaluation rule for ! is:
Elelle] U viil.e
Elle] Y viil.(fle")

while the transition rule is:

p —
le \, 7.(ele)
That the two rules are equivalent to each other follows from lemma 9.30

and theorem 9.29. In particular we claim that
fix (z=fny=(e|z())) () = le

However, we first need to show some intermediate results.

Lemma 10.34

For any CML,, expression e and variables z and y then
1. fix (¢ =fny= (e|z())) () = let y=() in (elfix (¢ = fay=> (¢lz())) ()
2. let y=() in (e[fix (z=fny= (e|z())) ()) = elfix (z=Fny = (e|z()))

3. fix (z=fny= (elz()) () ~ elfix (z=fny = (e|z())) ()

Proof

The first two parts follow in the same way as the first part of lemma 10.33.

The third part follows from the first two. O

‘We can now also see that

fix (z=fny = (e|z())) () \« 7°.(elfix (z=fny = (e|z())) ()

This leads us to the following lemma.
Lemma 10.35
For any CML, expression e then le ~ fix (z =fny = (e|z())) ().

Proof
Welet R = R; W R, where

Ri={(e1,e2) s.t. e1 = f|le & e3 = flfix (z=fny=(e|z())) O}
Ro={(e1,e2) s.t. e1 = flle & e3 = fllet y=() in (e/fix (z=fny=(e|z())) ()}

10.9. SOME BASIC EXAMPLES OF EQUIVALENT EXPRESSIONS 171

If (e1,e2) € R thene; = f|le for some f and e; is structurally equivalent
either f|fix (z=fny= (e|z())) () or fllet y = () in (e|fix (z =y = (e|z())) ())-
We only consider the case where e; = f|fix (z=fny=>(e|z())) () since the
other case follows in essentially the same way. If e; \, vii.l.¢| then we case
split on whether { = 7 or not. If/ = 7 then by lemma 9.17 there are two
possibilities? and these are that f \, 7.f' and ¢| = f'|le or le \, T.¢|le and

¢} = fle|le. These cases are matched by

flfix (z=fny= (e|z())) () T-f’l‘ﬁx (z=1fny= (e|z())) 0
fifix (z=fny = (e|z()))) \« 72.flelfix (z=fny = (e]z())))

If | # 7 then by lemma 9.16 there is a f' with f \, vni.l.f’ and
e} = vit.l.f'|le. This is then matched by

fifix (z=fny=>(e|z())) () “ vii.l.f'lfix (z=fny = (e|z())) ())

and for any abstraction or concretion the results will still be in R.

If eo N\, vri.l.ef, then we again case split depeding on whether [=7
or nott If ! = + then there are two possibilities given by lemma
9.17. These are that f \, 7.f' and e, = f'|fix(z=Ffny=(e|z()))() or
that fix (z=fny=(e|z())) () \(7.let y=() in (e|fix (z=fny = (e|z())) ()) and
ey = fllet y=() in (e|fix (z=fny=(e|z())) ()). The first of these cases is
matched by e; \, 7.f'|le and the second is matched by e; doing nothing!?.
Ifl # 7 then by lemma 9.16 then there is a f’ with f \, v7.l.f' and
ey = f'|fix (z=fny=>(e|z())) (). Then this is matched by e; \, v7i.l.(f'|'e) and
for any concretion of abstraction, as appropriate, the pair will remain in R.

Therefore R C [R], and so R C~ by corollary 10.26.

We now turn to one final example. We define two expressions:

e = ((n![A]) = (fix (z=fny= (nltrue|z()))))|A
f = ((nl[nltrue = fn (z = A)]) = (fix (z=fny= (nltrue|z()))))|A

We will show that these two expressions are evaluation bisimilar. This

may be rather surprising since e can transmit a delayed expression that

The two other possibilities of communication between f and e cannot occur here.
%in the e; = f|let y=() in (e|fix (z =fny = (e|z())) ()) it is matched by e; \, 7.f|e|le.

172 CHAPTER 10. BISIMULATION ON CML,

cannot do anything, whereas f can transmit a delayed expression which can
transmit on channel n. However we can never examine the transmitted value
in isolation, and the context can always transmit on n at any time!! once the
delayed expression has been transmitted on channel n.
Lemma 10.36
For CML, expressions e and f defined above then e ~ f.

Proof

We let R be

R ={(e,)Y U{(,f)st. Th [¢ = h[&/F]|e"A

& = /1A
& " ~ fix (z=Ffny= (n'true|z())) () =~ "]}

where 7 = (21, 22, %3, 24, 5) and

e1 =[A] fi1=[nltrue = fn(z = A)]

ea=A fo=nltrue=f(z=A)
es=A fy=fn(z=4A)()
esa=A fi=letz=()inA
es=A fs=A
We shall show that R C [R], and hence that R C~. If (¢, g2) € R then we

case split on whether g; = e or not. If it is then g, = f. e and f each only have

>one transition, which is to transmit on channel n. The transition for e is
e \(n![A].fix (z=1fny = (nltrue|z())) ()|A
f may mimic this with
f N\¢ nl[nltrue = fn (z = A))].fix (z=fny= (nltrue|z())) ()|A
For any concretion C, then
e’ = Ce < [A], fix (z=fny = (nltrue|z())))|A >
f' = Ce<[(nltrue = fn (z = A))], fix (z=fny= (n'true|z())))|A >
and (¢, f’) € R, sinceif C = (z,h') then we take h = h'[z1/z].
If g, # e then there are h, ¢’ and f” as defined by R. We note that neither

g1 nor g, can return a value. If g; \, vm.a,.g] then we case split on what «,

is:

1enoring silent actions.

10.9. SOME BASIC EXAMPLES OF EQUIVALENT EXPRESSIONS 173

[= m'?z] Then by lemma 9.16 we may deduce that g; = h”|(e”|A) and
hle/Z] \ m'?z.k, for some h'. We can now prove by induction on the
depth of the derivation tree, using the same sort of case splitting logic
as used in the proof of lemma 10.15, that 4’ is of the form h"[€/Z] and
that g, \, m'?z.k"[f/Z]|(f"|A). Then for any abstraction A we can see
that (A e (z, h"[€/Z]|(e"|A)), A o (z, B"[f/Z]|(f"|A))) € R, as required.

[a; = m'lv] We case split again depending on whether m' = n or not.

[’ # n] Again by lemma 9.16 we may deduce that ¢} = h'|(¢”|A) and
hlé/Z] \ vm.m'lv.h', for some h’. The result now follows in the

same was as the m/?z case above.

[m’ = n] Using lemma 9.16 we may deduce that either ¢{ = 1'|(e”|A)
and hle/Z] N\ vm.nlv.h/, for some A’ or else g] = h[é/Z]|(e"|A) and

¢"|A N\, nltrue.e” | A%, We deal with these two cases separately.

1. So h[é/Z] \, vm.nlv.h'. The result now follows in the same way

as the m'?z case above.

2. So e”|A \, nltrue.e”’|A. But f”|A \, Tt.nltrue.f"”|A for some
i < 3. The result now follows by deducing from lemma 10.34
that ¢’ ~ fix (z=fny= (nltrue|z())) () = f".

[o; = 7] We use lemma 9.17 to show that there are four possibilities:

1. €"|A N\, 7.¢" and ¢} = h[e/Z]|e". Then (¢}, g2) € R bylemma 10.34.
2. hle/Z] \y 7.0 and ¢§ = A'|(e"|A). This splits into two cases.
The first is where there is an evaluation context £[—] such that
E[sync[A] \, 7.h"[€/Z], h"[€/Z] = K and h” is the same as h
except that one z; has become an z,. This may be mimicked by
RIF/ZI A N TR [F7 2| A
The other case, in which the z;’s remain the same follows in the

same way as the m/?z case above.

3. hle/Z] \ v/ . m" ., e"|A‘ N, m"?z.e" and ¢} = v'.(K|e" [v/z]).

This case cannot occur since ¢’ cannot ever receive an input.

2Using lemma 9.16 again.

174 CHAPTER 10. BISIMULATION ON CML,

4. hle/z] \y m?z.h, €"|A N\ v .m'lv.e" and g] = v".(W[v/z]|e").
Then %" = 0, m' = n and v = true. The result now follows by

following the ., = m/?z and o, = m/lv cases above.

The symmetric case of g mimicking g, follows in essentially the same
way. We just give the differences here. If o, = n!true then we may also get
the case where E[nltrue = fn (z = A)]|f"|A N\ nltrue.E[fn (z = A) ()]|f"|A,
i.e. one z, becomes an z3, and we call the new expression A'. Then if

e = h[&/Z]|e"|A and ¢” = ¢!, where ¢! is one of
o fix (z=fny=-nltrue|z())
e let y=() in nltruelfix (z=fmy= n!true|z()) ()
e nltruelfix (z=fny=-nltrue|z()) ()
then, noting that h[e/Z] = h'[¢/Z], e may mimic f in the following way:
hle/Z]|e"|A \ T* .nltrue.h'[€/Z]|e]|()|fix (z=fny = nltrue|z()) A

Similarly in the case where a.; = 7 we get two extra cases, both of which occur
in subcase 2 above. The first is where the COM rule is used and an z; becomes
an r3 as immediately above. The same method of mimicking applies here
as well. The second is where E[fn(z = A) ()] N\ 7.€[letz = ()in A] or
Ellet g= () in A] N\ 7.€[A], i.e. a z3 becomes an z4 or an z, becomes an zs.
In either case e may mimic f by doing nothing.

Therefore [R}, C R and so R C~,. Hence by corollary 10.26 R C~, as

required.

10.10 Relationship to xCML

In this section we will concentrate on the fragment of CML, without name
restriction (and without always because of the difference in usage between
CML, and xCML%). This is the same as the fragment of xCML*, given in
[FHJ)95], without always and A. We shall call this fragment CML,, and also
take CML, to be the set of closed expressions in CML,,.

10.10. RELATIONSHIP TO pCML 175

In [FHJ95] it is noted that the weakest equivalence defined, ~", is a
congruence relation under the condition that always and A are not allowed.
This is indeed the condition for the common fragments of CML,, and ;CML™*.
We shall consider how ~" compares to Evaluation Bisimulation on this
fragment. First we define ~" in our notation.

Definition 10.37 Higher-order Weak Bisimulation
Given R C CML,, x CML,,, define e; [R]e2 to hold if and only if

e1 \«nlli.ef = o, €l [ea Y nllaeh & LRUz & ejReh)

& e \yVi.el = Ilo,eh [es I Viaeh & LRy & €/Reb]

& ey \ynlzel=3eh[e2 yn?zey & Vv eiv/z|Resv/z]]
& e \(T.e] = e [e2 \y 7. & €e|Reb]

& ex \ynlla.eh = T, [er L nllief & LRUy & €|Reb]

& ex \yVlo.eh = Tl el [er Vie], & LRUy & €Reb)]

& ey \(nlr.eh=3Te] [e; ynlz.el & Yo €j[v/z]Reyv/z]]
& ea\yTeh=3e [e1 \ TF.€] & e |Reb)

where R! is defined by:
o ifvR'w and v is a literal then v = w.
o if < v1,v9 > R < wi, wy > then vy Rlw; and vy Rlws.
o if [ge;JR'[geo] then ge; Rges.
e if vRlw and v is a recursive function then for any u we have vuRwu.

Then we let ~" be vR.[R]}.

~" is a congruence relation, and so if e; ~" e, and llzhlh then for any
f in CML,, we have f[l;/z]|e1 =" f[l2/z]|e2. Therefore we have the following
lemma:
Lemma 10.38

For any CML, expressions e and f then e =" f implies thate ~ f.
Proof

This follows directly from the thé definitions 10.24 and 10.37 and corollary

10.26, remembering what pseudo-application is shorthand for. O

176 CHAPTER 10. BISIMULATION ON CML,

This means that Evaluation Bisimulation is at least as weak as any of the
equivalences given in [FHJ95], which suggests that we have at least satisfied
point (5) of our desires for our bisimulation (see page 145). The obvious
next question is whether the two bisimulations are the same or not. The
following two expressions, from the previous section, show that Evaluation

Bisimulation is strictly weaker than Higher-order Weak Bisimulation:

e = ((n![A]) = (fix (z=fny= (nltrue|z()))))|A
f = ((nl[nltrue = fn (z = A)) = (fix (z=fny= (n'truejz()))))|A
Now clearly e %" f since
e \ n![A].fix (z=fny=>n!true|z()) ()|A
whilst f can only match this with

f ¢ nl[nltrue = fn (z = A)].fix (z =fny = nltrue|z()) ()|A

and
A aéhln!true = fn(z = A)

However we have shown in lemma 10.36 thate ~ f.

Chapter 11

Auxiliary Relation for CML,

We follow the same pattern as the proof of congruence for Evaluation
Bisimulation for NCCS and proceed by a modified version of Howe’s method
[How96]. The approach we use here is the same as in chapter 4. We do
not give details here, but follow the pattern of chapter 4 together with the
locations of the various parts of the proof. In this chapter we define the
auxiliary relation and prove some of the required properties. In particular
we define the auxiliary relation in section 11.1. We then go on to show in
section 11.2 that the auxiliary relation contains Evaluation Bisimulation. In
addition to this we give various lemmas which we will use later, and also the
substitutivity property for the auxiliary relation. This last lemma will be used
together with the equivalence of Evaluation Bisimulation and the auxiliary
relation to show that Evaluation Bisimiation is a congruence relation, and
not just an equivalence relation as already proved in chapter 10. In chapter
12 we then prove that the auxiliary relation is closed under evaluation and
that the transitive closure is a symmetric relation. This will then enable us
to deduce that the auxiliary relation is contained in Evaluation Bisimulation

and hence that they are equal.

177

178 CHAPTER 11. AUXILIARY RELATION FOR CML,

11.1 Auxiliary relation

Definition 11.1

For any, possibly open, CML, processes, ¢ and f we define a relation
e ~* f inductively using the rules given in figures 11.1 and 11.2. We call this
relation the auxiliary relation to Evaluation Bisimulation, but we normally
refer to this as the auxiliary relation.

(NULL¥) fA~°f (VAR¥) ifs ~° f, z € Var
A" f " f
IN* ifn? ~° LIT* ifl~° f, l e Lit
(IN*) T f (LT = f
e :* /
(UNIT*) if()~°f (CON¥) © ifed o f
)~ f ce~"* f
~* ¢! e~* ¢
(DEL¥) iffe] ~° f (RES*) —— ifvne~°f
e] ~* f vn.e ~*
e ~* f e~*¢e
(STRUCY) ife=e¢ (OUT¥ ifnle’ ~o f
ex~*f nle ~* f
:* ! e 2>l< el
(PAIRY) ————— if (¢},) = f
er,e2) > f
~*el ex~*el
(VPAIRY) —— L 27 72 if < ¢l ¢l >0 f
; 1 €2
<ep, ey > f
~F / ~F /
(LET¥) A7 % 27 D et z=e€jine, ~° f
let z=e1iney ~* f
o o*
(APP¥) =4 2= % ifefel, ~° f

ejeg =" f

Figure 11.1: Auxiliary Relation for Evaluation Bisimulation — Part 1

11.2. INITIAL PROPERTIES OF THE AUXILIARY RELATION 179

(PAR¥) ol 7 ifef|ey ~° f
(WRAP*) - :je;;:f % if e} = e}~ f
sum) = :1 691 s i« % itheges
w2 q e G ¢/ then ¢, else ¢, ~° f
if e; then es else ez ~* f
(FIX*) ex’e iffix (z=fny=-¢') ~° f

fix (z=fmy=e) ~* f

Figure 11.2: Auxiliary Relation for Evaluation Bisimulation — Part 2

Definition 11.2

As in definition 4.2 we define a derivation of e ~* f to be normal if the
(STRUC) rule is used at most as the last rule and it is simple if it does not use
the (STRUC) rule at all. We say that e ~* f is normal/simple if the derivation

" we use is normal/simple.

Lemma 11.3

For CML, expressions e and f then if e ~* f, there exists a normal
derivation for it.
Proof ‘
The (STRUC) rule may be “pushed down” ﬂlrough all the other rules since
= is a congruence. Two sequential usages of the (STRUC) rule may be unified

since = is transitive. O

11.2 Initial properties of the auxiliary relation

Having now defined the auxiliary relation for processes and values, we prove

various useful lemmas that we will use many times in the next chapter. We

180 CHAPTER 11. AUXILIARY RELATION FOR CML,,

start by showing that Evaluation Bisimulation is contained in the auxiliary

relation.

Lemma 11.4
For CML, expressions ¢, f and g then

lLex*f & fxg=>ex~*g
2.e~*e

.exf=ex*f

Proof

1. We use the transitivity of ~ and the fact that we may assume that e ~* f

is normal.
2. e ~° e and then use induction on the structure of e.
3. Follows from parts 1 & 2.
O
We now show the main result of this chapter, which is that the Auxiliary

relation has a substitutivity property. This will be used to show that the

Evaluation relation is a congruence and not just an equivalence relation.

Lemma 11.5 Substitutivity property for ~*
For CML, expressions e, f, ¢'(z) and f'(z) thene ~* f and /() ~* f'(z)
implies that ¢’{e/z] ~* f'[f/z].

Proof
This follows by induction on the derivation of ¢'(z) ~* f'(z) using the
fact thatif ¢/ (z) ~° f'(z) then €'[f/z] ~=° f'[f/z]. O

Finally we show that the transitive closure of the Auxiliary relation is
symmetric. We do this for the same reason and use the same method as in

section 4.4 on page 60.

Lemmall.6

For CML, expressions e and f, e ~* f implies that f~*e,

Proof

This follows by tedious case splitting in the same way aslemma 4.11. O

Chapter 12

Congruence of Evaluation

Bisimulation

We proceed in a similar manner to the Howe-style proof in chapter 4. We use

the Auxiliary relation given in the previous chapter.

Having already shown in chapter 11 that ~° is a subset of ~*, and that
~* js symmetric, we now show that ~** is closed under evaluation. We
proceed using the transition relation. Once we have shown that ~* is closed
under transition, we use theorem 9.29 to show that the Auxiliary relation is
closed under evaluation. This method has various advantages. One is that
it means we may split up the proof into various smaller sections, without
having cyclic dependencies between lemmas. Another is that we do not have
to deal with Evaluation Contexts. These contexts can be arbitrarily large,
which will introduce many extra steps. In particular we do not have a result
yet that says that for two CML,, expressions e and f and a name n then e ~ f
implies that vn.e ~ vn.f. Without such a result the induction becomes even

more complicated and long-winded.

We will prove all the results in this chapter with the restriction that all
transitions/evaluations are on closed expressions. We may use this restriction
since Evaluation Bisimulation is defined for closed expressions and we

already have a substitutivity result, lemma 11.5, for the Auxiliary relation.

We start by considering those transitions which produce any of an input,

an output or a value being returned. We first prove the result for simple

181

182 CHAPTER 12. CONGRUENCE OF EVALUATION BISIMULATION

transitions and then extend the result to the general case using lemma 9.10.
We will then do the same for transitions which involve a 7 action.
Lemma 12.1

For CML, expressions e and f and a concretion C then e\, /C and
e ~* f simple imply that there is a concretion D with f || /D and for any
abstraction A we may deduce that A e C~*"°4 e D.

Proof
We will proceed by induction on the derivation of e \, v7i.\/v.¢’. The last
rule used:

VAL Hencee = v, 7 = () and ¢’ = A. We now case split again on the form of v:

Literal Hence v = [and [~* f. Therefore ! ~° f. Hence f |} \/v'.f’ and
for any abstraction 4, Ae < v,A >~° Ae </, f’' >. Therefore by
lemmall.4 Ae < v,A >~* Ae <o/, f/ > for any abstraction A.

Recursive function Hence v = fix (z=fny=>¢;) and there is an f; such
that e; ~* f; and fix (z=fny=-f;) ~° f. Hence f | /v.f’ and for
any abstraction 4, Ae < v,A >~° Ae < ¢, f' >. Therefore
by lemma 11.4(1) we get Ae < v,A >=~* Ae < v/, f' > for any

abstraction A.

Evaluated Pair Hence v =< v;,v2 > and there are v}, v}, with v; ~* v}
and < v],v} >~° f. (v}, v} are values because otherwise < v}, vy >
would not be correct syntactically.) But < v}, v5 > / < v}, v5 > .A
and hence there are v' and f' with f | +/.f’ and for any A,
As << v, vh >, A >~ Ae < v, f' >, But, by lemma 11.5,
Ae < v, A >~* Ao << vj,v5>,A>, and so by lemma 11.4
Ae < v, A >~* As <o/, f' >, for any A.

Guarded expression Hence v = [e;] and there is an f; with e; ~* f;
and [f1]~° f. Hence f | +/%'.f' and for any abstraction
A, Ae<|[fi]J,A>~* Ae <, f'>. But, by lemma 11.5 and

" (DEL¥), Ae < u,A >~* Ae < [fi],A>, and so by lemma 11.4
Ae < v, A >~* Ae < v/, f' >, for any A.

Therefore, with D = +'.f', wehave f || /D with Ae C ~* Ae D, as

required.

183
WRAP This case cannot occur since e; cannot be a guarded expression.
SUM; This case cannot occur since e; cannot be a guarded expression.
SUM; This case cannot occur since e; cannot be a guarded expression.

STRUC Hence e = e; and ¢’ = e]. Hence e; \, vii.\/v.ej. Then using
(STRUC*) we get e; ~* f and hence by induction hypothesis f |} /D
and Aevii < v,€] > ~**Ae D for any abstraction A. Bute' = ¢} implies
that Ae C' = Aevii <v,e >= Ae < v,¢]| > and hence using (STRUC¥)
AeC**A e D.

uRES , Hence e = vm.e" with ¢’ \, vii.\/v.e”/, where ¢ = vm.¢"". The
last rule used in the derivation of e ~* f must have been (RES*) so
there is an f” with ¢’ ~* f” and vm.f" ~° f. Therefore by induction
hypothesis there are 7/, +' and f’ with " | vm/.0".f"” and for any
abstraction A we know that Aevii < v,e” > ~**Aevm <v", f" >.
We restrict our attention to those abstractions A that do not have

m as a free name.!

Therefore, by using lemma 11.5, we see that
vm.(Aevii <v,e" >)*®um.(Aevm <o, f" >). We deduce that
Aevii<v,e >~ ym (Aevm! <o, f” >) by noting that m is not
free in A or v. We now case split on whether m is in the free names

of v".

[m € fn(v)"] Thus vm.f" (A vmm/ o f". So there
are m"”, + and f' with f [} v ' .f' and
Aevmm/ <v" f" >~° Aevm" <o'.f/ > for any abstraction,
eg A Because m € fn(v)” we may deduce that
Aevii < v > ~*A e vmm' < v, f" >. Therefore using

lemmal11.4, Aevii < v, e >~**Aevm” < o'.f > asrequired.
[m ¢ fn(v)"] Thus vm.f" | vi/.\/v".vm.f". Therefore there are 7",
v and f' with f | vm”.\/v'.f' and for any abstraction, e.g. A,

Aevm < v vm.f" >~° Aevm” < v'.f' >. But we can deduce

'We don't strictly need to do this. To get around this restriction we can a-convert e and f
so that m is not a bound name, then work through the proof and then at the end a-convert it
back.

184 CHAPTER 12. CONGRUENCE OF EVALUATION BISIMULATION

that A e vii < v,/ > ~**A e vm’ < v", ym.f" > since m ¢ fn(v)".
Therefore A e vii < v,e’ > ~**Aevm” < v'.f' > asrequired, using

lemma 11.4.

rRES ; Hence e = vm.e” with " \, vi'.\/v.¢/, for some process e” where
7' =7t \ {m}. The last rule using in the derviation of ¢ ~* f must have
been (RES*) so there is an f” with ¢” ~* f” and vm.f” ~° f. Therefore
by induction hypothesis there are 7/, v' and f' with f” | v/ v". "
and for any A we know that 4 e vii' < v,e’ > ~**A e v/ < v, f" >.
We will restrict our attention to those A's that do not have m as a free -
name. Therefore by using lemma 11.5 on page 180 we may deduce that
vm.(Aevil <v,e >)=*“vm.(Aevi <", f >). We now case split

on whether m is in the free names of v".

[m € fn(v")] Therefore A e vii < v,e’ > ~*C A o i < o 1>,
because m is not a free name in A. Therefore we also know that
vm.f" | vma' 2" f"” and therefore there are m”, v' and f’ with
f | vm"'.f and for any abstraction, e.g. A, we also know that
Aevmm! <", f" >~° v/ < o', f' >. Therefore, by lemma 11.4,

Aevit <w,e >~**Aepm <o, f >,asrequired.
b ?

[m & fn(v")] Therefore vm.f” | vm/'.v".vm.f". Hence by induction
hypothesis there are 7", v’ and f’ with vm.f"” § vm”.v'.f' and for
any abstraction, e.g. 4, A e v/ < v",um.f" >0 v <o f1 >,
But A e vii < v,€ > ~**A e v < v',vm.f" >, since m is not
a free name in A or v”. Therefore we use lemma 11.4 to derive

Aevit < v, >=*Cum! <o, f! >, as required.

PAR; Hence ¢ = ejle; and there is an e, with e; \, vii.\/v.e, and
e/ = e1|e,. Therefore the last rule used in the derivation of e ~* f
must have been (PAR*) and so there must be f; and f, with e; ~* fi,
es ~* fo and fi|fy ~° f. By induction hypothesis there are 7, v"
and f) with fo | wvm.\/".f; and for any abstraction A we may
observe that A evii < v,e) > ~*Aevm <" fi >. Using PAR; we

see that f1|f2 | vi./2".(f1f})? and so there are 7Y/, v' and f’ with

2We assume w.l.o.g. that 77 N fn(f1) = 0. If this is not the case then we a-convert to ensure

185

f v/ \/v.f and that for any abstraction, e.g. A, we know that
Aevm < V" filfy >=° Aevm! < ¥'.f' > Butmnfn(fy) = 0 and
lemma 10.21 implies that f;|(4A e v < 0", f} >) ~° Ae vt/ <v'.f' >.

Bylemma11.5 e;|(Aevii < v,ey >)~*fi|(Aevm < v", f5 >) and then
we derive A o v7i < v,e1leh > ~*°f1|(A e v < 0", f3 >) using lemmas
10.21 and 11.4.3 This plus the last equation in the previous paragraph

gives A e vii < v,€' > ~*A e v’ < v'.f' >, as required.

No other cases can occur. o
Lemma 12,2

For CML, expressions e and f, name n and a concretion C then e \, n!C
and e ~* f simple imply that there is a concretion D with f || n!D and for any
abstraction A we may deduce that A ¢ C~*4 e D.

Proof

If C = vm < v,€¢’ > then we will proceed by induction on the derivation

of e \, vm.nlv.€'. Lastrule used:
OUT This follows in exactly the same way as the VAL case above.

WRAP So e = e; = e and there is an €] with e; \, vm.nlv.e] and ¢’ = eqse].
The last rule used in the derivation of e ~* f must have been (WRAP¥)
and so there are f; and fo with e; ~* f1, es ~* foand f; = fo ~° f. By
induction hypothesis there are 7/, v” and f] with f; | vm/.nl".f] and
for any abstraction 4 we have A e v} < v, ¢} > ~=**A e v/ <", f] >.
Using WRAP implies that f; = fs || v/ .nlv”.fo 1.4 This in turn implies
that there are 7", v’ and f/ with f | v@".nlv'. f' and for any abstraction,
eg. A, Aev <V, fof] >~° Aevm” </, f' >. But by lemmas 10.28
and 11.4 we observe that A e v < v,ege] >* eg(A e vm < v,e] >).
Lemma 11.5 implies that e (A e vii< v, €] >)*fo(A e vi/< v, fl >).
Lemma 10.28 implies that fo(A e v’ < o, f] >) ~° Ae v <o/, f' >.
Putting the last three equations together, together with lemma 11.4,

gives A e vm < v,e > ~**“Aevm < o', f' >, as required.

that this is the case.
$Notice that 7 N fn(e1) = 0.
“We again assume w.l.o.g. that %’ N fo(f). If this is not the case then we a-convert f; and

f1 to ensure that this requirement holds.

186 CHAPTER 12. CONGRUENCE OF EVALUATION BISIMULATION

SUM; Hencee = e; @ ey and e; \, vm.nlv.e/. The last rule used in the
derivation of e ~* f must have been (SUM*) and so there are f; and
fowith e; ~* f1, es ~* fyand f1 ® fo ~ f. By induction hypothesis
there are 771/, v” and f] with f; | vm/.nlv". f{ and for any abstraction A
we have A e vii < v,¢e > ~**A e vm' < v, f| >. By lemma 9.28 and
theorem 9.29 twice there are 7", v and f{” with =" N fn(fy) = 0, A"
and 7’ being in a 1-1 mapping, v = o"[m" /W], f{" = fi"[m" /m'] and
fi 4 v al™ f'. But Aevm/ < V', f] >=, Aevit” < " f" >
implies that A e v < v,¢/ > ~*"A e y < v fi > using (STRUC*).
Using SUM; we may derive that f; @ fo | vm” .nl™.f”. This implies
that there are ", v’ and f’ with f || vm”.nl’'. f and for any abstraction,
in particular A, A e v < o™, fi' > ~**A e vm” <", f' >. Therefore
by lemma 11.4 we get A o vt < v,e > ~**“A e v < o, f >, as

required.
SUM, Follows in the same way as SUM1 above.
STRUC This follows in exactly the same way as the STRUC case above.
rRES, This follows in exactly the same way as the rRES , case above.
uRES; This follows in exactly the same way as the uRES , case above.
PAR; This follows in exa?:tly the same way as the PAR; case above.

PAR; Hence e = e;e; and there is an ¢} with e; \, vii.nlv.e] and ¢’ = € |es.
Therefore the last rule used in the derivation of e ~* f must have been
(PAR*) and so there are f; and f, with e; ~* f1, ea ~* fo and f1|fo ~° f.
By induction hypothesis there are 77/, v" and f] with f; | vm.nlv"”.f] and
Aevm < v, ey >~=**“Aevm! <", fl > for any abstraction A. Using
PAR, we see that f;|f, |} vm/.nl".(fl|f2)° and so there are m’, v’ and
f' with f § vm"”.nlv'.f' and, for any abstraction, e.g. A, we know that
Ao <", filfa >=° Aevm < v'.f' >. But@ N fu(fy) = 0 implies
that (A e v <", f] >)|fa =° Aevm” < v'.f' >. Lemma 11.5 implies
that (A e v < v, ¢, >)|ea~*"(A » v’ < v", f| >)|f2. Then (STRUC)

SWe assume w.l.o.g. that 7 N fo(f2) = §. If this is not the case then we a-convert to ensure
that this is the case.

187

and lemma 11.4 imply that A e v < v,e’ > ~**“A ey < v'.f' >, as

required.

CON, Hence e = cej, € = cef and e; Y\, vmi.nlv.e|. The last
rule in the derivation of e ~* f must have been (CON¥*)
so there is an f; with e; ~* f; and cf; =~° f. Therefore
by induction hypothesis there are ', +” and f] with
v/ " f{ and Aevm <wv,ej >~ Aevm/ <" fl > for
any abstraction A. Then lemmas 11.5, 10.28 and 11.4 imply that

Aevm <wv,cel >~*Ce(Aevm! <o, fl >).

CON, and f; | v .nlv".f] imply that ¢f; § v/ .nlv”.cf]. Therefore
there are m", v’ and f’ with f |} " .n!v'. f' and for any abstraction, e.g.
A, Aev <" cf] >~ Aevm” <o/, f' >. Butlemma 10.28 implies

thatc(Aevm/ < v, f] >) ~° Aevm” < v, f' > and lemma 11.4 gives

Aevm < v,e >~*Aevm <o, f >,as required.

The APP,,, PAIR,, IF, and LET,, cases all follow in the same was as the CON,,

case. No other cases can occur. a

Lemma 12.3
For CML, expressions e and f, name n and an abstraction A then
e \yn?Aand e ~* f simple imply that there is an abstraction B with f | n?B

and for any concretion C we may deduce that C e A~**°C e B,

Proof

If A = (z,¢) then we will proceed by induction on the derivation of
e \\ n?z.¢/. Last rule used:

IN Therefore e = n? and ¢’ = A. So the last rule used in the derivation of
e ~* f must have been (IN*). Therefore e ~° f and so there is an f’ with

fin?z.f'and Ce(z,A) ~* Ce(z, f') for any concretion C, as required.
RES: Follows in the same way as the uRES; case above.

All other cases follow in the same way as the corresponding case in lemma

12.2 or else do not occur. O

188 CHAPTER 12. CONGRUENCE OF EVALUATION BISIMULATION

Lemma 12.4

For CML, expressions e and f with e ~* f then:

1. For concretion C with e \, 1/C then there is a concretion D with f |} v/D
and for any abstraction A we may deduce that A e C~**“A e D.

2. For concretion C and name n with e \, n!C then there is a concretion
D with f | n!D and for any abstraction A we may deduce that
AeC**Ae D,

3. Forabstraction A and name n with e \, n? A then there is an abstraction
B with f | n?B and for any concretion C we may deduce that
C e A~*C e B.

Proof

All three parts follow in the same way. By lemma 11.3 we may assume that
the derivation of e ~* f is normal. If it is simple the result follows by lemmas
12.1, 12.2 and 12.3. Otherwise, and we just give the first part as an example,
the last rule used was (STRUC*) and so there isan ¢’ with e = ¢’ and €’ , 1/C.
Therefore, using lemma 12.1, there is a concretion D with f || /D and for
any abstraction A we get A e C~*"*4 ¢ D as required. The other two cases

follow similarly. O

Lemma 12.5
For CML, expressions e;, ez, f1 and f, with e; ~* f; and e; ~* f, then
e1 \ vM.y/v.€}, for some 7, v and ¢}, implies that f; \, vm’.\/v". f], for some

m/, v’ and f], with:

o vi.(e}|6(c,v))=~* v .(f1]6(c,v")).

v = true implies that v’ = true and ¢} |ex=~*"*f]| fa.
e v = false implies that ' = false and e} |eg~**f}| fo.

vin.(é)|let z=ep in < v,z >))=*" v (fi|let z=f2 in < v/, z >)).

v = fix(z=fny=e3) implies that v = fix(z=fny=f;3) and
vin.(e]|let y=eg in e3[v/z])~ ~* ! (fillet y=fo in f3[v'/z]).

vin. (e} |ea[v/z))=*vm!. (fi| fo[v' [z]).

189

Proof

Each case follows in essentially the same way. We give the first as an
example since it is the hardest.

For the first case we start by assuming that the derivation of e; ~* f; is
simple. We proceed by induction on the derivation of e; \, v77.4/v.€}. Last
rule used:

VAL Hence ey = v, m = 0 and ¢ = A. The last rule used in the
derivation of e; ~* f; must have been (VAR*), (DEL*), (LIT*), (UNIT*),
(VPAIR*) or (FIX*). If the last rule use was not (DEL*) then the result
follows from lemma 10.32. Otherwise e; = [¢;] and there is a g, with
91 ~* g2 and [go] ~° fi. But [go] | /[g2].A so there must be 7/, v
and f{ with f; | v@'.\/v'.f] and for any abstraction A we know that
Ae < [go], A >=° Aev <o/, f| >. Therefore, using lemma 10.32, we
may deduce that d(c, [g2]) ~° vi'.(f'|é(c, f')). We now case split on
what c is. It can only be sync or always for (c, [¢2]) to be defined.

sync Therefore é(sync, [g2]) = go. But vmi.(e}|6(syne,v)) = g¢; and
g1 ~* g». Therefore, again using lemma 11.4, we may show that
vm.(e}]|6(sync,v)) ~* vi/.(f'|6(c, f')), as required.

always Therefore d(always, [g2]) = [g2]. Butvi.(€} |6 (always, v)) = [g1]
and g1 ~* go. Therefore by lemma 11.5 we see that [g;] ~* [g2].
So lemma 11.4 gives vni.(e}|d(sync,v)) ~* v’ .(f'|0(c, f')), as
required.

STRUC Hence e; = g; and €] = ¢} with g; \, v7i.\/v.g]. But g; ~* f; and so,
by induction hypothesis, there are i/, v’ and f{ with f; | v#/.\/v'. f] and
i (g416(c,0)) = v (£3(c, v')). But v (€} |5(e, v)) = vt (g}]8(c, v))
and so by (STRUC*) we obtain vr#.(e}|6(c,v))~*"*vm’.(fI|6(c,v")), as

required.

uRES , Hence e; = vn.g; and g; \, vm./v.g}, where vn.g; = ¢}. Last rule
used in derivation of e; ~* f; must have been (RES*) and so there is a

g2 with g1 ~* go and vn.gs ~° f;. By induction hypothesis there are ",

v" and gj with g § viit".\/v".gj and vrit. (91 [d(c, v))=**vm” . (g5|8(c, v")).

We now case split on whether n € fn(()v"):

190 CHAPTER 12. -CONGRUENCE OF EVALUATION BISIMULATION

[n € fn(v”)] Therefore vn.gs | vnm”.\/v".¢g5 and f; | v/ .\/v'.f] for
some 77/, v and fiand Aevnm” <o, gy > Aevii <o/, f] >
for any abstraction A. Therefore, using lemma 10.32, we see that
vnm.(gh|6(c,v")) ~° vi.(f]|6(c,v")). But, using lemma 11.5 and
(STRUC*) we see that vi.(vn.g}|6(c, v))~*“vnm/.(g5]0(c,v")). So

by lemma 11.4 vrii.(vn.g} |6(c, v))=* v’ .(f]]6(c, v')), as required.

[n & fn(v")] Therefore vn.gs | vim”.\/v".vn.g, and f1 || v/ .\/v'.f] for
some 7/, v' and f] and A e vi” < v",vn.gh >° Aev/ <, f] >
for any abstraction A. Therefore, using lemma 10.32, we see that
v (vn.ghlé(e,v")) ~° v (f1lé(c,v’)). Using lemma 11.5 and
(STRUC™) we see that v.(vn.g}|6(c, v))~* v (vn.gh|o(c, v")).
Therefore, by lemma 11.4 vii.(vn.gi|6(c, v))~**vi/.(f]|6(c, ")), as

required.
rRES , Follows in essentially the same way as the uRES, , case above.

PAR; Hence e; = ejjleis for some e;; and egs, with ep N\, vi./v.€}y
and ¢} =ejle}y. Therefore the last rule used in the derivation
of e ~* f; must have been (PAR*) and so there are f;; and
fi2 with ey; ~* fi1, ero ~* fip and fi1|fis ~° f1. By induction
hypothesis there are m"6, +" and fl, with fi | vm".\ " fl,
and v.(e},]0(c, v))=*vm (flo]d(c,v")). PAR; implies that
fulfiz & vm". " (f11fi2) and so there are ¥, v’ and f] with
fi v/ . f] and A e v < V", f11]flg >0 Aevm. < W, f] >
for any abstraction A. So vmi”.(f11|f]5|0(c,v")) ~° vm'.(f1]6(c,v"))
using lemma 10.32. But vm.(els|d(c, v)) = um” . (fl4]0(c, v")),
enn ~* fi1, lemma 11.5 and (STRUC*) allow us to derive that
vi.(en1|efs|6(c, v))=**vm”.(f11|f15]6(c,v")). Then lemma 11.4 show us

that vim. (e} |0(c, v))=**vm’.(f]]0(c,v")), as required.

If the derivation of e; ~* f; was not simple then by lemma 9.10 there must
be a normal derivation. There there is a g with ¢ = e; and g ~* f; simple. But
9 \y vm./v.¢}. Therefore using the simple case above, there are i/, v’ and f}
with f, § vt /o' f} and viit. (€5 (c, v))=" v (f1]5(c,v')). O

8Additionally we require that m" N fn(f11) =

191

Lemma 12.6
For CML, expressions e, ¢’ and f then e \, 7.¢’ and e ~* f simple imply

that there is an expression f’' with f \, 7*.f’ and e/~**f'.

Proof

We will use lemma 10.23 many times without reference. We proceed by

induction on the derivation of e \ 7.¢'. Last rule used:

STRUC Hence there are e¢; and ¢} with e = e, ¢} = ¢ and e; Y\, 7.¢|. Then
‘using (STRUC*) we gete; ~* f and hence by induction hypothesis there
is an f' with f \, 7*.f' and ej~**f’. Bute| = ¢ and (STRUC*) imply

that e/~** f/, as required.

RES, Hence there are n, e; and e} with e = vn.e;, € = vn.e| and e; \ 7.€].
Last rule using in derivation of e ~* f must have been (RES*) and so
there is an f; with e; ~* f; and vn.f; ~° f. By induction hypothesis
there is an f] with fi \, 7°.f] and €;~**f!. Then RES, implies
that vn.f; \, 7.vn.f] and therefore there is an f’ with f \, 7*.f’ and
vn.f{ ~° f'. But lemma 11.5 and e} ~**f! imply that vn.e}~**vn.fl.

Therefore lemma 11.4 implies that ¢/~**f/, as required.

PAR; Hence there are 1, ez and €, with e = ejles, e’ = e1lel, and ez N\ 7.€5.
The last rule used in the derviation of e ~* f must have been (PAR*)
and so there are f; and f, with e; ~* f; and e; ~* f5. By induction
hypothesis there is an f} with fo \, 7*.f} and e,~**f}. PAR; implies
that f1|f2 N\, 7*.f1|f5 and so thereis an f' with f N\, 7*.f’ and f1|f} ~° f'.
But lemma 11.5 and e)~*"f} imply that e;|eb~**f;|f;. Therefore

lemma 11.4 implies that e/~*"f', as required.

PAR; Hence there are e;, e and €] with e = eileg, e’ = €}lez and e; N\, T.€}.
The last rule used in the derviation of e ~* f must have been (PAR*)
and so there are f; and f, with e; ~* f; and e; ~* f5. By induction
hypothesis there is an f] with f; \, 7*.f! and e}~*‘f!. PAR, implies
that f1|fo \, 7*.f1|fo and so there is an f’ with f N\, 7*.f" and f]|f2 ~° f'.
But lemma 11.5 and e}~*"f! imply that €| |es~**f!|f>. Therefore

lemma 11.4 implies that e'~**f', as required.

192 CHAPTER 12. CONGRUENCE OF EVALUATION BISIMULATION

CON, Hence there are e; and ¢} with e = ce;, € = ce] and e; \, .¢}. The
last rule used in the derivation of e ~* f must have been (CON*) and
so there is an f; with e; ~* f; and ¢f; ~° f. Hence by induction
hypothesis there is an f] with f; \, 7*.f] and e|~**f]. CON, implies
thatcf; N\, 7*.cf] and so thereis an f' with f \, 7*.f' and cf] ~° f’. But
lemma 11.5 and e ~**f{ imply that ce}~**cf]. Therefore lemma 11.4

implies that ¢/~*¥f’, as required.

APP , Hence there are ey, e; €}, v = fix (z=fny=>e3) and 7 with e = e;e,
¢ =vil.(ej|lety=ezinesv/z]) and e; \, vii.\/v.e]. Therefore
the last rule used in the derivation of e ~* f must have been
(APP*) and so there are f; and f, with e; ~* fi, e ~* fo and
fife =~° f. Lemma 125 implies that there are ', v and f]
with fi \(7*vm/ V. f] and o' =fix(z=fny=f3). We also see
that v (e} |let z=es in e3[v/z])~=*"vi.(fl|let z= fo in f3[v/z]).
But fifs N\ 7ruvdl.(filletz = fyin f3[v'/z]). Hence by
lemma 10.23 we see that there is an f’ with f \, 7*.f' and
vin!.(f{|let z= fain f3[v'/z]) ~° f'. Therefore by lemma 11.4 we

get ¢/~* f', as required.

COM; Hence there are e, €}, e, €5, n, m and v with e; \, v.nlv.€),
ea \ynlz.ey and ¢ = vm.(e}|ej[v/z]). Therefore the last rule used
in the derivation of e ~* f must have been (PAR*). So there are f;
and f, with e; ~* fi, es ~* f, and filfe ~° f. Using lemma 12.4
twice we get f1, f5, ' and o' with f; | v/ .nlv'.f], fo I n?z.f) and
vri.(€} eblo/a)) = v (FlLfalo' /). But filfa o 7 (F1]f0')
and so, using lemma 10.23, there is an f’' with f \, 7*.f’ and
v .(f1]f5[v'/z]) =° f'. Therefore by lemma 11.4 we get ¢/ ~° f/, as

required.
COM; This follows in the symmetric way to COM; above.

The APP,, PAIR,, IF, and LET,, cases all follow in the same was as the CON,,
case. The CON o PAIR /, IF;, IF ¢ and LET, cases all follow in the same was as
the APP_, case. O

193

Lemma 12.7

For CML, expressionse, ¢’ and f thene \, 7.¢’ and e ~* f imply that there
is an expression f/ with f N\, 7*.f' and ¢’ ~* f'.
Proof

This follows in the same way as lemma 12.4. ad

We may now prove the summary lemma, which states that the transitive
closure of the auxiliary relationship is closed under evaluation. We may
then, finally, prove that the auxiliary relation is the same as Evaluation
Bisimulation. This will allow us, together with lemma 11.5, to show that
Evaluation Bisimulation is indeed a congruence relation.
Lemma 12.8

For CML, expressions e and f with e ~* f then:

1. For concretion C with e |} 1/C then there is a concretion D with f || /D
and for any abstraction A we may deduce that A ¢ C~*"“4 e D.

2. For concretion C and name n with e || n!C then there is a concretion
D with f | n!D and for any abstraction A we may deduce that
AeC~**Ae D,

3. For abstraction A and name n with e || n? A then there is an abstraction
B with f | n?B and for any concretion C we may deduce that
C e A~*C o B.

4. For concretion D with f |} /D then there is a concretion C with e || /C
and for any abstraction A we may deduce that A ¢ C~*'°A e D.

5. For concretion D and name n with f || n!D then there is a concretion
C with el n!C and for any abstraction A we may deduce that
AeC**Ae D.

6. For abstraction B and name n with f || n?B then there is an abstraction
A with f | n?A and for any concretion C we may deduce that
- CeA~**C e B.
Proof
The first three follow from theorem 9.29 and lemmas 12.4 and 12.7. The

last three follow in the same way, additionally using lemma 11.6. i

194 CHAPTER 12. CONGRUENCE OF EVALUATION BISIMULATION

Restatement of Theorem 10.5

Evaluation Bisimulation is a congruence relation.

Proof of Theorem 10.5

In chapter 10 we showed that ~° is an equivalence relation. Lemma 12.8
implies that ~*** C~°, But ~°C~* by lemma 11.4 and ~*C ~*% follows
obviously. Hence we have ~°C~*C ~** C~°, - Therefore ~°=~*. The result

then follows from lemma 11.5. O

Part I11

Conclusion

195

Chapter 13

Conclusion

We have shown for two different calculi that it is possible to use an evaluation
based method to describe the operational semantics of process calculi. We
have also shown that weak applicative bisimulations may be defined and are
shown to be congruence relations. However there are problems with using
an evaluation relation. We now consider the advantages and disadvantages
of this approach. It will be useful to compare how the approach worked for
NCCS and CML,,.

One of the biggest contrasts between NCCS and CML, is that of the
relationship between the evaluation relation and the transition relation
within each calculus. In both NCCS and CML, we would expect the
evaluation relation to correspond to a sequence of silent actions followed by
a visible action. The relationship between the evaluation relation and the
transition relation for NCCS (and 7NCCS) is, however, not as good a match

as we might have hoped for. Considering the situation, we should not expect

a perfect match. This is in the main due to the translations between NCCS _

and TNCCS. If these translations are removed, for example by defining the
transition relation over NCCS as is done in [PR98], then the match is much
closer. Furthermore, if the structural equivalence is added to the transition
relation then the match is perfect. In this case the transition relation can be
normalised, in the séme manner as in CML,. If these two modifications are
made then we end up with the same situation as we have for CML,, apart
from using a different calculus.

One problem with reasoning about evaluations is caused by the use of the

197

198 CHAPTER 13. CONCLUSION

structural congruence. It is very useful in reducing the number of reduction
rules required to define the operational semantics. When the derivations
of reductions may be normalised, as in the case of the transition relation
for CML,, the structural congruence does not introduce any problems. We
then use the method of first proving results for derivations that are simple,
and then extending the result to the general case. We use the observation
that a simple derivation is structure preserving. If a derivation cannot be
normalised, as is the case for the evaluation relations in both NCCS and
CML,, then the evaluation is not necessarily structure preserving and we

cannot use this two stage method.

Another issue to deal with when using an evaluation relation is that,
as mentioned above, it is not structure preserving. It means that proofs
are significantly more complicated than those using a transition relation.
This is possibly the biggest problem to consider when deciding whether to
use an evaluation relation. However this may also be overcome, since by
adding more evaluation rules we may create an evaluation relation that is
normalisable. This evaluation relation will, however, have many rules that
are derivable from some others and the (STRUC) rule. A balance has to be
obtained between the simplicity of the evaluation relation, and the added

power of using an evaluation relation that may be normalised.

Another significant difference between NCCS and CML, is the
simplifications that may be applied to Evaluation Bisimulation. The
results of theorem 3.7(2,3) are very useful. They mean that we only require
certain contexts to determine whether two processes are equivalent, and
~ also whether we may swap them in any context. The situation with CML,
is considerably different. We should not be surprised that there is no such
simple restriction to the context required to determine equivalence. The
reasons for requiring a context are twofold, however the NCCS version only
requires the first of these which is that the use of a fresh name allows a “silent
action” to occur. This requires the equivalent process/program to reduce,
perhaps using “silent actions”, to remain equivalent. The second reason
is only required for CML,. In CML, a function with a restricted channel

name may be sent over an unrestricted channel. For example, consider the

199

program

P = vm.(m!trueln!fn (z = (m? = P')))

where z is not a free variable in Q. P can transmit fn (z = (m? = P')) on
channel n, with the name m being restricted. We have already shown that it
is sufficient to prove that for any @, P and @ must be able to behave in the
same way in any parallel context for them to be able to behave in the same
way in any context. However it is an open question how much these parallel
contexts may be further restricted. It is suspected that there is no simple
set significantly smaller than any valid CML, program, or even a set merely
indexed by the free names of P and Q.

A difference that may be observed in the Howe’s method proofs is thaf
while the NCCS proof used the evaluation relation, the CML, proof used
the transition relation. This is not because the proof could not be derived
using the evaluation relation, but merely that it allowed the proof to be split
into smaller portions. It was felt that such an approach would be easier to
understand, but should not be taken to mean that the proof was only possible
using the transition relation.

We have described various difficulties that may occur using an evaluation
relation rather than a transition relation. However in each case we have
given methods to work around these problems. We have defined various
equivalences for NCCS and one of the possible versions of Evaluation
Bisimulation for CML, . There are a number of different decisions which may
have to be taken about exactly what we allow to be observable. There are
indeed many other related equivalences that we might have considered. One
of these could be to have decided that if an unrestricted value is transmitted
on a channel then we should be able to examine the value on it’s own and
not just in the presence of the transrhitting expression, as is the case for
the equivalences given in [FHJ95]. However this does not work. Consider
the value fix (z =fny = P), with n not free in P. This should be equivalent
to the value vn.fix (z=fny=((vm.m!n)|P)). It will not be if we are only
allowed to examine unrestricted values. However examining restricted values
doesn't necessarily make sense as shown above. Therefore adopting the

methodology used in this thesis is seen to be the most natural approach.

200 CHAPTER 13. CONCLUSION

It is the thesis of this dissertation that evaluation based methods form
a useful tool for reasoning about calculi for concurrent, communicating
processes. It has also been shown that delay-like equivalences can be used,
and form natural bisimulations for evaluation based calculi. The method of
using a parallel context to give an equivalencé that is a congruence relation
has been demonstrated and appears to be a powerful tool for designing

equivalences of this character.

Bibliography

[ACS96a]

[ACS96b]

[AdBKR92]

[Ama95]

[API3]

(AP94]

[AP95a]

R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for
the asynchronous 7-calculus. In Proc. CONCUR ’96, volume 1119
of Lecture Notes in Computer Science. Springer Verlag, 1996.

R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for
the asynchronous 7-calculus. Technical Report RR-2913, INRIA-
Sophia Antipolis, 1996.

P. America, J. de Bakker, J. N. Kok, and J. Rutten. Denotational
semantics of a parallel object-oriented language. In J. W.
de Bakker and J. J. M. Rutten, editors, Ten Years of Concurrency
Semantics: Selected Papers of the Amsterdam Concurrency Group,
pages 218-205. World Scientific, Singapore, 1992.

Roberto M. Amadio. Translating core Facile. Technical Report
TR-3-94, ECRC, 1995.

P. Achten and R. Plasmeijer. The beauty and the beast. Technical
Report 93-03, University of Nijmegen, March 1993.

P. Achten and R. Plasmeijer. A framework for deterministically
interleaved interactive programs in the functional programming
language Clean. In Jaarbeurs Utrecht, editor, Proc. of Computer
Science in the Netherlands (CSN '94), pages 1-30. Stichting
Mathematisch Centrum, 1994.

P. Achten and R. Plasmeijer. Concurrent interactive processes in

a pure functional language. In van Vliet Utrecht, editor, Proc.

201

202

[AP95b]

[BB92]

[(BMT92]

[Bou92]

[FHI5]

(FHJ95]

[GMP89]

[Gor94]

[Gor95]

[Hen88]

BIBLIOGRAPHY

of Computer Science in the Netherlands (CSN ’95), pages 10-21.
Stichting Mathematisch Centrun, 1995.

P. Achten and R. Plasmeijer. The ins and outs of Clean I/0.
Journal of Functional Programming, 5(1):81-110, 1995.

G. Berry and G. Boudol. The chemical abstract machine.
Theoretical Computer Science, 96:217-248, 1992.

Dave Berry, Robin Milner, and David N. Turner. A semantics for

ML concurrency primitives. In Proc. POPL 92, 1992.

Gérard Boudol. Asynchrony and the w-calculus (note). Rapporte
de Recherche 1702, INRIA Sofia-Antipolis, May 1992.

W. Ferreira and M. Hennessy. Towards a semantic theory of
Concurrent ML. Technical Report 95:02, School of Cognitive and

Computing Science, University of Sussex, 1995.

W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak
bisimulation for core CML. Technical Report 05/95, Computer

Science, University of Sussex, September 1995.

Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad.
FACILE: A symmetric integration of concurrent and functional
programming. In Proc. Tapsoft 89, volume 352 of LNCS, pages
184-209. Springer-Verlag, 1989.

Andrew D. Gordon. Functional Programming and Input/Output.
Distinguished Dissertations in Computer Science. Cambridge
University Press, 1994.

Andrew D. Gordon. Bisimilarity as a theory of functional
programming. In Proc. MFPS 95, number 1 in Electronic Notes
in Comp. Sci. Springer-Verlag, 1995.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

BIBLIOGRAPHY 203

[Hen94]

[Hen96]

[HL92]

[Hoa85]

[How89]

[How96]

(HT92]

[Jefo8]

[JGF96]

[Mil80]

M. Hennessy. A fully abstract denotational model for higher-
order processes. Information and Computation, 122(1):55-95,
1994.

M. Hennessy. A fully abstract denotational semantics for the =-
calculus. Technical Report 96:04, University of Sussex, 1996.

M. Hennessy and H. Lin. Sybolic bisimulations. Technical Report
92:01, University of Sussex, 1992.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

D.]. Howe. Equality in lazy computation systems. In 4th Annual
Symposium on Logic in Computer Science, pages 198-203. IEEE
Computer Society Press, Washington, 1989.

D.]J. Howe. Proving congruence of bisimulation in functional
programming languages. Information and Computation,
124(2):103-112, February 1996.

Kohei Honda and Mario Tokoro. On asynchronous communica-
tion semantics. Object-based concurrent computing. In Lecture
Notes in Computer Science, volume 612, pages 21-51. Springer-
Verlag, 1992.

Alan Jeffrey. Semantics for core concurrent ml using compu-
tation types. In A. D. Gordon and A. M. Pitts, editors, Higher
Order Operational Techniques in Semantics, Publications of the
Newton Institute, pages 55-89. Cambridge University Press,
1998.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne.
Concurrent Haskell. In Proc. 23rd ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL 96), pages 295-308.
ACM Press, 1996.

R. Milner. A Calculus for Communicating Systems, volume 92 of

Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1980.

204

[Mil85]

[Mil89]

[Mil90]

[Mil91]

[Mog91]

[MPW89]

[MS92]

[(MTH90]

[NN95]

[PR98]

BIBLIOGRAPHY

R. Milner. Lectures on a calculus for communicating systems.
In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar
on Concurrency, pages 197-221, Berlin, 1985. Springer-Verlag.

Lecture Notes in Computer Science Vol. 197.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. Functions as processes. In Proceedings of ICALP 90,
volume 443 of Lecture Notes in Computer Science, pages 167-180.

Springer-Verlag, 1990.

R. Milner. The polyadic n-calculus: A tutorial. . Technical
Report 91-180, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh,
1991.

E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55-92, July 1991.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes. Technical report, Laboratory for Foundations of

Computer Science, Department of Computer Science, University
of Edinburgh, 1989.

R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich,
editor, Proc. 19th Int. Coll. on Automata, Languages and
Programming, volume 623 of Lecture Notes in Computer Science,

pages 685-695. Springer-Verlag, Berlin, 1992.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard
ML. MIT Press, 1990.

Hanne Riis Nielson and Flemming Nielson. Static and dynamic
processor allocation for higher-order concurrent languages.
DAIMI-PB 483, 1995.

A. M. Pitts and J. R. X. Ross. Process calculus based upon

evaluation to committed form. Theoretical Computer Science,

BIBLIOGRAPHY 205

(PT94]

[PT97]

[Rep92]

[Rut92]

[San92]

[San93a]

[San93b]

195:155-182, 1998. A preliminary version of this paper appeared
in CONCUR’96, Lecture Notes in Computer Science Vol. 1119
(Springer-Verlag, Berlin, 1996), pp 18-33.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic
foundations for object-oriented programming. Journal of Func-
tional Programming, 4(2):207-247, April 1994. A preliminary
w}ersion appeared in Principles of Programming Languages, 1993,
and as University of Edinburgh technical report ECS-LFCS-92-
225, under the title “Object-Oriented Programming Without

Recursive Types’.

Benjamin C. Pierce and David N. Turner. Pict: A programming
language based on the pi-calculus. Technical Report CSCI 476,
Computer Science Department, Indiana University, 1997. To
appear in Proof, Language and Interaction: Essays in Honour of
Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, MIT Press, 1998.

J. H. Reppy. Higher-order Concurrency. PhD thesis, Department

of Computer Science, Cornell University, January 1992.

J. J. M. Rutten. Semantic correctﬁess for a parallel object-
oriented language. In J. W. de Bakker and J. J. M. Rutten,
editors, Ten Years of Concurrency Semantics: Selected Papers
of the Amsterdam Concurrency Group, pages 272-314. World
Scientific, Singapore, 1992.

D. Sangiorgi. Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, Department of
Computer Science, University of Edinburgh, 1992.

D. Sangiorgi. From pi-calculus to higher-order pi-calculus—and
back. In TAPSOFT. Springer Verlag, LNCS 668, 1993.

D. Sangiorgi. An investigation into functions as processes.

In Proc. Ninth International Conference on the Mathematical

206

[San94]

[San95]

[SS76]

[Sta95]

[Tar55]

[Tho93]

[TLP*93]

[Wal92]

[Wei89]

BIBLIOGRAPHY

Foundations of Programming Semantics (MFPS’93), volume 802
of Lecture Notes in Computer Science, pages 143-159. Springer
Verlag, 1993.

D. Sangiorgi. Bisimulation in higher-order calculi. In Proc. IFIP
Working Conference on Programming Concepts, Methods and
Calculi (PROCOMET’94), pages 207-224. North-Holland, 1994.

D. Sangiorgi. Bisimulation in higher-order calculi. Technical
Report RR-2508, INRIA-Sophia Antipolis, 1995. To appear in
Information and Computation. Revised version of the homonym
paper appeared in the proc. IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET’94),
North Holland, 1994.

G.L. Steele and G.K. Sussman. Lambda, the ultimate imperative.
Technical report, Massachusetts Institute of Technology, Artifi-
cial Intelligence Laboratory, March 1976.

I. D. B. Stark. Names and higher-order functions. Technical
Report 363, Cambridge Univ. Computer Laboratory, April 1995.

A. Tarski. A lattice-theoretical fix-point theorem and its
applications. Pacific Journal of Mathematics, 5:285-309, 1955.

B. Thomsen. Plain CHOCS. A second generation calculus for
higher order processes. Acta Informatica, 30(1):1-59, 1993.

Bent Thomsen, Lone Leth, Sanjiva Prasad, Tsung-Min Kuo,
Andre Kramer, Fritz Knabbe, and Alessandro Giacalone. Facile
antigua release programming guide. Technical Report 93-20,
ECRC, 1993.

David Walker. Objects in the 7-calculus. Technical Report CS-RR-
218, University of Warwick, Department of Computer Science,
April 1992.

W. P. Weijland. Synchrony and Asynchrony in Process Algebra.
PhD thesis, Univ. Amsterdam, 1989.

