Technical Report A

Number 454

Computer Laboratory

Parametric polymorphism
and operational equivalence

Andrew M. Pitts

December 1998

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1998 Andrew M. Pitts

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Parametric Polymorphism and Operational Equivalence

Andrew M. Pitts
Cambridge University Computer Laboratory
Cambridge CB2 3QG, UK

Abstract

Studies of the mathematical properties of impredicative polymorphic types have for the most
part focused on the polymorphic lambda calculus of Girard-Reynolds, which is a calculus of total
polymorphic functions. This paper considers polymorphic types from a functional programming
perspective, where the partialness arising from the presence of fixpoint recursion complicates the
nature of potentially infinite (‘lazy’) datatypes. An approach to Reynolds’ notion of relational
parametricity is developed that works directly on the syntax of a programming language, using
a novel closure operator to relate operational behaviour to parametricity properties of types.
Working with an extension of Plotkin’s PCF with V-types, lazy lists and existential types, we show
by example how the resulting logical relation can be used to prove properties of polymorphic types
up to operational equivalence.

1 Introduction

‘It turns out that virtually any basic type of interest can be encoded within Fy [polymorphic
lambda calculus]. Similarly, product types, sum types, existential types, and some recursive types,
can be encoded within Fs! polymorphism has an amazing expressive power’

Cardelli (1997, page 2225)

It is a widely held view—typified by the above quotation—that the polymorphic lambda calculus
(PLC) of Girard (1972) and Reynolds (1974) plays a foundational role for the statics (type systems) of
functional programming languages analogous to the one played by the untyped lambda calculus for the
dynamics of such languages. The technical justification for this view rests on the encoding of a wide
class of datatype constructions as PLC types: see for example (Bohm and Berarducci 1985), (Reynolds
and Plotkin 1993) and (Girard 1989, Chapter 11). However, these results cannot just be applied ‘off
the shelf’ to deduce properties of functional programming languages equipped with polymorphic
types. This is because PLC is a theory of fotal polymorphic functions—a consequence of the fact
that 3-reduction of typeable PLC terms is strongly normalising (Girard 1972); whereas functional
programming languages typically feature various mechanisms for making general forms of recursive
definitions, both at the level of expressions and at the level of types. The first kind of definition entails
the presence of ‘partial’ expressions, that is, ones whose evaluation does not terminate; and then the
second kind of definition may throw up types whose values involve partiality in complicated ways,
through the use of non-strict constructors. Can such ‘lazy’ datatypes be encoded with combinations
of function- and V-types? It is this question that motivates the results presented here.

A specific example may help to bring this issue into sharper focus. Consider the type
numlist of lazy lists of numbers in a non-strict functional programming language, such as

Haskell (www.haskell.org). The canonical forms of this type are the empty list, nil, and cons-
expressions, H:T, where the head H (of type num) and the tail 7' (of type numlist again) are not
necessarily in canonical form (and therefore their evaluation may not terminate). Thus expressions of
this type can represent finite lists (such as 0:nil), properly infinite lists (such as { = 0:(), or ‘partial’
lists (such as 0:(2, where (2 is a divergent expression of type numlist). Suppose now that the language
is augmented with V-types. (We consider why one might want to do so in a moment.) In PLC, the

type
L(r) L (a=(T—=a—a)—>a) (anotfreeinT)

encodes finite -lists—in the sense that the closed (3-normal forms of L(r) are in bijection with finite
lists of closed 3-normal forms of type 7. But what is the situation in the functional programming
language? Can uses of the lazy list type numlist always be replaced by the polymorphic type
L(num)? More precisely, are numlist and L(num) ‘operationally isomorphic’, in the sense that
there are functions in the language from num/list to L(num) and back again that are mutually inverse
up to some reasonable notion of operational equivalence of expressions? Or is num/list operationally
isomorphic to some some other polymorphic type, or to no such type?

The reader will not find the answer to such questions in the literature, as far as I know. Partly
this is because it is hard to construct denotational models of both impredicative polymorphism and
fixpoint recursion. Such models do exist (see (Coquand, Gunter, and Winskel 1987; Coquand, Gunter,
and Winskel 1989) for one style of model and (Abadi and Plotkin 1990) for another), but there is not
much in the way of useful analysis of the properties of polymorphic types these models. On the other
hand for pure PLC, Reynolds’ notion of relational parametricity (Reynolds 1983; Ma and Reynolds
1992) turns out to provide a very powerful tool for such an analysis. There are models of PLC
supporting a relationally parametric structure (Bainbridge, Freyd, Scedrov, and Scott 1990), and in
such models polymorphic encodings of datatype constructions have strong properties; indeed they have
category-theoretic universal properties characterising the constructions uniquely up to isomorphism
(Hasegawa 1991; Hasegawa 1994; Abadi, Cardelli, and Curien 1993; Plotkin and Abadi 1993). Can
one extend this relational approach to encompass fixpoint recursion? Unpublished work of Plotkin
(1993) indicates one way to do that model-theoretically. Here we show that a relatively simple,
syntactic approach is possible.

Should one care? Well, for one thing the results presented here provide a basis for obtaining some
‘free theorems’ (Wadler 1989) up to operational equivalence (and modulo some restrictions to do with
strictness) in languages like ML and Haskell that combine higher order functions, fixpoint recursion
and predicative polymorphism. However, the power of the relational approach really shows when
considering fully impredicative V-types. Since the type reconstruction problem is undecidable in this
case (Wells 1994) and explicit labelling with type information is considered cumbersome, most higher
order typed languages meant for human programmers eschew fully impredicative polymorphism.
However, it seems that impredicative polymorphism is a useful feature of explicitly typed intermediate
languages in compilers (Harper and Lillibridge 1993; Morrisett, Walker, Crary, and Glew 1998). Also,
there is foundational interest in knowing, in the presence of fixpoint recursion, to what extent various
kinds of type can be reduced to pure polymorphic types.

As Wadler (1989, Sec. 7) and Plotkin (1993) point out, extending relational parametricity to cope
with fixpoint recursion seems to necessitate working not with arbitrary relations, but with ones that are
at least admissible in the domain-theoretic sense, i.e. that are bottom-relating and closed under taking
limits of chains of related elements. In this paper a relational framework for polymorphism and fixpoint
recursion is developed that is based upon operational rather than denotational semantics. This allows

one to avoid some of the complexities of the domain-theoretic approach. In particular, it turns out that
questions of admissibility of relations can be treated implicitly, via an operationally-defined closure
operator. This closure operator allows us to tie operational behaviour to parametricity properties of
types and it is the main technical contribution of the paper. We use it to obtain a straightforward
and apparently quite powerful method for proving properties of Morris-style contextual equivalence
of types and terms involving impredicative polymorphism and fixpoint recursion; and one which is
based only upon the syntax and operational semantics of the language. (See (Pitts 1997b; Pitts and
Stark 1998) for previous results of this kind.)

The plan of the paper is as follows. In the next section we introduce PolyPCF, an extension
of PCF (Plotkin 1977) with lazy lists and V-types which will serve as the vehicle for examining
the issues raised above. We define a notion of observational congruence for PolyPCF terms based
upon observing convergence of evaluation in all contexts of list-type, but not of function- or V-type.
However, instead of working with a conventional Morris-style definition of contextual equivalence,
we define this observational congruence without mentioning PolyPCF contexts explicitly, making use
of the ‘relational’ approach of (Lassen 1998). Not only does this avoid some low-level technicalities
with binding in contexts, but it also makes it easier to state the relevant properties of logical relations
later on. Section 3 introduces the closure operation on (binary) relations between PolyPCF terms
mentioned above. We use it in Section 4 to present our syntactic version of relational parametricity.
An action of the PolyPCF types on binary relations between closed PolyPCF terms (of the same closed
type) is defined. This gives rise to a certain binary logical relation which is shown to characterise
PolyPCF observational congruence (Theorem 4.15). Section 5 shows how the logical relation can
be used to deduce extensionality properties of PolyPCF observational congruence. Whereas these
‘context lemmas’ can be proved in a number of different ways in addition to the one given here,
the same does not seem to be true of the results in the next two sections where we really exploit
the relational parametricity properties of observational congruence established earlier. In Section 6
we show, amongst other things, that in PolyPCF it is indeed the case that alist is observationally
isomorphic to the pure polymorphic type Vo' (o/ = (o = o' — @’) — o); and in Section 7 we
show that existential types, with a standard operational semantics, are definable in PolyPCF up to
observational congruence. Finally, Section 8 considers some directions in which the results presented
here might usefully be extended.

2 Polymorphic PCF

To explore the issues raised in the Introduction we use a programming language, PolyPCF, that com-
bines the Girard-Reynolds polymorphic lambda calculus with that veteran of studies in programming
languages, PCF (Plotkin 1977). Recall that PCF is a simply typed, call-by-name lambda calculus
equipped with fixpoint recursion and some basic operations on ground types of natural numbers and
booleans. To this we add V-types from the Girard-Reynolds polymorphic lambda calculus and a type
constructor for lists. For reasons of parsimony we do without the ground types of natural numbers
and booleans, because the role they play in the theory can be taken by the list types. The syntax of
PolyPCF types and terms is given in Figure 1. We are only interested in terms that can be assigned
types. The PolyPCF type assignment relation is given by the axioms and rules in Figure 2, all of which
are quite standard.

Notation 2.1. A type T is closed if ftv(T) = (; whereas a term M is closed if fu(A) = (), whether or
not it also has free type variables. We write Typ for the set of closed PolyPCF types, i.e. those having

Types 1 u= «a type variable
| 771 function type
| VYa(r) V-type
| rlist list type
Terms M = 2 variable
| Aax:r (M) function abstraction
| MM function application
| Aa(M) type generalisation
| Mr type specialisation
| fix(M) fixpoint recursion
| nil, empty list
| MuM non-empty list
|

case M of {nil= M | 2 ::a = M} case expression

Notes.

1. o and @ range over disjoint countably infinite sets TyVar and Var of type variables and variables
respectively.

2. The constructions Vo (~), Az : 7(—), Aa(—), and case M of {nil=> M’ | z::2'=(—)} are
binders. We will identify types and terms up to renaming of bound variables and bound type variables.

3. We write ftv(e) for the finite set of free type variables of an expression e (be it a type or a term) and
fv(A) for the finite set of free variables of a term M.

4. The result of capture-avoiding substitution of a type r for all free occurrences of a type variable « in e
(a type or a term) will be denoted e[7/a]. Similarly, A/[M’/x] denotes the result of capture-avoiding
substitution of a term M for all free occurrences of the variable 2 in A/,

Figure 1: Syntax of the PolyPCF language

et M:im PHEF:mi—1 T'HA:7
FFAe:m (M) i1 — 7 T'FFA:T

Nairhka:r

Cak-M:T I'FG:VYa(n) PHF:7—1
'FAa(M):Va(r) I'+Gro:mfre/al FHfix(F): 7

''H:7 T'HT:rlst
'+H:T: tlst

I+ nil, : 7list

'HL:mlist THMy:m Tohirm,t:rmliste My
['FcaseLof {nil=M; |hut=M}:m

Notes.
1. Typing judgements take the form I - A : 7 where

o the typing environment I is a pair A, A with A a finite subset of 7y Ver and A a function defined
on a finite subset dom (A) of Var and mapping each 2 € dom(A) to a type with free type variables
in A;

e M isaterm with ftv(M) C A and fu(M) C dom(A);

o Tisatype with flu(r) C A.

The PolyPCF type assignment relation consists of all such judgements inductively defined by the above
axioms and rules.

2. The notation I', : 7 indicates the typing environment obtained from the typing environment I' = A, A
by properly extending the function A by mapping z ¢ dom(A) to r. Similarly, I', « is the typing
environment obtained by properly extending A with an « ¢ A.

3. The explicit type information included in the syntax of function abstractions and empty lists ensures that,
given I" and A, there is at most one 7 for which I' - M : 7 holds.

Figure 2: PolyPCF type assignment relation

VIV (Vavalue)

Flde:r(M) M[A/R]UV GUAa(M) Mr/a]dV — Ffix(F) |V
FALV Griv fix(F) | V

Linil, M)V LUH=T M[H/RT/HLV
case Lof {nil= M; | hut=>M} | V caseLof{nil= M, |hut=M} |V

Figure 3: PolyPCF evaluation relation

no free type variables. Given 7 € Typ, we write Term(7) for the set of closed PolyPCF terms M for
which () = M : 7 is derivable from the axioms and rules in Figure 2.

We give the operational semantics of PolyPCF in terms of an inductively defined relation of
evaluation. It takes the form M |} V, where M and V are closed terms of the same closed type
(i.e. M,V € Term(r) for some 7 € Typ) and where V is a value:

Vao=de:7(M) | Aa(M) | nil, | M :: M.

The evaluation relation is inductively defined by the axioms and rules in Figure 3. Note that function
application is given a call-by-name semantics and that the evaluation rule for type specialisations, G 7,
is dictated by our choice of values at V-types—we choose not to evaluate ‘under the A’. Evaluation is
deterministic: given A, there is at most one V' for which A/ | V holds; and of course the rule for fix
entails that there may be no such V.,

Next we define a suitable notion of program equivalence for PolyPCF. Recall that two terms
of a programming language are regarded as contextually equivalent if, roughly speaking, they are
interchangeable in any program without affecting the observable behaviour of the program upon
execution. Of course, to make this a precise notion one has to choose what constitutes an executable
program and what behaviour should be observable. For PCF, Plotkin (Plotkin 1977) chooses ‘program’
to mean ‘closed term of ground type’ and the observable behaviour of such a program to be the constant
(integer or boolean) to which it evaluates, if any. Since we have replaced ground types with list types,
here we take a program to be a closed term of list type and we observe whether or not it evaluates to
nil. (In fact, just observing termination of evaluation at list types leads to the same notion of contextual
equivalence. Another reasonable choice would be to observe termination of evaluation at any type; this
gives rise to a different notion of contextual equivalence, analogous to the one studied in (Abramsky
1990), but which can be analysed using the same kind of operational techniques introduced in this
paper; see Section 8.)

Thus given I' - M : 7 and I' - M; : 7 in PolyPCF, we can say that the terms M, and M,
are contextually equivalent, and write I' - M = M; : 7, if for any context M [—] for which
M[M], M[M3) € Term(r'list) for some 7/ € Typ, it is the case that

M[M;] Y nil, & M[M,]) nil,.

As usual, a context M[—] means a PolyPCF term with a subterm replaced by the placeholder ‘~’; and
then M[M] indicates the term that results from replacing the placeholder with the term M. Thisis a
textual substitution which may well involve capture of free variables in M by binders in M[—]. So,
unlike terms, contexts are not identified up to renaming of bound variables. Although this might seem
like a minor syntactic matter, it is an indication that the notion of ‘context’ occurring in the above
definition of contextual equivalence is rather too concrete. Perhaps a better indication is the fact that
the substitutivity property of PolyPCF contextual equivalence

Fa:nbM=gwM 17 & THEFN =N :1 = Dk M[N/2]=¢ux M'[N'/z]: 7

is by no means an immediate consequence of the above definition of =c¢x. This is because M[N /]
is not of the form M y[M] for some context M y[—] (uniformly in M). Nevertheless, we can regard
M[N/z] as a use of M ‘in context’, or in other words, it is reasonable to demand that the above
substitutivity property holds of a notion of PolyPCF contextual equivalence by definition.

For these reasons, in the rest of this section we develop a slightly more abstract treatment of
PolyPCF contextual equivalence that avoids explicit use of contexts, following (Gordon 1998; Lassen
1998). In fact, this approach also makes it easier to state and prove the fundamental properties of the
logical relation to be defined in Section 4.

Definition 2.2. Suppose € is a set of 4-tuples (I', M, M, 7) satisfying
TFMEM 7= OFM:7 & THM :7) 1)
where we write ' = M & M’ : r instead of (I', M, M’, T) € £.

(i) £ is compatible if it is closed under the axioms and rules in Figure 4. It is substitutive if it is
closed under the rules in Figure 5. (All these axioms and rules are intended to apply only to
4-tuples satisfying the well-formedness condition (1)).

(ii) It is not hard to see that compatible relations are automatically reflexive. A PolyPCF precon-
gruence is a compatible, substitutive relation which is also transitive. A PolyPCF congruence
is a precongruence which is also symmetric.

(iii) & is adequate if for all closed types 7 € Typ and closed terms M, M' € Term(rlist)

OFMEM :rlist = (M | nil, & M| nil;).

Theorem 2.3 (PolyPCF observational congruence). There is a largest adequate, compatible and
substitutive relation. It is an equivalence relation and hence is the largest adequate PolyPCF
congruence relation. We call it PolyPCF observational congruence and write it as =,ps.

Proof. We take =, to be the union of all adequate, compatible and substitutive relations. The collec-
tion of adequate relations is closed under the operations of non-empty union, relational composition
and reciprocation; moreover, the identity relation is adequate, compatible and substitutive. These
facts imply that =, is itself compatible (hence reflexive), substitutive, transitive and symmetric;
see (Lassen 1998, Lemma 3.7.1 and Section 3.8). O

Remark 2.4. The substitutivity properties of Figure S are just as important a part of the laws of
equational logic appropriate to the language of PolyPCF as are the compatibility properties of

ia:rtkalua:r

Fe:mbEMEM 17y 'FFPEF iy —7m THAEA T
Az (M)EXa (M) :im—n 'E(FA)E(FA):
a,I'FMEM 1 'FGEG :Va(n)

F'FAa(M)EAa(M):Ya(r) TH(Gr)E (G'm): nlr/al

'-FEF :7—1
I'+-fix(F) & fix(F') : 7

'FHEH 7 THETET : tlist
PE(H=T)E(H =T : rlist

I'Fnil, € nil;, : Tlist

PELEL :mlist THEMEM]:m T, h:m,t:mlistt My & My:my
[k (case Lof {nil= M; | h:t= M,}) € (case L' of {nil=> Mj | h:t=>Mj)}) : 7y

Figure 4: Compatibility properties

o, TFMEM 7y
Llre/al - M(ra/a] € M'[13/] : 11|12/]

Fe:mbMEM iy TFNEN 7
I'+M[N/a] & M'[N'/z] : 7y

Figure 5: Substitutivity properties

Figure 4. It is for this reason that we have made substitutivity a part of the definition of =¢ps.
Nevertheless, it can be dispensed with in the definition since in fact =, is the largest relation
that is merely adequate and compatible. The fact that the largest adequate and compatible relation
is also substitutive follows once one knows that it relates -convertible terms. This in turn can
be deduced as a corollary of the properties of the logical relation of Section 4 (see also (Lassen
1998, Proposition 4.3.3) for a more direct proof). Once one knows that =, is the largest adequate
and compatible relation, it is straightforward to see that it is indeed equivalent to the contextual
equivalence =, which we mentioned at the start of this section.

We conclude this section with some examples of properties of PolyPCF types with respect to
observational congruence. It does not seem easy to prove such properties directly from the definition
of observational congruence (or using the more concrete notion of contextual equivalence). The logical
relation of the next section will provide the means to prove them.

Notation 2.5. In the case of closed terms of closed type, we just write My =qns My @ 7 for
@ -]\/[1 “obs l\/fg P T

Example 2.6 (Polymorphic null type). Consider the type

null & Va(a).
In PolyPCF there is a closed term of this type, namely (2 Ao (fix(A2 : o (z))). Thisis a
‘polymorphic bottom’ since for each 7 € Typ it is not hard to see that £ 7 diverges, in the sense that
there is no V' for which Q 7 |} V holds. In fact, up to observational congruence, {2 is the only closed
term of type null. In other words, we claim that for all G € Term(null), one has G =qps 2 : null.
The claim will be proved in Section 6. '

Example 2.7 (Polymorphic unit type). Consider the type
unit & va (o= a).

As well as the ‘bottom’ term € unit, this type contains the polymorphic identity function A o (A @ :
o (z)). But that is all: we claim that if G € Term(unit), then either G =obs (Q unit) : unit or
G =obs A (A2 : a(2)) : unit. The claim will be proved in Section 6.

Example 2.8 (Polymorphic lists). Consider the polymorphic list type

def

L(a) EVd (o) = (a—= o = a) = a).

Define terms I and J as follows:

I ¥ Aa(fix(Mi:olist— L(a) (AC: alist (
Ao (A"’ (A fia—=a —a(
caselof {nil=2a' | h:t= fh(ita’2' /1))
J ¥ Aa (Ap: L(a) (p (alist) (N) (C a)))

where N ' A o (nil,) and C' N (AR :a (At alist (h::t))). Then I and J are closed terms of
types V o (alist — L(«)) and V o (L (&) — alist) respectively. We claim that these terms constitute

an isomorphism between alist and L(«) up to observational congruence, polymorphically in a. In
other words, the following observational congruences hold:

a, C:alist b Jo(ITal)=qps (: alist
a,9:L(a) F Ta(Jag)=sg: L{a).

The claim will be proved in Section 6.

Example 2.9 (Existential types). The previous example shows that in PolyPCF, inductive lists types
are observationally isomorphic to polymorphic list types. In Section 7 we give another example
of this phenomenon by extending PolyPCF with existential types 3 o (), equipped with a standard
operational semantics, and proving that they are observationally isomorphic to the polymorphic types
Vo' (Vo (r— a’) = o) (where of ¢ fio(T)).

3 T171-Closed Relations

We aim to characterise PolyPCF observational congruence (defined in Theorem 2.3) in terms of a
binary ‘logical relation’ incorporating a notion of relational parametricity analogous to that introduced
by Reynolds (Reynolds 1983) for the pure polymorphic lambda calculus. This result about PolyPCF
observational congruence will be established in the next section and applied in Sections 5, 6, and 7.
But first we have to set up some technical machinery to do with ‘admissibility’ properties of relations
between PolyPCF terms. To see why, consider the simple example of the type null = Va (a) in
Example 2.6. By analogy with a relationally parametric model of the polymorphic lambda calculus,
we want the relation of observational congruence at type null, i.e. {(G,G’) | G =ops G’ : null}, to
coincide with

Nererp (GG |1 € R(r,7) (G, G 7)€ 1)} @

where R(7,7’) is some set of binary relations between closed terms of type 7 and of type 7/ in
PolyPCF. What kind of binary relations should we take for R ? If (2) is to coincide with observational
congruence, certainly R cannot consist of all binary relations, for then R (7, 7’) would contain the
empty relation and hence (2) would be empty, whereas {(G, G") | G =obs G’ : null} contains (2, Q),
where (2 is the ‘polymorphic bottom’ term defined in Example 2.6. In fact we will have to restrict the
parameterising relations r in the definition of relations like (2) to be at least ‘admissible for fixpoint
induction’, in some way. In domain theory, a subset of a domain is said to be admissible if it contains
the least element of the domain and is closed under taking least upper bounds of chains in the domain.
It is perfectly possible to make use of a direct, syntactic version of this notion by considering relations
between terms that are closed under the limits of certain syntactically definable chains, e.g. those
generated by the finite unfoldings of a fixpoint term, or by syntactically definable projection functions.
See (Birkedal and Harper 1997) for an example of this approach to ‘syntactic admissibility’. Here we
take a more indirect, but ultimately more useful approach (already present implicitly in (Pitts and
Stark 1998)), making use of a certain closure operation on term relations. Not only do such TT-closed
relations, as we shall call them, have good admissibility properties (see Theorem 3.10), they also enjoy
an important property whose denotational analogue is automatic: they respect our chosen notion of
semantic equality, observational congruence (see Corollary 3.14). This notion of TT-closure is the
key technical contribution of this paper. It is induced by a Galois connection between term relations
and relations between PolyPCF evaluation contexts (Felleisen and Hieb 1992)—those contexts £[—]
with a single occurrence of the placeholder, ‘—’, in the position where the next subexpression will

10

'Id:r-—or

FES:7 —o7" THA:T reS:rr/a] — 1"
[HSo(=A):(r=r1)—7" IFSo(—7):Ya(r) —r"

anotfreeinI’

'S —r" THMy:7 T,h:rt:7listt-My:7'
't So(case—of {nil= My | ht=My}) : Tlist — 7"

Figure 6: Typing frame stacks

be evaluated. The Galois connection arises in a simple manner from the ‘nil-termination’ relation,
E[M] |} nil,, which is part of the evaluation relation of Figure 3. To aid analysis of nil-termination,
we use the following reformulation of evaluation contexts as stacks of ‘evaluation frames’ (cf. (Harper
and Stone 1996) and (Pitts and Stark 1998, Section 3)).

Definition 3.1. (Frame Stacks) The grammar for PolyPCF frame stacks is
Su=Id|SoF
where F' ranges over frames:
Fu=(—M)|(—71)]| (case —of {nil= M |z :: 2= M}).

Thus frames stacks are essentially finite list of frames, and we will often refer to the length of S
meaning the length of the corresponding list.

We use the judgement I' = S : 7 —o 7/ to indicate the argument and result type of a frame
stack. Here I' is a typing environment, as defined in Figure 2, and we assume similar well-formedness
conditions as in Note 1 of that figure (free variables and free type variables of all expressions in the
judgement are listed in I'). The axioms and rules inductively defining this judgement are given in
Figure 6. Unlike PolyPCF terms, we have not included explicit type information in the syntax of
frame stacks. For example, Id is not tagged with a type. However, it is not hard to see that, given
I', S, and 7, there is at most one 7/ for which ' - .S : 7 — 7/ holds. This property is enough for
our purposes, since the argument type 7 of a frame stack .S will always be supplied in any particular
situation in which we use 5.

Notation 3.2. Given closed PolyPCF types 7,7' € Typ, we write Stack(r, ') for the set of frame
stacks S for which @ - S : 7 —o 7/ is derivable from the axioms and rules in Figure 6. We will be
particularly interested in the case when 7/ is a list type, so we write

Stack(T) & Urre gy, Stack(r, 7'list).

11

Definition 3.3 (Applying a frame stack to a term). The analogue for frame stacks of the operation
of filling the hole of an evaluation context with a term is given by the operation S, M — S M, of
applying a frame stack to term. 1t is defined by induction on the length of the stack:

{Id M e v

(SoF)M ¥ 5 (F[M))

where F[M] is the term that results from replacing ‘~’ by M in the frame F. Note that if
S € Stack(r,7') and M € Term(r),then S M € Term(7').

The following lemma shows that, unlike PolyPCF function application, the above notion of
application is strict in its second argument.

Lemma 3.4.
SM{V & EJV'(MUV' & SV’UV)

Proof. The result follows by induction on the length of frame stacks from the corresponding property
of frames, namely:

FIMIV & 3V MUV & FV]4V).

For each of the three kinds of frame, this property is a simple consequence of the inductive definition
of || in Figure 3. O

Theorem 3.5 (A structural induction principle for PolyPCF termination). For all closed types
7,7 € Typ, for all frame stacks S € Stack(r, 7'list), and for all closed terms M € Term(r), we
have

SM{nil, & STM
where the relation (—) T (=) is inductively defined by the rules in Figure 7.

Proof. The way we have defined (—) T (—) is good for the use we will make of the theorem,
but perhaps obscures its origin, which lies in Felleisen’s evaluation-context based presentation
of structural operational semantics (Felleisen and Hieb 1992) and Krivine’s stack-based abstract
machines for evaluating lambda terms (see (Amadio and Curien 1998, page 184) for example). Thus
we can define a transition relation between (stack,term)-pairs, (5, M) — (S’, M’), by case analysis
on the structure of M and then 5, as follows:

(S,F[M]) = (So F,M) if M isnot a value
(SoF, V)= (S, F[V]) if V is a value

(S,R)— (S, R) where (R, R’) is one of the following (redex,reduct)-pairs:
R R’
(Ae:7 (M)A MI[A/z]
(Aa(M))r M[r/a]
fix(F) FAix(F)
casenil; of {nil= M | h:t= My} M

case H : Tof {nil= M, | h:t= My} My[H/h,T/t].

12

S=80(—A) S TMAJ2] So(-A)TF
STAz:T(M) STFA

S=50(-1) S'tM[r/a] So(-7)TG
STAa(M) STGT

So(—fix(F)) T F
S T fix(F)

S = Id S =50 (case — of {nil= M; | h::t= My}) S'T My

S T nil, S T nil;

S =50 (case — of {nil= M; | h::t= My}) S' T Ma[H/h,T/t]
STH:=T

Figure 7: PolyPCF structural termination relation

13

It is not hard to see that S T M holds if and only if there is a finite sequence of transitions
(S, M) —~ (Id,nil;) (for some 7). So the theorem follows once we prove

SMYV & (S,M)—"(Id,V). 3)

This can be deduced using the following lemmas:

MUV = VYS.(S,M)—=* (S,V) @)
(S, M) = (S M) = YV (M |V = SM{V) (5)
(S, 5" M) —* (SQS’, M) (6)

where SQ)S’ denotes the result of appending S’ to .S

S@rd e
sa(s'oF) ¥ (s@s)orF
(4) follows by induction on the derivation of M |} V'; (5) by case analysis of —; and (6) by induction
on the length of S’. Then (4) and (6), together with the determinacy of —, imply the left-to-right

implication in (3). The reverse implication follows repeated use of (5) starting from the fact that
IdV =V andhence Id V' | V. |

The relation (=) T (—) gives a structural characterisation of nil-termination of PolyPCF
evaluation because of the syntax-directed nature of the rules in Figure 7. This facilitates inductive
proofs involving termination. In particular it helps with proving the following important property of
termination. (For statements and proofs of analogous properties see for example: (Mason, Smith, and
Talcott 1996,), (Pitts and Stark 1998, Theorem 3.2), (Birkedal and Harper 1997,), and (Lassen 1998,
Section 4.5).)

Theorem 3.6 (Unwinding Theorem for PolyPCF). Forany t € Typ and F € Term(r—T), define
terms fix™) (F) € Term(r) for each n > 0 as follows.

fix(O(F) o fix(Az: 7 (2))
fixt(F) & Fax™)(F),
Then forany S € Stack(r) it is the case that
S TAx(F) & 3In>0(S T 0xM(F)).

Proaf. Note that it follows from the inductive definition of (—) T (—) (Figure 7) that S T fix(%)(F)
holds for no 5. Consequently, given any 7,7/, 7" € Typ,x : 7+ S : 7' —o 7"listandz : 7+ M : 7/
one can prove

SMxO(F) /2] T M[ixO(F) /2] = VA € Term(r) (S[A/z] T M[A/2])

by induction on the derivation of (—) T (-) (for all 7/, 7"/, S, and M simultaneously)!. From this it
follows by induction on n > 0 that for all S and M

SHix"(F) /2] T MAx™(F) /2] = SHx"H)(F) /2] T Mix"tD(F) /a]. 7)

'We are interested in the ‘@@ € fu(S), M = a’ case of this, but the more general statement is needed to make the
induction go through; similarly for (7), (8) and (9).

14

Now one can prove the key property
SHix(F)/2] T M[fix(F)/2] = 3n > 0(SHix™ /2] T M[Ax™(F)/2]) (8)

by induction on the derivation of (=) T (—) for all 7/, 7", S, and M simultaneously, using (7) when
it comes to the rule for fix terms. Clearly the left-to-right implication of the theorem is an instance of
(8); and the converse implication is a special case of

S[x™ (F) /2] v M[ix™ (F) /2] = S[Ax(F)/e] T M[fix(F)/«])

which, once again, can be proved by induction on the derivation of (—) T (—) for all 7/, S, M, and n
simultaneously. 0

Definition 3.7 (Term- and stack-relations). A PolyPCF term-relation is a binary relation between
(typeable) closed terms. Given closed PolyPCF types 7,7/ € Typ, we write

Rel(r,7")

for the set of term-relations that are subsets of Term(7) x Term(r’). A PolyPCF stack-relation is a
binary relation between (typeable) frame stacks whose result types are list types. We write

StRel(r, ")

for the set of stack-relations that are subsets of Stack(r) x Stack(r’). (Recall from Notation 3.2 that
the elements of Stack(r) are frame stacks S satisfying § - S : 7 —o 7" list for some 7".)

Using the (—) T (—) relation we can manufacture a stack-relation from a term-relation and vice
versa, as follows.

Definition 3.8 (The (—) T operation on relations). Given any 7,7/ € Typ and r € Rel(r,7),
define #' € StRel(r, ') by

5,8 erT & v M)er(STMe S TM);
and given any s € StRel(r, ') define s € Rel(r, ') by

(M,M)esT & Vs, 8)es(STMe s TM).

Just from the form of the definition of the operations r +—+ 7', s —+ s' (i.e. without using any
properties of the termination relation (—) T (—)) it is clear that one has a Galois connection with
respect to inclusion:

rCs’ o sCr'. (10)
Hence the operations (—) T are inclusion-reversing

nCre = ()7 C ()T
51 C s = (82)T - (SI)T

and » — r ' | is a closure operator for term-relations, i.e. is inclusion-preserving

riCry = (r)" C(rg) T (11)

15

inflationary

and idempotent

TT (,,,TT)TT'

o=

Definition 3.9 (TT-Closed term-relations). A term-relation » is TT-closed if r = »' ", or equiva-
lently if T C r, or equivalently if r = s7 for some stack-relation s, or equivalently if » = (/)7 T

for some term-relation /.

The next result is a PolyPCF version of Scott’s Fixpoint Induction Principle (Scott 1993) (for
binary relations). It justifies the claim that TT-closed term-relations have appropriate ‘admissibility’
properties.

Theorem 3.10 (PolyPCF fixpoint induction). Suppose r € Rel(r,7'), F € Term(r — 1), and
F' € Term(r" — 7') satisfy

V(A,A)er (FAF A er (12)
If r is TT-closed, then (fix(F), fix(F")) € r.

Proof. Recall the definition of the terms fix(") (F) from Theorem 3.6. From the definition of
(=) T (=) in Figure 7, it follows that S T fix(°)(F) does not hold for any S € Stack(r). So we
have that (fix(©) (F), fix(©(F)) € s7 for any s € StRel(r, 7). Hence in particular taking s = » T,
we have

(AixO(F), fixO(F) € »TT =,
- Using (12), it follows from this by induction on n that
(fix™ (F), fix(™ (F')) € »
holds for all » > 0. So for any (S, S’) € r" we have
S Thx(F) © dn>0(S T fix("(F)) by Theorem 3.6
& In >0 T ixM(F) since (fixM (F), ix(M (F")) € rand (5, 5") € rT
& ST fix(F') by Theorem 3.6.
Thus by definition of ()T, (ix(F),fix(F)) € » 7T = r, as required. O

Another property of TT-closed term-relations that we will need is that they respect various
notions of semantic equivalence for PolyPCF. We have already introduced our primary such notion,
observational congruence, in Section 2. We will also need to consider a simpler notion, that of ‘Kleene
equivalence’?

Definition 3.11 (Kleene equivalence). For each closed type = € Typ and closed terms M, M’ €
Term(7) we write M = M' : TtomeanVV (M |V & M' | V).

?1 believe the name was introduced by R, Harper.

16

Example 3.12. Each of the four pairs (R, R’} mentioned in the last clause of the definition of — in
the proof of Theorem 3.5 is an example of a Kleene equivalence. This follows immediately from the
definition of |} in Figure 3.

Although it is by no means immediate from their definitions, it is in fact the case that Kleene
equivalence implies observational congruence (see Corollary 4.16). The converse is false: for example,
a7 (ix(Aa': 7' (2")) and fix(A f : 7 = 7/ (f)) are not Kleene equivalent terms of type 7 — 7'
(because the first is a value whereas the second does not evaluate to anything), but the results of
Section 5 show that they are observationally congruent (cf. Example 5.3).

Lemma 3.13. If M =g M' : 7 or M =obs M’ : 7, then for any S € Stack(r)
STM & STM.

Proof. First suppose that M =g M’ : 7. Then

STM &IV, 7" (MYV & SV |nily) by Theorem 3.5 and Lemma 3.4
SIAV, 7'MV & SV | nily) since M =g M' : 1
s ST M by Theorem 3.5 and Lemma 3 .4.

The argument for observational congruence is slightly different. If M =,,s M’ : 7, then by the
compatibility properties that are part of the definition of =g, we also have S M =, S M 'y list
for any S € Stack(r, 7'list) and 7' € Typ. Since =,bs is adequate (Definition 2.2(iii)), we have

S M| il & SM' | nily,
from which the result follows by Theorem 3.5. U

In view of this lemma, it follows from the definition of (—)7 that if (M, M]) € s', then
(Mg, M) € s" for any M, which is either Kleene equivalent or observationally congruent to As;
and similarly for A/]. Thus we have:

Corollary 3.14, The TT-closed term-relations respect both observational congruence and Kleene
equivalence. In other words, if r € Rel(t,7') is TTclosed, then for ~ equal to either =,ps or =1, we
have

Mi~My:17 & (l\/fg,l\/[g) cr & Mz~ My: = (Z\/fl,l\/L;) enr

4 A Syntactical Version of Relational Parametricity

In order to characterise PolyPCF observational congruence in terms of parametric logical relations we
introduce a notion of ‘action’ of the PolyPCF types on term-relations. This is defined by induction
on the structure of types, using the following operations on term-relations, the first of which is
characteristic of all the various notions of ‘logical’ relations right back to their beginning (Plotkin
1973).

Definition 4.1 (Action of — on term-relations). Given r; € Rel(my,7{) and ry € Rel(Ty,75), we
define 7y — 1o € R€l(7'1 — T2, T{ = Té) by:

def

(F, F/) Ery—ryg & V(A,A/) €nry ((FA,F/A/) - 7‘2).

17

Doy (/@) < 1 (15)
Aoy (/&) € A (7/@) = Apr(7/3) (16)
Ay o () (7/ &) def Vr(A(rTT /o, 7/&)) (17)

Aniise(7/@) (AL (7)) list (18)

Figure 8: Definition of the logical relation A

Definition 4.2 (Action of V on term-relations). Let 7, and 7] be PolyPCF types with at most a single
free type variable, o say. Suppose R is a function mapping term-relations r € Rel(rs, 4) (any
T2, Ty € Typ) to term-relations R(r) € Rel(r([ry/a], {[r}/c]). Then we can form a term-relation
Vr(R(r)) € Rel(Va(m),Va(r])) as follows:

(G, G eVr(R(r) € Vry, 1l e Typ (Vr € Rel(ry, m3) ((G7e, G' 15) € R(r))).
Definition 4.3 (Action of (—)list on term-relations). Given r,7/ € Typ, r; € Rel(r,7’) and
ro € Rel(rlist,r'list), define 1 4 (r1 X r9) € Rel(tlist, 7'list) by:

1+ (71 X 7‘2) d——‘if
{(nily, nil)} U{(H =T, H =Ty | (H,H') € 1 & (T, T') € r4}.
Note that the subset relation makes Rel(rlist, 7'list) into a complete lattice and that, for each 7y,
the function 75 = (1 + (ry X 7)) 7" is monotone (cf. (11)). Therefore we can form its greatest
(post-)fixed point:
(r)list < vrg (1+ (r x 7)) 7T,

Thus (r;)list is the unique term-relation satisfying

(ri)list = (14 (ry x (1) list)) 77 (13)

Y1y (7‘2 - (1 + (7’1 X 7‘2))TT = rq C (7‘1)li8t). (14)
The appearance of (—) T T in this definition and the reason for using a greatest fixed point (rather than

a least one) are discussed in Remark 4.4,

Combining the preceding definitions, for each PolyPCF type 7 and each list & = ay, ..., ay, of
distinct type variables containing the free type variables of 7, we define a function from tuples of
term-relations to term-relations

r1 € Rel(T1,7),...,7n € Rel(ty, 7)) = A (7/&) € Rel(r[7/a], T[7'/d"]). (19)

The definition proceeds by induction on the structure of 7 and is given in Figure 8.

For each closed type T € Typ we can apply A, to the empty tuple of term-relations to obtain
a term-relation A, () € Rel(r, 7). We will see below (Theorem 4.15) that A, () coincides with the
relation of observational congruence (defined in Theorem 2.3) at type 7

My =ctx My :7 & (My, M) € A() (My, My € Term(r)). (20)

18

This, together with the definition of A at V-types is what permits us to deduce results like those in
Examples 2.6-2.8 (see Sections 6 and 7).

Remark 4.4. In Figure 8, the closure operation (=)' ' has been carefully combined with the
operations of Definitions 4.1-4.3 to ensure that (20) holds. The fact that (=)TT appears in clause (18)
reflects the fact that for PolyPCF observational congruence we observe termination at list types. The
use of 71 T /o in clause (17) is a way of ensuring that the quantification is restricted to range over
TT-closed relations. As remarked at the beginning of Section 3, some such restriction to do with
admissibility is necessary if such actions are to characterise =ops; and we saw in Theorem 3.10 that
being TT-closed ensures that a term-relation has good admissibility properties. Finally, it is worth
pointing out that if one changes the greatest fixed point used in Definition 4.3 to a least fixed point,
thereby obtaining a different action, call it A’, one can still deduce the coincidence of A’ () with
=obs. This corresponds to the fact that denotationally, the relation of equality for recursive datatypes
has a mixed inductive/coinductive character: see (Pitts 1996); and in the case of algebraic datatypes
like 7list, the mixed inductive/co-inductive character of equality becomes a simultaneous one. Here
we have concentrated on the co-inductive aspect of =, at list types rather than its inductive aspect,
because that is more useful for proving semantic equalities between potentially infinite lists: see
Section 6.

As is typical for logical relations, in order to prove (20) we need to extend A, () to a relation
between open terms. We do this via closing substitutions.

Definition 4.5. (Logical relation on open terms) Suppose ' - A : 7 and I’ = M’ : 7 hold, with

D=1, eveyQuy T1 2T, vy By & Ty SAY. Write
THFMAM : 7 1)
to mean:
given any o;,0! € Typ and r; € Rel(oy,0}) (for i = 1..m) with each r; TT-

closed, then for any (N;, N!) € Ap(7/d) (for j = 1.n) it is the case that
(M[&/a, N /&), M'[5'|& N'/7]) € A, (7/&).

(The restriction to TT-closed relations in this definition accords with the definition of A at V-types.)

Proposition 4.6 (‘Fundamental Property’ of the logical relation). The relation (21) between open
PolyPCF terms is compatible and substitutive, in the sense of Definition 2.2(i).

The proof of this proposition occupies most of the rest of this section. We begin with some lemmas
that express general propetties of the constructions in Definitions 4.1-4.3 with respect to the Galois
connection (—) " introduced in Section 3.

Lemma 4.7. Supposeri € Rel(ry,7]) and ry € Rel(ry,73). Consider 11 — ry as in Definition4.1.

(i) Suppose given values Nz : 71 (M) and Xz : 7| (M') of types 71 — T and T{ — T} respectively,
satisfying

V(A A €ri (M[A/2], M'[A"/2]) € ry). (22)
Ifrg is TT-closed, then (A& : 1y (M), Aa: 1 (M')) € ri = ra.

(ii) If (A, A') € ry and (S, S") € 1], then (S o (— A),S" o (= A")) € (ry — ra) .

19

(iii) If ro is TT-closed, then so is r1 — ry.
Proof. For part (i), we have to show for all (4, A’) € ry that
(Ae:m (M)A, (Na: 7 (M) A € ry. (23)
From Example 3.12 we have the Kleene equivalences
(Ae:m (M) A= M[A/2]: 7, and (Az:7{ (M)A =g M'[A'/2]: 7,

and by Corollary 3.14, r, respects =ij. Hence (23) follows from assumption (22).
To prove part (ii), suppose (A, A’) € ry and (S, S’) € r, . Then note that for any (F, F') € rqi—ry

So(—A)TF & STFA by definition of (—) T (—) (Figure 7)
s S'TFA since (F A, F' A’) € ry and (S, S") € r]
o So (AT F by definition of (—) T ().

Since this is so for any such (F, F”), by definition of (—)T we have (S o (— 4),5" o (= 4')) €

(7’1 — 7’2)T.

Finally, to prove part (ii), suppose (F, F’) € (ry = r9) "7, (A, A’) € r1, and (S, S’) € r] . Then
by part (i) we have (S o (— A), S’ o (— A’)) € (r; = r2) T and hence

So(-A)TF & S'o(-A)TF.
Therefore
STFA & S'TF A,

Since this holds for all such (S,5’), we have (F'A, F' A') € (rJ)T = ry; and since this is so
for all (A, A’) € ry, it follows that (F, F’) € ry — ro. Thus we have succeeded in proving that
(ry— 7'2)TT C rqy — 19, 1.e. that r;{ — ry is TT-closed. O

Lemma 4.8. Let 71 and 7| be PolyPCF types with at most a single free type variable, « say. Suppose
R is a function mapping term-relations r € Rel(ry,7}) (any 19,75 € Typ) to term-relations
R(r) € Rel(ri[re/al, m{[T}/a]). Let ¥V r (R(r)) be as in Definition 4.2.

(i) Suppose given values Ao (M) and Ao (M') of types Vo (1) and ¥ o (1]) respectively,
satisfying

V712,75 € Typ,r € Rel(re,75) (M[ry/a], M'[15/a]) € R(r)).
If each R(r) is TT-closed, then (A o (M), Ao (M")) € Vr (R(r)).
(ii) If ro € Rel(ry, 7}) and (S,5') € R(ry)", then (S o (= 72),5 0 (= 74)) € (Vr (R(r))T.
(iii) Ifeach R(r) is TT-closed, then so is ¥V r (R(r)).
Proof. The proof is similar to that for Lemma 4.7, but using the property
So(-7)TG & STGET
(which follows immediately from the definition of (—) T (—) in Figure 7) and the Kleene equivalence

(Aa(M)) T =10 M[r/a]. -

20

Lemma 4.9, Suppose r € Rel(t, ') and consider (r)list as in Definition4.3.

(i) (nil,, nil.) € (r)list; and if (H,H') € v and (I,T") € (r)list, then (H :=: T, H' . T") €
r)list.

(
(
(ii) (Id,Id) € ((r)list)".
(iii) (r)list is TT-closed.

Proof. In view of (13), (r)list contains 1 + (r X (r)list), from which part (i) follows immediately.
Note that from (13) we have

(Y list) T = (14 (rx (M)list)) T T = (14 (r x (r)list)) .

So for part (ii), it suffices to show for all (L, L') € 1 + (r x (r)list) that Id T L < Id T L’. Butif
(L, L") € 1+ (r x (r)list), then

either L = nil, and L' = nil,/, in which case both Id T L and Id T L' hold,;

or L=H:Tand L' = H'::T' (for some (H, H') € r and (T, T") € (r)list), in which case neither
Id T L,nor Id v L' hold.

Finally, for part (iii) just note that by (13), (r)list is TT-closed because it is of the form (r') "'

for some r’. O

Lemma 4.10. Suppose given closed types 71,7}, 72, 74 € Typ, term-relations r1 € Rel(ry,T}),
rg € Rel(ry,13), closed terms (My, M{) € r9, and open terms

hiTtemlist My:m, and K 7t :7listt My
satisfying
V(H,H" € r1, (T, T") € (r1)list (Ma[H/h, T/t], My[H' /W, T'/']) € rg). (24)
Writing
match % {nil=> My | h::t= My} and match’ dof {nil= M| | K ::t' = M3}

we have:

(i) If (S, S") € (ry) T, then (S o (case — of match), S’ o (case — of match’)) € ((ry)list) .

(ii) If (L, L") € (r1)list and rq is TT-closed, then (case L of match, case L' of match') € .

Proof. To prove part (i), assume given (S, 5’) € (r2) 7. As noted in the proof of the previous lemma,
we have ((r)list)T = (14-(ry x (1) list)) 7. So it suffices to check forall (L, L') € 14 (ryx (r1)list)
that

S o (case — of match) T L & S’ o (case — of match’) T L. (25)

Butif (L, L') € 14 (ry X (rq)list), then

21

either L = nil;, and L’ = nil ., in which case by definition of () T (—), (25) holds iff
STM & ST M
which is the case because (.S,.5') € (r2) T and (M1, M) € ry;

or [= H:Tand L' = H' :: T’ for some (H,H') € ry and (T,T") € (r1)list, in which case by
definition of (—) T (—), (25) holds iff

ST M[H/WT/t] & S'm MyH'/W,T' /]
which is the case because of property (24).

For part (ii), if (L, L') € (ry)list, then for any (5, 5’) € (3) T we have

S T (case L of match) < S o (case — of match) T L by definition of () T (—)
& 5o (case — of match’) T L' by part (i)
& 5" 7 (case L' of match’) by definition of (=) T ().

Since this holds for all (S,5') € (r2)7, we have that (case L of maich, case L' of match’) €
(re)TT. Soifry = (r) 7T, we have the desired conclusion. O

Lemma 4.11. For each open type T, with free type variables in & say, if the term-relations 7 are TT-
closed, then so is the term-relation A, (7/ &) defined in Figure 8. In particular for each closed type T,
A7 () € Rel(r,7) is TT-closed.

Proof. By induction on the structure of 7, using clauses (15)—(18) of the definition of A. The base case
of a type variable is trivial because each r; is assumed to be TT-closed. The induction step for function
types follows from Lemma 4.7(iii). The induction step for V-types follows from Lemma 4.8(iii). The
induction step for list types is trivial since by (13), (A, (7/&))list is equal to a term-relation of the
form ()T, O

Lemma 4.12. Assuming ftv(r) C {&, @'} and ftv(7') C {@} (so that ftv(r[7/&@]) C {@}), then for
all ¥

Asipngan (71 @) = Ar 7/, (Ao (7/ &) /&).
Proof. This follows immediately from the definition of A in Figure 8, by induction on the structure
of 7. U

We can now complete the proof of the fundamental property of the logical relation of Defini-
tion 4.5.

Proof of Proposition 4.6. To prove that the relation (21) is compatible, we have to verify that it is
closed under each of the axioms and rules in Figure 4 corresponding to the various term-forming
constructs of the language. The compatibility axiom for variables is trivially satisfied because of the
way (21) is defined. The compatibility rule for function abstraction follows from Lemma 4.7(i) and
Lemma 4.11. The compatibility rule for function application follows directly from clause (16) in
Figure 8. The compatibility rule for type generalisation follows from Lemma 4.8(i) and Lemma 4.11.
The compatibility rule for type specialisation follows from clause (17) in Figure 8 together with
Lemmas 4.11 and 4.12. The compatibility rule for fixpoint terms follows from from Theorem 3.10

22

together with clause (16) in Figure 8 and Lemma 4.11. The compatibility rules for list values follow
from Lemma 4.9(i) and Lemma 4.11. Finally, the compatibility rule for case expressions follows from
Lemmas 4.10(ii), 4.11 and 4.12.

So (21) is compatible. It is also closed under the two substitutivity rules in Figure 5. The first one
follows from the substitution property of Lemma 4.12. The second one follows immediately from the
way (21) is defined from the functions 7 — A, (7/&) via closing substitutions. O

Note that since A is compatible, it is necessarily a reflexive relation and hence in particular we
have:

Corollary 4.13. Forall 7 € Typ and M € Term(7) it is the case that (M, M) € A, ().
We need the corresponding property for frame stacks.
Lemma 4.14. Forall 7 € Typ and all S € Stack(r), it is the case that (S, S) € (A,()) 7.

Proof. This follows by induction on the length of the frame stack S. The base case uses
Lemma 4.9(ii); the induction steps use Lemmas 4.7, 4.8, and 4.10. O

Theorem 4.15. The logical relation (21) coincides with PolyPCF observational congruence:
I'F-M=gsM:1 & TFMAM 1. (26)

Proof. Using the substitutivity properties of =1, (which it possesses by definition) and of A (which
it possesses by Proposition 4.6), Corollary 3.14 and Lemma 4.11 combine to give

D' M =ops Mo 2 7 & THMAM;: T & F"']\([g———‘obS]\{[L;ZT/ = M AM,:T.
27)

Since =, and A are both compatible (the former by definition, the latter by Proposition 4.6), they
are both reflexive and so we can take M; = Ms = Mz = M and My = M’ in (27) to deduce the
left-to-right implication in (26).

For the converse implication, in view of Proposition 4.6 it just suffices to show that A is adequate,
in the sense of Definition 2.2(iii). For then A is adequate, compatible and substitutive and hence is
contained in the largest such relation, which by definition is =,,s. But if 7 is any closed type and
O+ LAL:rlist,ie. (L,L") € Arise(), then by Lemma 4.9(ii) we have Id 7 L < Id T L' and
therefore I || nil, < L’ || nil, by Theorem 3.5. O

Theorem 4.15 allows one to prove many properties of PolyPCF observational congruence to
do with extensionality and relational parametricity; we pursue some of these properties in the next
two sections. It also allows us to deduce some basic instances of observational congruence via the
following result. Recall the notion of Kleene equivalence, =, from Definition 3.11.

Corollary 4.16. ForallT € Typ and M, M’ € Term(t), if M =g M’ : 7, then M =ops M' : T.

Proof. By Theorem 4.15, (—) =obs (—) : 7 coincides with A, () and therefore is closed under
composition with =) by Corollary 3.14 and Lemma 4.11. Thus since =y, is reflexive we have

M=yM 7 = M= M 7 & M =gps M': T
= M =ops M': 7.

23

Thus the redex-reduct pairs (R, R') mentioned in the last clause of the definition of — in the proof
of Theorem 3.5 are all instances of observational congruence (cf. Example 3.12):

Az (M)A =ops M[A/2]: 72 (28)

(Aa (M) 1o =obs M[e/a]: mi[ra/] (29)

casenil, of {nil= M; | h:t= My} =ops M1 : 7o (30)
case H : Tof {nil= M; | h::t= My} =obs Ma[H/h,T/t]: 7 (31
fix(F) =obs Ffix(F): . (32)

The following characterisation of =, will be useful in Section 6.

Corollary 4.17. Given any closed type T € Typ and closed terms M yM' € Term(r), write
M =gu M' : T to mean

VS € Stack(t)(STM < ST M.

(This is the ‘uses’ part of the notion of ‘closed instantiations of uses’ (ciu) equivalence of Mason and
Talcott (1991).) Then

M =gy M' 17 & M =ops M' : 7.

Proof. The fact that =}, is contained in =;,, follows (via Theorem 3.5) from the fact that =, is, by
definition, an adequate PolyPCF congruence relation. For the converse implication, by Theorem 4.15,
it suffices to show that =, is contained in A, (). But it is evident from the definition of =, that
any TT-closed term-relation, and hence in particular A (), is closed under composition with =;,. So
now we can argue as in the proof of Corollary 4.16 (using the evident fact that =, is reflexive) to
deduce that =;,, implies =;ps. O

S Extensionality Properties of Observational Congruence

In this section we use Theorem 4.15 to establish various extensionality principles for PolyPCF
observational congruence, generalising the ‘context lemma’ of Milner (1977) from PCF to PolyPCE
The first result reduces observational congruence for open terms to that for closed terms of closed
type. Then restricting attention to closed terms, we give a separate extensionality principle for each of
the three ways of forming PolyPCF types—functions, V-types, and list-types.

Theorem 5.1. GivenI' - M : T and T - M' : 7, withT = o1, ..., 0, €1 : T1,..., Ty ¢ Ty SQY,
then ' M =gps M . T iff

forallo; € Typ (i =1..m)and all N; € Term(r;[5/d]) (j = 1..n), it is the case that
MG/, N /&) =obs M'[3/&, N/ : 7[¢/d). (33)

Proof. The ‘only if’ direction holds because by definition =, satisfies the substitutivity properties
of Figure 5 (and because it is reflexive).

For the ‘if’ direction, note that by Theorem 4.15 A is reflexive and in particular I' + M’ A
M’ : 7 holds. Thus by Definition 4.5, for all TT-closed r; € Rel(o;,0!) (i = 1..m) and all
(Nj, N1y € A, (7/&) (j = 1..n) we have (M'[6/&, N/&), M'[¢"/&, N'/#]) € A.(F/d). Since
A, (7/d) is TT-closed (by Lemma 4.11), from this, (33), and Corollary 3.14 we conclude that
(M[3/&,N /&), M'[¢'/& N'/¥]) € A,(7/&). Thus by definition of the logical relation on open
terms (Definition4.5) wehave I' - M A M’ : 7 and hence I' - M =, M’ : 7 by Theorem 4.15. [

24

Theorem 5.2 (Function type extensionality). Forall 7y — 75 € Typ and F, F' € Term(m1 — 72)
F=gFlimi =1 & VYAC Term(r) (FA=cs F'A:T). (34)
Proof.

F=gs Flimi—= e (FF)e A 5n() by Theorem 4.15
eV(A,A) e A,)(FAF A) e A,()) by definition of A, ., ()
VA A € Term(r) (A=ops A" 1 1y =
FA=qgsF A" : 1) byTheorem4.15.

Since this holds for all F, F’ and since =}, is reflexive and transitive, (34) follows. O
Example 5.3. Consider the ‘polymorphic bottom’ 2 € Term(V « («)) introduced in Example 2.6:
QY Aa(fix(he:a(z).

For any 7,7, € Typ and A € Term(r), evaluation of both (Az : 71 (272)) Aand Q (1, — 72) A
diverges, so

Az (Qm)A = Q(r1— 1) A
Hence by Corollary 4.16
VA€ Term(m) (Az: 7 (Q72)) A =obs Q (11— T2) A T2)
and so by the above theorem, A z : 71 (2 72) =obs 2 (11 = T2) : 71 — T2
Theorem 5.4 (V-type extensionality). ForallV o (1) € Typ and G,G’ € Term(¥ a (7))
G=ps G:Va(r) & V7' eTyp(Gr =us G :7[r'/a]).

Proof. The left-to-right implication follows from the fact that =, is a PolyPCF congruence
(Definition 2.2(ii)). Conversely, suppose

Vr' e Typ (G 7' =ops G' 7' 7[T" /) 35)

holds. To show that G =.p,s G’ : Va (), by Theorem 4.15 it suffices to prove that (G,G’) €
Ava(r)(), ie. that (Gr1,G' 1) € A, (r7T/a) for all » € Rel(ry,7p) and 71,7 € Typ. But
since Ay (r)() is reflexive (Corollary 4.13) we have (G,() € Ay (r)() and hence for any r,
(G'11,GT9) € A (r"T /a). Thus by (35) we have

(GT,Gm) € AT(TTT/O/) & G 1y =ops G' 1y i T[T2/]

and hence by Lemma 4.11 and Corollary 3.14 that (G 71,G') € A.(r""/a), as required for
(G’ G,) S A\/a (7‘)() 0

Example 5.5. Let Q be as in Example 5.3. For any closed V-type Vo () and any 7/ € Typ,
evaluation of both (A o (2 7)) 7/ and Q (Y a (7)) 7’ diverges and so

Aa@m) 7" =q QVa(r)r/
Hence by Corollary 4.16 and the above theorem, it is the case that A a (Q7) =ops Q@ (Va (7)) :
Va(r).

25

The extensionality principle for list types is more complicated than the above principles for
function- and V-types. We will recover the characterisation of observational congruence of lazy lists
in terms of a notion of bisimilarity to be found, for example, in (Gordon 1995) or (Pitts 1997a). Recall
from Section 4 that for a closed type 7 € Typ, the term-relationA () = (A, ())list is given by a
greatest fixed point:

Ariigt() = v (1+ (A x)T

We will show that this coincides with a different greatest fixed point, which is defined in terms of
PolyPCF evaluation, (—) |} (—) and which aids calculations.

Definition 5.6. Given 7,7’ € Typ and r € Rel(7, '), call a term-relation s € Rel(rlist, 7'list) an
r-simulation if it satisfies that whenever (L, L") € s then

L nil, = L'| nil.
LYyH:T = 3H "' VH =T & (H H)er & (T,T') € s).
s is an r-bisimulation if both it and its reciprocal s°? = {(L', L) | (L, L') € s} are r-simulations.

Proposition 5.7. Ifr € Rel(r,7’) is TT-closed, then the term-relation (r)list € Rel(rlist, r'list) of
Definition 4.3 is the greatest r-bisimulation.

Proof. Writing

O.(s) € (L, 1) (Ldnil,= L' §nil,) &VE,T (LU H T =
JH,\T"(L'VH =T & (H,H)er & (T,T') € s)}

U, (s) @, (s) N (@,(s°7))7

we have to prove that v s¥,(s) = vs(1+ (r x s))7". This can be achieved via the following
lemmas,which hold for any term-relations » € Rel(r,7') and s € Rel(rlist, r'list).

D 14 (rxs) CW(s) C (14 (rxs))TT.
(ii) If » and s are TT-closed, then sois U, (s).

The proof of (i) is straightforward. For (ii) we first prove

(Id, 1d) € W,(s)7 (36)
(IsCons,, IsCons,) € W, (s)" (37)
(5,58 e rt = (S o Head,,S' o Head.) € W,(s)" (38)
(8,8 € 8" = (So Tail,, S o Tail,/) € ¥, (s)7 (39)

where

IsCons, < Id o case — of {nil= Qrlist | h::t = nil,}
Head. % case — of {nil= Q7| h:t=h}

Tail, &' case —of {nil=Qr | hut=1t}

26

and € is as in Example 2.6. From (38) we get
(L,L') € ©.(s)"" = (Head,[L], Head[L')) € r' T (40)
and similarly from (39)
(L, L") € ,(s)7" = (Tail,[L], Tail[L]) € sT " (41)

(where we use the notation —[—] from Definition 3.3 for applying a frame to a term). Then (36),
(37), (40) and (41) can be used to prove (ii), making use of Corollary 3.14 applied to the Kleene
equivalences

Head [L] = H

ifLy H:=T.
Tail,[L] =10 T

Now if s is an r-bisimulation, i.e. if s C W,(s), then by (i), s C (1 + (r X s))_'"r and thus
s C (r)list, by definition of (r)list. So to see that (r)list is the greatest r-bisimulation, it just remains
to check that it is itself an r-bisimulation. It is only now that we use the assumption that r is T T-closed.
Note that by (13), (r)list is also TT-closed; so by (ii), ¥, ((r)list)) is TT-closed and hence
W, ((r)list)) = W, ((r)list))T"
D (14 (rx (r)list)TT by ()
= (r)list

as required. 0l

Theorem 5.8 (List type extensionality). For all € Typ and L, L' € Term(rlist), L =qbs L' :
tlist ifand only if (L, L") € s for some s € Rel(rlist, Tlist) satisfying that whenever (M, M') € s
then

o M | nil, ifand only if M’ |} nil,
o if M| H::T,then M' |\ H ::T' for some H' and T' with H =ops H' : 7 and (T, T') € s
o if M') H' ::T', then M || H :: T for some H and T with H =, H' : 7 and (T, T') € s.

Proof. Since by Theorem 4.15 (=) =.bs (=) : 7 coincides with A,(), a term-relation s €
Rel(rlist, Tlist) with the above property is precisely a A, ()-bisimulation (Definition 5.6). Thus
L and L' are related by some such term-relation iff they are related by the greatest A, ()-bisimulation,
which by the previous proposition is (A, ())list. This is by definition A ;5¢(), and by Theorem 4.15
again, this is (=) =obs (—) @ Tlist. O

This theorem provides a coinduction principle for PolyPCF list types that can be used to prove
properties of lazy lists like those considered in (Pitts 1997a, Section 3) for example. We use it in the
next section to prove Example 2.8 concerning polymorphic versus inductive list types.

6 Examples: Null, Unit and List Types

In this section we use Theorem 4.15 to give proofs of the properties of null, unit, and list types
claimed in Examples 2.6-2.8.

27

Null Type

Proof of Example 2.6. Suppose ' is a closed term of type null ' va (). We have to show that

G =qbs 2 : null, where @ < Ao (fix(Az : a(2))). By Theorem 5.4 and (29), it suffices to show
for all 7 € Typ that G'T =qps fix(A@ : 7 (2)) : 7. For this, by Corollary 4.17 it suffices to show
for all S € Stack(r) that S T (G) does not hold, because evaluation of fix(A @ : 7 (2)) does not
converge.

From Corollary 4.13 we have (G, G) € Ayq(o)() =V (rTT). In other words, forall 7, 7/ € Typ
and r € Rel(r,7') we have

(Gr,Gr)yerT. (42)
Given 7, we use (42) with 7/ = rlist and r the one-element term-relation
r ¥ r@r, Q(riist)).

For any S € Stack(r),let.S" € Stack(rlist) be a frame stack that diverges when applied to any term
of type Tlist, say

R (case — of {nil= Q (7list) | h::t=Q(7list)}).

Now neither S T 2 7 nor S’ T (7list) hold, because of the divergence properties of 2. Therefore by
definition of r, we have (5, .5’) € rT. Combining this with (42) yields S T (G'1) < ST (G rlist).
But 5’ was chosen so that S’ T L does not hold for any L € Term(rlist). Therefore S T (G 7) does
not hold either, as required. O

In order to prove Examples 2.7 and 2.8 we use the following source of TT-closed term-relations.

Lemma 6.1 (Graphs of frame stacks are TT7-closed). For all 7,7/ € Typ, suppose S €
Stack(r,7') is a frame stack with argument type T and result type 7'. Then the term-relation
graphg € Rel(t,T') defined by

graphs & {(M, M) | S M =cps M': 7'}.
is TT-closed. (The application operation S, M — S M was given in Definition 3.3.)
Proof. We have to show that (graphg)' ' C graphg. Note that by Theorem 4.15
graphg = {(M,M") | (S M, M) € A.()}. (43)

Let S’ o S denote the result of appending the frames in S to a frame stack S’. Then an induction on
the length of 5 yields

(S0 S)TM & S'T(SM). (44)
From (43) and (44) we get
(8,5") € (An())T = (5705,5") € (graphs)”
and hence that
(N,N') € (graphs)™T = (SN, N') € (An()"T.

But by Lemma 4.11, A () is TT-closed. Therefore if (N, N') € (graphg)'TT, then (S N, N') €
A,() and hence (N, N') € graphg, as required. a

28

Unit Type

Proof of Example 2.7. Suppose G is a closed term of type unit ' va (o = «). Combining

Theorems 5.2 and 5.4 with Examples 5.3 and 5.5, and with the beta-conversions (28) and (29), to
establish the claim in this example it suffices to show for all 7 € Typ and M € Term(r) that either

GTM =ops Q77 45)
or
GTM =ops M :T. (46)

Given T € Typ and M € Term(7),let S € Stack(unitlist,) be the frame stack

s ¥ 1o (case — of {nil= M | h::t= M})

and consider graphg € Rel(unitlist,7) as in Lemma 6.1. By Corollary 4.13 we have (G,G) €
Aunit 0 =Vr (rTT — 71 T). So since by Lemma 6.1 graph g is TT-closed, we have

(G unitlist, G) € graphg — graph . 47

Using the beta-conversion (30), we have (nil,;;, M) € graphg. Therefore from (47) we get that
(G unitlist nilypit, G 7 M) € graphg, i.e. that

case (G unitlist nilypie) of {nil= M | h it => M} =ops GTM : 7. (48)

Now either G unitlist nil,,; § V for some V, or not. In the first case we get

case (G unitlist nilyp;) of {nil=> M | hut=>M} =g M:7
and in the second we get

case (G unitlist nily,) of {nil=> M | h it =>M} =g Q77
Then by Corollary 4.16 and (48), the first possibility yields (46), whereas the second yields (45). [
List Types
Proof of Example 2.8. Let L(«), I and J be as defined in Example 2.8. By Theorem 5.1, to prove

a, U:alist = Ja(Ial) = (: alist
a,g:Lla)FTa(Jag)=syg: L)

it suffices to show for all 7 € Typ, L € Term(rlist), and G' € Term(L(r)) that
JrT(ITL) =¢ps L :Tlist 49)
and

IT(J1TG) =ebs G L(7).

29

For the latter, in view of the definition of L (7) it suffices to show for all 7’ € Typ, M’ € Term(7'),
and F' € Term(t — 7' — 7') that

IT(JrG) P M'F =ps Gr'M'F: 1 (50)

We tackle (49) first. Applying the beta-conversion properties (28), (29), and (32) to the definitions
of I and J yields

ITLT"M'F =g case Lof {nil=M' |hut=>Fh(IrtT M F)}:tlist (51)

(for all L, M’, and F of appropriate type) and then
Jr(ITL) =ops case Lof {nil=nil, |hut=hu(J7(I7t))}: rlist. (52)
From (52) it follows that s % {(L,L") | L =obs Jr(ITL') : Tlist} satisfies the bisimulation
conditions in Theorem 5.8 and hence by that theorem it is contained in =ps. Since (J 7 (I 7 L), L) €

s, we have (49).
Turning to the proof of (50), consider the frame stack S € Stack(rlist, r') defined by

S € Idio(case — of {nil= M’ | h:t= (Fh)y(Irtr" M'F)}).

In view of (51), we have S L =ps I 7 L 7' M' F : Tlist and therefore
ragrr S (L, M) | I L7 M'F =ops M" : 7'}

is a TT-closed member of Rel(rlist, ') by Lemma 6.1. So for each G € Term(L(r)), since by
Corollary 4.13

(G,G) e Apn() = Vr (rTT = (A) =rTT =TTy =TT
we have that
(Grlist,G7') € rarF— (A () = TMLF = TAMF) TM!F

From (51) and the definition of rj,/ i we get that V Ao (nil,) and C' E Aa (ARt (At
alist (h::t))) satisfy

(IV T, 1\/[/) € Py E and (C T, F) € AT() = "M F = TMF
and hence
(Grlist(N1)(C1),GT' M'F) € rap .

So by definition of rj; p we have I 7(G 7list (N 1) (C'7)) 7' M' F =ops G 7' M' F : 7/, from which
(50) follows by definition of J. |

7 Example: Existential Types

Example 2.8 shows that in PolyPCF, inductive lists types are observationally isomorphic to poly-
morphic list types. In this section we give another example of this phenomenon by extending
PolyPCF with existential types 3« (7) (Mitchell and Plotkin 1988) equipped with a standard op-
erational semantics, and proving that they are observationally isomorphic to the polymorphic types
Vo' (Va((r—a')— o)) (where o’ ¢ fto(7)).

30

PolyPCF with Existential Types
Extend the grammar of PolyPCF (Figure 1) with a type-former for existential types

Tou=

| FJa(r) I-type

and operations for constructing and deconstructing terms of such types

packT,Mas3a(r) I-type constructor

M =
|
| openMasa,zinM I-type destructor.

The explicit typing information in packed terms is there to preserve the ‘uniqueness of type’ property
mentioned in Note 3 in Figure 2. Free occurrences of « in 7 become bound in the type 3 v (7); and free
occurrences of « and z in M become bound in the term open F as «, @ in M. The type assignment
relation of Figure 2 is extended by adding the rules

TFM:7r/al
I'+packmy, Masda(r) : Ja(m)

'FE:3a(n) Taoe:nt-M:n

I'openFasa,zinM :

Recall that such rules are only applied to judgements that are well-formed in the sense of Note 1 in
Figure 2. In particular, in the second of the two rules given above, since the notation I', o means I'
properly extended by a, o does not occur free in I' and hence not in 7 either (by well-formedness
of the conclusion of the rule). This condition that « is not allowed to occur free in 75 in the second
rule is what distinguishes an existential type from a type-indexed dependent sum, where there is free
access both to the type component as well as the term component of a packed term: see (Mitchell
and Plotkin 1988, p 474 et seq) for a discussion of this point.
We extend the evaluation relation of Figure 3 by declaring that packed terms are values

packT,Mas3a(r) | packrt,Mas3a(r)
and adding the following rule for 3-type destructors:
E | packr',M'as3a(r) M /a,M'[/z]|V

open Fasa,zinM || V

The associated notion of observational congruence is just as in Theorem 2.3, though of course the
compatibility properties in Figure 4 have to be extended with obvious clauses for the two new term-
forming operations.

Turning to the material in Section 3, we have to extend the notion of frame stack (Definition 3.1)
by adding a new form of frame:

F &= ...| (open—asa,zin M)
with typing rule

FFS:7 —o 7" Fog:rEM:7

I'So(open—asa,zinM) : Ja(7) o

31

Then the results in that section continue to hold provided we extend the definition of (—) T (=) by
adding the following two rules to those in Figure 7

S=5"0(open—asa,zinM) S'T M7 /o, M' /2] So(open—asa,zinM) T FE

S 1 packr, Mas3a(r) S TopenFasa,zin M
(or equivalently, by adding the single (redex,reduct)-pair (R, R') where
R = open (pack7’,M'as3a (7)) asa,zinM and R = M[r'/a, M'/2]

to the definition of the transition relation in the proof of Theorem 3.5). In particular, we have the
closure operation (—) T " on term-relations for the extended language, with its various properties.

Now we come to the delicate part. We extend the logical relation of Section 4 to the language with
existential types by adding the following clause to Figure 8.

Az (/@) € @r (AT Ja, @) T, (53)

As well as the closure operation (—) T T, this makes use of the following action of 3 on term-relations.

Definition 7.1 (Action of 3 on term-relations). Let 71 and 7] be PolyPCF types with at most a single
free type variable, say. Suppose R is a function mapping term-relations » € Rel(7y,75) (any
3,7y € Typ) to term-relations R(r) € Rel(ri[r2/a], r{[75/]). Then we can form a term-relation
dr (R(r)) € Rel(Fa (ry),Fa (1)) as follows.

dr (R(r)) & {(pack 72, M as3a (1), pack 75, M' as T (79)) |
37 € Rel(ry, m3) (M, M') € R(r))}.

Note that 3 (R(r)) only contains values (i.e. packed terms). Thus it makes some sense to take
the TT-closure of this construct in (53) when defining the logical relation at 3-types. (The use of
r'T /a, rather than r /« in (53) is for the same reasons as in clause (16): see Remark 4.4.) However,
the precise justification for the definition is that it permits Proposition 4.6 (the Fundamental Property
of the logical relation) to go through for the extended language. The compatibility properties of the
extended logical relation with respect to 3-type constructors and destructors follows from properties
of Definition 7.1 with respect to (—) T that are analogous to those for list types in Lemmas 4.9 and
4.10; we omit the details.

From the fundamental property for A we deduce that Theorem 4.15 (characterisation of = in
terms of the logical relation), Corollary 4.16 (= implies =,},5), Corollary 4.17 (coincidence of =g
with =;,,) and the results of Section 5 go through for the extended language. Two simple consequences
of these results that we will need in a moment are beta- and eta-conversions for 3-types:

I'+open (pack 7', M asJa (1)) asa,zin M =qps M[7' /o, M' /2] : 7" (54)
'+ E = open Fasa,zin(packa,zas3a (7)) : Ja (r) (55)

where
M r[r'/a) Tya,a:rbEM:7” TEFE:3a(n).

These observational congruences hold because their closed instances are valid Kleene equivalences.

32

Definability of 3-types

We aim to show that each existential type
e ¥ 34 (1)
is in bijection, up to =.p,s, With the polymorphic type

e Y yvo (Va(r—a)—a)

(where o' ¢ ftv(r)). For simplicity, we assume that 3 o (7) is closed. Define I € Term(e —¢') and
J € Term(e’ — €) to be the terms

1 4 deie(Aad’(Ag:Va(r—d)(openeasa,zingaz)))

J Ny e (¢ P),

where P % Aa (Az: 7 (packa,zase)) € Term(Va (T —€)).

Theorem 7.2. ¢ is observationally isomorphic to €' in the sense that J o I ©f Ne: e (J(Ie))

and T o J %) g : € (I(Jg)) are observationally congruent to the identity functions on € and €’
respectively.

Proof. Using the various extensionality results of Section 3, it suffices to prove for all E € Term(e)
that

JUIE) =obs E:¢ (56)
and for all G’ € Term(e'), 7' € Typ,and G € Term(¥ o (T — 7')) that
I(JG)VT'G =ops G'T'G: 7. (57)
Using the definitions of I and J and applying the beta-conversions (28) and (29) several times we get
J (I E) =obs open Fasa,zin(packa,zase) ¢

so that (56) holds because of the eta-conversion (55). Similarly, after various beta-conversions (57) is
equivalent to

open (G'e P)asa,zinGaz = G'7'G: 7. (58)
To see that this holds, consider the frame stack S € Stack(e, r’) given by
, def . ’
S = Ido(open—asa,zinG ag)

and the TT-closed term-relation graphg € Rel(e, ') associated with it as in Lemma 6.1. We claim
that

(P,G) eV r(A(rT T /a) = graphg). (59)

33

For, given any 73, 75 € Typ, r € Rel(r,75),and (M, M') € A,(r" " /a), we have

((pack 9, M as¢), (pack g, M'ase)) € 37 (A (r' T /a)) by Definition 7.1
C@r AT /)T
o Ac() ' sincec ¥ 3o ().

Hence by Theorem 4.15 (for the extended language), (pack 72, M as) =.ps (pack 7}, M'ase) : €.
From this and the definition of P we get via the beta-conversions (28) and (29) that

PryM =4, packr), M'ase : ¢. (60)

By (54) we have ((packr), M'ase),GroM') € graphg. Then since graphg is TT-closed
(Lemma 6.1) from this and (60) we conclude via Corollary 3.14 that (P r, M, G 74 M') € graphg.
Since this holds for all » and (M, M') € A, (r' T /a), we do indeed have (59).

Now since A () is reflexive (Corollary 4.13),

(GG e Au() =V (Vr (A (rT T Ja) =TTy /7T,

Hence (G'e,G'7') € Vr (A (r'7/a) — graphg) — graphg (using the fact that graphg =
(graphg)TT). So by (59) we have (G'e P,G' 7' G) € graphg. Therefore by definition of S we
do indeed have (58). O

8 Conclusion

Compared the classic notion of term equivalence in lambda calculus, namely beta-convertibility,
the notion of contextual equivalence has a final, as opposed to initial, character—in that terms are
identified as much as possible within some observational framework. Therefore it is reasonable to
expect V-types to have strong parametricity properties with respect to such a notion of equivalence. The
work of Mitchell and Moggi on the maximally consistent model of PLC (see Mitchell 1996, Section
9.3.2 et seq) vindicates this expectation, and the work presented here provides further evidence, this
time in a context more directly relevant to functional programming. It seems that in the presence
of fixpoints, polymorphic types have very rich properties up to contextual equivalence and that
operationally-based logical relations provide a convenient way of proving these properties. To not
obscure the ideas with too many syntactic details, we chose here to focus just upon the definability up
to observational congruence of list types and existential types. But similar results can be derived using
our techniques for other common type constructs, such as products, sums, and covariant recursive types
built from them. In the case of covariant recursive types (sometimes called ‘algebraic data types’) one
cannot proceed as we did in Section 4 and define the requisite logical relation (A, | 7 € Typ)
by induction on the structure of 7—because the clause for a recursive type involves the relation at
structurally more complicated types. Instead one can define all the relations simultaneously using
the Tarski fixed point theorem: covariance of the recursive types ensures the monotonicity of the
operator whose fixed point specifies the required family of relations. In the case of general mixed-
variance recursive types, this method is not available (because the operator is no longer monotone)
and the existence of logical relations of the kind we need is much harder to establish. One way to
proceed is via a syntactical analogue of the technique developed in (Pitts 1996) for recursively defined
domains. This has been carried out for a single, top-level recursive type by (Birkedal and Harper
1997) (although without the benefit of the (—) " machinery). Indeed, using the analysis of Freyd

34

Vanilla PCF
(call-by-name evaluation; termination at function types is not observable)

ATI‘—>7’2 (r) d:ef A”'l (T_j - A’Fz (7‘)

where in general

r—re = LFF) V(A A) €r (FAF A) €ry)}.

‘Lazy’ PCF
(call-by-name evaluation; termination at function types is observable)

Ariory (M) (A AL (R (An ()T

where in general

Ari(ra) & {Qwim (M), e (M) |
V (A, A') € rq (M[A/z], M[A!/2]) € r9)}.

Call-by-value PCF
(call-by-value evaluation; hence termination at function types is necessatily observable)

def

Aran (M) = (Alr (7) (ATQ(F)))TT

where in general

def

Mri(rg) E {Qe:m (M), a1 (M) |

Y (V, V') € ry with V, V' values (M [V /2], M'[V'/2]) € r2)}.

Figure 9: Some actions of — on term-relations

35

(1992), general recursive types a la Plotkin’s FPC with their usual operational semantics (Plotkin
1985) should be observationally isomorphic to PolyPCF types.

These kind of applications are certainly just a small selection of the results which can be proved
using the machinery of Sections 3 and 4 (see also (Pitts and Stark 1998) for example). The
Galois connection (—) T between term-relations and stack-relations (Definition 3.8) seems the most
interesting ingredient of that machinery. One of its roles is to tie the operational semantics into the
logical relation. This idea is reinforced in Figure 9, where we mention some alternative actions of
— on term-relations (cf. Definition 4.1) which fit contextual equivalence for ‘lazy’ and call-by-value
PCE. Of course in each case, the definition of — T — and hence of (=) " T, changes to match the
changed operational semantics and/or observational scenario; and in the second case the notion of
frame stack is different as well. The full details of this style of logical relation for a call-by-value
version of PolyPCF can be found in (Pitts 1998), which uses it to explore extensionality principles for
existential types.

As mentioned in Section 3, another role of the (—) operation is to provide a syntactic version
of the domain-theoretic notion of admissibility (i.e. of a subset being bottom-containing and closed
under least upper bounds of ascending chains). The recent upsurge in operational techniques in the
semantics of higher order programming languages has been fuelled to a certain extent by developing
syntactical versions of domain-theoretic methods (see (Mason, Smith, and Talcott 1996) and (Birkedal
and Harper 1997) for example). Here it may be interesting to go in the opposite direction. The Galois
connection (—)' arose from purely operational considerations (in fact, as a way of dealing with
dynamic allocation of local state in the logical relation introduced in (Pitts and Stark 1998)); but it
may be useful to use a denotational version of (—) T for ‘extensional collapses’ when constructing
models of polymorphism and recursion. Denotationally, strict continuous functions play the role of
frame stacks (evaluation contexts). So given domains D and D’, choosing to take ‘observations’ in
the two-element domain [= {L, T} with L T T, we may consider the evident Galois connection
between relations R C D X D’ and relations S C (D —o I) x (D’ —o I) induced by

frd ¥ fay=T1

where D —o I denotes the usual domain of strict continuous functions from D to I. Which relations
on D x D' are closed for this Galois connection? It is not hard to see that such relations are admissible
in the usual sense. Winskel (private communication) has given a simple example to show that the
converse is false; and Abadi (1998) gives an interesting, inductive characterisation of the TT-closed
relations.

References

Abadi, M. (1998). On TT-closed relations. Preprint.

Abadi, M., L. Cardelli, and P-L. Curien (1993). Formal parametric polymorphism. Theoretical
Computer Science 121, 9-58.

Abadi, M. and G. D. Plotkin (1990). A PER model of polymorphism and recursive types. In 5th
Annual Symposium on Logic in Computer Science, pp. 355-365. IEEE Computer Society Press,
Washington.

Abramsky, S. (1990). The lazy A-calculus. In D. A. Turner (Ed.), Research Topics in Functional
Programming, Chapter 4, pp. 65-117. Addison Wesley.

36

Amadio, R. M. and P.-L. Curien (1998). Domains and Lambda-Calculi. Cambridge University
Press.

Bainbridge, E. S., P. J. Freyd, A. Scedrov, and P. J. Scott (1990). Functorial polymorphism.
Theoretical Computer Science 70, 35-64. Corrigendum in 71(1990) 431.

Birkedal, L. and R. Harper (1997). Relational interpretation of recursive types in an operational
setting (Summary). In M. Abadi and T. Ito (Eds.), Theoretical Aspects of Computer Software,
Third International Symposium, TACS’97, Sendai, Japan, September 23 - 26, 1997, Proceed-
ings, Volume 1281 of Lecture Notes in Computer Science. Springer-Verlag, Berlin.

Bohm, C. and A. Berarducci (1985). Automatic synthesis of typed A-programs on term algebras.
Theoretical Computer Science 39, 135-154.

Cardelli, L. (1997). Type systems. In CRC Handbook of Computer Science and Engineering,
Chapter 103, pp. 2208-2236. CRC Press.

Coquand, T., C. A. Gunter, and G. Winskel (1987). DI-domains as a model of polymorphism.
In M. Main, A. Melton, M. Mislove, and D. Schmidt (Eds.), Mathematical Foundations of
Programming Language Semantics, Volume 298 of Lecture Notes in Computer Science, pp.
344-363. Springer-Verlag, Berlin.

Coquand, T., C. A. Gunter, and G. Winskel (1989). Domain theoretic models of polymorphism.
Information and Computation 81, 123-167.

Felleisen, M. and R. Hieb (1992). The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science 103, 235-271.

Freyd, P. J. (1992). Remarks on algebraically compact categories. In M. P. Fourman, P. T. John-
stone, and A. M. Pitts (Eds.), Applications of Categories in Computer Science, Proceedings
LMS Symposium, Durham, UK, 1991, Volume 177 of LMS Lecture Note Series, pp. 95-106.
Cambridge University Press.

Girard, J.-Y. (1972). Interprétation fonctionelle et élimination des coupures dans I’arithmetique
d’ordre supérieur. Ph. D. thesis, Université Paris VII. These de doctorat d’état.

Girard, J.-Y. (1989). Proofs and Types. Cambridge University Press. Translated and with appen-
dices by Y. Lafont and P. Taylor.

Gordon, A. D. (1995). Bisimilarity as a theory of functional programming. In Eleventh Conference
on the Mathematical Foundations of Programming Semantics, New Orleans, 1995, Volume 1
of Electronic Notes in Theoretical Computer Science. Elsevier.

Gordon, A. D. (1998). Operational equivalences for untyped and polymorphic object calculi. In
A. D. Gordon and A. M. Pitts (Eds.), Higher Order Operational Techniques in Semantics,
Publications of the Newton Institute, pp. 9-54. Cambridge University Press.

Harper, R. and M. Lillibridge (1993). Explicit polymorphism and CPS conversion. In 20th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 206-219. ACM
Press.

Harper, R. and C. Stone (1996). A type-theoretic account of Standard ML 1996 (version 2).
Technical Report CMU-CS-96-136R, Carnegie Mellon University, Pittsburgh, PA.

Hasegawa, R. (1991). Parametricity of extensionally collapsed term models of polymorphism and
their categorical properties. In T. Ito and A. R. Meyer (Eds.), Theoretical Aspects of Computer

37

Software, Volume 526 of Lecture Notes in Computer Science, pp. 495-512. Springer-Verlag,
Berlin.

Hasegawa, R. (1994). Categorical data types in parametric polymorphism. Mathematical Structures
in Computer Science 4, 71-110.

Lassen, S. B. (1998). Relational Reasoning about Functions and Nondeterminism. Ph. D. thesis,
Department of Computer Science, University of Aarhus.

Ma, Q. and J. C. Reynolds (1992). Types, abstraction, and parametric polymorphism, part 2.
In S. Brookes, M. Main, A. Melton, M. Mislove, and D. A. Schmidt (Eds.), Mathematical
Foundations of Programming Semantics, Proceedings 1991, Volume 598 of Lecture Notes in
Computer Science, pp. 1-40. Springer-Verlag, Berlin.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics to domain theory.
Information and Computation 128(1), 26-47.

Mason, I. A. and C. L. Talcott (1991). Equivalence in functional languages with effects. Journal of
Functional Programming 1, 287-327.

Milner, R. (1977). Fully abstract models of typed lambda-calculi. Theoretical Computer Science 4,
1-22.

Mitchell, J. C. (1996). Foundations for Programming Languages. Foundations of Computing
series. MIT Press.

Mitchell, J. C. and G. D. Plotkin (1988). Abtract types have existential types. ACM Transactions
on Programming Languages and Systems 10, 470-502.

Morrisett, G., D. Walker, K. Crary, and N. Glew (1998). From System F to typed assembly
language. In 25rd SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press.

Pitts, A. M. (1996). Relational properties of domains. Information and Computation 127, 66-90.

Pitts, A. M. (1997a). Operationally-based theories of program equivalence. In P. Dybjer and A. M.
Pitts (Eds.), Semantics and Logics of Computation, Publications of the Newton Institute, Pp-
241-298. Cambridge University Press.

Pitts, A. M. (1997b). Reasoning about local variables with operationally-based logical relations.
In P. W. O’Hearn and R. D. Tennent (Eds.), Algol-Like Languages, Volume 2, Chapter 17, pp.
173-193. Birkhauser. First appeared in Proceedings 11th Annual IEEE Symposium on Logic in
Computer Science, Brunswick, NJ, July 1996, pp 152-163.

Pitts, A. M. (1998). Existential types: Logical relations and operational equivalence. In K. G.
Larsen, S. Skyum, and G. Winskel (Eds.), Automata, Languages and Programming, 25th
International Colloquium, ICALP’98, Aalborg, Denmark, July 1998, Proceedings, Volume
1443 of Lecture Notes in Computer Science, pp. 309-326. Springer- Verlag, Berlin.

Pitts, A. M. and I. D. B. Stark (1998). Operational reasoning for functions with local state. In
A. D. Gordon and A. M. Pitts (Eds.), Higher Order Operational Techniques in Semantics,
Publications of the Newton Institute, pp. 227-273. Cambridge University Press.

Plotkin, G. D. (1973). Lambda-definability and logical relations. Memorandum SAI-RM-4, School
of Artificial Intelligence, University of Edinburgh.

Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical Computer Sci-
ence 5, 223-255.

38

Plotkin, G. D. (1985). Lectures on predomains and partial functions. Notes for a course given at
the Center for the Study of Language and Information, Stanford.

Plotkin, G. D. (1993). Second order type theory and recursion. Notes for a talk at the Scott Fest.

Plotkin, G. D. and M. Abadi (1993). A logic for parametric polymorphism. In M. Bezem and
1. F. Groote (Eds.), Typed Lambda Calculus and Applications, Volume 664 of Lecture Notes in
Computer Science, pp. 361-375. Springer-Verlag, Berlin.

Reynolds, J. C. (1974). Towards a theory of type structure. In Paris Colloquium on Programming,
Volume 19 of Lecture Notes in Computer Science, pp. 408-425. Springer-Verlag, Berlin.

Reynolds, J. C. (1983). Types, abstraction and parametric polymorphism. In R. E. A. Mason (Ed.),
Information Processing 83, pp. 513-523. North-Holland, Amsterdam.

Reynolds, J. C. and G. D. Plotkin (1993). On functors expressible in the polymorphic typed lambda
calculus. Information and Computation 105, 1-29.

Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Com-
puter Science 121, 411-440.

Wadler, P. (1989). Theorems for free! In Fourth International Conference on Functional Program-
ming Languages and Computer Architecture, London, UK,

Wells, J. B. (1994). Typability and type-checking in the second-order A-calculus are equivalent
and undecidable. In Proceedings, 9th Annual IEEE Symposium on Logic in Computer Science,
Paris, France, pp. 176-185. IEEE Computer Society Press.

39

