
Technical Report
Number 453

Computer Laboratory

UCAM-CL-TR-453
ISSN 1476-2986

C formalised in HOL

Michael Norrish

December 1998

JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 1998 Michael Norrish

This technical report is based on a dissertation submitted by the
author for the degree of Doctor of Philosophy to the University of
Cambridge.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Abstract

We present a formal semantics of the C programming language, covering

both the type system and the dynamic behaviour of programs. The seman-

tics is wide-ranging, covering most of the language, with its most significant

omission being the C library. Using a structural operational semantics we

specify transition relations for C’s expressions, statements and declarations

in higher order logic.

The consistency of our definition is assured by its specification in the

HOL theorem prover. With the theorem prover, we have used the seman-

tics as the basis for a set of proofs of interesting theorems about C. We

investigate properties of expressions and statements separately.

In our chapter of results about expressions, we begin with two results

about the interaction between the type system and the dynamic semantics.

We have both type preservation, that the values produced by expressions

conform to the type predicted for them; and type safety, that typed expres-

sions will not block, but will either evaluate to a value, or cause undefined

behaviour. We then also show that two broad classes of expression are de-

terministic. This last result is of considerable practical value as it makes

later verification proofs significantly easier.

In our chapter of results about statements, we prove a series of derived

rules that provide C with Floyd-Hoare style “axiomatic” rules for verify-

ing properties of programs. These rules are consequences of the original

semantics, not independently stated axioms, so we can be sure of their

soundness. This chapter also proves the correctness of an automatic tool for

constructing post-conditions for loops with break and return statements.

Finally, we perform some simple verification case studies, going some

way towards demonstrating practical utility for the semantics and accom-

panying tools.

This technical report is substantially the same as the PhD thesis I sub-

mitted in August 1998. The minor differences between that document and

this are principally improvements suggested by my examiners Andy Gordon

and Tom Melham, whom I thank for their help and careful reading.

i

ii

Contents

1 Introduction 1

1.1 General aims . 1

1.2 Programming language formalisation 2

1.3 Theorem proving and mechanisation 5

1.4 Software verification . 6

1.5 The C language . 7

1.5.1 C terminology . 8

1.6 Related work . 9

1.7 Report structure . 12

2 Statics 13

2.1 The rôle of statics . 13

2.2 C’s types . 16

2.3 Pointers and arrays . 18

2.4 Types and the abstract machine 21

2.5 Expressions and their types 22

2.6 Statements . 26

2.7 Mechanisation of the static semantics 28

3 Dynamics 33

3.1 The program state . 33

3.1.1 Accessing memory 34

3.1.2 Side effects . 35

3.1.3 Notation—general observations 37

3.2 Undefinedness . 39

3.3 Expression evaluation . 41

3.3.1 Expression evaluation contexts 42

3.3.2 Base cases—values out of memory 43

3.3.3 Value producing operators 46

3.3.4 Side effect operators 49

3.3.5 Function calls—interfacing with statements 53

iii

iv CONTENTS

3.4 Statement execution . 55

3.4.1 Simple statements 57

3.4.2 Interruptions . 58

3.4.3 Compound statements 58

3.4.4 Conditional statements 59

3.4.5 Iteration . 60

3.5 Variable declarations . 62

3.6 Mechanisation . 63

4 Expressions 67

4.1 Preliminaries . 67

4.2 Symbolic evaluation and its pitfalls 71

4.3 Pure expressions . 73

4.3.1 Proof outline . 74

4.3.2 Pure expression determinism 75

4.4 Sequence point free expressions 77

4.4.1 A sequence point free diamond property 79

4.5 Undefined evaluations . 83

5 Statements 87

5.1 A programming logic for C 87

5.2 Automatic loop exit analysis 93

6 Verification 101

6.1 Factorial . 102

6.2 strcpy . 104

6.3 The failed BDD example . 108

6.4 Verification tools . 110

7 Conclusion 113

7.1 Future work . 115

A Definitions 119

A.1 Syntax . 119

A.2 Semantics . 124

B Theorems 139

Chapter 1

Introduction

We describe how programming language semantics can be formalised, em-
phasising the importance of the theorem prover in our work, and then
briefly discuss software verification. We introduce some important C termi-
nology and concepts, discuss other attempts to define C, and then lay out
the structure of the rest of this work.

1.1 General aims

This report presents a formal definition of the programming language C.

Both in avoiding errors made by others, and in formalising more of the

language than has been done in the past, this work is a contribution to

what might be called the “taxonomical” side of computer science: we give a

precise and accurate description of one of the field’s most famous creations.

Moreover, because of the abstract mathematical nature of programming

languages, we are able to describe C formally and rigorously.

The C programming language was created in the years 1969–1973, the

result of work by Ken Thompson and Dennis Ritchie [Rit93] at the then

Bell Telephone Laboratories. C’s rôle was as the system implementation

language for the new Unix operating system. Over the course of the next

two decades, C spread widely, first on the heels of Unix, and then onto

other systems as its suitability as a general purpose programming language

became apparent. In 1989, C was given a rigorous definition by the ANSI

standard [ANS89], which was in turn adopted as an ISO standard [ISO90]

in 1990. The effort of standardisation was made “to promote portability,

reliability, maintainability, and efficient execution of C language programs

on a variety of computing systems” [ANS89, §Abstract], an effort neces-

sary because of the danger of diverging language implementations blurring

1

2 CHAPTER 1. INTRODUCTION

exactly what was and was not a C program.

C is a very widely used language. It has been used to write operating

systems such as Unix, OS/2, and Windows; applications such as Netscape

and Microsoft Word; and it is used in fields from avionics to compiler con-

struction. Its presence in today’s operating systems has given the language

a base from which it has expanded into many diverse areas of application

development. So, while it is not necessarily of more intrinsic interest than

more obscure languages, C is such an important part of the computer sci-

ence environment that we feel the taxonomic motive for its formal study is

a reasonable one.

C also combines a number of interesting features on the theoretical

front, making it additionally interesting as a subject of study. For exam-

ple, C’s expressions both are side-effecting and have very under-specified

evaluation orders. If these semantic features were the main area of inter-

est in studying a language, then it would clearly be easier to construct a

simple calculus that included these features and little else. (In this way,

Milner’s CCS [Mil89] and the object calculi of Abadi and Cardelli [AC96]

present elegant approaches to core ideas behind concurrency and objects

respectively.) However, we prefer to attack as much of C as possible all at

once. As Milner and Tofte point out in the commentary on the definition of

SML [MT90], this study of languages in their entirety has its own grounds

for interest, and we further feel that our study of C gives us a possible

application in the area of software verification.

This report thus has a second general aim: to build on the definition of

the C semantics to develop theory and technology to enable verification of

C programs. The remainder of this introductory chapter will discuss both

these goals in more detail.

1.2 Programming language formalisation

We hold that the term “formal” implies “admits logical reasoning”. We

thus argue that C is not formally defined by the C standard [ISO90], be-

cause much (though not all) of that document relies on English language

descriptions of program behaviour. Such descriptions, however carefully

formulated, inevitably suffer from the ambiguities and obscurities inherent

in natural language. An indication that the C standard is no more immune

to this problem than any other natural language document is provided by

the “Defect reports” [JTC], queries made of the standardisation committee

asking for clarification of the standard’s murkier details.

1.2. PROGRAMMING LANGUAGE FORMALISATION 3

Those parts of the C standard that are formal are those that concern

themselves with the definition of the language’s syntax. Formally defining

a language’s syntax is a well-understood application of language theory.

Moreover, the theory of automata long ago advanced to the point where

the mechanical manipulation of grammars is common-place. Tools such

as yacc and lex enable the automatic creation of programs to perform

syntactic analysis of program source, thereby simplifying the process of

compiler construction.

As C’s syntax is already formally defined, we will not look at syntax

any further. Our goal is to formalise what remains: the semantics of the

language. Supplying programming languages with formal definitions is

a major field of computer science, and it is not our aim here to provide

an introduction to it. Instead we concentrate on describing our work in

general terms, and placing it in the context of other work in the area of

semantics.

We present C’s semantics as a structural operational semantics. An oper-

ational semantics presents a formal description of an abstract machine that

interprets the syntax of the language. The abstract machine’s behaviour is

then held to correspond to the behaviour one would expect when execut-

ing the program on an actual computer. This style of definition was used

in the definition of Standard ML by Milner, Tofte and Harper [MTH90].

This example, one of the most famous formal language definitions, is a

clear demonstration that a large language can be formalised in this manner.

Moreover, operational semantics have proved relatively easy to mechanise

as the technology for performing inductive definitions is well developed. As

we shall later discuss, the semantics of SML itself has been one of the more

tempting mechanisation “targets”. A useful summary of other language

formalisations, with varying degrees of formality, appears in VanInwegen’s

thesis [Van96].

One difference between our work and the definition of SML is that the

latter is the first definition of the language. It constructs an abstract en-

tity that (modulo any errors making the definition inconsistent, see Kahrs

[Kah93]) is necessarily correct because it is the definition. We are not so

lucky with our work on C. Here we must produce an accurate semantics for

an existing language, one which has already been defined. An important

question arising from this is whether or not our semantics conforms to the

standard’s definition.

Precisely because the standard’s definition of C is not formal, we can

never hope to prove our formal definition consistent with it. At best we

can hope that our definition comes to be seen as correct by the commu-

nity of people concerned with C’s definition and standardisation. Such a

4 CHAPTER 1. INTRODUCTION

community can perform very useful error-checking.1 In addition, if used

as the basis for software tools that do not necessarily require a deep un-

derstanding of its details, a formal semantics may come to be accepted as

correct simply because of what it has made possible in the pragmatic do-

main. Chapter four further discusses how our definition has passed various

simple “sanity checks”.

Alternatives to operational semantics include denotational and axiomatic

semantics. A denotational semantics defines an appropriate mathematical

space as a model for a language, and maps the language’s syntax into that

space in a way that is compositional. This property requires that the se-

mantics of a syntactic phrase be a function of the semantics of the phrase’s

syntactic sub-components. While a denotational semantics for C is con-

ceivable, it would be complicated both to devise the appropriate space for

the semantic model, and to then ensure that one’s denotation function was

both correct and compositional. The mathematical theory of domains re-

quired for the treatment of unbounded loops and recursion has been han-

dled in theorem provers before (notably in LCF [GMW79]), but its compli-

cations don’t seem to be as well-served by the existing tools as the simpler

demands made by operational semantics.

An axiomatic semantics for a language presents a set of rules that allow

one to conclude that particular syntactic phrases will satisfy a specification,

given as a precondition and a post-condition. Being inductively defined,

axiomatic semantics share certain similarities with operational semantics.

However, where an operational semantics presents an abstract machine

whose evolving behaviour can be readily appreciated, an axiomatic seman-

tics makes statements about program behaviour that can be rather harder

to evaluate. A typical conclusion in an axiomatic semantics will be that if

one starts program S in a state satisfying P , then the program will finish

in a state where Q is true. This high descriptive level is very useful when

a semantics comes to be used in an application such as software verifica-

tion, but it is harder to confirm that such a definition corresponds to one’s

intuition. In an operational semantics, any given rule will more obviously

express a transformation on a particular program state. In chapter 5, we

shall link our operational definition with some rules written in an axiomatic

style, thereby combining the confidence in our operational definition with

the utility of axiomatic rules.

1Inasmuch as this community is present in the Usenet newsgroup comp.std.c, it has
already had a much-appreciated influence on this report—the typically informed posts in
this newsgroup, some of them responses to my own queries, often served to point out
areas where our semantics might be incorrect, and thus proved an ongoing test for it as it
developed.

1.3. THEOREM PROVING AND MECHANISATION 5

1.3 Theorem proving and mechanisation

It is central to our thesis that the semantics of C is so complicated that it

can only be usefully manipulated in the context of a theorem prover. In

this environment, logical definitions can be made and theorems proved in

a reliably sound way. Without mechanical support, reasoning with a big se-

mantics is error-prone, and it can be hard to be confident that one’s proofs

are actually correct. For example, Syme recently worked on mechanising a

proof of Java type soundness [Sym97b] that had originally been done by

Drossopolou and Eisenbach [DE97]. Though their proof was substantially

correct, Syme’s mechanisation did find what he describes as “one major

error and one major omission” in their proof.

Using a theorem prover means that we are confident that all of the re-

sults we have proved are correct. Having used the theorem prover HOL

[GM93], we are particularly confident, as this system, following the exam-

ple of its ancestor system LCF [GMW79], uses the strong type system of ML

to guarantee that values of type theorem are only produced in ways that

are logically sound. This guarantee extends to HOL’s use of conservative

principles of definition, meaning that we are not forced to assert defini-

tions as potentially inconsistent axioms. Just as novice computer users are

often told to type what they like, because nothing they can do can actually

harm the computer, so too, novice users of HOL can proceed, knowing that

whatever they do will not compromise the validity of the theorems they

prove. This is quite a liberating sensation.

The foregoing is not meant to suggest that errors are impossible in HOL,

or theorem proving systems in general. Two sorts of errors are relatively

common. Firstly, one’s definitions may not say what one thinks they do.

Whether through simple typographical error or confusion at a higher level,

an incorrect definition may prove the basis for the proof of a slew of results.

Then, suddenly the edifice one is constructing collapses because a founda-

tion stone is slightly out of place, and this prevents the proof of a desired

property. We will discuss this sort of error further in chapters three and

four. The second sort of error comes in proving results that are not useful.

These theorems may take considerable effort to prove, but when they come

to be applied, it is found that the hard-won theorem doesn’t pertain to the

situations it was intended for. Just as typed programming languages can

not prevent errors in code, HOL’s guarantees of soundness only forestall

certain (but important!) kinds of theorem proving errors.

Our mechanisation of C is called Cholera.

6 CHAPTER 1. INTRODUCTION

1.4 Software verification

Generally speaking, software verification is the task of assuring oneself that

a piece of software behaves in a particular way. Furthermore, one requires

that this conclusion be backed up by assurances that are formal in nature.

It is not enough to look at a piece of code and say to oneself “Yes, this
loop will terminate because my co-worker always writes such nice code.”
Instead such a conclusion (about the termination of the loop, rather than

the niceness of the co-worker’s code!) should be reached only after the

code has been subject to some form of formal analysis.

But is this a reasonable thing to wish on any putative software veri-

fier? In their famous criticism of software verification [MLP79], De Millo,

Lipton and Perlis present a strong case to the effect that even if someone

were willing to subject themselves to the unimaginable demands of produc-

ing such a thing, a verification could have no real value because its mind-

numbing complexity would not be usefully communicable to anybody else.

And where is the value of a verification if no-one else will believe it?

Though we believe that De Millo, Lipton and Perlis elsewhere over-state

their case as to the impossibility of producing valid verifications, their point

about the power of the social process is a good one. If other humans won’t

accept our verifications, it seems that we must substitute a computer in-

stead. A mechanical theorem prover will not give us the brush-off when

we force it to read over our verification proofs. Moreover, once mechanical

verification systems have earned the trust of the human community, an in-

dividual’s verification can come to be trusted if it has been certified correct

by the machine.

An intriguing alternative is suggested by George Necula’s work on proof-

carrying code [Nec97]. In this scheme, humans are never required to blindly

trust that someone else’s verification of someone else’s code is correct.

Instead humans trust their computer’s mechanical proof-checker: it con-

firms that potentially suspicious code behaves as it should (or, alternatively,

doesn’t behave as it shouldn’t), by checking the verification proof that ac-

companies the code. This is an appealing proposal because humans then

never have to “consume” proofs themselves. Given their complex and gen-

erally incomprehensible nature, it seems entirely appropriate that once pro-

duced (presumably by a human-machine combination), such proofs should

only ever be consumed by machines.

We should also consider the case De Millo, Lipton and Perlis make to the

effect that software verification is a practical impossibility. This criticism is

one that we answer directly, at least to some extent, in the presented case

study examples (chapter 6). We also hope that our definition of C’s se-

1.5. THE C LANGUAGE 7

mantics and the derivation of consequences from this semantics will prove

useful enough to allow others to answer the question of whether or not

software verification is ever really to succeed.

Software verification is itself just one possible approach to the goal of

producing reliable software. Another approach, which is much further

down the track towards pragmatic acceptability, is that exemplified by the

LCLint static checker [EGHT94, Eva96]. This work provides an appealing

tool that checks C programs for errors in conjunction with user-provided

specifications of the properties individual functions are supposed to respect.

Though the more recent of the two papers referenced above admits that the

tool is both unsound and incomplete, the cited experience seems to suggest

that LCLint is nonetheless a very useful tool. Our (contrasting) approach is

to make correctness an overriding concern, and hope that future work will

derive pragmatically useful tools on top of our sound foundations.

1.5 The C language

C is a third generation imperative language in the tradition of Algol. It is a

typed language, and its types can be extended by the construction of new

types from old types in a regular way. For example, from any type τ , one

can construct types corresponding to “pointer-to-τ” and “array-of-τ”. C’s

statements are unremarkable but provide standard looping and conditional

constructs such as while, for, if and case switching.

It is principally with its expressions that C gains its special flavour. It

is here that C’s low-level nature is most apparent. C encourages the pro-

grammer to think of values as sequences of bits by providing a compre-

hensive set of bit-level operators such as and (&), or (|) and xor (^). C

also makes pointers and variable addresses a fundamental part of the lan-

guage semantics. Arrays are manipulated through pointers, and reference

parameter passing is accomplished by explicitly requiring the user to pass

the addresses of variables. Furthermore, the language allows all values to

be accessed a byte at a time, ignoring any higher level structure that has

been imposed on those values. The type system has perhaps its biggest hole

in variadic functions. Not only must the program dynamically establish the

type of the trailing arguments to such functions, which may all be different,

but it must also determine when these arguments have been exhausted. All

these factors make it hard for programmers to escape the feeling that they

are very close to the “bare metal” of their machine.

C does not support programming in the large particularly well. At the

global level, the name-space for both function and variable identifiers is

8 CHAPTER 1. INTRODUCTION

entirely flat. Each C source code file (a translation unit) has its own internal

name-space, which can keep names hidden, but if names are allowed to

escape this, then they are visible everywhere. Variables can be local to

functions also, whether freshly created with each invocation, or keeping

their value from call to call. Functions do not nest, however.

It is in this context that the distinction between variable and func-

tion definition and declaration is most important. A declaration is a non-

committal statement to the effect that a variable or function exists, but in

the case of functions, is not a definition of that function, and in the case

of variables does not allocate the necessary space in memory for it. Dec-

larations are used to import names from other modules in the knowledge

that a linking phase will resolve the issue of where the object (function or

variable) behind the name is. A definition is a declaration, and also pro-

vides either a function body or causes the setting aside of memory for the

allocation of a variable.

1.5.1 C terminology

The C community tends to use a language of its own to describe notions

relating to its language’s semantics. Here we introduce some of the more

important terms (c.f. the glossary in [ANS89, §1.6]). Firstly there are three

distinct ways in which the standard under-specifies execution of C pro-

grams. We explain each and describe in general how they are modelled in

the formal semantics.

Implementation-defined: Implementation-defined constructs are those

which must have a definite meaning, but for which the standard

has passed responsibility to the implementation. The implementa-

tion is required to document its choice of meaning. An example is the

byte-ordering within multi-byte numeric objects (big-endian vs little-

endian).

We handle implementation-defined behaviour by defining, but under-

specifying some constant in the semantics. In this way, we model the

fact that there is a well-defined behaviour, but make it impossible for

a user to rely on it being a particular behaviour. For example, INT MAX,

the largest value that can be stored in the int type must be at least

32767, but can be more.

Unspecified: A construct or program form for which behaviour is unspeci-

fied is one where the standard imposes no requirement. For example,

1.6. RELATED WORK 9

the order of evaluation of expressions is unspecified. Here an imple-

mentation need not document its behaviour, and thus may choose to

do different things in quite similar, if not identical, situations.

We handle unspecified behaviours by always allowing all possible be-

haviours. In the case of expression evaluation, all possible evaluation

orders can arise. One can not then claim that a program’s behaviour

will have a particular result without confirming that all possible be-

haviours lead to the same result.

Undefined: Undefined behaviour results when a program attempts to do

something which is semantically illegal. For example, undefined be-

haviour occurs when uninitialised memory is accessed, when a null

pointer is dereferenced, or when a side effect attempts to update a

memory object which has already been accessed in the same phase of

expression evaluation. We treat all such behaviour as equivalent to a

transition into a special state where no further action takes place. In

implementations, a program which attempts an undefined behaviour

will in all likelihood do something, and this something may in fact

be quite reasonable. Nonetheless, there is no way of relying on unde-

fined behaviour to do anything in particular, so our approach of effec-

tively aborting the abstract machine as soon as undefined behaviour

occurs is safest. To do anything else would be to suggest that a par-

ticular behaviour could be relied upon, and this would necessarily be

erroneous.

Related to the above notions is that of being a strictly conforming pro-

gram. Such a program’s behaviour doesn’t depend on any implementation-

defined, unspecified or undefined behaviour. Though strictly conforming

C programs are the ideal, it is still the case that there are legal programs

that are not strictly conforming. For example, there are legal programs that

behave non-deterministically, and the semantics as presented here and in

the standard reflects this.

1.6 Related work

There are a number of attempts to define C’s semantics extant in the lit-

erature. Here we briefly summarise those definitions that we are aware

of. Our own work goes beyond those presented here in covering more of

the language and covering what it does more faithfully to the standard.

10 CHAPTER 1. INTRODUCTION

For example, our presentation of C’s semantics (correctly) insists that the

expression

(x = 0) + (x = 0)

is undefined, and thus illegal. This identification is one that distinguishes

our formal semantics from all the others so far published. Our definition

of the semantics also covers more of the language than other work to date.

For example, we handle function pointers and structure values returned

from functions, which are both omitted in the other work.

The work closest to our own in approach is that done by Cook and

Subramanian [SC96]. Like our own, this work explicitly has as its goal the

verification of C programs, and bases itself in a mechanised theorem prover.

Cook and Subramanian’s work defines a C interpreter as a Lisp function in

the Nqthm theorem prover, and then proves properties of this interpreter

using the Nqthm logic (quantifier-free first order logic with equality and

induction principles). This approach leads to a semantics which is auto-

matically executable, a feature which is a great help in validating one’s

semantics. Cook and Subramanian’s work mechanises quite a small C sub-

set, using a restricted type system and simplifying the allowed expressions.

They also omit all unspecified aspects of the language by making choices

such as evaluating expressions left-to-right, and choosing specific values

for constants such as the number of bytes in a word. Nonetheless, Cook

and Subramanian were able to verify a factorial program, and suggest in

[SC96] that it should be feasible to build a system for verifying straightline

C programs automatically.

Paul Black’s work [BW96, BW98] is another approach to verification of

C in a mechanised context. While our approach is to use an operational

semantics, Black focuses on giving an axiomatic semantics for C, and then

using this to verify examples of C code, in particular a simple World-wide

Web server. However, in the search for a pragmatic tool, Black has adopted

an extra-logical approach to expressions. Rather than giving them a rigor-

ous semantics, he instead assumes the presence of a semantic equivalence

relation with which to rewrite difficult expressions (such as those involving

side effects) into more tractable forms. We agree with Black’s conclusion in

[BW98] that his system will need to be based on a lower-level definition of

C’s semantics if it is to be judged properly reliable.

Characterising Black’s work as a high level approach to the problem in

search of a basis in low level reliability, we claim that our own work is a

low level approach that attempts to derive high level consequences of the

sort asserted by Black as axiomatic. Our later “meta-theory” chapters 4

and 5 explore how our basic definition can be extended with high level

1.6. RELATED WORK 11

consequences. Perhaps future work will see our work and Black’s start to

“meet in the middle”.

More recently, Mark Bofinger has published a definition of C’s semantics

[Bof98], again with the aim of providing a basis for performing program

verification. This work differs from that previously discussed and our own

in not having been done in a theorem-prover, or with the help of any au-

tomated support. After definition, Bofinger’s semantics is then used to sup-

port the development of a refinement formalism for turning specifications

into C code (including an example refinement of a number of variations on

the factorial function).

Bofinger’s semantics attempts to capture strict conformance by using

rules expressing the notion of “evaluating to the same result regardless of

the order of evaluation chosen”. However, because this semantics uses a

“big-step” operational semantics, it can not express all of the ways in which

C expressions might evaluate. For example, in an expression (a+b)+(c+d),
Bofinger’s semantics will allow for the following eight possible orders: abcd,

bacd, abdc, badc, cdab, cdba, dcab, and dcba. However, it does not examine

order acdb, one of many other orders which are permitted to occur.

Further, Bofinger’s semantics does not include the post-increment and

post-decrement operators. The latter are excluded because of a misappre-

hension about the way in which side effects are applied. Bofinger correctly

states that side effects from these operators may be applied at any time, but

fails to realise that this is also true of side effects that arise from assignment

expressions as well.

The semantics given by Gurevich and Huggins [GH93] using the evolv-

ing algebras formalism [Gur91] models expression evaluation in a similar

way to Bofinger, thereby missing possible orders of evaluation. It also does

not correctly model the way in which multiple side effects may give rise

to undefined behaviour, as in the distinguishing example above. However,

the evolving algebra approach does seem quite expressive. The formalism

seems to allow a pleasant layering in the description of the semantics—the

semantics is presented quite abstractly initially, with details filled in over a

number of stages. This semantics was also developed without mechanical

assistance.

Finally, Lars Andersen gives a semantics for much of C as part of his

development of a partial evaluation system for the language [And94]. He

finesses the issue of different evaluation orders by stating that his semantics

is only for strictly conforming programs, where differing evaluation orders

can not make a difference. His semantics is thus able to choose an evalu-

ation order (left to right) and also chooses to apply side effects as soon as

they are generated. This approach will not give incorrect results for cor-

12 CHAPTER 1. INTRODUCTION

rect programs, but it will incorrectly give a meaning to incorrect programs.

While his approach has obvious pragmatic advantages, it is not strictly a

description of C but rather a formal description of a possible C implemen-

tation.

1.7 Report structure

Chapters two and three of this report present the formal definition of a

substantial subset of the C language. Each of these chapters is a rigorous

and correct description, but in some respects does not quite correspond

to what was done in the Cholera mechanisation. For this reason, these

semantics chapters both include concluding sections that describe how the

mechanisation in the theorem prover differs from the semantics as given.

Chapters four and five describe the principal results that we can prove

as a consequence of the language definition. Chapter four describes expres-

sion evaluation, while Chapter five describes statement evaluation. Results

include subject reduction and type safety properties for expression evalu-

ation, and the simple beginnings of a programming logic for reasoning at

the statement level. In both chapters, the results stated are those that have

been proved in the theorem prover.

Chapter six describes a series of case study verifications. This includes

a description both of what was proven, and how this was accomplished in

terms of use of previously proved results and also in the use of bespoke the-

orem proving technology. Chapter seven concludes. Finally, we provide an

appendix of extracts from the Cholera source code. These are presented to

give a picture of some of the mechanisation’s nastier details. These extracts

include the full text of the theorems that are stated in chapters four and

five, and a selection of definitions, again as they were seen by the theorem

prover.

I am determinéd to prove a villain
And hate the idle pleasures of these days.
Plots have I laid, inductions dangerous...

(Richard III, Act 1, Scene 1)

Chapter 2

Statics

We describe C’s type system, discussing first the nature of type systems in
general and then specifying the forms of valid types in C. We then explain
the often misunderstood relation between pointer and array types in C.
The nature of C’s abstract machine leads us into an investigation of further
properties of types and values, before we describe the assignment of types
to expressions. After briefly looking at the various statement and declara-
tion forms, we finish with a description of the mechanisation of the static
semantics in the theorem prover.

2.1 The rôle of statics

A static semantics for a programming language is a classification of that lan-

guage’s syntactic phrases into types. Thus, static semantics are also known

as “type systems”. Näıvely, types can be seen as corresponding to sets of

values, and a static semantics predicts the type of the value denoted by

a syntactic phrase. Alternatively, a static semantics can be seen as a low-

powered “meaning ascriber”. Where a dynamic semantics gives the mean-

ing of 3 + 5 as 8, the static semantics might only claim that 3 + 5 denotes a

value in the set of natural numbers. In this light, static and dynamic seman-

tics can be seen to fall onto the same spectrum. Both are functions from

syntactic values to sets of semantic values. Naturally, a dynamic semantics

should yield singleton sets.1

Despite this identification at one level, a static semantics traditionally

embodies certain features that set it apart from dynamic semantics. In pro-

gramming languages that include state, an easy distinction to draw is that

1In the case where a semantics is non-deterministic, the semantic values might them-
selves be sets, but these still represent one value at the level of the “meaning ascribers”.

13

14 CHAPTER 2. STATICS

a static semantics will not consider the state’s possible value in characteris-

ing the meaning of an expression. It is state-independent in a way that the

dynamic semantics can not be. For example, the static semantics of such a

language will give the meaning of a variable reference the (declared) type

of that variable, while the dynamic semantics will give the meaning as a

function which accesses the state and yields the actual value.

More significantly, a static semantics is typically allowed the privilege

of being vague about exceptional conditions. In particular, static seman-

tics are allowed to hedge their bets by assigning types on the assumption

that the expression in question does not do anything “questionable”. In the

alternative view of semantics as functions from syntax to sets of semantic

values, static semantics are allowed to extend the result set with excep-

tional or error values. For example, the SML static semantics gives the type

of

fn x => x div 0

as int -> int. In this example the static semantics deduces the type of

x div 0 to be int, despite the fact that it will necessarily raise an excep-

tion. Its prediction of int as the type of this expression has to be read

as really meaning the set of all possible int values, in addition to all the

exceptions possibly generated by div.

Finally, the most important use of static semantics is probably that of

limiting the language over which the dynamic semantics is expected to op-

erate. In this role, a static semantics limits programs to those which are

“well-typed”. If a variable of type int is assigned a value of type string in

the program text, an implementation can use a static semantics to reject

this program, and thus avoid defining a meaning for this form in the dy-

namic semantics. Programming systems where this discipline is imposed

are typically said to support “type-checking at compile time”, while those

that dispense with a static semantics have at best “run-time” or “dynamic”

type-checking.

If used in this way, a static semantics provides languages with a way

of achieving a separation of concerns. The static semantics filters out ev-

idently meaningless programs, allowing the dynamic semantics to assume

that its programs are all well-typed. In an ideal world, a language’s static

type system will only give types to programs with meanings. Unfortunately,

languages differ in the way they handle run-time errors. In a language such

as SML, we might reasonably consider division by zero to be an error, but

if this occurs during the execution of a program, the dynamic semantics

specifies that an exception must be raised. By giving even “erroneous”

constructs a defined behaviour, the language accepts them as legitimate,

2.1. THE RÔLE OF STATICS 15

allowing us to reason about them.

In C, by contrast, erroneous run-time situations really are errors, and

the standard imposes no requirements on the semantics. Instead, errors

simply result in “undefined behaviour”. This is very unfortunate, because

it means that in practice it is extremely difficult to tell if a C program is

behaving correctly. Rather than actually being correct, a C program may

just happen to be exhibiting correct behaviour because of the quirks of

the particular implementation being used. In the terminology of Cardelli

[Car97], all of C’s runtime errors are untrapped.

One might initially see this failing as one of the static semantics. One

might hold that the situation is simply that the dynamic semantics is be-

ing expected to ascribe meanings to erroneous programs, and that these

erroneous programs should have been filtered out by the static semantics.

However, this is not reasonable. Rice’s Theorem states that there can not

be a general algorithm to distinguish non-trivial (i.e., non-empty or non-

universal) subsets of recursive programs. Clearly that subset of programs

whose members will exhibit some form of run-time error is non-trivial in

this sense, so it is impossible to construct a decidable type system which

will prevent division from zero occurring in the dynamic semantics.

C’s failing is that its dynamic semantics is not sophisticated enough to

trap the bulk of its possible runtime errors. Alternatively, if one allows that

trapped exceptions aren’t really errors at all (inasmuch as the semantics

requires a behaviour for the situation), then C’s problem is simply that it

has run-time errors. As we shall see, C’s type system is sound (it satisfies

the property of type preservation), but this fact seems of little consequence

in the face of these run-time errors.

This issue arises in [SV98], where Smith and Volpano discuss a sim-

ple variant of C with parametric polymorphism à la SML. Their language

also has a sound type system, but still admits the possibility of run-time

error. Detecting these errors at run-time would make the language im-

plementation’s safe (again Cardelli’s [Car97] terminology), but would also

compromise efficiency. In the same way, C implementations could detect

all the various errors possible, but only a relatively small number of special

purpose C implementations attempt to notice some run-time errors as they

occur (Jones’s and Kelly’s bounds-checking implementation of gcc [JK95],

for example), and none catch all possible errors.

16 CHAPTER 2. STATICS

2.2 C’s types

C’s type system is quite simple. A number of simple types with obvious

connections to typical machine hardware are used as the basis for a system

that allows the construction of new types from old. The “constructors”

allow the generation of function, pointer, array and record (known in C as

struct) types. First we introduce the following abstract syntax for types:

i ::= char | short | int | long

τ ::= void | signed i | unsigned i | float | double | long double |

τ* | τ[n] | struct s | τ1 × τ2 × . . . τn → τ

The signed and unsigned types are known as the integral types. Together

with the floating point types (float, double and long double), these form

the arithmetic types. In the concrete syntax, one can omit the signed key-

word for all but the char type. We can thus write int instead of signed int.

However, it is implementation-defined whether the char abbreviation stands

for unsigned or signed char.

The void type fills two rôles in C; it serves as the return type for func-

tions that do not return values (thus being similar to SML’s unit type), and

secondly, the type of pointers to void is a generic pointer type, that can

point to any sort of address, and which is the basis for a primitive form of

polymorphism. The type τ* is the type of pointers to τ , while the type τ[n]
is that of an array of size n containing objects of type τ . Record types can’t

be denoted directly in this presentation as it is legitimate for types to be re-

cursive by including pointers to structs inside those structs themselves.

Here, we achieve the recursive “tying of the knot” by using a structure in-

formation environment (which we will denote using Σ, Σ1 etc), a finite

map from tags (denoted by s above) to finite sequences of pairs of names

and types, the struct’s members or fields.

We omit the following features of C’s type system: enumeration types,

the type qualifiers const and volatile, bit-fields, and union types. Fur-

thermore we do not allow functions to take variable numbers of arguments,

and we also gloss over the typedef construct, assuming that this last facil-

ity is compiled out in such a way that occurrences of type identifiers are

replaced with the type that they abbreviate.

Our treatment of functions and array types as function parameters is

different from that in the standard. In the case of functions, the standard

makes use of what it terms “pointers to functions”. These are essentially

variables that can contain references to functions, where possible values

are all of the program’s defined functions. This is how we shall treat func-

2.2. C’S TYPES 17

tion references henceforth, stripping them of the confusing semantic bag-

gage associated with pointers. (The language in the standard is continually

having to make exceptions for pointers to functions in its description of

operations on pointers. It is not possible to perform pointer arithmetic on

function references, and dereferencing of function “pointers” is an idem-

potent operation.) This clarity of exposition will also be evident in the

discussion of the dynamic semantics. We will discuss the nature of array

types, and how our definition differs from that given in the standard in

section 2.3 below.

It can be seen that all of C’s types correspond to finite sets of values,

and we will occasionally abuse our notation to let a type name stand for

the set of possible values that inhabit that type.

Even simplified in this way, the abstract syntax above permits illegal

types. For example, it is illegal to have functions returning arrays, and

arrays must have a positive size. The following definition of type well-

formedness defines the legal types. We will write Σ, Θ ` wf(τ) to mean that

type τ is well-formed in structure information context Σ, assuming that all

pointers to structures with tags in the set Θ are also well-formed. (The

Θ parameter is necessary to allow structs to include pointers to them-

selves.) Furthermore, we will write Σ ` wf(τ) when we have Θ equal to

the empty set, and this will be our usual meaning when we use the term

“well-formed”.

First, all of the basic types are well-formed:

Σ, Θ ` wf(signed i) Σ, Θ ` wf(unsigned i) Σ, Θ ` wf(void)

Σ, Θ ` wf(float) Σ, Θ ` wf(double) Σ, Θ ` wf(long double)

A pointer type is well-formed if the type it points at is well-formed, or if

the tag of the structure type it’s pointing at is assumed to be well-formed.

Σ, Θ ` wf(τ)

Σ, Θ ` wf(τ*)
s ∈ Θ

Σ, Θ ` wf(struct s*)

Array types are well-formed if their base type is well-formed and not

void, and if the number of elements is greater than zero.

Σ, Θ ` wf(τ) τ 6= void n > 0

Σ, Θ ` wf(τ[n])

Function types are well-formed if all of their argument types are well-

formed, non-void and not array types, and if their return type is well-

formed and not an array type. Note that the number of arguments may

18 CHAPTER 2. STATICS

be zero, in which case the function type is similar to the type of those

functions in SML that have argument type unit.

Σ, Θ ` wf(τ) τ not an array type

∀i.1 ≤ i ≤ n ⇒ Σ, Θ ` wf(τi) ∧ (τi 6= void) ∧ τi not an array type

Σ, Θ ` wf(τ1 × τ2 × . . . τn → τ)

A struct type is well-formed if all of its member types are well-formed

and non-void, and if all of the member names are distinct. Further, we

can assume that pointers to the struct in question are well-formed while

examining the well-formedness of its members. Finally, struct types with

no members are forbidden. Recall that Σ(s) denotes the sequence of mem-

ber names and types associated with struct tag s. We will write Σ1(s) to

denote the sequence of the struct’s member names, and Σ2(s) to denote

the sequence of the member types. We also overload ∈ to mean sequence

or list membership as well as set membership.

Σ(s) 6= 〈〉 Σ1(s) contains no duplicates

∀τ ∈ Σ2(s). Σ, Θ ∪ {s} ` wf(τ) ∧ (τ 6= void)

Σ, Θ ` wf(struct s)

Our notion of well-formedness does not presuppose any particular method

for specifying types in the language’s concrete syntax. For example, C’s

concrete syntax defines a notion of “incomplete type” that corresponds to

types which have not yet been fully defined. However, this is an artifact

of what happens when a source file is translated, and has no place in the

semantics.

Henceforth our meta-variables τ , τ1 etc. will range over only well-formed

types.

2.3 Pointers and arrays

C’s pointers and arrays are often confused. Folk wisdom has it that “in C,

arrays are just pointers”. This is not true, though it is easy to see why the

misunderstanding arises. Instead, it is more accurate to state that arrays are

second-class types, that it is impossible to manipulate array values directly,

and that arrays only exist in memory, not as values independent of location.

Arrays can not be passed to functions, nor returned from them, and it is not

possible to assign to variables that have array types. Moreover, there is no

way of writing anonymous array values (except in the uninteresting case

2.3. POINTERS AND ARRAYS 19

where that value is used only to initialise an array that is being declared).

There is no compelling design reason for this state of affairs, but it is a

natural consequence of C’s historical roots in the programming languages

BCPL and B [Rit93]. (Indeed, structs originally suffered from the same

sorts of restrictions as arrays.)

As memory-bound entities, it is natural that arrays can be manipulated

with pointers. Because one can take the address of arbitrary objects in C,

and because pointers support arithmetic, the elements of an array are all

individually accessible once one has a pointer to any one of them. Support-

ing this style of use, array variables in C expressions do not yield a value

corresponding to the vector of values that they consist of, but rather a value

that is a pointer to the array’s first element.

If array is a variable declared as an array of some sort, it is then legal to

write both array + i and *array (where *e denotes the dereferencing of

a pointer value). Further, the syntax array[i] is not an independent array

indexing operation, but is rather syntactic sugar for *(array + i). While

array is not a pointer, it does yield a pointer value in those contexts which

require values. Values are also required in the context of parameters to

functions, so that arrays passed as such are also converted to pointer values.

(Naturally, this process of conversion, while significant semantically, is a

“no-op” as far as any realistic implementation is concerned.)

The only context where an array variable does not decay into a pointer

value is when it is an argument to the sizeof operator. The sizeof op-

erator returns its argument’s size in bytes. It is precisely because sizeof

doesn’t evaluate its argument in any real sense that this is acceptable. In

fact, sizeof is again likely to be a no-op as far as a realistic implementa-

tion is concerned because it will be “compiled out” (this being a form of

constant folding) when the program is first parsed.

In order to ensure that array values are never manipulated, there is one

further exception made to what one might expect to be the language’s gen-

eral rules. Although there is no way of writing anonymous struct values

in C, such values can be returned from functions. If such a struct has an

array as one of its members, then one might imagine that member selection

(the “.” operator) would give one access to a genuine array value that was

not connected to some part of memory. As the rules for expression typing

in section 2.5 will show, this possibility is expressly forbidden.

This manipulation of arrays through pointers is a natural idiom at the

level of machine code, and its translation into a higher level language is

often cited as proof of C’s inadequacies. On the other hand, C’s simple-

minded type system does at least allow functions to be written which ma-

nipulate arrays of any size; something that contemporaneous Pascal did not

20 CHAPTER 2. STATICS

originally allow.

Moreover, C allows functions which require arrays of specified lengths

as parameters. This is achieved by passing an array’s address, using the

address-of (&) operator. In terms of our “realistic implementation”, this is

a peculiar operation because it will involve passing an address which is the

same as the address of that array’s first element, albeit of a different type.

The following two functions illustrate this:2

int f1(int *intptr) { return intptr[3]; }

int f2(int (*arrayptr)[20]) { return (*arrayptr)[3]; }

While f1 takes a pointer to an integer as its parameter, f2 takes a pointer

to an array of 20 integers. If a were declared as such an array, f1(a) would

achieve exactly the same effects as f2(&a). However, if a were an array

of 30 integers, f2(&a) would fail to type, while f1(a) would work just as

before.

Finally, it is worth noting that the standard’s presentation of the lan-

guage allows for incomplete array types, i.e., array types without a specified

size, written τ[]. In the context of declarations, these uses are a syntactic

convenience, allowing the user to state that an array exists without having

to repeat size information that is present where the array is defined. (This

is of particular use in situations where the array in question is defined in

another file entirely.) This use of incomplete arrays can be disregarded in

our setting, where we are interested only in the final result of parsing, not

the syntactic devices that make it possible.

However, C also allows pointers to incomplete array types to be passed

to functions. At first sight it appears that our formalisation will have to al-

low this possibility as well. However, in the interests of simplicity we forbid

this, noting that functions with such parameters are completely isomorphic

statically and dynamically to functions that simply take pointers to the item

type of the array. At the point of call, the value passed is exactly the same

except that it must be cast to a different pointer type. When a pointer to

a complete array type is passed, type-checking may preclude certain ar-

guments, and the parameter may have the sizeof operator applied to it.

Neither of these possibilities obtains when the array type is incomplete.

2Each function returns the fourth element of the array. This array is implicit in the case
of f1. Incidentally, it should be clear by now why C’s array indexing starts at zero, and not
one.

2.4. TYPES AND THE ABSTRACT MACHINE 21

2.4 Types and the abstract machine

The values that inhabit C’s non-void types are not atomic. All can be seen

as finite sequences of bytes in memory. This is not just a reflection of likely

implementation strategies but is a requirement imposed by the language

semantics. One expects that the objects that make up arrays and structs

should be individually accessible, and this in itself is a clear justification for

being able to look at the same part of memory in different ways.

For example, if one passes the address of a struct to a function which

changes one of the struct’s members, this change must also be visible

in the dereferencing of a pointer to that member. Therefore, the abstract

machine’s model of memory must support the possibility of two values of

different type in memory sharing the same address. Furthermore, the stan-

dard is clear that all address values (i.e., those values that inhabit pointer

types) can be converted to pointers to character types. It is also explic-

itly permitted to alias values in memory by accessing them as characters,

regardless of their original type. Thus it is clear that, at the very least,

memory must be modelled as a map from addresses to character values.

Characters are also known as bytes and as some possible byte values may

not actually correspond to anything printable, or to any particular glyph,

the term byte is to be preferred when discussing the contents of memory.3

The standard requires that every value in a given type take up the same

amount of space in memory. (It is hard to imagine how space could be

allocated for objects when they were declared otherwise.) Further, the

length of signed and unsigned values of the same integral type must be

the same. The length of this sequence for each type is known as its size.

We will write |τ | to denote this size for various τ . Naturally, the size of the

character types is exactly one, given their direct correspondence with bytes,

but the sizes of other types vary from implementation to implementation.

This variation arises because of three reasons: firstly, the standard re-

quires that the various numeric types support minimum ranges, but im-

plementations may choose to support wider ranges. The signed int type

must include all values in the range −32767 to 32767 for example, but of-

ten contains 32 bits’ worth of values (twice as many bits’ worth) on modern

architectures. Secondly, possible variation in the number of bits in a byte af-

fects the number of bytes required to store a given range of values. Finally,

with the exception of the unsigned char type, it is permitted for certain bit

sequences to fail to correspond to actual values in the given type. This may

3Bytes are not necessarily eight bits in length. Such a value is more strictly known as
an octet. C only requires that all bytes contain at least 8 bits.

22 CHAPTER 2. STATICS

result in an increase in the number of bytes required to represent a given

set of values.

Structure types take up as least as much space as the sum of their con-

stituent types. They may take more because of the presence of wasted

space, known as padding, which is added between and after members to

ensure that alignment constraints are met.4 An array type τ[n] takes size

n ∗ |τ |. Pointer and function types do not have minimum sizes specified for

them, except (char *) pointers must be able to store at least 32768 values.

In short, we require the existence of a family of functions, parameterised

on types τ , that calculate values from representations. We will call these

Vτ : byte|τ | → τ . The various Vτ are surjective, but are not required to be

injective, nor total, except for Vunsigned char, which is required to be a total

bijection. In the reverse direction, there is no “representation function” per

se, and the implementation is at liberty to choose from representations that

give back the correct value. The existence of this state of affairs can not

be hidden from the abstract semantics because we must allow values in

memory to be taken apart and examined byte-by-byte.

Finally, the various integral types are required to be represented using

a “binary numeration system”, where signed types are further allowed to

be two’s complement, one’s complement, or sign-magnitude. This require-

ment allows C programmers to fiddle with integral values at the bit level as

well as by manipulating their values more abstractly at the level of arith-

metic.

2.5 Expressions and their types

Having specified all the possible forms of the values that can arise and be

manipulated in C programs, we now turn to discussing the language used

in these programs to denote these values. For the moment, we ignore C’s

statements, because these do not denote values that the programmer is

aware of. At a higher level of abstraction, statements do denote values,

namely state transformers, but these are values only implicitly present in

the abstract machine.

C’s expressions can denote objects in the abstract machine’s memory as

well as values, so our typing judgements will not be simply that an expres-

sion is of a given type τ , but rather that it may yield a value of type τ , or

that it may yield a reference to an object in memory of type τ . This latter

4Alignment, not modelled here, is defined as “a requirement that objects of a particular
type be located on storage boundaries with addresses that are particular multiples of a
byte address.” [ISO90, §3.6]

2.5. EXPRESSIONS AND THEIR TYPES 23

we will write as obj[τ]. This is similar to the treatment given to lvalues in

the Algol-like languages described in [Ten91]. There Tennent uses var for

lvalues, but obj here is more in tune with the standard’s use of the term

“objects”.5

Expressions may include variables, so our type judgements will include

reference to variable-typing contexts, which we will write Γ, Γ1 etc. Such

contexts are finite maps from variable names to types. Further we will

assume that these contexts map identifiers to non-void and well-formed

types. Expressions may also contain references to the C program’s declared

functions, so another map is needed, this from function identifiers to types.

These will be written Φ, Φ1 etc. As before, we will also need structure

information so that typing judgements will be of the form Γ, Φ, Σ ` e : τ or

Γ, Φ, Σ ` e : obj[τ].
As we introduce C’s typing rules, we will simultaneously introduce C’s

expression syntax. We will use id to range over variable, function and

struct member identifiers, and n over numbers.

The first rules are the simple base cases: numeric constants, the null

pointer constant, and variables. (The standard provides for methods of

specifying constants in unsigned, long and floating point types; we omit

these for brevity’s sake.)

Γ, Φ, Σ ` n : signed int Γ, Φ, Σ ` 0 : τ* Γ, Φ, Σ ` Var id : obj[Γ(id)]

As explained earlier, we take the names of the functions defined in a pro-

gram to be literals of function type. Because of the way in which we sepa-

rate function references from pointers, we also need a distinct rule for null

function references.

Γ, Φ, Σ ` Funref id : Φ(id) Γ, Φ, Σ ` 0 : τ1 × τ2 × . . . τn → τ

Pointers in C can be generated by taking the address of an argument. For

non-void types, this operation can in turn be reversed by dereferencing.

Pointers to void are used as generic pointers in C, but before being able to

follow such a pointer, it must be coerced back to an appropriate type.

Γ, Φ, Σ ` e : obj[τ]

Γ, Φ, Σ ` &e : τ*

Γ, Φ, Σ ` e : τ* τ 6= void

Γ, Φ, Σ ` * e : obj[τ]

With the exception of arrays, if an expression yields a reference to an object

in memory, then it can also yield a value of the same type. As previously

5Of course this has nothing to do with object orientation.

24 CHAPTER 2. STATICS

discussed, arrays are not first-class values in C, and it is not possible to

manipulate them directly. Instead, references to array objects decay to yield

a pointer to the first element of the array.

Γ, Φ, Σ ` e : obj[τ] τ not an array type

Γ, Φ, Σ ` e : τ

Γ, Φ, Σ ` e : obj[τ[n]]

Γ, Φ, Σ ` e : τ*

Member selection expressions are another illustration of the second-class

nature of arrays. If the struct on the left hand side of the dot denotes an

object, then there is no problem, thus:

Γ, Φ, Σ ` e : obj[struct s] (id, τ) ∈ Σ(s)

Γ, Φ, Σ ` e.id : obj[τ]

However, if the struct is just a value, as can happen if a struct is returned

by a function, then it is not possible to manipulate member arrays at all.

Γ, Φ, Σ ` e : struct s (id, τ) ∈ Σ(s) τ not an array type

Γ, Φ, Σ ` e.id : τ

Note that for non-array member types, there will be two ways of demon-

strating that a member selection expression has a value type whenever the

struct expression has an object type. This does not reflect any semantic

ambiguity.

Before introducing the remainder of C’s expression syntax, the (dy-

namic) notion of coercion must be described. The process of coercion occurs

when a value in one type is coerced to become another value in a different

type. Typically, the purpose of this is to preserve values, and in the integral

types coercions from a smaller type to a superset will enjoy this property.

In other circumstances, the result can not be the same value because the

new type does not include the value in question. Depending on the types

in question this can cause an error, or force the result to be somehow “ap-

propriate”. For example, a negative value in a signed type is coerced to the

corresponding unsigned type by adding the largest possible unsigned value

to the negative number. On the other hand, coercions between floating

point and integral values admit the possibility of failure if the value be-

ing converted is too large or small, but otherwise try to return the integral

value closest to the floating point one.

The expression syntax for coercion is the type-cast:

Γ, Φ, Σ ` e : τ0 (τ0 and τ both scalar) ∨ (τ = void)

Γ, Φ, Σ ` (τ)e : τ

2.5. EXPRESSIONS AND THEIR TYPES 25

where the scalar types are the arithmetic types as well as pointers and

function references.

Casting to void will not produce a value (unlike SML’s unit type, the

void type does not have any inhabitants), but allows one to indicate that

one is not interested in the value of an expression, and presumably that

one is evaluating it solely for its side effects.

An important static notion that accompanies that of coercion is that

of implicit coercibility. This allows one to write assignment statements and

function calls without having to ensure that the types agree exactly. We will

denote this equivalence relation by the symbol =τc. Omitting reflexivity,

symmetry and transitivity, the rules for =τc are:

τ1 and τ2 both arithmetic types
τ1 =τc τ2 void* =τc τ*

This allows us to type function calls:

Γ, Φ, Σ ` e : τ1 × τ2 × . . . τn → τ
∀i. 1 ≤ i ≤ n ⇒ ∃τ ′. Γ, Φ, Σ ` ei : τ ′ ∧ τi =τc τ ′

Γ, Φ, Σ ` e(e1, e2, . . . en) : τ

C has a wide variety of binary and unary operators, and one ternary oper-

ator, the conditional expression (e1 ? e2 : e3). These are mainly concerned

with operations on scalar types such as arithmetic, and there is little in

their static semantics worth examining in depth. None of these operators

produce or require object types as arguments. For example, the rules for

the various binary operators all take the form

Γ, Φ, Σ ` e1 : τ1 Γ, Φ, Σ ` e2 : τ2 P�(τ1, τ2, τ)

Γ, Φ, Σ ` e1 � e2 : τ

where P� is the side condition on the types concerned for the operator in

question.

The assignment and post-increment expressions are the last expression

forms we will examine in any depth. C’s simple assignment can be aug-

mented with binary operators so that instead of x = x + 4 one can write

x += 4. Depending on the form of the expression on the left hand side

(LHS) of the assignment, these compound-assignments can make a semantic

difference, because of the possible presence of side effects. Simple assign-

ment is typed as follows:

Γ, Φ, Σ ` e1 : obj[τ] Γ, Φ, Σ ` e2 : τ0 τ0 =τc τ τ not an array type

Γ, Φ, Σ ` e1 = e2 : τ

26 CHAPTER 2. STATICS

Compound assignment’s rule is

Γ, Φ, Σ ` e1 : obj[τ] Γ, Φ, Σ ` e1 � e2 : τ0 τ0 =τc τ τ not an array type

Γ, Φ, Σ ` e1 �= e2 : τ

The post-increment operation requires an object of scalar type to operate

on, and does not change the object’s type. Its rule is

Γ, Φ, Σ ` e : obj[τ]

Γ, Φ, Σ ` e++ : τ

where τ is a scalar type but not a function reference. The post-decrement

operator has the same rule.

Finally, four more expression forms are worth mentioning here. All are syn-

tactic sugar. Array indexing a[i] is rewritten to *(a + i),6 and a form of

member selection for use with pointers, ptr->fld, stands for (*ptr).fld.

C also provides pre-increment and pre-decrement operators, written ++x

and --x. These are abbreviations of x += 1 and x -= 1 respectively.

2.6 Statements

C has a fairly minimal set of statements. Advocates of the language tend to

take pride in its small set of keywords. Here we reduce the set still further

by omitting description of the switch and goto statements. In both cases

this decision was made because of the difficulties that formalising these

forms would have posed. Nevertheless we feel that most of C’s essence

remains even with the omission. The forms we will consider are:

s ::= ; | e; | while (e) s | for ([e1]; [e2]; [e3]) s | do s while (e);

if (e) s1 [else s2] | break; | continue; | return[e];

{d1 . . . dn s1 . . . sn}

Here we use e, e1 etc. to range over expressions, s, s1 etc. to range over

statements and d, d1 etc. to range over declarations. The square brack-

ets ([]) indicate an optional component. The statement ; is the empty

statement. We will henceforth treat the if-statement as always having an

else branch, understanding that the else-less form is simply an instance of

the former with the empty statement substituted for s2. The e; form is an

6As before, arithmetic on pointer values is thus built in at a very low level in C. The
commutativity of addition also allows array[i] to be written as i[array], a common
trick if one’s goal is obfuscation.

2.6. STATEMENTS 27

expression statement, whereby any expression can be included at the state-

ment level. Any such expression has its value ignored, but its evaluation

may still cause side effects.

The for loop begins by evaluating the first expression (if any). It then

loops while the second expression is true, or indefinitely if the second ex-

pression is absent. Each time the body of the loop completes, the third

expression (if any) is evaluated. A common idiom is thus

for (i = 0; i < limit; i++) s

The break statement exits an enclosing loop, while continue causes the

rest of an enclosing loop to be skipped, but the flow of control then returns

to the top of the loop. Where an expression is absent in a for statement, we

model this by inserting the number one where the expression is expected.

Such an expression has no effect in the first and third positions, as required,

but by being non-zero will cause indefinite execution in the second position,

also as required.

There are just two constraints imposed on the expressions that appear

in statements: the type of the guard expressions in the looping and con-

ditional statements must be scalar, and the type of the expressions that

appear in return statements must be implicitly coercible to the return type

of the function in which they appear. All other expressions must have a

type but are not otherwise constrained.

C’s declarations come in two forms. They either declare a variable to

have some type (optionally initialising it with some value of an implicitly

coercible type), or they declare a new struct type. Their syntax is famously

baroque and we omit any description of its complexities here. It is decla-

rations that affect the contexts that are used to type expressions. Variables

and struct tags both have static scope, meaning that one can always tell

what entity is being referred to when a name occurs in a program text. C

does not allow nested functions, so typing contexts will always be a com-

bination of those entities that are declared locally (in the current function

body), and those that are declared at the top level.

Finally, our model does not allow static declarations inside function

bodies. Instead we require that these be modelled by declaring global vari-

ables (possibly renamed to avoid name clashes), and enforcing the restric-

tion that they only be referred to in the functions where they are declared.

This transformation is easily accomplished as a program is parsed.

28 CHAPTER 2. STATICS

2.7 Mechanisation of the static semantics

C’s static semantics is not particularly complicated. By way of comparison,

the parametric polymorphism and higher order functions present in SML

make that language’s static semantics much more complicated. Yet there

is quite a long tradition of work on SML in HOL [Van96, Sym93, Van93].

For example, Van Inwegen’s work on SML specifies both that language’s

static and dynamic semantics and then develops a proof of type soundness

relating those two semantics. The same work involved the creation of many

of the theorem-proving tools that our own work on C relies on, such as

HOL’s mechanism for defining mutually recursive types, and functions over

those types.

More recently, work on the mechanisation of Java’s semantics has been

pursued by both Syme in his own DECLARE tool [Sym97b], and Nipkow and

von Oheimb [NvO98] in Isabelle. This work involved the mechanisation of

the complicated object-oriented static and dynamic semantics of a subset

of Java, followed by the proof of this system’s type soundness. C’s static

semantics is not such an inspiring example, and although we do later prove

a type preservation property for C, this is not a particularly useful result in

the light of the many places where the language’s dynamic semantics is

undefined.

In any case, such a result necessarily relies on the definition of the dy-

namic semantics. Before the dynamic semantics can even be approached,

there is a substantial amount of mechanisation to be done first. The remain-

der of this section will describe this work, as it was done in the development

of the Cholera mechanisation.

After defining the abstract data type corresponding to types (using the

previously mentioned tools, described in [Gun93]), but omitting the float-

ing point types, we define well-formedness for types using Harrison’s in-

ductive definitions package [Har95b]. At this point an interesting design

choice presents itself. We could use the definition of this predicate over

C types as the basis for the definition of a new type, that of well-formed

types, and then drop the original definition of types entirely.

This is just the first place where the issue of sub-typing, and how one

should approach it, raises its head. In general our approach has been to

avoid defining new types such as these. HOL’s type definition method re-

quires their development as subsets of existing types, and once a type is

actually defined, the link between the old and new type is tedious to ex-

ploit. Instead we define functions over larger types but ignore their values

for elements of the domain not in the relevant subset. The end result is

an avoidance of type proliferation (along with all of the accompanying ho-

2.7. MECHANISATION OF THE STATIC SEMANTICS 29

momorphisms from type to type), but an acceptance that a great number

of theorems will include preconditions on their variables to the effect that

they satisfy some predicate.7

This decision also influences inductive definitions. When defining the

expression typing relation, we must assert that the variable-typing and

function-typing maps (Γ and Φ in the presentation above) have only well-

formed types in their ranges. These assertions appear in a number of the

typing relation’s base cases.

We define the expression typing relation without coping with the poly-

morphic nature of 0.8 Instead we assume that some preliminary phase of

parsing has deduced the correct type for occurrences of this constant, and

that we are instead presented with three different expression forms. We

would otherwise have to annotate expressions with their expected types

when we came to define the dynamic semantics. Once defined, the expres-

sion typing relation needs a number of theorems proved about it. We prove

that the types it assigns to expressions are all well-formed, and that if it as-

signs any type to an expression, then it will only assign one type. These are

the most important theorems, but there are also a number of minor results

to be proved.

One such theorem is a series of equations for the relation over the var-

ious possible expression forms. This is the automatic output of a specially

written ML routine that does the same for any inductive relation. Given

such a relation, along with the number of the argument where the type of

interest is a parameter, and theorems about the type’s constructors specify-

ing that they are all injective and disjoint, the code generates an equational

rewrite for each possible form in the type. In the example of expression

typing, we naturally specify that the expression is the interesting param-

eter, because we typically want to use the relation to find an expression’s

type.

Indeed, the typing relation is one we could have defined directly as a

primitive recursive function over the type of expression syntax. This would

have been a function to :bool, not to :CType (the type of C types), but

would have given us the same equations as the previously described code.

On the other hand, this approach would not have given us the induction

principle that the inductive definition provides, and this would have had to

have been derived separately instead.

7The PVS theorem prover [ORS92] takes another course again; it allows the construc-
tion of new sub-types using predicates to select subsets of larger types. This then intro-
duces the problem of requiring the discharge of type correctness conditions.

8Recall that zero can be either a signed integer, a null pointer or a null function refer-
ence.

30 CHAPTER 2. STATICS

If a relation can not be defined as a primitive recursive function over one

of its parameters, one must use an inductive definition. In this case, the ML

code for generation of equational theorems may well produce equations

that can not be used as rewrites. Naturally, this happens with the definition

of the dynamic semantics, where the rewrite equations generated from the

definition of the dynamics include one which loops on while statements.

Finally, the mechanisation of C’s statics must also specify the nature

of values in the abstract machine. Here the standard’s deliberate under-

specification of details is naturally met by HOL’s analogous facilities for def-

inition of constants. In particular, the new specification function allows

one to define a constant in a type such that the only thing known about the

new value is that it satisfies some predicate. The user defining the value

must prove that such a value exists, but subsequently will only be able to

rely on the constant satisfying the predicate given.

Thus the defining theorem for the constant CHAR BIT, which specifies

the number of bits in a byte, is simply

` CHAR BIT ≥ 8

In exactly the same way, C’s various under-specified limits on type ranges

can be expressed naturally and correctly in HOL.

The type size relation (sizeof) is also defined at this stage. Unfor-

tunately the mechanisation of this does not allow for the possibility of

padding, and simply sums the size of structs’ members. This inaccuracy

in the mechanisation is due to the fact that the standard does not limit

padding in any way (the standard line in situations such as this is that the

issue is one of “quality of implementation”) and the alternative would be

to perform proofs where one carried around assumptions to the effect that

padding amounts in struct types were not unreasonably large. We then

define offsets for struct members, and prove the fact that all non-void,

well-formed types have a size.

At this stage, our mechanisation introduces its greatest inaccuracy: the

assumption that all of the various Vτ functions are injective. This is thus

an assumption that there is a function in the reverse direction, from values

to representations. This flaw in the mechanisation makes our semantics

more deterministic than it should be. In the absence of this assumption,

even expressions such as x = 1 are potentially non-deterministic because

of the possibility that the value chosen to represent one will differ in its

unused bits from invocation to invocation. This difference can be “seen” by

programs because of the ability to take memory apart byte by byte.

For all that this assumption may seem very strong, it is not unreasonable

in the context of many C implementations. In particular, twos complement

2.7. MECHANISATION OF THE STATIC SEMANTICS 31

for signed integers, which is now the norm for most implementations, gives

an isomorphism between integers and bit-patterns, meaning that the used

bits of an integral representation will always be uniquely determined. It

is also quite uncommon for the basic integral types to have unused bits,

meaning that implementations have little scope in which to vary their val-

uation functions. By omitting floating point values and struct padding,

our mechanisation also removes other areas in which implementations may

have scope to introduce such variation.

The advantage of making this assumption is not in the specification of

the semantics, which as chapter three will demonstrate is not unduly de-

pendent on this aspect of the abstract machine, but is rather that it makes it

easier to discuss determinism at the higher levels of expression evaluation.

In particular, this assumption allows us to avoid qualifying all of our later

assertions with preconditions about valuation functions.

While our mechanisation does simplify some details, it still accurately re-

flects a great deal of the under-specification called for by the standard. This

means in turn that it is a useful tool for reasoning about a wide range of

programs on a wide range of possible implementations. In particular, we

have not simplified the language to the point where our model is equivalent

to just one possible implementation.

32 CHAPTER 2. STATICS

Chapter 3

Dynamics

We describe C’s dynamic semantics, starting with a full description of the
components that go to make up a program state, continuing with a dis-
cussion of undefinedness, and then giving the semantics of expressions,
statements and declarations. Again we conclude by describing the mecha-
nisation of the semantics in the theorem prover.

3.1 The program state

Ultimately, a semantics gives a program meaning by describing either the

way in which it transforms a “program state”, or the way in which it in-

teracts with its environment, or both. As our model doesn’t formalise the

C language’s library, system calls to achieve I/O are omitted and we con-

sider only transformations of program states as the basis for our seman-

tics. These states model the state of an abstract computer on which the

described program is being run. In its simplest form, a model of program

state might include only a description of the abstract computer’s memory,

but here we describe why we find it necessary to include other components

as well.

If a formal semantics is to retain the connection between the high level

syntax of the language and what happens to memory, then it must also

include the sort of details that one might at first associate with compiler

symbol tables. The types of variables, the members that go to make up

struct types, and the mapping from variable names to locations in memory

must all be recorded. These details make up what is commonly known as

the environment. However, in what follows, we shall loosely use the term

“state” to refer to both the environment and the contents of memory. After

all, both can be seen to change as a program executes.

33

34 CHAPTER 3. DYNAMICS

3.1.1 Accessing memory

Our model of memory is a map from addresses to byte values. We know

further that addresses within an object support a limited set of arithmetic

operations, so it is natural to model addresses as numbers. Our model

must support a value for the null pointer constant, and we choose 0 to fill

this rôle. This does not mean that the bit-by-bit representation of the null

pointer is required to be all zeroes. Rather, the ranges of our Vτ* valuation

functions are the natural numbers. This imposes no requirements on the

representation of pointers as they appear to the programmer.

It is easy for a C program to access memory in ways that are dangerous.

For example, one can apply the address-of operation (&) to local variables,

generating a pointer value that will continue to point at memory after the

containing block has finished. It is illegal to manipulate such a pointer after

the memory it points is no longer “live”. Further, it is also illegal to refer

to memory that has not been initialised, even if that memory is properly

in scope. Therefore, memory must support being in one of three possible

states: inactive, active but uninitialised, or value-holding.

One can not do anything with inactive memory. Even pointers to it

are not valid and it is illegal to manipulate such values. This may seem

an unduly restrictive constraint, but it arises to accommodate implementa-

tions on segmented architectures where invalid address values can actually

cause processor exceptions (as happens on the Intel ’286 chip, for exam-

ple). Naturally, though one can not read uninitialised memory, one can

write to it. This initialises it, making it available for further reading. An is-

sue of some contention among standard committee members (as witnessed

on the Usenet group comp.std.c) is whether or not this should be changed

for the new version of the standard to allow lvalues of type unsigned char

to access uninitialised memory. Such a move has some sense to it because

we already know that all possible bit patterns have a possible value in the

unsigned char type. Therefore, reading random values into such an lvalue

from an implementation’s stack would not cause processor exceptions.

In either case, given that the default char type, and hence that of the

characters in string literals, is possibly signed char, the program in fig-

ure 3.1 is possibly undefined, and certainly not strictly conforming. Given

that the program in question represents quite a natural idiom, it seems

unreasonable to insist that it really have such an unclear status. Strict con-

formance would only be assured by explicitly initialising all of the array

before using it. This seems a failing in the current standard, and it is not

clear that the issue will be entirely resolved with the next version to be

published. In this presentation we hew to the official line, and state that all

3.1. THE PROGRAM STATE 35

reads of uninitialised memory result in undefined behaviour.

#include <string.h>

int main(void)

{

/* declare s1 and s2 to be of string_carrier type */

struct string_carrier {

char the_string[30];

} s1, s2;

/* copy "Hello world" string into part of s1’s string array */

strcpy(s1.the_string, "Hello world");

/* assign s1 into s2, and invoke undefined behaviour because

not all of s1’s the_string array has been initialised, and

assignment must read all of the array’s values. */

s2 = s1;

}

Figure 3.1: A program of dubious definedness

3.1.2 Side effects

In C, changes to memory come about solely through the action of side ef-

fects. These are created as the result of evaluating certain expression forms,

principally assignment expressions. However, side effects are not applied

immediately upon their creation, but can be kept pending. Nor do multiple

side effects have to be applied in order.1 The motivation for this is that

implementations should have licence to make changes to memory in ways

that are convenient for them. This licence may allow useful optimisations

to be performed, for example.

We model this state of affairs by keeping a bag (or multi-set) of pending

side effects as part of the state. As the side effects are generated, they

are put into the bag. The bag is emptied in a non-deterministic order, and

at non-deterministic times, subject only to the constraint that it must be

empty when what is known as a sequence point is encountered. Sequence

1“Except as ... specified later ... the order in which side effects take place ... [is]
unspecified.”[ISO90, §6.3]

36 CHAPTER 3. DYNAMICS

points occur in certain syntactically well-defined places, and will be flagged

in the description that follows.

This non-determinism suggests a chaotic picture. However, the lan-

guage definition imposes severe constraints on the way in which expres-

sions can evaluate. The principal constraint is that “between the previous

and next sequence point an object shall have its stored value modified at

most once by the evaluation of an expression. Furthermore, the prior value

shall be accessed only to determine the value to be stored.” [ISO90, §6.3]

Violation of this constraint results in undefinedness.

It is worth noting that this is a constraint on the dynamic behaviour

of the program. Though an expression such as v + v++ will necessarily

be undefined because it both refers to and updates the object denoted by

v, it is not clear whether or not this is true of *p + (i = 1), say, as it is

impossible in general to determine whether or not *p will refer to i. Finally,

note that the second sentence quoted above allows references to take place

if they occur on the right-hand side of an assignment expression and the

references are to the object being modified by the assignment. For example,

this clause allows i = i + 1.

A formal semantics of C must model this constraint as well as the more

obvious rules given earlier. To do this, we keep track of three state compo-

nents:

• the pending side effects

• those parts of memory which have been updated (the “update map”)

• those parts of memory which have been referred to (the “reference

map”)

The pending side effects component is a bag, as the same side effect

might occur twice in a given evaluation, though such a situation will even-

tually result in undefinedness when the effects are applied. The update

map is a set of addresses, as no evaluation will be allowed to update the

same location twice. The reference map is another bag, as multiple refer-

ences to the same location can legitimately occur. As we shall see, we need

to know how many references were made to a particular location, not just

whether or not something has been referred to.

There are four different ways in which these components can change in

the evaluation of an expression:

3.1. THE PROGRAM STATE 37

• When a non-array lvalue becomes a value, the reference map is in-

creased to reflect the reference of the object denoted by the lvalue.2

If the part of memory referred to is in the update map, this causes

undefinedness.

• When a side effect is applied, it is removed from the pending side

effects bag, and the update map is increased, recording the fact that

part of memory has just been changed. If that part of memory has

already been updated or referred to, this causes undefinedness.

• When an assignment completes its evaluation, a side effect to update

the appropriate part of memory with a new value is added to the

bag of pending side effects. Assignment expressions keep track of

references made on their right hand sides, and those that were to the

object to be updated are removed from the reference map. Failure to

do this would cause the side effect created as a result of evaluating

i = i + 1 to clash with the reference to i on the expression’s RHS.

Because the reference map records a count of the number of times a

piece of memory has been referred to, this deletion of references may

still leave references recorded. Using only a set for the reference map

would allow

i + (i = i + 1)

to avoid revealing its undefined nature. A possible evaluation would

have the i on the assignment’s RHS remove the record of a previous

reference to i on the LHS of the addition.

• When the bag of pending side effects is empty, and a sequence point

is reached in an expression’s syntax, the reference map and update

map are “zero-ed”, thereby allowing a new sequence of reference and

updates in the next phase of execution. If a sequence point is reached,

and the bag of pending side effects is not empty, it will need to be

emptied before the next stage of the expression can be evaluated.

3.1.3 Notation—general observations

Each section of the semantics defines its own operators and miscellaneous

notation, but there are a number of general observations about notation

that can be made here. Each section of the semantics presents an “arrow”

2Array lvalues become pointers to their first element; this transformation does not
require a reference to memory.

38 CHAPTER 3. DYNAMICS

relation of the form 〈v0, σ0〉 → 〈v, σ〉, where σ0 and σ are the initial and

final states, and where v0 is the form of C syntax being defined. The nature

of v depends on the precise relation being defined.

The following tables summarise the functions used in the rule defini-

tions. Table 3.1 lists “state functions”, which calculate commonly needed

values from the current state of the program. We have already encoun-

tered structure information, variable, and function constant typing maps.

We write the components of specific states by using the appropriate Greek

letter, subscripted by the state to which it belongs. Thus, Γσ represents the

variable typing information for state σ. We will use the notation σ[C := E]
to represent the state that is identical to σ except that its component C has

been replaced with a new value E.

Further note that in table 3.1, components marked with an asterisk are

those which have global variants present in the state. These do not change

in the course of a program’s execution, but form the basis for the local

contexts, which do change as the flow of control enters and exits statement

blocks and function bodies. Such global components are marked with a g

superscript when they appear.

We will often have cause to refer to map “slices”. Memory, for example,

is often accessed “bytes at a time”. We will refer to such a slice by writing

M〈x . . . y〉 to denote the sequence of values between indices x and y inclu-

sive. We will also use an update notation for slices thus: M [〈x . . . 〉 := m].
This denotes the same map as M , except that it has been overlaid with the

value sequence m, starting at address x.

A variable addresses* Γ variable typing*

I initialised addresses Λ allocated addresses

M memory map Σ structure information*

Π pending side effects R the reference map

Υ the update map Φ function information

Table 3.1: state components

Because of the presence of bag components R and Π in program states,

we often have cause to write expressions denoting bags and operations on

them. We use set notation to express bag values where each element is

present just once, so that ∅ will stand for the empty bag. When in a context

expecting sets (such as an argument to intersection), we implicitly coerce

bags back to sets. The resulting set includes an element if that element

occurs one or more times in the bag. Where we have a bag of numbers,

3.2. UNDEFINEDNESS 39

we also allow the slice notation, so that B〈x . . . y〉 denotes the sub-bag of

B which contains only those elements of B which are in the range x . . . y.

We write x ∈ B, with B a bag, to mean that x occurs at least once in B.

We use + and − to denote the operations of bag addition and subtraction.

(When bags are seen as functions with range N, these operations are simply

seen as point-wise applications of the corresponding arithmetic operations.

Recall also that in N, n−m = 0, for all m ≥ n, so that b1 − b2 = b1 if b1 and

b2 are disjoint.)

Finally, we will define a few “helper” functions in the course of the

chapter. These are typically used as abbreviations for relatively complicated

expressions on states, but are not particularly interesting in their own right.

These are summarised in table 3.2.

alloc returns the address of some unallocated space

decl var declares a variable, allocating space and type information

inst parms installs parameters in a function call

offset calculates struct member offsets

okVal checks a value is “acceptable” in its type

OpSem implements binary operator semantics

UnOpSem implements unary operator semantics

Table 3.2: state “helper” functions

3.2 Undefinedness

When the standard’s definition of C states that a behaviour is undefined,

it is restricting the language. A program that invokes undefined behaviour

is not really a C program at all. However, as we have already discussed

in chapter 2, we can not use a static semantics to detect whether or not

a program is undefined. Instead, our dynamic semantics must deal with

the possibility that the syntax it is providing a meaning for is actually un-

defined. Here we will examine how this might be done, and explain the

approach eventually chosen. We will illustrate each option with rules for

division in a hypothetical language defined using a big-step semantics. We

assume that this language leaves the result of division by zero undefined,

as does C.

The simplest, but also most obviously invalid, approach is to ignore the

40 CHAPTER 3. DYNAMICS

possibility of undefinedness entirely. Here we would write

Γ ` e1 ⇒ v1 Γ ` e2 ⇒ v2

Γ ` e1 ÷ e2 ⇒ v1/v2

We assume that our underlying logic gives division by zero some acceptable

meaning. The problem with this approach is that we have now defined a

semantics for a larger language than expected. This might be acceptable if

we are only interested in defining the behaviour of programs that we know

to be correct, but is obviously inappropriate if we want to use the semantics

to tell us which programs are defined.

A second approach would be to add a side condition forbidding the

undefined circumstance. This would result in a rule such as

Γ ` e1 ⇒ v1 Γ ` e2 ⇒ v2 v2 6= 0

Γ ` e1 ÷ e2 ⇒ v1/v2

This is an adequate solution in a language without non-determinism be-

cause it allows us to detect invalid programs by determining whether or

not they are assigned values by the evaluation relation. If they are not,

then it will be due to a rule such as the one above. However, in a language

with non-determinism, such a rule will likely give misleading results. Let us

extend our example with program states, and allow the possibility of side

effects. We might then have the following rules:

Γ ` e1, σ0 ⇒ v1, σ1 Γ ` e2, σ1 ⇒ v2, σ v2 6= 0

Γ ` e1 ÷ e2, σ0 ⇒ v1/v2, σ

Γ ` e2, σ0 ⇒ v2, σ1 Γ ` e1, σ1 ⇒ v1, σ v2 6= 0

Γ ` e1 ÷ e2, σ0 ⇒ v1/v2, σ

These allow for evaluation of division expressions in one of two orders,

and it is possible that these different evaluation orders might result in dif-

ferent values for v1 and v2. But now consider the situation where one order

results in v2 having value 0. Our semantics for our language will discard

the possible evaluation which is undefined, and return only the evaluation

which terminates correctly. It seems unlikely that any language specifica-

tion should require non-determinism to “dodge” undefinedness in this way,

and it is certainly the case that C does not.

It is clear that to model undefinedness accurately, we will need to model

its occurrence explicitly. Checking that a program is well-behaved then con-

sists of confirming that undefinedness is not a possible result of evaluation.

In a semantics such as our example, this modelling of undefinedness is best

3.3. EXPRESSION EVALUATION 41

achieved by allowing some special undefined value to appear on the right

hand side of the evaluation arrow. In a small-step semantics, it is possi-

ble to avoid this. Instead one uses the approach above where transitions

can not occur because of side conditions. An evaluation is defined only

if it reduces to a value (rather than stopping short at some intermediate

stage). Although our expression semantics is small-step, the statement se-

mantics we present is big-step, and this means that we do use an explicit

undefinedness value. This is written U .

Finally, we must determine the status of a program which is undefined

in some paths of computation, and not others. In fact, C requires that if

any of the possible evaluations leads to undefinedness, then the program

must be considered undefined. This follows from the definition of unde-

fined and unspecified behaviours given in [ISO90]. Unfortunately this is

impossible to express within an inductive definition, so the following defi-

nition of the language’s dynamic semantics is only implicitly overlaid with

this requirement.

3.3 Expression evaluation

Expression evaluation uses a small-step semantics. The relevant relations

are →e, and its transitive and reflexive closure, →∗
e. The action of →e can

be seen as a gradual transformation of a piece of syntax into a value. For

this relation to be properly typed, values must themselves be considered as

part of the expression abstract syntax type.

We have already seen that a value is a sequence of bytes. In the context

of the dynamic semantics, we shall extend this notion somewhat so that

values are accompanied by their types. Thus, values that appear in the ex-

pression syntax will be written as (m, τ), where m is a list of bytes, and τ
is the type of the value. The underlining is used to emphasise that this is

the final result of an evaluation. The accompanying type is necessary so

that the overloaded operators know how they should be applied (adding

one to a pointer, for example, has quite a different behaviour to adding

one to an integer). The alternative would be to extend expressions so that

the dynamic semantics was presented with expressions already tagged with

the types assigned to them by the static semantics. Given that values are

to inhabit our syntax trees as they are evaluated, this would result in val-

ues still having types associated with them, just as every other component

of the tree would. This alternative method of presentation has its appeal

(it would cope well with polymorphic zero), but was not pursued due its

dependency on the static semantics.

42 CHAPTER 3. DYNAMICS

Values are not the only addition we need to make to the abstract syntax

of expressions. Just as we extended our judgements in the static semantics

to handle lvalue types (the obj[τ]), we extend our expression syntax to

handle values that correspond to lvalues, or references to objects. Our new

LV constructor will take an address and a type as arguments, thus uniquely

specifying an object in memory. If we have Γσ, Φσ, Σσ ` e : obj[τ], then we

expect 〈e, σ〉 →∗
e 〈LV(a, τ), σ′〉, for some a and σ′.

Another additional form is the “(r)value required” constructor RVR,

which takes a single expression as an argument. This is a trick of the for-

malisation, principally used at the top level to ensure that expressions do

evaluate to values, and don’t stop short as just lvalues. For reasons that

should become clear, it is not possible to have a general reduction that al-

lows 〈LV(a, τ), σ〉 →e 〈v, σ′〉, where v is the value of the object denoted by

the lvalue. If this rule were part of the definition of →e, it could occur

anywhere in an expression’s syntax tree. This would lead to blocking in

assignment expressions, among other places, as an lvalue is required on

the LHS of an assignment expression if it is to reduce. In the presence of

the putative rule above, an lvalue could reduce to a value regardless of its

situation in the wider context.

3.3.1 Expression evaluation contexts

Following the example of other presentations of reduction semantics (e.g.,

[Gor95], and ultimately [FF86]) our expression semantics makes use of

evaluation contexts. Informally, an evaluation context is a piece of syntax

“with a hole in it”. Contexts provide a convenient way to generalise a

whole family of evaluation rules where independent reductions occur in

sub-expressions. The following rule, using the E context, captures most of

the ways in which evaluation can proceed in the sub-terms of an overall

expression:

〈e0, σ0〉 →e 〈e, σ〉

〈E [e0], σ0〉 →e 〈E [e], σ〉

This rule should be read as “If expression e0 can reduce to e, altering state

σ0 to σ in the process, then the expression formed by inserting e0 into the

hole of the context E can start in σ0 and reduce to the corresponding ex-

pression with e in place of e0, finishing in state σ.” The allowed forms for

E are:

3.3. EXPRESSION EVALUATION 43

E [–] ::= – � e | e � – | 2– | – && e | – || e | – , e |
–++ | –-- | – . id | – �= e | – = e | (τ)– | RVR– |
– ? e1 : e2 | –(e1, . . . , en) | e(e1, . . . , –, . . . en)

Here � stands for any of the standard binary operators (+, *, | etc.), and 2

stands for any of the unary operators -, !, ~, &, *.

The sequenced behaviour of the logical operators && and ||, as well as

the comma operator and the ?: operator is apparent here; only an eval-

uation that looks at the first argument is acceptable. Conversely, there

are two contexts for the binary operators, giving rise to a significant non-

determinism; the evaluation of the operands can be interleaved at all lev-

els. In particular, evaluation of (a + b) + (c + d) can see evaluation of the

sub-expressions a, b, c and d occur in any order.

The E context is also used in the propagation of the U value.

〈E [U], σ〉 →e 〈U , σ〉

The E context doesn’t extend as far as the right hand sides of (compound)

assignment statements (the reason for this is explained in section 3.3.4), so

we need to also add this as a location in which undefinedness is propagated

upwards. (The rule for the compound assignment case is the same.)

〈e1 = U , σ〉 →e 〈U , σ〉

3.3.2 Base cases—values out of memory

In this section we present the expression evaluation relation’s fundamental,

“base case” rules. These are the rules which bring values out of memory

and into syntax trees as they evaluate. Later sections define the ways in

which values can be combined, and subsequently put back into memory.

Constants We assume that constants’ types have already been statically

determined. (With the exception of the polymorphic 0, this determination

is entirely lexical.) We use the byte representation to value function to

require that the value returned is a valid representation for the value.

Vτ (m) = c

〈(c, τ), σ〉 →e 〈(m, τ), σ〉

As before, the underlining indicates that the syntax on the right-hand side is

actually a value. This rule handles function reference constants (including

the null reference) as well as numeric constants and the null pointer.

44 CHAPTER 3. DYNAMICS

Variables and lvalues A variable denotes a piece of memory and its con-

tents. We translate all variables into lvalues, using the following rule (the

LV lvalue-constructor takes the variable’s address and type as arguments):

〈id, σ〉 →e 〈LV(Aσ(id), Γσ(id)), σ〉

In many contexts, the semantics requires lvalues to become normal values.

This is controlled by another relation, . As before, this relation can not

be part of →e because there are contexts in which we don’t want to have

the lvalue information disappearing (assignment, for one).

Υσ ∩ r = ∅ r ⊆ Iσ okVal(σ,m, τ) τ not an array type

〈LV(a, τ), σ〉 〈(m, τ), σ[R := R + r]〉

where r = {a . . . a + |τ | − 1}
m = Mσ〈a . . . a + |τ | − 1〉

The first three conditions above the line of this rule require that the lvalue

denote an object which has not been updated in this phase of execution,

that the part of memory being read is initialised, and that the bytes read

out of memory constitute a valid value for the given type. We do not check

that s ⊆ Λσ, as we claim that the initialisation map is always a subset of

the allocation map. The definition of okVal, our check for “value validity”

is:3

okVal(σ,m, τ) =

{
∃a. Vτ (m) = a ∧ (a ∈ Λσ ∨ a − 1 ∈ Λσ) τ a pointer type

∃v. Vτ (m) = v otherwise

The definition of okVal accommodates the fact that pointers are allowed

to point one past the end of allocated objects, even though dereferencing

such values is illegal.

Our rule for is one of two where bit-sequences from memory are

interpreted as values (the other is the rule for post-increment). In other

rules, the valuation functions in this semantics can be assumed to be total

because the values passed as arguments will have been generated by the

semantics, ensuring their validity. In other words, it is our claim that the

presence of a value (m, τ) in the rules implies that Vτ has a value for m.

It is possible for the lvalue’s address a to be zero. This corresponds to

the null address, and will never be part of initialised memory (Iσ), thereby

ensuring that this rule will not be satisfied. Instead, if any of the first three

conditions in the above rule for do not hold then undefinedness results:

3Recall that Vτ is only necessarily total for τ = unsigned char, so that expressions
such as ∃n. Vτ (m) = n are not tautologies.

3.3. EXPRESSION EVALUATION 45

(Υσ ∩ r 6= ∅ ∨ r 6⊆ Iσ ∨ ¬okVal(σ,m, τ)) τ not an array type

〈LV(a, τ), σ〉 〈U , σ〉

where r = {a . . . a + |τ | − 1}
m = Mσ〈a . . . a + |τ | − 1〉

The case when the lvalue is of an array type needs to be dealt with sep-

arately. As our presentation of the static semantics should have already

made clear, array lvalues are converted into pointers to their first element,

which will necessarily share the same address.

Vτ*(m) = a

〈LV(a, τ[n]), σ〉 〈(m, τ*), σ〉

The only issue to resolve is when the relation should be allowed to

“fire”. This is done with another evaluation context, called L. L is the

same as E except that it omits both arguments of assignment expressions4,

the arguments of ++ and --, the unary (“address-of”) & operator, and the

field selection . operator. The rule in →e is

〈e0, σ0〉 〈e, σ〉

〈L[e0], σ0〉 →e 〈L[e], σ〉

Note that this rule means that lvalues at the very top level of an expression

evaluation will not convert into normal values. This is handled specially at

the statement level by wrapping expressions in the RVR constructor.

Structure values The field selection operator . pulls values out of mem-

ory through struct values. This operator is unique in that it can produce

either lvalues or normal values depending on the nature of its first argu-

ment. When the operand is an lvalue, the rule is

(id, τ) ∈ Σσ(s)

〈LV(n, struct s) . id, σ〉 →e 〈LV(n + offset(σ, s, id), τ)〉

where offset returns the offset of members within a struct type.

If the first argument to field selection is a normal value, then the result

is also a normal value, created by copying out the list of bytes within the

value corresponding to the field in question.

(id, τ) ∈ Σσ(s)

〈(m, struct s) . id, σ〉 →e 〈(m
′, τ), σ〉

4While it should be clear why the left-hand side of the assignment should be immune to
decay, it is less clear why the right-hand side needs this protection; this issue is addressed
in section 3.3.4.

46 CHAPTER 3. DYNAMICS

where m′ = m〈o . . . o + |τ | − 1〉
o = offset(σ, s, id)

Pointers As we have already seen, pointers are fundamental to the way

in which lvalues are manipulated. There are two pointer specific opera-

tors: dereferencing (*) and taking addresses (&). The first of these takes

a pointer value and returns an lvalue, subject to the constraints that the

pointer not be a void pointer (of type (void *)). Such a pointer is used

as the generic pointer, and can be used to store pointer values of any type,

but it can never be dereferenced. Though this precondition is unnecessary

given the assumption that the static semantics has already rejected badly

typed programs, we include it here as a reminder of the typing rules.

τ 6= void

〈*(m, τ*), σ〉 →e 〈LV(Vτ*(m), τ), σ〉

The & operator is the inverse of this, requiring an lvalue as an argument,

and returning a pointer value.

Vτ*(m) = a

〈&(LV(a, τ)), σ〉 →e 〈(m, τ*), σ〉

3.3.3 Value producing operators

The term “value producing operator” is meant to contrast with the side

effect operators detailed in Section 3.3.4. Value producing operators gen-

erate new values, but do not modify the memory part of the program state.

The first rule is the most general:

� ∈ B
〈(m1, τ1) � (m2, τ2), σ〉 →e 〈OpSem(σ,�, (m1, τ1), (m2, τ2)), σ〉

The operator function OpSem calculates the effect of the given operator

(� above), returning both the value and the type of the result. It will return

U if the operation is undefined (as in division by zero, for example). It takes

a state as its first argument because the addition, subtraction and relational

operators may be applied to pointers. In this case the definedness of the op-

eration is dependent not only on the pointer values in question but also on

the state of memory. Further, the types of the operator’s arguments are also

required, so that the operator can perform appropriate conversions.5 The

5For example, adding an int and a long will cause the int to be converted to a long

and the result will also be a long

3.3. EXPRESSION EVALUATION 47

set B includes all of the standard binary operators (addition, subtraction

etc.), but excludes &&, || and the , operator.

There is a very similar rule for the unary operators ~, ! and - (though

here we do not need to pass states to the semantic function UnOpSem be-

cause none of these operators can yield pointer values):

2 ∈ {~, !, -}

〈2(m, τ), σ〉 →e 〈UnOpSem(2, (m, τ)), σ〉

There is one further unary operator, the type-cast. This takes values and

converts them to values of the specified type. This conversion is not pos-

sible for all pairs of types, but where it is possible, the semantics is very

easy to specify in the abstract. C is the conversion function required by

the semantics. As already discussed in chapter two, this will usually per-

form “useful conversion”, even when the value to be converted is not in the

destination type.

C : τ0 → τ C(Vτ0(m0)) = Vτ (m)

〈(τ)(m0, τ0), σ〉 →e 〈(m, τ), σ〉

Note that it is also possible for our conversion function C to return U when

a value is not representable in a given type. (This can happen when at-

tempting to convert float values to an integral type).

The rule for the comma-operator is the first to involve a sequence point.

Before evaluation can proceed to the second argument of the expression,

it must be the case that all pending side effects have been applied. Fur-

thermore, when the evaluation then proceeds, the state must be updated

to forget the references and updates made up to this point. This is because

the restrictions on references and updates to the same object only hold

between two consecutive sequence points.

Πσ = ∅
〈(m, τ) , e, σ〉 →e 〈RVR(e), σ[R := ∅, Υ := ∅]〉

The RVR constructor forces an expression to become a normal value. It

is used here to prevent the result of the comma-operator expression from

being an lvalue. The only rule for RVR is

〈RVR(m, τ), σ〉 →e 〈(m, τ), σ〉

If RVR is wrapped around an expression that evaluates to an lvalue, then

the lvalue to value reduction, , will be able to act upon it, because RVR is

part of the lvalue context L.

48 CHAPTER 3. DYNAMICS

The logical operators: && and || The && and || operators implement the

operations of “logical and” and “logical or” respectively. Each will “short

circuit” if the first argument determines the value of the whole expression.

Of course, the non-determinism available in other binary operators is not

available here, and there is also a sequence point before the evaluation of

the second argument if any. The evaluation of the first argument proceeds

under the E and L contexts until it yields a value. The following rules

specify what happens next. First the short circuit cases, where the sequence

points don’t come into play because the first expression is able to determine

the value of the whole expression on its own.6

τ is scalar Vτ (m0) = 0 Vsigned int(m) = 0

〈(m0, τ) && e, σ〉 →e 〈(m, signed int), σ〉

And for ||:

τ is scalar Vτ (m0) 6= 0 Vsigned int(m) = 1

〈(m0, τ) || e, σ〉 →e 〈(m, signed int), σ〉

When the logical operators do not short-circuit, a sequence point is reached,

and the evaluation must proceed with the second argument. At this point

we need to introduce a new expression form, the constructor &̂|. We can

not simply leave the existing syntax alone and switch to evaluating the sec-

ond argument if we see that LHS is fully evaluated, because we won’t be

able to tell whether or not the sequence point has been reached. The rule

for && in this situation is

τ is scalar Πσ = ∅ Vτ (m) 6= 0

〈(m, τ) && e, σ0〉 →e 〈&̂|(e), σ0[R := ∅, Υ := ∅]〉

The rule for || is similar:

τ is scalar Πσ = ∅ Vτ (m) = 0

〈(m, τ) || e, σ0〉 →e 〈&̂|(e), σ0[R := ∅, Υ := ∅]〉

The E and L contexts are both extended to allow computations to proceed

in the argument to &̂|. We need only specify the rules for &̂| when its

6The typing conditions are again repeated from the static semantics.

3.3. EXPRESSION EVALUATION 49

argument is fully evaluated. They are:7

τ is scalar Vτ (m0) = 0 Vsigned int(m) = 0

〈&̂|(m0, τ), σ〉 →e 〈(m, signed int), σ〉

τ is scalar Vτ (m0) 6= 0 Vsigned int(m) = 1

〈&̂|(m0, τ), σ〉 →e 〈(m, signed int), σ〉

The conditional operator The conditional operator (–?–:–) is ternary.

Evaluation begins with the evaluation of its first argument, and then de-

pending on the resulting value, the value of the whole expression is either

the second or third argument. This value can not be an lvalue. The type of

the result is the same regardless of which argument is chosen, and is calcu-

lated according to some relatively complicated rules, which we omit here.

We assume that the type τc of the result has been calculated already, given

the types of the two sub-expressions. The result of the sub-expression’s

evaluation is cast to this type using the type-cast operator.8

τ is scalar Πσ = ∅ Vτ (m) 6= 0

〈(m, τ) ? e1 : e2, σ〉 →e 〈(τc)e1, σ[R := ∅, Υ := ∅]〉

τ is scalar Πσ = ∅ Vτ (m) = 0

〈(m, τ) ? e1 : e2, σ〉 →e 〈(τc)e2, σ[R := ∅, Υ := ∅]〉

3.3.4 Side effect operators

An expression that causes side effects will do so through the action of one

of a limited set of operators. Before describing these operators, we first

describe the way in which side effects alter the contents of memory. Side

effects are denoted ♣(a,m), meaning that the value m is to be written to

the address a.9 The variables η, η1 etc. are also used to denote side effects.

Recall that side effects are not applied immediately upon generation.

Instead, they are “queued” in a bag of pending side effects. At any time,

7Note that &̂|(e) is equivalent to !!e, where ! is the logical negation operator.
8In fact, the situation is slightly more complicated than presented here: the arms of

conditionals may yield struct values, and in this situation one can’t cast, but one has to
rely on fact that the static semantics will require both arms to have the same struct type.

9The use of the club suit is meant to suggest that this is something that is about to
clobber memory.

50 CHAPTER 3. DYNAMICS

the abstract machine can pull a side effect from this bag, and apply it,

updating memory with the new value. The rule for this is

η ∈ Πσ s ⊆ Λσ Rσ ∩ s = ∅ Υσ ∩ s = ∅

〈e, σ〉 →e 〈e, σ[I := I ∪ s,M := M [r := m], Π := Π − {η}, Υ := Υ ∪ s]〉

where η = ♣(a,m)
r = 〈a . . . a + |m| − 1〉
s = {a . . . a + |m| − 1}

This is the only place where memory changes in the entire semantics. Our

remaining “side effect operators” will add to the bag of pending side effects

Πσ, and thereby affect memory indirectly. Ultimately those changes must

“pass” this rule to have their effect. Before examining those operators, we

first consider the possibility that the preconditions in the above rule are not

met. Undefinedness is the result of course:

η ∈ Πσ (s 6⊆ Λσ ∨ Υσ ∩ s 6= ∅ ∨ Rσ ∩ s 6= ∅) e 6= U

〈e, σ〉 →e 〈U , σ〉

where η = ♣(n,m)
s = {n . . . n + |m| − 1}.

The final requirement, that e 6= U , is added to stop the model allowing this

rule to repeatedly fire once undefinedness is reached.

The assignment operators C defines both a traditional assignment oper-

ator, written =, and a number of compound assignments, where the action

of the assignment is combined with that of a normal binary operator. The

meaning of e1�=e2 is defined to be the same as e1=e1�e2 (� a binary opera-

tor), except that the expression e1 is only evaluated once (clearly important

in the presence of side effects).

The abstract syntax for assignment expressions of both types needs to

include an extra component: a bag containing a record of all the refer-

ences made to memory in the course of the evaluation of an assignment

expression’s right hand side. Assignment expressions will thus be written

as e1

β

�= e2, where β is the bag of references to memory, and � is the binary

operator compounded with the assignment (if any). Furthermore, it is as-

sumed that the bag in an assignment expression is always empty when an

evaluation begins.10

10This sort of constraint is easy to enforce as part of the implementation of the parser
which takes the C program’s raw syntax, and returns its abstract syntax tree.

3.3. EXPRESSION EVALUATION 51

Finally, it is assumed that the right-hand side of the expression will be

wrapped in an RVR constructor. This ensures not only that the expression

there will decay to a value, but also that it will do so in a way that the

rules for assignment will be able to “see”. Recall that the transformation

of lvalues into values (the relation) is where the R component of a

state may increase. This increase corresponds to referring to an object in

memory, and is exactly what must be recorded in the assignment syntax’s

bag.

A näıve version of the semantics might do away with the R and extend

the L to include the right-hand sides of assignment expressions. Unfortu-

nately, this would allow the following transition, which leaves the bag β
unchanged, to take place:

〈LV(a, t), σ0〉 〈m,σ〉
;

〈e1

β

�= LV(a, t), σ0〉 →e 〈e1

β

�= m,σ〉
L context

The correct rule controls the evaluation of the right hand side and monitors

the way in which references to memory are made. Allowing the näıve

version of the rules would give two rules scope over the situation, and the

monitoring of references could be bypassed, as in the above example.

The first rule we present allows for the expansion of the abbreviation

implicit in the compound assignment. This expansion takes e1

β

�= e2 to

e1
β
= e1 � e2 whenever e1 is an lvalue, meaning it will not admit any further

reductions:

〈LV(a, τ) β

�= e2, σ0〉 →e 〈LV(a, τ) β
= LV(a, τ) � e2, σ0〉

In this situation, it doesn’t matter whether or not the RHS of the assignment

has lost its RVR wrapper, as the evaluation of a binary operator sub-tree

must always result in a value.

The next rule for assignment controls the way in which evaluation of

the assignment’s right hand side proceeds (the rule for simple assignment

is identical):
〈e2, σ0〉 →e 〈e

′
2
, σ〉

〈e1

β

�= e2, σ0〉 →e 〈e1

β′

�= e′
2
, σ〉

where β ′ = β + (Rσ − Rσ0
) − (Rσ0

− Rσ).

The expression for determining β ′ mimics the changes to the R compo-

nent of the state. Thus, if the evaluation of the right hand side e2 makes

additional references β1 such that Rσ = Rσ0
+ β1, then β ′ will equal β + β1.

52 CHAPTER 3. DYNAMICS

However, it is also possible that the reference maps of program states

will decrease. This will happen every time a sequence point is encountered,

for example. The β component of the assignment syntax is therefore a bag

of references to memory made in the course of the evaluation of the right

hand side, and which are still current.

The motivation for keeping track of these references is revealed in the

next rule. Previously (in section 3.1.2) it was noted that the abstract ma-

chine is allowed to make references to memory that may seem to clash with

an update, if the references were made in the service of calculating the up-

dated object’s new value. This is precisely what happens in an expression

such as i = i + 1. This “permission to refer” is implemented by removing

the appropriate references when the assignment takes place. The rule is
〈(τ)(m0, τ0), σ0〉 →e 〈v, σ0〉 τ not an array type

〈LV(a, τ) β
= (m0, τ0), σ0〉 →e 〈v, σ〉

where σ = σ0[R := R − β〈a . . . a + |τ0| − 1〉, Π := Π + {♣(a,m)}]

The value (m, τ) is found by using the cast operator to convert the value on

the RHS of the assignment to the type of the object on the LHS. The state

σ0 is modified by removing references in β to memory corresponding to the

object assigned from the reference map, and by adding the updating side

effect to those pending in σ0.

Now, the question that naturally arises when confronted with these last

two, ugly assignment rules is whether or not they conform to the natural

language of “references to the object assigned are allowed on the right hand

side”. There are two criteria to assess: the rules should not make things

undefined that are defined in the standard, and vice versa, they should not

give meaning to things that are undefined.

Consider the first case. The only way in which these rules might make

something incorrectly undefined would be if an allowable reference in the

bag β were to clash with an attempt to update the same object elsewhere,

thereby running afoul of the rule forbidding reference and update of the

same object. However, if such an update takes place, then the expression

is undefined anyway, because the allowable reference is only a prelude

to another update of the same object which will occur whenever the side

effect generated by the assignment is applied. This has to cause undefined

behaviour because two updates of the same object are also illegal. So, the

rules will not make a difference in this way.

We must also consider the possibility that the two rules might give

meaning to something which is actually undefined. This can not be, as

our method of emulating what is required actually records references that

shouldn’t be recorded. This can only make things worse as far as defined-

3.3. EXPRESSION EVALUATION 53

ness is concerned.

Post increment and decrement The rules for the post-increment (++)

and post-decrement (--) operators differ only slightly. Although the rule

does look at the value of the object, it does not record this as a reference

to the object in Rσ. This is because, as with the assignment, this is clearly

a reference made in order to calculate the fresh value. After pulling the

fresh value out of memory, all that is required is to make the new value a

pending side effect. So, the rule for ++ is

s ⊆ Iσ v 6= U

〈LV(a, τ)++, σ〉 →e 〈(m, τ), σ[Π := Π + {♣(a, v)}]〉

where Vsigned int(m
′) = 1

v = OpSem(σ, +, (m, τ), (m′, signed int))

m = Mσ〈a . . . a + |τ | − 1〉
s = {a . . . a + |τ | − 1}

The rule for -- is just the same except that ++ is replaced by --, and the

operator used in the call to OpSem is -. Undefined behaviour is possible in

two ways that need to be given their own rule: the object to be incremented

might not be initialised, or the increment operation may fail.

s 6⊆ Iσ ∨ v = U

〈LV(a, τ)++, σ〉 →e 〈U , σ〉

where Vsigned int(m
′) = 1

v = OpSem(σ, +, (m, τ), (m′, signed int))

m = Mσ〈a . . . a + |τ | − 1〉
s = {a . . . a + |τ | − 1}

Finally, recall that pre-increment (++x) and pre-decrement (--x) are both

handled by assuming translation to the equivalent x += 1 and x -= 1.

3.3.5 Function calls—interfacing with statements

The final form of expression is the function call. There are two rules for

this as there is a sequence point after the arguments and the function des-

ignator are evaluated. The E context ensures that these “inner” evaluations

take place, so the following rule merely records the fact that the sequence

point has been reached. Like the logical boolean operations && and ||, this

requires the addition of a new intermediate syntactic form, which we write

54 CHAPTER 3. DYNAMICS

f̂ , for function reference values f .

Πσ = ∅ all of the eis are values Vτ (m) 6= 0

〈(m, τ)(e1, . . . , en), σ〉 →e 〈(̂m, τ)(e1, . . . , en), σ[R := ∅, Υ := ∅]〉

where τ = τ1 × . . . τn → τr

If the function expression evaluated to the null function reference, then the

program is undefined:

Vτ (m) = 0

〈(m, τ)(e1, . . . , en), σ〉 →e 〈U , σ〉

The call to the function is evaluated in this final expression rule:

〈s, inst parms(σ0, args, [e1 . . . en])〉 →s 〈vs, σ〉

〈(̂m, τ)(e1, . . . , en), σ0〉 →e 〈v, σ0[M := Mσ, I := Iσ ∩ Λσ0
〉

where v =

{
(m, τr) if vs = RetVal(m, τr)

U if vs = U
Vτ (m) = F

Φσ0
(F) = (args, s, τ)

Note that the final state is the same as the initial state except for the con-

tents of memory and the initialisation map.11 The →s relation is the state-

ment evaluation relation, and the RetVal wraps a statement evaluation’s

return value. Both of these constructions are described in the next section,

which explains the semantics of statements.

The Φ component of the state returns information (names and types)

about a function’s logical arguments as well as the function’s body and

overall type. This information is then used by the inst parms function

to install the argument values (e1 to en) in memory, and to update the

environment information stored in the state. We define it recursively over

11If we were modelling heap allocation of memory, we would need to allow for changes
to the allocation map (Λ).

3.4. STATEMENT EXECUTION 55

parameter lists thus:

inst parms(σ, (id, τ) :: tail, (v0, τ0) :: vs) =

inst parms




σ




A := Ag[id := a],
Γ := Γg[id := τ],
I := I ∪ r,
Λ := Λ ∪ r,
M := M [〈a . . . 〉 := C(v0)],
Σ := Σg




, tail, vs




where alloc(σ, τ, a)
r = {a . . . a + |τ | − 1}
C : τ0 → τ is the conversion function from τ0 to τ

The base case is

inst parms(σ, [], []) = σ

The alloc relation is true of its three arguments if the third, a, is the ad-

dress of a piece of unallocated memory suitable for use by the given type.

If there is no such address available, then undefinedness results. The ac-

tual definition is thus a slightly more complicated version of that presented

above, as this possibility must be allowed for.

The called function’s new environment is constructed by building upon

the basis of the global environment (denoted by the g superscript). Build-

ing on the existing environment’s maps would give our language dynamic

scoping.

This definition of function calls does not admit the possibility that func-

tion bodies might execute in parallel. This might be supposed to happen in

an expression such as f(x) + g(y). This is again a matter of some contro-

versy among those concerned with interpreting the standard. Ultimately

the decision was made to disallow call interleaving because it allows us

to use a big-step semantics for statement execution (though this has other

problems). In fact, given the lack of language one way or the other on this

question in the standard, it would be reasonable to suppose that the model

should not be constrained so as to forbid interleaving.

3.4 Statement execution

C’s statements are rather fewer in number than its expressions, and the

rules are also rather simpler. In particular, it is possible to write the rules

using a big-step style. The statement relation →s maps statement-state

56 CHAPTER 3. DYNAMICS

pairs to statement value-state pairs. A statement value is one of the follow-

ing limited set of possibilities, each describing how statement execution has

come to finish at this point.
BreakVal a break statement was encountered

ContVal a continue statement was encountered

RetVal(m, τ) a return statement (with value) was encountered

StmtVal an ordinary evaluation termination

All but StmtVal interfere with the statement sequencing rule. There is also

an undefined value, represented as before by U . We will use v to vary over

statement values. We also use →s to denote the evaluation relation over

lists of statements. This extended relation has the same range of possible

result types.

The choice of a big-step semantics for the definition of statement se-

mantics has its problems. In a simpler language than C, a typical big-step

definition for loops might be (using > and ⊥ for the boolean values):

G, σ0 ⇓e > 〈S;while G do S, σ0〉 ⇓s σ

〈while G do S, σ0〉 ⇓s σ

G, σ ⇓e ⊥

〈while G do S, σ〉 ⇓s σ

If this language is deterministic, then we can express the question of whether

or not a program S terminates starting in state σ0, as

∃σ. 〈S, σ0〉 ⇓s σ

If the language is non-deterministic then we have two different notions of

termination: whether or not the program is guaranteed to terminate, and

whether or not it might terminate. (Alternatively, we have a trichotomy:

either a program must terminate, or it must diverge, or it may be able

to both loop and terminate.) In this case, the expression above only puts

the question of whether or not the program might terminate (alternatively,

whether or not it must diverge).

A typical way of defining the more useful “must terminate” notion is to

define another relation over the syntax to embody this idea. We dislike this

approach because it is impossible to relate the new relation to the old; one

has to decide by inspection that the relation is correct. Our intertwined

evaluation relations are complicated enough on their own, without adding

another relation to the brew. We rather add a rule which sends a loop to the

undefined return value if there is an infinite evaluation sequence starting

from the starting state of the loop. (Bofinger’s semantics [Bof98], though

3.4. STATEMENT EXECUTION 57

deterministic, also has such a rule.) Our rule, in section 3.4.5, ensures that

only very few statement evaluations ever block,12 and we thus capture the

concept of statement s being sure to terminate starting in state σ0 by using

the following expression:

∀v, σ. 〈s, σ0〉 →s 〈v, σ〉 ⇒ (v = StmtVal)

This formulation of the semantics for statements does have the disadvan-

tage of precluding a proper examination of programs that exhibit infinite

behaviours. If we used a small-step system for statements as well as for

expressions, we could do this. However, the advantage of the big-step ap-

proach is that one has an easy definition of what happens when new blocks

and environments are entered and exited. Arranging for just the right vari-

ables to fall out of scope as a block exits is much more complicated in a

small-step presentation.

3.4.1 Simple statements

Empty statements The first statement evaluation rule is that for the empty

statement, written here just using the ;.

〈;, σ〉 →s 〈StmtVal, σ〉

Expression statements An expression statement consists only of an ex-

pression, which is evaluated for the side effects caused. Note the use of

RVR, which gives the expression a valid L context in which to evaluate

values which may be lvalues, and the resetting of the state’s “side effect

components”, Π, R, and Υ.

〈RVR(e), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ〉 Πσ = ∅

〈e;, σ0〉 →s 〈StmtVal, σ〉

If the expression evaluation goes astray we promote the expression unde-

finedness to the level of statements:

〈RVR(e), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈U , σ〉

〈e;, σ0〉 →s 〈U , σ〉

12The problematic cases are functions that recurse indefinitely without requiring the
allocation of any space in memory for parameters or local variables. Such a function is
int f(void) { return f(); }. With local variables or parameters present, recursing
functions will eventually cause undefinedness in our model because they will run out of
memory. This failing in the model could be addressed by arbitrarily requiring that each
function invocation allocated a little space in memory, but this is not a pleasant prospect.

58 CHAPTER 3. DYNAMICS

3.4.2 Interruptions

The break, continue and return statements all interrupt the normal flow

of control. Collectively we shall refer to them as interruption statements.

〈break;, σ〉 →s 〈BreakVal, σ〉

〈continue;, σ〉 →s 〈ContVal, σ〉

〈RVR(e), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈m,σ〉 Πσ = ∅

〈return e;, σ0〉 →s 〈RetVal(m), σ〉

〈return;, σ〉 →s 〈RetVal(∅, void), σ〉

There are two rules for return because it exists in two forms, both with a

value to be returned and without. In the latter case, we use the ∅ symbol to

stand for a null (empty) value. No well-behaved program will attempt to

make use of such a value, as it will only be returned by functions returning

void.13

3.4.3 Compound statements

Blocks Statements can be grouped together in a block. A block consists

of a list of variable declarations followed by a list of statements. When the

statements of a block finish evaluating, they will do so in an environment

different from the external one. Just as happened with the rule for function

calls, this is rectified as the block exits by updating the original state with

the memory information from the new state.

〈decls, σ0〉 →v 〈VarDeclVal, σ1〉 〈stmts, σ1〉 →s 〈v, σ2〉

〈{decls stmts}, σ0〉 →s 〈v, σ0[M := Mσ2
, I := Iσ2

∩ Λσ0
]〉

Even variable declarations are not immune to failure, so that the following

rule is also necessary:

〈decls, σ0〉 →v 〈U , σ〉

〈{decls stmts}, σ0〉 →s 〈U , σ〉

The →v relation gives meaning to variable declarations. We again abuse

our notation slightly to let it stand for the relation over lists of declara-

tions. These relations and the VarDeclVal value are further explained in

section 3.5.

13This is not strictly true: the standard actually allows return statements without ex-
pressions to appear anywhere. They will cause the flow of control to return to the calling
expression, but the “value” returned can not be used.

3.4. STATEMENT EXECUTION 59

Statement sequencing A list of statements, as occurs in a block, is ex-

ecuted in order, with the requirement that for execution to continue, the

statement value of the last statement executed must have been StmtVal.

The base case is the empty list:

〈[], σ〉 →s 〈StmtVal, σ〉

A normal evaluation proceeds according to the following rule:

〈s1, σ0〉 →s 〈StmtVal, σ1〉 〈stmts, σ1〉 →s 〈v, σ〉

〈s1 :: stmts, σ0〉 →s 〈v, σ〉

On the other hand, an interrupted evaluation (here an undefined result is

also an interruption) will look like

〈s1, σ0〉 →s 〈v, σ〉 v 6= StmtVal

〈s1 :: stmts, σ0〉 →s 〈v, σ〉

This means that interruption statements will cause all further statements in

a sequential composition to be skipped.

3.4.4 Conditional statements

There are three rules for the if statement. The first copes with the failure

of the guard to evaluate properly.

〈RVR(e), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈U , σ〉

〈if (e) s1 else s2, σ0〉 →s 〈U , σ〉

The two rules where the expression does actually evaluate fully are entirely

straightforward. If the guard expression evaluates to a non-zero value then

the first branch is evaluated, and its statement value preserved.

〈RVR(e), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ1〉 〈s1, σ1〉 →s 〈v, σ〉

〈if (e) s1 else s2, σ0〉 →s 〈v, σ〉

where τ is scalar, Vτ (m) 6= 0, and Πσ1
= ∅

Otherwise, the second branch is chosen:

〈RVR(e), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ1〉 〈s2, σ1〉 →s 〈v, σ〉

〈if (e) s1 else s2, σ0〉 →s 〈v, σ〉

where τ is scalar, Vτ (m) = 0, and Πσ1
= ∅

60 CHAPTER 3. DYNAMICS

3.4.5 Iteration

There are three looping constructions in C, the while loop, the for loop,

and the do-while loop. We model them all with two special intermediate

syntactic forms, the O (loop) and T (trap) constructors. The first is the ba-

sis for a generic looping mechanism, and the second is a mechanism which

allows interrupt values to be intercepted or “trapped”. The O constructor

takes the loop guard and the loop body as arguments, while the T construc-

tor takes the interrupt value to be intercepted and the statement which will

be executed. The translations for the three loop forms in C are

while (g) s =̂ T (BreakVal, O(g, T (ContVal, s)))

for (e1; e2; e3) s =̂ {e1; T (BreakVal, O(e2,{T (ContVal, s) e3;}))}

do s while (g); =̂ T (BreakVal,{T (ContVal, s) O(g, T (ContVal, s))})

Note that the juxtapositioning of elements inside a pair of braces above

indicates sequencing; the semi-colon is used as a statement terminator, not

as a statement separator. The rule for the for means that while a continue

statement in the loop body may interfere with the rest of the loop body, it

will not prevent the third expression from being evaluated. The syntax for

the for loop also allows expressions to be omitted. We model this case by

inserting the expression 1 in the place of the omitted expression. This has

no side effects, but the fact that it is not zero will cause the loop to keep

looping. (The statement for (;;) s is an idiomatic way of writing either

an infinite loop, or one that will exit due to a break or return statement.)

There are two rules for the T construction. If the value returned by

the statement wrapped up is the one trapped, then a StmtVal is returned

instead of what was going to be returned.14

〈s, σ0〉 →s 〈v, σ〉

〈T (v, s), σ0〉 →s 〈StmtVal, σ〉

Otherwise, the return value is passed through unchanged.

〈s, σ0〉 →s 〈v, σ〉 v′ 6= v

〈T (v′, s), σ0〉 →s 〈v, σ〉

There are five rules for O. The first two specify the behaviour when the

guard expression doesn’t evaluate to true, which can happen in two differ-

ent ways. The guard might result in undefined behaviour, in which case

14There are very clear parallels here with the way in which exceptions in a language
such as SML are caught; here the exceptions are very simple, atomic values.

3.4. STATEMENT EXECUTION 61

the loop’s behaviour is also undefined.

〈RVR(g), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈U , σ〉

〈O(g, s), σ0〉 →s 〈U , σ〉

Alternatively, the loop guard may evaluate to a zero value:

〈RVR(g), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ〉

〈O(g, s), σ0〉 →s 〈StmtVal, σ〉

where τ is a scalar type, Vτ (m) = 0, and Πσ = ∅

If, however, the guard does evaluate to a non-zero value, then the loop is

entered. The first rule below covers those cases where the body doesn’t

evaluate to a StmtVal; this causes the loop to exit. Consider then how this

rule interacts with the translations of the standard C forms; if a continue

statement is encountered while evaluating a loop body, then this will have

been trapped by the T that is always wrapped around the occurrences of

the body in the translation. Thus, this rule will not apply. In the case of the

break statement, this rule will apply, but the BreakVal will be trapped by

the trap around the entirety of the loop.

〈RVR(g), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ1〉 〈s, σ1〉 →s 〈v, σ〉

〈O(g, s), σ0〉 →s 〈v, σ〉

where v 6= StmtVal, τ is a scalar type, Vτ (m) 6= 0, and Πσ1
= ∅.

If the loop body’s execution does terminate normally, the loop is entered

once more:

〈RVR(g), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ1〉

〈s, σ1〉 →s 〈StmtVal, σ2〉 〈O(g, s), σ2〉 →s 〈v, σ〉

〈O(g, s), σ0〉 →s 〈v, σ〉

where τ is a scalar type, Vτ (m) 6= 0, and Πσ1
= ∅.

The rule that captures the behaviour of possible infinite loops is as follows:

∀n.∃m,σ′.
〈RVR(g), f(n)[Π := ∅, R := ∅, Υ := ∅]〉 →∗

e 〈(m, τ), σ′〉 ∧

(Vτ (m) 6= 0) ∧ (Πσ′ = ∅) ∧ 〈s, σ′〉 →s 〈StmtVal, f(n + 1)〉
f(0) = σ0

〈O(g, s), σ0〉 →s 〈U , σ0〉

where f : N → CState

62 CHAPTER 3. DYNAMICS

3.5 Variable declarations

Variables can be declared in two possible contexts, either at the start of a

block, in which case they are by default automatic variables (which will

cease to exist in any meaningful sense after the block exits), or they can

be declared at the top level, in which case they are static, and have life-

times equal to the duration of the program. Recall that it is also possible

to declare static variables inside a block, but this possibility is one that we

side-step. Instead we model static local variables as global variables with

distinct names, and that only occur in the block where the variable is de-

clared.

Upon declaration, variables can also be initialised. This naturally in-

volves use of the →e relation. Finally, though not strictly a variable decla-

ration, structure declarations can also occur wherever a variable declara-

tion is permitted. The →v relation takes declaration-state pairs and returns

value-state pairs. There are only two possible return values for variable

declarations, VarDeclVal, representing a successful execution, and U for

undefinedness. The rule for a successful variable declaration is:

〈τ id;, σ〉 →v 〈VarDeclVal, decl var(σ, id, τ)〉

The decl var function updates the state argument’s environment, allocat-

ing the variable in question some space in memory (space appropriate for

its type), and changing the address, allocated and type maps in the state

(A, Λ and Γ respectively).

decl var(σ, id, τ) = σ




A := A[id := a],
Γ := Γ[id := τ],
Λ := Λ ∪ r




where alloc(σ, τ, a) and r = {a . . . a + |τ | − 1}

Though we have omitted the rule here, if there is no memory available for

alloc then the declaration will fail with undefinedness the result.

When a variable is initialised with an expression it is equivalent to first

declaring the variable, and then assigning the initialising expression to it.

〈τ id;, σ0〉 →v 〈VarDeclVal, σ′〉
〈id = RVR(e), σ′[R := ∅, Υ := ∅]〉 →∗

e 〈(m, τ), σ〉 Πσ = ∅

〈τ id = e;, σ0〉 →v 〈VarDeclVal, σ〉

Expression evaluation can go astray, so undefined behaviour can result:

〈τ id;, σ0〉 →v 〈VarDeclVal, σ′〉 〈id = RVR(e), σ′〉 →∗
e 〈U , σ〉

〈τ id = e;, σ0〉 →v 〈U , σ〉

3.6. MECHANISATION 63

Finally, the third type of declaration is for declaring new struct types. This

requires both a name for the type, and the names and types for all of the

constituent fields. This information is stored in the Σ component of the

state record.

〈struct id fields;, σ〉 →v 〈VarDeclVal, σ[Σ := Σ[id := fields]]〉

Finally, there are three obvious rules for dealing with lists of variable dec-

larations, as occur at the head of blocks.

〈[], σ〉 →v 〈VarDeclVal, σ〉

〈vd, σ0〉 →v 〈VarDeclVal, σ′〉 〈vs, σ′〉 →v 〈v, σ〉

〈vd :: vs, σ0〉 →v 〈v, σ〉

〈vd, σ0〉 →v 〈U , σ〉

〈vd :: vs, σ0〉 →v 〈U , σ〉

3.6 Mechanisation

The mechanisation of C’s dynamic semantics in HOL was a long and error-

prone process. Here we describe how that mechanisation was performed,

touching on the technology used to achieve it as well as some of the design

decisions that had to be made. We also describe the ways in which the

mechanisation falls short of being a perfect realisation of the definition

above.

The centre-piece of the Cholera definition of the dynamic semantics is

the mutually recursive, inductive definition of meaning. This consists of

some sixty rules. We model the E and L contexts as constrained functions

of type :CExpr->CExpr. These functions take expressions to larger expres-

sions that include the domain element somewhere in their body in place of

the context’s “hole”. Without the rules for these contexts, the number of

rules in the meaning relation would have ballooned.

There are six relations embodied by all of these rules. They are →e

and →∗
e (this has to be given an explicit definition because it is used inside

the definition of →s); →s and its extension to lists of statements; and →v

and its extension to lists of declarations. The links between the various

relations occur at the following points: expression evaluation depends on

statement execution in the rule for function calls, statement execution de-

pends on variable declarations inside the rule for blocks, variable declara-

tions depend on expression evaluation because of the possibility of declared

64 CHAPTER 3. DYNAMICS

variables being initialised, and statement execution depends on expression

evaluation in the expression-statement, and the conditional and iteration

forms.

The HOL system’s standard inductive definition package does not allow

one to define mutually recursive relations explicitly. Instead one constructs

one large relation that embodies all of the required forms, distinguishing

among them with tags attached to disjoint union types constructed for the

purpose. This technique is sufficiently well-understood that its use repre-

sents no more than a minor inconvenience to the user.

The main source of errors in this part of the mechanisation was the

fact that the definition package used encourages one to enter the various

components of an inductive rule (hypotheses, side-conditions, and con-

clusion) as separate terms. This is superficially appealing at a syntactic

level. Instead of writing P ∧ Q ∧ R, one is encouraged to construct a list

of terms at the level of ML: [‘‘P‘‘, ‘‘Q‘‘, ‘‘R‘‘]. The semantics of

both input styles is the same, but the latter leads to more errors because

type-checking happens many times over disjoint terms instead of just once

over a combined term. In this way, variables intended to be the same in

two terms can be assigned different types because of an error that would

have been caught if the terms had been checked as one. These are errors

where the user’s clear intent has become corrupted in being transferred to

the machine. They and a number of similar errors would be easily caught

by an analysis typically done by Prolog systems: flagging variables in the

antecedent of a rule that are used only once.

Another class of errors is that where the user’s intention is mistaken.

These errors are typically harder to catch as the user’s misunderstanding

may only come to light when a theorem fails to “come out”. In Cholera,

errors of this sort could persist for a surprisingly long time as proofs in-

volving all of meaning’s 60 rules were rare. Rules in error might still satisfy

expected properties, so the process of iterative improvement to the defini-

tion could and did take a large number of iterations.

Before defining the meaning relation, it was necessary to define the type

of program states. The various “map” components of the state (e.g., Γ, A)

are modelled as functions. Strictly, one might expect these components

to be modelled as partial, finite functions, but HOL provides no built-in

support for such types and we soon saw that overriding arbitrary total

functions with new information would be enough, as well-typed programs

would never look beyond the finite amount of new information that had

been overlaid onto the functions.

The mechanisation of meaning is also dependent on the definitions of

the OpSem and UnOpSem, which give meaning to the various operators which

3.6. MECHANISATION 65

are part of the language, such as those for performing arithmetic. These

definitions are not given above, but are provided in the mechanisation.

Our definition of the meaning relation differs from that given above in

omitting the rule with the infinitary hypothesis that allows for infinite loop

detection. This omission was initially caused by the fact that Melham’s

inductive definition package [Mel91] can not handle such definitions. We

later became aware of Harrison’s alternative package [Har95b], which does

allow this form of rule, and Bofinger’s example [Bof98] makes it clear that

this is indeed a plausible addition. However, as pointed out earlier, even

this form of definition has its flaws, and we should ultimately prefer to

recast the definition of statement evaluation to use a small-step relation.

66 CHAPTER 3. DYNAMICS

Chapter 4

Expressions

We begin by describing a suite of results which are expected consequences
of our definition, and which thereby serve to validate it. The most im-
portant of these is the property of type preservation or subject reduction.
We then discuss expression purity, a syntactic characterisation of what it is
for an expression to be side effect free. We demonstrate that the syntactic
property has the desired semantic property and then show that syntactically
pure expressions are deterministic. Finally we conclude with the result that
sequence point free expressions are also deterministic.

4.1 Preliminaries

By virtue of having been accepted by the theorem prover (specifically Mel-

ham’s inductive definition package [Mel91]), our definition of C’s dynamic

semantics is automatically a valid inductive definition. In other words, the

implicit function over sets whose least fixed point we have taken is neces-

sarily monotonic with respect to ⊆ (the Knaster-Tarski result then justifies

the fix-point itself). This is the most minimal of all possible “sanity checks”,

and tells us nothing about the quality of our semantics with respect to the

original specification, the ISO standard [ISO90].

A first attempt at better validation for a semantics such as ours consists

of simple eye-balling by the author. This is an error-prone process in itself,

but it can catch simple mistakes. Better would be to have the specification

of the semantics inspected by another individual who was both familiar

with the fine details of the ISO standard, and the techniques of operational

semantics. Unfortunately, such people are hard to find, which is rather

an indictment of the divergence between theory and practice in computer

science.

67

68 CHAPTER 4. EXPRESSIONS

Fortunately, we can still use the theorem prover to test our definition

by proving a number of minor, and obvious, results.1 We expect these

theorems to be true in advance, and we can be sure that they don’t reflect

any semantic profundity. However, if we can prove them it is a validation

of our semantics. If, on the other hand, it turns out that what we are

attempting to show is false, then our proof will quickly founder on a case

that embodies this falsity. We will then realise that either our semantics or

our original claim is incorrect. We must still decide this question at a level

above the logic, but the process of the attempted proof has focussed our

attention on a part of the semantics that might have otherwise escaped our

attention.

We will now present a selection of invariants for our dynamic semantics.

In almost all cases these are proved by performing a rule induction over the

relevant subset of the semantics. As well as giving each a brief precis, we

give the number of lines of SML that the proof required. This is a primitive

measure of proof complexity, but will provide a rough means of comparing

the complexities of these proofs with those that come later in this section.

• Undefined sub-expressions never disappear. (36 lines)

U an active sub-expression of e0 ∧ 〈e0, σ0〉 →e 〈e, σ〉
⇒ U an active sub-expression of e

where an active sub-expression is one on the LHS of a sequence point

inducing operator such as && or the comma-operator.

The original statement of this theorem did not have the requirement

that the undefined sub-expressions be active, in the sense given above.

This form of the statement is false however because an undefined sub-

expression that was on the RHS of a && operator could disappear if

the LHS of that operator evaluated to zero.

• The initialisation map is always a subset of the allocation map. (30

lines)

Iσ0
⊆ Λσ0

∧ 〈s, σ0〉 → 〈v, σ〉 ⇒ Iσ ⊆ Λσ

This result holds for all of the relations defined in the semantics, and

all possible pieces of syntax.

• An expression is lval safe if the RHS’s of all assignment expressions

within it are always either wrapped in a RVR construct, are values,

1Rushby calls these theorems formal challenges [Rus93].

4.1. PRELIMINARIES 69

are undefined, or are binary operators. This property is preserved by

expression evaluation. (24 lines)

lval safe(e0) ∧ 〈e0, σ0〉 →e 〈e, σ〉 ⇒ lval safe(e)

This result is useful because it reassures us that we will never get

lvalues at the top level of the RHS of an assignment expression. Such

a situation would cause the semantics to block as the L context for

allowing lvalue to value reduction doesn’t cover this syntactic form.

• Having a finite bag of pending side effects is preserved by expression

evaluation. (16 lines)

FINITE BAG(Πσ0
) ∧ 〈e0, σ0〉 →e 〈e, σ〉 ⇒ FINITE BAG(Πσ)

These results are a representative sample of those actually proved in the

course of the Cholera mechanisation. We also have a similar set of trivial

identities that serve the same purpose of validating our definition. Here are

two of them:

• Sequential compositions involving the empty statement are equiva-

lent to those without it. (19 lines)

〈; :: stmts, σ0〉 →s 〈v, σ〉 ≡ 〈stmts, σ0〉 →s 〈v, σ〉

• Trap distributes over if statements. (8 lines)

〈T (b, if (g) s1 else s2), σ0〉 →s 〈v, σ〉
≡ 〈if (g) T (b, s1) else T (b, s2), σ0〉 →s 〈v, σ〉

Of the invariant results given above, all but the first are what we term

“syntactic preconditions”: they embody properties that we want to hold

when a program begins to execute. Reasoning about programs where we

have infinite bags of pending side effects, for example, is a pointless exer-

cise. These preconditions do not appear in the definition of the dynamic

semantics but we are not interested in situations where they do not hold.

Sometimes it is possible to prove results without such assumptions (the two

identities above, for example), but more complicated theorems about C’s

behaviour are almost invariably accompanied by a series of assumptions

stating that the values we are interested in satisfy various preconditions.

Now, preconditions of this form have a great deal in common with a

type system seen in its rôle as a program filter that rejects programs that

70 CHAPTER 4. EXPRESSIONS

are not well-formed. In this light, all of our syntactic preconditions are just

extensions to the type system. On the other hand, one difference is that

they apply not just to the syntax of the program, but also make require-

ments of the program state as well. The fact that these preconditions are

invariant, that they are preserved by evaluation, is vital because we want

them to hold not only when a program begins its execution but also at all

intermediate stages as well.

The question that naturally arises is then whether or not the original

typing relation is preserved by the evaluation relation, just as our “exten-

sions” are preserved. This would be an important validation of the type

system as it would demonstrate that the evolution of syntax (expressions

in this case, given the absence of types for statements and declarations)

proceeds in a constrained way. This property is known as subject reduction,

as well as type preservation. It holds for our definition of C (though we

require that the resulting expression be free of undefined sub-expressions,

written U -free(e)):

Theorem 1 (Subject reduction) If 〈e0, σ0〉 →e 〈e, σ〉, and our initial expres-

sion is well typed (i.e., Γσ0
, Σσ0

` e0 : τ) then as long as e is U -free, e will

have the same type as e0. That is, we will have Γσ, Σσ ` e : τ .

This is proved in the mechanisation as an immediate consequence of a

stronger theorem which states both the conclusion above, and that even if

a sub-expression does become undefined, then all other sub-expressions in

the whole will retain a type. This stronger result is useful in other work, but

takes 230 lines of SML to prove. The result as stated (if proved on its own)

requires 190 lines. The proof is a rule induction over all of the rules for

expression reduction in the semantics, and is not particularly interesting.

Once stated and proved, the property that being well-typed is preserved

is useful in subsequent proofs. It is of particular use in rule inductions

over the dynamic semantics when considering cases corresponding to rules

where static properties are assumed. An example of this is the rule for

structs: it is only the guarantee of well-typedness that ensures that a ref-

erence to a member will succeed. In the determinism results to be described

later in this chapter, we are often concerned to show that a reduction can

be mimicked by another, analogous, reduction starting from a slightly dif-

ferent initial state. In these situations, we need to be sure that these “type-

dependent” reductions will go ahead.

This frequent need to refer to an assumption of well-typedness is the

price we pay for omitting static details in the rules for the dynamic seman-

tics. On the other hand, the case for including the static semantics as part

4.2. SYMBOLIC EVALUATION AND ITS PITFALLS 71

of the dynamics applies equally well to all the other syntactic preconditions

we have discovered, and including these in the dynamics would complicate

an already overly complicated semantics. It is our claim that it is better to

separate the various facets of the semantics so that they can be considered

in isolation, even if this does complicate the statement of later results.

Being well-typed is not a guarantee that an expression will not give rise

to undefined behaviour. Subject reduction allows us to conclude that if a

well-typed expression reduces to a value, then this value will be of the same

type as the original expression, but as we saw in chapter 2, the property

of being defined is not syntactically checkable. Instead, we can prove a

characterisation of the ways in which the reduction semantics can “block”.

(This takes 193 lines to prove.)

Theorem 2 (Typed expressions’ blocking behaviour) Given a state σ0, if

e0 is well-typed (i.e., ∃τ. Γσ0
, Σσ0

` e0 : τ) and lval safe, but is not a value, is

not U and does not include any function calls, then there exist an expression e
and a state σ such that 〈RVR(e0), σ0〉 →e 〈RVR(e), σ〉.

The requirement that the expression not include a function call high-

lights the fact that expressions can block if they include within them a

function call that would loop if executed. The rule for function calls re-

quires that there be a state reached by the statement execution; if there

isn’t one, this rule blocks. The conclusion says that we are guaranteed a re-

duction only if the expression is inside a RVR constructor because an lvalue

at the top level will not reduce on its own. However, as previously noted,

all expressions in the statement and declaration semantics are evaluated

with such a wrapper, so our statement is not too specific to be useful. It we

take our result’s contrapositive, we gain a characterisation of the possible

forms a typed expression will take when it does block.

4.2 Symbolic evaluation and its pitfalls

C’s expressions are difficult to work with in the context of verification. Here

we will briefly explain the nature of this difficulty, thereby motivating the

work that is to be explained in the remainder of the chapter.

The problem with C’s expressions is that they are non-deterministic.

Non-determinism makes program verification difficult because one has to

verify that all possible outcomes satisfy the chosen specification. Without

any more precise knowledge as to how an expression will behave and what

all these outcomes will be, a verification must examine each possible or-

der of evaluation so that each possible outcome can be checked against

72 CHAPTER 4. EXPRESSIONS

the specification’s post-condition. Consider for example the simple binary

expression i * j++. Here there are just four events:

1. evaluating i,

2. evaluating j++, yielding the value of j and putting the side effect of

adding one to that value into the bag of pending side effects,

3. applying the side effect, and

4. performing the multiplication

Using the numbers above to identify the events, the following sequences of

events are all possible: 1234, 2134, 1243, 2143, and 2314. In larger ex-

pressions with multiple side effects, the explosion of possibilities becomes

even worse. And yet the expression given is actually deterministic. Subse-

quent sections in this chapter will look at how we can demonstrate deter-

minism for two broad classes of expressions.

For the moment, we examine how we might trace out all of an expres-

sion’s possible execution paths. (In the worst case, where we do not have

a result to the effect that an expression is deterministic, it is this procedure

to which we will have to resort, exponential blow-up or not.) As discussed

in section 2.7, it is entirely straightforward to turn an inductive definition

in the mechanisation into a set of rewrites that perform evaluation. As a re-

sult, Cholera can perform expression evaluation quite readily. Furthermore,

one is not constrained to evaluate only expressions that are entirely ground

terms, as one would be in an interpreter for the language. Instead, the op-

eration of logical rewriting will introduce any disjunctions necessary if the

behaviour of the program depends on the contents of memory or some

other variable. This is thus a näıve form of symbolic evaluation. For exam-

ple, given the term 〈e0, σ0〉 →e 〈e, σ〉 where e0 is a concrete piece of syntax,

this rewriting will generate a set of logical constraints on the variables in

the term, removing →e entirely.

If one is not interested in staying within the logic, a more sophisticated

approach (albeit one that eschews the LCF guarantees of soundness) is

available in Syme’s DECLARE system [Sym97a]. Syme’s approach is to take

the logical specification of an operational semantics and use it to gener-

ate SML code for performing execution. This automatically generated in-

terpreter can then be used as a convenient (and very satisfying) way of

validating one’s semantics on realistic program examples. This is possi-

ble because the compilation of the definition into SML provides a level of

efficiency not possible within the logic.

4.3. PURE EXPRESSIONS 73

Further, Syme’s earlier work on mechanising SML [Sym93] (building in

this case on work by Hutchins [Hut90]) demonstrated that it is possible

to generate more efficient implementations of symbolic evaluation, even

within the logic. However, this approach was not automated and would re-

quire considerable time to implement in the case of C, not so much because

of the number of rules, but because of their complicated nature, particu-

larly in their interactions with the program state. In any case, no matter

how efficiently one implements symbolic evaluation, it is the nature of C

that there will be exponentially many cases to consider whenever an ex-

pression includes binary operators.

Symbolic evaluation implemented by simple-minded rewriting does ap-

pear to be adequate for statement evaluation in the absence of loops, and

that is the approach pursued in Cholera, as is further described in chapter 5.

4.3 Pure expressions

Our first attack on C’s non-deterministic expressions proceeds by way of

first concentrating on another “unwholesome” aspect of C’s expressions, the

fact that they may have side effects. Under the assumption that expressions

which don’t have side effects will prove more tractable, our approach is to

develop a theory of such expressions, which we will call pure. This property

is characterised at the semantic level thus:

pure(e0) =̂ ∀σ0, σ, e. 〈e0, σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈e, σ〉 =⇒

∀a. a ∈ Λσ =⇒ Mσ(a) = Mσ0
(a)

(An expression is pure if the contents of memory (modulo what is currently

allocated) are always the same at all stages.)

Basic computability theory tells us that deciding whether or not an ex-

pression is pure is impossible (Rice’s theorem again). For this reason we

develop a secondary notion of purity that is based entirely on the syntax

of an expression. This will provide a simpler, decidable check for purity.

We expect that syntactically pure expressions will be a subset of the pure
expressions, giving us a sound but incomplete characterisation of the se-

mantic notion.

Our definition of what it is to be syntactically pure is straight-forward,

if näıve: it rejects expressions containing function calls, assignment expres-

sions, post-increments and post-decrements. A more sophisticated analysis

would be less hasty in forbidding function calls and would allow function

calls that were to functions that did not include impure expressions. This

approach would require traversing functions’ call-graphs (requiring some

74 CHAPTER 4. EXPRESSIONS

sort of inductive definition) and we avoid this because it seems overly com-

plex. We write synpure(e) to mean that e is syntactically pure in this way.

We first prove that the property of syntactic purity is preserved by eval-

uation:

∀e0, σ0, e, σ. 〈e0, σ0〉 →
∗
e 〈e, σ〉 ∧ synpure(e0) =⇒ synpure(e)

This proof is 19 lines of ML, and proceeds by rule induction over →e. We

next prove that syntactically pure expressions are all semantically pure. In

fact, we prove a slightly stronger result: that syntactically pure expressions

change only the reference map component of a state. Abusing our notation

somewhat, we write that a state is pure when it has an empty update map,

and when it has no side effects pending. We further write σ1 ∼R σ2, when

σ1 is identical to σ2, except for the reference map component. Given this

definition we have:

Lemma 3 (Syntactic purity implies semantic purity)

∀e0, σ0, e, σ. 〈e0, σ0〉 →
∗
e 〈e, σ〉 ∧ synpure(e0) ∧ pure(σ0) =⇒ σ ∼R σ0

This is again proved by rule induction, this time taking 18 lines. (Because

σ1 ∼R σ2 implies that all but reference map components are identical, we

have met the conditions for an expression to be pure, as per the definition.

We also have that σ is pure in the overloaded sense given above.)

4.3.1 Proof outline

We should like to demonstrate determinism by showing a diamond property

for all of the possible reductions that a syntactically pure expression might

undergo. Graphically, this amounts to showing that in all situations we can

find reductions to fill in the dashed lines below:

e0, σ0

	 Re1, σ1 e2, σ2

R 	

e, σ

It follows that if this can be shown for single steps of a reduction relation,

then that reduction system must be confluent. Unfortunately, this property

4.3. PURE EXPRESSIONS 75

does not hold for pure expressions. A counter-example is (x && y) + x.

If this expression evaluates the x on the RHS of the addition before the

sequence point is reached, then the final state of the evaluation will not

record x in its reference map. If however, the evaluation delays its evalu-

ation of the RHS until after passing the sequence point introduced by the

logical and, then this reference will be present in the final state’s reference

map. As a result, we will only be able to show determinism up to ∼R .

Furthermore, the result also fails if there is a undefined expression as an

immediate sub-expression of e0. For example, if we have U + i, then this

can undergo two possible reductions: one to U , and one to U + v, where

v is the value of the variable i. It is not possible to reduce to anything

from the first result, which is entirely undefined. However, expressions

which contain undefined sub-expressions have already exhibited undefined

behaviour, so there is little point in describing their behaviour. Therefore

we add the precondition that e0 not include any undefined sub-expressions.

We will investigate the determinism of undefined behaviours in section 4.5.

These provisions notwithstanding, this is still a useful result as the refer-

ence map components of final states are always ignored in evaluating one

expression to the next within statements. (The fact that all of a program’s

expressions are always evaluated in a state that has its reference map set to

∅ is easily confirmed by inspecting the rules for statements and declarations

that include expressions within them.)

4.3.2 Pure expression determinism

We begin by proving the powerful result that our relation ∼R between

states is preserved in a way that is reminiscent of bisimulation.

Theorem 4 (∼R is a “pseudo-bisimulation” for synpure expressions)

∀e0, σ0, e, σ. synpure(e) ∧ pure(σ0) ∧ 〈e0, σ0〉 →e 〈e, σ〉 =⇒
∀σ′

0
. σ0 ∼R σ′

0
=⇒

∃σ′. 〈e0, σ
′
0
〉 →e 〈e, σ

′〉 ∧ σ ∼R σ′

This result is proved by a straightforward induction over the rules for →e,

and is proved in HOL with 69 lines of ML. This result makes the actual

diamond result quite easy to prove.

76 CHAPTER 4. EXPRESSIONS

Theorem 5 (Single-step diamond result for synpure expressions)

∀e0, σ0, e1, σ1, e2, σ2.
〈e0, σ0〉 →e 〈e1, σ1〉 ∧ 〈e0, σ0〉 →e 〈e2, σ2〉 ∧ (∃τ. Γσ0

, Σσ0
` e0 : τ) ∧

pure(σ0) ∧ synpure(e0) ∧ U -free(e0) ∧ (e1, σ1) 6= (e2, σ2)
=⇒ ∃e, σ′

1
, σ′

2
.

〈e1, σ1〉 →e 〈e, σ
′
1
〉 ∧ 〈e2, σ2〉 →e 〈e, σ

′
2
〉 ∧ σ′

1
∼R σ′

2
∧

(U -free(e) = U -free(e1) ∧ U -free(e2))

We prove this by inducting over the structure of the expression e0. To

illustrate the proof, we will describe the four significant cases that arise for

binary operators, focussing on the diamond part of the conclusion rather

than the U -free properties. Each case presents us with a situation in which

there have been two reductions as per the hypothesis of the theorem above,

i.e., two possible ways of achieving 〈e01 � e02, σ0〉 →e 〈e, σ〉 with two result-

ing value-state pairs 〈e1, σ1〉 and 〈e2, σ2〉.

1. The two reductions are both in the left hand argument of the opera-

tor. So we have 〈e01, σ0〉 →e 〈e1, σ1〉 and 〈e01, σ0〉 →e 〈e2, σ2〉, with the

top level 〈e01�e02, σ0〉 reducing to either 〈e1�e02, σ1〉 or 〈e2�e02, σ2〉.
This case is handled by our inductive hypothesis: we have that this

dual movement in the left sub-expression implies two further reduc-

tions to a common result: that there exist e, σ′
1
, and σ′

2
such that

〈e1, σ1〉 →e 〈e, σ′
1
〉, 〈e2, σ2〉 →e 〈e, σ′

2
〉, and σ′

1
∼R σ′

2
. The existence of

these reductions implies reductions at the higher level as well, and

thus we show the desired conclusion.

2. The two reductions are both in the right hand argument. This case is

directly analogous to the first, and the argument is the same.

3. The two reductions are in e1 and e2. So we have 〈e01, σ0〉 →e 〈e1, σ1〉
and 〈e11, σ0〉 →e 〈e2, σ2〉. By lemma 3 we have that σ1 ∼R σ0 ∼R σ2. This

in turn implies by theorem 4 that we can make analogous reductions

to the originals in the different starting states, that there exists σ ′
1

and

σ′
2

such that σ1 ∼R σ′
1
, σ2 ∼R σ′

2
, 〈e01, σ2〉 →e 〈e1, σ

′
1
〉 and 〈e02, σ1〉 →e

〈e2, σ
′
2
〉. At the level of the whole binary expression, we therefore have

that 〈e1 � e02, σ1〉 →e 〈e1 � e2, σ
′
2
〉 and 〈e01 � e2, σ2〉 →e 〈e1 � e2, σ

′
1
〉.

Our finishing states are related by ∼R , so we are done.

4. There are two reductions taking values to different results, i.e., from

〈(v1, τ1) � (v2, τ2), σ0〉 to two different results. We show that this is a

contradiction by appealing to the fact that the binary operators are in

fact deterministic.

4.4. SEQUENCE POINT FREE EXPRESSIONS 77

Our result is not quite a canonical diamond result. For the reasons al-

ready given, we can not expect that both of our reductions will be able to

find a common state to reduce to, but we do at least have that they can

reduce to two states which are almost exactly the same. Moreover, these

fresh reductions do not introduce any undefined sub-expressions. This lat-

ter point means that if we insist on e1 and e2 being U -free, then we can be

sure that the resulting expression e will be as well. We will need to insist

on this condition if we are to be able patch multiple diamonds together and

draw conclusions about the behaviour of →∗
e. Upon extending our result so

that it applies to →∗
e, we get the following “determinism” result.

Theorem 6 (Determinism of synpure expressions)

∀e0, σ0, v1, τ1, σ1, v2, τ2, σ2.
〈e0, σ0〉 →

∗
e 〈(v1, τ1), σ1〉 ∧ 〈e0, σ0〉 →

∗
e 〈(v2, τ2), σ2〉 ∧

synpure(e0) ∧ pure(σ0)
=⇒ (v1 = v2) ∧ (τ1 = τ2) ∧ (σ0 ∼R σ1 ∼R σ2)

4.4 Sequence point free expressions

While pure expressions have many nice properties (in addition to being

deterministic, they can be easily adapted for use in a Hoare style program-

ming logic for statements, as we shall see in chapter 5), it is a fact of life that

many expressions in idiomatic C programs are not pure. In this section, we

present another class of expressions which are deterministic even though

they are not necessarily pure. This class is that of expressions without in-

ternal sequence points. Recall that sequence points occur in the evaluation

of the logical operators &&, || and ?:, as well as in the comma-operator as

well when a function call is made. If we eliminate these syntactic forms we

obtain a different class of expressions, those which are sequence point free.

The sequence point free expressions overlap the pure expressions but

neither set is included in the other. There are also a number of expressions

which are neither pure nor sequence point free. At the end of this section

we will suggest one further class of deterministic expressions, but even then

none of our classes extend to cover expressions including function calls. If

any set of expressions in C is non-deterministic it will be those expressions

that include function calls. For example, our semantics for function calls

makes the following program non-deterministic, but defined:

78 CHAPTER 4. EXPRESSIONS

int x = 4;

int f(void) { x = 3; return x; }

int main(void) { return x + f(); }

Given our semantics, this program will return either 6 or 7 depending on

whether the function call happens before or after the evaluation of the x

in the expression in the main function. On the other hand, an alternative

semantics which interleaved the execution of function bodies with execu-

tion of the surrounding expression would make this program undefined.

Given the standardisation committee’s seeming unwillingness to confront

this issue, our semantics seems as plausible as any other.2

Recall the example presented earlier: i * j++. This is a sequence point

free expression, and it is deterministic. An informal argument that this

is the case would simply rest on the observation that the evaluation of i

and the side effect incrementing j can’t possibly interact. In expressions

where an interaction is possible, such as in i + i++, we don’t get non-

determinism. Instead undefined behaviour is the result. This stems from

the restrictions on the reference and update map components of the state

(Rσ and Υσ). Two rules from chapter 3 are particularly relevant. The first

is where we are attempting to read from memory, and must observe the

restriction that the region of memory read (r below) is not in the update

map.3

Υσ ∩ r = ∅ r ⊆ Iσ okVal(σ,m, τ) τ not an array type

〈LV(a, τ), σ〉 〈(m, τ), σ[R := R + r]〉

r = {a . . . a + |τ | − 1}
m = Mσ〈a . . . a + |τ | − 1〉

The second rule is where updates are made, and where there is a similar re-

striction: new updates can not update memory already updated or referred

to:

η ∈ Πσ s ⊆ Λσ Rσ ∩ s = ∅ Υσ ∩ s = ∅

〈e, σ〉 →e 〈e, σ[I := I ∪ s,M := M [r := m], Π := Π − {η}, Υ := Υ ∪ s]〉

2We admit our semantics’ failings with respect to termination and non-determinism
(brought about by the use of a big-step semantics at the level of statements). Nonetheless,
fixing this and using a small-step semantics for statements will not in itself resolve the
question of whether function calls interleave, as expressing both semantics is possible in
this framework.

3The accompanying rule specifies that undefinedness results if this rule’s preconditions
are not met.

4.4. SEQUENCE POINT FREE EXPRESSIONS 79

where η = ♣(a,m)
r = 〈a . . . a + |m| − 1〉
s = {a . . . a + |m| − 1}

For brevity’s sake we now define an auxiliary function, apply se, which

takes a side effect and a state and returns the state described above. In

other words, the RHS of the above rule could be rewritten apply se(σ, η).
Our proof of determinism will follow the same outline as we used for pure

expressions: showing confluence for successful evaluations, while deferring

the treatment of undefined behaviour to section 4.5.

4.4.1 A sequence point free diamond property

Even assuming that our reduction sequences do not become undefined, the

task of proving determinism for expression evaluation is quite complicated.

In particular, the system as described is made difficult to reason about by

the fact that side effect applications and other forms of reduction can in-

termingle. The first stage of our proof is to demonstrate that side effect

applications can all be postponed to the end of an evaluation sequence

without affecting the result.

This should be clear from the constraints described earlier: if a side

effect application were to make a difference, a subsequent reference to

memory would need to look at some part of memory that the side effect had

changed; but this is precisely one of those situations forbidden (a reference

to updated memory) and would lead to undefinedness, contradicting our

earlier assumption.

The proof proceeds by first showing that side effect applications and

other reductions can commute.

Lemma 7 (Pure reductions commute with apply se) For all expressions

e0, e1, for all states σ, σ0, σ1, and for all side effects η, if η is pending in σ, with

σ0 = apply se(σ, η) (i.e., σ0 is the state that results from applying η to σ),

and 〈e0, σ0〉 →e 〈e, σ1〉 then there exists a state σ′ such that 〈e0, σ〉 →e 〈e, σ
′〉,

η is pending in σ′ and σ1 = apply se(σ′, η).

This is a straightforward rule induction on the inductive definition of

→e. Another induction readily extends this to allow side effect applications

to be pushed past any number of other expression reduction steps. Using

this, we then induct on the number of reductions to prove our “separation

theorem”:

Theorem 8 (Separation) For all expressions e0, e, and for all states σ0, σ,

if 〈e0, σ0〉 →
∗
e 〈e, σ〉, then there exists a state σ′ and a sequence of side effects

80 CHAPTER 4. EXPRESSIONS

η1 . . . ηn where both the update maps and memory contents of σ0 and σ′ are

the same, and 〈e0, σ0〉 →
∗
e 〈e, σ

′〉 and σ is the result of applying the side effects

η1 . . . ηn to σ′.

(Note that the final value e is present after the expression reduction

steps, and before the side effect applications begin. This is because these

later applications can not change the value that an expression yields.)

We now consider the →e relation as the union of two components: re-

ductions where no side effect applications occur, and reductions that are

exclusively side effect applications. Let us use →E for the former and →A

for the latter so that →e=→E ∪ →A. Confluence for both →E and →A,

together with the separation theorem imply confluence for →e as follows:

1. Consider two reduction sequences starting at 〈e0, σ0〉 that both com-

plete normally. One is to 〈e1, σ1〉 and the other is to 〈e2, σ2〉.

2. By the separation theorem, both reduction sequences can be sepa-

rated into two phases, with intermediate points 〈e1, σ
′
1
〉 and 〈e2, σ

′
2
〉,

such that 〈e0, σ0〉 →
∗
E 〈e1, σ

′
1
〉 and 〈e1, σ

′
1
〉 →∗

A 〈e1, σ1〉 (similarly for e2

etc.)

3. Because e1 and e2 represent completed evaluations, they must be val-

ues. As →A only applies side effects, it doesn’t change expressions.

Thus the states reached by →∗
E must be terminal with respect to it.

Then if →E is confluent, these intermediate states are actually the

same.

4. Now we have two reduction sequences involving →∗
A from the same

starting point. As →A is also confluent, the final states are necessarily

identical.

Given this result, we need only prove that →E and →A are confluent.

Confluence for →E

We establish confluence for →E by demonstrating a diamond property for

single steps of the relation.

Before beginning a proof such as this, it is instructive to consider paral-

lels with the similar task that one faces in attempting to prove confluence

for the λ-calculus. There, things are somewhat complicated by the fact that

a reduction in the RHS of a β-redex may have to be matched by many repe-

titions of essentially the same reduction in an alternative branch where the

4.4. SEQUENCE POINT FREE EXPRESSIONS 81

RHS has been substituted into the body of the LHS. This doesn’t happen in

our semantics, where substitution doesn’t arise.

However, the λ-calculus is at least entirely syntax-directed; if a redex

is present, then the reduction can always take place, and its result will

always be the same. Reductions in the λ-calculus can be said to ignore their

context. This is not the case in the C semantics where the accompanying

state, an ever-present and varying context, can affect reductions. This is

not just a matter of different values for variables affecting the value of

an expression, but more significant: a state with a large update map may

make a reduction that would otherwise turn a variable into a value instead

produce undefinedness.

With this motivation behind us, the first stage in our proof will be to

characterise the degree to which states can vary and yet still produce the

same reduction for a given piece of syntax. Furthermore, because expres-

sion reductions affect the state4, we want to characterise the way in which

this happens, so that, ultimately, we will be able to state that reduction x
can reduce in the same way both before and after reduction y.

Theorem 9 (Reduction characterisation) If 〈e0, σ0〉 →E 〈e, σ〉 then there

exists a function f characterising the reduction, such that f(σ0) = σ, and for

all σ′
0

which are “no more restrictive” than σ0, then 〈e0, σ
′
0
〉 →E 〈e, f(σ′

0
)〉.

The meaning of “no more restrictive” above turns out to be rather de-

tailed in its expression, really suitable only for the consumption of a the-

orem prover.5 In essence it requires that the update map be no bigger in

σ′
0

than it is in σ0, but there are also are a number of conditions required

of both the initial states and the expressions involved. One of these is that

e0 be well-typed. Another is that e not be undefined; computations that do

allow e to become undefined are discussed in section 4.5.

We also have the following important lemma, which like the previous is

established by induction over the reduction relation.

Lemma 10 (Reduction preconditions preserved) If 〈e0, σ0〉 →E 〈e, σ〉,
then σ is no more restrictive than σ0 in the sense of theorem 9.

Now we can prove the diamond property for →E relatively straightfor-

wardedly. Again an induction is required over the reduction relation. The

4Though →E holds update maps and thus memory constant, we will still get new side
effects being added to the queue of those pending, and as objects are referred to, reference
maps also increase.

5However, the full statements of this and our other theorems are available in Ap-
pendix B.

82 CHAPTER 4. EXPRESSIONS

inductive or “sub-expression” cases, where we have two reductions within

the same sub-expression, are handled by the inductive hypotheses, so it is

just the cases where an expression form admits two reductions in different

sub-expressions which prove difficult. This includes both the normal bi-

nary operators, and also assignment, which needs to be treated separately

because unlike the other operators, it adds a side effect to those pending.

In such a situation, our reduction characterisation and reduction pre-

conditions results tell us immediately that a “diamond” of four sides can be

constructed. If the functions required to exist by the first result are f and

g, then the diagram looks like:

e0, σ0

� je1, f(σ0) e2, g(σ0)

? ?

e, (g ◦ f)(σ0)
?
= e, (f ◦ g)(σ0)

The question then remains as to whether or not f and g will commute.

They do in fact, as each does little more than specify the additions to the

starting state’s reference map and pending side effects. Addition on bags

being commutative, the result follows.

Confluence for →A

The second requirement of the proof of is to show that the →A relation is

confluent. We show this by demonstrating a diamond property. This is a

considerably simpler task than for →E.

Recall that we are performing reductions in a context where all of the

side effects can be applied successfully, resulting in normal termination

with a value. This implies that no pair of pending side effects affect over-

lapping parts of memory. We show this by contradiction. One of the side

effects must have been applied first. Subsequent to this application, the

other side effect can not have been applied because this would result in

undefined behaviour (two updates of the same part of memory). But if the

second side effect is not applied, then the final state must still have side

effects pending, which also contradicts our assumption, because a normal

termination is a sequence point, by which state all side effects must have

been applied.

So, all of the side effects affect different parts of memory, and can there-

fore be applied independently of one another. The required diamond prop-

erty is an immediate consequence of this.

4.5. UNDEFINED EVALUATIONS 83

Sequential expressions

A broader class of deterministic expressions is those that have their se-

quence point introducing operators at the top-level of the syntax tree. Such

expressions are thus made up of a sequence of sequence point free expres-

sions. An example of one such would be

(x && y = x + z, z = y ? 0 : z + 1, y + 10)

Given our earlier result, this expression is clearly deterministic, though a

proof of this fact has not yet been accomplished in the Cholera mechanisa-

tion.

4.5 Undefined evaluations

In this section we aim to show that if an evaluation sequence exists which

leads to undefined behaviour, this undefinedness can not be escaped, and

that all states reachable from the initial one must necessarily either be un-

defined themselves, or still admit the possibility of becoming undefined in

one or more steps. This result then makes it clear that a normal terminating

evaluation and an undefined one can not both begin from the same initial

state. We reason as follows: assume that such a situation exists. Then our

undefinedness result states that it is possible to reach undefinedness from

the final state of the normal evaluation. But if it is a final state, then it can

not take any more steps, and it is not in an undefined state itself because it

has yielded a proper value. Thus we have a contradiction and an assurance

to the effect that all evaluations are in fact deterministic.

We begin by defining the notion of state safety. A state is safe if its

pending side effects conflict neither with each other (i.e., do not affect

overlapping parts of memory), nor with the state’s reference map and up-

date map. It should be clear that a state which is safe can apply all of its

side effects without becoming undefined. The converse is the basis of our

first lemma in this section. (This notion is not relevant in the pure “world”

as pure states are necessarily safe by virtue of not ever having any pending

side effects.)

Lemma 11 (Finite and unsafe states can become undefined) If a state σ0

is both unsafe and has a finite bag of pending side effects, then for all e0 there

exists a reduction sequence and a state σ such that 〈e0, σ0〉 →
∗
e 〈U , σ〉.

Also, for all e0, e, σ0 and σ, if σ0 is unsafe, and 〈e0, σ0〉 →e 〈e, σ〉, then σ
is also unsafe.

84 CHAPTER 4. EXPRESSIONS

Our semantics represents undefinedness arising as a result of expres-

sion evaluation (e.g., division by zero, or a reference to a variable already

updated) by replacing the offending expression with U in the syntax tree

and then letting this “bubble” its way to the top of the tree. This can not be

prevented:

Lemma 12 (Undefined sub-expressions can always ascend) If an expres-

sion e0 is not U -free, then for all σ0 there exists a reduction sequence and a

state σ such that 〈e0, σ0〉 →
∗
e 〈U , σ〉.

These two results (neither of which is particularly surprising) make it

clear that a large class of expression-state pairs, those which are unsafe

or which have undefined subexpressions, though not necessarily “fully un-

defined”, might as well be. We shall refer to such states as effectively un-

defined. Though a state’s being effectively undefined may not seem such

a strong claim initially, the condition preservation clauses of the lemmas

above should make it clear that an effectively undefined state is one which

can never yield a value. In conjunction with the fact that all sequence point

free and synpure expressions must terminate6, we can see that effectively

undefined means “will necessarily become undefined”.

Our next theorem is more significant. We wish to show that if a re-

duction occurs which makes something effectively undefined, when it was

not effectively undefined before, then if one takes a different step from the

same initial state, the result will either be effectively undefined, or it will re-

tain the ability to make a reduction to an effectively undefined state. This

can be represented as a “broken” diamond, where we write ⊥ for states

which are effectively undefined in the sense defined earlier:

e0, σ0

	 R

⊥ e1, σ1

	

⊥

Another analogy is that of the cliff-edge. Over the edge lies effective

undefinedness. Once one reaches the edge, one can walk along it, but while

it may be possible to avoid falling over the edge for some indeterminate

length of time, it is not possible to move away. For synpure expressions, this

property follows immediately from theorem 5. In the context of sequence

point free expressions, the proof proceeds in a similar way to that of the

proof of the confluence of →E.

6Neither class includes function applications.

4.5. UNDEFINED EVALUATIONS 85

While the inductive cases are straightforward, we need to cope with the

fact that the reduction from 〈e0, σ0〉 to 〈e1, σ1〉 might involve a reduction in a

sub-expression unrelated to that which produced the undefinedness. Inside

〈e1, σ1〉 we want to have a reduction occur that is analogous to the one that

produced undefinedness from 〈e0, σ0〉. We do this by again establishing

a reduction characterisation result, and by demonstrating that reductions

preserve this.

In this case, the characterisation is essentially that an analogous reduc-

tion to undefinedness can occur in any state that is at least as restrictive as

the original. This condition is preserved both by →E and →A.

We then do an induction of the number of steps along the cliff’s edge to

produce:

Theorem 13 (The cliff’s edge) For all e0, σ0, if 〈e0, σ0〉 →e 〈e1, σ1〉 and

〈e1, σ1〉 is effectively undefined, then for all e2 and σ2 such that 〈e0, σ0〉 →∗
e

〈e2, σ2〉, there exists e′ and σ′ such that 〈e2, σ2〉 →e 〈e′, σ′〉, and 〈e′, σ′〉 is

effectively undefined.

In the context of sequence point free expressions, we still need to add

one more diamond property. This is a surprisingly easy proof as it does

not require an induction over the meaning relation. Instead the character-

isation functions and our lemma 7 that →E and →A commute combine to

give:

Theorem 14 (A diamond property for →E and →A) For all e0, e1, e2, σ0,

σ1, σ2: if 〈e0, σ0〉 →E 〈e1, σ1〉 and 〈e0, σ0〉 →A 〈e2, σ2〉 and both 〈e1, σ1〉
and 〈e2, σ2〉 are not effectively undefined, then there exist e and σ (possibly

effectively undefined), such that 〈e1, σ1〉 →A 〈e, σ〉 and 〈e2, σ2〉 →E 〈e, σ〉.

The final proof is now possible. We wish to show that if a reduction

sequence takes an initial state (〈e0, σ0〉) to undefinedness, then all other

possible destinations from the same starting point retain this possibility. In

essence, we exploit the possibility of completing a confluent diamond on

the cliff-tops.

1. We have a reduction sequence from 〈e0, σ0〉 to undefinedness. Let

〈e1, σ1〉 be the last state in this sequence not effectively undefined.

2. We have another reduction sequence to 〈e2, σ2〉, and by assumption

this is not effectively undefined.

86 CHAPTER 4. EXPRESSIONS

3. Therefore, either using all three of our diamond properties for →E

and →A, or using our determinism result for all pure expressions, we

have a common possible destination for both 〈e1, σ1〉 and 〈e2, σ2〉. Call

this 〈e, σ〉.

4. Having come along the cliff’s edge from 〈e1, σ1〉, 〈e, σ〉 must still be

on the edge, thereby retaining the possibility of a reduction to an

effectively undefined state, if it is not an effectively undefined state

already.

5. Effectively undefined states all allow for a reduction sequence to “full”

undefined-ness, so 〈e2, σ2〉 must do so as well by virtue of being able

to reduce to 〈e, σ〉.

Chapter 5

Statements

We describe work that allows the user to reason about C programs at the
level of statements. We present the derivation of a restricted Floyd-Hoare
logic for C programs, and also discuss the utility of this approach. We then
extend this to include a system for analysing loop bodies and automatically
generating provably correct post conditions, even in the presence of break,
continue and return statements.

5.1 A programming logic for C

C’s dynamic semantics is particularly complicated. Reasoning directly with

it in the theorem prover is a frustrating and unpleasant business. At this

level of work, proofs about concrete programs are conducted by performing

a symbolic evaluation of the code. We have already discussed the combi-

natorial explosion that confronts one when the evaluation of expressions is

performed. Here we discuss ways of simplifying the task of working at the

level of statements.

As motivation, we follow the example set by Gordon [Gor89], where a

programming logic of partial correctness is derived from a (denotational)

semantics. The programming logic derived is one that resembles the ax-

iomatic semantics presented in Hoare’s seminal paper [Hoa69]. Our aim is

to do the same, deriving a logic for reasoning about C’s statements. For all

that this logic may appear axiomatic, it is important to remember that it is

not an independent statement of the semantics. It is instead a consequence

of our operational definitions, and necessarily sound as a result. That this is

a reasonable aim is borne out by the observation that C does not have any

particularly complicated statement forms. Nonetheless there are two major

problems to deal with: expressions have side effects, and some statement

87

88 CHAPTER 5. STATEMENTS

forms allow for the flow of control to be interrupted.

The problem of side effects in expressions is a particularly difficult one

to reconcile with a system along the lines suggested by Hoare. The main

cause of difficulty is the fact that we should like to be able to equate ex-

pressions at the level of the programming language with expressions at the

level of the predicates which assert facts about the state of the abstract

machine. When expressions are necessarily side effect free, this is both rea-

sonable and easy to specify. However, our coercion between levels becomes

more complicated with the introduction of side effects. Before we can pro-

ceed with a consideration of the problems that our expression semantics

introduces, we should also describe exactly what we mean by our “Hoare

triples”. Our definition is1

{P} s {Q} =̂ ∀σ0, σ, v. P (σ0) ∧ 〈s, σ0〉 →s 〈v, σ〉 =⇒ Q(σ) ∧ (v 6= U)

Now we are in a position to consider a rule where an expression needs to

be lifted to the level of state-predicates. Hoare’s original rule for the if

statement is2

{P ∧ B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 {Q}

Here B plays the rôle of both guard expression in the syntax of the state-

ment, and of general predicate on states. Our own first attempt at a rule

for C’s if statement will not be so lax about typing, using an explicit lift
function to inject our syntax into the type of predicates on states. Given

our definition of lift it is also important that we write lift(!g) (where ! is

C’s logical negation operator) rather than ¬lift(g).

{P ∧ lift(g)} s1 {Q} {P ∧ lift(!g)} s2 {Q}

{P} if (g) s1 else s2 {Q}

where lift(e)(σ) = ∃m, τ, σ′. 〈RVR(e), σ〉 →∗
e 〈(m, τ), σ′〉 ∧ Vτ (m) 6= 0

Unfortunately, the presence of side effects makes this rule incorrect. In

particular, when in the context of the if statement, the statements s1 and

s2 will not be evaluated in the same contexts as that assumed by the an-

tecedents of the rule. Consider the case where the guard of the if state-

ment is the expression i++. This expression will cause the execution of the

1We have simplified slightly; we actually require that our triples have a fourth param-
eter which corresponds to the environmental components of the state that both σ0 and
σ will share. Expecting code to be valid with respect to a specification given all possible
environments is so tough a requirement as to be meaningless.

2We update Hoare’s original syntax of P{s}Q to the now preferred {P} s {Q}.

5.1. A PROGRAMMING LOGIC FOR C 89

second arm of the conditional whenever i is zero, but that statement will

be not be executed in such an environment, because the act of evaluating

the guard will make i non-zero.

Since Hoare’s paper in 1969, there has naturally been a lot of work in-

vestigating this problem. For example, Boehm [Boe85] suggests that a form

of dynamic logic can be used. This work relies on expressions being both

deterministic and terminating, properties that do not hold of C expressions

in general, but is otherwise a very appealing approach as it also handles

aliasing elegantly. An implementation of this work in Cholera would re-

quire an embedding of Boehm’s first order logic so that substitution over

the logic’s terms could be defined. It would also need to address the issues

of non-determinism and non-termination, probably by using the rules only

for those expressions already known to be deterministic and terminating.

More recently, Black has developed a limited form of axiomatic seman-

tics for C [BW96, BW98], where side effects are factored out of expressions

by translating statements where they occur to semantically equivalent for-

mulations that do not have the side effects in the significant expressions.

This work does not prove the correctness of its semantic transformations

with respect to any underlying semantics, and is foundationally shaky as

a result. Rather, it focuses on the use of HOL as the basis for reasoning

on top of its axioms. Proving Black’s rules correct with respect to Cholera’s

operational semantics would both be a validation of his work, and would

provide a precise characterisation of those forms for which his approach is

valid. However, this is not such an appealing prospect because of the need

to use semantic equivalence.

An alternative approach is presented by Kowaltowski [Kow77]. There

the suggestion is to wrap expressions in pre- and post-conditions as well,

and to explicitly deal with the value of the expression as part of the post-

condition. This approach has the merit of being straightforward but it does

not cope with the sort of non-determinism possible in C programs. In par-

ticular, it is predicated on the assumption that individual sub-expressions

of a whole expression will be totally evaluated before other expressions are

considered. C’s expressions are not so well-behaved, and there does not

seem to be an obvious way of extending Hoare triples down to expressions

from the level of statements.

All of the above suggests that this is indeed a difficult area. However, we

must not lose sight of the eventual aim, which is to provide a simpler way

of reasoning about C programs. Our logic’s completeness is of less impor-

tance than its utility in conjunction with whatever other tools we may be

able to develop. Moreover, there is no point in developing an “axiomatic”

semantics if it turns into a restatement of the original operational seman-

90 CHAPTER 5. STATEMENTS

tics. Instead, we use our other tools to handle expressions. When they are

known to be deterministic for example, we can evaluate them with just one

evaluation strategy, eliminating the combinatorial explosion of possibilities.

This is not to say that there is no rôle for our putative programming

logic. While our assumption of a useful symbolic evaluation tool for ex-

pressions would seem to simplify most statement forms, we still have to

consider loops. These can not be evaluated symbolically, and having an

invariant rule for them would obviate the need to perform a rule induction

each time one was encountered. Here then is our first result, which we

state for O, the general loop construct that underlies all three of C’s loop

forms:

Theorem 15 (The C invariant rule)

{I} if (g) s else ; {I}

{I} O(g, s) {I}

Our proof is quite simple (in the theorem prover the following is just 20

lines of SML tactic):

Assuming that I is invariant over the if statement, that I holds of σ0, and
that there is a reduction of the form 〈O(g, s), σ0〉 →s 〈v, σ〉, we want to
show that v 6= U and I(σ).

We argue by rule induction over all statement reductions. There are four
rules for loops (given in section 3.4.5):

1. The guard g evaluates to U . But this is impossible given that we have
{I} if (g) s else ; {I}, and I(σ0), as our definition of the Hoare
triple requires that the result value be defined. So this is a contradic-
tion.

2. The loop guard evaluates to false, and the loop exits directly. Given
our invariant I holds for both possible execution paths of the if state-
ment, it will hold after the execution path consisting of executing the
guard, getting a false result, and executing the empty statement. If
I holds of the state after the empty statement is executed, then it
will hold of the state before it. This state corresponds to the state
immediately after the loop exits, so we have I(σ), as required.

3. The loop guard evaluates to true, and the loop body is entered. How-
ever, it does not exit normally so the loop exits abnormally too. The
same execution path of “guard returns true, body exits abnormally” is
part of the possible behaviour of the if statement, so again the result
follows.

5.1. A PROGRAMMING LOGIC FOR C 91

4. Finally, the inductive case. From the text of the rule, we have:

〈RVR(g), σ0[Π := ∅, R := ∅, Υ := ∅]〉 →∗
e 〈(m, τ), σ1〉

〈s, σ1〉 →s 〈StmtVal, σ2〉 〈O(g, s), σ2〉 →s 〈v, σ〉

The guard succeeds, the body executes normally once, and the loop
is entered once more. We appeal to the inductive hypothesis: to show
that I(σ) holds, we show that it holds of σ2 (and also that the envi-
ronmental components of the state at σ2 are the same as they were at
σ0). But again, σ2 is the end-point of a possible execution of the if

statement, so the result follows. 2

We can specialise this result to the while statement, by first proving the

following result about the trap (T) form.

{P} s {Q}

{P} T (v, s) {Q}

As the while statement just traps continue and break interruption results

at the appropriate levels, the next result is immediate:

{I} if (g) s else ; {I}

{I} while (g) S {I}

We do not attempt to specialise our result so that it holds of the other

two concrete loop forms (the do-while and for loops). Instead, we expect

the propagation of the verifier’s invariant into the various complexities of

these forms’ definitions to be handled by our symbolic evaluation facilities.

Our invariant rules have the advantage of bypassing both problems al-

ready identified with C statements, that of side effects in expressions, and

the various statement interruption forms. This is because the if statement

includes both components present in the loop, and if something is already

invariant over the side-effecting guard and the possibly interrupted body

of the conditional statement, then it will retain these properties when part

of a loop. Our rule finesses these issues back to a level where symbolic

evaluation is possible.

For example this result may be useful when analysing code such as the

following, which searches a linked list (on the assumption that the first

element (pointed to by the pointer variable uptr) is not the one we want

to find):

while ((uptr = uptr->link) != NULL) {

if (search_condition(uptr))

return uptr;

}

92 CHAPTER 5. STATEMENTS

This code has both a side effect in its guard, and a break to the flow of

control in the middle of the loop (the return statement). Our rule tells us

that we can demonstrate an invariant property for the loop by demonstrat-

ing one for the if statement instead.3 However, our rule has at least one

serious flaw not present in Hoare’s formulation: we do not learn anything

new about the state of the program if the loop terminates. His rule is

{I ∧ B} S {I}

{I} while B do S {I ∧ ¬B}

We can’t come to a similar conclusion in C, even with a pure guard, because

of the possibility that the loop will exit due to the action of an interruption

statement (break or return in particular; continue, though it does inter-

rupt blocks, doesn’t cause any of the standard loop forms to exit). We will

discuss a comprehensive solution to this problem in the next section, but in

its absence, the best we can do is the following:

s contains no break or return statements
{P} O(g, s) {was(!g)}

The was predicate takes a C expression and a state and is true if the state

is one which is the possible result of evaluating the expression and having

that expression evaluate to true. This is a simple-minded definition, but it

is another technique that allows one to bypass the issue of side effects. If

the linked list example above were altered so that it did not have its return

statement, this result would tell us that if it terminates, the loop will do so

in a state where an assignment of the null pointer value has just been made

to the uptr variable.

Our was function is just lift “in the other direction” and the standard

HOL rewriting techniques that form the basis for symbolic evaluation will

work just as well where the existentially quantified state variable is the

starting state rather than the finishing state. If e is a pure expression, we

have was(e) = lift(e).
There is one final use to which we can put a development of logical rules

for C’s statements. Though access to symbolic evaluation will mean that we

do not use them as part of a verification effort, they will characterise the de-

gree to which C can be seen as a “better behaved” programming language.

In particular, we will prove rules that are as similar to Hoare’s originals as

possible. However, because of C’s various failings we will need to attach

various side conditions to the rules we derive. If we ensure that these rules

3Our case study experience with the strcpy program in chapter 6 suggests that finding
an appropriate invariant for the if statement may not be easy, or even possible.

5.2. AUTOMATIC LOOP EXIT ANALYSIS 93

are syntactic in nature (as with the syntactic characterisation of pure ex-

pressions in section 4.3), then we will have a syntactic characterisation of

how C might be constrained to let simple axiomatic style reasoning work

over it. In this spirit, we present the following rules:

{P} s1 {Q0} {Q0} s2 {Q}

{P} s1; s2 {Q}

where s1 contains no interruption statements, and

{P ∧ lift(g)} s1 {Q} {P ∧ lift(!g)} s2 {Q} g pure

{P} if (g) s1 else s2 {Q}

Unfortunately, there is no useful rule for assignment expressions (even

those that appear on their own and not nested inside other expressions)

in this setting. The best definition of assignment would be a recapitulation

of the operational semantics, and of no real explicative power. The overly

stringent nature of the restriction on the rule for sequencing would be ad-

dressed by a rule system that used multiple post-conditions, something that

we will discuss in the next section.

Our final result allows us to describe when a loop will terminate. So far

we have only been discussing partial correctness, where we are concerned

to establish post-conditions if a statement terminates, but not whether or

not that statement does actually terminate. Though Hoare’s original paper

does not provide rules for termination, it is well-known that one method

is to demonstrate that a well-founded relation holds between all possible

starting and finishing states of the loop body.

Our result is:

(∀σ0. terminates (if (g) s else ;) σ0)∧
(∃f : CState → N. ∀σ0 σ. 〈s, σ0〉 →s 〈StmtVal, σ〉 ∧ f(σ) < f(σ0))

=⇒ ∀σ. terminates (while (g) s) σ

where terminates s σ = ∃σ′ v. 〈s, σ〉 →s 〈v, σ′〉 ∧ (v 6= U)

The requirement that the if statement also terminates covers the possibility

where the guard or body of the loop themselves go into infinite loops.

5.2 Automatic loop exit analysis

There are three statement forms that allow the flow of control to be inter-

rupted in our definition of C: break, continue and return. All of these

have the property that they cause flow of control to jump to a higher-level

94 CHAPTER 5. STATEMENTS

part of the syntax within which they appear. By contrast, the goto state-

ment, which we have omitted, allows the flow of control to jump down the

abstract syntax tree. This property makes both reasoning about and defin-

ing the semantics of goto difficult, but the others are considerably more

tractable. Note that while return statements can appear anywhere, break

and continue statements can appear only in loop bodies.4

We have already seen how the presence of interruption statements lim-

its the utility of our proof rule for loop statements. Where other rules are

not so compromised by the lack of a good rule because of the possibility of

general symbolic execution, rules about loops need to say as much as pos-

sible if we are to avoid forcing the user to perform some sort of induction.

We would like to do the induction once, and then have the verifier exploit

a simple derived rule that embodied that induction.

An example of a C program where such an analysis might be useful

is given in figure 5.1. This program trims white-space from the end of a

string and is adapted from an example in Kernighan and Ritchie [KR88].

In this example, it is not the case that the loop is sure to terminate with

n < 0, as one might expect from an inspection of the guard. (Recall that

C’s for loop has the guard of the loop as the second expression between

the parentheses.) Instead, this loop will also exit if the search backwards

from the end of the string finds a non-space character. Idiomatic programs

such as this one are the motivation for the development of the following

theory.

int trim(char s[])

{

int n;

for (n = strlen(s) - 1; n >= 0; n--)

if (!isspace(s[n])) break;

s[n+1] = ’\0’;

return n;

}

Figure 5.1: A program illustrating the use of break

A standard approach to the problem of interruption statements is to use

a system of multiple post-conditions. This approach has an early descrip-

4The break and continue statements cause flow of control to return to the level of the
innermost enclosing loop, while a return statement can be nested arbitrarily deep inside
a function and still lift flow of control to the function’s exit-point.

5.2. AUTOMATIC LOOP EXIT ANALYSIS 95

tion in the context of “structured” flow-chart programs with goto state-

ments by Arbib and Alagić [AA79]. A more recent example is King and

Morgan’s work [KM95] in the setting of the refinement calculus. Each

post-condition is associated with a different way in which execution may

terminate, and each must hold if the statement in question terminates in

the given way. King and Morgan only consider one form of interruption

statement, which they call exit.5

Translating King and Morgan’s presentation of a wp-semantics in the

style of Dijkstra [Dij76] to one of Hoare-style “triples”, we get the following

rules (the [[]] brackets are used to trap abnormal executions in the same way

as T in our C semantics):

{P} skip {P}{⊥} {P} exit {⊥}{P}

{P} s {Q}{Q}

{P} [[s]] {Q}{⊥}

{I ∧ B} S {I}{Q}

{I} while B do S {I ∧ ¬B}{Q}

{P} s1 {Q
′
1
}{Q2} {Q′

1
} s2 {Q1}{Q2}

{P} s1; s2 {Q1}{Q2}

{P ∧ B} S1 {Q1}{Q2} {P ∧ ¬B} S2 {Q1}{Q2}

{P} if B then S1 else S2 {Q1}{Q2}

The standard post-condition strengthening rule applies to both post-

conditions. This is quite an elegant formulation of the semantics, but a

translation to C would require four post-conditions (one for normal termi-

nation, and one for each of the other interruption statements), and this

would be rather more tedious, both to define, and to work with.

The multiple post-conditions of the general form {P} S {Q1}{Q2} are

an abbreviation of the disjunctive claim, “if S exits (after starting in a state

where P held), then it will do so normally, and Q1 will hold, or it will

exit abnormally, and Q2 will hold.” In our setting, the framework of the

operational semantics already allows us to directly express how a statement

has exited: given a reduction 〈s, σ0〉 →s 〈v, σ〉, we need only examine the

value v. Therefore we achieve the expressiveness of the multiple post-

condition programming logic by developing a system that analyses loop

bodies and returns the appropriate disjunctions of possible post-conditions.

This has a deal in common with work on verification condition genera-

tion. Homeier [HM94], for example, has a system which constructs correct

verification conditions for programs written in his simple language Sunrise.

5They also refer to earlier (unpublished) work by Back and Karttunen of Helsinki
[BK83], which presents a general wp-semantics for statements with multiple exits.

96 CHAPTER 5. STATEMENTS

Our aim is slightly different from that of the typical verification condition

generator however. We wish to analyse a loop and derive a disjunctive de-

scription of all the conditions that might apply if and when the loop exits.

When a loop doesn’t contain any interruption statements, we are happy

to simply return was(!g), where g is the guard of the loop. We do not

try to return loop invariants because we already provide a mechanism for

demonstrating these using the derived rule of the previous section.

If a loop contains an interruption statement, we want to perform an

analysis that will tell us the nature of the context in which that inter-

ruption might have occurred. If the loop contains a statement such as

if (bc) break; then it is obvious that the context for the break statement

is one in which bc has just evaluated to true. However, our contexts may

not always be as simple as this. Consider extending the example so that it

is:

if (bc) {s1 . . . sn break;}

The statements s1 . . . sn might quite plausibly alter the state so that bc is

no longer true. So, we need to return the information that if the loop

exits due to a break statement, it may be in a state which is reachable by

evaluating bc, having it return a non-zero value, and then executing all of

the statements s1 . . . sn. But what of the situation where the if statement

in question is itself nested inside another if statement? To be maximally

informative, we should continue to look further backwards to determine

how the break statement came to be reached. In fact, to be complete, it is

clear that we must look all the way back to the beginning of the loop.

The required loop analysis is done by the findint function, defined in

figure 5.2. It can be used to either look for break or return statements, de-

pending on its first parameter. The second, events parameter is a list of all

the “events” that the search has passed over so far. The third parameter is

the state that the loop terminates in. The final parameter is the syntax be-

ing searched. There are three different sorts of event; statement executions

(denoted by Stmt), expressions evaluated as guards (denoted by TGuard
and FGuard depending on whether or not the guard evaluates to true or to

false), and variable declarations (denoted by VDs).

The function traverses the given syntax looking for the required form of

interruption syntax. It returns a condition that is true if there is some way

of reaching an interruption statement of the required form. It does this by

accumulating a list of all the events that must intervene between the start

of the execution at the head of the statement, and its eventual arrival at the

statement form in question. If there is a such a sub-statement, it calls the

translate function to calculate the conditions under which such an execution

5.2. AUTOMATIC LOOP EXIT ANALYSIS 97

findint(, , , [e];) = ⊥
findint(, , , continue;) = ⊥
findint(rb, events, σ, break;) =

(rb = break) ∧ ∃σ0. translate(events _ 〈Stmt(break)〉, σ0, σ)
findint(rb, events, σ, return e;) =

(rb = return) ∧ ∃σ0. translate(events _ 〈Stmt(return e;)〉, σ0, σ)
findint(rb, events, σ, if (g) s1 else s2) =

findint(rb, events _ 〈TGuard(g)〉, σ, s1) ∨
findint(rb, events _ 〈FGuard(g)〉, σ, s2)

findint(rb, events, σ, O(g, s)) =
∃n ∈ N.

findint(rb, events _ 〈TGuard(g); Stmt(s)〉n _ 〈TGuard(g)〉, σ, s)
findint(rb, events, σ,{decls stmts}) =

findintl(rb, events _ 〈VDs(decls)〉, σ, stmts)

findintl(, , , 〈〉) = ⊥
findintl(rb, events, σ, s :: stmts) =

findint(rb, events, σ, s) ∨
(s 6∈ {break, return, continue} ∧ findintl(rb, events _ 〈Stmt(s)〉, σ, stmts))

Figure 5.2: definition of the findint function

98 CHAPTER 5. STATEMENTS

will end abnormally in state σ. This translate function takes a list of events

and chains them together using the appropriate reduction relation. For

example,

translate(〈TGuard(g); Stmt(s1); Stmt(s2)〉, σ0, σ) =
∃σ1, σ2, v.

〈RVR(g), σ0[R := ∅, Υ := ∅]〉 →e 〈(m, τ), σ1〉 ∧ Vτ (m) 6= 0 ∧ Πσ1
= ∅ ∧

〈s1, σ1〉 →s 〈StmtVal, σ2〉 ∧
〈s2, σ2〉 →s 〈v, σ〉 ∧ v ∈ {BreakVal, RetVal}

The rules for translate when it applies to variable declaration events (marked

by the VDs form), are rather complicated and we omit the full details. Part

of the reason for the complication stems from the fact that we are “flat-

tening” a structural semantics into something that is linear and without

structure. It is important to recall that in all cases, translate only holds if

the chain of events ends with an abnormal execution.

Our limited form of condition generation differs from what is normally

done (as typified by Homeier’s work [HM94]) in two ways. Firstly, our

conditions are generated directly in the higher-order logic. This is possible

because we have no need to express the idea of substitution. This makes

the task considerably simpler. The second difference is more significant:

we express the generated condition by referring back to the semantics’ re-

duction relations! Usually the point of verification condition generation

is to remove such dependencies and finish with a set of conditions that

are independent of the particular program. With findint, all we need is a

valid post-condition; removal of dependencies on the reduction relations

can come later with symbolic evaluation. Our principal result is:

Theorem 16 (Correctness of findint function) If we have a reduction for a

while loop such that 〈while (g) s, σ0〉 →s 〈v, σ〉, then one of the following

four possibilities must hold:

1. v = U ;

2. v = StmtVal ∧ findint(break, 〈TGuard(g)〉, σ, s);

3. v = StmtVal ∧ ∃σ′. 〈RVR(g), σ′〉 →e 〈(m, τ), σ〉 ∧ Πσ = ∅ ∧ Vτ (m) = 0;

or

4. ∃rv. (v = RetVal(rv)) ∧ findint(return, 〈TGuard(g)〉, σ, s)

The importance of this result is that it provides us with an automatic way

of generating the disjunctive post-condition of a loop. Because findint per-

forms a simple pass over the syntax of the loop’s body, it is easily applied

5.2. AUTOMATIC LOOP EXIT ANALYSIS 99

in the HOL mechanisation. The only complication arises when a loop in-

cludes another loop as part of its body. In this situation, we can either

apply our theorem a second time in order to characterise the termination

state of the inner loop’s execution, or we can simply ignore the inner loop

and its predecessors in the list of events. After all, we are not required to

trace a loop’s history back as far as possible. The aim is simply to learn

useful information about the loop’s final state by knowing something about

what preceded it, and there will always come a point where tracing a loop’s

execution backwards will not yield any more useful knowledge.

While the definition of the findint function is simple enough, the true

test comes in attempting to prove that it does in fact generate correct post-

conditions for loop execution. The proof of our theorem is embodied in

some 900 lines of SML, and we won’t attempt to replay all of the details of

the proof here. However, the following is an outline of the lemmas needed

to carry the proof through. First, we establish the equivalence of findint and

translate. This proceeds by equating various translations of statements with

translations of pieces of those statements in terms of event lists. We have,

for example, that

translate(events _ 〈Stmt(while (g) s)〉, σ0, σ) =
∃n.(n 6= 0) ∧ translate(events _ 〈TGuard(g); Stmt(s)〉n, σ0, σ)

translate(events _ 〈Stmt(if (g) s1 else s2)〉, σ0, σ) =
translate(events _ 〈TGuard(g); Stmt(s1)〉, σ0, σ)∨
translate(events _ 〈FGuard(g); Stmt(s2)〉, σ0, σ)

translate(events _ 〈{decls stmts}〉, σ0, σ) =
∃p. p is a prefix of stmts ∧

translate(events _ 〈VDs(decls)〉 _ map Stmt p, σ0, σ)

All of these results are proved by performing an induction on events and

then using standard equalities to equate the larger statement with the com-

bination of fragments at the base case. The base case of the while loop

needs two extra inductions (one for ⇒, and one for ⇐). With these equiva-

lences in place, the similarities between translate and findint become clearer.

These results also emphasise that it is translate which is really doing all of

the work, giving us a means of pulling apart statements into smaller parts

that “sum” to the whole. Once we have equivalences of the above sort for

all possible statement forms, the final two equivalences, between the re-

duction relation →s and translate, and between findint and translate follow

quite readily. Our next result is

findint(v, events, σ, s) = ∃σ0. translate(events _ 〈Stmt(s)〉, σ0, σ) (∗)

100 CHAPTER 5. STATEMENTS

We also have an analogous result for the accompanying findintl function:

findintl(v, events, σ, stmtl) =

∃p, σ0. p is a prefix of stmtl ∧ translate(events _ p, σ0, σ))

These equations follow quite readily (although one of the directions still

requires 64 lines of tactic to prove!), and this is because we have the equa-

tions above for translate, which mimic the way in which findint works. Fi-

nally, we do have an easy result to the effect that

〈s, σ0〉 →s 〈v, σ〉 ∧ (v ∈ {break, return}) = translate(〈Stmt(s)〉, σ0, σ)

When we substitute a while loop for the s and rewrite with the set of equa-

tions above, the loop expands out into some non-zero number of repetitions

of the loop guard and body. We can’t tell what this number is, but as there

was at least one repetition we have that

〈while (g) s, σ0〉 →s 〈v, σ〉 ∧ (v ∈ {break, return})
=⇒ ∃σ′

0
. translate(〈TGuard(g); Stmt(s)〉, σ′

0
, σ)

But the conclusion above is the same as the RHS of theorem (∗) above,

and so we have the link to the two cases of our main result where findint
is called. The other two cases of the main result specify the other possible

results of evaluating the loop: that undefinedness may result (as always),

as may a normal exit, caused by the loop’s guard being false.

Chapter 6

Verification

It was always the aim of this research to investigate the ways in which our

model of C, along with the accompanying “meta-level” theorems such as

our determinism results, could be used to verify C programs. Having devel-

oped the model to a degree where we were confident in its correctness, and

having also proved a number of results that promised to eliminate some of

the obvious difficulties posed by C’s semantics, we undertook an ambitious

verification example. This example was a simple BDD implementation, but

quickly proved to be too difficult. The reasons for this failure are examined

in more depth in section 6.3. Though we were soon convinced that our

BDD example was intractable, the experience of attempting it did serve to

point out ways in which our basic tools might be improved. It even uncov-

ered a few relatively minor faults in the underlying model.

After developing our verification technology further, we felt that the

BDD verification was still likely to be impossible in the time available, and

we instead chose to look at much simpler examples. These examples served

to test the tools that we had developed, and their scale was in more keep-

ing with other verifications done by researchers working with very detailed

semantics. In contrast, Black’s verification work [BW96, BW98] which as-

sumes, but does not provide, a detailed semantic backing for very power-

ful techniques, is an indication of a future target for our own work. Sec-

tions 6.1 and 6.2 describe the two examples we succeeded in verifying.

Finally, in section 6.4 we provide a description of two important tools that

were significant in enabling the verification work that we performed.

101

102 CHAPTER 6. VERIFICATION

6.1 Factorial

Our first example is the simple factorial program given in figure 6.1. While

the factorial program is not a particularly exciting verification example (it

is practically the canonical “toy” example), it was one done by Cook and

Subramanian in [SC96], so we feel that there is some comparative value in

pursuing it.

unsigned long fact(unsigned long n)

{

unsigned long result = 1;

while (n > 1) {

result *= n;

n = n - 1;

}

return result;

}

Figure 6.1: A program to compute factorials

The statement of correctness for this function is given in figure 6.2.

The variables v1 and v2 and the constraints upon them express the idea

that the state contains enough spare memory to allow for the allocation of

two more variables of type unsigned long (the parameter n and the local

variable result). (The |long| expression represents the number of bytes

required to store values of type long and unsigned long.) The only other

initialisation constraint is that the initialisation map in σ0 be a subset of the

allocation map. The other necessary invariants required of the program

state, such as those discussed at the beginning of chapter 4, are to do with

expression evaluation, and all of the expressions evaluated in the course of

the call to function fact automatically satisfy those constraints by virtue of

being correctly initialised as part of statement evaluation.

Our statement of factorial’s correctness differs from that in Subrama-

nian and Cook by using the under-specified ULONG MAX constant as the limit.

Their verification of factorial is explicitly only for values of n up to and in-

cluding 12, which gives the largest value of n! representable with just 32

bits. Our model also forces us to consider memory allocation explicitly, so

we have to add extra assumptions to allow our proof to go through. This

requirement to model memory allocation initially seems to be extra work

for no reward as there is no strictly conforming way for a C program to

6.1. FACTORIAL 103

∀σ0 nm0 v1 v2.
(Φσ0

("fact") = 〈Code from figure 6.1〉) ∧ n! ≤ ULONG MAX ∧
(V(unsigned long)(m0) = n) ∧ Iσ0

⊆ Λσ0
∧

alloc(σ0, |long|, v1) ∧ alloc(σ0, |long|, v2) ∧
{v2 . . . v2 + |long| − 1} ∩ {v1 . . . v1 + |long| − 1} = ∅ =⇒
∃σ m.

(V(unsigned long)(m) = n!) ∧

〈"̂fact"((m0, unsigned long)), σ0〉 →
∗
e 〈(m, unsigned long), σ〉

Figure 6.2: Statement of the factorial program’s correctness

cope with a failure to allocate automatic memory.1 Given this, one’s imme-

diate reaction might be to call for a model which didn’t require this seem-

ingly pointless analysis of whether or not there is enough memory avail-

able. However, we believe such a model would be difficult to construct.

More importantly, we believe that the requirement to explicitly account for

a function’s memory usage is likely to be a useful tool in the development

of verified code, forcing verifiers and code developers to be aware of the

demands their code will be making on what is ultimately a finite resource.2

The invariant used to verify this program was

n0! = result ∗ n!

(Where n0 is the original value of the parameter n, and n is the current

value.) We also showed that the loop was sure to terminate by demonstrat-

ing that the value of the variable n decreased with each iteration of the

loop. This is all quite mundane.

Finally, note that the nature of the statement proved about the factorial

program is only that there exists a final state satisfying the specification. On

its own, this is not a logical guarantee that other paths of execution might

not exist where the program exhibits different behaviours. Though we did

not prove the corresponding universal result, we believe it to be true, given

the determinism of all the components of the program. The only difference

is that the universal result requires a stronger statement about the memory

1C’s automatic variables are those such as locals and parameters that an implementa-
tion is likely to allocate on a run-time stack. By way of contrast, the malloc library call
allows programs to request memory on the heap, but if the call fails, it returns a null
pointer, making this an eventuality that the program(mer) can detect and deal with.

2All the virtual memory in the world can not enable a C program to use more memory
than that addressable using its fixed-size, finite pointers.

104 CHAPTER 6. VERIFICATION

that is available for allocation. In particular, the universal statement will

require that there be available in unallocated memory either one block of

3 ∗ |long| − 1 bytes, or two non-contiguous blocks of |long| bytes separated

by at least one allocated byte. This is because we can not be sure that

the model will make the best choices when it comes to allocate the first

variable. With any fewer bytes available, it is not possible to guarantee that

a particularly silly choice of allocation won’t preclude allocating the next

variable, thereby causing undefinedness. This solution of the “allocation

problem” is used in the strcpy verification below, and also arose in our

attempt to verify a BDD implementation, which is discussed in section 6.3.

6.2 strcpy

Our next example is taken from Kernighan and Ritchie [KR88], and is re-

produced in figure 6.3. This is another short program, no doubt cryptically

so for those with little C experience. This program is intended to copy

strings, copying the second into the first. Strings in C are arrays of char-

acters terminated by null bytes, and we know that arrays are handled by

passing pointers to first elements, explaining the pointer parameters to the

function. Its main loop does not have a body and consists of just a guard,

but this is a guard that causes three side effects! (An expression of the form

*ptr++ returns the value stored at the address in ptr but also increments

ptr so that it now points to the next value in memory.)

void strcpy(char *s, char *t)

{

while (*s++ = *t++)

;

}

Figure 6.3: strcpy: a program to copy strings

Our statement of the correctness of this program is presented in fig-

ure 6.4. By way of contrast with the earlier factorial example, we here state

a much stronger specification, completely characterising the resulting state

in all possible evaluations. In the statement, the logical variables s addr and

t addr correspond to the values of the function parameters, those which will

be the initial values of the program variables s and t respectively. The pre-

condition of the correctness statement includes three conditions on the sets

6.2. STRCPY 105

of addresses {t addr . . . t addr + |t|} and {s addr . . . s addr + |t|}. These re-

quire that the destination string and the source string not overlap, that the

source string be initialised, and that the destination string be part of allo-

cated memory. Apart from the standard preconditions requiring that the

initial state be safe and have its initialisation map be a subset of its alloca-

tion map, the only other requirement is that there be enough memory to

allocate the two copies of the parameters passed into the function.

∀σ0 s addr t addr r σ.
(Φσ0

("strcpy") = 〈Code from figure 6.3 〉) ∧ Iσ0
⊆ Λσ0

∧ safe(σ0) ∧
(∃v. alloc(σ0, 3 ∗ sizeof(char *) − 1, v)) ∧
{s addr . . . s addr + |t|} ⊆ Λσ0

∧ {t addr . . . t addr + |t|} ⊆ Iσ0
∧

{t addr . . . t addr + |t|} ∩ {s addr . . . s addr + |t|} = ∅ ∧
s addr . . . s addr + |t| all representable addresses ∧
t addr . . . t addr + |t| all representable addresses ∧

〈 ̂"strcpy"((s addr, char *), (t addr, char *)), σ0〉 →e 〈r, σ〉 =⇒

(r = (∅, void)) ∧ (Iσ = Iσ0
∪ {s addr . . . s addr + |t|}) ∧

(∀a ∈ Iσ. (Mσ(a) = Mσ0
[〈s addr . . . 〉 := t](a)))

∨
∃η ∈ Πσ0

. σ = apply se(σ0, η)

where there is a null byte somewhere in memory after t addr,
thereby defining a finite sequence of characters, referred to
above as t.

Figure 6.4: Statement of the strcpy program’s correctness

The conclusion of the correctness statement characterises the two pos-

sible outcomes of a single step of the expression reduction relation (→e)

from a function call syntax-tree that has all of its arguments entirely evalu-

ated. Either there is a side effect pending in the bag of pending side effects,

and this is applied (the second possibility in the figure), or the function

body is entered and the code is executed. This latter is the interesting case.

By specifying that r must be a void “value” corresponding to a successful

return from the function, our characterisation precludes the possibility of

undefined behaviour having occurred.

We also characterise the initialisation and memory maps of the resulting

state σ. There is no need to specify the other state components as an ex-

isting result states that they will be the same as in σ0. We have completely

characterised the initialisation map, but we can’t completely specify the

106 CHAPTER 6. VERIFICATION

contents of memory. In particular, we can’t know where the function call

chose to place its local parameters. In our model, where the memory map

is a total function, those parts of memory will still be present. However,

no program can reference memory that is outside of its initialisation map,

so we completely specify the value of just that memory which is within the

initialisation map.

Verifying strcpy’s correctness proved more difficult than expected. In

particular, the variant of the Hoare rule for while loops presented in sec-

tion 5.1 was not on its own adequate for dealing with the side effects in the

loop. This is because it requires us to come up with an invariant for an if

statement of the form

if (*s++ = *t++) ; else ;

In particular, our invariant must express bounds conditions for the variables

s and t so that we can be sure that they do not access memory beyond the

range of their respective arrays. Yet, because each execution of the given

if statement is sure to increase both s and t, there is no possible invariant

which imposes a finite upper limit on either variable.

Our solution to this problem was to demonstrate the equivalence of the

given loop with the following:

while (*t) {

*s = *t;

s++;

t++;

}

*s = *t;

s++;

t++;

This proof within a proof was done by inducting on the difference between

the address of the null byte terminating the string t, and the address stored

in t. With a side-effect free guard on its loop, this program is then amenable

to the rule from section 5.1, and the proof of correctness can proceed rela-

tively easily. Our invariant is given in figure 6.5, where it holds of state σ,

and where state σ0 and the address values s addr and t addr are as before.

All but the last two conjuncts of the invariant establish required properties

of the values of the two pointers s and t. The last two conjuncts of the in-

variant characterise the state’s memory and initialisation maps respectively.

Apart from having to do an equivalence proof before the rest of the

proof was possible, the major difficulty in this verification was discharging

6.2. STRCPY 107

λσ. ∃tv sv.
V(char *)(Mσ〈Aσ(t) . . . Aσ(t) + sizeof(char *)− 1〉) = tv ∧
V(char *)(Mσ〈Aσ(s) . . . Aσ(s) + sizeof(char *)− 1〉) = sv ∧
s addr ≤ sv ∧ t addr ≤ tv ∧ (tv − t addr = sv − s addr) ∧
tv ≤ address of t’s terminating null byte ∧
(∀a ∈ Λσ0

.
Mσ(a) = Mσ0

[〈s addr . . . 〉 := Mσ0
〈t addr . . . tv − t addr〉](a)) ∧

(Iσ =
Iσ0

∪ {Aσ(s) . . . Aσ(s) + sizeof(char *)− 1} ∪
{Aσ(t) . . . Aσ(t) + sizeof(char *)− 1} ∪
{s addr . . . sv − s addr})

Figure 6.5: Invariant for the proof of strcpy’s correctness

side-conditions to do with the disjointness of ranges of addresses. These

arise every time the contents of memory are examined, as we need to be

sure that an update to some variable v1 has not interfered with a previ-

ous update to another variable v2. Though aliasing is particularly easy to

establish in C, these problems are not unique to C. In this case, the pres-

ence of arrays would cause the problem to surface even in languages where

aliasing between normal variables was not an issue.

Unsurprisingly, problems involving ranges of addresses required the use

of HOL’s arithmetic library. Unfortunately, this decision procedure performs

poorly where arithmetic expressions contain many subtractions. As can

be seen, the statements of our theorems use subtraction quite often, and

this leads to slow and rather frustrating theorem-proving. It is possible

that the theorems could be re-stated to reduce the number of occurrences

of subtraction, but this would be at the cost of some clarity. It might be

more appropriate to use HOL’s recently acquired ability to exploit external

decision procedures to solve these problems.

The strcpy example may seem to call into question the utility of the

Hoare-like rule for while loops proved in section 5.1. It is certainly true

that this rule did not solve the problem of the side effects in the guard.

Instead, following Black’s example in [BW96], we had to first transform

our loop to a semantically equivalent form that had a guard free of side

effects. While this was in itself an important part of the effort, we still had

to prove that our invariant held over the new loop. This later stage of the

verification proof did use our derived rule for while loops.

Another treatment of (a slightly different version of) strcpy is available

108 CHAPTER 6. VERIFICATION

in Yuan Yu’s thesis [Yu93]. Yu’s approach was to verify the object code gen-

erated by a standard C compiler for the Motorola 68020 processor. This

approach has the advantage of not needing to cope with any of C’s under-

specified wrinkles. The GNU C compiler used to produce the object code

and the 68020 processor together eliminate the under-determinism present

in the C semantics and result in a system that is one C implementation from

the huge space of possible implementations. For example, this particular

implementation does not trap accesses to uninitialised memory, so the spec-

ification of the problem in Yu’s formulation is conceptually simpler. On the

other hand, his specification of program behaviour has to specify the con-

tents of processor registers and other similar low-level details. Yu verified

more functions than just strcpy in his thesis, and although the strcpy as-

sembly code, at only 13 lines, is not much worse than the C code, other

examples demonstrate a big blow-up in code size when translated from C

to assembly.

6.3 The failed BDD example

In wanting to demonstrate the applicability of the ideas of software verifi-

cation in general and the Cholera system in particular, we pursued the goal

of verifying a binary decision diagram implementation (see Bryant [Bry92]

for a description of BDDs) by John Harrison [Har95a]. This choice had the

advantage of being both interesting for a theorem-proving audience, and

having a challenging, but seemingly not overly complicated, implementa-

tion. Further, the code to be verified did not require a model of system calls

or any other features not modelled by Cholera.

We did a little work pursuing this goal, but it rapidly became apparent

that this particular example was beyond the capabilities of the verification

technology we had developed. The code in question was just over 400 lines

long, and took roughly a weekend to implement. Our putative verification

would have taken much longer.

We made the perhaps unwarranted assumption that the various seman-

tic operations being performed (at a low level, list traversal; at a higher

level, finding a key in a hash-table; at a higher level still, conjoining two

BDD graphs) would be easy enough to reason about in the theorem-prover

once they had been divested of their C-specific cladding. Unfortunately,

we never had a chance to test this assumption as the task of dealing with

the C embodiment of these abstract functions proved too difficult. In the

remainder of this section, we will discuss some of the significant difficulties.

While conceptually simplest, one of the most significant pragmatic diffi-

6.3. THE FAILED BDD EXAMPLE 109

culties was reasoning about large numbers. This problem arises because of

the way in which HOL uses a unary representation (chains of applications

of SUC to zero) to represent numerals. When attempting to verify a program

that maintains its own internal heap of 10000 locations and a hash-table

with 256 buckets, the various disjointness conditions generated involved

many occurrences of these large numbers, which slowed down many as-

pects of theorem-proving. The latest version of HOL is about to improve

this situation by adopting a binary representation for its numerals, but this

improvement comes too late for this work.

The problem with numerals could be finessed to some extent by re-

placing them with under-specified constants. However, this would have

exacerbated the other significant arithmetic problem. This was brought

about by the fact that the BDD code declared two struct types. Subse-

quently, when arrays of these types were declared, the result was sizeof

expressions involving multiplied sums. Dealing with multiplications involv-

ing large constants was difficult, but replacing the numeric constants with

under-specified constants would have resulted in expressions beyond the

capabilities of HOL’s linear decision procedure to handle in general. Clever

use of AC-normalisation and automatic expansion using the distributive

law could handle many expressions, but having to manipulate the remain-

ing expressions was tedious in the extreme.

Another problem we faced was brought about by a poor choice of tech-

nique in dealing with the verification of multiple functions in an environ-

ment with global variables present. We characterised the logical environ-

ment in which our functions executed by specifying it was the state which

resulted from the declaration of the relevant global variables (including

some struct declarations as well). Because variable declaration is non-

deterministic in terms of the addresses chosen for globals, we used the

Hilbert choice operator to pick one valid state. We thus had an expression

along these lines:

εσ. 〈global declarations, σ0〉 →v 〈VarDeclVal, σ〉

This was very painful to work with, but this problem was one that could

have been avoided. Instead of using the above expression at all, we should

have stated preconditions by characterising the various facets of the global

environment independently. We might then have simply required that the

initial state of the functions we were to verify had certain variable and type

maps.

One last problem was the code’s use of unportable tricks. For example,

in the interests of efficiency, the code assumed that pointer values were

110 CHAPTER 6. VERIFICATION

isomorphic to the even members of the unsigned long type, thus allow-

ing the use of the low bit of the address’s value as a long for storing extra

information (in this case, whether or not the BDD link was negated). Ide-

ally, we would have liked to state this assumption as a precondition to the

verification. However, the Cholera mechanisation’s handling of the repre-

sentation of values is not ideal, and expressing this assumption would have

been quite difficult. We eventually decided to try to verify a cleaned-up

version of the code where no assumptions were made, and where the code

was therefore strictly conforming. It is this verification that then went on

to cause us all of the other difficulties explained above.

6.4 Verification tools

Our work on verifying code examples required the development of a num-

ber of verification tools. Here we describe two of the most significant. The

first aimed to exploit the determinism result for sequence-point free expres-

sions of section 4.4.1. There were two possible approaches to this task. We

already had a theorem of the form

〈e, σ0〉 →
∗
e 〈v1, σ1〉 ∧ 〈e, σ0〉 →

∗
e 〈v2, σ2〉 =⇒ (v1 = v2) ∧ (σ1 = σ2)

If, in the context of a particular proof, we also had a fact of the form

〈e, σ0〉 →∗
e 〈v, σ〉, then together with the above theorem, an equivalence

could be automatically derived stating that

∀σ′ v′. 〈e, σ0〉 →
∗
e 〈v

′, σ′〉 ≡ (v′ = v) ∧ (σ′ = σ)

To be most useful, this approach required us to be able to rapidly generate

a fact about a possible evolution of an expression to a value from a given

starting point (an expression-state pair). This fact could then be the ba-

sis for the generation of a bespoke equivalence, as above. Unfortunately,

these facts are not easy to generate. Simple rewriting will not work as

this will produce big disjunctions corresponding to all of the possible non-

deterministic paths. It is precisely these disjunctions that we are hoping

to avoid. For example, a simple-minded rewrite starting with i + j will

generate the following four top-level possibilities:

1. j evaluates one step to e′, so the overall result is i + e′

2. i evaluates one step to e′, so the overall result is e′ + j

3. there is a side effect pending, which is evaluated producing a different

state, but keeping our initial expression unchanged

6.4. VERIFICATION TOOLS 111

4. there are side effects pending, but none can be applied safely, result-

ing in undefinedness

The point of our proposed strategy is to choose one of these logical possi-

bilities and create what would be in effect a derivation tree over the rules

of the inductive definition of →e. However, implementing this strategy in

HOL would require the writing of a fairly substantial amount of SML to

make the right choices among the logical possibilities, which would simul-

taneously require performing the appropriate reasoning to discard choices

that would lead to falsehood. (In our example above, picking either of the

latter two choices will not make sense in a context where there are no side

effects pending.)

Instead, our approach was to define a new constant in the logic which

implemented a subset of the →e relation. We then proved that the tran-

sitive closure of this new relation was equivalent to transitive closure of

the original when the expression was sequence-point free and the result

was a value. This new relation’s defining equation could then be used as

a simple HOL rewrite, safe in the knowledge that applying it would not

cause a big case explosion. To deal with the possibility of evaluation to un-

definedness, we could use our new relation to demonstrate an evaluation

to a value from a sequence-point free starting point, and then invoke the

theorems that stated that this precluded the possibility of undefinedness

(theorem 13 and others in section 4.5).

This tool handled the evaluation of all of the expressions present in the

two successful examples (including the nasty *s++ = *t++), and made ver-

ification of them tractable. We did not prove that our deterministic relation

was also equivalent to the evaluation of pure expressions, which we would

have needed to do to cope with some of the expressions in the BDD ex-

ample. However, it is clear that this result follows, given the results from

section 4.3.

Our second example of a verification tool is an automatic tool for de-

riving correct type judgements for (possibly partially evaluated) C expres-

sions. The typing relation in turn depends on the well-formedness relation

for types, so our tool has a similar automatic tool for that relation as a

sub-component. Despite being obviously deterministic, both of these rela-

tions do not suit solution by simple rewriting. Instead our code for both

the well-formedness and typing relations examines the input parameters

and calculates a series of forward inferences that produces a theorem and,

in the case of the typing relation, this theorem contains information as to

what type the input expression has.

112 CHAPTER 6. VERIFICATION

This technique, allowing the efficient derivation of special purpose the-

orems, is the same as that previously mentioned as having been used by

Syme and Hutchins in their derivation of symbolic evaluators for SML

[Sym93, Hut90]. It would also be the technique of choice for the symbolic

evaluation of both our original →e relation and its deterministic equivalent.

Given an inductive definition of a relation, constructing the skeleton of the

code to perform special purpose evaluation is relatively straightforward.

Assume that one is constructing an SML function that, when given a

term x, is to return a theorem of the form ` R(x, y). In the case of the

expression typing relation, y is the type of the expression, while in the type

well-formedness example there is no y parameter. For all rules of the form

R(x1, y1) . . . R(xn, yn)

R(x, y)
S

where S is some set of side conditions, presumably also relating the (xi, yi)
pairs to x and y in the conclusion, and where the x in the rule matches the

x we are interested in, we make recursive calls for the hypotheses above

the line to solve for the x1 . . . xn. (Our relations tend to be syntactically

driven so knowing what the values of x1 . . . xn should be is usually straight-

forward.) Because there may be multiple matches in the rule set for any

given x, our function should return a (lazy) list of possible solutions rather

than just succeeding once or failing.

This much can be done quite automatically. The real work comes in

discharging the side conditions S. These will not fit into any particular pat-

tern, and so require a bit of thought from the tool developer. The expression

typing and type well-formedness relations have minimal side conditions so

weren’t too difficult to implement. (They are also both simple enough to al-

low us to avoid having to use functions to lists of possible results.) Both the

→e relation and its deterministic partner have numerous side conditions,

and we felt that simple rewriting, though slow, would suffice.

The expression typing relation tool was used a great deal in the course

of the verification proofs that we performed. An expression is often re-

quired to have a type as a theorem precondition, so the application of this

tool enabled theorems to be applied more easily.

Our two successful case study verifications (factorial and strcpy) were not

very complicated. However, they are of similar complexity to programs

verified by others working with detailed semantics. Their successful com-

pletion helped verify our underlying model, led to the development of new

tools, and in conjunction with the attempt to verify the BDD code, pointed

the way ahead to future, larger-scale verifications.

Chapter 7

Conclusion

The underlying thesis of this work is that formal methods can be fruitfully

applied to real world programming languages. The foundation of our work

is the definition of C’s static and dynamic semantics presented in chapters

two and three. In formally describing more of the language than has been

managed in the past, this represents a step forward in our knowledge about

the C language. Our definition also avoids mistakes made by others. We

further believe that our definition has been carefully constructed. By ex-

plicitly setting out to use the standard [ISO90] as our first reference, we

aimed to avoid the interpretive errors possible when using other sources.

We also made a great deal of use of the comp.std.c Usenet newsgroup,

a forum which provides ongoing debate about the standard’s various in-

tricacies. By following (and occasionally participating in) the newsgroup’s

various debates, one’s knowledge of the standard can only improve.

In formalising a significant portion of the ISO standard, we have learnt

a great deal about C’s various nooks and crannies, but a formal definition in

itself is of marginal utility. On the one hand, a lone definition such as ours

is difficult to accept as correct with respect to the original natural language

definition. Our own experience in finding problems with earlier definitions

suggests that it is very easy to make mistakes in this area. Further, even if

we assume correctness, we should like to demonstrate that a formal defi-

nition leads to useful consequences. For example, it is often held that the

precision of formal language definitions helps in the development of com-

pilers. The first version of the ML Kit compiler for SML [BRTT93] is a very

good example of this, having been developed such that “for every inference

rule in the formal semantics, there is is corresponding piece of code in the

Kit”.

Subsequent to our core definition are the results proved in chapters

four and five. It is with these that we hope to demonstrate the worth of

113

114 CHAPTER 7. CONCLUSION

our definition. Broadly, our results play one of two important rôles. The

simpler results (such as the invariants at the beginning of chapter four)

serve to validate the definition of the semantics. If these results didn’t

hold, there would clearly be something seriously wrong with the definition.

Later results, which we would not necessarily expect to be true, serve a

different rôle. These theorems are either theoretically interesting, or useful

in performing verification of programs written in C, or both.

In chapter four we separately prove that two overlapping but distinct

sets of expressions are confluent. These results are both theoretically inter-

esting and, as demonstrated by the experiences described in chapter six,

pragmatically important as well. An example of a result that is more

theoretical in nature is the type preservation property (again from chap-

ter four). However, far from being of theoretical interest only, this result

is also a necessary precondition for the more pragmatic confluence results,

and many other subsequent results as well.

In chapter five, we prove a suite of results about the semantics of C’s

statements. In section 5.1 we derive axiomatic style rules for a C program-

ming logic. These results are interesting in part because the various side-

conditions required to make the rules hold serve to characterise the degree

to which C can be made to look like a cleaner programming language with

simple rules. The main omission here is a rule for assignment. Such a

rule is difficult to imagine because of the complicated model of memory on

top of which it would have to be constructed. In the presence of reliable

symbolic evaluation for “straight-line” code, the majority of the program-

ming logic rules we proved are not of much pragmatic interest. However,

the rule for loops is useful because it embodies an induction that program

verifiers would otherwise have to perform every time they came to verify a

loop. In the same chapter, we also prove the automatic loop analysis result

of section 5.2, an example of a result where the motivation for the proof

was purely pragmatic.

In chapter six, we describe three verification case studies. Two of the

case studies were successful verifications of simple programs. The third

case study was not successful, being an over-ambitious attempt to verify a

larger program. However, this example was attempted first and it was only

in attempting it that a number of inadequacies in our model and accompa-

nying tools were revealed. On rectifying these flaws, we were able to move

forward and prove the two other results. The verification case studies filled

the important rôle of validating the utility of the majority of our verification

tools.

Finally, we note that all of this work was only possible with the support

of mechanical theorem-proving. While tools such as HOL may be seen (jus-

7.1. FUTURE WORK 115

tifiably or not) to be more of a hindrance than a help in some application

domains, the level of detail required in arguments about the semantics of C

is such that doing the proofs presented here without HOL’s help would have

been impossible. Furthermore, even if we supposed that one was capable

of doing all of these proofs by hand, others’ confidence in the proofs would

necessarily suffer in the face of such complexity. Not only does mechanical

support reassure one as to the validity of one’s proofs, it is also an assur-

ance for others. Thus we are confident both that our proofs are correct, and

that others will agree that our theorems are consequences of our definition.

7.1 Future work

There are a number of ways in which this work might be extended and

developed upon. Here we aim to elaborate on just a few of them.

Most pressing, we believe, is the need to recast the statement meaning re-

lation (→s) as a small-step semantics. For all the superficial convenience

of the big-step semantics currently used, its continued use has revealed

more and more problems with it. Even with the introduction of a rule for

loops with an infinitary hypothesis to model non-termination (something

not done in the Cholera mechanisation, though we present the rule in sec-

tion 3.4.5), the statement semantics will block incorrectly in the presence

of a function such as

int f(void) { return f(); }

Using a small-step semantics for statement evaluation would enable us to

do without the special U marker value, and instead characterise well de-

fined programs simply as those that are guaranteed to evaluate to a value

on all possible paths.

This approach would also allow for the simplification of the assignment

rule. Currently it keeps track of references made on the RHS’s of assign-

ment expressions so that they can be forgotten when the side effect cor-

responding to the assignment is generated. This needs to happen because

reading an object followed by writing to it should be considered unde-

fined. However, we could simplify matters by making only a write followed

by a read lead to undefinedness. Then, an expression such as i = i + 1

can never lead to undefinedness, because the read of i on the RHS can

never occur after the write to i. However, in an expression such as i +

i++, the path which evaluates the post-increment of i would block and we

would detect the undefinedness because at least one path would exhibit

116 CHAPTER 7. CONCLUSION

the undefined behaviour. This idea is one used by Clive Feather of the C

standardisation committee as the basis of a formal semantics for sequence

points [Fea98], and may well feature in an Annex to the next revision of

the C standard.1 One problem with this simplification to the treatment of

assignment is that while it might simplify characterisation results such as

theorem 9 in section 4.4.1, we feel it would likely complicate the analysis

necessary for our diamond results, as undefined expressions will no longer

be confluent with respect to →∗
e. (Some paths will lead to blocking or un-

definedness, and others will not.)

At the level of the mechanisation, we should also like to bring the treat-

ment of values properly into line with the way they are specified here.

Instead of knowing just that we have a family of functions Vτ from byte

sequences to values, the Cholera mechanisation assumes that there is an iso-

morphism between the set of values byten, and numbers less than 2CHAR BIT∗n.

This conveniently does away with an irritating source of non-determinism,

but is a convenience we may be able to do without. (If we have non-

deterministic value representation, then an expression such as i = 3 may

be detectably non-deterministic because of the different choices possible in

storing 3 as a sequence of bytes. Determinism results, such as those that

appear in chapter four, would need to be re-expressed with a suitable pre-

condition, perhaps simply that the value representation functions for all of

the types used in the expression were deterministic.)

Whether or not the model was improved in the ways described above,

there are also a few particularly appealing results that we would like to

add to those already proved in chapters four and five. The extension of the

sequence point free determinism result to what we have termed “sequential

expressions” is a particularly obvious example of this. We should also like

to see an extension of the notion of syntactic purity so that it included those

functions which only included pure expressions and calls to pure functions.

In chapter five, we developed a programming logic for C that implicitly

gave a syntactic characterisation of a “safe subset” of the language. This

notion does not seem powerful enough on its own, but an appealing ex-

tension of this idea would be an analysis that took C programs and proved

them in some way equivalent to similar programs running on an abstract

machine with a simpler model of state. Such an analysis would need to

confirm that variable accesses were all to disjoint objects so that memory

could be treated as a finite map from variable names to object values. (The

value for an array would be another finite map.) Another form of model

1Though it will only be an informative (rather than normative) annex, the same theory
explicitly decides whether or not functions may interleave—in the negative.

7.1. FUTURE WORK 117

simplification would be an analysis that confirmed that all operations were

on values within their defined domains, thus removing the need for subse-

quent symbolic evaluation in the simpler domain to assess this possibility.

As far as verification is concerned, we should also like to see the Cholera
mechanisation applied to more examples. One appealing possibility would

be to follow the example of Yuan Yu’s work [Yu93], and verify an imple-

mentation of a commonly used library. Needless to say, we should also like

to see the BDD example that we attempted completed. Additional verifica-

tion work would also require the development of better tools. In particular,

the symbolic evaluator for expressions that currently relies on rewriting

with the definition of the deterministic meaning equivalent should be re-

placed with a custom-built forward inference system for added efficiency.

So far, these suggestions have been for improvements within the general

remit of the thesis. Other possible directions for future work would aim to

push beyond those boundaries, extending our model to cope with more

kinds of C program. One obvious extension would be to deal with switch

and goto statements. Both of these would be modelled in similar ways,

using some sort of label-searching step to find the correct place to resume

from within a block of code. (With the switch statement, the block of code

to search is the body of the statement. With goto the block of code to

search is the body of the function in which it appears.) Our model would

also gain if it were expanded to include the heap, and the possibility of

memory allocation that was not lexically determined.

More interesting still however, would be work on extending the model

to cope with the concept of an “outside world” and in particular to deal

with I/O. A program then becomes something that interacts with its envi-

ronment as well as something that transforms its internal state. This would

naturally suggest trying to characterise C programs with labelled transition

systems and verifying infinite behaviours with tools such as bisimilarity. We

would thus extend the scope of our work to be able to accurately describe C

programs that run in a concurrent environment, ranging from client-server

interactions, to implementations of security protocols, to a wide range of

Internet tools and applications.

Finally, it is worth noting that the programming language C++ has a

great deal in common with C. The newer language, C++ split from C in the

early 1980s and evolved very rapidly, adding a number of new features. C

evolved more gradually and is, with a few minor exceptions, a proper sub-

set of C++. This suggests that another extension of our work would be to

model the extra complexities of C++. Two features that would be partic-

ularly interesting are C++’s object orientation, and its form of parametric

polymorphism, templates. C++ is about to have its first standard pub-

118 CHAPTER 7. CONCLUSION

lished as we write and would surely be a fascinating challenge to describe

and analyse formally.

Concluding remark

C is a powerful, ubiquitous programming language that is an important en-

abling technology for much of computer science’s impact on today’s world.

With the help of mechanical theorem-proving assistance, we have demon-

strated that the theory of formal methods and programming language se-

mantics can be fruitfully applied to real world examples such as C. We hope

that our example will inspire others to attack similar real-world problems

with emerging theorem-proving technology.

Appendix A

Definitions

A.1 Syntax

The type of C types is defined thus:

val basic_integral = define_type {

name = "basic_integral_type",

fixities = [Prefix, Prefix, Prefix, Prefix],

type_spec =

‘basic_integral_type = Char | Short | Int | Long‘};

local

val type_name = "CType"

val bi_type = (==‘:basic_integral_type‘==)

structure CTypeDef : NestedRecTypeInputSig =

struct

structure DefTypeInfo = DefTypeInfo

open DefTypeInfo

val def_type_spec =

[{type_name = type_name,

constructors =

[{name = "Void", arg_info = []},

{name = "Unsigned", arg_info = [existing bi_type]},

{name = "Signed", arg_info = [existing bi_type]},

{name = "Ptr", arg_info = [being_defined "CType"]},

{name = "Array", arg_info = [being_defined "CType",

existing (==‘:num‘==)]},

{name = "Struct",

arg_info = [existing (==‘:string‘==)]},

{name = "Function",

arg_info = [being_defined "CType", (* the return type *)

type_op {Tyop = "list",(* parameters *)

Args = [being_defined "CType"]}]}]}]

119

120 APPENDIX A. DEFINITIONS

Type well-formedness is defined as follows (where no dups checks that an list of name-
type pairs doesn’t duplicate a name):

local

val wf = ‘‘wf_type:(string -> str_info) ->

(string -> bool) ->

CType -> bool‘‘

fun s t = {hypotheses = [], side_conditions = [], conclusion = t}

in

val (wf_type_rules,wf_type_induction,wf_type_cases) =

IndDefLib.new_inductive_definition {

fixity = Prefix,

name = "wf_type",

patt = (‘‘^wf smap vstd t‘‘, []:term list),

rules = [

s ‘‘^wf smap vstd Void‘‘,

s ‘‘^wf smap vstd (Unsigned bt)‘‘,

s ‘‘^wf smap vstd (Signed bt)‘‘,

{hypotheses = [‘‘^wf smap vstd pt‘‘],

side_conditions = [],

(* --- *)

conclusion = ‘‘^wf smap vstd (Ptr pt)‘‘},

{hypotheses = [],

side_conditions = [‘‘(sn:string) IN vstd‘‘],

conclusion = ‘‘^wf smap vstd (Ptr (Struct sn))‘‘},

{hypotheses = [‘‘^wf smap vstd bt‘‘],

side_conditions = [‘‘~(n = 0)‘‘, ‘‘~(bt = Void)‘‘],

(* --- *)

conclusion = ‘‘^wf smap vstd (Array bt n)‘‘},

{hypotheses = [

‘‘!t. IS_EL t (MAP SND (struct_info (smap (sn:string)))) ==>

^wf smap (sn INSERT vstd) t‘‘

],

side_conditions = [

‘‘nodup_flds (smap (sn:string)) /\ ~(struct_info (smap sn) = []) /\

!t. IS_EL t (MAP SND (struct_info (smap sn))) ==> ~(t = Void)‘‘

],

(* --- *)

conclusion = ‘‘^wf smap vstd (Struct sn)‘‘},

{hypotheses = [

‘‘^wf smap vstd rtype‘‘,

‘‘!t. IS_EL t args ==>

^wf smap vstd t /\ ~(t = Void) /\ ~array_type t‘‘

],

side_conditions = [‘‘~array_type rtype‘‘],

(*--- *)

conclusion =

‘‘^wf smap vstd (Function rtype args)‘‘}

A.1. SYNTAX 121

]}

end;

122 APPENDIX A. DEFINITIONS

The type of expressions:

local

val existing = DefTypeInfo.existing

val being_defined = DefTypeInfo.being_defined

val numtype = existing (==‘:num‘==)

val oparg = ty_antiq (==‘:^memval # CType # num‘==)

val resarg = ty_antiq (==‘:^memval # CType‘==)

val stringtype = existing (==‘:string‘==) and

ctypetype = existing (==‘:CType‘==) and

cbinfntype = existing ‘‘:c_binops‘‘ and

cunfntype = existing ‘‘:c_unops‘‘ and

memvaltype = existing (==‘:^memval‘==) and

membagtype = existing (==‘:num->num‘==) and

cexprtype = being_defined "CExpr" and

type_name = "CExpr"

structure CExprDef : NestedRecTypeInputSig =

struct

structure DefTypeInfo = DefTypeInfo

open DefTypeInfo

val def_type_spec =

[{type_name = type_name,

constructors =

[{name = "Cnum", arg_info = [numtype]},

{name = "Cchar", arg_info = [numtype]},

{name = "Cnullptr", arg_info = [ctypetype]},

{name = "Var", arg_info = [stringtype]},

{name = "CFunRef", arg_info = [stringtype]},

{name = "COr", arg_info = [cexprtype, cexprtype]},

{name = "CAnd", arg_info = [cexprtype, cexprtype]},

{name = "CCond", arg_info = [cexprtype, cexprtype,

cexprtype]},

{name = "CApBinary", arg_info = [cbinfntype, cexprtype,

cexprtype]},

{name = "CApUnary", arg_info = [cunfntype, cexprtype]},

{name = "Deref", arg_info = [cexprtype]},

{name = "Addr", arg_info = [cexprtype]},

{name = "Assign", arg_info = [cbinfntype, cexprtype,

cexprtype, membagtype]},

{name = "SVar", arg_info = [cexprtype, stringtype]},

{name = "FnApp", arg_info = [cexprtype,

type_op {Tyop = "list", Args = [cexprtype]}]},

{name = "CommaSep", arg_info = [cexprtype, cexprtype]},

{name = "Cast", arg_info = [ctypetype, cexprtype]},

{name = "PostInc", arg_info = [cexprtype]},

{name = "CAndOr_sqpt", arg_info = [cexprtype]},

{name = "FnApp_sqpt", arg_info = [cexprtype,

type_op {Tyop = "list",

Args = [cexprtype]}]},

A.1. SYNTAX 123

{name = "LVal", arg_info = [numtype, ctypetype]},

{name = "RValreq", arg_info = [cexprtype]},

{name = "ECompVal", arg_info = [memvaltype, ctypetype]},

{name = "UndefinedExpr", arg_info = []}]}]

124 APPENDIX A. DEFINITIONS

A.2 Semantics

The states over which the semantics operates are defined in two parts. First, the core
record type (with the global versions of components indicated by the leading “g” in the
name):

create_record "fn_info"[("return_type", (==‘:CType‘==)),

("parameters", (==‘:(string#CType) list‘==)),

("body", (==‘:CStmt‘==))];

create_record "CState" [("allocmap", (==‘:num -> bool‘==)),

("fnmap", (==‘:string -> fn_info‘==)),

("gstrmap", (==‘:string -> str_info‘==)),

("gtypemap", (==‘:string -> CType‘==)),

("gvarmap", (==‘:string -> num‘==)),

("initmap", (==‘:num -> bool‘==)),

("locmap", (==‘:num -> MemObj‘==)),

("strmap", (==‘:string -> str_info‘==)),

("typemap", (==‘:string -> CType‘==)),

("varmap", (==‘:string -> num‘==))];

Then we define a side effect record type. This contains the three state components that are
particular to expression side effects. It is a historical accident that Cholera defines this part
of the state separately: the false optimisation of realising that side effect records never
had a rôle to play in statement evaluation lead us to create a separate “bit of state” that
was only in existence when expressions were evaluated. Sad to say, mechanisations can
be difficult to reorganise once established in numerous files and theories.

create_record "se_info" [("pending_ses", ==‘:^qse->num‘==),

("update_map", ==‘:num->bool‘==),

("ref_map", ==‘:num->num‘==)];

We define our E and L contexts as functions taking expressions to expressions.

val valid_econtext = new_definition(

"valid_econtext",

--‘valid_econtext f =

(?f’ e1. f = CApBinary f’ e1) \/

(?f’ e2. f = \e1. CApBinary f’ e1 e2) \/

(?f’ e2 b. f = \e1. Assign f’ e1 e2 b) \/

(?e2 f’. (f = (\e1. f’ e1 e2)) /\

f’ IN {COr; CAnd; CommaSep}) \/

(?e2 e3. (f = \e1. CCond e1 e2 e3)) \/

(?f’. f = CApUnary f’) \/

(f IN {Addr; Deref; CAndOr_sqpt; PostInc; RValreq}) \/

(?fld. f = \e. SVar e fld) \/

(?args. f = \e. FnApp e args) \/

(?args fn n. (f = \e. FnApp fn (LIST_INSERT e n args)) /\

(n <= LENGTH args)) \/

(?t. f = Cast t)‘--);

A.2. SEMANTICS 125

val valid_lvcontext = new_definition (

"valid_lvcontext",

--‘valid_lvcontext f =

(?f’ e1. f = CApBinary f’ e1) \/

(?f’ e2. f = \e1. CApBinary f’ e1 e2) \/

(?e2 f’. (f = (\e1. f’ e1 e2)) /\

f’ IN {COr; CAnd; CommaSep}) \/

(?e2 e3. (f = \e1. CCond e1 e2 e3)) \/

(?f’. f = CApUnary f’) \/

(f IN {Deref; CAndOr_sqpt; RValreq}) \/

(?args. f = \e. FnApp e args) \/

(?args fn n. (f = \e. FnApp fn (LIST_INSERT e n args)) /\

(n <= LENGTH args)) \/

(?t. f = Cast t)‘--);

The following are helper definitions for the definition of meaning the dynamic reduction
relation. The most important is the first, lval2rval, which takes an lvalue to a real value.
The malloc relation defined next is referred to as alloc in the text.

val lval2rval = new_definition(

"lval2rval",

‘‘lval2rval (s0,e0,se0) (s,e,se) =

(s0 = s) /\

?n t. (e0 = LVal n t) /\

(~(array_type t) /\

(?sz. sizeof (strmap s0) (INL t) sz /\

(mark_ref n sz se0 se /\

(range_set n sz) SUBSET initmap s0 /\

(e = ECompVal (mem2val s0 n sz) t) \/

(~(range_set n sz SUBSET initmap s0) \/

(!se’. ~(mark_ref n sz se0 se’))) /\

(se = se0) /\ (e = UndefinedExpr))) \/

(?sz t’.

(t = Array t’ sz) /\ (se0 = se) /\

(e = ECompVal (num2mval ptr_size n) (Ptr t’))))‘‘);

theorem "choltype" "CType_one_one"]);

val malloc = new_definition(

"malloc",

‘‘malloc s0 a n =

DISJOINT (allocmap s0) (range_set a n) /\

~(a = 0) /\

a + n < 2 EXP (CHAR_BIT * ptr_size)‘‘);

val rec_i_vars = Rsyntax.new_recursive_definition {

name = "rec_i_vars", fixity = Prefix,

rec_axiom = theorem "list" "list_Axiom",

def =

‘‘(rec_i_vars st1 [] st2 resv = (st1 = st2) /\ (resv = T)) /\

(rec_i_vars st1 (CONS (hd:string#CType) tail) st2 resv =

126 APPENDIX A. DEFINITIONS

?n.

sizeof (strmap st1) (INL (SND hd)) n /\

((?a. malloc st1 a n /\

rec_i_vars

((varmap_fupd (\v. override v (FST hd) a) o

typemap_fupd (\t. override t (FST hd) (SND hd)) o

allocmap_fupd ($UNION (range_set a n))) st1)

tail

st2 resv) \/

(!a. ~malloc st1 a n) /\ (resv = F) /\ (st2 = st1)))‘‘

};

val install_vars = new_definition(

"install_vars",

‘‘install_vars st1 fn st2 resv =

rec_i_vars ((varmap_update (gvarmap st1) o

typemap_update (gtypemap st1) o

strmap_update (gstrmap st1)) st1)

(parameters (fnmap st1 fn))

st2 resv‘‘);

val rec_i_vals = Rsyntax.new_recursive_definition {

name = "rec_i_vals", fixity = Prefix,

rec_axiom = theorem "list" "list_Axiom",

def = (--‘

(rec_i_vals st1 [] vallist st2 res =

(vallist = []) /\ (st1 = st2) /\ res) /\

(rec_i_vals s0 (CONS (phd:string#CType) ptl) vallist s res =

?vval vtype vtl pname ptype.

(vallist = CONS (ECompVal vval vtype) vtl) /\

(phd = (pname, ptype)) /\

((?s1 newval rs.

convert_val (strmap s0) (vval, vtype) (newval, ptype) /\

(rs = range_set (varmap s0 pname) (LENGTH newval)) /\

(s1 = initmap_fupd ($UNION rs)

(allocmap_fupd ($UNION rs)

(val2mem s0 (varmap s0 pname) newval))) /\

rec_i_vals s1 ptl vtl s res) \/

(!nv. ~convert_val (strmap s0) (vval,vtype) (nv, ptype)) /\

(res = F)))‘--)};

val install_values = new_definition (

"install_values",

‘‘install_values s0 fn pvl s1 res =

rec_i_vals s0 (parameters (fnmap s0 fn)) pvl s1 res‘‘);

val pass_parameters = new_definition (

"pass_parameters",

‘‘pass_parameters s0 fnid pv s res =

?s1 res’.

install_vars s0 fnid s1 res’ /\

(res’

=> install_values s1 fnid pv s res

A.2. SEMANTICS 127

| (res = F) /\ (s = s0))‘‘);

Finally we define the meaning relation itself. This has to be cast as six mutually recursive
relations. The meaningfuls type is the disjoint union type which determines which rela-
tion is intended for the various syntactic forms. For example, mExpr tags for →e, mTCExpr
for →∗

e, and mStmt for →s. The meaning val type is the disjoint sum of possible result
types. The ExprVal constructor is used to tag all results of the →e and →∗

e relations. The
other constructors are all the different possible results for statement and variable declara-
tion evaluation.

val meaningfuls = define_type {

name = "meaningfuls",

fixities = [Prefix,Prefix,Prefix,Prefix,Prefix,Prefix],

type_spec = ‘meaningfuls =

mExpr of CExpr => se_info |

mTCExpr of CExpr => se_info |

mStmt of CStmt | mStmtl of CStmt list |

mVarD of var_decl | mVarDl of var_decl list‘

};

val meaning_val = define_type {

name = "meaning_val_Axiom",

fixities =

[Prefix, Prefix, Prefix, Prefix, Prefix, Prefix, Prefix, Prefix],

type_spec = ‘meaning_val = ExprVal of CExpr => se_info |

StmtVal | RetVal of MemObj list |

BreakVal | ContVal | VarDeclVal |

Undefined‘};

local

val mng =

(--‘meaning:meaningfuls -> CState ->

(CState # meaning_val) -> bool‘--)

val ev = (--‘ExprVal‘--)

val evl = (--‘FunArgsVal‘--)

fun s x = (* s for simple *)

{conclusion = x, side_conditions = [], hypotheses = []}

val ind_definition = {

fixity = Prefix,

name = "meaning",

patt = ((--‘^mng x s sv‘--), ([]:term list)),

rules = [

s (--‘^mng (mExpr (Cnum n) se) s

(s, ^ev (ECompVal (num2mval int_size n)

(Signed Int))

se)‘--),

s (--‘^mng (mExpr (Cchar n) se) s

(s, ^ev (ECompVal (num2mval int_size n)

(Signed Int))

128 APPENDIX A. DEFINITIONS

se)‘--),

s (--‘^mng (mExpr (Cnullptr t) se) s

(s, ^ev (ECompVal (num2mval ptr_size 0) (Ptr t)) se)‘--),

s (--‘^mng (mExpr (CFunRef n) se) s

(s, ^ev (ECompVal (create_memval_fnref n)

(typemap s n))

se)‘--),

s (--‘^mng (mExpr (Var vname) se) s

(s, ^ev (LVal (varmap s vname) (typemap s vname)) se)‘--),

{hypotheses = [],

side_conditions = [‘‘convert_val (strmap s) (v, t) (v’, t’)‘‘],

conclusion = ‘‘^mng (mExpr (Cast t’ (ECompVal v t)) se) s

(s, ^ev (ECompVal v’ t’) se)‘‘},

{hypotheses = [],

side_conditions = [‘‘!v’. ~convert_val (strmap s) (v, t) (v’, t’)‘‘],

(* --- *)

conclusion = ‘‘^mng (mExpr (Cast t’ (ECompVal v t)) se) s

(s, ^ev UndefinedExpr se)‘‘},

{hypotheses = [(--‘^mng (mExpr e se0) s0 (s, ^ev e’ se)‘--)],

side_conditions = [(--‘valid_econtext f‘--)],

(* --- *)

conclusion = (--‘^mng (mExpr ((f:CExpr->CExpr) e) se0) s0

(s, ^ev (f e’) se)‘--)},

{hypotheses = [],

side_conditions = [

‘‘valid_econtext f \/ ?asfn lhs b. f = \e. Assign asfn lhs e b‘‘

],

conclusion = (--‘^mng (mExpr (f UndefinedExpr) se) s

(s, ^ev UndefinedExpr se)‘--)},

{hypotheses = [],

side_conditions = [--‘valid_lvcontext f‘--,

--‘lval2rval (s0,e0,se0) (s,e,se)‘--],

conclusion = --‘^mng (mExpr ((f:CExpr->CExpr) e0) se0) s0

(s, ^ev (f e) se)‘--},

{hypotheses = [],

side_conditions = [(--‘apply_se (se0, s0) (se, s)‘--)],

conclusion = (--‘^mng (mExpr e se0) s0 (s, ^ev e se)‘--)},

{hypotheses = [],

side_conditions = [(--‘!se s. ~(apply_se (se0, s0) (se, s))‘--),

‘‘~is_null_se se0‘‘, ‘‘~(e = UndefinedExpr)‘‘],

conclusion =

(--‘^mng (mExpr e se0) s0 (s0, ^ev UndefinedExpr se0)‘--)},

{hypotheses = [],

side_conditions = [(--‘is_null_se se‘--)],

(* --- *)

conclusion = (--‘^mng (mExpr (CommaSep (ECompVal v t) e2) se) s0

(s0, ^ev (RValreq e2) (null_se se))‘--)},

s (--‘^mng (mExpr (RValreq (ECompVal v t)) se) s

(s, ^ev (ECompVal v t) se)‘--),

A.2. SEMANTICS 129

{hypotheses = [],

side_conditions = [

‘‘!res restype.

~(binop_meaning s f v1 type1 v2 type2 res restype)‘‘

],

(* --- *)

conclusion =

(--‘^mng (mExpr (CApBinary f (ECompVal v1 type1)

(ECompVal v2 type2)) se0) s

(s, ^ev UndefinedExpr se0)‘--)},

{hypotheses = [],

side_conditions = [

‘‘binop_meaning s f v1 type1 v2 type2 res restype‘‘

],

(* -- *)

conclusion =

(--‘^mng (mExpr (CApBinary f (ECompVal v1 type1)

(ECompVal v2 type2)) se) s

(s, ^ev (ECompVal res restype) se)‘--)},

{hypotheses = [],

side_conditions = [

--‘unop_meaning s f ival t result rt‘--

],

(* -- *)

conclusion = (--‘^mng (mExpr (CApUnary f (ECompVal ival t)) se) s

(s, ^ev (ECompVal result rt) se)‘--)},

{hypotheses = [],

side_conditions = [

--‘!res rt. ~(unop_meaning s0 f ival t res rt)‘--

],

(* --- *)

conclusion = (--‘^mng (mExpr (CApUnary f (ECompVal ival t)) se0) s0

(s0, ^ev UndefinedExpr se0)‘--)},

{hypotheses = [],

side_conditions = [(--‘coerce_to_num v = 0‘--),

(--‘scalar_type t‘--)],

(* --- *)

conclusion = --‘

^mng (mExpr (CAnd (ECompVal v t) sub2) se) s

(s, ^ev (ECompVal (num2mval int_size 0) (Signed Int)) se)‘--},

{hypotheses = [],

side_conditions = [(--‘~(coerce_to_num v = 0)‘--),

(--‘is_null_se se‘--), (--‘scalar_type t‘--)],

(* --- *)

conclusion = (--‘^mng (mExpr (CAnd (ECompVal v t) sub2) se) s

(s, ^ev (CAndOr_sqpt sub2) (null_se se))‘--)},

{hypotheses = [],

side_conditions = [(--‘scalar_type t‘--)],

(* --- *)

130 APPENDIX A. DEFINITIONS

conclusion =

(--‘^mng (mExpr (CAndOr_sqpt (ECompVal v t)) se) s

(s, ^ev (ECompVal (coerce_to_num v = 0

=> (num2mval int_size 0)

| (num2mval int_size 1))

(Signed Int)) se)‘--)},

{hypotheses = [],

side_conditions = [(--‘~(coerce_to_num v = 0)‘--),

(--‘scalar_type t‘--)],

(* -- *)

conclusion = --‘

^mng (mExpr (COr (ECompVal v t) sub2) se) s

(s, ^ev (ECompVal (num2mval int_size 1) (Signed Int)) se)‘--},

{hypotheses = [],

side_conditions = [(--‘(coerce_to_num v = 0)‘--),

(--‘is_null_se se‘--), (--‘scalar_type t‘--)],

(* --- *)

conclusion = (--‘^mng (mExpr (COr (ECompVal v t) sub2) se) s

(s, ^ev (CAndOr_sqpt sub2) (null_se se))‘--)},

{hypotheses = [],

side_conditions = [

‘‘is_null_se se‘‘, ‘‘scalar_type t‘‘,

‘‘expr_type (expr_type_comps s) RValue (INL e2) (INL t2)‘‘,

‘‘expr_type (expr_type_comps s) RValue (INL e3) (INL t3)‘‘,

‘‘expr_type (expr_type_comps s) RValue

(INL (CCond (ECompVal v t) e2 e3))

(INL result_type)‘‘,

‘‘coerce_to_num v = 0‘‘,

‘‘(t2 = Struct sn) /\ (resexpr = RValreq e3) \/

(!sn. ~(t2 = Struct sn)) /\ (resexpr = Cast result_type e3)‘‘

],

(* -- *)

conclusion = --‘^mng (mExpr (CCond (ECompVal v t) e2 e3) se) s

(s, ^ev resexpr (null_se se))‘--},

{hypotheses = [],

side_conditions = [

‘‘is_null_se se‘‘, ‘‘scalar_type t‘‘,

‘‘expr_type (expr_type_comps s) RValue (INL e2) (INL t2)‘‘,

‘‘expr_type (expr_type_comps s) RValue (INL e3) (INL t3)‘‘,

‘‘expr_type (expr_type_comps s) RValue

(INL (CCond (ECompVal v t) e2 e3))

(INL result_type)‘‘,

‘‘~(coerce_to_num v = 0)‘‘,

‘‘(t2 = Struct sn) /\ (resexpr = RValreq e2) \/

(!sn. ~(t2 = Struct sn)) /\ (resexpr = Cast result_type e2)‘‘

],

(* --- *)

conclusion = --‘^mng (mExpr (CCond (ECompVal v t) e2 e3) se) s

A.2. SEMANTICS 131

(s, ^ev resexpr (null_se se))‘--},

{hypotheses = [],

side_conditions = [--‘~(t = Void)‘--],

conclusion = --‘^mng (mExpr (Deref (ECompVal mval (Ptr t))) se) s

(s, ^ev (LVal (memval2addr mval) t) se)‘--},

s (--‘^mng (mExpr (Addr (LVal a t)) se) s

(s, ^ev (ECompVal (num2mval ptr_size a) (Ptr t)) se)‘--),

{hypotheses = [(--‘^mng (mExpr RHS se0) s0 (s, ^ev e se)‘--)],

side_conditions = [

(--‘mb’ = BAG_delta (ref_map se0, ref_map se) mb‘--)],

(* --- *)

conclusion =

(--‘^mng (mExpr (Assign f a RHS mb) se0) s0

(s, ^ev (Assign f a e mb’) se)‘--)},

{hypotheses = [],

side_conditions = [‘‘~(f = CAssign)‘‘],

conclusion =

‘‘^mng (mExpr (Assign f (LVal n t) e mb) se0) s0

(s0, ExprVal (Assign CAssign

(LVal n t)

(CApBinary f (LVal n t) e)

mb)

se0)‘‘},

{hypotheses = [],

side_conditions = [

‘‘convert_val (strmap s) (v0,t0) (v,lhs_t) /\

(ok_refs = \x. x IN (se_affects (a, v)) => mb x | 0) /\

(se’ = ref_map_fupd (\rm. BAG_DIFF rm ok_refs) se0) /\

(se = add_se (a, v) se’) /\ (resv = ECompVal v lhs_t)

\/

(!v. ~convert_val (strmap s) (v0, t0) (v, lhs_t)) /\

(resv = UndefinedExpr) /\ (se = se0)‘‘

],

(* --- *)

conclusion = ‘‘^mng (mExpr (Assign CAssign (LVal a lhs_t)

(ECompVal v0 t0)

mb)

se0) s (s, ^ev resv se)‘‘},

{hypotheses = [],

side_conditions = [

--‘sizeof (strmap s) (INL t) sz‘--,

--‘v = mem2val s a sz‘--,

‘‘range_set a sz SUBSET (initmap s)‘‘,

--‘binop_meaning s CPlus v t

(num2mval int_size 1) (Signed Int)

nv1 t’‘--,

‘‘convert_val (strmap s) (nv1,t’) (nv,t) /\

(se = add_se (a, nv) se0) /\ (resv = ECompVal v t)

\/

132 APPENDIX A. DEFINITIONS

(!nv. ~convert_val (strmap s) (nv1, t’) (nv, t)) /\

(se = se0) /\ (resv = UndefinedExpr)‘‘

],

(* -- *)

conclusion =

(--‘^mng (mExpr (PostInc (LVal a t)) se0) s (s, ^ev resv se)‘--)},

{hypotheses = [],

side_conditions = [

‘‘sizeof (strmap s) (INL t) sz‘‘,

‘‘v = mem2val s a sz‘‘,

‘‘(!nv1 t’.

~binop_meaning s CPlus v t (num2mval int_size 1) (Signed Int)

nv1 t’) \/

~(range_set a sz SUBSET (initmap s))‘‘

],

(* -- *)

conclusion = ‘‘^mng (mExpr (PostInc (LVal a t)) se0) s

(s, ^ev UndefinedExpr se0)‘‘},

{hypotheses = [],

side_conditions = [

--‘offset (strmap s) st fld offn‘--,

--‘lookup_field_info (strmap s st) fld ftype‘--

],

(* --- *)

conclusion =

--‘^mng (mExpr (SVar (LVal a (Struct st)) fld) se) s

(s, ^ev (LVal (a + offn) ftype) se)‘--},

{hypotheses = [],

side_conditions = [

--‘offset (strmap s) st fld offn‘--,

--‘lookup_field_info (strmap s st) fld ftype‘--,

--‘sizeof (strmap s) (INL ftype) fsz‘--,

--‘(fv:^memval) = GENLIST (\n. EL (n + offn) v) fsz‘--

],

(* -- *)

conclusion =

(--‘^mng (mExpr (SVar (ECompVal v (Struct st)) fld) se) s

(s, ^ev (ECompVal fv ftype) se)‘--)},

{hypotheses = [],

side_conditions = [

--‘ALL_EL (\e. ?v t. e = ECompVal v t) (CONS f params)‘--,

--‘is_null_se se‘--],

conclusion =

--‘^mng (mExpr (FnApp f params) se) s

(s, ^ev (FnApp_sqpt f params) (null_se se))‘--},

{hypotheses = [

(--‘^mng (mStmt (body (fnmap s1 fnid))) s1 (s2, rv)‘--)],

side_conditions = [

A.2. SEMANTICS 133

(--‘pass_parameters s0 fnid params s1 T‘--),

(--‘memval_fnref fnval fnid‘--),

(--‘ftype = Function rt vs‘--),

(--‘(?v. (rv = RetVal v) /\ (ev = ECompVal v rt) /\

(s = locmap_update (locmap s2)

(initmap_update (initmap s2 INTER allocmap s0)

s0))) \/

(rv = Undefined) /\ (ev = UndefinedExpr) /\ (s = s0)‘--)

],

(* --- *)

conclusion =

(--‘^mng (mExpr (FnApp_sqpt (ECompVal fnval ftype) params) se) s0

(s, ^ev ev se)‘--)},

{hypotheses = [],

side_conditions = [

‘‘pass_parameters s0 fnid params s F‘‘,

‘‘memval_fnref fnval fnid‘‘

],

conclusion =

‘‘^mng (mExpr (FnApp_sqpt (ECompVal fnval ftype) params) se) s0

(s0, ^ev UndefinedExpr se)‘‘},

s (--‘^mng (mTCExpr e se) s (s, ^ev e se)‘--),

{hypotheses = [

(--‘^mng (mExpr e0 se0) s0 (s’, ^ev e’ se’)‘--),

(--‘^mng (mTCExpr e’ se’) s’ (s, ^ev e se)‘--)

],

side_conditions = [],

(* -- *)

conclusion = (--‘^mng (mTCExpr e0 se0) s0 (s, ^ev e se)‘--)},

s (--‘^mng (mStmt EmptyStmt) s (s, StmtVal)‘--),

s (--‘^mng (mStmtl []) s0 (s0, StmtVal)‘--),

{hypotheses = [

(--‘^mng (mStmt st1) s1 (s’, StmtVal)‘--),

(--‘^mng (mStmtl sttail) s’ (s2, v)‘--)

],

side_conditions = [],

(* -- *)

conclusion = (--‘^mng (mStmtl (CONS st1 sttail)) s1 (s2,v)‘--)},

{hypotheses = [(--‘^mng (mStmt st1) s1 (s’, v)‘--)],

side_conditions = [(--‘~(v = StmtVal)‘--)],

(* --- *)

conclusion =

(--‘^mng (mStmtl (CONS st1 sttail)) s1 (s’, v)‘--)},

{hypotheses = [

134 APPENDIX A. DEFINITIONS

(--‘^mng (mTCExpr (RValreq e) base_se) s1 (s2, ^ev e’ se)‘--)

],

side_conditions = [

(--‘is_null_se se‘--),

(--‘(e’ = ECompVal v t) /\ (retval = RetVal v) \/

(e’ = UndefinedExpr) /\ (retval = Undefined)‘--)],

(* -- *)

conclusion = (--‘^mng (mStmt (Ret e)) s1 (s2, retval)‘--)},

s (--‘^mng (mStmt EmptyRet) s1 (s1, RetVal [])‘--),

s (--‘^mng (mStmt Break) s1 (s1, BreakVal)‘--),

s (--‘^mng (mStmt Cont) s1 (s1, ContVal)‘--),

{hypotheses = [--‘^mng (mStmt st) s0 (s, v)‘--],

side_conditions = [--‘traplink tt v‘--],

conclusion = --‘^mng (mStmt (Trap tt st)) s0 (s, StmtVal)‘--},

{hypotheses = [--‘^mng (mStmt st) s0 (s, v)‘--],

side_conditions = [--‘~(traplink tt v)‘--],

conclusion = --‘^mng (mStmt (Trap tt st)) s0 (s, v)‘--},

{hypotheses = [

--‘^mng (mTCExpr (RValreq exp) base_se) s1 (s2, ^ev val se)‘--],

side_conditions = [

--‘(val = ECompVal v t) /\ (retval = StmtVal) /\ is_null_se se \/

(val = UndefinedExpr) /\ (retval = Undefined)‘--

],

(* -- *)

conclusion = (--‘^mng (mStmt (Standalone exp)) s1 (s2, retval)‘--)},

{hypotheses = [

--‘^mng (mTCExpr (RValreq guard) base_se) s0

(s, ^ev UndefinedExpr se)‘--],

side_conditions = [],

conclusion = (--‘^mng (mStmt (CIf guard t e)) s0 (s, Undefined)‘--)},

{hypotheses = [

(--‘^mng (mTCExpr (RValreq guard) base_se) s1

(s’, ^ev (ECompVal gval t) se)‘--),

(--‘^mng (mStmt then) s’ (s2, val)‘--)

],

side_conditions = [

(--‘~(coerce_to_num gval = 0)‘--), (* guard is true *)

(--‘scalar_type t‘--),

(--‘is_null_se se‘--)

],

(* -- *)

conclusion =

(--‘^mng (mStmt (CIf guard then else)) s1 (s2, val)‘--)},

{hypotheses = [

A.2. SEMANTICS 135

(--‘^mng (mTCExpr (RValreq guard) base_se) s1

(s’, ^ev (ECompVal gval t) se)‘--),

(--‘^mng (mStmt else) s’ (s2, val)‘--)

],

side_conditions = [

(--‘(coerce_to_num gval = 0)‘--), (* guard is false *)

(--‘scalar_type t‘--),

(--‘is_null_se se‘--)

],

(* --- *)

conclusion =

(--‘^mng (mStmt (CIf guard then else)) s1 (s2, val)‘--)},

{hypotheses = [

--‘^mng (mTCExpr (RValreq guard) base_se) s0

(s, ^ev UndefinedExpr se)‘--],

side_conditions = [],

(* --- *)

conclusion =

(--‘^mng (mStmt (CLoop guard bdy)) s0 (s, Undefined)‘--)},

{hypotheses = [

(--‘^mng (mTCExpr (RValreq guard) base_se) s0

(s, ^ev (ECompVal gval t) se)‘--)

],

side_conditions = [(--‘scalar_type t‘--),

(--‘coerce_to_num gval = 0‘--),

(--‘is_null_se se‘--)],

(* --- *)

conclusion =

(--‘^mng (mStmt (CLoop guard bdy)) s0 (s, StmtVal)‘--)},

{hypotheses = [

(--‘^mng (mTCExpr (RValreq guard) base_se) s0

(s’, ^ev (ECompVal gval t) se)‘--),

(--‘^mng (mStmt bdy) s’ (s, v)‘--)

],

side_conditions = [

(--‘~(v = StmtVal)‘--), (--‘scalar_type t‘--),

(--‘~(coerce_to_num gval = 0)‘--), (--‘is_null_se se‘--)

],

(* -- *)

conclusion =

(--‘^mng (mStmt (CLoop guard bdy)) s0 (s, v)‘--)},

{hypotheses = [

(--‘^mng (mTCExpr (RValreq guard) base_se) s0

(s’, ^ev (ECompVal gval t) se)‘--),

(--‘^mng (mStmt bdy) s’ (s’’, StmtVal)‘--),

(--‘^mng (mStmt (CLoop guard bdy)) s’’ (s, v)‘--)

],

side_conditions = [

136 APPENDIX A. DEFINITIONS

(--‘scalar_type t‘--), (--‘~(coerce_to_num gval = 0)‘--),

(--‘is_null_se se‘--)

],

(* -- *)

conclusion = (--‘^mng (mStmt (CLoop guard bdy)) s0 (s, v)‘--)},

{hypotheses = [

(--‘^mng (mVarDl vds) s0 (s1, VarDeclVal)‘--),

(--‘^mng (mStmtl sts) s1 (s2, v)‘--)

],

side_conditions = [],

(* -- *)

conclusion =

(--‘^mng (mStmt (Block vds sts))

s0

(locmap_update (locmap s2)

(initmap_update

(initmap s2 INTER allocmap s0)

s0), v)‘--)},

{hypotheses = [(--‘^mng (mVarDl vds) s0 (s, Undefined)‘--)],

side_conditions = [],

(* --- *)

conclusion = (--‘^mng (mStmt (Block vds sts)) s0 (s0, Undefined)‘--)},

{hypotheses = [],

side_conditions = [

‘‘sizeof (strmap s) (INL type) n‘‘,

‘‘malloc s a n‘‘

],

(* -- *)

conclusion =

(--‘^mng (mVarD (VDec type name))

s

((allocmap_fupd ($UNION (range_set a n)) o

varmap_fupd (\v. override v name a) o

typemap_fupd (\t. override t name type)) s,

VarDeclVal)‘--)},

{hypotheses = [],

side_conditions = [‘‘!a. ~malloc s a (sizeof_fn (strmap s) type)‘‘],

(* -- *)

conclusion = ‘‘^mng (mVarD (VDec type name)) s (s, Undefined)‘‘},

{hypotheses = [

‘‘^mng (mVarD (VDec t name)) s0 (s1, VarDeclVal)‘‘,

‘‘^mng (mTCExpr

(Assign CAssign (Var name) (RValreq e) EMPTY_BAG) base_se)

s1 (s, ^ev (ECompVal v t) se)‘‘

],

side_conditions = [‘‘is_null_se se‘‘],

(* -- *)

conclusion =

A.2. SEMANTICS 137

(--‘^mng (mVarD (VDecInit t name e)) s0 (s, VarDeclVal)‘--)},

{hypotheses = [

‘‘^mng (mVarD (VDec t name)) s0 (s1, VarDeclVal)‘‘,

‘‘^mng (mTCExpr

(Assign CAssign (Var name)(RValreq e) EMPTY_BAG) base_se)

s1 (s, ^ev UndefinedExpr se)‘‘],

side_conditions = [],

(* --- *)

conclusion = (--‘^mng (mVarD (VDecInit t n e)) s0 (s, Undefined)‘--)},

{hypotheses = [], side_conditions = [

‘‘newstrmap = override (strmap s) name (str_info flds)‘‘

],

(* -- *)

conclusion = ‘‘^mng (mVarD (VStrDec name flds)) s

(strmap_update newstrmap s, VarDeclVal)‘‘},

s (--‘^mng (mVarDl []) s (s, VarDeclVal)‘--),

{hypotheses = [(--‘^mng (mVarD vhd) s0 (s, Undefined)‘--)],

side_conditions = [],

conclusion = (--‘^mng (mVarDl (CONS vhd vtl)) s0 (s, Undefined)‘--)},

{hypotheses = [

(--‘^mng (mVarD vhd) s0 (s1, VarDeclVal)‘--),

(--‘^mng (mVarDl vtl) s1 (s2, v)‘--)

], side_conditions = [],

(* --- *)

conclusion =

(--‘^mng (mVarDl (CONS vhd vtl)) s0 (s2, v)‘--)}

]

};

in

val (meaning_thms, mng_induction, mng_cases) =

IndDefLib.new_inductive_definition ind_definition;

val meaning = CONJ meaning_thms mng_induction

end;

138 APPENDIX A. DEFINITIONS

Appendix B

Theorems

Subject reduction The expr type relation is satisfied if the last argument is the type of
the third, the expression.

‘‘!e0 se0 s0 e se s.

meaning (mExpr e0 se0) s0 (s,ExprVal e se) ==>

has_no_inactive_undefineds e0 ==>

fnapps_safe e0 ==>

!v t.

expr_type (expr_type_comps s0) v (INL e0) (INL t) ==>

has_no_undefineds e ==>

expr_type (expr_type_comps s) v (INL e) (INL t)‘‘

Type safety The rec expr P functional recursively applies a predicate over the entirety
of a syntax tree and checks that it holds everywhere. Here we check to see that the
expression does not contain any function calls.

‘‘!e0 t1 s0 se0 v.

expr_type (expr_type_comps s0) v (INL e0) t1 ==>

rec_expr_P e0 (\e. !f args. ~(e = FnApp f args) /\

~(e = FnApp_sqpt f args)) ==>

lval_safe e0 ==> ~(e0 = UndefinedExpr) ==>

(!v t2. ~(e0 = ECompVal v t2)) ==>

?e se s.

meaning (mExpr (RValreq e0) se0) s0 (s, ExprVal (RValreq e) se)‘‘

Syntactic purity implies semantic purity The requirement that a state be pure requires
it to have no pending side effects and to have an empty update map. These are
both components that the Cholera model stores in the side effect record, so it is
implemented by the pure se predicate.

‘‘(!e0 se0 s0 e se s.

meaning (mTCExpr e0 se0) s0 (s, ExprVal e se) ==>

syn_pure_expr e0 ==> pure_se se0 ==>

pure_se se /\ (s = s0))‘‘

139

140 APPENDIX B. THEOREMS

∼R is a “pseudo-bisimulation” for synpure expressions The “bisimulation” between states
required that the states be identical up to variance in reference maps only. This is
met by requiring that the side effect records be pure, and that the initial states (s0)
be the same.

‘‘(!e0 se0 s0 e se s.

meaning (mTCExpr e0 se0) s0 (s, ExprVal e se) ==>

pure_se se0 ==> syn_pure_expr e0 ==>

!se0’. pure_se se0’ ==>

?se’. meaning (mTCExpr e0 se0’) s0 (s0, ExprVal e se’) /\

pure_se se’)‘‘

Single step diamond result for synpure expressions
‘‘!e0 se0 s0 e1 se1 s1 e2 se2 s2 v t.

meaning (mExpr e0 se0) s0 (s1, ExprVal e1 se1) /\

meaning (mExpr e0 se0) s0 (s2, ExprVal e2 se2) /\

pure_se se0 /\ syn_pure_expr e0 /\ has_no_undefineds e0 /\

expr_type (expr_type_comps s0) v (INL e0) (INL t) /\

~((s1, e1, se1) = (s2, e2, se2)) ==>

?se1’ se2’ e.

meaning (mExpr e1 se1) s1 (s0, ExprVal e se1’) /\

meaning (mExpr e2 se2) s2 (s0, ExprVal e se2’) /\

pure_se se1’ /\ pure_se se2’ /\

(has_no_undefineds e =

has_no_undefineds e1 /\ has_no_undefineds e2)‘‘

Determinism of synpure expressions
‘‘!e0 se0 s0 v1 t1 v2 t2 se1 se2 s1 s2.

meaning (mTCExpr e0 se0) s0 (s1, ExprVal (ECompVal v1 t1) se1) /\

meaning (mTCExpr e0 se0) s0 (s2, ExprVal (ECompVal v2 t2) se2) /\

pure_se se0 /\ syn_pure_expr e0 /\ fnapps_safe e0 /\

has_no_inactive_undefineds e0 /\

(?t. expr_type (expr_type_comps s0) RValue (INL e0) (INL t)) ==>

(s1 = s0) /\ (s2 = s0) /\ pure_se se1 /\ pure_se se2 /\

(v1 = v2) /\ (t1 = t2)‘‘

Pure reductions commute with apply se This lemma, the first of those connected with
the sequence point free determinism result consists of the statement of the result
for both →e and →∗

e. We express the idea of being a “pure reduction” by holding the
update map constant before and after, and also requiring that any pending side ef-
fects not be “null” i.e., they must all affect at least a byte of memory. The rbag safe

and refbags constraints relate to properties that must hold of the bags of references
maintained as part of the assignment syntax. Note also that in the mechanisation,
apply se is a relation that asserts that a side effect has been applied, but without
specifying which one.

‘‘(!e0 se’ s’ e se s.

meaning (mTCExpr e0 se’) s’ (s, ExprVal e se) ==>

seqpt_free e0 ==> rec_expr_P e0 rbag_safe ==>

SUB_BAG (refbags e0) (ref_map se’) ==>

(?v t. expr_type (expr_type_comps s’) v (INL e0) (INL t)) ==>

141

(update_map se’ = update_map se) ==> null_ise_free se’ ==>

has_no_undefineds e ==> safe_se (se,s) ==>

!se0 s0. apply_se (se0, s0) (se’, s’) ==>

?se’’. meaning (mTCExpr e0 se0) s0 (s0, ExprVal e se’’) /\

(update_map se0 = update_map se’’) /\

apply_se (se’’, s0) (se, s))‘‘

Separation The apply nse relation relates two states if it is possible to get from one to
the other by applying n side effects.

‘‘(!e0 se0 s0 e se s.

meaning (mTCExpr e0 se0) s0 (s, ExprVal e se) ==>

seqpt_free e0 ==> rec_expr_P e0 rbag_safe ==>

(?v t. expr_type (expr_type_comps s0) v (INL e0) (INL t)) ==>

null_ise_free se0 ==> has_no_undefineds e ==>

SUB_BAG (refbags e0) (ref_map se0) ==> safe_se (se, s) ==>

?se’.

meaning (mTCExpr e0 se0) s0 (s0, ExprVal e se’) /\

(update_map se0 = update_map se’) /\

?n. apply_nse n (se’, s0) (se, s))‘‘,

Reduction characterisation All sequence point free reductions that don’t update the
state can be characterised in terms of the way in which they affect the side effect
record (the reference and update maps, and the bag of pending side effects). The
following theorem is the statement of how such a reduction can be characterised. As
well as the three state components mentioned above, we also have to characterise
the refbags of the expression because these have an effect on the reference map
when an assignment expression completes. The final part of the conclusion states
that analogous reductions are possible from a variety of similar starting states. This
will then allow the proof of the final diamond property.

‘‘!e0 se0 s0 e se s.

meaning (mTCExpr e0 se0) s0 (s, ExprVal e se) ==>

seqpt_free e0 ==> null_ise_free se0 ==> has_no_undefineds e ==>

SUB_BAG (refbags e0) (ref_map se0) ==> rec_expr_P e0 rbag_safe ==>

(?t v. expr_type (expr_type_comps s0) v (INL e0) (INL t)) ==>

(update_map se0 = update_map se) ==>

rec_expr_P e rbag_safe /\ SUB_BAG (refbags e) (ref_map se) /\

?rbu rbd pb rbbu rbbd.

SUB_BAG rbd rbbd /\ SUB_BAG rbbu rbu /\

SUB_BAG rbbd (BAG_UNION (refbags e0) rbbu) /\

(ref_map se = BAG_DIFF (BAG_UNION (ref_map se0) rbu) rbd) /\

(refbags e = BAG_DIFF (BAG_UNION (refbags e0) rbbu) rbbd) /\

(pending_ses se = BAG_UNION (pending_ses se0) pb) /\

(!se0’. (update_map se0’ = update_map se0) ==>

SUB_BAG (refbags e0) (ref_map se0’) ==>

?se’.

meaning (mTCExpr e0 se0’) s0 (s0, ExprVal e se’) /\

(update_map se’ = update_map se0’) /\

(ref_map se’ =

142 APPENDIX B. THEOREMS

BAG_DIFF (BAG_UNION (ref_map se0’) rbu) rbd) /\

(pending_ses se’ = BAG_UNION (pending_ses se0’) pb))‘‘

Reduction preconditions preserved This theorem is actually embodied in a number of
separate results across all of the Cholera theory files. The preconditions are all
apparent from the Reduction characterisation result above. Some of the preserva-
tion sub-results are also presented there (the requirement that the expression e0

be recursively rbag safe is one such), while others are given their own separate
theorem. An example we have already seen is the preservation of the typedness
condition (subject reduction), while another (more trivial) example is the preser-
vation of the null ise free condition, as follows (it is typical that this preservation
property actually requires other preconditions in place as well):

‘‘!e0 se0 s0 e se s.

meaning (mTCExpr e0 se0) s0 (s, ExprVal e se) ==>

seqpt_free e0 ==> has_no_undefineds e ==>

(?t v. expr_type (expr_type_comps s0) v (INL e0) (INL t)) ==>

null_ise_free se0 ==> null_ise_free se)‘‘

Finite and unsafe states can become undefined This theorem appears much the same
in the Cholera presentation as it does in chapter four.

‘‘!e0 se0 s0.

FINITE_BAG (pending_ses se0) ==>

~safe_se (se0,s0) ==>

?se s.

meaning (mTCExpr e0 se0) s0 (s, ExprVal UndefinedExpr se)‘‘

Undefined sub-expression can always ascend While the result is true of sequence point
free expressions, in the Cholera development we actually prove the slightly stronger
result that it is true as long as the expression has no inactive undefined sub-expressions,
and is also fnapps safe.

‘‘!e. fnapps_safe e /\ ~has_no_undefineds e /\

has_no_inactive_undefineds e ==>

!s0 se0.

?s se. meaning (mTCExpr e se0) s0

(s, ExprVal UndefinedExpr se)‘‘

The cliff’s edge The “state” (e’’, se’’, s’’) that is proved to exist in this lemma is
effectively undefined, and therefore must admit a reduction sequence to full unde-
finedness, as long as the bag of pending side effects is finite.

‘‘!e0 se0 s0 e se s v t.

meaning (mExpr e0 se0) s0 (s, ExprVal e se) ==>

expr_type (expr_type_comps s0) v (INL e0) (INL t) ==>

has_no_undefineds e0 ==> safe_se (se0,s0) ==>

seqpt_free e0 ==>

(~has_no_undefineds e \/ ~safe_se (se,s)) ==>

!e’ se’ s’.

meaning (mExpr e0 se0) s0 (s’, ExprVal e’ se’) ==>

143

has_no_undefineds e’ ==> safe_se (se’,s’) ==>

?e’’ se’’ s’’.

meaning (mTCExpr e’ se’) s’ (s’’, ExprVal e’’ se’’) /\

(~has_no_undefineds e’’ \/ ~safe_se (se’’,s’’))‘‘

A diamond property for →E and →A This result is expressed in terms of the augmng transition

relation, which is →e augmented with all of the necessary preconditions.

‘‘!e0 se0 s0 e1 se1 se2 s2.

augmng_transition (e0, se0, s0) (e1, se1, s0) /\

safe_se (se1,s0) /\ apply_se (se0, s0) (se2, s2) ==>

?se.

augmng_transition (e0, se2, s2) (e1, se, s2) /\

apply_se (se1, s0) (se, s2)‘‘

The C invariant rule The invariant relation states that the invariant i is preserved as
long as the starting state shares the same environment as the state s.

‘‘!s i G bdy.

invariant s i (mStmt (CIf G bdy EmptyStmt)) ==>

invariant s i (mStmt (CLoop G bdy))‘‘

Correctness of findint function The findint function is mechanised as pstmt (“process
statement”), where the last boolean argument is true if the interrupt statement
being sought is return and false if it is break. Further, bexp meaning g v s0 s

means that g evaluates with boolean value v, and alters starting state s0 to s in the
process.

‘‘!g bdy s0 s v.

meaning (mStmt (whileloop g bdy)) s0 (s, v) ==>

(v = Undefined) \/

((v = StmtVal) /\ pstmt bdy [TrueG g] s T) \/

((v = StmtVal) /\ ?s’. bexp_meaning g F s’ s) \/

(?mv. (v = RetVal mv) /\ pstmt bdy [TrueG g] s F)‘‘

144 APPENDIX B. THEOREMS

Bibliography

[AA79] Michael A. Arbib and Suad Alagić. Proof rules for gotos. Acta

Informatica, 11(2):139–148, 1979.

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-

Verlag, New York, 1996.

[And94] L. O. Andersen. Program Analysis and Specialization for the C

Programming Language. PhD thesis, DIKU, University of Copen-

hagen, May 1994. (DIKU report 94/19).

[ANS89] American National Standards Institute, 1430 Broadway, New

York, NY 10018, USA. American National Standard Program-

ming Language C, ANSI X3.159-1989, December 1989.

[BK83] R.-J. R. Back and M. Karttunen. A predicate transformer seman-

tics for statements with multiple exits. University of Helsinki,

unpublished MS, 1983.

[Boe85] Hans-Juergen Boehm. Side effects and aliasing can have sim-

ple axiomatic descriptions. ACM Transactions on Programming

Languages and Systems, 7(4):637–655, October 1985.

[Bof98] Mark Bofinger. Reasoning about C programs. PhD thesis, Uni-

versity of Queensland, February 1998.

[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner.

The ML kit (version 1). Technical Report DIKU-report 93/14,

Department of Computer Science, University of Copenhagen,

Universitetsparken 1, DK-2100 Copenhagen, 1993.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered

binary-decision diagrams. ACM Computing Surveys, 24(3):293–

318, September 1992.

145

146 BIBLIOGRAPHY

[BW96] Paul Black and Phil Windley. Inference rules for programming

languages with side effects. In J. von Wright, J. Grundy, and

J. Harrison, editors, Theorem proving in higher order logics. 9th

international conference, TPHOLs 96, volume 1125 of Lecture

notes in computer science, pages 51–60. Springer, August 1996.

[BW98] Paul E. Black and Phillip J. Windley. Formal verification of se-

cure programs in the presence of side effects. In Proceedings of

the Thirty-first Hawai’i International Conference on System Sci-

ences (HICSS-31), January 1998.

[Car97] Luca Cardelli. Type systems. In Allen B. Tucker, Jr., editor, The

Computer Science and Engineering Handbook. CRC Press, 1997.

[CCR94] J. V. Cook, E. L. Cohen, and T. S. Redmond. A formal

denotational semantics for C. A draft document, once

available from Trusted Information Systems’ web-site at

http://www.tis.com/docs/research/assurance/formal-c.html,

but now seemingly unavailable, September 1994.

[DE97] Sophia Drossopolou and Susan Eisenbach. Java is type safe—

probably. In 11th European Conference on Object Oriented Pro-

gramming, number 1241 in Lecture Notes in Computer Science.

Springer, June 1997.

[Dij76] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall,

1976.

[EGHT94] David Evans, John V. Guttag, James J. Horning, and Yang Meng

Tan. LCLint: a tool for using specifications to check code. In

SIGSOFT Symposium on the Foundations of Software Engineer-

ing, December 1994.

[Eva96] David Evans. Static detection of dynamic memory errors. In

SIGPLAN Conference on Programming Language Design and Im-

plementation, Philadelphia, PA., May 1996.

[Fea98] Clive D. W. Feather. A theory of sequence points. ISO working

paper ISO/IEC/JTC1/SC22/WG14/N822, 1998. Under consid-

eration for inclusion as an Informative Annexe in the next ver-

sion of the ISO C standard.

BIBLIOGRAPHY 147

[FF86] M. Felleisen and D. Friedman. Control operators, the SECD-

machine, and the λ-calculus. In Formal Description of Program-

ming Concepts III, pages 193–217. North-Holland, 1986.

[GH93] Yuri Gurevich and James K. Huggins. The semantics of

the C programming language. In E. Borger, editor, Se-

lected papers from CSL ’92, volume 702 of Lecture notes in

computer science, pages 274–308. Spring-Verlag, 1993. Cor-

rected version available from University of Michigan web-site:

http://www.eecs.umich.edu/gasm.

[GM93] M. J. C. Gordon and T. Melham (editors). Introduction to HOL:

a theorem proving environment. Cambridge University Press,

1993.

[GMW79] M. J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.

Edinburgh LCF: A Mechanised Logic of Computation. Number 78

in Lecture Notes in Computer Science. Springer, 1979.

[Gor89] M. J. C. Gordon. Mechanizing programming logics in higher

order logic. In G. Birtwistle and P. A. Subrahmanyam, editors,

Current trends in hardware verification and automated theorem

proving. Springer-Verlag, 1989.

[Gor95] Andrew D. Gordon. Bisimilarity as a theory of functional pro-

gramming. Mini-course. BRICS Notes Series NS–95–3, BRICS,

Aarhus University, 1995. Extended version of MFPS’95 and

Glasgow FP’94 papers.

[Gun93] E. L. Gunter. A broader class of trees for recursive type defini-

tions for HOL. In J. J. Joyce and C.-J. H. Seger, editors, Interna-

tional Workshop on Higher Order Logic Theorem Proving and its

Applications, volume 780 of Lecture Notes in Computer Science,

pages 140–154, Vancouver, Canada, August 1993. University of

British Columbia, Springer-Verlag, published 1994.

[Gur91] Yuri Gurevich. Evolving algebras: a tutorial introduction. Bul-

letin of EATCS, 43:264–284, 1991.

[Har95a] John Harrison. Binary decision diagrams as a HOL derived rule.

Computer Journal, 38(2), 1995.

[Har95b] John Harrison. Inductive definitions: automation and appli-

cation. In E. Thomas Schubert, Phillip J. Windley, and James

148 BIBLIOGRAPHY

Alves-Foss, editors, Higher order logic theorem proving and its

applications. 8th international workshop, volume 971 of Lecture

notes in computer science, pages 200–213. Springer, September

1995.

[HM94] P.V. Homeier and D.F. Martin. Trustworthy tools for trustwor-

thy programs: a verified verification condition generator. In

T.F. Melham and J. Camilleri, editors, International Workshop

on Higher Order Logic Theorem Proving and its Applications, vol-

ume 859 of Lecture Notes in Computer Science, pages 269–284,

Valletta, Malta, September 1994. Springer-Verlag.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(10):576–583, October 1969.

[Hut90] Matthew Hutchins. Machine assisted reasoning about standard

ML using HOL, November 1990. Australian National University.

Honours thesis.

[ISO90] Programming languages – C, 1990. ISO/IEC 9899:1990.

[JK95] Richard Jones and Paul Kelly. Bounds checking for C.

Available from

http://www-ala.doc.ic.ac.uk/~phjk/BoundsChecking.html,

July 1995.

[JTC] ISO committee JTC1/SC22/WG14. Record of responses. Avail-

able from ftp://ftp.dmk.com/DMK/sc22wg14/rr/.

[Kah93] Stefan Kahrs. Mistakes and ambiguities in the

definition of Standard ML. LFCS Report ECS-

LFCS-93-257, University of Edinburgh, April 1993.

An update listing further errors can be found at

ftp://ftp.dcs.ed.ac.uk/pub/smk/SML/errors-new.ps.Z.

[KM95] Steve King and Carroll Morgan. Exits in the refinement calcu-

lus. Formal aspects of computing, 7(1):54–76, 1995.

[Kow77] T. Kowaltowski. Axiomatic approach to side effects and general

jumps. Acta Informatica, 7(4):357–60, 1977.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C programming

language. Prentice Hall, 2nd edition, 1988.

BIBLIOGRAPHY 149

[Mel91] T. Melham. A package for inductive relation definitions in HOL.

In Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and Phillip J.

Windley, editors, Proceedings of the 1991 international workshop

on the HOL theorem proving system and its applications, pages

350–357. IEEE Computer Society Press, 1991.

[Mil89] Robin Milner. Communication and Concurrency. International

Series in Computer Science. Prentice Hall, 1989.

[MLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social

processes and proofs of theorems and programs. Communica-

tions of the ACM, 22(5):271–280, May 1979.

[MT90] Robin Milner and Mads Tofte. Commentary on Standard ML.

MIT Press, Cambridge, Massachusetts, 1990.

[MTH90] Robin Milner, Mads Tofte, and Robert W. Harper. The Definition

of Standard ML. MIT Press, Cambridge, Massachusetts, 1990.

[Nec97] George Necula. Proof-carrying code. In Conference record of

POPL ’97: The 24th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 106–119, Paris,

France, January 1997.

[NvO98] Tobias Nipkow and David von Oheimb. Java`ight is type-safe —

definitely. In 25th principles of programming languages. ACM

Press, 1998. To appear.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verifica-

tion System. In Deepak Kapur, editor, 11th International Con-

ference on Automated Deduction, volume 607 of Lecture Notes in

Artificial Intelligence, pages 748–752. Springer-Verlag, 1992.

[Rit93] D. M. Ritchie. The development of the C language. ACM SIG-

PLAN Notices, 28(3):201–208, March 1993.

[Rus93] John Rushby. Formal methods and the certification of critical

systems. Technical Report CSL-93-7, Computer Science Labora-

tory, SRI International, Menlo Park, CA 94025, USA, November

1993.

[SC96] Sakthi Subramanian and J. V. Cook. Mechanical verification of

C programs. In First workshop on Formal Methods in Software

Practice (FMSP ’96). Association for Computing Machinery, Jan-

uary 1996.

150 BIBLIOGRAPHY

[SV98] Geoffrey Smith and Dennis Volpano. A sound polymorphic type

system for a dialect of C. Science of Computer Programming,

32(2–3), 1998. To appear.

[Sym93] Donald Syme. Reasoning with the formal definition of Stan-

dard ML in HOL. In Higher order logic theorem proving and its

applications: 6th International Workshop, HUG ’93, number 780

in Lecture notes in computer science, Vancouver, B.C., August

1993. Springer-Verlag.

[Sym97a] Donald Syme. DECLARE: a prototype declarative proof system

for higher order logic. Technical Report 416, Computer Labora-

tory, University of Cambridge, 1997.

[Sym97b] Donald Syme. Proving Java type soundness. Technical Re-

port 427, Computer Laboratory, Univeristy of Cambridge, June

1997.

[Ten91] R. D. Tennent. Semantics of programming languages. Prentice

Hall, 1991.

[Van93] Myra VanInwegen. HOL-ML. In Higher order logic theorem prov-

ing and its applications: 6th International Workshop, HUG ’93,

number 780 in Lecture notes in computer science, pages 59–72.

Springer-Verlag, August 1993.

[Van96] Myra VanInwegen. The machine-assisted proof of programming

language properties. PhD thesis, University of Pennsylvania, De-

cember 1996.

[Yu93] Yuan Yu. Automated proofs of object code for a widely used mi-

croprocessor. PhD thesis, University of Texas at Austin, April

1993.

