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Abstract

Use of mobile code can make distributed systems and the abstractions they
provide more flexible to build and use.

Richer functionality can be given to the interaction between processes
by allowing code to be sent between them. More convenient, application-
level operations can be made over a network. By making higher order lan-
guage features transmissible, distributed components can be tightly bound
together when they communicate. At the same time, familiar distributed
systems can be built using mobile code.

Mobile code can make distributed systems adaptable to application needs.
Rather than fixing the interface to a resource and the pattern of interaction
with it, a minimal interface can be defined and code implementing higher-
level interfaces placed alongside it as and when required. These higher-level
interfaces can be application-specific, allowing for interaction patterns that
were unknown at the time the resource was made available. Sending code
close to a resource can also reduce network usage because the point of in-
teraction with it moves.

The combination of document markup supporting hypertext and a lan-
guage supporting state-saving allows for stateful client-server sessions with
stateless servers and lightweight clients. Putting dormant mobile code in
documents provides an alternative to holding knowledge of application func-
tionality on a server machine or running arbitrary code on a client machine.

Mobile code helps to support user mobility. Personalised environments
that support state-saving can follow a user between computers. Heteroge-
neous state-saving allows a user’s programs to be relocated between comput-
ers. By using a mobile code system with language support for state-saving,
applications can direct arbitrary component migration without priming pro-
gram servers with specific support.

In summary, this dissertation supports the thesis that mobile code can
be used to enhance distributed systems.

iii
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Chapter 1

Introduction

1.1 Distributed Systems

A distributed system consists of a number of computers that can send data
to each other via a network. This dissertation assumes that the hardware
required for such an arrangement is in place and that operating system and
communications software which provides reliable transport of data between
applications on different machines is present.

Software at a higher level provides convenient abstractions to applica-
tions for communicating with each other. Examples are remote procedure
call and distributed object systems. This dissertation discusses flexible pro-
vision of such interaction by exchange of messages that are programs. This
is known as mobile code and can help dynamically to change levels of ab-
straction and to change where interaction takes place.

1.2 Mobile Code

Mobile code is data that can be executed as a program. The code can be
pre-compiled for immediate execution on the recipient’s processor, compiled
upon receipt for subsequent execution or interpreted.

A simple classification for mobile code systems is:

Simple distribution Code moves once to its destination and runs there
until it finishes executing.

Explicit dispatch Code creates new program text for sending elsewhere
and possibly inserts data values from itself into it.

Migration Executing code is frozen, sent elsewhere and restarted.

1



2 CHAPTER 1. INTRODUCTION

Higher-order Programs send arbitrary closures and continuations!, to-
gether with their closing environments, elsewhere for execution.

This dissertation describes the design, implementation and use of a
higher-order mobile code system.

1.3 Research Motivation

Distributed systems are increasingly making compliance with standards and
inter-operability their main features. This dissertation argues that they
should also provide facilities for dynamically changing where applications
execute and the way they communicate over a network. It should be possible
to define a minimal communication method that supports this and at the
same time allows both for inter-operability and for different abstractions to
be defined on top of it. There is no single means of abstracting application-
level communication. Existing systems provide inter-operability at too high
a level of abstraction.

There is a growing body of research into mobile code. The results from
this should be applied to building remote procedure call and distributed
object systems. There are novel ways in which existing distributed systems
can benefit from the use of mobile code too.

1.4 Research Statement

The research described in this dissertation has produced a mobile code sys-
tem that supports the transmission of higher-order functions and continua-
tions over computer networks.

The mobile code system has been used to build a distributed processing
environment that is flexible in the communication abstractions it provides
to applications. Varying degrees of abstraction are provided, from basic
message passing to remote method invocation and from tight integration
with application state to object-based data hiding. A distributed object
abstraction has been written which allows an application to define, offer
and adapt at run-time the means that clients should use to communicate
with it.

The mobile code system has been used to enhance existing distributed
applications. It has been applied to ATM network control, to the manage-
ment of state in client-server interaction and to event-driven user mobility.
Details of these experiments are given in this dissertation.

1A closure is a function together with its defining scope. A continuation is a closure
that represents the state of execution.



1.5. BOUNDARIES OF RESEARCH 3

1.5 Boundaries of Research

This research does not address the following issues:

Distributed lexical scope If a mobile code system supports this, then
when a piece of code moves, access to location-dependent data is trans-
parently mapped back to the originating site. This can cause network
access to occur that is not explicit in the program text.

Distributed garbage collection Extending automatic memory manage-
ment from a single site to multiple sites enables data not being used
on any site to be freed up automatically. Algorithms for doing this are
often complex and add to network usage. The research described here
does not rely on the availability of distributed garbage collection.

Security Only very basic security, to execute mobile code in a restricted
environment, is discussed in this dissertation. This is not adequate for
a production system. Wider consideration should be given to secu-
rity amongst services in distributed systems. The following issues are
especially important for mobile code:

e The recipient of a piece of mobile code will want to deny it access
to sensitive resources. There should be operating system support
for this [Zakinthios97] to help avoid naive implementation of
security in user space [McGraw96, Felten97] and to provide a
flexible system that is secure from the lowest level upwards. Cur-
rent practice involves users having to trust software vendors that
their code is safe; this applies as much to applications installed
from CD-ROM as it does to mobile code. Moving towards lower-
level support for restricted environments of execution would allow
more software to be run more securely [Adl-Tabatabai96].

e A piece of mobile code might be sensitive to third-party interven-
tion. That is, one might trust the recipient but not the network.
This applies in general to data exchanged between hosts, not just
to mobile code. Encryption can help the recipient to check that
the integrity and security of the data has been maintained. A
public key system can be used for authentication purposes.

e The sender of a piece of mobile code might not trust its recip-
ient. This is a very difficult problem that has only just begun
to be addressed [Minsky96]. It is important for code that car-
ries negotiation strategies around with it, for example. A related
problem is ensuring that services perform the tasks for which
they were contracted. This is important when the service is an
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execution platform for mobile code — it might not execute com-
pletely or provide bogus results, for instance — although auditing
of services is important for distributed systems in general.

This dissertation does not address security for mobile code. There
is considerable research to be done in this area. Mobile code con-
tracts and offers external services and so must not implement secu-
rity in isolation. Some recent work [Farmer96a, Farmer96b] has
addressed the notion of trust in mobile code systems. Other work
[DARPA97, Cardelli97] has started to examine fundamentals of
mobile code security. [Hayton96] discusses more general aspects of
high-level access control amongst services in distributed systems.

Language support for communication This dissertation describes ap-
plications that require a program to manage only the connection to
its destination when it moves. The method for doing this is different
for each application and is made available through separate commu-
nication libraries. The applications are also restricted in that coordi-
nation is only required between two processes at any one time. For
these reasons, use is not made of channel-based languages (for exam-
ple the distributed 7 calculus [Sewell97], the distributed join-calculus
[Fournet96] and (modified) Facile [Knabe95]) which provide a for-
mal model of mobile, concurrent and distributed processes that carry
connections with them as they move. Further research is needed into
criteria which determine when a channel-based language is required.

1.6 Outline of Dissertation

Related work is reviewed in each chapter.

Chapter 2 talks about the implementation of a mobile code system. It
is used to prototype ideas discussed in later chapters. Each of Chapters
3-7 contains a description of experiments carried out with this mobile code
system. Chapter 2 gives some detail to the techniques used in building it.

Chapter 3 presents a method for making closures and continuations
transmissible over a network. It supports heterogeneity and is independent
of its host language implementation. This chapter shows how an explicit-
dispatch mobile code system, such as the one described in Chapter 2, can
be made into a higher-order one.

Chapter 4 shows how mobile code can be used to build flexible dis-
tributed object systems that can vary dynamically in the abstractions and
functionality they provide. A method for allowing richer conversation than
that provided by simple remote method invocation is presented. This is ex-
tended to show how a service can allow clients to bind tightly to its internal
state when object-based abstractions are not required.
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Chapter 5 looks at using mobile code to change where interaction be-
tween components in a distributed system takes place. By moving com-
putation close to resources, network access can be reduced and otherwise
infeasible application-specific access patterns deployed. These advantages
are discussed in the context of work that uses mobile code in network con-
trol. The mobile code system described in Chapters 2 and 3 is integrated
with an ATM control architecture in order to carry out these experiments.

Chapter 6 shows how mobile code can be used to make servers stateless.
This is achieved without moving computation into clients. Instead, arbi-
trary client session state is put into the responses that a server returns to a
client. Servers in this arrangement are used only to provide general execu-
tion facilities; they hold no application-specific code. An implementation is
described that uses a networked hypertext system to provide a context for
client-server interaction.

Chapter 7 talks about supporting user mobility. That is, the ability of a
user to move location and take a personalised environment with him. Mobile
code can help to migrate his state. An architecture for supporting user
mobility is discussed. Details of two implementations of this architecture
are then given. This chapter demonstrates that a layer is required which
bridges support for application mobility and network support for mobile
-computing. '

Chapter 8 concludes by showing how the research goals have been met,
discusses the general role of mobile code in distributed systems and states
the contribution of this dissertation to research.
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Chapter 2

Implementation 1
The Tube: a Mobile Code
System

Enhancements to a Scheme system are described that permit language ex-
pressions to be transmitted over a network. Expressions may be tagged as
executable so that the recipient site runs them as programs. Such mobile
code can be easily generated in Scheme because programs and data share
the same representation. A number of facilities are provided to support the
implementation, including access to operating system functionality.

2.1 Introduction

2.1.1 Motivation

In order to experiment with using mobile code, a system is required that
supports sending programs over a network. It should provide a basis for the
transparent state-saving technique described in the next chapter by allowing
remote execution of programs. Building a mobile code system allows it to be
evolved according to the requirements of its applications. Facilities should be
provided to enable it to interact with other services in a distributed system.
It should provide a foundation for the experiments described in Chapters
4-7.

2.1.2 Functionality

The mobile code system described in this chapter is called the Tube. It is
implemented as a native code executable, which is run on every machine to
which code might be sent. Each instance is called a Tube site (see Figure 2.1).
Programs are written in the Scheme language [Clinger91] and transmitted
over a network as byte sequences.
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Marshalled data from Marshalled data to
other Tube sites other Tube sites

Tube Site

Figure 2.1: Tube site

Tube sites provide a function that turns a Scheme expression into a se-
quence of bytes (held as strings), which can then be sent over a network
or saved to persistent store. This process is known as marshalling. The
opposite process, which converts strings (read from the network) into ex-
pressions, is known as unmarshalling and is also provided as a function by
Tube sites.

Tube sites contain a main control loop which continually reads (mar-
shalled) expressions sent over the network. The function that does this
reading recognises specially-tagged expressions as being programs and passes
them to an interpreter for execution. Programs sent to a Tube site have ac-
cess to this function, and to a function that sends expressions over a network.
They can also tag expressions they send as executable. They can therefore
send other programs elsewhere and read new ones over the network.

Scheme is used because Scheme programs have the same representation
as Scheme data. Programs can create other programs through simple as-
sembly of data structures. Other languages, that do not have this duality of
code and data, have to resort to techniques such as printing program text
and their variable values to strings. Further, Scheme’s quoting facilities al-
low programs easily to insert values into the new programs they create. An
alternative approach, to make higher-order language features transmissible
over networks, is discussed in Chapter 3.

To summarize, Scheme expressions can be transferred between Tube
sites. Expressions can be tagged as executable, in which case they are in-
terpreted as programs on receipt. These programs can themselves send and
receive further expressions and programs.

Tube sites are multi-threaded so that more than one program can be run
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at once. In order to support exchange of data between Tube sites, access
is provided to operating system and network operations. Programs running
on Tube sites can access World-Wide Web servers and can be launched from
and embedded inside Web pages. They can also create, manipulate and
move graphical user interfaces.

The rest of this chapter gives an overview of related work and descnbes
the facilities provided by Tube sites in more detail.

2.2 Related Work

This section discusses work that falls into the first two categories of the
classification for mobile code systemis given in Section 1.2.

A mobile code system that supports simple distribution allows programs
to be moved once, to their destinations. When a program delivered by
such a system reaches its destination, it runs there until it finishes execut-
ing. Programs running under an explicit dispatch mobile code system can
themselves create other programs to be delivered and executed elsewhere.

Programs running under a simple distribution mobile code system move
once only. When they reach their destination, they do not move again.
Programs running under an explicit dispatch mobile code system can move
more than once. After moving, they can transfer new or duplicate program
texts elsewhere.

2.2.1 Mobile code systems supporting simple distribution

Any software that is installed from transportable media or over a network
can be considered mobile. It is distributed through these channels and in-
stalled at the invitation of an end user or system administrator. Some mobile
code systems have been built to enhance the simple distribution of software,
with facilities such as secure operation, resource control at execution time,
heterogeneity and typed dynamic linking.

PosTScripT [Taft85], the page description language, is an example of
remote programming. Documents are programs that are sent over a network
to a printer which then executes them in order to render the desired output.
They are remotely executed on the printer. The alternative would be to
interpret documents using a POSTSCRIPT interpreter on a computer and
send the resulting bitmap image to the printer. However, this would place
a heavier load on the network, since the images produced by a POSTSCRIPT
program are in most cases larger than the program itself. It would also
be impractical in a multi-user system where many users might be running
a POSTSCRIPT interpreter at once. Thus it is accepted practice to have
documents delivered to printers as programs, in order to reduce network
and machine load.
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SQL [ANSI92] is a database query language. When a database server
is accessible over a network, SQL expressions are sent to it. SQL is a lim-
ited form of programming language, restricted to querying of data. Like
PosTScRIPT, SQL is an example of a simple mobile code system already in
common use. When the amount of data held by a database server is large,
sending queries to the database instead of duplicating the data to each client
machine reduces network usage.

Protocols used for communication between applications (e.g. Network
News Transfer Protocol, Simple Mail Transfer Protocol, Simple Network
Management Protocol) are limited forms of programming language. Re-
quests are sent over a network and interpreted as instructions by their re-
cipients, which perform the actions required. Protocols are very simple
programming languages.

As the protocol becomes more complex (the X Windows protocol, for ex-
ample), it approaches what one normally terms a programming language. X
events are “interpreted” by a client and dispatched appropriately; a server
does likewise with requests. NeWS (Network Extensible Window System
[Sun92]) replaces the X Windows protocol with a POSTSCRIPT-based one,
giving true remote programming facilities — window management and wid-
get realisation are carried out by small programs sent between client and
server. The SunDew windowing system [Gosling86] was a forerunner to
NeWS.

The Java virtual machine [Gosling95] is used for simple distribution
of code. It supports heterogeneity because interpreters for it exist on a
number of platforms and can exchange data encoded in a single format.
Java applications are only mobile once; their compiled images are loaded
into Java interpreters and cannot move after they start.

Java interpreters attempt to execute their programs in a secure environ-
ment but some security breaches have been found [Felten97]. Java bytecode
is linked with an interpreter at run-time, based on the type assigned to it by
its programmer. The Java virtual machine is defined so that programs can
be validated as being safe to execute before they are started. Just-in-time
compilers such as Kaffe [Wilkinson97] translate a program’s byte code
representation into native code after validating it. This allows long-running
Java programs to be executed faster than under an interpreter, whilst at the
same time ensuring that they do not access unauthorized areas of memory.

The main application of Java has been to add dynamic and interactive
displays to World-Wide Web pages. Other systems that allow Web browsers
to download programs embedded inside Web pages include Juice [Franz97],
CandleWeb, Grail [CNRI97] and ActiveX [Microsoft97]. Juice is designed
to execute faster than Java. CandleWeb is aimed at producing interactive
animations. Grail uses a restricted version of Python [Watters96]. All
three deal with programs that are architecturally neutral and which move
once in their lifetimes (into Web browsers from a server). ActiveX incor-
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porates a facility for downloading any program, usually compiled to native
code, into Web browsers in order to provide executable content in Web
pages. It relies on authentication techniques to ensure that unsafe code is
not executed.

Omniware [Adl-Tabatabai96] delivers programs over a network in a
simple byte code. It compiles them to native code and executes them until
they terminate. A technique called software fault isolation is used to prevent
programs from making attempts to access unauthorized areas of memory
while they are running. This allows the virtual machine to be much sim-
pler than Java’s, for example, because program validation is based on the
semantics of the underlying processor rather than the source language.

Finally, the Inferno [Lucent97] operating system and its Limbo pro-
gramming language support deliverj'r‘ of applications over a network by com-
piling them into a machine-independent byte code.

2.2.2 Explicit dispatch mobile code systems

The Unix command rsh allows shell scripts to be executed on a remote
computer. However, the environment provided is not safe because the scripts
can execute any external program. If the commands available in the host
user account were restricted then some level of security might be provided.
Shell scripts are limited to the syntax provided by the shell and are plain-text
only. However, they are able to dispatch other scripts to other computers.

The Network Command Language (NCL) [Falcone87| provides trans-
parent access to distributed servers in a heterogeneous environment from dif-
ferent clients. This is achieved by expressing calls in a universally-understood
Lisp-like language; clients send procedures in this language to servers for
them to execute. Those procedures may themselves send other procedures
for execution elsewhere.

Remote Evaluation (REV) [Stamos86, Stamos90a, Stamos90b| is
similar to NCL in that it allows code to be transferred between computers
over a network. One implementation of REV [Clamen90] allows Lisp ex-
pressions to be transmitted over a network. The Tube mobile code system
described in this chapter provides the same basic functionality using the
Scheme dialect of Lisp.

Late-binding RPC [Partridge92] provides transmissible functions in a
single universal intermediate language. Like NCL and REV, it is aimed at
replacing RPC systems with function shipping to make more efficient use of
networks with fast computers but slower (and non-improving) communica-
tion latency. An experimental late-binding RPC system was written which
uses Lisp as an intermediate language to carry procedure calls across the
network.

The TACOMA project [Johansen95] addresses operating system sup-
port for mobile code and the use of programs that move about in the Inter-
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net. It supports Tcl, Perl, Python and Scheme mobile programs. However,
it does not support transparent migration. Rather, programs must them-
selves construct scripts to be transferred for remote execution and provide
some initialisation data for them.

Neither the Java virtual machine nor the Java language [Arnold96|
provide support for migrating programs. Java interpreters cannot save the
state of a running program. They simply load programs compiled in a
common bytecode format and execute them from the beginning.

The Aglets Workbench [Chang96] allows Java programs to be written
that move between virtual machines. However, it does not save the execution
state of a program. A program that moves from one machine to another is
restarted on each by calling the same, top-level function. Each program has
to set itself up in the state it was in before it moved. The programmer must
explicitly define the state to be used for each move, making a program’s data
more difficult to manage than if it was declared using the natural constructs
of the language and transferred transparently.

The Mole project [Strafler96] implements mobile programs in Java us-
ing a similar technique to Aglets.

Using the technique described in the next chapter allows transparent
migration of programs to be made available on unmodified Java virtual
machines. Programmers are able to move programs running on the Java
virtual machine in a single call and have them restart at any point. Section
~ 3.6 briefly describes a minimal port to the Java virtual machine.

This chapter describes the Tube (explicit dispatch) mobile code system.
Section 2.1 above discussed its general functionality. The Tube is similar to
NCL and REV in that it sends Lisp-based code over a network. However,
it has been converted into a higher-order mobile code system that supports
transparent migration (see Chapter 3) and used in applications involving
existing distributed systems (see Chapters 4-7). The rest of this chapter
details the facilities it provides.

2.3 Interface to Operating System Facilities

Some functions provided by the underlying operating system are exposed to
mobile Scheme programs running on Tube sites.

2.3.1 Threads

Programs can specify that an expression be interpreted in a separate thread
of execution. Each Tube thread maps to one operating system thread. The
following example creates two threads and waits for them to finish. One
thread counts from 1 to 5, the other from 6 to 10. The interleaving of their
output is non-deterministic.
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Figure 2.2: Saving the state of a user interface

(let ((threadl (thread-create
(let loop ((i 1))
(if (<= i B) (begin (print i) (loop (+ i 1)))))))
(thread2 (thread-create
(let loop ((i 6))
(if (<= i 10) (begin (print i) (loop (+ i 1))))))))
(thread-join threadl)
(thread-join thread2))

The thread-create syntax behaves like begin except that its expres-
sions are evaluated in a new thread of control. The thread’s exit status is
the value of the final expression. The function thread-join waits for the
given thread to finish and returns its exit status.

In order to support thread programming, access is also provided to lock-
ing facilities and condition variables.

2.3.2 TCP/IP networking

A range of operations is made available to programs so that they can make
and accept connections and send and receive data over a network. TCP/IP
socket functions are exposed for this purpose. Sockets appear to programs
as special types of Scheme port, on which Scheme’s standard stream-based
input and output operations can be performed. Failures signalled by the
socket functions are raised as exceptions using the host Scheme’s exception
mechanism; network-aware programs must be able to handle them.

2.3.3 Dynamic loading

Pre-compiled, native code libraries can be loaded by a Tube site and func-
tions contained in them made available to Scheme programs being inter-
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Figure 2.3: Marshalling and unmarshalling Scheme expressions

preted there. This capability has been used to interface the Tube with
existing software, including a remote procedure call (RPC) system. Client
stubs generated from a service interface are compiled into a library, which is
then loaded into a Tube site. Scheme programs are then free to make RPC
calls to legacy services by calling into the library.

2.4 Graphical User Interface

The XForms user interface toolkit [Zhao97] is fully exposed to Scheme
programs running on Tube sites. This means they can create, manipulate
and destroy their own user interfaces. Scheme wrapper functions for the
XForms library are automatically generated from its C header file.

The Tube extends the XForms toolkit with the ability to return the
state of any user interface as a series of bytes (see Figure 2.2). A corollary
function takes a saved user interface and recreates it in a visible form. This
allows a mobile program to create user interfaces on one Tube site and retain
them as embedded state when it moves. When used in combination with
the mechanism for saving program state described in the next chapter, a
program and any user interfaces it creates can be migrated between Tube
sites in a single call, without requiring special support to be written into the
program itself (see Section 3.5.6).

2.5 Communicating with Tube Sites

2.5.1 Sending and receiving data

Tube sites provide a function, marshal, that converts a Scheme expression
into a string (sequence of bytes). The unmarshal function converts a string
returned by marshal back into the expression that produced it (see Figure
2.3). marshal can convert any of the standard Scheme data types (numbers,
lists, strings, characters, symbols and vectors) except for closures. Chapter 3
discusses converting closures into byte sequences. The following comparison
is guaranteed to be true for any value of exp (except for closures):

(equal? exp (unmarshal (marshal exp)))
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That is, an expression and the result of marshalling and then unmar-
shalling it are structurally equivalent — recursive lists are respected. The
string format generated by marshalling expressions is the same for Tube
sites running on all the platforms listed in Section 2.7, and can be unmar-
shalled on each. The functions described below allow Tube sites to exchange
marshalled expressions, thus supporting interaction over networks of hetero-
geneous computers.

Functions are provided which use marshal and unmarshal to send and
receive Scheme expressions to and from Scheme ports. send-sexp uses
marshal to convert an expression into a string and then writes the string to
a port. recv-sexp reads a string from a port and then uses unmarshal to
convert it into an expression.

For example, consider a Scheme port on one Tube site connected using
TCP/IP functions (see Section 2.3.2) to a port on another Tube site. Given
that both ports are bound by p, the first site can send a list of three integers
to the second with the following expression:

(send-sexp p (list 1 2 3))

The second site receives the list with:

(recv-sexp p)

To send a program between Tube sites, it must be tagged as executable
using make-rep (REP stands for Remotely Executable Program). For in-
stance, the following expression sends down port p a program that prints a
greeting:

(send-sexp p (make-rep ’(print "hello world")))

recv-sexp recognises expressions returned by unmarshal that are tagged
as executable and passes them to a Scheme interpreter (described in Chap-
ter 3) for evaluation. Symbols that are unbound in these expressions are
resolved in the global environment of the receiving Tube site. A single set
of global bindings is imposed across all Tube sites. recv-sexp returns to its
caller the result of the evaluation.

For the above example, recv-sexp would receive the expression (print
"hello world"), notice that is it tagged as executable and pass it to the
interpreter. The string hello world would be printed to the receiving Tube
site’s standard output port. Since the return value from the call to print is
the string itself, recv-sexp also returns to its caller the string hello world.

The main control loop of a Tube site repeatedly calls recv-sexp on
ports made from sockets created by listening on a well-known TCP/IP port.
Other Tube sites connect to the port and can send programs for execution
there by using send-sexp and make-rep.
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Data is not in format Adaptor can enter Tube site because
that Tube site expects it is marshalled Scheme. It knows how
to read and process the data.

Figure 2.4: Using adaptors to handle different data formats

2.5.2 Adapting connections to new data types

The previous section discussed how Scheme expressions are sent between
Tube sites and how a Tube site uses the function recv-sexp to read data
sent to it. However, recv-sexp can only handle marshalled Scheme data,
which means that an application connecting to a Tube site cannot send
data to it in a different format. For example, one application may generate
a stream of statistical data that it wishes to graph using a Tube site’s user
interface facilities. Another may wish to send programs typed in by a user
as plain text to a Tube site for execution.

One way of allowing a Tube site to handle different types of data is to
modify its implementation so that each can be read. However, this means
that every time a new data format is invented, Tube sites have to be stopped,
modified and started again. This is impractical for a Tube site in constant
use by many client applications. Also, regular introduction of new data
formats would place a significant maintenance burden on running a Tube
site.

A better way is to send a program that can read the new data format to
the Tube site. The program can either be sent separately from the data it
handles or over the same connection. In the former case, the program is sent
once, installs itself on the Tube site and reads data sent to it by applications
over subsequent connections.

In the latter case, the program is sent over a connection before data in
the new format. It is called an adaptor because it adapts the connection to
the new data format.
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An adaptor is a (marshalled) program sent down a connection to a Tube
site in order to handle data that is sent after it (see Figure 2.4). The data
that follows an adaptor is not marshalled Scheme so it cannot be read by
recv-sexp. The adaptor, which knows about the data’s format, precedes
it on the connection and runs on the Tube site. It processes the data and
sends back results in the other direction. It adapts the Tube site to receive a
new type of data. Connecting parties can use adaptors to specify how their
data is to be read and processed at a Tube site.

An example use for adaptors is to provide interactive access to Tube
sites. A separate application (ucon, for universal connector) takes input
from the user and forwards it onto a Tube site. The user’s input is sent
as a series of (plain text) ASCII characters. An adaptor is used to adapt
connections made by ucon to the plain text data format.

The adaptor for plain text is sent by ucon when it connects to a Tube site.
It runs on the Tube site and reads ASCII characters sent on afterwards. The
adaptor parses them into Scheme expressions, which are evaluated. Qutput
from the evaluation is sent back down the connection by the adaptor, which
ucon then displays to the user’s terminal. In this way, a user can interact
with a Tube site.

2.5.3 Network addresses

The Tube supports different types of network connection. A table is main-
tained that specifies how to handle operations on different types of con-
nection. By default, the table contains entries for three operations on two
different types of connection. Connections between Tube sites are known as
Tube connections and consist of two TCP/IP sockets, one for transferring
data in each direction. Single-socket connections are also available and use
the same socket to transfer data in both directions.

Tube connections use two sockets because Scheme ports are uni-directional.
Single-socket connections can be used to communicate with other TCP /IP-
based services, such as Web servers and the COBRA information retrieval
system [Mills97b] (see Section 6.6).

Programs can open a connection, close a connection or retrieve the input
and output ports associated with a connection. When opening a connection,
programs supply a network address. The address specifies the type of con-
nection to be made and sufficient information to enable the connection to be
established. For instance, an address for a Tube connection is made with the
function make-tube-address; the following expression forms the address of
a Tube site that is listening for connections on T'CP/IP port 1234 of the
host foo:

(make-tube-address "foo" 1234)
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To connect to the Tube site, a program would pass the address to
connect:

(connect (make—fube—address "foo" 1234))

connect calls the function that opens Tube connections to establish a
connection to TCP/IP port 1234 on host foo. It returns a handle on the
connection that consists of two Scheme ports, one for reading from and one
for writing to. The caller uses the ports to exchange data with the other
Tube site.

Socket connections are opened by passing a socket address to connect:

(connect (make-socket-address "bar" 4321))

Socket addresses return Scheme ports using the same socket descriptor
for reading from and writing to.

Programs can also use the handle returned by connect to close a con-
nection.

The table that contains operation handlers can be extended at runtime.
The distributed object system described in Chapter 4 specifies higher-level
addresses and operations for resolving them. Chapter 5 introduces a new
type of address for sending Scheme expressions over ATM networks.

2.5.4 Remote operation

A remote operation facility is provided that uses send-sexp and make~rep to
allow programs to send expressions for evaluation at another Tube site and
receive the results. The on function is used for this purpose. For example,
to add two numbers, one bound to the symbol num, on a remote Tube site
(host foo, port 1234), a program would use the following expression:

(on (make-tube-address "foo" 1234) ‘(+ ,num 149))

An application of + is formed, using quoting to insert the value of num.
The function on uses connect and send-sexp to send it to the remote site
and make-rep to embed it in a program that runs remotely. The program
captures the application’s return value and sends it back down the connec-
tion established by connect.

2.5.5 Asynchronous communication

The TCP/IP networking operations provided to Scheme programs act syn-
chronously. Connecting to a Tube site or writing data to a port that is
connected to one blocks the caller until the operation completes.

Programs that require asynchronous communication can use threads so
that they do not block on these operations. A function, dispatch, is also




2.6. OTHER FACILITIES 19

provided to deliver an expression asynchronously to a given address. It uses
a thread farm (see Section 2.6.2) to do this.

A caller to dispatch provides an address and an expression. One of the
farm’s threads connects to the address and delivers the expression (using
send-sexp).

2.5.6 Netscape plug-in

The Netscape World-Wide Web browser can be extended by writing a plug-
in to handle a specific data type. When the browser encounters data of that
type embedded in a Web page, it passes the data to the plug-in. The plug-in
processes and renders data it receives from the browser.

The Tube Netscape plug-in handles marshalled Scheme expressions (see
Figure 2.5). It forwards them onto a Tube site running as a separate process.
It also passes details of the screen window that is available for each so that
they can display user interfaces embedded inside Web pages.

Keeping the browser and mobile code system separate from one another
minimises integration effort. Also, using a different browser to embed Tube
programs requires only the plug-in to be changed.

2.6 Other Facilities

2.6.1 Access control

Basic facilities for maintaining access control lists are provided. They can
be used in conjunction with the interpreter described in the next chapter
to restrict the functions and data that a program can access (see Section
3.5.2). If the programs were authenticated by some security mechanism,
then a different restriction could be applied to each.

'2.6.2 Thread farms

Tube sites provide concurrent computation using threads. Internal Tube
services can use thread farms to limit the number of threads they create.
A thread farm consists of a limited number of threads (see Figure 2.6).
Clients of the service place work to be done on a queue. If any of the farm’s
threads is idle, the work is removed from the queue and given to a thread for
processing. Otherwise, the work remains queued until a thread is available.

Services that use thread farms are the main control loop of a Tube site
and asynchronous sending of data with dispatch. A site’s main loop places
data read from the network on a farm’s queue, which limits the number of
programs evaluated at once. dispatch places the data a program wishes to
send on a farm’s queue, which limits the number of threads communicating
at once.
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Figure 2.6: Thread farm



2.7. IMPLEMENTATION PLATFORM 21

2.6.3 Noticeboard

A noticeboard is provided, which a program can post messages to or read
messages from. Data values can thus be left by a mobile program for others
that may arrive later to use. The noticeboard can be divided into different
areas. An access control list is associated with each area, which can be
used by programs to limit access to posted data. This would be useful
in conjunction with a security mechanism that provided authentication of
programs received over the network.

2.6.4 World-Wide Web access

The Tube provides functions for programs to retrieve pages from Web servers.

2.7 Implementation Platform

The current implementation of the Tube is Unix-based. It uses the Bigloo

_[Serrano95] Scheme compiler/interpreter, with patches to make it thread-

safe, and the XForms user interface toolkit. Code to provide access to
operating system (POSIX) functions is written in C.

Versions of the Tube are running on DEC Alphas under Digital Unix,
SUN SPARCs under Solaris, Intel Pentiums under Linux and HP9000s under
HP-UX. The size of a Tube site in memory when it starts up is approximately
8 Megabytes, which includes 4 Megabytes of free heap space.

2.8 Lightweight Implementation

A lightweight version of the Tube, called Tub, has been written for em-
bedding inside other programs. Tub allows mobile code experiments to be
extended to applications that require the deployment of many small pro-
cesses. It can also be used to add network connectivity to applications, for
instance by sending Scheme expressions as messages, by remote execution
(see Section 2.5.4) or through the distributed object system described in
Chapter 4.

Tub is written in C++ as a single object class. Instances of the class
are interpreters that can receive Scheme expressions (and programs tagged
as executable) over TCP/IP connections in the same way as the Tube. Tub
shares the same marshalling format as the Tube, so Tube sites can easily

_ exchange data with Tub-enabled applications.

C++ code can call Scheme functions defined within Tub interpreters
and Scheme programs can call C++ functions provided by the container
application. Tub can be specialised for use in applications by defining a new
object class that inherits from Tub’s and supplies extra functions for Scheme
programs to call. Tub is embedded in the multimedia objects described in
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Chapter 7 and is specialised to allow Scheme programs to establish and close
audio and video connections over the network. It is also embedded in and
specialised for multimedia object factories; Scheme programs can create new
camera, television, microphone and speaker objects.

Tub uses a simple mark-and-sweep garbage collector to reclaim unused
storage from Scheme programs. The size of an instance of the Tub inter-
preter class is approximately 80 kilobytes, which includes space for 10000
data storage items.

2.9 Summary

The Tube system facilitates experimenting with mobile code by allowing
Scheme programs to be sent over a network and evaluated remotely. This
chapter has described the way in which Scheme expressions can be commu-
nicated as byte sequences and evaluated at interconnected Tube sites. It was
argued that the code-data duality of Scheme makes it particularly suitable
for writing mobile programs. The facilities available to mobile programs
were also discussed. Details of the Tube’s implementation were given and a
lightweight version described that is suitable for embedding in applications.



Chapter 3

Implementation 2
Higher-Order State Saving

An interpreter is described which allows programs to migrate transparently
between computers. A program’s execution state can be saved for sending
over a network or a program can itself select functions for saving. The
implementation is portable and engineered to interface with the mobile code
system described in the previous chapter. It is used to support experiments
discussed later in this dissertation.

3.1 Introduction

3.1.1 Motivation for transparent state saving

Higher-order state saving provides a way to move programs between com-
puters. A program can be halted, its state obtained as a sequence of bytes,
sent over a network link and then restarted on a different computer. Making
the mechanism transparent to programs eases the implementation of their
migratory behaviour. This is important for prototyping the mobile code
experiments described in later chapters:

Distributed objects in Chapter 4. Distributed objects are implemented
using anonymous functions. They have to be sent as advertisements
to a trader and as communication proxies between applications.

Network control in Chapter 5. Programs have to traverse computers that
are close to ATM switches. Allowing them to migrate using transpar-
ent state saving makes them easier to write than having to construct
the program text and insert data values at each stage.

Stateless servers in Chapter 6. Programs must be able to save their com-
plete state into a document. Supporting this in the interpreter avoids
having to write special support for each program.

23
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User mobility in Chapter 7. Programs migrate to follow a user as he
moves around a network of computers.

Providing a common mechanism for obtaining a program’s execution
state reduces the amount of work that needs to be done by a programmer
in order to make his programs mobile.

3.1.2 Mobile code in the Tube

The Tube mobile code system described in the previous chapter provides
a foundation for writing mobile code. It allows Scheme expressions to be
marshalled and unmarshalled for saving to persistent store and sending over
a network. It also provides access to operating system and external facilities.
However, the Tube is an explicit dispatch according to the classification given
in Section 1.2; it provides no support for sending functions or execution state.
In Scheme, functions remember their defining scopes and are known as
closures. A closure that represents the current state of execution is known as
a continuation. Calling a continuation results in the computation resuming
from where the continuation was captured. Without the ability to save the
state of closures and continuations, programs running on a Tube site that
wish to send (parts of) themselves elsewhere must form an expression to be
executed at the destination. They must explicitly quote it, inserting values
from the current execution that they wish to remember after migration.

3.1.3 Implementation requirements

A way of providing transparent state saving is required that can make use of
existing programming environments and which is efficient enough to support
the experiments described in later chapters. This minimises the amount of
supporting code that needs to be written. It should be portable between
different programming environments so that the experiments can be carried
over to other systems in the future. In the first instance, it should integrate
easily with the Tube.

A method for saving closures, continuations and program state is re-
quired that has minimal impact on the underlying Scheme system. This
avoids re-engineering the (modified) Bigloo Scheme compiler/interpreter
used for the Tube and eases porting of the state saving technology to other
Scheme implementations. A state saving interpreter written in Scheme pro-
vides a prototype implementation that can support the mobile code experi-
ments described later in this dissertation. Bigloo can compile the interpreter
to native code, leaving only a single layer of interpretation.

The rest of this chapter first gives an overview of related work. It then
describes a Scheme interpreter that allows program state to be saved to
persistent store and sent over a network. Section 3.3 presents an example
transformation produced by the interpreter in order to make a program’s
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state available throughout its execution. Section 3.4 shows how the inter-
preter is modified to enable a program’s state to be saved as a sequence of
bytes. Finally, implementations of the interpreter using the Tube and the
Java virtual machine are discussed. The combination of the Tube and the -
state-saving interpreter produces a higher-order mobile code system.

3.2 Related Work

This section discusses work that falls into the last two categories of the
classification for mobile code systems given in Section 1.2.

Mobile code systems that support migration allow programs to be frozen,
sent elsewhere and restarted. Higher-order mobile code systems allow pro-
grams to send arbitrary functions, together with their closing environments,
elsewhere for execution. Higher-order mobile code systems that support
transmission of continuations also support program migration.

Program migration is supported by other systems with varying degrees of
transparency. Some achieve transparent saving of program state. The tech-
nique described later in this chapter is portable — it can use different Scheme
systems as execution platforms and provide transparent state-saving facili-
ties to each. For example, a version has been built with Kawa [Bothner97]
to provide migration facilities on the Java virtual machine [Gosling95] (see
Section 3.6).

3.2.1 Mobile code systems supporting migration

The Tycoon project [Matthes95] provides a persistent programming envi-
ronment similar to Napier88 (which is described in the next section). How-
ever, unlike Napier88 it allows a thread’s execution state to be saved to per-
sistent store [Matthes94] and moved from one virtual machine to another
[Mathiske96]. Recent work on Tycoon has used a continuation-passing
program transformation [Gawecki96], which is the same technique as the
one described in this chapter. However, Tycoon implements state-saving
using intermediate byte-codes; the technique described in this chapter does
it at a higher level and does not require modification of the underlying sys-
tem. The Tycoon project has invested considerable effort in saving the state
of execution threads to support persistent programming and large database
applications [Mathiske95, Gawecki96|. The state-saving described in this
chapter only needs to be sufficient for building prototypes of the experiments
described in later chapters.

Agent Tcl [Gray96)] is used to support applications that manage dis-
tributed information in networks. The implementation supports transparent
migration, allowing Tcl programs to move from one site to another with a
single call. The Tcl interpreter is modified so that it can freeze a running
script and obtain its state. The state can then be sent to another interpreter
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and the program can continue to run there. Transparent migration removes
the burden of maintaining a program’s state from its programmer.

Telescript [White94] is a language based around mobile code for net-
work programming. It provides a similar facility to Agent Tcl — a program
running on a Telescript interpreter is moved by freezing it, sending its state
to the destination site and restarting it there. Objects owned by the program
are moved to the destination when they are accessed.

Sumatra [Acharya97] is a extension to Java that supports mobile pro-
grams. A Java byte-code interpreter has been modified in order to allow
programs running on it transparently to migrate themselves over a network.
This is done by copying the interpreter’s stack and registers. The method for
saving execution state described in this chapter allows programs compiled
to Java byte-code to be migrated transparently without needing to modify
the byte-code interpreter (see Section 3.6). The major benefit of choosing to
target the Java byte-code is that interpreters for it are already ubiquitous;
requiring them to be replaced with modified versions negates this.

Transportable POSTSCRIPT (TPS) [Heimbigner96] is POSTSCRIPT with
all the drawing functionality removed and modified to allow programs to be
moved around between separate interpreters at will. They can be stopped
mid-execution and restarted from exactly the same position in another in-
terpreter. The stack frame and program counter are shipped together with
program source between sites.

Ara [Peine97] is a platform for the execution of mobile code writ-
ten in various languages. It aims to apply program mobility to “weak-
connection/high-volume systems such as wirelessly or intermittently con-
nected computers, or globally distributed large data bases”. Currently, Ara
supports Tcl and C/C++; migration is achieved through modification of
the Tcl interpreter and precompilation to an interpretable byte code respec-
tively. Like this dissertation, Ara aims to apply mobile code to existing
systems. While Ara is concentrating at first on adapting a number of lan-
guages for mobility, this dissertation describes some real applications of a
single-language mobile code system.

There are many systems that have been developed to support process
migration. They allow operating system processes to be migrated across the
network and are typically used for load balancing purposes. Process migra-
tion systems allow the state of a program’s execution to be saved and sent
across a network. However, some assume a network of homogenous comput-
ers, some require programs to be altered so that they can be checkpointed
for heterogeneous migration and some require that uninitialised copies of
every program be held at each possible destination in native binary format.
[Pope96] reviews systems that provide low-level support for application
migration and describes a mechanism for migrating them that copes with
heterogeneity but requires annotation to program source.
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3.2.2 Higher-order mobile code systems

Obliq [Cardelli94] is a lexically-scoped, dynamically typed language de-
signed for distributed object-oriented computations. It supports transmis-
sion of procedures. When a procedure is sent to another site, references to
data it uses are translated into cross-network references. Any access that
the procedure then makes to the data is transparently mapped onto network
calls back to the data on the originating site. This maintains the data’s
consistency amongst the distributed processes that share it and hides its
location from them. However, programs not made aware of network access
to their data cannot take relevant performance and failure considerations
into account [Waldo94]. Mapping access to a data object back to its site
of creation can incur more network usage than an approach which copies
data and relaxes consistency requirements. This will be the case for small
objects which are accessed frequently.

Obliq does not support transparent migration of a program’s execution
state. Instead, a program must specify a procedure to be run at the desti-
nation site and itself maintain data pertinent to its execution. The notion
of a sustcase is introduced, which mobile programs carry around with them
by copying and updating using side effects. Suitcases remember the state
that a program needs as it moves from site to site. This is not transparent
migration because a program does not restart from the same point it was at
before it moved and so has to maintain an indication of its progress itself.

April [McCabe95] is a symbolic language for building distributed ap-
plications that work over the Internet. It allows functions to be transmitted
across the network. However, rather than map data access into callbacks
across the network, April copies a function’s closing environment and fixes
the values it contains so that they cannot be modified. April cannot capture
and transmit a program’s execution state.

Facile [Giacalone89] is a development of ML that supports synchronous
communication between processes using channels. It has been modified to
allow functions to be transmitted over the network and used for mobile
service agents (MSA) [Knabe95, Knabe94]. The MSA framework allows
applications to retrieve at run-time code that provides access to a service.
Interaction between application and service can adapt to network conditions
and available resources. Chapter 4 of this dissertation describes a similar
technique applied to distributed objects. The modified Facile allows a func-
tion represented using continuations to be sent over a network but, unlike
the interpreter described in this chapter, does not use them for transparent
capture and migration of a program’s execution state.

Napier88 [Morrison93] is a persistent programming language. It allows
data objects, including procedures, to be transparently maintained on a
persistent store so that programs can continue to use them if they stop and
later restart. Other programs can also use the saved data objects. Napier88
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does not support the saving of a program’s execution state to persistent
store. However, a recent paper [da Silva97| has proposed using a persistent
programming system with mobile programs to help in reducing the amount
of data transferred when a program moves. When a program moves, it can
continue to access its data from the persistent store.

Kali Scheme [Cejtin95] and Dreme [Fuchs95] are both dialects of Scheme
that support distributed programming by permitting transmission of higher-
order objects such as closures and continuations (programs’ execution states)
over a network. Their state-saving techniques are not independent of the
interpreters they have built and so are not trivially portable to other Scheme
implementations.

The rest of this chapter presents a method for saving program state
that does not require writing a system from scratch and is portable between
different Scheme implementations. Programs can migrate their execution
states or individual functions that they define. They can capture states
with continuations and then send them at any time later. The mechanism
is made transparent to the programmer and supports heterogeneity because
an interpreter is used to execute programs.

3.3 A Continuation Passing Interpreter

State saving is implemented using an interpreter that converts a program
into a number of closures that each perform a small piece of its computa-
tion. At each stage in the program’s execution, its state and the rest of the
computation is defined by one of the closures. This section and the next one
describe the steps taken in writing the interpreter:

e Section 3.3.1 gives an example of a program converted into a number
of closures that implement its execution using the interpreter. It also
describes in detail what happens when the program is run.

e Section 3.3.2 gives the definition of part of the interpreter in order to
show how the example can be generalised.

e Section 3.4 shows how the interpreter can be transformed so that a
program’s execution state can be saved at any time as a sequence of
bytes. This is achieved by converting closures that represent program
state into expressions that contain no closures at all.

It returns to the example and shows how the state at a particular
stage of its execution is turned into an closureless expression that can
be marshalled into a byte-stream by a system such as the Tube.

The functions that the interpreter generates for a program are written
in a continuation-passing style [Appel92]. This means that they pass as
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arguments to each other closures that encapsulate what is to be done next
for each stage of an execution.

It is outside the scope of this dissertation to describe the theory and prin-
ciples behind continuation-passing interpreters. [Queinnec96] discusses the
subject of continuation-passing Scheme interpreters. ’

The interpreter described in this section interprets Scheme programs and
is itself written in Scheme. It takes a program written in plain Scheme and
converts it into a function that implements its computation in a continuation-
passing style. When called, this function performs a small piece of the pro-
gram’s computation and then returns enough information for the caller to
be able to restart it at some time in the future. When restarted, the same
happens — another small piece of the computation is performed, the pro-
gram stops and some restart information returned. This information is the
program’s state; the continuation-passing style makes the state of a program
available at each stage of its execution.

3.3.1 Example

This section gives an example of the working of the continuation-passing
interpreter used as the basis for obtaining and saving the state of programs.
Consider the following expression which returns the string even if the (in-
teger) variable x is even and the string odd if it is odd:

(if (even? x) "even" "odd")

Figure 3.1 shows the function, f, that implements continuation-passing
interpretation of the expression. It really comsists of a number of small
closures implementing the different stages of execution.

There are two types of closure involved, one taking two arguments (k
and env) and one taking a single argument (v or w). The former break up
the computation into smaller pieces. The k argument is the continuation to
which the result of the small piece of computation is sent. The env argument
is an environment in which to evaluate the computation; it holds the values of
the program’s variables. The latter type of closure are continuations. They
take one argument, which is the value to pass to the rest of the computation.

The rest of this section goes through how the computation proceeds for
this example. Suppose f is passed the function result as the continuation
to send its result to and an environment which maps the symbol x to the
value 23. result is a pre-defined continuation which is used to denote the
end of a computation. It takes one argument and returns a specially-tagged
version of it, indicating that the computation is complete.

Working through, the closure on line 2 is called first, with the continua-
tion defined on line 21 and env passed as arguments. This in turn calls the
closure on line 3, with the continuation defined on line 18 and env (in this
program, the same environment is used throughout) passed as arguments.




30

10

15

20

25

CHAPTER 3. HIGHER-ORDER STATE SAVING

(lambda (k env)
((lambda (k env)
((lambda (k env)
((lambda (k env) (lookup k ’even? env))
(lambda (v)
((lambda (k env)
((lambda (k env) (lookup k ’x env))
(lambda (v) .
((lambda (k env) (send k ’()))
(lambda (w)
(send k (cons v w)))
env))
env))
(lambda (w)
(send k (cons v w)))
env))
env))
(lambda (v)
(do-apply k env (car v) (cdr v)))
env))
(lambda (v)
(if v
((lambda (k env) (send k "even")) k env)
((lambda (k env) (send k "odd")) k env)))
env))

Figure 3.1: An expression converted into a function f that implements its

interpretation in continuation-passing style
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Next, the closure on line 4 is called, with the continuation defined on line 5
and env passed as arguments.

This closure calls lookup, which looks up the symbol even? in the
environment env and passes the result to the continuation k. In this case,
env does not specify a value for even?. However, if Bigloo defines the symbol
then its value will be used (see Section 3.5.2). Since even? is a standard
Scheme function, it is defined in Bigloo’s interpreter and k (which is actually
the continuation defined on line 5) receives its value.

Instead of simply calling k with the even?’s value, Lookup is defined to
pass both to the send function. This is a pre-defined function which takes
two arguments, a continuation and a value to be passed to it, and returns
them consed together as a pair. So, the call to f now returns, with this pair
as its result. This is the current state of the program; it has got as far as
looking up the value of the even? symbol. The program can be resumed at
any time by applying the pair’s cdr to its car.

Suppose that this is now done and that the program resumes. The
continuation on line 5 receives the even? function and calls the closure on
line 6 with the continuation on line 14 and env as arguments. The closure on
line 7 is then called, with the continuation on line 8 and env as arguments.
lookup is called, which looks up the value of x in env as 23 and returns k
(the continuation on line 8) consed with it. This is the state of the next
stage in the program, which has stopped again.

Restarting the program by applying the returned pair’s cdr to its car
results in the continuation on line 8 being passed the number 23 as an
argument. The closure on line 9 is called with the continuation on line 10
and env as an argument. A new program state is returned consisting of
the continuation on line 10 and the empty list in a pair. Restarting the
program in the normal way brings execution to line 11, where v is bound
to the number 23, w is bound to the empty list and k is bound to the
continuation on line 14. The next program state is returned, consisting of
this continuation consed with a list containing the number 23.

Restarting the program using this state moves execution to line 15, where
v is bound to Bigloo’s even? function, w is bound to the list (23) and k is
bound to the continuation on line 18. The next program state is returned,
consisting of this continuation consed with a list containing the even? func-
tion and the number 23, in that order. Restarting this state brings execution
to line 19, where v is bound to the list and k is bound to the continuation on
line 21. The do-apply function is called and passed k, env, the even? func-
tion and a list containing the number 23 as arguments. do-apply applies
some arguments (in this case 23) to a function (even?) and sends the result
(#£) to a continuation (k). This returns the penultimate program state.

Restarting this state executes the continuation at line 21, with v bound
to #f and k bound to the result continuation. The closure on line 24 is
called, and sends the string odd to the result continuation, returning the
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final program state. Restarting this state returns the string odd with a
special tag indicating that the program has finished its computation.

As is evident from this example, converting a program to use a continuation-

passing style yields its state at every stage of execution. The program does
some computation, then stops and returns its state. Running it from start
to finish involves repeatedly restarting it from the successive states returned
until it gives up its final value. Without conversion to continuation-passing
style, the program runs from start to finish and none of its states are visible.

A program cannot be converted to use continuation-passing once it starts
running. If its state is required at any stage of its execution, the whole
program must be converted before it starts.

3.3.2 The scan function

The heart of the continuation-passing interpreter is the scan function. It
converts a Scheme program into a function implementing its interpretation
in continuation-passing style, as illustrated with the example in the previous
section.

The scan function uses the lambda of the host Scheme (Bigloo) in the
conversion to continuation-passing style rather than introducing a new form
that is managed by the interpreter itself so that:

e continuation-based programs can inter-operate with code written di-
rectly in the host Scheme

e any optimization (e.g. conversion to bytecode or native code) imple-
mented by the host Scheme is capitalised upon

Figure 3.2 shows the parts of the scan function relevant to the example
discussed in Section 3.3.1. A brief description is given here, to point out the
code which generated the continuation-based interpretation shown in Figure
3.1.

Lines 2-3 define the closure returned for symbols. It simply calls lookup
to pass the value of the symbol in the environment env to the expression’s
continuation, k (the rest of the computation). Lines 6-18 define the closure
returned for if statements. Line 7 converts the statement’s test expres-
sion into a continuation-based function. This is passed the continuation
on line 14, which will be called later when the test function has finished.
Line 16 is evaluated if the test returned true, line 17 if it returned false.
The statement’s consequent or alternative expression (which are converted
to continuation-passing style on lines 8 and 9) is accordingly passed the
continuation of the if statement, k, that encapsulates the rest of the com-
putation.

Lines 20-26 are evaluated for a function application. The sclis func-
tion described below converts the list containing the application into a
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1 (define (scan exp)
(cond ((symbol? exp)
(lambda (k env) (lookup k exp env)))
((pair? exp)
5 (cond ...
((eq? (car exp) ’if)
(let ((scan-test (scan (cadr exp)))
(scan-consequent (scan (caddr exp)))
(scan-alt (scan (if (pair? (cdddr exp))
10 (cadddr exp)
*0))))
(lambda. (k env)
(scan-test
(lambda (v)
15 (if v
(scan-consequent k env)
(scan-alt k env)))
env))))
20 (else
(let ((scanned (sclis exp)))
(lambda (k env)
(scanned
(lambda (v)
25 (do-apply k env (car v) (cdr v)))
env))))))
(else
(lambda (k env) (send k exp)))))

30 (define (sclis exp)
(if (null? exp)
(lambda (k env) (send k ’()))
(let ((first (scan (car exp)))
(rest (sclis (cdr exp))))
35 (lambda (k env)
(first
(lambda (v)
(rest
(lambda (w) (send k (cons v w)))
40 env)) :
env)))))

Figure 3.2: Parts of the scan function and the auxiliary sclis function
which convert an expression into continuation-passing style
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continuation-passing closure which implements the evaluation of each of its
members. The continuation defined on line 24 is passed to the result. It
calls do-apply, which actually applies the function (the first element in the
resulting list) to its arguments (the rest of the elements in the list) and sends
the result to the rest of the computation held in the continuation k. Lines
27-28 handle any other type of expression simply by sending it to the rest
of the computation. .

The recursive sclis function defined in lines 30-41 converts a list of
expressions that need to be scanned into a continuation-based function that
evaluates them one-by-one and makes a list of the results. Line 32 handles
the terminating case when the end of the list is reached. Lines 33-41 handle
a list of at least one element by creating a function which will evaluate the
first element (lines 33 and 36) and pass to the evaluation a continuation
(lines 37-40) that evaluates the rest. Line 34 implements the recursion that
ensures all elements of the list are scanned and evaluated. Line 39 ensures
that the elements are consed together to form a list, which is passed to the
rest of the computation.

Instead of immediately sending a value to a continuation, send, lookup
and do-apply return them as a pair. This stops the computation but en-
sures that a program’s state, defined by pairs of continuations and values, is
available at each stage of its execution. Applying the value in a pair to its
associated continuation is enough to restart the program in the same state
it was in when the pair was made.

3.4 State Saving

The previous section described the scan function, which implements a con-
tinuation-passing interpreter for programs that allows their states to be ob-
tained at each stage in their execution. The states are continuations of the
execution, represented using Bigloo closures. If they could be saved to and
restored from a byte-stream, a program could be migrated by sending the
stream over a network or stored for later resumption.

Futhermore, scan allows programs to capture their own execution state,
using the special language form let/cc (see Section 3.5.1). Programs would
be able to migrate themselves to other computers or persistent store if the
state they capture could be saved into a byte-stream. Functions defined by
programs running under continuation-passing interpretation would also be
transmissible.

scan generates Bigloo closures. Like other Scheme interpreters not de-
signed for code mobility, Bigloo cannot save closures generated with its
lambda expressions in a form suitable for placement in a persistent store
or transmission over a network. The modification to scan described in this
section allows closures it generates to be saved by converting them into ex-
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pressions that contein no closures at all. No modification is required to
Bigloo and the technique is portable to other Scheme systems. It does not
require building a new environment for executing Scheme programs.

The rest of this section describes how the modification to scan is made.
Section 3.4.1 presents a technique for remembering the definition of closures.
Sections 3.4.2 and 3.4.3 show by means of an example how this technique is
applied to the scan function. This allows the definitions of the continuations
it generates for a program’s execution to be obtained at any time, as is
illustrated in Section 3.4.4.

3.4.1 Memoizing closure definitions

The technique used for saving the state of closures generated by the con-
tinuation-passing interpreter is to remember their definitions when they are
created. The scan function described in Section 3.3.2 explicitly defines a
set number of lambda forms, each encapsulating a part of the computation
or a state of execution. Therefore, the definition of each is known when it
is created with a lambda expression. '

The memoize-lambda function is used to associate a closure with its
definition. It does this by making a new closure which holds both the original
one and its definition:

(define (memoize-lambda lambda-fn lambda-defn)
(lambda args
(if (get-replacing?)
lambda-defn
(apply lambda-fn args))))

memoize-lambda might be used as follows:

(memoize-lambda
(lambda (x) (* x 2))
’(lambda (x) (* x 2)))

This gives a function which doubles its argument and its (quoted) defini-
tion. The closure returned by memoize~-lambda in this case will be equivalent
to:

(let ((f (lambda (x) (* x 2))))
(lambda args
(if (get-replacing?)
’(lambda (x) (* x 2))
(apply £ args))))

The get-replacing? function normally returns #f, so that closures
returned by memoize-lambda behave in the same way as the ones given to
it as arguments. So the closure returned by
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(memoize-lambda
(lambda (x) (* x 2))
’(lambda (x) (* x 2)))

can be used in exactly the same way as
(lambda (x) (* x 2))

The get-procedure-defn function allows a closure’s definition to be ob-
tained by telling get-replacing? to return #t. So the following expression:

(let ((f (memoize-lambda
(lambda (x) (* x 2))
'(lambda (x) (* x 2)))))
(list (f 5) (get-procedure-defn £)))

returns the following list:
(10 (lambda (x) (* x 2)))

This demonstrates that programs can both use and obtain the defini-
tion of closures returned by memoize-lambda. A closure’s definition can be
passed through Bigloo’s eval function to obtain the closure again. There
is a slight problem in the above example — the definition does not itself
contain a call to memoize-lambda so the closure obtained from eval will
be unable to yield its definition to get-procedure-defn. To solve this,
the memoize-lambda-to-self macro allows closure definitions to be passed
through eval as many times as necessary:

(define-macro (memoize-lambda-to-self . args)
‘ (memoize-lambda

(lambda ,Q@args)
’ (memoize-lambda-to-self ,@args)))

The doubling function can be rewritten using memoize-lambda-to-self
as follows:

(memoize-lambda-to-self (x) (* x 2))
Passing this through get-procedure-defn returns its definition:

(memoize-lambda-to-self (x) (* x 2))

This definition can be passed through eval to obtain the closure. The
definition yielded by passing that closure through get-procedure-defn will
be the same.
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3.4.2 Modifying the scan function

Using memoize-lambda and memoize-lambda-to-self in the scan function
allows the closures used in continuation-passing interpretation to be turned
into expressions that contain no closures. They can then be marshalled into
byte-streams using the Tube’s marshal function, for example (see Section
2.5.1).

The first step is to replace the lambda forms used in the scan function
with calls to memoize-lambda. Figures 3.3 and 3.4 illustrate the fragment
of scan shown in Figure 3.2 converted to use memoize-lambda. The defini-
tions given to memoize-lambda and memoize~lambda-to-self use Scheme’s
quasiquoting and unquoting to insert values from the interpretation.

3.4.3 Example

Section 3.3.1 ran through an example of continuation-based interpretation.
This section shows the definition of the state at a particular point in the
example’s execution. The next section discusses how a program state’s defi-
nition can be extracted by recursive application of the get-procedure-defn
function to the closures generated by scan for interpretation.

Figure 3.1 showed an expression converted into continuation-passing
style. The result of the conversion was a closure implementing interpre-
tion of the expression. Since the expression was an if statement, passing
the closure to get-procedure-defn simply returns the following:

(scan ’(if (even? x) "even" "odd"))

This is clearly correct since it was the same expression that generated
the closure.

Suppose that the interpretation has reached line 9 of Figure 3.1. A
program state is returned by send, consisting of the continuation on line 10
and the empty list in a pair. The continuation’s definition can be obtained
by hand through recursively replacing k with its definition and substituting
the values of bound variables:

(lambda (w)
(send (lambda (w)
(send (lambda (v)
(do-apply (lambda (v)
(if v

((lambda (k env) (send k "even"))

result env)
((lambda (k env) (send k "odd"))
result env)))
env (car v) (cdr v)))
(cons even? w)))
(cons 23 w)))
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(define (scan exp)
(cond ((symbol? exp)
(memoize-lambda
(lambda (k env) (lookup k exp env))
“(scan ’,exp)))
((pair? exp)
(cond ...
((eq? (car exp) ’if)
(let ((scan-test (scan (cadr exp)))
(scan-consequent (scan (caddr exp)))
(scan-alt (scan (if (pair? (cdddr exp))
(cadddr exp)
*ONN
(memoize-lambda
(lambda (k env)
(scan-test
(memoize-lambda
(lambda (v)
(if v
(scan-consequent k env)
(scan-alt k env)))
¢ (memoize-lambda-to-self (v)
(if v
(,scan-consequent ,k ’,env)
(,scan-alt ,k ’,env))))
env)))
‘(scan ’,exp)))
(else
(let ((scanned (sclis exp)))
(memoize-lambda
(lambda (k env)
(scanned
(memoize-lambda
(lambda (v)
(do-apply k env (car v) (cdr v)))
‘ (memoize-lambda-to-self (v)
(do-apply ,k ’,env (car v) (cdr v))))
env))
‘(scan ’,exp))))))
(else
(memoize-lambda
(lambda (k env) (send k exp))
‘(scan ’,exp)))))

Figure 3.3: Parts of the scan function converted to use memoize-lambda
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1 (define (sclis exp)
(if (null? exp)
(memoize-lambda-to-self (k env) (send k ’()))
(let ((first (scan (éar exp)))
5 (rest (sclis (cdr exp))))
(memoize-lambda
(lambda (k env)

(first
(memoize-lambda
10 (lambda (v)
(rest
(memoize-lambda
(lambda (w)
(send k (cons v w)))
15 ¢ (memoize-lambda-to-self (w)
(send ,k (coms ’,v w))))
env))
‘ (memoize-lambda-to-self (v)
(,rest
20 (memoize-lambda
(lambda (w)
(send ,k (cons v w)))
¢ (memoize-lambda-to-self (w)
(send ,,k (cons ’,v w))))
25 ’,env)))
env))

¢ (scan-sclis ’,exp)))))

Figure 3.4: The auxiliary sclis function converted to use memoize-lambda



40 CHAPTER 3. HIGHER-ORDER S’TATE SAVING

The version of scan that uses memoize-lambda and memoize~lambda-to-
self to remember closure definitions would represent this continuation with
the following function:

(memoize-lambda-to-self (w)
(send (memoize-lambda-to-self (w)
(send (memoize-lambda-to-self (v)
(do-apply (memoize-lambda-to-self (v)
(if v
((scan "even") result env)
((scan "odd") result env)))
env (car v) (cdr v)))
(cons even? w)))
(cons 23 w)))

This can be obtained by using the unmemoize function described in the
next section.

3.4.4 Obtaining and restoring program state

The first step towards converting the closures generated by the scan function
into expressions containing no closures at all was to use memoize-lambda
in the scan function. The second step is recursively to replace closures
with their memoized definitions. This can be done for program state, which
consists of a continuation and a value to pass to it, and functions defined by
continuation-based programs.

A function called unmemoize-expression performs this recursive re-
placement. Closures are not updated in-place. Rather, new expressions
are generated containing their definitions, allowing closures to continue to
be used afterwards. For the continuation shown above, at the end of the
previous section, it would generate the following expression:

(MEMOIZE-REPLACED (memoize-lambda-to-self (w)
(send (MEMOIZE-REPLACED (memoize-lambda-to-self (w)
(send (MEMOIZE-REPLACED (memoize-lambda-to-self (v)
(do-apply (MEMOIZE-REPLACED (memoize-lambda-to-self (v)
(if v
((MEMOIZE-REPLACED (scan "even'"))
result env)
((MEMOIZE-REPLACED (scan "odd"))
result env))))
env (car v) (cdr v))))
(cons even? w))))
(cons 23 w))))

This is not a function definition, but rather a list of elements; it cannot be
evaluated. unmemoize-expression returns only basic data types (numbers,
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Figure 3.5: Interfacing the continuation-based interpreter with the Tube

symbols, strings, characters, vectors and lists), not closures. Lists beginning
with the MEMOIZE-REPLACED symbol contain a closure’s definition as their
second element.

The function replace-expression takes an expression returned by the
function unmemoize-expression and recursively replaces lists beginning
with MEMOIZE-REPLACED with the closures that result from passing their
second elements to eval. A closure with exactly the same behaviour as the
original given to unmemoize-expression is thus produced.

unmemoize-expression generates a representation of a closure that con-
tains no closures itself. replace-expression takes such a representation
and regenerates the closure. Section 3.5.4 shows how the Tube uses these
functions to enable program state to be marshalled into a byte-stream and
transferred over a network.

3.5 Interfacing with the Tube

This section describes how the continuation-based interpreter discussed in
Section 3.3 inter-operates with the Tube mobile code system discussed in
the previous chapter. Figure 3.5 shows the process of converting a Scheme
program into continuation-passing style using scan and then executing it
using run and step (see Section 3.5.1). The program can access Tube facil-
ities and make functions it defines available for other programs running on
a Tube site to call (see Section 3.5.2).

Section 3.5.3 discusses run-time exceptions in the interpreter. Section
3.5.4 shows how the the technique for obtaining marshallable state described
in Section 3.4 is used by the Tube to move programs. Section 3.5.5 discusses
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the efficiency of the interpreter and the state-saving technique. Section 3.5.6
discusses saving user interface state.

3.5.1 Calling the continuation-passing interpreter

An expression to be interpreted is passed through Bigloo’s macro expan-
sion phase before being given to the scan function. The function returned
by scan, implementing a continuation-passing interpretation for the expres-
sion, is then passed result for the terminating continuation and a default
environment.

The interpretation makes available its state at each stage of execu-
tion. To carry the computation through to termination, each state must
be restarted. A driver loop function called run keeps restarting the compu-
tation until it detects a value tagged by result:

(define (run state)
(if (result? state)
(result-val state)
(run (step state))))

The result? predicate returns true if its argument has been tagged
by result. result-val retrieves the final value of the interpretation. The
step function restarts an interpretation state.

‘Program state returned by continuation-passing interpretation is actu-
ally implemented using Bigloo closures, not using pairs as described in Sec-
tion 3.3.1. Closures are used so that a program’s state can be called as if it
was an ordinary function from code not using continuation-passing. When
called without arguments, the closure containing the program’s state calls
run to execute the rest of the program until it completes. Passing it to the
step function (as run does, above) passes a value to the closure telling it to
perform only a single stage of execution and return the next state.

Since continuation-passing interpretation splits up a program’s execution
into smaller stages, the processing resources it consumes can be controlled.
For example, the amount of time a program spends executing can be re-
stricted by limiting the number of times that the run function recurses.
The speed at which the program runs can be controlled by inserting a delay
before calling the step function.

A different driver loop function checks a message queue each time it
steps the interpretation state. If a new thread is created to interpret a pro-
gram using this function, other threads can at any time contact it through
the queue and obtain the program’s state of execution. They can also at the
same time request that the interpretation pause or stop. This allows pro-
grams to be migrated that do not themselves contain state-saving directives.

Closures defined by expressions passed through scan can be called from
code not using continuation-passing in the same way as those encapsulating
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program state. This allows programs to be written which contain a mixture
of code that does not use the continuation-passing interpreter and code that
does.

Programs can obtain their current state by using the (let/cc k ...)
form. This binds k to the continuation of the program at that point, with a
scope equal to the body of the form. Unlike let/cc in EULIsP [Padget92],
k can be called outside the form’s dynamic extent, at any time during or after
the program’s execution. k can be captured for later use with a side-effect
or appear in the value returned by the body of the let/cc form. Calling
k requires one argument, which is used as the value to substitute for the
let/cc expression in evaluation of the rest of the program from the point
at which the form occurred. l '

Closures and continuations defined and obtained in continuation-passing
interpretation can be made available by assignment to data obtained from
Tube functions (see below) or as the final return value of the evaluation.

3.5.2 Making Tube data available to the interpreter

If a symbol’s value is not found in an environment then Bigloo’s global
environment is searched by passing the symbol to Bigloo’s eval function.
This allows functions provided by the Tube outside the continuation-passing
interpreter to be called from inside it. Function definitions are cached in a
hash table to minimise the number of times that eval has to be called.

By filtering access to the Tube’s global environment through access con-
trol lists, the range of functions made available for (mobile) programs can
be restricted.

3.5.3 Exceptions

Exception handling in continuation-passing interpretation is fully inter-operable
with Bigloo’s exception handling. Programs passed through scan and ex-
ecuted by run and step can catch exceptions thrown by Tube functions.

- They can also throw exceptions that can be caught by Tube functions.

3.5.4 Using marshallable program state

Section 3.4 demonstrated that closures encapsulating program state can be
converted into representations containing no closures at all. It also showed
that such representations can be converted back into the original closures.
This is required because Bigloo does not provide support for marshalling
closures. Converting them into expressions that can be marshalled into a
byte-stream allows programs executing under continuation-passing interpre-
tation to be migrated over the network or to persistent store.

The Tube provides the ability to marshal Bigloo expressions that do not
contain closures into byte-streams (see Section 2.5.1). Hence, once converted
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1 (let loop ((i 1))

(if (k= i 10)
(begin (print i)
(if (= i 6)
5 (if (let/cc k
(dispatch
(make-tube-address "HostB" 54321)
(make-rep (savefn (lambda () (k #t)))))
#1)
10 (loop (+ i 1))

(Qoop (+ i 1))))))
Figure 3.6: A migrating Scheme program

into closureless expressions by unmemoize-expression, a program’s state
can be marshalled into a byte-stream. The byte-stream can then be transmit-
ted over a network or saved to persistent store. A Tube site receiving it from
the network or reading it from store can unmarshal the data and obtain the
closureless expression holding the program’s state. replace-expression
can then be used to make a closure implementing the program’s interpre-
tation. This closure can then be invoked to restart the program — having
been moved across a network or suspended and kept in a persistent store.

Since Tube marshalling can cope with machine-specifics such as byte-
ordering, program state can be captured, transferred and restarted between
different types of computer.

For instance, suppose there are Tube sites running on two computers,
HostA and HostB, and that they can send data to each other over a network.
Both listen for new connections on port 54321. Figure 3.6 shows a Scheme
program that counts from 1 to 10, migrating itself between sites when it .
reaches the number 6. If it is executed under continuation-passing interpre-
tation on HostA, then the numbers 1 to 6 will be printed on HostA, before
the program sends its state to HostB and prints the numbers 7 to 10 there.

Lines 5-9 capture and migrate the program’s continuation when it has
counted up to and printed the number 6. The let/cc form binds the con-
tinuation to k, which is then sent to HostB and #f is returned to terminate
execution. dispatch, make-tube-address and make-rep were introduced
in Chapter 2. dispatch marshals and sends an expression over a network
asynchronously, make-tube-address specifies the address of a Tube site and
make-rep tags an expression as executable.

It should be pointed out that some method is usually provided in Lisp-
like languages for capturing a program’s continuation (let/cc here or call/cc
in standard Scheme). Programs must use it to capture their states even if
they do not migrate elsewhere. Lines 6-8 of the example in Figure 3.6 are
particular to its migration.
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savefn converts k into a form suitable for transmission over a network.
It takes one argument, a closure that takes no arguments, and returns a
marshallable expression generated with unmemoize-expression. When this
expression is passed to eval, it uses replace-expression to recreate the
closure, which is then called. In Figure 3.6, the expression returned by
savefn contains in marshallable form the continuation held by k because
unmemoize-expression operates recursively. It is tagged as executable with
make-rep so that when it reaches HostB, after being sent over the network
with dispatch, the closure is recreated and called. In turn, it calls the
continuation that was transferred from k, passing it #t so that the program
continues on HostB from line 10 and prints the numbers from 7 to 10.

The size of the state transferred by dispatch in Figure 3.6 is 9.2 kilobytes
uncompressed, 1.4 kilobytes compressed. The transfer has been timed five
times between two Sun UltraSPARCs running at 143Mhz and connected by
TCP/IP over a local area ethernet. The average time that elapsed between
the program calling dispatch on line 6 and restarting in the closure on line
8 was 199 milliseconds.

The savefn function is defined as follows:

(define (savefn fn)
(let ((ustate (unmemoize-expression ‘(,fn))))
‘(eval (replace-expression ’,ustate))))

ustate holds a marshallable call to the closure fn. savefn returns an
expression that recreates the closure and passes the call to eval, which
evaluates it.

Tube functions used by a continuation-based program (see Section 3.5.2)
are passed through memoize-lambda so that unmemoize-expression can
obtain their definitions. The caches used to store these functions are stored
in the environments used to remember the values of variables. Exception
handlers are stored in environments too. Doing this means they are saved by
unmemoize-expression, since scan puts environments into closure defini-
tions. If necessary, programs can migrate while they are handling exceptions.

3.5.5 Efficiency

This chapter has described a method for allowing the state of Tube programs
to be transparently marshalled into byte sequences without modification to
the underlying interpreter. It exists as a layer on top of the underlying
Scheme system.

The implementation for the Tube uses Bigloo as the underlying Scheme
system. Since Bigloo can compile Scheme to native code, the state-saving
layer does not add an extra layer of interpretation. The continuations gen-
erated by interpretation are represented using closures of the host system;
Bigloo compiles them to bytecode. Although interpretation generates many
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closures, it has proved efficient enough for the experiments described in the
rest of this dissertation.

memoize-lambda inserts a call to get-replacing? in the closures it re-
turns. Since it is used to remember the definitions of the closures generated
by scan, many calls to get-replacing? will be made in the course of an in-

- terpretation. get-replacing? checks the value of a thread-specific variable

that get-procedure-defn sets to return a closure’s definition. An alterna-
tive method that does not place such an overhead on interpretation would
hold closure definitions separately. However, support from the garbage col-
lector would then be required so that definitions are deleted when closures
are collected. '

The implementation saves the whole of a program’s state. If a program
migrates from one computer to another over a network, sending all of its
state at once might be unnecessary. For slow networks, an alternative would
be to transfer part of a program’s state only when it is needed for execution.
However, this would make the program dependent on the network through-
out the lifetime of its execution; if the network failed, the program would
not be able to proceed. It would also result in the state being held in two
places, placing a residual burden on the computer that the program moved
from.

One optimization that can be made is to the modified scan function
described in Section 3.4.2. The function allows saving of program state
by remembering closure definitions in full. Bigloo’s eval function is used
to turn them back into closures when restoring program state (see Section
3.4.4). This invokes Bigloo’s byte code compiler to generate new code for
each restored closure. '

Instead, each form of closure that scan generates can be pre-compiled
and given an index. Each closure instance that scan makes can then simply
be memoized with the index of the form that defines it, together with any
values needed to parameterize it (i.e. the values that are inserted into closure
definitions by using quasituoting and unquoting in Figure 3.3). The closure
forms are compiled once, into native code, and instances are made at run-
time when restoring program state by closing them in new environments
containing the memoized values.

For example, the closure generated on lines 3-5 of Figure 3.3 can be
changed to the following expression:

(make-form O exp)
The function make-form is defined as follows:

(define (make-form index . args)
(memoize-lambda (apply (vector-ref forms index) args)
(cons index args)))
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make-form instantiates a parameterized closure instance (the first line
of the definition) and memoizes it with a pair consisting of the form’s index
and the values used to parameterize the instance (the second line of the
definition). The vector forms holds, in order of form index, functions that
create parameterized closure instances:

(define (forms (vector
(lambda (exp) (lambda (k env) (send k (lookup exp env))))
ced))

This defines the form with index 0, which corresponds to the closure
generated on lines 3-5 of Figure 3.3.

When replace-expression (see Section 3.4.4) comes across a memoized
form, £, it can recreate the closure instance that £ represents by using the
following expression:

(apply make-form (cons (car f£) (cdr £)))

Implementing state saving in this way is more efficient than using eval
to compile closure definitions into byte code because it uses parameterized
instances of closures that are compiled to native code. Avoiding use of eval,
which allows access to the full range of Bigloo functions, makes implementing
a secure interpreter a little easier too.

All of the experiments described in this dissertation have been made over
a local area network and no program’s state has been bigger than 64 kiloybtes
uncompressed. They usually compress to one fifth in size. Therefore, when
a program is migrated, its state is transferred in its entirety before the
program is restarted. Some measurements of the size of mobile programs
and the time they take to move over the network can be found in Sections
3.5.4,4.2.1, 6.6 and 7.5.3.

3.5.6 Program and user interface state

Provision is made for callbacks associated with Tube user interfaces to be
migrated. The technique described above using unmemoize-expression and
replace-expression is combined with the state-saving of user interfaces
described in Chapter 2. A function called saveUls-fn is defined which
behaves like savefn but takes as extra arguments an arbitrary number of
graphical user interfaces. It returns an expression that recreates all the given
interfaces and the callbacks associated with them when it is evaluated. It
also recreates and calls the closure passed to it, like savefn. saveUls-fn
allows a program containing one or more user interfaces to take them along
when it migrates. The user interface state-saving facility of the Tube ensures
that they are recreated in the same state they were saved in.

Chapter 2 also described a facility which allows Tube programs to display
their user interfaces embedded inside Web pages, using a Netscape plug-in.
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It showed how such programs communicate with the plug-in, which informs
them when the user visits and leaves pages. It relied on the transparent
state-saving facilities described in this chapter to allow programs to give
their state to the plug-in when the user leaves a page and restore themselves
from that state if the user visits the same page again.

3.6 State Saving on the Java Virtual Machine

The continuation-passing interpreter and the state-saving technique devised
for it, described in Sections 3.3 and 3.4 respectively, are portable between
Scheme systems. This is because the interpreter is written in standard
Scheme. The implementation described interfaces with the Tube and uses
Bigloo to compile the interpreter into native code.

A second, mimimal, version has been implemented with a different Scheme
system to demonstrate the technique’s portability. The state-saving inter-
preter is compiled with Kawa [Bothner97] into Java bytecodes. Compiling
bytecodes using a Just-In-Time (JIT) compiler, such as Kaffe [Wilkinson97],
leaves only a single layer of interpretation.

This version of the interpreter allows programs transparently to move
between unmodified Java virtual machines (JVMs). Unlike Aglets (which
are discussed in Section 3.2), programmers are not burdened with the re-
sponsibility of saving a program’s execution state. The interpreter allows
programs running on a JVM to be migrated without having to specify state
to transfer explicitly and reconstruct execution context by hand.

3.7 Summary

Allowing a program’s state transparently to be saved to a byte-stream eases
the writing of migratory applications. This chapter motivated the need for
migrating program state in order to support experiments described in sub-
sequent chapters. It introduced a portable interpreter that makes available
program state at each stage of execution. An example execution under the
interpreter was then described. A portable modification to the interpreter
was presented which allows a program’s state to be saved to persistent store
or sent over a network. A simple example of a program that migrates itself
from one computer to another over a network was given. Finally, this chap-
ter discussed the integration of the state-saving interpreter with the Tube
mobile code system and a minimal port to the Java virtual machine.



Chapter 4

Mobile Code for Distributed
Objects

This chapter shows how a distributed object system can be simply and
cleanly built using mobile code. Techniques for enhancing the interaction
between processes connected over a network are discussed. A simple object
system is described that can make use of the state saving technique described
in the previous chapter. It is then extended to allow communication with
objects over a network. Mobile code is used to support object mobility and
interaction.

4.1 Introduction

4.1.1 Motivation

This chapter demonstrates the following:

e mobile code can be used to enhance the way distributed processes
interact

e a distributed object abstraction can be built on top of mobile code

in terms of the Tube higher-order mobile code system described in the
previous two chapters. A distributed object system is required for the user
mobility framework discussed in Chapter 7.

4.1.2 Benefits

Using mobile code supports the following statements made in the abstract
on page iii and in Section 1.3:

o Richer functionality can be given to the interaction between processes
... distributed components can be tightly bound together

49
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Section 4.2.2 shows how a client can send over a network code that
embeds itself in a server. Section 4.2.3 shows how a client and server
can share the same connection for calling each other.

convenient, application-level operations can be made over a network.

Section 4.2.1 shows how clients can send code to a server to interact
with it there in arbitrary ways.

o familiar distributed systems can be built with mobile code.

Section 4.4 shows a distributed object system based on mobile code,
with object interfaces, remote method invocation, proxies, typing and
traded offers.

[distributed systems] should also provide facilities for dynamically chang-
ing the way they [applications] communicate over a network.

Section 4.4.6 shows how object proxies can be updated at run-time. .

It should be possible to define a minimal communication method that
... allows both for inter-operability and for different abstractions to be
defined on top of it.

The Tube mobile code system uses the same communication method
and data format to support messaging, remote procedure call, remote
operation, distributed objects and mobile programs.

There is no single means of abstracting application-level communica-
tion. FEzisting systems provide inter-operability at too high a level of
abstraction.

The Tube supports the abstractions listed above within a single im-
plementation. An application that has no need for mobile programs
or distributed objects does not pay for them because they are layered
on top of simple messaging.

The rest of this chapter describes how mobile code can enhance the

interaction between distributed processes and support a distributed object
abstraction. A review of related work can be found at the end of the chapter.
The work described in the rest of this chapter and in subsequent chapters
can make use of support for heterogeneity provided by the underlying mobile
code system (see Section 2.5.1).

4.2 Enhancing Interaction

4.2.1 Application-level remote operation

Consider a server process that provides information about share prices. In
the first version, each client connects to the server and sends the name of
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network calls

mobile-code sent
sjinsai passoeoosd

Figure 4.1: Application-level remote operation using mobile code

the company whose share price it is interested in. This works well for clients
that only need to retrieve one share price at a time.

However, clients that need to retrieve more than one share price must
make a separate network connection for each one. To reduce the number of
connections that have to be made, a second version of the server is written
that can return more than one share price at once. Clients send lists of
company names and receive share prices for each.

Now suppose that a client wishes to calculate the average of a number
of share prices. It would retrieve a list of them all from the server and
then calculate the average. However, this means that all of the prices are
transferred across the network, even though the client is interested only
in their average. In order to reduce network usage, the calculation could
instead be carried out on the server and only the result (a single number)
transferred over the network.

This could be done by writing yet another version of the server, which is
able to receive requests for share price averages. However, what if another
client is written at some time which wants to know the highest from a set of
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share prices, and another the lowest? For each client with a new requirement,
the server must be modified accordingly.

When both a server and the clients that use it are controlled by the
same person, he can easily modify the the server when a client with a new
requirement is written. However, when a server is used by large numbers
of clients, written and run by many different people, incorporating their re-
quirements into the server incurs significant administrative overhead. When
a new client is written that wants to use the data provided by the server
in a way not already supported, its author must contact the server’s author
and apply for the required changes to be made.

Imposing this administrative overhead in systems where a server’s role
is to provide access to valuable data restricts innovation in its use. It is
impossible to predict the uses that other authors will want to make of a
service when it is first written. An unmodified service cannot be optimised
to place a minimal burden on the network for each new use. Requiring
modification of a server that is used by growing numbers of applications
under constant development for long periods of time is impractical.

Using mobile code allows a server to provide for the changing require-
ments of its many client applications in a way that is optimised in network
usage for each and which does not require modification to the server. In-
stead of sending pre-determined requests to a server, clients send arbitrary
code to execute there. This code calls the functions on the server but is able
to calculate application-specific results for sending back over the network
(see Figure 4.1).

The server is written with a minimal set of functions and application-level
behaviour is uploaded to it as code. Since the code is sent by applications,
they can change it as they undergo development, without requiring the server
to be changed. Neither does the server have to be modified when a new
application is written that wants to use the data it provides in a different
way.

Doing this is useful only in reducing network usage. Functionally, it is
the same as sending a server’s data to the client and performing application-
specific processing there. Using mobile code to move application-level pro-
cessing into the server reduces network usage if the processing produces less
data than it consumes from the server. The cost of transferring the code
from client to server must also be taken into account. '

For example, consider the share price server, implemented in Scheme
using the Tube. The version that does not use mobile code takes a list of
company names and returns a list with the share price of each in it. Suppose
a function get-share-prices-from-server is written for clients to do this.
A client would then calculate the average of a number of share prices with
the following expression:
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(let ((prices (get-share-prices-from-server
"Bass" "BT" "Railtrack" "PowerGen")))
(/ (foldl + O prices) (length prices)))

The definition of foldl is provided at all Tube sites:

(define (foldl f a 1lst)
(if (null? 1st)
a
(foldl f (f (car 1st) a) (cdr 1st))))

Calculating the average in this way retrieves all of the share prices over
the network. Using mobile code allows the client to move the calculation
of average share price onto the server, without requiring modification to it,
so that only a single value is transferred over the network. If the server is
running on port 1234 of host foo and provides the function share-prices
that returns company share prices to its caller, then a client can calculate
an average with the following expression:

(on (make-tube-address "foo" 1234)
>(let ((prices (share-prices "Bass" "BT" "Railtrack" "PowerGen")))
(/ (foldl + O prices) (length prices))))

Section 2.5.4 describes the on function.

Notice that the amount of data transferred in the opposite direction,
from client to server, is greater since the code must be sent along with the
list of companies. However, this overhead is constant and for more than
a few companies is offset by the reduction in network traffic from server to
client. The client is always free to decide whether to perform the calculation
on the server or retrieve the share prices and perform it locally.

A simple measurement was made to demonstrate that sending mobile
code to a server can reduce network usage. The server generated an array of
one hundred thousand identical numbers, which clients could process either
by retrieving them over the network or sending a mobile program to the
server for accessing them there. The first client calculated the sum of all the
numbers by transferring the array from the server and processing them itself.
A second client was written which dispatched to the server a program that
calculated the sum there and returned it over the network. All programs
were written using the Tube.

The measurements were conducted five times using two Tube sites (one
for the clients and one for the server) running on 143MHz Sun UltraSPARCs
and connected by TCP/IP over a local area ethernet. The first client took an
average of 5.470 seconds and the second took an average of 365 milliseconds
to calculate the sum. This demonstrates that the ability to process data at
the server before it is sent to clients can significantly reduce network usage.
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For comparison, rewriting the server and first client in C and using Sun
RPC on the same machines to transfer the data took an average of 450
milliseconds to calculate the sum. This demonstrates that interpreted mo-
bile code can increase performance, compared with compiled and static dis-
tributed code, if it reduces network usage by co-locating processing and data.
It also shows that the Tube’s marshalling code would need to be improved
for use in a commercial system (this is noted in Section 6.6 as well).

The reduction in network traffic from server to client could also have
been achieved by writing a new version of the server. However, this would
have to be repeated for every client that comes up with a new requirement
for processing the data.

4.2.2 Code injection

Chapter 3 presented an interpreter that uses continuation-passing to save
the state of a running program. The same technique enables code read
from the network to become part of a running program. The new code is
embedded as if it was written as part of the program text. It is given access
to the variables in lexical scope at the point where the embedding occurs.

The interpreter converts a Scheme expression into a nested collection
of functions that implement its evaluation (see Section 3.3). To start the
program, the top-level function is called and passed a continuation (to which
the result of the evaluation must be sent) and an environment (which holds
the values of any variables available to the program).

A program that wishes to give an expression read from the network
access to its execution state simply has to provide its current environment.
The current-environment function is provided by Tube sites and returns
the environment that is active when it is called.

The recv-sexp function described in Section 2.5.1 for reading and exe-
cuting Scheme expressions from the network is extended to take an optional
extra argument. Callers can provide a function to be called for evaluating
an expression after it is read.

For example, the following program reads an expression from some port
p and gives it access to the local variable bar:

(let ((bar "an arbitrary value"))
(recv-sexp p (let ((env (current-environment)))
(lambda (exp) (run ((scan exp) result env))))))

The run, scan and result functions are described in Section 3.4. The
eval-here function is provided as syntactic sugar for the closure in the
above expression:

(let ((bar "an arbitrary value"))
(recv-sexp p eval-here))
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A client could then retrieve the value of bar from the server with the
following expression:

(on (make-tube-address '"some—host" 5678) ’bar)

This dynamic loading of code into programs allows a closer integration
than other methods such as dynamic linking on Unix operating systems or
Java’s class loader. The code being loaded has access to all of the program’s
execution state. Without this, a program has to pass values it wants to the
loaded code explicitly.

The approach described above is called code injection. It makes no dis-
tinction between the running program and the code it loads; the code is
integrated into the program’s execiition as if it had been part of its source
text. Unfettered access is provided to the program’s variables. When a
program does not want to hide its data from embedded code, this technique
allows them to be tightly bound together.

4.2.3 Sharing a connection

The on function allows a program to perform an operation on a remote Tube
site and receive the result. The previous section showed how the operation
can access the execution state of another program running remotely.

Another function, remop, is provided by Tube sites. It does the same as
on but instead of making a new connection, it re-uses an existing one. That
is, the address argument to on is replaced by two Scheme ports — one for
writing the operation onto and one for reading the result from.

This allows a server program that has been called (using on) by a client
program to make a call back into the client. The server’s call uses remop
and takes place across the same connection that the client made. A client’s
call to on only returns when the server sends back an expression that is not
tagged as an executable program (i.e. not a server-initiated call back). This
expression is the result of the remote operation.

Sharing a connection in this way has the following advantages over mak-
ing a separate connection from the server to the client’s Tube site:

e Fewer network connections have to be established. Indeed, both client
and server can make further calls over the same connection until the
original call (from client to server) is completed.

e When the server makes a call back into the client, it is processed by
the same thread of control in the client that made the first call to the
server.- That is, calls made between client and server over a connection
are processed by a single thread in each. There is no need to create a
new thread for each call and so single-threaded clients and servers can
be supported.
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Client Server

Figure 4.2: Sharing a connection

e The server’s call back into the client can use the code injection tech-
nique described in the previous section to access the client’s execution
state. The server can then tailor its response to the client’s original
remote operation accordingly.

Figure 4.2 shows an example interaction between two threads over a
single network connection. The client thread initiates a connection to a
server thread. The diagram shows the following steps:

1. the client calls on, which makes a connection to the server and sends
an expression to it for evaluation

2. the server (or the client’s evaluation in the server) calls remop to send
an expression over the same connection for evaluation in the client

3. the server’s evaluation in the client finishes, leaving the client to con-
tinue waiting for its call to on to complete and allowing the client’s
evaluation in the server to proceed

4. the client’s evaluation in the server finishes and sends its result back
for on to return to the client

Having received the result of its evaluation in the server, the client can
proceed with its execution.

4.3 A Scheme Object System

This section briefly describes the notation of a simple object system written
in Scheme. It is fully portable between Scheme implementations and runs
on Tube sites in order to support the distributed object system described in
Section 4.4.
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4.3.1 Defining objects

Objects are defined with the make-object syntax. For instance, the follow-
ing expression creates a counter object with two methods, inc and dec:

(make-object () ((count 0))
(inc: () (set! count (+ count 1)) count)
(dec: () (set! count (- count 1)) count))

The count variable is private to the object; it is used in the object’s
methods but is not available outside their definitions. Both methods take
no arguments, increment or decrement count by 1 through a side-effect and
return the new value of count. '

Different methods can be defiried that share the same name but take
different numbers of arguments. For instance, variants of inc and dec that
increment and decrement the counter by given amounts can be defined:

(make-object () ((count 0))
(inc: Q (set! count (+ count 1)) count)
(dec: QO (set! count (- count 1)) count)
(inc: (delta) (set! count (+ count delta)) count)
(dec: (delta) (set! count (- count delta)) count))

An object’s methods are invoked by using the object in an application
and passing the method’s name as a symbol. For example, the following
expression returns a list containing the numbers 4 and 3:

(let* ((obj (make-object () ((count 0))
(inc: () (set! count (+ count 1)) count)
(dec: () (set! count (- count 1)) count)))
(vall (obj ’inc 4))
(val2 (obj ’dec)))
(list vall val2))

4.3.2 Type annotation

The counter object defined in the previous section does not check the type
of the argument delta before calculating the increment or decrement. The
return values from the methods are not checked either. If the underlying
Scheme implementation supports exceptions then the + and - functions gen-
erate a run-time exception when delta is not a number.

However, object definitions can also be annotated to check that a method’s
arguments and return value are always of a given type. The types of a
method’s arguments and return value are specified in its definition by en-
closing them in angled brackets. The type of a return value is preceded by
the symbol ->. Types that can be specified include Scheme’s built-in types,
such as strings and characters, and any objects defined with make-object.
For example, the counter can be constrained as follows:
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(make-object () ((count 0))
(inc: () -> <integer>
(set! count (+ count 1)) count)
(dec: () -> <integer>
(set! count (- count 1)) count)
(inc: ((delta <integer>)) -> <integer>
(set! count (+ count delta)) count)
(dec: ((delta <integer>)) -> <integer>
(set! count (- count delta)) count))

Different methods can be defined that share the same name and arity
but have different types of argument. For instance, variants of inc and
dec that increment and decrement the counter by amounts given as floating
point numbers can be defined:

(make-object () ((count 0.0))
(inc: () -> <float>
(set! count (+ count 1)) count)
(dec: () -> <float>
(set! count (- count 1)) count)
(inc: ((delta <integer>)) -> <float>
(set! count (+ count delta)) count)
(dec: ((delta <integer>)) -> <float>
(set! count (- count delta)) count)
(inc: ((delta <float>)) -> <float>
(set! count (+ count delta)) count)
(dec: ((delta <float>)) -> <float>
(set! count (- count delta)) count))

4.3.3 Inheritance

An object can inherit the behaviour of other objects, so that the methods
they define can be invoked. For instance, assuming the above definition
of the counter object is bound by the symbol counter, then the following
expression creates an object which augments its functionality with a method
that adds 10 to the counter’s value:

(make-object counter ()
(add10: () -> <float>
(this ’inc 10)))

The symbol this is bound to the object itself. A new copy of counter is
made, from its original definition, for each object that inherits from it. That
is, copies of counter made for inheriting are always set to zero regardless
of the state of counter itself. Inheriting an object links to its behaviour,
not its state. In this case, any method not recognised by the new object is
passed to its copy of counter.

New instances of an initial counter object can be made by inheriting:



4.4. A DISTRIBUTED SCHEME OBJECT SYSTEM 59

(make-object counter ())

This behaves exactly the same as counter and starts counting from zero.

4.4 A Distributed Scheme Object System

The previous section described the syntax of an object system written in
Scheme. The object system provides inheritance and method overloading
but avoids creating registers of object types. The implementation uses clo-
sures to represent objects. Chapter 3 showed how closures can be saved into
a byte-stream and migrated between Tube sites. Hence, objects can be sent
between Tube sites.

This section shows how a mobile code system supporting closure (and
hence object) transmission can provide the functionality of a distributed
object system. The distributed Scheme object system described is called
Drool (for Distributed Remote Object-Oriented Layer). A Drool object can
advertise itself in a trader so that programs running on other Tube sites can
invoke its methods. Advertisements can contain code implementing proxies
which define how to contact and interact with the object. Client programs
load these proxies at run-time and use them for communicating with the
object.

Since the object system itself does not keep note of object names, the
coordination of equivalent definitions on multiple Tube sites is not addressed
here.

4.4.1 Advertising objects

Objects create advertisements written in SGML [ISO86]. They are free
to use whatever tags they choose. No specific naming scheme is used for
experimentation but for use with many different types of object one would
have to be imposed. '

Consider for example a very simple type of object, with a single method
that prints the string “Hello World”. Many instances of these objects can
exist, each with a different name. The advertisement for an instance named
Hailer might be:

<0bjectType>Hello</0ObjectType>
<0bjectName>Hailer</ObjectName>

The tags ObjectType and ObjectName are invented for describing the
object.

Programs must be able to retrieve advertisements in order to find out
about objects. They use a simple query language to specify the advertise-
ments they want to examine. The simplest query consists of a single word.
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Any advertisement containing the word is matched. Tags in the advertise-
ment can be matched with the #FIELD syntax. For example, the following
query matches any advertisement for a Hello object:

#FIELD (ObjectType=Hello)

The #BAND and #BOR forms specify logical-or and logical-and respectively.
For instance, the following query matches the advertisement for the Hello
object named Hailer:

#BAND (#FIELD(ObjectType=Hello) #FIELD(ObjectName=Hailer))

#BAND can also be used to match tags containing more than one word.
For example, the advertisement

<ObjectName>Head Hailer</ObjectName>

can be fully matched with the following query:

#BAND (#FIELD(ObjectName=Head) #FIELD(ObjectName=Hailer))

In fact, this query would also match the following offer since tags with
the same name are given equal consideration:

<ObjectName>Head</ObjectName>
<0bjectName>Hailer</ObjectName>

Using SGML to define advertisements means that Document Type Def-
initions can (optionally) be written defining their structure. SGML tools
can then be used to validate them and a program can be sure that the
advertisements it retrieves are in a common format.

Adverts written in SGML are easy to turn into HTML for viewing. The
<html> tag is reserved for allowing them to insert arbitrary HTML text. See
Section 7.4.4 for an example.

4.4.2 Publishing advertisements

The previous section discussed the format of advertisements used by objects
and the syntax of queries used by programs to retrieve them. Objects use
advertisements to make their existence and capabilities known to programs.
This section discusses how advertisements are made available to programs.

A trader [ISO94] is used to mediate between objects and programs by
storing advertisements. Objects publish their advertisements in the trader.
Programs send queries to the trader, which returns any matching advertise-
ments.

Two implementations of a trader for SGML-based advertisements have
been used. The first is a simple Python script that holds advertisements as
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plain text and converts queries into regular expressions for searching through
them. This implementation is adequate for small numbers of advertisements.

The second trader implementation uses the COBRA information re-
trieval system [Mills97b]. It is optimised for indexing and searching large
(SGML) document collections and supports Drool’s query language.

Both implementations are centralised; a single trader process is created
at a well-known location and accepts advertisements and queries sent to it
over the network. This limits the scalability of the current Drool implemen-
tation.

Programs and objects communicate with the trader using a simple pro-
tocol. Tube sites and applications that contain embedded interpreters (see
Section 2.8) download the Scheme implementation of the protocol from the
trader when they first connect to it. They can also download new versions
if the server’s functionality changes.

4.4.3 Object addresses

Section 2.5.3 described Tube network addresses. Using advertising and a
trader, Tube sites can implement high-level addresses that map arbitrary
text onto network addresses.

A new address type, content, is added to Tube sites’ address operation
handler tables. Content addresses specify an advertisement and a query.
The advertisement contains arbitrary SGML and is used as the address’s
description. The query is expressed in the query language described in
Section 4.4.1 and is used for resolving the address.

For example, suppose a Tube site is started that listens for connections
on port 1234 of the host foo. Without content addresses, users must either
pass the network (Tube) address to programs by hand or the address must
be hard-coded into them. With content addresses, a name can be given to
the Tube site so that programs never have to know its Tube address. The
advertisement to do this contains two addresses — the content address and
the Tube address — and specifies that the former resolves into the latter.

The resolves function is used to do this. For example, the following
expression gives the name “Default” to the Tube site:

(resolves (make-content-address "<TubeSite>Default</TubeSite>"
"#FIELD (TubeSite=Default)")
(make-tube-address "foo" 1234))

Programs are then free to use the content address in place of the Tube
address. For example, to print “Hello World” on the Tube site, a program
can use the following expression:

(dispatch (make-content-address "<TubeSite>Default</TubeSite>"
"#FIELD (TubeSite=Default)")
(make-rep ’(print "Hello World")))
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The connection handler installed for content addresses takes care of con-
tacting the trader to find a matching advertisement. In this case, it will
receive an advertisement specifying that the content address resolves into a
Tube address, on port 1234 of host foo. The Tube address is constructed
and used by dispatch to send the program. Section 7.4.4 shows and de-
scribes an advertisement that resolves the name of a video camera object
into its network address.

Since dispatch only queries the trader, the first argument to make-content-

address is not actually required. It is only used when publishing a content
address, for example with the resolve function. The above expression can
thus be rewritten as follows:

(dispatch (make-content-address ’unspecified
"#FIELD (TubeSite=Default)")
(make-rep ’(print "Hello World")))

It is possible to chain together any number of content addresses, each
of which resolves into the next. This is why content addresses must always
contain a query — if a content address resolves into another content address
then a query for the latter is required for continuing the process.

The lightweight interpreter described in Section 2.8 also supports content
addresses. This allows applications it is embedded in to advertise their
services in the trader and to use other services advertised there.

4.4.4 Proxiés

Advertisements can be used by programs when they want to contact objects.
The simplest way of doing this is to publish an advertisement containing the
network address at which the object is listening for connections. Objects
can use the resolves function described in the previous section to do this.
Programs can then use a content address to contact the object by name.

Consider an object that has a method, add, which takes two integers
as arguments and returns the result of adding them together. An initial
implementation of this object that allows programs anywhere to invoke the
add method is given in Figure 4.3.

If an object defines a start method then it is invoked by make-object
after the object is created. In this case, the start method uses resolves
to create an advertisement that names the object first-adder.

The object’s network address, obj-addr, is found from the private vari-
able 1, which is bound to an arbitrary Tube address by calling the func-
tion make-tube-listener with zero as an argument. The Tube address
to which 1 is bound is found with the function tube-listener-address.
The tube-listen function uses 1 to listen out for a connection to the ad-
dress. It reads an expression from the connection and then evaluates it.
In the first-adder object, the start method tells tube-listen to use
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(make-object ()
((1 (make-tube-listener 0))
(obj-addr (tube-listener-address 1))
(finish? #£))
(add: ((x <integer>) (y <integer>)) -> <integer>
+x )
(start: ()
(resolves (make-content-address
"<0bjectType>Adder</ObjectType>
<ObjectName>first-adder</ObjectName>"
"#BAND (#FIELD (0bjectType=Adder)
#FIELD (ObjectName=first-adder))")
obj-addr)
(while (not finish?)
(tube-listen 1 eval-here))
(destroy-tube-listener! 1))
(destroy: ()
(set! finish? #t)))))

Figure 4.3: Using an advertisement to provide remote access to an object

Tube site Tube site

proxy forwards inv
across the netw;

Figure 4.4: Using a proxy
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eval-here to evaluate the expression and loops until the destroy method
is called. eval-here allows programs to access symbols in scope when it is
called (see Section 4.2.2).

A program wishing to use the object to add two numbers together would
use the following expression:

(on (make-content-address
’unspecified
"#BAND (#FIELD (DbjectType=Adder)
#FIELD(ObjectName=first-adder))")
’(this ’add 519 302))

An object-based interface can be given to this operation. A prozy object
is written that has the same methods as the real object but implements none
of their functionality. Instead, the proxy’s methods forward invocations
across the network to the real object (see Figure 4.4). Programs can then
be written that invoke the proxy as if they are invoking the object itself. If

the proxy’s methods contain the same type annotations as the real object

then any invalid arguments can be detected before they are sent over the
network. A proxy for the first-adder object is defined by the following
expression:

(let ((obj-addr (make-content-address
’unspecified
"#BAND (#FIELD(ObjectType=Adder)
#FIELD(ObjectName=first-adder))")))
(make-object () ()
(add: ((x <integer>) (y <integer>)) -> <integer>
(on obj-addr ‘(this ’add ,x ,y)))
(destroy: ()
(on obj-addr ’(this ’destroy)))))

If this proxy is bound to the symbol proxy then the addition can be
performed with the following expression:

(proxy ’add 519 302)

Proxies present an object-based interface for programs to call into. Us-
ing a proxy hides the exact means of communicating with an object from
programs. The proxy is free to use whatever method it chooses for communi-
cating with the object over the network. Section 7.4.5 for example discusses
how proxies have been used to hide non-Tube communication from Scheme
programs.

The Tube mobile code system can marshal objects into byte sequences.
This allows them to be transmitted over a network or held in persistent
store. Making a proxy transmissible allows programs to load it dynamically
from the network when they need to communicate with its object. They
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(make-object ()
((1 (make-tube-listener 0))
(obj-addr (tube-listener-address 1))
(finish? #f))
(advert: ()
(make-object () ()
(add: ((x <integer>) (y <integer>)) -> <integer>
(on obj-addr ‘(this ’add ,x ,y)))
(destroy: ()
(on obj-addr ’(this ’destroy)))))
(content: () -> <string>
"<ObjectType>Adder</ObjectType>
<0ObjectName>second-adder</0bjectName>")
(query: () -> <string>
"#BAND (#FIELD (ObjectType=Adder)
#FIELD (ObjectName=second-adder))")
(add: ((x <integer>) (y <integer>)) -> <integer>
+ xy))
(start:
(advertise this)
(while (not finish?)
(tube-listen 1 eval-here))
(destroy-tube-listener! 1))
(destroy: ()
(set! finish? #t)))

Figure 4.5: A publishable proxy

do not have to be linked with the proxy’s implementation before they start
executing. Storing proxies in advertisements allows programs to receive
them automatically when they query the trader.

For example, Figure 4.5 shows the definition of a second version of the
Adder object that publishes a proxy instead of an address. The object’s
address is embedded inside the proxy; when the proxy is loaded into a pro-
gram, it knows the location of the object without having to go back to the
trader.

Tube sites provide two functions, advertise and retrieve, to manage
advertising of proxies.

The first function, advertise, takes a single object as an argument and

advertises a proxy for it in the trader. It expects the object to define the
following three methods:

e content, which returns SGML markup describing the object
e query, which returns a query corresponding to the content

e advert, which returns a proxy for the object




66 CHAPTER 4. MOBILE CODE FOR DISTRIBUTED OBJECTS

content and query are used by advertise to make a content address for
the object. advertise constructs an advertisement for the object that con-
sists of the content address and the proxy returned by advert, marshalled
into a byte sequence. In this example, only one proxy is returned for ad-
vertising by the object. The content, query and advert methods can also
return lists of values so that proxies implementing different communication
behaviours can be advertised. Different proxy implementations can then be
written to address different network conditions or to distribute their loads
between client programs and the object differently, for example.

The object shown in Figure 4.5 advertises itself, in the start method.
This puts an advertisement in the trader that names the object second-adder
and contains a proxy allowing programs to communicate with it.

The second function, retrieve, takes a query as an argument, which it
submits to the trader. If a matching advertisement is returned, it is scanned
for a proxy. If a proxy is found in the advertisement, it is unmarshalled and
returned to the caller. '

For example, a program running on a Tube site or using an embedded
interpreter can then use the following expression to obtain a proxy for com-
municating with it:

(retrieve "#BAND (#FIELD(ObjectType=Adder)
#FIELD (ObjectName=second-adder))")

4.4.5 Factories

A factory is an object that creates instances of other objects. Figure 4.6
shows the definition of a factory for Adder objects. It has a single method,
create, for creating named instances of the Adder object shown in Figure
4.5.

The create method takes one argument, the object’s name. This is used
in the advertisement for the created object.

The factory defines its own content, query and advert methods and is
advertised with a call to advertise after it is defined. Rather than advertise
a proxy for the factory, the whole factory is advertised by returning this
from the advert method. Programs retrieving the factory advertisement
therefore get a complete copy of it and can proceed to instantiate Adder
objects themselves, in the same address space.

The sequence of events is as follows (see Figure 4.7):

1. a factory is defined on and advertised from a Tube site

2. a program wishing to create an Adder object retrieves a copy of the
factory from the trader

3. the program instantiates an Adder object using its copy of the factory
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(let ((hello-factory

(make-object () ()
(advert: ()
this)
(content: () -> <string>
"<Factory>Hello</Factory>")
(query: () -> <string>
"#FIELD(Factory=Hello)")
(create: ((name <string>))
(make-object ()
((1 (make-tube-listener 0))
(obj-addr (tube-listener-address 1))
(finish? #f))
(advert: QO
(make-object () ()
(add: ((x <integer>) (y <integer>)) -> <integer>
(on obj-addr ¢(this ’add ,x ,y)))
(destroy: ()
(on obj-addr ’(this ’destroy)))))
(content: () -> <string>
(sprintf "<ObjectType>Adder</0ObjectType>
<0ObjectName>Ys</0bjectName>" name))
(query: () -> <string>
(sprintf "#BAND (#FIELD(ObjectType=Adder)
#FIELD (ObjectName=%s))" name))
(add: ((x <integer>) (y <integer>)) -> <integer>
+xy)
(start: ()
(advertise this)
(thread-create-detached
(while (not finish?)
(tube-listen 1 eval-here))
(destroy-tube-listener! 1)))
(destroy: ()
(set! finish? #t)))))))
(advertise hello-factory))

Figure 4.6: A publishable object factory
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interaction

Figure 4.7: Using a factory to create and communicate with an object
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4. the Adder object advertises a proxy so that other programs can com-
municate with it

5. applications retrieve copies of the proxy

6. they use the proxy to communicate with the object (see Section 4.4.4)

Note that the start method defined for objects created by the factory
uses thread-create~detached to run the loop that listens for connections
in a separate thread. This allows the object’s start method and hence
the factory’s create method to return as soon as an object is created. The
factory can thus be used to create many objects that are active concurrently.
thread-create-detached behaves like thread-create (see Section 2.3.1)
except that the thread’s exit status is discarded.

4.4.6 Dynamic proxies

Using mobile proxies for communicating between a client program and a
remote object moves the interface between the two from the network into
the Tube site on which the client is running (see Figure 4.4). Through
proxies, an object’s programmer can use knowledge he has about the object’s
functionality to manage how client programs communicate with it.

A further step would be to change proxy implementations at run-time
(new code would be sent by the server) in order to take account of changes
in server functionality and network conditions, for instance.

The object system described in Section 4.3 allows objects to change their
inheritance hierarchy. The add-super! method adds an object to the list of
objects that an object inherits from. The remove-super! method removes
one. For example, the following expression returns a list containing the
numbers 1 and 2:

(let* ((objl (make-object () () (doit: () 1)))
(obj2 (make-object () () (doit: () 2)))
(obj3 (make-object objl ()))
(val (obj3 ’doit)))
(obj3 ’remove-super! objl) (obj3 ’add-super! obj2)
(list val (obj3 ’doit)))

This mechanism can be used for changing a proxy’s implementation dy-
namically. A surrogate prozy, which inherits from the real proxy, is adver-
tised by an object in the trader. To programs, it appears to function like the
real proxy. The surrogate proxy listens for connections from the object, on
which new proxy implementations are sent. When a new proxy is received,
the surrogate uses remove-super! and then add-super! to replace the old
one (see Figure 4.8). For example, the advert method of Adder objects
might return a surrogate proxy defined by the following expression:
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Application

Figure 4.8: Dynamic proxies

(let ((proxy (make-object (O ()
(add: ((x <integer>) (y <integer>)) -> <integer>
(on obj-addr f(this ’add ,x ,y)))
(destroy: ()
(on obj-addr ’(this ’destroy))))))
(make-object proxy ((1 (make~tube-listemner 0))
(this-addr (tube-listener-address 1)))
(start: O
(thread-create-detached
(on obj-addr ‘(this ’register-proxy ,this-addr))
(while proxy
(tube-listen 1 (lambda (exp)
(this ’remove-super! proxy)
(this ’add-super! exp)
(set! proxy exp))))))))

The symbol obj-addr is assumed to be bound to the address of the object
that generated the proxy. Before listening for connections, the object is
contacted and told the address to which new proxy implementations should
be sent (it is assumed to have a method called register-proxy for doing
this). The surrogate proxy’s thread can be terminated by sending it #£.

Like the other objects defined in this chapter, the proxy and the surro-
gate proxy do not guard against concurrent access to them from multiple
threads. When used by more than one thread at a time, objects should ar-
range mutual exclusion from sections of code that are not safe for concurrent
access.

The object can send new proxies for the client program to use by con-
necting to the surrogate proxy. For example, assuming that the surrogate’s
address is bound to the symbol surrogate-addr, the object can push part
of its functionality (adding two numbers together) onto the client-side of the
network with the following expression:
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(dispatch surrogate-addr
(make-object () ()
(add: ((x <integer>) (y <integer>)) -> <integer>
+xy)
(destroy: (O
(on obj-addr °’(this ’destroy)))))

When the client program invokes the add method of this proxy, no net-
work access is instigated. The add method is easily distributed because it is
stateless and does not need to access resources at any particular location.

Object functionality might be moved into client programs according to
network conditions or machine load, for example. Doing more in the proxy
can reduce network usage because operations do not have to be carried out
remotely from a program. However, if an operation modifies state held by
the object (and replicated in proxies), then maintaining consistency between
all the components is made more complicated. An object may also update
proxy implementations to reflect changes in its functionality or extensions to
the interface it wishes to present to programs. An updated proxy used by a
number of programs should maintain support for old behaviour if required.

4.5 Related Work

4.5.1 Enhanced interaction

SQL [ANSI92], PosTScrIpT [Taft85]), NCL [Falcone87], REV [Stamos86,
Stamos90a, Stamos90b| and late-binding RPC [Partridge92] allow ap-
plication level processing to be moved from client to server, in order to reduce
network usage. They are discussed briefly in Sections 2.2.1 and 2.2.2.

Most Scheme implementations allow a program to obtain its execu-
tion environment and to specify the evaluation environment for expressions.
Code injection combines this with the ability of the Tube to send expressions
between programs over a network.

ANSAware [ANSA93] and most CORBA implementations (e.g. DIMMA
[Li94] and OmniBroker [OOC97]) can multiplex invocations made between
two objects onto a single connection in a manner that is transparent to the
application programmer. The method for sharing connections described in
Section 4.2.3 exposes this facility to applications so that they are always
aware of the network connections being used.

4.5.2 Scheme object systems

Meroon/Meroonet [Queinnec96] is an example of an object system written
in Scheme. Unlike Meroon, the object system described in Section 4.3 does
not have the notion of object classes, which treat behaviour of object types
separately from their instances. Rather, it has a single form, make-object,



72 CHAPTER 4. MOBILE CODE FOR DISTRIBUTED OBJECTS

which defines both object instances and behaviour that other objects can
reuse by inheriting.

This is done to make the object system as simple as possible for use
as the basis of the distributed object system described in Section 4.4. In
particular, the object system does not have to maintain a directory of class
names, so that naming issues are deferred to advertisements (see Sections
4.4.1 and 4.4.2). However, this means that object definitions cannot be
cross-referenced between Tube sites.

Also, an instance of an object has to be made before inheriting its be-
haviour. In cases where initialising the object’s private data has some side-
effect, this may not be desirable. This can be worked around by writing con-
structor functions that act like object classes in that they instantiate objects
of a certain type. When creating a new object that inherits from another,
the second can be made at that point in time, and does not have to exist
beforehand. This makes the object system behave like Yasos [Adams88].

4.5.3 Dynamic distributed objects

Java Remote Method Invocation (RMI) allows code providing access to an
object to be downloaded into client programs. It generates minimal client
stubs from the Java object’s source text but programmers can augment their
behaviour by writing object classes that use them. These classes can be used
by client programs in a similar way to proxies (see Section 4.4.4).

Java-based CORBA implementations (e.g. Java IDL [Sun97a] and Or-
bixWeb [IONA97]) also allow communication stubs to be delivered to a
client program at run-time. OrbixWeb also allows programmers to write
their own stubs (called smart prozies), which provide similar functionality
to the proxies described in Section 4.4.4.

Unlike dynamic proxies, neither object classes that use RMI stubs nor
smart proxies provide direct support for updating their implementations
during execution.

4.6 Summary

The Tube mobile code system supports different abstractions for communi-
cating between processes. This chapter showed how moving application-level
processing can reduce network usage and allow servers to provide for the
changing requirements of many clients. It introduced code injection, which
allows mobile code to bind closely to programs that use it. It showed that
the Tube’s remote processing facilities support bi-directional client-server
interaction over a single connection. A distributed object system was de-
scribed that uses mobile code to implement dynamic communication proxies
which can be delivered and updated at run-time.




Chapter 5

Mobile Code in Network
Control

The use of mobile code in an ATM network control architecture is described.
It is used to decentralise control and reduce network usage. Details are given
of the integration of a mobile code system and an ATM control architecture.
This is used to implement a facility which helps maintain coherence between
the control architecture and the switches it manages.

This chapter addresses issues that have arisen from research described
elsewhere [Rooney97c|. It discusses an implementation for the work pro-
posed there.

5.1 Introduction

The ability to send executable code amongst computers allows the point of
interaction between resources, such as software services, applications and
hardware devices, to be moved.

Any resource has a defined way in which it can be accessed. If a resource
is networked then it can be accessed by software running on computers other
than its host. There will be a defined way in which this can occur. Rather
than communicate across the network, code might be sent to talk with it
on its host machine (see Figure 5.1). That is, if an application repeatedly
communicates with a resource across the network, the number of network
invocations made can be reduced by moving part of it to run on the same
computer as the resource. Invocations instead take place on the machine,
without network access until results are returned to the main part of the
application.

Further, moving access closer to a resource can reduce the amount of data
that needs to be transferred over the network. If the application performs
any kind of filtering of data provided by the resource, for instance searching
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Figure 5.1: Moving computation to resources

or numeric processing, then moving (part of) it to the resource instead of
moving the resource’s data to the application may reduce network usage.
This will be the case if the filtering reduces the amount of data (because
less will be returned over the network) and if the saving more than offsets
the cost of moving application code.

Operations involving analysis of large amounts of state obtained from
a resource become more tenable when the analysing code can move to the
state rather than the other way around.
~ The rest of this chapter discusses moving code close to resources in the
context of network control. In the described application, the resources are
switches and the code is sent by advanced ATM control architectures. We
wish to minimise the amount of data transferred over the network by control
architectures because network control is a common, low-level facility that
manages the flow of data between all communicating applications.

This chapter does not address the nature of communication between
applications once data flow is established. In particular, they may choose
to make liberal use of the network resources assigned to them by a control
architecture (the stateless servers described in Chapter 6 are an example of
this).

5.2 Network Control

The term network control refers to functionality that helps to manage data
flow between computers in a network. It includes the setup and termination
of data transfer, routeing of data between sender and receiver and making
sure that the states of devices connected to the network are consistent with
each other. Examples of network control are management of virtual channels
in ATM networks and routeing tables in IP networks.
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Allowing network control software to send code close to the resources it
manages promotes a decentralised and efficient approach. Certain control
functionality can be moved close to network devices so that their states do
not have to be transmitted to some central entity for analysis.

To test this proposition, the Tempest framework [Merwe97, Merwe98,
Rooney97b] has been used as a context in which mobile code and net-
work control can easily be combined. The Tempest enables diverse control
architectures to be run over an ATM network simultaneously. The control
architectures it provides are “open” because they define high-level interfaces
which applications can use to access network control functionality, such as
connection setup.

Briefly, the Tempest consists of:

e an interface to switches called Ariel

e a partitioner of the resources of a switch between control architectures
called Prospero

¢ a network builder which dynamically creates virtual networks for con-
trol architectures

e 3 set of standard libraries to allow developers to create control archi-
tectures

The experiments described in this chapter use the Hollowman control
architecture [Rooney97b], which implements ATM control in a distributed
processing environment.

5.3 Mobile Code in the Tempest

[Rooney97c] has identified how mobile code can be applied to the Tempest.
This section motivates the implementation described later by discussing the
advantages of using mobile code in network control architectures.

Ariel provides a minimal interface to switches. Control architectures
which make many invocations on them or transfer large amounts of switch
state over the network would benefit by sending code to execute near to an
Ariel interface. .

Each Tempest control architecture maintains a view of the part of the
network allocated to it, e.g. routeing information for switches. This view
can never be fully synchronised with the actual state of the network because
it is held at a higher level, in some control software running on a workstation.
Control architectures see out-of-date state because it has to be transferred
to them from switches over the network. They see the state of switches
as they were when the state was sent, not when they receive and process
it. The faster the network used to transfer the state, the more consistent
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a control architecture’s view is with the actual state of a network. If the
network fails, then the two become completely de-synchronised.

For effective management, a control architecture’s view of the state of
its network must be kept as coherent as possible with the actual state. This
means that the network state must be transferred to the control architecture
as quickly as possible. Using mobile code, control architecture functional-
ity that needs to be tightly synchronised with network state can be moved
close to network resources such as switches, reducing the distances their
states have to travel. Control architectures can increase their synchroni-
sation with the network by sending code that analyses switch state to run
close to switches.

Allocation and release of network resources is complex and error-prone.
This is because control architectures manage distributed resources — com-
puters and network devices such as switches. At any time during a connec-
tion’s lifetime, a computer or switch may not be able to meet its resource
guarantees. All resources allocated to the connection across the network
must then be freed.

The Tempest can provide automatic resource freeing (ARF’ing) in the
form of a piece of mobile code which periodically goes to each of the switch
interfaces in the control architecture’s network and checks for inconsistent
switch state. Inconsistencies can be verified against the control architecture’s
view of network activity and either cleaned up automatically as they are
detected or flagged to a system administrator for further attention. Using
mobile code to do this has the following advantages over some central entity
periodically retrieving switch state:

e Network usage is greatly reduced; the code which checks for incoherent
switch state moves between switch interfaces and makes invocations
on them locally rather than having to transfer all switch state to some
central location.

e The mobile code executing on the same host as the switch interface
will be as closely synchronised as possible with the switch’s state.

Using mobile code in conjunction with open network control architec-
tures allows some control functionality to be implemented in an adaptive
and efficient manner that is consistent with a wider view of the overall state
of the network. Without the Tempest, ARF’ing code would not be able to
check the inconsistencies it finds with known activity across the network as
a whole.

The following section reviews related work on mobile code in network
management. The implementation of automatic resource freeing is described
in Section 5.7, using the integration of a mobile code system and a control
architecture that is described in Section 5.5. Testing of this integration is
discussed in Section 5.6.
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5.4 Related Work

The WAVE project [Sapaty94] propagates “language strings” onto the net-
work and interprets them at each node. Emphasis is placed on the lack of
centralised supervision of these and the dynamics of such a system. One
application that WAVE has been used for is intelligent management of open
computer networks:

These structures may provide self-organisation and self-recovery
from complex failures as well as forming the basis for integration
of other (distributed and heterogeneous) systems. [Sapaty94]

This is relevant to the work discussed in this chapter because they have
distributed interpreters throughout their networks. However, whereas our
mobile code is part of, and launched from, an open ATM control architec-
ture, they have “integrated with a usual management system by establishing
two channels through Unix for transferring activation code and data between
the systems in both directions” [G6tz96]. We argue that mobile code must
have access to the internal interfaces of the control architecture, and that
use of mobile code in network management is best suited to non-critical
maintenance procedures and not for essential implementation and control.
Finally, our work is based on ATM and mobile code has direct access to
switch state; WAVE is implemented over TCP/IP and interfaces with a
traditional network management system.

The MAGNA project [Magedanz96] has identified the deficiencies of a
classical client-server based distributed processing environment as being in-
flexible and difficult to adapt and extend. They have proposed using mobile
code in order to add autonomy, mobility and adaptability to the TINA-C
proposal [Barr93]. MAGNA discusses dynamically extending the control
architecture with mobile code both to perform client-specific functional-
ity and for management delegation. The Tempest uses connection closures
[Rooney97a] to do the former; however, this chapter concentrates on an
implementation of the latter — mobile code that is configured and initiated
from the control architecture itself and which communicates with the Ariel
switch interface directly.

Another approach is to make switches programmable by putting inter-
preters on them. Programs are sent along the data path and tagged for
interpretation. Switches detect these programs and execute them as they
pass by. This allows for intelligence to be downloaded onto the switches
themselves, achieving locality of access and the ability to change the func-
tionality of services that a switch can offer. Netscript [Yemini96] uses this
for “dynamic deployment of software at all nodes”; the Active Networks
project [Wetherall96] and Switchware [Smith96] use this approach to al-
low data to carry their own networking algorithms with them.
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The Tempest has defined in the Ariel interface a low-level API for com-
municating with switches and developed switchlets for allowing multiple con-
trol architectures to be imposed on an ATM network. The approach taken
in this chapter sits on top of Ariel and can achieve both locality of access, by
moving code close to switches, and management flexibility in combination
with the Tempest. We believe the advantages of putting interpreters onto
switches can be achieved whilst keeping network intelligence at a high level
— allowing switches to be simple and inexpensive.

Goldszmidt’s Management by Delegation (MbD) project [Goldszmidt95]
uses a similar approach to ours. It uses elastic processes, which allow com-
putation to be moved close to network resources. An elastic process is a
process that can move (part of) itself. The term is language-independent,
and describes an approach rather than an implementation. MbD is proposed
for network management in order to provide locality of access, to overcome
network latency and to add flexibility to the “rigid servers that provide data
access capabilities to platform clients” [Goldszmidt95).

Our approach is similar to Goldszmidt’s in the sense that we use mo-
bile code (elastic processes) to overcome network latency and make different
resource access patterns available. However, we rule out moving new com-
putation onto network elements themselves. Rather, our code sits on top of
the Ariel switch interface, which provides uniform access to switch function-
ality and the ability to participate in multiple control architectures. Our
code also sits below Tempest control architectures, which allows it to see
and contribute to a more complete view of the network as a whole.

BT have investigated the use of mobile code in making networks robust
and adaptable [Appleby94|. They have devised mobile programs that alter
routeing tables in order to manage load across a network and run them
under simulation. We believe mobile code is suitable for carrying out such
“background processing” in the network; indeed, our Automatic Resource
Freeing mobile program (see Section 5.7) does this in a real network.

Finally, [Baldi97] proposes the use of mobile code in network manage-
ment. Like this chapter, it sees the benefits as being adding flexibility to the
way resources are accessed and reducing network usage. However, it does
not identify a specific problem or describe an implementation. We have used
a mobile code system and an innovative ATM control architecture to imple-
ment a specific network control function that benefits from code mobility.

5.5 The Tube and The Hollowman

The Tube mobile code system described in Chapters 2 and 3 has been inter-
faced to the Hollowman control architecture. The Hollowman is an innova-
tive Tempest control architecture which devolves control from ATM switches
into an application-level distributed processing environment. Because func-



79

THE TUBE AND THE HOLLOWMAN

5.5.

Figure 5.2: Tube/Hollowman integration
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Figure 5.3: Testing Hollowman using mobile code

tionality is available at a high level, convenient encapsulation can be given
to Tube programs.

The Tube has been linked with the Hollowman software library, using
automatically generated stubs to glue the two together. These allow code
running under the Tube to access the full functionality of the control ar-
chitecture. Hollowman uses a CORBA [Siegel96] distributed processing
environment for its internal communication; the Tube is hidden from this
however — it just calls functions provided by the Hollowman stubs.

The Hollowman services used by the Tube are:

e importing offers (for data producers and consumers) from a trader

e invoking third-party connection over an ATM network between a pro-
ducer and a consumer

e closing down ATM connections

These services are used in the Tube to send data over ATM connections
between computers (see Figure 5.2). Each Tube execution site registers
through Hollowman both data producer and consumer threads. A program
running on a Tube site which wishes to send some data to another site
imports the current site’s producer offer and the destination site’s consumer
offer and then invokes third-party connection between them. The specifics
of how this is achieved and the trading facilities used are internal to the
Hollowman.
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Host A Host C

port Switch Y

Figure 5.4: An ATM network

At this point, an ATM connection is in place. The data is then given
(via shared memory) to the producer. At the destination site, the consumer
receives the data from the ATM connection and gives it (again via shared
memory) to its Tube site for evaluation. The connection is then destroyed
by the consumer. Any type of data made transmissible by the Tube can be
sent in this manner, including executable code.

This procedure for sending Tube data over ATM networks using the Hol-
lowman is made easier to use by hiding it behind a special type of address.
In the Tube, network addresses may be tagged with their type (see Section
2.5.3). Handlers (e.g. for name resolution or connection) are registered for
each type. When data is sent to an address, the appropriate connection
handler is invoked. A special Hollowman address type performs the connec-
tion procedure described above; in this way, programs only have to specify
that they want to send data to a Hollowman address, give the name of the
destination’s consumer offer and the connection handler does the rest.

Making Hollowman functionality available in the Tube allows it to be
called at run-time from an interpreter. This is useful for creating and ma-
nipulating connections by hand at a high level. The ability to send Tube
data over an ATM network using the Hollowman allows the control archi-
tecture to be tested and resource freeing to be implemented using mobile
code.

5.6 Testing the Hollowman

Mobile code has been used to test the stability of the Hollowman when many
concurrent invocations are made on it from different locations in a network
(see Figure 5.3). '

In the test, a Hollowman-enabled Tube execution site is placed on each
computer in an ATM network. A program has been written which runs on
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Tube sites and can move itself between computers via the network by using
the Tube/Hollowman interface. It repeatedly moves around the network
from host to host. At each stage, the choice of which host to move to is
made randomly and the time before it moves on has a random element too.

By varying the number of these moving programs in the network, the
Hollowman control architecture is tested at varying levels of concurrency.
The more there are active in the network, the greater the number of con-
nection requests handled by the control architecture at the same time.

This test was easily turned into a simple demonstration by giving each
program a graphical display which it carries around from host to host. Spec-
tators type comments into the display, which are remembered by the pro-
gram as it moves around.

5.7 Automatic Resource Freeing

As discussed in Section 5.3, control architectures should be provided with a
means of ensuring that the network resources allocated to them remain in
a clean state. Using mobile code to do this was shown to reduce network
usage and provide close synchronisation between the control architecture’s
view of the network’s state and the actual state of the switches.

An ATM network consists of a number of computers interconnected via
switches (see Figure 5.4). The principle task of a switch is to help route
data from its sender (producer) to its recipient (consumer). In order to do
this, a switch maintains a mapping which determines where data it receives
should be sent. More than one switch may be involved in this routeing and
data may be sent to more than one consumer (i.e. it can be multicast).

Data is sent in small cells from one switch to another until it reaches
its destination. Cells are delivered to the consumer in the same order as
they left the producer. Since cells are small, the time they take to reach
the network is short. This makes ATM suitable for traffic with real-time
requirements, such as audio and video. Cells may be dropped by an ATM
network; the consumers of Tube data described in Section 5.5 notice when
they are.

The physical links between switches are plugged into ports. Each switch
has a number of ports, which are sockets into which cable from another
switch or a computer is plugged. The switches’ mappings allow data to be
transferred between two hosts. The end-to-end connection is called a virtual
circust. Quality of service parameters can be specified for a virtual circuit,
such as the bandwidth reserved for its data. Virtual circuits are only set
up if the resources they require are available in the network. The resources
reserved for a virtual circuit are guaranteed after it is set up.

For instance, in Figure 5.5, if Host A wishes to send data to Host D then
Switch X’s mapping might be:




5.7. AUTOMATIC RESOURCE FREEING 83

Switch X .

SwitchY
. 3

ort 1 1
VCI 210 e

4
VCI 212

Figure 5.5: Connections in an ATM network

Port 1 — Port 4
and Switch Y’s mapping would be:
Port 2 — Port 4

In fact, things are a little more complex. Physical links between compo-
nents are multiplexed to allow them to carry more than one virtual circuit.
Links between network devices are partitioned into virtual channels and vir-
tual paths. A virtual channel carries a virtual circuit between two devices;
a virtual path may carry a group of virtual channels. Each virtual path is
assigned a unique Virtual Path Identifier (VPI) and each virtual channel is
assigned a unique Virtual Channel Identifier (VCI). A virtual circuit consists
of a number of virtual channels that carry the connection from producer to

. consumer via switches. Between switches and between switch and computer,
VPIs and VCIs must match; within a switch, mappings may change a vir-
tual circuit’s VPI and VCI. The Hollowman’s current implementation uses
VPI 0 to carry virtual circuits between each switch in their paths. In the
following discussion, VPI 0 is assumed for all VClIs.

For instance, in the virtual circuit between Host A and Host D, Host A
might send its data on VCI 215. Switch X receives it on Port 1, VCI 215.
It might then map this to be output on Port 4, VCI 212. Switch Y then
receives the data on Port 2, VCI 212. If this is mapped to Port 4, VCI 218
on Switch Y, then Host D receives the data on VCI 218.

In the Tempest, control architectures such as the Hollowman set up
virtual circuits between data producer and consumer processes running on
computers connected to an ATM network.

A control architecture has a view on the virtual circuits in place over its
networks. Being held in software running on a workstation, this view is not
closely synchronised with the state of the switches’ mappings. When the
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Tube site

Figure 5.6: The Tube and Ariel

switches’ state becomes different to the control architecture’s view, it must
be cleaned up so that the two are re-synchronised. Host-to-host connections
(virtual circuits) may exist that the control architecture no longer knows
about.

Broken connections may exist too. A connection is broken if one switch
has a mapping which sends data to a port connected to another but the
second switch does not have a mapping to receive the data. For instance, if
Switch X in Figure 5.5 has the following mappings:

Port 1 VCI 215 — Port 4 VCI 212
Port 2 VCI 219 — Port 3 VCI 210

and Switch Y has the following mapping:
Port 2 VCI 212 — Port 4 VCI 218

then the connection between Host A and Host D is still in place but
there is also a broken connection originating from Host B. Port 1, VCI 210
is not in use on Switch Y. The mapping Port 2 VCI 219 — Port 3 VCI 210
on Switch X is a candidate for removal.
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Figure 5.7: Automatic Resource Freeing

Before mappings are removed from switches, the control architecture
must be consulted because it knows about activity across the network as
a whole. For example, although a mapping in a switch may not be in use
for transferring data, the control architecture might want to keep it in place
for re-use when setting up a new connection. Any activity that cleans up
switch state must be coordinated with the appropriate control architectures,
in order to check which connections they know about and to check that
broken connections are not being cached for later use.

Mobile code is used to obtain and check the consistency of switch states
because the states do not have to be transferred to the Hollowman’s location,
reducing network usage and providing close synchronisation.

The low-level Ariel switch interface is used to communicate with switches.
Rather than defining static interfaces to higher-level functionality, using mo-
bile code allows for a more flexible approach in which application-specific
access is moved to the location of the switch’s Ariel interface.

Automatic Resource Freeing (ARF’ing), using mobile code to check the
consistency of switch state, has been implemented using the Tube and the
Hollowman. For each switch in the network, a Tube execution site is created
on the workstation closest to it (i.e. that has the shortest path to it or is
directly connected to it, see Figure 5.6). These Tube sites make an Ariel
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function available to programs which returns the state of a switch via shared
memory. _

Mobile code to implement ARF’ing has been written. Programs are
sent out by the Hollowman control architecture and move around the ATM
network, using the Tube/Hollowman integration to visit each switch’s asso-
ciated Tube site (see Figure 5.7). At each site, the switch’s state is retrieved.
Because the Tube provides state-saving facilities, each mobile ARF’ing pro-
gram can carry about with it a view on the state of the network. When
retrieving a switch’s state, it can check for inconsistencies against the state
of the previous switch it visited. Inconsistencies must be checked with the
control architecture before further action is taken because it has a wider
view.

The following parameters may be varied:

¢ the number of ARF’ing programs active at any one time
e how quickly they move

e whether they clean up switch state themselves or simply notify a sys-
tem administrator of inconsistencies

e how often they check with the control architecture for its view of net-
work activity

o the frequency at which they execute; as more inconsistencies are found,
this can be increased, allowing the process to be adaptive

ARF’ing has been implemented which uses both mobile programs that
clean up inconsistent switch state and that display notification of broken
connections (see Figure 5.8). In the figure, a multicast connection from the
host bailey is good for data transfer to the host scilly but broken in two
other places (Port 3, VCI 214 and Port 8, VCI 216 on the switch aynho).

The sizes of the ARF’ing programs are around 1 kilobyte. This overhead
is offset because only one set of mappings has to be transferred between Ariel
interfaces, whereas the states of all switches have to be sent to one location
in a centralised solution. Processing is distributed and, given knowledge of
network topology, the distances ARF’ing programs travel can be minimised.
ARF’ing programs in regular use may be cached at Ariel interfaces so that
they only have to be sent to them once. The cached programs may then
exchange switch state amongst themselves.

Control architectures are free to implement their own methods for en-
suring coherence between their views of network activity and the state of
the switches. They can send to Ariel interfaces arbitrary resource freeing
functionality that is tightly synchronised with switch state because it exe-
cutes close to the switch. However, if they do not wish to do so, they may
rely on any problems eventually being cleaned up by the mobile ARF’ing
programs that the Tempest provides.
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Figure 5.8: Broken multicast connection

5.8 Summary

Mobile code can help to provide decentralised, adaptive and efficient net-
work control. This chapter has described the integration of a mobile code
system and an ATM network control architecture. It demonstrated the use
of this implementation to send mobile code over ATM networks, for testing
the control architecture and cleaning up unused resources. The implemen-
tation runs mobile programs within the control architecture and above a
common switch interface that is responsible for managing access to hard-
ware. They are not transmitted in the data path or loaded onto switches.
Mobile code is applied to network control in a way that makes use of control
and management functionality, such as access control, connection setup and
resource partitioning, but does not replace it.




88 CHAPTER 5. MOBILE CODE IN NETWORK CONTROL




Chapter 6

Stateless Servers

A way of arranging client-server interaction is described which moves all
persistent knowledge about applications from clients and servers into the
documents they exchange. This can be used to support ubiquitous comput-
ing with many lightweight clients and a small number of heavyweight servers.
Both clients and servers are stateless, needing to maintain no application-
specific software. Implications for application mobility, logging of user activ-
ity and handling user interface events as part of program flow are discussed
in relation to an implementation made over the World-Wide Web.

6.1 Introduction

6.1.1 Motivation

Ubiquitous computing systems involve many machines. For deployment on
a large scale, each should be as simple and inexpensive as possible. End-user
machines should ideally do nothing more than display information, rather
than run applications loaded from the network. Obtaining an application
(from a storage server) should be a simple matter of selecting from a cata-
logue. It is difficult to store state or maintain execution threads on servers
permanently for each client since their number is potentially unbounded, as
is the duration of any client-server session. Strategic use should therefore be
made of powerful processing servers that provide execution facilities only.

Commercial development of the network computer [Oracle96] has achieved
simpler workstations, for example the JavaStation [Sun96] and the Acorn
Network Computer [Acorn97a], but at the expense of making servers more
complex. All permanent storage is associated with servers and network
computer clients download applications from them.

As computers become faster, it becomes feasible to build inexpensive
machines from commodity hardware which act as general processing servers .
[Becker95, Anderson95]. Their only task is to read code sent to them
by clients, execute it and return the results. Knowledge about application
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functionality can be held elsewhere and sent to them. Permanent storage is
provided as a separate facility; they simply provide processors and memory
on which anyone can rent time. This chapter shows how applications can
be written to execute on such machines but not to reside there continuously
during their lifetimes.

Interactive applications without a real-time requirement do not need a
long-term presence on client machines. They only require to interact at
certain times with the user through an interface that is perhaps specified in
a document markup language. Client machines for these applications can
be simpler than network computers because they do not have to run new
software; the applications are run on servers and user interfaces are sent to
the client when appropriate.

It would be inappropriate to run interactive applications on general pro-
cessing servers because they would require a permanent presence there while
waiting for the users’ input. The number of such users could be large and
too many applications permanently residing on a server might result in it
being overloaded or charging clients for excessive use. In the case that a
client does not return with the user’s input, its state would be left residing
on the server indefinitely.

Network bandwidth is becoming more plentiful. Video-on-demand is
planned for the home [Acorn97b], which requires data transfer rates in the
order of 3 megabits per second. With high-speed networks, it is feasible to
hold application state in the messages exchanged between client and server.

6.1.2 Exchanging application state

Servers which support state-saving of programs can save applications as
dormant parts of the user interfaces they generate. This chapter looks at
applications which move to the server when they need to be.executed and
move to the client as dormant state when they want to interact with the
user. Servers are stateless because they hold no enduring knowledge of
applications. User interfaces (documents) are stateful because they are used
to store application state.

Any application running on a computer has a state. For an application
that runs to completion on one machine, its state at any one time is held
in the memory and processor. A client-server based application involves
interaction between a client process and a server process over a network. Its
state can be held in a combination of the following three locations:

The client A process on the client side might be running.

The network The client may have dispatched a request or the server may
have returned some pertinent results. Communication also passes
through the operating system.
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Figure 6.1: Application residence y
(a) On a server
(b) On a client
(c) On both client and server
(d) Alternating between client and server

The server A process on the server side might be running.

Where application functionality is held varies, according to resources
available on the client side, server side and in the network. The complexity
of the application and of the data sent across the network are influential
too. In current systems, knowledge of application functionality persists in
the client, in the server or in a combination of both (see Figure 6.1a-c).

The term session is used to denote an instance of a client-server appli-
cation. A session can involve many interactions (and connections) between
the client and server components. However, the state of a session must be
remembered in the client, in the server or in the data transferred between
the two.

There is currently no way of supporting the use of computers for clients
that can only run pre-installed code whilst at the same time using servers
which hold no application-specific code and do not remember session infor-
mation.

This chapter discusses a technique for remembering an application ses-
sion’s state in information exchanged between the computers used to provide
client side and server side computation. Persistent knowledge of an appli-
cation is held neither in the client nor in the server (see Figure 6.1d). Ex-
changing application state between client and server places a greater burden
on the network than holding it permanently in client or server. Distributed
systems that have very lightweight client machines, fast networks and servers
that handle many requests and have plenty of processing power and memory
are particularly suited to this technique.

Commercial implementations of this technique should assure the security
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of application state that is transferred over the network. However, alterna-
tive forms of ubiquitous environment must protect sensitive data too. They
must provide encryption or authentication facilities, which can be used to
protect application state. The extra concern with placing application state
alongside sensitive data is that untrusted parties that do manage to breach
security obtain not only the data itself but also code that can be used to
interpret it. However, if someone is prepared to expend considerable effort
to obtain your sensitive data then presumably he has the wherewithal to
make use of it. The prototype implementation described in Section 6.4.2
does not address security issues.

Section 6.2 shows how a mobile code system can be used to capture
and save application state. Section 6.3 discusses related work. Section 6.4
describes an implementation made using the World-Wide Web. Section
6.5 discusses the relationship between an application and the user interfaces
into which its state is embedded. Section 6.6 presents an application written
using the Web-based implementation that embeds its state in Web pages and
performs only transient computation on servers. Section 6.7 shows how the
ability to save application state can provide a powerful logging mechanism.
Section 6.8 discusses uses of being able to move application state around once
it'is saved into user interface documents. Finally, Section 6.9 summarises
the chapter.

6.2 Exchanging Application State with Mobile Code

6.2.1 Saving state using higher-order mobile code

A mobile code system is ideal for placing application state in data sent
between a client and a server. Higher-order mobile code systems, which
support state-saving of closures and continuations, allow (parts of) appli-
cations to be transparently saved into byte-streams. Applications can be
restored and restarted from saved byte-streams.

The Tube mobile code system described in Chapters 2 and 3 provides a
transparent and portable method for saving applications written in Scheme.

6.2.2 Running applications on stateless clients and servers

Using higher-order mobile code, applications can be marshalled for saving
to persistent store or transmitting over networks. This can be used to em-
bed client-server applications in a user interface displayed at the client when
input is required. The following progression is proposed for such an appli-
cation so that it does not impose a permanent burden on the server and the
client does not have to run any new code (see Figure 6.2):

1. The user simply clicks on the name of an application in a document
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Figure 6.2: Application state in documents

browser. The browser extracts the application from the document and
sends it to a generic mobile code server for execution there.

The application starts up on the server.

2. If execution can proceed until termination without further user inter-
action, results are sent back to the client (browser) and the application
terminates.

If on the other hand user interaction is required, the application em-
beds its current state in a document sent back to the client asking for
some input. The application then terminates itself at the server. It
has become dormant and moves back into the client.

3. The client renders the document it receives, allowing the user to enter
the required input. When the input has been entered, the user simply
clicks on a button to submit it. The client extracts the application’s
state from the document and sends it, along with the user’s input, to
the mobile code server. The mobile code server restarts the application
in its previous state and gives the user’s input to it.

4. The application sends itself and some results to the client and the cycle
repeats. '

There are two points to note here. Firstly, the application’s state always
accompanies its point of control. That is, when the user is providing input,
the application is there with the document in the client; when the user has
provided input and is waiting for the server to respond, the application has
moved there to do the processing.

Secondly, the application can store different states in the document sent
to the client containing the results. Each one might represent the application
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Figure 6.3: Stateful documents, stateless servers and lightweight clients

following a different path of execution. The user controls which one is sent
back to the server for restoration through the input he provides.

A client-server application using this technique has the following char-
acteristics:

Clients are lightweight and stateless. They only have to render results
and submit embedded data to servers. Therefore, they will not be
suitable for user interfaces with real-time requirements (e.g. three-
dimensional graphics viewers, multimedia presentations and games).

Servers are completely stateless.

Documents exchanged between clients and servers are heavyweight.
They are stateful documents. This is not necessarily a problem if
network resources are plentiful.

A document sent to the client replaces the previous one. If the doc-
ument’s markup language does not support splitting it up into areas
that can be updated individually, the user will see the whole display
being refreshed each time. This might be a problem for applications
that require finer grain control of a user interface.

Using stateful documents is not proposed as a way to do all client-server
computing. Rather, it matches specific requirements — non-real-time ap-
plications that have to operate in distributed systems with very lightweight
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clients (e.g. display tiles), servers with large processing capabilities but
without dedicated storage to maintain many persistent application states
and a high-performance network (see Figure 6.3). Servers might not want
to maintain application (session) state both because of storage limitations
and due to the nature of the applications likely to be run on them — they
might be expecting a large number of clients to connect for example.

To support statefil documents, a server has to provide facilities for exe-
cuting applications and saving, marshalling and unmarshalling their states
to and from the network. This places an extra load on them.

The rest of this chapter discusses the use of stateful documents to make
servers stateless in more detail. An implementation made over the World-
Wide Web and some experiments made with it are presented. Related work
is discussed first to provide a context.

6.3 Related Work

The design tradeoffs explored in the 1980s for LAN-based distributed sys-
tems for the workplace are being revisited for the ubiquitous environments
of the 1990s. Diskless workstations were used in the V system at Stanford
[Cheriton83] and the idea has reappeared in the network computer pro-
posals. The Cambridge Distributed Computing System (CDCS) was the
first to investigate the potential of a “processor bank” [Bacon90]. The
CDCS processor bank comprised heterogeneous hardware, to allow for sys-
tem evolution, and support for loading heterogeneous software into processor
bank machines. Qur approach has this functionality but employs a different
mechanism.

Simple mobile code can be used to install software on client and server
machines as it is needed. This is just a convenience, comparable with in-
stalling compiled binaries from traditional transportable media. The follow-
ing issues remain:

¢ Application-specific code has to persist on clients and/or servers

o Clients and/or servers have to maintain session state (whether in the
form of data or program threads)

Python [CNRI97], ML [Rouaix96], Java [Arnold96] and many other
languages can be sent to run on client machines through the World-Wide
Web. The TACOMA project has allowed its mobile processes to be uploaded
from clients to servers via Web documents, where they are launched and
carry out their tasks [Johansen96]. Jeeves, the Java Web Server [Sun97b],
similarly allows a server dynamically to load functionality. Neither considers
subsequent relocation to the client of processes at the server.
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" Some World-Wide Web services (for example indexers like AltaVista
[Seltzer96]) have been able to eliminate the need to run application-specific
code on clients and the need to maintain state on the server by returning
results in HTML and embedding session state inside those results. The
Web client re-submits the state when the user clicks to see more. This is
essentially the method described above in Section 6.2.2 except that by using
higher-order mobile code

e arbitrary applications can be saved into documents by marshalling
continuations — no special code needs to be written; and

e no prior or persistent knowledge is required on the server of what the
user wants to run

Web* [Almasi95] allows scripts to be embedded inside World-Wide Web
pages and executed by a server. When a page containing embedded scripts
is requested from the server, a new page is formed for returning to the client
by substituting each script with the output that results from executing it.
This allows page elements, for example the current date, to be dynami-
cally generated. Web* is similar to the Common Gateway Interface (CGI)
[W3C97], which allows scripted generation only of whole Web pages.

Web* also provides support for returning a script’s state in Web pages.
The state is then given to scripts embedded in pages subsequently retrieved
by the user. However, Web* differs from the work described in this chapter
in the following ways:

e Web* can only save variable values in Web pages. This means that
a script’s author must explicitly name global variables to be put into
a Web page. The implementation described below in Section 6.4 pro-
vides a transparent mechanism to authors for saving state. It can save
a program’s execution state in a single call.

e Web* is page-oriented whereas the implementation described below is
program-oriented. Web* applications have to be split into parts that
are separately defined as scripts in Web pages. The implementation
described in Section 6.4 allows programs to be written normally and
provides a facility for saving their state simply in pages that they
generate. User interaction via Web pages is implemented in a way that
is integrated with program execution (see Section 6.5). Using Web¥*,
programs have to be adapted to fit the Web’s model of interaction;
the implementation described below adapts the Web to become part
of program flow.

e Web* assumes that pages containing scripts already exist and continue
to exist at the server. This chapter describes a technique that places no
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such burden on the server — no permanent knowledge of an application
is held there. :

The Network Computer [Oracle96] with its thin clients and application
servers is a vision of the future particularly relevant to the work described
here. However, network computers have to be able to execute arbitrary
code downloaded to them. This makes them more expensive than they
would otherwise be and is not always necessary.

The rest of this chapter discusses sending applications to the server when
they need to execute and putting them dormant into the documents sent to
the client when user input is required.

6.4 Application to the World-Wide Web

6.4.1 The Web as a testbed

The Web is suited for stateless servers and stateful documents because:

e A Web server potentially deals with requests from large numbers of
diverse, widely distributed clients and maintaining their states in one
place for long periods of time is burdensome. Their needs cannot be
generalised and their physical connections may be unstable.

o The Hypertext Transfer Protocol (HTTP) [Fielding97] is stateless so
servers do not by default maintain information about clients.

e Browsers are lightweight clients which simply display documents writ-
ten in the HTML markup language.

In the system proposed here and detailed in the next section, servers
provide general processing to browsers. They are written to treat requests
for pages as programs to execute and send back to browsers the output of
executing those programs. They forget about a program once it terminates.
Browsers send applications to a server and then display their results as they
are produced. If applications save their states in the results, they can be
restarted at the server when the user provides input in the browser.

This allows for an application’s state to be maintained whilst keeping
both browsers and servers stateless. A server remembers nothing about the
applications it executes when they finish running there and are sent back
to the client. Browsers simply display the pages that servers return — they
just need to render markup. Application state is contained in the links and
forms contained in the pages. When the user provides input, the state is
sent to the server and the application starts running again. It can then
repeat the process by returning a new Web page containing new state.
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Putting application state in Web pages increases the size of data sent
between browser and server (see Section 6.6 for an indication of how much).
Putting application state in documents is suited to fast networks. When a
computation has to reside on the user’s machine (e.g. for real-time graphical
displays or polling user interfaces), then some application code must execute
on the client-side. Putting application state in documents is not proposed
as a replacement for client-side execution. However, it does provide an
alternative that places computation on the server side, does not require
servers to maintain session state or a thread of execution for each client and
works with very lightweight clients.

6.4.2 Implementation

An implementation has been made using the World-Wide Web as a context
for client-server interaction. It provides lightweight clients in Web browsers
(text or graphic) and a simple document markup language in HTML (that
can be used for embedding application state).

Web browsers expect to communicate with servers that understand HT'TP.
An HTTP server has been written with the Tube higher-order mobile code
system. It is installed simply by sending it to a Tube site.

Once installed, Web browsers can connect to this server. It treats any
requests for pages it receives as (mobile) code to execute. The code is
executed and any output produced sent back to the browser. This allows
the Web to be used to provide convenient access to the Tube’s compute
servers.

The programs sent by browsers as page requests act as transitory Web
servers; they run on the Tube Web server and disappear after producing their
tasks’ output as Web pages. They can be complete Web applications that
implement an active and stateful user interface to generic services provided
on the server side. They are novel because they are able to embed (part of)
themselves into the documents they return to their browsers. They can do
this because they are written as higher-order mobile code and can marshal
arbitrary closures and continuations as plain text. The Tube mobile code
system provides this facility.

The states are made part of links within HTML pages returned to
browsers. Link addresses are set to point to the Tube HTTP server. After
an application finishes sending its HIML document back to the browser, it
terminates. The states it embedded in the document represent potential to
execute again.

When the user clicks on one of the links in the browser, the embedded
state becomes a request to the Tube HTTP server and the application starts
running there again. It can then repeat the process by returning a new Web
page with new states embedded in it. To summarise, an application runs on
the HTTP server until interaction with the user through the client browser
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Figure 6.4: Counter in a stateful document

is required. At this point, it is removed from the server and its dormant
state passed back with the interface presented to the user. After the user
enters his input, it is sent back to the server with the application, which is
restarted.

In the current implementation, a whole new HTML document is returned
to the browser so that the user sees the whole page being updated. One
might be able to achieve finer grain control over update by using Netscape’s
non-standard frame or layer enhancements to HTML.

A simple example is shown in Figure 6.4. It is a monotonically increasing
counter. When started, it displays its initial value, zero. Every time the user
clicks on the Nezt link, a new page is returned displaying the next value.
This is because the next stage of the computation (that increments the
counter and returns a new page) is stored as a marshalled continuation in
the link. The size of the counter’s marshalled state is around 10 kilobytes.
However, the marshalling format is particularly amenable to compression —
when compressed, the counter’s state is just over 2 kilobytes in size. Section
6.6 contains further discussion of application state and the time it takes to
compress and marshal it.

6.5 User Interface and Program Structure

The implementation benefits from the clean separation between user inter-
face and application functionality that generating document markup pro-
motes. That is, an application can proceed with its computation until it
requires user input. It then generates from its data structures a fresh doc-
ument to present to the user and waits for input. After the user provides
input, the application can resume exactly in the same state as it was before
waiting. The input can be processed and computation proceed accordingly.

This method of handling user input means that computation is driven
by the application rather than by the user interface. Traditional callback-
based methods use the user interface to drive applications. The problem with
using callbacks is that a side-effect must be used to note that a particular
input has occurred. Subsequent callbacks can then tell what has happened
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Figure 6.5: Separation of user interface and application functionality

before. The programmer must maintain some global state that is side-
effected with the application’s state each time something happens. Callback-
driven applications can be converted into application-driven ones by using
a continuation-passing style [Fuchs96].

For client-server applications, a stateful server that maintains application
threads can support application-driven user interaction by blocking after
sending a user interface to the client until receiving input back from it.
Stateless servers that are enabled by stateful documents achieve this too
because while the user is providing input, the application is dormant and
stored as part of the interface for later resumption (see Figure 6.5). Program
flow is controlled not only by matching on the input when the application
resumes on the server but also by placing different continuations in different
links; the application is implicitly told which one the user selected by the
state it is resumed in. The actual user interface is separated from application
functionality but the events it provides are handled more naturally as part
of program flow.

6.6 An Information Retrieval Query Interface

An existing application written in Java [Mills97a] has been rewritten to use
HTML and stateful documents. The Java version uses client-side presence
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to remember session state. The stateful document version remembers all
application state in the HTML document. It does not require Java support
from the Web browser — the text-based Lynx browser can be used, for
example. Neither the browser nor the Tube HTTP server that it connects
to maintains persistent knowledge of the application.

The interface is shown in Figure 6.6 displayed by the Netscape Web
browser and in Figure 6.7 by the text-based Lynx browser. It allows the
user to search a collection of historical material covering the lives and events
of the English village Earls Colne between 1400 and 1750. The COBRA
information retrieval system [Mills97b] is used to carry out indexing and
searching. The interface has to remember more state than a simple one such
as AltaVista [Seltzer96] because it supports relevance feedback. Relevance
feedback allows the user to mark results that are relevant and present them
as hints to the retrieval system for use in query refinement. A review of
work on relevance feedback can be found in [Frakes92]. A user interface
supporting relevance feedback must remember the complete context of a
query, i.e. the user’s search terms, search terms suggested by the system
and any results marked as relevant to the query.

This state and the functionality of the interface must be held somewhere.
The Java version holds them in the client. They could be held in the server if
scripts were pre-installed, implementing the application’s functionality, and
space made available for persistent storage of state. The stateful document
version remembers both the application’s functionality and query context
in the HTML documents displayed in the browser. At any one time, the
state of the application is contained either in its execution at the server (in
between user interaction), in a document sent to the browser for display or
in a request sent from the browser to the server.

The average size over ten queries of the Earls Colne application’s state
when saved in a Web page is 42 kilobytes, which includes ten sets of re-
sults. This compresses to just over 7 kilobytes in size. On a lightly-loaded
DEC Alpha running Digital Unix at 166 MHz, it takes about 0.3 seconds to
compress the state and 0.2 seconds to decompress it. Whether it is worth
spending the extra time compressing and decompressing the state depends
on network conditions. For slow connections, it might take more than 0.5
seconds to transfer the extra 35 kilobytes both ways.

The most expensive operations in the current implementation are mar-
shalling to and unmarshalling from plain-text representations of program
state. The 42 kilobyte state takes 0.6 seconds to marshal into .a document
and 0.7 seconds to unmarshal from one on the same DEC Alpha. Commer-
cial implementations would have to optimise these operations. One possi-
bility would be to unmarshal program state on demand; that is, a part of
the state would only be unmarshalled when required for execution. This
would be a simple matter of using delayed evaluation in the Tube’s Scheme
implementation.
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Netscape: Earls Colne Query

Figure 6.6: The stateful
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Earls Colne Query (pl of B)

Earls Colne 1400-1750

Query: Toll Submit query Hew query
Besults 1 to 10 of 16

Church [X1 ERD I/ACH. deposition concerning the nuncupative will of
Agnes Bieston

to the tenth question that the said Agnes Beiston being perceived to
plunge very fast after she had uttered foresaid words to the said Wm
Beiston when he asked her blessing the bell was tolled for her tolling
the said goodwife Berry and goodwife

0 99

Estatel D/TPrd

and that Hen Poleun is a common miller and took his toll for making
Checkbox Field) Use right-arrow or <return> to toggle,
Arrow keys: Up and Down to move, Right to follow a link: Left to go back.

Figure 6.7: The stateful information retrieval interface displayed by Lynx

More detail on how the Earls Colne interface is used can be found in the
description of the Java version that requires support for client-side execution
[Mills97a]. The user can enter queries, see matching documents and terms
suggested relevant by the retrieval engine and mark some results as relevant.

6.7 Logging

The ability to put all of an application’s state inside a document is very use-
ful for the Earls Colne query interface. By logging the documents returned
to the browser, a history of the user’s activity can be formed. One can
then jump backwards in the log to a particular query and its context. For
instance, a user might find that he has degraded results over time through
questionable relevance feedback choices and wants to backtrack to a pre-
vious context. All he has to do is reload a previous document from the
log. A simple annotation facility is provided in case he wants to remember
particular instances of the interface by name.

It should be emphasised that no special support is required here for
logging. The application does not have to undo changes itself in order
to backtrack to a previous state since each log entry is a complete and
automatically-generated instance. When an entry is restored, it is the com-
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plete application that is restored, with the same context as when it was
logged. It is not just the application’s appearance that is restored, because
potential new execution states are embedded as continuations within the
user interface’s hypertext links. Using stateful documents makes logging
easy; using code resident in clients or on server machines requires bespoke
solutions.

Logging can be carried out in the client (by the Web browser) or in the
server (by the Tube HTTP server). If done on the server side, the states
can be sent anywhere for storage — the client may tell the server to send
them back to its local domain or may have contracted storage facilities from
a third party. In the current implementation, the server saves states to
disk and then makes them available for users to navigate via a management
interface.

Web browsers can be made to log applications either by saving docu-
ments to disk or by bookmarking their addresses. The latter works because
application state is contained in links within documents. These links also
contain the address of the server on which the state should be restored.
When one clicks on the link, the browser “goes to” that location, delivering
the state to the server. The application is then resumed and produces a
document. The browser’s current location thus contains the application’s
continuation, i.e. how the document was produced, and can be bookmarked.

This logging facility might be useful in analysing how a Web application
is used since one can recreate the complete history of its execution. There is
an option in the Tube HTTP server’s management interface that prevents
logged states from being logged themselves when they are replayed so that
one can view a user’s activities without generating copious amouunts of new
information. Storage and analysis of logging information is outside the scope
of this research.

Logging can help to cope with failure. Servers can send application
states they receive to a persistent storage service before unmarshalling and
executing them. If a server crashes then it can retrieve from storage the
states of the applications it was running before the crash. A client (browser)
can send application states to a persistent storage service as well as to a
server, so that it can resubmit them if it crashes.

6.8 Moving State

Keeping all state in documents allows the user easily to move applications
between servers, simply by changing the address of a link. Since servers
keep no application-specific code, any one can be used, wherever it is located.
This is useful if the user has to rent time on servers and a cheaper alternative
is found, or if he moves and wants to use a server local to his new location.
In this case, he can save the document to a file, change the link’s address
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Figure 6.8: Embedding external user interfaces in a stateful document

to the new server’s location and simply load it into a browser at his new
location. Alternatively, a location-aware program can do this for him (see
Section 7.5.4).

Another use is for publishing programs. One could list stateful document
Web applications in a Web page. Then either:

e The user saves that page, editing links to fill in his local server’s ad-
dress. This might be automated with support from the browser and
involve a trader lookup. Or:

e The author might allow his server to be used for priming applications
for use on a user’s local server. The user would type in his server’s
address and a document containing links ready for launching the ap-
plication in his domain would be returned.

Alternatively, the link containing the application’s state might be e-
mailed to the user, who would just fill in his local server’s address and point
his Web browser to it.

Since browsers download the initial states of applications from a central
site, updating applications with new versions is simple. The new version
of an application is installed at the download site and browsers use it for
sending to a server for execution. This results in the decreased administra-
tion costs often cited for Network Computers [Oracle96] — users cannot
corrupt the installation of an application.
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Finally, stateful documents have been extended to enable applications
employing traditional user interface toolkits, such as Motif and XForms,
to be launched and suspended from a Web browser. An example using
the Tube’s user interface state-saving facility is shown in Figure 6.8. It is
launched by clicking on a link in which its code is embedded. The dialogue
box is then displayed, which the user can manipulate by typing in a message
or setting the counter.

At the same time, a page is returned to the Web browser which can be
used to stop the dialogue box and place its state into another page returned
to the browser. This page can then be used to restart the box in exactly
the same state, with all of its components working. One can carry on saving
and restoring its state indefinitely.

Just like stateless server Web applications, the dialogue box in this ex-
ample can be moved between servers and saved to disk once it is captured
inside a Web page. Its state as it is suspended and restarted can also be
logged. One can also clone its state instead — as many copies of the dialogue
box can then be made as required from the same page.

6.9 Summary

Using higher-order mobile code, application state can easily be embedded in
documents. This chapter has examined how making documents stateful can
remove the need to keep persistent knowledge of a client-server application
from both client and server. It was argued that this is particularly suited to
distributed systems with lightweight clients, heavyweight servers and high-
speed networks. An implementation was discussed that uses a higher-order
mobile code system for executing applications at the server and a networked
hypertext system for moving their states into user interfaces at the client
when input is required. The use of this to re-implement an existing informa-
tion retrieval interface was described. Finally, this chapter looked at using
stateful documents for logging, restoring and moving applications.



Chapter 7

Location-Oriented
Multimedia

This chapter presents a framework to support mobile multimedia applica-
tions and describes the role mobile code can play. The framework can be
mapped onto different implementations. One which uses mobile code to
support user mobility is described. Particular attention is paid to high-level
control, construction of multimedia objects, communication between com-
ponents and user mobility. A simple and flexible trading mechanism is used
to assist the work.

7.1 Introduction

7.1.1 Motivation

As computing equipment is more ubiquitously deployed, it becomes desirable
to support users who move between machines. Rather than carry the same
portable computer around with him, a mobile professional who requires
regular access to facilities can instead find a computer to use at each location.
He can use his applications when he moves to a new machine, and they
resume execution in the same state they were in before he moved.
Ubiquitous computing resources can be used like telecommunications
resources are now. While some people have mobile telephones, most make
use of telephones installed ubiquitously at the places they visit. Mobile
telephony services are charged at a premium rate, so it is cost-effective for
their owners to use land-line telephones instead when they are available.
Not all users will want to own and carry a portable computer in order
to be able to use applications wherever they go. Even owners of mobile
computers will only want to take them on a journey if they want to work
while travelling. If computing facilities are available at his destination, a
travelling professional can use them when he gets there. His applications
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network

Figure 7.1: An application following a user wherever she goes, via a network
and on a transportable smart card

can be moved so that he still has access to them.

This chapter describes a framework in which application components fol-
low users. Such user-targeted mobility allows personalised application state
to accompany a mobile user, either over the network or carried on trans-
portable media such as smart cards (see Figure 7.1). Third-party storage
servers can also be used to store application states when they are not in use.
Services which provide identification and location information about users
are also involved.

The framework can be applied to local area networks, particularly in
the context of multi-user applications, or for wide area networks consisting
of large numbers of public or private access terminals with access to local
computation servers.

7.1.2 Using mobile code

Each location to which a user moves has its own set of services. When
an application moves to follow a user, it rebinds to the services at his new
location. Applications provide high-level control functionality, coordinating
the use of lower-level services, and can move between computers.

In order to relocate an application to a user’s new location, its state must
be transferred there. Using a mobile code system, such as the one described
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in Chapters 2 and 3, has the following benefits:

e Applications can be transparently migrated between computers. No
special state-saving code has to be written into each one.

e Applications do not have to be installed at each site to which a user
might move. Mobile code can be sent for execution at a new location
without having to install anything there beforehand.

e Network usage can be reduced by co-locating code with the data it
processes rather than sending the data in its entirety to applications
for processing elsewhere.

7.1.3 Mobile multimedia

Mobile users can benefit from multimedia applications which are able to
move around a network, remapping user interfaces and stream-based end-
points like cameras, microphones and speakers to the user’s current location.
Some examples of such applications are:

o Sending running programs to other users. David can prepare and send
a multimedia presentation about his latest project to John’s current lo-
cation, with an enclosed questionnaire. John can examine it, annotate
it, fill in the questionnaire and send it back.

e Location-triggered media presentations. An application can be config-
ured to monitor for when Jean and Ken are in the same room, go to
that location and play a video clip from John.

o Mobile multimedia. Distributed media endpoints, such as software
abstractions of cameras and microphones, as well as user interface
components such as video display windows, can be part of a mobile
application. A simple example is tracking a user with video. When he
moves, the image switches to the camera nearest to him. Another ex-
ample is music following people around the home through the nearest
set of speakers.

e Mobile cooperation. A natural progression of mobile multimedia is to
support mobility for a cooperating set of users. In a multimedia confer-
ence, if a user moves then the camera, microphone, speaker and video
window endpoints must be moved to his new location. Connections to
the other users involved must be re-established.

This chapter describes a framework to support user mobility that can
map onto different implementations. The discussion is oriented towards
multimedia applications consisting of audio, video and user interface driven
software and concentrates on the role of mobile code to realise a particular
implementation. Some examples of implemented applications are given.
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7.2 Related Work

This section discusses three projects which have targeted mobility support
for application users. ORL’s Teleporting project redirects the user interface
of a mobile user to his current location. The Total Mobility environment
provides support for users who move between machines and work over low
bandwidth or disconnected network links. The work on Migratory Applica-
tions using Obliq employs a mobile code system which supports a mobile
user interface.

7.2.1 Teleporting

Teleporting [Richardson94] is a technique for supporting user mobility in
which the user interface of an application follows a mobile user. In order to
teleport, a user clicks a button on his active badge (a type of electronic tag
— see Section 7.3.1) when he is near to a workstation. His current session
then pops up on the workstation’s display.

The teleporting system is based on the technology of the X Windows
system. A proxy X server is able to forward X protocol requests to another
server, thus providing a level of indirection. The display of X applications
can be moved to follow a mobile user by making sure the indirection always
points to the display closest to him.

Teleporting is a powerful technique, the main advantage being that it
makes any existing X application mobile. However, it also has some disad-
vantages:

o It is tied to the X Windows system. Only the display connections
follow a user; there is no dynamic reconfiguration at the application
level. Any medium that does not go through X, for example audio,
cannot be supported by the teleporting system.

e It is potentially inefficient since data has to pass through an extra
party.

e Applications do not themselves move, are unaware of their user inter-
faces moving and are not built around the premise of mobile users.
This means that factors explicitly related to mobility cannot be cap-
italised on. In particular, the distribution of an application’s compo-
nents cannot be changed according to its location.

The user mobility framework described in this chapter allows applica-
tions and their user interfaces actually to migrate between computers, thus
avoiding these disadvantages.
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7.2.2 Total Mobility environment

The Total Mobility environment (TM) [Wachowicz96] views computers as
“replaceable tools, which can be hired, used and given up once no longer
needed”. Like the work described in this chapter, it aims to support the use
of locally available computing resources whenever a user moves, to eliminate
the need to carry equipment when it is not useful. It addresses the problem
of providing users with access to their data even when using mobile devices
that are not connected to a network.

TM provides location information about users and computer equipment
and a data management system based on a disconnected file system ar-
chitecture. Users register and de-register for use of a mobile computer in
disconnected operation. Their files are replicated to the mobile devices when
they register. A logging process is used to identify modifications that users
make while they are on the move and disconnected. When the user de-
registers with the mobile device, or network connectivity is available again,
the main copies of the files are updated with the modifications. The logging
process also helps to cope with conflicting modifications made by multiple
users sharing the same set of files.

The user mobility framework described in Section 7.3 differs from TM
in that it concentrates on support for making (multimedia) applications
mobile over broadly uniform networks rather than providing generic access.
to user files over low-bandwidth links. TM does not address migration of
applications to follow users. However, combining the two would provide mi-
gratory, follow-me applications with support for working in low-bandwidth
and disconnected environments.

7.2.3 Migratory Applications

The Migratory Applications work [Bharat95] has linked user and appli-
cation mobility. It employs the Obliq mobile code system [Cardelli94] so
that applications can move from one user to another or can be configured
to follow users from machine to machine. Support for state saving in Visual
Obliq allows applications to take their user interfaces with them when they
move.

The Migratory Applications work is similar to that described in this
chapter in that it employs mobile code and knowledge of user location.
However, it produces monolithic applications for single users in which the
mobile code component contains all control functionality and the user in-
terface. The rest of this chapter describes a framework for user mobility
which subsumes this functionality but also has the advantage of being able
to support mobility for distributed multimedia applications involving more
than one user.
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7.3 Framework

A flexible framework for supporting mobility of users is described here (see
Figure 7.2). It comprises a number of components:

e event-driven location awareness
e migratory programs

e stream-based multimedia objects
e simple trading system

e application-level communication

e mobile user interfaces

Implementations of this framework allow multi-user multimedia appli-
cations to be written which follow a user as he moves around a network of
computers. This section describes the framework in more detail. Section
7.4 gives an implementation which includes use of mobile code. Section 7.5
describes some experiments made with it.

7.3.1 Event-driven location awareness

Applications must be notified when and where a user moves in order to
follow him. This is event-driven mobility. A location service collects location
information and notifies its clients of any events which match their interests.
Client applications register interest in pertinent location events.

The location service uses a method of event-based programming which
allows applications to be written in terms of actions that are triggered by
external activity. The model is applied to distributed systems by allowing
event occurrences in one place to be sent across the network to trigger actions
in applications running elsewhere. Further details about the implementation
of an event-based programming system can be found in [Bacon95]. It is
very briefly described here but this dissertation does not contribute towards
its development.

The event system is implemented as an extension to an ODP-compliant
distributed programming platform [ANSA93]. The interface definition lan-
guage has been extended to allow specification of event types. An event
language has been devised which allows applications to register interest in
complex event occurrences.

The location service uses this event system to make mobility information
available to clients. When user movement is detected, it is matched against
event expressions registered by applications. Invocations are made to trigger
actions in any that match. By remembering movement events, the service
can provide information about where a user was last seen.
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Stream-based multimedia objects

Application-level communication

Migratory programs and
mobile user interfaces

Event-driven location
awareness

Simple trading
system

Figure 7.2: Framework for supporting user mobility
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There are a number of technologies which the location service can use
to obtain location information, for example monitoring of user logins or
electronic tags that users wear. The implementation used to support the
work described in this chapter employs active badge location technology
[Harter94]. Each user wears a badge which periodically transmits a unique
infra-red signal. A network of detectors allows the location of the user to be
pinpointed. Event expressions are evaluated when a user’s location changes.

User mobility events are augmented with information about room names,
building geography, equipment stored in each room and the names and capa-
bilities of each piece of equipment. This is useful for obtaining proximity in-
formation, both between users and between users and equipment. It can also
help to build adaptive location-aware multimedia applications [Schilit94].
For example, if an application is following a user or is dispatched to a new
location, it can check that the required facilities are available there. If it in-
volves audio and video but these are not supported in a particular location,
text-only conferencing might be used instead.

7.3.2 Migratory programs

When a user moves, his applications must also move to follow him. This can
be achieved in a number of ways. Firstly, the application’s user interface
can be moved to display on the machine nearest to him, while keeping the
main body of the application in the same place (see Figure 7.3(i)). This is
adequate for applications which do not need to have their computation relo-
cated or that run over fast networks. However, with high-latency networks,
interaction will be cumbersome. Some applications will need to relocate,
such as those needing access to local multimedia devices or those that adapt
to use local facilities when a user moves.

Secondly, application code can be held at each site to which the user
can move (see Figure 7.3(ii)). Factories are distributed services that create
objects of defined classes on request. An application (or part of one) can
be moved by asking the factory at the destination site which knows about
its implementation to create a new instance. The instance at the source
site is then terminated. Protocols understood at both the source and des-
tination are used to control the process of object creation. This approach
to application mobility requires that all sites be primed with an applica-
tion’s implementation before it can move. This imposes an administration
overhead whenever a new application is written.

Thirdly, mobile code can be used to implement application mobility (see
Figure 7.3(iii)). At each site, generic execution facilities are provided that
can receive new application code from the network and execute it. Using
mobile code allows application components which wish to relocate to do so
without having to install them beforehand. Using a higher-order mobile
code system facilitates applications with transparent migration running on
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Figure 7.3: Moving an application to follow a user
(i) Re-targeting the user interface
(i) Holding application code at each site
(iii) Using mobile code
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streams
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Figure 7.4: Stream-based multimedia objects

networks of heterogeneous computers.

Mobile code is suited to high-level control of distributed applications
because it usually sacrifices efficiency for portability. Writing entire ap-
plications with a mobile code system is not proposed for this framework.
Rather, it is used to provide flexible scripted control of services that already
exist. New applications are written as migratory programs that can adapt
and bind to services as they move. As applications are written at a higher
level, so the ability to tie together extant components becomes more attrac-
tive. Components are written according to their particular requirements.
For instance, those needing to process multimedia data will be written in
an efficient low-level language; those needing access to third-party software
might be linked with compiled libraries. The top-level control loop of an ap-
plication, perhaps tied to a user interface, can be written at a high enough
level of abstraction to use an interpreted, higher-order mobile code system.
Components implementing specific functionality operate at a lower level and
use bespoke techniques for yielding their states.

7.3.3 Stream-based multimedia objects

The framework includes simple low-level stream-based audio and video soft-
ware objects (see Figure 7.4). They control real microphones, speakers,
cameras and video windows using whichever means are appropriate for the
hardware. Control is abstracted to a distributed object layer so that appli-
cations can easily create, connect and destroy multimedia sources and sinks.
Object factories residing on machines with appropriate devices are used to
instantiate objects. For instance, on every workstation with live video cap-
ture, there will be a factory capable of creating software camera objects.
Objects to be connected together must use compatible raw data formats.
Multimedia objects are described in terms of streams. Sources (micro-
phones and cameras) have output streams and sinks (speakers and video
windows) have input streams. Notionally, applications connect a source ob-
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ject to a sink object by plugging the source’s output stream into the sink’s
input stream. Sources should be able to multicast their data using streams;
whether the stream implementation takes advantage of network support for
multicasting is not specified here.

Mobile users of multimedia are supported by allowing them to have per-
sonal audio and video objects which follow them around. As a user moves,
his microphone and camera objects move too, so that anyone listening or
watching him can continue to do so. Any speaker and video window objects
he owns will also move, so that he can continue to listen to and watch others.

Just as multimedia objects can map onto different hardware, so they can
be arranged in different ways to build multi-user mobile multimedia appli-
cations. The hardware may dictate where knowledge of each connection is
held. If an input or output device is shareable by more than one process,
then a different object can be created for each stream connection. How-
ever, if only one process per machine is able to access the device, then one
object only must be created for it and all connections made from or to it.
Knowledge about who owns which connection must be held elsewhere, per-
haps in virtual objects that forward requests onto the real one, in a per-user
connection manager or in a centralised connection manager for all users.

Besides hardware limitations, it is not desirable to specify an exact ar-
rangement for applications. For various reasons, including efficiency, avail-
able resources and use of third-party software, applications will have differ-
ent requirements. Some may wish to create a number of loosely-coupled,
autonomous components; others might prefer a centralised solution. In the
context of mobile users of multimedia, where connections are managed can
vary.

If separate objects are used to manage connections between users then
the objects reconfigure their connections as they move (see Figure 7.5(i)).
Creating separate objects for each user places a heavier burden on the host
computer because there are more processes running at the same time. Shar-
ing one object between users on each machine lessens the burden but forces
connection management to be done at the application level (to remember
which connections are owned by which users). This might be done by creat-
ing separate application objects which themselves move and rebind to real
multimedia objects at their destinations. This approach increases again the
burden on the host computer but does mean that the multimedia objects
can be kept simple.

Alternatively, applications might have some central entity manage con-
nections (see Figure 7.5(ii)). The nature of a central connection manager
can vary. There might be one per user, so that it knows which objects to
talk to and which connections to manipulate when its user moves. It would
move to follow a user as he moves between domains. For applications with
a single instance, which perhaps cater for a set number of users, such as
video conferencing, connection management might be centralised even fur-
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Figure 7.5: Managing connections
(1) Using separate objects
(ii) Centrally
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ther. Knowledge of every connection would be held in one place; when one of
its users moves, the application would reconfigure his connections. A video
conferencing manager, for instance, might move to follow the conference’s
chairman.

The extent to which a mobile application’s activity (connection man-
agement in the case of video conferencing) is centralised can be affected by
consideration of:

efficiency the processing and network resources available to an application
should affect how much control is devolved into distributed compo-
nents

authoring the extent to which an application is naturally distributed and
how much state components are likely to share should be taken into
account

mobility management coordination of an application when it moves be-
comes more difficult because it is decentralised

Mobile applications are free to coordinate their own components’ move-
ments using appropriate methods. Distributed components might return
their states to one controlling entity or move independently. Centralised
applications coordinate activity in one place anyway.

However, the framework must provide general support for mobility. Stream-
based multimedia objects must cope with re-routeing of their data (see Fig-
ure 7.6). Applications which either move distributed components separately
or communicate with other applications must ensure that they provide no-
tification of movement and react to notifications received. Components’
communication state must at some level be transferred.

Re-routeing of streams is known as handoff. This is commonly provided
by the network layer (see for example [Rajagopalan95] or [Porter94)),
though application support for handoff has been proposed [Pope96].

How handoff should be achieved is not specified here. Applications
or components that use stream-based communication should use the same
handoff methods to ensure data is re-routed correctly. Some applications
may not even need handoff. For instance, multimedia objects which can
tolerate data loss might simply use a specialised user-space implementation
that closes down their connections before moving and re-establishes them
afterwards. Centralised applications which reconfigure connections, but in
which little moves, can coordinate control over what happens because there
is little autonomy; they can direct activity to ensure no data is lost.

In general, applications will wish to support handoff to varying degrees.
Forcing it to be transparent to applications or always carried out by applica-
tions is unnecessary and undesirable [Agrawal96]. Applications might wish
to provide assistance to the network or perform some housekeeping when a
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Figure 7.6: Re-routeing of streams (handoff)
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Figure 7.7: Trading mobile applications
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stream is re-routed. Future work might capitalise on research being carried
out into allowing application-specific policy for mobility to be closely bound
at runtime with network control functionality [Rooney97c]|.

7.3.4 Simple trading system

The trading mechanism provided for applications to locate each other must
be able to handle mobility in conjunction with the methods used for com-
munication between components. Figure 7.7 shows how an application can
obtain and use out-of-date information:

1. Television object TV registers its initial location on Host A with a
trader

2. Application initiates a connection between camera C and television
TV

3. C imports T'V’s location from the trader as Host A
4. TV decides to migrate, in response to user movement
5. TV registers its new location on Host B with the trader

6. C tries to connect to TV at its old location on Host A and fails because
TV has moved to Host B

When moving, an application should ensure that any trader entries con-
taining its location are updated to point to its destination; further communi-
cation with it should be directed there. Communication with an application
while it is moving should not fail. Rather, it should either be blocked until
the move is complete or inform the application of the situation.

How this should be achieved is not specified here. However, one pos-
sibility is to post an indication that movement is in progress to a trader
(possibly replicated or federated [ISO94]). Applications finding such an in-
dication would either ask to be told when the move is completed or simply
poll the trader until the new location is registered. A home trader might
be associated with each application, which always holds its current location.
This would help to distribute trading activity if applications had different
home traders.

Further, a mobile application may be able to register with only the trader
in its current domain. Local applications in the same domain do not then
have to go outside it to look up its address. Traders in other domains are
told which domain the application is in, through a system of federation. Ap-
plications in other domains are then able to perform a lookup that involves
only their local domain and the moving application’s current domain.
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Alternatively, mobile objects might leave tombstones behind when mov-
ing that hold forwarding information or leave behind a minimal process
which handles requests while movement is in progress. Both introduce a
problem of garbage collection.

[Pope96] provides a discussion of trading (and handoff) in mobile com-
puting which this framework subsumes for user mobility amongst ubiquitous
computing facilities. Not all applications will need special support for mobil-
ity from the trading mechanism. Examples are those which are centralised
or do not involve movement of components that are in contact with other
applications.

A simple syntax is proposed for traded advertisements. They consist
of arbitrary numbers of field—value mappings presented in an SGML-like
syntax. Fields are denoted by start and end tags; values are enclosed by
tags. This is the system used in the building of distributed object systems
with mobile code described in Section 4.4.1.

Using such a syntax for advertisements provides great flexibility because
arbitrary fields can be traded. Lookup of advertisements is specified by pre-
senting a query in a similar way to searching information retrieval engines.
One specifies a logical combination of text occurrence within fields.

A global naming scheme has to be agreed for use by implementors. The
technology used to implement trading is not specified here. One might
map the syntax onto an existing trader implementation, use an information
retrieval engine or match queries with regular expressions, for example.

7.3.5 Application-level communication

Applications can use any method to communicate with each other. In cases
where mobile code is used to bind to services in a new domain, it must ob-
viously know how to talk to them. If the means to do so are not available
on the execution platform there, then it must carry appropriate code. One
possibility is to use mobile code itself to build a distributed object system
(see Section 4.4) and hide the exact communication method behind a com-
mon object model. Examples of other distributed object systems are DCOM
[Brown96], CORBA [Siegel96] and ANSA ODP [ANSA93|.

7.3.6 Mobile user interfaces

An application should be able to take its user interface with it when it
moves. This might be achieved simply by redirecting rendering of the in-
terface (while the application itself remains stationary) [Richardson94] or
by saving the actual user interface components and associated callbacks as
part of the application’s state when it moves (see Chapters 2 and 3). Use of
advanced implementation techniques which promote a clean separation of
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user interface layout and application functionality should also be supported
(see Chapter 6). These lend themselves to mobility.

The rest of this chapter looks at how the mobile code system described in
Chapters 2 and 3 and the work discussed in Chapters 4 and 6 have been used
to implement some of the elements in the user mobility framework described
above. Two different implementations of mobile-aware video conferencing
are given, together with that of a mobile World Wide Web-based application.

7.4 Realisation

The previous section described a flexible framework to support mobile users
of multimedia applications. This section gives an implementation using a
mixture of mobile code and more traditional methods.

7.4.1 Event-driven | location awareness

The Tube mobile code system described in Chapters 2 and 3 has been inter-
faced with the event-based programming system described in [Bacon95].
Location information is made available to mobile applications; they are able
to register interest in user movement events. This allows programs to be
sent to users rather than to a named host. By using location information,
the host nearest to a user’s current location can be determined. Thus,
Tube-based applications are able to follow users by triggering movement in
response to location events.

7.4.2 Migratory programs

The Tube provides transparent migration amongst heterogeneous comput-
ers so migratory applications are simple to realise. High-level application
functionality is written to use the Tube. The application binds to resident
event, multimedia, trading, communication and user interface rendering fa-
cilities as it moves. Knowledge about an application does not have to exist
at a site before an instance is sent there for execution.

7.4.3 Stream-based multimedia

Provision of networked audio and video is made through simple objects
written in C++. On each site with suitable hardware, a multimedia object
factory waits for requests to create the following:

Microphones capture audio and send it to speaker objects over the net-
work

Speakers read audio from the network and play it through loudspeakers
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Cameras capture video and send it to television objects over the network

Televisions read video from the network and show it in a window on the
screen

Each type of object is linked with a stream library which provides the
ability to send and receive data over the network. Microphones and cameras
are source objects and have output streams; speakers and televisions are sink
objects and have input streams. There is one stream for each data format
supported by the object. Streams abstract connections between objects.

Two implementations have been written. Both use IP-based sockets to
connect over the network and provide multicasting by creating a separate
connection for each destination. Both provide functions for source objects to
initiate connections to sinks and write data onto them and for sink objects
(transparently) to accept connections from sources and read data from them.
A connection made by an output stream for a source object has a unique
identifier, which can be used at a later date to close it down.

The use of IP in the current stream implementations is not exposed to ap-
plications. Future implementations might use native ATM to transport data
or IP multicasting, for example. Provision is made for this by typing the ad-
dresses that output streams connect to. An application wishing to send data
using an ATM control architecture such as the Hollowman [Rooney97b]
would specify the destination to its output stream as a Hollowman-type ad-
dress. Quality of service constraints can be specified on connection setup,
although this is specific to the transport method used and is not supported
by the current IP-based implementations.

The two implementations of the stream library differ in that one per-
forms handshaking when making a connection and remembers the connec-
tion information obtained from doing so (see Figure 7.8(i)), while the other
remembers no information about each connection (see Figure 7.8(ii)). The
former implementation allows communication state to be kept in the low-
level multimedia objects themselves; using the latter lifts this responsibility
into application-level code that uses them. An object built with the first
implementation can yield its communication state to applications; this can
be used in applications involving mobile multimedia.

The multimedia objects all use the same multimedia subsystem (DEC
Alpha Multimedia Extensions for Digital Unix) and fixed rate, uncompressed
audio and video. Video is sent using UDP/IP and audio using TCP/IP over
a local area ATM network. Computers using other capture and playback
devices could be used as well, as long as their multimedia objects read
and write data in the same format. Microphone, speaker and television
objects can share their hardware capture and playback devices. However,
the hardware dictates that only one process can capture video on a computer
at any one time.
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Figure 7.8: Stream library implementations
(1) Remembers connection information in objects
(ii) Maintains no communication state
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Figure 7.9: Sharing one real video camera using virtual camera objects

When using the stream implementation which remembers connection
state, one real camera object is created which distributes video pictures
and then virtual camera objects are created subsequently which forward
connection requests to the real one (see Figure 7.9). In this way, connection
information for applications can continue to be held in separate low-level
camera objects. When using the stream implementation which does not
remember connection state, this is not necessary since communication state
is remembered at a higher level anyway and there is no need to have separate
low-level objects.

Both stream implementations require handoff to be handled at a higher
level. Communication state, in the form of a list of connections, is either
given to the application by the multimedia objects or held there anyway. The
implemented multimedia objects can tolerate data loss, so in practice when
an application moves, old connections are closed down before it moves and
then recreated at its destination. A future implementation might contact
some network control entity to have connections re-routed without data loss.

7.4.4 Simple trading system

A simple method has been used for handling mobility in the trading mech-
anism. When an application moves, it replaces any trader entries pointing
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<Agency>Tube</Agency>

<Naming>address</Naming>

<addressType>content</addressType>

<addressContent>

<objectType>Tub VideoCamera</objectType>

<html><br>

<img src=http://www.cl.cam.ac.uk/users/dah28/images/camera.gif>

</html>

<objectName>John’s camera</objectName>

</addressContent>

<addressQuery>

#BAND (#FIELD (objectType=Tub) #FIELD(objectType=VideoCamera)
#BAND (#FIELD (objectName=John’s) #FIELD(objectName=camera)))

</addressQuery>

<resolvesType>Tube</resolvesType>

<resolvesHostname>britten.cl.cam.ac.uk</resolvesHostname>

<resolvesPortnum>1270</resolvesPortnum>

Figure 7.10: Advertisement for a camera object

to its location with a marker indicating that movement is in progress. In
the current implementation, applications should periodically poll the trader
when discovering that movement is in progress, until the new location is
available. In more advanced trader implementations, they might be told by
the trader when the new location is posted by the moving application. Ap-
plications are free to handle movement of others in an appropriate manner.
They might choose to poll the trader for a period of time, perform some
other task in the meantime or even inform the user. This choice might be
hidden by the communication system used for applications to talk to each
other.

This method as it stands is not scalable, but has proved sufficient for
experiments in a local area network. Other possibilities are discussed in
Section 7.3.4.

The SGML-like syntax used for application advertisements has been
mapped onto implementations which use the COBRA information retrieval
system [Mills97b] and regular expression matching. See Section 4.4.1 for
more details. Applications wishing to share trading information must use
the same trader implementation.

All multimedia objects and Tube sites can import and export advertise-
ments. As an example, Figure 7.10 shows the advertisement for a camera
object called John’s camera. '

The Agency tag specifies that this is an ordinary advertisement within
the Tube system. The Naming tag indicates that the advertisement con-
tains a mapping between two addresses, typically from an abstract spec-
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Figure 7.11: Trader advertisements in a Web browser: a Multimedia object
factory and a video camera
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ification to some low-level location information. The first is specified by
tags beginning with address; the second is specified by tags beginning with
resolves. In this example, the abstract address is a content address (spec-
ified by the addressType tag). A content address contains arbitrary tags.
Here, the type of the object is defined by the objectType tag and its name
by the objectName tag. The html tag allows arbitrary HTML markup to
be inserted when Web browsers display the advertisements in a trader (an
example is shown in Figure 7.11).

The location of the camera is on the host britten.cl.cam.ac.uk, port
1270. The resolvesType tag indicates that the object can be controlled
using the Tube mobile code system. Applications send the following query
to the trader in order to look up the advertisement:

#BAND (#FIELD (objectType=Tub) #FIELD(objectType=VideoCamera)
#BAND (#FIELD (objectName=John’s) #FIELD(objectName=camera)))

See Section 4.4.1 for details of the syntax. The matching' advertisement
can be processed to extract the host name and the port number. Resolution
is recursive, so that if a query returns an address that itself maps onto
another, the lowest-level location is returned. In this way, indirection can
be used, for instance to map from a person’s name to his location to the
camera at that location.

7.4.5 Application-level communication

Two systems have been used for inter-application communication. In initial
experiments, MSRPC [Roscoe94] enabled mobile applications to talk to
multimedia objects. A stub generator that outputs Scheme from object
interface definitions is used to allow programs running on Tube sites to do
this. .

The Drool distributed object system described in Section 4.4 was used in
subsequent experiments. Transition was smoothed at first by hiding MSRPC
communication behind Drool proxies. This allowed Tube-based applications
to be written using Drool and the original multimedia objects with MSRPC
interfaces. The multimedia objects were then rewritten to use Drool for
communicating with the Tube mobile code system. A lightweight version
of the Tube (see Section 2.8) is embedded inside them. It is able to receive
simple Scheme expressions, execute them and return the results.

Multimedia object factories make the following functions available:

e camera creates a video camera object
¢ tv creates a video window (television) object

e mic creates a microphone object
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(let* ((stream-type

(make-object () ()
(connect: (addr (host <string>) (port <integer>)) -> <integer>
(on addr ‘(connect ,host ,port)))
(connect: (addr (name <string>)) -> <integer>
(on addr f(connect ,name)))
(close: (addr (chan <integer>))
(on addr ‘(close ,chan)))))
(source-cloxy
(make-object () ((stream (make-object stream-type ())))
(advert: ()
(save this))
(content: () -> <string>
"<Cloxy>Source</Cloxy>")
(query: () -> <string>
"#FIELD (Cloxy=Source)")
(stream: () -> <stream-type>
stream)
(exit: (addr)
(on addr °(exit))))))

Figure 7.12: Source Class Proxy

e speaker creates a speaker object

All take as a parameter the name of the object to create.
Source objects (microphones and cameras) make the following functions
available:

e connect takes as a parameter either the name of a sink object or its
location and connects the audio or video stream to it; it returns a key
uniquely identifying the connection

e close takes as a parameter the key of a connection, which it closes

If the name of a sink object is given to connect, its location is resolved
by the source object through trader lookup. connect can be called more
than once because the stream libraries support multicast.

The multimedia objects are given a Drool abstraction in Scheme so that
mobile applications can control them easily. They do not have to dispatch
expressions to objects themselves. An example is shown in Figure 7.12. See
Chapter 4 for details of Drool syntax. It shows a class proxy, or clozy, for
source objects. A cloxy encapsulates the behaviour of a type of object, in
this case source objects (cameras and microphones).

First, the type of a source stream is defined. The connect and close
methods use the on function (see Section 2.5.4) to forward the appropriate
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Scheme expression to the actual object, whose address is passed in the addr
parameter. Neither the stream nor the cloxy hold state. The cloxy is then
defined. A stream instance is declared when a cloxy is made. The advert,
content and query methods enable cloxies to be published in traders. The
stream method simply returns the stream object; there is one stream object
for each instance of the cloxy. The stream object’s methods could be col-
lapsed into the cloxy; they are separated to make it clear that streams are
joined together, not objects — future camera implementations might have
another stream for compressed video, for instance. Finally, an exit method
is provided to terminate the object.

An application might join John’s camera to Kerry’s window with the
following expression:

((source-cloxy ’stream)
’connect
(make-content-address
’unspecified
"#BAND (#FIELD (objectType=VideoCamera)
#FIELD (objectName=John’s)
#FIELD (objectName=camera))")
"Kerry’s window")

The Drool-based multimedia objects use the stream library that does
not remember connection state. Using cloxies to provide abstraction pushes
the responsibility to remember connection state up into the application.

However, suppose instead that each instance of a multimedia object cre-
ates on its local Tube site a Scheme object which talks directly to it. This
shadow object can be used to remember connection state. Applications
contact the shadow when making or destroying connections, which captures
as a side effect information about the connections in place. Instead of a
one-to-one mapping between multimedia objects and their shadows, many
shadow objects might map to the same real one. This is useful when hard-
ware devices cannot be shared by more than one process. If shadows are
used to remember connection state, those shadowing sink objects must be
told about connection activity too.

Decentralised mobility can be implemented by making mappings be-
tween shadow and real multimedia objects temporary and based on a user’s
location. Shadow objects move to follow a user and bind to the real ones at
his location (see Figure 7.13). Since they remember communication state,
they can re-establish connections.

Drool uses proxies that are delivered at run-time to give clients the
wherewithal to communicate with a service. Mobile-aware proxies might
be sent to clients by services that support mobility. These would implement
server-specific mobility policy. For example, a server could tell its proxies
that it is moving so that clients calling into them find this out without going
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~. Tube site

Figure 7.13: Supporting user mobility using mobile Scheme objects

to the trader. A server might wish to provide its own retry algorithm to
clients which wish to cope with mobility, or even provide some code which
mimics its own behaviour whilst it is moving. Clients might be isolated
from knowing about mobility by sending to them proxies which themselves
perform retry of trader lookup whilst appearing to the client to block. The
ability to send and dynamically change the code used by clients to access
Drool server objects allows for flexible mobility policy to be implemented.
Making basic multimedia facilities simple and shifting responsibility for
managing mobility to a higher level enables different implementations to co-
exist. Implementing high-level mobile applications using mobile code allows
them transparently to migrate along with the components they manage.

7.4.6 Mobile user interfaces

The Tube can save the state of user interfaces created by programs, including
the callbacks associated with them. This is used to allow applications to
carry their user interfaces with them when they move. In conjunction with
event-driven migration, user interface mobility allows a user to have his
applications appear and execute on computers in his vicinity as he moves.

The work on stateless servers described in Chapter 6 lends itself to mobil-
ity because applications are written only to execute temporarily on compute
servers before embedding themselves in documents. When it is not running,
knowledge about a stateless server application is held only in a document
displayed to the user. Applications can thus be moved simply by transmis-
sion of a document (see Figure 7.14).

Mobile stateless server applications are supported by two functions. The
first retrieves the URL being displayed by a Web browser. The second sends
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Figure 7.14: Mobile stateless server applications

a browser to a given URL. Since the implementation of stateless server appli-
cations embeds their states inside HTML document links, moving them sim-
ply requires capturing their URLs (current states) and then sending browsers
running at the destination to visit those URLs after movement.

7.5 Experiments

All of our experiments have employed mobile code in provision of high level
application coordination. Applications can be prototyped rapidly as mobile
Scheme programs which can create and configure distributed multimedia
objects. They can also register interest in and respond to user movement.

This section describes briefly two implementations of mobile video con-
ferencing and one of a mobile Web-based application.

Follow-me audio and video is used in mobile video conferencing. Wher-
ever a user moves, video windows and software speaker objects follow so
that he can continue to watch and listen to other people. His camera and
microphone objects follow him too, so that others can continue to see and
hear him.

Centralised and decentralised implementations are given. The decen-
tralised implementation is more suited to wide-scale mobility but is also
more complicated. The centralised implementation is simpler and suited for
supporting mobility in a local area network.
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7.5.1 Decentralised mobile video conferencing

The first implementation of follow-me audio and video conferencing dis-
tributes information about a user’s connections with other people as much
as possible (see Figure 7.15).

On each machine, a multimedia object factory and a camera object are
permanently resident. There can only be one camera per machine because
of hardware limitations. When a user moves to a machine, the following
objects are created there for him with the factory:

e a virtual camera that remembers all outgoing video connections, for-
warding them to the resident real camera object

¢ a video window (television) for each incoming video connection
¢ a microphone which serves all his outgoing audio connections

e a speaker for each incoming audio connection

These are all built with the version of the stream library that performs
handshaking between connecting parties and remembers connection infor-
mation. Each object returns its communication state (list of connections)
when it is terminated. For each connection, the names of the users at each
end are given.

Response to the user’s movement is coordinated by a management object
written in Scheme and running on a local Tube site. It registers an interest
in his movement events with the active badge location service. The user
generates movement events by clicking the button on his badge.

Conferencing must be set up through management objects so that each
can record which objects and connections it creates for its user. This infor-
mation is required when a user moves. If a manager is told that its user has
clicked his badge’s button in a new room, it does the following things (see
Figure 7.17):

1. Terminates all of the user’s multimedia objects at his old location,
receiving a list- of connections for each in doing so.

2. Looks up in a location database which computer is nearest to the user’s
new position.

3. Decides whether it needs to move to another Tube site. Rather than
there being a Tube site running on each machine, there might only
be one per domain. If it needs to move between domains, it simply
dispatches itself there.

4. Recreates on the computer at the user’s new location all of the objects
it terminated, using the factory there.
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Figure 7.18: The Mobocop video conference manager

5. Re-establishes all of the connections.

This video conferencing implementation consists of a number of mobile
per-user connection managers which create low-level objects to process data
and remember connection information. As the manager moves to follow its
user, objects and connections are created and destroyed appropriately.

7.5.2 Centralised mobile videoconferencing

The second implementation of follow-me audio and video conferencing holds
all information about connections between users in one place (see Figure
7.16). On each machine, a camera, microphone and multimedia object fac-
tory are created.

On a Tube site running on the conference chairman’s computer, a video
conference application called Mobocop is executed (see Figure 7.18). The
chairman uses this to make connections between users. For outgoing audio
and video, Mobocop uses the resident camera and microphone running on
the user’s nearest computer. For each incoming audio or video connection,
it creates a new speaker or video window there. Mobocop registers interest
in movement of all of the users participating in the conference.
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Mobocop knows about all connections, speakers and video windows as-
sociated with each user. When a user clicks on his badge’s button in a new
room, Mobocop is notified and terminates his speakers and video windows
on the computer at his old location. They are then recreated at his new lo-
cation and connections remade to them and from the cameras and speakers
running there.

Mobocop can itself move to follow the conference chairman. More than
one Mobocop can be run over the same network because connections are
remembered at a high level, not on the resident camera and microphones
or transient speakers and video windows. If each user is given a Mobocop
which manages his connections, the implementation becomes more like the
decentralised one described in the previous section.

The multimedia objects in this implementation use the simple version
of the stream library that remembers no information about its connections.
Management of communication state uses the class proxies described in Sec-
tion 7.4.5 and is pushed up to the application level.

7.5.3 Measurements

Timings were taken using the centralised video conference application de-
scribed in the previous section. An audio and video conference was set up
between three people with access to three DEC Alpha computers, each in
a different room, equipped with a video camera, microphone and speak-
ers, connected to a local-area ATM network and running a Tube site under
Digital Unix. One of the users was designated chairman and the Mobocop
application was able to follow him as he moved.

Each user was able to see and hear the others as they moved between
rooms. All the timings given below include a constant overhead of 2 seconds
for the active badge system to report badge sightings to Tube sites.

The average time taken for a user’s multimedia objects to appear at his
destination when he moved between rooms was 8.9 seconds (815 milliseconds
to close the old connections, 1.614 seconds to destroy the old objects, 2.934
seconds to create the new objects and 1.509 seconds to recreate the connec-
tions between the new objects). The time taken between him arriving at a
new room and the other users seeing him there was 9.2 seconds on average.

These times proved adequate for conferences with only sporadic move-
ment. They are also respectable given the heavy load placed on the com-
puters. Each user had outgoing audio and video connections to the other
users and to himself. That is, each user had six outgoing connections and
there were eighteen connections in total. The video objects had to send and
receive 1.33 megabytes of data over each connection per second (there were
12 frames per second, each of which was 384 by 288 pixels in 8-bit colour).
The audio objects had to send and receive 22 kilobytes of data over each
connection per second (it was sampled-at 11kHz, using 16 bits per sample).
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The DEC Alpha computers were overloaded by this amount of data,
so that the playing of audio became intermittent and the display of video
jerky. Handling of user mobility had to compete with the processing of
this multimedia data, without help from the Digital Unix scheduler which
cannot impose quality of service guarantees. Use of an operating system
designed to provide such guarantees would have helped here [Leslie96].
Performing stream handoff at a lower level, instead of tearing down and re-
building connections, would have reduced the amount of software involved
in re-routeing data (see Section 7.3.3). Using a separate device for sending
data from video cameras onto the network [FORE97] would have reduced
the load placed on the computers.

Note that the related projects cited in Section 7 2 above give no perfor-
mance measurements.

7.5.4 Mobile Web-based applications

The Earls Colne information retrieval interface described in Section 6.6 has
been made mobile. This is achieved with a generic Tube-based daemon
which moves around a network following a user. Whenever the user moves,
it finds out which URL he is looking at in his Web browser, moves to his
new location and updates the browser there so that it shows the same page.

Any stateless server application written using the implementation de-
scribed in Chapter 6 can be moved in this way, simply by viewing it in a
Web browser. When one moves room, the daemon follows, bringing with it
the URL containing the application’s current state. It is re-targeted to use
the nearest Tube Web server. Because stateless server applications embed
all of their state in Web pages displayed by browsers, they do not have to
be changed to be made mobile.

7.6 Summary

Supporting mobile multimedia applications and detecting movement of peo-
ple allows a user’s working environment to follow him around. This chapter
has described a framework for supporting user mobility. A location service
monitors user movement and notifies applications. Migratory programs and
mobile user interfaces follow users around as they move. Stream-based mul-
timedia objects send audio and video data over networks. A simple trading
service supports location of mobile objects. Finally, this chapter described
an implementation of the framework which uses mobile code and some ex-
periments carried out with it.
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Chapter 8

Summary and Conclusions

8.1 Summary

This dissertation has described the implementation and application of a
higher-order mobile code system. It has discussed higher-order state saving,
provision of communication abstractions and some real uses of mobile code
in distributed systems. The research statement made in Section 1.4 has been
expanded upon by subsequent chapters in the following manner:

o The research described in this dissertation has produced a mobile code
system that supports the transmission of higher-order functions and
continuations over computer networks.

Chapter 2 described the Tube mobile code system, which allows Scheme
expressions and programs to be transmitted over a network. Chapter
3 described an interpreter that allows a program’s execution state to
be migrated across a network by serialising closures and continuations
into a byte stream.

o The mobile code system has been used to build a distributed process-
ing environment that is flexible in the communication abstractions it
provides to applications. Varying degrees of abstraction are provided,
from basic message passing to remote method invocation and from tight
integration with application state to object-based data hiding.

Chapter 2 showed how the Tube mobile code system supports simple
messaging between distributed processes and remote evaluation of lan-
guage expressions by allowing messages to contain programs. Chapter
4 showed how mobile code can be used to move application-level func-
tionality, share connections and provide networked access to execution
state. It also showed how an application’s data can be given an object-
based abstraction.

141
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o A distributed object abstraction has been written which allows an ap-
plication to define, offer and adapt at run-time the means that clients
should use to communicate with it.

The distributed object system described in Chapter 4 uses mobile code
to implement dynamic communication proxies that can be delivered
and updated at run-time.

e The mobile code system has been used to enhance existing distributed
applications. It has been applied to ATM network control, to the man-
agement of state in client-server interaction and to event-driven user
mobility.

Chapter 5 described the use of mobile code to decentralise control and
reduce network usage in an ATM network control architecture. Chap-
ter 6 showed how mobile code can be used to store persistent knowledge
about client-server applications in the documents exchanged between
client and server. Chapter 7 presented a framework to support mobile
multimedia applications and described an implementation that uses
mobile code.

8.2 Conclusions

8.2.1 Value of mobile code

Mobile code is useful because it allows a networked service to be written
without having to decide in advance which abstractions to provide for clients.
Clients can impose their own abstractions on the service by sending code to
it. Since clients know best how they wish to process the service’s data, they
can optimise use of the network by filtering the data before it is returned.

This is useful for the development of distributed applications by more
than one person. The programmers of client programs can develop optimised
use of a service without involving its programmer. Once development has
finished, the mobile code might be made a permanent part of the service.
However, a service which needs to support unbounded numbers of clients
that make unpredictable use of its (immutable) data is effectively under
constant development and can make use of mobile code a permanent part
of its functionality.

Reduced network usage and development flexibility are offset by perfor-
mance and security considerations. In order to use mobile code in networks
of heterogeneous computers, it must either be interpreted or compiled to na-
tive code before being executed. These both impose a performance penalty
compared with pre-compiled code. Therefore, mobile code is not useful
for distributed applications that do not need to sacrifice performance for
flexibility because they can predict how their data will be processed and
transferred over the network.
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However, as use of the Internet grows, it will become increasingly difficult
to predict how clients of a service will want to process its data, making the
case for mobile code greater. The widespread use of (interpreted) scripting
languages shows that the need to pre-compile applications is diminishing and
that interpretation is well-suited for high-level control [Ousterhout97].

Care must be taken to make restriction of access to sensitive resources as
simple for mobile code interpreters as it is for protocol handlers. One should
also be able to limit the amount of time that mobile code can execute for, so
that it cannot impose an endless burden on a service’s host machine. Whilst
networked services that do not admit mobile code must also be able to cope
with denial of service attacks, widespread deployment of mobile code for
applications such as those described in this dissertation relies on research
into making it secure (see Section 1.5).

The Tube mobile code system described in this dissertation has proved
to be efficient enough for experimenting with (see Section 3.5.5). It provides
simple security by restricting the functions and data that programs acquired
from the network can access (see Section 3.5.2). It can also control the
duration and speed of a program’s execution (see Section 3.5.1).

The Tube uses continuations to implement mobile computation, which
is a powerful, high-level and portable technique (see Chapter 3). However,
there are now many mobile code systems available (see Sections 2.2 and 3.2),
each targeted towards different application areas. The exact method used
to achieve mobility is less important than the deployment of mobile code
itself.

8.2.2 Deployment of mobile code

If mobile code is widely deployed, future distributed systems might consist
of many services that accept and execute programs from the network. They
would delegate responsibility for providing abstractions, and making optimal
use of the network, to their clients. _

Chapter 6 showed that some applications can benefit by placing more
load on the network and demonstrated that mobile code can be used to do
this. For these applications, optimal use of the network is not necessarily
minimal use. Use of mobile code allows applications to determine where
they execute, how they use the network and where their state is held at
each stage of their execution.

Chapter 4 showed that different ways of communicating can be layered
on top of mobile code. Chapters 2 and 3 showed that mobile code can
itself be represented using a simple message format. Applications which
interact using a common message format that supports mobile code can use
it to implement their own methods of interaction, such as protocols, remote
procedure call or distributed objects and share them at run-time. This is
already starting to happen with Java [Wollrath96].
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In contrast, approaches such as CORBA [Siegel96] standardise at a
level of interaction that requires distributed object software to be used by
(and usually compiled into) every client of a service. Chapter 4 showed
how a distributed object abstraction can be provided as an optional extra,
so that applications not wishing to use it do not pay for it. A service is
free to interpret the messages it receives however it wants. Programmers
of client applications can either communicate with it directly or through
proxies delivered by the service.

Chapters 5 and 7 have shown that mobile code can also be applied to
existing distributed systems. There is a burden of proof that the addition
of mobile code can help either prototyping or to reduce network usage and
maintenance costs. The case for mobile code is stronger for distributed
systems that involve large numbers of programs which evolve over time
than for distributed systems running over a local area network, with small
numbers of programs written by one or two people.

Research and commercial interest has been growing in mobile code dur-
ing the last three years (see Sections 2.2 and 3.2). New systems are an-
nounced regularly (recent examples are Voyager [ObjSpace97], Concordia
[Mitsubishi97] and Odyssey [GenMag97]'). The more that.mobile code
is used in applications, the greater acceptance it will achieve.

8.2.3 Contribution to research

The main contribution of this dissertation to research is to demonstrate some
specific applications of an implemented mobile code system. It is hoped that
this will strengthen the case for using mobile code in future research and
development.

In order to investigate the potential applications of general support for
mobile code, a system was designed and implemented that compares well
with contemporary research efforts. Migration is achieved by mechanisms
which are transparent to the application and portable across hardware and
operating systems.

The system was used for a variety of applications, each of which was
shown to derive real benefit from the ability to migrate. New approaches
were explored which are applicable to emerging ubiquitous computing envi-
ronments, as well as to more established distributed computing applications.

'these systems all implement mobile programs in Java using a similar technique to
Aglets (see Section 2.2.2)
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