Technical Report A

Number 438

Computer Laboratory

An architecture for scalable and
deterministic video servers

Feng Shi

November 1997

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1997 Feng Shi

This technical report is based on a dissertation submitted
June 1997 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Preface

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration.

This dissertation is not substantially the same as any that I have submitted for a degree
or diploma or any other qualification at any other University.

No part of this dissertation has already been or is being currently submitted for any
such degree, diploma, or other qualification.

This dissertation, including tables, footnotes, and bibliography, but excluding appen-
dices, photographs, and diagrams, does not exceed 60,000 words.

Acknowledgements

I would like to thank my supervisor, Andy Hopper, for the opportunity, advice, and
encouragement to pursue this research.

I am also grateful to Martin Brown for his incessant chasing up, practical assistance,
and fine proofreading of the whole dissertation.

Many thanks and much appreciation also go to various members of the Computer Lab-
oratory, and of the Olivetti and Oracle Research Laboratory (ORL), notably, Mike Addle-
see, Jean Bacon, Hiang-Swee Chiang, Damian Gilmurray, Gray Girling, Andy Harter, Alan
Jones, Sai Lai Lo, Ken Moody, Brendan Murphy, Antony Rowstron, and Ian Wilson, for
their help and discussion during the course of this research.

I am indebted to ORL and the Computer Laboratory for the use of equipment and
computing facilities, with special thanks to Jan Luff for setting up the Cadmus project file
space in ORL.

The first three years of this work was supported by a scholarship from the Cambridge
Overseas Trust, and the final year was sponsored by ORL.

iii

Summary

A video server is a storage system that can provide a repository for continuous media
(CM) data and sustain CM stream delivery (playback or recording) through networks. The
voluminous nature of CM data demands a video server to be scalable in order to serve
a large number of concurrent client requests. In addition, deterministic services can be
provided by a video server for playback because the characteristics of a variable bit rate
(VBR) video can be analysed in advance and used in run-time admission control (AC) and
data retrieval.

Recent research has made gigabit switches a reality, and the cost/performance ratio of
microprocessors and standard PCs is dropping steadily. It would be more cost-effective
and flexible to use off-the-shelf components inside a video server with a scalable switched
network as the primary interconnect than to make a special purpose or massively parallel
multiprocessor based video server. This work advocates and assumes such a scalable video
server structure in which data is striped to multiple peripherals attached directly to a
switched network.

However, most contemporary distributed file systems do not support data distribution
across multiple networked nodes, let alone providing quality of service (QoS) to CM ap-
plications at the same time. It is the observation of this dissertation that the software
system framework for network striped video servers is as important as the scalable hard-
ware architecture itself. This leads to the development of a new system architecture, which
is scalable, flexible, and QoS aware, for scalable and deterministic video servers. The re-
sulting architecture is called Cadmus, named from sCAlable and Deterministic MUltimedia
Servers.

Cadmus also provides integrated solutions to AC and actual QoS enforcement in storage
nodes. This is achieved by considering resources, such as CPU, buffer, disk, and network,
simultaneously but not independently and by including both real-time (RT) and non-real-
time (NRT) activities. In addition, the potential to smooth the variability of VBR videos
using read-ahead under client buffer constraints is identified. A new smoothing algorithm
is presented, analysed, and incorporated into the Cadmus architecture. ‘

A prototype implementation of Cadmus has been constructed based on distributed ob-
ject computing and hardware modules directly connected to an Asynchronous Transfer
Mode (ATM) network. Experiments were performed to evaluate the implementation and
to demonstrate the utility and feasibility of the architecture and its AC criteria.

Contents

List of Figures

List of Tables

Glossary of Terms

1 Introduction

2 Background

2.1
2.2

2.3

2.4

2.5

2.6

2.7

Continmmous Media
Storage Devices e
221 Disks e
222 Disk Arrays e e e e e e e
Video Server Structure
2.3.1 The Storage Hierarchy
232 BasicStructure
233 Network Striping
Distributed Computing
File Systems. e
2.5.1 File Implementation
2.5.2 Distributed FileSystems
Real-Time Systems e e e e e e e
26.1 Concepts e
2.6.2 Real-Time Scheduling
2.6.3 Real-Time Operating Systems.
Summary e

vii

xii

xiii

Xv

W BN =

© ~N N o «;

3 Related Work

3.1
3.2
3.3
34
3.5

3.6

Disk Scheduling i e
Data Placement 0 . i i i e e e e e
Quality of Service Enforcement
Redundancy Schemes e
Scalable Storage Servers i e
3.5.1 General Purpose Servers ¢t it i i e
3.5.2 Scalable Video Servers
3.5.3 Industrial VideoServerso

SUMMATY ot e et e e e e e e e e e e e e e e e e e e e

4 System Architecture

4.1
4.2

4.3
4.4

4.5
4.6

Requirements 0 0 i i i e e e
The Cadmus Architecture
4;2.1 Entities, Components, and Objects
4.2.2 Component Functionalities
423 Features o . it e e e e e e
Meta-Data Management
The Redundancy Scheme
44.1 A Comparison of Redundancy Schemes
4.4.2 Fault Mode Resource Reservation.
4.4.3 Replication Management,

Other ISSUES . . & v v v v i e

5 Variable Bit Rate Smoothing

5.1
5.2

5.3
54

5.5

Motivation o i e e e e e e
Formulating the Problem,
521 Terminology o v i v it i i e e e e
5.2.2 Client Buffer Constraints
A Smoothing Algorithm 0.
Analysis and Verification. o o oo
5.4.1 Characteristics of the Algorithm
5.4.2 Verification of Formal Results
Effects of Changing Parameters
5.5.1 Fixed Look-Ahead Steps, Varying Smoothing Scale
5.5.2 Fixed Smoothing Scale, Varying Look-Ahead Steps e
5.5.3 Discussion and Recommendations

viii

19
19
20
21
23
24
24
28
31
33

35
35
36
36
38
41
41
42
42
47
47
47
48

5.6 Examples and Observations 61
56.1 Examples e 61
56.2 SomeObservationso...... 64

57 Related Work e 66

5.8 Summary e e 67

6 Admission Control 69

6.1 Admission Control Considera.tibn 69
6.1.1 The Admission Control Sequence 69
6.1.2 Contracts ittt . 69
6.1.3 Resources and Activities. 70
6.1.4 General Admission Control Criteria 71

6.2 Disk Service Time Estimation 74
6.2.1 Discussion. e e 74
6.2.2 Service Time Estimation. 75

6.3 Admission Control for Real-Time Activities 77
6.3.1 Example Data Structure 77
63.2 Playback e 78
633 Recording e e 80

6.4 Admission Control for Non-Real-Time Activities 80
6.4.1 Introduction, 80
6.4.2 Three-Level AdmissionControl 82
6.4.3 Problemsand Solutions 84

6.5 VCR Functionalities 86

6.6 Summary e e e e e e 87

7 Implementation 89

7.1 Implementation Environment 89

7.2 System and Extra Components 90
721 Portsand Conmections 90
722 ClientParts. e e e e e e e e e 90
7.2.3 Points, Units, and Unit Factories 92
7.2.4 Physical Objects and Storage Servers 92
7.2.5 Logical Objects, Stream Control Agents, File Servers, and Stream

Control Factories 93

73 TheStorageNode 94
7.3.1 Software Structure 94
7.3.2 The Storage Server Process 96
7.3.3 Physical Object Management 97

ix

7.4 Resource Managementt

7.4.1 Contract Enforcement,

7.4.2 Resource Reclamation unno..

7.5 Summary

8 Evaluation

8.1 Experimental Configuration00,

8.2 Admission Control Parameterso....
8.2.1 Network Side Parameters
8.2.2 Disk Side Parameters
823 Parameters Used

83 Measured Results e

8.3.1 File

Transfer o e e e e e e e e e e e e e

8.3.2 Multiple Stream Playback
833 Discussion it e e e e
8.4 Bottleneck Analysis e e

8.5 Summary

9 Conclusion

9.1 Summary

9.2 Future Work 0 e e e e e e e e e e e e e e

A Proof of Theorems
A.1 The Smoothing Algorithm

A.2 The Proofs

Contract Summary

Implementation Interfaces

C.1 Some Basic TYPes . . . v v v v v v it it et et e e e e e

C.2 Port and Connection v v v v v v i v e e e e e e e e e e e

C.3 Client Part

....................................

C.4 Point, Unit,and Unit Factory
C.5 Physical Object and Storage Server
C.6 Logical Object and Stream Control Agent

C.7 File Server

References

and Stream Control Factory

101
101
102
102
105
107
110
110
111
111
112
114

115
115
117

119
119
119

127

129
129
130
131
131
133
134
135

137

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
44

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

List of Figures

Frame Size Trace for MTV: Segment 6
Basic Video Server System Structure 12
Components of the Swift Architecture 24
The Structureof Zebra. 25
The HPSS Software Architecture 26
The Petal Prototype 28
The MARS Prototype Architecture 29
The Tiger Hardware Layout 31
The Cadmus Architecture Overview 37
Logical Objects and Physical Objects 38
VBR Processing in the SCA for Playback 40
Maximum Number of Streams per Cycle vs. Declustering Degree 46
Frame Size Trace for MTV 50
Displayed Data per Second Trace for MTV oo oo oo n o n .. 50
Client Buffer Usage 52
The Generic Read Set Computing Algorithm 53
Suppressing and Filling Client Buffer (A =1) 54
Smoothing without Suppressing (r=1) 54
Smoothing and Suppressing (r=1,h=3) 55
Smoothing and Suppressing: Details 55
Maximal Balance Upper Bound 57
Read Set Statistics: h =2,r€[0.1,46] 58
Read Set Statistics: h =5,r€[0.1,46) 59
Read Set Statistics: r=1.0,h€[1,10) 60
Read Set Statistics: r=15,h€[1,10] 60
Displayed Set with64 KBBlocks 61

5.15 Read Set with 64 KBBlocks 62
5.16 Read Set with 64 KB Blocks: Details 63
5.17 Displayed Set with 106 KB Blocks 64
5.18 Read Set with 106 KBBlocks 64
6.1 Fundamental Resourcesinan SSEntity 70
6.2 ACforRT Playback, 79
6.3 ACfor RT Recording o i vt i it ittt en st ean 81
6.4 Computing Resources to be Used: Current 82
6.5 AC for an NRT Disk Request: Current o oo oo vveenn ... 83
6.6 AC for an NRT Network Send Request: Current 83
6.7 AC for an NRT Disk Request: Next 84
6.8 AC for an NRT Network Send Request: Next 84
6.9 Receive Re-activation: Current 85
7.1 Points, CPs,and Units 92
7.2 Physical Object Implementation 93
7.3- Playback SCA Implementation 94
7.4 The Storage Node Software Structure 95
7.5 Fault Mode Resource Reclamation 100
8.1 Equipment Deployment 102
82 Network SideDataPath, 103
8.3 Network Send with Increasing Packet Size 103
8.4 Network Send with Increasing Average Rate 104
8.5 Network Receive from Slow Source 104
8.6 Network Receive from Fast Source 105
87 DiskSideDataPath, 105
8.8 Disk Read with Increasing Request Size 106
8.9 Disk Read with Increasing Average Rate 106
8.10 Disk Write with Increasing Request Size 107
8.11 Disk Write with Increasing Average Rate 107
8.12 Concurrent Disk Read and Network Send 108
8.13 ST12550N Write Seek Time Profile and Approximation 110
8.14 SS Node CPU Usage (cirlbunting) 112
8.15 Block Arrival Time in the Client (ibis) 113

xii

2.1
2.2
2.3

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6

8.1
8.2

List of Tables

Typical Parameters of Several Digital Video Formats

General Characteristics of the ST12550N Disk Drive

ST12550N Zone Information« v v v v v e e e e e

Limitations of Some Existing Network Striped Storage Servers
Multi-Chained Declustering: n=6,d=4

Interleaved Declustering: n=6,d=4

Displayed Data per Second Statistics for MTV
Symbols Used for VBR Smoothing
Read Percentage of the Displayed and Read Sets
Displayed Data per Second with64 KBBlocks
Displayed Data per Second with 106 KBBlocks
Read Percentage for All the Video Traces
Zero Large-Read Percentage for All the Video Traces

AnExample Read Set
An Example Read Table: SS(1)
An Example Cycle Table: SS(1).
An Example Receive Table for CBR: SS(1)
An Example Receive Tablefor VBR
Symbols Used for NRT AC: Current

Resource Bandwidth on Different Activities
Other AC Parametersand Values

xiii

Glossary of Terms

The page number after each term represents the place where the term is first introduced
in the body of this dissertation.

AC Admission Control (p2)

AFS Andrew File System (p13)

ATM Asynchronous Transfer Mode (p3)
BE Best Effort (p16)

CBR Constant Bit Rate (p20)

CM Continuous Media (p1)

CORBA Common Object Request Broker Architecture (p13)
CcP Client Part (p37)

DCE Distributed Computing Environment (p13)
DS Directory Server (p36)

ECC Error Correction Code (p8)

EDF Earliest Deadline First (p16)

FC Fibre Channel (p9)

FC-AL Fibre Channel Arbitrated Loop (p12)
FCFS First-Come-First-Served (p72)

FFV Fast Forward with Viewing (p86)

FS File Server (p 36)

FSID File Server Identifier (p42)
FS_ATTR File Server Attributes (p42)

GPS Global Positioning System (p 89)

ID Identifier (p25)

IDL Interface Definition Language (p13)
LO Logical Object (p37)

LOID Logical Object Identifier (p37)

LO_ATTR Logical Object Attributes (p41)
MPEG Motion Picture Expert Group (p5)
NAP Network Attached Peripheral (p26)

Xv

NC
NRT
NS
NTP
ORB
OSF
PO
POID
PO_ATTR
QoS
RAID
RM
RPC
RT
SCA
SCF
SCSI
SS
sSuUs
VBR
VOD
ZBR

Network Computer (p36)
Non-Real-Time (p2)

Name Server (p36)

Network Time Protocol (p89)
Object Request Broker (p13)
Open Software Foundation (p13)
Physical Object (p37)

Physical Object Identifier (p37)
Physical Object Attributes (p42)
Quality of Service (p2)
Redundant Array of Inexpensive Disks (p9)
Rate Monotonic (p 16)

Remote Procedure Call (p13)
Real-Time (p2)

Stream Control Agent (p37)
Stream Control Factory (p37)
Small Computer System Interface (p9)
Storage Server (p36)

Striping Unit Size (p10)
Variable Bit Rate (p2)

Video On Demand (p21)

Zoned Bit Recording (p8)

Chapter 1

Introduction

This chapter first describes the motivation for the research topics in this dissertation.
The research contributions are identified and an overview of the other chapters is given.

1.1 Motivation

A video server is a storage system that provides a repository for continuous media (CM)
data and sustains CM stream delivery (playback or recording) to or from clients through
networks.

Unlike conventional data, a CM stream has a temporal requirement which places time-
liness constraints on its data retrieval and processing, although it is tolerant to a certain
degree of data loss or error during transmission. In addition, CM data is voluminous even
after some form of compression, demanding high I/O bandwidth and large storage capacity.

For reasons of economy, large amounts of CM data will still be stored in magnetic disks
in a video server in the foreseeable future. While the performance of CPUs and memory is
increasing rapidly, the access time and transfer rates of disks have improved only modestly.
The I/O bandwidth of many concurrent CM streams is well beyond the capability of one
disk or a small scale disk array, so is the storage requirement of many different audio/video
files. Consequently, for a large scale video server, multiple disk devices must be used to
exploit their aggregate bandwidth and storage capacity.

From the perspective of the hardware architecture of a video server, the most important
aspect is the interconnect structure between disk devices and clients. Generally, there are
four types of interconnect: backplanes, channels, parallel computer interconnection, and
networks. As recent research has made gigabit switches a reality, and the cost /performance
ratio of microprocessors and standard PCs is dropping steadily, it would be more cost-
effective and flexible to use off-the-shelf components inside a video server with a scalable
switched network as the primary interconnect than to make a special purpose or massively
parallel multiprocessor based video server.

This work assumes such a video server structure in which storage peripherals are at-
tached directly to a switched network, and data is striped to multiple peripherals, each of
which could be a single disk or a small scale disk array using a backplane or a non-switched
channel internally. This server structure is scalable because the peripherals and the network

1

2 Chapter 1. Introduction

can be upgraded independently. It also has high performance because striping effectively
utilises the aggregate I/O bandwidth and storage capacity of multiple devices.

However, most contemporary distributed file systems do not support data distribution
across multiple networked nodes, let alone providing quality of service (QoS) to CM appli-
cations at the same time. It is the observation of this dissertation that the software system
framework for network striped video servers is as important as the scalable hardware ar-
chitecture itself. The framework should be flexible by providing basic mechanisms, but not
dictating as many policies. It should also be scalable to accommodate the scalability of the
hardware structure. Such a flexible and scalable software architecture is the main focus of
this research. '

It would be advantageous for a video server to provide deterministic services to its clients,
something which is possible and is also assumed by this work. However, most current
video server research addresses QoS related problems by making assumptions about its
environment, for example, no network activities, no meta-data management, or no operating
system support. Hence, an integrated and practical solution to admission control (AC) and
QoS enforcement in peripheral nodes is very important and is another aim of this work.

Most compression techniques for CM data produce variable bit rate (VBR) streams,
which affect the efficiency of data retrieval from disks and complicate the resource allocation
and the scheduling procedures in the whole system. Thus it is desirable to reduce this
variability, which is possible because most of the time a video server deals with the playback
of stored videos which can be subject to off-line or on-line analysis before their data is
retrieved and sent to clients. A suitable smoothing method for VBR streams is the third
target of this dissertation.

In summary, the research context is scalable network striped video servers providing
deterministic services, and the research areas are software system architecture, VBR data
smoothing, and integrated AC and QoS enforcement in storage nodes. The emphasis is also
on implementing and evaluating a working prototype incorporating these three areas. The
only assumption made in this research is that switched networks are not the bottleneck,
and no QoS consideration is given to network communication.

1.2 Contributions

This work proposes a new system architecture, code named Cadmus!, for network striped
video servers. Cadmus separates the physical storage from the logical view of a data object,
and stores system meta-data in the same places as CM data resides. Special components
to control CM streams have been added as inherent parts of Cadmus, but staying outside
the storage mechanisms. These characteristics distinguish Cadmus from other video server
file systems and result in a scalable and flexible architecture.

AC and QoS enforcement in storage nodes are also described. The solution is integrated
for two reasons. First, resources, such as CPU, buffer, disk, and network, are considered
not independently but simultaneously. Second, non-real-time (NRT) activities coexist with
their real-time (RT) counterparts but without disturbing the QoS to the latter. These are
two important aspects that make a real system work, and they are both exhibited in the
Cadmus prototype.

!Cadmus: sCAlable and Deterministic MUItimedia Servers, or: a Phoenician prince held in Greek Myth
to have killed a dragon and sown its teeth from which sprang armed men who fought together.

1.3. Outline 3

A VBR data smoothing algorithm is presented. The algorithm takes into account client
buffer limitations, performs or suppresses read-ahead, smoothes the data read in each fixed
period, and eliminates small reads from disks. The algorithm is also formally and empirically
analysed and the results are used as guidance for determining striping block sizes for VBR
streams in Cadmus.

The above concepts are validated by describing the implementation and evaluation of
a working prototype system. The Cadmus prototype is built on hardware modules that
are directly connected to an Asynchronous Transfer Mode (ATM) network, and different
system components interact through distributed object invocation. An NRT micro-kernel
and its system level processes have been extended to provide QoS support in storage nodes
together with one Cadmus component.

1.3 Outline

The chapters in this dissertation are arranged as follows:

Chapter 2 introduces the background material which is relevant to this work. The
rationale for network striped video server structure is further identified.

Chapter 3 reviews the research work on video server design. Emphasis is put on those
systems using network striping, and the limitations of these systems are pointed out.

Chapter 4 summaries the goals that a software system framework for network striped
video servers should achieve. Then the Cadmus system architecture and its features are
presented. This chapter also shows the functionalities of the Cadmus system components
and describes the meta-data management method. Other architecture related topics such
as QoS guarantee and the redundancy scheme are also discussed, as well as the evolution
of the Cadmus development.

Chapter 5 first gives the motivation and the requirements for VBR data smoothing
in a video server environment, then a smoothing algorithm is presented. The algorithm
is analysed both theoretically and empirically, and the results are used to choose striping
block sizes for VBR videos. Finally, the findings are compared to related work on VBR
smoothing.

Chapter 6 describes the distributed AC procedures in Cadmus. After resources and
activities in storage nodes are classified, AC criteria for both RT and NRT operations
are presented. These are integrated solutions because many resources and activities are
considered simultaneously.

Chapter 7 presents a prototype implementation of the Cadmus architecture. The system
components, especially the one residing in storage nodes, are described. Chapter 8 evalu-
ates the performance of the implementation and analyses the bottleneck of the hardware
configuration used for the experiments.

Chapter 9 summarises the main results in this dissertation and makes some suggestions
for future work.

In addition, Appendix A gives proofs for the lemmas and theorems about the smoothing
algorithm presented in Chapter 5. Appendix B summarises the contracts between the AC
criteria and QoS enforcement identified in Chapter 6. Finally, Appendix C describes the
interfaces used in the Cadmus prototype implementation.

Chapter 2

Background

This chapter introduces some background information related to video server design,
and the justification for network striping is further developed.

2.1 Continuous Media

CM is a general term used to refer to digital audio and video, which are the primary
data types in a video server. As suggested in [Hyden94], CM have both temporal and
informational properties. While the temporal property demands that CM data be retrieved,
delivered, and processed in a timely fashion for continuous presentation or to reduce the
possibility of data loss, the informational property says that CM is often tolerant of the loss
of some of their information content.

Both properties have effects on video server design. For the timely retrieval and delivery
of CM data, a video server should provide QoS to individual CM streams. To prevent
overload situations and their adverse impact on overall QoS, AC functionality should also
be incorporated. However, when overload does occur in a video server, data of some CM
streams can be discarded to maintain service stability.

In addition, CM data generally has high bandwidth and storage requirements. Table 2.1
shows some typical parameters of several digital video formats. The non-compressed en-
tries clearly demonstrate the voluminous nature of CM data. However, because of spatial,
spectral, and temporal redundancies in video data, some form of lossy or lossless compres-
sion techniques can be applied before the data is stored or used for transmission. The most
common compression standards are MPEG [Gall91], JPEG [Wallace91), and CCITT Rec-
ommendation H. 261 [Liou91]. The results of compressing the videos using MPEG are also
listed in Table 2.1. 4

Data compression also affects video server design. First, the I/ O and storage require-
ments of CM data are still high even after compression, especially when considering multiple
videos or streams. For example, 100 different videos compressed from the CCIR-601 PAL
format in Table 2.1 will occupy 352 GB if each is 2 hours long, and 100 simultaneous streams
of such videos will need 400 Mbps. These demands, coupled with the performance limits of
current disk devices, call for scalable design for video servers.

Second, most compression techniques, such as the ones used in MPEG and JPEG,
produce VBR streams. For example, Figure 2.1 shows a section of the compressed MPEG-

5

6 Chapter 2. Background

Table 2.1: Typical Parameters of Several Digital Video Formats

no compression compressed”
format® standard | ‘X Y fps | rate 2 hour | rate 2 hour | compress
(Mbps) | (GB) (Mbps) | (GB) | ratio
Medusa 88 64 25 | 2.15 1.89 1.00 0.88 220:1
256 | 192 | 25 | 18.75 16.48 | 1.00 0.88 188:1
SIF NTSC 352 | 240 | 30 | 29.00 25.49 | 1.15 1.01 25.2:1
PAL 352 288 25 | 29.00 25.49 1.15 1.01 20.2:1
CCIR-601 [NTSC 720 | 480 | 30 | 11865 | 104.28 | 4.00 3.52 206: 1
PAL 720 | 576 | 25 | 118.65 | 104.28 | 4.00 3.52 206 :1
HDTV 1280 | 720 [30 | 316.41 | 278.09 | 20.00 1758 | 158:1
1920 | 1080 | 30 | 711.91 | 625.71 | 20.00 1758 [356:1

1 frame size trace of the MTV sequence from [Trace95] [Rose95]. The rate variability
will complicate the procedures of system resource management or waste resources if peak
rate reservation is used. It would be desirable to reduce this variability by applying some
smoothing method before CM data is read from a video server. This is possible because
video servers are used to play back stored videos rather than record live videos most of
the time. Consequently, smoothing algorithms and the coordination of activities associated
with smoothing should be taken into account by a VBR video server design.

250000 T T T T T T T

200000

&
8
8

frame size(bits)

100000

50000

TE | A ke i ; ; ‘
, Ui i'i'.lll' i‘ ;M’; J 'Jlii” il u“f?}.l:'é !N ”"H l ‘ i

8950 10000 10050 10100 10150 10200 10250 10300
. frame number

]

Figure 2.1: Frame Size Trace for MTV: Segment

!The compression method used for the Medusa and the SIF videos is MPEG-1 [ISO/IEC93a], while
MPEG-2 [ISO/IEC#83D] is used for the other two formats. Medusa videos are compressed using the MPEG-
2 video encoder/decoder ported to Medusa by the author. The Medusa MPEG package can produce both
MPEG-1 and MPEG-2 video sequences.

2The Medusa [Wray94] videos in the table use RGB555 encoding with 16 bits per pixel. The other three
assume a chroma format of 4:2:0, where the two chrominance channels have half the sample grid density in
both horizontal and vertical directions with respect to luminance. That results in an average 12 bits per
pixel when the resolution for each sample is 8 bits. The HDTV examples are two of the several formats
supported by the Grand Alliance System [Hopkins94] [Petajan95).

2.2. Storage Devices 7

Finally, different compression schemes or standards use different video file formats.
There are multiple compression standards, such as MPEG, JPEG, and H.261. There are also
other compression techniques that will potentially be used in the future, such as wavelet
[Hilton94] and fractal [Barnsley88] [Fisher95). Besides, proprietary formats, such as
QuickTime, AVI, and DVI, are widely used as well. If the data retrieval component of a
video server attempted to understand all these formats, the design would be greatly compli-
cated and the server would be a very inflexible and inefficient one. However, if video format
analysis and data retrieval functionalities are separated, the resulting system will be more
modular and extensible. This latter approach is taken by Cadmus.

2.2 Storage Devices

2.2.1 Disks
Characteristics

Disks are important video server components. A disk consists of a stack of platters
coated with magnetic media, with the platters rotating on a common spindle at constant
angular velocity past the read/write heads (one per surface). Data is organised into cylinders
of different radii from the spindle axis. The intersection of a cylinder on a surface is called

a track, which is divided into a number of sectors, each storing a fixed size of user data
(typically 512 B).

Before reading or writing a sector, the disk heads have to seek to the specific cylinder,
then wait until that sector is rotated and positioned under the heads. Contiguous sectors
on the same track can be read or written continuously, with the transfer rate subject to
the rotation speed of the spindle and the number of sectors per track. However, reading
or writing logically consecutive sectors that are stored on different tracks or cylinders re-
quires head switches. Normally these consecutive sectors are skewed so that the next sector
is rotated just under the heads after the switch, making the switch time depend on the
rotation speed and the number of sectors per track as well. Table 2.2 shows the general
characteristics of an example drive ST12550N [Seagate93). Some of the parameters are
useful for estimating disk service time in order to do AC in a video server. The Cadmus
prototype used a disk of this type.

Table 2.2: General Characteristics of the ST12550N Disk Drive

drive size 3.5 in rotation speed 7200 rpm
interface fast SCSI-2 ° || full rotational latency | 8.3 ms
formatted drive capacity | 2139 MB * full stroke seek (read) | 17 ms

area density 152 Mbits/in® || full stroke seek (write) | 19 ms

on-drive cache 960 KB internal data rate 3.56-5.96 MB/s
read/write heads 19 SCSI interface rate - 5.0 MB/s

servo head 1 seek error rate < 1in 107 seeks
total cylinders 2707 recoverable error rate | <1 in 10'° bits
total zones 24 MTBF 500,000 hours

3Can also be operated according to SCSI-1 protocol.

“Formatted as follows: 512 data bytes per sector; 9 spare sectors per cylinder; and 1 cylinder at the inner
track reserved for spares.

8 Chapter 2. Background

As tracks near the outside of each surface have greater circumferences than those near
the spindle, zoned bit recording (ZBR) is used in most modern disks. This approach groups
sets of adjacent cylinders into zones, with the number of sectors per track being constant
within each zone, but successively larger in the outer zones than that in the inner. Table 2.3
shows the zone information for the ST12550N. Cyl stands for cylinder and the unit of skew is
a sector. Because different zones may have large transfer rate differences, zone information
should be used by a video server in AC to better utilise the disk resource.

Table 2.3: ST12550N Zone Information

zone | start | end | track | track | cyl zone | start | end | track | track | cyl
cyl cyl sectors | skew | skew cyl cyl sectors | skew | skew
1 0 125 | 97 9 19 13 1654 | 1725 | 78 7 16
2 126 | 341 | 97 9 19 14 1726 | 1801 | 76 7 15
3 342 | 589 [95 9 19 15 1802 | 1889 | 74 7 15
4 590 | 742 | 93 8 19 16 1890 | 1975 | 72 7 15
5 743 [902 |91 8 18 17 1976 | 2069 | 71 7 14
6 903 | 1034 | 90 8 18 18 2070 | 2182 | 69 6 14
7 1035 | 1163 | 88 8 18 19 2183 | 2295 | 67 6 14
8 1164 | 1283 | 86 8 17 20 2296 | 2389 | 65 6 13
9 1284 | 1395 | 84 8 17 21 2390 | 2495 | 64 6 13
10 1396 | 1486 | 83 8 17 22 2496 | 2587 | 62 6 13
11 1487 | 1572 | 81 7 16 23 2588 | 2679 | 60 6 12
12 1573 | 1653 | 79 7 16 24 2680 | 2706 | 58 5 12

Anomalies

The mechanical nature of disks will lead to unpredictable down-time such as: thermal
calibration (T-cal), seek error recovery, read error recovery, write error recovery, and defect
management. During these periods, a disk will not do any useful work for user requests.
The following paragraphs will briefly discuss these anomalies using the ST12550N as an
example.

In the ST12550N, T-cal happens approximately once every 10 minutes, and a full T-cal
will compensate 19 heads with each head taking about 56.6 ms, resulting in a full T-cal
of 1.0754 seconds. Automatic T-cal also occurs at other times such as during read error
recovery, and during reassign block functions when a read or write detects defective disk
blocks and automatic reallocation is enabled. However, in most future disks, T-cal will be
eliminated using embedded servo technology.

A seek error is defined as a failure of the drive to position the heads to the addressed
track. After detecting an initial seek error, the drive automatically re-seeks to the addressed
track up to 3 times. Write errors can occur as a result of media defects, environmental
interference, or equipment malfunctions. The drive will also attempt its recovery algorithm
up to 3 times after a write error. If a defect block is detected and write reallocation is
enabled, then the reassign block function is performed to automatically relocate the bad
block to a spare one.

The default retry count for the application of the read recovery algorithm during a read
error is 27. Even if read retry is disabled and early recovery is enabled to allow the disk
drive to apply ECC (Error Correction Code) correction as soon as possible, there are still
3 hidden retries. If a defect block is detected and read reallocation is enabled, the disk will
also perform the reassign block function to relocate the bad block.

2.2. Storage Devices 9

The defect management is three-fold: slip sparing at format time; 9 spare sectors per
cylinder; and 1 cylinder at the inner track reserved for spares. There is no perfect disk
surface. For example, the author tested 3 new ST12550N disks formatted with 4178873
sectors of size 512 B, and found 131, 136, and 466 bad sectors which are skipped on each
disk. If at run-time, more defect sectors are formed and read/write reallocation is enabled,
then a range of logically contiguous sectors may later be allocated a sector far away in the
innermost cylinder. This will incur extra seek and rotational latency which is out of user
control.

There are two characteristics of the above disk anomalies. First, most of them are
unpredictable and it is very difficult to track them or to keep a record to anticipate when the
anomalies will happen. Second, they do occur in a real system and thus cannot be ignored.
Cadmus takes a defensive approach rather than a preventive one. It does not reserve
resources for the anomalies in order to smooth them out, but does provide mechanisms
to maintain system stability during overload situations, whose cause could be the disk
anomalies.

Technology Trends

Traditionally, the area density (measured in megabits per square inch (Mbits/in?))
of disk drives increased at a rate of roughly 27% per year [Chen94b]. Recently, new
technology, such as MR (Magneto-Resistive) heads, PRML (Partial Response Maximum
Likelihood) signal detection, and no-ID sector formatting, has lifted the figure to 60% per
year with today’s density in the 600-700 Mbits/in® range [Seagate96a]. By the year 2000,
the area density is expected to reach 10 Gbits/in?. In addition, embedded servo technology,
which distributes operational information evenly in relation to user data on each platter,
eliminates the need for T-cal.

The spinning speed of the disk spindle has increased from 3600 rpm to 5400 rpm, 7200
rpm, and 10,000 rpm in the last decade. Disk interfaces have been evolved from SCSI-
1 (4 MB/s) to SCSI-2 (10-40 MB/s) and Fibre Channel (FC) (100 MB/s). The most
advanced commodity disk example today can be found in the Cheetah family from Seagate
[Seagate96b]. The Cheetah disks spin at 10,000 rpm; use MR heads, PRML signalling,
and embedded servo; and provide FC interfaces. Such a 3.5 in disk stores 9 GB, and a
5.2 in one 23 GB. It should be noted that this new technology does not eliminate the disk
anomalies mentioned above except T-cal.

2.2.2 Disk Arrays
Concepts

A disk array [Lawlor81] organises multiple, independent disks into a large, high-
performance logical disk. The motivation for disk arrays is the performance gap between
CPUs and secondary storage, as well as the need for high performance secondary storage
systems. Disk arrays stripe data across multiple disks and access them in parallel to achieve
both high data transfer rates on large data access and high I/O rates on small data access.
Data striping also results in uniform load balancing across all of the disks, eliminating hot
spots that otherwise saturate a small number of disks while the majority of disks sit idle.
Redundancy information is usually provided to tolerate disk failures because of the de-
creased reliability of disk arrays. Such a disk array is normally called a RAID (Redundant
Array of Inexpensive Disks) [Patterson88).

10 Chapter 2. Background

Data, striping is accomplished by distributing consecutive logical data units (called strip-
ing units) among the disks in a certain order such as round-robin. Fine-grained striping
has small striping unit size (SUS) and distributes data so that all of the disks cooperate in
servicing every request, while coarse-grained striping has large SUS and allows the disks to
cooperate on large requests and to service small requests independently. SUS governs the
trade-off between transfer parallelism and access concurrency.

Redundancy information is normally in the form of replication or parity. Redundant
data is either concentrated on a small number of disks or distributed uniformly across all
“of the disks. Different data and redundancy distribution leads to different RAID levels
[Patterson88] [Chen94b].

RAID Levels

RAID level 0 (non-redundant) does not employ any redundancy at all, while RAID level
1 (mirrored) uses replication for redundancy. Both levels use coarse-grained striping. RAID
level 2 (memory-style ECC) divides the array into data disks and check disks. User data is
bit or byte striped over the data disks, and the check disks hold a Hamming error correcting
code computed over the data in the corresponding bits or bytes on the data disks.

In RAID level 3 (bit-interleaved parity), user data is bit or byte striped across the
data disks, and a simple parity code is used to protect against data loss. A single check
disk (called the parity disk) stores the parity. RAID level 4 (block-interleaved parity) is
identical to level 3 except that striping units are relatively coarse grained. RAID level
5 (block-interleaved distributed-parity) uses coarse-grained striping but distributes parity
blocks on all the data disks. There is no fixed parity layout scheme for RAIDS.

A RAID level specifies not a specific implementation of a disk array but rather its
configuration and use [Chen94b]. For example, RAID levels 1 and 3 can be viewed as
subclasses of level 5. Since RAID levels 2 and 4 are practically inferior to level 5, the
problem of selecting among RAID levels 1 through 5 is a subset of the more general problem
of choosing an appropriate parity group size and SUS for RAID level 5 disk arrays. A parity
group size close to two may indicate the use of RAID level 1 disk arrays; a striping unit
much smaller than the size of an average request may indicate the use of a level 3 array.

2.3 Video Server Structure

2.3.1 The Storage Hierarchy

The storage hierarchy of a video server could consist of tapes, disks, and DRAMs.
Although tapes are the cheapest per MB and have high capacity per unit, they also have
the slowest transfer rates and the longest average seek time. These characteristics make
them unsuitable to serve multiple concurrent CM streams in a video server, but they are
good candidates for backup repositories.

DRAMSs have the highest bandwidth among the three, but they are also the most ex-
pensive per MB. [Hennessy90] identifies the two orders of magnitude gap in costs between
DRAMs and disks, which still holds today. At the time of writing this dissertation®, the

5January 1997

2.3. Video Server Structure 11

prices per MB for DRAMSsS, disks, and tapes® are around $4, $0.18, and $0.045. Storing
352 GB CM data will thus cost $1.44 million, $0.065 million, and $0.016 million respec-
tively. The reduced cost of magnetic disks, along with their reasonable random access time
and transfer rates, makes them the desirable choices to store and serve CM data in a video
server.

Another aspect to consider is unit capacity. Although the density of DRAMs increases
60% per year, which is faster than the average 27% density increase per year for disks in
the past, current DRAM chips are of 64 Mbits. 1 Gbits DRAMSs will not be available until
2002, while 4 Gbits ones are likely in 10 to 12 years time [SMAART986)]. In contrast, current
3.5 in disks have a capacity of 9 GB, and their area density now increases at 60% per year.
This unit capacity gap and the persistence characteristic of data stored on disks, further
advocate that in the near future, magnetic disks will play an important role in video servers
for storing and streaming large amounts of data.

On the other hand, there are performance gaps between DRAMs and disks. The band-
width of 32-bit 60 ns DRAMs is 67 MB/s, increasing at 7% per year; while the transfer rate
of a disk today could reach 11.3-16.8 MB/s, increasing at 22% in the past and about 60%
[Grochowski96] now. Hence, DRAM bandwidth and disk transfer rates will be compara-
ble in a few years. However, the average random access time of disks is at around 10 ms,
which is of five orders of magnitude slower than that of DRAMs. For performance reasons,
it would be attractive to store the most frequently accessed videos in DRAMs. There are
trade-offs between costs and performance in arranging storage hierarchies for video servers,
but these topics are outside the scope of this dissertation. There is research comparing
different storage hierarchies and their costs, such as [Chervenak95] [Stoller95], and all of
them conclude that most video servers will store videos on disks in the foreseeable future.
Disk based video servers are assumed by this dissertation.

2.3.2 Basic Structure

Figure 2.2 shows the basic structure of a disk based video server system (backup storage
and CPUs are omitted for simplicity). Disks and DRAMSs storing CM data are linked by
some interconnect and are regulated by some management system, which is contacted by
clients for playing back or recording CM streams. CM data is transferred between clients
and the video server through networks, which are often switched ones in large scale systems
because of their scalability.

The most important aspect of the hardware part of a video server to support a large
number of streams is the interconnect structure. Generally, there are four types of inter-
connect: backplanes, channels [Katz92], parallel computer interconnection [Ibbett89)], and
networks. Most current high-end video servers use a centralised server architecture exploit-
ing the combination of the first three interconnect methods, and networks are only used
to connect servers to clients. Several problems exist for this kind of structure. First, if
disks are attached to a single machine, then that machine’s memory and I/O subsystem are
likely to become a performance bottleneck. Second, backplanes and non-switched channel
style interconnect do not scale well in both bandwidth and distance [Boxer95]. Third, as
video server applications are I/O intensive but not computationally intensive, exploiting
massively parallel multiprocessor architecture is not a cost-effective approach.

916 MB 60 ns EDO 72-pin non-parity
74.3 GB 7200 rpm 3.5 in SCSI
88.0 GB internal SCSI

12 Chapter 2. Background

Clients:

set-top boxes

Interconnect
o
_ DRAMS
workstations

Video Server <------- 1 PCs

S (T

Figure 2.2: Basic Video Server System Structure

It is likely that the main interconnect in future video servers will be based on chan-
nels and networks. Two prominent candidates are FC [Bryan94] [Sachs96] and ATM
[Prycker93]. FC is a high-speed computer or storage devices to computer interconnect
over a bit-serial connection. It is a hardware intensive, switched, looped, or point-to-point
technology purposefully blurring the distinctions between channels and networks. As sur-
veyed in [Sachs94], LAN and I/O architecture are converging, especially in the datalink
and physical layers. And their traditional difference in the communication length and the
master-slave vs. peer-to-peer computational models is disappearing. Also FC can support
high level protocols such as AALS and SCSI. For storage devices such as magnetic disks,
an FC Arbitrated Loop (FC-AL) [ANSI94] architecture has been proposed as an economic
solution for disk arrays to avoid the more costly switching fabric.

2.3.3 Network Striping

Recent research has made gigabit switches a reality [Kung92] [McKeown96], while
the cost/performance ratio of microprocessors is dropping steadily. These make it attractive
to use off-the-shelf components inside a video server with scalable switched networks as the
primary interconnect. Storage peripherals can be attached directly to a switched network
such as ATM or switched FC, and CM data can be striped to multiple peripherals, each of
which could be a single disk or a cost-effective small scale RAID using a backplane or a non-
switched channel such as SCSI or FC-AL internally. The rationales of this network striped
video server architecture are cost-effectiveness, flexibility, scalability, and high-performance.

The server is cost-effective because it can be constructed from off-the-shelf commercial
components and switched network interconnect. Flexibility comes from the fact that net-
works are generic and any storage devices or processing units can be attached and detached
without worrying about modification of the interconnect. Because peripherals and networks
can be independently upgraded, and each peripheral only needs to manage its own storage
objects, the server structure is highly modular, extensible, and scalable. High performance
comes from striping and the network attached approach. Striping allows the usage of the
aggregate resources of multiple storage nodes to serve multiple clients, while the network
attached approach enables data to be moved between clients and storage devices directly
and eliminates the potential data path bottleneck present in single node video servers.

Though network striped video servers rely on networks as the interconnect, this work
does not dictate an actual network technology to be used. However, as the working environ-
ment has ATM installed, further discussion of the structure will assume an ATM network.

2.4. Distributed Computing 13

Because ATM and FC are converging in certain aspects, the results of this research can
equally be applied to FC based interconnect. The current industrial trend is that ATM will
be the future network technology, while FC-AL will be used in future disk arrays. There
has not been much interest in SCSI/IPI over ATM or SCSI over switched FC.

However, network striped video servers have the disadvantage of reduced reliability
because multiple components can fail independently. There is a point beyond which it
would be more desirable to replicate videos among different and unrelated network striped
servers. Such hierarchical design is studied elsewhere [Lougher96] [Pegler97], while this
work concentrates only on network striped video servers. Nevertheless, this research does
consider reliability issues and provides a redundancy scheme to achieve fault tolerance.

2.4 Distributed Computing

A network striped video server is a typical distributed system, which is defined as several
computers doing something together [Schroeder93]. The canonical example of a general
purpose distributed system is a networked system — a set of workstations/PCs and servers
interconnected with a network. Networked systems are gaining popularity because of their
advantages in the areas of sharing, cost, growth, and autonomy over traditional centralised
systems. However, centralised systems are often easier to use because they are more acces-
sible, coherent, and manageable. To reduce this usage complexity for networked systems,
a distributed environment is introduced to give users and applications transparent access
to data, computation, and other resources across collections of multi-vendor, heterogeneous
systems.

An example distributed environment is Open Software Foundation (OSF)’s Distributed
Computing Environment (DCE) [OSF91]. DCE is based on the client/server model and the
remote procedure call (RPC) [Birrell84] paradigm. It consists of an integrated set of tools
and operating system and network independent services that support the development, use,
and maintenance of distributed applications. The services are divided into the fundamental
distributed services and the data sharing services. The fundamental distributed services
include threads, RPCs, a directory service, a time service, and a security service, while the
data sharing services build on top of the fundamental services and include a distributed file
system and diskless support. The DCE distributed file system is based on the Andrew File
System (AFS) [Howard88].

Another distributed environment is the Object Management Group (OMG)’s Object
Management Architecture (OMA) [OMA90], which is based on the object model rather
than the procedural call paradigm. OMA attempts to define, at a high level of abstraction,
the various facilities necessary for distributed object-oriented computing. It consists of four
components: the object request broker (ORB), object services, common facilities, and appli-
cation objects. The core of OMA is the ORB, a mechanism by which objects transparently
make requests and receive responses. The ORB provides interoperability between appli-
cations on different machines in heterogeneous distributed environment and interconnects
multiple object systems. OMG’s Common Object Request Broker Architecture (CORBA)
specification [CORBA91] [CORBA94] concretely describes the interfaces and services
that must be provided by compliant ORBs. CORBA is composed of five major components:
the ORB core, the interface definition language (IDL), the dynamic invocation interface,
the interface repository, and object adapters. CORBA based distributed object computing
is the paradigm used for component interaction in the Cadmus prototype implementation.

14 ' Chapter 2. Background

2.5 File Systems

2.5.1 File Implementation

A file system determines how files are structured, named, accessed, used, protected,
and implemented [Tanenbaum92]. In a dedicated video server environment, a proper
implementation that has good performance and can effectively support QoS enforcement
mechanisms is more important than other issues. Implementation of files on physical devices
is generally based on sequential, indezed, or log-structured file organisation. A typical file
system always uses the same file implementation for consistency reasons.

A sequential file is stored as a contiguous block of data on a disk. This has the advantages
of simple implementation and good performance, but the disadvantages of fragmentation
and wasted space, which are more relevant for large CM files. A variation of this organisation
is linked sequential files where fixed-size disk blocks of the same file are linked together by
pointers embedded in each block and no space is lost to disk fragmentation. However,
random access is very slow in this case.

An index file has a separately stored disk position index table apart from the file data
itself. According to how file data is further organised, indexed implementation can be
categorised as either block-based or extent-based. Block-based file systems store file data in
fixed-size blocks (typically 512 B-8 KB) on disks, and each block has an entry in an index
table. Data is read from or written to disk in block units by the file system, thus incurring
a seek and rotational overhead for each block access. Also if a file is large, its index table
could be very large as well. UNIX [Bach86] uses such a block-based file system, but it also
provides a raw disk interface which bypasses the file system and buffer cache and can be
used to read or write large amounts of data.

Extent-based file systems do not force block sizes to be fixed. A file is composed of a
number of chunks, or eztents, each of which is stored contiguously on a disk. The file system
records the starts and lengths of the extents into an index table, also called an eztent list,
for each file. When extent sizes are fixed for all files, an extent-based file system reduces
to a block-based one. When a file has only one extent, it becomes a sequential file. Hence,
extent-based organisation can achieve the effects of both sequential and block-based systems,
yet it is far more flexible than the other two, which makes it the desirable choice for CM
applications. For example, large extents can be allocated to CM files for better performance,
while the fragmentation problem is not severe because of variable extent sizes.

The fundamental idea of a log-structured file system [Ousterhout89] [Rosenblum92]
is to improve write performance by buffering a sequence of file system changes in file caches
and then writing all the changes to disks sequentially in a log-like structure using a single
disk write operation. The file-system’s only representation on disks is in the form of the
append-only log. However, the motivation for log-structured file systems does not hold in
a video server environment. This is because most activities in a video server are reads,
and recording will normally generate large writes. Furthermore, caching is not very useful
because of the lack of temporal locality for CM data. In addition, although log-structured
file systems have very good write performance, their read performance is at the same level
as that of the UNIX style block-based file systems.

2.5.2 Distributed File Systems

A distributed file system is used to provide persistent storage and data sharing in a dis-
tributed system. Some important issues in the design of a distributed file system are naming

2.6. Real-Time Systems 15

structure, programming interface, file implementation, system integrity, existence control,
concurrency control, security, file location, availability, and scalability [Satyanarayanan93).
A distributed file system typically has two reasonably distinct components [Bacon93]: a
file service and a directory service. The former specifies the file system interface for op-
erations on files, while the latter is concerned with directory management. These services
are normally implemented by a file server, typically a process running on some networked
machine. A more flexible approach described in [L0o94] separates the file service into two
layers, resulting in a modular and extensible architecture that can support multiple file
abstractions.

Many of the design issues and their solutions for a distributed file system can be ap-
plied to a network striped video server as well because of the distributed nature of the
latter. However, most contemporary distributed file systems do not support file imple-
mentation on multiple storage nodes across networks, let alone providing QoS for CM
applications. In addition, most of them are optimised according to file usage patterns on
traditional UNIX systems where most files are small (less than 10 KB) and have short
lifetime [Satyanarayanan81}, neither of which is true in a video server environment. To
better utilise system resources, a flexible architecture which is optimised for network striped
video servers and can support QoS for CM data retrieval and delivery would be desirable.

2.6 Real-Time Systems

2.6.1 Concepts

RT systems are defined as those systems in which the correctness of a system depends
not only on the logical results of computation, but also on the time at which the results
are produced [Ramamritham94]. An RT system is hard, if the consequences of a timing
failure can be catastrophic; otherwise, it is classified as a soft RT system. Video servers are
typical soft RT systems because they have to satisfy the temporal requirement of CM data,
but occasional delay or data loss is generally tolerable.

Activities in an RT system have timing constraints and need computational, commu-
nication, data, and I/O resources to proceed. Some activities may also depend on others.
Therefore, scheduling algorithms are used to determine, for a given set of activities, whether
a schedule (the sequence and the time periods) for executing the activities exists such that
the timing, precedence, and resource constraints of the activities are satisfied, and to cal-
culate such a schedule if one exists.

RT operating systems (RTOSs) are integrated parts of RT systems. They stress pre-
dictability and include features to support RT constraints. They should perform integrated
CPU scheduling and resource allocation so that collections of activities can obtain the re-
sources they need, at the right time, in order to meet timing constraints. Scheduling and
operating system (OS) support are two important aspects in video server design in order
to do AC and guarantee QoS.

2.6.2 Real-Time Scheduling
Static Scheduling

RT systems can be classified as either static or dynamic, as can RT scheduling. A static
RT system has three characteristics: tasks to be scheduled are known a priori; schedulability

16 - Chapter 2. Background

is analysed off-line; and no new tasks can be invoked at run-time. Scheduling in such an
environment can be static; and a schedule can be computed off-line and stored in a table,
or it can be constructed at run-time according to some pre-specified heuristics.

One such static scheduling approach is the cyclic executive model [Baker88]. A cyclic
executive is a control structure or program for explicitly interleaving the execution of several
periodic processes on a single CPU. A pre-computed cyclic schedule specifies an interleaving
of activities that will enable processes to execute within their periods and deadlines. Such
a schedule is called a major schedule, whose duration is called a major cycle. The major
schedule is further divided into minor schedules of equal duration, i.e., the minor cycle, also
known as a frame. The disadvantage of the cyclic executive is that static analysis must be
applied to find the cycles and the schedules. The advantage of the approach is that it is
efficient, predictable, and simple to implement.

Dynamic Scheduling

A non-static RT system is called dynamic and is characterised by dynamic scheduling
which computes schedules directly or indirectly at run-time according to on-line information.
Dynamic scheduling almost always relies on some heuristics to select which task to run first.
Such heuristics may be in the forms of priorities, periods, deadlines, laxities, or functions
which synthesise various characteristics and requirements of the tasks to be scheduled.

Priorities can be either pre-assigned or derived from other task characteristics such as
periods or deadlines. Highest priority first scheduling suffers from the unbounded priority
inversion problem [Cornhill87] when there is contention on multiple resources. In such
a situation, a higher priority task can be blocked unpredictably long by a lower priority
task. Priority inheritance protocol (PIP) [Sha90], priority ceiling protocol (PCP) [Sha90],
and stack resource policy (SRP) [Baker90] have been proposed to bound the duration of
priority inversion, although priority inversion itself cannot be eliminated.

Rate monotonic (RM) scheduling is a static priority scheduling method and assigns pri-
orities to tasks based on their periods, with higher priorities to tasks with shorter periods.
It is shown that RM scheduling is optimal among static priority schemes for periodic and
independent tasks with constant computation time [Liu73]. Earliest deadline first (EDF) is
a dynamic priority assignment algorithm: the closer a task’s deadline, the higher its priority.
EDF is shown to be globally optimal under the same scheduling environment. Processor
utilisation bounds exist for both schemes [Liu73) [Lehoczky89], and full processor utili-
sation can be achieved using EDF. In addition to deadlines, a task’s laxity (given by the
amount of time one can wait and still meet its deadline) can be used to deduce its dynamic
priority as well.

However, [Locke86] shows that, during overload situations, deadline or laxity based
scheduling has counter-productive effects. A time-value function is used in [Locke86] to
characterise a task, with an importance value assigned to each point of time when the task
is finished, and a Best Effort (BE) scheduling algorithm is proposed to maximise the sum of
values of all tasks during overload. The ideas have evolved into the Benefit Accrual Model
(BAM) in [Jensen94], where a benefit function is used to generalise the deadline of an RT
computation. Similar BE based approaches are also used to establish formal performance
bounds for on-line algorithms in [Baruah91] [Koren92], where a task’s nature is unknown
when it is issued; and the focus is the competitive factor, which measures the value an
algorithm guarantees it will achieve compared to a clairvoyant scheduler.

RT scheduling with precedence and resource constraints are generally NP-complete prob-
lems [Cheng88] [Audsley90]. [Zhao87b] and [Zhao87a] propose suboptimal algorithms

2.6. Real-Time Systems 17

that employ computationally simple heuristics based on resource and timing requirements
of the tasks being scheduled. [Spuri94] extends the results from PCP and SRP to ac-
commodate precedence constraints and shared resources. For BE scheduling, [Clark90]
develops an algorithm to deal with dependency (precedence and resource conflicts) which
is not known in advance.

2.6.3 Real-Time Operating Systems

Four main functional areas that an RT'OS supports are: process management and syn-
chronisation, memory management, interprocess communication, and I/O. Three general
categories of RTOSs exist: small and proprietary kernels, RT extensions to commercial
time-sharing OSs such as UNIX, and research RT kernels.

The small and proprietary kernels are often used for embedded systems when very
fast and highly predictable execution must be guaranteed. They are normally based on
the micro-kernel architecture where a minimal kernel and a set of system server processes
cooperate to provide OS functionalities. These kernels usually have fast context switch time,
short interrupt delay, and simple primitives. They also normally maintain an RT clock, use
single-address space memory management, and provide simple RT scheduling according to
priorities or deadlines. These features can be used as a basis upon which simple RT systems
can be built. Video servers belong to such RT systems because the types of the activities
and their resource requirements are known in advance, although the timing constraints of
the tasks cannot be anticipated. Cadmus uses a modified micro-kernel to provide QoS
guarantees in storage nodes, which will be further described in later chapters.

Recently, there have been efforts to build even smaller kernels and to put many of the OS
functionalities into applications through shared libraries instead of system server processes.
Nemesis [Leslie96] is such a vertically structured kernel built to support multimedia appli-
cations in a workstation environment. Nemesis schedules periodic processes using the EDF
method [Roscoe95), and it also supports NRT activities. There is no concept of priority
in Nemesis, which eliminates the problem of priority inversion. More recent work presents
solutions to network communication [Black95] and multimedia I/O [Barham96] under
the Nemesis environment. Other similar kernels are SPIN [Bershad94] and Exokernel
[Engler94] [Engler95], which are not driven by multimedia applications.

The approach to extend commercial OSs such as UNIX to RTOSs has limited applica-
bility because the extensions are generally slower and less predictable than the proprietary
kernels. It is questionable whether this is the correct approach, because many basic and
inappropriate underlying assumptions in time-sharing systems still exist in the extensions,
such as optimising for the average case, assigning resources on demand, and independent
CPU scheduling and resource allocation. All these will bring unpredictability, which is at
odds with RT systems.

While micro-kernels are effective for simple RT applications, they generally provide no
direct support for solving more complex or larger problems. For example, it is very difficult
to craft a solution based on priority-driven scheduling where all timing, computation time,
resource, precedence, and value requirements are mapped to a single priority for each task.
It would be desirable for an RT'OS to understand the timing and resource requirements of the
activities and to provide predictability in both the kernel and the application levels, instead
of treating each task as a random process and allocating resources independently. Some
research kernels, such as ARTS [Tokuda89], MARS [Kopetz89), CHAOS [Gopinath89)],
Spring [Stankovic91], and Alpha [Clark92], are aiming at these directions.

18 ' Chapter 2. Background

2.7 Summary

This chapter has examined some background concepts that have effects on video server
design. Particularly, the characteristics of CM data and storage devices demand scalable and
cost-effective video server structure, where disk based network striping is a good candidate.
In addition, these characteristics also require the following support from a video server: QoS,
AC, overload processing, and VBR smoothing. On the other hand, video server systems are
closely related to distributed systems, file systems, and RT systems. Some basic concepts

of the latter three have been described and their influences on video server design were
identified.

Chapter 3

Related Work

This chapter surveys the research work on various aspects of video server design. An em-
phasis is put on scalable storage systems using network striping, particularly those designed
for CM applications.

3.1 Disk Scheduling

A common approach for disk scheduling in a video server is to retrieve data on a cycle
basis, with the amount of data read or written for each stream in a cycle being proportional
to the stream’s playback rate. In [Rangan92], this is known as the quality proportional
multi-subscriber servicing algorithm, in which data retrieved for each subscriber in a cycle
may not be stored contiguously on a disk, but the cycle length may change dynamically.
In [Lougher92], this method is known as data block normalisation or stream re-mapping,
where data to be read for one stream in a cycle is stored as contiguous disk blocks, but the
cycle length is fixed.

In each cycle, the retrieval order for the streams can use either the round-robin method
or the SCAN algorithm, in which disk heads scan the disk platter from end to end back and
forth while servicing the requests along the way. Their main difference lies in their effects
on the latency between retrieving the same stream, and the latency has implications on
playback initiation delay and buffer requirements. [Yu92] combines these two methods by
partitioning each cycle into groups and assigning each stream to one group. The groups are
serviced in a fixed order in each cycle, but SCAN scheduling is used inside each group. This
grouped sweeping scheme (GSS) can easily reduce to either the round-robin or the SCAN
algorithm by adjusting the group size and the group number.

[Barham96] proposes an RSCAN algorithm to provide per-client rate guarantees at
the possible expense of disk utilisation. A disk I/O scheduler maintains a list of pending
transactions for all streams and services the transactions using SCAN. However, the sched-
uler accounts for the actual cost of each transaction in arrears and uses a credit scheme
based on leaky-buckets to rate control each stream. NRT disk requests are also supported
by estimating the slack-time in the system. The scheduler may split a long contiguous
transfer at a disk block boundary in order to meet the QoS guarantee of another client.

Deadline based disk scheduling is normally used in RT database systems (RTDBSs).
[Abbott90] studies the earliest deadline SCAN (ED-SCAN) method where disk heads seek

19

20 Chapter 3. Related Work

in the direction of the read request with the earliest deadline while servicing all the requests
along the way. It also examines the feasible deadline SCAN (FD-SCAN) algorithm where
only read requests with feasible deadlines are chosen as targets that determine scanning
direction. A deadline is feasible if it can be met by estimation. [Haritsa91] proposes
an adaptive earliest deadline (AED) method which uses a feedback control mechanism
which detects overload conditions and modifies transaction priority assignment accordingly.
The rationale is to schedule the largest set of transactions that can be completed by their
deadlines in all situations, which is similar to the one of BE scheduling [Locke86].

For multimedia I/0, [Reddy94| proposes a SCAN-EDF' algorithm where requests are
normally served in EDF order, but SCAN is used for requests with the same deadline. The
efficiency of SCAN-EDF depends on how often seek optimisation can be applied. Therefore,
deadline engineering methods, e.g., batching or delaying deadlines, are proposed to improve
efficiency. When requests from all streams are batched, SCAN-EDF in fact becomes the
cycle based SCAN approach.

Another deadline based disk scheduling method is the RT-WINDOW algorithm pre-
sented in [Chen96), which has two adjustable parameters: a window size and a threshold.
Requests are sorted in ascending deadline order and the first several requests constitute a
window. The first request is served immediately if its deadline is less than the threshold.
Otherwise, disk heads are moved toward the first request while servicing those requests

which are within the window and are also along the way. By adjusting the parameters,
RT-WINDOW can be degenerated to either EDF or SCAN scheduling.

3.2 Data Placement

When multiple streams are served from a video server, disk seek and rotational overhead
can be classified into inter-stream and intra-stream seeks. Assume at any time an access
request to a disk bears the data of only one stream, then inter-stream seeks are those
incurred between different requests, while intra-stream ones are those needed to serve one
request when its data is not stored contiguously. Because seek and rotational latency is
significant compared to the time spent on disk data transfer, data placement strategies are
used to reduce its occurrence or shorten its duration.

A stream’s data can be stored contiguously or scattered on a storage device. Contiguous
placement has no intra-stream seeks, although inter-stream seeks may still persist. However,
sequential file implementation, as described in Section 2.5.1, is subject to fragmentation
problems and may necessitate enormous copying overhead during insertions and deletions
to maintain contiguity. Scattered placement is more flexible but may incur intra-stream
seeks. Nonetheless, intra-stream seeks can be eliminated by storing the data of a request
contiguously on a disk, although data of different requests for a stream can be scattered.
This strategy is used in [Lougher92] for constant bit rate (CBR) videos.

Instead of avoiding intra-stream seeks, another approach is to reduce them to a reason-
able bound. This rationale is behind constrained placement [Rangan91] [Anderson92],
where the separation between successive blocks of a file is bounded. The bound on separa-
tion is generally not enforced for each pair of successive blocks of a file but only on average
over a finite sequence of blocks. Methods for merging multiple CM files on disks and still
preserving the placement constraints of individual files are studied in [Yu89] [Rangan93].
Constraint placement is useful when block sizes must be small, but it needs elaborate algo-
rithms in the implementation to guarantee the constraints. Furthermore, its advantage may

3.3. Quality of Service Enforcement 21

disappear in the cycle based SCAN approach, where intra-stream and inter-stream seeks
can be mixed and optimised together.

To reduce inter-stream seeks, [Ghandeharizadeh95] proposes a region based block
allocation mechanism. This approach partitions a disk into a number of regions and stores
successive blocks of a file in successive regions. In each cycle, a server only retrieves data
for all active streams from a single region using SCAN, thus limiting the inter-stream seek
overhead. However, this method needs to synchronise all streams to the same region, and
therefore the latency observed by a stream’s first request may be large.

[Ozden96b)] proposes a phase-constrained allocation scheme in order to eliminate both
inter-stream and intra-stream seeks. A phase refers to the video transmission starting at
a given time. This scheme concatenates all videos into a single super-video and supports
maximum concurrent phases allowed by the disk transfer rate. It segments the super-video
into rows and columns and stores data contiguously on a disk using the column major
order. In each cycle, a column of data corresponding to the maximum number of phases
are read sequentially, eliminating both seek and rotational latency. However, the latency
for a new phase to start may be even longer, and the resulting system is highly inflexible.
For example, even in pure video-on-demand (VOD) applications, it may be necessary for
videos of variable lengths to be added or deleted dynamically, thus breaking the column
major order.

To maintain temporal relationships among objects such as video, audio, text, and image,
[Chen93] interleaves related media objects within a block stored contiguously on a disk,
thus removing the inter-stream seeks incurred when these objects were stored separately.
Similarly, by observing that files recorded at the same time are likely to be replayed at the
same time, [Lougher93] uses log-structured placement to group together related files on
disks. Then when these related streams are played back together, their inter-stream seeks
can be minimised or even eliminated. However, the advantages of both schemes disappear
for independent streams.

Most of the above work assumes CBR streams and disks with constant transfer rates.
For VBR videos, [Chang96] compares three placement and retrieval techniques: constant
time length (CTL) places and retrieves data in blocks corresponding to equal playback
durations; constant data length (CDL) places and retrieves constant size data blocks; and a
hybrid solution uses CDL placement but retrieves a variable number of blocks in each cycle.
The hybrid approach is shown to have moderate buffer requirements and low fragmentation.
For ZBR disks, [Tewari96b] considers the popularity and access rates of data blocks and
proposes an optimal skewed organ pipe data placement strategy. However, the approach is
questionable because the placement optimisation criterion is to minimise the mean response
time for block access, instead of guaranteeing QoS for individual streams.

3.3 Quality of Service Enforcement

While a video server supporting CBR streams can retrieve and send a fixed amount of
data periodically for each client, VBR videos are more difficult to handle in the sense that
their rates vary, thus imposing variable load to both the server and networks. On the other
hand, there is server service time variability as well. This is because given a fixed amount
of data, the time needed to read it from a disk would vary depending on the disk scheduling
method used and the place the data is stored. The QoS enforcement scheme in a VBR
video server should take into account of both aspects of variability.

22 Chapter 3. Related Work

One advantage for stored VBR videos is that their characteristics can be analysed off-
line. For video servers, statistical and deterministic services have been proposed. Statistical
schemes will utilise the disk service time characterisation [Vin94b] [Vin94a] and the bit
rate statistics of stored videos [Chang94b] [Chang96] to perform statistical analysis dur-
ing AC. However, although statistical strategies are applicable to various situations, for
commercial applications such as VOD, it would be better to provide deterministic services
to clients.

Deterministic schemes for VBR videos are either cycle based or deadline based. Cycle
scenarios [Dey94] [Chang94a)] [Asai95] [Neufeld96a] extend the cycle model for CBR
videos in [Rangan91] [Lougher92] [Vin93] and perform AC for the cycle lifetime of a new
stream based on the amount of data needed in each cycle, which is known a priori. Deadline
based methods [Lau95] recompute a schedule for each disk at AC time based on deadlines
of the requests that would be issued in the lifetime of a new stream, while the deadlines are
obtained by analysing the corresponding stored VBR video in advance. In deadline based
approaches, each request would retrieve a fixed amount of data for a video; while in cycle
based schemes, a variable amount of data would be read in fixed-length cycles. Similar
deterministic service ideas were also proposed as “dynamically scripted pre-fetching” in
[Staehli93], but without further elaboration.

Another category of deadline based design that could support VBR. videos [Reddy94]
[Chen96] [Shi96] can be classified as dynamic deadline based schemes, as their service
schedules are computed dynamically at run-time instead of at AC time. Their drawback is
that one cannot reason about predictability and QoS guarantees, and they can easily reduce
to best-effort RT services. Both deterministic and dynamic deadline based mechanisms
have the disadvantage that QoS will be degraded unpredictably during temporary overload
situations. While effective service (e.g., when a disk is always servicing client requests)
overload for different streams will not happen in deterministic deadline based schemes,
practical service overload may occur due to disk anomalies. Consequently, a deterministic
cycle based scheme would be a better approach if stringent QoS guarantees are required,
such as in the case of VOD. '

However, most of the above work only considers service guarantees from storage devices
and is based on modelling or simulation. [Ramakrishnan95] is different in that it describes
the implementation of a prototype video server and the scheduling and AC for accessing the
server’s processor in addition to storage resources. The CPU scheduler uses a combination
of RM and weighted round-robin scheduling algorithms and supports three classes of tasks
including NRT activities. The disk scheduling is a cycle based round-robin one using worst
case seek time estimation. However, the server is oriented to CBR videos because peak rate
reservation is used for playing back VBR streams. There is also no consideration on shared
resources, such as buses, during AC.

[Jardetzky92] and [Jardetzky95] also implement a prototype CM file server and
consider CPU scheduling. The disk scheduling is based on C-SCAN (Circular-SCAN), but
there is no concept of a cycle in the system. Dedicated disk threads are used for read-
ahead and write-behind. In addition, each stream has a processing thread created for it,
and different classes of threads are scheduled by priorities. The periodic processing threads
calculate their own deadlines and request to be scheduled accordingly, resulting in an RM
based EDF scheduling for these threads. However, there is no consideration of AC, and
the dynamic deadline based scheme used may be unstable during abnormal situations.
Furthermore, the one thread per stream approach may incur much stream jitter due to
increasing contention between the threads.

3.4. Redundancy Schemes 23

3.4 Redundancy Schemes

Because a scalable video server may employ components that could fail independently,
system reliability will become an issue and fault tolerance problems should be considered.
Two different but closely related issues are failure recovery and video date availability. When
a component fails due to server, node, or media failures, that component is unavailable until
it is recovered. Traditional transaction recovery techniques [Spector89], such as intention
lists, shadow paging, and write-ahead logging, can be used in all components to maintain
system state and meta-data integrity. Video data lost due to unrecoverable media failures in
disks should be restored from backup storage or reconstructed from redundant information
stored on other disks.

However, during failure recovery, video data should be still available to maintain exist-
ing streaming services. This can only be achieved by using some forms of data redundancy
schemes. The same idea as behind RAID applies, and either parity or replication infor-
mation can be stored in the system. Parity based schemes similar to RAID3 or RAID5
but for multimedia applications are studied in [Tobagi93] [Berson95] [Tewari96a] and
[Ozden96a]. The general approach is to reserve resources for fault situations, and to evenly
distribute load when a disk fails by properly placing data and parity information on multiple
disks. The drawback for parity based schemes compared to replication is that data needs
to be reconstructed before it can be sent to clients, thus requiring extra resources and more
complex scheduling methods to maintain RT services.

Replication schemes will store a backup copy of a primary data block in a disk other than
the one in which the primary block resides. Then when only the primary data is lost, its
backup is immediately available. Declustering is a term used to describe how to distribute
backups in replication schemes. Several alternative declustering techniques are: mirrored
(or duplexing, mirroring, shadowing, or mirrored striping) [Katzman?78] [Tandem87),
chained [Hsiao90), multi-chained [Lee95), rotational mirrored [Chen95)], and interleaved
[Teradata85] [Copeland89] declustering. In all these cases, a file may be striped across
multiple disks. However, most of them are studied under time-sharing environment where

performance metrics are average response time to multiple requests and average load on
each disk.

In mirrored declustering, a disk will store either the primary or backup blocks but
not both, and primary blocks striped on one disk have their backup counterparts stored
on another single disk. When a primary disk fails, all its load is assumed by the single
corresponding backup disk. In contrast, chained declustering allows primary and backup
blocks to coexist on one disk, places the backup of a primary block on the successive disk
relative to the one on which the primary block resides, and stripes primary blocks onto
all disks in a round-robin manner. Then when one disk fails, its load can be shed to its
adjacent two disks. A disadvantage of chained declustering is that it is less reliable than
mirrored declustering. ‘

Multi-chained declustering further relaxes placement restrictions on backup blocks. A
primary block of a file can have its backup stored on one of the subsequent d disks relative
to the one where the primary block is stored, and d is termed as the declustering degree of
the file. The siride, s, of a primary block is defined to be the distance between the disks
where the backup copy and the primary block reside. In multi-chained declustering, the
strides of the primary blocks of a file on one disk are evenly distributed between 1 and d,
so that when one disk fails, requests for the file on the failed disk can be evenly offloaded
to the subsequent d disks. Chained declustering is thus a special case of multi-chained
declustering where d = s = 1.

24 Chapter 3. Related Work

Rotational mirrored declustering is also a special case of multi-chained declustering if
disks in a disk array are permuted. It is designed for replicating a video onto another disk
array to increase the number of streams which can be served for that single video, and
therefore does not apply to network striped video servers which use striping for the same
purpose. However, when a set of disks where a single video is striped has reached a certain
reliability limit and it is inappropriate to stripe a video to more disks in order to serve more
requests, replicating videos to another set of disks would then be more desirable.

While multi-chained declustering tries to store the backup copies of different primary
blocks in different disks, interleaved declustering stores the backup copy of each primary
block in different disks. With a declustering degree of d, interleaved declustering will seg-
ment a backup block into d fragments of equal size and store them in the subsequent d
disks relative to the one in which the primary block is stored. Then when the disk where
a primary block is stored fails, the load for accessing the primary block is always equally
distributed to the subsequent d disks.

3.5 Scalable Storage Servers

This section performs a survey and evaluation of research work on scalable storage
systems, especially network striped video servers. Some industrial video servers which may
not be based on network striping are also included.

3.5.1 General Purpose Servers
Swift

Swift [Cabrera91] [Long94] is an I/O architecture to support high data rates in general
purpose distributed systems by using network striping. It provides fault tolerance using
parity in the same manner as RAID levels 4 and 5. Data transport is based on UDP, and
one thread per client per file is used initially in server nodes [Cabrera9l]. [Long94| re-
implements Swift using one process per file, and a distributed transfer plan executor model
is proposed to manage all communication. The executor is implemented as a distributed
event-driven finite state machine that decodes and executes a set of reliable data-transfer
operations. It is in fact simulating co-routines and RPCs at a level lower than application
programs. The Swift architecture is shown in Figure 3.1.

Clients O
Interconnection Media C

Storage
Agents

Distribution Storage
Agents Mediator —O

Figure 3.1: Components of the Swift Architecture

A distribution agent acts on behalf of its client, the data producer and the consumer,
and in practice will be co-resident with the client. Its primary task is to implement striping

3.5. Scalable Storage Servers 25

of data over several storage agents and to perform all necessary redundancy computation to
provide fault tolerance. The storage mediator establishes and administers storage and com-
munication resources of the system. It determines SUS, reserves system resources in storage
agents, and computes transfer plans, the information needed for distribution agents to ac-
cess data from storage agents. Finally, storage agents administer all aspects of secondary
storage media, including data layout, optimisation, and off-line data alignment.

Meta-data, such as directory entries, is managed by the storage mediator. But how it is
stored is not specified, and the prototype implementation does not have a storage mediator
at all for simplicity reasons. In general, the Swift architecture is flexible because it does
not provide detailed specifications. Although it is aimed at multimedia applications, how
resources are actually reserved and how QoS can be enforced are not dealt with. Providing
high average data rates and supporting QoS guarantees for CM data are not equivalent
issues.

Zebra

Zebra [Hartman95] is a network striped file system that incorporates ideas from log-
structured file systems and RAID. It does not stripe on a per-file basis but on a per-client
basis. Each client machine forms its new file data into a single append-only log using
caching and stripes this log across storage servers. RAID 4- or 5-like parity is used for data
availability, and parity is computed for client logs, not for individual files. The rationale
is to provide high performance for writing small files. The structure of Zebra is shown
in Figure 3.2, in which squares represent individual machines and circles represent logical
entities. -

)) File Stripe
Client Client Manager/ |\ Cleaner
Storage Storage L Storage
Server Server Server

Figure 3.2: The Structure of Zebra

A client is a machine that runs application programs. It contacts the file manager to
obtain information as to where to store or retrieve data. It is a client’s responsibility to com-
pute parity or reconstruct data. Storage servers are just repositories for stripe fragments,
which are all of the same size, e.g., 512 KB. Storage servers consider a stripe fragment as a
large block of bytes with a unique identifier (ID). The file manager is responsible for all the
meta-data in the file system such as file attributes, directories, symbolic links, and special
files for I/O devices. Finally, the stripe cleaner is used to reclaim unused space on storage
servers.

The file manager does not manipulate any file data except block pointers. A block is
a collection of data from a file, and a block pointer contains a fragment ID and the offset
of the block’s storage location. A client requests block pointers from the file manager and
then reads data directly from storage servers. The meta-data from the file manager machine
is treated exactly like normal client data and is striped across storage servers, so the file

26 Chapter 3. Related Work

manager can run on any machine in the network. Data and system state consistency is
maintained using logging and checkpoints. Individual component crash recovery is also
considered but not implemented.

HPSS

HPSS (High-Performance Storage System) [Watson95] is a network centred architec-
ture based on the IEEE Mass Storage Reference Model Version 5 [Garrison94]. It assumes
a high-speed network for data transfer and a logically separate network for control. The
control mechanisms use OSF’s DCE RPC. HPSS supports both parallel and sequential I/0,
as well as standard interfaces for communication between processors (parallel or otherwise)
and storage peripherals. Data is transferred directly between clients and network attached
peripherals (NAPs) (e.g., disks, tapes, and frame-buffers) [Meter96) under control of HPSS
servers. The network protocol for NAPs in HPSS is TCP/IP, although in principle channel
protocols or ATM could also be used.

(client side) (server side) Storage System
‘ Manager(SSM
__@ Data Movement _[oer > gt (<)
(all components)
- Client API | Bitfile Storage Physical Volume
. FTP Daemon < Server(s) Server(s) Library(s)
ame
* PFS Daemon
- Migration/ Physical Volume
Purge Repository(s)

Figure 3.3: The HPSS Software Architecture

The HPSS components are shown in Figure 3.3. The storage server provides a hierar-
chy of storage object abstractions: logical storage segments, virtual volumes, and physical
volumes. One storage server is responsible for all storage segment allocation on virtual and
physical volumes, but it can also be specialised to manage volumes of the same type, e.g.,
all disks in the system. It translates references to storage segments into references to the
corresponding virtual volumes and finally into physical volume references and peripheral
addresses. . : :

A bitfile is an uninterrupted bit data stream and has a unique ID associated with it.
The bitfile server is responsible for mapping requests with bitfile IDs to I/O descriptors
containing storage segment IDs, while the name server translates user POSIX path names
to HPSS objects, suchas files or virtual volumes. Movers provide components and protocols
to transfer data from source devices to sink devices, and there are movers for each type of
peripheral and network. Finally, the physical volume library manages all physical volumes
such as NAPs, and the physical volume repository manages all HPSS-supported robotics
and their media, such as cartridges.

Parallel I/O in HPSS is enabled through data striping over multiple virtual volumes.
SUS and stripe widths are determined by the bitfile server according to client requirements
and system specifications. A Parallel Transport Protocol (PTP) [Berdahl95] sits above the
transport layer in a network architecture and provides data exchange between heterogeneous
systems and devices. During parallel I/0, the storage server forks off multiple DCE threads

3.5. Scalable Storage Servers 27

to handle I/O for each physical volume and associated I/O peripheral. The storage server
threads then pass on the expanded I/O descriptor structure with address information to
movers associated with the specified peripherals to carry out data transfer.

It can be observed that HPSS and PTP can achieve very high performance for parallel
transfer of single large files, which are required by most scientific I/O intensive application
programs [SIOI95]. In contrast, video servers tend to serve multiple streams with compar-
atively low bandwidth requirements. This scenario will incur high communication overhead
between clients and HPSS servers. In addition, as the storage server in HPSS manages all
physical devices of the same type in the system, it could be a potential bottleneck when
a large number of I/O requests are present simultaneously. Also HPSS does not provide
redundancy information to recover from failures of physical volumes over which data are
striped.

xFS

xFS [Anderson95b] is a serverless network file system developed as part of the NOW
(Networks of Workstations) project [Anderson95a]. In place of a centralised server (or set
of replicated servers), client workstations in xFS cooperate in all aspects of the file system
such as storing data, managing meta-data, and enforcing protections. Data is distributed
across storage server disks by implementing a soft RAID using per-client log-structured
striping similar to that of Zebra. Control processing is dynamically distributed across the
system on a per-file granularity using a serverless management scheme. In addition, xFS
eliminates eentral server caching by using cooperative caching to manage portions of client
memory as a large, global file block cache. Cache consistency is maintained on a per-block
basis using shared-memory multiprocessor-style schemes such as the write-back ownership
protocol similar to the ones used in Sprite [Nelson88] and AFS [Howard88).

Four types of entities exist in xFS: clients, storage servers, managers, and cleaners (cf.
the Zebra structure in Figure 3.2). Clients and storage servers have similar functionalities
to those in Zebra. However, xFS supports multiple managers and cleaners, scatters cache
consistency operations, and can stripe data on distinct subsets of all storage servers. The
key to xFS is its ability to dynamically alter the mapping from a file to its manager, which is
achieved by maintaining extra indirect mapping information to resolve a file name to where
the data is stored on disks. The UNIX Inode structure is used for data block addressing and
is interpreted by managers. Data blocks are transferred directly between storage servers
and clients by requests from managers.

Although the extra indirection may incur extra load, xFS works well under the tradi-
tional workload. This is because of its load balancing ability on both control processing and
data retrieval, as well as its use of cooperative caching to take advantage of temporal locality
of data. However, these may bring unpredictability for CM applications because caching
CM data is not very useful [Jardetzky92], and the large sizes of CM files will require a
manager to read in extra indirect blocks before a data block can be resolved. In addition,
the strategy of one block per request from a manager also creates a high communication
overhead for large sequential access.

Petal

Petal [Lee96] is a distributed storage system using network striping. It consists of a
collection of network connected servers that cooperatively manage a pool of physical disks.
It takes a different approach by providing large abstract containers called virtual disks with

28 Chapter 3. Related Work

block-level interfaces to its clients, so that it can be easily integrated into any existing
computer systems and can transparently support most existing file systems and databases.
A replication based redundancy method, specifically chained declustering is used for data
availability in virtual disks. The Petal prototype structure is shown in Figure 3.4.

LFS NTFS PCFS BSD FFS
(Petal Client) (Petal Client) (Petal Client) (Petal Client)

Scalable Network
Client __| o 4 . . Cytplplylulioly 4
View ' devivdiskl ! | Virtual Disks 1 /dev/vdisks !
Physical Petal Petal Petal
View | |Server Server R Server

Figure 3.4: The Petal Prototype

Data on a virtual disk is striped over multiple Petal servers. A client request in the form
of <virtual diskID, offset> is interpreted by one server initially to find the server where
the data is actually stored. If the two servers are not the same, the request is forwarded
to the latter, and data is transferred between the server and the client directly. System
level global state information is replicated across all Petal servers using the “part-time
parliament” algorithm [Lamport89], which ensures correctness in the face of arbitrary
combinations of server and communication failures and recovery. Other issues such as
reconfiguration and data recovery are also considered. However, if applied to video server
applications, Petal suffers the same disadvantages as block-based file systems do.

3.5.2 Scalable Video Servers
ISS

The Image Server System (ISS) presented in [Tierney94] is not a video server, but
it is an image server exploiting network striping. Like HPSS, ISS is motivated by single
user applications with high bandwidth requirements. Its main components are disk servers
which are essentially block servers that are distributed across a wide area network. Data
organisation is determined by an application as a function of data types and access patterns,
and is implemented during the data load process. Then at run-time all disk servers can
send data in parallel to an application. This is useful for applications such as terrain
visualisation, which is of interest to the U.S. Army. No redundancy information is provided
for data availability in case of server failures.

There is also a name server in the system that maps a client request to the physical
location (<server, disk, offset>) of the requested data. Requests are sorted on a per
server basis and are sent to individual disk servers. Three priority levels exist for block
requests, so that a lower priority block can be pre-fetched to a disk server cache but not
sent. Priorities are set by client applications using a prediction algorithm to anticipate
which part of the data, e.g., corresponding to part of a terrain image, will be needed in the

3.5. Scalable Storage Servers 29

near future. Data may be discarded if it cannot be sent or did not arrive in time. It is
alleged that ISS can be used for video servers, but the claim has not been verified.

MARS

The MARS (Massively Parallel And Real-time Storage) project [Buddhikot95] is aimed
at the design and prototyping of a high performance large scale multimedia server. A MARS
server consists of three basic building blocks: ATM interconnect, storage nodes, and a central
manager (Figure 3.5). The central manager performs AC, sets up data flow between storage
nodes and clients, and manages associated meta-data in the system. However, how the
meta-data is managed is not clear, and no redundancy information is provided. Also only
CBR videos are considered.

Central Manager
Client
Link ATM Interconnect
High Speed
Network Interface
Storage Storage| |Storage
Node Node Node

Figure 3.5: The MARS Prototype Architecture

In MARS, data is striped over storage nodes using a staggered distributed cyclic layout to
facilitate fast forward operations by skipping storage nodes. The QoS enforcement scheme
is cycle based, and cycles are enforced by ATM control cells. A dual-buffer scheme is
used to separate disk retrieval and network transmission in a cycle. A cycle is further
divided into sub-cycles according to the number of storage nodes in the system to balance
network activities in each sub-cycle. How QoS is actually guaranteed in storage nodes is
not described. MARS, as presented in [Buddhikot95], is a prototype based on analytic
modelling.

SPIFFI

The SPIFFI scalable VOD system [Freedman95] is based on SPIFFI [Freedman94],
a high performance, scalable parallel file system that is developed and implemented on an
Intel Paragon. SPIFFI assumes a set of compute nodes and disk nodes connected by a
tightly coupled network. Data is striped across all disks in the system in a round-robin
fashion without redundancy information. A fragment of a file which is stored on one disk is
laid out contiguously. The file system at each disk node is responsible for mapping logical
file blocks to physical file blocks and for recording each fragment’s size, thus keeping file
meta-data to a minimum. Each compute node caches a file’s meta-data and calculates which
disk contains which blocks of the file so that an application can request data blocks directly
from a disk node. A control thread in some node accepts file open/close operations and
manages file meta-data. 8 disk request threads are used at each disk node to receive data
requests, do the requested disk I/O, and then reply to the compute nodes. Large buffer
pools are maintained in each disk node for use by read-ahead and write-behind.

The SPIFFI VOD system described in [Freedman95] suggests the use of inexpensive
commodity components, and video terminals are used in place of compute nodes. Video data

30 Chapter 3. Related Work

is explicitly requested by video terminals, and each request bears deadline information. This
dynamic deadline based QoS enforcement scheme naturally leads to the use of a deadline
based disk scheduling algorithm, in which requests are classified according to their urgency
and SCAN is used in each prioritised class. Some pre-fetch schemes which engineer the
deadlines of future requests are proposed to maximise the performance of the disk scheduling
algorithm. The results are presented from a simulation study, and no consideration has been
given to AC. Implementing the system on a cluster of Sun workstations is suggested as future
work.

Clustered Video Servers

[Tewari96c| develops an analytical model for clustered video servers, which is composed
of front-end delivery nodes and back-end storage nodes connected by a switch. A front end
node explicitly requests data blocks from back end nodes, and transmits data to clients
at regular intervals from its read-ahead buffer. An underlying software layer makes the
storage nodes appear as a virtual shared disk to the front ends. Deadlines are associated
with requests and EDF disk scheduling is used in storage nodes. The QoS critérion is
to minimise the number of block requests missing their deadlines. A result similar to
[Reddy94] is reported — that more read-ahead buffers but with smaller block sizes may
give better performance than the dual-buffer approach.

Only CBR is considered and data is striped on disks using a random placement algo-
rithm, so that it is easier to redistribute data when additional disks are added into the
system. [Tewari96a] compares mirroring and the software RAID approach for data avail-
ability in clustered video servers of the same architecture using an analytic model. A parity
based scheme is selected as a better choice, and a random parity placement method is pro-
posed to equally utilise space and bandwidth of all disks during both failure and normal
operations.

SCAMS

The aim of the SCAMS (SCAlable Multimedia Servers) project [Lougher96] is to pro-
duce a distributed hierarchical VOD storage architecture that will scale to tens of simul-
taneous streams, and will be able to operate over a widely distributed area. The SCAMS
hierarchy consists of three levels: disk striping in each storage node, node striping in each
domain, and file replication between different domains. Based on network-link capacity and
file popularity, algorithms are proposed to compute optimal configuration of domains and
to determine when to replicate files between domains. The system and its behaviour in a va-
riety of network configurations have been investigated through simulation. No redundancy
information is provided in the node striping level because of replication in upper layers.

In follow-on research, [Pegler97] proposes to use dynamic file component replication
to address the scalable limitations of network striping, file replication, and hierarchical
techniques by exploring the use of scalable compression. As bandwidth and storage require-
ments of each compressed component are much less than the original CM file, when overload
occurs, the copying overhead incurred during migration or replication is kept low because
only the most highly loaded components need to be moved or copied. Separate compressed
components are combined using mizing agents connected to networks. AC, file replication
or migration, and the selection of a mixing agent are handled by a central manager.

3.5. Scalable Storage Servers 31

3.5.3 Industrial Video Servers

Microsoft

Microsoft’s Tiger video file server [Bolosky96] is a prototype built out of a collection
of computers connected by a high speed network. Each of the computers is called a cub,
and every cub has some number of disks dedicated to storing video data and a disk used
for running the file system. Tiger stripes its file data across all disks in the system in a
round-robin fashion, and the striping block size, which is typically in the range of 64 KB
to 1 MB, is the same for every file. Fault tolerance is provided by replication, specifically
interleaved-declustering is used. To avoid retransmission and retain RT performance when
data is lost, UDP over ATM is used as the communication channel between cubs and clients.
The hardware layout of Tiger is shown in Figure 3.6.

Central Controller Low Bandwidth
Control Network
Cub g:|~ Cub . g Cub
SCSI Bus ATM Network
Client Client

Figure 3.6: The Tiger Hardware Layout

In addition to the cubs, the Tiger system has a central controller machine. This con-
troller is used as a contact point for clients of the system, as the system clock master, and
for some bookkeeping activities. Data does not pass through the controller; and once a file
playback has started, the controller takes no action until the end of the file is reached or the
client requests termination of the stream. Tiger makes no assumption about the content of
the files it serves, but it assumes that all files on a particular server have the same bit rate.
This greatly simplifies AC and QoS enforcement in the server.

The QoS enforcement scheme in Tiger is similar to the cycle based approach. Tiger
uses a single system schedule to coordinate all disk services. Assume a Tiger server can
support NV streams of the same rate, then the system schedule has N single entry slots,
with an active stream’s service request appearing in exactly one slot. In each slot, a disk
will retrieve one block for a stream if the slot is not empty. In the prototype, each block
has a playback time of 1 second, and the block service time, which can be seen as the cycle
length, is 221 ms. Every disk in a Tiger system walks down the schedule, processing a
schedule slot every block service time (i.e., every cycle). However, different disks will not
process the same slot at the same time, and successive disks are offset from one another in
the schedule by a block playback time. The prototype system has 15 disks, and around 15
* 1 second / 221 ms = 68 streams can be supported when no disk fails. The prototype is
implemented on a collection of PCs running Microsoft Windows NT.

32 Chapter 3. Related Work

Oracle

The Oracle Media Server [Laursen94] [Laursen95] is a product supporting access
to all types of conventional data stored in the Oracle relational and text databases. In
addition, it has an RT stream server that supports storage and playback of CM data. All
access into the RT section of the Media Server goes through scheduling dispatchers for AC
and scheduling based on CPU, disk, and memory resources. Variability caused by VCR
commands is also factored into an RT scheduler in order to provide continuous guaranteed
services. QoS enforcement is cycle based in that the entire network is treated as a time
division multiplexed space, and each node has a set of time slots in which it can write to
another node. The RT stream server is built on a micro-kernel and raw disk and network
I/O and unreliable messaging. Only CBR is supported and peak rate reservation is used
for VBR playback.

The RT server can identify and correct disk failures without interrupting RT data flow.
But the exact redundancy scheme used is proprietary, as well as scheduling mechanisms
in the RT server. Communication channels are provided through the Oracle Media Net,
an implementation of layers 3 (network) and 4 (transport) of the OSI reference model,
with additional ability to deal with network topologies and quantities of traffic common
to consumer-based networks. The Media Net is used to build reliable mechanisms such as
RPC, distributed object invocation, and NRT data transport, while video data is transferred
through separate isochronous channels. However, the Oracle Media Server relies on mas-
sively parallel machines such as the nCUBE to serve large amounts of requests [Pearson94),
which is contrary to the approach taken by this research which uses network striping and
loosely coupled components.

Silicon Graphics

The ITV system from Silicon Graphics [Nelson95] is based on servers running on
its Power Challenge Series, which are RISC multi-processor systems with 256-bit wide
data buses [Boxer95]). The Challenge Servers run IRIX, SGI's version of UNIX. They are
connected via an ATM network to set-top computers, and themselves are connected by
FDDI. Scalability and availability are achieved by service replication rather than network
striping. Three techniques that are crucial to the successful development of the system are
identified as: distributed objects for client/server interactions; leveraging the name service
to support replication and recovery; and designing availability into all services. The QoS
enforcement scheme is not clear, and only CBR videos are supported.

Hewlett-Packard

The HP MediaStream server [Natarajan95] uses specialised I/O hardware to deliver
compressed video and audio. The specialised hardware, a video transfer engine, simply
pulls data out of disks and transmits it at precise data rates. Three hardware modules in
an engine are: data sources, a stream controller and a stream router. A data source module
accesses MPEG-2 encoded video from disks under requests of the stream controller, and
delivers data to a Sonet network through the stream router. The QoS enforcement scheme,
as suggested in [Chen96], may be a dynamic deadline based one. It is not clear whether
data is striped across multiple engines to serve multiple streams.

3.6. Summary 33

Online Media

There are two phases for the Cambridge ITV trial [Vincent95] led by Online Media.
In phase one, an ORL discbrick [Chaney95] is used to serve up to 25 MPEG-1 streams of
2 Mbps each. Phase two uses an ICL PrimServer (Parallel Interactive Media Server) which
is based on the massively parallel Goldrush system of ICL, and can support around 2,000
simultaneous streams when fully populated. However, the data management and the QoS
enforcement scheme in the parallel server are not clear.

3.6 Summary

This chapter has surveyed work on some important aspects of video server design,
namely, disk scheduling, data placement, QoS enforcement, and redundancy schemes. It
also examined closely related work on scalable storage systems using network striping. Gen-
eral purpose scalable servers are either focused on scientific applications demanding high
I/O bandwidth, or are designed for traditional file usage patterns, and neither provides
QoS to CM applications. Scalable video servers from academia are more concerned with
analytic modelling or simulation of storage services, rather than integrated resource man-
agement to guarantee QoS. Industrial video servers, except the Microsoft Tiger, rely on
high bandwidth internal interconnection, instead of network striping. Also most existing
scalable video servers only support CBR. videos.

Chapter 4

System Architecture

This chapter first identifies the requirements imposed on the software system frame-
work for network striped video servers. Then it presents the Cadmus architecture, which is
scalable, flexible, and QoS aware. Two important aspects of Cadmus, the meta-data man-
agement and the redundancy scheme, are described, along with some other architectural
issues.

4.1 Requirements

The storage system for network striped video servers is not identical to traditional
distributed file systems. The requirements for such a system can be deduced by examining
the shortcomings of the network striped storage servers surveyed in the previous chapter
when they are applied in a video server environment.

First, the structure of some of the servers is not scalable, that is, potential bottlenecks
still exist when there are large numbers of simultaneous requests. For example, some of
them have a single control machine to accept and analyse all client requests in the whole
system, while some others use a single server to manage all system meta-data, including
that for physical devices. Some of them have modules to explicitly send block based requests
to storage servers, which may be overwhelmed by the request overhead when many such
modules exist.

Second, the design of some of the servers is not flexible. For instance, several of them
only support fixed SUS and a fixed striping group for all objects in their systems, and most
of them do not explicitly provide VBR support or consider VBR smoothing. While ZBR
disks are becoming prevalent, none of them have considered the case of AC with variable
disk transfer rates in storage servers. Explicit support for NRT activities in storage servers
is not common. Moreover, some do not store redundancy information at all, while some
others use a parity based scheme, which may increase the complexity of those systems. All
these deficiencies will limit the corresponding servers to work only in a special environment
with restrictive assumptions.

Finally, some of the servers lack QoS awareness. For example, most of the general
purpose servers are not oriented to large sequential access, while some of the video servers
have no AC considerations. Furthermore, integrated scheduling support in storage servers
considering all physical resources is rare.

35

36 Chapter 4. System Architecture

The conclusion is that the system architecture for a network striped video server should
be scalable, flexible, and QoS aware. The above discussion when applied to the network
striped storage servers described in the last chapter is summarised in Table 4.1. The aim
of the Cadmus architecture is to leave its column blank if it were on the same table.

Table 4.1: Limitations of Some Existing Network Striped Storage Servers

limitations general purpose servers video servers
Swift | Zebra | HPSS | xFS | Petal | ISS | MARS [SPIFFI | Clustered | Tiger
not 1 v v v v v v
scalable | 2 v v
3 v v v v v v v v
4 v v v v v
5 v v v v v v
6 v v v
not 7 v v v v v
flexible | 8 N/A v v v v v
9 v
10 v v v v
11| v v v v
not 12 v v v
QoS 13 v v v
aware | 14 N/A v v v v
1. Single control machine.
2. Single server managing all meta-data including that for physical devices.
3. Explicit block-based requests to storage servers.
4. Fixed SUS.
5. Fixed striping group.
6. No VBR support.
7. No VBR smoothing considerations.
8. No ZBR disk considerations in AC.

9. No NRT activity support in storage servers.

10. No redundancy support.

11. Parity based redundancy scheme.

12. Not oriented for large sequential access.

13. No AC considerations.

14. No integrated scheduling support in storage servers.

4.2 The Cadmus Architecture

4.2.1 Entities, Components, and Objects
Entities and Components

Cadmus assumes a hardware structure of many physical entities connected by a high-
speed switched network. Physical entities are either NAPs with disk device(s), or diskless
network computers (NCs). The Cadmus software system framework specifies a set of logical
components that can run on physical entities. An overview of the Cadmus architecture is
shown in Figure 4.1.

There are seven types of (logical) components in the Cadmus system framework: storage
servers (SSs), file servers (FSs), directory servers (DSs), name servers (NSs), stream control

4.2. The Cadmus Architecture 37

Client

Client

>< [o ®
D / Network — | D
D) \ GD

P 5 P

SS: Storage Server FS: File Server DS: Directory Server NS: Name Server
CP: Client Part SCEF: Stream Control Factory SCA: Stream Control Agent

[: physical Entity = ¢___ : Logical Component

Figure 4.1: The Cadmus Architecture Overview

factories (SCFs), stream conirol agents (SCAs), and client parts (CPs). An SS resides
in each network attached storage node, while other components can run on any diskless
NC. Uninterpreted data objects are managed by SSs and FSs, while a DS maintains a
hierarchical directory for its customers. An SCF will create an SCA for a CM stream’s
playback or recording. However, data is transfered between SSs and CPs directly, where
CPs are data aggregating or scattering points. Each server or factory component has a
unique ID associated with it, and NSs are used to map component IDs to physical entities.
The functionalities of these components will be described in more detail in the next section.

Physical and Logical Objects

The term object in Cadmus is only used to refer to stored data. There are two types
of data objects managed by Cadmus: physical objects (POs) and logical objects (L.Os). An
LO is an uninterpreted byte stream, which can be used to represent a traditional file or
directory. An LO has a unique ID, the LOID, associated with it. Data of an LO is striped
onto a fixed set of SSs in the system in a round-robin manner. However, different LOs may
be striped on different sets of SSs and may have different SUS. An LO is managed by one
FS only.

A PO is also an uninterpreted byte stream which is managed by an SS. A PO is associated
with a unique ID, the POID. Normally, the set of striping units from a single O onto the
same SS forms a PO, and a non-zero length LO is always mapped to one or more POs. This
relationship between LOs and POs is shown in Figure 4.2. However, a PO may exist on its
own and not be contained in any LO. These kinds of stand-alone POs are called special POs,
and are used to store and replicate important meta-data at the system level. Both LOs
and POs can be opened in one of two modes: RT mode or NRT mode. An object is in RT
mode if it is opened for playback or recording, NRT mode otherwise. In the following, RT-
LO/NRT-LO and RT-PO/NRT-PO stand for objects opened in the corresponding modes.

38 Chapter 4. System Architecture

16

2

| &

o o e e e S

~

.
4

.
.

LOID —-|

’
- 2 e e o m ke o e i

,
’

~

Striping .

.
[S —

POID POID POID

| _[—striping unit

|
]

|
I
]

Po |. PO |. PO

|| striping unit

| = striping unit ||
& D, G

PO: Physical Object LO: Logical Object SS: Storage Server
POID: PO Identifier LOID: LO Identifier FS: File Server

L1

Figure 4.2: Logical Objects and Physical Objects

4.2.2 Component Functionalities
Storage Servers

The four main tasks for an SS are: PO management, data retrieval, AC, and QoS
enforcement. To facilitate large sequential access, the extent-based approach is used in SSs
to manage POs. However, the Cadmus architecture does not mandate a specific extent-
based implementation, nor a data placement strategy for POs. Each SS could have its own
policy to store POs on the devices it manages, and its customers can only access data at
the PO level using POIDs, not at the device block level. This way, implementation details
of an SS can be encapsulated, resulting in a modular system. This is contrary to the fixed
block or fragment based approach taken by some existing scalable servers.

Data retrieval in an SS includes data access at both disk and network devices. Cadmus
uses the deterministic cycle based approach to guarantee QoS in SSs, and the time in each
SS is divided into equal length working cycles. The retrieval schedules for each cycle are
dynamically computed at run-time, and they contain admitted access requests from both
RT streams and NRT activities. The data of an RT-PO is transferred between a CP and
an SS without explicit requests, while read/write operations are defined for NRT-LOs and
NRT-POs. NRT data requests are also issued by an SS for its own meta-data management.

AC is performed on all physical resources in an SS on a cycle basis, and resources are
reserved if a request, either RT or NRT, is admitted. The geometry of a ZBR disk is
understood by an SS and is used in the AC on the disk resource. For an RT playback
request of a VBR video, a dynamically computed read table, which specifies the amount of
data to read in each cycle, is passed from an SCA to each SS where the video is striped over
and is used in the AC procedures. Similarly, a receive table, which tells how much data to
receive in each cycle, is computed by each SS on which a video is to be striped based on
peak rate reservation and is used in the AC for VBR recording.

There are two reasons for AC to be done in SSs, instead of a central point. First, an
SS is a better place to manage the physical resources under its control and to record their
usage. Second, processing costs for AC can be distributed to multiple SSs, making the
system more scalable. Integrated scheduling considering both RT and NRT activities is

4.2. The Cadmus Architecture 39

also provided in an SS to enforce QoS guarantees and to deal with overload situations. AC
and QoS enforcement will be considered in more detail in Chapter 6 and Chapter 7.

File Servers

The primary functions of an FS are to create and delete LOs and to maintain the
mapping of an LOID to a set of POIDs, i.e., {POID}, which corresponds to the set of POs
the LO is striped over. When an LO is created, an FS determines the striping group,
the set of SSs over which the LO will be striped, and the SUS. Then it will contact the
SSs for them to create POs and return the POIDs. When an LO is opened, the {POID}
is used to make data connections between a CP and the SSs. Making connections and
operations such as AC and VCR control for RT-LOs are delegated to SCAs. However, the

" Cadmus architecture does not specify where operations such as read and write for NRT-
LOs should be implemented. Chapter 7 will describe a scalable approach by co-locating the
implementation of NRT-LO operations with CPs.

There may be multiple FSs in a Cadmus system to balance the load imposed on them,
although processing overhead of LOs in FSs is kept to minimum because user data does not
pass through FSs. Different FSs are independent of each other (because of the meta-data
management scheme described in the next section). An LO can be moved to another FS
by moving the LOID:{POID} mapping to the latter. However, the LOID should be changed
to identify the new FS that contains the LO. Location independence can be achieved by
storing a pointer to the new LOID in the old FS. A PO can also be moved to another SS
and a new POID should be assigned and the LOID:{P0OID} mapping be updated in some FS.
However, the LOID remains the same in this case. Although a pointer to the new POID
could help in some situations, this information is lost when the old SS suffers medium errors
because the meta-data managed by SSs is not stored redundantly.

Stream Control Factories and Agents

One of the unique features of Cadmus is the introduction of SCFs and SCAs, which
are used when LOs are opened in RT mode. SCFs create and destroy SCAs, and an SCF
and the SCAs it manages are located in the same physical entity. The primary functions
of an SCA are to coordinate distributed AC, set up data connections between a CP and
the SSs, and control the data flow according to VCR type commands from a client. The
LOID:{POID} mapping is passed from an FS to an SCF for the creation of an SCA when
an LO is opened in RT mode, so that the SCA has access to the corresponding SSs. An
SCA is the single point of contact for AC for RT playback or recording of a single stream.
It will query the individual SSs and make AC decisions on the information it gathers. If
the load on SCF entities is high, additional entities and factories can be added to process
more client requests. Thus the scaling of stream control capacity and the scaling of storage
performance are independent.

An important objective for SCAs is to deal with VBR video streams. Cadmus distin-
guishes between the displayed set and the reed set of a video. The displayed set of a video
is the set of data actually displayed in a client in each cycle, and the read set is the set of
data actually read by the SSs and sent to a CP in each cycle. Every VBR video has a video
indez file associated with it. A video index contains three parts: a header, the displayed
set, and an I-indez, which tells the positions and the lengths of the frames to be retrieved
during fast forward or fast reverse, for example, when MPEG is used, these frames could
be the I frames.

40 ~ Chapter 4. System Architecture

A video index is interpreted by an SCA to compute the read tables for use by the SSs
after employing some smoothing algorithm. With video indexes, the same SCA can be
used to playback any format of VBR videos. VBR processing by an SCA for playback
is summarised in Figure 4.3. RT recording for VBR videos is achieved using peak rate
reservation, and a video index is written by each client as an NRT-LO during recording or
it can be extracted afterwards. The receive table used for RT recording is computed by the
SSs instead of by an SCA. No index is needed for CBR. videos during either playback or
recording,.

read table —'—>®

read set

smoothlng ’
algonthm read table ——=C§§ >
displayed set l
video index |
RRTCP CeD=-

.---l—-—--—--_--_-_-

Figure 4.3: VBR Processing in the SCA for Playback

The functionalities of SCAs have evolved since the earliest design stage leading to Cad-
mus. The following will use playback as an example. In the first pre-Cadmus prototype, an
SCA read data from the SSs into the entity where the SCA resides before data was sent to
a CP. This puts an SCA into the RT data path, which has the adverse effects of increasing
the load of SCF entities and reducing the availability of the system. A second version let
SSs send data directly to CPs, but an SCA still had to send individual requests to the SSs
with deadlines. Besides the drawbacks of the dynamic deadline based QoS enforcement
approach, when one SCA crashes, the relative RT stream controlled by the SCA dies too.
Instead, an SCA in Cadmus sends read tables of a VBR. video to the SSs during AC, and
the tables are retained by the SSs if the admission is successful and committed. From then
on, the SCA only responds to interactive commands from a client, and data is transferred
between the SSs and a CP without explicit requests from any third party.

Client Parts

A CP is the aggregation or scattering point of the data of an LO from or to the SSs. A
CP understands the LO’s striping structure and redundancy method. A CP is operating in
either RT or NRT mode, depending on the mode of the LO that is being opened. An RT-CP
will send/receive data to/from the SSs on a per cycle basis using an unreliable channel to
prevent retransmission when error occurs. A CP used for recording also regulates the rate
of the data to be sent to the SSs, while CPs used for playback will discard late arriving data.
An RT-CP for VBR playback has a copy of the read set so that it can correctly anticipate
data arrivals from the SSs without explicit requests. For VBR recording, an RT-CP will
send data to the SSs when there is data available from the producer, and enough resources
are reserved in the SSs for the unpredictable arrivals of data. An RT-CP for recording
will also write redundancy information to the SSs. AC for RT recording will be further
described in Chapter 6.

4.3. Meta-Data Management ' 41

Unlike RT-CPs which are automatic, NRT-CPs will export interfaces with data send
and receive operations that can be used to implement read and write operations defined for
NRT-LOs. An NRT-CP will transfer data to and from the SSs using reliable channels. It
should be emphasised that a CP is only a logical component and can be used wherever data
of an LO should be assembled from or distributed to the SSs. For example, in Figure 4.3,
an NRT-CP is used in the SCA to read in the video index. As Cadmus uses the replication
scheme, as will be shown in later sections of this chapter, there is no computational overhead
for operations creating or using redundancies.

Directory Servers and Name Servers

DSs maintain mappings from textual names to LOIDs. The data of one directory with
textual_name:LOID mapping is stored as an LO, and a UNIX style hierarchical directory
can be readily implemented on Cadmus. NSs manage mappings from server or factory
component IDs to physical entity addresses. To provide bootstrap at system startup or
after component failures, the NS mapping data is directly backed up and replicated among
some well known SSs using well known POs. This is feasible because the amount of data
managed by NSs is small in nature, and SSs provide the mechanism of special POs. Thus
NSs are independent of any FS.

4.2.3 Features

The above discussion can be summarised as a list of major features of Cadmus:

1. Different LOs can have different SUS, and each FS can stripe any of its LOs to any
subset of SSs in the network.

2. Each SS could have its own policy to store the POs on the devices it manages, and
only PO access interfaces are exported.

3. Directory services are separated from underlying file and storage services. A three-
level naming scheme is supported: textual names, LOIDs, and POIDs.

4. All meta-data is stored on SSs where LO data is stored. No additional supporting file
systems are needed, and FSs/SCFs/DSs/NSs can run anywhere in the network.

5. Multiple FSs/SCFs/DSs/NSs can be supported if necessary. Each logical component,
including an SS, can be added incrementally and independently.

6. NSs do not depend on any FS, and FSs are independent of each other.
7. The system does not depend on any particular video encoding format.

8. NRT activities are supported in the presence of RT stream services.

4.3 Meta-Data Management

The meta-data of an FS is a table of <LOID:LO_ATTR:{POID}> tuples, i.e., the LOID ta-
ble, where LO_ATTR represents attributes of an LO including the SUS. An SS can resolve a
POID to a list of disk blocks which store the PO. An SS has a <POID:PO_ATTR:extent_list>

42 Chapter 4. System Architecture

table, i.e., the POID table, where PO_ATTR refers to attributes of a PO, as part of its meta-
data (the actual format of this index meta-data is implementation dependent). In addition,
an SS has to maintain free block bitmaps for its disk devices. For special POs, each SS
reserves a region of continuous entries from the start of its POID table, with each entry
corresponding to a potential special PO.

There are several requirements for storing the meta-data. First, it should make the
meta-data management of different components as independent as possible. Second, it
should make it possible to reconstruct FS meta-data and LO data after one SS is lost.
Third, it should support the features listed in Section 4.2.3. Finally, multiple level naming
resolution should be optimised since both POID and LOID tables can be very large. To
achieve these goals, Cadmus adopts a number of solutions.

For each FS, its meta-data (the LOID table) is just a special kind of LO and is striped
across a subset of SSs, with its FSID identifying this special LO. An <FSID:FS_ATTR:{P0ID}>
tuple tells where an FS’s LOID table is striped, where FS_ATTR refers to the FS attributes.
This tuple is created when an FS is constructed and is obtained subsequently to get the
LOID table when the FS is rebooted. Although these special LOs are managed by the
individual F'Ss, the collection of the tuples, i.e., the FSID table, is replicated in special POs
whose entries have the same offset from the start of the POID tables in some SSs. This
way, FSs are made independent of each other.

The SS specific meta-data, i.e., POID tables and free block bitmaps, is neither striped
nor replicated. When an SS is lost, new SS specific meta-data is created during reconstruc-
tion of LO data. This simplifies the management of SS meta-data and achieves the effect of
SS abstraction. When a new S8 is created to replace a previously lost one, special POs are
replicated from another SS first if necessary. Then for each FS in the system (by searching
the FSID table from the special PO), if it stripes its meta-data in the lost SS, then the
lost meta-data is constructed. Finally, for each FS in the system, for each LO that the FS
manages, if the data of the LO is striped in this SS, then the lost LO data is constructed.
During the reconstruction, a new bitmap and POID table are created by the SS. Since
POIDs are unique among all SSs, they are reused and have exactly the same meaning as
before the SS is lost. However, a PO’s extent_list may now be different from before. For
example, as reconstruction is performed on each LO and its PO on the SS in turn, the SS
can allocate contiguous disk blocks for reconstructed POs.

To efficiently support multiple level naming resolution, similar ideas from MSSA [Lo94]
are applied to Cadmus to choose component and object IDs. To facilitate logical component
locating from an object ID, an FSID is embedded as the most significant bits in an LOID,
while an SSID is embedded in a POID. In addition, the lowest significant bits of an object
ID correspond to the offset of the object’s entry in the relative LOID or POID table, so that
there is no table look up overhead. The bits in the middle can be filled with an epoch number
to guarantee the uniqueness of an ID and to facilitate capability based access control.

4.4 The Redundancy Scheme

4.4.1 . A Comparison of Redundancy Schemes

This subsection will compare redundancy schemes in order to select the one best suited
for Cadmus. To facilitate discussion, the system state is categorised as in either non-fault
mode or fault mode. Non-fault mode is reached when no SS fails, otherwise the system is in
fault mode. Assume a video (or LO) is striped across n SSs in the system labelled SS(0),

4.4. The Redundancy Scheme 43

S5(1), -++, SS(n — 1). To maintain consistency with Section 3.4, the terms striping unit
and block are used interchangeably.

In theory, parity schemes as used in RAID can be extended to Cadmus to provide data
availability during fault mode. However, software RAID3 needs buffers in CPs to store all
the data in a parity group before the data can be assembled in both fault and non-fault
modes. If SUS is large or videos are widely striped, large buffers are needed. If SUS is
small, then more seek and rotational overhead is incurred in each SS and disk bandwidth
utilisation is very low. For the RAIDS scheme, extra buffering will be required to reconstruct
lost data for each stream served from a parity group where there is an SS failure. And in
each cycle, each SS in a parity group has to reserve an equal amount of resources to those
needed in non-fault mode to provide immediate availability during fault mode, leading to a
50% waste of resources when there are no SS failures.

From the perspective of the cyclic scheme, mirrored and chained declustering are identi-
cal. This is because in both methods, all the backup copies of the primary blocks in one SS,
say SS(i), are stored in another single SS, say SS(j), where i # j. Assume J primary blocks
can be retrieved in one cycle in SS(i) during non-fault mode, then SS(j) should reserve
resources that could be used to retrieve J backup blocks in the same cycle in case SS(3)
fails. This reservation applies to any SS that stores backup blocks for another SS and 50%
of the resources are wasted during non-fault mode.

The drawbacks of mirrored and chained declustering suggest that the load of retrieving
the backup copies of the J primary blocks associated with the requests in a cycle in one
SS be evenly spread into multiple SSs. Both multi-chained and interleaved declustering can
achieve this load balancing effect by storing the backup copies of the primary blocks in one
SS onto multiple SSs. The following paragraphs will perform simple analysis to compare
these two methods.

For simplicity of analysis, assume all the videos in the system are of the same rate with
SUS as R, which corresponds to the data retrieved in each cycle, and a declustering degree
of d, where d < n. For the primary blocks of a video that are stored in SS(z), their backup
copies are always stored in the subsequent d SSs starting from SS(i + 1 mod n).

Using multi-chained declustering, if the ith primary block of a video, Pi, is stored in
SS(ps(t)), and its backup copy, B, is stored in SS(bs(z)), then:

ps(i) =imodn (4.1)
bs(i) = (mod n + |i/n| mod d+ 1) mod n (4.2)

A data layout example of n = 6,d = 4 using multi-chained declustering with the first 24
blocks of a video file is shown in Table 4.2.

Using interleaved declustering, the same example with the first 6 blocks is shown in
Table 4.3, where Pi refers to the ith primary block of a video, and Bi.j refers to the jth
backup fragment for Ps.

Both schemes have the potential to off-load block retrieval requests in a cycle to multiple
SSs when one S8 is lost. For instance, in the above multi-chained example, the primary
blocks PO, P6, P12, and P18 in SS(0) have backup copies B0, B6, B12, and B18 stored in
SS(1), SS(2), SS(3), and SS(4) respectively. If in a cycle the four primary blocks are retrieved
in SS(0), then the failure of SS(0) will add 25% extra load to each of its subsequent 4 SSs
in the same cycle, instead of 100% extra load to another single SS in the case of mirrored
or chained declustering. For interleaved declustering, when SS(0) fails, all its load in any
cycle is evenly spread to the subsequent 4 SSs.

44 Chapter 4. System Architecture

Table 4.2: Multi-Chained Declustering: n = 6,d =4

S5(0) | SS(1) [SS(2) | SS(3) [SS(@) | SS(5) | stride |
PO |PL |P2 [P3 [P4d |P5

B5 BO B1 B2 B3 B4 1
P6 P7 P8 P9 P10 | P11
B10 | Bll | B6 B7 B8 B9 2

P12 (P13 |P14 |P15 |Pl16 | P17
B15 |(B16 | B17 | Bl12 | Bl13 | Bl4 3
P18 | P19 | P20 |P21 | P22 | P23
B20 (B21 |B22 |B23 |B18 | B19 4

Table 4.3: Interleaved Declustering: n = 6,d =4

[SS(0) T SS(1) [SS(2) [SS(3) | SS(@) | SS(5)
P0 |P1 [Pz |P3 |P4 |P5
B0.1 | B0.2 | B0.3 | BOA
Bl.l |BL2 | BL3 | Bl4

B24 B2.1 | B2.2 | B2.3
B3.3 | B34 B3.1 | B3.2
B4.2 | B4.3 | B44 B4.1

B5.1 | B5.2 | B53 | B5.4

Interleaved declustering can always evenly distribute the load of a failed SS to its subse-
quent d SSs in any cycle. This may or may not be true for multi-chained declustering. For
example, if in a cycle only 2 blocks PO and P6 are retrieved in SS(0), then the load is only
distributed to SS(1) and SS(2) when SS(0) fails. The extreme case is that when one block is
retrieved per cycle, 50% of the resources still need to be reserved for fault mode. However,
multi-chained declustering could achieve an even load balancing during SS failures when
. there are multiple primary blocks being accessed per cycle, and the strides of these blocks
are evenly distributed. This can be achieved in practice, as will be shown.

Assume that the disk seek time profile constants [Oyang95] [Vin95] are a and b so that
y = a+ bxz, where z is the seek distance and y is the seek time; the worst case rotational
latency is Tyos; the disk data transfer rate is constant and is Bp; the cycle length is T}; the
cylinder span of the requests in a cycle is A; each block of size R is stored contiguously on
a disk; SCAN scheduling is used in each cycle; and the disk bandwidth is the performance
bottleneck in an SS. If the track and cylinder switch time is not modelled, then:

a*J+b*A—|—TM*J+B£*J=Tc (4.3)
D
T.—bxA
="'—*R (4.4)
a+Tmt+‘§D—

where J is the maximum number of block requests which can be served in a cycle.

Assume T, = 1 second, and the average stream rate is 0.5 MB/s and R = 0.5 MB. With
the ST12550N [Seagate93] disk parameters!: a = 6.6 ms, b* A < 13.9 ms, Ty = 8.3

1Section 8.2.3 will show how the disk seek time profile constants are obtained for the ST12550N drive.

4.4. The Redundancy Scheme 45

ms, and assuming a constant disk transfer rate of an average Bp = 4.65 MB/s (although
the ST12550N is a ZBR disk), then J = 8.05. If a 5-disk RAID3 is built from ST12550Ns
and used in an SS node, then Bp = 18.6 MB/s and J = 23.60. J is still larger with lower
stream rates, for example, MPEG-1 videos have an average rate of about 0.25 MB/s.

If J > d, a condition not difficult to meet in practice, then there is a chance that
primary blocks retrieved in a cycle have evenly distributed backup copies for multi-chained
declustering. In addition, the start stride of a newly recorded video can be selected randomly
from 1 to d to reduce the possibility of stride in-phase between the playbacks of different
videos. Also because a video is large and it will be striped across the set of n SSs multiple
times, with each stripe trying to use a different stride, the chance of stride in-phase between
different playbacks of the same video may also decrease. Therefore, load balancing for multi-
chained declustering during fault mode could be achieved in practice after taking the above
precautions.

Now assume that using multi-chained declustering, the load in an SS can be evenly
scattered to the subsequent d SSs during fault mode in any cycle, and that the maximum
number of streams that can be served from an SS are X, and X; for multi-chained and
interleaved declustering respectively when resources have been reserved for fault tolerance.
In the multi-chained case, an SS has to serve X,, primary streams in a cycle in addition
to reserving disk bandwidth for X,,/d streams in case one of its d predecessors fails, i.e.,
when an SS fails, X,,/d streams are off-loaded to each of its d successors. Therefore, a
total X, + X;n/d requests with block size R need to be served in a cycle by an SS during
fault mode, that is:

d+1 d+1 R d+1

o * ¥ Xy +0% A+ Trop * * X + — % ¥ X =T, (4.5)
d Bp d

_X = * = *J 4-6

™ d+1 6+ Tt + 42 d+1 (4.6)

In the interleaved case, an SS has to serve X; primary requests with block size R. In
case one of its d predecessors fails, it has to reserve bandwidth for an additional X; requests
but with size R/d. Therefore:

a*2*X,-+b*A+Tmt*2*X,-+B£*X,;+d*RB x*X; =T, 4.7
D D
X = T.—bx A
' 2*a+2*Tmt+d—'gl*%
a+Trot+]§&
= i—?-_l_ 5 *J (4.8)
2*a+2*Tmt+ d *FD—
a+ Trot + A5
= 24 ™ Bp R * X (4.9)
a—_l—-—f*(a'l‘Tmt)'l'E
a+ Trot + 2=
P T By X, <X; < Xm (4.10)

2x%(a+ Tmt)+%

When d = 1, X; = X,,, = J/2, i.e.,, 50% of the resources need to be reserved. This
reduces to mirrored or chained declustering. If d > 1, then X; < X,,. Based on the same
assumed parameters as above, it is possible to compute the number of primary streams that

46 Chapter 4. System Architecture

Single Disk: ST12550N
B'S Ll L T ¥ T T L] T L}

e -

maxima! number of streams per cycle
(-]
wm
T

6 Xm -o—
X -
-
55 | E
5P -
45 |- -
4 L L 1 1 1 1 1
1] 2 4 8 10 12 14 16 18 20
d (declustering degree)
RAID3: 5 ST12550N Disks
L] L) T T 1 L] ¥ T L}
24 [-
1
5
Q.
E 20 |
2
L
§ 18
2
E
=2
c
E
| 16 |
3
E
14 -
12 1 1 1 L 1 1 Il L i 1
0 2 4 [} 14 16 18 20

8 10 12
d (declustering degrese)

Figure 4.4: Maximum Number of Streams per Cycle vs. Declustering Degree

can be served by an SS, which uses a single disk or a RAID3 as the storage device, as a
function of the declustering degree d while reserving resources for fault mode. The results
are shown in Figure 4.4.

Interleaved declustering has several disadvantages. If streams of multiple rates are
served, then different videos would have different block sizes, for example, lower rate videos
could have smaller SUS. If backup copies of low rate videos are declustered widely, the
rotational and seek overhead would increase because of small access. Streams with different
rates may need different declustering degrees to counter the small access effect, e.g., lower
rate videos could have smaller declustering degrees. It should also be noted that during fault
mode, interleaved declustering would potentially send data from more SSs for one stream
in a cycle than during non-fault mode. All these issues will increase the implementation
and management complexity and overhead.

4.5. Other Issues ‘ 47

When there are multiple primary block requests per cycle and the blocks’ backup copies
are evenly distributed to other SSs, multi-chained declustering can serve more streams per
cycle than interleaved declustering using the same declustering degree. Besides, multi-
chained declustering could use the same declustering degree for all videos, because data is
replicated on a block basis instead of in block fragments. Also during fault mode, data is
retrieved from at most the same number of SSs for a stream in a cycle as during non-fault
mode, because the backup of a lost block is stored in another single SS. Therefore, multi-
chained declustering is simpler to implement and manage than the interleaved alternative,
and is chosen as the redundancy method for Cadmus.

4.4.2 Fault Mode Resource Reservation

Multi-chained declustering can tolerate any single SS failure. If all videos have the same
declustering degree, d, then the failure of any two SSs inside d + 1 consecutive SSs would
break the system. Assume the set of failed SSs is F, then the system can tolerate failure
if Vi,j, (j —imodn > d) and (i — j modn > d), and cannot tolerate failure if 34, j,
(j —imodn < d) or (i —j mod n < d), where i # j, SS(i) € F, and SS(j) € F. When d
increases, the reliability of the system will drop. A reasonable range of d would be 4-9, and
by Equation (4.5), d/(d + 1) = 80%-90% of the SS resources can be utilised in non-fault
mode compared to a scheme without fault tolerance.

When an SS needs to reserve resources for fault mode in a cycle, it only needs to reserve
the marimum among d alternatives, with each corresponding to the resource requirements
of backup block retrieval in the SS in case one of its previous d SSs fails, and not the
aggregate of the d alternatives. Otherwise 50% of the resources still need to be reserved
in each cycle. This can be seen from Table 4.2. Assume at cycle 0, all primary blocks
are retrieved by each SS. Then from the perspective of SS(4), it will only need to reserve
resources to retrieve B3 or B8 or B13 or B18, not B3 and B8 and B13 and B18 in the same
cycle in case any, but not more than one of its 4 predecessors fails.

4.4.3 Replication Management

Cadmus embeds the redundancy method into each LO. Although the native scheme
in Cadmus is multi-chained declustering, there is nothing to prevent the basic Cadmus
architecture from using other redundancy methods and building proper CPs to interpret
the corresponding schemes. For multi-chained declustering, Cadmus records the striping
group size, n, and the declustering degree, d, as part of the LO_ATTR. A replicated LO
has double entries with different LOIDs, corresponding to the primary and backup LOs
respectively in the LOID table of an FS. However, only primary LOIDs are used in the
textual_name:LOID mappings in DSs, which are unaware of the redundancy scheme used
by an LO. In this case, an FS will create two LOs for an LO creation operation, but data
consistency of the two copies is maintained by an RT-CP for RT recording and by the write
operation of an NRT-LO.

4.5 Other Issues

The SUS of an LO representing a video depends on the video’s average rate and rate
variability. For a CBR video, the SUS is just the displayed data size per cycle, so that
only one striping unit is retrieved from one SS in each cycle. For a VBR video, the SUS is

48 ' Chapter 4. System Architecture

slightly above the average displayed data size per cycle, so that at most one striping unit is
retrieved in most of the cycles after some smoothing algorithm. The problem of determining
SUS for VBR videos is examined in more detail in the next chapter.

For VCR functionalities, a client command is issued to an SCA, and if necessary, the
SCA will compute a new read set and new read tables for the SSs to perform another AC
before the VCR operation is executed. Although this will introduce latency or denial to
VCR commands, it is the best way to deterministically prevent QoS degradation to other
streams. VCR control will be further described in Section 6.5.

Cadmus does not aim to provide functionalities for all aspects of a real world VOD
server. Instead, it strives to provide basic mechanisms upon which a scalable VOD server
can be built by adding extra logical components. For example, reconstruction of lost data or
reconfiguration of the system when extra SSs are added can be implemented using additional
modules exploiting the basic functionalities provided by Cadmus.

Cadmus shares the same design philosophy as MSSA [Lo94]: divide-and-conquer, and
builds complex abstractions on top of the more basic ones. SSs and POs in Cadmus are
roughly comparable to byte segment custodes and byte segments in MSSA. In addition,
naming and security issues are addressed more throughly in MSSA, and the solutions can
be readily applied to Cadmus as well. Therefore, Cadmus does not consider such issues in
order to avoid duplication of work. However, Cadmus is distinguished from MSSA by its
network striped approach, redundancy scheme, AC, QoS enforcement method, and VBR
considerations. '

4.6 Summary

This chapter identified the disadvantages of some existing network striped storage servers
when applied to a video server environment. Then it presented Cadmus, a scalable, flexible,
and QoS aware architecture for network striped video servers. Data objects in Cadmus are
structured into physical and logical types, and are managed by separate logical components.
Meta-data for different components is managed in a way which causes little interference
between them, so that many of the components can exist independently. VBR. videos are
supported in Cadmus deterministically by the coordination of various components. Because
of its load balancing ability and simplicity, multi-chained declustering is selected as the
native redundancy scheme for Cadmus. However, this chapter only gave an outline of the
architectural framework. Some of the design issues will be clarified in later chapters.

Chapter 5

Variable Bit Rate Smoothing

This chapter proposes and analyses an algorithm that can be used to smooth the amount
of data read in each cycle without starving or overflowing client buffers for VBR videos.
Heuristics are introduced to select SUS, and examples are given with some interesting
observations. Finally, related work is examined for comparative evaluation.

5.1 Motivation

This chapter is concerned with how to compute the read set for a single video under the
deterministic cycle based QoS enforcement scheme. At first sight, it appears to be a trivial
problem since it is obvious that one can retrieve the amount of data that is actually needed
by the client in a cycle, i.e., the displayed set, which is readily available from the video
index. However, a close examination on real VBR traces suggests otherwise. The following
discussion uses the MPEG-1 true VBR video traces from [Trace95] [Rose95] and selects
the “MTV” data set as an example. This is because MTV has a higher peak rate and a
higher peak/mean ratio than most other video traces. Figure 5.1 shows the frame size trace
and Figure 5.2 the data needed in one second interval for a span of 40,000 frames. Table 5.1
shows the statistics of the displayed set with one second cycle length. The whole trace is
120,137 KB and lasts 1600 seconds.

Table 5.1: Displayed Data per Second Statistics for MTV

average (mean) size (KB) 75.1
maximal (peak) size (KB) , 300.2
minimal size (KB) 11.0
maximal sum of two consecutive seconds’ data size (KB) | 586.2
peak/mean ratio 4.0

It can be observed that there are many cycles which only need a small amount of data,
for example, well below the average. If the read set is equivalent to the displayed set, then
the small requests will lower disk utilisation, as each one would incur a seek and rotational
latency without reading much data. This problem is exacerbated when a small scale RAID3
is used as the storage device, since a RAID3 can linearly increase the transfer rate from
the disks but without any improvement in reducing rotational or seek overhead. It would

49

50

Chapter 5. Variable Bit Rate Smoothing

frame size(bits)

displayed data in a second(KB)

250000

200000

150000

100000

350

300

250

200

180

100

50

0
0

10000

15000] 20000 25000 30000 35000 40000

rame number

Figure 5.1: Frame Size Trace for MTV

average ---—

200

400

600 800 1000 1200 1400 1600
seconds

Figure 5.2: Displayed Data per Second Trace for MTV

be beneficial to assemble small reads into larger ones by reading more data in one cycle,
and not to read in subsequent cycles if appropriate, where the freed bandwidth can be
used by other streams or by NRT operations. This strategy is in fact read-ahead in some
cycles and suppressing in others. During read-ahead cycles, it would also be desirable for
an actual read size to always approach a level that is not very small, which can be seen as
a smoothing procedure to reduce the burstiness of non-suppressed reads. Moreover, if data
read in each cycle is always above a level such as the smoothing level, elimination of small
reads is achieved.

Another concern is client buffer limits. If a client has limited buffering, the server read-

ahead and suppressing should neither starve nor overflow the client. It would be desirable

5.2. Formulating the Problem 51

to pre-compute a read schedule just based on the video index, instead of doing dynamic
flow control at run-time, which would increase the complexity of the server system. Such
a schedule can be directly fed into a simple AC algorithm which only needs to sum the
aggregate resource requirements of all streams in each cycle and to make sure no overload
occurs for a successful admission. If AC succeeds, the server would just abide by the pre-

computed schedule without worrying about client buffer utilisation, i.e., implicit flow control
is achieved.

Some interesting questions based on the above considerations are: How large is the
minimally required client buffer for a stream to be played back continuously? How can small
requests be assembled into larger ones while still reserving the continuity requirement yet
without starving or overflowing a client? What are the criteria for read-ahead or suppressing
in a cycle? Is it possible to find a value so that the request size would always be equal to
or larger than it during a read-ahead cycle? If such a value can be found, what other
parameters does the largest such value depend on? This chapter will answer all these
questions.

5.2 Formulating the Problem

5.2.1 Terminology

For the benefit of formulating the problem discussed above, some symbols are introduced
in Table 5.2. T, is a system parameter, the selection of which is not the topic of this research.
However, the rest of the chapter will use a value of 1 second as an example. The smoothing
factor (SF), the smoothing scale (r), and the look-ahead steps (k) will be further explained
in Section 5.3.

Table 5.2: Symbols Used for VBR Smoothing

symbol | explanation property

T, time length of a cycle e.g., 1 second

c cycle index

T, time length of the video T,>0

e total number of cycles of the video e=[T,/T;]

P peak displayed data size per cycle P>0

1% maximal sum of two consecutive cycles’ data size 0<P<L<V<2xP

M mean displayed data size per cycle O<M<P

k peak/mean ratio of the displayed data size per cycle k=P/M>1

D(c) displayed data size in cycle ¢ Vee[l,e] 0<D(c)<P

R(c) actual data read in cycle c for the video |

SF smoothing factor SF>0

r smoothing scale relative to mean r=SF/MorSF=rxM |
| A look-ahead steps h>1 |
CB total client buffer size for the video CB >0 |
(| B(c) client data balance in cycle ¢ |
| Ue) upper limit of the data which can be read in cycle c |
| L(c) lower limit of the data which should be read in cycle ¢ |

As a client has limited buffer space.for each video, the actual server read size in each
cycle (R(c)) should not exceed the available client free buffer space (U(c)), nor should it be
less than the amount of data which should be read (L(c)). Otherwise, the client would be
overflowed or starved in the next cycle. Because of read-ahead, some unused data may be

52 Chapter 5. Variable Bit Rate Smoothing

left over (B(c)) in a client when a cycle ends. The displayed set of a video can be further
defined as the set of its D(c), and the read set as the set of its R(c).

5.2.2 Client Buffer Constraints

The buffer usage at a client in consecutive cycles is shown in Figure 5.3. It should be
noted that there is delay between the server and client cycles. If both the server and a
client use the dual-buffer scheme, then when the server starts a cycle at time ¢ by reading
data into the disk buffer, the data will be sent to the client in the cycle starting from ¢+ T,.
The client will receive the data in the comparative cycle starting at time ¢ + T, + A, where
A is the network delay from the server to the client, and the data can be displayed in the
next client cycle starting from time ¢ + 7, + A + T,. Delay jitter can be absorbed in a client
by extra buffering, which is out of the scope of this research. For simplicity and generality,
the following will assume that the server and client cycles can be synchronised.

cycla c+1

cB

U(c)

Figure 5.3: Client Buffer Usage

Assume at the end of cycle ¢ — 1, after a client has displayed data of size D(c — 1), the
data balance is B(c — 1), and the data received by the client (i.e., the data read from the
server) in cycle ¢ — 1 is R(c — 1). Then at the start of cycle ¢, the useful data in the client
buffer is R(c — 1) + B(c — 1). From this, D(c) will be displayed in cycle ¢, and the rest is
the balance for cycle c, i.e., B(c). Therefore:

B(c) = R(c—1)+ B{c—1) — D(c) (5.1)

Apart from the useful data R(c — 1) + B(c — 1), the free buffer space in the client for cycle
cis:

U(c)=CB—-R(c-1)—-B(c—1)=CB - D{(c) — B(c) (5.2)

However, because in cycle ¢+ 1 the client will have to display data of size D(c+ 1), at least
data size:

L(c) = D(c+1) — B(c) (5.3)

should be read in cycle ¢ to prevent client starvation in cycle ¢ + 1. Therefore, in cycle c,
the server read R(c) should fall between U(c) and L(c). That is:

L(c) < R(c) < U(¢) (5.4)

It should be noted that L(c) may be negative. Because of probable server read-ahead, the
balance in one cycle may be more than the data needed for display in the next cycle.

5.3. A Smoothing Algorithm 53

5.3 A Smoothing Algorithm

Two simple methods to compute read sets are either just to read the data needed in the
next cycle, i.e., let R(c) = D(c+ 1), or always to read ahead to fill the client buffer, i.e.,
let R(c) = U(c). The first approach has the drawback stated above, i.e., many small reads
occur (cf. Figure 5.2). For the second simple method, once the client buffer has been filled,
the free buffer in each cycle (U(c)) is the data just displayed (D(c)) in the same cycle, which
reduces to R(c) = D(c). This is in fact a phase shift version of the first simple method,
and it also has the same small read problem. Neither of these schemes addresses smoothing
effects.

To avoid the drawbacks of the above simple retrieval methods, a generic read set com-
puting algorithm is proposed and shown in Figure 5.4. The basic ideas behind the algorithm
are suppressing and smoothing. When the client balance (B(c)) in a cycle is more than the
data to be displayed in the next & consecutive cycles (where i > 1), the read in the server
can be suppressed (i.e., let R(c) = 0) and the continuity requirement will not be broken.
This is called h-step look-ahead suppressing. In non-suppressed cycles, the algorithm tries
to make the amount of the data read (R(c)) approach a specific value, i.e., the smoothing
factor (SF), if the smoothing factor is within the range of the lower limit (L(c)} and the
upper limit (U(c)). As it is more intuitive to compare SF to the mean (M), SF is set to
be r x M, where r is called the smoothing scale and is a non-negative real number.

input: D(c) c€[l,e]; r, h, M,CB;
output: R(c) c€[0,e—1];

D(0)=D(-1)=R(-1)=B(-1)=0; SF=rxM,

for (c=0,c<e—1;c++){
B(c) = R(c—1)+ B(c—1) — D(c);
U(c) = CB — D(c) — B(c);
L(c) = D(c+ 1) — B(e);
if L(c) > U(c) { algorithm failed; client needs more buffer; exit; }

else if B(c) > 2:;1 D(c+1) R(c)=0; /* h-step look-ahead suppressor */
else if 0 < SF < L{(c) <U(c) R(c) = L(c); /* to prevent client starvation */
else if L(c) < SF < U(c) R(c) = SF; [* smoother *

else if L(c) < U(e) < SF R(c) = U(c); /* to prevent client buffer overflow */

T e6e®

Figure 5.4: The Generic Read Set Computing Algorithm

The algorithm is generic in that if SF = 0, then it reduces to the first simple method
above. When there is no suppressing and SF is made infinitely large, then it reduces
to the second simple method. An interesting alternative is to fill the client buffer while
suppressing. However, as the result! on the MTV trace shows, this will make the read set
very bursty (Figure 5.5). As one cycle has to serve multiple streams at run-time, one video
should not hog too many resources, i.e., the data read in a cycle for a stream should not be
very large. Another alternative is smoothing without suppressing. However, the result on
the MTV trace shows that it cannot eliminate the small read problem (Figure 5.6). The
following sections will always assume suppressing and smoothing at the same time.

1n all the examples using the MTV trace in this chapter, if not stated otherwise, CB =V = 586.2 KB.

4

54 Chapter 5. Variable Bit Rate Smoothing

600 T T T T

rne;m displayedl data per se‘oond ——ee
500 |
7] . il I 1 |
£ 400 il 1 : \ it
: il I i !i |
il 13 | ,
s : |i J
e a0 i i li ' I
: | | ’ i z
3 s 1l |
= | ‘ I! | l J
N il i '
[| i
:I! | | | | ’i .[| |
il (I
ﬂ LAY It LR
200 400 600 1000 1200 1400 1600
secnn
Figure 5.5: Suppressing and Filling Client Buffer (h = 1)
350 1] T L) T) L T
300 | i
g 250 g
% 200 | .
g
3 ol]
8 oo} | -
I 1 I
50 il 'I. ‘ !:L
% 200 s o 500 7000 7200 a0 1600
ssconds

Figure 5.6: Smoothing without Suppressing (r = 1)

The read set computed from the above algorithm with smoothing to average rate (r = 1)
using 3-step look-ahead suppressing (h = 3) for the MTV trace can be found in Figure 5.7,
and Figure 5.8 shows the details of a specific area. Also Table 5.3 presents the read percent-
age for the displayed set and the read set, where S represents the size of a read. The effects
of smoothing and suppressing are clear and convincing: the algorithm has smoothed most
reads to the average; it also reduces the percentage of the reads that are larger than the
average and happens to eliminate the small reads below the average; and there are spare
cycles that can be used by other streams or NRT requests.

An important question is whether or not the algorithm can eliminate small reads for
proper smoothing factor (SF) and look-ahead steps (h), though it happened to achieve this
for SF = M and h = 3 in the above example. This transforms to the simple question of

5.3. A Smoothing Algorithm 55

350 L] 1) T T

300 | -1
& 250 v -
4
B
B
3 200}
L
£
-
3
b 150
£
3
© 100

§0

n L 1 1 1
[} 200 400 600 800 1000 1200 1400 1600
seconds
Figure 5.7: Smoothing and Suppressing (r = 1,h = 3)

350 T 1 L) 1 L) L) L)

300 | -
& 20 .
4
B
8
3 200} .
©
£
=
S
3 180 i
2

§0 L .

1 1 '}

180 200 220 240 260 280 300 320
seconds

Figure 5.8: Smoothing and Suppressing: Details

whether it is possible to find a maximally allowable SF, such that the data read in each
cycle (R(c)) is either zero or at least SF under client buffer constraints, i.e., branch @ of

the algorithm never gets executed. The analysis of the algorithm in the next section will
answer the question.

Table 5.3: Read Percentage of the Displayed and Read Sets

sets |S>M (%) [S=M (%) [0<S<M %) [S=0%) |
displayed set | 45.63 0.00 54.37 0.00
read set 26.40 62.77 0.00 10.83

56 Chapter 5. Variable Bit Rate Smoothing

5.4 Analysis and Verification

This section gives theorems and their corollaries which can be used to characterise
the algorithm proposed in the last section. Lemmas used to prove the theorems are also
included. The proofs of the lemmas, theorems, and corollaries are presented in Appendix A.
This section also verifies the formal results using real traces.

5.4.1 Characteristics of the Algorithm

Theorem 1. The algoﬁthm succeeds if and only if Ve € [0,e—1] CB > D(c)+D(c+1).
Corollary 1. The algorithm will succeed if and only if CB > V.
Corollary 2. The algorithm will succeed if CB > 2« P.

If the algorithm fails, then there is no way that the server can satisfy the continuity
requirement during the playback lifetime of a video. The following results will assume that
the algorithm will always succeed, i.e., Ve € [0,e — 1] CB > D(c) + D(c+1).

Theorem 2. Vce [0,e—1] 0<B(c) <CB, 0<U(c) <CB, 0< R(c) <U(c).
Lemmal. Vce[0,e—1] if B(c)> S, D(c+i), then B(c)— Y, D(c+14) < SF.
Lemma 2. Given ! € [2,h], if Vc€[0,e—1]]
{B(c) —S Dlc+i) < (h—-1+1)+SF if B(c > z;,_ D{c+i)
B(c)— i Dc+i) < (h—1)+SF if B(c) <X, D(c+i).
then Yece[0,e—1] Ble)— i D(c+4) < (h—1+1)*SF.
Lemma'3. VIie[1,h] and Vce[0,e—1]
{ - De+i)<(h—1+1)+SF if B(c)>Ez_1D(c+i)
B(e) =Y, D(c+i) < (h—1)x SF if B(c) <M, D(c+i).
Corollary 3. Vc € [0,e — 1]
{B(c) —D(c+1)<hxSF if B(c) > Z?=1 D(c+1)
B(()—D(c+1) < (h—1)*SF if Bc) < TP D(c+1).
Theorem 3. Vc€ [0,e—1] B(c) <hxSF.
Corollary 4. Vc€ [0,e —1] 0< B(c) < min(CB,h * SF).

Theorem 4. If CB > max((h+2)/(h+1)xP, V) and SF <CB/(h+2),
then Vce[0,e—1] R(c)=0 or R(c) > SF.

It should be noted that the condition CB > (h+2)/(h+1)* P in additionto CB>V
will not mandate large buffers in a client. This is because normally V is approaching 2* P,
while (h+2)/(h+1)*xP < 3/2%P < 2xP. It indicates that in most situations, it is possible
to find a value selected from a range such that the amount of data read in each cycle is either
zero or no less than the selected value. Then compared to the value selected, small reads
are eliminated. The maximal such value is only determined by & and C'B, whose minimal

value in turn depends on h, P, and V, where P and V are very simple characteristics of a
stored VBR video.

5.4. Analysis and Verification 57

Corollary 5. For X >0, if CB>max((h+2)/(h+1)*P, V, (h+2)*X),
then ASF > X, such that Vce[0,e—1] R(c)=0 or R(c) > SF.

Corollary 6. If CB=2+P and SF<CB/(h+2)=2/(h+2)*P,
then YVce[0,e—1] R(c)=0 or R(c) > SF.

Corollary 7. If CB=2+xP=2xk*xM and r <2xk/(h+2),
then Yce€[0,e—1] R(c)=0 or R(c)>r+*M.

5.4.2 Verification of Formal Results

It should be noted that the condition in Theorem 4 is sufficient but not necessary. This
is because its proof uses Corollary 4, and min(CB,h * SF) is not a tight upper bound
of B(c). However, to verify that they do not differ very much, maximal B(c) has been
computed by fixing b and varying r from 0.1 to 4.6 for the MTYV trace. The results for A
from 1 to 6 are shown in Figure 5.9. It can be seen that min(CB, h * SF) is a simple and
good estimate as an upper bound for B(c).

The relative tangent lines are h*SF.
o T

800 =T T T T
~
"‘ R
800 [) : .
..'
700 -
L
-
o
600 |- P - .
*m AvAaliad~ial Takiad ogalli
500 ik 2y :ﬂ-ﬂ-m* Bﬂﬁ”ﬁiﬁ? 'fﬁ frgull
‘x‘)(’f Ruﬂwla‘a’ 1 - . ',+ -+

maximum B(c) (KB)

2 25
r{where SF=r*M)

Figure 5.9: Maximal Balance Upper Bound

In the MTYV trace, the peak/mean ratio is k = 4.0. Assume a client has a buffer size
of 2 P = 600.4 KB. Then by Corollary 7, when r < 2 « k/(h + 2), the data read in each
cycle is either 0 or above SF. Indeed this is the case when results for a large range of h are
computed. Computation has also been done to determine how big r should be for the read
set to have read sizes smaller than SF. For example, when h = 3, if r < 2+k/(3+2) = 1.60,
then the element of the read set is either 0 or at least SF. It is only when r reaches 1.63
that reads with size smaller than SF start to appear. Similar results are observed for a
large range of h starting from 1, which further indicates that the sufficient condition in the
formal results is not very far from the necessary condition in reality.

58 Chapter 5. Variable Bit Rate Srhoothing

5.5 Effects of Changing Parameters

As the algorithm and the formal results do not show the effects of varying r or k on the
computed read set, this section compares different retrieval strategies based on different r or
h using real VBR traces. For a given SF and the computed read set, a large-read is defined
as a read with size larger than SF, a smoothed-read as a read equal to SF, a small-read as
a read smaller than SF but not zero, and a suppressed-read as a read with size zero.

The percentage of the above four types of reads are used as parameters for comparison.
A good (r,h) pair would result in small large-read and small-read percentages, but with
large smoothed-read and suppressed-read percentages. The measures also include the mean
and the standard deviation of all reads, and of those reads that are non-suppressed. Small
standard deviations in both cases would make for better results. Comparisons have been
performed on most of the video traces in [Trace95]. As the results are similar, only the
MTYV trace is shown as an example here. CB is set to V = 586.2 KB = 2 % P in all cases.

5.5.1 Fixed Look-Ahead Steps, Varying Smoothing Scale

This subsection looks at the effects of fixing & while varying r from 0.1 to 4.6. The same
analysis has been repeated for i from 1 to 6, but as all results have similar trends of the
above parameters, only cases of h = 2 and h = 5 are shown in Figure 5.10 and Figure 5.11.

200 l ¥ T T T e T T T L]
ft

rd
s 0)>SF (%) ~o—
4 Q)=SF (%) ~-
I o<n <sr-' %) -8
l =0 (%) ¥

R(c) mean(of H(0)}(KB) -
180 |- A’. R(c) standerd deviationi F|<2>0 Moo L
(c

¥ R(c) mean(of all R(c
’_" R(c) standard daviation(of all

Qe ot

K -0

A _Q.o””
-

O
A o

100

50

r(whereSF:r'M)
Figure 5.10: Read Set Statistics: h = 2, r € [0.1, 4.6]

In both cases, when r increases, the percentage of suppressed-reads increases. This is
because as the algorithm is trying to read more data each time into the client buffer, it
can suppress reads more often in subsequent cycles. However, the large-read percentage
always decreases. This has two causes: one is that suppressing occurs more often; the other
is that more reads can be smoothed to SF, which is around the average (M). However,
the smoothed-read percentage increases until around » = 1.2, and then will decrease. The
reason for the percentage decrease of smoothed-reads is that more suppressing occurs first,
then roughly when r > 2xk/(h + 2), whichisr >2andr > 1.14forh=2and h =5
respectively, small-reads start to appear and to increase.

5.5. Effects of Changing Parameters 59

180 T T T T T T T T T

R(c)>SF (%) ~<—

R(c)=SF (%} —+--

160 - 0<R(c}<SF (%) -B-- .
c)=0

R(c) mean(of R(c >0<2KB o JUPTRweR e |

R(c) standard daviation{c! R(c)>0 . _
] (@ meanor &l A(GY(KS] - T

R(c) standard deviation{of all

(©)) o

OO 4o—0—0—t—b D o o 2 o VY

2 2.5
r{where SF=r*M)

Figure 5.11: Read Set Statistics: h =5, r € [0.1,4.6]

The standard deviation for all reads increases, because of more suppressing. However,
the standard deviation of non-suppressed-reads drops first, because of smoothing, but it will
increase later, because small-reads start to appear to counter the smoothing effect. The
mean is constant for all reads and increases for non-suppressed-reads because of increased
suppressing.

5.5.2 Fixed Smoothing Scale, Varying Look-Ahead Steps

This subsection fixes the value of r, and looks at the above parameters as h varies from
1 to 10. The same procedure has been repeated for values of different r. As the results
have similar characteristics, the cases of r = 1 and r = 1.5 are shown in Figure 5.12 and
Figure 5.13.

In both cases, when A increases, small-reads will appear and increase from h ~ 2xk/r—2,
which is h = 6 and A = 3 for » = 1.0 and » = 1.5 respectively. The smoothed-read
percentage will increase first, and then decrease when small-reads appear. The increase of
the smoothed-read percentage is because when the algorithm looks ahead further, it tends
to read in data more often to smooth the burstiness in later cycles in the displayed set. A
side-effect of this is that the algorithm also tends to perform suppressing less often, which is
why the suppressed-read percentage is always dropping. The large-read percentage always
decreases because of better smoothing first and small-reads later.

When the algorithm looks ahead more, the standard deviation of all reads will drop,
because of smoothing first, and less suppressing later. The mean of non-suppressed-reads
drops because of less suppressing. However, the standard deviation of non-suppressed-reads
will drop first because of smoothing, and will start to increase when small-reads occur.

5.5.3 Discussion and Recommendations

When h is fixed, although large r will cause a large suppressed-read percentage, the
smoothed-read percentage tends to drop, and the result is more bursty, e.g., the mean of

60 Chapter 5. Variable Bit Rate Smoothing

100 T T T T T T
.
d * e e Mg
8o | .--K-.......*"_._"_* -
P it
_-—’*'"-“*-‘—--—* *\\"“1-
60 - //"" \"'-h-___\ R(c)>SF (%) o— |
~+ R(c}=SF (%) =+~
+ U<Rc<SF % B
o
R(c) me: all)(KB ———
R(c) standard deviation(all} -&---
40 c) mean(of R(c)>0)(KB} -»---
Ao R(c) standard deviation{of R(c)>0)} -o--
20 B
0 L
6 8 12
h (steps of look ahead suppressing)
Figure 5.12: Read Set Statistics: » = 1.0, h € [1,10]
120 T T T T T T
e T
. '-*‘.~
w0 | l!.. |
.
DT
Rt N
80 | * .
et R(c)>SF (%) -o—
ammemch. R(c)=SF (%) —+-
s 0<R(c}<SF % -8
60 * ok, el pr—
T S p R(c) mean(of all ?:0 e
[t YO8 R(c) standard deviation{of al Kg
el B R{c) mean(ot R{c)>0)(
.. *a.._ Rlc)standard deviation(of R(c)>0) —o
40 N A .
e — . ol Tea
T > G
P o ¢_____*~
20 =i I + .
e g e 0 S
i
.-“E K
o~ - R - N - ,
0 —a i &
2 4 12

[}
h (steps of lock ahead suppressing)

Figure 5.13: Read Set Statistics: » = 1.5, h € [1, 10]

non-suppressed-reads and the standard deviations of both all reads and non-suppressed-
reads increase when r is large. The situation is more manageable when r € [1, 2].

When r is fixed, the standard deviation of non-suppressed-reads has roughly the same
turning point as the smoothed-read percentage, where the former is minimised and the
latter is maximised. As the point, i.e., at 2 * k/r — 2, is determined by r, r can be seen as
a more important parameter than A. Once a reasonable r has been selected, the maximal
h =|2*k/r — 2| can be computed for use in the algorithm.

If the aim is to maximise the smoothed-read percentage, a real trace can be analysed
by increasing r when fixing i to a small value, for example, h = 2. Otherwise if A is large,
then the range of r allowing each read to be at least r * M is small, as r < 2+ k/(h + 2).

5.6. Examples and Observations 61

Such an analysis has been performed on most of the traces in [Trace95], and most of them
reach the maximal smoothed-read percentage when r» = 1.2. On the other hand, a small
large-read percentage would also be desirable. Because the large-read percentage will drop
when r becomes large, larger r can be used for videos with higher peak/mean ratios.

As a rule of thumb, r can be recommended to be near 1.2 when k is not large (e.g.,
k € (2.4,2.8]), and near 1.4 when k is medium (e.g., k € (2.8,4]), and near 1.6 when k is
large (e.g., k € (4,6]). When k € (1,2.4], r can be set to either 2 % k/3 or k/2 subject to
the look-ahead steps desired (h =1 or h = 2). If a small value of r is not desirable (e.g.,
when k <15, r<1if CB=2+P =2x%xk* M), CB can always be increased to boost r,
since r* M < CB/(h + 2).

5.6 Examples and Observations

Though the above comparison and examples use unit of KB for the length of the dis-
played and read sets, it should be noted that the algorithm itself is independent of the
length unit chosen, which could be KB, disk block, fixed-size system block, or adjustable
striping unit. This section will give examples for the latter two, and make some interesting
observations. Here again the MTV trace is used as the example.

5.6.1 Examples
Fixed-Size System Blocks

As have been shown, some scalable storage servers only provide access to fixed-size
system wide blocks or fragments. As an example, assume that the size of the system block
is 64 KB. First the displayed set with 64 KB block as the length unit is computed and the
results are shown in Figure 5.14 with statistics in Table 5.4.

L) L) T LJ 1 1 T
5 ° E
3 4} . T
n
=%
8
o
b=
E 3¢ o We ® o0 o 0O WO O -
]
@
£
-
5 2 [OBmOEENEES EEENSEDO OF ¢ GOOENNND o0
F
8
o 1 b
0 @—o—o—c-tommr—o L —am-ascnine - 1 olom ainos—anenm
0 200 400 600 800 1000 1200 1400 1600

seconds

Figure 5.14: Displayed Set with 64 KB Blocks

Since k = 4.26 is large, r can be selected as 1.6. As1.17%1.6 = 1.87 blocks, SF' is chosen
as 2 blocks. In this case the adjusted » = 2/1.17 = 1.7, then h < 2x4.26/1.7 — 2 = 3.01.

62 Chapter 5. Variable Bit Rate Smoothing

Table 5.4: Displayed Data per Second with 64 KB Blocks

more than 2 blocks access (%) 2.13
2 blocks access (%) 23.69
1 block access (%) 63.12
0 blocks access (%) 11.06
average (mean) size (blocks) 1.17
maximal (peak) size (blocks) 5
minimal size (blocks) 0
maximal sum of two consecutive seconds’ data size (blocks) | 9
peak/mean ratio 4.26

So 3-step look-ahead suppressing is used. Using a client buffer with 10 blocks (2 x P), the
algorithm is applied to the displayed set and the result can be seen in Figure 5.15 with an
area detailed in Figure 5.16. It can be observed that each cycle either reads at least 2 blocks
or does not read at all. The percentages of the read in the read set which is larger than 2
blocks, equal to 2 blocks, and zero are: 0.44%, 57.95%, and 41.61%. The mean of all reads
is 1.17 blocks with a standard deviation of 1.00, while the mean of non-suppressed-reads
is 2.02 blocks with a standard deviation of 0.18. It is interesting to see how small the
large-read (more than 2 blocks) percentage is after smoothing and suppressing.

5F °

84 KB)

&
T
*

blocks actually read in a second (1 block
»
I
L)

0 ‘s oo/ cunssanissEEE——in avIneuivE GeelEE—————
0 200 400 600 800 1000 1200 1400 1600
seconda

" Figure 5.15: Read Set with 64 KB Blocks

Adjustable Striping Units

Cadmus supports striping units (or blocks) of different sizes for different videos. It is
desirable to read at most 1 block in most cycles, i.e., to make the smoothing factor to be 1
block. Although the proposed algorithm is not oriented to compute a block based displayed
set, compared to the algorithm in Figure 5.4, the block based displayed set computation
actually performs one step look-ahead suppressing with SF set to be the block size, and
reads to the nearest multiples of SF in branch (), without considering client buffer usage.

5.6. Examples and Observations 63

1 L] T T T
§F 0
g
Y
w0
5 -
8
1
[
° 1
«
£
3
_; 2 #0000 0600 O o NS S
E}
1+
«
B 1 7
o PV e PrOND PNV L Sl 1 h
250 300 350 400 450
saconds

Figure 5.16: Read Set with 64 KB Blocks: Details

For each trace in [Trace95], the block based displayed set has been computed for differ-
ent block sizes (r * M) by varying r, and it is found that the trends of the read percentages
are similar to the fixed h, varying r analysis in the last section. For example, most traces
have the maximal 1 block read percentage when the block size is 1.1 * M. Therefore,
~ the same rule of thumb can be used as heuristics to select SUS in order to achieve large
percentage for 1 block access and small percentage for access with more than 1 block.

Since for the MTV trace k£ = 4.0, r is set to be 1.4, and 1.4 * M is chosen as the block
size, which is 106 KB (note the cycle length is still 1 second, though on average one block
can be displayed for 1.4 seconds). The block based displayed set is shown in Figure 5.17
with statistics in Table 5.5.

Table 5.5: Displayed Data per Second with 106 KB Blocks

more than 1 block access (%) 3.25
1 block access (%) 64.19
0 blocks access (%) 32.56
average (mean) size (blocks) 0.709
maximal (peak) size (blocks) 3
minimal size (blocks) 0
maximal sum of two consecutive seconds’ data size (blocks) | 6
peak/mean ratio _ 4.23

The proposed algorithm can be applied again on the block based displayed set with
a smoothing factor of 1 block. As there are no small-reads now, only the read-ahead and
smoothing functionalities of the algorithm will take effect, while considering the client buffer
limit. Because for the block based display set, r = 1/0.709 = 1.4 and 2k/r — 2 = 4.04,
4-step look-ahead suppressing is used with a client buffer of 6 blocks. The result is shown
in Figure 5.18. In this case, the percentages for the read in the read set that is larger than
1 block, equal to 1 block and zero are: 0.63%, 69.63%, and 29.74% respectively, where the
large-read percentage is further reduced.

64 Chapter 5. Variable Bit Rate Smoothing

3-5 T 1§ I‘ L) T T T
3F ° E
@
b4
(]
=
% 25 | E
a
% 2¢¢ 0 o o o & WROWMBO 00 OB O ° -
i3
@
K] 15 F 4
3
d
3
8 1 pEE—— 3
=
05 E
(0 a0l eumeanis P R

0 200 400 600 800 1000 1200 1400 1600
sgeonds

Figure 5.17: Displayed Set with 106 KB Blocks

3.5 T T T T T T T

25 |

1.5

blocks actually read in a second (1 block = 108 KB)

05 |

SRS — o) — SO IR -0 w8 4in-0—cxaninunEnEnne -eEsen
0 200 400 800 800 1000 1200 1400 1600
seconds

Figure 5.18: Read Set with 106 KB Blocks

5.6.2 Some Observations

One observation from the above examples is that large-reads still exist, though their
percentage is small. If a server cannot temporarily store extra data, then it should not
pre-fetch data in suppressed cycles in the hope that it can smooth out large-reads in the
future. This is because the server then has to send pre-fetched data in advance, which would
probably overflow a client. If a server could do set-aside buffering to pre-fetch data for the
large-read cycles, then these buffers could be shared by multiple streams. This is because
the large-reads of a stream tend to aggregate after smoothing and suppressing, and a server
can try to avoid multiple large-reads of different streams occurring at the same time during
AC. Another method to smooth large-reads is to take advantage of multiplezing and use

5.6. Examples and Observations 65

the suppressed cycles of other streams to accommodate the large-reads of a new stream.
This is because the suppressed-reads of a stream tend to aggregate as well. In Figure 5.18,
consecutive suppressed periods as long as 4 cycles (4 seconds) are observed. In practice, the
above two techniques can be combined.

Another very interesting observation is that for the MTV trace, smoothing and sup-
pressing make the large-read percentage very small. If those large-reads can be dealt with
by a server using set-aside buffering or multiplexing, then most of the time the stream is of
pseudo constant block rate, yet there are suppressed cycles as well. The constant rate needs
not to be the peak rate at all. For example, though the peak size per cycle is 3 (106 KB)
or 5 (64 KB) blocks in the above examples, the constant size is 1 (106 KB) or 2 (64 KB)
blocks per cycle, which is just 1.4 % M or 1.7 x M compared to the peak size of 4 * M. This
suggests that some stored VBR videos may not be that bursty when an algorithm such as
the one proposed here is applied and if there are no adverse effects to reading more than
the average data size in a cycle.

All the video traces in [Trace95] have been analysed with r set to a value using the
above rule of thumb. The adjustable block size is set to 7 * M and the block based displayed
set and read set’s read percentages are compared. The results are shown in Table 5.6, which
verify the above conjecture to some extent. D and R in the table represent the number of
blocks read in a cycle for the displayed set and for the read set respectively. It should be
noted that A is computed from the values of k¥ and r of the displayed set. It is observed
that any h that is larger than the computed one will not lower the large-read percentage
for a read set.

Table 5.6: Read Percentage for All the Video Traces

title M k r block | D>1|(D=1|D=0|h|R>1|R= R=0
(KB) KB) | (%) [(B) | (%) %) | (&) | (%)
asterix 68.2 | 359 |14 |96 3.62 63.81 | 3256 | 2| 1.38 68.42 | 30.21
atp 66.8 | 2.76 | 1.2 | 80 6.00 71.50 | 22.50 | 4 | 0.88 82.03 | 17.09
bond 742 | 3.01 (14] 104 2.31 66.69 | 31.00 | 4| 0.44 70.77 | 28.87
dino 399 | 337 |14 | 56 2.88 65.50 | 31.62 | 4| 044 70.63 | 28.93
lambs 223 (460]| 16| 36 4.62 5244 | 4294 | 4| 244 56.98 | 40.58
mrbean | 53.8 | 4.01 | 1.6 [86 3.12 56.19 | 40.69 | 4 | 1.00 60.74 | 38.26
mtv 75.1 | 4.00 [1.4 | 106 3.25 64.19 | 32.56 | 4 | 0.63 69.63 | 29.74
news 63.1 |361|14]88 4.44 62.70 | 32.86 | 4| 0.95 69.93 | 29.12
race 93.8 | 3.54 | 14 | 132 2.19 66.69 | 3113 | 4] 0.19 70.95 | 28.87
simpsons | 56.7 | 3.20 | 1.4 | 80 2.94 64.94 | 3213 |4]0.25 70.57 | 29.18
star2 284 [3.92(1.4]40 6.19 58.13 | 35.69 | 4 | 2.63 65.50 | 31.87
talk 444 |2.74 | 1.2 | 54 4.44 73.19 | 22.38 |4 | 1.19 79.80 | 18.91
term 33.3 | 252 |12|40 4.44 74.38 | 21.19 | 2 | 0.56 82.26 | 17.18

Another question presents itself: what is the smallest r that will make a smoothed and
suppressed read set have no large-reads when the block size is 7+ M. Computation has been
performed by incrementing r from 0.1 to 4.6 with step 0.1 to find such 7 for all the video
traces, and the results are shown in Table 5.7. Unfortunately it seems there is no good r
for all, and the results depend on the individual traces. But for most traces, large-reads
can be eliminated without using peak rate retrieval (i.e., » < k). However, the relative r is
large, for example, in most cases r > k/2. Therefore, eliminating large-reads by increasing
7 may not give much gain. Thus it is still better to use smaller r and use multiplexing or
server set-aside buffering to absorb the small large-read percentage as was suggested above.

66 Chapter 5. Variable Bit Rate Smoothing

Table 5.7: Zero Large-Read Percentage for All the Video Traces

title M k r block | D>1|D=1|D=0|h|R>1|R=1|R=0
(KB) (KB) | (%) [(%) | (%) %) | (%) | (%)
asterix 682 [359]|19([129 | 0.88 51.12 | 48,00 | 2 | 0.00 52.97 | 47.03
atp 66.8 |276 | 20| 133 | 031 49.63 | 50.06 | 2 | 0.00 50.34 | 49.66
bond 742 [3.01|17]126 | 0.56 57.81 | 41.63 | 2 | 0.00 59.04 | 40.96
dino 399 |337(21)83 0.31 4750 | 52.19 | 2 | 0.00 48.22 | 51.78
lambs 223 [460 32|71 0.25 3094 | 6881 |2 | 0.00 31.52 | 68.48
mrbean | 53.8 | 4.01 29|15 |0.19 3419 [6563 |2]0.00 | 3465 | 65.35
mtv 75.1 | 4.00 | 2.5 | 187 0.12 3994 | 5994 | 2| 0.00 |[40.28 | 59.72
news 63.1 |[3.61]33|208 |0.00 30.32 | 6968 | 1| 0.00 (3040 | 69.60
race 93.8 | 3.54| 1.7 | 159 0.62 57.81 | 41.56 |2] 0.00 | 59.16 | 40.84
simpsons | 56.7 | 3.20 | 2.0 | 113 0.31 49.56 | 50.13 [2] 0.00 | 50.28 | 40.72
star2 284 |392]29]82 0.19 3431 | 6550 | 2| 0.00 | 34.77 | 65.23
talk 444 274128124 |0.00 3581 | 64.19 | 1| 0.00 | 35.88 |64.13
term 333 (25214 |46 2.00 68.38 | 29.63 | 2 | 0.00 72.48 | 27.52

5.7 Related Work

Most VBR video server designs using deterministic cycle based schemes [Dey94] [Asai95]
[Chang94a] just convert the actually displayed data into blocks and read the relative num-
ber of blocks needed in a cycle. They do not consider the effects of read-ahead, probable
smoothing, and client buffer limits.

In [Neufeld96a], the block based displayed set is used as a basis for AC, and read-ahead
is performed during AC for a new stream subject to server buffer availability. However,
it does not consider client buffer limitations, nor does it consider smoothing for a single
stream. A later article [Neufeld96b] proposes a dynamic server credit based flow control
mechanism taking into*account client buffer availability at run-time. But, if a read set can
be pre-computed based on client buffer utilisation, then there is no need to perform explicit
flow control at all. On the other hand, if dynamic flow control is performed, then the
statically computed read set may not be observed, and the AC criteria that were satisfied
may be broken at run-time.

There is research work on designing smoothing algorithms from the perspective of net-
work transmission of VBR videos. [Feng95] focuses on reducing the number of rate in-
creases required during a stream’s transmission. The approach is to divide the video into
segments in which piecewise CBR transmission is possible and there are no rate increases
between the sub-segments. However, substantial rate increases will occur during segment
boundaries, although it can be amortised to some extent by pre-fetching. The algorithm’s
applicability to network striped video servers is questionable because much rate variability,
although constrained, still exists, and large buffers are needed at client sides to reduce the
number of rate increases to an acceptable level.

[McManus96] takes the approach of building up enough data in a client before an actual
playback starts, so that the subsequent transmission rate from a server can be constant.
Analysis is performed to determine the relationships between the client buffer size, the
built-up data size, and the constant transfer rate. Piecewise CBR transmission for VBR
videos is also considered, because it requires less client buffer as the built-up operations
are scattered. This latter approach is further studied in [McManus95)], whose focus is to
identify a transmission schedule which minimises client buffer requirements for a specific
number of CBR. transmission segments for a video.

5.8. Summary 67

[Salehi96] presents an optimal smoothing algorithm for achieving the greatest possible
reduction in rate variability when transmitting a stored video to a client with a given
buffer size. The algorithm relies strictly on work-ahead, and introduces no delay into client
playback. The result is a piecewise CBR transmission schedule with minimum variance and
peak rate among all feasible schedules for the video. This is achieved by constructing a
CBR transmission segment as long as possible, but changing the rate as early as possible
when the transmission rate must be increased or decreased to ensure feasibility.

The fundamental difference between the work in this dissertation and the related re-
search in smoothing for network transmission is the design philosophy. The related work
tries to smooth a VBR video into multiple CBR segments with different rates. When they
are applied to a deterministic cycle based network striped video server, the size of the data
retrieved in a cycle will vary from segment to segment, which is not very helpful to the
selection of SUS. Also data may be retrieved from multiple SSs in a cycle if the SUS is fixed
for a video. In contrast, this research tries to maintain the size of transmission in a cycle to
always be above a certain level, with probable suppression of the data retrieval. This has
several benefits. First, it can eliminate small reads in the server. Second, it can be used to
select SUS. Third, it can smooth the block based retrieval so that only one striping unit is
retrieved in most of the cycles. Finally, it only needs reasonable client buffer space.

5.8 Summary

This chapter proposed and analysed an algorithm that could be used to compute the read
set from the displayed set, while considering client buffer limitations, performing read-ahead
and suppressing, smoothing the read set, and eliminating small reads. The analysis was
verified using real VBR traces, and the effects of varying the parameters of the algorithm
were identified. The results can be used to choose the SUS of a VBR video, and the
criteria only depend on simple video characteristics. The applicability of the algorithm was
shown by giving examples of retrieving fixed or adjustable striping units. An interesting
observation is that some VBR videos may not be that bursty for block based retrieval if
these videos are read slightly above their average rates. Finally, related work in smoothing
was evaluated to show the strength of this research.

Chapter 6

Admission Control

This chapter describes the AC aspects of Cadmus, especially the admission criteria in
SS entities. The activities and fundamental resources in an SS node are classified. Then the
disk service time is estimated with ZBR considerations. AC criteria for both RT and NRT
activities are given based on their usage of SS resources, including shared ones. Finally, the
Cadmus view on supporting VCR. functionalities. with AC considerations is presented.

6.1 Admission Control Consideration

6.1.1 The Admission Control Sequence

The distributed nature of Cadmus suggests a two phase commit protocol for AC when
there are RT playback or recording requests. For a VBR playback request, an SCA will
retrieve the video index and compute the read set. From the read set, a read table is
computed for each SS which the video file is striped onto and the read tables are sent to the
corresponding SSs. An SS will perform AC based on the read table, the extent list, zone
information, and a cycle table, which records resource usage in current and future cycles.
Each SS will return to the SCA a start set of cycles that can be used to start the new
stream. The SCA will examine the start sets and find the earliest cycle that can be used by
all the SSs. If such a cycle is found, then a commit command is sent to the SSs to actually

reserve resources and start data retrieval. Otherwise, an abort command is sent to the SSs
and the AC fails.

The AC sequence for RT recording or CBR playback is similar but much simpler because
there is no video index or read set involved. For CBR recording or playback, an SS can
compute receive tables or read tables respectively just based on LO attributes such as the
striping group, the SUS, the redundancy method, and the data rate. For VBR recording, the
peak data rates should be known and are used as the basis for AC and resource reservation
in conjunction with other LO attributes. The subject of RT recording is further discussed
in Section 6.3.3.

6.1.2 Contracts

AC and QoS enforcement are two distinct concepts, but between them there are invisible
contracts. For an SS, the set of contracts is the resource management policies in the physical

69

70 Chapter 6. Admission Control

entity where the SS resides. AC is to test whether resource requirements of a request can
be satisfied in the future. Without detailed knowledge of the resource scheduling methods,
AC would be inaccurate and lead to either resource under-utilisation or QoS degradation.
On the other hand, QoS enforcement should faithfully implement the scheduling policies
assumed by the AC procedures, otherwise resource waste or service breakage would still
occur. The contracts for SSs will be incrementally introduced in this chapter when present-
ing the AC criteria, while contract enforcement in the Cadmus prototype implementation
will be described in the next chapter. In the following, C-i refers to contract number ¢. A
summary of the contracts will be listed in Appendix B.

6.1.3 Resources and Activities

A resource is a commodity necessary to get work done. There are generally two types of
resources in a computer system [Finkel88] [Levin75]: fundamental resources and virtual
resources. Fundamental resources, such as memory, CPU cycles, bus bandwidth, and I/O
capability, are related to the basic concepts of space, time, and transport; while virtual
resources, such as files and inter-machine or inter-process communication channels, are
introduced by the software layer above the bare hardware. To guarantee QoS for RT
streams, AC and QoS enforcement are needed because the capacity of any such resource is
limited.

This work only concentrates on fundamental resources because the influences of virtual
resources can be made negligible in CM applications by minimising single virtual resource
sharing among different streams [Needham92]. It also does not try to abstract resources,
as done in [Zhao87b] [Zhao87a], because the fundamental resources in an SS entity with a
contemporary architecture are not numerous: CPU, memory, bus(es), disk(s), and network
interface (Figure 6.1). The primary task of an SS, from the perspective of utilising the
fundamental resources, is to move CM data between the disk(s) and the memory, and
between the memory and the network interface through the bus(es). This work assumes
data cannot be transferred directly between disk(s) and a network interface.

~~~~~
- ~

; CPU memory

netv\w)?rk data path

\}

'
L} 1
1 I
] |
! \
, | network | / !
\ Linterface | \

~ ’ ~ ’

~ - S

TeemT Rs: shared resource set
Rn: unshared network related resource set
Rd: unshared disk related resource set

Figure 6.1: Fundamental Resources in an SS Entity

The activities in an SS entity can be classified as disk read/write, network send/receive,
and pure CPU processing. Each category can be further divided into RT and NRT activities,
with RT ones related to CM stream playback or recording, the rest being NRT. The resource



6.1. Admission Control Consideration 71

usage of the activities is highly dependent on the entity structure. For example, the devices,
either the disk(s) or the network interface, may or may not have DMA capability, which will
affect whether the CPU is used for data transfer. Further, without DMA, data transferred
between a device and the memory will pass through the CPU-memory bus twice if a RISC
CPU is used. Thus it is very difficult to give an accurate set of AC criteria without assuming
a specific SS entity architecture.

This work will assume there is no DMA support in the devices and does not consider
the CPU-memory bus resource for the following reasons: First, AC for programmed /O is
more difficult than the DMA based case. This is because with programmed I/0, the CPU
becomes a shared resource for both disk and network activities; while using DMA, the CPU
is out of the way of data movement, and the AC on different resources is more independent.
Also, an entity using programmed I/O is cheaper than a DMA based one. Second, the
CPU-memory bus is ignored because it is also a shared resource and the considerations of
the CPU under programmed I/O apply to it as well. In addition, the bus is normally not
a bottleneck in most contemporary machine architectures. Although pure CPU processing
will use the bus for memory access, corresponding bandwidth could be reserved for this if
the bus resource were to be considered. Finally, the above assumptions are true for an SS
entity used in the prototype implementation to be described in the next chapter.

This chapter will therefore focus on RT and NRT disk, network, and pure CPU process-
ing activities, as well as their AC on the disk, network, CPU, and memory resources in an
SS entity.

6.1.4 General Admission Control Criteria
Network, Disk, and CPU

Receive activities are by far the most difficult to predict, and receive is important because
an SS has to obtain information from SCAs, record RT streams, and accept data for video
updating. Also receive activities in an interrupt driven system should not lead to the
live-lock state [Ramakrishnan93] when there are malicious clients, which will make an
SS appear to be temporarily lost. Cadmus addresses these problems by reserving a fixed
amount of resources for NRT receive (C-1) and by regulating receive activities in each cycle
(C-2). It also makes the receive interrupt run at a higher priority than the send and disk
I/O (C-8) to reduce the probability of losing data. All these contracts are assumed by the
AC criteria below.

Assume if there are no other activities, the time needed to receive the reserved amount
of NRT data and move it to the memory is TnRTvecy_net, While the time required on the CPU
for moving the data is Twr7vecv_cPy. Because TnNRTvecy_net Should be estimated using the
component with the lowest capacity along the data path from the network interface to the
memory, including the CPU, to reflect the bottleneck effect, TnrTrecv_cPv < TNRTrecy_net-
Then the AC criterion for the network resource in cycle c is:

[c].send_net + [c]. RTrecv_net < T — Tres_cpu — TNRTvecv_net (6.1)

where [c].send_net and [c]. RTrecv_net represent the aggregate time required by send and
RT receive activities in cycle ¢ respectively, and they are estimated in the same way as
TNRTvecv_net 18. Tres_cpu is the reserved CPU time for activities such as cycle boundary
processing, and it in effect shortens the cycle length and is deducted from 77, in all AC
criteria.



72 Chapter 6. Admission Control

Because receive activities have a higher priority and are unpredictable, their CPU occu-
pation time should be factored into the disk service cycle even though there is disk seeking
time which will not use the CPU. This is because potential receive activities can defer
disk transfer at any time in a cycle, as both activities need the CPU to proceed. The AC
criterion for the disk resource in cycle c is:

[¢].disk < T — Tres_cPv — TNRTvecw_cPU — [¢]. RTrecv_CPU (6.2)

where [c].disk and [¢].RTrecv CPU represent the aggregate disk service time for disk ac-

" tivities and the CPU time for RT receive in cycle c. [c].disk is composed of the disk seek
time, [c].disk_seek, and the data transfer time, [c].disk_zfer, which is also estimated using
the component with the lowest capacity along the data path between the disk platter and
the memory, including the CPU.

The above criteria assume that network send and disk activities are known at the start
of a cycle (C-4), so that a simple First-Come-First-Served (FCFS) scheduling will suffice for
these activities (C-5). For the AC criterion on the CPU resource, the CPU time requirements
from device related activities should be included because the CPU is a shared resource under
programmed I/0O. The CPU AC criterion conforming to the above two is:

[c].disk_CPU + [c].send_CPU + [c].RTrecv.CPU
< Te — Tres_cPu — Tpure_cPv — TNRTvecv_cPy  (6.3)
where [c|.disk_CPU and [c].send_CPU refer to the aggregate CPU time needed by disk

data transfer and send activities in cycle ¢, while Tyure_cpu represents the aggregate RT
and NRT pure CPU processing time needs to be reserved in a cycle. Note that:

[c]. RTrecv_.CPUX [c].RTrecv_net (6.4)
[c].send .CPUX [c].send_net (6.5)
(c].disk_CPUX |c].disk_zfer (6.6)

Assumptions and Conditions

The above three criteria are only valid under certain assumptions. Criterion (6.1) as-
sumes that no other activities interfere with network related ones, while Criterion (6.2)
assumes that no other activities, apart from network receive, interfere with disk related
ones. Both assumptions may not be true because both types of device activities require
some shared resources such as the CPU or the CPU-memory bus to proceed. Criterion (6.3)
further assumes that a disk transfer or a network send activity known at the start of a cycle
should be able to start immediately when there is available CPU resource for it. This may
not be true because a disk data transfer cannot start until a potential seek is accomplished.
All these assumptions bear a common theme: activity dependency is eliminated if they are
true.

As was suggested in Section 2.6.2, RT scheduling problems with precedence and resource
constraints are generally NP-complete. However, the simple and specialised functionalities
of an SS do not warrant a more complex solution. A natural approach is to find the
conditions when these assumptions can be held true, so that a simple FCFS combined with
priority based scheduling can achieve the effects of QoS enforcement.

As receive activities run at the highest priority and have been factored into all three
criteria, they will not interfere with any other activities because they are also regulated.



6.1. Admission Control Consideration . 73

Pure CPU processing can be made to run at a lower priority than other activities (C-8),
and RT CPU processing can run at a higher priority than the NRT one (C-7). Then pure
CPU processing will not interfere with device related activities in any cycle. Thus the only
interference should be considered is the one between network send and disk activities.

For simplicity of analysis, assume there are only disk and network send activities in
a cycle. A disk activity has three time parameters: disk_seek, disk_zfer, and disk_CPU,
with disk_CPU < disk_gzfer; while a send activity has time requirements: send_net and
send_CPU, with send_CPU < send_net. An important observation is that disk seeks can
happen parallel to network and CPU activities, and that a disk transfer cannot start until
a disk seek has finished. If any disk transfer is delayed by network send, then the seek of a
subsequent disk activity will be delayed as well, which will further delay its data transfer.
A better solution is to make disk transfer have a higher priority than network send (C-8),
which has several benefits. First, disk activities are not interfered with by network send.
Second, disk utilisation is increased because there is no more delay to disk seeks. Finally,
network send can grab the CPU while disks are doing seeking.

However, disk activities will still interfere with network send. A simple example would
be a 4 time unit cycle with one disk and one network send activity, with disk_seek =
1, disk_zfer = 3, disk_CPU = 2, send_net = 4, and send_CPU = 2. Although both activi-
ties will be admitted by all three AC criteria, the network send will not be finished inside
the cycle. This is because the disk transfer will delay the later part of the network send.
Nevertheless, a closer examination shows that this interference can be eliminated in two
situations.

First, if for any network send activity p and disk activity q, p.send_CPU = p.send_net
and gq.disk_CPU = q.disk_zfer, then the delay to network send will not pose any problem
because Criterion (6.3) guarantees there is always time left over for it. One example for this
is where the CPU is the bottleneck on both disk and network data paths (cf. Figure 6.1).
Second, if the shared CPU has an equivalent bandwidth not less than the sum of the
I/O requirements of disk transfer and network send, then both types of activities can be
multiplexed on the CPU without delay to each other. These two situations can be further
generalised as is described below.

In Figure 6.1, assume the set of non-shared resources from the disk to the memory is Rd,
the set of non-shared resources from the network interface to the memory is Rn, and the set
of shared resources such as the CPU-memory bus, CPU, and memory is Rs. If Bmin(Rn)
and Bmin(Rd) represent the bandwidth of the slowest resources in Rn and Rd, and Br_n
and Br_d the bandwidth of resource r on network and disk data transfer respectively, where
r € Rs, then the above two situations are equivalent to:

dr € Rs, p.send_r = p.send_net and q.disk_r = q.disk_zfer (6.7)
Bmin(Rn) Bmin(Rd)
Vr € Rs, Brn Brd <1 (6.8)

where p and ¢ represent any network send and disk activity respectively, and send_r and
disk_r the time needed for the data transfer on resource r by the corresponding activity.
Also note that: p.send_r < p.send_net and q.disk_r < q.disk_zfer.

The three AC criteria only work when either of the above conditions is true and when
the activity priorities described above are enforced. Condition (6.7) can be interpreted in
two ways: either there is a shared resource which is indeed the bottleneck; or p.send_r and
g.disk_r are raised purposefully to p.send_net and q.disk_zfer to make the condition true.
Condition (6.8) will hold in most current commercial machines because of the fast CPU and
the high speed bus and memory. As the two conditions can greatly simplify AC and QoS



74 Chapter 6. Admission Control

enforcement in an SS entity and are not difficult to satisfy in practice, it is doubtful that
exploring the more complex problem space outside these conditions would be beneficial.
This work will assume that one or the other of the conditions is true (C-9).

Five levels of priority for different activities, i.e., network receive, disk transfer, network
send, RT CPU processing, and NRT CPU processing, have been introduced in an SS entity.
However, there will be no priority inversion problem because each type of activity can
be preempted by tasks of higher priorities over shared fundamental resources. This is in
contrast to the using of shared virtual resources, where data integrity should be maintained,
and a task already occupying a shared virtual resource may not be preempted by another
task requiring the same resource, which is the necessary condition for priority inversion to
occur.

Memory

The dual-buffer scheme, with one buffer for RT disk activities and another for RT
network activities to achieve pipelining, is well established and is used in the SSs of Cadmus
as well. Indeed, for special cases such as all streams are of CBR and disks are assumed to
have constant data transfer rates, buffers can be reused on a per stream basis. However, for
VBR streams on ZBR disks, buffer space is better reused on a per cycle basis. This is because
although how much data to read in a cycle is known in advance, the amount to read for
different streams and in different cycles varies. Memory allocation and deallocation would
incur run-time costs when reusing buffers before a cycle ends, which would also introduce
activity dependency and further complicate resource scheduling in an SS entity.

In contrast, cycle based buffer reuse makes buffer management simple and efficient.
Two buffers each with size K for RT playback can be allocated when an SS starts, and
such a buffer is called a K-buffer in Cadmus (C-10). Whenever a cycle c¢ starts, buffers are
allocated for all playback requests from the start of an empty K-buffer sequentially for disk
activities to read data into. When cycle c+ 1 starts, the same K-buffer is passed to network
activities for sending the data to clients. At cycle ¢ + 2, this same buffer can be passed
back to disk activities as an empty one, and there is no need to perform any deallocation.
For recording, because peak rate reservation is used, a dual-buffer is allocated and fixed for
each stream (C-11). If the aggregate buffer requirements of all RT playback activities in
cycle ¢ is [c].buf, then the AC criterion for the memory is:

[d.buf < K (6.9)

It was intended to use a three-buffer scheme in Cadmus to absorb disk anomalies. How-
ever, the scheme was finally dropped. This is because the three-buffer scheme would use
read-ahead and write-behind which are at odds with deterministic QoS guarantees. Also
50% of the resources have to be reserved in the AC procedures because it is impossible to

know in advance exactly which cycle’s data is being retrieved at run-time as disk anomalies
are unpredictable.

6.2 Disk Service Time Estimation

6.2.1 Discussion

While service time for other activities can be linearly deduced from measured system
parameters, disk service time is more difficult to estimate because it is not proportional to



6.2. Disk Service Time Estimation 75

the amount of data transferred. There are three origins for this non-linear effect. First, disk
devices continue to become smarter. They have their own CPUs, buffer caches, scheduling
mechanisms, and disk anomaly processing methods. It would be desirable to make a disk
device dumber (C-12), e.g., to ask it not to spend much time recovering from an error
or perform unpredictable caching, so that an estimation of its service time could be more
accurate.

Second, disk anomalies will produce unpredictable disk service time and will potentially
overload a cycle. To guarantee QoS in subsequent cycles and to maintain system wide cycle
synchronisation, cycle overload should be dealt with while preserving the semantics of both
RT and NRT activities (C-13).

Finally, disk head and track switch time as well as ZBR will contribute to transfer rate
variability from a disk. For example, the ST12550N has 24 zones, with the outer-most
zone’s transfer rate 5.82 MBps and the innermost zone 3.48 MBps. This gap is quadripled
for a 5-disk RAID3. If the worst case (innermost) transfer rate is used, then much disk
bandwidth would be wasted. To better utilise the disk resource, the switch time and ZBR
effects should be considered in disk service time estimation, which will be described in the
next subsection. Considerations of ZBR in AC and overload processing in the case of disk
anomalies are unique features of Cadmus.

6.2.2 Service Time Estimation

Assume in cycle ¢, there are J(c) disk read/write requests, each with data size R(4,¢),
j € [1,J(c)]. Using the extent list of a PO (C-14), it is possible to find the number of
extents on which a request R(j,c) resides. Let the number be X(7,¢). Assume R(j,c) has
data of size P(j,c,z) in each extent, where £ € [1,X(j,c)]. Such a contiguous segment
P(j,c,z) is called a piece of R(j,c), and ZX(”C) P(j,c,z) = R(j,c). As one piece is stored
discontinuously from another on a disk, each piece will incur a seek and rotational latency,
and there are altogether Z (c) X (j,¢) such pieces in a cycle.

In practice, if large extents are used, R(j,c) is much smaller than an extent, and X (4, c)
is 1 most of the time and 2 occasionally when R(j,c) crosses an extent boundary. However,
optimisation can be used to make X (j, c) always be 1 to reduce seek and rotational overhead.
For example, a request can be based on block access and an extent can be guaranteed to
be the multiples of such blocks. While specific optimisation is not the topic of this work,
the extent-based file system, the above AC criteria, and the following disk service time
estimation do not prohibit such optimisation at all.

The disk service time of a piece is composed of seek and rotational latency and data
read/write. Because seeks between the pieces in a cycle can be optimised using SCAN
(C-18), the upper bound of the seek time in cycle ¢ can be estimated as:

J(c) J(c)
axY X(jo)+bxAlc) <ax» X(jc)+bA (6.10)
i=1 j=1

where A(c) is the cylinder span of all the pieces in cycle ¢, while @ and b are the disk seek
time profile constants (cf. page 44), and bA = b * disk_total_cylinder _span. Although read
and write have different such constants, as they do not differ very much, the write seek
constants, which are the worse of the two, can be used in the above estimation.

In practice, it is very hard to optimise rotational latency without modifying disk con-
troller microcode. This is because there is a gap between individual SCSI requests issued



76 Chapter 6. Admission Control

from a device driver to a disk controller, and the driver can hardly estimate where the disk
has spun to at run-time. If batch requests were issued, then an intelligent disk controller
would use its own seek optimisation which cannot be controlled by a user and would intro-
duce unpredictability into the system. Thus it is better to use worst case rotation time to
estimate the rotational overhead in a cycle, that is: Ty * E"(c) X (4, c), where Ty is the
worst case rotational latency.

There are three factors contributing to the read/write time of a contiguous piece: data
transfer, track switch, and cylinder switch. To estimate read/write time on a ZBR disk for
a piece P(j,c,z), first it is necessary to find the zone z(j, ¢, z) where the piece resides using
the zone information maintained by an SS (C-16). If a piece crosses zones, then the inner
zone can be used as 2(J, ¢, z) because adjacent zones do not have radically different transfer
rates or track or cylinder switch time. Assume at zone z, the track switch time is 7'S(z), the
cylinder switch time is C'S(z), the size of a track is SN(z), the size of a cylinder is CN(2),
and the transfer rate is B(z), which can be computed from the disk rotation speed and the
size of a track. Then for a piece of size P(j, ¢, z) at zone z(j, ¢, z), its total read/write time
is the sum of the data transfer time, the track switch time, and the cylinder switch time,
which is:

P(j’ c? x)
min(B(2(j, ¢, z)), Bmin(Rd), Bmin(Rs_d))

P(j,c,?:) ; P(j’c’w) i ]
— ) T Nl A R LT A
+ |y | TSt + | iy | 05060
where Bmin(Rs_d) is the bandwidth of the slowest resource in Rs on disk data transfer. It
should be noted that the data transfer time is estimated using the I/O bandwidth of the
slowest component in the data path between the disk and the memory, including the CPU.

Consequently, the time required to service J(c) disk requests using SCAN in cycle ¢ can
be estimated as:

J{¢)
[c].disk = (@ + Tyot) * ZX(j, c) + bA
j=1
S ([_PG,e) . P(j,c,z) .
PP sty |« 15600 + [y | - ostetiaan
J(e) X(jyc) , ’
P(j,c,z)
+ Z; zz_; min(B(z(4, ¢, z)), Bmin(Rd), Bmin(Rs_d)) (6.11)
Naturally, Criterion (6.2) can be refined as:
J(e) J(c) X(j,c) PG, ¢, 1)
(@ + Trot) * Z XGe)+ ; ; min(B(2(j, ¢, z)), Bmin(Rd), Bmin(Rs_d))
J(c) X(J,c . ]
P(j,c,z) . P(j,c, ) .
PP {[SN(z(j,c,x))} 8,000 + | ey | O e)

< Te — Tres_cpvu — bA — TNRTvecv_cPy — [¢]- RTrecv -CPU  (6.12)



6.3. Admission Control for Real-Time Activities 7T

If R(j,c) also denotes the request itself, then its seek time and data transfer time can
be estimated as:

R(j,c).disk_seek = (a + Trp) * X (4, €)

X(j,e) P(j,c,z) i P{j,e¢,z) ’
* ; {[m] * TS(z(y, ciw)) + [m] * CS(Z(],C,SE))}
(6.13)
X(4,c) .
R(], C).disk_a:fer = Z P(J’ c, (L') (614)

- min(B(z(j, c,z)), Bmin(Rd), Bmin(Rs.d))

respectively, and the disk AC criterion can be further refined as:
J(c) .
Z(R(j, c).disk_seek + R(j, c).disk _zfer)
=1
L T — Tres_cru — bA — TNRTvecv_cPu — [¢].RTrecv . CPU  (6.15)

6.3 Admission Control for Real-Time Activities

6.3.1 Example Data Structure

For playing back a VBR video, an SCA will compute the displayed set from the video
index, then the read set from the displayed set. An example read set of a video file with
the first 15 cycles is shown in Table 6.1. It lists in each cycle the number of blocks needed
to be retrieved and the SS number where the primary blocks and the backup copies reside
using the placement example in Table 4.2.

Table 6.1: An Example Read Set

(| cycle 0 (1 23456|7|8|9|10[ 11 [12 |13 ] 14
blocksneeded | 2 |1 (0|1 |1|1|0(|1]|0]|1[O 4 1]11(1
block number | 0,1 | 2 31415 6 7 8,9,10,11 [ 12 |13 | 14
primary SS 012 3145 0 1 2,3,4,5 0|12
backup SS 1,23 4510 2 3 4,5,0,1 31415

From the read set and the redundancy scheme, a read table can be constructed for each
SS on which a video file resides. A read table tells in which cycle to retrieve which block of
a video in non-fault and fault modes. For example, the read table for SS(1) of the video file
in Table 6.1 is shown in Table 6.2, where iBj means backup block Bj should be retrieved
in the relative cycle when SS(7) fails.

Table 6.2: An Example Read Table: SS(1)

cycle 0 [9 ] 11 [13] 15
blocks | 0BO,P1 | P7 | 5B11 | P13 | 4B16

Each SS has a cycle table for use by AC and resource reservation. A cycle table will
record resources committed so far in each cycle (C-17). An example cycle table for SS(1)



78 Chapter 6. Admission Control

after the stream in Table 6.1 is admitted is shown in Table 6.3, in which ct[c].res refers to the
amount of resources reserved in cycle c. ct[c].res is composed of the resource requirements
for non-fault mode, i.e., ct[c].non_fault, and the extra resource requirements for fault mode,
i.e., ct[c].fault. The cycle table of an SS also contains d entries for each of the previous
d SSs in each cycle, with each entry recording the aggregate resources needed if the SS
corresponding to the entry fails, i.e., ci[c].fail[SS(7)] represents the amount of resources
required to retrieve backup copies when SS(¢) fails at cycle ¢. It should be noted that
ct[c].fault is the maximum of the d entries, not their sum (cf. Section 4.4.2).

Table 6.3: An Example Cycle Table: SS(1)

ct[c] cycle 0 1

non._foult ct[0).non_fault = ct[0].non_fault + resources needed for P1

7ail[95(3) ct[0] Jail[55(3)

7ail[55(7) c[0).fallS5(4)

fail[SS(5) ct[0].fail[SS(5)

fail[SS(0) ct[0].£ail[SS(0)] = ct[0].fail[SS(0)] + resources needed for B0

fault max(ct[0].fail[SS(3)], ct[0].fail[SS(4)], ct[0].fasl[SS(5)], ct[0].fasl[SS(O)]) | ... [ ... |
[| res | ct[0].res = ct[0].non_fault + ct[0].fault [T ]

For CBR recording, a receive table can be computed by an SS using the attributes of the
LO to be recorded. Assume that in each cycle, a CBR data source will produce 2 blocks.
Then with the placement method from Table 4.2, the receive table for SS(1) of the video
to be recorded is shown in Table 6.4. Unlike a read table, the backup blocks in Table 6.4
should always be received and written.

Table 6.4: An Example Receive Table for CBR: SS(1)

[eycle 1 [4] 67 ]9 [10]u
[ locks [ P1, BO | P7 | B1l | P13 | Bl6 | P19 | B2l

Cadmus assumes it is impossible to predict how much data a source will produce in
each cycle during VBR recording except the peak rate. To provide deterministic services
for VBR recording, peak rate reservation is used in AC. Assume a video source will produce
at most 4 blocks of data in a cycle. With the striping structure in Table 4.2, each SS will
receive at most 1 primary and 1 backup blocks in each cycle. The corresponding receive
table is shown in Table 6.5, in which P? and B? means that a primary or backup block may
be received in a cycle but the block number is unknown.

Table 6.5: An Example Receive Table for VBR

eyce | 1 | 2 | 3 | 4 | 5
[blocks | P7, BY | P7, BY | PY, B | PY, BY | PV, B?

6.3.2 Playback

An SS will perform AC for RT playback based on read tables passed from SCAs.
There may be multiple primary or backup block access requests in a read table entry.
Assume the kth block request in the ith entry of a read table is rt[i].b[k], and the cy-
cle index of the entry is rt[i].cycle, which is relative to the start of the video (cf. Ta-



6.3. Admission Control for Real-Time Activities 79

ble 6.2). Let rt[i].b[k].disk_seek, rt[].b[k].disk _zfer, rt[i].b[k].disk.CPU, rt[i].b[k].send _net,
rt[é].b[k].send_CPU, and rt[:].b[k].buf be the corresponding resource requirements of the
block access. Then from a cycle c in the cycle table, the AC will succeed only if all the
entries in the read table satisfy the AC criteria. This is shown in more detail in Figure 6.2.

var: cycle index: j; temporary cycle table: sct[];

sct = ct;
for all read table entry rt[¢] do
j = rtfi].cycle;

for all block request rt[i].b[k] do

if primary block access then
sct(c + j].non_fault.disk += rt[i].b[k].disk_seek + rt[i].b[k].disk zfer;
sct[c + j].non_fault. CPU += rt[i].b[k].disk_.CPU;
sct[c + jl.non_fault.buf += rt[i].b[k].buf;
sctlc + j + I}.non_fault.net += rt[i).b[k].send.net;
sct[c + j + 1].non_fault. CPU += rt[i].b[k].send .CPU;

else /* backup block access in case SS(z) fails. */
sctlc + j].fail[SS(z)).disk += rt[i).b[k].disk_seek + rt[i].b[k).disk _zfer;
sctlc + j].fail[SS(z)).CPU += rt[i].b[k].disk .CPU;
sctc + j).fail[SS(z)).buf += rt[i].b[k].buf;
sctlc + j + 1].fail[SS(z)].net += rt[i].b[k).send_net;
sctic + j + 1).fail[SS(z)]. CPU += rt[i].b[k].send .CPU;

end if

end for

/* The following four are short-hands for sets of operations on individual resources. */
sctfc + j).fault = max(sct[c + j].fail]] array);

sctfc + j + 1).fault = max(sct[c + j + 1].fail[] array);

sctfc + j).res = sct[e + j).non_fault + sct[c + j).fault;

sct{c+j + 1).res = sct[c + j + 1).non_fault + sct[c + j + 1]-fault;

if sct[c+ j].res.disk < Tc — Tres_cpu — bA — TNRTvecv_cPU — sct[c + j|.RTrecv_CPU
&& sctfc+ j).res.CPU < T — Tres_cPu — Tpure_cP — TNRTrecv_cPU
&& sctc + j).res.buf < K
&& sctjc+j + 1).res.net < T; — Tres_cPU — TNRTvecy_net
&& sctfc+j + 1).res. CPU < T — Tres_cpt — Tpure_cPU — TNRTvecv_cPU

then
continue; /* AC succeeds for entry rt[i]. */

else
return; /* AC fails from cycle ¢. */

end if

end for

/* AC succeeds for read table r[] from cycle c. */
if need to reserve resources then

ct = sct; /* commit. */
end if

Figure 6.2: AC for RT Playback



80 Chapter 6. Admission Control

6.3.3 Recording

To achieve RT recording, the storage requirements of a video to be recorded are first
examined by the SSs to see if there is enough free space. If so, an FS arnd the SSs will create
LOs and POs respectively for both primary and backup copies. In subsequent AC, the
SSs will pre-allocate extents for both primary and backup POs based on estimated storage
requirements. For VBR recording, each extent is made up of multiples of the SUS so that
Equation (6.13) and Equation (6.14) can be used to estimate the disk service time of the P?
and B? in a receive table using the slowest zone parameters from all pre-allocated extents.
The extents will be de-allocated if AC fails.

Pre-allocation of extents for recording has several benefits. First, because receive tables
for CBR recording can be computed precisely, extent lists make it possible to estimate disk
service time more tightly using Equation (6.13) and Equation (6.14). Second, although data
arrivals are unpredictable for VBR recording and which block to write cannot be determined
in each cycle, parameters of the slowest zone among those occupied by pre-allocated extents
can be used in the same equations to provide a better estimation than the one using the
slowest zone of the whole disk. Finally, run-time scheduling complexity is reduced because
the situation when RT disk write has caught up with extent allocation activities, which are
NRT, will not occur.

AC on the memory is done on a per stream basis instead of a per cycle basis, because
a fixed dual-buffer is used for RT recording. Assume the kth block request in the ¢th
entry of a receive table is rt[i].b[k], and the cycle index of the entry is rt[:].cycle, which
is relative to the start of the video (cf. Table 6.4 and Table 6.5). Let rt[:].b[k]. disk_seek,
rt[i).b[k].disk _zfer, rt[i].b[k].disk_.CPU, rt[i].b[k].recv_net, and rt[i].b[k].recv_CPU be the
corresponding resource requirements of the block access. Then from a cycle ¢ in the cycle
table, the AC will succeed only if all the entries in the receive table satisfy the AC criteria.
This is shown in more detail in Figure 6.3.

6.4 Admission Control for Non-Real-Time Activities

6.4.1 Introduction

Cadmus supports NRT activities as well, but NRT requests should not disturb admitted
RT services. Apart from NRT receive, other NRT requests are subject to run-time AC before
they are issued to the disk or network device (C-18). Their AC is simplified because each
request is either disk or network bound but not both, but it is also more complex because
of performance requirements. A naive approach would be to put every NRT request into an
NRT list when it arrives and to perform AC for it on later cycles in order to preserve QoS
of admitted RT and NRT activities in the current cycle. However, this will bring severe
performance problems especially when an SS is lightly loaded, as will be shown in the next
chapter. Cadmus addresses the problem using a three-level AC for NRT requests current,
nezt, and delayed (C-19).

When an NRT request arrives, resources in the current cycle are examined first: this
requires detection of how much time is left in the current cycle and how many resources will
be used in the time left. If there are not enough resources in the current cycle, resources
from the next cycle, which are recorded in the cycle table, are used for the AC. This step
of look-ahead is safe because in the worst case the NRT request will defer the schedule of



6.4. Admission Control for Non-Real-Time Activities 81

var: cycle index: j; temporary cycle table: sct[];

if there is not enough memory for the fixed dual-buffer requirement then
return; /* AC fails. */
end if

allocate extents for both the primary and backup POs based on the estimated
storage requirements;

sct = ct;
for all receive table entry rt[i] do
j = rt[i].cycle;

for all block request rt[¢].b{k] do
sct[c + jl.RTrecv_CPU += rt[i].b[k].recv.CPU;
sct[c + j].non_fault.net += rt[i].b[k].recv_net;
sct(c + j].non_fault. CPU += rt[i].b[k].recv_.CPU;
sct[c +j + I).non_fault.disk += rt[i).b[k].disk_seek + rt[i].b[k].disk_zfer;
sct[c +j + 1).non_fault. CPU += rt[i).b[k].disk_CPU;
end for

/* The following two are short-hands for sets of operations on individual resources. */
scte + j).res = sct[c + j).non_fault + sct[c + j].fault;
sctfc+ j + 1].res = sct[c + j + 1].non_fault + sct[c + j + 1].fault;

if SCt[c +j]-m-net < T — Tres_cPu — TNRTvecu net
&& sct[c +j].res.disk < Te— Tres_cpu — bA — TNRTvecv_CPU — sct[c +j].RT§r'ecv_C’PU
&& sct[c + j).res.CPU < T — Tres_.cPu — Tpure_cPU — TNRTvecv_cPU
&& sctc +j + 1].res.disk
< T¢ = Tres_cru — bA — TNRTvecv_CPU — SCt[C +4+ 1].RTrecv_CPU
&& 3Ct[c +j + I]TCSCPU < Tc - Tres-CPU - Tp'ure_CPU - TNRTrecu_CPU
then
continue; /* AC succeeds for entry rt[i]. */
else
de-allocate the extents for both the primary and backup POs;
return; /* AC fails from cycle ¢. */
end if
end for

/* AC succeeds for receive table rt[] from cycle c. */
if need to reserve resources then /* commit. */
reserve the dual-buffer;
ct = sct,;
end if

Figure 6.3: AC for RT Recording

the next cycle, which is delayable; otherwise the NRT request should not be admitted in
the first place. If the current and the next cycles cannot accommodate an NRT request, it
is delayed and added to the NRT list for later AC after the RT schedule is computed. The
next subsection will discuss these scenarios in more detail.



82 Chapter 6. Admission Control

6.4.2 Three-Level Admission Control
Current

Assume an NRT request arrives at a point with a period of passed from the start of the
current cycle and left from the end of the cycle, and passed + left = T.. For the request to
be admitted in the current cycle, an SS should measure the actual resource usage of several
activities in the period passed (C-20), so that resources needed in the period left can be
deduced and used in the AC for the NRT request. The symbols used for these purposes
and their explanations are listed in Table 6.6.

Table 6.6: Symbols Used for NRT AC: Current

resources used in the period passed (measured)
recv .CPU _used | CPU time used by receive activities
ds_CPU _used CPU time used by disk and send activities
recv_net_used time spent on the network data path by receive activities
send_net_used | time spent on the network data path by send activities
resources needed in the period left (deduced)
disk_todo time needed by disk activities
net_todo time needed on the network data path by network activities
recv.CPU _todo | CPU time needed by receive activities
ds_CPU _todo CPU time needed by disk and send activities
pure_CPU _todo | CPU time needed by pure CPU processing activities

Assume the current cycle has index c and its reserved resources are recorded in ct[c].res.
Then resources needed in the period left can be computed as shown in Figure 6.4.

input: ct[c].res, passed, left, recv . CPU _used, ds_CPU _used, recv_net_used, send_net_used;
output: disk.todo, net.todo, recv.CPU .todo, ds_.CPU _todo, pure_CPU _todo;

disk_todo = max(0, ct[c].res.disk + bA + recv_CPU _used — passed);

net_todo = ct[c].res.net + TNRTrecv_net — recv-net_used — send_net_used;
recv.CPU _todo = ct[c].res.RTrecv_-CPU + TnRTvecv_cpu — recy_CPU _used;
ds_CPU _todo = ct[c].res. CPU — ct[c].res.RTrecv_.CPU — ds_CPU _used;
pure_CPU _todo = max(0, Tpyre_cpu + recv-CPU _used + ds_CPU _used — passed);

Figure 6.4: Computing Resources to be Used: Current

If an NRT request is admitted when it arrives, it should be appended to the end of the
current schedule or sent to the device directly if previously admitted requests have been
finished in the current cycle. This is necessary in order to prevent a newly admitted NRT
request from delaying admitted RT requests in overload situations. When overload does
occur in the current cycle, newly admitted NRT requests are appended to the end of the
next cycle’s schedule (C-21) in the hope that there may be spare resources left. This will
further increase the chance of a newly admitted NRT request being executed. Although no
AC is performed for this NRT request movement, no harm will be done to admitted RT
requests in the next cycle. This is because if the next cycle does not have enough resources,
these NRT requests will be put back to the NRT list at the end of the next cycle. Other
unfinished NRT requests in the current cycle are moved to the NRT list (C-21), because
they are not entitled to participate in the new cycle any more.



6.4. Admission Control for Non-Real-Time Activities 83

To admit an NRT disk request in the current cycle, the request’s worst seek time should
be used instead of the amortised seek time computed from Equation (6.13). This is because
when an admitted disk request is appended to the end of a schedule, it will be out of the
SCAN order. Assume an NRT disk request g only accesses one piece of data and has a worst
seek time of g.disk_worst_seek, with ¢.disk_worst_seek = q.disk_seek + bA. Also assume its
data transfer and CPU time are g¢.disk_zfer and q.disk_CPU respectively. Then the AC
procedure in the current cycle for ¢ is shown in Figure 6.5.

if disk_todo + q.disk_worst_seek + q.disk_zfer < left — Tyes_cpy — recu_CPU _todo
&& ds_CPU _todo + q.disk_CPU + recv.CPU _todo < left — Tres_cpu — pure-CPU _todo
then
/* AC succeeds. Update resource usage. */
ct[c].res.CPU += q.disk_CPU;
if disk_todo > 0 then
ct[c].res.disk += q.disk_worst_seek + q.disk _zfer;
else /* disk_todo == 0 */
ct[c].res.disk = passed + q.disk_worst_seek + q.disk._zfer — bA — recv_CPU _used;
end if
end if

Figure 6.5: AC for an NRT Disk Request: Current

Similarly, Figure 6.6 shows the AC procedure in the current cycle for an NRT network
send request g with resource requirements ¢.send_net and q.send_CPU.

if net_todo + g.send_net < left — Tyes_cPU

&& ds_CPU _todo + q.send_CPU + recv_CPU _todo < left — Tyes_cpu — pure.CPU _todo
then

/* AC succeeds. Update resource usage. */

ctlc].res.net += g.send_net;

ctlc].res. CPU += q.send_CPU;
end if

Figure 6.6: AC for an NRT Network Send Request: Current

Next

When an NRT request cannot be admitted in the current cycle ¢, resources from the
next cycle, recorded in ct[c + 1].res, are examined to admit the request. If admitted, the
request is treated exactly as if it were admitted using resources of the current cycle. Worst
seek time should be used in NRT disk request AC as well. However, when overload occurs,
these NRT requests are moved to the next cycle (C-21) because there are spare resources
in the next cycle, although the effects of moving NRT requests admitted using resources of
either the current or the next cycle are the same. Figure 6.7 shows the AC procedure for an
NRT disk request using resources in the next cycle, while Figure 6.8 shows the procedure
for an NRT network send request. Both requests are represented by g.



84 Chapter 6. Admission Control

if ct(c + 1].res.disk + g.disk_worst_seek + g.disk_zfer
< T = Tres_cpu — bA — TNRTvecw_cPU — ct[c + 1).RTrecy CPU

&& ct[c + 1).res.CPU + q.disk_CPU < T¢ — Tyes_cPu — Tpure.cPu — TNRTvecv.cPU
then

/* AC succeeds. Update resource usage. */

ct[c + 1].non_fault.disk += q.disk_worst_seek + g.disk_zfer;

ctlc + 1).res.disk += q.disk_worst_seek + q.disk _zfer;

ct{c + 1).non_fault. CPU += q.disk_.CPU;

ctic + 1].res. CPU += q.disk_CPU;
end if

Figure 6.7: AC for an NRT Disk Request: Next

if ct[e+ 1).res.net + g.send_net < T, — Tres_crv — TNRTvecy_net

&& ct[c + 1).res.CPU + q.send_CPU < T¢ — Tres_cpv — Tpure_cPU — TNRTvecv_CPU
then

/* AC succeeds. Update resource usage. */

ct[c + 1].non_foult.net += g.send_net;

ct{c+ 1].res.net += q.send_net;

ct{c + 1].non_fault.CPU += q.send_CPU;

ctlc+ 1).res. CPU += q.send _CPU,;
end if

Figure 6.8: AC for an NRT Network Send Request: Next

Delayed

If both the above two steps fail for an NRT request, then it is added to the NRT list
waiting for AC in later cycles. A schedule for a later cycle z will be dynamically computed
for admitted RT requests first. If there are spare resources left in ct[z], then requests in
the NRT list are examined for AC. The procedures are similar to those shown in Figure 6.7
and Figure 6.8, except ct[z] is used instead of ct[c + 1], and disk_seek is used instead of
worst_disk_seek, as NRT disk requests can now be inserted in the newly computed schedule
according to SCAN order.

6.4.3 Problems and Solutions
Pure CPU Processing Starvation

Admitting newly arrived NRT requests using the next cycle’s resources has the potential
of disrupting QoS for pure CPU processing activities. This is because device related NRT
activities have higher priorities and they are appended to the schedule of the current cycle
once admitted. There are chances that pure CPU processing will never get executed if NRT
requests keep arriving and there are always spare resources in the next cycle. A simple
solution employed in Cadmus is to measure the CPU time used by disk and network send
activities in the current cycle ¢, and to disable both activities once the following condition
is true (C-22):

ds.CPU _used > Ty — Tyes_crPy — Tpure_cPv — TNRTvecv_cPU — ct[c].res.Rﬂ'ecv_CPU
(6.16)



6.4. Admission Control for Non-Real-Time Activities 85

Receive Re-activation

To regulate receive activities and to prevent the live-lock state, Cadmus also measures
the CPU time used by receive activities in the current cycle ¢, and disables them whenever
the following condition is true:

recv_CPU _used > ct[c].res.RTrecv -CPU + TNRTvecv_CPU 6.17)

However, it is overkill to disable receive when all the other activities have finished and
there is time left in the current cycle. Figure 6.9 shows the Cadmus approach to the problem
by re-activating receive after all device related activities have finished (C-23). To prevent
starving pure CPU processing, the algorithm is only executed when the CPU is idling.
Three aspects of the algorithm should be noted. First, resources needed in the period left
still have to be checked because there may be some NRT requests that are admitted using
the current or next cycle’s resources but are not on any schedule, i.e., they may arrive and
be admitted after the current disk and send schedules have finished. Second, the resource
usage should be updated during receive re-activation because there may be NRT requests
arriving in the future. Also it makes further receive regulation according to Equation (6.17)
possible. Third, pure CPU processing activities may be ready after some receive events.
Therefore, receive activities should leave some time for them to execute. The two parameters
Togtra_recv_CPU _threshold 3Nd Teztra_recy_cpu are introduced for this purpose.

if CPU idling
&& disk schedule finished
&& network send schedule finished
&& receive disabled

then
/* Disk can be deferred at most X _disk. */
X . disk = left — Tyes_cpu — disk_todo;
/* Network can be deferred at most X _net. */
X _recv_net = left — Tyes_cpu — net_todo;
/* CPU can be deferred at most X_CPU. */
X_CPU = left — Tyes_cpu — ds-CPU _todo;

deduce X _recv_CPU from X _recv_net;

/* Extra receive can consume CPU time at most Y. */
Y = min(X _disk, X .CPU, X _recv_CPU);

if Y > Testra_recv_CPU _threshold then
/* Update resource usage and re-activate receive. */
Z _recv_.CPU = min( Y, Teztra_recv_cPU );
deduce Z_recv_net from Z _recv_CPU;
ct(c].res.RTrecv.CPU += Z_recv_CPU;
ct[c].res.net += Z_recv_net;
ct(c].res.CPU += Z_recv_CPU;
re-activate receive;

end if

end if I

Figure 6.9: Receive Re-activation: Current



86 Chapter 6. Admission Control

6.5 VCR Functionalities

VCR functionalities refer to the stop, pause, resume, slow forward, slow reverse, fast
forward (FF), and fast reverse (FR) of a video being played. This section introduces the
Cadmus view on supporting these functionalities. However, because of the limited research
time scale, they are not implemented in the Cadmus prototype.

Stopping during normal playback will make an SS recompute the resources needed in
each left over cycle of a stream and deduct them from the cycle table, i.e., reclaim the
reserved resources. Also the stopped stream is deleted to prevent its inclusion in future
schedule computing. Pause is different in that a stream may be resumed later on. A simple
approach would be for pause to reclaim reserved resources while resume will incur additional
AC to prevent disturbance to other streams. However, if new streams are admitted using
the reclaimed resources, the paused stream may wait for a long time before it could be
resumed because of scarce resources.

To make a paused stream have a better chance of resumption, it is better to reserve a
uniform resource usage estimated using mean stream rate and mean disk transfer rate for
the paused stream in subsequent cycles. A mark in each cycle will indicate these uniformly .
reserved resources cannot be used by new stream admission, but they can be used by NRT
requests. Though these reserved resources are wasted because otherwise new streams could
be admitted, it is reasonable if a server continues to charge the client if a stream is paused.
Stopping during pause will reclaim the uniformly reserved amount of resources and delete
the stream.

Since slow forward and slow reverse, FF and FR are symmetric pairs, only slow forward
and FF are considered. A new read set, with more suppressed cycles, is computed for
slow forward and AC is done just as for a normal playback request. Also additional AC
is needed for the resumption of normal playback. The same philosophy as behind pause-
resume applies: a uniform amount of resources is reserved in the extra suppressed cycles to
gain a better chance of resumption after slow forward.

FF is more difficult to deal with because it would potentially increase server load by
retrieving and sending more data in a cycle. However, before giving a solution, some
properties of FF can be observed from the usage pattern of a VCR. First, most of the time
it is operated in normal playback mode. Second, most of the time the purpose of FF is to
let a tape go to a specific point of the video sequence and there is no need to watch the
video in between. This is called FFNV (FF no viewing). Finally, in the occasions when
FF is used with viewing (FFV), most of the time it is for finding a scene where normal
playback can be resumed instead of viewing the fast video on purpose, since it is difficult
for human perception to receive all the information when a video is shown faster than the
normal playback rate. More details of the scenes can be viewed using slow forward like the
replay in sports events.

FFNV can be dealt with by a video server without introducing extra load since it is
actually a random access problem. The same pause-resume sequence can be used, but now
resumption goes to a different place instead of the point where a video is paused. A client
can request a fast forward to any point relative to the start of a video or skip any number of
frames relative to the current position of normal playback. This better FFNV accuracy than
that provided by a tape based VCR will further reduce the need for FFV, although FFV is
useful to find a particular event in a programme. All these suggest FFV is a minor problem
faced by video server design and should be treated simply. Storing an extra FF version of a
video [Heybey96], using scalable streams [Shenoy95), or optimising data placement just
for FF [Chen94a] may not be justified. They also make a video server more complex.



6.6. Summary 87

Based on the above observations, it would be better to simply skip frames when FFV is
really desired by a user. For example, considering a 24 fps MPEG video sequence with 12
frames per GOP (Group of Picture) and a GOP structure of IPBB, i.e., each GOP has 11
frame, 3 P frames, and 8 B frames. Then a 1 second cycle will have to retrieve 2 GOPs in
average during normal playback. When FFV is requested, a server could retrieve and send
the I frames only. I frames are independently decodable and a user can also notice where
a video is by watching only I frames. However, if the I frames of a video are not stored
contiguously, each I frame retrieval will incur a rotational latency, although seeks can be
optimised by SCAN.

Assume a speed up factor of u, then each cycle has to retrieve 2 * u I frames with
(2 *u — 1) * Ty extra rotational latency compared to normal playback if the 2 GOPs of a
cycle are stored in one piece. The load of data transfer depends on the size of the I frames.
If the I/P/B frame size ratio is around 4/2/1, then a speed up factor of u will retrieve exira
data with size 2*u*4 — 2% 18 per cycle compared to normal playback for the above settings
if the B frame size is normalised to 1. This may or may not incur extra data transfer load
depending on the value of u. To reduce the rotational latency for FFV, the I frames in a
cycle can be grouped together. For example, if the 2 I frames can be stored contiguously
before the P and B frames of the 2 GOPs in a cycle, only (u — 1) * Ty, extra rotational
latency is incurred for FFV and this extra overhead may be distributed to different SSs.

6.6 Summary

This chapter presented AC procedures for both RT and NRT activities on the network,
disk, CPU, and memory resources in an SS entity, in which the CPU was modelled as
a shared resource for disk and network activities. General AC criteria were given with
assumptions and conditions which would minimise interference between different types of
activities and lead to less QoS enforcement efforts. Considerations were given to ZBR in
AC and overload processing in case of disk anomalies. RT AC was based on the cycle
lifetime of a video, while a three-level AC scheme was proposed for NRT requests. Special
attention has been paid to pure CPU processing starvation and receive regulation and re-
activation. This chapter also identified and introduced the set of contracts assumed by the
AC procedures which must be fulfilled by QoS enforcement. Finally, the Cadmus view on
supporting VCR functionalities was described.



Chapter 7

Implementation

This chapter describes a prototype implementation of the Cadmus system in the fol-
lowing aspects: implementation environment, system and some extra components, software
structure and functionalities in storage nodes, PO management, contract enforcement, and
resource reclamation.

7.1 Implementation Environment

A prototype of the Cadmus architecture has been implemented using the ORL di-
rect peripheral infrastructure and ATM interconnect [Chaney95]. Different system com-
ponents interacted through CORBA interfaces using the locally developed OmniORB1
[Gilmurray95], which was a multi-threaded implementation of the ORB and ran on Solaris,
Digital UNIX, Linux, Windows NT, and ATMos, a message based micro-kernel. The thread
package used in ATMos was based on P-Threads [Pthreads93]. CORBA object commu-
nication and NRT data transfer went through reliable TCP channels, while RT data was
transferred using AAL5 over MSNL [McAuley90], a light weight virtual circuit protocol.

An SS normally ran on an ATMos card with an attached disk or disk array. An ATMos
card is a simple processing unit with a direct ATM connection and runs the ATMos micro-
kernel. A client ran on a video tile, which was composed of an ATMos card and a colour
LCD display with VGA quality!. An SCF could be configured to run on either a Sun
SparcStation under Solaris 2.5 or on an ATMos card for performance reasons. As there are
no RT requirements for an F'S, it normally ran on a Sun SparcStation. It should be noted
that components running on any Solaris machine only used its CPU and memory, without
referring to its file system.

As Cadmus relies on the cycle based QoS guarantee scheme, accurate and synchronised
time is of paramount importance. This problem was addressed very simply with the help
of some timing hardware and software. The prototype used two satellite GPS (Global
Positioning System) receivers and an NTP (Network Time Protocol) package [Chiang96]
to provide a global and synchronised time in the whole system. SSs and some clients also
had add-on profiler boards [Addlesee95], each of which had a 0.5-2 MHz free-running
counter and several hardware timers with the same frequency. With these settings, the

!More information of Smart ATMos Modules (SAM) can be found in [SAM].

89



90 Chapter 7. Implementation

time in different physical entities could be synchronised to within 1 ms [Mills94], which
was deemed as acceptable for experimental purposes.

The Cadmus components of the prototype system consisted of about 25,000 lines of
C++ and CORBA IDL code, which was about 10% of the code of the whole system, such
as the kernel, device drivers, OmniORB1 library, and other ATMos processes (not including
stub code), which were written in a mixture of C/C++/Assembly.

7.2 System and Extra Components

This section presents the implementation of the Cadmus system components described
in Chapter 4. Some eztra components, such as ports, connections, points, units, and unit
factories, are also introduced. The extra components were used to implement the system
components or to extend the Cadmus system. CORBA IDL interfaces of the components
are listed in Appendix C along with the important methods. Some components, such as
ports, points, CPs, and POs, also have unlisted implementation specific public methods
manipulating buffer pointers in order to avoid data copying in the same physical entity.

Although the Cadmus architecture specifies the functionalities of DSs and NSs to make
the system self-contained, they were not implemented in the prototype. However, they can
be readily built on other components. To achieve the effects of NSs, physical entity addresses
were embedded in the relative components which needed to know them. In addition, the
experiments reported in the next chapter used LOs directly, instead of textual names, thus
doing away with DSs. Some considerations to support VCR functionalities in CPs are also
presented below, although these functions were not implemented.

7.2.1 Ports and Connections

An important aspect of the implementation is the separation of data and control paths.
While control goes through distributed object invocation, audio and video data goes through
connections established between ports. A port is merely a passive end-point for data trans-
port. There are two kinds of ports: source ports and sink ports. A source port connects while
a sink port listens. There is no restriction that data should always flow from a source port
to a sink port. This bi-directional nature of ports is exploited by NRT-CPs and NRT-POs?.

A connection has a pair of source/sink port references and will obtain addresses of the
ports and make a data connection between them. After that, data is sent and received
through the ports only. Both ports and connections have associated transport atiributes,
which can be used to specify a set of network related QoS parameters, although in the
Cadmus implementation they were only used to select either reliable TCP or raw AALS5
transport. :

7.2.2 Client Parts

Each CP is associated with an LO to scatter or gather its data and is the single point to
maintain the state of the LO_ATTR for the LO. It is also notified of relative SS failures or
recovery in order to activate or deactivate fault mode data retrieval. Because a CP cannot
be used on its own, its buffers are provided by a third party for simplicity and modularity

2A PO can represent either the data object itself or the implementation used to access the data object
when it is opened in a certain mode. The context will make the meaning clear. The same is true for an LO.



7.2. System and Extra Components 91

reasons. Each CP also has a number of ports corresponding to the number of SSs the LO
is striped over. A CP sends/receives data through the ports without contacting the SSs.

There are two types of CPs: RT-CPs and NRT-CPs. An NRT-CP can perform both
send and receive and provides an implementation of the NRT-LO, while RT-CPs are further
divided into uni-directional source and sink RT-CPs. A single thread is used in an NRT-CP
and a source RT-CP to receive and send data respectively, while multiple threads are used
in a sink RT-CP to receive data from the SSs. Each data block contains information such
as the block number and whether the block is a primary or backup one. This facilitates
data de-multiplexing in both CPs and SSs and also reduces the number of connections.

Sink RT-CPs

Assume the normal playback read set of a video has a peak rate of p blocks per cycle
and p < n, where n is the striping group size. Then during non-fault mode, in each cycle, a
sink RT-CP will receive data blocks from at most p SSs simultaneously in normal playback
mode, [p/o] SSs in slow forward mode with a slow down factor of 0, and u * p SSs in FFV
mode with a speed up factor of u. Thus the CP should have at most p, [p/o], and u *p
active receiving threads anticipating data from the SSs in the corresponding modes.

In each cycle, the CP will receive at most one data block from a single SS in normal
playback or slow forward mode. Although in FFV mode, I frames are sent in a cycle for
MPEG streams, the aggregate I frame size in a block is less than the block size. So at most
one data block needs to be received by the CP in FFV mode from a single SS if u*p < n,
although data is retrieved by more SSs in a cycle. During fault mode, the CP will receive
data from at most the same number of SSs as during non-fault mode, because the backup
of a failed block is retrieved from another single SS for multi-chained declustering.

The algorithm in Chapter 5 suggests that a CP buffer with 2 % p blocks will suffice for
normal playback or slow forward during non-fault or fault mode. For FFV, 2 * u x p blocks
worth CP buffers will be needed. Because the read set computing algorithm reads ahead
and smoothes the displayed set, in practice, one or zero blocks are received by a CP in most
of the cycles in normal playback or slow forward mode. Read sets are passed from SCAs
to sink RT-CPs for the latter to correctly anticipate data arrivals in each cycle for VBR
videos.

Source RT-CPs

Because AC in SSs for RT recording makes assumptions about source data rates, a
source RT-CP will have to regulate the actual rate to conform to the assumptions. This
is to enforce constant rates for streams admitted as CBR videos and to ensure that peak
rates are not exceeded for VBR recording. For each primary block to be written in a cycle,
a CP will also send the same data to the SS where the backup should be stored through a

corresponding port in the same cycle. Both primary and backup blocks to the same SS are
sent through the same connection.

NRT-CPs

An NRT-CP uses the same connection to send or receive either primary or backup blocks
to or from the same SS. Its send/receive operations are primitive in that they only retrieve
data for either the primary or backup LO but not both. This way, the implementation of



92 Chapter 7. Implementation

the read/write operations for NRT-LOs can be made more flexible. For example, an NRT-
LO can ask an NRT-CP to read either primary or backup blocks depending on the load of
the corresponding SSs. However, it also becomes an NRT-LO’s responsibility to maintain
consistency between primary and backup blocks during writing.

7.2.3 Points, Units, and Unit Factories

Points, units, and unit factories are not parts of the Cadmus architecture, but are
supplementary components primarily used by clients of Cadmus. There are two kinds of
points: end points and network points. End points deal with client end devices such as
camers sources, tile or X sinks, or UNIX file sources/sinks which are ultimate sources or
sinks of data. A network point sends/receives data in some buffers through its port which
is associated with one connection. The buffers of a point are also provided by a third party
such as a unit. Each point can be either the source or sink of data flow, but not both.
A point is active in that it has a thread, which can be started or stopped, to move or to
process data.

A unit is an intermediate or client end component which can be inserted into data paths
from a server to clients for data striping, concentrating, capturing, displaying, or processing.
Units are managed by unit factories which reside in client or intermediate entities. A unit
has a semaphore guarded circular buffer with a size of multiples of the SUS of the LO it is
dealing with. The buffer is shared by a pair of points, CPs, or point and CP in the unit
(Figure 7.1), while one of them is filling one slot of the buffer, the other consumes data in
another slot of the buffer. ‘

real devices:
file
X sink
video tile
camera

-

e T

@ port
O buffer pointer *

Figure 7.1: Points, CPs, and Units

Different combinations of points and/or CPs will result in units with different function-
alities. For example, a tile unit with a tile sink end point and a sink RT-CP can be used to
stream data from multiple SSs and display the data on a tile; file units with file end points
and NRT-CPs can be constructed to transfer NRT data between Cadmus and a UNIX file
system; and a unit with a network source point and a network sink point can form a data
processing pipe.

7.2.4 Physical Objects and Storage Servers

Based on the mode in which a PO can be opened, three kinds of PO implementation
are provided: playback RT-POs, record RT-POs, and NRT-POs. Each PO has a port and



7.2. System and Extra Components 93

a buffer with a size of multiples of the SUS (Figure 7.2), although a playback RT-PO’s
buffer is dynamically allocated from a K-buffer. Each PO implementation will open both
the primary and backup POs if the PO is not a special one. For playback, the backup PO
is used in case of other SS failures; for recording and NRT write, both the primary and
backup POs will be written; also the backup PO may be used for NRT read to achieve load
balancing.

RT-POs do not have any threads associated with them, as RT data retrieval is managed
by SSs. However, an NRT-PO has a thread to do receive and can act as both data source
and sink. An SS creates/erases and opens/closes POs. Special POs are treated as NRT-POs
and there is no separate interface for them, although then only operations on a primary PO
are valid. An SS is notified of other SS failures for fault mode data retrieval. The next two
sections will describe SS and PO implementation in more detail.

* primary extent_list |
Ntk | e ot o P centDats
- backup extent_list receiveData
Playback RT-PO Network primary extent_list Disk
<—{ D = c .:’!!ig- e
* primary extent_list - backup extent_list
+-GD—{ afler_H-=
Network backut Disk ;oﬁe}l{:\m{e:d
Record RT-PO - NRT-PO

Figure 7.2: Physical Object Implementation

7.2.5 Logical Objects, Stream Control Agents, File Servers, and Stream
Control Factories

Two types of LO implementation exist: RT-LOs and NRT-LOs. LOs and SCAs are
closely related because an SCA is regarded as an RT-LO. All LOs are opened/closed through
FSs in order to resolve concurrent access conflicts on the same LO. But an RT-LO (or
SCA) is actually implemented by an SCF, and an NRT-LO by an NRT-CP. The decision
to implement an NRT-LO in an NRT-CP is an implementation optimisation. It improves
the performance for NRT data retrieval and prevents an FS from becoming a bottleneck for
NRT data access, which may be true if FSs were to implement NRT-LOs.

The design criterion for LOs is that they hold references of data sources and sinks, but
stay outside of data paths. Each LO, including an SCA, consists of references to a CP and
a number of POs. It will make connections between the ports of the CP and the ports
of the POs, and control the data flow, such as VCR control for SCAs and read/write for
NRT-LOs. There are two kinds of SCAs: playback SCAs and record SCAs. The structure
of a playback SCA for VBR videos is shown in Figure 7.3, in which an NRT-LO is used to
read in the video index.

Although a replication based redundancy scheme is used in Cadmus, a design strategy is
to hide this fact at the LO level in component interfaces by only referring to primary LOs.
However, LO_ATTR will record the mirrored LOID, so that given one LO, its replica can
always be found. Upon LO creation, an FS will actually create two LOs, but only attributes
of the primary LO are returned. The functions of an SCF are very simple: it just creates
and deletes playback and record SCAs upon requests from FSs. SCFs cannot be directly
contacted by clients.



94 Chapter 7. Implementation

| NRT-LO '

read table array

sink RT-CP ‘-‘ \ E } index buffer
0006 playback RT-POs NRT-CP

connections

Figure 7.3: Playback SCA Implementation

Both FSs and SCFs will be notified of SS failures and recovery. This information will
be propagated from an FS to the LOs it manages and the corresponding CPs. When an
FS fails, SCFs may provide additional channels to notify SS failures and recovery to SCAs
and then RT-CPs. However, SS failure detection was not implemented in the prototype.

7.3 The Storage Node

7.3.1 Software Structure

The storage node where an SS resides was built on an ATMos card which ran the ATMos
micro-kernel, and its software structure consisted of a number of processes communicating
via the message passing mechanism. Generally there are three kinds of processes in an
ATMos system: device drivers, system processes, and user provided ones. The prototype
implementation retained all these processes so that tasks that can be performed by the
original ATMos system can also be executed in the Cadmus implementation. This strategy,
rather than writing a new kernel, proved vital because it facilitated rapid prototyping. It
also helped experimenting because the ATMos system already provided a rich set of tools
and system services.

ATMos is the small and propriety kernel introduced in Section 2.6.3. Because the kernel,
the thread package, and most device drivers and system server processes did not satisfy the
QoS enforcement requirements for the Cadmus system, they have been modified for use by
the Cadmus prototype. In addition, a process has been added to implement most of the
functionalities of an SS identified in Section 4.2.2, and the process is also named as the
SS process. However, the full functionalities of an SS are provided by the SS process in
conjunction with other elements in a storage node, such as the file process, the kernel, and
the device drivers. The storage node software structure is shown in Figure 7.4, in which an
oval represents a process.

The main feature of the structure is that apart from receive requests originating from
system processes such as the tcp process, other network and disk related requests are directed
to the SS process, instead of to the relative device drivers as in the original ATMos system.
NRT receive requests do not go through the SS process because they should not be delayed,
as the atm driver will discard data if there is no receive buffer. Another consideration is that
it is impossible to regulate individual receive requests, because newly arrived data can be
de-multiplexed only after it has been received and examined. Thus receive requests are sent
to the driver directly by their originators, which also simplifies the implementation. Other
device related requests will generate corresponding NRT activities and have to undergo
admission tests in the SS process before being issued to the device drivers.



7.3. The Storage Node 95

cor! CORBA implementation
daemop/ interfaces | SS/PO/stubs

NRT-PO RT-PO

— extent lists
ftp buffer

at admission control
NRT|r/w | reserve table »(RT-PO table (admitted) )
! cycle table RT
e torston (o~ QT il
|| /O parameters NRT list (waiting) AR

NRT]send
te|
NRT receive

< other ‘)

« processes
software
layer
hardware

layer

ATM clock disk(s)

Figure 7.4: The Storage Node Software Structure

Only the SS process will generate RT activities, while other processes are recognised
as sources of NRT pure CPU, disk, or network related activities only. The file process
manages extent-based PO storage on disk devices, SS meta-data, data retrieval (read-ahead
and write-behind) for NRT-POs, caches for SS meta-data and NRT data, and locks on the
access of NRT-POs. The ftp process implements the FTP protocol, while the ntp process
implements the NTP protocol. The tcp process implements the TCP/UDP/IP protocol
suite and provides NRT communication channels for the ntp and the ftp processes as well
as for the CORBA daemon and implementation.

The idle process has the lowest priority and will only run if there are no other CPU
bound activities. The uart, atm, timer, and scsi/raid are device driver processes. However,
device related activities will run at the interrupt level if the CPU is required, and the
communication overhead of sending requests to the device drivers is kept to a minimum by
a mechanism which is equivalent to allowing other processes to access the request queues in
the drivers. Because an ATMos image runs in a single address space, excessive data copying
between the kernel and the processes is avoided by passing buffer pointers.



96 Chapter 7. Implementation

7.3.2 The Storage Server Process

The structure of the SS process is also shown in Figure 7.4. The SS process fulfils four
major tasks: SS and PO interface implementation, AC, device related RT and NRT request
scheduling, and cycle boundary processing.

SS and PO Interface Implementation

SS and PO interfaces are centred around POs, whose storage is managed by the file
process. Thus the creation and deletion of a PO need participation from the file process.
Also when opening a PO, the SS process will obtain the extent list from the file process. For
RT-POs, their corresponding disk and network related requests are processed inside the SS
process. However, for NRT-POs, the read/write requests are delegated to the file process,
while the send/receive requests are delegated to the tcp process. These NRT requests, apart
from NRT receive, will eventually come back to the SS process for AC, although they will
access data at a lower level such as disk blocks or AALS packets.

Admission Control -

The AC procedures proposed in Chapter 6 for both RT and NRT activities have been
implemented in the SS process. An RT playback or recording request originates from an
RT-PO, and its resource requirements are computed from the corresponding read or receive
table into a reserve table using disk zone information and I/O parameters of the storage
node. AC is then based on the reserve table and the cycle table. An admitted RT-PO is
added to an RT-PO taeble, which is used to compute device related RT requests in each
cycle at run-time. .

It should be noted that both the RT-PO table and the cycle table in an SS node have
stable sizes even when the system scales by increasing the number of SSs. A cycle table
only needs to record entries for cycles up to the longest video, which normally is 2 hours,
i.e., 7,200 entries are needed if the cycle length is one second. Although an RT-PO table
records the read or receive table for each RT-PQO, when more SSs are added, the size of
the read or receive table of an RT-PO for each SS decreases proportionally because less
blocks are stored in each SS. However, the number of RT-POs served by an SS increases
proportionally at the same time, and thus the size of the RT-PO table in an SS would not
vary very much.

A newly arrived network or disk NRT request from either the file or the tcp process has
three destinations: the NRT waiting list if it fails the AC tests using the current and the
next cycles’ resources; a schedule in the current cycle if the request is admitted and the
schedule has not finished; or directly to a driver if the request is admitted but the schedule
has already finished. NRT requests on the waiting list will undergo AC test again in later
cycles.

Device Related Request Scheduling

The SS process maintains three schedules for each of the three consecutive cycles starting
from the current cycle. The three schedules are: a net send schedule, a net receive schedule,
and a disk schedule. Each schedule records a list of device related RT and NRT requests to
be sent to a device driver in the corresponding cycle. The requests are issued to a driver in
the order they appear on a schedule. At current cycle ¢, the schedules for cycle ¢ + 1 are



7.3. The Storage Node 97

ready, while the schedules for cycle ¢ + 2 are being computed. This makes it possible to
admit newly arrived NRT requests using the next cycle’s resources.

When computing a schedule, the RT-PO table is examined first to see if there is data
to be read or received in that cycle. This is achieved by looking at the read or receive
table for each admitted RT-PO. The corresponding RT read or receive requests are added
to the relative schedules. Then the NRT list is examined and an NRT request is added to
a schedule if it satisfies the AC test. When a disk request is added to the disk schedule,
it is inserted according to SCAN order. Schedule computing is accomplished by a schedule
computing thread.

The SS process implementation does not take the approach of using one thread for the
data access of each RT-PO, which would introduce much contention and scheduling jitter.
Instead, dedicated threads are used to process all RT and NRT requests to be sent to the
device drivers. A disk thread is responsible for sending read and write requests in the disk
schedule to the scsi/raid driver, while a net send thread sends send requests in the net send
schedule to the atm driver. Because of the special nature of receive activities, a net receive
thread is used to send all RT receive requests in the net receive schedule to the atm driver
at the start of a cycle and wait for the replies. In contrast, a disk or send request is sent to
the corresponding driver only after a previous one has finished.

Cycle Boundary Processing

Cycle boundary processing is performed by a cycle boundary processing thread, which
deals with finished and unfinished requests in the current schedules and sets up the boundary
for the next cycle according to the time which is constantly adjusted by the ntp process.
Cycle overload occurs when there are unfinished requests at cycle boundaries.

During cycle boundary processing, unfinished RT requests are discarded, while finished
RT send and write requests are deleted. Finished RT read requests are converted to RT send
requests and are added to the net send schedule of the next cycle, and finished RT receive
requests are converted to RT write requests and are inserted into the disk schedule of the
next cycle according to SCAN order. These RT request conversions do not require additional
AC, because it has already been taken into account during AC for the corresponding RT-
POs as shown in Figure 6.2 and Figure 6.3. Unfinished NRT requests are added to the
end of the next cycle’s schedules if they were admitted using the current or next cycle's
resources, and to the NRT list otherwise.

The cycle boundary processing thread will then start a new cycle by making the sched-
ules of the next cycle the current ones and by activating the net send, the net receive, the
disk, and the schedule computing threads if necessary. Concurrency control problems among
the several threads dealing with RT requests are avoided because of the following solutions:
the cycle boundary processing thread runs in critical section with interrupts disabled; the
request processing threads have different current schedules; the schedule computing thread
will compute schedules for the third cycle starting from the current; and AC for an RT
playback or recording request starts from the fourth cycle.

7.3.3 Physical Object Management

PO management is concerned with how PO data is organised on a disk device, and it is
implemented by the file process. Because the file process in the prototype is a modification
from the one used in the original ATMos system, the following will only briefly describe
disk organisation and PO representations.



98 Chapter 7. Implementation

A disk is partitioned into adjacent regions of equal size, and each region has its own
bitmap to record the usage of the disk blocks in that region. When an extent is being
allocated for a PO and the current region does not have enough free space, other regions
are searched in an order corresponding to their distance from the current region, so that
data of a PO is stored as close together as possible.

Each PO has a header disk block, corresponding to a UNIX inode, associated with it. A
header block contains PO attributes, direct extent entries, and pointers that can be used to
reach the single, double, and triple indirect disk blocks which are used to store more extent
entries. Because of the voluminous nature of CM data, a disk block has a size of multiples of
the disk sectors. This also has the benefit of enabling a header disk block to store hundreds
of direct extent entries, which reduces the possibility and overhead to retrieve extra indirect
blocks when opening a PO.

7.4 Resource Management

7.4.1 Contract Enforcement

Chapter 6 identified a list of contracts that are assumed by the AC criteria but should be
implemented by QoS enforcement in an SS. Most contracts can find their implementation
in the last section. The following will briefly describe or summarise the not-so-obvious
implementation for some contracts. The label and content of each contract listed below are
the same as those shown in Appendix B.

C-2 Regulate receive activities in each cycle.

The receive interrupt processing routine will count the time it spends from the start
of a cycle using the free running counter of the profiler board. It will disable receive
interrupt whenever Condition (6.17) is true.

C-4 Disk and network send activities (not including late arriving NRT activities) are known
at the start of a cycle.

The disk and the net send schedules are known at the start of a cycle. Requests in
these schedules will generate corresponding device related activities after being sent
to the device drivers.

C-5 Use FCFS scheduling for the disk and network send activities.

Requests in the disk and the net send schedules are sent to the drivers according to the
order they appear on the schedules. Also a newly admitted NRT request is appended
to a current schedule if the latter has not finished.

C-7 RT pure CPU processing has a higher priority than the NRT one.

The SS process has a higher priority than other processes. The schedule computing,
the net send, the disk, the net receive, and the cycle boundary processing threads
have increasing priorities, and all of them have higher priorities than other threads in
the SS process.

C-9 Either Condition (6.7) or Condition (6.8) should be true or made true.

There are two types of storage node in the prototype: one with a single disk using
programmed I/O and the other with a RAID3 disk array using DMA for disk data
transfer. Condition (6.7) is made true in both situations with the shared resource r
as the CPU.



7.4. Resource Management 99

C-12

C-16

C-20

C-22

R,educe the cleverness of a disk device.

Some parameters of the disk drives used in the prototype have been adjusted by
sending Mode Select SCSI commands to the drives. The following is a summary of
the parameters, their values, and the meanings for the ST12550N disk used in the
prototype.

Automatic Read Reallocation : 0: the disk drive shall not automatically relocate
bad blocks detected during read operations.

Enable Early Recovery : 0: allows the disk drive to apply ECC correction as soon
as possible, before the retry count is exhausted.

Read Retry Count : 0: the maximum number of times the drive attempts its read
recovery algorithm. In this setting, there are still 3 hidden retries.

Write Retry Count : 3 : the number of times the drive attempts its recovery
algorithm during write operations. This value is not alterable for the ST12550N.

Connect Time Limit : 0 : the drive is allowed to remain connected indefinitely
until it attempts disconnection. This is valid because each SCSI bus only attaches
one drive in the prototype.

Read Cache Disable : 1 : the SCSI Read command must access the disk media.

Write Cache Enable : 1 : the SCSI Write command may return status and com-
pletion message bytes as soon as all data has been received from the host.

Caching Analysis Permitted : 0 : caching analysis is disabled.

Disable Prefetch Transfer Length : 0 : prefetch is disabled for any SCSI Read
command whose requested transfer length exceeds this value.

Force Sequential Write : 1 : multiple block writes are to be transferred over the
SCSI bus and written to the media in an ascending, sequential, logical block
order. This prevents the drive from using its own scheduling method for write
operations.

Disable Read-Ahead : 1 : the disk drive shall not read into the cache any logical
blocks beyond the addressed logical block(s).

Number of Cache Segments : 1 : the number of segments into which the host
requests the drive should divide the cache.

Detect and record zone information for ZBR disks.

The zone information of a SCSI disk can be obtained by issuing Mode Select SCSI
commands with the Notch and Partition Page. “Notch” is another name for “Zone”.

Measure the actual resource usage in the current cycle.

The receive, the send, and the disk interrupt processing routines will count the CPU
time they spend from the start of a cycle using the free running counter. The time

spent on the network can be deduced from the CPU time usage, which will be shown
in Section 8.2.3.

Regulate disk and network send activities to prevent pure CPU processing from star-
vation.

The send and the disk interrupt processing routines will ask the net send and the disk
threads not to issue any more requests to the device drivers whenever Condition (6.16)

is true. If there are requests left on the corresponding schedules, then cycle overload
occurs.



100 Chapter 7. Implementation

C-23 Re-activate receive activities after they have been disabled and when conditions allow.

The algorithm listed in Figure 6.9 is executed by the idle process in a storage node.
To prevent race conditions, it is run in critical condition with interrupts disabled.

7.4.2 Resource Reclamation

In Figure 6.2, resources are reserved for retrieving backup blocks during fault mode.
However, a video server may be operating in non-fault mode most of the time. Even when
there are SS failures, some functioning SSs may not be affected if they do not store the
backups of the primary blocks stored on the failed SSs. Thus it is desirable to reclaim some
resources reserved for fault mode and to make them usable by NRT requests.

Assume the current cycle index is ¢, then the resources are reclaimed for cycle ¢+2 by the
schedule computing thread. The reclamation is performed after computing the schedules
using the RT-PO table but before admitting NRT requests from the NRT list. Figure 7.5
shows the fault mode resource reclamation procedure. The reclaimed resources can also be
potentially used by NRT requests which will arrive at cycle c+ 1 or ¢ + 2.

/* A resource item has fields: buf, disk, CPU, and net. */
var: resource item: retained, reclaimed;
var: current cycle index: ¢; cycle table: ci[];

if there is SS failures
&& the failure of 55(z) affects this SS

then

retained = ct{c + 2].fail[SS(z)];
else

retained = 0;
end if

reclaimed = ct[c + 2).fault — retained,;

ctlc + 2).fault = retained;
ct[c + 2].res — = reclaimed;

Figure 7.5: Fault Mode Resource Reclamation
7.5 Summary

~ This chapter has described the implementation of a Cadmus prototype system. The
implementation environment was based on distributed object computing and peripherals
directly connected to an ATM network. A global clock was available in the entire system
through the use of a GPS/NTP package. The important logical components of the Cadmus
architecture were implemented, as well as some extra components used to support or extend
the system. The software structure in storage nodes and the implementation of SSs and POs
were presented and have the following features: NRT requests are re-directed to a single
process for AC; dedicated threads are used to compute the schedules, to process all the I/O
requests of the same category, and to deal with overload situations at cycle boundaries; the
contracts identified in Chapter 6 have been enforced; and resources reserved for fault mode
are reclaimed for use by NRT requests when conditions allow.



Chapter 8

Evaluation

This chapter evaluates the prototype implementation described in the last chapter
through experiments and measurement. The experimental configuration is outlined, and
parameters needed by the AC procedures are measured. Then performance results of NRT
data transfer and multiple stream playback are presented. Finally, the performance bottle-
neck in one SS node is analysed.

8.1 Experimental Configuration

The experimental configuration is shown in Figure 8.1. Each networked physical entity
has a name associated with it, such as cirlbunting or jura. Each of the SSs and the test
clients was equipped with an ATMos card with a 32 MHz or 25 MHz ARM610 processor
and 8§ MB memory. Although Cadmus supports multi-chained declustering, only two SSs
were available and were attached to the network, and it reduces to the chained setting. One
SS (cirlbunting) used a Seagate ST12550N disk, while the other (jura) used a RAID3 disk
array with 5 Conner CFP2105E disks. Cirlbunting used programmed I/O for both disk and
network data transfer, while jura used DMA for disk read/write and programmed I/O for
network activities. Although finding the optimal cycle length is outside the scope of this
research, the experiments selected it to be 1 second for reasons of simplicity and to conform
to the examples in previous chapters.

The test video sequences were recorded Medusa [Wray94] video clips. Although they
are CBR, the test clips were treated exactly like VBR: a video index was generated for
each video and was interpreted by an SCA; and read tables were sent to the SSs for AC.
Each clip was 166 seconds long with 12 fps and a resolution of 88x64 pixels per frame, and
had a size of 21.40 MB. Because the sequence was uncompressed, it had a rate of 1.03125
Mbps. Uncompressed versions of the videos were used because it was desirable to look at
results on a video tile, which did not have a hardware MPEG decoder and was not capable
of decoding MPEG in software in real time. 16 such video sequences were striped to the
two SSs with a block size of 132 KB, which is the average size per second. Data was sent
to the SSs using NRT file transfer. It was found at run-time that the file process in each
SS node stored each PO, which was about 10 MB long, with 3 to 10 extents.

101



102 Chapter 8. Evaluation

crayfish
8 other ATM switches
cockatoo
blackbird  roller y_ snowbunting

% & Eairstrenk o9 ﬁ- blackeap

jura
pipit
aichee

(B) d
8 9 to%an v%n peacock

cirlbunting ¢ henharrier

Q Sun SparcStation D Digital Alpha machine
E ATML Virata switch ® ORL 4 port switch 8 ST12550N disk @ disk array (RAID3)
@ storage server ® profiler board © test client @ video tile

=< fbis

A
ﬁ\ GPS receiver ~—— Ethernet link ——— 1060Mbps coax =—— 155Mbps fibre

Figure 8.1: Equipment Deployment

8.2 Admission Control Parameters

This section will present values for parameters needed by the AC procedures in Chap-
ter 6. These parameters include I/O bandwidth of the resources in an SS node on network
and disk related activities. Because jura seemed to be a faster device than cirlbunting, only
I/O parameters of the latter were tested and used in the AC procedures in both SSs. It was
hoped that any workload cirlbunting had admitted could be undertaken easily by jura in
each cycle. However, it turned out not to be the case, and the implications will be discussed
later. The experiments in this section were performed using the original ATMos system but
with a more accurate timer driver written by the author.

8.2.1 Network Side Parameters

The data path from the network interface to the memory in cirlbunting is shown in
Figure 8.2. Two 4 KB FIFO buffers were used for send and receive activities. The 32-bit
CPU-memory bus was clocked at 16 MHz, resulting in a transfer rate of 64 MB/s. The
ATM hardware connection could support up to 100 Mbps. But as data send and receive
were performed by software, the bandwidth of the CPU and the unshared network data
path should be measured.

Figure 8.3 shows the results of sending AALS packets of different sizes from cirlbunting to
ibis without intervals between individual send requests. The process percentage represents
the CPU time occupied by activities other than the idle process or interrupt processing. The
average rate was computed by dividing the size of the data sent by the iteration period.
However, as there were idle time and other CPU processing activities, the effective rate for
the CPU to send data was computed by dividing the size of the data sent by the aggregate
time spent on the send interrupts. It can be observed that some parameters, such as the



8.2. Admission Control Parameters 103

CPU memory

CPU-memory bus

| o4 MBS

ATM P petwork -
160 Mbps interface |
FIFO

Figure 8.2: Network Side Data Path

effective rate, the average one cell processing time, and the number of cells processed by
each send interrupt, are quite stable. This can be further verified from Figure 8.4, in which
the average rate of sending 32 KB packets from cirlbunting to ibis was adjusted by inserting
intervals between individual requests. All the parameters have included interrupt latency
and messaging overhead if applicable..

send only : 10000 iterations for each packet size. no interval

90 L) T L] T T T

e 00008ttt tot ottt
80 | d
oo d«°o.,,° 090009090 0090069000000000009000000000299000000006000000
0r average rate (Mbps) -o— |

effective rate (Mbps) -+--

idle (%) -8--
60 | prooass % e ]

mlerrupt =i

average one cell (48B) processing time * 2(us e
50 number of cells per intemupt * 10 -0-- |

» t At A bt
40 [yt JOTOR L N
30k N
20 % b
*m****&*u***lﬁm-ﬂ**ll**ﬂ**mi**!—!x!*l—iﬂ*ﬂ***
10 | “**W%EBE’“WBEDEBEEEEWBEEEEGBEEEWBBEEED
N X NN AN HIHIHEHNH IR
=8
0 P i | 1 L 1 ! 1
10 20 30 40 50 60
packet size (KB)

Figure 8.3: Network Send with Increasing Packet Size

In Figure 8.3, the average rate can be characterised as 37.19 & 0.77 Mbps, where 37.19
Mbps is the mean and 0.77 Mbps the standard deviation. Similarly, the effective rate is
45.23 +1.43 Mbps. The discrepancy of the average and the effective rates can be explained
by the different capacity on network send by the unshared network data path and the CPU.
While the average rate is limited by the bandwidth of the unshared network data path, the
effective rate is limited by the bandwidth of the CPU on network send activities. If this
were not the case, then the percentage of the idle CPU time would not have increased and
been approaching a stable level when the packet size increases in Figure 8.3.

Measurements have been performed for receiving in cirlbunting from two different
sources: one from blackcap with a 25 MHz CPU, the other from ibis with a 32 MHz
CPU. The results are shown in Figure 8.5 and Figure 8.6. To correctly receive data in
each iteration in cirlbunting, the sources had to insert intervals between individual sends.
However, the effective rate, the average cell processing time, and the number of cells per
interrupt are also near constant in either case. The difference is that cirlbunting will process



104

Chapter 8.

Evaluation

80

70

60

10

send only : 10000 iterations for each average rate. 32KB packet size
¥ 1 T T

L]

X"’(x
el X
eflective rate (Mbps) o—
R t""& xx"'x Ig;l‘e %) -
P oy process (%) -8--
oy, interrupt (%) -3¢~
Fhy, average one cell (48B) processing time (us) -

number of cells per interrupt * 10 -%--

......... AAALAAALAALAA Ardrdrdrdrd e & A& Droder-dhdhe

3. EEEBBEDBEGB-EQB‘

<o Lt
AETERTEEEaEsE Cea:332CCEOIIECILOIE
A

-
1 1 1 1 1

15 20 25 35
averaga rate (Mbps)

Figure 8.4: Network Send with Increasing Average Rate

40

more cells (21.68 +1.28 cells) per interrupt from the faster ibis than those (9.7540.12 cells)
from the slower blackcap. This results in a higher effective receive rate (48.26 +1.92 Mbps)
from ibis than that (44.66 & 1.75 Mbps) from blackcap because of less processing overhead
per cell. For simplicity reasons, the capacity of the unshared network data path and the
CPU on receive activities were selected as the same as that on network send for use in the

AC procedures.

80
70

60

receive from 25 MHz node: 10080 iterations for each packet size. 1ms interval

T T T T T
'MQOOO& 00009990900000000000090000000000000090000000000000900

AAAAAAAAAAAAAAA

L %Wﬁ

e et bt e et b et -t

it
EBBEBGE

| E’BBBBBE)

+{ BEEEBEBGBE}QBE}EIBBEEBGEGMEBE

:é\'l'emge rate (Mbps) -—
effective rate)I !lﬁb{:a -
o .

%) &=
process (%) -~
interrupt (%) ~a--
average one c%tl (4BfB) lroces?:mng time (us) -»--

number of cells per interrupt + 70 -o--
'***mﬁﬁlﬁl-*l**l*mi*l!!‘!*l*i*mﬁ#*g-el-l-ﬂiﬁ N

10 20 50 60

a0 40
packet size (KB)

Figure 8.5: Network Receive from Slow Source

b 37TV
K2 7 3 T RVEYS
|K‘H 5(*)(*’(‘N"‘N‘X’**'X‘K*‘*’N‘*"X-‘K')(‘K'K"K‘**'K" D6 D NP IE N DM IENDE N (X




8.2. Admission Control Parameters 105

&0 receive from 32 MHz node: 10000 iterations for each packet size. 1/2/3 ms interval
¥ L} T L) T L]

aM - ‘,.,..A.-A
70 + ‘M‘ 1 POy
o L aaaat ot
Waal A average rafe Mbps e
«* effective mte
60 | el F
&
Q ~ lnten'upt
[ A average one cell (4BB) processing tims (us u—
sof b bttt --+-THTRET ] Golls perntemupl 005
#Gl S ottt

%

40 ¥ L ’ .
B

30 - ; o E‘Bﬂaaem—
Bag .,"
GBG'BBE

60050900000
ooooo-owoooooo_ooooo_o.ooooOOoooomMoooowoeo_

10

%
“*H*l-l***& DOJ0E-00 30 020606 DE-UEE-30-30S0E 90 306 020003030 306 06 20 D003 J0E 203062 396 06 306 M 2K 3

X Hrrtremae,
0 Mlaiaialsiaiaiateins RIEH R IHUN IR IHIHH N RHHRIRIHIN R I NI IR ICHHIEK
10 20 30 40 50 60

packet size (KB)

Figure 8.6: Network Receive from Fast Source

8.2.2 Disk Side Parameters

The data path from the disk to the memory in cirlbunting is shown in Figure 8.7.
An XSI interface was used to connect the ATMos card with the SCSI bus, to which an
ST12550N disk was attached. The SCSI-1 bus could support 4 MB/s, while the XSI bus
could support 20 MB/s. The zoned disk had a transfer rate of 27.84-46.56 Mbps from its
platter. The effective rate of the CPU on read/write data transfer had to be measured.

CPU memory
CPU-memory bus
64 MB/s ST12550N
-—-I XSI bus |-—+| 8 KB |-——| SCSI bus
20 MB/s FIFO 4MB/s  3.48—5.82MB/s

Figure 8.7: Disk Side Data Path

Figure 8.8 shows the results when increasing the size of read requests to the disk. Each
iteration performed SCAN scheduling once. Similarly, the effective rate was computed using
the aggregate time spent on the read interrupts, while the average rate on the whole iteration
interval. However, the average rate cannot be used to characterise the bandwidth of the
unshared disk data path. First, there is seek time that does not contribute to data transfer.
Second, the disk has different transfer rates on different zones. Hence, the bandwidth of
the X8I bus, the SCSI bus, and the disk itself combined to determine the capacity of the
unshared disk data path.

The average one disk sector of 512 B processing time (135.17+0.69 us) and the effective
rate (30.27+0.13 Mbps) are also quite stable. This can be verified from Figure 8.9, in which
the average rate for reading 128 KB data was adjusted. When the request size increases, the
average rate is approaching the effective rate because of less disk seek overhead. The same



106

Chapter 8. Evaluation

measurement was performed on write requests, and the results are shown in Figure 8.10
and Figure 8.11. Disk write has an average one disk sector processing time of 142.38 + 3.32
ps and an effective rate of 28.78 £+ 0.71 Mbps, both of which are less than that of disk
read. To reduce the effective rate of read to that of write for use in AC would decrease
server performance, because a video server will generally perform more reads than writes.

read only : 100 iterations for each raquest size. no interval

140 = T T T
120 | -1
100 | " -
% " average rate (Mbps) —
3000000 affective rma}Mb -
80 | m idla (%) -+--
K process (%) -&--
i interrupt (%) -~
! averags one sector (512B) processing time (us) -&---
60 [ J
40 1 b

B 800 700 800 900
request size (KB)
Figure 8.8: Disk Read with Increasing Request Size
140 read only : 100 iterations for each average rata. 128KB requsst size
\J L) T L) T ¥ T L} )
effective rate k(th 8) -o—
120 |- o (%) ~—+- -
rmcess %) -B--
nterrupt (%) -»---
average one sector (512B) procassing time (us) ~&-
100 [ -
- —r
80 . ™
L e, e
N'\-M.\\' o XX"M
60 | ... . - M -
— -
*~:...- """
e e o
40 F ‘x_/.__/.x—" by 4\"\,. p
—o—p = o < 00000000 Shmter—o#—0 o—o
x--“* e,
20| I
[ LS00 - TN - SRR SR S i 0 e TR D G e DG AT s s B L5 B
8 10 12 14 16 18 20 22 24
averags rate (Mbps)

Figure 8.9: Disk Read with Increasing Average Rate

Therefore, read and write had different effective rates in the AC procedures.



8.2. Admission Control Parameters 107

write only : 100 iterations for each request size. no interval
T T

140 b o p aAAAAAARAAASAASASALL Ty Y — “““““““‘“‘“‘-
apadt A
W
120 E
100 | sous00006 ]

W average rate SMbps —_
8o - effective rate (Mbps) -o---

idle (%) -+ |
procass B
interrupt (%) -

60 average anoe sactor (512B) processing time (us) -&--- i

40

100 200 300 400 500 . 800 700
request size (KB)

Figure 8.10: Disk Write with Increasing Request Size

write only : 100 iterations for each average rate. 128KB request size

140 b 1 A vy IA y. N ! F'y ' A ! A AAAAI AAA A IAA_A . 'A. A AI AA
effective rate (Mbps) -o—
120 | idle (%) —+-
process (%) -8--
interrupt (%) -3~
average ane sector (512B) processing time (us) -4~
100 | .
B0 | e
+ e
e o
Y
e Y e
b —x 20¢
60 el - E
e e _xxxx"
=l
e T
40 e s NV -
o TN
[V S 0 0-000—0-00——P—0— -0 PPV
—o—g o o < 00—
x_,.x’ ., S
2 F Sheen 1
“she
QL ™ T8 BEY o PEP N - el =l 1. e c ) oe s ch Jorr o o -
8 10 12 14 16 18 20 22 24

average rate (Mbps)

Figure 8.11: Disk Write with Increasing Average Rate

8.2.3 Parameters Used
Concurrent Activities

The previous measurement was based on activities of the same type without interference
from activities of other types. Figure 8.12 shows the results of various numbers of threads
doing both read and send. The parameters that were stable for single type activities are
still stable when there are concurrent read and send activities. Particularly, the effective
network send rate is 46.80 & 0.01 Mbps, and the effective disk read rate is 30.52 + 0.02
Mbps. Both of them are very near to the ones measured from Figure 8.3 and Figure 8.8.
The average rate is 17.48 + 0.38 Mbps.



108 Chapter 8. Evaluation

each thread doss 100 {terations of one 1268KB read and four 32KB packst sends. no interval

1 T T T T T T
LR R e O e ot BRI A0S SRR it O S8 ST L s

»
'l

80 J
*.i
Oy pEoEEODPPOEOECONCOONRODOOEECEO0B0600]
average rate (Mbps) -o—
70 effective network send rate (Mbps) ~+- |
B efisctive disk read rate s) -B--
idle (%) -
process (%) ~&--
60 - interrupt (%) %
average one secter (51282 processing time {us)/ 10 <
average one cell (48B) processing time gqls +
o] -

50 number of cells per internupt

........... Lk e bt S B

40 :

30 } &-&-&-o-8-8-8-8-8-8--B-B--8-@- 08 &G G- &-5-8-B-D--0--8-8--8--8--0 -

20 -
o/'-cAA o—0—0 —0—0—b o—o- 00— O—O— o
gooooooooooooooooooooooooooooo

1°-+\+++++++++++++++++++++++++++++_
LV S W iy Wiy S S S S S S SR SR e

0 Koo % > PR o | SR W) PPNV Y FORAE RY) 'l
0 5 25 30

15
number of threads

Figure 8.12: Concurrent Disk Read and Network Send

Parameter Analysis

The results from Figure 8.3, Figure 8.8, and Figure 8.10 were used in the AC procedures.
This is because they were measured using different packet or request sizes and also conform
to the results from Figure 8.12. Table 8.1 summarises the capacity of the unshared data
paths and the CPU on the various types of activities.

Table 8.1: Resource Bandwidth on Different Activities

bandwidth (Mbps)
activity unshared data path CPU
measured rate | lower bound | effective rate | lower bound
send 37.19£0.77 36.42 45.23 +£1.43 43.80
receive | 37.19 £0.77 36.42 45,23 £1.43 43.80
read XSI: 80 SCSI: 32 30.27 +-0.13 30.14
write disk: 27.84-46.56 28.78 +0.71 28.07

Contract 9 from Section 6.1.4 required either Condition (6.7) or Condition (6.8) should
be true or made true. The shared CPU-memory bus clearly is not a bottleneck and was
ignored. However, Condition (6.8) will not hold for the above parameters when considering
the shared CPU resource. This is because:

36.42 Mbps + 27.84 Mbps
43.80 Mbps = 30.14 Mbps
36.42 Mbps = 27.84 Mbps
43.80 Mbps = 28.07 Mbps

=176>1

=182>1

Therefore, Condition (6.7) was made true as shown below. Assume a network send request
p and a disk request g have data size p.size and g.size respectively. Then:

p.size

p.send _CPU = p.send_net = 36.42—Mbps

(8.1)



8.2. Admission Control Parameters 109

And from Equation (6.14), if the disk request g is optimised to access data on one contiguous
piece, and z(q) refers to the zone of the piece, then:

q.disk _CPU= q.disk_zfer
_ q.size
~ min(B(z(q)), Bmin(XSI, SCSI, disk), Bmin(CPU _d))
g.size -
min(B(z(q)), Bmin(XSI, SCSI), Bmin(CPU .d))
g.size
min(B(z(q)), 32 Mbps, Bmin(CPU _d))
g.size

~ min(B(2(q)), Bmin(CPU .d)) (8.2)

where Bmin(CPU _d) is 30.14 Mbps for a read request and 28.07 Mbps for a write request.
Note that Bmin(CPU_d) < 32 Mbps, which is the bandwidth of the SCSI bus.

However, for a receive request g with data size g.size, if the time required on the network
data path and on the CPU are g.recv_net and g.recv_CPU respectively, then:

g.size

g.'recv_net = m (8.3)
_ g.size

9-recv-CPU = 2280 Mbps 84

g.recu_net = 1.20 * g.recv.CPU (8.5)

Equation (8.5) was used in Figure 6.9 to convert between the time spent on the network
data path and the time on the CPU for any receive activity.

Other Parameters

Table 8.2 is a summary of other AC parameters and their values which have been
used. The meanings of the parameters are as shown in Chapter 6. The zone parameters
needed in Equation (6.13) and Equation (8.2) can be deduced from the disk rotation speed
(7,200 rpm) and the disk geometry shown in Table 2.3. Although 8 MB memory was
installed in cirlbunting, only 2112 KB was available for the SS process to use as the K-
buffers because of the space occupied by the image and used up by other processes. Some
of these parameters, as well as the bandwidth related ones measured above, may be changed
dynamically according to run-time requirements and measurement. However, this was not
implemented in the prototype and all the parameters were fixed in the AC procedures.

Table 8.2: Other AC Parameters and Values

| parameter value parameter value ||
TNRTvecv._net 60 ms a 6588 us
TNRTvecv_cpu | 50 ms bA 13911 us
Tpure_crPU 80 ms Tyot 8334 us
Tres_crPu 20 ms v Tegtra_recv_CPU _threshold | D MS
K 1056 KB || Tegtra_recv_cPU 50 ms

The disk seek time profile constants, i.e., a and b (cf. page 44), were computed from
Figure 8.13, which shows the write seek time profile for the ST12550N disk. Each seek



110 Chapter 8. Evaluation

time for a specific seek distance was the average of 30 write seeks on different places of the
disk platter. The profile was approximated using standard 2-parameter linear regression
[Press88], and the result is y = 6.58734 + 0.00514065 * z ms. So a = 6588 us, and
bA = 0.00514065 * 2706 ms = 13911 us. Ty is a full rotation time, which is 8.333 ms for
a rotation speed of 7,200 rpm.

22 T 1 T T L]
20 |- -
18 | -
16 | write seek profile —

6.58734 + 0.00514065 * x ----

14 -
a 12 J
10 <
8 -
6 -
4 -

2 1 1 L L (]

0 500 1000 1500 2000 2500 3000
seek cylinder span

Figure 8.13: ST12550N Write Seek Time Profile and Approximation

8.3 Measured Results

This section presents results from experiments performed when the Cadmus components
were up and running in the physical entities as shown in Figure 8.1. The AC parameters
used were as described in the last section. Because fault mode operations and RT recording
were only partly implemented, they were not tested.

8.3.1 File Transfer

Transferring files to an SS using the FTP protocol will test the SS’s NRT processing
capability. Experiments were done to send 10 MB files from crayfish, a DEC Alpha machine
running Digital UNIX, to cirlbunting. Before the three-level AC for NRT activities was
developed, only delayed AC was implemented. The resulting transfer rate was merely 0.29
KB/s. After implementing the three-level AC, the rate increased dramatically to around
480 KB/s. Similar rates were achieved by sending the same files from crayfish to jura. This
performance is reasonably high because 480 KB/s was also the average rate of transferring
data from crayfish to an ATMos file server equipped with a RAID3 disk array with 5
ST12550N disks. : o

File transfer when there were RT activities was also tested. When there were 2 active
playback streams of 1.03125 Mbps, with each SS serving one stream in each cycle, the rate
of transferring a 10 MB file from crayfish to cirlbunting became 410 KB/s. When there
were 4 playback streams present, with each SS serving 2 streams per cycle, the transfer rate
dropped to 210 KB/s. This clearly shows that RT activities were delaying the NRT ones in
SS nodes.



8.3. Measured Results 111

8.3.2 Multiple Stream Playback

With fault mode resource reservation turned off, the system could support up to 16
Medusa videos of 1.03125 Mbps, and the bottleneck was the 2112 KB buffer in cirlbunting.
The following will present the results of playing back 14 streams, because the effect of
serving different streams per cycle by an SS can then be shown (8 in one cycle and 6 in the
other; while in the 16 streams case, each cycle will serve 8 streams). The experiment was
done by first playing 1 stream in the test client ibis, which would time-stamp and discard
each incoming 132 KB block. Then 2 streams were sent to the two video tiles: aichee and
henharrier, for visual testing. Finally, 11 other streams were admitted and sent to the other
three test clients: pipit, cockatoo, and blackcap, which would just discard any data received.
All four SCFs were active and were employed in this experiment. Special test units and
unit factories were used in the test clients.

Figure 8.14 shows the CPU usage in cirlbunting. These are the results of several runs
of the experiment when 8 and 6 streams were read in each cycle alternately. These cycles
were divided into two groups according to the number of 132 KB blocks read in each cycle.
It could be seen in both cases read and send time are quite stable, and there is also much
idle CPU time left. In some cycles there is less idle time, because there were background
NRT activities using the CPU resource as well. Cycle boundary processing would take
about 200 us when there were no RT activities and no cycle overload. But an additional
100 ps was needed for each 132 KB RT block read in the previous cycle, because it was the
responsibility of the cycle boundary processing thread to convert an RT read request into
several 32 KB AALS5 packet send requests in the prototype implementation.

Figure 8.15 shows the 132 KB block arrival time in ibis relative to the start of a GPS
second. It is the concatenation of 9 runs, with each run covering the time period of admitting
and playing the other 13 streams. It could be noted that no blocks arrive outside the 1
second cycle length starting from a GPS second. Also the arrival pattern is hard to predict,
although in general the arrival time increases when more streams are admitted and being
played. This is because blocks were sent from an SS according to the retrieval order from
the disk schedule in the previous cycle. With multiple streams active, and each stream’s
data being stored in different places in the disks, the retrieval order of multiple streams
may not be preserved between cycles when SCAN is used. In all these runs, the displays of
the two video tiles were observed, and no disruption was noticed.

8.3.3 Discussion

Something which was not expected was that sometimes network send overload would
occur in jura, the SS node with a RAID3 disk array and DMA for disk data transfer, if
8 streams were sent in one cycle. These runs have not been taken into account in the
above results. In contrast, such overload never happened to cirlbunting. This is probably
because jura had a different atm driver which would delay network send or message passing.
Because of time limitations, this was not further investigated. But two things could be
observed: one is that a seemingly fast device might not guarantee QoS if its I/O parameters
were not obtained correctly; the other is that the system was still stable during overload.
When occasional cycle overload occurred in jura, pictures in the video tiles either suffered
a temporary glitch or were not disrupted at all because the RT data discarded in jura was
not to be sent to the tiles.

The state of live-lock was also tested. A client was put in ibis which would loop to send
32 KB packets to cirlbunting without any interval between individual sends. When receive



112

Chapter 8. Evaluation

1000

800

600

1000

860

600

CPU time {or reading 6 streams ©
CPU time for sending 8 streams  +
idle CPU time ©

b B 1 9 o
P o R T 2 |
Tﬂ - EEW: m

a
- B -
(=]
RN
HH
o 20 60 80 100 120 140 160
cycle

0 m & Eﬂ,w%g mwa@ﬂ QEP@ nn n@hﬂ@% ﬂ@&n“&

CPU time for reading 8 streams ¢
CPU time for sending 6 streams +
idle CPU time @

W B g Og Fod Og
@ “ o
a B o

60 80 100 120 140 160

cycle

Figure 8.14: SS Node CPU Usage (cirlbunting)

was not regulated, whenever such a client was active, the console of cirlbunting just hung.
Either the client in ibis had to be killed or cirlbunting had to be reset to recover from such
a live-lock state. After receive was regulated, such a state did not exist any more.

8.4 Bottleneck Analysis

The upper limit of 16 streams of the 1.03125 Mbps Medusa video was constrained by

the buffer size in cirlbunting. This can be simply analysed based on the AC criteria from
Chapter 6 and the parameters from Section 8.2.3. Assume in each cycle cirlbunting can
support up to J.net, J.disk, J.CPU, and J.buf streams of the 132 KB/s video without
reserving resources for fault mode, and these numbers are solely limited by the bandwidth
of the corresponding single resource. Also assume there are no RT receive activities. Then,



8.4. Bottleneck Analysis

113

1000 T T T T T T T
132KB block arrival time relative to the start of a GPS sacond ©

800 .

ms
8
o
°

w}| P
»

[1} 200 400 600 800 1000 1200 1400 1600
cycla

Figure 8.15: Block Arrival Time in the Client (ibis)

from Equation (6.1) and Equation (8.1):
J.net « 132 KB
36.42 Mbps
J.net = 32.50

=1 second — 20 ms — 60 ms

(8.6)
(8.7)

Assume each 132 KB block is stored contiguously on the disk, which was true in the previous
experiments, and the blocks are stored in the slowest zone without crossing track or cylinder

boundaries. Then from Equation (6.13), Equation (8.2), and Equation (6.15):
J.disk x 132 KB

J.disk % (6588 s + 8334 ps) +

27.84 Mbps
=1 second — 20 ms — 13911 us — 50 ms
J.disk = 17.63

From Equation (8.1), Equation (8.2), and Equation (6.3):
J.CPUx132KB J.CPU %132 KB
27.84 Mbps 36.42 Mbps
J.CPU = 13.00

= 1 second — 20 ms — 80 ms — 50 ms

From Equation (6.9):

J.buf *» 132 KB = 1056 KB
J.buf = 8.00

Therefore:

J.buf < J.CPU < J.disk < J.net

(8.8)
(8.9)

(8.10)
(8.11)

(8.12)
(8.13)

(8.14)

If the memory of cirlbunting could be increased, the system should be able to support
26 streams of 1.03125 Mbps. Then the bottleneck would become the CPU of cirlbunting. If
then a faster CPU is used, the disk may be the next bottleneck, although the above equations
should be re-computed using new bandwidth parameters. Another simple observation is
that when one SS in the prototype could support only 8 streams per cycle, two SSs could
indeed double that capacity to 16 streams when resources for fault mode were not reserved.



114 Chapter 8. Evaluation

8.5 Summary

This chapter performed an evaluation on the Cadmus prototype implementation. Be-
cause the AC criteria from Chapter 6 rely on stable bandwidth of the various resources in an
SS node on different activities, several experiments have been undertaken to measure these
I/O parameters. With the experimental configuration outlined, the 2 SS node prototype
could support the playback of up to 16 streams of 1.03125 Mbps video without reserving
resources for fault mode. The performance results for NRT file transfer and 14 stream
playback were presented. The implications of an anomaly were discussed and the live-lock
state elimination was tested. Finally, the bottleneck of a storage node was quantitatively
analysed using the AC criteria and measured parameters.



Chapter 9

Conclusion

This dissertation has presented an architecture for scalable and deterministic video
servers. This chapter will summarise the work and its conclusions, and make suggestions
for further study.

9.1 Summary

The background information from Chapter 2 identified the characteristics of CM data,
storage devices, and the basic video server structure. These characteristics have several
implications on video server design. First, a large scale video server has to be made up
of a number of comparatively slow disk devices and a certain interconnect structure. It
was argued that a network striped video server architecture with off-the-shelf components
connected by a scalable switched network has the benefits of cost-effectiveness, flexibility,
scalability, and high-performance. Second, the temporal property of CM data and the
mechanical nature of disk devices require a video server to support AC, QoS, and overload
processing. Third, the stored nature of CM data makes it possible for a video server to
smooth VBR videos for playback, as well as to provide deterministic services.

It is the observation of this dissertation that the software system architecture for net-
work striped video servers is of equal importance to the scalable hardware structure itself.
However, most contemporary distributed file systems do not support network striping, let
alone performing AC and guaranteeing QoS at the same time. Although there are many
research papers on video server design, which were surveyed in Chapter 3, most of them are
only concerned with single storage node video servers and are concentrated on a specific as-
pect, rather than tackling design problems in an integrated way at the system level. Some
related proposals built on network striping were described in more detail. Nevertheless,
a close examination reveals that they are either not scalable or not flexible, or lack QoS
awareness. Motivated by all these observations, a new system architecture (Cadmus) for
scalable and deterministic video servers was developed and presented in Chapter 4.

The Cadmus architecture is built on the concept of logical components manipulating
data objects opened in different modes. POs are uninterpreted byte streams stored in a
network attached storage node, while LOs, such as files and directories, are uninterpreted
byte streams that are meaningful to clients. Usually a PO represents the data striped on
one storage node from an LO. Both objects can be opened in either RT mode for playback
or recording, or NRT mode otherwise. An SS exists in each storage node to manage POs,

115



116 - Chapter 9. Conclusion

while FSs are used to manage LOs. The data of an LO is scattered and gathered by a
CP. In addition, SCFs and SCAs are introduced to control the playback or recording of RT
streams. Data is transferred between SSs and CPs directly. Finally, DSs and NSs make the
Cadmus architecture self-contained.

The main features of the Cadmus architecture are its flexibility and scalability: map-
pings from LOs to SSs are not fixed; each SS has its own policy to store the POs it manages;
different logical components are largely independent of each other and can be added incre-
mentally; and all meta-data is stored on SSs, enabling other logical components to run
anywhere in the network. The deterministic aspect of the architecture is reflected by the
adoption of the cycle based QoS guarantee scheme, which processes data according to fixed
time length cycles in both SSs and CPs. Video indexes are used for VBR playback so that
the amount of data to retrieve in each cycle is known a priori. This also makes Cadmus
independent of any video encoding format. Data availability is provided by the adoption of
multi-chained declustering, which is deemed superior to other replication based alternatives.

Not only does the Cadmus architecture provide mechanisms to exploit VBR smooth-
ing in SCAs, this dissertation also presented and analysed a new smoothing algorithm in
Chapter 5. The algorithm takes into account client buffer limits, performs or suppresses
read-ahead, smoothes the data read in each cycle, and eliminates small reads to increase
disk bandwidth utilisation. Based on empirical analysis of the algorithm, heuristics were
given to select the SUS of an LO using very simple video characteristics. An interesting
observation is that some VBR videos may not be that bursty if they are retrieved slightly
above their average rates.

The Cadmus architecture is also QoS aware by virtue of its AC criteria and the associ-
ated contracts to be fulfilled by QoS enforcement in SS nodes, both of which were described
in Chapter 6. The CPU in an SS node is modelled as a shared resource for both disk
and network activities. The solution is integrated in that different resources in SS nodes
are considered simultaneously and interference between different activities is identified and
factored into the AC criteria. AC procedures for both RT and NRT activities were pre-
sented, with emphasis on a three-level AC for NRT activities in order to speed up their
execution. Other issues of practical value, such as ZBR, live-lock state elimination, pure
CPU processing starvation, and receive regulation and re-activation, were also considered.

A prototype implementation of the Cadmus architecture that can support NRT file
transfer and multiple stream playback is operational and was described in Chapter 7. A
global clock was provided by a GPS/NTP package, and the important logical components
were implemented. The software in a storage node was built around a message-based
micro-kernel that had been modified to conform to requirements of the AC criteria. A
single process was used to act as a monitor for both RT and NRT activities, so that they
were subject to AC before being issued to the devices. Dedicated threads were used for
activities of the same type, and I/O scheduling was performed on a cycle basis.

The prototype implementation was evaluated in Chapter 8 through experiments and
measurement. AC parameters in an SS node were measured and analysed in great detail,
because they form the basis for the correctness of the AC criteria and QoS enforcement.
Performance results for file transfer and multiple stream playback were presented, and
potential bottlenecks in a storage node were analysed using the AC parameters and criteria.
Without reserving resources for fault tolerance, the 2 SS node prototype could support up to
16 streams of 1.03125 Mbps video, with each SS node being able to serve up to 8 streams in
each cycle. The functioning implementation and its evaluation have verified the feasibility
and utility of the Cadmus architecture and its AC criteria.



9.2. Future Work 117

During the process of implementing and evaluating the Cadmus prototype, the following
observations were made:

e It is very hard to provide QoS in the server end without considering the software and
hardware environment in storage nodes, such as the kernel, the file system, the com-
munication subsystem, the device drivers, the actual devices and their performance
parameters.

e It is also very difficult for QoS enforcement without a good timer device and driver.
The original ATMos card only had a very inaccurate timer with a 10 ms resolution,
which impeded every effort to guarantee QoS in SS nodes. In the later stage, the
add-on profiler board was found very helpful and a new timer driver was written for
it.

e Using the cycle based scheme, if each striping unit can be stored contiguously in a disk
and SCAN is used, it is doubtful whether any more complex mechanism for laying
out video data and scheduling disk heads will actually improve the performance of
the system.

e In a dedicated server node, the design could be simplified compared to a workstation
environment where multiple users which could not be trusted share resources. The
results are less data copying, fewer concurrency issues, no problems with resource
protection between different domains, and simple QoS regulation and enforcement.

¢ However, it is also felt that video server design is in general a very complex problem if
the implementation of a functioning system is involved. This is because not as many
assumptions could be made in this situation.

In conclusion, this dissertation has proposed a flexible and scalable architectural frame-
work for the construction of scalable and deterministic video servers. Related issues such as
VBR smoothing and integrated AC and QoS enforcement were also considered and proper
solutions provided. A functioning prototype was built and evaluated, and the -utility and
feasibility of the ideas were verified.

9.2 Future Work

The Cadmus prototype was only implemented and tested to the extent that time and
resources allowed. Some components, such as NSs and DSs, and some functionalities, such
as VCR control and RT recording, were not implemented; while some aspects, such as
fault mode activation and operations, were not tested. It may also be desirable to run the
prototype on more storage nodes if they are available. The prototype implementation may
be completed in future work, but the architectural framework should stand.

Although video data availability was provided by multi-chained declustering, more work
is needed on failure recovery issues. These include failure detection, component recovery,
and lost data reconstruction. Also performance implications of re-striping an LO or recon-
structing a lost SS in the presence of RT services need to be investigated. However, Cadmus
does provide mechanisms such as background file transfer and RT recording on which data
recovery functionalities can be built.

Because an LO in Cadmus can be striped on any subset of SSs and is managed by only
one FS, algorithms have to be developed to determine where to stripe an LO and when



118 Chapter 9. Conclusion

to migrate or replicate an LO to a different set of SSs in order to achieve load balancing
or to increase the number of streams that can be served from the LO. Also SSs may be
partitioned to store different types of LOs in order to reduce interference between RT and
NRT services.

The Cadmus architecture can also be used to support personalisation and mobile ap-
plications which may negotiate for different types of QoS most suited for the application
environment at different times. This can be achieved either by SCAs and CPs which un-
derstand the various types of QoS and process the requests similarly to VCR commands, or
by extra components that can filter the data from a Cadmus server. The data processing
pipe unit from Section 7.2.3 is a good candidate for the latter.

Finally, the weakness of this research is its assumption that the network is not the
bottleneck, which may not be true for a large scale video server. Further work is required
to consider AC and QoS enforcement in switched networks and to extend the Cadmus
architecture to reflect these considerations. Viable ways may be to include switches as one
of the types of physical entities and to add QoS aware logical components in the switches.



Appendix A

Proof of Theorems

This appendix gives proofs of the lemmas, theorems, and corollaries listed in Sec-
tion 5.4.1. For easy of reference, the smoothing algorithm from Section 5.3 is repeated
below.

A.1 The Smoothing Algorithm

input: D(c) ce[l,e]; r, h, M,CB;
output: R(c) ce€[0,e—1];

DW0)=D(-1)=R(-1)=B(-1)=0; SF=r+M,;

for (c=0;¢c<e-1;¢c++){
B(c) =R(c—1)+ B(c—1) — D(¢);
U(c) = CB - D(c) — B(c);
L(c) = D(c + 1) - B(c);
if L(c) > U(c) { algorithm failed; client needs more buffer; exit; }

@ else if B(c) > E?=1 D(c+1) R(c)=0; /* h-step look-ahead suppressor  */
® elseif 0 < SF < L(c) <U(e) R(c)= L(c); /* to prevent client starvation */
© elseif L(c) < SF <U(c) R(c) = SF; [* smoother *

@ elseif L(c) <U(c) < SF R(c) = U(c); /* to prevent client buffer overflow */

}

A.2 The Proofs

Theorem 1. The algorithm succeeds if and only if Ve € [0,e—1] CB > D(c)+ D(c+1).
Proof. Vece€[0,e—1] CB2>D(c)+D(c+1)

< Vce[0,e—1] CB-D(c)- B(c) > D(c)+ D(c+1) - D(c) - B(c)

= Vee[0,e—1] U(e) = L(c)

<> Vce([0,e—1] The algorithm will succeed.

119



120 Appendix A. Proof of Theorems

Corollary 1. The algorithm will succeed if and only if CB 2> V.

Proof. “+—": CB2>2V
= VYce[0,e—1 CB2V2D(c)+D(c+1)
= The algorithm will succeed by Theorem 1.
“—s”: Because Jc€ [0,e—1] D(c)+D(c+1)=V, thenif CB<V
=>3c€[0,e—1 CB<D(c)+D(c+1)
= The algorithm will fail by Theorem 1.
= If the algorithm will succeed, then CB > V.

O
Corollary 2. The algorithm will succeed if CB > 2% P.
Proof. CB2>2x%P
= CB2>V
= The algorithm will succeed by Corollary 1.
O

Theorem 2. Vc€[0,e—1] 0<B(c) <CB, 0<U(c) CB, 0L R(c) L U(c).

Proof. (i). Whenc=0
0<B(0)=0<CB
0<U(0)=CB<CB

If the (control) flow goes through branches @®©, then R(0) > 0; otherwise branch @
makes R(0) = U(0) > 0.

(ii). Assume for any c € [0,e = 2], 0 < B(c) <CB, 0<U(c) £CB, 0 < R(c). We
prove 0 < B(c+1)<CB, 0<U(c+1)<CB, 0< R(c+1) at cycle c+ 1 when the flow
goes though branches @ ®©@ in cycle c. The symbol c.@ represents that the flow goes
through branch at cycle ¢, and ¢.@ ® means the flow goes through either or B at
cycle c.

»c.@:
R(c) =0
= B(c+1) =R(c)+ B(c)— D(c+1)
= B(c)-D(c+1) < B(c) <CB
B(c) > Tk, D(c+i)
=> B(c) > D(c+1)
= B(c+1)=B(c) - D(c+1) >0
Therefore, 0 < B(c+1) < CB.
U(c+1) =CB-D(c+1)-(R(c) + B(c) - D(c+ 1))
= CB — R(c¢) — B(c)
= CB — B(c)
Because 0 < B(c) < CB, 0<U(c+1)<CB
At cycle ¢+ 1, if the flow goes through branches @ ® ©), then R(c+ 1) > 0; otherwise
branch @ makes R(c+1)=U(c+1) 2 0.
»c®:
R(c) = D(c+1) — B(c)
= B(c+1)=R(c)+ B(c) — D(c+1)=0
= 0< B(c+1)<CB



A.2. The Proofs 121

Ulc+1) =CB-D(c+1)—B(c+1)
=CB—-D(c+1)
=0< U(c+1) < CB -
This is because we assume the algorithm will always succeed, i.e., Vc € [0,e—1] CB >

D(c) + D(c+1). This condition will not be reiterated and will be assumed as default in
the following proofs.

At cycle ¢ + 1, if the flow goes through branches @ ® ©), then R(c + 1) > 0; otherwise
branch @ makes R(c+1) =U(c+1) >0.

»cO@:
R(c) <U(c) =CB-D(c)- B(c)
= B(c+1) =R(c)+ B(c)—D(c+1)
< CB—D(c) - B(c)+ B(c) — D(c+1)
=CB-D(c)—D(c+1) < CB
R(e) > L) =D(c+1)-B(c)
= B(c+1) =R(c)+ B(c) —D(c+1)
>L(c)+ B(c)—D(c+1)=0
Therefore, 0 < B(c+ 1) < CB.
B(c) 20 and R(c) >0
=>U(c+1)=CB - R(c) - B(c) <CB
R(c) <U(c) =CB-D(c)-B(c)
= U(c+1) =CB- R(c) - Blc)
>CB—-(CB-D(c)—B(c))—B(c)=D(c) >0
Therefore, 0 < U(c+ 1) < CB.

At cycle ¢ + 1, if the flow goes through branches @ ® ©), then R(c + 1) > 0; otherwise
branch @ makes R(c+1) =U(c+1) > 0.
At this point, we've proved Vc € [0,e—1] 0< B(c) <CB, 0<U(c) < CB, 0< R(c).
From the algorithm, it is easy to see in all branches either R(c) = 0 < U(c) or R(c) <
Uf(c). Therefore, Vc € [0,e —1] R(c) < U(c).
O
Lemma 1. Vc€ [0,e—1] if B(c) > " D(c+1i), then B(c)— h  D(c+1i) < SF.

Proof.  (i). When ¢ =0, B(O) =0<SF+ " DO +1)
= B(0) — 1D(o +i) < SF
whether B(0) > S D(0+4) or not.

(ii). Assume for any ¢ € [0,e—2], if B(c) > E  D(c+4), then B(c)—1, D(c+i) <
SF. We only need to prove when flow goes through branch @ at cycle ¢+ 1, i.e., when
Blc+1) >, D(c+1+1i), then B(c+1)— Y D(c+1+i) < SF.

However, at cycle ¢, the flow can go through @®©@@. In the following, the symbol c.@
—c+ 1.(® means the algorithm goes through branch in cycle ¢ and branch ® in the
next cycle.



122 Appendix A. Proof of Theorems

»c@—c+1.@:
R(c) =0 and B(c)— b D(c+i)<SF
—> Blc+1)- M, D(c+1+1)

—R(c)+B(c) Dc+1) -2 D(c+1+1)
= B(c) - Zm D(c+1i)—D(c+1+h)
<SF-D(c+1+h)<SF
»c.®—c+1.@:
B(c+1)=0
= Blc+1)-, Dlc+1+1)
=—3" D(c+1+4) <0< SF
»cO@—c+1.@:
R(c) < SF and B(c)<z,‘_1 (c+1)
— B(c+1) -, D(c+1+1)
= R(c) + B(c) — (c +1) =t D(c+1+4)
<S8F+B(c)-" D(c+i)—D(c+1+h) < SF

Lemma 2. Given l € [2,h], if Vce[0,e—1]

Be)- Y Dlc+i) < (h—1+1)+SF if B(c)>Y ", D(c+i)
Ble) - _,D(c+4) < (h—1)+SF if B(e) <M D(c+i).

then Vee[0,e—1] B(c) - izl D(c+14) < (h—1+1) * SF.

Proof. When c=0, B(0) =
—=B(0) -2 D0+4) <0< (h—1+1) SF

Then we only need to prove Ve € [0,e—1]  B(c+1)—Y 421 D(c+1+4i) < (h—1+1)*SF.

»c.@:
R(c) =
= B (c+1) -l Dlc+1+14)
=R(c) + B(c) = D(c+1) = 21 D(c+ 1 +14)
= B(c) - ¥i_, D(c +1)
(h—l+1) *.S’F
The last deduction is because of the condition in the lemma: given [ € [2,h], Vc €
[0,e—1] B(c)— Yt D(c+i)<(h—1+1)+SF if B(c)> X" D(c+i).
»c®:
B(c+1)=0
= Bc+1)-YID(ec+1+i) <0< (h—1+1)*SF
»cO@:
R(c) < SF
= B(c+1) - Z D(c+1+z)
—R(c)+B(c) c+1 S IDe+1+14)
<SF+B(c) — > ;1 D(c+1)
SSF+(h—l)*SF
=(h-1+1)%SF



A.2. The Proofs 123

The last deductlon is because of the condition in the lemma: given [ € [2,h], Vc €
[0,e—1] B(e)— i ,D{c+i) < (h—1)*SF if B(c) < Th  D(c+1).

O
Lemma 3. VI € [1,h] and Vce [0,e—1]
B(e)—Yi_ Dlc+4i) < (h—1+1)+SF if B(c) >, D(c+i)
B(c)— i1 D(c+i) < (h—1)x SF if B(c) <, D(c+i).
Proof.  (i). Whenl=h, by Lemma 1, Vc€ [0,e—1] if B(c)> ", D(c+1i),
then B(c) — ?= D(c+i) < SF = (h h+1)*SF.
Also Vce |0, e—l] if B(c)<z D(c+1),
then B(c) — X0, D(c+i) <0 = (h h) « SF.
Therefore, the proposition holds when I = h.
(i1). Assume for any ! € [2,h], Vc € [0,e — 1]
B(e)- Yt D(c+i) < (h—1+1)*SF if B(c) >, D(c+1)
B(c)— Yty D(c+i) < (h—1) » SF if B(c) <", D(c+i).
We only need to prove the proposition is true for  — 1, i.e.,, Vc € [0,e — 1]
B(e)-YiD(c+i) < (h—1+2)+SF if B(e)> P, D(c+1i)
Ble)-Y i iD(c+i) < (h—1+1)*SF if B(c) <M, D(c+i).
This is true because of Lemma 2.
O
Corollary 3. Vc € [0,e — 1]
B(c)—D(c+1) < h*SF if B(c)> Y D(c+1)
B(e)—D(c+1) < (h—1)+SF if B(c) <%, D(c+1).
Proof. In Lemma 3, let [ = 1.
O

Theorem 3. Vc€ [0,e—1] B(c) < hx*SF.
Proof. Whenc=0,B(0)=0<h=xSF.
Then we only need to prove Vce€[0,e—1] B(c+1) <h=x*SF.
»c.@:
R(c) =0, B(c)> ¥, D(c+1i), and Corollary 3
= B(c+1) =R(c)+B(c)-D(c+1)
=B(c)—D(c+1) < hx*SF
»c®:
Blc+1)=0<h*SF
»cO@:
R(c) < SF, B(c) < °* , D(c+1), and Corollary 3
=> B(c+1) = R(c)+ B(c) — D(c+1)

< SF + B(c) — D(c+1)
<SF+(h—1)+SF = h+SF



124 Appendix A. Proof of Theorems

Corollary 4. Yce [0,e — 1] 0< B(c) < min(CB,h* SF).
Proof. By Theorem 2 and Theorem 3.

Theorem 4. If CB > max((h+2)/(h+1)*P, V) and SF <CB/(h+2),
then Yce[0,e—1] R(c)=0 or R(c) > SF.

Proof. CB >V will guarantee the algorithm will not fail.

SF <CB/(h+2)
= hxSF<(h+2)«xSFLCB
=> h * SF is a closer upper bound for B(c) than CB is when SF < CB/(h +2).

If branch @ in the algorithm is never executed, then V¢ € [0,e —1] R(c) =0 or
R(c) > SF. Ifin cycle ¢, U(c) > SF, then the flow will not go through branch @. We will
prove under the conditions in the Theorem, Vc € [0,e—1] Ul(c) > SF.

(i). When ¢ =0, SF < CB/(h+2) < CB = U(0)

(ii). Assume for any cycle ¢ € [0,e — 2], U(c) > SF, i.e., flow goes through branches
® ©. We prove in each case, U(c+ 1) > SF.
»c.@:
R(c) =0 and Theorem 3
= U(c+1) =CB-R(c)- Blc)
= CB - B(c)
>CB—-hxSF
> CB - h+CB/(h+2)
=2/(h+2)*CB
>CB/(h+2) 2 SF
»c®:
R(c) = D(c+1) — B(c)
=> B(c+1) =R(c)+B(c)—D(c+1)=0
= U(c+1) =CB-D(c+1)—B(c+1)
=CB—-D(c+1)
>CB-P
>CB—-(h+1)/(h+2)+xCB
=CB/(h+2) > SF
»c.©:
R(c) = SF and Theorem 3
= U{c+1) =CB - R(c) - B(c)
=CB - SF - B(c)
>CB—-SF—hxSF
=CB-(h+1)*SF
>CB— (h+1)*CB/(h+2)
=CB/(h+2)>SF

Corollary 5. For X >0, if CB>max((h+2)/(h+1)*P, V, (h+2)*X)
then 3SF > X, such that Yce[0,e—1] R(c)=0 or R(c) > SF.

Proof. In Theorem 4, let SF = CB/(h+2) > X.



A.2. The Proofs 125

Corollary 6. If CB=2xP and SF<CB/(h+2)=2/(h+2)*P,
then Vce[0,e—1] R(c)=0 or R(c) > SF.

Proof. As CB =2xP > max((h+2)/(h+1)*P, V), Theorem 4 will make the proposition
true.

O

Corollary 7. If CB=2xP =2%k*xM and r<2+k/(h+2),
then Vce[0,e—1] R(c)=0 or R(c)>rx*M.

Proof. In Corollary 6, let SF =1+ M.



Appendix B

Contract Summary

This appendix summarises the set of contracts introduced in Chapter 6. They are
assumed by the AC criteria but should be implemented by QoS enforcement in an SS. C-i
refers to contract number 3.

C-1 Reserve fixed amount of resources for NRT receive.
C-2 Regulate receive activities in each cycle.
C-3 Receive activities have the highest priority.

C-4 Disk and network send activities (not including late arriving NRT activities) are
known at the start of a cycle.

C-5 Use FCFS scheduling for disk and network send activities.

C-6 Pure CPU processing has a lower priority than device related activities.
C-7 RT pure CPU processing has a higher priority than the NRT one.

C-8 Disk transfer has a higher priority than network send.

C-9 Either Condition (6.7) or Condition (6.8) should be true or made true.
C-10 Use a dual K-buffer for all RT playback requests.

C-11 Use a fixed dual-buffer for recording each stream.

C-12 Reduce the cleverness of a disk device.

C-13 Cycle over_Ioad processing in case of disk anomalies.

C-14 Maintain an extent-list for each PO.

C-15 SCAN disk scheduling.

C-16 Detect and record zone information for ZBR disks.

C-17 Maintain a cycle table to record resource usage in each cycle.

C-18 NRT requests should be subject to run-time AC.

127



128 Appendix B. Contract Summary

C-19 Three-level AC for NRT requests.
C-20 Measure the actual resource usage in the current cycle.
C-21 Process unfinished NRT requests according to their natures during cycle overload.

C-22 Regulate disk' and network send activities to prevent pure CPU processing from
starvation.

C-23 Re-activate receive activities after they have been disabled and when conditions
allow.



Appendix C

Implementation Interfaces

This appendix lists the major interfaces with their important methods used in the
Cadmus prototype implementation. Both interface and system defined type names start
with capital letters. Exception handling and some type definitions are omitted for clarity
reasons. The interfaces are written in CORBA IDL.

C.1 Some Basic Types

struct LoAttribute {
Loid loid;
PoidList poidList;
boolean isPrimary; // Primary or backup.

Loid replicaloid;

long sus; // Striping unit size.

long n; // Number of SSs the LO is striped over.
long d; // Declustering degree.

long length;

long type; // Directory/meta-data/CM or non-CM data.

// The following two are only valid for a CM data object.
boolean isVbr; // VBR or CBR.
long P; // Maximal number of displayed striping units.

- // Other attributes.
};

»

typedef LoAttribute FsAttribute;

129



130 Appendix C. Implementation Interfaces

struct PoAttribute {

Poid poid;

long sus; // Striping unit size.

long length;

long type;

cee // Other attributes.
};

struct TransportAttribute {
// Requirements on the communication channel.

};

interface FaultNotify {
void ssLost(in Ssid lostSsid);
void ssRecovered(in Ssid recoveredSsid)

};

C.2 Port and Connection

interface Port {
void setTransportAttribute(in TransportAttribute attr);
TransportAttribute getTransportiAttribute();

void setAddress(in PortAddress addr);
PortAddress getAddress();
};

interface SourcePort : Port {
void connect{(in PortAddress addr);
};

interface SinkPort : Port {
void listen();

};

typedef sequence<SourcePort> SourcePortList;
typedef sequence<SinkPort> SinkPortList;

/* */

interface Connection { '
void setTransportAttribute(in TransportAttribute attr);
TransportAttribute getTransportAttribute();

void setSourcePort(in SourcePort port);
void setSinkPort(in SinkPort port);
void connect(); // Connect source and sink ports.



C.3. Client Part 131

C.3 Client Part

interface Cp : FaultNotify {
// The CP is responsible for maintaining the LO attributes.
void updateLoAttribute();
LoAttribute getLoAttribute();

};

interface RtCp : Cp {
void start();
void stop();

};

interface SourceRtCp : RtCp {
SourcePortList getSourcePortList();
};

interface SinkRtCp : RtCp {
SinkPortList getSinkPortList();

// The sink RT-CP uses the read set to anticipate VBR data arrivals.
void setReadSet(in ReadSet readSet);

// Other VCR commands.
};

interface NrtCp : Cp {
SinkPortList getSinkPortList();

// The startPosition is relative to the start of the LO.
long receiveData(in long startPosition, in long length,
in boolean fromPrimary);
long sendData(in long startPosition, in long length,
in boolean toPrimary);

// An NRT-LO is implemented by its associated NRT-CP.
NrtLo openNrtLo(in LoAttribute attr, in long mode);
void closeNrtLo(in NrtLo lo);

};

C.4 Point, Unit, and Unit Factory

interface Point {
void start();
void stop();

};



132 Appendix C. Implementation Interfaces

interface SourcePoint : Point {};
interface SinkPoint : Point {};

interface CameraEndSourcePoint : SourcePoint {};

interface TileEndSinkPoint : SinkPoint {};
interface XEndSinkPoint : SinkPoint {};
interface FileEndSourcePoint : SourcePoint {};
interface FileEndSinkPoint : SinkPoint {};

interface NetSourcePoint : SourcePoint {
SourcePort getSourcePort();
};

interface NetSinkPoint : SinkPoint {

SinkPort getSinkPort();
};

/* */

interface Unit { :
LoAttribute getLoAttribute();

void start();
void stop();
};

interface UnitWithRtCp : Unit {
SourceRtCp getSourceRtCp();
SinkRtCp getSinkRtCp();

};

interface UnitWithNrtCp : Unit {
NrtCp getNrtCp();
};

interface UnitWithNetPoint : Unit {
NetSourcePoint getNetSourcePoint();
NetSinkPoint getNetSinkPoint();

};

interface CameraSourceUnit : UnitWithRtCp {};
interface TileSinkUnit : UnitWithRtCp {};
interface XSinkUnit’ : UnitWithRtCp {};

interface FileSourceUnit : UnitWithNrtCp {};
interface FileSinkUnit : UnitWithNrtCp {};

interface NetPipeUnit : UnitWithNetPoint {};

/* */




C.5. Physical Object and Storage Server 133

interface UnitFactory {
CameraSourceUnit openCameraSourceUnit(in Camera camera, in Loid loid);
void closeCameraSourceUnit(in CameraSourceUnit unit);

TileSinkUnit openTileSinkUnit(in Loid loid, in Tile tile);
void closeTileSinkUnit(in TileSinkUnit unit);

XSinkUnit openXSinkUnit(in Loid loid, in XDisplay xDisplay);
void closeXSinkUnit(in XSinkUnit unit);

FileSourceUnit openFileSourceUnit(in File file, in Loid loid);
void closeFileSourceUnit(in FileSourceUnit unit);

FileSinkUnit openFileSinkUnit(in Loid loid, in File file);
void closeFileSinkUnit(in FileSinkUnit unit);

NetPipeUnit openNetPipeUnit(in Loid loid);
void closeNetPipeUnit(in NetPipeUnit unit);
};

C.5 Physical Object and Storage Server

interface Po {
PoAttribute getPoAttribute();
Y

interface RtPo : Po {
boolean commit(in long startSecond);

void start();
void stop();
};

interface PlayRtPo : RtPo {
StartSet admit(in ReadTable readTable);

SourcePort getSourcePort();

};

interface RecordRtPo : RtPo {
// CBR and VBR recording are treated differently.
StartSet admit(in LoAttribute attr);

SinkPort getSinkPort();
};



134 Appendix C. Implementation Interfaces

interface NrtPo : Po {
SourcePort getSourcePort();

// The startPosition is relative to the start of the PO.
long sendData(in long startPosition, in long length,
in boolean fromPrimary);
long receiveData(in long startPosition, in long length,
in boolean toPrimary);

};

/*

interface Ss : FaultNotify {
PoAttribute getPoAttribute(in Poid poid);

Poid createPo(in PoRequirement requirement);
void erasePo(in Poid poid);

PlayRtPo openPlayRtPo(in Poid primaryPoid, in Poid backupPoid);
void closePlayRtPo(in PlayRtPo po);

RecordRtPo openRecordRtPo(in Poid primaryPoid, in Poid backupPoid) ;
void closeRecordRtPo(in RecordRtPo po);

NrtPo openNrtPo(in Poid primaryPoid, in Poid backupPoid, in long mode) ;
void closeNrtPo(in NrtPo po);

};

C.6 Logical Object and Stream Control Agent

interface Lo : FaultNotify {
LoAttribute getLoAttribute();
};

interface RtLo : Lo {
StartSet admit();
boolean commit(in long startSecond);

void start();
void stop();
};

interface PlayRtLo : RtLo {
// Dther VCR commands.
};

interface RecordRtLo : RtLo {};

*/



C.7. File Server and Stream Control Factory

135

interface Nrtlo : Lo {

};

/*

// The startPosition is relative to the start of the LO.
long readData(in long startPosition, in long length);
long writeData(in long startPosition, in long length);

typedef RtLo Sca;
typedef PlayRtLo PlaySca;
typedef RecordRtLo RecordSca;

C

.7 File Server and Stream Control Factory

interface Fs : FaultNotify {

};

/*

void setFsAttribute(in FsAttribute attr);
FsAttribute getFsAttribute();

void setLoAttribute(in LoAttribute attr);
LoAttribute getLoAttribute(in Loid loid);

LoAttribute createLo(in LoRequirement requirement);
void eraseLo(in Loid loid);

// The FS will get the SCA implementation reference from an SCF.
PlaySca openPlayRtLo(in Loid loid, in Loid indexLoid, in SinkRtCp cp);

void closePlayRtLo(in PlaySca sca);

RecordSca openRecordRtLo(in Loid loid, in SourceRtCp cp);
void closeRecordRtLo(in RecordSca sca);

// The FS will get the NRT-LO implementation reference from the NRT-CP.

NrtLo openNrtLo(in Loid loid, in long mode, in NrtCp cp);
void closeNrtLo(in NrtLo lo);

interface Scf : FaultNotify {

};

PlaySca openPlaySca(in LoAttribute attr, in LoAttribute indexAttr,

in SinkRtCp cp);
void closePlaySca(in PlaySca sca);

RecordSca openRecordSca(in LoAttribute attr, in SourceRtCp cp);

void closeRecordSca(in RecordSca sca);

*/



[Abbott90]

[Addlesee95]

[Anderson92]

Bibliography

R. K. Abbott and H. Garcia-Molina. Scheduling I/0 Requests with Dead-
lines: a Performance Evaluation. In IEEE Real-Time Systems Symp.,
1990. (p19)

M. Addlesee. Programmers Model for the XSI Profiler Board Version 1.0.
Olivetti Research Ltd., Nov 1995. (p89)

D. P. Anderson, Y. Osawa, and R. Govindan. A File System for Continu-
ous Media. ACM Trans. on Computer Systems, 11(4), Nov. 1992. (p20)

[Anderson95a] T. E. Anderson, D. E. Culler, and D. A. Patterson. A Case for NOW

(Networks of Workstations). IEEE Micro, 15(1), Feb 1995. (p27)

[Anderson95b] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli,

[ANSI94]

[Asai95]

[Audsley90]

[Bach86]

[Bacon93]

[Baker88]

[Baker90]

[Barham96)

and R. Y. Wang. Serverless Network File Systems. In Proc. 15th ACM
SOSP, CO, USA, Dec 1995. (p27)

X3T11/Project 960D/Rev 4.4. Working Draft Proposal, ANSI, Oct 1994.
(p12)

M. Asaj, K. Shibata, M. Igawa, Y. Kim, Sato M, and Y. Takiya.su. Es-
sential Factors for Full-Interactive VOD Server: Video File System, Disk
Scheduling, Network. In IEEE GLOBECOM'95, 1995. (pp 22, 66)

N. Audsley and A. Burns. Real-time System Scheduling. Technical Report,
Department of Computer Science, University of York, U.K., 1990. (p16)

M. J. Bach. The Design of the UNIX Operating System. Prentice-Hall,
1986. (p14)

J. Bacon. Concurrent Systems: An Integrated Approach to Operating Sys-
tems, Database, and Distributed Systems. Addison-Wesley, 1993. (p15)

T. P. Baker and A. Shaw. The Cyclic Ezecutive Model and Ada. In IEEE
Real-Time Systems Symp., 1988. (p 16)

T. P. Baker. A Stack-Based Resource Allocation Policy for Realtime Pro-
cesses. In IEEE Real-Time Systems Symp., 1990. (p16)

P. R. Barham. Devices in a Multi-Service Operating System. Technical
Report 403, Computer Laboratory, University of. Cambridge, Oct 1996.
(pp 17, 19)

137



138

Bibliography

[Barnsley88]

[Baruah91]

[Berdahl95]

[Bershad94]

[Berson95]

[Birrell84]

[Black95]

[Bolosky96]

[Boxer95]

[Bryan94]
[Buddhikot95]

[Cabrera91]

[Chaney95]

[Chang94a]

[Chang94b]

M. F. Barnsley and A. E. Jacquin. Application of recurrent iterated func-
tion systems to images. In Visual Communications and Image Processing,
volume 1001, pages 122-131. SPIE, 1988. (p7)

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, D. Shasha, and
F. Wang. On the Competitiveness of On-Line Real-Time Task Scheduling.
IEEE Real-Time Systems Symp., 1991. (p16)

L. Berdahl. Parallel Transport Protocol Proposal. Draft Proposal,
Lawrence Livermore National Laboratory, USA, Jan 1995. (p26)

B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee,
P. Pardyak, S. Savage, and E. G. Sirer. SPIN — An Eztensible Microker-
nel for Application-specific Operating System Services. Technical Report
94-03-03, Dept. Computer Science and Engineering, University of Wash-
ington, Seattle, WA 98195, USA, Feb 1994. (p17)

S. Berson, L. Golubchik, and R. R. Muntz. Fault Tolerant Design of
Multimedia Servers. In ACM SIGMOD, San Jose, CA, USA, 1995. (p23)

A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls.
ACM Trans. on Computer Systems, 2(1):39-59, Feb. 1984. (p13)

R. J. Black. Ezplicit Network Scheduling. PhD dissertation, University of
Cambridge, Computer Laboratory, April 1995. (p17)

W. J. Bolosky, J. S. Barrera, R. P. Draves, R. P. Fitzgerald, G. A. Gibson,
M. B. Jones, S. P. Levi, N. P. Myhrvold, and R. F. Rashid. The Tiger
Video Fileserver. In Proc. NOSSDAV'96, Zushi, Japan, Apr 1996. (p31)

A. Boxer. Where Buses Cannot Go. IEEE Spectrum, Feb 1995. (pp11,
32)

J. Bryan. Fibre Channel Speeds Up. Byte, Aug. 1994. (p12)

M. M. Buddhikot and G. M. Parulkar. Efficient Data Layout, Scheduling
and Playout Control in MARS. In NOSSDAV'95, Durham, NH, US, April
1995. (p29)

L. F. Cabrera and D. D. E. Long. Swift: Using Distributed Disk Striping
to Provide High I/O Data Rates. Computing Systems, 4(4), Fall 1991.
(p24)

A. J. Chaney, L. D. Wilson, and A. Hopper. The Design and Implementa-
tion of a RAID-8 Multimedia File Server. In NOSSDAV’95, Durham, NH,
US, April 1995. (pp33, 89)

E. Chang and A. Zakhor. Admissions Control and Data Placement for
VBR Video Servers. In 1st IEEE Intl. Conf. on Imaging Processing,
Austin, TX, USA, Nov 1994. (pp 22, 66)

E. Chang and A. Zakhor. Variable Bit Rate MPEG Video Storage on
Parallel Disk Arrays. In 1st Intl. Workshop Community Networking Inte-
grated Multimedia Services to the Home, San Francisco, CA, USA, July
1994. (p22)



Bibliography

139

[Chang96]

[Chen93]

[Chen94a]

[Chen94b]

[Chen95]

[Chen96]

[Cheng88]

[Chervenak95]

[Chiang96]

[Clark90]

[Clark92]

[Copeland89]

[CORBAS91]

[CORBAS4]

E. Chang and A. Zakhor. Cost Analysis for VBR Video Servers. In Pro-
ceedings of Multimedia Computing and Networking (MMCN), San Jose,
CA, USA, Jan 1996. (pp21,22)

H. J. Chen and T. D. C. Little. Physical Storage Organizations for Time-
Dependent Multimedia Data. In 4th International Conference on Founda-
tions of Data Organization and Algorithms, Evanston, IL, U.S., Oct. 1993.
(p21)

M. S. Chen, D. D. Kandlur, and P. S. Yu. Support for Fully Interactive
Playout in a Disk-Array-Based Video Server. In ACM Multimedia’94, San
Francisco, CA, USA, Oct 1994. (p86)

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-Performance, Reliable Secondary Storage. ACM Computing
Surveys, 26(2), June 1994. (pp9, 10)

M. S. Chen, H. L. Hsiao, C. S. Li, and P. S. Yu. Using Rotational Mirrored
Declustering for Replica Placement in a Disk-Array-Based Video Server.
In ACM Multimedia, San Francisco, CA, USA, Nov 1995. (p23)

S. Chen and M. Thapar. I/O Channel and Real-Time Disk Scheduling for
Video Servers. In Proc. NOSSDAV’96, Zushi, Japan, Apr 1996. (pp 20,
22, 32)

S. C. Cheng, J. A. Stankovic, and K. Ramamritham. Scheduling Algo-
rithms for Hard Real-Time Systems — A Brief Survey. In J. A. Stankovic
and K. Ramamritham, editors, Tutorial: Hard Real-Time Systems. Com-
puter Society Press, 1988. (p16)

A. L. Chervenak, D. A. Patterson, and R. H. Katz. Choosing the Best
Storage System for Video Service. In ACM Multimedia 95, San Francisco,
CA, USA, Nov 1995. (p11)

H. S. Chiang. Time Synchronisation on ATM Network. Olivetti Research
Ltd. Internal Talk, 1996. (p89)

R. K. Clark. Scheduling Dependent Real-Time Activities. PhD disserta-
tion, Carnegie Mellon University, School of Computer Science, Aug 1990.
(p17)

R. K. Clark, E. D. Jensen, and F. D. Reynolds. An Architectural Overview
of the Alpha Real-Time Distributed Kernel. In USENIX Workshop on Mi-
crokernel and Other Kernel Architectures, Seattle, US, April 1992. (p17)

G. Copeland and T. Keller. A Comparison of High-Availability Media
Recovery Technigues. In ACM SIGMOD, Portland, Oregon, USA, June
1989. (p23)

The Common Object Request Broker: Architecture and Specification. Re-
vision 1.1 Draft 10 OMG Document Number 91.12.1, Dec 1991. (p13)

The Common Object Request Broker: Architecture and Specification. Re-
vision 2.0, Object Management Group, Dec 1994. (p13)



140 Bibliography

[Cornhill87] D. Cornhill and S. Sha. Priority Inversion in Ada. Ada Letters, Nov 1987,
(p 16)

[Dey94] J. Dey, C. S. Shih, and M. Kumar. Storage Subsystem Design in a Large
Multimedia Server for High-Speed Network Environments. In IS&T/SPIE
Symp. Electronic Imaging Science and Technology, volume 2188, San Jose,
CA, USA, Feb 1994. (pp22, 66)

[Engler94] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole Jr. The Operating
System Kernel as a Secure Programmable Machine. In Proc. 6th SIGOPS
European Workshop, 1994. (p17)

[Engler95] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole Jr. Exokernel: An Op-
erating System Architecture for Application-Level Resource Management.
In Proc. 15th SOSP, Dec 1995. (p17)

[Feng95] W. C. Feng and S. Sechrest. Smoothing and Buffering for Delivery of
Prerecorded Compressed Video. In IS&T/SPIE Proc. of Multimedia Com-
- puting and Networking (MMCN), volume 2417, San Jose, CA, USA, Feb

1995. (p66)

[Finkel88] R. A. Finkel. An Operating Systems Vade Mecum. Prentice Hall, Inc., 2nd
edition, 1988. (p70)

[Fisher95] Y. Fisher. Fractal Image Compression: Theory end Application. Springer
Verlag, New York, 1995. (p7)

[Freedman94] C. S. Freedman and D. J. DeWitt. SPIFFI — A Scalable Parallel File Sys-
tem for the Intel Paragon. Technical Report, Computer Science Depart-
ment, University of Wisconsin, Madison, WI 53706, USA, 1994. (p29)

[Freedman95] C. S. Freedman and D. J. DeWitt. The SPIFFI Scalable Video-on-Demand
System. In SIGMOD’95, San Jose, CA, USA, 1995. ACM. (p29)

[Gall91] D. Le Gall. MPEG: A Video Compression Standard for Multimedia Ap-
plications. Commun. of the ACM, 34(4), Apr. 1991. (p5)

[Garrison94] R. Garrison. Reference Model for Open Storage Systems Interconnection:
Mass Storage Reference Model Version 5. IEEE Storage System Standards
Working Group (Project 1244), Sept 1994.  (p26)

[Ghandeharizadeh95] S. Ghandeharizadeh, S. H. Kim, and C. Shahabi. On Configuring
a Single Disk Continuous Media Server. In SIGMETRICS’95, Ottawa,
Ontario, Canada, 1995. ACM. (p21)

[Gilmurray95] D. Gilmurray. OmniORBI1.0 — Distributed Object Computing for ATMos.
Technical Report, Olivetti Research Ltd., May 1995. (p89)

[Gopinath89] P. Gopinath and K. Schwan. CHAOS: Why One Cannot Have Only An
Operating System for Real-Time Applications. ACM Operating Systems
Rev., 23(3), July 1989. (p17)

[Grochowski96] E. G. Grochowski and R. F. Hoyt. Future Trends in Hard Disk Drives.
IEEE Trans. on Magnetics, May 1996. (p11)



Bibliography

141

[Haritsa91]

[Hartman95]
[Hennessy90]

[Heybey96]
[Hilton94)
[Hopkins94]

[Howard88]

[Hsiao90]
[Hyden94]

[Ibbett89)

[ISO/IEC93a]
[ISO/IEC93b]
[Jardetzky92]

[Jardetzky95]

J. R. Haritsa, M. Livny, and M. J. Carey. Earliest Deadline Scheduling for
Real-Time Database Systems. In IEEE Real-Time Systems Symp., 1991.
(p 20) '

J. H. Hartman and J. K. Ousterhout. The Zebra Striped Network File
System. ACM Trans. on Computer Systems, 13(3), Aug 1995. (p25)

J. L. Hennessy and D. A, Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, Inc., 1990. (p10)

S. Heybey, M. Sullivan, and P. England. Calliope: A Distributed, Scalable
Multimedia Server. In USENIX Technical Conference, San Diego, CA,
USA, Jan 1996. (p86)

M. L. Hilton, B. D. Jawerth, and A. Sengupta. Compressing Still and
Moving Images with Wavelets. Multimedia Systems, 2:218-227, Dec 1994.

(p7)

R. Hopkins. Digital Terrestrial HDTV for North America: The Grand
Alliance HDTV System. IEEE Trans. on Consumer Electronics, 40(3),
Aug 1994. (p6)

J. H. Howard, M. J. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West. Scale and Performance
in a Distributed File System. ACM Trans. Computer Systems, 6(1), Feb
1988. (pp13,27)

H. I. Hsiao and D. J. DeWitt. Chained Declustering: A New Availability
Strategy for Multiprocessor Database Machines. In Proc. 6th Intl. Conf.
Data Engineering (ICDE), 1990. (p23)

E. A. Hyden. Operating System Support for Quality of Service. PhD
dissertation, Computer Laboratory, University of Cambridge, June 1994.
Technical Report No. 340. (p5)

R. N. Ibbett and N. P. Topham. Architecture of High Performance Com-
puters, volume II. Macmillan Education Ltd., 1989. (p11)

ISO/IEC 11172-1/2/3: Information technology — Coding of moving pic-
tures and associated audio for digital storage media at up to about 1.5
Mbit/s — Part 1/2/3: systems/video/audio, Aug 1993. (p6)

Working Document for ISO/IEC 13818-1/2/3: Information technology —
Generic coding of moving pictures and associated audio information — Part
1/2/3: systems/video/audio, Nov 1993. (p6)

P. W. Jardetzky. Network File Server Design for Continuous Media. PhD
dissertation, University of Cambridge, Computer Laboratory, Oct. 1992.
Technical Report No. 268. (pp22, 27)

P. W. Jardetzky, C. J. Sreenan, and R. M. Needham. Storage and Synchro-
nization for Distributed Continuous Media. Multimedia Systems, 3:151-
161, 1995. (p22)



142

Bibliography

[Jensen94]

[Katz92]
[Katzman78]

[Kopetz89]

[Koren92]

[Kung92]

[Lamport89]

[Lau95]

[Laursen94]

[Laursen95]
[Lawlor81]
[Lee95]
[Lee96]

[Lehoczky89]

[Leslie96]

[Levin75]

E. D. Jensen. Asynchronous Decentralized Realtime Computer System.
In W. A. Halang and A. D. Stoyenko, editors, Real Time Computing.
Springer-Verlag, 1994. (p16)

R. H. Katz. High-Performance Network and Channel Based Storage. Pro-
ceedings of the IEEE, 80(8), Aug. 1992. (p11)

J. A. Katzman. A Fault-Tolerant Computing System. In Proc. 11th Hawaii
Conf. on System Sciences, Jan 1978. (p23)

H. Kopetz, A. Damm, C. Koza, and M. Mulozzani. Distributed Fauli
Tolerant Real-Time Systems: The Mars Approach. IEEE Micro, pages
25-41, 1989. (p17)

G. Koren and D. Shasha. Dover: An Optimal On-Line Scheduling Al-
gorithm for Querload Real-Time Systems. In IEEE Real-Time Systems
Symp., 1992. (p16)

H. T. Kung. Gigabit Local Area Networks: A Systems Perspective. IEEE
Commun. Mag., April 1992. (p12)

L. Lamport. The Part-Time Parliament. Technical Report 49, DEC Sys-
tems Research Center, 130 Lytton Ave. Palo Alto, CA 94301-1044, USA,
Sept 1989. (p28)

S. W. Lau and J. C. S. Liu. A Novel Video-On-Demand Storage Architec-
ture for Supporting Constant Frame Rate with Variable Bit Rate Retrieval.
In NOSSDAV’95, Durham, NH, US, April 1995. (p22)

A. Laursen, J. Olkin, and M. Porter. Oracle Media Server: Providing Con-
sumer Based Interactive Access to Multimedia Data. In ACM SIGMOD
Conference, Minneapolis, MN, U.S., May 1994. (p32)

A. Laursen, J. Olkin, and M. Porter. Oracle Media Server Framework. In
IEEE Compcon, Spring, San Francisco, CA, USA, Mar 1995. (p32)

F. D. Lawlor. Efficient Mass Storage Parity Recovery Mechanism. IBM
Technical Disclosure Bulletin, 24(2):986-987, July 1981. (p9)

E. K. Lee. Highly-Available, Scalable Network Storage. In IEEE Compcon,
Spring, San Francisco, CA, USA, Mar 1995. (p23)

E. K. Lee and C. A. Thekkath. Petal: Disiributed Virtual Disks. In
ASPLOS VII, MA, USA, Oct 1996. ACM. (p27)

J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Al-
gorithm: Ezact Characterization and Average Case Behavior. In IEEE
Real-Time Systems Symp., 1989. (p16)

I. Leslie, D. McAuley, R. Black, and T. Roscoe. The Design and Im-
plementation of an Operating System to Support Distributed Multimedia
Applications. IEEE J. Selected Areas Communi., Sept 1996. (p17)

R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Pol-
icy/Mechanism Separation in Hydre. In Proc. 5th Symp. SOSP. ACM,
1975. (p70)



Bibliography

143

[Liou91]

[Liu73]

[Lo94]

[Locke86]

[Long94]

[Lougher92]

[Lougher93]

[Lougher96]

[McAuley90]

[McKeown96)

[McManus95]

[McManus96]

[Meter96)

[Mills94]

[Natarajan95]

M. Liou. Overview of the pz64kbit/s Video Coding Standard. Commun. of
the ACM, 34(4), Apr. 1991. (p5)

C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. Journal of the ACM, 20(1), Jan. 1973.
(p16)

S. L. Lo. A Modular and Ezxtensible Network Storage Architecture. PhD
dissertation, University of Cambridge, Computer Laboratory, Jan. 1994.
Technical Report No. 326. (pp 15, 42, 48)

C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD
dissertation, Carnegie Mellon University, 1986. CMU-CS-86-134. (pp 16,
20)

D. D. E. Long, B. R. Montague, and L. F. Cabrera. Swift/RAID: A Dis-
tributed RAID System. Computing Systems, 7(3), Summer 1994. (p24)

P. Lougher and D. Shepherd. The Design and Implementation of a Contin-
uous Media Storage Server. In Proc. 3rd Network and Operating Systems
Support for Digital Audio and Video, pages 70-80, La Jolla, California,
U.S.A., Nov. 1992. Springer-Verlag. (pp19, 20, 22)

P. Lougher and D. Shepherd. The Design of a Storage Server for Contin-
uous Media. The Computer Journal, 36(1), 1993. (p21)

P. Lougher, R. Lougher, D. Shepherd, and D. Pegler. A Scalable Hierar-
chical Video Storage Architecture. In Proc. Multimedia Computing and
Networking, San Jose, CA, USA, Jan 1996. (pp13, 30)

D. R. McAuley. Protocol Design for High Speed Networks. PhD disserta-
tion, University of Cambridge, Computer Laboratory, Jan. 1990. Technical
Report No. 186. (p89)

N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz.
The Tiny Tera: A PAcket Switch Core. Technical Report, Dept. Electrical

Engineering and Computer Science, Stanford University, Stanford, CA
94305-4070, USA, 1996. (p12)

J. M. McManus and K. W. Ross. Prerecorded VBR Sources in ATM Net-
works: Piecewise-Constant-Rate Transmission and Transport. Technical

Report, Dept. of Systems Engineering, Univ. of Pennsylvania, Philadel-
phia, PA, 19104, USA, Sept 1995. (p66)

J. M. McManus and K. W. Ross. Video on Demand over ATM: Constant-
Rate Transmission and Transport. In IEEE INFOCOM’96, Mar 1996.
(p 66)

R. V. Meter. A Brief Survey of Current Work on Network Attached Pe-
ripherals. ACM OSR, 30(1), Jan 1996. (p26)

D. L. Mills. Improved Algorithms for Synchronizing Computer Network
Clocks. In ACM SIGCOMM’94, London, UK, Sept 1994. (p90)

K. Natarajan. Video Servers Take Root. IEEE Spectrum, April 1995.
(p32)



144

Bibliography

[Needham92]

[Nelson88]

[Nelson95]

[Neufeld96a)

[Neufeld96b]

[OMA90]

[OSFo1]

R. Needham and A. Nakamura. An Approach to Real-Time Scheduling
- but is it Really a Problem for Multimedia? In Proc. 3rd Network and

Operating Systems Support for Digital Audio and Video, pages 32-39, La
Jolla, CA, U.S.A., Nov. 1992. Springer-Verlag. (p70)

M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite Network
File System. ACM Trans. on Computer Systems, 6(1), Feb 1988. (p27)

M. N. Nelson, M. Linton, and S. Owicki. A Highly Available, Scalable ITV
System. In Proc. 15th ACM SOSP, CO, USA, Dec 1995. (p32)

G. Neufeld, D. Makaroff, and N. Hutchinson. Design of a Variable Bit Rate
Continuous Media File Server. In Proceedings of Multimedia Computing
and Networking (MMCN), San Jose, CA, USA, Jan 1996. (pp 22, 66)

G. Neufeld, D. Makaroff, and N. Hutchinson. Server Based Flow Control
in a Distributed Continuous Media Server. In Proc. NOSSDAV’96, Zushi,
Japan, Apr 1996. (p66)

Object Management Architecture (OMA) Guide. Object Management
Group (OMA), 1990. (p13)

Introduction to OSF DCE. Open Software Foundation, Dec 1991. (p13)

[Ousterhout89] J. Ousterhout and F. Douglis. Beating the I/O Bottleneck: A Case for

[Oyang95]

[Ozden96a]

[Ozden96b)

[Patterson88]

[Pearson94]

[Pegler97]

[Petajan95]

Log-Structured File Systems. ACM Operating Systems Review, 23(1), Jan.
1989. (p14)

Y. J. Oyang, M. H. Lee, C. H. Wen, and C. Y. Cheng. Design of Multimedia
Storage System for On-Demand Playback. In Proc. 11th Intl. Conf. on Data
Engineering (ICDE’95), 1995. (p44)

B. Ozden, R. Rastogi, P. Shenoy, and A. Silberschatz. Fault-tolerant Archi-
tectures for Continuous Media Servers. In SIGMOD’96, Montreal, Canada,
June 1996. ACM. (p23)

B. Ozden, R. Rastogi, and A. Silberschatz. On the Design of a Low-Cost
Video-on-Demand Storage System. Multimedia Systems, 4:40-54, 1996.
(p21)

D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays
of Inezpensive Disks (RAID). In ACM SIGMOD, Chicago, IL, 1988. (pp9,
10) .

D. Pearson. Multi-Media Client-Server Systems. Presented in the 4th In-
ternational EDBT Conference, St. Johns College, Cambridge, U.K., Mar.
1994. (p32)

D. Pegler, N. Yeadon, D. Hutchison, and D. Shepherd. Incorporating Scal-
ability into Networked Multimedia Storage System. In Proc. Multimedia
Computing and Networking, San Jose, CA, USA, Jan 1997. (pp13, 30)

E. Petajan. The HDTV Grand Alliance System. Proc. of the IEEE, 83(7),
July 1995. (p6)



Bibliography 145

[Press88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in C. Cambridge University Press, 1988. (p110)

[Prycker93] M. De Prycker. Asynchronous Transfer Mode: Solution for Broadband
ISDN. Ellis Horwood Ltd., second edition, 1993. (p12)

[Pthreads93] IEEE. Draft Standard for Information Technology — Portable Operating
. System Interface (POSIX) — Part 1: System Application Program Inter-
face (API) — Amendment 2: Threads Eztension [C Language], Apr 1993.

P1003.4a Draft 7. (p89)

[Ramakrishnan93] K. K. Ramakrishnan. Performance Considerations in Designing Net-
work Interface. IEEE JSAC, 11(2), Feb 1993. (p71)

[Ramakrishnan95] K. K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting,
P. Tzelnic, S. Glaser, and W. Duso. Operating System Support for a Video-
on-Demand File Service. Multimedia Systems, 3:53-65, 1995. (p22)

[Ramamritham94] K. Ramamritham and J. A. Stankovic. Scheduling Algorithms and
Operating Systems Support for Real-Time Systems. Proc. of the IEEE,
82(1), Jan 1994. (p15)

[Rangan91] P. V. Rangan and H. M. Vin. Designing File Systems for Digital Video
and Audio. ACM Operating Systems Review, 25(5), 1991. (pp 20, 22)

[Rangan92]  P. V. Rangan, H. M. Vin, and S. Ramanathan. Designing an On-Demand
Multimedia Service. IEEE Commun. Mag., July 1992. (p19)

[Rangan93] P.V.Rangan and H. M. Vin. Efficient Storage Techniques for Digital Con-
tinuous Multimedia. IEEE Trans. on Knowledge and Data Engineering,
Special Issue on Multimedia Information Systems, Aug. 1993. (p20)

[Reddy94] A. L. Reddy and J. C. Wyllie. I/0 Issues in a Multimedia System. IEEE
Computer, Mar. 1994. (pp 20, 22, 30)

[Roscoe95] T. Roscoe. The Structure of a Multi-Service Operating System. PhD
dissertation, University of Cambridge, Computer Laboratory, Aug 1995.
(p17)

[Rose95] O. Rose. Statistical Properties of MPEG Video Traffic and Their Impact
on Traffic Modelling in ATM Systemns. Technical Report 101, Institute of
Computer Science, University of Wurzburg, Germany, Feb 1995.  (pp6,
49)

[Rosenblum92] M. Rosenblum and J. K. Ousterhout. The Design and Implementation of
a Log-Structured File System. ACM Trans. on Computer Systems, 10(1),
Feb. 1992. (p14)

[Sachs94] M. W. Sachs, A. Leff, and D. Sevigny. LAN and I/0O Convergence: A
Survey of the Issues. IEEE Computer, Dec 1994. (p12)

[Sachs96] M. W. Sachs and A. Varma. Fibre Channel and Related Standards. IEEE
Communication Magazine, Aug 1996. (p12) ‘



146

Bibliography

[Salehi96]

[SAM]

J. D. Salehi, Z. L. Zhang, J. F. Kurose, and D. Towsley. Supporting Stored
Video: Reducing Rate Variability and End-to-End Resource Reguirements
through Optimal Smoothing. In ACM SIGMETRICS’96, PA, USA, May
1996. (p66) '

ORL Smart ATM Modules. http:// www.orl.co.uk /modules.html. (p89)

[Satyanarayanan81] M. Satyanarayanan. A Study of File Sizes and Functional Lifetimes.

In Proc. 8th SOSP. ACM, 1981. (p15)

[Satyanarayanan93] M. Satyanarayanan. Distributed File Systems. In S. Mullender,

[Schroeder93]

[Seagate93]
[Seagate96a]
[Seagate96b]

[Sha90]

[Shenoy95]

[Shi96]

[STO195]

[SMART96]

[Spector89]

[Spuri94]

editor, Distributed Systems, chapter 14. Addison-Wesley, 2nd edition, 1993.
(p15)

M. D. Schroeder. A State-of-the-Art Distributed System: Computing with
BOB. In S. Mullender, editor, Distributed Systems, chapter 1. Addison-
Wesley, 2nd edition, 1993. (p13)

Seagate ST11950N/ND ST1195IN/ND ST12550N/ND ST12551N/ND
Product Manual (Volume 1), May 1993. (pp7, 44)

MR Heads: The Nezt Step in Capacity and Performance. http://
www.seagate.com/, 1996. Technology Paper. (p9)

Seagate Introduces Cheetah — the World’s First 1 0,000 RPM Disc Drive
Fomily. Seagate Press Release, Oct 1996. (p9)

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocol:
An Approach to Real-Time Synchronization. IEEE Trans. on Computer,
Sept 1990. (p16)

P. J. Shenoy and H. M. Vin. Efficient Support for Scan Operations in
Video Servers. In ACM Multimedia’95, San Francisco, CA, USA, Nov
1995. (p86)

F. Shi and A. Hopper. A Network Striped Storage System for Video on
Demand. In Collected Abstracts NOSSDAV’96, Zushi, Japan, Apr 1996.
Also at ftp:// ftp.cam-orl.co.uk /pub /docs /ORL /abstracts.html#67.
(p22)

Preliminary Survey of I/0 Intensive Applications. Scalable I/O Initiative
Working Paper No. 1, 1995. Applications Working Group of the Scalable
I/O Initiative. (p27)

DRAM Articles. Newsletters, SMART Modular Technologies, Inc., Dec
1996. (p11)

A. Z. Spector. Distributed Transaction Processing Facilities. In Sape
Mullender, editor, Distributed Systems, chapter 10. Addison-Wesley, 1989.

(p23)

M. Spuri and J. A. Stankovic. How to Integrate Precedence Constraints
and Shared Resources in Real-Time Scheduling. IEEE Trans. Computers,
1994. (p17)



Bibliography

147

[Staehlio3]

[Stankovic91]

[Stoller95]

[Tandem87]

R. Staehli and J. Walpole. Constrained-Latency Storage Access. IEEE
Computer, Mar 1993. (p22)

J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New
Paradigm for Reel-Time Systems. IEEE Software, May 1991. (p17)

S. D. Stoller and J. D. DeTreville. Storage Replication and Layout in
Video-on-Demand Servers. In NOSSDAV’95, Durham, NH, US, April
1995. (pll)

NonStop SQL, A Distributed, High-Performance, High-Availability Im-
plementation of SQL. In Proc. 2nd Intl. Workshop on High Perfor-
mance Transaction Systems, Asilomar, CA, USA, Sept 1987. The Tandem
Database Group. (p23)

[Tanenbaum92] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall Interna-

[Teradata85]

[Tewari96a]

[Tewari96b]

[Tewari96c]

[Tierney94]

[Tobagi93]

[Tokuda89]

[Trace95]

[Vin93]

[Vin94a]

tional, Inc., 1992. (p14)

Teradata Corp., Los Angeles. DBC/1012 Data Base Computer System
Manual, Release 1.8, Feb 1985. C10-0001-01. (p23)

R. Tewari, D. M. Dias, R. Mukherjee, and H. M. Vin. High Availability in
Clustered Multimedia Servers. In IEEE Intl. Conf. on Data Engineering,
New Orleans, USA, Feb 1996. (pp23, 30)

R. Tewari, R. King, D. Kandlur, and D. M. Dias. Placement of Multimedia
Blocks on Zoned Disks. In Proc. Multimedia Computing and Networking
(MMCN), San Jose, CA, USA, Jan 1996. (p21)

R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin. Design and Per-
formance Tradeoffs in Clustered Video Servers. In IEEE ICMCS’96, Hi-
roshima, Japan, June 1996. (p30)

B. Tierney, W. E. Johnston, H. Herzog, G. Hoo, G. Jin, J. Lee, L. T. Chen,
and D. Rotem. Distributed Parallel Data Storage Systems: A Scalable

Approach to High Speed Image Servers. In Multimedia’94, San Francisco,
CA, USA, Oct 1994. (p28)

F. A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID — A
Disk Array Management System for Video Files. In ACM Multimedia’93,
1993. (p23)

H. Tokuda and C. Mercer. ARTS: A Distributed Real-Time Kernel. ACM
Operating Systems Rev., 23(3), July 1989. (p17)

MPEG-1 Frame Size Traces. ftp-info3. informatik. uni-wuerzburg. de
/pub/ MPEG/, Sept 1995. (pp®6, 49, 58, 61, 63, 65)

H. M. Vin and P. V. Rangan. Designing a Multiuser HDTV Storage Server.
IEEE Journal on Sel. Areas in Commun., 11(1), Jan. 1993. (p22)

H. M. Vin, A. Goyal, A. Goyal, and P. Goyal. An Observation-Based
Admission Control Algorithm for Multimedia Servers. In Proc. 1st IEEE
Intl. Conf. Multimedia Computing and Systems (ICMCS’94), Boston, MA,
USA, May 1994. (p22)



148

Bibliography

[Vin94b)

[Vin95]

[Vincent95]

[Wallace91]

[Watson95]

[Wray94]

[Yu89]

[Yu92]

[Zhao87a]

[Zhao87b]

H. M. Vin, P. Goyal, A. Goyal, and A. Goyal. A Statistical Admission
Control Algorithm for Multimedia Servers. In Proc. ACM Multimedia,
San Francisco, CA, US, Oct 1994. (p22)

H. M. Vin, A. Goyal, and P. Goyal. Algorithms for Designing Multimedia
Servers. Computer Communication, Mar 1995. (p44)

G. Vincent. The Superhighway in Action: The Cambridge Trial. IEE
Review, May 1995. (p33)

G. K. Wallace. The JPEG Still Picture Compression Standard. Commun.
of the ACM, 34(4), Apr. 1991.  (p5)

R. W. Watson and R. A. Coyne. The Parallel I/0 Architecture of the High-
Performance Storage System (HPSS). In 14th IEEE Computer Society
Mass Systems Symp., Sept 1995. (p26)

S. Wray, T. Glauvert, and A. Hopper. The Medusa Applications Environ-
ment. In International Conference on Multimedia Computing and Systems,
Boston, MA, U.S., May 1994. (pp6, 101)

C. Yu, W. Sun, D. Bitton, Q. Yang, R. Bruno, and H. Tullis. Efficient
Placement of Audio Date on Optical Disks for Real-Time Applications.
Commun. of the ACM, 32(7), July 1989. (p20)

P. S. Yu, M. S. Chen, and D. D. Kandlur. Design and Analysis of a
Grouped Sweeping Scheme for Multimedia Storage Management. In Proc.

3rd Network and Operating Systems Support for Digital Audio and Video,
La Jolla, California, U.S.A., Nov. 1992. Springer-Verlag. (p19)

W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive Scheduling
Under Time and Resource Constraints. IEEE Trans. Computers, C-36(8),
Aug 1987. (pp16, 70)

W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling Tasks with
Resource Requirements in Hard Real-Time Systems. IEEE Trans. Software
Engineering, SE-13(5), May 1987. (pp 16, 70)



