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Abstract

This report describes research on topic spotting in audio document retrieval car-
ried out in years 2 and 3 of the Cambridge Video Mail Retrieval (VMR) project.
Topic spotting within VMR was concerned with ad hoc querying of a message archive
using classical information retrieval techniques developed from experience with text
archives. The report describes experiments using three approaches to document index-
ing: fixed-vocabulary keyword spotting, open-vocabulary search term indexing using
phone lattices, and message transcription using large vocabulary speech recognition.
Additional experiments investigate the combination of these techniques for improved
retrieval effectiveness.
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1 Introduction

This report describes the motivation, methods, experimental design and results, and
evaluation of topic spotting in the Cambridge Video Mail Retrieval (VMR) project
[Hopper et al., 1993]. The overall project objective was the development and evaluation
of a prototype video mail retrieval system at ORL, Cambridge. The topic spotting investi-
gation formed Task 6 of the overall VMR project plan. This report brings together all the
relevant material for this major task, including both previously published and unpublished
test results, to allow a comprehensive view of the whole.

In the VMR project topic spotting is taken to mean searching a spoken message archive
for items hopefully about the same topic as a user’s text request, and hence relevant to
the user’s information need.

Topic spotting in VMR is the same as ordinary ad hoc text document retrieval
[van Rijsbergen, 1979]. A topic is defined within VMR to be a (complex) concept that
may be linguistically expressed in different ways. The critical point about topic spotting
is that there is no guarantee that if the terms in a search query and document text match
that they are actually about the same topic (or indeed if they fail to match on words,
that they are not about the same topic). We contrast this interpretation of the phrase
with that sometimes encountered in speech research, where it refers to the use of standing
topic definitions for such purposes as document routing or categorisation [Rose, 1991],
[Wright et al., 1995] [Peskin et al., 1996].

VMR topic spotting experiments were carried out using several approaches to speech
recognition for document indexing. Initial work concerned word spotting using a
small fixed keyword vocabulary of 35 words with both speaker-dependent and speaker-
independent recognition. At this point only the fixed keyword vocabulary could be used
for searching. Work in the latter stages of the project concentrated on open-vocabulary
word spotting via subword phone lattices and a limited investigation into the use of large
vocabulary speech recognition. Phone lattice spotting and large vocabulary recognition
enable a large (and potentially unlimited) search vocabulary to be used.

Topic spotting is thus the prime retrieval task both from the specific VMR application
point of view and in the wider context of spoken document retrieval. We will henceforward’
use conventional information retrieval (IR) terminology for it, referring to user requests
containing words, and to search queries consisting of index terms derived from these
requests.

Specifically, as far as the general approach to indexing and retrieval we have followed
is concerned, we have followed mainstream practice in assuming:

1. that the topics in which users are interested are adequately represented by sets of
words (in fact normally word stems);

2. that the extent to which query terms are jointly found in a document is a fair
indicator of document relevance to user need (so the output from a search is ranked
by matching score); but

3. that this simple coincidence matching on terms alone is modified to take account of
term weights, so query-document scores are sums of shared term weights not just
counts of common terms.




Further, we have applied the well-established Robertson/Sparck Jones model of term
weighting for this [Robertson and Spirck Jones, 1976] [Robertson and Sparck Jones, 1994].
Thus as far as retrieval is concerned our methods are conventional, and our work on topic
spotting has concentrated on the issues of recognising query terms in spoken documents.

1.1 Experimental Strategy

Overall, the topic-spotting tests fit into a primary characterisation of retrieval conditions
for the VMR experiments as follows:

Vocabulary | Speakers Terms
Stage 1 closed closed | (keywords)
Stage 2 closed open (keywords)
Stage 3a open closed (topics)
Stage 3b open open (topics)

The experiments cover both the speaker-dependent (closed) case and speaker-
independent (open) case. Better speech recognition performance for the former means
retrieval performance can be expected to be higher than for the independent case, but is
less realistic than the speaker-independent situation most likely to arise in practice.

Tn relation to vocabulary, there are further alternatives as follows.

1. In relation to individual words, whether:

(a) acoustic processing in speech recognition uses whole or subword modelling;

(b) indexing (and hence document matching) uses full words or stems.
2. In relation to the word set we define:

(a) Word Spotting (WS): the use of afixed a priori keyword list, the terms available
for searching are well chosen for the domain in advance of speech recognition,
but do not necessarily cover all the user’s request words.

(b) Large Vocabulary Recognition (LVR): the use of a large vocabulary system,
e.g. covering 20,000 words. This extends the range of user request words that
may be searched as index terms to all words in the finite pre-selected LVR
vocabulary, though this does not necessarily capture all of the search terms.
This issue of search terms missing from the LVR vocabulary particularly affects
many proper names which cannot be anticipated in advance. Search terms and
words spoken but not in the vocabulary are referred to as out-of-vocabulary

(O0V) words.

(¢) Phone Lattice Scanning (PLS): the use of phone lattices which may be used
to search for any word. These may be used as an indexing strategy in their
own right, or alternatively to search for any request words which are OOV with
respect to fixed vocabulary recognition systems.

This report reviews experiments from all stages of the VMR project, although
since stage 1 and 2 are described in detail elsewhere [Spérck Jones et al., 1995,
Jones et al., 1995a], while stages 3 and 4 represent the technology in the final system
this report concentrates on this latter work.
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1.2 Index Source Combinations

Our experiments also cover a range of subsidiary alternatives where different sources of
indexing information can be variously combined to realise useful overall improvements in
retrieval performance [Belkin et al., 1995]. The following combinations were investigated:

(a) Speaker-Dependent Speaker—Independent
Word Spotting Large Vocabulary Recognition

(b) | Speaker-Independent Speaker—Independent
Word Spotting Large Vocabulary Recognition

(c) Speaker—Dependent Speaker—Independent
Phone Lattice Scanning | Large Vocabulary Recognition

(d) | Speaker-Independent Speaker—Independent
Phone Lattice Scanning | Large Vocabulary Recognition

The various combined systems are progressively less constrained. (a) requires the
choice of domain specific keywords, and speaker dependent acoustic models, while (d) has
an open search vocabulary and speaker-independent modelling.

1.3 Comparison of Indexing Methods
From the speech recognition point of view, the key differences between WS, LVR and PLS
are:

1. WS, processing looks only for occurrences of keywords without regard to their con-
text, all speech other than that deemed to match a keyword is simply treated as a
sequence of filler models (typically subword units, actually phones in our work). WS

is prone to both false alarms (hypothesis of a search word where none exists) and

misses (failure to hypothesise a search word which is actually present in the speech)
in word matching. In the design of a WS system there is a trade off between the
number of false alarms and misses. A stochastic acoustic match score threshold can
be applied to remove the majority of false alarms, but this is also likely to exclude
some proper matches.

2. LVR, generates a complete (though errorful) transcription of the document. The
acoustic models are operated in conjunction with a language model. Due to the
large available recognition vocabulary and the contextual information, false alarms
are relatively rare; however misses are much more likely in LVR systems. This
can occur for example where a work is relatively “unlikely” to appear in a certain
context as measured by the language model and a more linguistically “likely”, often
acoustically similar, alternative may be substituted. These subjects are discussed in
more detail in the VMR deliverable report on LVR [Jones et al., 1996b].

3. PLS, any word for which a subword phone structure is available can be searched for.
The phone structure is typically contained in a dictionary which maps lexical entries
to corresponding phone sequence(s). This is hence much more versatile than WS,
however, processing is still intrinsically unreliable. This unreliability is partially due

to the inaccuracy of phone recognition due to their acoustic confusability, typically
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only about 60% can be recognised correctly. Thus in practice it is found that a
relatively deep phone lattice is required to capture a high proportion of the correct
phones. The consequence of this is that many false alarms will arise in the scanning
of the lattice. As for WS many of these can be removed by thresholding. Phone
lattice spotting is described in more detail in the VMR deliverable report on PL5
[Foote et al., 1996] and further in [Foote et al., 1997].

Ideally, from the retrieval point of view, and seeking the well-known advantages of
redundancy, it would be most sensible to use all of WS, LVR and PLS. However in practice
it is often not possible to generate a specific keyword list for a document archive and WS
will not be available. Hence it is more important to assess retrieval using PLS or LVR
either alone or in combination. The importance of redundancy in this type of environment
is discussed in Section 4.1.2.

There is a further condition relevant to spoken document retrieval, namely the nature
of the recording environment. A head-mounted microphone gives noticeably better results,
than a desk one, though the latter is more likely to be found in practice. We give results
for both. Tt should be noted, however, that our documents were recorded in a noise-free
environment, implying better recognition performance than would be achievable in many
practical situations.

The material in the rest of this report is organised as follows: in Section 2 we describe
our experimental data set and in Section 3 the speech processing employed in this work;
Section 4 describes the information retrieval methodology employed in our work; we then
present retrieval results for the systems in Section 5; finally, in Section 6 we summarise
and comment on the main findings to be drawn from these sets of detailed runs.

1.4 Retrieval Experiments

Retrieval performance for spoken documents is compared with that for manual text tran-
scriptions which are taken to define the standard of performance attainable for the data
set.

Additionally we have used alternative ‘phonetic text’ transcriptions which are in prin-
ciple a fairer base for comparison for WS and PLS. Phonetic text is generated by decom-
posing the complete word level manual transcription to the sub-word phone level. This
phone sequence is then scanned for phone sequences matching search terms. Phone strings
which match can then be counted as correct hits, even if as the word level they are semanti-
cally unrelated to the search term. The recognition argument here being that if the phone
string is the same as the search word it is reasonable for the WS to hypothesise the word
at this point. Thus, for example, when searching for the word locate we have observed its
hypothesis during the utterance of hello Kate, the latter section of which consists of the
phone sequence locate. Thus, many false alarms arise where unrelated acoustic events will
often resemble valid words. When measured against the phonetic text standard hypothesis
of locate at this point is thus judged to be correct [Jones et al., 1995b, Jones et al., 19954
The difference between the two forms of transcription is small, and for simplicity in this
report we refer only to the full text comparisons.
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2 Data Provision

Experimental results reported here are for collections VMR1a and VMRIb. VMRI is a
specially constructed set of 300 messages described fully in [Jones et al., 1994], collections:
VMR1a and VMR1Db consist of two separate request/relevance assessment sets. They are
both overviewed in [Jones et al., 1995a] and a full description of VMR1b is contained in
[Jones et al., 1996a).

2.1 The VMR message corpus (VMRI1)

Because there was no available video mail corpus and existing speech corpora were not
suited to retrieval experiments, an archive of messages with known audio and information
characteristics was created in order to evaluate both speech recognition and message re-
trieval performance. Having to construct rather than select a test collection is regrettable
but was unavoidable, and the test collection shares important properties with real test
sets, e.g. variable topic overlap between documents.

Ten broad subject categories were chosen to reflect the anticipated messages of ORL
video mail users, including, for example, “management” and “equipment.” For the initial
domain-dependent indexing using small vocabulary WS, a fixed set of 35 keywords was
provided for the ten categories; thus the keywords “staff,” “time,” and “meeting” refer to
the “management” category (though keyword-category assignment is not exclusive). The
keyword set includes 11 difficult-to-recognise-correctly monosyllabic words (e.g “date” and
“mail”), as well as overlapping words (e.g. “word” and “keyword”) and word variants (e.g.
“locate” and “location”). :

Fifteen speakers (11 men and 4 women) each provided about 45 minutes of speech
data. This produced a total of 5 hours of read training data and 5 hours of spontaneous
speech messages. The acoustic training data was used to create the speaker-dependent
(SD) models for the recognisers and consisted of isolated keywords, read sentences con-
taining keywords in context, and phonetically-rich sentences not containing keywords. For
the message data, each speaker provided 20 spontaneous speech messages in response to
5 prompts chosen from 4 categories. The resulting 300 messages, along with their manual
text transcriptions, served as a test corpus for the retrieval experiments presented later.
The messages, though prompted, are fully spontaneous and contain a large number of
disfluencies such as “um” and “ah,” partially uttered words and false starts, laughter,
sentence fragments, and informalities and slang (“’fraid” and “whizzo”). The messages
were fully transcribed by hand, including non-speech events such as lip smacks, hesita-
tions, and disfluencies. Basic punctuation was also added for ease of reading. These full
transcriptions were used to evaluate both speech recognition and retrieval performance.

Data was recorded at a 16 kHz sampling rate, from a Sennheiser HMD 414 head-
mounted microphone and the Medusa system desk-mounted microphone used in the ORL
video mail system. For speech model training and recognition, the acoustic data was
parameterized into a spectral representation at a 100 Hz frame rate.

The VMR1 message set is very small by text retrieval standards, but as an
experimental corpus for spoken document retrieval it compares respectably with.
[Wechsler and Schiuble, 1995, McDonough et al., 1994], and is also comparable with
speech processing test data used until recently for ARPA experiments [Young et al., 1994].
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2.2 WSJCAMO

Speaker-independent acoustic models were trained using the WSJCAMO British English
spoken corpus. This consists of spoken sentences taken from the Wall Street Journal
(WSJ). Data was collected for 100 British English speakers with equal numbers of male
and female speakers drawn from a variety of age groups and regional backgrounds. The
corpus contains a total of around 12 hours of spoken data. WSJCAMO was collected
at Cambridge University Engineering Department and further details are contained in
[Robinson et al., 1995].

2.3 Retrieval Collection VMR1a

In order to obtain some test requests quickly, given a lack of users, we decided simply
to exploit the prompts used to obtain messages in the database recording. Elements of
the standard van Rijsbergen stop word list [van Rijshergen, 1979] were deleted and to
reduce variations in word form, the remaining query words were suffix stripped to stems
using the standard Porter algorithm [Porter, 1980]. Thus we obtained a total set of 50
requests with corresponding simple term list queries. The average length of requests was
38.1 words, after removing the stop words this was reduced to 19.0 words. Including only
suffix stripped terms in the 20K vocabulary derived from the Wall Street Journal (WSJ)
used in our LVR tests there were on average a total of 18.2 terms per query. For the fixed
keywords there were an average of 5.7 terms per query.

To obtain relevance assessments, the 6 recorded messages generated in response to each
prompt were assumed relevant to the query constructed from that prompt. The 24 other
messages in the same category, which are quite likely to contain similar words since they
are closely related, are assumed to be not relevant. This whole procedure was somewhat
crude, but we believe it gave us adequate material, from a term distribution point of view,
for fair experiments.

Av. No of Words per Request 38.1
Av. No of Words per Request after removing | 19.0
van Rijshergen stop list.
Av. No of Words per Request after removing | 18.2
words not in WSJ 20K word vocabulary
Av. No of Fixed Keywords per Request 5.7
No of Relevant Documents per Request 6.0

Summary of Collection VMR1a

2.4 Retrieval Collection VMR1b

We subsequently obtained a second set of more realistic requests and relevance assessments
from the user community that supplied the database messages. A total of 50 requests was
collected, 5 for each of the 10 categories defined previously. These were gathered from
10 users who each generated 5 requests and corresponding relevance assessments. This
was achieved by forming 10 unique sets of 5 categories and assigning each to a user
knowledgeable about the subject matter of the categories in the set. For each category
requests and relevance assessments were generated as follows.
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Requests Subjects were asked to form a natural language request based on the in-
formation given in a text prompt. One such prompt was formed for each of the message
categories, described earlier, by combining the information given in the 5 message scenario
prompts associated with the category. Hence, there were 10 prompts in total. Subjects
were asked that their request include at least one of the fixed keyword associated with the
category, as defined for the message collection phase.

Relevance Assessment FEach request was converted to a query using the same method
as VMR1la. The query was used to score each document transcription in the message
archive using the standard query-document matching technique described in Section 4.1
using collection frequency weighting. The messages were then ranked in order by decreas-
ing matching score.

Ideally users should assess the relevance of all messages in the archive to their request;
however, even with the 300 document archive this was considered impractical. Thus
a suitable message subset for assessment must be generated. For VMRIDb the list of
messages for assessment was formed by combining the 30 messages generated for the
category to which the original message prompt belonged together with the highest scoring
5 messages which were not associated with the category. Thus the user was presented with
35 messages to assess for each request. To avoid sequence effects the order of presentation
of these messages to the user was randomised. The subjects were presented with the:
transcription of each potentially relevant message and asked to marked it as “relevant”,
“partially relevant”, or “not relevant”. A full description of the formation of the Collection
1b naturalistic request set is contained in [Jones et al., 1996a].

Av. No of Words per Request 20.0
Av. No of Words per Request after removing 7.4
van Rijsbergen stop list.

Av. No of Words per Request after removing 6.6
words not in WSJ 20K word vocabulary

Av. No of Fixed Keywords per Request 2.6
Av. No of Highly Relevant Documents per Request | 10.8
Av. No of Highly or Partially Relevant Documents | 17.2
per Request

Summary of Collection VMR1b

Apart from the greater realism, the main differences between VMR1a and VMRIb
were that there were far fewer terms per query for the latter. The requests averaged 12.0
words. After removing the stop words this reduced to an average of only 7.4 content
terms. On average 6.6 of these terms are found in the 20K vocabulary. The keyword-only
versions of these requests contain an average of 2.6 terms. Compared to VMRla there
was naturally variation in the number of relevant documents per query as well as, in fact,
a larger average number, 10.8 highly relevant and 17.2 highly or partially relevant. All
retrieval results in this report for VMR1b use only the highly relevant document collection.




3 Speech Recognition Techniques

All the speech recognition work in the VMR project is based on Hidden Markov Models
(HMMs). The HMMs exploited in the WS, LVR and PLS systems used acoustic models of
individual phones, and also (for LVR) a language model to capture word associations. The
speech recognition systems for the work reported here used the HTK tool set developed at
Cambridge University Engineering Department [Young et al., 1993]. All the recognition
techniques described below deliver an acoustic score, the log-likelihood that the observed.
sound or sound sequence is actually an instance of the matching phone or word model.

3.1 Fixed Vocabulary Word Spotting (WS)

The basic idea of speech recognition using fixed vocabulary WS is to correctly identify
occurrences of predefined keywords while mapping all other acoustics events to a gen-
eral background subword filler model or silence. Although described in detail elsewhere
[Foote et al., 1994, Jones et al., 1995b, Foote et al., 1995], a short outline of our WS sys-
tem for fixed keywords is given here for completeness.

As described previously, two types of acoustic models were investigated here: speaker-
dependent models and speaker-independent models.

Speaker-dependent modelling For speaker-dependent (SD) WS separate whole-word
keyword models and phone filler models were built for each of the 15 speakers. Each key-
word model was trained with the 10 occurrences of the word in the VMRI training data.
SD filler phone models to represent non-keyword speech were trained on the remaining
speech data. The filler models here were all monophones, phone models which are inde-
pendent of context. All examples of these phones occurring in the filler training data were
used to train a single HMM model of each phone.

Speaker-independent modelling In the speaker-independent (SI) WS system, each
keyword is modelled by concatenating the appropriate sequence of subword phone mod-
els (obtained from a phonetic dictionary). Phones vary depending on acoustic con-
text and, as will be demonstrated for phone-lattice spotting, using context-dependent
phone models can improve recognition performance. Biphones, which take into account
the previous or next phone context, were used at the beginning and end of keywords;
while triphones, which take into account both previous and next phones, model their
internal structure. For example, the keyword “find” is represented by the model se-
quence f+ay f-ay+n ay-n+d n-d. Keyword models were constructed from a set of 8-
mixture word-internal tied-state triphone HMMs trained on the WSJCAMO British En-
glish speech corpus [Robinson et al., 1995] using a tree-based state clustering technique
[Young et al., 1994]. Non-keyword speech is modelled by a SI filler model consisting of an
unconstrained parallel network of monophones. Thus all speech is recognised as either a
keyword or a phone from the filler network.

Word Spotting Procedure WS is done with a two-pass recognition procedure. First,

Viterbi decoding is performed on a network of just the filler models. This yields a time-
aligned sequence of the maximum-likelihood filler monophones and their associated log-
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Data set
Head (%) | Desk (%)

Speaker dependent 81.2 76.4
Speaker independent 69.9 55.9

Table 1: Average Figures of Merit for SD and ST WS,

Data set
Head (%) | Desk (%)
R13 77.1 57.8
R75 80.5 65.5

Table 2: Average Figures of Merit for ST WS with Speaker Adaptation.

likelihood scores. Second, another Viterbi decoding pass is done using a network of the
keywords, silence, and filler models in parallel. In a manner similar to [Rose, 1991], key-
words are rescored by normalising each hypothesis score by the average filler model score
over the keyword interval. Normalisation helps ensure that true keyword hits have scores
greater than false alarms. Because low-scoring words are more likely to be false alarms,
the operating point of the recognition system may be adjusted by ignoring words with a
score below a given threshold.

The accuracy of a word spotter thus depends on its threshold and cannot be expressed
as a single number if false alarms are taken into account. An accepted figure-of-merit
(FOM) for word spotting is defined as the average percentage of correctly detected words
as the threshold is varied from one to ten false alarms per word per hour. (This is quite
similar to retrieval average precision, where precision is averaged as output is varied.)

The VMR corpus is realistic in that it contains speakers with varied backgrounds and
accents. This is not significant for SD modelling where separate models are built for each
speaker. However, the ST models are trained from exclusively using British English spoken
data. In this case recognition performance for the north American speaker in the VMRI1
archive is noticeably degraded.

Table 1 summarises FOM results for SD and ST WS using both head and desk micro-
phones. Observations from this table are that SD modelling is better than SI, and that the.
head-microphone gives better recognition performance than the desk-microphone. Both
of these results are expected and the overall performance is in line with that found by
other researchers using this approach to WS.

Speaker Adaptation In an attempt to ameliorate the problems associated with non-
native speakers, and increase word spotting performance in general, speaker-independent
acoustic models may be adapted to individual speakers as described in [Foote et al., 1995].
In this procedure a small amount of “adaptation” data is used to gemerate a personal
modified HMM model set which better represents the speech of the individual speaker.
The approach chosen was maximum-likelihoods linear regression because it has been
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shown to improve recognition with a comparatively small amount of adaptation data
[Leggetter and Woodland, 1995]. This method involves adapting only some of the HMM
parameters (the means of the HMM Gaussian mixtures) to increase the likelihood of the

adaptation data given the models. Varying amounts of the VMRI training corpus were

used as enrollment data for speaker-adaptation experiments.

WS performance using speaker adaptation is shown in Table 2. The E13 row used
13 utterances of enrollment data containing in all 2 occurrences of each keyword. The
R75 row used the full 75 “r” sentences from the VMRI training material, containing 5
utterances of each keyword. A more detailed examination of these results shows that
adaptation does not uniformly improve performance for all speakers. However the average
increase is substantial, and is particularly dramatic for our American English speaker. As
shown in Table 2 using a small amount of enrollment data improved the FOM performance
substantially for the head microphone, although much less for the desk microphone. A
greater amount of adaptation data produced further improvement in the FOM of the head-
microphone, but proportionally a much larger improvement for the desk microphone.

This type of speaker adaptation is referred to as supervised since the correct transcrip-
tion of the enrollment data is known by the recogniser. In operation this requires the
sender to speak some given enrollment text so that models can be suitably adapted in
advance of message recognition. In practice, this may not be possible for the VMR sys-
tem since it is quite probable that there will be no opportunity to gather the enrollment
material for messages from a new speaker. An obvious extension to this work would be
to investigate unsupervised adaptation where the parameters are modified without use of
« priori transcriptions.

3.2 Phone Lattice-based Word Spotting (PLS)

Data set
Head (%) Desk (%)
SD mo | ST mo | SI bi ST bi
[ 736 [ 48.0 [604 ] 515 |

Table 3: Average Figure of Merit for PLS.

The PLS word spotting technique involves searching a phone lattice for the sequence
of phones corresponding to a particular search term [James and Young, 1994]. A phone
lattice is a directed acyclic graph whose nodes consist of start/end times, and whose arcs
are putative phone occurrences, which are labelled with the phone’s acoustic score. Phone
lattices may be computed in advance, and rapidly scanned for an arbitrary phone sequence
at search time. In the VMR system this search is rapid enough to allow interactive scanning
of search word input at retrieval time.

For the head microphone experiments reported here, separate phone lattices were
generated using three model sets: 8-mixture SD monophones, 8-mixture SI monophones,

and 8-mixture SI biphones. In addition to the acoustic models, bigram phone transition

probabilities were enforced in a null-grammar network. Phone transition probabilities
were trained using the transcriptions of the “z” data taken from VMRI and are therefore
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independent of the VMR experimental domain. A phone lattice is generated from the n-
best paths through a HMM network, given the network, models, and (unknown) acoustic
data. The value of n controls the number of simultaneous hypotheses that may end at a
given time; thus n controls the average lattice depth, and the number of possible paths
through it. The choice of n represents a trade off between: correct hits, false alarms,
misses, and the overall size of the lattice. This latter factor is important since in order to
provide very rapid scanning the lattices must be available online in RAM; of course, the
smaller the lattices actually are, the easier this is to achieve.

At search time, the phone lattice is scanned for the phone sequence corresponding
to the query search word. The phonetic composition of a search word is derived from a
dictionary (British English pronunciations are taken from the Oxford Learner’s Dictio-
nary). Once a phone sequence is found (corresponding to a putative occurrence of the
search term), an acoustic score for the term is estimated from the scores of the component
phones using a similar procedure to that used for WS. In general, phone-lattice spotting
accuracy is much poorer than the fixed-keyword spotting described earlier. For each model
set the FOM for PLS was computed for the same 35 keywords as used for the standard
WS system. FOM values for the PLS systems are shown in Table 3. The head-microphone
data results for monophone models indicate that, as for WS, SD modelling gives improved
performance over SI modelling. Although SI performance can be improved through the
use of the more detailed biphone models. (There was insufficient acoustic training data
to investigate the performance of SD biphones.) Since they are clearly the best available
practical models, only SI biphone models were built for the desk microphone data. As for
WS, performance with the desk microphone data is somewhat degraded compared to head
microphone data, although not disastrously so. We would expect to observe similar per-
formance trends with SD and SI monophones to those observed for the head microphone
models. The desk microphone SI biphones were used in the final VMR demonstration
system,

Whilst overall the PLS figures are lower than those for the WS system, it is important
to remember that the phone lattices are completely general and that any set of words can
be searched for without further speech recognition effort.

3.3 Large Vocabulary Recognition (LVR)

LVR is potentially the best available technique for speech recognition in retrieval appli-
cations. LVR attempts to provide a complete transcription of the message. This has the
advantage that a complete inverted file can be constructed in advance of retrieval with
all terms available meaning that multi-pass retrieval strategies such as relevance feed-
back might be employed. Also, an automated text transcription has the advantage over
a phone lattice of being very compact. Large vocabulary continuous recognition is only
now becoming practical [Young et al., 1994] and only limited evaluation of its potential
has been possible in the VMR project. LVR will wrongly transcribe a significant number
of document words. Many of these recognition problems arise due to OOV effects. For
example, when an OOV term is present in the message to be transcribed an alternative
word (or words) which is (are) in the vocabulary must be transcribed into this position.
This recognition error will often introduce other errors nearby due to poor word boundary
alignment and probabilistic combination between the acoustic and language models. How-
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ever despite the current shortcomings of LVR technology, it has already demonstrated its
potential utility for retrieval as described here and in more detail in [Jones et al., 1996b].

For the LVR experiments, a set of 8-mixture cross-word triphones was trained on
the WSJCAMO British English speech corpus, of read Wall Street Journal material
[Robinson et al., 1995]. Ideally a suitable language model would be built using a large
transcription archive of material typical of the application domain. Unfortunately since
there was no available archive of this type, the standard WSJ 20K bigram language model
from MIT Lincoln Labs was used. The WSJ triphone set and bigram language model when
taken together yielded a 53% word recognition accuracy rate. This is low compared to read
speech, where accuracy rates can exceed 90% in a limited domain, but is respectable given
the difficulty of the spontaneous VMR task and the domain mismatch. Many factors im-
pact recognition performance adversely. For example, the VMR corpus has a significant
out-of-vocabulary rate of 3.15%, including 4 of the 35 frequently-occurring fixed keywords,
and the WSJ North American business news language model is highly inappropriate for in-
formal British English monologues. Also problematic is the exclusively read training data,
the spontaneous nature of our test speech, the lack of disfluency modelling for it, and its
non-uniform accents (British, American, and Middle European) [Jeanrenaud et al., 1995].
However, as is shown later in this report, even the imperfect recognition of the existing
system results in respectable retrieval performance.

3.4 Thresholding

As outlined in preceeding sections, acoustic word spotting using either WS or PLS is prone
both to missed words and to false alarms when seeking search terms. In the case of WS the
filler model may be incorrectly deemed more likely than the search word or vice versa. In
PLS the uncertainly and reduced search space of the lattice may also lead to the presence
of phone strings which correspond incorrectly to search terms causing false alarms, or one
or more of the correct phones may be missing from the lattice leading to a miss.

Since many false alarms will have a lower score than true hits, a threshold is normally
set on the acoustic score. Words with scores above the threshold are considered true
hits, while those with scores below are considered false alarms and ignored. Choosing
the appropriate threshold is a tradeoff between the number of Type I (missed words) and
Type II (false alarm) errors, with the usual problem that reducing one increases the other.
Retrieval performance varies with the choice of score threshold. At low threshold values,
performance is somewhat impaired by a high proportion of false alarms (Type II errors);
conversely, higher thresholds remove a significant number of true hits (Type I errors),
also degrading performance. In our work thresholding was applied to both W5 and PLS
output hypotheses, but it is not required for LVR because there are few false alarms.

4 Information Retrieval Techniques

For our experiments, standard indexing and matching techniques were applied both to the
text transcription files, and to the quasi-transcriptions and other search word hypotheses
generated by the speech recognition engines. Performance for the text transcriptions could
thus be used as a reference standard for the various speech retrieval strategies.
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4.1 Indexing Methodology

The indexing methodology follows standard text indexing and matching techniques. The
text transcriptions and LVR output files were first processed to remove stop words. Several
stop word lists were investigated but most consistent results were obtained using the
standard van Rijsbergen list [van Rijsbergen, 1979]. Results in Section 5.2.1 show retrieval
performance for a number of stop word lists. (Stop word removal is not required for the
fixed keyword WS and PLS since they only return putative hits from the fixed vocabulary
or the current query respectively and so contain no stop words.) Next all query terms

and hypothesised document contents from all sources were suffix stripped using the Porter’

algorithm [Porter, 1980]: see the next section for a discussion of stemming in relation to
speech data.

Retrieval tests compared unweighted uw matching performance with two forms of
weighting. These were the standard collection frequency weight cfw (also called in-
verse document frequency weight), and the combined weight cw that incorporates
within-document term frequencies and is normalised for document length (defined in
[Robertson and Sparck Jones, 1994] and derived in [Robertson and Walker, 1994]; the cw
scheme reflects the City University work for TREC [Robertson et al., 1995]). The cw
weight for each term in each document is calculated as follows:

cfw () X tf(1,7) x (K +1)
K xndl(5)+tf(i,7)

where cw (4, ) represents the cw weight of term 4 in document j, ¢f(é,j) is the document
term frequency and ndl(j) the normalised document length. ndl(j) is calculated as

ndl(j) = diy)

~ Average dl for all documents’

cew(i,j) =

where di(j) is the total length of j. The combined weight constant K has to be tuned
empirically: after informal testing a value K = 1 was selected.

4.1.1 Document Length di(j)

The document length is ordinarily measured as the number of term occurrences in the
document. This measure of di(j) is suitable for text and LVR where full transcriptions
are available. For WS the document length is the number of terms from the fixed keyword
vocabulary found in the document and in PLS the document is represented only by the
search terms found for the current query; but the latter in particular may not be a good
representation of the document length, i.e. long documents may appear short if they are
not rich in the search terms of a particular query. However since ndl(j) is the ratio between
different document lengths, the absolute length is not important and alternative measures
of di(j) can be considered. In our PLS tests we examined two alternative measures of

dl(j):
e the number of phones found in the most likely phone path, which is easily computed
using the Viterbi algorithm during the speech recognition phase. We reason that

on average the number of phones in a document is representative of the number of
words.

¢ the total length of the document in seconds.
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4.1.2 Redundancy

Problems associated with word sense and category ambiguity are familiar in text retrieval.
These problems are compounded in spoken documents since there is always some ambigu-
ity about whether a putative word is actually present. Some ambiguities may he resolved
in the speech case by different pronunciations, but more ambiguities arise from homo-
phones and misrecognised word boundaries. However as with text retrieval, redundancy
can be exploited to reduce these uncertainties and ambiguities. Redundant information
is basically multiple explanations of the same idea. Within a document redundancy is
information which doesn’t necessarily add to message of the document, but may help to
remove ambiguities of sense or uncertainties. Thus a file containing the words “blind”
and “venetian” may be about “venetian blinds” or “blind venetians.” However if the
word “sunblind” appeared in the same document this uncertainy would be resolved. If
all of “venetian” “blind” and “sunblind” appear in the query, although the last term
is apparently unnecessary it will potentially assist in discriminating relevant documents
from irrelevant ones. One statement alone is useful, both together will improve chances of
getting the correct document. LVR is thus potentially important for spoken document re-
trieval, compared with WS, as it significantly increases the number of potential matching.
keys. It can nevertheless still miss term occurrences due to recognition errors and OOV
terms. Phone lattice spotting can make more terms (such as proper names) available for
matching although confidence in the accuracy of individual putative hits is lower. If a
domain specific set of OOV terms is available, more reliable OOV term searching could
also be carried out with a fixed vocabulary word spotter.

4.2 Word Stemming Issues

As outlined in Section 4.1, text retrieval attempts to overcome mismatches hetween differ-
ent word forms by using suffix stripping. Common approaches such as the Porter algorithm
[Porter, 1980] use heuristic rules, e.g. application of these rules to locate and location
both produce the stem locat-. Matching between text query and document terms here
is clearly on the letters of the terms. The location of terms in spoken documents requires
rather more careful examination. Since we postulate that performance on text represents
the standard by which spoken document retrieval is best judged, the objective in indexing
spoken documents should be to produce document indexing identical to that observed for
text. This is implicitly achieved with perfect automatic transcription. However, given
that this is at present not achievable, word search strategies must be selected which most
closely produce the same index information as an accurate transcription. Note, this ob-
jective is not necessarily the same as seeking the lowest word recognition error rate. For
example, improved function word recognition performance which led to degradation in
content word recognition may actually worsen retrieval performance. Degraded retrieval
performance might occur despite overall improved word by word recognition performance
since function words are of no benefit to retrieval and are hence usually removed using
stop word lists whereas a useful content word may be misrecognised. Finally, it should
be remembered that we are engaged in the development of an operational system and
selected strategies should not be grossly inefficient in their requirements for computation
or storage.

As has been outlined previously, all words are composed of fundamental acoustic phone
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units, e.g. locate is composed of the phone sequence 1 ow k ey t and location is
likewise composed of the phones 1 ow k ey sh n. This has various implications for word
searching using the different recognition strategies investigated in the VMR project. For
clarity these are considered separately for the individual strategies.

4.2.1 Fixed Vocabulary WS

There are various possibilities here as candidates for the most effective indexing method.
In detailing them we will make use of the informal notion of base form for words, as
illustrated by the lead words used in conventional dictionary entries, for example verb
infinitives or singular nouns. These lead words are often simple, compared with their
related variant forms. They are also often pronounced in the same way as the acoustic
stem of their associated variants, e.g. the base whole word locate sounds like the acoustic
stem LOCAT-! in the word located. The possible indexing strategies are:

1. Look for all known forms of each keyword, for example we could search for each
of locate, locates, located and locating individually. Of course if the variant
set is simply informally provided by the user there may be other word forms in
the file that are not anticipated in advance, but they will often form close acoustic
matches with one of the supplied forms. This indeed applies not only to searcher-
supplied variant sets but also to ones obtained in some relatively systematic way
via a linguistic generation program or a reference dictionary. But whatever the
source of the search word set, it is obviously computationally expensive and hence
unattractive to look for very similar words in parallel.

2. Taking into consideration the computational inefficiency issue, we could look just
for the given base form of the request keyword, e.g. locate, on the assumption that
this will pick up other forms of the word with the same e.g. locates, or similar
acoustic stem e.g. location. In evaluation we count only hypotheses of any word
with the same common base as the given keyword as correct, as determined by
linguistic checking e.g. dictionary reference. This should filter out false alarms with
the same acoustic stem as the base keyword but no proper word form relationship
e.g. (we imagine) occasion, which might appear in the signal to have the acoustic
stem LOCAT-.

3. We proceed as with the previous methods, looking just for the given base form, but
consider only exact matches as correct. This would produce the same WS output as
2, but different WS performance figures would result. In principle the same eventual
retrieval output would be observed as in 2.

4. Given that the linguistic reference apparatus required for the two previous methods
using bases may not be available, look for the suffix-stripped stem of the given
request keyword. This suffers from the same limitations as the previous base-search
technique, exacerbated by the fact that matching will often be more unreliable than
for a full word. This is both because stems are ordinarily shorter than full words and
because, as a stripped stem not be a linguistically-valid entity, the items it matches
may be completely unrelated.

!Upper case here indicates acoustically derived stem as opposed to suffix stripped textual stem.
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However even with these various limitations, searching for single items rather than
variants is clearly attractive, so the question is which method among the last three is
best in practice. Thus how, for example, does the easiest and cheapest approach, namely
that using stems, perform? Investigations in text form of different words with the same
suffix-stripped stem as one of the 35 VMRI keywords revealed that 98.5% of those in
a slightly-augmented standard BEEP phonetic dictionary [Robinson et al., 1995] had
the same acoustic stem as the base keyword and further that this was also the acoustic
form of the base keyword. For example, locate, locates, located and locating all
have the same suffix-stripped stem locat- and all have the same acoustic stem, LOCAT-
(phonetically 1 ow k ey t), as the whole-word base locate. We could thus search only
for the word locate and be reasonably confident of identifying occurrences of the other
word forms. They will of course only be identified by the WS as locate, but for retrieval
purposes this is all that is required. The assumption that bases will match other word
forms via their acoustic stems is only ever partially true, since strictly speaking there.
will be some slight modification of the final stem phone in the forms due to the slight
changes of context. For example the end phone t for the base locate will be varied in the
word endings -TED (phonetically t ih d) and -TING (phonetically t ih ng). This might
result in some misses or low acoustic match scores (possibly resulting in removal during
thresholding) when searching using only locate. However this phone variation is likely
to be a marginal effect.

A more subtle effect is exhibited where the base form changes, for instance locate
and location have the same suffix-stripped stem locat- but a different acoustic stem.
The final phone t in locate is modified to sh in location which is then followed by the
final phone n. This sort of phenomenon would seem to inhibit the likelihood of locate
matching on occurrences of location if the latter were to be removed from the keyword
list. In our study examples of these variations were comparatively rare, but the study was
only on a small scale.

In our evaluations we adopted strategy 2, i.e. we used just the keyword base forms
for searching. But we did not carry out a detailed analysis of the relative accuracy of
matching only with base forms or with alternative word forms as well, or of the frequency
of alternative word forms within the test data.

It should be noted that for test comparisons with text retrieval using keywords, the
word normalisation usually implied by having a restricted indexing vocabulary must also
be supplied. For our experiments this was done using standard Porter stemming. Thus-
in order to generate fixed keyword representations from the manual document transcrip-
tions, each word in the transcription was suffix stripped and compared to the available
suffix stripped keywords; suffix stripped document terms which matched one of the suffix
stripped keywords were included in the keyword only representation of the document text.
Fixed keyword queries for VMR1a and VMR1b were generated from the open vocabulary
text form in the same way. Generally when keywords are referred to, they should be
understood as involving word form normalisation.

4.2.2 PLS

The matching situation is similar for PLS. We can search the lattice using the same
strategies as for fixed vocabulary WS. However, there is a slight further complication. In

24




the case of fixed vocabulary WS we know that the search term is in the base form of
the word and we believe that this will match the different word forms with reasonable
accuracy. However, each search word form in PLS comes from a free text request where’
the user may submit any form of any word they choose. Thus in addition to the options
for fixed vocabulary WS we can either:

1. look for the word in the form as it appears in the request, or

2. map this to some common base form(s) for all words which suffix strip to the same
stem as the request word.

The former option is easier to implement and potentially more reliable in actually
spotting the word form in the request correctly, since it will usually be longer. However,
the assumption that this word form will map correctly onto other forms of the word would
appear to be weaker here than for WS, since the end of the particular word form which
appears in the request may not match well onto those of other word forms with the same
acoustic stem.

The use of a consistent base form would obviously be problematic since a decision
must be taken as to exactly what the correct phonetic root form should he and its pho-
netic analysis supplied. This would require additional manual preparation in the phonetic
dictionary and is therefore not attractive in the design paradigm of the VMR system.

The final VMR demonstration system actually operates using the simpler first ap-
proach. As for fixed vocabulary WS no careful analysis of the accuracy of the assump-.
tions made was attempted. In operation word hypotheses from PLS are stemmed using
the Porter algorithm before being added to the inverted file. Calculation of the query-
document matching score is thus at the level of stems. The effect being that words in a
request with the same stem will appear as the same search terms in the inverted file, as
would be the case for standard text retrieval matching.

An attractive way to search the lattice would be using a tree—clustered word modelling
combining the features of the different word forms, so that all known possible instantiations
could be searched for in a single pass over the lattice or possibly using a subset consisting
of the request word and one or more general common root word forms. Shortage of time
prevented this additional investigation from being carried out.

4.2.3 LVR

The objective in LVR is to make a complete transcription of the spoken data. The vo-
cabulary may contain all, some or none of the different forms of a particular search word.
In LVR the IR system cannot dictate the form of the search terms, but only has access
to the pre-computed pseudo-transcription which is constrained to contain only the exact
words in the LVR vocabulary. Thus term matching is possible only within these vocab-
ulary constraints. In retrieval the LVR transcription is processed in the same manner as
standard text. Thus stop words are removed and all remaining words are suffix stripped.
using the Porter algorithm.

Since the LVR transcription is dependent on not just acoustic matching, but also the
language model, substitution of different word forms which are present in the vocabulary
for those which are not or have been poorly articulated may be less practicable in LVR
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since the language model may score such substitutions very poorly. For example, the
word locate may be unlikely to be substituted for the OOV located if the positioning of
locate in this position is poorly scored in the language model. If the speaker said ... it
is located in the the n-gram likelihood of ... it is locate in the ... is
likely to be very low and another word sequence combined with the acoustic model may
well score better, for example something like ... +this location is ... might score
better. From a retrieval perspective this would be perfectly acceptable, but none of the
words has actually been recognised correctly, i.e. the absence of the word located from
the vocabulary has led to several recognition errors rather than just one. As should be
clear from the foregoing discussions, the presence of OOV words is inevitable in current
LVR systems. Again, an exhaustive analysis of these effects in our LVR tra,nscriptionv
output was not attempted for the VMR1I archive.

4.2.4 Summary of Adopted Word Stemming Strategies

As the details of the treatment of words are rather complex, and they differ for the various
indexing techniques, the following table summarises the data.

Available When Term | Document | Query Terms | Matching
Indexing Added to Terms in from Request | Terms at
Vocabulary | Inverted File | Inverted File Retrieval
Time
Text All Words Index Time stem stem stem
Fixed Index Time stem stem stem
Keywords
All Words | Index Time stem stem stem
in 20K
Dictionary
Spoken | WS Fixed Index Time stem stem stem
Docs Keywords
PLS Words as Search Time stem stem stem
Instantiated
in Request
LVR | All Words | Index Time stem stem stem
in 20K
Dictionary

This is the formal picture: however because, as already discussed, acoustic matching
is only approximate, there may be some ‘quasi’-base effects with PLS and LVR.

4.8 Index Combination Methods

It has been shown in text retrieval that combining multiple evidence sources can give
overall improved retrieval performance, for example in [Belkin et al., 1995]’s comparative
TREC-2 study. Belkin et al. considered two approaches to information combination,
referred to as ‘query combination’ and ‘data fusion’. In query combination, multiple
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queries for the same information need are merged into a single query, from which a single
ranked output list is generated. In data fusion, multiple ranked output lists of documents
(from different data representations) are combined to form a single overall ranked list.
The methods described below use elements of both these techniques, tailored to suit the
particular evidence conditions of spoken document retrieval.

4.3.1 Data Fusion

In our date fusion work, matching scores for documents that have been computed inde-
pendently by different indexing systems, i.e. WS, PLS, LVR, are added to form a final
composite score for each document. Since it is not clear whether scores for types of source
are commensurable, we tried both normalising with respect to the highest scoring docu-
ment in each list, and leaving scores as they were. With or without normalisation, the
result is a single ranked list using the composite scores.

4.3.2 Data Merging

In our data merging strategies, evidence from different indexing sources is combined in
a way analogous to Belkin et al’s query combination. Specifically, word hypotheses from
the indexing systems are merged to obtain a single term list for each document before
computing the document’s matching score. Hypotheses from the LVR output may be
either augmented with all putative hits from a word spotter (PLS or WS), or only with
those outside the WSJ 20K vocabulary. However, where all evidence from both sources
is combined, search keys are counted twice if hypothesised at the same position by both
systems. Searching for the same term using separate systems is not necessarily a drawback
as it may help counteract acoustic stemming problems which may result in LVR misses
when the term as instantiated is not in the LVR vocabulary (see Section 4.2).

Because they are frequency based, cfw weights may be affected by spurious keys in
other documents due to PLS false alarms. cw weights which take into account within-
document term frequencies, may also be adversely influenced by multiple counts of the
same term, in addition to the effects of these existing false alarms. The overall length of
a merged document is taken as the sum of all terms derived from both evidence sources
for that document.

5 Retrieval Experiments

In this section we present our experiments in a series of comparisons as follows. First,
in Section 5.1, Tables 4-23, we give a brief summary of experimental results using fixed
vocabulary keyword spotting (W$), including results for text transcriptions and both SD.
and SI acoustic modelling. Following this in Section 5.2, Tables 24-43, more detailed re-
trieval results are given for open-vocabulary PLS retrieval. Again, initial open-vocabulary
retrieval results are given for text transcription; these are used as the datum for all sub-
sequent retrieval experiments. Next retrieval results are given for content-indexing using
PLS spotting with various acoustic models. In Section 5.3, Tables44-65, we give results for
large vocabulary LVR retrieval. The final results Section 5.4, Tables 66-97, cover retrieval
using various data combination methods.
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We have deliberately laid out the results in as full and regular a way as possible,
so there are many tables. Thus we follow a pattern of giving results for Collection 1la
and then Collection 1b for each particular performance factor. Some of these factors
are environment variables, e.g. head or desk microphone recording, others are system
parameters, e.g. choice of stop list. We have tried to follow a consistent ordering, with first
head microphone and then desk microphone, first speaker-dependent (SD), then speaker-
independent (SI), then speaker-adapted. More specific parameters apply to individual
methods, e.g. monophone or hiphone modelling for PLS. The individual tables also cover
the various term weighting techniques, namely ww, cfw and cw (see Section 4).

Throughout this section where thresholding is used results are shown at the
best aposteriori threshold. A detailed description of thresholding effects is given in
[Spirck Jones et al., 1996]. All thresholds were chosen to maximise average precision,
slightly different thresholds would often be chosen to maximise performance at a fixed cut
off level such as used in [Sparck Jones et al., 1996]. Thresholding aposteriori gives a more
favourable picture of performance than the apriori thresholding that would be necessary
in practice, but this is not critical in the present context.

We recognise that with a small test collection such as our’s specific figures are neither
reliable nor significant: we concentrate therefore on the general picture that emerges
from the results. For computing retrieval performance we show both document retrieval
precision at rank cutoffs of 5, 10, 15 and 20 documents, and average precision, both
computed using the standard TREC procedures?.

5.1 Fixed Vocabulary Retrieval : WS Tests

Work described in this section is taken from Stages 1 and 2 of the VMR project and cov-
ers investigation into W$ retrieval with the fixed keyword vocabulary. More detailed
results and analyses appear elsewhere for SD in [Spéarck Jones et al., 1996] and SI in.
[Jones et al., 1995a].

5.1.1 Text Retrieval

Tables 4 and 5 show manual text transcription retrieval results using only terms in
the fixed keyword vocabulary. As will be noted for many other indexing techniques, the
use of progressively more sophisticated weighting schemes produces improved retrieval
performance.

5.1.2 Speaker-Dependent Modelling

Tables 6 and 7 show results for retrieval using SD head-microphone WS and Tables
8 and 9 show results for retrieval using SD desk-microphone WS. As anticipated perfor-
mance is degraded somewhat with respect to text for both head- and desk-microphone
modelling due to recognition errors. As would be anticipated from the WS results in
Section 3.1, retrieval performance degradation is worse with the desk-microphone models.
Encouragingly, retrieval performance for head-microphone modelling is still in excess of

2 All retrieval performance figures are computed using the frec_eval software from TREC 2 developed
(and kindly supplied to us) by Cornell University.
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Text
Weighting Scheme | uw | cfw | W

Precision | 5 docs | 0.264 | 0.296 | 0.300
10 docs | 0.222 | 0.250 | 0.270
15 docs | 0.192 | 0.213 | 0.236
20 docs | 0.170 | 0.193 | 0.208

[ Av Precision [ 0.293 [ 0.332 ] 0.358 |

Table 4: VMR1a retrieval precision for fixed keywords from manual text transcriptions.

Text
Weighting Scheme | uw | cfw I cw
Precision | 5 docs | 0.342 | 0.350 | 0.342
10 docs | 0.281 | 0.308 | 0.294
15 docs | 0.260 | 0.297 | 0.299
20 docs | 0.242 | 0.281 | 0.280

| Av Precision [0.296 ] 0.332 | 0.346 |

Table 5: VMR1b retrieval precision for fixed keywords from manual text transcriptions.

90% for both VMR 1a and VMR1b; while that for desk-microphone modelling is still better
than 80% in both cases.

5.1.3 Speaker-Independent Modelling

Tables 10 and 11 show retrieval results using SI head-microphone modelling W5, and
Tables 12 and 13 show retrieval using SI desk-microphone modelling WS. For both head-
microphone and desk-microphone modelling retrieval performance for SI modelling is de-
graded more than SD modelling with respect to text. This would be expected since,
as noted previously in Section 3.1, the WS performance is not as good for SI modelling
because of the generalisation of the acoustic models to any speaker.

As described in [Foote et al., 1995] there are a number of parameters in the WS which
must be set empirically. The results shown here are the best obtained by a large and
careful examination of the parameter space. Marginally better retrieval results might be
obtained by a more exhaustive examination of the space. However, it is very unlikely that
the improvement would be sufficient to be able to attach any statistical significance to
differences between such results and those shown here.

5.1.4 Speaker Adaptation

As was shown previously in Section 3.1, speaker adaptation can be used to significantly
improve WS performance for ST models. Tables 14 and 15 show retrieval performance for
head-microphone models adapted using the R13 enrollment data (see Section 3.1), and
Tables 16 and 17 show retrieval performance for head-microphone models adapted using
the R75 enrollment data. It can be observed that improvement in retrieval performance is
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SD Head Models

Weighting Scheme | uw | ctw l W
Precision | 5 docs | 0.232 | 0.256 | 0.260
10 docs | 0.192 | 0.222 | 0.234
15 docs | 0.169 | 0.195 | 0.213
20 docs | 0.156 | 0.171 | 0.187

Av Precision

[ 0.259 ] 0.295 | 0.316 |

Table 6: VMR1a retrieval precision for WS using SD head-microphone modelling.

SD Head Models

Weighting Scheme | uw | cw | cw
Precision | 5 docs | 0.333 | 0.350 | 0.333
10 docs | 0.265 | 0.321 | 0.296
15 docs | 0.238 | 0.285 | 0.289
20 docs | 0.207 | 0.260 | 0.266

| Av Precision [ 0.265 | 0.312 | 0.330 |

Table 7: VMR1b retrieval precision for WS with SD head-microphone modelling.

SD Desk Models

Weighting Scheme | uw | cfw | cw
Precision | 5 docs | 0.244 | 0.260 | 0.272
10 docs | 0.182 | 0.214 | 0.238
15 docs | 0.167 | 0.191 | 0.210
20 docs | 0.142 | 0.166 | 0.177

Av Precision

| 0.241 [ 0.283 | 0.299 |

Table 8: VMR1a retrieval precision for WS using SD desk-microphone modelling.

SD Desk Models

Weighting Scheme | uw | cofw l W
Precision | 5 docs | 0.296 | 0.308 | 0.338
10 docs | 0.273 | 0.300 | 0.302
15 docs | 0.246 | 0.274 | 0.282
20 docs | 0.215 | 0.245 | 0.254

[ Av Precision | 0.254 [ 0.296 | 0.315 |

Table 9: VMR1b retrieval precision for WS using SD desk-microphone modelling.
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SI Head Models
Weighting Scheme | uw | ctw | W
Precision | 5 docs | 0.232 | 0.244 | 0.272
10 docs | 0.182 | 0.192 | 0.232
15 does | 0.148 | 0.175 | 0.199
20 docs | 0.130 | 0.154 | 0.180

‘ Av Precision ‘ 0.241 ] 0.263 I 0.300 |

Table 10: VMRI1a retrieval precision for WS using SI head-microphone modelling.

SI Head Models
Weighting Scheme | uw | cfw | cw
Precision | 5 docs | 0.283 | 0.321 | 0.363
10 docs | 0.240 | 0.283 | 0.313
15 docs | 0.221 | 0.258 | 0.268
20 docs | 0.204 | 0.231 | 0.245

[ Av Precision | 0.251 { 0.291 I 0.301 l

Table 11: VMR1b retrieval precision for WS using SI head-microphone modelling.

ST Desk Models
Weighting Scheme | uw I cfw | W
Precision | 5 docs | 0.192 | 0.228 | 0.256
10 docs | 0.152 | 0.178 | 0.212
15 docs | 0.128 | 0.153 | 0.172
20 docs | 0.113 | 0.130 | 0.148

[ Av Precision [ 0.184 | 0.219 [ 0.275 |

Table 12: VMR1a retrieval precision for WS using SI desk-microphone modelling.

SI Desk Models
Weighting Scheme | uw | cfw | W
Precision | 5 docs | 0.250 | 0.271 | 0.300
10 docs | 0.227 | 0.250 | 0.271
15 docs | 0.193 | 0.219 | 0.246
20 docs | 0.173 | 0.196 | 0.232

Av Precision

[ 0.214 [ 0.249 | 0.267 |

31

Table 13: VMR1b retrieval precision for WS using SI desk-microphone modelling,.




ST 4+ R13 Head Models

Weighting Scheme | uw | cfw | cw

Precision | 5 docs | 0.212 | 0.224 | 0.272
10 docs | 0.180 | 0.208 | 0.236
15 docs | 0.159 | 0.185 | 0.208
20 docs | 0.142 | 0.163 | 0.185

’ Av Precision

| 0.234 [ 0.274 | 0.324

Table 14: VMR 1a retrieval precision for WS using SI head-microphone modelling adapted

with R13 head-microphone data.

ST 4+ R13 Head Models

Weighting Scheme | uw | cfw | ow

Precision | 5 docs | 0.288 | 0.325 | 0.321
10 docs | 0.240 | 0.273 | 0.296
15 docs | 0.226 | 0.249 | 0.271
20 docs | 0.207 | 0.244 | 0.254

| Av Precision

| 0.245]0.283 | 0.305

Table 15: VMR1b retrieval precision for WS using SI head-microphone modelling adapted

with R13 head-microphone data.

SI 4+ R75 Head Models

Weighting Scheme | uw | cfw | cW

Precision | 5 does | 0.244 | 0.264 | 0.300
10 docs | 0.204 | 0.218 | 0.246
15 does | 0.173 | 0.199 | 0.219
20 docs | 0.154 | 0.171 | 0.188

| Av Precision

| 0.256 | 0.294 | 0.338

Table 16: VMR1a retrieval precision for WS using SI head-microphone modelling adapted

with R75 head-microphone data.

SI 4+ R75 Head Models

Weighting Scheme | uw | cfw | cw

Precision | 5 docs | 0.300 | 0.329 | 0.358
10 docs | 0.258 | 0.296 | 0.323
15 docs | 0.236 | 0.278 | 0.288
20 docs | 0.216 | 0.256 | 0.260

| Av Precision

[0.270]0.308 | 0.334

Table 17: VMR1Db retrieval precision for WS using SI head-microphone modelling adapted

with R75 head-microphone data.
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SI + R13 Desk Models
Weighting Scheme uw | cfw | cw
Precision | 5 docs | 0.172 | 0.196 | 0.240
10 docs | 0.152 | 0.156 | 0.184
15 does | 0.127 | 0.137 | 0.164
20 docs | 0.106 | 0.122 | 0.141

| Av Precision [ 0.180 | 0.213 | 0.243 |

Table 18: VMRI1a retrieval precision for WS using SI desk-microphone modelling adapted
with R13 desk-microphone data.

SI 4+ R13 Desk Models
Weighting Scheme | uw ‘ cfw ] W
Precision | 5 docs | 0.234 | 0.271 | 0.304
10 docs | 0.213 | 0.231 | 0.267
15 docs | 0.179 | 0.208 | 0.243
20 docs | 0.166 | 0.202 | 0.227

I Av Precision ] 0.203 ] 0.251 I 0.279 I

Table 19: VMR1b retrieval precision for WS using SI desk-microphone modelling adapted
with R13 desk-microphone data.

SI + R75 Desk Models
Weighting Scheme | uw ] cfw [ cW
Precision | 5 docs | 0.196 | 0.224 | 0.244
10 docs | 0.142 | 0.186 | 0.212
15 docs | 0.133 | 0.157 | 0.176
20 docs | 0.120 | 0.139 | 0.152

| Av Precision  ]0.192 ] 0.232 | 0.266 |

Table 20: VMRI1a retrieval precision for WS using SI desk-microphone modelling adapted
with R75 desk-microphone data.

SI + R75 Desk Models
Weighting Scheme | uw | cfw [ cw
Precision | 5 docs | 0.275 | 0.313 | 0.346
10 docs | 0.244 | 0.271 | 0.294
15 docs | 0.214 | 0.244 | 0.278
20 docs | 0.189 | 0.217 | 0.242

| Av Precision | 0.234 ] 0.276 | 0.295 \

Table 21: VMRI1D retrieval precision for WS using SI desk-microphone modelling adapted
with R75 desk-microphone data.
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Average Precision

Weighting Scheme UW | cfw | cw
Text Avg. Prec. 0.293 | 0.332 | 0.358
(relative) 100% | 100% | 100%
Spoken SD Head | 88.4% | 88.9% | 88.3%
Documents Desk | 82.3% | 85.2% | 83.6%
SI Head | 82.3% | 79.2% | 83.8%

Desk | 62.8% | 66.0% | 76.8%
SI + R13 | Head | 79.9% | 82.5% | 90.5%
Desk | 61.4% | 64.2% | 67.9%
SI + R75 | Head | 87.4% | 88.6% | 94.4%
Desk | 65.5% | 69.9% | 74.3%

Table 22: Summary of VMR1a retrieval average precision for WS.

Average Precision

Weighting Scheme wvo | cfw | cw
Text Avg. Prec. 0.296 | 0.332 | 0.346
(relative) 100% | 100% | 100%
Spoken SD Head | 89.5% | 94.0% | 95.4%
Documents Desk | 85.8% | 89.2% | 91.0%
SI Head | 84.8% | 87.7% | 87.0%

Desk | 72.3% | 75.0% | 77.2%
SI 4+ R13 | Head | 82.8% | 85.2% | 88.2%
Desk | 68.6% | 75.6% | 80.6%
SI + R75 | Head | 91.2% | 92.8% | 96.5%
Desk | 79.1% | 83.1% | 85.3%

Table 23: Summary of VMRI1b retrieval average precision for WS.

well correlated to WS behaviour and that R75 data gives retrieval performance equivalent
to SD models. This latter result is not surprising in view of the amount of adaptation data,
which is nearly all the training data used for the initial SD models. Although not shown
here, improvement is most dramatic for our north American speaker where the poorly
matching British English ST models have been adapted to his north American speaking.
style. These conclusions are reinforced by the corresponding results for desk microphone
data shown in Tables 18, 19, 20 and 21 which follow the same trends, albeit with overall
lower retrieval performance for the reasons noted for SD retrieval.

5.1.5 Concluding Observations on WS

Tables 22 and 23 show a summary of average precision for our WS systems. Overall
retrieval using fixed vocabulary keyword spotting has heen shown to be reasonably effec-
tive. Retrieval performance is clearly well correlated to acoustic WS performance, with
obvious implications for the design of word spotters for retrieval applications. As stated
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Text
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.584 | 0.644 | 0.692
10 docs | 0.406 | 0.440 | 0.442
15 docs | 0.303 | 0.319 | 0.332
20 docs | 0.241 | 0.250 | 0.264

| Av Precision | 0.600 | 0.671 [ 0.718 |

Table 24: VMRI1a retrieval precision for open-vocabulary manual text transcription.

Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.392 | 0.375 | 0.371
10 docs | 0.313 | 0.308 | 0.344
15 docs | 0.279 | 0.292 | 0.308
20 docs | 0.250 | 0.271 | 0.290

| Av Precision ] 0.327 | 0.352 | 0.368 |

Table 25: VMRI1b retrieval precision for open-vocabulary manual text transcription.

previously the WS approach is restricted by the need to know the required search vocab-
ulary in advance of recognition (and, of course, retrieval). Overall speaker adaptation is
less effective in improving retrieval performance for the SI desk-microphone models. This
is probably a reflection of similar behaviour for the WS FOM noted in Section 3.1.

5.2 Open Vocabulary Retrieval : PLS Tests

Work described in this section and the next is taken from stage 3 of the VMR project and
covers investigations into open vocabulary retrieval. Since this work has not previously
been reported in depth, the results given here are rather more comprehensive than those
for fixed vocabulary retrieval. In this section we give first the reference results for text
retrieval, and then results for phone lattice spotting. In the next section, 5.3, we consider
open vocabulary retrieval using large vocabulary recognition.

5.2.1 Text Retrieval

Once again a reference standard is defined by computing retrieval performance for
text transcriptions of the documents. Tables 24 and 25 show open-vocabulary text re-
trieval performance for VMR1a and VMRI1b respectively. These results were obtained
using the standard van Rijshergen stop list [van Rijshergen, 1979] and, of course, Porter
suffix stripping. It can be observed that retrieval performance for VMR1a is significantly
improved by the open-vocabulary compared to the fixed WS vocabulary shown in Table
4; although perhaps surprisingly, given the increased average number of terms in each
query, the performance here for VMR1b is not much better than that shown in Table 5.
However it should be remembered that the fixed keywords chosen were well matched to
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the VMR1 domain and many of the additional terms may be of only limited utility for
these documents. Also the proportional increase in the query length is much higher for
VMR1la. The open text VMR1a queries increase on average from 5.7 terms to 19.0 terms,
whereas VMR1b increase from 2.6 to only 7.4 terms.

Evaluating Different Stop Word Lists A number of stop word lists were investigated
as alternatives to the standard van Rijshergen list. Although still widely used this list is
now quite old and it appears that with increased availability of computer storage space
many contemporary systems use much smaller lists. Four lists supplied to us by City
University were investigated in this study. These were lists found to be generally useful
by the team at City and were in no way tuned to the VMR1 domain. The number of stop
words in each list is as follows:

Tist 1 | List 2 | List 3 | List 4 | van R
No of Stop Words 229 32 7 3 290

Tables 26, 27, 28, 29, 30, 31, 32 and 33 show retrieval performance for the four alter-
native stop word lists. From these results it would appear that there are no significant-
variations in retrieval performance for VMR1a and VMR1b arising from using the differ-
ent stop word lists. Of course, the size of the VMR archive means that this result itself
cannot be taken as significant. Bearing this important point in mind some observations
on the results observed can be made as follows. Overall the trend would appear to be that
the best retrieval performance is achieved using the original van Rijsbergen list, and that
performance is on average progressively degraded as the stop word list is shortened. This
effect is most clearly seen to the uw scheme, is much reduced for cfw ; while variation for
cw could be attributed to noise.

Overall this result is slightly surprising given the apparent current popularity of short
stop word lists. However, one particular features of these shorter lists is that they enable
more sophisticated retrieval strategies to be examined, e.g. ones using phrases, and it
may be that we would see a greater effect if we were to investigate such techniques.
An alternative reasonable explanation for these results arises from the term weighting
methods, and in particular the collection frequency weighting (cfw ) component. The cfw
for term i is calculated as ¢ fw(i) = log N —log n where is NV is the number of documents in
the collection and 7 is the number of documents in which i is present. Where n is relatively
large, as will often be the case for potential stop words, there will be little change in the
size of c¢fw(i) as the size of the document archive increases. However, for rarer content
bearing words the relative difference between N and n is likely to increase rapidly when
the size of N increases. Thus for large archives, such as those currently used in most text’
retrieval experimentation, the relative impact of relatively common search terms on the
overall matching score between a document and a query will frequently be much reduced.

5.2.2 Phone Lattice Spotting

The following sections give results for PLS with different acoustic models. The first three
experiments show performance for the head microphone data and the last experiment for
desk microphone data.
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Text
Weighting Scheme | uw cfw cW
Precision | 5 docs | 0.576 | 0.628 | 0.684
10 docs | 0.392 | 0.430 | 0.440
15 docs | 0.295 | 0.311 | 0.327
20 docs | 0.236 | 0.247 | 0.262

[ Av Precision [ 0.602 [ 0.656 | 0.705 |

Table 26: VMR1a retrieval precision for open-vocabulary manual text transcription with
stop word list 1.

Text
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.379 | 0.371 | 0.375
10 docs | 0.331 | 0.315 | 0.333
15 docs | 0.275 | 0.293 | 0.317
20 docs | 0.255 | 0.279 | 0.288

[ Av Precision | 0.321 [ 0.353 [ 0.363 |

Table 27: VMR1b retrieval precision for open-vocabulary manual text transcription with
stop word list 1.

Text
Weighting Scheme | uw cfw cWw
Precision | 5 docs | 0.488 | 0.624 | 0.684
10 docs | 0.358 | 0.428 | 0.452
15 docs | 0.269 | 0.312 | 0.332
20 docs | 0.215 | 0.245 | 0.264

[ Av Precision | 0.512 [ 0.654 [ 0.720 |

Table 28: VMR1a retrieval precision for open-vocabulary manual text transcription with
stop word list 2.

Text
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.321 | 0.350 | 0.396
10 docs | 0.275 | 0.306 | 0.338
15 docs | 0.244 | 0.282 | 0.307
20 docs | 0.225 | 0.253 | 0.284

[ Av Precision | 0.264 [ 0.324 [ 0.357 |

Table 29: VMR1b retrieval precision for open-vocabulary manual text transcription with
stop word list 2.
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Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.476 | 0.624 | 0.700
10 docs | 0.326 | 0.428 | 0.452
15 docs | 0.249 | 0.307 | 0.336
20 docs | 0.210 | 0.245 | 0.262

[ Av Precision [ 0.493 ] 0.655 | 0.721 |

Table 30: VMR 1a retrieval precision for open-vocabulary manual text transcription with
stop word list 3.

Text
Weighting Scheme | uw cfw cwW
Precision | 5 docs | 0.325 | 0.354 | 0.408
10 doces | 0.279 | 0.308 | 0.342
15 docs | 0.240 | 0.282 | 0.313
20 docs | 0.216 | 0.251 | 0.279

[ Av Precision [ 0.257 [ 0.325 [ 0.354 |

Table 31: VMR1b retrieval precision for open-vocabulary manual text transcription with
stop word list 3.

Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.460 | 0.624 | 0.700
10 docs | 0.318 | 0.428 | 0.454
15 docs | 0.244 | 0.307 | 0.332
20 docs | 0.202 | 0.245 | 0.261

[ Av Precision [ 0.476 [ 0.655 ] 0.719 |

Table 32: VMR1a retrieval precision for open-vocabulary manual text transcription with

stop word list 4.

Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.328 | 0.354 | 0.404
10 docs | 0.279 | 0.310 | 0.340
15 docs | 0.238 | 0.285 | 0.315
20 docs | 0.212 | 0.251 | 0.278

[ Av Precision | 0.253 ] 0.325 | 0.358 |

Table 33: VMR1b retrieval precision for open-vocabulary manual text transcription with
stop word list 4.
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SD Head Models

Weighting Scheme | uw cfw cw

Terms i Time | Phones
Precision | 5 docs | 0.366 | 0.408 | 0.392 | 0.480 | 0.472
10 docs | 0.252 | 0.312 | 0.286 | 0.342 | 0.340
15 docs | 0.201 | 0.235 | 0.235 | 0.255 | 0.259
20 docs | 0.167 | 0.195 | 0.193 | 0.211 | 0.211

[ Av Precision ] 0.366 | 0.427 [ 0.398 [ 0.490 [ 0.495 |

Table 34: VMR 1a retrieval precision for SD head-microphone monophone models PLS.

SD Head Models

Weighting Scheme | uw cfw cw

Terms | Time | Phones
Precision | b docs | 0.329 | 0.288 | 0.317 | 0.342 | 0.338
10 docs | 0.267 | 0.254 | 0.240 | 0.279 | 0.288
15 docs | 0.213 ] 0.225 | 0.214 | 0.243 | 0.246
20 docs | 0.197 | 0.212 | 0.198 | 0.225 | 0.222

[ Av Precision ] 0.262 [ 0.285 | 0.284 [ 0.311] 0.315 |

Table 35: VMR1b retrieval precision for SD head-microphone monophone models PLS. -

SI Head Models
Weighting Scheme | uw cfw cw
Words | Time | Phones

Precision | 5 docs | 0.252 | 0.304 | 0.324 | 0.376 | 0.372
10 docs | 0.186 | 0.222 | 0.234 | 0.254 | 0.268
15 docs | 0.152 | 0.185 | 0.184 | 0.208 | 0.212
20 docs | 0.125 | 0.149 | 0.151 | 0.175 | 0.177

r Av Precision ] 0.253 ] 0.318 | 0.320 I 0.386 i 0.390 \

Table 36: VMR 1a retrieval precision for ST head-microphone monophone models PLS.

ST Head Models

Weighting Scheme | uw cfw cw

Words l Time I Phones
Precision | 5 docs | 0.200 | 0.233 | 0.238 | 0.250 | 0.242
10 docs | 0.160 | 0.183 | 0.190 | 0.190 | 0.200
15 docs | 0.146 | 0.168 | 0.175 | 0.199 | 0.200
20 docs | 0.148 | 0.157 | 0.170 | 0.183 | 0.185

[ Av Precision | 0.174 [ 0.199 [ 0.208 [ 0.216 | 0.222 |

Table 37: VMR1b retrieval precision for SI head-microphone monophone models PLS.
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Speaker-Dependent Monophone Modelling Tables 34 and 35 show PLS retrieval
performance for SD head-microphone monophone modelling, including various different
ways of defining document length. It is shown clearly that using only the terms present
in the query to represent the document length is ineffective and that the count of phones
in the most likely path from the Viterbi decoding is the best measure of document length
available. This gives an improvement of more than 20% for VMR1a and around 10% for
VMRI1b.

Speaker-Independent Monophone Modelling Tables 36 and 37 show retrieval per-
formance for PLS with SI monophones. Performance is considerably reduced relative to
PLS with SD modelling, but this is to be expected due to the degraded PLS word spotting

accuracy noted in Section 3.2. Similar percentage improvements in retrieval performance’

can be observed as with the SD monophones when the document length is measured in
phones or time.

Speaker-Independent Biphone Modelling Tables 38 and 39 show that the mod-
elling of context provided by the biphone models produces an anticipated improvement
in retrieval performance. Although the retrieval performance is not as good as for SD
monophone modelling, the biphones models represent the best SI system available. It
would be expected that SD biphones would give improved retrieval performance over any
of the PLS models considered here, unfortunately insufficient speaker-dependent acoustic
training data meant that this experiment could not be carried out.

Tables 40 and 41 show PLS retrieval performance for desk-microphone data ST bi-
phones. These are the models used in the final VMR demonstration system. As for W5,
desk-microphone models for PLS perform significantly worse than the head-microphone
system. Based on the head-microphone results, we would anticipate that for the desk-
microphone data SD monophones and SI monophones would perform better and worse
respectively to the biphones, however this hypothesis was not tested.

Additionally, SI PLS performance could probably be improved by the application of
speaker adaptation, followed by a rescoring of the lattice or perhaps a complete reprocess-
ing of the data.

5.2.3 Concluding Observations on PLS

Tables 42 and 43 show a summary of retrieval performance using PLS for VMR1a and
VMR1b respectively. From these comparative results it is clear that there is once again a
strong correlation between speech recognition modelling quality and retrieval performance.
It is shown that improvements in acoustic modelling can produce significant improvements
in retrieval performance and thus continued research into acoustic modelling is clearly
important.

ST modelling is clearly preferable in practice, but SD results are also given to illustrate
the increased potential of PLS where superior acoustic modelling is available. Overall,
PLS has been shown to be a useful technique in retrieval of spoken documents. However,
it is clear that much additional research into PLS methods remains to be carried out.
Tt should be noted that in these experiments search words were only searched for in the
form originally specified in the request. As was described in detail in Section 4.2 there
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SI Head Models
Weighting Scheme | uw ctw cw
Words l Time i Phones

Precision | 5 docs | 0.308 | 0.400 | 0.396 | 0.464 | 0.468
10 docs | 0.226 | 0.286 | 0.276 | 0.314 | 0.322
15 docs | 0.185 | 0.224 | 0.220 | 0.248 | 0.247
20 docs | 0.154 | 0.182 | 0.183 | 0.204 | 0.204

[ Av Precision | 0.319 [ 0.411 | 0.400 [ 0.462 | 0470 |

Table 38: VMR 1a retrieval precision for SI head-microphone biphone models PLS.

SI Head Models

Weighting Scheme | uw cfw cW

Words | Time | Phones
Precision | 5 docs | 0.296 | 0.279 | 0.233 | 0.313 | 0.317
10 docs | 0.235 | 0.254 | 0.223 | 0.248 | 0.254
15 docs | 0.199 | 0.226 | 0.206 | 0.226 | 0.236
20 docs | 0.171 | 0.198 | 0.200 | 0.206 | 0.205

[ Av Precision ] 0.224 ] 0.262 [ 0.248 [ 0.269 | 0.277 |

Table 39: VMR1b retrieval precision for ST head-microphone biphone models PLS.

ST Desk Models |
Weighting Scheme | uw cfw cw
Words | Time | Phones

Precision | 5 docs | 0.272 | 0.356 | 0.316 | 0.364 | 0.360
10 docs | 0.208 | 0.246 | 0.220 | 0.260 | 0.266
15 docs | 0.168 | 0.187 | 0.181 | 0.204 | 0.204
20 docs | 0.143 | 0.158 | 0.1563 | 0.172 | 0.176

[ Av Precision | 0.286 ] 0.362 | 0.321 [ 0.374 | 0.377 |

Table 40: VMR1a retrieval precision for SI desk-microphone biphone models PLS.

ST Desk Models

Weighting Scheme | uw cfw cw

Words | Time | Phones
Precision | 5 docs | 0.242 | 0.217 | 0.200 | 0.229 | 0.225
10 docs | 0.210 | 0.215 | 0.181 | 0.231 | 0.235
15 docs | 0.197 | 0.196 | 0.172 | 0.210 | 0.207
20 docs | 0.181 | 0.185 | 0.165 | 0.188 | 0.183

[ Av Precision | 0.183 [ 0.206 | 0.201 [ 0.216 | 0.226 |

Table 41: VMR1b retrieval precision for SI desk-microphone biphone models PLS.
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Figure 1: Retrieval performance against acoustic threshold for various term weighting
schemes with head-microphone SI biphones for VMR1a.
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Figure 2: Retrieval performance against acoustic threshold for various term weighting
schemes with head-microphone SI biphones for VMR1b.
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Figure 3: PLS retrieval performance against acoustic score with cw weighting for different
acoustic models for VMR1a.
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Figure 4: PLS retrieval performance against acoustic score with cw weighting for different
acoustic models for VMR1b.
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Average Precision

Weighting Scheme ww | cfw | cw
Text Avg. Prec. 0.600 | 0.671 | 0.718
(rvelative) 100% | 100% | 100%
Spoken SD | Head Monophones | 61.0% | 63.6% | 68.9%

Documents | SI | Head Monophones | 42.2% | 47.4% | 54.3%
Head Biphones 53.2% | 61.3% | 65.5%
Desk Biphones 47.7% | 53.9% | 52.6%

Table 42: Summary of VMR1a retrieval average precision for PLS.

Average Precision

Weighting Scheme Uw l cfw ] cw
Text Avg. Prec. 0.327 | 0.352 | 0.368
(relative) 100% | 100% | 100%
Spoken SD | Head Monophones | 80.1% | 81.0% | 85.6%

Documents | SI | Head Monophones | 53.2% | 56.5% | 60.3%
Head Biphones 68.5% | 74.4% | 75.3%
Desk Biphones 56.0% | 58.5% | 61.4%

Table 43: Summary of VMR1b retrieval average precision for PLS.

are several other approaches possible for this, but shortness of time prevented additional
investigation.

Figures 1 and 2 show average retrieval precision performance against acoustic threshold

for VMR1a and VMR1D respectively with SI biphone models. It can be seen in both cases
that cw weighting with document length measured in time or phones gives better overall
performance.

Figures 3 and 4 show average precision retrieval performance against score threshold for
VMR1a and VMR1b respectively for the different acoustic models. These figures compare
retrieval performance using cw weighting using document length measured in phones for
SD monophones, SI monophones and SI biphones. The figures show that not only does
the SD model give the best single threshold average precision in each case, but also that
it is in general more robust to the exact choice of threshold.

A very positive observation is that retrieval performance for desk-microphone biphones,
i.e. final VMR demonstration system is around 60% of text retrieval performance when
using cw weighting.

All these figures indicate that the general quality of retrieval is improved when better
acoustic models are used.

5.3 Open Vocabulary Retrieval : LVR Tests

We now consider retrieval performance for the alternative model of word recognition, using
LVR.
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Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.560 | 0.632 | 0.684
10 docs | 0.388 | 0.426 | 0.434
15 docs | 0.289 | 0.315 | 0.327
20 docs | 0.234 | 0.247 | 0.261

[ Av Precision | 0.576 [ 0.653 [ 0.703 |

Table 44: VMR1a retrieval precision for 20K WSJ vocabulary manual text transcription.

Text
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.346 | 0.313 | 0.321
10 docs | 0.281 | 0.277 | 0.294
15 docs | 0.257 | 0.257 | 0.272
20 docs | 0.227 | 0.242 | 0.258

[ Av Precision ] 0.299 | 0.312 | 0.325 |

Table 45: VMR1b retrieval precision for 20K WSJ vocabulary manual text transcription.

Experiments beyond this point are concerned only with the head-microphone data
since LVR experiments using desk-microphone data were not carried out.

5.3.1 Large Vocabulary Speech Recognition

This section gives retrieval results using the 20K Wi5J LVR system. Since this recogniser
has an OOV rate in excess of 3% for the VMR corpus we anticipate that retrieval per-
formance may be somewhat degraded merely by the absence of some search terms. Hence
the first experiment shows manual text transcription retrieval performance where the vo-
cabulary has been limited to that of the 20K recogniser. The second experiment shows
retrieval performance using the transcription output from the 20K WSJ LVR system.

20K Text Retrieval Tables 44 and 45 show performance for the manual transcriptions

for VMR1a and VMR1b respectively, when using the W5J 20K vocabulary and the van
Rijsbergen stop list. As anticipated retrieval performance is reduced in all cases relative
to fully open-vocabulary text retrieval as shown in Tables 24 and 25.

Tables 46, 47, 48, 49, 50, 51, 52 and 53 show W5J 20K text retrieval performance for the
four stop word lists examined for open text retrieval. Similar behaviour with respect to the
alternative stop word lists is observed for 20K text as that noted for open-vocabulary text.
One slight difference is an apparent slight improvement in VMRI1D retrieval performance
for cw weighting when using the shorter stop word lists. This increase is small and cannot
be regarded as significant from these results. A possible explanation for this effect is as
follows. Having removed some important search terms by restricting the search vocabulary
to the WSJ 20K, it may be that additional terms not removed in the shorted lists may act
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Text
Weighting Scheme | uw cfw cW
Precision | 5 docs | 0.572 | 0.620 | 0.676
10 docs | 0.390 | 0.412 | 0.430
15 docs | 0.287 | 0.305 | 0.327
20 docs | 0.231 | 0.244 | 0.258

[ Av Precision | 0.593 [ 0.646 | 0.691 |

Table 46: VMR1a retrieval precision for manual text transcription reduced to 20K WSJ
vocabulary with stop word list 1.

Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.367 | 0.350 | 0.367
10 docs | 0.313 | 0.300 | 0.329
15 docs | 0.267 | 0.281 | 0.313
20 docs | 0.246 | 0.270 | 0.282

[ Av Precision | 0.306 [ 0.338 [ 0.354 |

Table 47: VMR1b retrieval precision for manual text transcription reduced to 20K WSJ
vocabulary with stop word list 1.

Text
Weighting Scheme | uw ctw cw
Precision | 5 docs | 0.488 | 0.612 | 0.668
10 docs | 0.350 | 0.412 | 0.442
15 docs | 0.259 | 0.309 | 0.331
20 docs | 0.212 | 0.242 | 0.261

[ Av Precision | 0.496 [ 0.639 | 0.707 |

Table 48: VMR 1a retrieval precision for manual text transcription reduced to 20K WSJ
vocabulary with stop word list 2.

Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.313 | 0.333 | 0.383
10 docs | 0.263 | 0.292 | 0.327
15 docs | 0.233 | 0.265 | 0.297
20 docs | 0.216 | 0.243 | 0.277

r Av Precision l 0.256 | 0.308 | 0.342 ]

Table 49: VMR1D retrieval precision for manual text transcription reduced to 20K WSJ
vocabulary with stop word list 2.
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Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.476 | 0.616 | 0.684
10 docs | 0.316 | 0.412 | 0.444
15 docs | 0.244 | 0.303 | 0.333
20 docs | 0.203 | 0.240 | 0.261

[ Av Precision [ 0.477 [ 0.640 | 0.707 |

Table 50: VMR 1a retrieval precision for manual text transcription reduced to 20K W5J
vocabulary with stop word list 3.

Text
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.308 | 0.338 | 0.400
10 docs | 0.267 | 0.294 | 0.331
15 docs | 0.231 | 0.267 | 0.310
20 docs | 0.207 | 0.241 | 0.270

[ Av Precision [ 0.249]0.309 | 0.339 |

Table 51: VMR1b retrieval precision for manual text transcription reduced to 20K WiSJ
vocabulary with stop word list 3.

Text
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.464 | 0.616 | 0.684
10 docs | 0.312 | 0.412 | 0.444
15 docs | 0.237 | 0.303 | 0.329
20 docs | 0.195 | 0.240 | 0.259

[ Av Precision | 0.461 [ 0.640 | 0.704 |

Table 52: VMR1a retrieval precision for manual text transcription reduced to 20K WSJ
vocabulary with stop word list 4.

Text
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.313 | 0.338 | 0.392
10 docs | 0.267 | 0.296 | 0.329
15 docs | 0.228 | 0.269 | 0.307
20 docs | 0.203 | 0.241 | 0.269

[ Av Precision | 0.245 [ 0.310 | 0.341 |

Table 53: VMR1b retrieval precision for manual text transcription reduced to 20K WS5J
vocabulary with stop word list 4.
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20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.472 | 0.540 | 0.568
10 docs | 0.316 | 0.340 | 0.370
15 docs | 0.235 | 0.255 | 0.273
20 docs | 0.190 | 0.211 | 0.219

[ Av Precision | 0475 [ 0.523 | 0.574 |

Table 54: VMR1a retrieval precision for 20K WSJ LVR.

20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.254 | 0.271 | 0.304
10 docs | 0.213 | 0.238 | 0.248
15 docs | 0.204 | 0.219 | 0.239
20 docs | 0.184 | 0.193 | 0.217

[ Av Precision | 0.225 [ 0.246 [ 0.264 |

Table 55: VMR1b retrieval precision for 20K WSJ LVR.

as useful search terms when cw weighting is used. This hypothesis would obviously have to
bhe tested on a much larger archive hefore it could be accepted. An alternative explanation
is that the variation in cw results arises from slightly changes in the term weights arising
from changes in measured document length when different numbers of terms are removed.
More extensive experiments would be needed to investigate these possibilities, these were
not attempted here.

Since overall the variation in retrieval results is minimal, results obtained with the van
Rijsbergen list are used as the standard for comparison against later results.

20K Wall Street Journal recogniser As mentioned in Section 3.3, our tests with
LVR used the standard WSJ 20K vocabulary and language model. As the output of the
recognition is a transcription of the original speech, the actual search tests are done on
the texts given by this automated transcription. Such texts may naturally be subjected
to the use of stop lists.

Tables 54 and 55 show VMR 1a and VMR1b retrieval performance for the automated
transcription output of the 20K WSJ recogniser using the van Rijsbergen stop list. Results
here are further degraded relative to open-vocabulary text by the speech recognition errors
in the LVR system.

Tables 56, 57, 58, 59, 60, 61, 62 and 63 again show retrieval performance with the

alternative stop word lists. Similar trends are observed for different stop word lists to
those already noted for previous experiments with the different lists. Although overall
it appears that the shorter stop word lists are less preferable for LVR than for the text
systems. As noted before these results cannot be taken as significant, however a clear
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20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.460 | 0.520 | 0.568
10 docs | 0.304 | 0.338 | 0.356
15 docs | 0.236 | 0.247 | 0.271
20 docs | 0.195 | 0.203 | 0.217

[ Av Precision [ 0.470 ] 0.515 | 0.566 |

Table 56: VMR 1a retrieval precision for 20K WSJ LVR for stop word list 1.

20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.225 | 0.258 | 0.296
10 docs | 0.219 | 0.231 | 0.256
15 does | 0.206 | 0.210 | 0.233
20 docs | 0.189 | 0.195 | 0.219

[ Av Precision [ 0.225 [ 0.238 | 0.261 |

Table 57: VMR1b retrieval precision for 20K WSJ LVR for stop word list 1.

20K WSJ LVR
Weighting Scheme | uw cfw W
Precision | 5 docs | 0.380 | 0.496 | 0.580
10 docs | 0.242 | 0.330 | 0.372
15 docs | 0.192 | 0.252 | 0.281
20 docs | 0.156 | 0.204 | 0.225

[ Av Precision [ 0.347 [ 0.492 | 0.583 |

Table 58: VMR1a retrieval precision for 20K WSJ LVR for stop word list 2.

20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.217 | 0.217 | 0.275
10 docs | 0.188 | 0.213 | 0.250
15 docs | 0.167 | 0.206 | 0.219
20 does | 0.151 | 0.191 | 0.207

l Av Precision I 0.182 l 0.217 | 0.243 |

Table 59: VMR1b retrieval precision for 20K WSJ LVR for stop word list 2.

49




20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.360 | 0.504 | 0.580
10 doces | 0.236 | 0.330 | 0.378
15 docs | 0.183 | 0.251 | 0.288
20 docs | 0.146 | 0.201 | 0.225

[ Av Precision | 0.336 [ 0.494 [ 0.581 |

Table 60: VMR1a retrieval precision for 20K WSJ LVR for stop word list 3.

20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.221 | 0.225 | 0.283
10 docs | 0.194 | 0.213 | 0.242
15 docs | 0.167 | 0.208 | 0.221
20 docs | 0.146 | 0.190 | 0.204

[ Av Precision | 0.175 [ 0.216 | 0.243 |

Table 61: VMR1D retrieval precision for 20K WSJ LVR for stop word list 3.

20K WSJ LVR
Weighting Scheme | uw cfw cw
Precision | 5 docs | 0.356 | 0.504 | 0.584
10 docs | 0.236 | 0.328 | 0.380
15 docs | 0.180 | 0.251 | 0.285
20 docs | 0.144 | 0.201 | 0.225

[ Av Precision ] 0.325 [ 0.494 [ 0.580 |

Table 62: VMR1a retrieval precision for 20K WSJ LVR for stop word list 4.

20K WSJ LVR
Weighting Scheme | uw cfw W
Precision | 5 does | 0.233 | 0.238 | 0.292
10 docs | 0.190 | 0.213 | 0.250
15 docs | 0.165 | 0.211 | 0.218
20 docs | 0.144 | 0.191 | 0.204

[ Av Precision ] 0.179[0.222 [ 0.244 |

Table 63: VMR1b retrieval precision for 20K WSJ LVR for stop word list 4.
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Average Precision
Weighting Scheme uw | cfw ] cw
Text Full Vocab. Avg. Prec. | 0.600 | 0.671 | 0.718
(relative) | 100% | 100% | 100%
20K Vocab. 96.0% | 97.3% | 97.9%
Spoken Documents | 20K WSJ LVR 79.2% | 77.9% | 79.9%

Table 64: Summary of VMR1a retrieval average precision for 20K WS5J LVR.

Average Precision
Weighting Scheme uw ] cfw | cw
Text Full Vocab. Avg. Prec. | 0.327 | 0.352 | 0.368
(relative) 100% | 100% | 100%
20K Vocab. 91.4% | 88.6% | 88.3%
Spoken Documents | 20K WSJ LVR 68.8% | 69.9% | 71.7%

Table 65: Summary of VMR1b retrieval average precision for 20K WSJ LVR.

trend does seem to be apparent. This effect is probably attributable to recognition errors,
particularly of shorter function words which are always harder to recognise accurately.
More of these words are removed as the length of the stop word list is increased leading
to an improvement in retrieval performance since the terms which remain are more likely
to be correct. Since these variations are again small, the van Rijsbergen list is used in all
following experiments.

5.3.2 Concluding Observations on LVR

Tables 64 and 65 show a summary of LVR retrieval performance for VMR1a and
VMR1b respectively. For both VMRla and VMR1Db retrieval performance is degraded
relative to open-text retrieval when the vocabulary is restricted to 20K text. This effect
is noticibly smaller for VMR1a. The probable explanation for this is the increased redun-
dancy associated with the much longer average request length in VMR1a. Hence queries
derived from these requests will be less sensitive to the absence of individual search terms
than the shorter VMR1b queries.

Retrieval performance is further degraded for the automated 20K LVR transcription.
Again this degradation is much larger for VMR1b. But overall it is encouraging to note
that for this 20K LVR system, which is not well matched to the VMR domain, a retrieval
performance of 70% compared to text is obtained for VMR1b and 80% compared to text
for VMR1a.

5.4 Combination Methods

The retrieval results reported in previous sections using different speech recognition sys-
tems each have advantages and disadvantages. The following experiments report results
using the combination methods described in Section 4.3.
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5.4.1 WS + 20K LVR

Experiments in this section concern the combination of fixed vocabulary WS and the 20K
WSJ LVR system. This strategy of course assumes that there is an appropriate WS search
vocabulary for a given application. It might for example be useful where LVR, was used
to generate a general transcription and WS was used to seek some specialised vocabulary,
possibly at a later time, in advance of retrieval.

As noted in Section 4.3.2, the merged document length is calculated as the sum of all
terms from both LVR and WS.

Data Fusion In data fusion the various scores from different types of index are combined
for each document. Tables 66 and 67 show retrieval performance results from data fusion
experiments combining 20K LVR with SD WS. Results are shown both for simple fusion
where document matching scores are added together and normalised fusion where scores
from each source are normalised relative to the highest score from that source before

addition. Thus the effect of fusion is to derive a single output list from separate lists for-

cach index, giving the results shown in the tables. (Note WS data used for all Data Fusion
experiments reported here were in each case those at the acoustic score threshold which
gave optimal retrieval performance for WS on its own.)

Tables 68 and 69 show retrieval performance for fusion using SI W S outputs and, as
before, SI 20K WSJ LVR output. As for ST W S on its own, fusion retrieval performance
is degraded in all cases for ST models relative to SD models.

The next experiments investigate the fusion retrieval performance using 20K WisJ
output with adapted SI WS models. Tables 70 and 71 show fusion retrieval performance
for WS models adapted using R13 data, and Tables 72 and 73 show fusion retrieval
performance for WS models adapted using R75 data. (Note in each case for adapted
WS the acoustic threshold and word insertion penalty were selected which gave the best
available WS only retrieval performance.)

Observations Comparing these results to those for WS and LVR indexing systems on
their own, overall it can be seen that the fusion of SD WS and LVR gives little improvement
relative to LVR on its own for VMR1a and for fusion of ST WS with LVR there is actually
a slight decrease. Conversely it can be seen that there is a good improvement in retrieval
performance in all cases for VMR1b. As for the individual WS evaluation there is a clear
correlation between acoustic WS FOM and retrieval performance. Retrieval performance

is best for combination involving SD WS and least effective using SI W S. The adapted SI

WS performs better as more adaptation data is used.

Tt can be seen that retrieval performance is better for VMR1a by direct score fusion
and for VMR1b with the normalised score addition. This is probably again due to the
offectiveness of LVR on its own for VMRla compared to WS5. In contrast for VMRI1Db
WS and LVR are individually roughly comparable in retrieval performance, and thus it
is reasonable that when their outputs are fused they should have equal weight to give
the best performance. In the case of VMR1a the introduction of WS adversely affects the
LVR scores and thus performs best where the WS component has the smaller influence, i.e.
with direct score combination. Particularly for VMR1a, LVR match scores will on average
have larger values than WS match scores since many more terms can be matched, so in
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Simp. Fuse Norm. Fuse
Weight Scheme | uw | cfw | cw uw | cfw | cw
Prec. | 5 docs | 0.432 | 0.536 | 0.596 | 0.416 | 0.496 | 0.524
10 docs | 0.320 | 0.354 | 0.370 | 0.292 | 0.332 | 0.340
15 docs | 0.241 | 0.267 | 0.287 | 0.236 | 0.260 | 0.267
20 docs | 0.204 | 0.221 | 0.230 | 0.200 | 0.214 | 0.224

[ Av Precision ] 0.473 | 0.544 | 0.588 [ 0.449 [ 0.505 [ 0.540 |

Table 66: VMR1a retrieval precision for data fusion combining 20K LVR and 5D W S.

Simp. Fuse Norm. Fuse
Weight Scheme | uw | cfw ] W uw | cfw ] cw
Prec. | 5 docs | 0.338 | 0.350 | 0.383 | 0.333 | 0.367 | 0.396
10 docs | 0.292 | 0.319 | 0.329 | 0.292 | 0.331 | 0.338
15 docs | 0.256 | 0.288 | 0.292 | 0.258 | 0.293 | 0.299
20 docs | 0.223 | 0.252 | 0.265 | 0.232 | 0.265 | 0.277

[ Av Precision ] 0.292 | 0.318 | 0.347 [ 0.295 | 0.332 | 0.352 |

Table 67: VMR1b retrieval precision for data fusion combining 20K LVR and SD WS.

Simp. Fuse Norm. Fuse
Weight Scheme | uw | ofw | cw uw | cfw | cw
Prec. 5 docs | 0.452 | 0.548 | 0.588 | 0.412 | 0.472 | 0.524
10 docs | 0.318 [ 0.352 | 0.374 | 0.284 | 0.320 | 0.342
15 docs | 0.244 | 0.263 | 0.280 | 0.232 | 0.240 | 0.267
20 docs | 0.195 | 0.210 | 0.225 | 0.193 | 0.201 | 0.215

[ Av Precision ] 0.468 | 0.538 | 0.591 [ 0.426 | 0.482 [ 0.521 |

Table 68: VMR1a retrieval precision for data fusion combining 20K LVR and 5I W S.

Simp. Fuse Norm. Fuse
Weight Scheme | uw | cfw l cw uw I cfw l cw
Prec. | 5 docs | 0.329 | 0.350 | 0.371 | 0.329 | 0.363 | 0.396
10 docs | 0.275 | 0.315 | 0.323 | 0.279 | 0.315 | 0.338
15 docs | 0.254 | 0.278 | 0.294 | 0.256 | 0.281 | 0.300
20 docs | 0.227 | 0.240 | 0.258 | 0.234 | 0.259 | 0.260

[ Av Precision | 0.285 [ 0.312 ] 0.335 | 0.289 | 0.319 [ 0.342 |

Table 69: VMR1b retrieval precision for data fusion combining 20K LVR and 5T W 5.
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Simp. Fuse

Norm. Fuse

Weight Scheme | uw | cfw l cw uw l cfw ] W

Prec. | 5 docs | 0.440 | 0.544 | 0.592 | 0.412 | 0.480 | 0.524
10 docs | 0.318 | 0.350 | 0.370 | 0.286 | 0.318 | 0.336
15 docs | 0.237 | 0.259 | 0.281 | 0.224 | 0.249 | 0.261
20 docs | 0.199 | 0.218 | 0.229 | 0.192 | 0.213 | 0.217

[ Av Precision | 0.470 | 0.546 | 0.589 [ 0.435 | 0.498 | 0.536 |

Table 70: VMRla retrieval precision for data fusion combining 20K LVR and SI WS

adapted using R13 data.

Simp. Fuse

Norm. Fuse

Weight Scheme | uw l cfw ! cwW uw l cfw | cwW

Prec. | 5 docs | 0.304 | 0.350 | 0.379 | 0.304 | 0.354 | 0.379
10 docs | 0.279 | 0.310 | 0.315 | 0.275 | 0.313 | 0.323
15 does | 0.254 | 0.274 | 0.285 | 0.250 | 0.276 | 0.292
20 docs | 0.228 | 0.244 | 0.257 | 0.229 | 0.248 | 0.271

[ Av Precision ] 0.280 | 0.313 [ 0.335 [ 0.281 [ 0.319 | 0.335 |

Table 71: VMRI1b retrieval precision for data fusion combining 20K LVR and S5I WS

adapted using R13 data.

Simp. Fuse

Norm. Fuse

Weight Scheme | uw 1 cfw | cwW uw I cfw | cw

Prec. 5 docs | 0.448 | 0.532 | 0.592 | 0.424 | 0.488 | 0.532
10 docs | 0.324 | 0.364 | 0.376 | 0.300 | 0.334 | 0.358
15 docs | 0.247 | 0.269 | 0.287 | 0.232 | 0.255 | 0.268
20 docs | 0.201 | 0.217 | 0.229 | 0.197 | 0.210 | 0.221

[ Av Precision | 0.479 | 0.548 [ 0.600 [ 0.436 [ 0.501 [ 0.559 |

Table 72: VMRla retrieval precision for data fusion combining 20K LVR and ST WS

adapted using R75 data.

Simp. Fuse

Norm. Fuse

Weight Scheme | uw | cfw | cw uw | cfw | ew

Prec. | 5 docs | 0.317 | 0.363 | 0.400 | 0.313 | 0.371 | 0.375
10 doces [ 0.294 | 0.331 | 0.340 | 0.290 | 0.321 | 0.331
15 docs | 0.265 | 0.281 | 0.310 | 0.260 | 0.293 | 0.303
20 docs | 0.241 | 0.255 | 0.284 | 0.242 | 0.270 | 0.284

[ Av Precision | 0.204 [ 0.322 [ 0.347 [ 0.298 [ 0.330 | 0.340 |

Table 73: VMR1b retrieval precision for data fusion combining 20K LVR and ST WS

adapted using R75 data.
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direct score combination LVR will dominate. With the much shorter V MR1b requests

this effect is much reduced (perhaps absent) and WS is of considerably greater utility, as’

has already been observed.

Data Merging In data merging term hypotheses from LVR and WS are combined
to produce a single document representation. WS hypotheses are thresholded based on
their acoustic score, and all terms from both WS and LVR are suffix stripped before the
individual evidence sources are merged. Tables 74 and 75 show retrieval performance
results for data merging experiments using 20K WSJ LVR and SD WS. T'wo versions of
this data merging procedure were carried out: adding only OOV WS words to the output
of the LVR and combining all term hypotheses from both sources. For VMR1a retrieval
performance varies very little with threshold, presumably because LVR dominates even
with little thresholding for the reasons outlined in the previous section. For all data
merging experiments results are shown for the W S acoustic threshold which gave overall
optimal retrieval performance for the data merged system.

Tables 76 and 77 show the corresponding results for VMR1la and V MR1b using SI
WS. Again, results are shown at the optimal threshold for merged LVR and WS document
representations. Similarly, Tables 78 and 79 show data merging retrieval performance for
ST WS adapted using R13 data, and Tables 80 and 81 show retrieval performance for 51
WS adapted using R75 data.

Observations For both VMRla and VMRIb it can be observed that data merging

gives improved retrieval performance. Similarly it can be observed that combining all WS
hypotheses with LVR output is for both collections better than merging only OOV terms
with the LVR output. Once again it can be seen that retrieval performance involving WS
hypotheses is strongly correlated to WS FOM.

Interestingly retrieval performance for both VMR1a and VMR1b is roughly comparable
in percentage terms relative to text when using all WS terms in combination with LVR.
In this arrangement the two indexing techniques appear to be complementary and best
retrieval performance can be achieved regardless of request length.

5.4.2 Concluding Observations on LVR+WS Combined Methods

Figures 82 and 83 show a summary of retrieval performance for LVR and WS combina-
tions for VMR 1a and VMR1b respectively. Overall the following observations can be made
(subject to the caveats about small collections). Data fusion is a very effective tool where
LVR retrieval performance is insufficient to give near best overall retrieval performance.
This is likely to be the case with VMRI1b where the queries are relatively short.

Since in general the number of terms is not known in advance, the more reliable option
is probably to implement data merging combining all WS terms. However, if short ueries

were observed and WS keywords had been well chosen for the domain, it might be better

to employ normalised data fusion for these particular queries.

5.4.3 PLS 4 20K LVR

This section describes experiments in combination of PLS and 20K WSJ LVR output.
This system again has the open-vocabulary advantages of the PLS system described in
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All Terms OO0V Terms
Weight Scheme | uw | cfw | cw uw | ctw | cwW
Prec. | 5 docs | 0.504 | 0.576 | 0.592 | 0.508 | 0.556 | 0.588
10 docs | 0.330 | 0.360 | 0.390 | 0.328 | 0.350 | 0.378
15 docs | 0.267 | 0.279 | 0.289 | 0.247 | 0.257 | 0.279
20 docs | 0.216 | 0.221 | 0.233 | 0.202 | 0.212 | 0.223

[ Av Precision | 0.504 | 0.554 [ 0.601 [ 0.498 | 0.541 | 0.589 |

Table 74: VMR1a retrieval precision for data merging combining 20K LVR and SD W5,

All Terms OO0V Terms
Weight Scheme | uw ] cfw | cw uw | cfw | cwW
Prec. | 5 docs | 0.317 | 0.304 | 0.342 | 0.296 | 0.300 | 0.329
10 docs | 0.260 | 0.273 | 0.285 | 0.240 | 0.260 | 0.273
15 docs | 0.236 [ 0.242 | 0.268 | 0.222 | 0.239 | 0.268
20 docs | 0.220 | 0.216 | 0.243 | 0.203 | 0.217 | 0.241

[ Av Precision ] 0.268 | 0.279 | 0.316 [ 0.250 [ 0.270 [ 0.294 |

Table 75: VMR1b retrieval precision for data merging combining 20K LVR and SD W S.

All Terms OOV Terms
Weight Scheme | uw | cfw | W uw | cfw l cw
Prec. | 5 docs | 0.508 | 0.576 | 0.596 | 0.500 | 0.568 | 0.588
10 docs | 0.328 | 0.354 | 0.390 | 0.332 | 0.352 | 0.380
15 docs | 0.249 | 0.261 | 0.289 | 0.244 | 0.259 | 0.277
20 docs | 0.207 | 0.213 | 0.231 | 0.198 | 0.212 | 0.222

[ Av Precision ] 0.490 | 0.540 [ 0.607 [ 0.496 | 0.543 [ 0.588 |

Table 76: VMR1a retrieval precision for data merging combining 20K LVR and ST WS.

All Terms OO0V Terms
Weight Scheme | uw | cfw | cwW uw ] cfw ] cw

Prec. | 5 docs | 0.296 | 0.279 | 0.346 | 0.292 | 0.308 | 0.329
10 docs | 0.235 | 0.254 | 0.267 | 0.235 | 0.267 | 0.265
15 docs | 0.221 | 0.236 | 0.260 | 0.226 | 0.239 | 0.260
20 docs | 0.198 | 0.201 | 0.241 | 0.204 | 0.206 | 0.233

[ Av Precision | 0.248 | 0.265 | 0.306 [ 0.250 [ 0.272 | 0.290 |

Table 77: VMR1Db retrieval precision for data merging combining 20K LVR and ST W&.
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All Terms

OO0V Terms

Weight Scheme | uw | cfw | cW uw I cfw [ cW

Prec. | 5 docs | 0.500 | 0.544 | 0.596 | 0.512 | 0.568 | 0.588
10 docs | 0.334 | 0.348 | 0.390 | 0.328 | 0.354 | 0.378
15 docs | 0.255 | 0.268 | 0.295 | 0.247 | 0.260 | 0.281
20 docs | 0.206 | 0.216 | 0.236 | 0.203 | 0.213 | 0.224

| Av Precision [0.495 | 0.547 [ 0.618 | 0.504 | 0.545 [ 0.591 |

Table 78: VMRla retrieval precision for data merging combining 20K LVR and SI WS

adapted using R13 data.

All Terms

OO0V Terms

Weight Scheme | uw | ctw | cw uw [ cfw | W

Prec. | 5 docs | 0.317 | 0.317 | 0.338 | 0.296 | 0.317 | 0.329
10 docs | 0.263 | 0.271 | 0.277 | 0.240 | 0.275 | 0.279
15 docs | 0.236 | 0.238 | 0.269 | 0.229 | 0.253 | 0.265
20 docs | 0.214 | 0.217 | 0.250 | 0.206 | 0.221 | 0.241

[ Av Precision [ 0.268 | 0.281 [ 0.316 [ 0.253 | 0.278 | 0.297 |

Table 79: VMRI1b retrieval precision for data merging combining 20K LVR and SI WS

adapted using R13 data.

Weight Scheme

All Terms

OO0V Terms

uw | cfw | cw

uw | cfw | cw

Prec. 5 docs

0.520 | 0.568 | 0.604

0.516 | 0.568 | 0.588

10 docs

0.348 | 0.362 | 0.400

0.330 | 0.356 | 0.376

15 docs

0.260 | 0.275 | 0.296

0.245 | 0.260 | 0.280

20 docs

0.210 | 0.221 | 0.242

0.200 | 0.211 | 0.224

[ Av Precision [ 0.515]0.553 [ 0.623 | 0.502 | 0.545 | 0.590 |

Table 80: VMRla retrieval precision for data merging combining 20K LVR and SI WS

adapted using R75 data.

Weight Scheme

All Terms

OO0V Terms

uw | cfw | cw

uw l cfw [ cW

Prec. 5 docs

0.317 | 0.304 | 0.350

0.296 | 0.308 | 0.338

10 docs

0.252 | 0.273 | 0.288

0.238 | 0.269 | 0.267

15 docs

0.232 | 0.244 | 0.275

0.233 | 0.246 | 0.265

20 docs

0.217 | 0.213 | 0.251

0.208 | 0.210 | 0.239

[ Av Precision [ 0.265 [ 0.278 [ 0.324 [ 0.255 | 0.276 | 0.295 |

Table 81: VMRI1b retrieval precision for data merging combining 20K LVR and SI W5

adapted using R75 data.
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Average Precision

Weighting Scheme ww | cfw | cw
Text Avg. Prec. 0.600 | 0.671 | 0.718
(relative) 100% | 100% | 100%
Spoken Data LVR + SD WS Simp. Fuse | 79.2% | 81.1% | 81.9%
Documents | Fusion Norm. Fuse | 74.8% | 75.3% | 75.2%
LVR + SI WS Simp. Fuse | 78.0% | 80.2% | 82.3%
Norm. Fuse | 71.0% | 71.8% | 72.6%
VR + SI WS R13 | Simp. Fuse | 78.3% | 81.4% 82.0%
Norm., Fuse | 72.5% | 74.2% | 73.8%
VR + ST WS R75 | Simp. Fuse | 79.8% | 81.7% | 83.6%
Norm. Fuse | 72.7% | 74.7% | 77.9%
Data LVR + SD WS 20K + all 84.0% | 82.6% | 83.7%
Merging 50K + 00V | 83.0% | 80.6% | 82.0%
LVR + SI WS 20K + all 81.7% | 80.5% | 84.5%
20K + OOV | 82.7% | 80.9% | 81.9%
LVR + SI WS R13 | 20K + all 82.5% | 81.5% | 86.1%
20K + OO0V | 84.0% | 81.2% | 82.3%
LVR + SI WS R75 | 20K + all 85.8% | 82.4% | 86.8%
20K -+ OOV | 83.7% | 81.2% | 82.2%

Table 82: Summary of VMR1a retrieval average precision for 20K LVR + WS.

Average Precision

Weighting Scheme ww l cfw [ cw
Text Avg. Prec. 0.327 | 0.352 | 0.368
(relative) 100% | 100% | 100%
Spoken Data LVR + SD WS Simp. Fuse | 89.3% | 90.3% | 94.3%
Documents | Fusion Norm. Fuse | 90.2% | 94.3% | 95.7%
LVR + ST WS Simp. Fuse | 87.2% | 88.6% | 91.0%
Norm. Fuse | 88.3% | 90.6% | 92.9%
IVR + SI WS R13 | Simp. Fuse | 85.6% | 88.9% 91.0%
Norm. Fuse | 85.9% | 90.6% | 91.0%
TVR + SI WS R75 | Simp. Fuse | 89.9% | 91.5% | 94.3%
Norm. Fase | 91.1% | 93.8% | 92.4%
Data IVR + SD WS 20K + all 82.0% | 79.3% | 85.9%
Merging 20K + OO0V | 76.5% | 76.7% | 79.9%
LVR + SI WS 20K + all 75.8% | 75.3% | 83.2%
20K + OO0V | 76.5% | 77.3% | 78.8%
LVR + SI WS R13 | 20K + all 82.0% | 79.8% | 85.9%
20K + OOV | 77.4% | 79.0% | 80.7%
LVR + ST WS R75 | 20K + all 81.0% | 79.0% | 88.0%
20K + OOV | 78.0% | 78.4% | 80.2%

Table 83: Summary of VMR1b retrieval average precision for 20K LVR + WS.
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Section 5.2.2. Also since neither system PLS or LVR system is in any way specialised to the
domain, this system represents completely domain independent indexing. Experimental
results are shown for all 3 PLS acoustic model types.

Data Fusion Tables 84 and 85 show retrieval performance results from data fusion
experiments combining 20K WSJ LVR with SD monophone PLS. Results are again shown
for both simple fusion (where document matching scores are simply added together) and
normalised fusion (where scores from each source are normalised relative to the highest
score from that source before addition). After fusion the resulting new ranked list gives
the results shown in the tables. For PLS, the cw list used in each case was obtained using
message length measured in phones. (Note PLS data used for all Data Fusion experiments
reported here were in each case those at the acoustic threshold which optimal retrieval
performance for PLS on its own.) Tables 86 and 87 show retrieval performance for fusion
using SI monophone PLS outputs and as before ST 20K WSJ LVR output. Tables 88 and
89 show fusion retrieval performance for SI biphone PLS and 20K WSJ LVR.

Observations Again as for data fusion of LVR and WS, VMRI1a shows a preference
for direct score fusion and VMRI1b for the normalised form. Performance improvements
for VMR1b are much more modest here than when using fusion with WS. In fact fusion
retrieval performance for VMR1a is actually significantly degraded for most PLS models
compared to LVR on its own. This is probably due to the poor performance of PLS in
general relative to LVR for VMR1a. Only when using the SD PLS is there a modest
improvement in retrieval performance for VMR1a. This result is slightly surprising since
PLS actually performs better in isolation than WS for VMRI1a, yet in combination for
both collections is less effective than WS. A more useful comparison might be to look at
the FOM results for WS and PLS shown in Tables 1 and 3 respectively. The FOM results
for WS for the fixed keywords are considerably better for WS than for PLS. Although the
rank of documents in a retrieval list produced using PLS indexing may itself be better
than that for WS indexing, this tells only about the magnitude ordering of query-document
matching scores in each list and nothing about the relative variation in the scores. The
superior retrieval performance achieved using PLS is most likely to be due to its open
search vocabulary since the reliability of individual term hypotheses will he lower for
PLS. The matching scores in the PLS list are likely to contain much more “noise” derived
from the presence of false alarms in the list. Hence when a PLS derived list is combined
with an LVR derived list retrieval performance may actually be degraded relative to the

LVR on its own. Note that the combined performance is always better than that using

PLS on its own.

Data Merging Tables 90 and 91 show retrieval performance for data merging with SD
monophone PLS and WSJ 20K LVR output. Very encouraging best retrieval performance
here is well in excess of 90%. Tables 92 and 93 show retrieval performance for data merging
with SI monophone PLS and WSJ 20K LVR output; and Tables 94 and 95 show retrieval
performance for data merging with SI biphone PLS.

Observations Data merging of LVR and PLS shows a considerable improvement in
performance over LVR or PLS alone for VMR1b. The difference here between including
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Simp. Fuse Norm. Fuse
Weight Scheme | uw | cfw | cw uw | clw | cw
Prec. | 5 docs | 0.452 | 0.520 | 0.572 | 0.440 | 0.512 | 0.564
10 docs | 0.318 | 0.342 | 0.390 | 0.316 | 0.348 | 0.392
15 docs | 0.245 | 0.260 | 0.288 | 0.248 | 0.260 | 0.291
90 docs | 0.199 | 0.212 | 0.233 | 0.202 | 0.213 | 0.236

[ Av Precision | 0.473 [ 0.538 ] 0.585 | 0.465 | 0.538 [ 0.584 |

Table 84: VMR1a retrieval precision for data fusion combining 20K LVR and SD mono-
phone PLS.

Simp. Fuse Norm. Fuse
Weight Scheme | uw I cfw I cwW uw | cfw \ cw
Prec. | 5 docs | 0.333 ] 0.325 | 0.321 | 0.329 | 0.304 | 0.354
10 docs | 0.288 | 0.275 | 0.296 | 0.277 | 0.277 | 0.313
15 docs | 0.236 | 0.257 | 0.260 | 0.234 | 0.253 | 0.265
20 docs | 0.209 | 0.225 | 0.227 | 0.222 | 0.224 | 0.235

[ Av Precision_] 0.266 | 0.298 [ 0.316 [ 0.271 | 0.297 [0.323 | i

Table 85: VMR1b retrieval precision for data fusion combining 20K LVR and SD mono-
phone PLS.

Simp. Fuse Norm. Fuse
Weight Scheme | uw | cfw I W uw [ cfw | W
Prec. | b docs | 0.388 | 0.488 | 0.544 | 0.376 | 0.456 | 0.536
10 docs | 0.284 | 0.318 | 0.342 | 0.282 | 0.302 | 0.344
15 docs | 0.212 | 0.251 | 0.257 | 0.216 | 0.241 | 0.255
90 docs | 0.170 | 0.198 ] 0.211 | 0.171 | 0.195 | 0.205

[~ Av Precision ] 0.409 | 0.489 [ 0.552 [ 0.402 | 0.468 [ 0.539 |

Table 86: VMR 1a retrieval precision for data fusion combining 20K LVR and ST mono-
phone PLS.

Simp. Fuse Norm. Fuse
Weight Scheme | uw | cfw | cw uw | cfw | cw
Prec. | 5 docs | 0.304 [ 0.317 | 0.304 | 0.283 | 0.286 | 0.300
10 docs | 0.235 | 0.256 | 0.267 | 0.231 | 0.240 | 0.252
15 docs | 0.208 | 0.225 | 0.242 | 0.204 | 0.208 | 0.238
20 docs | 0.190 | 0.212 | 0.232 | 0.192 | 0.202 | 0.222

[ Av Precision | 0.235 [ 0.261 [ 0.284 [ 0.232 [0.244 [ 0.268 |

Table 87: VMR1b retrieval precision for data fusion combining 20K LVR and SI mono-

phone PLS.
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Weight Scheme

Simp. Fuse

Norm. Fuse

uw | cfw | cw

uw l cfw | cw

Prec.

5 docs

0.420 | 0.528 | 0.548

0.428 | 0.532 | 0.552

10 docs

0.294 | 0.340 | 0.376

0.298 | 0.340 | 0.376

15 docs

0.237 | 0.253 | 0.279

0.240 | 0.251 | 0.275

20 docs

0.193 | 0.209 | 0.222

0.197 | 0.211 | 0.227

[ Av Precision ] 0.444 | 0.518 | 0.566 [ 0.444 | 0.520 | 0.562 |

Table 88: VMR1a retrieval precision for data fusion combining 20K LVR and SI biphone

PLS.

Weight Scheme

Simp. Fuse

Norm. Fuse

uw l cfw I cw

uw | ctw I cw

Prec.

5 docs

0.317 | 0.325 | 0.317

0.321 | 0.308 | 0.308

10 docs

0.263 | 0.287 | 0.281

0.273 | 0.292 | 0.290

15 docs

0.233 | 0.251 | 0.260

0.232 | 0.247 | 0.263

20 docs

0.212 | 0.220 | 0.226

0.213 | 0.216 | 0.225

[ Av Precision | 0.255 | 0.286 | 0.301 [ 0.258 [ 0.281 [ 0.300 |

Table 89: VMR1b retrieval precision for data fusion combining 20K LVR and SI biphone

PLS.

Weight Scheme

All Terms

OO0V Terms

uw l cfw | cw

uw | cfw l cw

Prec.

5 docs

0.496 | 0.560 | 0.616

0.488 | 0.560 | 0.608

10 docs

0.330 | 0.360 | 0.406

0.334 | 0.356 | 0.396

15 docs

0.244 | 0.271 | 0.295

0.252 | 0.271 | 0.201

20 docs

0.203 | 0.216 | 0.240

0.203 | 0.219 | 0.232

[ Av Precision | 0491 | 0.561 | 0.634 | 0.493 [ 0.560 [ 0.626 |

Table 90: VMR1a retrieval precision for data merging combining 20K LVR and SD mono-

phone PLS.

Weight Scheme

All Terms

OO0V Terms

uw | cfw | cw

uw | cfw | cw

Prec.

5 docs

0.338 | 0.342 | 0.396

0.313 | 0.354 | 0.379

10 docs

0.260 | 0.288 | 0.315

0.271 | 0.285 | 0.300

15 docs

0.229 | 0.249 | 0.276

0.226 | 0.249 | 0.271

20 docs

0.205 | 0.230 | 0.264

0.201 | 0.207 | 0.250

[ Av Precision | 0.265 | 0.299 | 0.343 ] 0.259 [ 0.291 | 0.329 |

Table 91: VMR1b retrieval precision for data merging combining 20K LVR and SD mono-

phone PLS.
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All Terms

OO0V Terms

Weight Scheme | uw | cfw | cw uw | cw | cw

Prec. | 5 docs | 0.476 | 0.548 | 0.568 | 0.452 | 0.536 | 0.584
10 docs | 0.312 | 0.344 | 0.384 | 0.310 | 0.350 | 0.378
15 does | 0.227 | 0.252 | 0.281 | 0.236 | 0.265 | 0.283
20 docs | 0.188 | 0.205 | 0.222 | 0.192 | 0.216 | 0.230

| Av Precision ] 0.448 | 0.512 [ 0.584 | 0.463 | 0.531 | 0.589 |

Table 92: VMR1a retrieval precision for data merging combining 20K LVR and SI mono-

phone PLS.

Weight Scheme

All Terms

OO0V Terms

uw | ctw ] cw

uw [ ctw l cw

Prec. 5 docs

0.275 | 0.296 | 0.333

0.288 | 0.329 | 0.346

10 docs

0.248 | 0.263 | 0.283

0.240 | 0.273 | 0.285

15 docs

0.213 | 0.228 | 0.253

0.213 | 0.239 | 0.257

20 docs

0.188 | 0.207 | 0.230

0.197 1 0.209 | 0.229

| Av Precision | 0.234 [ 0.270 | 0.292 | 0.241 [ 0.275 | 0.297 |

Table 93: VMR1b retrieval precision for data merging combining 20K LVR and SI mono--

phone PLS.

Weight Scheme

All Terms

OO0V Terms

uw l cfw | cw

uw 1 cfw l cw

Prec. 5 docs

0.476 | 0.552 | 0.580

0.464 | 0.544 | 0.604

10 docs

0.318 | 0.338 | 0.380

0.328 | 0.350 | 0.378

15 docs

0.236 | 0.251 | 0.289

0.252 | 0.261 | 0.283

20 docs

0.192 | 0.210 | 0.232

0.199 | 0.214 | 0.229

[ Av Precision [ 0.481 [ 0.530 [ 0.592 [ 0.472 [ 0.530 | 0.601 |

Table 94: VMR 1a retrieval precision for data merging combining 20K LVR and SI biphone

PLS.

Weight Scheme

All Terms

OO0V Terms

uw I cfw | cw

uw } cfw | cw

Prec. 5 docs

0.296 | 0.329 | 0.333

0.275 | 0.317 | 0.338

10 docs

0.250 | 0.283 | 0.292

0.242 1 0.277 | 0.288

15 docs

0.208 | 0.246 | 0.264

0.211 ] 0.242 | 0.261

20 docs

0.184 | 0.214 | 0.239

0.199 | 0.212 | 0.237

[ Av Precision [0.240 ] 0.281 [ 0.315 [ 0.239 | 0.274 | 0.310 |

Table 95: VMR1b retrieval precision for data merging combining 20K LVR and SI biphone

PLS.
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all PLS or only OOV terms is much less marked than for LV R merging with WS. The
choice of which scheme to use is apparently correlated to the quality of the PLS modelling,.
Thus inclusion of all PLS terms is seen to be a clear benefit for both VMR1a and V MR1b
when using SD PLS whereas including only the OOV terms is actnally slightly better in
both cases when using SI monophone PLS. For ST biphone PLS there is no appreciable
difference between the two merging schemes. In general this suggests that the better
the quality of PLS modelling the more its evidence can usefully be exploited in data
merging. Overall these results suggest that significant improvement in retrieval is possible
if relatively modest further improvements in SI recognition could bring it closer to current
SD recognition performance.

Figures 5 and 6 show average retrieval precision against acoustic score threshold for

VMR1a and VMRI1b respectively for 20K LVR, PLS with 5I biphone models, and data
merging using all term combination and merging only the OOV terms in each case using
cw weighting. It can be seen from these figures that when using combination of all PLS
terms with LVR the retrieval performance is, as expected, much more sensitive to the
choice to threshold than when merging only the OOV terms.

5.4.4 Concluding Observations on LVR+PLS Combined Methods

Tables 96 and 97 show a summary of retrieval performance for VMR1a and VMRI1b
respectively for combination of 20K WSJ LVR and PLS. From these it can be seen that
for IVR and PLS combination data merging is in generally preferable to data fusion, and
that for data merging the overall quality of retrieval performance is strongly related to
the quality of the acoustic PLS models. These results suggest that the investigation of
unsupervised speaker-adaptation for SI biphone PLS could yield significant improvements
in retrieval performance even if only modest gains in FOM were to be achieved. Also,
interestingly it can be seen that in general cw weighting is less sensitive to variations in
the quality of the acoustic modelling.

5.5 Results Summary

Tables 98 and 99 show overall summaries of experimental retrieval performance for

the VMR project. These tables show only results for head-microphone modelling since
no LVR and combination experiments were carried out using desk-microphone modelling.
These tables give average precision for all systems relative to the ideal open text standard.
As stated at the start of the experimental section, all these results must be treated with
caution due to the small size of the test set. In particular, average precision, which is
hased on more information, may sharpen differences that are less apparent for the cutoff
data, though the latter is likely to be more practically pertinent.

Bearing this in mind, we can observe that state-of-the-art LVR has utility for spo-
ken document retrieval, in particular for queries with many terms. The 20K recogniser
used here is now rather behind the true state-of-the-art in LVR, and Lence if a current
system with a 64K vocabulary and superior acoustic and language modelling were used
improvements in retrieval performance would almost certainly appear.

Also, combination methods shown to be effective for text retrieval can also be used
effectively in the speech domain. It should be noted however that the overall utility of
this technique depends on the model quality of the individual components. Thus if one
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Average Precision

Weighting Scheme wvw | cfw | cw

Text Avg. Prec. 0.600 | 0.671 | 0.718
(velative) 100% | 100% | 100%

Spoken Data LVR + SD PLS | Simp. Fuse | 78.8% | 80.2% | 81.5%
Documents | Fusion Monophone Norm. Fuse | 77.5% | 80.2% | 81.3%
VR + SI PLS | Simp. Fuse | 68.2% | 72.9% | 76.9%

Monophone Norm. Fuse | 67.0% | 69.7% | 756.1%

IVR + SI PLS | Simp. Fuse | 74.0% | 77.2% | 78.8%

Biphone Norm. Fuse | 74.0% | 77.5% | 78.3%

Data LVR + SD PLS | 20K + all 81.8% | 83.6% | 88.3%

Merging | Monophone 20K + OOV | 82.2% | 83.5% | 87.2%

LVR + SIPLS | 20K + all 74.7% | 76.3% | 81.3%

Monophone 20K - OO0V | 77.2% | 79.1% | 82.0%

LVR + SI PLS | 20K + all 80.2% | 79.0% | 82.5%

Biphone 20K + OOV | 78.7% | 79.0% | 83.7%

Table 96: Summary of VMR1a retrieval average precision for combination of 20K LVR

and PLS.
Average Precision
Weighting Scheme uw I cfw | cw
Text Avg. Prec. 0.327 | 0.352 | 0.368
(relative) 100% | 100% | 100%
Spoken Data LVR + SD PLS | Simp. Fuse |81.3% | 84.7% | 85.9%
Documents | Fusion Monophone Norm. Fuse | 82.9% | 84.4% | 87.8%
IVR + SI PLS | Simp. Fuse | 71.9% | 74.1% | 77.2%
Monophone Norm. Fuse | 71.6% | 69.3% | 72.8%
VR + SI PLS | Simp. Fuse | 78.0% | 81.3% | 81.8%
Biphone Norm. Fuse | 78.9% | 79.8% | 81.5%
Data LVR + SD PLS | 20K + all 81.0% | 84.9% | 93.2%
Merging | Monophone 20K + OO0V | 79.2% | 82.7% | 89.4%
LVR + SI PLS | 20K + all 71.6% | 76.7% | 79.3%
Monophone 20K + OO0V | 73.7% | 78.1% | 80.7%
LVR + SI PLS | 20K + all 73.4% | 79.8% | 85.6%
Biphone 20K + OOV | 73.1% | 77.8% | 84.2%

Table 97: Summary of VMRI1b retrieval average precision for combination of 20K LVR

and PLS.
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Average Precision

Weighting Scheme uw l cfw | cw
Text Full Vocab. | Avg. Prec. 0.600 | 0.671 | 0.718
(relative) 100% | 100% | 100%
20K Vocab. 96.0% | 97.3% | 97.9%
Spoken 20K LVR 79.2% | 77.9% | 79.9%
Documents | WS SD 43.2% | 44.0% | 44.0%
ST 40.2% | 39.2% | 41.8%
PLS SD Monophone | 61.0% | 63.6% | 68.9%
SI Monophone | 42.2% | 47.4% | 54.3%
SI Biphone 53.3% | 61.3% | 65.5%
Data LVR + SD PLS | Simp. Fuse 78.8% | 80.2% | 81.5%
Fusion Monophone Norm. Fuse 77.5% | 80.2% | 81.3%
LVR + SI PLS | Simp. Fuse 68.2% | 72.9% | 76.9%
Monophone Norm. Fuse 67.0% | 69.7% | 75.1%
LVR + SI PLS | Simp. Fuse 74.0% | 77.2% | 78.8%
Biphone Norm. Fuse 74.0% | 77.5% | 78.3%
Data LVR + SD PLS | 20K + all 81.8% | 83.6% | 88.3%
Merging Monophone 20K + OO0V 82.2% | 83.5% | 87.2%
LVR + SIPLS | 20K + all 74.7% | 76.3% | 81.3%
Monophone 20K + OOV 77.2% | 79.1% | 82.0%
LVR + SI PLS | 20K + ail 78.2% | 77.3% | 82.5%
Biphone 20K + OOV 78.7% | 79.0% | 83.7%

Table 98: Overall summary of VMR1a retrieval average precision values.
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Average Precision

Weighting Scheme wo | cfw | cw
Text Avg. Prec. 0.327 | 0.352 | 0.368
(relative) 100% | 100% | 100%
20K Vocab. 91.4% | 88.6% | 88.3%
Spoken 20K LVR 68.8% | 69.9% | 71.7%
Documents | WS SD 81.0% | 88.6% | 89.7%
SI 76.8% | 82.7% | 81.8%
PLS SD Monophone | 80.1% | 81.0% | 85.6%
ST Monophone | 53.2% | 56.5% 60.3%
SI Biphone 68.5% | 74.4% | 75.3%
Data LVR + SD PLS | Simp. Fuse 81.3% | 84.7% | 85.9%
Fusion Monophone Norm. Fuse 82.9% | 84.4% | 87.8%
TVR + SI PLS | Simp. Fuse T1.9% | 74.1% | 77.2%
Monophone Norm. Fuse 71.6% | 69.3% | 72.8%
LVR + SI PLS | Simp. Fuse 78.0% | 81.3% | 81.8%
Biphone Norm. Fuse 78.9% | 79.8% | 81.5%
Data LVR + SD PLS | 20K + all 81.0% | 84.9% | 93.2%
Merging Monophone 20K + OOV 79.2% | 82.7% | 89.4%
LVR + ST PLS | 20K + all 71.6% | 76.7% | 79.3%
Monophone 20K + OOV 73.7% | 78.1% | 80.7%
IVR + SI PLS | 20K + all 73.4% | 79.8% | 85.6%
Biphone 20K + OOV 73.1% | 77.8% | 84.2%

Table 99: Overall summary of VMR1b retrieval average precision.
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f Weighting Scheme \ uw | cfw ] cW ] TableJ

Text Open Vocab. 0311031034 <<25
Keyword Vocab. 0.28 | 0.31 ] 0.29 5

20K Vocab. 0.28 | 0.28 | 0.29 45

Spoken 20K LVR 0.21 | 0.24 | 0.25 | << b5
Documents | WS SD 0.27 { 0.32 | 0.30 7
SI 0.24 | 0.28 | 0.31 | << 11

ST+ R75 0.26 | 0.30 | 0.32 17

PLS SD Monophone | 0.27 | 0.25 | 0.29 35

SI Monophone | 0.16 | 0.18 | 0.20 | << 37

SI Biphone 0.24 | 0.25 | 0.25 | << 39

LVR + WS Data SD 0.29 | 0.33 | 0.34 67

Fusion ST 0.28 | 0.32 | 0.34 | << 69

SI 4+ R75 0.29 10.32 | 0.33 73

Data SD 0.26 | 0.27 | 0.29 75

Merging | SI 0.24 | 0.25 | 0.27 | << 77

SI + R75 0.25 | 0.27 | 0.29 81

LVR + PLS Data SD Monophone | 0.28 | 0.28 | 0.31 35

Fusion ST Monophone | 0.23 | 0.24 | 0.25 | << 87

SI Biphone 0.27 1 0.29 | 0.29 | << 89

Data SD Monophone | 0.26 | 0.29 | 0.32 91

Merging | ST Monophone | 0.25 | 0.26 | 0.28 | << 93

SI Biphone 0.2510.28 1 0.29 | << 95

Table 100: Summary of VMR1D retrieval precision at document cutoff 10.

indexing system is significantly better than the other, combination can actually lead to a
retrieval performance worse than the better system in isolation.

Perhaps the most important overall observation is that the best combination perfor-
mance for SI biphone PLS and 20K LVR (a completely domain- and speaker-independent
system) is clearly better than the performance of either method in isolation. Moreover,
this combination produces retrieval performance of between 80% and 85% relative to text
transcriptions for both VMR1a and VMR1b when using head-microphone data, though
this is a rather more favourable environment that would occur in many practical situations.

5.5.1 Document Cutoff Results

Tables 98 and 99 give an overview of our test results using average precision. But it
is also helpful, especially in relation to how users may view performance, to consider the
picture of comparative performance given by document cutoff. Table 100 therefore sum-
marises results for precision at document cutoff 10 for the more important of the two test
collections, VMR1b. This cutoff is equivalent to the first page of output typically offered
by operational services. As many of the later tests were restricted to head microphone
ones, this table is only for head microphone. Where there are fine-grained choices for the
different strategies, this table makes a consistent choice (in some cases this is the best
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option, in others there is in fact little difference). Thresholds, where relevant, were the
best average precision ones, a reasonable approach for present purposes.

Thus for all cases where a stop list is applicable, this table shows the results for the:

van Rijsbergen list. For speaker adaptation with WS we use R75 data. For document
length computation for PLS we use phones. For the fusion method of combination we use
normalised scores, and for the merging method we merge for all terms. For clarity (and also
because finer precision is hardly meaningful) we give values only to two decimal places. We
mark the results of more general importance, i.e. those for speaker- independent speech
recognition, with <<. We also give the source table citation at the right hand side.

Though, as repeated throughout this report, the collection was very small, there is
sufficient consistency about some behaviours shown in Table 100 for it to be reasonable
to take them as meaningful. Thus in general these figures show:

1. that for speech, term weighting is better than no weighting, with cw somewhat
better than cfw .

2. that (in the speaker-independent case highlighted) for the three speech strategies
PLS and LVR are not as good as WS. WS’s merits are however attributable to
the strong keyword tailoring of the collection, and the relatively inappropriate LVR
modelling source. The LVR result in itself is also well below that for the absolute
text reference case with open vocabulary. For the two combination methods the
overall picture is rather varied; however it does appear that in general there is a

gain from combination, with the fusion method working better than the merge one

for LVR + WS but no obvious preference between the techniques for LVR + PLS.
The potentially most useful combination from a practical point of view, namely
LVR and PLS, does not however stand out here: it needs more study, for the various
reasons mentioned.

3. that while speech performance is not as good as text, it is far from hopeless. Thus
while the text reference case has precision 0.34 for ¢w ; while LVR has 0.25 and
SD PLS has 0.29, in relation to the actual documents offered the user this is only a
difference between 3.4 and 2.5 or 2.9 relevant documents out of 10 altogether.

6 Conclusions

The experiments reported here constitute only a first attack on open vocabulary retrieval
for spoken documents. We have shown that it is possible to obtain speech retrieval perfor-
mance, using open search terms, approaching that obtainable for text. Further, it appears
that the combination of two recognition techniques can perform better than either alone,
and indeed achieve an average retrieval precision for a SI system degraded by only 15%
from the best achievable text retrieval. This difference can clearly be reduced by further
improvements in speech recognition. Thus we have already found, for the 5D case, that

data combination retrieval performance using the current 20K LVR and PLS but with the,

SD monophones is only degraded by around 10% compared to text.

Fortunately for those concerned with spoken document retrieval, performance will
continue to get better as the underlying speech recognition technology is improved. More
sophisticated and efficient decoders mean that larger vocabularies may be used, which
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should reduce the OOV problem. Improvements in speech recognition can only benefit
spoken document retrieval.

7 Suggestions for Further Work

The specific work reported in this report needs to be followed up in several ways. Primarily,
it is essential to conduct retrieval tests on a larger scale, and with this in mind we have
begun work on data capture and system development for television newscast retrieval
[Brown et al., 1995].

At the same time, the approaches we have described must be developed to support a
near real-time system. Even though expensive recognition is done offline, issues of storage.
and search efficiency must be addressed to yield a practical system. This is necessary both
for larger-scale experiments and for operational use.

While improvements in speech recognition, as mentioned in the preceding section, will
lead to a general improvement in spoken document retrieval, it is worth considering specific
work which might be carried out for retrieval applications. For example, the results given
in this report indicate that LVR and PLS in combination can lead to improved retrieval
performance. However, to date these content discovery methods are used entirely inde-
pendently in the indexing process. It is reasonable to suppose that further improvement
might be possible if there was some interaction between these processes.

It is evident that when working with phones, recognition errors make it necessary to
use a phone lattice rather than a single best phone transcription. When this is done it is
also necessary to select an appropriate acoustic threshold on hypotheses as a compromise
hetween insertions and deletions. With whole word recognition with LVR, however, we
have so far used only a single best transcription. We have observed that for this LVR
system, as we would anticipate, while it is prone to misses there are very few false alarms.
It would seem an obvious extension of this existing work to consider the use of word
lattices. As with phone lattices the deeper the lattice, the more false alarms we would
observe; in this system parameters could expect be investigated to trade off between false
alarms and misses. The key measure in this choice of parameters would be maximisation
of the document retrieval performance.

An established technique in text information retrieval is relevance feedback where a
search request may be iteratively modified based on relevance decisions by the user on
documents already retrieved. Investigation of relevance feedback in spoken document
retrieval is another obvious extension of the information retrieval research carried out
within the VMR project.
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