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Abstract

To act intelligently, agents must be able to adapt to changing behavioural possibilities.
Thfs dissertation proposes a model that enables them to do this. An agent learns
sensorimotor predictions from spatiotemporal correlations in sensory projections,
motor signals, and physiological variables. Currently elicited predictions constitute

its model of the world.

Agents learn predictions for mapping between different sensory modalities. In
one example, a robot records sensory projections as points in a multidimensional
space. It coordinates hand-eye movements by using closest-point approximations to
map between vision and proprioception. Thus, one modality elicits predictions more
closely identifiable with another. In a different example, an agent generalizes about a
car’s sensorimotor relations by weighting sensorimotor variables according to their
mutual influence: it learns to navigate without any a priori model of the car’s

dynamics.

With feedback from miscategorization, an agent can develop links betweeri
categorical representations and the relevant objects they distinguish. Wavelet analysis
* provides a neurologically plausible means of accentuating invariance that can subserve
categorization. In some experiments, categorical representations, derived from inter-
category invariance after wavelet analysis, proved to be efficient and accurate at

distinguishing different species of mushrooms.

In a simulation of fish chemoreception, agents learn sensorimotor predictions that
uncover salient invariance in their environment. Predictions are formed by quantizing
a sensory subspace after each dimension has been weighted according to its impact on
physiological variables. As these predictions also map from motor signals to likely
changes in sensory projections, the agent can chain backwards from desired outcomes

to form plans for their attainment.
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Chapter 1. Symbol Systems and Symbol Grounding

Introduction

This dissertation explores how robots might learn internal symbols for represehtation
that are grounded in sensorimotor activity. It outlines a possible path to robots that
learn to interact with their environment directly—that is, without need for a pro-
grammer to anticipate what they must respond to and how they must respond to it.
The approach is ecological, sensorimotor, and adaptive in the sense that it takes
account of the fact that a robot’s relation to its environment depends on internal

adaptations that are conditioned by its particular body, internal variables, and history.

Symbol systems have proved to be very powerful at simulating essential proper-
ties of thought. Unfortunately, there have been serious problems with explaining how
extrinsic properties of the world could influence the causal roles of their symbols.
This dissertation seeks ways to exploit the strengths of symbol systems while
overcoming some of their weaknesses, especially those related to their symbols’ lack

of grounding.

What is a Symbol System?

Working in such disparate fields as psychology, neuroscience, philosophy of mind,
linguisticé, and artificial intelligence, proponents of symbolic representation have set
themselves a highly ambitious task: the explanation or simulation of thought and its
physical manifestations. To this end many of them have exploited a powerful tool
and metaphor. It has even been called the only game in towﬂ. It emerged in part from
synergy between propositional logic and the technological marvel of our day, the
digital computer. I am referring here to the symbol system. Most attempts to
operationalize thinking share much in common with it. Its symbolic representations
are often said to reflect a mental realm of concepts and relations which serve to
represent actual objects and events. In stronger versions these representations are

expressed formally in what Fodor (1975) calls a language of thought or mentalese for




short. Harnad (1990a) reconstructs from Fodor (1975), Newell (1980), Pylyshyn
(1980) and others the following definition of a symbol system:

A symbol system is (1) a set of arbitrary physical tokens (scratches on
paper, holes on a tape, events in a digital computer, etc.) that are (2) ma-
nipulated on the basis of explicit rules that are (3) likewise physical to-
“kens and strings of tokens. The rule-governed symbol-token manipulation
is based (4) purely on the shape of the symbol tokens (not their
“meaning”), i.e. it is purely syntactic, and consists of (5) rulefully com-
bining and recombining symbol tokens. There are (6) primitive atomic
symbol tokens and (7) composite symbol-token strings. The entire sys-
tem and all its parts—the atomic tokens, the composite tokens, the syn-

- tactic manipulations (both actual and possible) and the rules—are all (8)
semantically interpretable: The syntax can be systematically assigned a
meaning (e.g. as standing for objects, as describing states of affairs). (p.
336)

Like Descartes’ pineal gland, an intended purpose of a symbol system is to link
the mental and the material (Stoutland, 1988). It is meant to offer an intermediate and
functional level of explanation between physics and the beliefs, goals, and desires of
folk psychology. This level has been dubbed the cognitive level. According to Fodor
and Pylyshyn (1988), “any level at which states of the system are taken to encode
properties of the world counts as a cognitive level; and no other levels do” (p. 9).
Analogies have been drawn between symbol systems and computer software because
a symbol system’s operation is conceived of as being independent of any particular
physical realization, be it a digital computer or a brain (e.g. Dennett, 1991). Because
under this theory mental states can be implemented in limitless ways, mental

categories do not necessarily reduce to brain categories.

A long historical development of ideas lies behind symbol symbols. Key
components may be found in the work of Leibniz (195'0). Inspired by Hobbes’ view
of all reasoning being mere calculation, in De Arte Combinitoria Leibniz sought to
devise a logical calculus on an idea from his schooldays that all complex concepts were
but combinations of a few elementary concepts. Researchers have only seriously
explored the ramifications of this in the last forty years. To cite one example,

Masterman (1961) developed a semantic network for machine translation at Cam-




bridge; she constructed a dictionary of 15,000 concept entries from a mere 100

primitive concept types (e.g. STUFF, THING, FOLK, BE, DO).

Some Useful Properties of Symbol Systems

Underlying the symbol system approach is the premise that cognitive processes
perform their function by virtue of their attunement to the constituent structure (i.e.
the syntax) of mental representations. In summarizing this position, Fodor and
Pylyshyn (1988) state that a typical cognitive process transforms any mental
representation satisfying a particular structural description into a mental representa-

tion satisfying a different structural description (p. 12). Additionally, symbol

systems have the property that we can systematically relate the semantics of a

representation to its syntax. The over-all semantic content of a complex representa-

tion is detérmined by its constituent structure plus the semantic content of its
syntactic parts. Harnad likewise highlights the utility of symbol systems being
systematic: in order that propositions may be assigned a semantic interpretation
(Harnad, 1990a, p. 343). According to Fodor and Pylyshyn, constituent structure
depends on the parts as well as the whole being semantically evaluable (p. 19).

They further elucidate how two ideas from computation have formed the bedrock
of ‘classical’ theories of cognition. Both require the postulation of a syntactic level

distinct from the physical and semantic level:

The first idea is that it is possible to construct languages in which certain
features of the syntactic structures of formulas correspond systematically
to certain of their semantic features. Intuitively, the idea is that in such
languages the syntax of a formula encodes its meaning; most especially,
those aspects of its meaning that determine its role in inference. All the
artificial languages that are used for logic have this property and English
has it more or less. (p. 28) [The second idea] is that it is possible to de-
vise machines whose function is the transformation of symbols, and
whose operations are sensitive to the syntactical structure of the symbols

that they operate upon. (p. 30, emphasis removed)

Fodor and Pylyshyn show how these two ideas straightforwardly conjoin in the

notion of a symbol system:




If, in principle, syntactic relations can be made to parallel semantic rela-
tions, and if, in principle, you can have a mechanism whose operations on
formulas are sensitive to their syntax, then it may be possible to con-
struct a syntactically driven machine whose state transitions satisfy se-
mantical criteria of coherence. Such a machine would be just what’s
required for a mechanical model of semantical coherence of thought; cor-
respondingly, the idea that the brain is such a machine is the foundational

hypothesis of Classical cognitive science. (p. 30)
Fodor and Pylyshyn justify the reliance of classical theories on constituent

structure on the grounds that it explains the systematicity, productivity, and inferential
coherence of thought (pp. 33-49; Fodor, 1981, pp. 147-149). As they explain,

systematicity arguments infer the internal structure of mental representa-

tions from the patent fact that nobody has a punctate intellectual compe-
tence (p. 40). [Clognitive capacities always exhibit certain symmetries
so that the ability to entertain a given thought implies the ability to en-
tertain thoughts with semantically related contents (p. 3).

This ability is understood to be intrinsic to the system (p. 37). They take the
systematicity of thought to follow from that of language:

[J]ust as you don’t find people who can understand the sentence ‘John
loves the girl’ but not the sentence ‘the girl loves John,’ so too you don’t
find people who can think the thought that John loves the girl but can’t
think the thought thét the girl loves John. Indeed, in the case of verbal
organisms the systematicity of thought follows from the systematicity of
language if you assume—as most psychologists do—that understanding a
sentence involves entertaining the thought that it expresses. (p. 39) '

After presenting several more illustrations of systematicity, they reiterate, “all the

evidence suggests that punctate [i.e. unsystematic] minds can’t happen” (p. 49).

The productivity of thought is based on the assumption that people can entertain
an unbounded number of belief states. “Productivity argurﬁents infer the internal
structure of mental representations from the presumed fact that nobody has a finite
intellectual competence™ (p. 40). (As was the case with systematicity, this stance
mirrors a Chomskyan argument about linguistic competence; it derives from the fact
that people can understand and produce an unbounded number of sentences.) To

explain the productivity of thought without recourse to constituent structure would



require an unrealistic—indeed, astronomical—number of unique internal categories (or

microfeatures, see p. 23).!

Fodor and Pylyshyn cite two standard counter-arguments in response to the
challenge that behaviour is less systematic and productive than classical theories
predict. Since the theories model competence and not performance, they are not
required to account for errors or limitations in human performance. Finite perform-
ance could result from “the interaction of an unbounded competence with resource
constraints” (p. 34), and apparently nondeterministic behaviour could be caused by
“the interaction of multiple deterministic sources” (p. 58). The former might explain,
for example, why people cannot understand sentences of arbitrary complexity; the

latter, why they make grammatical errors.

As for inferential coherence, Fodor and Pylyshyn draw attention to how the

. syntax of a mental representation connects it with its inferential role:

The rule of existential generalization 'applies to formulas in virtue of their

syntactic form. But the salient property that’s preserved under applica-

tions of the rule is semantical: What’s claimed for the transformation

that the rule performs is that it is truth preserving. (p. 28)
They, however, make an important distinction. “The point of Classical modeling
isn’t to characterize human thought as supremely logical” because syntactic transfor-
mations might preserve semantic properties other than truth-value (e.g. “warrant,
plausibility, heuristic value, or simply semantic non-arbitrariness™). Rather, “it’s to
show how a family of types of semantically coherént (or knowledge-dependent)
reasoning is mechanically possible. Valid inference is the paradigm only in that it is
the best understood member of this family.” (fn. 19)

The ideas motivating symbol systems may be summarized as follows: Intentional
states (thoughts, desires, and the like) are semantically interpretable (because they are

about things). Many have found it reasonable to assume that, moreover, these states

! Chalmers (1993) among others have shown Fodor and Pylyshyn’s (1988) attacks on
connectionism, and exposition of its limitations, to be seriously flawed. Nevertheless,

they well summarize the assumptions underlying classical cognitivist approaches.



have causal powers (most importantly, the power to cause behaviour).? But, as
Turing (1950) made clear, a digital computer’s symbols can also be semantically
interpretable and causally effective. Their causal powers derive from how the
symbols are instantiated in physical materials. In modern-day computers they most
often depend on the physical properties of silicon, such as those influencing its

electrical conductivity.

The trick is for the computer to manipulate the symbols syntactically, based on
how they are realized physically, while maintaihing—as much as possible—their
semantic coherence. Thus, for example, given symbols that are valid propositions, the
computer is to infer other symbols that are also valid propositions. It appears
possible at least to set up highly constrained symbol systems that allow symbols to
act causally without much (if any) loss of semantic coherence (e.g. automated theorem
provers). However, for decades a nexus of problems has beset the simulation of more
general kinds of intelligence. Sometimes falling under the rubric frame problems’, they
relate to an agent’s need to take actions and predict their consequences in an ever
changing world. These problems expose the difficulty in maintaining a correspon-
dence between internal symbols and external states of affairs. These difficulties can

arise even in deterministic “blocks worlds.””*

? For an opposing viewpoint see, for example, Churchland (1986).

* McCarthy and Hayes (1969) originally identified the frame problem with the program-
mer’s problem of how to set up an agent’s representational form within the situational
calculus so that the agent could predict that most facts about the world were unaffected by
its action without recourse to frame axioms (also see Hayes, 1987). However, as a
number of contributors in Ford and Pylyshyn (1996) have pointed out, the frame
problem has come to be associated with more general problems of temporal reasoning.
These include (but are not limited to): the prediction problem, the revision problem, the
qualification problem, the control problem, Hamlet’s problem (see Janlert, cﬁap. 4), the
relevance problem, the holism problem,. the relevance-holism problem (see Lormand,
chap. 6), the persistence problem, the temporal projection problem, and the ramification
problem (see Morgenstern, chap. 8). In chapter 7, we examine the frame problem and

related problems in greater detail.

‘In fact, the original frame problem first arose in a completely deterministic environ-

ment in which the effect of every action was codified in the situation calculus.




Besides the frame problem, there is a further obstacle in using symbol systems to
model intentional states. According to Fodor (1994b) a thought’s inferential (ie.
causal) role cannot fix its content because the content depends at least partly on its

relation to external states of affairs.” If this is right,

then (some of) the intentional properties of thoughts are essentially ex-
trinsic; they essentially involve mind-to-world relations. But we are still
following Turing in assuming that the computational role of a mental rep-
resentation is determined entirely by its intrinsic properties (its weight,
shape, or electrical conductivity, as it might be). The puzzle is that it is,
to put it mildly, hard to see how the extrinsic properties of thoughts could
supervene on their intrinsic properties.... But the idea that the imple-
mentation of intentional laws is computational is the only serious cogni-
tive science we’ve got; without it, the semantic coherence of the
intentional is completely a mystery. (p. 299)

Hume (1975, 1978) had proposed that laws (or prmclples) of association
structured thought—in particular, spatiotemporal contiguity, resemblance, and
causation. (The latter he claimed was based on contiguity and ‘constant conjunc-
tion’.) However, Fodor (1994) scoffs at the idea that such laws could attune the
causal relations between mental representations to keep them true to the external
world. “As everyone has known since Kant—but somehow forgets every thirty
years or so—semanti(':ally coherent processes are not, in general, associative; and
associative processes are not, in generél, semantically coherent” (p. 296). Fodor’s
rejection of associationism, which he criticizes for being insensitive to structure,
follows from his conception of thinking—fundamentally, in terms of structure-
sensitive operations (Fodor & Pylyshyn, 1988, p. 67).

Nevertheless, a symbol system that generates propositions purely on the basis of
properties intrinsic to that system (e.g. a symbol’s constituent structure) cannot
model how real intentional states come to be connected to the things they represent.

We shall turn to this point next.

> The reasons for this will become increasingly clear in chapters 2 and 3, where we discuss
category induction (see, Harnad, 1987; Schyns, Goldstone, and Thibaut, in press). Also
see externalist arguments in the philosophy of language.



The Symbol Grounding Problem

To date the most successful models of higher-level intelligence have been symbolic.
However, these models typically suffer from a basic limitation pertaining to how
symbols are related to the external world. Harnad (1990a) has identified this limita-
tion as the symbol grounding problem. Symbol systems typically rely either on

(1) a human designer to hardwire connections between internal symbols

and external states of affairs, or on

(2) ahuman user to feed in symbols as input and then interpret and act on

the symbols the system outputs.

In other words, symbol systems typically require a separate perceptual system—
either a human mind or connections explicitly set up by a human mind—to map and
maintain a consistent mapping between the symbol system’s active representations
and the states of affairs they are supposed to denote in the physical world.® In either
case, as Harnad notes, their intentionality is parasitic on human minds. This, of

course, places limits on their capacity to model both natural and artificial intelligence.

In the absencé of symbol grounding, Harnad (1990a) likens the activity of a
symbol system to someone who does not know Chinese (or any other language)
trying to learn Chinese from a Chinese-Chinese dictionary. You want to know what a
symbol refers to, so you look it up, only to find more meaningless symbols. You
move from symbol to symbol without ever arriving at the actual thing that the symbol
represents. Thus, to escape infinite regress, the meaning of some symbols must not

be derived from other symbols.

Jakob Fries drew similar conclusions concerning scientific statements and what he
called the predilection for proofs. He argued that the call for all statements to be
logically justified by other statements leads to infinite regress. He concluded that the
mediate knowledge represented in the symbols of a language must be justified by the

S Point (8) merely asserts that the symbols are grounded. It is unclear whether this means
the symbols ‘are required to be interpretable to the agent of which they are a part or
merely to an outside observer (see Dennett, 1987)—presumably both. Devising large-
scale representational systems capable of maintaining semantic coherence is difficult

because of the symbol grounding problem and the frame problems.
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immediate knowledge of perceptual experience. Haugeland (1985) 'discusses infinite
regress in the derivation of symbol meaning in relation to Al programs whose only
connection to the world is through textual exchanges with their users. Once again,
only in the mind of their user are the symbols of these programs connected to the
things they represent. In Plato’s Cratylus Socrates also argued that knowledge of
things cannot be derived from symbols but must be gained through an investigation of

interrelations between things.’

As Kant pointed out in his Critique of Pure Reason, by itself a formal definition
of a dog is not sufficient to recognize a dog when you see one. Schyns, Goldstone,

and Thibaut (in press) explain this in more contemporary terms:

there is a conceptual difﬁculfy with the idea that (innate) theoretical
knowledge constrains perceptual information: Going from theories to
predict perceptual data is underconstrained. To illustrate, if a categorizer
is instructed that a set of objects with an unknown complex structure is a
set of hammers, an existing theory of hammer would list the components
representing these objects in memory. However, unless the theory also
specifies all possible perceptual appearances of these components, a seg-
mentation procedure would still have difficulties locating the actual parts
in a new object: The perceptual realization of the parts depends on the
new stimulus itself. This problem is analogous to the symbol grounding
problem (Harnad, 1990). (§3.3.1)

The flip side of the symbol grounding problem is what Harnad terms the herme-
neutic hall of mirrors (Harnad, 1990b, 1990c). He notes that, not only are a symbol
system’s operations—and the resulting output—semantically interpretable (by point
eight of the definition), but that their property of systematicity ensures their
c‘oherlence.8 As he explains, this means that our interpretation of the system’s present

and future output will continue to corroborate past interpretations. However, our

7 “How real existence is to be studied or discovered is, I suspect, beyond you and me. We
must rest content with the admission that knowledge of things is not to be derived from
names. No; they must be studied and investigated in their connection with one another.”
(Plato, 1953, pp. 104-105)

® This is an in principle argument, which assumes that the symbol system can deliver as

promised. In practice, there is still the frame problem and other problems to overcome.
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interpretation plays no role in the workings of the symbol system; its operation is
driven solely by the application of formal rules to representations, both of which are
intrinsic to the system. We alone fix the meaning of the symbol system’s output.
But, as Harnad advises, there is always the danger that semantically-coherent symbol
manipulation will lull the user iﬁto a false sense that the system actually knows what
its talking about—in spite of the fact that the connection between its symbols and the

world depends only on the user.

Harnad (1993) proposes that the frame problem is another consequence of not
letting external properties of the world influence the causal role of symbols. He
suggests that the reason ungrounded symbol systems suffer from the frame prob-
lem—the reason they suddenly produce a result that utterly clashes with our
interpretation—is because they have only formal, syntactic constraints governing
their operation. What they lack are bottom-up nonsymbolic constraints. Thus, their
behaviour is hopelessly underdetermined. In the coming chapters we shall be looking

at ways to build systems that are grounded in these nonsymbolic constraints.

Summary

An essential feature of intentional states is that they are about circumstances in the
outside world. The fact that we can recognize this means that they are, at least to
some extent, semantically evaluable. Common sense—whether it be right or wrong—

tells us that intentional states also have causal powers: we act because of what we

believe.’

It so happens that we can order a computer’s symbols in such a way that they are
both semantically evaluable and causally effective. This has lead to the development
and study of symbol systems. Symbol systems are representational systems that
manipulate symbols systematically—that is, according to their ¢onstituent struc-
ture—while maintaining their semantic coherence. Many cognitive scientists

recognize that our mental faculties must (more or less) encompass properties of

° One example of the prevalence of this-assumption is the fact that it underlies our legal

system and how it apportions responsibility.
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symbol systems in order to explain the systematicity, productivity, and inferential

coherence of human thought.

A problem arises because intentional contents are at least paftly determined by
their relation to the external states of affairs they represent. ' But if this is the case,
how can the exclusively intrinsic properties of a symbol system wholly determine the
causal role of intentional contents? Somehow we need to let these extrinsic properties

in; we need to let them influence the workings of the symbol system.

The symbol grounding problem is one consequencé of not letting them in: the
. problem of causally connecting a symbol system’s internal symbols to the external
objects, events, and states of affairs they represent (Harnad, 1990a). For symbol
systems to model embodied cognition, the meaning of a symbol cannot be derived
solely from the meanings of other symbols. To let a human user’s interpretation of
the symbols ground them cannot explain extrinsic aspects of intentional contents
because the user is standing in for the very aspects that we seek to explain. For an
engineer simply to hardwire connections between internal symbols and external
objects is equally unsatisfactory because of the difficulty of anticipating what new

symbol categories a system might need a priori.

Harnad (1993) proposes that ungrounded symbol systems suffer from the frame
problem because their operations are underconstrained: they only have formal,
syntactic constraints but are completely lacking in nonsymbolic, bottom-up con-
straints (see chapter 7). In chapter 3 we examine his candidate solution to the symbol
grounding problem: that an empirical process of category induction grounds (at least

some) symbols from the bottom up (1990a, 1987).

Overview

Chapter 1. Symbol systems have proved useful for characterizing the systematicity,
productivity, and inferential coherence of intentional contents. - But as presently
conceived they fail to explain how extrinsic properties could bear on their symbols.
Their causal role is determined purely in terms of properties intrinsic to the system.
Harnad (1990a) has identified the symbol grounding problem with the problem of
causally connecting the system’s symbols with the external objects, events, and states

of affairs they are supposed to represent.
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Chapter 2. Theories which propose to ground all symbols by means of the a priori
feature detectors of an encapsulated perceptual module only beg questions: How did
the detectors evolve? How do they detect new kinds of invariance? How can
encapsulated sensorimotor constraints influence 'reasom'ng? Encapsulation and a
priori feature detectors pose problems not only for understanding intentional states
but also for developing clever robots. As behavioural possibilities depend on variable
bodily and environmental relationships, a robot needs flexible representations that can

adapt to unanticipated change.

Chapter 3. Harnad (1987, 1990a) proposes a theory of category induction: an agent
empirically develops categorical representations that are causally linked with the
sensory projections of the'objects they distinguish. These representations exploit the
i1‘1variant features of objects with the aid of feedback from miscategorization. Wavelet
analysis provides one neurologically plausible way to accentuate invariance prior to
categorization. Daugman (1980) has used 2-D Gabor wavelets to account for cortical
cells’ sensitivity to scale, localization, orientation, and quadrature phase relationships.
In experiments I found that categorical representations could efficiently and accurately
distinguish different species of mushrooms. The representations were derived from

inter-category invariance in the ihput after it had been decomposed using wavelets.

Chapter 4. Intelligent robots could learn predictions from spatiotemi)oral correlations
in sensory projections, motor sigrials, and internal variables in order to detect and
exploit changing behavioural possibilities. Memory-based models, which learn
sensorimotor relationships, have proved to be more flexible, robust, and biolggically
plausible than conventional models for robotic control because they are capable 6f
adapting to bodily and environmental change without human intervention. Clocksin
and Moore (1989) have shown that a robot can learn to map from stereoscopic vision
to proprioception. Their approach can be made to conform with a broadly defined
theory of representation based on neurophysiological predictions (Sommerhoff &
MacDorman, 1994, §5) and it can be used to integrate sensory information from a-
wide range of sources through the mutual elicitation, maintenance, and revision of

predictions.

Chapter 5. In a simulation, a robot builds up a mapping from a remote-controlled
car’s current perceived state and motor signals to its perceived state in the next time

step. Based on limited experimentation, it extract correlations between different
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sensorimotor variables and uses this information to predict its dynamics in novel
states.  Thus, its empirically developed model allows it to plan optimal paths

through unvisited areas of its environment.

Chapter 6. A fish simulation is used to outline an empirical, bottom-up approach to
grounding cognitive categories. The agent stores in a coordinate space information
about its motor signals, current sensory projections, and predicted future values of
internal variables. Through a process of quantization and progressive refinement, it
forms categorical representations that can detect relevant sensorimotor invariance.
Instantiated representations reflect the presence of particular objects and agents in the
environment. The fish exploits these representations to discover and home in on food

and avoid dangers.

Chapter 7. We propose three ways of moving the fish simulation towards the
behavioural capacities of a symbol system without sacrificing its bottom-up ground-
ing: (1) learning to map from (leamed).extemal categories and motor signals to
consequent external categories; (2) enhancing its mapping by removing incidental
categories; and (3) learning to exploit constituent structure. SymbolA systems usually
have only formal, syntéctic constraints. Harnad (1993) points out that, although

these systems are underdetermined, their semantic interpretability can lead us to

| overinterpret them. Evidence revealing this is typically identified with the frame

problem. Learned bottom-up constraints could help a robot’s representations better
capture the stabilities of the world by limiting the formally admissible to the empiri-
cally admissible.

Appendix A. The point of the appendix is not to propose a reinforcement-based
alternative to symbol systems, since there is not enough evidence to posit such an
alternative. It is rather to show that the reinforcement learning models that have been
mathematically explored in Al tend to suffer from their own problems of grounding
states and actions. In these systems it is-normally the robot’s designer who must
determine how raw sensory data is mapped onto the set of possible perceived states.
Additionally, the choice of action is usually artificially constrained. Appendix A
proposes a method of state and action generalization based on an extension of Q-
learning. It permits both states and actions to be empirically grounded in sensorimo-

tor projections.
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Chapter 2. A Review of Some Past Approaches

Introduction

In this chapter we will examine f‘odor’s theory of perceptual analysis. The intended.
purpose of his theory is to show how representations can be causally linked with the
objects they represent. It is typical of many theories that are based on a ﬁxed set of a
priori features—for example, Biederman’s (1987) Recognition-By-Components or
Schank’s (1972) Conceptual Dependency. These theories categorize and represent
objects (events, relations, etc.) by means of nondecomposable atomic elements. As
noted in the last chapter, a finite set of atomic elements and rules for their combina-
tion can be used to generate an unbounded number of representations. Moreover,
they can be used to represent systematic relations among objects (see Fodor &

Pylyshyn, 1988). However, fixed features come at a price:

Fixed feature theories limit new representations to new combinations of
the fixed features. Consequently, all possible categorizations are bounded
by the possible combinations of the features.. If a categorization requires
a feature not presented in, or derivable from the feature set then the cate-
gorization cannot be learned. This is a rather limiting view of representa-
tional change. There may be occasions when features not originally
present in the system are useful for distinguishing between important
categories in the world that newly confront the organism. (Schyns et al.,

in press, §1.1)
By employing a fixed set of a priori features, it is possible to seal off a symbol
system from the details of sensorimotor activity. This can simplify such traditionally
symbolic tasks as abstract planning. Unfortunately, as we shall see, it also seals off

the symbol system from the very bottom-up constraints that could help to improve

planning and to circumvent the symbol grounding and frame problems.
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Fodor’s Perceptual Analysis

Although Fodor criticizes Hume’s associationism, his language of thought hypothesis
has certain points of compatibilify with it. Fodor (1975) allows for the composition
of complex representations from atomic symbols as the result of experience. This is
analogous to how Hume conceived of complex ideas developing from simple ones. As
Hume first put forth in his Treatise of Human Nature (1739), “The idea of a sub-
stance... is nothing but a collection of simple ideas, that are united by the imagination,
and have a particular name assigned to therri, by which we are able to recall, either to
ourselves or others, that collection” (1978, p. 16). In his Enquiries Hume asserts that
we can conceive of a virtuous horse because we can conceive of virtue and unite that
with the familiar figure of a horse (1975, p. 19). This resembles Fodor’s suggestion
that the concept airplane may be composed of the concepts flying and machine on the
basis of experience (p. 96) or Harnad’s (1990a) suggestion that zebra may be
composed of horse and stripes. It is worth noting that the system’s capacity for
representing airplane is intrinsic to the system; it only requires the combination of

existing terms. The combination is, nevertheless, provoked by experience.

Where Harnad and Fodor differ is on the question of how symbols are to be
grounded. Whereas Harnad favours an empirical approach whereby objects are
rendered identifiable by associating their invariant features, Fodor favours a nativist
version of mentalese whereby they trigger concepts that are already latent in the mind.
This controversy, long predating mentalese, has raged in philosophy since the time of

Locke and was later to infect psychology.

Both Fodor and Maze (1991) are critical of mentalese empiricism. They consider
it to beg the question: if it is possible for perception to organize:symbols into
hypotheses like the robin is on the lawn by association, “where do ‘robin’ and ‘lawn’
and, for that matter, ‘being on’, come from? It must be obvious that the acquisition of
the background knowledge presents just the same difficulties as the interpretation of
current sensory information.” (Maze, 1991, p. 173) As Fodor (1975) points out, “If,
in short, there are elementary concepts in terms of which all the others can be

specified, then only the former needs to be assumed to be unlearned” (p. 96).

Fodor proposes a nativist solution to the problem of grounding the concepts

expressed in a language of thought. He posits a passive mechanism of perceptual
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analysis that derives symbolic representations of real objects from sensory data (the
raw unstructured readings of physical parameters). Demons, each sensitive to a single
physical property, shriek yes or no depending on \;vhether a hypothesis is present or
absent in the environment. These demons activate innate elementary concepts which,

once properly combined, are used to reason formally about the world.!°

Part of the controversy surrounding perceptual analysis has resulted from its
apparent support for the existence of a ‘grandmother cell’ (a neurone which fires
whenever you recognize your grandmother). (This may be a misconception.)
However, similar architectures have won supporters in the neurosciences. Marr
(1982) proposed a theory of stereoscopic vision based on feature detectors analogous
to Fodor’s shrieking demons.!! The results of experiments on feature recognition in
monkeys (e.g., Fujita et al., 1992) have suggested to some that visual memories may
be written in an alphabet of iconic figures (Stryker, 1992) not unlike Leibniz’s
“alphabet of human thoughts” (1951, p. 20). This interpretation contrasts with the
. view that recognition and recall are evoked by- highly distributed brain activity
(Rumelhart & Norman, 1981; Rumelhart & McClelland, 1986; Smolensky, 1988).2
This distributed account has lead others to conclude that it may be impossible to

translate between thoughts and brain activity, for example, by means of an intervening

9 In characterizing perception in terms of a cacophony of demons, Fodor drew-inspira-
tion from Selfridge’s (1959) demon-based pandemonium model. However, it is doubtful
whether Selfridge himself would have approved of the use Fodor makes of demons. Fodor
implies that the causal connection between external states of affairs and the activation of
demons is set up a priori. Selfridge, by contrast, proposed a kind of learning: evolving a
population of similarly constructed demons by means of natural selection (p. 523).

Clearly, Selfridge did not conceive of perceptual categories as being a priori.

! Starting from the bottom up, he first proposed algorithms for extracting edge
segments, blobs, boundaries, and orientations from a static scene and then for discrimi-
nating groups of these primitives according to their size, orientation, and spatial
arrangement. These computations yielded three levels of representation: the primal, 2
1/,-D, and 3-D sketch.

'2 The difference between the notion of a grandmother cell and distributed connectionist
representation may only be a matter of degree. It is quantified in Valiant’s (1994)

mathematical theory of representation and retrieval in the brain.
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cognitive level such as a language of thought (Stern, 1991). But it is unlikely that
Fodor and Pylyshyn ever saw this as the purpose of mentalese, as they argued for the

autonomy of psychology and the irreducibility of intentional states.

By proposing an a priori method of transducing elementary concepts from
sensory projections, Fodor’s nativism, exemplified by Marr, does not constitute a
radical depamre from the empiricist tradition. Although Hume (1975), its quintes-
sential figure, believed that our ideas were not innate, he claimed that our impressions
were (p. 22)." And as our simple ideas, according to Hume, are just copied from and
caused by these impressions, it takes only a small step to conclude, as Fodor does,

that simple ideas are already latent in the mind.

While Maze and Fodor agree that symbols cannot ultimately be grounded

empirically, Maze also attacks Fodor’s nativist view:

By elementary concepts he seems to mean natural kinds, which, he points
out, cannot be subjected to ‘deﬁnitial. elimination’ without loss of mean-
ing. Thus, the innate language must be provided with terms for every
natural kind which we can potentially identify, which would include, jusf
for a start, every one of the millions of species of animals, birds, fish, in-
sects, vegetable life and so on with which the world is stocked. (1991, p.
173)

Interpreted in this way, Fodor’s nativism implies that we are hardwired to recognize

specific things, like Antarctic penguins and DNA molecules, that our ancestors have
never before seen. This would require a miraculous feat of evolution.!* (However,

Fodor may not adhere to such an extreme position as the one Maze extrapolates from
his reading of him.)

Maze concludes that the mentalese theory of the mind must be false because

'* Hume argued that ideas were not innate because the blind cannot form any idea of
colours nor the deaf of sounds as long as neither had experienced the corresponding

impressions (1975, p. 20). Hume’s term impression includes affect.

" The anthropic principle has been invoked to justify it. The argument, imported from
physics, is that if the universe were not the way it is, we would not be here to witness it.
It is not a denial of evolution, but it does permit highly improbable evolutionary

occurrences. In physics it is used only a last resort.




18

(1) its symbols would be solipsist if ungrounded and
(2) its symbols cannot be grounded, neither empirically nor innately.

Maze’s first point may be arguably true. In places Fodor (1980) indeed appears to
maintain that cognition is solipsist and that this is unfortunate but must be accepted
(in his words, “it’s tough but true”). Maze’s second point rémains an open ques-
tion—one that can be answered empirically. In the robotic case, a preliminary
chemoreceptive simulation in chapter 6 suggests that reiaresentations can be grounded
on the basis of empirical and evolved ad’aptatibn. This is further suppoi'ted by recent
advances in many areas of pattern recognition (e.g. optical character and face recogni-

tion).

Nevertheless, we must grant Fodor that, since any category resulting from real-
time learning could have existed already, in principle robots and even humans and
other animals could be grounded solely by means of innate elementary ‘categories and
combinations thereof. Nevertheless, it seems unlikely that all or most of our catego-
ries are innate (see chapter 3), and it is especially unlikely that a robot engineer could
second guess how to set up the right causal connections to ground a robot’s categories

a priori,

The dichotomy we have set up in this section between nativism and empiricism
(i.e. arguments supporting category learning) is perhaps dated and simplistic. It has
become increasingly clear that most behaviour demands some form of learning (see
chapter 4), which “is often innately guided, that is, guided by information inherent in
the genetic makeup of the animal. In other words, the process of learning itself is
often controlled by instinct” (Gould & Marler, 1987, p. 62) Category learning must,

to some extent, be driven and biased by evolved biological constraints.

The Constraints of Modularity in Robotics

Traditional academic robotics is compatible with mentalese nativism, although few in

the field would exhort this philosophical stance. The robot Shakey designed at SRI is
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a good (though hackneyed) example of this design methodology (Nilsson, 1984)." Its

| programmers furnished it with a stock of symbols and operator rules. The robot used

the symbols to compose propositions. These propositions represented states of
affairs such as relations between nearby objects. The robot scanned its environment
in a perceptual stage to determine which propositions to include in its internal
description of its surroundings. It might represent the presence of a box at a doot-
way, for example, as at (box, doorway). Solving éproblem involved finding a chain of
operator rules whose application would transform the propositions in the robot’s
current state to those in its goal state. Each rule (e.g., for moving a box) had certain
preconditions (like the robot being at the box) and resulted in certain additions and
deletions to the robot’s world description (the location of both the robot and the box
having changed). The chain of operator rules served as an action plan for the robot to
carry out. This sensorimotor process involved matching internal symbols against

external objects so that the robot could locate and move the objects.

The trouble with this approach is that it demanded that Shakey be stocked with
symbols for every elementary object and relation it could possibly be required to -
handle.'® Otherwise, whenever it needed a new symbol to represent a new elementary
concept, its programmer would have to add it. So long as Shakey remained within the
confines of the simple environrhent of boxes and platforms expressly set up for it, the
robot’s symbols appeared to be grounded. If removed from that environment, it could
not function at all. This may be owing to the fact that Shakey had to rely on its
programmer to set up a causal relation between its internal symbols and the objects it

detected.

It is unlikely that the adaptability of robots with this kind of architecture could
approach that of most vertebrates, let alone human beings, because ‘Fl}_e programmer

may not be able to set up the appropriate causal relation or anticipate the robot’s

"“Shakey’s planning system is based on STRIPS (see Fikes & Nilsson, 1971). Brooks
(1991a, b) has been one of the strongest critics of the application of symbol systems to

robotics.

16 Although more recent systems can make deductions on the basis of derived relations, -
they still do not learn new elementary relations and categories from their sensorimotor

activity.
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future need for an elementary category. An exception to the latter would be if we let
the programmer tinker with the robot as its environment changes. But to do as much
would be to include the programmer in our overall conception of what constitutes the
robot. This would be unacceptable in any robotic system that is intended to explain
how the mind works. This is because it introduces a homunculus, the programmer,
who entirely duplicates the talents of the mind the robot’s workings were meant to
help explain (Dennett, 1979, p. 123). What is need.ed is a different sort of explanation

of how an agent may become sensitized to objects (for discussion, see Smith, 1995).

Today it may seem unfair to criticize Shakey, a robot developed almost thirty
years ago. However, up-to-date robotics systems like SOMASS (Malcolm, 1995),
designed by researchers who write about symbol grounding, try to make a virtue of
Shakey’s design limitations. In SOMASS the intention was to make the clearest
possible séparation between the classical symbolic planning module and the behav-
iour-based plan execution module so that the implementation-dependent details of
sensorimotor coordination would not complicate symbolic planning or limit it to a
particular problem domain. In the planning module, a particular instance of an object
is represented solely by types and combinations of types. In a robot with ,sénsing
equipment, presumably these types would be instantiated by feature detectors. Since
types by their very nature abstract away analogue and instance-dependent detail,
information crucial to sensorimotor coordination—such as information about an
object’s contours—is lost. This information is important for manipulating objects of
varying shapes and sizes. In SOMASS, its handling is kept away from planning down

in the plan execution module.

In the spirit of Fodor’s The Modularity of Mind (1983), SOMASS tries to encap-
sulate planning from sensing and motor control by placing it in a sepafate module.
The system’s innovation is exhibited by how it handles the complex task of interfac-
ing the planning and behaviour—based module. The benefit of such a scheme over
earlier systems, which lack encapsulated modules, is clear: it requires much lésé work
for the programmer to adapt the robot to a new problem ddmain or to a new suite of
sensors and actuators. In earlier systems it often proved necessary to reprogram the

system from scratch.

Unfortunately, the SOMASS approach is unsatisfactory from the standpoint of

grounding internal representations adaptively. This is because its modularity
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artificially divides planning and sensorimotor activity and makes untenable assuﬁp-
tions concerning their relationship. Before considering why, let us first recapitulate
Fodor’s (1981, 1983) apparent line of argument. According to Fodor, a symbol
system is necessary to explain the productivity and systematicity of thought and
language. But sensory projections do not represent the world in a form that a symbol
system can process (e.g. amodal types). Thus, Fodor concludes, it is the function of
perceptual analysis to provide the symbol system with representations in a form that
it can handle. This form is not analogue but comprised of well-formed strings of
symbols. He claims that perceptual analysis accomplishes this tokenization by

filtering out irrelevant variability in the analogue sensory input.

In the context of SOMASS, the case against this argument is that 1t 'is improbable
that the programmer can specify in advance precisely what kinds of variation a robot
will never need to consider in the planning module in order for the behaviour-based
module to execute, in the face of changing circumstances, intelligent movements. (This
also holds if we replace the programmer with a learning or evolutionary process.)
There is nothing wrong with SOMASS as a practical system set up by a programmer to
function in a simple and predictable environment. But as a model of real intentional

systems, it fails on the symbol grounding issue.

Encapsulation may prevent a robot from learning to detect new elementary
categories and from adding new elementary symbols to its planning module. . Why is
this so? The purpose of having the robot learn new symbols is so that it can make
plans about currently relevant—but as yet unrepresentable—features of the world.
But these features depend on, and must be extracted from, analogue sensory projec-
tions and motor signals. This implies that the formation of new elementary symbols
depends on an interplay between symbolic planning and (analogue) sensorimotor
information. In SOMASS this information is available only to the behaviour-based
module. Its strict division between planning and sensorimotor control places a heavy
burden on the interface between them (which was not designed to be aciaptive)
because it must translate between sensorimotor transformations and changes in

propositional descriptions of the environment. An alternative is for the robot to use
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representations of sensorimotor transformations as the basis for category formation

and planning about the world (see chapters 6 and 7).!”

According to Fodor (1987), the same elementary concepts and logical syntax that
can be used to define ‘kosher’ concepts can also be used to define any number of
‘kooky’ concepts (pp. 145-146). This excess of freedom and lack of stability in
logical formalisms is a major cause of the frame problem (see Janlert, 1996) But
(pace Fodor) the rules we posit for keeping kooky concepts out of our fepresenta—
tions should be none other than the bottom-up perceptual and empirical constraints
that SOMASS’s planner lacks (see Harnad, 1993, Schyns et al., in press, and chapter
7.

In sum: if our intent is to develop a system that can ground its own symbols,
there are at least five reasons why ot to place an artificial rift between planning and

sensorimotor coordination:

(1) Itis difficult to devise an interface that can translate between analogue
and propositional forms of representation without it being dependent
on a priori symbol categories. However, if the system cannot Jearn
new elementary categories, there may be vital sensorimotor invariance

that it can neither recognize nor learn to recognize.

(2) Often an object’s analogue features must enter into abstract planning as
well as movement execution. These features influence not only how,
for example, the robot would need to angle an object to get it through a
narrow passageway (i.e. plan execution) but also whether the passage-
way were wide enough (i.e. planning itself: is the plan even possible?).
The planner may not be able to take advantage of some opportunities
because this would require it to have access to linrepresented analogue

features of the environment.

(3) While, within a sufficient degree of accuracy, it may be possible to rep-
resent analogue information propositionally, this may carry prohibi-

17 Similarly, Glenberg (1997) proposes that, to model its world, an agent uses analogue

trajectories that develop in memory from meshed sensory projections.
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tively high computational demands (see Janlert and Pylyshyn in Ford
& Pylyshyn, 1996).

(4) According to Janlert (1996), to solve the frame problem one must find
a representational form that preempts the need for reasoning about
stabilities. Janlert believes that what the frame problem is ot about is
finding a better algorithm—one that avoids unnecessary computation
(pp. 43-44). By then it is too late: you have already let empirically in-
admissible concepts seep into your representational form. SOMASS’s
symbolic planner founders on this point because its form does not ex-
clude propositions that should be inadmissible because of bottom-up

constraints (see Harnad, 1993).

(5) It seems plausible that analogue features of particular past episodes
might influence thinking without their having been typecast in advance.
Higher-level thought may depend not only on the ability to draw on
ever more abstract categories but also on the ability to draw on par-
ticular cases that appear superficially remote but bear an abstract rela-

tion to the matter at hand.

A main motivation behind SOMASS was to save time and money. It eliminates the
need to hire someone to rewrite the robot’s program from scratch for each new
problem domain. A more adaptive system, however, miglﬁ be able to relearn what
had previously required reprogramming. Nevertheless, a learning system would still
face the problem of properly integrating knowledge of a new .domain with previously
acquired expertise. Maintaining stability in planning across different environments
remains an important issue, and there may be lessons to be learned from SOMASS—
even for systems that are grounded from the bottom up in learned sensorimotor

categories.

Learning Behavioural Possibilities: A Robot’s World-modelling

Behavioural possibilities vary according to individual differences. Ethology provides
a groundwork for expressing this (e.g. Hinde, 1987). Baron von Uxkiill (1934)
discussed in several publications differences among species in how they might relate

to the same physical environment. It has become clearer that, although other species
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may inhabit the same world that we do, they fill very different niches. An external
wall that functions as a barrier for humans may be a bird’s landing spot and nesting
place. In psychology Gibson (1979) proposed, shortly before his death, a theory of
affordances. 1t related perception to the varying behavioural possibilities that the
physical world affords each species. This view, in one form or another, may be traced
back at least to Tolman (1932). According to Tolman, living organisms can only
know objects as potential behavior-supports. Tolman was a behaviourist (though far
less simplistic in outlook than many of his contemporaries who spoke only in terms
of reflexes). He believed it to be the psychologists duty to describe objects in terms
of the specific sensorimotor adjustments they evoke in an organism. He contrasted
psychology with physics because physicists attempt to distil from their description
of an object all the particular sensorimotor conditions that could occur when an -
organism is faced with that object. They aim to déscribe objects in terms of abstract
characteristics, namely, those that remain constant regardless of whether the subject is
human or rodent, hungry or lustful, finned or winged. This is, of course, something

psychologists can never do.

Even physics’ account of the external world is, in the last analysis, an ul-
timately, though very abstracted, behavioral account. For all knowledge
of the universe is always strained through the behavior-needs and the be-
havior-possibilities of the particular organisms who are gathering that
knowledge... But what outside reality may be, in and for itself, abstracted
from all human behavioral needs and all human behavioral capacities, we
do not, cannot, and need not know. (Tolman, 1932, pp. 430-431)
It may be possible to extend Tolman and Gibson’s insights to the social domain.
A number of theorists have proposed that primate intelligence has its origin in the
selective demands of social interaction (Jolly, 1966, Humphrey, 1976; Cheney &
Seyfarth, 1990). In a social setting, relationships and individual differences add a new
level of complexity to the task of recognizing and acting on behavioural possibilities.
Here we are dealing not so much with the properties of matter as the potentialities of
other minds and, in particular, the ability of individuals to develop unique and
productive relationships. Primates (and other vertebrates) need to develop predic-
tions not only about the consequences of their motor activity relative to the physiéél
world but also about their closely-coordinated interactions with particular individuals,

interactions that have repercussions that may be interpreted at many. levels of
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abstraction. One may note, for example, that a baby girl’s mother does not afford her
fnilk in the same way that a blanket affords her warmth. Mothers have minds of their
own, and the girl’s own mother may sometimes afford her a whack. Nevertheless, we
need not assume that interactive categories, such as those involved in guessing another
person’s preferences, involve category induction that is different in kind from that

required for nonsocial categories.

A robot’s perceptual system reflects different commitments from those of its
designer’s perceptual system. This is because robots do not have human bodies and
human experience. Their sensors and actuators are very different from our own.
What is salient to a robot may not be what is salient to a human no matter how hard

we try to make it so.

This realization may sound obvious but in the Al community it has only come
after years of trial and error. The point of early robotics projects was to get robots to
recognize and label what are fo us objects. More precisely, they were meant to
identify, on the basis of the proximal sensory projections of distal objects, phenom-
ena denoted by English lexemes. They would then reason about these objects and

manipulate them accordingly.

Most researcher assumed that whole objects and complex features were defined in
terms of a fixed set of a priori features.'® Robots could then be programmed to detect
those features and to use this information to identify whole objects. This decomposi-
tion of the problem mirrored decompositions found in neurophysiological models.
Early AI work appeared to confirm it. This was largely because of allowances that

were made in the design process. Researchers carefully crafted objects that could be

'® This assumption is not limited to AL As Schyns et al. (in press) note, “many recent
approaches to categorization have continued to use stimuli that ‘wear their features on
their sleeves.” Clear-cut dimensions with distinct values are often used for reasons of
experimental hygiene” (§1.1). In psychology these facts have created an experimental
bias in support of fixed feature sets. Schyns and his colleagues argue that functionally-
determined constraints on features “should be defined by the environment and not simply
by the experimenter” (§2.1). “Experimental materials are more likely to promote
feature creation when they are not designed with a priori diagnostic features, leading to

obvious feature decompositions” (§4).
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easily recognized by the robots that were, in turn, designed to recognize them. 'fhus,
the correspondence between object and representation was built into the relationship
between robot and environment. This is possible when both world and cognizer are
the product of the same designer. Unfortunately, this made it easier for robot
experiments to corroborate assumptions about fixed feature sets; their design

prevented them from really putting fixed feature assumptions to the test.

Systems conceived along these lines simply .did not scale up, and even their
designers have temporarily put aside the hope that their robots could produce and act
on a complete description of their surroundings (see Brooks, 1991b). For example,
many systems now use deictic representations (e.g. the box in view) instead of trying
to keep track of information across time about which object is which (e.g. box #7 is at
location xyz)." Some robots are able to respond to phenomena without labelling
them—or at least when they do use labels they are neither designed nor intended to
cover human-imposed classes of things. Nevertheless, within limits we can at least

interpret the behaviour of these robots as being directed and purposeful.

Now that we have the necessary hardware to embody and test our theories about
the mind, presbsure has mounted to reconcile our picture of both mind and brain.
Much is currently being written on the subject of hybrid systems. Indeed, many
hybrid systems are under development. They -graft together low-level pgprally-
inspired models for sensing and motor control and higher-level symbdlic models of
reasoning about the world. Some of these hybrid systems will fail to live up to
expectations because like SOMASS they ignore the symbol grounding problem. The
resulting problems will expose weaknesses in the separate and distinct theories that
inspired the system’s parts and, in so doing, bring the symbol grounding problem to
the fore.

' For example, instead of having a moth-eating bat just keep track of the one or two
moths that it can most easily catch, a traditional AI approach might have it trying to
identify every moth that came within its range (e.g. as the fifth moth among eight). If it
failed to identify a moth, it would issue it a name (e.g. moth #9) before pursuing it.
(Given sonar’s limited resolution, in addition to beifig pointless, such a design probably

would not work.)
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With our current understanding, probably the fastest way to get robots to perform
certain practical tasks is to place hard constraints on their perceptual systems—for
example, by explicitly programming them to recognize the things We need them to.
However, if our aim is to develop robots that behave intelligently; philosophical
insights as well as experience in academic robotics suggest that this approach is not
enough. To avoid this we need first to develop a foundational understanding of
embodied intelligence beneath the engineeri.ng problem. Hence, we should not focus
only on short-term practical benefits. This means developing robots that work within
more flexible constraints. Certain constraints will always be necessary because
perceptual clusterings of salience do not simply pop out of the physical structure of
an individual’s sensory projections. Some form of feedback is necessary—either from
natural selection, internal variables, or both—concerning the sensory data’s relevance
to the individual’s needs and potential behaviour. The robot should have the -
wherewithal to learn to recognize new objects, to discover what patterns in its flux of
sensorimotor input are salient. The patterns it settles towards will be its objects of

perception as influenced by, among other things, its body, goals, and past.

If Martian scientists wished to understand how human cognitive processes work,
they might start by trying to surmise what kinds of things people respond to (see
Quine, 1960, 55ff; Gordon, 1992). However, if these Martians, having evolved under
different conditioné, were sensitized to different perceptual categories (perhaps they
only see infrared light), they probably would have trouble guessing what it was that a
human individual saw. Even if they could thoroughly probe a person’s brain, they
still would not know everything that person saw because they would not be able to
see it themselves. One cannot step outside the limits of one’s own perceptual
system, although one may succeed in extending the limits of that system (science and
technology have been of enormous benefit here). Now when the Martians turn to
theorizing about humans, just like us they would be able to name the things they had
names for, and with time no doubt they would invent more names. Nevertheless,
some aspects of our world would fall through the gaps. No matter who is doing the

theorizing, something is always lost.?

%% This is not to deny that, in a sense, something should be lost. Theories only approxi-

mate aspects of the world that are relevant to our interests, and this is all they are meant
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The limitations faced by these hypothetical Martians would not be unlike those
faced by human scientists when trying to understand the workings of the adaptive
systems they set up. If the wrong approach is taken in the development of robots,
the limitations of the cognitive systems of robot designers could pose a more serious
threat to robot adaptability than any hardware constraint. Perhaps one reason natural
selection has been able to evolve marvellously complex and adaptive creatures is

because it does not and cannot impose such limitations.

Summary

So far symbol systefns have offered the best hope f‘or modelling the systematicity and
productivity of thought and language. However, for them to model embodied
cognition or to serve as a basis for robotic activity, some of their symbols must be
causally- connected to the outside world. The analogue nature of sensory projections
prevents symbol systems from processing them directly. As a consequence, some
theorists posit a separate perceptual module that works beside the symbol system.
Its purpose is to present the sym‘bol system with representations of the world that it
can process and, thus, to maintain consistency between the system’s internal symbols
and the world they represent. The perceptual module is supposed to do this by
filtering out irrelevant variations in the sensory input—for example, by using a fixed

set of feature detectors.

This approach has the benefit of encapsulating the symbol system from the
messy details of sensorimotor coordination. This can make for simpler, cleaner
planners that robot engineers can more readily adapt to new sensors and actuators or
to new problem domains. Unfortunately, in realistic environments it may not be
possible to specify in advance what kinds of sensorimotor invariance will be relevant
to planning. Encapsulation and fixed features pose the following problems for a

symbol system:

to do. As Tolman pointed out, if a theory reproduced the complexity of the world, it
would lose its usefulness as a map “for finding one’s way about from one moment of
reality to the next” (Tolman, p. 425).
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 They only delay explanation of how extrinsic relations help to deter-
mine the causal role of intentional states. After all, how did the fixed

set of feature detectors originate and why is it now fixed?

* They may hinder a robot in learning new features and planning in terms

of them.

* They prevent the analogue features of an object from playing a some-

times necessary role in the process of reasoning about the world.

o They release the symbol system’s representational form frbm bottom-
up constraints. Unfortunately, these are precisely the constraints that
could have limited the form to the expression of empirically admissible
concepts. Thus, they undermine our best hope for overcoming the
frame problem (see Harnad, 1993; Fodor, 1987; Janlert, 1996; and
chapter 7). ' '

For agents to behave intelligently, they must be able to recognize—or learn to
recognize—the changing behavioural possibilities the world affords them. These
possibilities vary between individuals according to differences in body and ability and
also according to the relationships that have developed among them. As we shall see
in the next two chapters, learning appears to play an important role in how an agent
categorizes its environment and m developing sensorimotor predictions that are

responsive to bodily and environmental change.

Before technology was available to test cognitive‘ theories in embodied systems,
separate theories were developed to explain high-level thinking and low-level percep-
tion. The assumption was that they. could one day function together as modules in
hybrid systems. This is probably too optimistic. But the attempt to integrate these
different theories will have the beneficial ‘effect of forcing us to face the symbol

grounding problem and, as a result, to rethink our theories of cognition.
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Chapter 3. Category Induction for Symbol Grounding

Introduction

Psychologists have begun to uncover 'experimental evidence which challenges theories
based on a fixed repertoire of a priori features. Instead, Schyns and his colleagues
propose that high-level cognitive processes acting under perceptual constraints help
to guide the creation of new features—for example, by means of corrective feedback
from miscategorization (see Schyns et al., in press; Wisniewski & Medin, 1994;
Harnad, 1987). They found that subjects tended to decompose objects into those
parts that were diagnostic in categorization. With experience we leam to processes
stimulus categories and dimensions separately that were originally processed together.
This difference is most obvious when comparing children with adults (Smith &
Kemler, 1978; Ward, 1983). Though young children may at first categorize all round
object as balls, gradually they learn to narrow their lexical categories (Chapman,
Leonard & Mervis, 1986; Clark, 1973). This evidence supports the view that our

categorizations influence which features are used in representing objects.

Schyns and his colleagues (in press) explain the advantages of developing features

in object concepts (§2.7):

(1) The ability to learn features that distinguish objects makes for features

that are both flexible and constrained.

(2) Evidence for a proposed set of hardwired features could be explained

by an equivalent set of learned features.

(3) Afixed set of a priori features must anticipate many potential but as
yet unused categorizations. Since every learned feature must have been
formed to subserve at least one categorization, a learned set should

have far fewer extrancous features.

(4) Learning permits features to be tailored to the categorizations they are
used to make. This lessens the need to have complex rules for making

categorizations with a less specialized fixed set.
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(5) Feedback from miscategorizations can cause features to be decomposed

into subfeatures capable of subserving the correct categorization.

In this chapter we shall begin to explore category induction’s potential to aid in the

development of symbol systems that are grounded from the bottom up.

Harnad’s Theory of Category Induction

The connectionism versus symbolic representation debate has seen a history of rival

claims made about the adequacy of each methodology in modelling mind, brain, and

behaviour.?!

Harnad (1990a) suggests, however, that a successful theory may be
required to capitalize on the strengths of both. He proposes that neural networks or
other statistical learning mechanisms might be able to form basic categorical represen-
tations from invariant features in the environment. The categorical representations
could develop causal links with sensory projections through “the -acquired internal
changes that result from a history of behavioral interactions” with the distal objects
they represent (p. 343). These representations could serve as grounded elementary

symbols, and a symbol system could be built out of them from the bottom up.

Specifically, learning mechanisms would create iconic and categorical representa-
tions. Iconic representations (IRs) are analogue copies of “the proximal sensory
projections of distal objects and events” (Harnad, 1990a, p. 335). They result from
“an analog transformation,” retaining much of “the spatiotemporal structure (i.e.,
physical ‘shape’) of the input or proximal stimulus” (1987, p. 552). “In the case of
horses (and vision), they would be analogs of the many shapes that horses cast on our
retinas.” They allow us to discriminéte between horses by “superimposing icons and

registering their degree of disparity” (1990a, p. 342). Harnad (1987) notes that

analog representations are unbounded in the sense that nothing reliably
links them to a shared category except whatever natural similarities and
differences they may have. But apart from such “ecological” boundaries,

iconic representations would blend continuously into one another, sharing

%l On the connectionist side see Smolensky (1988) and Dreyfus and Dreyfus (1988). On
the symbolist side see Pinker and Prince (1988), Minsky and Papert (1988), and Fodor -
and Pylyshyn (1988).
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the same analog representational substrate to the degree that they shared

overall physical similarities of configuration or shape. (p. 551)

Categorical representations (CRs) are “learned and innate feature detectors that
pick out the invariant features of objects and event categories from their sensory
projections” (p. 335). “They are icons that have been selectively filtered to preserve
only some of the features of the shape of the sensory projeétion: those that reliably
distinguish members from nonmembers of a category.” They allow us, for example, to
identify a horse as a horse and not “a mule or a dc;nkey (or a giraffe, or a stone)” (p.
342). As Harnad explains,

successful categorization depends on finding the critical features on the
basis of which reliable, correct performance can occur. These will depend,
not on the inherent “features” of any particular instance (there are an in-
finity of them), but on the context: the range of confusable alternatives
involved, the specific contrasts to be made, the invariant features that
will reliably subserve successful categorization. And because ranges can
change (and instantiation and categorization are never-ending processes),
all categories and the features on which they are based will always remain

provisional and approximate. (1987, p. 540)

Harnad points out that, at higher levels in perceptual processing, categorical
representations may demonstrate rule-like properties: for example, a test for one-
leggedness could sort many instances of animals and trees by counting their number
of supporting structures (as detected by lower-level processing) and registering
animal if there are at least two supports, plant otherwise. The categories employed
by this test (e.g. one and leg) are grounded either directly in the sensory projections
(e.g. by category learning) or recursively in simpler categories which, at base, are
themselves grounded directly. “As anomalies were introduced, the rule could be
elaborated so as to tighten the approximation in accordance with the new contingen-
cies.” As categorical representatidns are only accountable to the data encountered so
far, “better and better approximations are all one can ever expect. No ‘essence’ of a
tree or of an animal could ever be captured by a process such as this.” (p. 539)
Nevertheless, since categorical representations encode only those invariant features of
instances sufficient for categorization, they are not extensional but intensional,

capturing abstract properties, rules, and relations (p. 556).
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Harnad’s suggestion that the old analogue versus digital distinction be replaced by
a digitalization continuum may prove highly fruitful for adaptive robotics. He

proposed that the more invertible a transformation is the more analogue (and less
digital) it is (p.A 560, fn. 4). If, for example, by inverting an X—Y transformation, we
can perfectly recreate X from ¥, then the transformation is completely analogue. If,

however, after the X—Y transformation, all of Vs spatiotemporal structure has been -

abstracted away*® and no degree of inversion is possible, then the transformation is

completely digital.

The digitalization continuum introduces thought-provoking middle ground to both
the connectionism and imagery debates. .Certain mental operations appear to be
constrained by some (but not all) of the analogue features of objects. It is possiblé
that, in a person’s cognitive economy, they are represented with some, but not all, of
their analogue detail stripped away. They would thus rest somewhere midway in the
analogue-to-digital conversion process, coming after quantization and dimensionality
reduction but before complete symbolization (see, again, fn. 4). As we have seen
ﬁom our discussion of SOMASS, for many tasks (especially those involving, for
example, spatial reasoning), symbolic planning would appear to require recourse to
just this kind of representation. It may be able to strike the right balance between the
expressive freedom of symbolic represehtation and the avoidance of reasoning about

stabilities offered by certain kinds of analogue representation (see Janlert, 1996).

Perceptual analysis is usually thought of as setting up a type-token relationship
so that an instance of a particular type activates a corresponding symbol. In this way
the sensory projections of a robin might instantiate the robin symbol. Methods of
learning this kind of input-output mapping divide according to those that are super-
vised and, hence, require at least some information about what their correct output
should be and those that are unsupervised and, hence, require no additional informa-

tion.?

22 For example, if Y is a representation manipulated purely according to the formal

properties of its lawfully combined arbitrary symbols (as opposed to its analogue shape).

¥ Examples of unsupervised learning include statistical cluster analysis, vector quantiza-

tion (Swaszek, 1985),- Kohonen nets (Kohonen, 1984), competitive leamjpg (Rumelhart
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Unsupervised learning methods form categories solely on the basis of spatiotem-
poral correlations in their input—that is, without attaching any value(s) to it. If the
proximal projections of distal objects are the only source of input, these methods can
uncover no more than clusters of patterning in this data.®* It is unlikely, however,

that all objects we perceive can be discriminated on the basis of fortuitous correlations

(e.g. discontinuities) in their sensory projections. As Harnad (1987) writes, although .

this

is a significant simplifying factor for some categorization problems, it by
no means represents a general solution to the problem of category acqui-
sition. For example, the problem of perceiving “object constancy” [the
continuance of unobserved objects] under spatial transformations still re-
quires the selective detection of invariants.‘ Any domain in which in-
stances vary continuously is a potential problem. So is any domain in
which the variation, though discrete, is so complex, subtle, or confusable
— i.e., underdetermined — as to necessitate selective search and filtering.
Finally, there is the domain of abstract “objects,” whose instances vafy

along conceptual rather than physical dimensions. (p. 561, fn. 13)
Nature is full of mimicry, and often abstract objects like the edible and inedible must

be discriminated on the basis of fine-grained differences, which unsupervised learning

is unlikely to distinguish from noise.

In addition, more often than not, the correlations on which discriminations are
based are sensorimotor in character. Even the ability to passively recognizé objects
largely develops by means of sensorimotor activity (see chapter 4). Furthermore, our
internal reactions determine what is worth looking at—what patterns we ought to
discriminate—as do the selective pressures behind them. Tt is by sensitizing them-

selves to these patterns that cognitive systems acquire perceptual categories.  Hence,

& Zipser, 1985), and adaptive resonance theory (Grossberg, 1988). Examples of learning

from a teacher include the backpropagation of errors (Rumelhart, Hinton & Williams,-

1986) and the generalized delta rule, and from reinforcements include temporal differ-
encing (Sutton, 1988) and Q-learning (Watkins & Dayan, 1992).

24 Of course, if the input is augmented to include evaluative dimensions, the clusters
become more than mere clumps of physical similarity. But, in this case, the unsupervised

learning algorithm is being used as a form of supervised learning.
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there is little reason to believe that clusters of sensory patterning from distal objects

would coincide with the boundaries demarcating all the things we perceive as objects.

Let us assume, for point of illustration, that a neural network learned to produce a
particular output given a particular sensory projection as input. One of the sources of
this projection might be a robin at the window. For the network to make it possible
for the robin to trigger a particular output, it would have to be able to ignore irrelevant
variations in the projection: for example, variations related to lighting, viewing
perspective, or the bird’s posture and position. In the absence of additional feedback
(e.g. from motor signals, internal reactions, and other mechanism that result from
natural selection), this is not easy. Harnad brings to light this weakness of unsuper-
vised learning in his criticism of Tversky:

nondirected or ‘ad lib’ similarity... seems unlikely to explain how we cate-

gorize. Categorization is an imposed rather than an ad lib task. Hence

the relevant dimensions of similarity must be found and selected by active

processing guided by feedback from the consequences of miscategoriza-

tion.... In nontrivial (i.e., confusable, underdetermined) categorization

problems the solution is not obvious in the precategorical (ad lib; unsu-

pervised) similarity structure. (1987, p. 561, fn. 15) .
Indeed, it is because unsupervised methods accentuate the gross physical features of
sensory projections that, in so doing, they are likely to filter out the kinds of .
potentially crucial details required for making life or death discriminations (e.g. edible
versus poisonous). By contrast, supervised leaming methods, which may exploit
various reinforcements (e.g. physiological reactions) or knowledge acquired from a
teacher, can make these kinds of discriminations. We shall examine this more fully in

chapter 6 and appendix A.

Vanishing Intersections Revisited

As Harnad (1990a) has pointed out, category induction has had many critics over the
years; they have denied that categorical representations, capturing invariant aspects of
sensory data, can be learned and revised empirically:

It has been claimed that one cannot find invariant features in the sensory

projections because they simply do not exist: The intersection of all the

projections of the members of a category such as “horse” is empty. The
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British empiricists have been criticized for thinking otherwise.... The
problem of vanishing intersections (together with Chomsky’s “poverty
of the stimulus argument™) has even been cited by thinkers such as Fodor
as a justification for extreme nativism. (p. 344) |
Let us consider a simple illustration.of vanishing intersections at the level of the
raw optical character input to a computer. The first two columns display two hand-
written instances of the letter 4, the third column their superimposition (with points

of intersection in black):
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Though perfectly scaled and aligned, less than forfy percent of the pixels in the first
letter’s image match the second’s, and‘vice versa. If we repeatéd this process,
intersecting the fifteen remaining pixels with some other varied instances, none may
remain.?> Below we see that even identical characters, slightly misaligned, may yield

few points of intersection (less than ten percent):
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This lack of overlap would be even more pronounced at higher resolutions. Categori-
zation is further complicated by the fact that an instance of one category may have
more points in common with an instance of another category than with. other

instances of its own. The 4 below shares sixty-two percent of its points with the B:

** For another simple demonstration of this, imagine superimposing two images of a
horse on a computer screen and then blackening out all pixels whose colours differ at
corresponding points in the two images. One need only repeat this process a few times

with different pictures of horses to see the screen turn completely black.
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In a project I helped to supervise, images of handwritten characters were normalized
for scale and translation, detilted, decomposed using Gabor wavelets (see the next
section), and then reprojected into a space of lower dimensionality using the K-L
transform.?® A neural network, which adjusted its weights by means of the RPROP
algorithm, found invariant features in the output of this process. It outperformed

undergraduate students at categorizing highly-degraded handwritten characters.

If one assumes that the intersections are taken solely at the level of raw sensory
projections, then for many domains intersections may well vanish. However, extreme
nativism does not solve the problem of vanishing intersections; a priori feature
detectors would still need to categorize pa;ticular instances of types on the basis of
invariance identifiable in the sensory projections of those instances. The only
difference is that, under extreme nativism, there would be no need to learn how to do
this. This is because the features detectors would already have evolved specifically

for it.

Arguably, intersections do occur but at higher levels of abstraction. Horses do not
exist as recognizable entities at the lowest levels of visual processing. At this level

invariance may facilitate the detection of simpler and more universally applicable

¢ The Karhunen-Loeve (K-L) or Hotelling transform is an analogue, orthonormal
transformation of an inplit vector. The vector is rotated by multiplying the transpose of
the eigenvectors of the covariance matrix with it. These eigenvectors are the principal
components. Thus, the axes of its new dimensions correspond to a set of orthogonal
axes along which the original data varies maximally (see Haykin, 1994). Dimensions in
the new space that provide little information may be discarded. Although principal
components analysis and the K-L transform are never mentioned in Numerical Recipes
| (Press et al., 1992), the book provides routines for performing almost all the necessary
calculations. After subtracting the mean from the data points, I used a chunk of code
from pearsn (§14.5) to calculate the correlations for the correlation matrix. Since the
correlation matrix is symmetric, I was able to use tred2 to tridiagonalize it, before

calculating the eigenvectors and eigenvalues with tgli, the QL algorithm (§11.2).
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categories, and here it may be appropriate to speak in terms of Marr’s detectors of
edge segments, blobs, boundaries, and orientations. Higher levels are sensitive to
horse-indicative invariance in lower levels, and no doubt this invariance is integrated
from multiple sensorimotor modalities. Yet it may be more fruitful to think in terms
of feature selection than feature detection. The global ‘interpretation’ of a figure may
place constraints on lower-level processing thus permitting a categorization-to have
multiple equilibria as the Necker cube, Jastrow’s. (1900) duck-rabbit, and Rubin’s
(1915) vase-face figures exemplify (see Wittgenstein, 1958, further examples in
Gregory, 1970, and the Gestalt literature).

M

Fig. 2.1: The Necker cube, Jastrow’s duck-rabbit, and Rubin’s vase-face

exemplify how a higher-level global interpretation may lead to the selec-

tion of different features at lower levels.

To exploit physical invariance in sensorimotor projections, the same invariant
features need not be present for every instance of a category. Any one of a disjunc-
tive set of invariant features, sampled from any number of sensory modalities, can
serve to indicate sensorimotor invariance at a more abstract level. And it is at more
abstract levels that invariance is most significant. Either consciously or noncon-
sciously, an individual needs to be able to recognize abstract invariance—what
something is, the ways that individual can interact with it, and the likely outcome of
those interactions. At more concrete levels variance can be crucial—not the abstract
properties an instance shares with other members of a class but its particular shape,

weight, and so on.

This is where Harnad’s digitalization continuum comes in handy (1987, p. 560, fn.

9). Since we need not conceive of representations as entirely analogue or entirely

digital (i.e. categorical or symbolic), we can make use of representations that have
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undergone various degrees of digitalization to exploit simultaneouély bbth their
instance particular, variant features and their invariant, formal features—and features
in between. In the present discussion, one category may be referred to as being more
abstract than another simply because it is further removed from the physical structure
of the sensory projection. We might expect this to imply that later brain processing is
involved and that its recognition is more likely to depend on learned predictions than
hardwired detectors. Indeed, sometimes even the distinction between iconic and
categorical representations may be blurred if, to some degree, a representation can

serve both iconic and categorical roles.

Wavelet Multiresolution Analysis for Category Induction

Studies of peripheral sénsory processing in the brain have supported the view that
sensory input undergoes considerable filtering, reprojection, dimensionality reduction
(see Kaas, 1995), and low-level discrimination (e.g. edge detection) before being
categorized at anything like a semantically penetrable level.?” For no sense is this
more true than vision. In this section, we examine some of the reasons for ‘pre-
categorical’ processing with the aid of a specific model: the discrete wavelet transform
(OWT). The DWT accentuates variations in sensory projections at varying scales and
localizations. As Schyns and his colleagues (in press) note (though without mention

of wavelets),

Many psychophysical and computational models are converging'v"on the
observation that perception operates simultaneously at multiple spatial
scales and that the coarser scales are often sufficient for effective proc-
essing of complex pictures (e.g., Burt & Adelson, 1983; De Valois & De
Valois, 1990; Maar, 1982; Schyns & Olivia, 1994; Watt, 1987; Witkin,
1986). Multi-scale representations suggest that the input stimuli are dis-
cretized at different scales, possibly using scale-specific feature reper-
toires.... Large features may be registered without being composed out of
smaller features, and small features may sometimes be created by decom-

posing larger features. (§3.1)

2" This observation does not undermine the view that semantically penetrable categories

take part in feature learning.
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After briefly introducing how the DWT works, we apply it, in four sets of experi-
ments, to the task of learning visual categorization. Not only is wavelet analysis
compatible with Harnad’s (1987) theory of category induction but preliminary results
involving its application have revealed the theory’s utility relative to other ap-

proaches.

Although wavelets have developed from work in mathematics, engineering, and the
physical sciences (especially signal analysis, image procéssing, approximation theory,
and physics), their promise for modelling early visual processing has recently come to
light. In 1980 Daugman (1980) proposed that a parameterized family of two-
dimensional Gabor filters (see Gabor, 1946) could offer a suitable model of the
anisotropic receptive field profiles of single neurones in several areas of the primary
visual cortex. Van Essen (1979), among others, has found these neurones selectiveiy
respond to Ithe 2-D location, orientation, spatial frequency (size), symmetry, colour,
motioh, and stereoscopic depth of visual stimuli. "The 2-D Gabor filters are able to
account for the selective tuning of simple cells (i.e. linear neurones) for characteristic
scale (spatial frequency), localization, orientation, and quadrature phase relationships
(Daugman, 1988). Daugrﬁan (1985) has shown by chi-squared tests that this family
of elementary functions fits the profiles of ninety-seven percent of simple cells in the

cat visual cortex (based on measurements reported in Jones & Palmer, 1987).

How the Discrete Wavelet Transform Works

The fast Fourier transform (FFT) is typically used to decompose a signal (e.g. a
soundwave, image, or video clip) into a series of coefficients, each of which describes
the signal at one frequency only. (The FFT has an inverse, since the sum of the
functions resulting from the multiplication of the coefficients by their respective sines
and cosines approximates the original signal) To take a biological analogue, the
cochlea performs the same kind of mapping nonalgorithmically by virtue of its spiral

28

shape.”® Wavelets provide localization in characteristic scale (roughly analogous to

- frequency), but unlike sines and cosines they also provide localization in space.

?% The Fourier transform and its inverse also provide a model of the rapid adaptation of
surface markings in tropical flatfish to patterns at various spatial frequencies in their

background (Ramachandran et al., 1996).
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Thus, the discrete wavelet transform (DWT) is useful for analysing many kinds of
boundéd, discontinuous, aperiodic signals that are ill-suited to the Fourier domain—
for example, an image with many sharp edges. Like the FFT, fhe DWT is quick to
compute (linear-time complexity), and the sparsity of its output—most coefficients
are negligible or zero—makes it ideal for data compression and fast numerical

solutions.

In the 1-D case, the DWT takes a data vector, whose length is an integer power of
two, and transforms it into a numerically different vector of the same length.?’ The
transform decomposes the data vector into a particular wavelet basis (e.g. Haar,
Daubechies, Gabor). A Basis is a minimal set of vectors that can generate any
possible data vector in the vector space through linear combination. Since wavelets
are a set of linearly independent functions spanning a vector space, a wavelet basis is
a minimal spanning set of functions that are also linearly independent. The number of
possible wavelet bases is infinite. Difference among them usually reflect a trade-off
between compactness and smoothness. Smooth bases provide higher numerical

accuracy, while compact bases are better for data with sharp discontinuities.

The original data vector may be reconstructed from the output vector by multi-
plying each output coefficient by its respective wavelet basis function and summing -
up the result. Thus, DWT effects an analogue-to-analogue transformation because the
input is recoverable from the output to within the numerical accuracy of the comput-
ing elements (be they neurones or a floating point chip, see Hamad, 1987). The
method of recovery is the discrete wavelet inverse transform, and it has been used to

restore many kinds of data after decompression, including images and video.

A rigorous introduction to wavelets would require a lengthy mathematical
exposition (see Chui, 1992; Daubechies, 1992). However, a simple example will
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