Technical Report R

Number 416

Computer Laboratory

DECLARE:

a prototype declarative proof
system for higher order logic

Donald Syme

February 1997

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1997 Donald Syme

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

DECLARE: A Prototype Declarative Proof
System for Higher Order Logic

Donald Syme
February 6, 1997

Abstract

This report describes DECLARE, a prototype implementation of a
declarative proof system for simple higher order logic. The purpose of
DECLARE is to explore mechanisms of specification and proof that may
be incorporated into other theorem provers. It has been developed to aid
with reasoning about operational descriptions of systems and languages.
Proofs in DECLARE are expressed as proof outlines, in a language that ap-
proximates written mathematics. The proof language includes specialised
constructs for (co-)inductive types and relations. The system includes an
abstract/article mechanism that provides a way of isolating the process
of formalization from what results, and simultaneously allow the efficient

- separate processing of work units. After describing the system we discuss
our approach to two subsidiary issues: automation and the interactive
environment provided to the user.

1 Introduction

This technical report describes DECLARE, a prototype implementation of a
declarative proof system for simple higher order logic. This system has been
developed over the last 9 months as part of a project investigating tools to
aid the computerized formulation of results from programming language theory,
particularly operational semantics.

The big picture of how DECLARE works is as follows. The user’s aim is to
" develop a set of input files that specify proofs of logical properties expressed in
higher order logic. The emphasis is that these files should contain ‘declarative’
characterizations of specifications and proofs, as distinct from the procedural,
tactic-based characterizations often used in theorem provers. The DECLARE
user divides his or her work into theories, and for each theory gives an abstract

1 This work was carried out under the PhD. program at the Computer Laboratory, Univer-
sity of Cambridge, UK, and under the International Fellowship program at SRI International,

Menlo Park, CA.

(or signature) and an article (or implementation)?. An abstract characterizes a
theory from a logical perspective (as a set of constants and postulates), and an
article implements a theory as a conservative extension of the logic via a series
of definitions and proofs. The use of abstracts and articles enables articles to
be implemented and processed independently, and unimportant details of the
process of formalization need not escape the bounds of an article.

Besides abstracts and articles, the key feature of DECLARE is the language
used to express proofs. Before we discuss this language, we must be clear what
we mean by a ‘proof’ in this context. Harrison [Har97| describes several different
uses of the word in the field of automated reasoning. Three of these are of
interest here:

1. What is found in a mathematical text book, i.e. a sketch given in a
mixture of natural, symbolic and formal languages, sufficient to convince
the reader.

2. A script to be presented to a machine for checking. This may be just a
sketch, or a program which tells the machine how to construct a formal
proof.

3. A formal ‘fully expansive’ proof in a particular formal system, e.g. a
derivation tree of inference rules and axioms.

As with Harrison, we will use the word ‘proof’ in the second sense. We will also
use ‘proof outline’ to mean proofs (again in the second sense) that are merely
sketches, and that require significant reasoning to fill in gaps.

Proofs in DECLARE are expressed as proof outlines, written in a language
that approximates written mathematics. As such, DECLARE proofs are meant
to express a declarative intent, and not a program. This builds on work done
with similar languages by the Mizar group [Muz93] and Harrison [Har96]. Our
language is similar to the Mizar language, but has been enhanced with con-
structs that makes certain kinds of proofs more succinct. We describe the proof
language by example in Sections 2 and 3.

The distinction between declarative and procedural descriptions of proofs
has been explored in some detail by Harrison [Har97], where he rightly points
out that the distinction is very hard to make precise. Along with him we believe
that the distinction is useful one, even if only understood in a weak way. The
distinction is certainly a common one in computing: Prolog, BTEX and HTML
are examples of languages that aspire to a high declarative content.

1.1 Outline

'This report is structured as follows: in the remainder of this section we outline
the advantages of DECLARE, and how it is different from related work. Section

2This terminology comes from the Mizar system [Muz93] '

2 describes a short example of the use of DECLARE’s proof language. In Section
3 we give more details of the proof language, in particular specialised constructs
for induction and co-induction. In Section 4 we describe the abstract/article
mechanism, which is necessary for an efficient implementation of the batch proof
checker (and is of independent interest as a light-weight structuring mechanism).
In Section 5 we consider issues of automation, as DECLARE proof outlines are
only real proofs given the provision of sufficient automation for logical leaps.
Section 6 is more speculative: we consider what a ‘fully interactive’ environment
for DECLARE might be like, and introduce the notion of computer aided proof
writing that complements the style of proof language being used. We look
toward future work in Section 7.

1.2 The Advantages of DECLARE

Some of the advantages of using a proof language like DECLARE’s have been
outlined by Harrison [Har97]. To summarize and extend these:

e Declarative proofs are more readable than tactic proofs.
e Automation is aided by having explicit goals at each stage.

e Proofs may be interpreted without needing to know the behaviour of tac-
tics. '

e Proof interpretation always terminates, unlike tactic proof which are ex-
pressed in a Turing-complete language.

e Static proof level analyses are feasible, for example it is possible to type-
check proofs without running them; perform proof dependency analysis;
and find unnecessary proof steps.

We expand on these throughout this report. Three additional, important ben-
efits seem probable but remain to be demonstrated conclusively:

e Declarative proofs are potentially more maintainable.
e Declarative proofs are potentially more portable.

e A declarative style may appeal to a wider class of users, helping to deliver
automated reasoning and formal methods to mathematicians and others.

We expand on portability issues in Section 7.2.

DECLARE is not a polished or complete system. The aim of DECLARE is
not to supplant theorem provers such as Isabelle, PVS or HOL [Pau90, ORR™ 96,
GM93], but to explore mechanisms of specification and proof that may eventu-
ally get incorporated into those systems. These mechanisms can complement
rather than compete with existing methodology. We encourage developers and
users of other theorem provers to consider the ideas contained in DECLARE
with a view to incorporating them in the systems they use.

1.3 Related Work

We have already mentioned that DECLARE is inspired by the Mizar system
[Muz93], and Harrison’s ‘Mizar Mode’ work. While Mizar is a far more complete
and established system, it is particularly limited by the amount of automation
that is supported. The aim in DECLARE is to eventually include as much
automation as is reasonably possible, thus reducing the size of proof outlines,
thus improving the usability of the language.

DECLARE uses a simple higher order logic whereas Mizar uses set theory.
From the point of view of mechanization, polymorphic simple type theory seems
to occupy a neat, locally optimum position in the spectrum of possible logics.
Type checking is decidable and efficient, terms can be represented fairly com-
pactly, and a fair degree of expressiveness is achieved. It is not ideal for all
purposes, but is excellent for many.

There are significant differences between the Mizar and DECLARE proof lan-
guages. In particular we are keen to add specialised constructs for new problem
domains. For example, we provide (co-)induction and case analysis constructs
suited for reasoning about (co-)inductive types and relations. In Mizar such
reasoning is possible, but clumsy (for instance see the Mizar development of
the syntax of ZF terms [Muz93]). Also, DECLARE proofs are ‘backward’, in
the sense that the goal to be proved is always fully specified. Mizar proofs are
normally ‘forward’, though a small backward element is possible through the
use of the keyword thesis.

In addition to this, a major difference between DECLARE and Harrison’s
work is that we are working in a document based system. This means we
can implement key items of functionality that cannot easily be implemented in
Harrison’s system, i.e. proof dependency analysis, error recovery and checking
individual steps within a proof. Implementing these requires the ability to
interpret and manipulate proofs as first class objects.

The use of abstracts and articles as we describe them here is not found in
any other system. They are necessary for the efficient implementation of a proof
checker for the DECLARE proof language.

2 An Example

In this section we use DECLARE to construct the runtime operational seman-
tics for a toy programming language (a strict untyped, name-carrying lambda,
calculus), and prove that execution in this language is deterministic. The pur-
pose of this is to demonstrate the use of DECLARE. We choose a problem from
operational semantics as this is the domain of application DECLARE has been
designed for.

The language we are studying has the following syntax:

Az.erp (abstraction)

exp = (variable)
I
| expezp (application)

Evaluation is given by the following rules:

AZ. e = AT. e

e1 > . M €y — U1 M[:L‘/’Uﬂ—)’l);g
€1 €3 — V2

Our aim in this section is to develop an outline of a proof that evaluation is
deterministic.

2.1 Writing the Article

The article begins with a declaration which specifies the syntax as a recursive
type, using ML-like notation. We then declare a constant subst that notionally
represents the substitution of closed expressions. For simplicity we do not fully
define substitution here because the details of its behaviour are irrelevant to the
proof we are considering. '

type exp =

Var of (Name: string)
| Lam of (Bvar: string) * (Body: exp)
| App of (Rator: exp) * (Rand: exp);

const subst : exp * string * exp -> exp;

Datatypes have a simple, well-understood interpretation in higher order logic
and they represent a conservative (i.e. soundness preserving) extension to the
logic [Mel89]. All definitional mechanisms in DECLARE are conservative, up
to various proof obligations. DECLARE supports mutually recursive datatypes
with nested recursion and possibly infinite branching, though in this case we
just have a simple datatype. The declaration above introduces into the logic
. the type exp, constructors Var, Lam and App, selectors Name, Bvar, Body, Rator
and Rand, and discriminators Var?, Lam? and App?.

Next we define the evaluation relation for the language as the least fixed
point of a set of rules. The declaration is shown below. Relations defined by
least fixed points also have a well-known interpretation in higher order logic
[Pau94, CM92].

relation EVAL = 1fp

(Lam) Lam(x,el) --> Lam(x,el)
(App) el --> Lam(x,M)
& e2 --> vi

& subst(M,x,vl) --> v2

App(el,e2) --> v2;

Note that what we are constructing is a document, rather than a script, some-
thing along the lines of an Isabelle theory file. All interaction with DECLARE
is by constructing documents and submitting them for checking. The batch
processor is very quick, so the working environment is essentially interactive.

We are now ready to write the first proof in our article: that evaluation
is deterministic. This is a simple fact that we prove in detail to illustrate
DECLARE'’s proof language. The proof begins with a statement of the fact we
want to prove:

proof of determinism:
if Vi: "e --> v" and V2: "e ~-> v’" then "v = v’"

end

Terms of the logic are quoted and formulae may be labelled asin V1: "e --> v".
The if ... then construct specifies an initial sequent.

The proof is by rule induction on the derivation tree of the evaluation V1, us-
ing rule case analysis to prove that the evaluation V2 is forced at each step. The
DECLARE proof language contains the proceed by ... construct for declaring
induction steps:

proof of determinism:
if Vi: "e --> v" and V2: "e =-> v’" then "v = v'";
proceed by rule induction on Vi

case "Lam x el --> Lam x el"::
case "App(el,e2) =--> v'::

end

end

Each case after the induction has a label. For rule inductions, the labels must
match (up to renaming of new variables) the bottom lines of rules in the evalu-
ation relation. If these are ambiguous the rule names can also be used.

The first case is the base case of our inductive relation. There are no induc-
tion hypotheses, and we just have to prove that v’ is Lam(x,el). Although it is
implicit in the induction step, we state this explicitly for clarity: (sts is short
for ‘suffices to show’)

proceed by rule induction on v
case "Lam(x,el) —--> Lam(x,el)"::
sts "v’ = Lam(x,el)"

This can be proved by case analysis on the derivation of V2. Case analysis
tells us which rules may have generated the fact. Because in this case of the
induction e = Az. el, only the Lam rule could have applied. A thus construct
introduces new facts, and in this case we use thus thesis to indicate the last
stated goal. Any thus construct generates an associated proof obligation, which
in this case is simply v’ = Lam(x,el). All branches of a proof must end with
a thus thesis, ged or thus contradiction.

The by ... part of the thus construct is called a justification. The jus-
tification must be sufficient to discharge this proof obligation when used in
conjunction with an automated routine. After by comes a series of parameters
to the automated routine. In this case we just have one, a theorem, specified by
rule cases on v’. Normally theorem specifications are just names of existing
facts, though in this case we have used a function rule cases on the fact V2.
The function rule cases is a specialized construct of the proof language that
automatically determines the relevant inductive relation and produces the cases
theorem.

proceed by rule induction on v
case "Lam(x,el) --> Lam(x,el)"::
sts "v’ = Lam(x,el)"

ged by rule cases on v’

This completes the proof of the first case of the induction. In the second case
we have three induction hypotheses available because of the induction step.
We can assume our proposition to be true for the three sub-evaluations, i.e.
that, for some x, M and v1, el uniquely evaluates to Lam(x,M), e2 to v’ and
' subst (M, x,v1) to v2. Each case may be followed (optionally) by a ‘we are
given’ declaration indicating these.® In Section 3.1 we will consider ways to
avoid writing out induction hypotheses in full.

Wmmmﬂmymm&MMEMM@wmwﬂfw%?hﬂ&hu\xﬂmmmmmm.

case "App(el,e2) --> v2"::
given x,M,vl st
Il: "lv’, el -=> y? ==> Lam(x,M) = v’"
and I2: "ly’, e2 ==> vy’ ==> yl = y’"
and I3: "lv?, subst(M,x,vl) —--> v’ ==> v2 = y’";

sts '"v2 = v’";

Like the first case, the second case also uses rule case analysis. In this case we do
not complete the proof in one step, instead we use a ‘now consider’ declaration,
which is similar to thus ... except new local constants may be also introduced.
Rule case analysis tells us that rule App must have been used to derive V1, and
so intermediate values x’, M’ and v1’ with the appropriate properties must
exist.

consider x’,M’,vl’ st
Li: "el --> Lam(x’,M’)"
and L2: "e2 --> v1'"
and L3: "subst(M’,x’,v1’) —--> ¢’"

by rule cases on v’;

This gives rise to the following proof obligation that automatic prover will be
able to discharge based on the cases theorem:

3z’ M'vi.es = Az’ . M'A ea »vi A M'[' Jvi] =0

We now use the uniqueness results from the induction hypotheses to complete
the proof, finishing with ged. The word hence automatically includes immedi-
ately preceding facts in the next justification clause.

thus "x = x’" and "M = M’" by I1,L1;
hence "v1 = v1’" by I2,L2;
hence ged by I3,L3;

The proof outline is now complete, and the complete article is shown in Ap-
pendix A.

2.2 Checking the article

Once the article has been written, it may be checked as follows. For illustrative
purposes, we show the output if I1 is omitted from the third last line of the
proof.

> decl lang.art
DECLARE v. 0.1a

parsing...done

importing and merging abstracts...done
type checking...done

establishing type "exp'"...done
establishing constant "subst"...done
checking proof of "determinism"...

lang.art:23:30:step unjustified: simplification produced these goals:
+ el --> Lam(x’,M’)
- X = x’

+ el --> Lam(x’,M’)
- M =M

The feedback shown is from the default automated routine used to discharge
proof obligations. Note that ‘error recovery’ is possible: the rest of the proof
after the error is checked, on the assumption that the facts stated were indeed
derivable. Error recovery improves productivity and proof maintainability.

The article may be checked incrementally as it is being written. For example,
it is possible to omit a case from the induction proof: this will be flagged by a
warning. If a proof obligation cannot be discharged by the automatic prover,
a warning will be given and the fact will be assumed for the remainder of the
proof. The article checker is very quick, and so the working environment tends
to mimic an interactive one (this is also the case with Mizar). We discuss the
pros and cons of the proof language and ‘batch mode’ from the perspective of
interaction in Section 6, and consider what a fully interactive environment for
DECLARE might be like.

2.3 A shorter proof

A declarative proof language ‘scales’ as we add more automation to the sys-
tem. For instance, the built-in prover, which is similar to Isabelle’s auto_tac,
can perform all the steps in the example proof automatically (apart from the
induction step). Thus the proof could be as short as:

proof of determinism:
if v: "e -==> v" and v’: "e --> v’" then "v = y’"
proceed by rule induction on v
default:: ged by rule cases on v’

end;

Note the default construct specifies a proof outline for all unhandled cases of
an induction proof.

3 The Proof Language: More Details

The previous section introduced most of the proof outlining constructs of DE-
- CLARE’s proof language:

The initial problem statement using proof of sequent.

Introducing facts, goals and variables using:

— have facts (fact introduction);
— consider vars st facts (variable/fact introduction);
— sts goal (goal introduction);

— for wvars sts goal (variable/goal introduction).

Declaring inductions using proceed by schema.

e Giving justifications for proof obligations using by clauses.

There are three other proof outlining constructs that we will illustrate in Sec-
tion 3.2 below. These are:

e Case analysis by disjunctive splitting using per cases ...
e Strengthening the sequent using stronger is ...
o Instantiating existential and universal quantifiers using take ..

Apart from schema application, each proof outlining construct gives rise to an
implicit proof obligation. For example, introducing a fact with have demands
that the facts be proved true in the given context. These proof obligations can be
discharged either by a subproof, or by an automated routine in conjunction with
a justification clause. We deal with justification clauses and proof automation
in the Section 5.

3.1 Easy Induction Hypotheses

Writing out induction hypotheses in detail can be informative, but also time-
consuming and error-prone. Two mechanisms are available to help with this.
First, the cases of the induction can be generated automatically by DECLARE.
We consider this in detail in Section 6. Secondly, the shorthand ihyp for

can be used within a proceed by ... construct to indicate the implicit
induction property. Applying this to our first example yields:

10

proceed by rule induction on v
case "App(el,e2) --> v2"::
given x,M,vl st
I1: ihyp for "el --> Lam(x,M)"
and I2: ihyp for "e2 --> vi"
and I3: ihyp for "subst(M,x,vl) --> vy2"

sts "v2 = y?"

The ihyp construct has a similar status in the proof language as thesis and
rule cases, as it is a special purpose construct for particular kinds of proofs.
In Section 7.1 we consider future options for making the language extensible as
new constructs are needed.

What is the meaning of ihyp? This requires an understanding of the working
of the proceed by construct, and in particular an appreciation for the induc-
tion predicate that is implicit in the sequent preceding an induction step. The
induction predicate is determined by packaging the sequent as a single formula,
omitting facts and goals that only contain variables that are constant throughout
the induction. In the above example, the implicit two-place induction predicate
is

Ax,y). Vv, x ==> v ==>y = v

Of course there is a disadvantage to using ihyp: it is less clear what fact is being
stated, because the information is not ‘up front’. The successful use of ihyp
clearly relies on a strong intuitive understanding of the induction predicate. It
is possible this could be addressed in an interactive environment for DECLARE,
where a switch could be available to toggle between contracted and expanded
visual representations.

3.2 Specialized constructs for co-induction

Co-inductive constructs are a natural dual to traditional induction theory, and
co-inductive constructs are particularly useful when reasoning about infinite
behaviour in operational semantics. For this reason, DECLARE includes support
for co-induction. To illustrate this we consider the co-inductive definition of
"divergence for some transition relation ~»: a diverges if and only if there exists
some b such that a ~» b and b diverges. Such a recursive definition makes sense
only if we interpret it ‘permissively’, not inductively, by allowing anything into
the relation unless it is excluded by the definition.
In DECLARE, divergence for such a transition relation is defined by:

11

relation Divergent = gfp
(Step) Divergent(a)

a -=> b & Divergent(b)

To illustrate the use of co-induction in the proof language, let us presume that
Wi ~ Wy and Wy ~ W;. If we want to prove that W1 is divergent, we must
use co-induction over an appropriately strengthened goal:*

proof of example:
if Wi2: "Wi --> wW2"
and W21: "W2 --> Wi
then "Divergent (W1)"
stronger is
if Wi2 and W21
and Li: "x IN {Wi,w2}"
then G: "Divergent(x)"
proceed by rule coinduction on G holding W1,W2 constant
case Step::
sts "?b. x -=> b & b IN {W1,wW2}"
per cases by L1
case "x = W1l":: take b
case "x = W2":: take b

end

4]

"H2"; ged by Wi2
"H1"; qed by W21

end

end

Not surprisingly, the proof is very similar to an inductive proof, though we quote
a goal rather than a fact as the support for the co-induction.

Induction and co-induction are good examples of constructs that require
special treatment in the proof language if an acceptable level of declarative
proof is to be reached.

3.3 Enhancing the language for the PVS logic

A prototype implementation of the DECLARE proof language has been per-
formed for the PVS [ORR™96] proof system. Although we will not give full
details here, it is worth noting how the proof language must change when we
move to a more powerful logic.

The most important difference between simple higher order logic and the PVS
logic is that terms must be proved to be well-formed. Normally this is simple

4Note that for a co-inductive relation, we must use co-induction to demonstrate member-
ship of the set, and rules to indicate non-membership. This is the opposite way around to an
inductive proof, as we would expect.

12

(Milner’s W type inference algorithm decides this problem for simple higher
order logic), but for the PVS logic the problem is in general undecidable, and so
type correctness may involve the proof of various ‘type correctness conditions’
(TCCs).

In the PVS version of the proof language, proofs of well-formedness may be
given with wellformed (or wf) clauses wherever terms with TCCs appear. For
example:

proof of example:
if A:"x=3%y" and B:"y>0"
then "x/y = 3" (wf by B);
ged by 4;

end;

In PVS logic, the division operator has type real X non_zero — real, and so a
TCC arises: we must show y # 0.5

Once all well-formedness conditions have been proved, the interpretation of
the language is essentially the same as for the simple type theory case.

4 Abstracts and Articles

In the previous two sections we have concentrated on DECLARE’s proof lan-
guage. In this section we step up a level to describe DECLARE's abstract/article
mechanism. The purpose of this mechanism is to incorporate the benefits of
modularization and separate processing into a specification system in a light
weight and easily accessible fashion.

The abstract/article mechanism is a necessary complement to the proof lan-
guage described in the last two sections. This is because batch processing re-
quires the ability to create an efficient working environment where the exact
context of a proof can be constructed quickly. By ‘context’ we mean all avail-
able resources, including those for the syntax, type checking and proof. Every
time the batch checker is started the context must be recreated. By choosing the
correct mechanism, efficient caching of these contexts by separate compilation
can be achieved.

It may seem strange that we are concerned with adding an extra level of
abstraction to our ‘specification’ language. Shouldn’t the specification language
be adequate to provide articles that are free from irrelevant detail? The prob-
lem is that we are adopting the philosophy of ‘conservative extension’, where
constructs are not axiomatized, but defined by mechanisms that are known to
be sound. This often leads to extra detail in the process of formalization that
is irrelevant to the rest of the system. Abstracts provide a way of isolating the

5Note that logical context is accumulated left to right in all circumstances in PVS, and
thus the fact B is accessible to discharge this obligation,

13

Figure 1: Part of an abstract: The Natural Numbers

import bool classical combin;

type O nat;
const "+" ": nat * nat -> nat";
const "#" ": nat * nat -> nat';

thm nat_induct [scheme] "P(0) & (!n. P(n) ==> P(n+1)) ==> !n. P(n)";
thm nat_wf [scheme] "(in. (!Im. m < n ==> P(m)) ==> P(n)) ==> In. P{(n)";
thm nat_recax [recax] "7!fn. fn(0) e & (!n. fn(n + 1) = £ (fn(n),n)";

thm ADD_CLAUSES [eqn] "O+n=n&m+0=m";
thm ADD_AC [ac] "m+ n=n+m&m+ (n +p) = (m+ n) + p";

thm MULT_ZERO [eqn] "0 #* n =0 & m * 0 = 0°7;
thm MULT_ZERO [eqn] "1 * n=n &m * 1 = m";
thm MULT_AC f[ac] "m* n=n *m&m* (n * p) = (m * n) * p";

fl

thm LEFT_ADD_DISTRIB [distrib] "m * (n + p) = (m * n) + (m * p)";
thm RIGHT_ADD_DISTRIB [distrib] "(m + n) * p = (m * p) + (n * p)";
thm MULT_EQ_O [eqn] "m * n = 0 <=>m =0 | n = 0";

process of definition from what results, and simultaneously allow the efficient
separate processing of work units. This is analogous to signatures, structures
and separate compilation in a language like Standard ML. Abstracts may also
be a first step to a more sophisticated parameterized modules system.

4.1 An Example

We give an example abstract for a fragment of the theory of natural numbers.
Abstracts and articles can share files of notation that specify details of concrete
syntax. The following is part of the notation file nat.ntn:

infix "+" 16 right;
infix "-" 18 left;
infix "*" 20 right;

Other notational devices are also supported, though they have not yet been
finalized.

Figure 1 shows part of the abstract for the same theory. Note that the
abstract does not specify how natural numbers are constructed as a conservative

14

extension of the logic, and nor does it specify how addition or multiplication
are defined (they are in fact defined as primitive recursive functions, though
they could equally be defined by some other method). Abstracts do not have
to specify how a construct is defined, they just specify resulting properties of a
construct.

One advantage of abstracts is that they provide a natural place to specify
the external view of a theory, i.e. how the theory looks from the theory user’s
perspective. This is the purpose of the tags eqn, scheme, distrib and ac in
the example above. These tags give crucial declarative information about the
interpretation of theorems and the abstract properties they represent, and can
be utilised by proof routines to good effect. For example, an automated routine
may interpret an ac (associative/commutative) tag in different ways:

e It may cause ordered rewriting to be enabled;
¢ It may cause AC matching to be enabled during rewriting;
e It may cause AC unification to be enabled;

e It may be ignored.

Another advantage of abstracts is that they may be compiled and used with-
out reference to an actual ‘implementation’ of the theory. This has both con-
ceptual and practical benefits:

o It is easier to divide work into separate units that may be developed
independently, which is especially an advantage in group projects.

¢ The theorem prover becomes more efficient, because creating an in-core
representation of a ‘working context’ just involves combining several pre-
compiled abstracts.

e Abstracts provide a light-weight mechanism for implementing delayed
proof obligations.

4.2 Contrasting Abstracts with Other Mechanisms

Readers familiar with Isabelle’s theory mechanism should note that abstracts
are not the same as Isabelle theory files, since those files are concerned with the
. process of definition, rather than the properties that result. Isabelle’s theory
files are really more like articles than abstracts. Similarly, abstracts differ from
PVS theory files. Compiled abstracts do bear a passing similarity to HOL theory
files.

PVS supports the notion of proof obligations and ensures security through
‘proof chain analysis’. This mechanism is more expensive in comparison to
the use of abstracts, since an in core representation of theorem dependency
information is kept all the time a user is working. In our scheme, dependency
analysis is only done as a final phase.

15

4.3 An Outline of the Semantics of Abstracts

The notion of an article ‘implementing’ an abstract can be made formal: an
article implements an abstract if, given articles for all imported abstracts, the
article represents a conservative extension of the logic, and that extension con-
tains all theorems, constants and types specified in the abstract. The article
must provide outlines of proofs of all theorems in the abstract, and these proof
outlines must suffice to construct fully expansive proofs when appropriate au-
tomation tools are added.

Abstracts can be given a simple semantics by saying that they are just place-
holders for real, conservative extensions to the core logic. That is, an abstract
is given a meaning by replacing it with an article that implements the abstract
as a conservative extension. Once articles have been provided for all abstracts,
then all articles can then be rechecked in an ‘open environment’. Under these
semantics, abstracts are just a useful, rather than a formal, device. Combined
with the use of an LCF style proof checker like HOL or Isabelle in the final phase,
this is adequate to establish the soundness of a development.

These semantics are inelegant, but can serve as an orthodoxy test for al-
ternative semantics. It may be possible to give a semantics where an abstract
corresponds to the formal logical assumption that constants and types with the
specified properties do exist. This would be fine in set theory, but is non-trivial
in polymorphic higher order logic, as this involves quantification over over poly-
morphic constants and type functions. Such a semantics may be given in future
work.

To summarize: under the simplest semantics abstracts represent the infor-
mal assumption that the constants, types and theorems described in them may
be derived by a conservative extension of the base logic. This assumption is
discharged by providing an article for the abstract.

5 Automation and Justifications in DECLARE

DECLARE proofs are just proof outlines, and are not unambiguous, fully expan-
sive proofs. Proof automation is essential to the success of the approach to proof
outlining that we have described in this report. Without adequate automation,
proofs scripts would be far too tedious to write.® In this section we consider

two things:
e What information is available to automated routines.

e The default prover in the current implementation of DECLARE.

8 Curiously, the proof language approach we have chosen can also aid automation, because
unfettered goal-directed automation can be superior to the automation achieved by interactive
tactics.

16

thm ::= thmname (quoting an existing theorem)
thm[terms] (explicitly instantiating a theorem)
rule cases on thm (rule case analysis)
structural cases on thm (structural case analysis)

Table 1: Theorem specifications in justification clauses

5.1 Information available to automated strategies

Justification clauses in DECLARE contain information about how the associated
obligation might be proved automatically. They specify two things:

o the proof strategy to be used;
e a set of parameters to this strategy.

One of the main aims of DECLARE is to minimize the amount of strategy-
specific information that needs to be supplied to automated reasoning routines.
In particular, we want to avoid the ‘knobs and dials’ that often plague the
use of automated reasoning routines, such as weightings, variable orderings and
traversal flags. Presently parameters can only be theorem names, or short spec-
ifications of theorems using forms such as rule cases on ... and explicit
instantiations. The exact forms allowed are shown in Table 5.1. The theorem
specification language forms a little forward-proof language. In future versions
it will be possible to add new forms here. :

Strategies, then, must work with theorems as their main source of guidance.
A central question is the following: how does a strategy know how to make
effective use of a theorem? The declarative tags from abstracts described in
Section 4 are used here. This is following the approach taken by Isabelle, where
theorems (especially higher order theorems) plus interpretative guidelines are
used as the central form of input to automated routines.

In summary, proof strategies have two kinds of information to guide them:

e 3 set of theorems, some of which are global theorems, and others local
assumptions;

e a set tags giving interpretative information about these theorems.

A proof strategy is free to use this information as it pleases.

5.2 The Default Prover

In principle the nature of the proof outlining language is quite independent of the
proof strategies adopted, and thus other automated provers, or specially written
HOL or Isabelle strategies could be substituted. The present implementation of
DECLARE includes a default prover somewhat similar to Isabelle’s auto_tac,

17

though less extensible. In future work we hope to use Isabelle as a back-end for

DECLARE.
The default prover works by:

e repeatedly simplifying the sequent using higher-order conditional/contextual
rewriting. Presuming the tags on input theorems induce a terminating
rewrite set, this always terminates.

e Applying generalized single point rules for eliminating constants from ex-
istential and universal formulae, for example:

Ve. Ti{zg) Az =t — Tolz] ~ T1[t] — Th[t]
3z. Ti[z] Az =t ATo[z] ~ Ti[t] A Thlt]
e Collecting like terms of linear arithmetic.

¢ Applying decision procedures for linear arithmetic, utilising contextual
facts in the process.

e The prover then chooses a case-splitting method and repeats the process
above. Potential case splits are specified by higher-order case splitting
theorems like those used in the Isabelle simplifier [Pau90].

¢ Finally, when simplification and case-splitting has run its course, a simple
tableau prover is called on the resulting goals.

The default proof checker of DECLARE is hard-coded into the system. We would
prefer to use an LCF proof system to be certain about soundness, but this is
not yet the focus of DECLARE. However, it should be possible to implement the
strategies used in DECLARE in any LCF system.

6 Toward a Fully Interactive Environment for
DECLARE

In previous sections we have considered the most important aspects of DE-
CLARE: the proof language; the abstract/article mechanism and issues of au-
tomation. We now step up a level to consider an aspect of the interactive
environment we eventually plan to deliver with the system.

6.1 Computer Aided Proof Writing

The current implementation of DECLARE makes the user work in ‘batch mode’,
by repeatedly presenting the system with abstracts and articles for checking.
Usually this is managed by a make script. Although ‘batch mode’ may seem

18

anathema to people used to using ‘interactive’ theorem provers, it is worth not-
ing that this method of interaction is conceptually simple, easy to implement,
well-understood and is the standard amongst compilation and information pro-
cessing tools. It allows for reasonably quick ‘context switching’, and for inte-
gration with existing tools.

Despite this, in the long run it is desirable to understand how we might
build a more interactive environment for a system like DECLARE. Actually
building such an environment would need significant investment of resources,
and is beyond the scope of this present report, but methodically considering the
options is the first step to take.

The PVS [ORR'96] project has demonstrated that a superior interactive
environment is achieved when a document processing style of interaction is
adopted in a theorem prover. In this section we present one idea that would be
possible to add to such an environment, related to the use of a declarative proof
language.

The new feature of our planned interactive environment is what we call com-
puter aided proof writing (CAPW). CAPW supports the process of constructing
a proof document by getting the computer to actually write parts of the doc-
ument for you. In this section we consider what we mean by this term and
describe a primitive implementation of some CAPW functionality.

6.2 An example of CAPW

Consider the following interaction, which we will use as our example of CAPW:
the user places the cursor on a proceed by construct in their proof document,
and asks the computer to layout the cases of the induction step with the induc-
tion hypotheses and goals indicated in each inductive case. This is an excellent
example of one of many possible situations where the human wants assistance
in constructing a document, and the computer can easily be programmed to
give it.

To make the example concrete, assume the buffer contains the article de-
scribed in Section 2 with the cursor on the proceed by line. If the user now
enters the command expand-induct then the computer writes the induction
cases of the document for him or her, as shown in Figure 6.2. Underneath, this
implemented by parsing and interpreting the proof script to the given point,
generating the cases internally, and inserting the relevant steps in the proof
document. The parsing and interpretation is done by a batch process, which
generates the text to be inserted.

CAPW clearly shares similarities of intent with existing tactic mechanisms,
though is fundamentally different because parts of the generated goal states are
included in the document. This demands higher standards of output, because
the generated text forms the only record of the action performed.

The mechanism above can be further enhanced. For example, the computer
can adjust purported proofs to take into account changes in the generated cases.

19

Figure 2: The part of the proof written by DECLARE

case "Lam(x,el) --> Lam(x,el)"::
sts "Lam(x,el) = v’"

case "App(el,e2) --> v2"::
given x,M,vl st
I1: "ly?’, el =-> v’ ==> Lam(x,M) = v’"
and I2: "lv’, €2 --> v’ ==> vyl = ¢y’"
and I3: "lv’, substM,x,vl) --> v’ ==> v2 = y’"

sts "v2 = v’";

If a case has disappeared, the user can be queried if he or she wants the case
removed. The future challenge is to generalise and simplify the range of CAPW
features that are provided in a system.

Some other potential instances of CAPW are:

e Presenting the user with plausible instantiations of theorems, and request-
ing the user to make a choice. The choice would be recorded as an entry
in the proof document.

e Presenting the user with expansions and simplifications of existing formu-
lae, again recording the results in the proof document.

o Performing proof planning [Bun91] and inserting the resulting proof plan
as a part of the proof outline.

The example CAPW mechanism described above has been implemented and is
available in the current version of the system.

6.3 CAPW contrasted with other mechanisms

CAPW differs from existing functionality in tactic based theorem provers, where
the computer performs symbolic manipulations that result in new goal-states.
These are then presented to the user, but are not recorded in the user’s proof
document. Such tactics frequently require arbitrary choices, such as names for
new variables. These are choices that should be under the control of the user,
and that should be recorded in the proof document. CAPW is a mechanism
that will allow for this kind of user input, without polluting the core of the
automated routines with devices for interaction.

CAPW bears some similarity to the use of templates to construct documents,
which is common in applications such as word processors. However, templates
are a ‘dumb’ mechanism, but CAPW actions depend on interpreting the logical

20

content of a document. The computer cannot sensibly layout the cases of an
induction without interpreting the document to the point of interest.

Some instances of CAPW have been implemented in CHOL and TkHOL
[The92, Sym95], where fragments of tactic scripts are produced by interaction in
a structure editor. Dropping tactics, and moving to a declarative proof language
greatly improves the possibilities for CAPW.

7 Summary and Future Work

In this report we have presented a prototype declarative proof system for higher
order logic. Many of the ideas presented are immediately transferable to other

systems.
In this section we consider two aspects that must be dealt with in future

work: extensibility and proof portability.

7.1 Extensibility

Systems such as HOL and Isabelle have demonstrated the value of extensibility
in theorem proving systems. Unlike these systems, DECLARE does not rely on
a single programmable meta-language for extensibility. This is very deliberate:
we want proofs expressed in a dedicated proof-outlining language, and not in a

general Turing complete language.
A ‘full strength’ version of DECLARE would include programmability in

several targeted ways by allowing:
¢ Plug-in back end provers that implement different automated strategies.

Additional functions similar to rule cases in the forward proof language.

Additional tags similar to eqn and scheme in the theorem interpretation
language.

e Additional abbreviated forms ihyp and thesis in the term language.

Additional forms in the definition language.

Additional proceed by forms for tactic-like procedural proof constructs
(we discuss this below).

All of these will involve some degree of programming in DECLARE’s implemen-
tation language (presently Standard ML). Security would be ensured by LCF
methods: new back end provers may only use a high-level secure set of primitives
provided by DECLARE.

21

7.1.1 Tactics and proceed by

The astute reader will observe that schema application corresponds closely to
the traditional notion of a tactic, because it applies a proof procedure that
generates new goals. Thus tactics do have a place in the language, but their
behaviour must be fully specified, declarative and predictable. A future ver-
sion of DECLARE will include the ability to add new tactic-like decomposition
algorithms to the proceed by ... construct.

7.2 Proof Portability

In this section we consider the prospect for ‘porting’ DECLARE proofs to other
provers. Proof portability is a desirable property, especially in projects where
the proofs themselves are of long term importance, such as projects to formalize
large bodies of mathematics.

Because proof outlines are declarative, it may be possible to interpret them
in other logics. At a certain conceptual level in mathematics, it matters little
what underlying formalism is being used, as long as a certain minimum strength
is assumed. A system like DECLARE allows proofs to be expressed at this
level, and then translated into ‘fully expansive’ proofs in a particular deductive
framework as needed. None of the proofs described in this report require more
than a few second-order features, and all of them have an obvious translation
into ZF set theory.

Remember that proofs in DECLARE are just outlines: the proof outline
specifies a fully expansive proof assuming a certain amount of automation. The
kind of automation required is normally left implicit, as most obligations are
discharged by the default prover.

The question then is as follows: when translating to another logic or ‘target
system’, where should the automation reside? Two options are available to us,
both of which will be explored in future work.

e The automation resides in the target prover. DECLARE can output the
proof outline in some simple, compiled format, without giving details of
the proofs of proof obligations. The target prover can then translate the
proof outline into its own logic and deductive framework and discharge
the obligations using its own automation.

e The automation resides in DECLARE. DECLARE can output the proof as
a ‘proof object’ in higher order logic, fully reduced to primitive inferences.
This may then be translated to the appropriate calculus.

Two threats exist to proof portability. First, proofs may rely on quirks of
automated strategies that allow large logical leaps in an argument. To avoid
this, it may even be useful to weaken the power of the default prover, to ensure
that proofs remain portable! The aim of portability is thus in conflict with the

22

aim of a ‘minimal’ script. Shortening a script via automation is tempting, but
it will make it acceptable to less systems, just as cutting pieces out of a journal
proof may make it comprehensible to fewer readers.

Secondly, proofs may rely on aspects of the logic that are not interpretable
in other logics. This can only be avoided by restricting the use of exotic features

of a logic. '

Acknowledgments

Many thanks to Tobias Nipkow, John Rushby, Natarajan Shankar, Mike Gor-
don, Florian Kamuller, Michael Norrish, Chris Pratten, Mark Staples and Paul
Curzon for the stimulating discussions I have had with them about this work,
and for encouraging me to document it. I am also deeply appreciative of the
support of SRI International through their International Fellowship program.

A A Complete Article

The complete article explained in Section 2 is shown below:

datatype exp =
Var of (Name: string)
| Lam of (Bvar: string) * (Body: exp)
| App of (Rator: exp) * (Rand: exp);

const subst : exp * string * exp -> exp;

relation EVAL = 1fp

(Lam) Lam(x,el) --> Lam(x,el)
(App) el --> Lam(x,M)
& e2 --> vl

& subst(M,x,vl) --> v2

App(el,e2) --> v2;

proof of determinism:
if Vi:"e --> v" and V2: "e --> v’" then "v = v’";
proceed by rule induction on Vi
case "Lam(x,el) ~-> Lam(x,el)"::
sts "Lam(x,el) = v’";
ged by rule cases on V2;
case "App(el,e2) --> v2"::
given x,M,vl st
Il: "lv’. el --> v’ ==> Lam(x,M) = v’"
and I2: "!v’. e2 -=> y’ ==> yl = y’"

23

and I3: "!v’. subst(M,x,vl) --> v’ ==> v2 = v’
consider x’,M’,vl’ st

L1: "el --> Lam(x’,M’)"

and L2: "e2 --> vi’"
and L3: "subst(M’,x’,vl’) --> ¢’"
by rule cases on V2’;

thus

"y = x’" and "M = M’" by I1,L1;

hence "vl = v1’" by I2,L2;
hence thesis by 13,L3;

end;

end;

References

[Bun91] A. Bundy. A science of reasoning. In J-L. Lassez and G. Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson,
pages 178-198. MIT Press, 1991.

[CM92] J. Camilleri and T.F Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, Univer-
sity of Cambridge Computer Laboratory, August 1992.

[GM93] M.J.C Gordon and T.F Melham. Introduction to HOL: A Theorem
Proving Assistant for Higher Order Logic. Cambridge University
Press, 1993.

[Har96] J.R. Harrison. A Mizar Mode for HOL. In J. Grundy J. von Wright
and J. Harrison, editors, Theorem Proving in Higher Order Logics:
9th International Conference, Lecture Notes in Computer Science,
pages 203-230. Springer-Verlag, August 1996.

[Har97] J. R. Harrison. Proof style. Technical Report 410, University of
Cambridge Computer Laboratory, January 1997.

[Mel89] T.F Melham. Automating recursive type definitions in higher-order
logic. In G. Birtwhistle and P.A. Subrahmanyam, editors, Current
Trends in Hardware Verification and Automated Theorem Proving,
pages 341-386. Springer-Verlag, 1989.

[Muz93] M. Muzalewski. An Outline of PC Mizar. Foundation Philippe le
Hodey, 1993.

[ORR196] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PV5:

Combining specification, proof checking, and model checking. In Ra-
jeev Alur and Thomas A. Henzinger, editors, Computer-Aided Verifi-
cation, CAV ’96, volume 1102 of Lecture Notes in Computer Science,

24

[Pau90]

[Pau94]

[Sym95]

[The92]

pages 411-414, New Brunswick, NJ, July/August 1996. Springer-
Verlag.

L. C. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-385.
Academic Press, 1990.

L. C. Paulson. A fixed point approach to implementing (co)inductive
definitions. In A. Bundy, editor, 12th International Conference on
Automated Deduction, pages 148-161. Springer, 1994.

D. R. Syme. A new interface for HOL - ideas, issues and imple-
mentation. In J. Alves-Foss, editor, Higher Order Logic Theorem
Proving and its Applications, LNCS, pages 17-31. Springer-Verlag,
September 1995.

Laurent Thery. Real theorem provers deserve real interfaces. In
Software Engineering Notes, volume 17. ACM Press, 1992.

29

