Technical Report Ao

Number 41

Computer Laboratory

LCF_LSM, A system for
specifying and verifying hardware

Mike Gordon

September 1983

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1983 Mike Gordon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

LCF_LSM

A system for specifying and verifying hardware

Mike Gordon
Computer Laboratory
Corn Exchange Street

Cambridge CB2 3QG

Abstract

The LCF_LSM system is designed to show that it is practical to prove the
correctness of real hardware. The system consists of a programming
environment (LCF) and a specification language (LSM). The environment
contains tools for manipulating and reasoning about the specifications.
Verification consists in proving that a low-level (usually structural)
description is behaviourally equivalent to a high-level functional
description. Specifications can be fully hierarchical, and at any level
devices can be specified either functionally or structurally.

. As a first case study a simple microcoded computer has been verified.
This proof is described in a companion report. In this we also illustrate
the use of the system for other kinds of manipulation besides
verification. For example, we show how to derive an implementation of a
hard-wired controller from a microprogram and its decoding and
sequencing logic. The derivation is done using machine checked
inference; this ensures that the hard-wired controller is equivalent to
the microcoded one. We also show how to code a microassembler. These
examples illustrate our belief that LCF is a good environment for
implementing a wide range of tools for manipulating hardware
specifications. ‘

This report has two aims: first, to give an overview of the ideas embodied
in LCF_LSM, and second, to be a user manual for the system. No prior
knowledge of LCF is assumed.

N.B. This is the second printing of Tech. Report No. 41. Various corrections and

additions have been made.

Contents

INtrodUuChion. . coiivi i e i

Introduction to LCF ..o]

The Syntax of LSM.......ccociciiiiiiiiii e, 6

LSM Terms for Representing Sequential Machines.......................... i2
Summary of LSM’s Terms for Defining Devices.........c.o.ocooiiviniinn 21
The Axioms and Inference Rules of LSM............ccooiiviiiiinnn 22
ConCIUSIONS ..ot e 37
Future research......c..coooiiiei i 37
Appendix 1: Types, terms and constants of LSM.......................l 39
Appendix 2: Axioms and Built-in Theorems........ccooocoiiiiviiiiiriennnnn., 42
Appendix 3: Rules of Inferencec.ccoiivniinnin, 44
ReferenCes . ..o e 50

Introduction

The LCF_LSM system is designed to show that it is practical to prove the
correctness of real hardware systems. As a first case study a simple
microcoded computer has been successfully verified. This proof is
described in a separate report [Gordon5]. Current research is aimed at
applying LCF_LSM to examples supplied by industrial collaborators.

Although LCF_LSM was originally implemented to test ideas in
verification, it can also be used for other activities requiring the
manipulation of specifications, and for general programming. Ior
example, in the companion report [Gordon5], we show how to derive from
the microcode and associated control logic, an implementation of a
hard-wired controller which is functionally equivalent to the
microprogrammed controller. We also show how to use the system to
code a microassembler. These examples illustrate our belief that LCF
(which is the basis of LCF_LSM) is a good environment for implementing
a wide range of tools for manipulating hardware specifications.

The name of the system is a concatenation of two acronyms:

LCF: Logic of Computable Functions. A computer system, designed and
implemented by Robin Milner and his colleagues, for generating
formal proofs interactively [Gordon et. al.].

LSM: Logic of Sequential Machines. A formal system which extends the
logical calculus embedded in LCF with terms based on the
behaviour expressions of Robin Milner's Calculus of Communicating
Systems (CCS) [Milner}].

LCF_LSM is implemented as an extension to Cambridge LCF, a
descendant of Edinburgh LCF. The version of LCF_LSM described below is
still experimental and so has a number of rough edges and inelegancies.
It is, however, intended to be sufficiently robust and efficient for use on
realistic problems.

Instead of the rather theoretical approach taken earlier (e.g. in
[Gordon?2]), 1 have recently been concentrating on practical applications
and have left a number of mathematical questions pending. This does not
mean that I regard theoretical issues as unimportant - indeed the
current system would never have been conceived without the pioneering
work of Milne, Milner, Plotkin and others. 1 hope that by studying the
specification of relatively large real systems a new set of interesting
theoretical questions will be generated, and so the next phase of work
may well have to be mostly mathematical.

This report has two aims: first, to give an overview of the ideas embodied

in LCF_LSM, and second, to be a user manual for the system. 1 have
included sufficient description of LCF to enable readers unfamiliar with
it to understand the main ideas described here. Serious users of
LCF_LSM will, however, need to become familiar with more of LCF than is
covered. The book [Gordon et. al.], paper [Paulsoni] and reports
[Paulson2, Paulson3] provide the necessary documentation. An
introductory paper is [Gordon4]. An early, non-mechanized, version of
LSM is described in [Gordon2], many of the examples described here
originated in these reports.

The kind of behaviour expressible in LSM can also be expressed in several
other languages; for example, MIDDLE [Dembinski & Budkowski],
temporal logic [Moszkowski] and the "synchronous logic" described in
[Ayres] as a source language for silicon compilation. Further comparison
of the various notations would be fruitful; perhaps LCF_LSM can be
combined with Ayres’s techniques to yield a uniform framework for VLSI
verification and implementation? It would be nice to be able to prove
designs correct before compiling them to silicon.

Another system, with similar goals to LCF_LSM, is described in [Barrow].
This work is based on Prolog rather than LCF.

The approach described in this report seems most convincing when
registers, gates etc. are taken as primitive, rather than being defined in
terms of lower level technology dependent devices like transistors. The
low level behaviour realized by particular technologies (NMOS, CMOS
etc.) can be expressed in LSM, but the models studied so far are rather
crude [Gordon3]. More detailed behavioural representation at this level
is possible in Milne's calculus CIRCAL [Milne] and ‘Hanna's predicate logic
based framework VERITAS [Hanna].

Introduction to LCF

The LCF system interfaces to the user via an interactive programming
language called ML (for Meta Language). When LCF is first run it will
output a prompt character #, the user can then input either an
expression (which will be immediately evaluated) or a declaration (which
will result in a variable being bound to a value, or a function being
defined). Below is an example session; lines typed by the user start with
#, all other lined are output by ML.

#2+3;;
5 : int

#let z = 2+3;;
z = 6 : int

fflet f z = a+1;;
f o= - : int -> int

#7 =i

6 : int
First the user inputs the expression 2+3 followed by the terminator ;;
and a carriage return. ML responds by printing the value of the
expression and its type. Next the user inputs the declaration lef x = 2+ 3,
this causes the value of expression 2+3 to be bound to the variable =, ML
indicates this effect by printing out the new value of z and its type. The
user then inputs a function declaration let f # = z+1 which defines f to
be the function that adds one to its argument. ML prints function values
as -, the type int -> int indicates that f requires an argument of type int
(i.e. an integer), and that it also returns a result of type inf. Finally the
user inputs the expression f 2z which applies function f to argument =
resulting in the integer 6.

let e, el, e2, ... stand for arbitrary ML expressions, and =z, =zI, z2 for
arbitrary ML identifiers (variables), then ML includes the following kinds
of expressions:

()
This constant expression (pronounced "empty") denotes the only
value of type void. This value is typically returned by ML functions
whose main effect is a side-effect (e.g. new_theory - see below).

0, 1, 2 ete.
Evaluates to values of type int.

true, false

Evaluates to values of type bool.

‘<list of characters>'

Evaluates to a value of type tok (for token). Tokens are ML's version
of strings; they are often used to name things.

x
Evaluates to the value currently bound to z. ML identifiers can be
any sequence of letters, digits, primes (') or underlines (__) starting
with a letter. Each ML identifier has an ML type (e.g. in the example
session above x has type int).

eleld

Function application: el must evaluate to a function, i.e. a value

with a type of the form tyl1->ty2 (see the seclion below on types
for the meaning of ->); and e2 to a value of type tyl. The
application el e2 then evaluates to the result of applying the
function denocted by el to the value of e2.

elix el

Here iz must be one of ML's predeﬁned binary operators. These
include +, -, % /, £, >, =, or, &.

(el,e2)

Evaluates to a pair whose first component is e 1's value, and whose
second component is e2's value. If el has type ty1 and e2 type ty2
then (el1,e2) has the product type tyl#ty2. The components of a
pair can be extracted with the built-in ML functions fst and snd.
For example, fst(el,e2) = el and snd(el,e2) = e2.

[el;...;en]

Evaluates to a list of the values of e, ... , en. Each ei must have the
same type, ty say, and then the list [e1,...;en] has the type fy list.
-The standard list processing functions hd, tl, cons (which can be
infixed as .), null and the empty list nil are built-in. They satisfy:

had [el;e2;...:;en] = el

tl [el;e2;...;en] = [e2;...;en]
null nil = {rue

null [el;...;en] = false
el.[e2;...;en] = [el;e2;...;en]

if e then el else e2

The usual conditional: evaluates to the value of el if e evaluates to
true, and to the value of e2 otherwise. e 1 must have type bool, and
eZ2 and e3 the same types.

letdine

This is a block with local declarations d (see below). The expression
let d in e evaluates to the result of evaluating e in a local
environment with bindings determined by d. For example, let 2=3
in z*r evaluates to 9.

In addition to the kinds of expressions just described, ML also has
expressions which evaluate to terms, types, formulae and theorems of a
logical calculus - the object language (OL). In the LCF system, the object
language is called PPLAMBDA (which is an acronym derived from
"Polymorphic Predicate Lambda-Calculus”). In the LCF_LSM system
there is a different object language called LSM (Logic for Sequential

Machines) which has PPLAMBDA as a subset, but also contains some
extra terms. In the descriptions that follow T will not be completely
precise about which things are in PPLAMBDA and which are only in LSM -
1 will usually just refer to the logic as OL.

Constructs of OL have a special syntax, which must be surrounded by
quotes when inputting to ML. For example "z+y'"" is an ML expression of
type term (an OL term), and "z+y == y+z" is an ML expression of type
form (an OL formula). Note that whereas 2+ 3 is an ML expression of type
int, "2+3' is an ML expression of type term. The quotes separate the
object language OL from the meta language ML. We shall describe OL
shortly, but first we must say a little about ML declarations.

The following are the main kinds of declarations:
letxz=e

This binds identifier z to the value of the expression e.
let x1,...,.xn=¢e

Here e must evaluate to a value of the from (v1,...,vn), the
declaration then simultaneously binds each i to vi.

letfz=e

This defines £ (which must be an ML identifier) to be the function
with formal parameter z and body e.

letfxi..an=¢e

This defines f to be a curried function of type tyl->...->tyn->ty
where each zi has type tyi and e has type ty. If f is defined by this
declaration and ei has type tyl then f el is an ML expression
(called the partial application of f to el) of type ty2->...->tyn->ty.

let (x1,...,zn) =e

This defines f to be a function of type tyl14.. #tyn->ty, i.e it takes a
vector (tuple) as argument.

let bl=el and b2=e2 ... and bm=em

This simultaneously defines bi to be el; bi can either be an
identifier or something of the form f z1 ... zn. For example, let x =
1 and f y = z+y; in this the z in the body of f has whatever value z
has before the declaration was executed (i.e. it is not necessarily

1.

In the three kinds of function definitions described above the keyword
let must be replaced by letrec if the function is recursive.

Let ty, ty1 and ty2 range over arbitrary ML types, then the types of ML
include:

bool, int, tok, void, term, form, type, thm

These are predefined primitive types. The types term, form, type
and thm are discussed in detail below,

ty 1§#ty2

The type of ML pairs whose first component has type tyl and
second component has type ty2 (For example (true,3) has type
int#bool).

ty list

The type of ML lists of values of type ty. (For example [1;2;3] has
type int list).

ty1->ty2

The type of functions taking arguments of type ty1 and returning
results of type ty2.

The Syntax of LSM

LSM differs from PPLAMBDA in two main ways: first, it has some extra
kinds of terms loosely based on the behaviour expressions of CCS
[Milner], and second, it does not contain the "undefined values" needed
for fixed-point induction (Scott induction). Since 1 did not need induction
for my first case study ! simplified things by removing the associated
paraphernalia (future studies might result in their reinstatement).

OL is interfaced to ML via four types:

term ML values of type term denote OL terms. Each such term has an OL
type and denotes a value of that type. These values can be
numbers, truthvalues, words, pairs, lists, functions, sequential
machines etec. It is important to distinguish ML types and values
from OL types and values. For example, 3 is an ML value with ML
type int, whereas ""3" is an ML value of ML type ferm, and this term

denotes an OL value with OL type num.

type ML values of type type denote OL types. I'or example ":num" is an |
ML expression of type fype denoting the OL type num. The syntax
of quoted OL types is ":<type expression>".

form ML values of type form denote OL formulac. Such formulae are
predicate calculus sentences. For example, "/t.t==T\/{==F"is an
ML expression of type form which denotes a OL formula that
expresses the proposition that for every ¢ either £ is Tor ¢ is F.

thm ML values of type thm are certain pairs (fml,fm) where fml is a list
of formulae, and fm is a formula. Such a pair is interpreted as
asserting that fm holds if all the formulae in fml (called
assumptions) hold. For example, for any fm the assertion
corresponding to ([fm], fm) always holds. The only way to
construct values of type fthm is to use certain predefined ML
procedures called inference rules. For example, the ML function
ASSUME : form -> thm, when applied to any formula fm generates
the ML theorem represented by ([fm],fm). f ({fm1.....fmn], fm) is
a pair representing a value of ML type thm we write fmi,....fmn |-
fm. The ML system normally prints such a theorem as .., |- "fm' -
each assumption is printed as a dot.

Note that terms, types and formulae can be directly input using the
quotation syntax (details below), but theorems can only be created by
the predefined inference rules. A tutorial introduction to ML and the
concepts underlying the representation of OL in ML is [Gordon4]. I
strongly suggest reading this if the brief remarks above are confusing.

Here is a session to illustrate the manipulation of OL from ML:

#let fm = "1¢. t==T \/ t==F";;
fmo= "1t t==T \/ t==F" : form

f#let thl = ASSUME fm;;
thi = . |- "!tet, t==T \/ ét==F" : thm

let ¢h2 = SPEC "z:bool” thl;;
th2 = . |- "&==T \/ z==F" :thm

First we bind fm to a formula; then we apply the inference rule ASSUME
to fm resulting in a theorem which we bind to th ML identifier thi. Then
we use the inference rule SPEC to specialize the quantified variable £ in

thitoz,

We now describe the parts of LSM which are similar (but not identical) to
PPLAMBDA; for more details see the Manual [Paulson2]. In the next
section we introduce the special terms which enable the behaviour and

structure of hardware devices to be expressed.

4
]

When describing OL constructs we omit the surrounding quotes needed
when inputting to ML (note that in the case of types these quotes are "
followed by ").

We use ¢, t1, t2 etc. to range over terms, and z, z1, £2 etc. over variables.
The terms of OL are:

0 1, 2 etec .

T, F

ibl...

t1t2

These have ML type term and OL type num.

These have ML type ferm and OL type bool.
bn

Here each bi is either ¢ or I. The term #b1...bn has OL type wordn;
for example, #01101 has OL type word5. OL has an infinite family of
distinct types: wordl, word2, etc. to represent bitstrings of
different sizes. The type bool list can be use to represent variable
sized bitstrings. There is also an infinite family of types: tri_wordl,
tri_word?2, etc. to represent tri-state values. These are needed for
representing busses, and are explained in [Gordon5] in the context
of the computer example described there.

OL variables - any sequence of letters, numbers, primes (') or
underlines (_) starting with a letter. Each variable has a OL type
which determines the range of values it can take. To explicitly
indicate this type one can write z:ty instead of just z; in the
absence of explicit type information the OL type-checker (like the
ML one) tries to infer types from context.

Function application: 1 must have a OL type of the form iy1 ->
ty2, and t2 type tyl, then the application has type fy2; it denotes
the result of applying the function denoted by £1 to argument £2.

t1ix t2

Here iz must be one of the standard OL binary operators (e.g. =);
see Appendix 1 for details.

(t1,2)

If t1 and t2 have OL types tyl and tyZ2 respectively, then (11,£2) has
OL type tyl#ftyl.

[t1;...;tn]
Evaluates to an OL list of the values of ¢1, ..., tn. Each ti must have
the same type, ty say, and then the list [{1;...;tn] has the type ty
list.

(t->t1|t2)

This is the conditional "if ¢ then £1 else £2'. { must have OL type
bool, and t1, £2 the same OL type, ty say, the conditional term then
has type fy also. (In PPLAMBDA the conditional has syntax (t=>1t1]
t2) and # must have type #r).

let x=t1in t2

This is equivalent to 2 with all free occurrences of z replaced by
t1. For example, one can prove: let z=21in z% == 2.

Besides numbers,truthvalues and bits there are various built-in constant
functions (a constant function is just a constant with a functional type,
ji.e. a type built using ->). For example, for each n there is a constant
WORDn of OL type num -> wordn for converting a number to a bitstring
(thus |- WORD5 13 == #01101). See Appendix 1 for a list of the built-in
constants.

The user can introduce his own constants by creating a theory (see
examples below for details).

OL types include:
bool
The type of OL truth-values T'and F.
num
The type of OL numbers 0, I etc.
wordn
An infinite family of types (one for eaéh n) of bitstrings of various

lengths. For example, wordl, word2, word3 etc. are all types of
LSM.

tri_wordn

An infinite family of types (one for each n) of tri-state bitstrings of
various lengths. For example, fri_wordl, tri_words2, tri_word3d
etc. are all types of LSM. These tri-state types are used to
represent the values on busses; there are special constants to
represent floating (or high impedance) states (see Appendix 1).

memim._n
An infinite family of types (one for each m and n) of memories with
m-bit addresses and n-bit contents. For the computer example

described in [Gordon5] the main memory has type mem13_16 and
the control store has type mem&5_.30.

tylfty2

The type of pairs (¢1,t2) where 1 has OL type ty1 and £2 OL type
ty2 respectively.

ty list

The type of lists of values of type ty. (For example [1;2;3] has OL
type num list). ‘

tyi1->ty2
The type of functions taking arguments of type fy1 and returning
results of type ty2.

The user can introduce his own types by creating a theory.

Note the potential for confusing ML and OL - beware!

The formulae of OL mclude the following (fm, fm1, fm& ... range over
arbitrary formulae):

t1 ==t2

States that £1 and t2 denote the same value. (Note that there is
also a term £1=t2 of OL type bool; (t1=t2)==T is equivalent to £
== t2)

Pi,...,tn)
Here P is a predicate constant (== is a built-in infixed predicate

constant).

10

Iz, fm

Read ! as "for all” (universal quantification).
2. fm

Read ? as "there exists” (existential quantification).

Not fm (negation)
Jm1 /N fme

fm1 and fm2(conjunc£ion).
Smi1N\/ fm2

fm1 or fm2 (disjunction).
Jmi1==>fme

fm1 implies fmZ2
fmil <=>fm2

fm1 if and only if fm2
The theorems of Ol are determined by the axioms and rules of inference.
The axioms are a predefined set of values of type thm; see Appendix 2 for
a list of the current axioms. The rules of inference are predefined ML
functions which return theorems as results. For example there is an
axiom called BOOL_CASES which is |- f:bool. t==T \/ i==
(BOOL_CASES is a predefined ML identifier bound to this theorem); the
function ASSUME described above is an example of a rule of inference.

All the axioms and rules of inference currently implemented in the LSM
_ version of OL are described in Appendix 3.

In order to introduce application dependent constants, types and
axioms, one can set up a hierarchy of theories. Each such theory has a
name, which is a token, together with a set of constants, types and
axioms. Each theory may have zero or more parent theories; the
constants, types and axioms of a theory's parents (and parent’'s parents
etc.) are available in the theory. The LCF_LSM system is initialised with a
number of built-in constants, types and axioms. I shall refer to these as
constituting the theory ‘lsm', this should be thought of as acting like a

11

parent to any theories created by the user; it contains the types bool,
num and wordn (for each n). For a complete description see Appendix 1.

LSM Terms for Representing Sequential Machines

The terms described above are essentially those of PPLAMBDA (except
that PPLAMBDA has three truthvalues 7'T, FF and UU, and it doesn't have
numbers, words or lists built-in). LSM also contains some special terms
(based on the behaviour expressions of CCS [Milner]) which we describe
in detail below. It is these CCS-like terms which constitute the main
difference between LCF and LCF_LSM.

Consider a device with input lines i1 ,..., ¥m and output lines o1, ..., on:
i1 i2 im ‘
R
R e |
I ------- clock
| |
!
b |
ol o2 on
Suppose this device also has some internal registers 21, ..., zp, and that

it behaves like a sequential machine as follows:

At each moment in time the values on the output lines are a
function of the values in the registers (the state) and the values on
the input lines.

The values in the registers stay constant until a clock pulse is
received on the clock line. (Exactly how a clock pulse is realized
physically is left unspecified - it could, for example, actually be two
voltage level changes (two phases: phil and phi2), or a single

pulse).

LSM contains special terms to represent such sequential machines.
These terms have OL type dev (for "device").

To specify the behaviour of a machine one must:

Specify the value on each output line in terms of the values of the
state registers and the values on the input lines.

Specify how the state changes when the device is clocked.

As an example consider a counter:

12

switch in

Here the input lines are switch and in, the only output line is out and the
only state variable is n. The name of the device is COUNT, we write
COUNT(n) to show that the behaviour (to be described) depends on n
(actually COUNT would be an OL constant of type num->dev). Suppose
the behaviour of COUNT is informally specified by:

The value on the output line out is always the value of the state
variable n. We can express this with the output equation:

out = n

When the counter is clocked, the new value of the state variable n
becomes n+1 (i.e. the old value plus one) if false is being input on
line switch, otherwise it becomes the value input on line in. We can
express this by:

CLOCK(n) --> CLOCK(switch -> in | n+i)

In LSM the behaviour of the counter would be specified by the formula

COUNT(n) == deviswitch,in,out]. {out=n}; COUNT(switch -> in | wn+1)

This formula has the form ¢1 == £2 where £1 is the term COUNT(n) and
t2 is a new kind of term of type dev described below. Notice that the
clocking is implicit in our notation (i.e. we don't explicitly mention the
clock line). From now on we will not draw clock lines in diagrams, though
they will still be needed in actual hardware implementations. Our model
of behaviour abstracts away from the physical details of how state-
changes are effected, and treats devices as abstract sequential
machines. 1 hope the examples below show that this abstraction is
justified - i.e. that significant aspects of correctness can still be
expressed. The new terms for expressing sequential behaviour are:

devizl,...,.am].{l1=t1,... In=tn|t

A term of this form is called a behaviour term. It denotes a
sequential machine whose input and ocutput lines are z1, ... ,zm. If
li is not listed among z1, ... ,zm then it is an internal (or local) line
(these will be explained later). The term i gives the value output
on line li. The new state after clocking is specified by the term ¢
Normally ¢ will have the form D(u1,...,ur) where D is a device name

13

(e.g. COUNT) and u1, ... ,ur are terms giving the new values of the
state variables of D. If Ii occurs in ¢ or one of the #i then its value
there is determined by the equations {li=t1,...,In=¢tn]. The free
variables of the whole behaviour term are the free variables in 1,
..., tn and ¢ minus z1,..., zm, L1, ..., In.

An example of a behaviour term is:

dev]i.oi .fo=n] ;REG(%)

This specifies a device that outputs on line o the value of variable n
(which is a free variable of the term) and then, when clocked, becomes a
device with behaviour REG(i) - i.e. becomes the device REG in a state
holding the value input in line . Suppose we specify REG to satisfy:

REG(n) == dev{i,o}.{o=n} ;REG(i)

then this defines REG to be a device which always outputs its state, and
stores the current value input - i.e. it delays by one clock cycle.
Formulae of this form - i.e. of the form:

D(al,...,ap) == devizl,...,=n}.{L1=¢1, ..., in=tn];D(ul,...,up)

are called behaviour equations. They are used to directly specify
sequential machines. We will shortly show how to give a structural
specification of a machine in LSM also.

Here is another example of a behaviour term:
dev{switch, in,out]. fout=n]; COUNT(switch->in|n+i)
This term also has no internal lines, and again n is the only free variable.

The counter informally described above can be specified by the
behaviour equation:

COUNT (n) == dev{switch:. in,out].fout=n]; COUNT(switch->in|n+1)
An example of a behaviour term with internal lines is:

deviswitch, in,out}.LI=(switch->in|l2), out=n, [2=out+I};COUNT_IMP(L1)
Here L1, and l2 are internal lines; again the only free variable is n.

If the device COUNT_IMP has a behaviour satisfying:

COUNT_IMP (n) == deviswitch,in,out].
fli=(switch->in|l2), out=n, l2=out+1};
COUNT_IMP(L1)

14

Then the rule of inference UNFOLD._IMP to be described in Appendix 3
will enable us to ""solve” the equations for the lines, and hence derive:

COUNT_IMP(n) == deviswitch, in,out|,
Li= (swztch >7.n|n+1) out=n, L 2=n+1{;
COUNT._.IHP(switch- >t‘n|~n+)

Note that in this formula 11 and {2 are no longer used anywhere. The
PRUNE_FEQUATIONS rule (described in Appendix 3) will enable the
equations for these variables to be removed to get:

COUNT_IMP(n) == dev|switch, in,out]. fout=n]; COUNT_IMP(switch->in|n+1)

Note that this equation for COUNT_IMP is similar to the equation
specifying COUNT. A rule called UNIQUENESS will enable us to derive
from this that:

COUNT(n} == COUNT_IMP(n)

If the state of a device remains constant over time it is called
combinational. Here are two examples:

switch q'u i2 i.
I
I MUX INC
R ek N R |
| l
I
(/] o

The value on the output line o of the multiplexor M UX equals the value on
line 11 if the value on line switch is T, otherwise it is the value on line 2.

Thus the value on the output line is given by the output equation:
o= (switch->11[i2). The behaviour of MUX is thus spemﬁed by the

behaviour equation:

MUX == deviswitch,i1,42].lo=(switch->$1]|%2)];HUX

Note the lack of state variables. The behaviour of INC is spec1ﬁed by the
behaviour equation:

INC == devii,o}.lo=(i+1)],;INC

Thus INC is a combinational device that always outputs (on line o) one
plus the value input (on line).

Behaviour terms are used to directly specify what devices are supposed

to do. LSM can also be used to describe the structure of digital systems
as the interconnection of separate devices. Consider the system below:

15

switch in

L7 L2

oug

This device is built from components similar to #UX, REG(n) and INC as
described above, except that the line names have been changed. The
multiplexer MUX"’ is like MUX except that it has lines in, I2, LI instead of
- i1, 12, o respectively. The need to rename lines motivates the following
kind of term:

trafli=L1".. . ;In=In"]

Here t should be a term of OL type dev and I1, ..., In, £1’, ... ,In’are
line names (which must be OL variables). The term denotes a
behaviour similar to that denoted by ¢ except that each line li is
systematically renamed to i’

Suppose that M UX is as specified above, i.e. it satisfies:
MUX == dev{switch,il,i2,0}. fo=(switch->$1]|$2)| ; MUX
Then if we specify MUX’ by the formula:
MUX' == MUX rn{il=in;i2=12;0=11])

then it will follow (using the rule EXPAND_DEF described in Appendix 3)
that:

MUX' == deviswitch,in,l2,11]). fli=(switch->in|l2)} MUK’

Note that line switch has not been renamed. The register REG’ in the
diagram above is defined by renaming the lines of the generic register
REG by:

REG' (n) == REG(n) wnl[i=l1;0=0ut]

16

Then we will be able to prove using EXPAND_DEF that if REC is defined
as above, i.e.;

REG(n) == dev}ii,o].|o=n] ;REG(1)
then:

REG' (n) == dev{l,out].fout=n] ;REG (L1}
Similarly we can define:

INC' == INC rn{i=out ;o=12]

and then prove:

INC' == devi{out,2].{l2=(out+1)};INC’

. Note that instead of defining MUX', RFG' and INC’ by renaming lines of
MUX, REG and INC, we could have defined them directly by the
behaviour equations:

MUX" == devlswitch,in,t2, 01}, [Li=(switch->in|l2)) MUX"
REG' (n) == devili,out].jout=n|) ;REG (L1}
INC’ == devjout,2].{l8=(out+i)} ;INC’

If we did things this way, then the above equations would be axioms
rather than derived theorems. LCF__LSM gives one the option of either
defining each component directly (using a behaviour equation), or as a
renaming of a previously defined primitive.

To represent a schematic diagram, the first step is to define its
components (either directly, or by renaming) so that lines which are to
be connected have the same name. For example, in the diagram above
we have arranged that output line of MUX' is the same as the input line
to REG’ (viz. L1). The next step is to write down a term which denotes the
result of connecting together the component devices. LSM has a special
kind of term for this purpose:

fler)t2]... | in]]
Here each i must be a term of OL type dev. The term [|¢1]...[tn|]
then denotes the result of connecting together the #i's by joining
lines with the same name. The lines of the resulting device are the
union of the lines of each of the the component devices {i.

For example, if MUX’, REG' and INC’ are as above, then:

(| MUX* | REG'(n) | INC' |]

denotes the device with structure:

17

switch in

1 out 2

In this diagram the lines 1 and 12 are output lines. To represent the
diagram in which these lines are internal we need another kind of term.

t hide{l1,...,In}

Here t must be a term of OL type dew. Suppose it represents a

system specified by a diagram with lines [1,...,In,

then ¢

hide{l1,...,In} represents the system specified by the same diagram

except that lines L1,...,In are internalized.

For example, the diagram:

switch in

out

l1 L2

Can be represented by the term:

[| MUX® | REG'(n) | INC* |] hidell1, 12}

One can also explain the effect of hiding in terms of behaviour equations.
Suppose COUNT_IMP1 is like COUNT_IMP (as described above) except
that lines LI and L2 are no longer internal, i.e.:

COUNT_IMP! (n) == dev|switch,in,out,li, t2].
e (swtﬁch >vn|l2) out=n, L Z=out+1};

COUNT_IMP1(L1)

Then if we define:

COUNT_IMPZ2(n) == COUNT_IMP!(n) hidef{li,12]

One can show (using inference rules described in Appendix 3) that:

COUNT_IMP2 (n) == deviswitch, in,out}.
{e1= (swztch >inli2), out=n, i2=out+l];

COUNT_.IMP2(11)

Notice that in this behaviour equation lines {1 and l2 are internal,
whereas in the équation for COUNT_IMP1 they are output lines.

It is not necessary to introduce the constants MUX’, KEG' and INC". One
can simply write:

[l MUx ra[il=in;i2=12;0=11]
REG(n) rn[i=1l10= ou!}
INC rn[z—out o=12] |1 hidefll, 12}

When diagraming such terms we will draw in explicit names to indicate
how the lines of the devices have been renamed. For example, the term

above will be drawn as:

switch in

i1 12

out

19

Note that MUX, REG and INC (as defined by behaviour equations above)
have different line names to those in this diagram. For example, MUX
was defined to have lines il, i2 and o instead of in, {2 and 1. This
illustrates our convention of using the names in diagrams to indicate
renaming.

The final kind of term in LSM is used when several "microcycles” of an
implementation are used to achieve one "macrocycle” of a specification.
For example, the specification of a processor might define a "virtual
device’" which takes one cycle to execute a machine instruction. An
implementation might use several microinstructions (and hence several
microcycles) to fetch, decode and execute a single machine instruction.
To express the correctness of such an implementation one must
somehow say that sequences of cycles in the implementation correspond
to a single cycle in the specification. We describe an example like this in
[Gordons5), but here we consider something a bit simpler:

We want to specify this device to have the following behaviour:

If

1. state variable t is initially T and

2. numbers x and ¥ are held on lines i1 and ¢2 and

3. the device is clocked until a state is reached in which line done has
value T, then in this "done-state” the value on line o will be the
product z %

To express this in LSM we first define a "virtual device" MULT which takes
just one step to compute the product, and has no done line:

MULT(m) == dev{il,i2,0}. o=m] ; MULT(i1°%2)

We then use a new kind of term to define a behaviour in which sequences
of steps of MULT_IMP for which the done line is F are merged to a single
step. We then assert this derived behaviour should equal the behaviour of

MULT. This assertion is:

MULT(m) == until done do MULT_IMP(m,n,T)

This has the form £1==t2 where t2 is a new kind of term defined below:

20

until L do ¢

Here [must be an OL variable of OL type bool, and ¢ a term of type
dev denoting a device with ! as an output line. The term wuniil L do ¢
then denotes a device with the same lines as ¢ except L. One cycle
of this device consists of a sequence of cycles of £. To get a single
state transition of until | do ¢ one repeatedly clocks ¢ (holding the
inputs constant) until one reaches the first state in which line !
carries T.

The exact meaning of until I do ¢ is best grasped from the rule UNTIL
(described below) and the examples of its use. For example, later we will
define MULT_IMP so that it has a behaviour satisfying:

MULT_IMP(m,n,t) ==
devidone,t!,i2,0}.
fo=m,done=¢t}{;
MULT_IMP((t -> (i1=0->0]%2) | (i1=0->0]i2)+m),
(¢ -> i1 | n-1),
((t -> i1-1 | (n-1)-1)=0 OR (i2=0))

Under the assumption that 0-1 equals 0 we will use LCF_LSM to show
that:

HMULT(m) == until done do MULT_IMP(m,n,T)

Summary of LSM's Terms for Defining Devices

Sequential Machine: devizi,...,.zm}.{L1=t1,... . In=tn} i
Renaming: trn[li=L1";...In=In’]

Joining: : [t1]¢2]...|tn]]

Hiding: t hidef{l1,...,In}

Merging Microcycles: © auntilldo t

In Appendix 1 we list various ML functions for manipulating (e.g.
constructing and destructing) these terms.

21

The Axioms and Inference Rules of L.SHM

LSM contains all of PPLAMBDA (see [Paulson2]) except those parts
pertaining to the theory of complete partial orders. In particular LSM
does not have the Scott induction rule, the constants UU, TT,FF, FIX and
COND, or the axioms for partial ordering (i.e. <<), monotonicity,
minimality and fixed points. PPLAMBDA's three truth values 77, FF and
UU of type tr are replaced in LSM by T and F of type bool, and the
conditional COND is replaced by SCOND of type bool-> %> %> ¢ (where ¢
can be any type). Appendix 1 contains the various built-in axioms,
together with their ML names.

The selection of rules currently included in LSM is rather ad hoc - I have
just implemented what seemed needed for the examples I have done. It
is hoped that future versions of the system will have a more complete
and rationally chosen set.. Some theoretical work is needed to isolate a
minimal and independent collection of axioms characterizing the class of
diagrams representable by terms (see [Milner] for an analysis of a
- different class of diagrams). Further experimental work is needed to
develop a convenient suite of derived rules.

We will introduce various rules using the COUNT example discussed
above. We give below a session in which we verify that the specification:

COUNT(n) == deviswitch,in,out].{out=n];COUNT(switch->in|n+1)

is correctly implemented by the following device:

switch in

L1 ¥4

out

This can be represented in LSM by introducing a constant COUNT__IMP
defined by:

22

COUNT_IMP(n) == [| MUX rn[él=in;i2=12;0=11]
REG(n) vn[i=l1;0=0ut

INC rnlizout;o=t2] 1]

hide{l1,12}

Where the primitives used in this implementation are specified by:

HMUX == dev|switch,il,i2,0}. o=(switeh->{1|{2)} ; MUX
REG(n) == dev{i,0}.{o=n] ,REG(%)
INC == devii,o].fo=(3+1)};INC

Formally we wish to prove that:

!n. COUNT(n) == COUNT_[HMP(n)

The sessions that follow are intended to occur in sequence, so that one
can assume the effects of earlier sessions persist into later ones. To start
with, here is a session in which we create theory called COUNT
containing - the specification of our counter; recall that everything
preceded by the prompt symbol # is typed by the user, and everything
" else by the system.

finew _theory' COUNT' ;;

() : void :
f#new _constant (COUNT', ":num->dev”);;
() : void
#new_aczxiom
(' COUNT',
g "COUNT(n) == deviswitch,in,outi.
out=n|; COUNT(switch->in|n+1)");;
|-"In.
COUNT n == dev{switch,in,out]. [out=n}; COUNT(switch -> in | n + 1)"
: thm

#close theory()::
() : void

To fully understand this and subsequent sessions, one needs to be
familiar with Cambridge LCF. We will try and provide enough
commentary so that if you don't know LCF you can still get the gist of
what is going on, but inevitably some things will seem unmotived and
mysterious. The ML function new_theory has type fok->void; it creates a
new theory whose name is the token given as argument. The function
new_constant has type tok#type->void; it declares an OL constant with
the name and OL type passed to it. The function new_axziom has type
tok#form->thm,; it takes a name and a formula and makes the formula
into an axiom with the given name, the resulting theorem is returned;
any free variables in the formula (e.g. n above) are automatically
universally quantified. Finally, the function close theory of type wvoid-
>void freezes the current theory; no new constants or axioms can
subsequently be added, all one can do is prove theorems and save them.

In the next session we create a theory named COUNT_JIMP containing
the implementation of the counter, including the definition of the

23

primitives MUX, REG and INC. We use the ML function maep which applies
its first argument (which must be a function) to each element of its
second argument (which must be a list) and then returns the resulting
list. Evaluating the apparently useless expression "switch:bool,n:num,..."
has the side effect of telling the OL typechecker that switch has default
OL type bool, n has default OL type num, etc. It must be admitted that a
cleaner form of type declaration would be preferable. Exactly when
explicit typing is needed in OL is fairly subtle. Beginners are advised to
explicitly declare the type of each variable before it is used (after a while
one learns when it is safe to allow OL types to be inferred from context;
once a variable has a type it will keep it unless explicitly overwritten).

finew _theory' COUNT_IMP' ; ;
() : void

fmap new constent [("MUX',":dev");('REG ," :nuwn->dev");(INC',":dev")];;
[€): (): ()] : void lise)

#'switch:bool,n nun, ¢ :nun, i1 :num, £2:nwn, o :nwn”; ;

"switch,n,i,11,i2,0" : term

#fmap

neu_eziom

[(rUXx, "MUX == deviswitch,$l,$2,0].lo=(switch->i1{¢2)}| HUX");
('REG', "REG(n) == dev|%,o0}. io—‘n] ‘REG(3)"):

(!NC "INC == dev|i,o0}. lo—(t-u); INC")1;:

[|-"MUX == dev{switch,$1,12,0}. lo-(swttch -=> i1 | ¢2)); HUX;

-"!n. REG n == dev[z.o}. [o—n ; REG i";
-"INC == devii,o}. fo=(% + 1){; INC"]

> thm list

"L1:num, i 2:numn"
"L1,12" : term
#new _aziom
(' COUNT_IMP
¥ "COUNT_IMP(n) == (| MUX ra[$1=in;42=12;0=11]
REG(n) vn[i=ll; o-aut]
| INC rn[i-out ;0=12) |]
f'; hideill:num,lz:nwni ")

n 'n.

[| MUX rafil=in;i2=1l2;0=11]
| (REG n) rn[i=l1;0=0ut]
| INC rn[i=out;o=12] |]
hide{l1,L2]"
¢ thmn

fficlose theory()::
() : void

We now begin a session -in which we will verify COUNT_IMP. First we
create a new theory called COUNT_VER in which we will prove the
desired theorem. This theory must have access to the theories COUNT
and COUNT_IMP; this is achieved by declaring these theories to be
parents of COUNT_VER using the ML function new_parent. The ML
function axiom fetches an axiom from a theory; it takes the theory name
and axiom name as parameters (in that order). After starting the new
theory we retrieve the axioms COUNT and COUNT_IMP from their

24

respective theories and bind the resulting theorems to the ML names
COUNT and COUNT_IMP. Perhaps confusingly we are using these names
for three separate purposes: (1) as names of theories, (2) as names for
certain axioms on these theories and (3) as ML names for the axioms.
Rather than give each primitive a separate ML name it will be more
convenient to gather their defining axioms into a list, called prims. To
generate this list we use the function obtained by partially applying
aziom to the token 'COUNT_IMP; this yields a function of type tok->thm
which when applied to a token, £n say, fetches the axiom named in from
the theory COUNT_IMP. This function is then maped down a list of axiom
names to get the corresponding list of axioms.

f#new _2theory' COUNT_VER® ;;
() : void

#mep neurparent {°COUNT' ;' COUNT.IMP*];;
Theovry COUNT loeded

Theory COUNT__IMP loaded

[(): ()1 : void lbise

#close theory()::

() : void
#let COUNT = aziom ° COUNT' * COUNT®
#and COUNT_IMP = aziom ° COUNT_IMP*' ° COUNT_IMP®;;
COUNT =
=" n,
COUNT n == deviswitch,in,out]. fout=n|; COUNT(switch -> in | n + §)"
: thm .
COUNT__IMP =
-
COUNT_IMP n ==

[| MUX ra[il=in;i2=12;0=11]
| (REG n) rnli=l1i;0=0ut]
| INC rnfi=out;o=12] |]

hidefli,12]"
; than
glet prims = map (eziom ‘'COUNT_IMP') ['MUX';'REG';°INC'];:
prims =
[1-"MUX == deviswifch,¢1,i2,0]. fos(switeh -> &1 | €2)}{; MUX";
j-"in. REG n == devii,o}. le=n{; REG i";
|-"INC == dev{i,o]. fo=(i + 1)]; INC"]
: thm List

We can now start to prove theorems. First we expand the definitions of
the primitives in COUNT_IMP using the inference rule UNFOLD_IMP.
This is an ML function of type thm list -> thm -> thm. It takes a list of
device definitions and a theorem and replaces each instance of aleft
hand side of a definition occurring in the theorem by the corresponding
right hand side. We bind the theorem resulting from the application of
UNFOLD_IMP to the ML name thi. For a complete description of
UNFOLD_IMP and all the other inference rules of LSM (except those
inherited from PPLAMBDA) see Appendix 3.

#let thi = UNFOLD_IMP prims COUNT_IMP;;
thi =
| -"COUNT_IMP n ==
{| (deviswitch,i1,i2,0
rnlil=in;i2=12;0=1

;j fo=(switch -> i1 | i2)); HUX)
i

25

| (deviti,o
| (devii,of.
hidefi1,12]"
: thm

}. fo=n]; REG {) wn[i=l1;0=0ut]
. fo=(i + 1)}; INC) wn[i=out;o=12] |]

The next step is to perform line renaming. For example, we replace:
(deviswitch,i1,i2,0). jo=(switch->i1|32)] ;HUX) rn{il=in;i2=12;0=11]

by:

devliswiteh,in, 82, L1} . {LI=(switch->in|l2)}; (MUX rm[il=in;i2=12;0=11])

This renaming is done using the inference rule RENAME_LINES. We bind
the resulting theorem to the ML name th2.

#let th2 = RENAME _LINES thli;;

¢h2 =
| =" COUNT_IMP n ==
[l dev
{switch,in, l2, lll
L= (swztch -> in | 12)):
MUX ralil=in;i2=12;0=Ll]]
devil1,out]. (out—nl, (REG £1) vn[i=l1;0=0ut]
dev[out.lZ!. {t2=(out + 1)}; INC rn[i—out o=12] |}
hidefli1,l2{"
: thm

The next step is the main one. We take the union of the output equations
from each of the components to get a single set of equations for all the
lines in the composite device. We also gather together the "next-state”
terms of the components to get a single term for the whole. The rule
COMBINE_EQUATIONS does this; for a general description of it see
Appendix 3, but the general idea can be got by comparing th2 above with
th3 below.

et th.3 COMBINE_EQUATIONS thZ;:

#l

th3

|- COUNT_[MP n ==
dev

fswitch, in,out].

fl1= (s'un.tch -> in | 12),out=n,l2=(out + 1)},
[| MUX ralil=in;i2=12;0=11]
| (REG L1) Tﬂ[t l1;0=0ut]
| INC ra[i=out;o=12] |1
hidefl!,12]"
; thmn

The "next-state'" part of the right hand side of th3 can we simplified by
folding in the definition of COUNT__IMP This i is done using the inference

rule FOLD.

#tflet th4 = FOLD COUNT_IMP th3;;
h4 =
| -"COUNTIMP n ==
dev
fswitch, in,out].
ft1= (swttch, -> in | t2),out=n,l2=(out + 1)|;
COUNT_IMP Li"
; thm

26

Having got a single set of equations for the values on the lines, we can
now solve them. We replace:

fli=(switch->in|l2),out=n, L2=(out+i)]

by:

{li=(switch->in|a+1), out=n,2=(n+1)|

The inference rule UNWIND_EQUATIONS is used to do this. This rule has
type tok list -> thm -> thm,; the token list is a list of line names that one
doesn’t want unwound, an illustration of when this is useful is the line
bus in the computer example in [Gordon5].

$let ths = UNWIND_EQUATIONS [] th4;;
ths = .
| -" COUNT_IMP n ==
dev
{switch,in, out|.
{li=(switch -> in | n + 1), out=n, l2=(n + 1)}];
COUNT_IMP(switch -> in | n + I)"
: thm

Next we notice that the equations for lines £1 and l2 are not used
anywhere. Since these lines are internal we can delete the equations for
them. The inference rule PRUNFE_EQUATIONS is used to do this.

f#let th6 = PRUNE_EQUATIONS -th&;;
thé =
| -"COUNT_IMP n ==
deviswitch, in,out]. {out=n}; COUNT_IHP(switch -> in | n + I)"

: thm

We are now almost done. Notice that the theorem thé shows that
COUNT_IMP satisfies the same equation that was used to define the
specification COUNT. The inference rule UNIQUENESS enables us to
deduce that two devices have equal behaviour if they satisfy the same
equation. This is valid because behaviour equations have unique solutions
[Gordonl]. Using UNIQUENESS we prove the theorem expressing the
correctness of COUNT_IMP with respect to the specification COUNT. We
then save the resulting theorem on the theory COUNT_VER with name
CORRFECTNESS.

#let th7 = UNIQUENESS COUNT ghé6;;
th7 = |-"COUNT n == COUNT_IMP n" ; thm

#save._thm(' CORRECTNESS', th7);:
|-"!n. COUNT n == COUNT_IMP n" : thn

Instead of laboriously doing each of the above steps by hand, as above,
we can define derived rules in ML which apply each inference rule in turn
automatically. The rule EXPAND_IMP below derives a behaviour equation
from a structural description of an implementation, together with the
definitions of the primitives used.

27

let EXPAND IMP L prims imp =
let thl = UNFOLD_IMP prims imp
in)

le? th2 = RENAME_LINES thli

in

let ths3
in

let th4
in

COMBINE_EQUATIONS th2

FOLD imp th3

T e T ot T e T e i T T W

let ths5 = UNWIND_EQUATIONS L th4

in '

PRUNE_EQUATIONS thSs,; ;
EXPAND_IMP = - : (tok list -> thin list -> thm -> thm)
#EXPAND_IMP [] prims COUNT_IMP;;
| -" COUNT_IMP n ==

deviswitch, in,out}. fout=n|; COUNT_IMP(switch -> ¢n | n + 1)"
; thm

Using EXPAND_IMP (which is, in fact, built-in to LCF_LSM) we can define
another derived rule VERIFY which does the whole correctness proof in
one step. ’

#ilet VERIFY prims spec imp = UNIQUE'NE'SS spac (EXPAND_IMP [] prims imp);;
VERIFY = - : (thm list -> thm -> thm -> thm)

$ VERIFY prims COUNT COUNT_IMP;;
| -"COUNT n == COUNT—_IMP n" : thm

Although the example just done is trivial, it does illustrate many of the
things needed in bigger proofs. The computer example in [Gordon5]
shows this.

Two things not illustrated by the COUNT example are the use of LCF
theorem proving techniques to prove ancillary lemmas (verification
conditions), and the inference rule needed to handle cycle merging when
one has terms of the form unfil I do ¢ To illustrate these we now
describe another example - a multiplier. First we will construct a system
MULT_IMP with behaviour:

MULT_IMP(m,n,t) ==
devidone,il,t2,0].
o=m, done=¢{ ;
MULT_IMP((t -> (i1=0->0]i2) | (i1=0->0]i2)+m),
(¢ -> i1 | n-1),
((t -> i1-1 | (n-1)-1)=0 OR (i2=0))

The we will show that:
m n. MULT(m) == until done do MULTIMP(m,n, T)
where MULT is defined by

MULT(m) == dev{il,i2,0}.lo=m} MULT(i1°%2)

Thus one "macrocycle of MULT is implemented by a variable number of
microcycles of MULT_IMP. (Note that we assume 0-1 is 0; we could easily
modify the implementation to avoid the need for this assumption).

28

The definition of MULT_IMP we use is given by the diagram below (we
leave the reader the exercise of working out the line names from the

structural description in LSM which we give shortly).

il i2
| |
—}.
------------------- +-_-----_,>_-== oo ow e
1
DEC
RN
|
|MUX BUX
|-r-vmmnn- cemamaa
REG(n) ZERQ_TEST ZERQ_TEST
[T
'l
DEC IOR-GATE
DEC
|
IEEEREE R
R
|
| FLIPFLOP(¢)
|
....... N
|
I
done

ZERO _TEST i ZERO
HUX
—_— f----
MUX
REG(m)
------ P
i |
| ADDER
Joemremeenns
|
o

Although this is a simple system, it is not instantly obvious that it
correctly does multiplication. As with the previous example we create
theories for the specification and implementation (named MULT and
MULT_IMP respectively).

finew theory'MULT" ;;
() : void

#inew constant (* MULT' ,

() : void

29

"ipwm > dev”)

#'menwm!, " e, "2 num!, Mo inen 5 .
", M1, eE", "e" (term# teym § teym § tevym)

#new_aziom
(MULT'
"MULT m == dev{il,$2,0).{o=m); MULT(i1°i2)");;
| -"tm. MULT m == dev{il,i2,0). lo=m]; MULT(i1 ° £2)" : ihm
ficlose theory(),.
() : void

Before deﬁmng the implementation of the multiplier in LSM we make a
theory contalnmg the definitions of the various primitives used.

fnew _theory ‘prims';;

() : void

#map neu constant [MUX* . ":dev";

‘REG' , ":nun->dev'";
*FLIPFLOP' , ":bool->dev";
*DEC! , ":dev”;

* ADDER' » Midev";

* ZERQ_.TEST* , ":dev”;

' OR_GATE" , ":dev";

* ZERO' , ":dev"];

Lo 05 05 O O Of O 01 < voia List

#"il:nuwn”, "i2:nwn" [
"g1","i2" : (fterm § tevym)

map

mneu,aziom

¥ [(MUK , "MUX = dev(switch t1,42,0}. (o—(switch >i1)42)) ;HUX');
8 (' REG' . "REG(n) devii,o}. (o-n] i REG(H

(' FLIPFLOP' "FLIPFLOP(t) == dcv[i of. ‘o tl FL]PFLOP(i)").

(' DEC® ., "DEC == devi{i,o}.fo= (t 1)} ;DEC " :

(' ADDER® . "ADDER == devttl i2,0}.{0= ((1+i2)] :ADDER") ;

('ZERQ_TEST', "ZERQ_TEST = devi{i.ol.{o=(i=0));ZERQ_TEST");

¥ ("OR_GATE* . "OR_GATE == dev{il,i2.0].{o=(i1 OR $2)};OR_GATE");
¥ (ZERO' "ZERO == devio].{o=0): ZERO")]::

] == deviswv,tch. t1,i2,0}. [o—(swttch -> 41 | €2)4; HUX';

w1t. FLIPFLOP t == devw{,0}. {o=t}; FLIPFLOP i";
-"DEC == dev{ti,0}. fo=(i - 1)}; DEC"';
-"ADDER == dev{il,i2,0}. o= (i1 + 12)}; ADDER"
| -"ZERQ_TEST == dev{i,o}. fo=(i = 0)}; ZERQ.TEST";
| -"OR_GATE == devfil,i2,0). {o=(i1 OR i2)}; OR_GATE";
| -"ZERO == devio|. {o=0}; ZERO"]
thm List

'-
!-"'n REG n == dev{i,ol. {o=n}; REG i";

#close theory();:
() : void

Next we define a theory MULT_IMP with prims as a parent. Note that we
use a slightly more compact way of assigning default OL types to
variables.

finew _theory' MULT_IMP' ;;
() : void

#new _parent 'prims’' ;;

Theory prims loaded
: void

30

dnew _constant (' MULT_IMP' , ":nmwn § nun § bool -> dev");;
() : void

#"[dona;bl;bz;b.ﬂ;bﬂ :bool list",
#“[l!;l?;lG;L4;l5;l6;l7;18;L9;l10]:ﬂwn Lise"

"[done ;b1;b2;b3;b4]", "{11;12;13:14;16;16;17;18,18;1101" : (term § tavm)
fineuw_aziom

§ (MULT_IMP',

4 "MULT_IMP(m.n,t) ==

[| MUx] switch=done ; i1=18;4{2=18;0=17]
REG(m) raf i=1L 7]

/ ADDER yn[i1=19;$2=0;0=18]

é DEC raf[i=i1;0=16] ’

f# MUX rnfswitch=dona ;i1=16;12=14;0=15]
MUX rn,switch=don@;iz=13;o=1]]

REG(n) roali=l1;0=L2)

DEC rnfli=12;0=13]

bt DEC rafi=t3;0=04]

ZERO rnfo=1L 10}

MUX rn{switch=b64;i1=110;0=19)

ZERQ_TEST vn[i=%1;0=b4]

ZERQ_TEST ra[i=15;0=b1]

¢ ZERO_TEST rnli=i2;0=b2]

OR_GATE ra{il=b1;i2=b2;0=b3]

FLIPFLOP(t) rn[i=b3;0=done]

% hide {b1,b2,b3,04,11,12,13,14,i5,16,17, 18,19, L101");;

-"mon ¢

MULT_IMP(m,n,¢) ==

[| BMUX ra[switch=done;iI1=18;i2=18;0=17]
(REG m) vnli=l7]

ADDER rn[i1=19;32=0;0=18]}

DEC rnli=il;0=16]

MUX rn{switch=done;i1=16;i2=l4;o=l5]
MUX rn[switch=done;i2=13;0=11]

(REG n) rnli=l1;0=12)

DEC vrnl[i=12;0=13]}

DEC rn[i=13;0=14]

ZERO vnfo=110]

MUX vn[switch=b4;ii=110;0=19]
ZERQ_TEST rn[i=i1;0=b4]

ZERQ_TEST vn[i=l5;0=b1]

ZERO_TEST rn[i=12;0=b2]

OR_GATE rn[il=b1;i2=b2;0=b3
(FLIPFLOP t) rn[i=b3;0=done] |]
hide!bl,b.?.b.ﬁ,b'ﬂ.l].lg.13,54,l5,l6,l7053,19,t10§"
thm

ficlose theory()::
() : void

Now we can use the derived rule EXPAND_IMP defined above as the first
stage of the verification of MULT_IMP.

finew _theory ' MULT_VER' ;;
() : void

#map new parent {‘MULT' ;' 'MULT_IMP'];;
Theory MULT loaded
Theory MULT_IMP loeded

{¢); ()] : void list

save__thm
(' MULT_IMP_EXPAND' ,
E}[{?AND_IMP
(map
(eziom ‘prims')
[*MUX*; 'REG' ;' FLIPFLOP' ;' DEC* ;' ADDER" ;
* ZERQ_TEST' ;' ZERQ' ; * OR_GATE' 1)

iz T W Tt T e T

31

(aziom *‘MULT_IMP' ‘MULT__IHMP'));;
|-"mn ¢.
MULT_IMP(m,n,¢) ==
dev
fdone,o0,i1,42].
fo=m, done=¢{
MULT_IMP
((¢ > (i1 =0 ->0)] %2) | (1 =0 ->0| £2) +m),
(¢ ->4i1 | n - 1), .
) ((¢ -> %1 - 1) (n - 1) - 1) =0) OR (42 = 0))"
: thm

Notice that we have not yet closed the theory HMULT__VER; we will want to
add another axiom later. First must use the rule of inference called
UNTIL. This represents the meaning of terms wuntil { do ¢ which we
described above. The general idea is this: suppose we have a behaviour
equation:

D(at,...,ap) == dev|l,z1,...,am}

fl:t.l]:tl...i.ln:tn!;
D(ut,...,up)

If we regard each step of D as a microcycle of until L do D(e1,...,ap), then
the rule UNTIL allows us to derive a behaviour equation for cycles of the
until-term. Ignoring some details (which are discussed below), the
equation yielded by UNTIL is:

until ! do D(al,...,ap) == devizl,...,zm].
fti=¢1,...,in=tnl;
until & do D(f(ul,...,up))

where intuitively f(ul,...,up) is the first state following (e1,....ap) in
which line I has value 7. Notice that the done-line I is not a line of the
until-device. :

The next-state function f must satisfy the following equation:-
f(al, ..., ap) == (¢ -> (a1,...,ep) | F(ul,...,up))

Here al, ... , ap are the state variables of D and u1, ... , up are the
expressions from the behaviour equation for D that specify the next
state. The equation above uniquely defines f. The rule UNTIL generates
this equation from the behaviour equation for D, and so constructs the
definition of the next-state function for until L do D(e1,...,ap).

Note how the equation for f simply iterates the state transformation:

(ai,...,ap) —> (ul,...,up)

until a state is reached in which the value on the output line ! (which is
given by t) is T. In other words f(al,...,ap) is the first state after
(al,...,ap) in which the value of ¢ is T.

The discussion just given is slightly oversimplified in that it ignores the

32

requirement that during sequences of microcycles which make up a
macrocycle, the inputs are assumed constant. To reflect this we must
make the inputs parameters to the next-state function f.

We define an input line of a behaviour term:

devil,=z1,... ,zn]. {l=¢,0=¢1,... dn=tn]| ;Dful,..., up)

to be a line xi that occurs free in ¢, or in one of the #i, or in one of the ws.
For example, the input lines of:
devidone,i1,42,0]}.
fo=m, done=t};
MULT_IMP((¢ -> (i1=0->0]%2) | (11=0->0{i2)+m},

(¢ -> %1 | n-1),
((¢ -> i1-1 | (n-1)-)1=0 OR (i2=0))

are il and i2.

To express the requirement that inputs are held constant during
microcycles, we modify the definition of the next-state function for until
! do D(al,...,ap) by changing the definition of f to:

f(=1,..., zg,af,...,ap) == (¢ -> (el,...,ap) | f(=1,...,2q,u1,...,up))

where z1, ..., zg are the input lines. We call this equation the next-state
equation for wuntil I do D(al,...,ap). Notice how this reflects the
constancy of the input lines during microcycles.

We can now describe the LSM rule UNTIL. It takes a theorem of the form:

D(el,...,ap) == davil,zi,...,zmn].
fi=t.l1=¢tt, ..., Iin=tn};
D(u1,...,up)

and produces a theorem of the form:

fi=1,..., zg,af,...,ap}) == (¢ -> (al,...,ap} | f(=1,....2q,41,..., up)}
==
until I do D(ei,....,ep) == devizl,...,zm.

fii=¢1,...,in=tnj;

until L do D(f(z1....,2zq,u1,..., upj})

This says that if f satisfies the equation preceding the ==> then until [
do D(al,...,ap) satisfies the behaviour equation following it. The f here is
a variable, though the equation it satisfies uniquely determines it. The
user will usually introduce an OL constant for this uniquely defined
function, F say, so that he can instantiate f to F and apply modus ponens
(the PPLAMBDA rule MP) to derive:

until { do D(al,..., ap) == deviz!,....zm}.
fri=t1, ..., In=tn};
until L do D(F(=z!,...,zq,ul,...,up))

33

Let us do this for our multiplier. First we must use the UNTIL rule. The
user must give as parameters to UNTIL the names of the next-state
function and the done-line. Thus the ML type of UNTIL is tok->tok->thm-
>thm. The first argument token is the name of the next-state function.
The second token is the name of the done-line. We will call the next-
state function-variable for the multiplier mulf_fn; the done-line is done.

fisave_thm
('MULT_IMP_UNTIL',
UNTIL ‘mult_fn' ‘done' (theorem ‘MULT_VER' ‘MULT_.IMP_EXPAND')});;
|-" el t_gn. '
(!il i2mmn ¢.
mult_fn(il,i2,mn,t) ==

(¢ -> (i1 =0->01]1i2) | (1 =10 ->0 | i2) +m),
(t ‘5 ‘:1 ' n - 1 '
'(' ((: >'41 - 1} (n - 1) -~ 1) =0) OR (i2 = 0)))) ==>
{ifmn L.
“until done do MULT_IMP(m,n,t) ==
dev
fo,1,i2%.
fo=m} ;=
until
done
do
MULT_IMP
(sl t_fn
(i1,
t2,
(¢ -> (i1 =0->011%2) | (i1 =0 ->0| i2) +m),
(¢ -> i1 | n - 1), :
((t ->4i1 - 1| (n-1)-1)=20)OR (2= 0))))"
; thm

Notice how UNTIL produces a theorem of the form fm1 ==> fm2, where
fm1is the recursive definition of the next-state function (called mult_fn
in the example above), and fm2 is the behaviour equation of the until-
term (until done do MULT_IMP(mn,t) in the example above).

Let us now introduce a constant MULT_FN defined by the next-state
equation just generated. Since we have not yet closed theory MULT_VER
we can include it there.

f;r)x,ew_constcmt (' MULT_FN', " :nunfnumfinuninun§bool > nwn#nwn#bool")::
;o void

#new _aziom

('MULT_FN',

"til i2man ¢,)

MULT_FN(i1,i2,m,n,) ==

(t ->

(m,n,t) |

MULT_FN

(i1,

i2.

(¢ > (i1 =0 -> 0| i2)) (it =0 -> 0] i2) + m),
(¢ -> 31 | n - 1),

1‘ ((t ->1i1 -1t | (n-1)-1)=0)0R (i2=0)))")::

-"1il i2mn ¢,
MULT_FN(i1,i2.m,n, t) ==

34

(¢ ->
m,n, t) |
MULT_FN
(i1,
i2,
(¢ -> (il = 0 > 0] t2)) (i1t =0 -> 0] i2) + m),
(¢t -> 41 | n 1),
((t -> 41 - 1 i (n - 1) - 1) = 0) OR (i2 = 0)))"
: thm

f#ielose theory():
() : void

We now need a lemma relating the recursively defined function
MULT_FN to multiplication. The required lemma can be proved in LCF
using mathematical induction and various arithmetical properties
(including 0-1==0). We will not give the proof here, but just make the
needed theorem an assumption as follows:

f#let lemna =
ASSUMFE
"iil 2.
MULT_FN(i1,32,(41=0->0142),%1,((41-1)=0)O0R(i2=0)
(i1°i2, (((11 1)= O)OR(tZ‘O) >t1|1) T)"::

lemmo = .

N EREEY TN
MULT_FN(i1,i2,(%1 = 0 -> 0 | i2).4{, ((u - x) = 0) OR (i2 = 0)) ==
i1 ° i2,(((i1 - 1) = 0) OR (42 = 0) -> &1 | 1), 1"

: thm

The rule ASSUME of ML type form->thm takes a formula fm to a
theorem fm |- fm.

Next we specialize the variable mult_fn in MULT_IMP_UNTIL to the
constant MULT__FN we have just introduced. Then finally we do modus
ponens with the specialized theorem and the definition of MULT_FN.

#let thl =
MP (SPEC "MULT_FN" MULT_.IMP_UNTIL) (cziom ‘MULT_VER' ‘HMULT_FN');:;
¢
Iﬂ’hn n t.
until done do MULT_IMP(m,n,t) ==
dev
o,t1,12}.
o=mj{;
unt il
done
do
MULT_IMP
(MULT_FN
(i1,
i2,
(¢ -> (i1 =0 ->0 | $2) | (1 =0 -> 01 i2) +m),
(¢ -> i1 | n - 1),
((¢ -> 41 - 1| (n - 1) - 1) =0) OR (i2 = 0)))"
: thm

Now we specialize ¢ to T and simplify the result using the OL axiom
BOOL_COND_CLAUSES and lemma. The axiom BOOL _COND_CLAUSFES

is:

'tz y. (T >z | y)==2z /N (F->z]|y)==

35

The simplifier is a derived inference rule called REWRITE_RULFE, it takes
a list of theorems and uses them to simplify a given theorem (see
[Paulson1] for details).

let th2 =
REWRITE_RULE
{ BOOL_COND._.CLAUSES ; Levina]
N (SPEC "T" (SPEC "n" (SPEC "m" thi)));;
2 = ’
| -"until done do MULT_IMP(m,n,T) ==
dev
0,i1,t2).
o=m| ;
until
done
do
MULT_IMP(i1 ° i2,(((%1 - 1) = 0) OR (i2 = 0) -> ¢1 | 1),T)"

oo 0 W B W

The last step is to use the inference rule UNIQUENESS to prove that the
specification MULT (which is an axiom on the theory MULT set up above)
is correctly implemented by MULT_IMP.

#let ¢h3 = UNIQUENESS (oziom ‘MULT® ‘HULT') th2;;)
th3 = .|-"MULT m == unéil done do MULT_IHMP(m,n,T)" : &hm

Then we can save th3 as the theorem CORRECTNESS.

fisave_thm(' CORRECTNESS*, th3);;
J-"tm n.
(ti1 iz2.
MULT_FN(i1,32,(i1 = 0 -> 0 | $2),41,((41 - 1) = 0) OR (i2 = 0)) ==
i1 ° $2,(((i1 - 1) = 0) OR (s2 2 0)' -> 41 | 1),T) ==>
MULT m == until done do MULT_IMP(m,n,T)"
: thm :

When a theorem is saved in a theory all its assumptions are
automatically discharged. Hence in the example above, the assumed
lemma appears as the antecedent of an implication whose consequent is
the formula we have just proved. If we subsequently prove this lemma as
a theorem, we can remove it as an antecedent using modus ponens. We
shall not do this here as it is routine LCF.

This concludes the correctness proof of the multiplier example, and also
our introduction to LCF_LSM. Although the examples we have used are
trivial, I hope they are suggestive of what might be done. A much bigger
example is given in [Gordon5].

36

Conclusions
Is it practical to prove real hardware correct?

The LCF_LSM verification system has been built to try and answer this
question.

Based on the case studies done so far (primarily [Gordon5]), I claim that:

1. Non-trivial hardware can be proved correct wusing exisiing
techniques.
2. Machine assistance is essential for such proofs.

Further evidence of this is provided by the work of John Herbert, a
research student in the Computer Laboratory. He has -proved correct
one of the integrated circuits used in the Cambridge Fast Ring (a 100
megabit per second local network). The chip that has been verified
translates between a serial data path and a sequence of 8-bit packets; it
is implemented in ECL technology.

Future research

It is hoped to apply LCF_LSM (or its descendants) to examples supplied
by industrial collaborators. I am actively seeking partners for this
enterprise. '

An industrially supported student (Inder Dhingra) is developing
techniques specialized to the ¢cMOS technology.

I am currently simplifying LCF_LSM using ideas from Temporal Logic.
This work is being done in collaboration with my colleague Dr. Ben
Moszkowski (who has a research position in the Computer Laboratory). It
is also inspired by suggestions made by Edmund Ronald and Professor
Tony Hoare. The idea is to dump LSM and just work with LCF. For
example, instead of describing the counter specification and
implementation with functions COUNT and COUNT_IMP, where:

COUNT(n) == deviswitch,in,out]. {out=n]; COUNT(switeh -> in | n+i)
COUNT_IMP(n) == []| HUX rafil=in;i2=12;0=01]
REG(n) vn[t=l1;0=0ut
INC rnli=out;o=t2] |]
hide{ll, 2]

we use predicates COUNT_PRED and COUNT_IMP_PRFED defined by:

37

COUNT_PRED(n, %, switch,0) <=> (o == n) /\ DEL(n, (switch->1|n+1))
COUNT_IMP_PRED(n.i.switch,o) <=> 201 12,
HMUX_PRED(switch,€,12,01) /\
/\

REG_PRED(n,11,0)
INC_PRED(o0,12)

" where the primitives are specified by:
MUX_PRED(switch,1,$2,0) <=> o == (switch->i1]{2)
REG_PRED(n,%,0) <=> (o == n) /\ DEL(n,%)
INC_PRED(i,0) <=> o == §+1

This approach appears to have the following nice properties:

1. Formal descriptions are in "pure logic"”; the extra CCS-like terms
are not needed. For example, hiding is represented by existential
quantification and parallel composition (i.e. [} ... | ... | ... []) by
conjunction.

2. Verification can be done using standard inference rules of logic.
The ad-hoc rules in Appendix 3 are not needed.

3. Combinational devices are not forced to have a next-state part.
Sequential behaviour is specified with delay operators. (The
predicate DEL is the unit-delay of temporal logic [Moszkowski].)

4. Bidirectional devices have a more natural specification.

5. Devices can be specified to have ""pure delay’ instead of state. This

turned out to be useful for the ECL chip verification mentioned
above.

Various case studies are being done to see if these nice properties really
hold. For example, the cMOS work is being conducted in this framework.

38

Appendix 1: Types, terms and constanis of L5M

LSM has the following types of arity 0 built in: bool (booleans), num
(non-negative integers), wordn (n-bit words), fri-wordn (n-bit tri-state
words), memm_n (m by n memories) and dev (devices). The type list of
arity 1 is also built in.

The current implementation of LCF_LSM requires the user to explicitly
declare the sizes of words and memories that he will use. Two ML
functions are provided for this purpose:

declare__word_widths . int list -> void
declare_memories : (int # int) list -> void

In the computer example described in [Gordon3], words of sizes 2, 3, 5,
13, 16 and 30, and memories of sizes 5 by 30 and 13 by 16 are used. The
declarations needed for this are:

declare_word_widths|2,3,;5;13;16;30]
declare_memories[(5,30);(13,16)]

These declarations call new_type for the appropriate types of the form
wordn, tri~wordn and memm__n. They should be done in a theory that is
a parent to all the theories that use word and mem types. The theory
values has this role in the computer example.

In addition to the usual PPLAMBDA terms, LSM also has the following
terms of OL type dew:

Sequential Machine: devizl,...,.zm].{l1=t1,.. In=tn]:t
Renaming: t ra[li=L1;.. . jin=In’]
Joining: fltrfe2]... | in]]
Hiding: t hidefl1,...,In}
Merging Microcycles: until L do ¢
Here z1, ... ,xm, L, 11, ..., In are OL variables used to represent lines.

For each of these terms there are ML syntax functions with prefixes
mk__, is_ and dest_ as described in [Paulson2]. The constructors and
destructors are inverses; we just describe the former.

m]c_dev(["z]"; . ,'"m"], [”ll","gl"; s ;Hlnll'uen"]. ntn)
-->
"deviz!, ... ,amj.{l1=¢1, ... , ln=tn}; ¢"

39

mk_join["¢1"; ... ;"tn"]
-->

BR Y I I I N D

mk_hide("¢", ["L1"; ... :"In"])
'-';>hidefl1, R Y
mk_vrenane ("¢" [L1,117; ... ;Im,lm'])
’-’;>rn [ti1=t2’; ... ;lm=lm']"

k_unt il ("L, "¢")
-..> M
. "until L do ¢

An ML-like syntax for lists is also available in LSM: If ¢1, ..., ¢n all have OL
type ty, then the term [£1,...;tn] has OL type ty list. The empty list of OL
type *list is denoted by [].

LSM also has terms: let xz=t1 in t2. These are just alternative syntax for:
(\z.t2)t1 (where \z.t2 is the PPLAMBDA notation for lambda-
expressions).

The LSM syntax for conditionals is (£->¢1|t2) where ¢ is a term with OL
type bool and {1 and t2 have the same OL type. Note that this differs
from the PPLAMBDA (and ML) syntax of (¢=>#1|t2) where ¢ must have
type tr (the PPLAMBDA type of three-valued truthvalues).

The built-in (non-functional) constants of LSM are:

T F . The truth-values of OL type bool

' 0, "1',h.'2, Numbers of OL type num

b1 bn . Words of OL type wordn (bi is either Oor 1).
[] The empty list of OL type ¢ list.

The following infixed binary operators are built in:

equality. OL type % #>bool

+ addition. OL type num#num->num

- subtraction. OL type num#num->num

¢ multiplication. OL type num#num->num

OR disjunction. OL type bool#bool->bool

AND conjunction. OL type bool#bool->bool

NOR negated disjunction. OL type bool#bool->bool
XOR exclusive OR. OL type bool#bool->bool

EQVv logical equivalence. OL type bool#bool->bool

In addition there are the following (non-infixed) functions:

40

SUC successor function. OL type num->num

PRFE predecessor function. OL type num->num

NoT negation. OL type bool->baol

CONS list cons. OL type #> ¢list-> ¢lisi

HD head. OL type ¢ lisi->*

TL tail. OL type °lisi-> ¢list

NULL null test. OL type ?lisi->bool

FL nth element of a list. OL type num-> ¢ lis{-> ¢

SEG sublist of a list. OL type num#num-> ¢ list-> ¢ list

|4 number denoted by a bit list. OL type &ool lisi->num

The ML function declare__word_widths creates the following functions for
each width declared:

VALn number denoted by a word. OL type wordn->num
WORDn word representing a number. OL type num->wordn
BITSn list of bits in a word. OL type wordn->bool list
NOTn complement a word. OL type wordn->wordn
MK_TRIn make a tri-state value,.

- OL type wordn->#ri_wordn
DEST_TRIn convert a tri-state value to a word.
OL type tri_wordn->wordn

For each n there is also a constant FLOATn of OL type éri_wordn to
represent the value on a floating bus of width n. The following infixes are
also defined for each width:

ORn bit-by-bit OR. OL type wordn#wordn->wordn
ANDn bit-by-bit AND. OL type wordn#wordn->wordn
Un combining tri-state values.

OL type tri_wordn#iri_wordn->iri_wordn

The ML function declare__memories creates the following functions for
- each memory size (m,n):

STOREmM store a value.
OL type wordm->wordn->memm_n->memin_.n
FETCHm fetch a value.

OL type memm_n->wordm->wordn

Note that only one type of memory with a given address size is possible.
For example, one can’t have both memi3_8 and memlI3_16. This
restriction is purely to keep the names of the fetch and store functions
short; it may be relaxed in the future.

41

Appendix 2: Axioms and Built-in Theorems

Little attempt has been made to give a well rounded set of axioms and
built-in theorems. The ones listed below are motived by the examples
that have been done (notably the computer example in [Gordon4]). I
expect that future studies will expose the need for more.

The following axioms are included in LSM. We give their ML name followed
by the corresponding formula.

EQ lz:°. 1y:°, 2z =y =T <<=> z == y"
BOOL_COND_CLAUSES fz:o ty:°. (T -=>2 | y)==az N\ (F->z|y)s==
BOOL_CASES !b:bool. b==T \/ b==

POOL_EQ_DISTINCT ~ ~T==F A\ ~F==T

NOT NOT F == T ,\ NOT T ==
OR FORF==F N

FORT==T N

T ORF==T N

TORT==T
AND 'b1 2. b1 AND 82 == NOT((NOT b1) OR (NOT b2))
NOR ‘b1 2. b1 NOR b2 == NOT(b1 OR b2) .
XOR . 'b1 b2. b! XOR b2 == (b1 OR b2) AND (NOT(b1 AND b2))
EQV 161 b2,

b1 EQV b2 == (b1 AND b2) OR ((NOT b1) AND (NOT 82))

The following consequences of these axioms are available:

NEG_F lz y. ~z ==y ==> z=y==7F

F_NEG lz y. 2 =y == F == ~ g ==y

NEG EQ lz y. ~z ==y <=> z =gy==F

EQ.T 6. b =T == b

NEG T_F b, ~ b == T ==> § ==F

F_T v, b == F == ~ b ==T

NEG_F_T b, ~ b == F ==> p ==T7

T_F 6. b == T ==> ~ p ==F

BOOL_FEQ 15, (b ==T <=> b == F) N
(b ==F <=> b ==1T)

FN_COND Iftzy. J(t ->z]| y)==(t ->7=z|7fy)

TRIV_COND Itz (¢ ->2 | 2z) ===

COND_PAIR 't 21 22 y1 y2.

(t -> (z1,22)

| (y1.y2))
(t -> =21 | y1),(t -> =22

T_yz)

42

AND
AND
AND
AND

AND_TABLE

N
7

NOR
NOR
NOR
NOR

NOR_TABLE,

§
NN NmSS
>2>2

XOR
XOR
XORr
XOR

XOR_TABLE

it
nu

NN INNTY

b
>>2

EQV_TABLE EQV

33

=<
i

>22

NNTTONNTTY NNy NSNS
NN NN ONYNY NNy
1
i

po

- 5]
ra)
<

OR_CLAUSES

3888
e ay o ng
I na
]

i

> 0w g g
>>2

AND T
AND ¢
AND F
AND ¢ == F

AND_CLAUSES g,

[I}

14
14
F

3

Ry O] S Rt

DEMORGAN_.OR ¢ 2. NOT(¢1 OR t2) == NOT ¢1 AND NOT ¢2
DEMORGAN_AND 1¢1 ¢2. NOT(¢i AND t2) == NOT ¢1 OR NOT &2
NOT_NOT t¢. NOT(NOT t) == ¢

At present there are no built-in axioms or theorems for numbers, words,
memories or lists. In Appendix 3 we describe some inference rules which
enable certain constant expressions at these types to be simplified (for
example 2+3 can be simplified to 8).

43

Appendix 3: Rules of Inference
LSM contains inference rules for reasoning about the various terms of
type dev. We give the ML type of each rule followed by a schematic

description of its effect.

COMPOSE :term -> thm

COMPOSE
"[| dev X1.EQI;N1 | ... | dev Xn.EQna;Nn |1 hide L"
"{- [| dev X1.EQI,Nt | ... | dev Xn.Egn,Nn |] hide L ==
dev (Xlu ... uXa)\L.EQIu ... uE@u; ([| N1 | ... | M|} hide L)"

Here X1u ... uXn and EQ1u ... uE@N denotes the union of sets of lines X1,
... , XN and equations £E@QI, ... , EQN respectively; (X1u ... uXn)\L denotes
the union of the lines minus the lines in L (thus \ is set subtraction, or
complement).

COMPOSF fails if:

1. L contains an I which is an input line (i.e. occurs in an Ni or the rhs
of an equation in an £'@i and is not the lhs of an equation).

2. There exist distinct % and j such that EQi contains z={i and E¢j
contains xz=tj.

UNFOLD_IMP : thm list -> thm -> thm

UNFOLD_IMP

[("]-t1==ut"; ... ;"|-tm==wum"]

fl- ¢ == [| ¢1° wn[R1} } ... | tn’ enl{fn] |] hide L"
- >

"l ¢ == [| ut’ a{RI}J | ... | un’ ra{M] |} hide L'

Where if #i has an instance #i’ then ui’is the corresponding instance of ui
(i.e. ui’is got from wui using the same substitution that yields #i’ when
applied to ti).

UNFOLD_DEF : thm list -> thm -> thm

UNFOLD_DEF
[*)-ta==ut"; ... ;"|-tm==wn"]
"I- ¢ == ti' rn[R]"

Mg == uyi’ rn[R]"

Where, as above, wut’is the instance of ui obtained by matching #i’ to #i
("|-ti==wi" must not have any assumptions).

44

FOLD : thm -> thm -> thm

L 4
n'_ tm == devX,EQS,w'"
u'- tm == devX,FQS,¢t'"

Where t’is the instance of £ corresponding to the way »’is an instance of
Uu.

RENAME : term -> thin

RENAME
"(devX.EQS,NXT)rn[E]"

-->
"|- (devX.EQS,NXT)rn{R) == devX'.EQS*;(NXT' vnlR])"

Where X', EQS’ and NXT' are derived from X, £QS and NXT respectively
by renaming according to #. RENAME fails if:

1. R has the form [...z=a,...y=¢a,...].
2. "g:#y1" is in X and "z:fy2’ is a lhs of an equation in K and ty1, ty2
' are distinct.

UNWIND : tok list -> term -> thm

UNWIND

L

"devX.{ol=¢1, ..., ,on=¢n};NXT"

.- .
"j- devX.{oi=81, ... ,on=tn};NXT == devX.fol=¢1', ... ,on=¢n’'|;NXT'"

Where £1°, ... ,tn’ and D’ are got from ¢1, ... ,in and D by unwinding those
equations whose lhs is not in L.

PRUNE : term -> thm

PRUNE
"devX.EQS; NKT"

-->
"l - devX. EQS;NXT == devX.EQS';NXT"
Where EQS’is the subset of EQS obtained by removing equations whose

lhs (i) is not an output line, and (ii) does not occur in D or the rhs of an
equation used to define variables whose values are observable.

UNIQUENESS : thm -> thm -> thm

UNIQUENESS
"|- Difet,..., ap) == dewX!l. EQI;D(AL,.... Ap)"
"I- D2(b1....,bg) == devX2.EQ2;D(B1,...,Bg)"
_..> .
"|- Difai,...,ap) == D2(b1,...,bg)"

Where:

45

1. For each 14: if @i is not a variable then ai equals 4i and if b is not a
variable then bi equals Bi.

2. X1 denotes the same set of lines as X2, and £@1 the same set of
equations as F@Q2.

3. The subset of pairs (@i,4i) where @i is a variable occurring free in
either the right hand side of an equation in £@! or in an 4i, equals
the subset of pairs (bi,Bi) where bi is a variable occurring free in
either the right hand side of an equation in £Q2 or in a Bi.

The easiest way to understand these conditions is to look back at the
COUNT and MULT examples and see what they mean there.

UNTIL : tok -> tok -> thm -> thm

UNTIL
I!l
e
"}- D(=z1, ..., zm) == devX. .
fl=¢,01=01,...,0n=¢n, ti=ulf,..., ip=upl|;
D(EL,.. . Ep)"
-->
"y,
('é1 ... ir =1 ... am.
f(i1,..., iv,21,...,5m) ==

let lI=ul in

let lp;up in
(t -> (z1,...,2m) | f(é1,...,%v,E1,...,BEp)))

==>
until I do D(=z!,...,zm) ==
dev(X-1t})). fot=t1,...,on=tn, Li=ul,..., ip=up};

until L do D(f(31,....iv.E1,...,Ep))"

Where i1,...,ir are the iﬁput lines occurring in ¢, E1,...,Ep,ui,...,up and
l1,...,lp are the internal lines (i.e. li is not in X). UNTIL fails if:

lis not in X, or L does not have type bool,

z1,...,2m are not distinct, or some zi is not a variable,

one of F1,...,Ep has a free variable which isn't in X or

any of u1,...,up have free variables which arn't in X or {z1,...,zm|
(thus the local equations {{1=u1,...,lp=up} must not be recursive).

el

The rules that follow are not primitive (i.e. there are definable in terms
of the rules above) but are included for convenience.

EXPAND_DEF : thm list -> thm -> thm

'EXPAND_DEF .
[...:"}{- D == devX.EQS;D'";...}
"l- Dt == D rn[R]"

"|- Di == devX'.EQS’';D1""

Where X', EQS' are got from X, E@QS by renaming according to R. This is

46

useful for creating copies of generic devices with different line hames.

RENAME_LINES : thm -> thm

RENAME_LINES
"|- ¢ == [| (devX1.EQSI;NXT1)vn[R1]

| (dev¥n. EQSm; NXTn)rn{FRn] |] hide L"

-->
m|- ¢ == [| devX1'.EQS1';(NXT1' vn[R1])
| devX¥n’'.EQSm’', (NXTm' wn{Rn]) |1 hide L"

Where the primed components are got from the correspondi'ng unprimed
. ones by renaming.

COMBINE_EQUATIONS : thm -> thm

COMBINE_EQUAT IONS
"l- ¢ == [| dev X1.EQI;N1 | ... | dev Xn.E@n;Nn |] hide L"

-->

"l- ¢ == dev (Xiu ... wXn)\L.EQIu ... uEQn;([| Ni | ... | Nn|] hide L)"

This generates a behaviour equation for an implementation from the
behaviour equations for the components (u denotes set union and \ set
subtraction).

UNWIND_EQUATIONS : tok list -> thm -> thm

UNWIND_EQUATI ONS
L
"|- ¢ == devX.EQS;NXT"
-->
"|- ¢t == devX.EQS’';NXT'"
Where EQS’ and D’ are got from EQS and D by unwinding on L.

PRUNE_EQUATIONS : thm -> thm

PRUNE_EQUATIONS
"|- ¢ == devX. EQS;NXT"

"- == devX.EQS' ;NXT"
Where EQS’ is got form E@S by pruning.

The ML functions EXPAND_IMP and VERIFY are defined by:

47

let EXPAND _IMP L prims imp =
let thi = UNFOLD_IMP prims imp
in

let thz = RENAME_LINES thl ? thi
'E';t th3 = COMBINE_EQUATIONS ¢th2
.:‘2! th4 = FOLD imp th3

zzt ths = UNWIND_EQUATIONS L th4

in

PRUNE_EQUATIONS ths;;

let VERIFY prims spec imp =

UNIQUENESS spec (EXPAND..IMP nil prims @mp);;

The next collection of rules enable a certain amount of evaluation of
constants to be done. For each kind of evaluation we provide a simple
rule and a formula conversion (details of conversions are in [Paulsonl1}).
Only the simple rules are used in the examples described in this report
The conversions will be useful when we come to define tactics for LSM
(see [Gordon et. al.] and [Paulson] for a description of goal-directed
proof using tactics).

We list below a name and the corresponding evaluation, for example:

FOO t1 --> ¢1°
2 --> t2’

this means that there are two ML functions:

FOQ_RULE : thm -> thn
FOQ_FCONV : form -> thm

The rule FOO_RULE will take a theorem th to th’ and FOO_FCONYV will
take a formula fm to the theorem fm <=> fm’, where th’ and fm’ are
got from th and fm respectively by replacing all subterms of the form £1
and £2 by the corresponding ones of the form ¢1°and £2’: We use ¢, £1, £2,

... torange over OL terms.

BITS BITSw §#bl. .. bw -> [81;.. . tw]

(where tiis Tif biis I and F otherwise)’

ADD mn --> 7

(where r is the numeral denoting the sum of m and n)

DIF m-n ~--> %

(where 7 is the numeral denoting the difference of m and n)

-->

EQ =z T
=y --> F

(where 2 and y are distinct constants)

48

EL EL ¢ [¢n; ; t0] o> £
WORD WORDw v a=> fibf... 0w

(where #b1...bw is the w-bit binary representation of n)

VAL VALw §#b1. .. bw ->

(where n is the number denoted by #b1...bw)

v VIer;...;¢m] , - n

(where n is the number denoted by [£1,...;tm])

SEQ SEQ(¢.35)(em; ... ¢0] --> [eds...ct4]
AND fiel.. aw AND §b1...bw - fel...cw

(where ¢i is the value of the conjunction of ai and bi)

OR f#al...cw OR §bl... bw --> fel. .. cw

(where ci is the value of the disjunction of ai and bi)

NOT NOT #ai...cw --> Fbf. . . bw

(where bi is the negation of ai)

COND (T->¢1)¢2) -e> #4
(F->¢1]¢2) - £2

U FLOATw [hv ¢ - 8
¢ Uw FLOATwW -3 8

TRI DEST TRIw(MK TRIw &) -3 8
bool ¢ AND T R
t AND F - F

T AND ¢ --> ¢

F AND ¢ -> F

¢t OR T > T

t OR F R

T OR ¢ -> T

FOR ¢ -3 8

NOT T -> F

NOT F “> T

For example, ADD_RULE would reduce |- ¢ == (2+3)+4 to |- == g, and
bool_FCONV would map the formula NOT T'== z OR F to the theorem:

NOT T == ¢ OR F <=> F == =

49

References

[Ayres] ‘
R. Ayres. VLSI: silicon compilation and the art of automatic
microchip design. Prentice-Hall, 1983
[Barrow] -
H. Barrow. Proving the Correctness of Digital Hardware Designs.
Available from: Dr. Harry Barrow, Fairchild Laboratory for Artificial
Intelligence Research, 4001 Miranda Ave., Palo Alto, CA 94304.
[Dembinski & Budkowski]}
P. Dembinski and S. Budkowski, Verification, Design and
Description. Oriented Microprogramming Language. Proc. 4th
EUROMICRO Symp. on Microprocessing and Microprogramming,
Munich, Oct. 17-19, 1978.
[Gordon et. al.]
M. Gordon, R. Milner and C. Wadsworth. FEdinburgh LCF: A
mechanised logic of computatlion. Lecture Notes in Computer
Science Number 78, Springer-Verlag, 1979.
[Gordont]
M. Gordon. The Denotational Semantics of Sequential Machines.
Information Processing Letters, Volume 10, Number 1, 1980
[Gordon2]
M. Gordon. A Model of register Transfer Systems with Applications
to Microcode and VLSI Correctness. Internal Report CSR-82-81,
Dept. of Computer Science, University of Edinburgh, 1981
[Gordona3]
M. Gordon. A Very Simple Model of Sequential Behaviour of nMOS.
In VLSI 81 (ed. J. Gray), Academic Press, 1981.
[Gordon4]
M. Gordon. Representing a Logic in the LCF Metalanguage. In Tools
and Notions for Program Construction (ed. D. Neel), Cambridge
University Press, 1982.

[Gordon5]
M. Gordon. Proving a Computer Correct with the LCF_LSM

Hardware Verification System. University of Cambridge computer
laboratory technical report Number 42, 1983.

[Hanna]
K. Hanna. Overview of the VERITAS Project. Available from: Dr. F.
K. Hanna, Electronics Laboratory, University of Kent at Canterbury,
Canterbury, England.

[Milne]
G. Milne. CIRCAL: A Calculus for Circuit Description. Internal
Report CSR-122-82, Dept. of Computer Science, University of
Edinburgh, 1982.

50

[Milner]
R. Milner. 4 Calculus of Communicaling Systems. Lecture Notes in

Computer Science Number 92, Springer-Verlag, 1980.

[Moszkowski]
B. Moszkowski. 4 Temporal Logic for Mulii-Level Reasoning about

Hardware. In the proceedings of the IFIP Sixth International
Conference on Computer Hardware Description Languages and
Their Applications, Pittsburgh, U.5.A., 1983.

[Paulson1]
L. Paulson 4 Higher Order Implemeniation of Rewriting. To be

published in Science of Computer Programming, 1983.

[Paulson?2]
L. Paulson. The Revised Logic PPLAMBDA: A Reference Manual.

University of Cambridge computer laboratory technical report
Number 36, 1983.

[Paulson3]
L. Paulson. Tactics and Tacticals in Cambridge LCF. University of

Cambridge computer laboratory technical report Number 39, 1983,

Acknowledgements
1 have had useful conversations with Harry Barrow, John Herbert, George

Milne, Robert Milne, Ben Moszkowski, Larry Paulson and Edmund Ronald.
Tom Melham made valuable comments on a first draft of this paper.

51

