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SKEM HARDWARE GUIDE,

SKIM - Physical Organlsation
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The prototype SKIM has been constructed on four wirewrapped extended
double Eurocards., Up to three more RAM array cards could be added,

All I/0 from the processor is done via a host computer system,
currently a BBC microcomputer system. The host and SKIM together form a
stand-alone working system. There is also a link to the local mainframe,
where most of the system software 1s being developed. )

TTL logic, mostly MSI and SSI, has been used throughout. The only non-

TTL devices are memory chips, A1l four boards contain a total of 230 chips,
of which 92 are memory chips.
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Main Deslgn Features

The CPU Card

24 bit ALU, based on 6 AMD2901 Y4-bit TTL slices

processor operation can be monitored, halted and
single stepped under the control of the host

the host can usefully assist in the debugging
and checking of hardware and microcode.

tagged architecture:
24 bit word consists of 4 tag, 20 data
carry from data does not overflow into tag in the ALU
hardware assist for rapid testing of tag values

The Microcode Memory Card

40 bit wide microcode with one-word pipeline
250ns micro cycle time
microcode in RAM, under control of host

very large microcode store, up to 64K words

The Main Memory Controller Card

memory arranged in nodes
each node contains two 24 bit words and two flag bits

hardware assist for marking and garbage collection
parity checking on main memory
350 ns main memory cycle time - transparent refresh

read/modify/write memory cycles allow fast
pointer operations

can control up to four memory array cards

The Main Memory Array Card

64K nodes of 54 64K ram chips on each card
can be upgraded to use 256K rams

total maximum memory 1M nodes (6Mbytes) on U cards
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Operation

The CPU 1is based on AMD2901 UY=bit ALU slices. It has 16 internal
general-purpose registers, and provides simple arithmetic operations.
Multiplication and division are speclally assisted by conditional *shift
" and add/subtract' instructions, It is contructed so that tag and data
calculations are separate,

The CPU is controlled by U40-bit wide microcode which allows branch
calculations, tag comparisons, ALU arithmetlc, microcode instruction fetch
and main wmemory access all to proceed concurrently. The wmicrocode is
controlled by a 16 bit microsequencer with its own subroutine stack. The
CPU obeys one microcode cycle every 250ns,

The main memory is organised as a sequence of nodes, each of which
contains two machine words of 24 bits and two flag bits, which can be
written to independently., This allows a marking garbage collection to
proceed at high speed, and means that the machine memory is viewed by the
programmer as a heap of binary nodes, Read/modify/write memory cycles
allow common operations such as pointer chain following and reversal to
proceed at maximum memory bandwidth, while the tagged processor design
means that the pointers can be checked concurrently as bona fide memory
polnter values, This means that many tree and list processing operations
can proceed at much higher speed than on a conventional architecture of
similar bandwidth,

Software Devel opment

SKIM 1s envisaged as a so ft machine, running an interpreter written in
microcode for a l1ist/tree processing system,

Large Microcode (Writable Control) Store

Provision has been made for connecting avery large amownt of microcode
memory to SKIM, which would allow microcode to be used like the machine
code of a conventional processor, Operating system primitives and common
inner loops could be coded in microcode, or a compiler written that
generates mierocode, The changing relative cost of fast memory and CPU
logic is rapidly making this the most cost-effective method of making the
processor go quickly. Using 8K*8 static RAMs, 64K words of microcode memory
can be placed on one card,

Tagged Architecture

SKIM's hardware provides support for calculations involving tagged
machine words. Special microcode instructions allow the testing of tag
values concurrently with other calculations in the CPU;, so that run-time
type checking will not have an associated performance penalty. This means
that garbage collection of main memory can be performed by microcode at
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high speed. Also, the difference between integer data values represented
by a single machine word and bilgger, multiprecision values represented by
a list of memory nodes can be transparent to the programmer, so that
worrles over 'bitswidth' disappear.

Debugging under Host Control

The prototype SKIM has been designed as a development systém, and every
effort has been made to ensure that bugs will show themselves. The host
processor has complete control over the operation of the CPU, and can halt
the system clock (the main memory continues to refresh itself) and single
step the processor at low speed under operator control,

The host can write values into the microcode memory (eg for breakpoints
and microcode debugging) and by inserting microcode values directly into
the microcode pipeline can read the CPU registers without disturbing the
progress of a calculation. Indeed the whole machine state (including main
memory) can be non-destructively examined under control of the host., With
these facilities development of microcode programs is no more difficult
than that of'machine code programs for a conventional machine.

Comparison With Other Machines

There are several hardware processors in existence that were designed
specifically for 1list processing. Examples include the MIT Lisp Machine
[Symboles 82] and FLATS [FLATS 79]. Such machines are mostly aimed at the
efficient implementation of Lisp.

SKIM has been microcoded for combinator reduction [Turner 78), and it
reduces about 80,000 combinators per second. Its flexibility should also
make it ideal for supercombinators [Hughes 82] and for Prolog and Lisp. It
is considerably smaller and simpler than most soft machines available
today, and this should be an advantage in experimenting with new
implementation techniques,

The SKIM prototype has not been designed with the most recent
technology. The CPU is in fact very simple, a brief calculation of the
number of circuits on it indicates that it is considerably less complex
than a Motorola 68000 [68000 82]. It would fit very well on a single chip,
and this would lead to a faster, cheaper machine but this is not sensible
until more work has been done with software experimentation and
development,
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Limitations

o Virtual Memory or Address Translation

The maximum addressing range is for 1M nodes of RAM. It should soon be
economically feasable to connect this much physical RAM (ie 6M bytes),
which should be enough for fairly large applications.

In order to make use of virtual memory a larger virtual address space
would be necessary, which would involve windening all data paths and would
generally lead to a larger machine. Also, address translation would slow
main memory access down so the processor cyecle time would have to be
increased, or more advanced and complex logile used in constructing the
processor,

Ho multiply, divide, shift or floating point hardware

It would be possible to add these if they were felt to be necessary, but
the processor would then occupy more than one board and this was felt to
be inappropriate in the prototype. Before any of these a ‘fast hardware
stack would probably be a more productive addition to the CPU. 20 by 20 bit
unsigned integer multiplication and division both :-occur in 20
micrcocycles, ie 5 microseconds,

Ho memory ecache

The main memory cycle time of 350ns 1s fairly quick and considering the
overall size of the machine (four boards of circultry), the amount of
effort required to implement a memory cache was not considered worth
wvhile, Also, the main memory bandwidth is no more a bottleneck than the
microcode memory bandwidth, and no great benefit would result from the
ilncreasing the bandwidth available on either one of these.

Ho parity checldng on CPU data paths

This would be very difficult on an MSI implementation. If a chip were
being made it would be very much easier. Great emphasis has been placed on
the reduction of noise in the hardware design, in an effort to make a
suitable, reliable tool for software research, At the time of writing the
prototype has shown no signs of noise related problems,

All of the above features could be added to a future version of SKIM,
and they would lead to a more powerful machine, But it would also be
correspondingly more complex and expensive,
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A MICROPROGRAMMER'S GUIDE TO SKIM,

Introduction,

This document is intended as a guide for the writer of microcode for

SKIM. It does not describe the hardware in any detail. SKIM has been
microprogrammed to reduce combinators [.Turner' 781, but this should not be
its only application and will not be covered here,

General knowledge of machine code programming concepts are assumed, and
the reader is advised to read the SKIM hardware description first. SKIM's
name is derived from its original application area ("S, K, I Machine" = S, K
and I being the three most important combinators).

SKIM -« Simple Block Diagram.

. to host *
----- !
micro | (control)=———s |
instr Jeemmmmae—aa (control)=cw—t ! v
pipelinel ! I e
b et (16)+ v | | PORT |
' H ! i e o et e v B
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i ! ! | '
) V addr V din 1 dout | dout
16%4 | subr | ! Main  Memory, |
|stack | ' 64K ¥50 !
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The ALU,

SKIM has a CPU based around 6 AMD2901 ALU chips, Each 1s a U=bilt slice
of an ALU, and they have been carefully wired to support SKIM's tagged

architecture,

'Y pit | 20 bit value
| tag | ms " 1ls

23 20 19 0

Bits in SKIM are labelled as 0 for least significant, 23 for most
significant, Bits 0 to 19 of the ALU are wired in a conventional manner, to
allow add, subtract, shift and so on to proceed as usual, Bits 20 to 23 form
a "tag'. Carry from the data field does not overflow into the tag field. Tag
values are usually just transferred rather that added or combined in some
way. The tag specifles what kind of value this 1s. By conventiori, a tag
value of 0..7 indicates that this is a memory address of some kind. A tag
value of 8.,15 means that it is some other value., A tag value of 15 means
that the value is a microcode address,

ALU Registers,

SKIM has 16 machine registers (called ‘regs', or r0 to ri15) for holding
intermediate values dwring computation, These all behave in a similar
manner, ie there are no special operations that only work on r0. There is
also a special register in the ALU (called Q) which is used during
multiplys and divides only. Although these operations are not done in a
single microcode cycle, speclal instructions have been provided to ensure

that they can be executed fairly quickly.

The ALU al'so stores the carry bit from the previous cycle, This is very
useful in some multi-stage computations,

Other Registers,

The CPU also has various registers that are external to the ALU, called
"xregs' - all have specialised and different names. they are as follows,

The Memory Address Register or MAR holds the address of the main memory
cell currently being accessed, In order to access a cell of maln memory the
address of the cell must first be written to this register. This register
can also be read, as it was found that this helps greatly in certain
critical loops.

There is a convention when programming SKIM that values with a tag of 7
or less are memory addresses, and values with a tag of more than 7 are not.
This makes garbage collection much simpler, because the garbage collection

can decide which values are memory pointer,
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This convention is enforced in the hardware of the MAR, If the value in
the MAR 1s more than 7 then any memory access instructions are ignored,
This saves a cycle in some programs, as checking for a value greater than 7
can happen concurrently with the initlation of a memory cycle,

The Memory Input Register or MIR. This holds the value to be written
into memory. A value to be written into main memory must first be written
into this register. :

The Head Output Register, or HDOUT. Each cell of the main memory has two
halves, 'head' and 'tail'. A read from memory will cause the head value in
the cell being accessed to be latched into this register, which can then be
read by the microcode program into an ALU register, A write to memory will
result in the previous content of the head half of the cell written to to
be latched into this register,

The Tail Output Register or TLOUT., Analogous to HDOUT, this latches the
tail half of any cell accessed, Thus note that any access to memory reads
both halves of the node.

Associated with HDOUT and TLOUT are two more one-bit registers, that
latch the output flags from the memory word whenever HDOUT and TLOUT are
updated. These cannot be accessed directly by the programmer, but are
accessed by various conditional branches,

The PORT, This register is the only means that SKIM has of talking to
the outside world, Peripherals, discs etec are controlled for SKIM by a host
processor, The host can send input to SKIM by placing a character in this
register. SKIM can output a character by writing to this register.

A read from the PORT register will only yleld a significant result in
the bottom eight bits of the databus. The top sixteen bits of the result

will be garbage and should be masked out.

The Microcode Program Counter or MPC, This register is used to access
the microcode memory. It contains the address of the next microcode
instruction to be executed. The microcode programmer can read from it, in
order to get a return address for a subroutine, In order to write to it a
'force jump' (q.v.) is necessary,

The Immediate Data Field or I. This register provides immediate data
values, It is derived from a 16 bit field in the microcode word, which is

used for three different purposes:
16 bit target of a JMé or JSR
12 bit target and U bit condition code of a branch
12 bit data and 4 bit tag of an immediate data value
Thus immeditate data loads cannot occur in the same microinstruction as a

Jump, subroutine jump or branch, Also, the immediate data value is only
derived from 16 bits, so bits 12 to 19 of the I field will always be the

same as bit 11 of the I field (ie Only a 12 bit value can be provided,
which 1is sign extended to form a 20 bit value), Any tag value can be

specified,
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Timing.

One microcode cycle on SKIM takes 250ns, A main memory cyele takes
350ns8, so a microcode cycle in which a wmaln memory cycle occurs Is

stretched by 100ns, Small extra delays may also occur for main memory
refresh cyeles, but these are not visible to the programmer,

Main Memory.

SKIM has a 20 bit address bus, and thus can address M memory words, the
terms 'cell' or 'node' are sometimes used instead of word. Fach cell
consists of 50 bits:

|fitbit] 20 bit data | 1f]4bit} 20 bit data !
11} tag | i 11lltag | .
= Gmmme = 8=

g HEAD . g " OTAIL

24 bits of "head' or 'left' field - 4 tag, 20 data
24 bits of 'tail' or 'right'field - U4 tag, 20 data
1 head flag
1 tail flag,

Any microcode instruction can be used to initiate a memory access, The
following types are available,

RDHD read head field »
XHD write to head field, reading previous content, °
XHDF O Same, but in the process, also write a0

to the head flag.

XHDF 1 same, but writing a 1 to the head flag.
RDHDFO  read from the head field, in the process

write a 0 to the head flag,
RDHDF 1 same, writing a 1.

The same operations are all available on the tail half, substitute TL
for HD in all the above, ‘

In a cycle in which any of these is specified the values in the MAR and
possibly the MIR are significant, These values can be set up Iin the same
cycle as memory cycle initialisation. On the next microcode cycle new
values will be avallable in the HDOUT and TLOUT registers that reflect the
values of the memory node accessed, So the memory cycle happens
(conceptually) between two microcode cycles, although in practice the
process is pipelined and no time is lost. .

Note that on all memory cycles, the whole cell is read and values appear
in both HDOUT and TLOUT registers. Thus all writing ‘to the memory is done
by read-modify-write memory cycles, This is fairly unusual, but it has been
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found 1n practlce that this conslderably speeds up many processes
lavolving following chains of polnters,

The flags are usually used by the memory allocation and garbage

disposal system, to mark which cells are in use and which are free. Note
that it is possible to write to the flags in a cycle which does not write

to the rest of the data.

Microcode Instruction Words,

Each microcode instruction is 1 word long. A word in the microcode
memory is 40 bits wide, and is split into flelds:

! bits field use !

0 - 11 IB constant (low 12 bits of I field)
or jump/branch target address
12 = 15 IA Tag part of I fleld
or branch condition selector
or top 4 bits of jumnp target address

—— A ——— —— —————— —— m -

16 = 19 M  Memory cycle description

20 - 25 V  branch/jump description

26 - 30 'F Instruction code

31 X  Update MAR this cycle with current bus value
32 - 35 B destination register number

36 = 39 A  source register number

Thus several things can occur in one instruction, To asslst the writing
of microcode an assembler and a linker exist, running under Phoenix MVT,

The instructions given 1n the next section are shown in the syntax of
this assembler, 'ra' and 'rb' indicate any ALU register (ie 0 to 15), 'xa' and
'xb' indicate any external register (ie MIR, HDOUT, TLOUT, MPC, FORT) except
MAR. A value can be written to MAR in any cycle, regardless of what else is
happening. *value' indicates an immediate value from the microcode I fields
(IA and IB). A complete syntax of the assembler and details of labels etc.

can be found el sevhere,

Quite a lot of things can happen in one microcode instruction, but not
all reasonable looking combinations are in fact legal. This is because
some fields of the microcode word are used for more than one purpose. The
assembler will carefully reject illegal instructions and point out which
microcode fields are being used twice. Microcode memory access to fetch
the next instruction happens while the previous instruction is being
executed, and this pipelining 1is 'intelligent' in that i}: notices
unconditional jumps and fetches the correct microcode word. But
conditional jumps, where the correct word 1is not known until some
computations have occured, may cause a cycle to be lost.
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Arithmetlc Instructions.

Simple Assigment,

rb = ra;
xb ¢z rag
rb = xa;
rb :=  value;
xb = xaj

The 24 bit value is moved from the source on the right to the
destination on the left, If 'value' is specified, it 1s placed in the I

field.
The assembler syntax for a value is:

tag-value , hash-sign, data-value
eg int#5 or charf 'A"

The assembler documentation holds more precise details of the assembler
syntax., Arithmetic operations are specified wusing infix assigmment
operators, In a style stolen from Algol68 and then absurdly exaggerated,

Tag assigmment.

rb T= rag
rb :T= xa
rb ¢T= value;

Bits 0 to 19 of the destination are unaffected, bits 20 to 23 are
replaced by those from the source,

Q assigment,

QREG HE]
rb :=  QREG:

Bits 0 to 19 are transferred to or from the Q register. Thus, Q is only
20 bits long. '

Addition and Subtraction.

rb +3=  ras
rb +C:=  ra;
rb +1:= ra;
rb -3z ra;
rb ~Cs=  rag
rb  =1:= ra;
rb. =R:= raj;
rb =RC:= ra;

Register rb is replaced by its own contents combined with those of ra,
in one of six ways: add, subtract, add with carry, subtract with carry, add
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one, subtract one, reverse subtract, reverse subtract with carry. Bits 20
to 23 of rb are unaffected,

Logical operations,

rb &:= ra;
rb le= ra;
rb “s= rag

rb :XOR= ra;
rb XOR rag
rb XOR xa3;
rb XOR valueg

Bits 0 to 19 of ra are replaced by a bit-by-bit logical operation. And,
or, negate and exclusive or are available. Bits 20 to 23 are unaffected.

The operator XOR does not update the contents of rb, but merely places the

XOR of the values on the bus., This is usually accompanied by a branch that
tests for equality. Bits 20 to 23 are included in this comparison, so the

equality of the tags can be tested at the same time,

Multiply and divide,

ra :MUL= rbg
ra :DIV= rb;

The specification of these instructions is very complex, and they are
unlikely to be of any use outside their intended field of application, ie
optimal coding of multiply and divide routines, Using these instructions,
a multiply or divide of two unsigned twenty bit operands will occur in
twenty cycles,

Shift Instructions,

rb >1=  ra;
rb 0= ra;
rb >C=  ra;

Instructions are provided that shift the operand from ra one place to
the right, placing the result in rb. The vacated bit (bit 19) is filled
with 1, 0 or the carry bit, depending on the instruction, Shift 1left
instructions are not provided, the effect can be achieved by adding a

register to itself,

Jumps,

Usually microcode instructions are fetched and executed sequentially,
The MPC automatically increments itself and fetches the next instruction
while the current one is being executed,
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There are two ways of trarsferring control: jumps and branches. A jump
18 an unconditional 16=bit transfer of control., There are four types of

Jumps

JMP  label;
JSR  label;
RTS ¢

FJMP tagvalue:

The last of these results in one cyecle belng wasted, The other’ three
involve no delay at all,

Simple Jump. ;

The keyword JMP with a destinatlion means that the next instruction to
be obeyed will be that one.

eg:
0 0 s= ri JMP 113
1 12: 1 3= 15 JMP 13
2 11: r2 3= 16 JMP 123
3 13: ...

Instructions 0, 2, 1 and 3 are obeyed in that order, with no wasted cycles.
Note that an instruction with a jump in it cannot assign a constant value
from the I field, because the I field of the microcode word contains the

Jump address,

Subroutine Jump.

The MPC has associated with it a hardware push-down stagk that is used
for high-speed subroutine Jjumps. The keyword JSR with a destination
specifies that the next instruction to be executed will be the destination
one, and that the address of the instruction after the current one should

be pushed onto the stack.

eg:
0 r0 = int#ig
i r0 +1:= r0 JSR 1
2 0 +1:= 10 JSR 1
3 rO +1:= r0 JMP 123
] 1: r0 +13= 10 RTS:
5 2: ...

Instruction 0 assigns a value from the I field into register r0, with tag
value 'int' (previously declared as some value) and data value 1, After
obeying this program fragment, r0 will contain 5, It obeys instructions O,
1, 4 2, 4, 3, 5 in that order, with no wasted cycles.
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Subrouvtine Return.

the keyword RTS specifles that the next .instruction to be executed is
found at the address on the top of the stack, which is popped. Note that
the stack is only four addresses deep, and that it . cannot be accessed in
any other way.

Arbitrarily Nested Subroutines,

If deeper nesting is required, return addresses must be held in machine
registers, eg:
10 ri5 := MPC;

11 ri5 +1¢= r15 JMP subr_entry;
12:

After executing 10, r15 will hold t15#11, After executing 11, r15 will hold
t15#12 and the MPC will hold 'subr_entry'., The first instruction of the
subroutine will then be obeyed, with no wasted ecycles. This instruction
will effectively cause a subroutine jump, keeping the return address in
register ri5 with a tag value of 15,

Note that the following will NOT work

ri5 = MPC JMP subr_entry;  /WRONG
The value loaded into ri5 will be the value 'tagi5#subr_entry', This is due
to the pipelineing of unconditional jumps. reading MPC yields the address

of the next Instruction to be executed, unless an FJMP or branch is taken
in which case it yields one more than the address of the current

instruction.,

Return from this subroutine is achieved by a forced jump:
ri5 := ris FJMP tagi5s

Forced Jumps

Forced jumps are only useful in specialised circumstances, The value on
the databus in this cycle (as a result of a move or arithmetic
instruction) is examined, and if its tag value matches the tag specified
in the force jump then the value is forced into the MPC.

eg:
r0 s:= combff 1;
r0 ¢= r0 FJMP combg

This would cause a transfer to label 1, which is declared somewhere else,
One cycle is wasted in the transfer, This junp does not use up the I field
of the microcode word,

The specified tag value can only be one of 12, 13, 14 or 15,
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Branches,

A branch can occur in the same instruction as a jump, but there is only
room for one destination address in a microcode instruction word so 1in

‘practice thls is only useful 1if the Jump ls RTS or an FJMP.

A branch is a conditional transfer of control. It can only change the
bottom 12 bits of the MPC so it is only for local transfers of control, but
in practice the linker should resolve any problems that this might cause.

If a branch and an RTS are both specified In the same instructlon and
the branch condition is true, then the RIS 1s lgnored (no value ls popped
from the stack) and the branch taken.

If a branch and a FJMP are both specified 1n the same instruction and
the FIJMP condition is true then the branch is ignored and the FJMP taken.
If the FJMP condition is false then the branch is examined in the normal

way,

Currently avallable branch conditions:

BTDEQ label br if tag and data both zero
BTDNE label br 1f tag and data not both zero
BDEQ label br if data zero

BDNE label br if data not zero

BFOS label br 1f bit 19 of data 1s clear
BNEG label br if bit 19 of data is set
BVS/BVC label br on overflow set/clear

BCS/BCC label  br on carry set/clear

BDIN label br if data waiting in PORT for input
BNDIN label br if no data waiting for input
BDOUT label br if data output to PORT

has not yet been collected by host
BNDOUT 1label br if safe to output to PORT

BTAGEQ tag_value label br if tag = tag_value
BTAGNE tag_value label br if tag /= tag_value
BTAGGE tag_value label  br if tag >= tag_value
BTAGLT tag_value label br if tag < tag_value

BHDF1 1label br if head flag from memory output is
BHDFO 1label br if head flag from memory output is
BTLF1 1label br if tail flag from menory output is
BTLFO 1label br if tail flag from memory output is

Note that this may not in fact be a complete 1list, extra branch

conditions are easy to add and the hardware is still under developement,
so further branch conditions can be added if they are found to be useful,

O w2 O =2

In the above references to 'tag' and 'data' refer to the value on the
main bus during the instruction, i.e, the result of any ecalculation or ALU
operation or the value being moved in the case of a stmple transfer
instruction. Carry is the carry out of bit 19 of the current instruction,
which must be addition or subtraction if this is to be meaningful,
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Overflow 13 (carry ouwt of bit 18) XOR (carry out of bit 19), le 2's
complement overflow, from this instructlon,

eg s
0 10: rl 3= ri BNDIN 10:
1 ri ¢= PORT;:
2 r0 := char#255;
3 rl ¢T= r0g
4y rl &= r0;
5 r0 2= charff 'A%
6 rt XOR rO BTDEQ Its _an A; ‘
7 ri ¢= ri BTAGNE char Something Wrong;

Instruction 0 waits for a character to arrive at the port. It is then
fetched, given the tag value 'char' and masked so that all but the bottom 8
data bits are cleared, It is then tested to see if it's an upper case A, The
last branch would clearly not be taken in this case, but demonstrates the

testing of a tag value,

Hemory Control Registers,

Various xregs are important when accessing main memory.

write to: MAR address
MIR data
out put at: HDOUT head outpubt
TLOUT tail output
Assigmnments to and from these registers happens like conventional ALU
registers, but note that arithmetic on them is not possible. MAR 1is
assigned to in a special way, however,

MIR 3= ra; / data input from register
MIR := int#5T7: / constant data input

MAR, rb +12= rby / MAR and rb both := rb + 1
rb s= HDOUT:

rb s= TLOUT;

Hemory Accesses,

Microcode memory cannot be written to, and can only be read as
instructions to be obeyed. '

In order to write to main memory, the input registers must be set up,
and a main memory cycle initiated. This can happen in any instruction and
occurs by specifying one of the following in the instruction:

RDHD RDHDFO RDHDF1 XHD XHDFO XHDF1
RDTL RDTLFO RDTLF1 XTL XTLFO XTLF1

The operation of these different memory cycles has already been explained,
in the section 'Main Memory'. The memory cycle word should appear in the
instruction after the arithmetic part, and before any jumps or branches,

Here are some typlcal memory accesses, More can be found in the example
programs at the end of this document,

SKIM =18~ 18 February 1984




reg = tag0#3;
MAR, reg := reg RDHD;
rx 2= HDOUT ; / rx has HD of location 3

MAR, reg := tagO#12;
MIR := tagl12f47 XHDg / HD loc 3 := 12/47

Memory pointers should use tag values of T or less,

Small Example Section,

This example is taken from the combinator reducer. A complete section
is shown, which might form a part of a larger system_,

SECTION Reducer; / Declare section name

/ Tell linker which names in this section
/ are to be exported,
GLOBAL Reducer_r_loop, Reducer Patchup,
Reducer_p loop, Reducer Reduced,
Reducer Entry;

/ Set up mnemonics for referring to registers.,
REG forw = 11, back = 12, ret = 15, x = 83

/ Set up mnemonics for referring to tag values,
TAG appl = 7, comb = 12, nil = 8, retad = 15;

Reducer Entry: / Label specified by a colon
/ Entrypoint of section.
/ This section was called
/ as a subroutine,
/ with return address in ‘ret'.

back := nil#0; / Assign constant value into ! back'’
/ values written tagffconstant

forw := forw FJMP comb BTAGNE appl Reducer Patchup;
/ Look at the value in "forw'.
/ If its tag = comb, jump to it,
/ Otherwise, if its tag /= appl,
/  Jump to 'Reducer Patchup'.

rs MIR := backg / Set up next value to be written
/ to memory.
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/ The next three Instructions are quite subtle, and deserve
/ close attention,
/ The intention is to follow the chain of head pointers
/ pointed at by 'forw', reversing the pointers as you go
/ with 'back' pointing to the chain of back pointers,
/ as soon as something that is not an application pointer
/ 18 reached, the process is stopped.
/ If it is a combinator, (tag = comb) then the ‘data
/ fleld is a microcode address where the routine for
/ that combinator will be found., This address must be
/ Jumped to. .
/ The loop is written to proceed as fast as possible!
Reducer_r loop:
MAR, back := forw XHD;
forw s= HDOUT FJMP comb BTAGNE appl Reducer Patchupj
MIR := back .JMP Reducer r loop:
/ Total time taken - 850ns per cell, T

/ Execution has finished and the expression cannot be

/ further reduced,

/ Follow the chain of back pointers, re-reversing them,

/ and exit,

Reducer_Patchup:
back s= back BTAGNE appl Reducer Reduced;
MIR = forws

Reducer p loop:
MAR, forw := back XHD:
back 2= HDOUT BTAGNE appl Reducer Reduced;
MIR = forw JMP Reducer p loop;

Reducer_ Reduced:
ret := ret FIJMP retad; / return to caller
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Extended - example,

The inltlalisation sectlon from the combinator reducer is presented in
its entirity, %to demonstrate for the Interested reader some of the

" techniques that are used,

JRUBRRHBUERNRANRANRERRGBRBRN AR RRANRRRANRUBURRRBUURER B

/“ @ [
/4 Initialisation. #
/% B

SRBHARRHRERNNRRRANRRBRERGUN RN RRNBRERBUANERARAR AR SY

/ Author: WRS

SECTION Initg
GLOBAL Supervisor Entry;
GLOBAL Reducer Entry,
Entrypoint_to R_( Combinator,
REGrO =0, r1t =1, r2 =2, 3 =3, rit = U,
r5S =5, r6 =6, r7 =17,
x=8, y=9, 2= 10, forw= 11, back = 12,
stack = 13, free = 14, ret 15;
TAG pair= 1, appl = 7, int = 9, char = 11,
comb = 12, nil = 8;

/ Important addresses

MANIFEST heap bot = 35,
comb_count = 1,
numeric comb count = 2,
mem full f’lag = 3,
1nput_stream_ptr = 4,
spare_free ptr = 5,
GC_number = 6,
top_of heap = 8;

/ This will be physical location zero in the micro-memory,
Init Entry:
ro s=r3 s=rld 2= 15 3=
forw g= back := stack :=
r2 s$= PORT; / clear it jus
ri s= nil#O'

o := r7 s= int#0;
free 3= ret := int#0;
st in case there's junk.

Create Memory Top:
/ 6UK nodes of main memory
/ 1t would be nice to find the top of memory
/ but that could cause a parity error
X := applfi0; / bottom of memory
¢= appl#2047; / Largest constant I can input !

r0 :=y;

ro +:= r0; / 4097 =

ro +:= r0; /8195 - 3

0 +:= 10; / 16...

ro +:= r0; /32...

ro +3= rog / 6U4, .,

ro j:= y; / 65535 at last !

0 =-1:= 10; / location FFFF 1s used by BBCSKIM

/ to allow memory inspection
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/ clearing memory ensures that all statistic counters
/ are cleared to 0, and that there are no bogus pointers
/ on the heap.
clear memorys
MIR := int#0g

MAR, x 3= X XHDF 03

¢ loop: % := x; / dud because MAR-write problem
x XOR rO XTLFO BTDEQ c¢_exit;
MAR, x +12= x  XHDFO JMP ¢ _loops

c_exits

/ Now we must chain together all cells on the heap.
/ The last free cell is not in the heap,
/ becuase sweep in the GC is faster

/ if the last cell is always free,

r0 =13= 103 / Last cell not chained on,
x 2= appl#heap bot;
MIR := rig / 0 signifies end of chain.

/ 500 cells are reserved as the spare free chain,
/ They are only used if we run out of memory,
spare 500

z 2= int#500; / counter

MAR, % 2= x XHD¢

8_loop: MIR := x;
z =1:= 2 BDEQ 8 _exits
MAR, x +1:= x XHD JMP s _loop;

s_exite

/ write various useful things to page 0 locations
y == x5

/ HD is8 an assembler macro, and produces two microcode words
HD appl#spare free ptr := y; / 500 spare cells
HD applfftop of heap = r0;

/ Now all the rest of memory is chained together
/ to form a freechain,
make_freechain:
MIR = int#0; / start of main chain
MAR, x := X XHD;
m_loop: MIR := x;

x XOR rO BTDEQ m_exit;

MAR, x +12= x XHD JMP m_loop;
m_exits

free := xg / CONS will now work

X 2=y 3= 10 s= Intfog / GC'able

main_program:
/ set up input stream
X t= combflEntrypoint to R_Combinator;
/ CONS 1is an assembler macro
/ 1t generates three microcode words
y s= CONS(x, x)3 / input stream buffer

HD pair# input_stream ptr := y;

ret := MPC:
ret +1:= ret JMP Supervisor Entry; / main CLI
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/ done = outpubt debug signal and walt
r2 := charf#f255;
dones PORT := r2 JMP done;

Comparison with other microcoded machines,

The conventional idea of microcode. is that it is a method of
implementing a standard von Neumann computer., A small microcode program
reads in an instruction stream from main memory and dispatches to the
various handlers for the separate instructions. SKIM leans more towards
the idea that this is a machine with separate program and data memory. The
16 bit microcode address bus is much bigger than is considered necessary
for most machines, and 1t 1s envisaged that compilers can be made to

produce microcode, This may seem wasteful of space, as traditionally

microcode resides in expensive, fast RAM but the cost of memory is falling
all the time and this policy now seems the best way to improve the

price/performance ratio.

One difference that this leads to 1is that most machines, such as the

PERQ[ICL 81 or Lilith[Wirth 817, include hardware for the rapid reading
of an instruction stream. SKIM does not have this,

Another specialisation envisaged in SKIM is that the memory is designed
with heap organisation in mind. The tagged architecture and flags for
marking make garbage collection easy to automate. The only other
processors known to the author that have this are considerably more

expensive [Symbolics 821,
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THE SYNTAX OF INPUT TO THE SKiM MICROCODE ASSEMBLER.

Using the Assembler on Phoenix/MVT

On Phoenix/MVT, the following instructions can be used to run the SKIM
Microcode Assembler and Linker. .

c ws12.skim.asm:r program <filenamed

This runs the assembler on the source program in file {filename>, Error

messages will appear at the terminal. If there are no errors, the following
output files will be createds

&list assembley listing of the program
&asm numeric/symbolic form
of microcode words generated

The &list file is arranged in pages for the printer in Reception,
"Printout &1ist' will cause a printed listing, showing the exact microcode
generated for each instruction,

¢ ws12,.skim.lked :r

This takes its input from &asm and produces the error messages at the
terminal, If there are no errors, the following output files will be
produced: |

&mu numeric form of microcode,
sultable for loading
&index not useful at present

If the program-is composed of more than one section, each should be
assembled separately, and their &asm output files concatenated and placed
in &asm, The link editor will then resolve references between sections.

The structure of a SKIM Microcode Assembler Program

A program to run as microcode for SKIM is split into sections. Each
section must have a different name, The sections must be compiled one at a
time. The assembler is one-pass and generates two output files, a listing
suitable for the line printer and the 'asm' output file, which is in a
format suitable for the 1link editor. The 1listing will include error
messages and details of the code produced, split into fields, References to
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labels and so on are not checked at thlis stage, labels are passed to the
linker as text strings.

In order to 1ink the resulting code, the 'asm' output of all the
" sections should be concatenated, with the Initialisation segment at the
front, and fed Inte the link editor. The link editor produces two output
streams, one consisting of error messages (usually unresolved label
references) and the other is a 'mu’ load module, in a format that will be
accepted by SKIM's host processor for loading Into SKIM. SKIM will obey the
microcode program, starting at word zero.

Syntax,

The following is a fairly loose syntax description of the language
accepted by the assembler. A BNF-1like form is used, with square brackets to
denote an optional part of the input and

[ 18

to denote something that can be repeated 0 or more times,

Input 1s free format, spaces and newlines can be added to improve
legibility. A slash (/) denotes a comment - all of the rest of the line is

ignored,

A complete section has the form:
SECTION ident; [[label:]# (command | statement)]®
The rest is as follows,

command LR / superfluous "3 " ignored.
SECTION name
GLOBAL namelist

MANIFEST name = valuel , name = valuel#
REG name = valuel, name = valuel®
TAG name = value{, name = valuel®
LIST
NOLIST
COND value
ENDCOND

statement $3= statement body [ memcode] [ jump] [branchj;

statement body::= PUSH reg [, reglt®
POP reg [, regl®
[MAR,] assgn
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assgn 2= reg ¢= assgne
reg op:= assgn2
reg ¢= CONS (assgn2, assgn?)
reg ¢= CONS tag (assgn2, assgn2)
reg ¢= memsrc
reg $= xXsource
reg :T= xsource
reg XOR xrource
xreg 2= xsource
xreg 2= assgn2
menm s= assgn2
QREG t= assgn2
reg ¢= QREG
assgn2 s2=  reg .
assgn //provided that it
//starts with a reg
memsre ge=  mem

mem == assgn2

HD memaddr
TL memaddr

mem

oo
oo
i

memaddr

reg

xsource

(reg := assgn?)
(reg = xsource)

memcode se=  one of:
ROHD RDTL // identical in effect
"XHD XTL // exchange
// as above, but also write to
// corresponding flag bit:
RDHDFO RDTLFO RDHDF1 RDTLF1
XHDFO XTLFO XHDF1 XTLF1

Jump 23= FJIMP tag
RTS
JSR label
JMP label

branch stz  ccode label
tagcode tag label

Xsource 22=  Xreg
literal

literal 3= tagfivalue
val ue s2=  number
label

charconst
name //previously declared as MANIFEST

number

digitl digitl® // no blanks in middle
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charconst s2= 'anychar!

label stz npame // that appears somevhere
// wlth a colon after it.

. tag ¢t= name // that has been declared as TAG
reg ts= npame // that has been declared as REG
name ¢2=  letter[ alphanum]® : °
al phanum ss=  letter

digit
und er score /o
opt= $3= g=
sT= // move tag field
+2= // add
=2= // subtract
+1s= // increment
=1¢= // decrement
+Cs=  // add with carry
=Cs=  // subtract with carry
-Re¢=  // reverse subtract
-RCs= // reverse subtract with carry
&= // bit=by-bit logical and
HE // bit-by-bit logical or
:XOR= // bit=by=bit exclusive or
sMUL=  // multiply step .
¢DIV= // divide step
XOR // bit-by=bit compare
Xreg g22= MPC // micro program counter, read only

PORT // communication with'host, r/w
MIR // memory input register, write only
HDOUT // memory output register, read only
TLOUT // memory output register, read only
MAR //memory address register, read only
buDp // non-existant - write only,
// value thrown away.
(note that writing to MAR is done in a special way,
see 'statement body' syntax)

ccode ¢¢= BDEQ  // branch if data equal
BDNE // branch if data not equal
BTDEQ // br, if tag and data both equal 0
BTDNE // br. if tag and data not both = 0
BCC // br, if carry 0
BCS // br. if carry 1
BVC // br, 1f overflow 0

BVS // br, if overflow 1
BDIN // br, if data input waiting in PORT

BNDIN // br. if no data input waiting
BDOUT // br. if data output waiting
BNDOUT // br. if no data output waiting
BHDFO // br. if head flag O
BHDF1 // br. if head flag 1
BTLFO // br. if tail flag O
BTLFt // br. if tail flag 1

// the last four refer to the latched output

// of the last memory cycle,
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tagcode g1z

BTAGEQ // b if tag = given tag value
BTAGNE // b if tag /= glven tag value
BTAGGE // b.if tag >= gilven tag value
BTAGLT // b if tag < given tag value

Compound Instructions

PUSH, POP and CONS are pseudo-instructions, that generate several

instructions each. The default tag value of a. CONS
freechain uses, They use the followlng mechanism,

REG stack = 13, freechain = 1lg
Both of these are head-linked lists,

PUSH r1, r2, ... generates

stack s= CONS (stack, r): for each register

The following code is generated by popping a register,

MIR ¢tz  free polnter;
free pointer := stack pointer
stack pointer := HDOUT:
reg 2= TLOUT g

XHD

is whatever the

Note that the node is reclaimed and placed on the front of the free -

chain, The stack is NOT checked for underflow.

In the case of a multiple pop, the following 1is generated,

MIR = free:
MAR, free := stack RDHD:
regl s= TLOUT
/ Then this, for all registers except the first and last.
regn := TL(stack := HDOUT);
/ Then this for the last one,
MAR, stack ¢= HDOUT XHD;

stack := HDOUT:;
lastreg = TLOUT;

Thus the cost of a pop is 600ns for each register, +500ns,

For call a := CONS tag (b, c).
az b= c is not allowed,
If 2 /= ¢, the following code is generated,

MIR 3= b
MAR, a := free XHUD:
MIR := ¢ JSR GC_checks

a :T= tagfO;

Otherwise, the following code is generated.
MIR 3= cg
MAR, a :=
MIR ¢= b
a :T= tagfi0s

free XTL:
) JSR GC_check 2;

/ omitted if no tag specified
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The time taken is 1 microsecond

+ 250ns for the tag assignment,

At the (global) check labels 1s something of the form:
gc_check: free ¢= HDOUT XTL RTS BTAGNE appl oops;
ge _check 2: free := HDOUT XHD RTS BTAGNE appl oops;

These two labels are internally declared to be global,

so it is not necessary for the programmer to do so.

Use of HD or TL on their own generate two instructions, i.e,
a $= HD b;

i1s equivalent to
MAR, b := b;
a 2= HDOUT

Label s that are defined as global will have their definitions exported,
and can be referred to by other sections,

Register, tag, section name, manifest and label names must all be
distinct, "

16 July 1983 - Known Bugs

SKIM's hardware has now been finished and testing of the assembler
really begins, It has been discovered that many of the multiple

instructions described above do not in fact assemble correctly. People
intending to use SKIM microcode should avoid such things as .

a :=HD b :=3= c;
but should write out such combinations individually. PUSH, POP and CONS all

work, and so should any statement that only generates a single instruction.
Simple ones like

HD ¢= b;

b ¢= TL c;
are also OK, If in doubt, use only commands that generate one single
microcode instruction, as per a conventional assembler,

o0

February 1984

The assembler has now been in use for over a year, and about UK words of
microcode have been written in it for the reduction of combinators.
Extensive use is now made of a macro prepass over the input source, using
the MLI general-purpose macro processor,
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INTERACTIVE DEBUGGING OF SKIM MICROCODE

The SKIM processor is connected to a host processor, through which all
peripheral transfers occur, But the host is also useful for debuggihg
microcode programs. In addition to an 8-bit bidirectional port Joining
them, the host has control of SKIM's clock logic and microcode pipeline,

The following operations are possible from the host:
stop/start/single step SKIM's CPU clock
load microcode words into SKIM's microcode memory

examine SKIM's ALU registers
examine memory locations in SKIM's main memory

execute single microcode instructions
examine and change SKIM's microcode sequencer (MPC)

This wmeans that debugging microcode programs 1is not Aa' difficult
.operation. The main cycle for debugging is:

create/edit the microcode program source
on a mainframe computer
assemble and link the microcode program
transfer the microcode load module to SKIM's host

load up SKIM's front panel program
load the microcode load module
into SKIM's microcode memory
execute or single step the microcode program,
The front panel program keeps a copy of the microcode symbol table, and
gives a continuous full-screen display of SKIM CPU registers and memory,

At the time of writing the host is a BBC Microcomputer System, with
facilities for transferring files to and from the local IBM mainframe.
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Sereen Display of SKIM Mierocode Front Panel

1 BBCSKIM V2.4 (July 83) ('H' for help)
2

3 Pe=Supv#Supv_wait_for input_char

] =0000=0 r0=000000
5 I0=FF no output char r1=000000
6 input char r2=000000
7 no parity error r3=000000
8 Q =OFFFFF, C=0 ri =000000
9 MAR =000000 : r5=000000
10 HDOUT =000000 T ' r6=000000
11 TLOUT =000000 T r7=000000
12 MIR =000000 r8=000000
13 000000: 000000 000000 TT r9=000000
14 000000¢ 000000 000000 TT ra=000000
15 000000: 000000 000000 TT rb=000000
16 000000: 000000 000000 TT re=000000
17 000000: 000000 000000 TT rd=000000
18 000000¢ 000000 000000 TT re=000000
19 000000¢ 000000 000000 TT rf£=000000
20 Command :__

In the diagram above 000000 stands for a 6-digit hex number. The front
panel takes single key commands, and updates the screen after every Kkey.
Thus stepping results in a continuous display of what is going on.

Lines 13 to 19 display lines of memory, as address, head, tail and both
flags, Either a consecutive block can be displayed, or a connected tree

structure,
Line 3 shows the microcode label fixed to the instruction that will be
executed next, in the form

section_name* label name + offset

This allows the programmer to see instantly where he is in the microcode
program,

Debugging Hardware

These facilities aid the debugging of not only microcode programs, but
also of the hardware, If the hardware for communication with the Host 1is
working then individual instructions can all be independently checked,
without relying on the microcode memory functioning properly. This allows
viring errors and chip failiures to be quickly identified. If a parity
error occurs 1in the main memory when a program 1is running then the
processor stops immediately and the front panel is displayed. Thus the
occurrence can be logged, with an exact record of what instruction was
being executed, etc,
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