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Abstract

Formal proofs generated mechanically by theorem provers are often very large and shallow,
and the theorem provers are themselves very complex. Therefore, in certain application areas,
such as in safety-critical systems, it is necessary to have an independent means for ensuring
the consistency of such formal proofs. This report describes an efficient proof checker for the
HOL theorem prover. This proof checker has been tested with practical proofs consisting of
thousands of inference steps. It was implemented in Standard ML of New Jersey.

The first part of the report gives an overview of the program. It describes

e the rationale of developing a proof checker,
e how to use the checker, and
e how the checker works.

The second part of the report describes the program in detail. The complete source code is
included in the description.
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1 Introduction

Formal methods have been used in the development of many safety-critical systems in the form
of formal specification and formal proof of correctness. Formal proofs are usually carried out
using theorem provers or proof assistants. These systems are based on well-founded formal
logic, and provide a programming environment within which the user can discover, construct
and perform proofs. The result of this process is usually a set of theorems which can be stored
in a disk file and used in subsequent proofs. HOL is one of the most popular theorem proving
environments. The users interact with the system by writing and evaluating ML programs.
The programs instruct the system how to perform proofs. A proof is a sequence of inferences.
It is transient in the HOL system in the sense that there is no object that exists as a proof once
a theorem has been derived.

In some safety-critical applications, computer systems are used to implement some of the
highest risk category functions. The design of such a system is often formally verified. The
verification usually produces a large proof consisting of tens of thousands, even up to several
millions, of inferences. [9] describes a proof of correctness of an ALU consisting of a quarter
of a million inference steps. In such situations, it is desirable to check the consistency of the
sequence of inferences with an independent checker. The reasons for requiring independent
checking are:

e the mechanically generated formal proofs are usually very long, often consists of thou-
sands, even millions of inferences;

o the mechanically generated formal proofs are usually very shallow in the sense that they
are not mathematically interesting;

o the theorem proving systems are usually very complex so that it is extremely difficult (if
not impossible) to verify their correctness;

e the programs that a user develops while doing the proof are very often too complicated
and do not have a simple mapping to the sequence of inferences performed by the system;

¢ the requirement of the certification bodies, for example, the U. K. Defence standard 00 —
55 calls for such an independent proof checker when the ‘highest degree of assurance in
the design’ is required [7].

An independent proof checker can be much simpler than the theorem prover so that it is
possible to be verified formally. The relation between the checker and the HOL system is shown
in Figure 1.1. The top half shows the usual process of using the HOL system to perform proofs.
The bottom half shows the process of checking proofs generated by the HOL system. These two
process may be carried out at different times by different people in different places since the
checker is a totally independent system.

Described in this document is a proof checker for the HOL theorem prover. The dominant
requirement of this checker is that it is able to check large proofs generated from real appli-
cations. This means that the implementation should be fast and efficient, and should be able
to perform reasonably well with limited resources, i.e., limited amount of memory. With its
possible verification in mind, the checker fairly closely follows von Wright’s formal theory[8]
which is described briefly in Section 1.2.
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(Interactive)

Theory files
User input \ /

Proving

Proof files

Checking

Results of
Checking

(Yes/No)

N

Log file

Figure 1.1: Relation between the checker and the HOL system

The proof checker is implemented in Standard ML of New Jersey (SML/NJ). Two versions
of the checker have been implemented: the core version and the efficient version. The core
version is able to check proofs consisting of only primitive inferences and its critical part is
translated directly from the formal theory. The efficient version is able to check larger proofs.
The remainder of PART I gives an overview of the checker, and PART II describes the entire
program of the efficient version in detail.

1.1 Proofs in HOL

A proof is a sequence of logical inferences. All theorems in a logic can be derived from the
axioms by applying the inference rules. The proof theory of the logic specifies what the valid
inferences are. _

In the HOL logic, there are five axioms and eight primitive inference rules. Derived inference
rules are sequences of inferences grouped together. Both primitive and derived inference rules
are implemented by ML functions in the HOL system. By calling these ML functions, a user
can carry out simple proofs to derive theorems from existing theorems. This style is known as
forward proof, and it is used mainly in simple proofs.

More often, users will do goal-directed proofs in HOL. In this style, a conjecture is set up
as a goal. Tactics are then applied to reduce the goal to simpler subgoals recursively until the
resulting subgoals are all resolved. The HOL system validates the tactics, assembles a derivation,
and performs the inferences to derive the theorem.

Both proof styles in HOL can be modelled by Hilbert’s proof style, i.e., a proof is a sequence
of inference steps, each step is written on a single line with a line number, the theorem derived
in the step and a justification, such as the simple example in Figure 1.2.

According to whether or not proofs are generated entirely in terms of primitive inferences
of the logic, theorem provers can be classified as fully-ezpansive or partially-ezpansive[2]. Fully-
expansive theorem provers perform every single primitive inference when deriving theorems.
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1. Tkt =t [Hypothesis]
2. Ft1=1 [Reflexivity]
3. Thth=t [Substitution of 1 into 2]

Figure 1.2: A simple proof in Hilbert style

Because of the lengthy process, the performance of this type of theorem prover is often limited.
Early versions of the HOL system were fully-expansive. To improve the performance, thirty-four
frequently used derived inference rules are implemented directly in the current version of HOL.
The primitive rules, directly implemented derived rules and several functions for introducing
new constants and accessing stored theorems are collectively known as basic inference rules.

The proofs generated by the HOL system can be saved in a proof file which contains a textual
representation of the sequences of inferences constituting the proofs. This file is the interface
between the theorem prover and the proof checker.

1.2 Formal HOL proof theory

A formal theory of the HOL logic proof theory has been developed in HOL by von Wright [8].
This provides a theoretical base on which a formal specification of a proof checker may be
developed and against which verification of the checker may be performed.

In von Wright’s theory of the HOL logic, a type Type is defined to represent HOL types.
Similarly, a type Pterm is defined to represent HOL terms. Theorems are represented by the
type Pseq, standing for sequent.

HOL inference rules are written as

ikt - Tplkt,
Tkt

where the sequents above the line are known as hypotheses and the sequent below the line is
known as the conclusion. The name of the inference rule and the side conditions, if any, are
written next to the line. Inference rules are implemented in the HOL system as ML functions
which usually take the hypotheses as the arguments and returns the conclusion. In von Wright’s
theory, inference rules are presented by predicates on the hypotheses and conclusion. A theorem
asserting the validity of an inference can be derived if the conclusion can be derived from the
set of hypothesis sequents using the inference rule. For example, if Pinfrule is the predicate
representing the hypothetical inference INF_RULE above, if the inference is valid, the following
theorem can be derived.

INF_RULE

Pinf,-uze{r]_ Ft; --- T,F tn} TFt

1.3 Proof file format

The proof accepted by the checker is in a proof file format prf. The format is described in
detail in the Cambridge University Computer Laboratory technical report No. 306 [10]. The
prf format is based on the Hilbert proof style model described in Section 1.1.

The proof file format prf has two levels: the core level, which allows proofs consisting of
only primitive inference rules to be written into the file, and the extended level, which allows
all basic inference rules.

A proof file may contain one or more proofs. Each proof has a name, a goal list and a list
of proof lines. The name is a string used to identify the proof. The goal list may be empty or
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have one or more theorems. This is a mechanism for improving the efficiency of the checker.
If the goal list is empty, the checker will check the entire proof. If all the theorems in the
goal list have been found in the proof lines, the checker can conclude that the goals have been
proved and stop processing the remainder of the proof. This is useful because certain automatic
proof procedures may perform more inferences than necessary to derive the required theorem.
This is based on some observations on the proofs generated by HOL. Its usefulness in practice
is still not known. However, the checker can always ignore the goal list and check the entire
proof. In fact, this is the default behaviour of the checker. Each proof line has three parts:
the line number, the justification, which is the name of the inference rule and the arguments
supplied to the rule, and the derived theorem.

The proof file format is primarily an interface between the HOL theorem prover and other
independent proof checkers. Files in prf format are intended to be read by machines not
humans. The concrete syntax of the prf format is similar to a LISP S-expression. For example,
the proof file in prf format of the proof shown in Figure 1.2 is listed in Figure 1.3 below.

(VERSION PRF FORMAT 1.0 EXTENDED)
(Env HOL[I L)

(PROOF sym
(d
C
(LINE -1(Hypothesis)
(TEM [J(A (A (C = (o fun[(c bool) (o funl[(c bool) (¢ bool)1)]))
(4 (A (C /\ (o fun[(c bool) (o fun[(c bool) (c bool)]1)1))
(V t1(c bool))) (V t2(c bool))))
(4 (4 (€ /\ (o funl(c bool) (0 funl(c bool) (c bool)1)]))
(V t2(c bool))) (V ti(c bool)))))
)
(LINE 1(Refl (A (& (C /\ (o fun[(c bool) (0 fun[(c bool) (c bool)1)1))
(V t1(c bo0ol))) (V t2(c bool))))
(THM [JCA (A (C = (o funl(c bool) (o funl(c bool)(c bool)]1)1))
(A (A4 (C /\ (o fun[(c bool) (o fun[(c bool) (c bool)])]1))
(V t1(c bool)))(V t2(c bool))))(A (A (C /\ (o fun[(c bool)
(o fun[(c bool) (c bool)1)1)) (V t1(c bool))) (V t2(c bool)))))
)
(LINE 2(Subst [{-1(V GENY%VARY509(c bool))}]
(A4 (A4 (C = (o fun[(c bool) (o funl(c bool) (c bool)])]1))
(V GEN%VARY509(c bool)))(A (A (C /\ (o fun[(c bool)
(o fun[(c bool) (¢ bool)]1)1))(V ti(c bool)))(V t2(c bool))))1)
(THM O(A (A (C = (o fun[(c bool) (o funl(c bool) (c bool)1)]))
(A (4 (C /\ (o fun[(c bool) (o fun[(c bool) (¢ bool)]1)]))
(V t2(c bool))) (V ti(c bool))))(A (A (C /\ (o fun[(c bool)
(o furl[(c bool) (c b00l)])1))(V ti(c bool)))(V t2(c bool)))))
)
1)

Figure 1.3: Proof file in prf format of a simple proof



2 The Checker

2.1 Checking HOL Proofs

To check a HOL proof is to make sure that every inference step in the proof is valid. An inference
step is valid if and only if

¢ all hypotheses are in the correct form as specified by the inference rule;
¢ all hypotheses are either axioms or theorems derived in previous inference steps;
o the conclusion is in the correct form as specified by the inference rule; and

¢ all the types and terms appeared in the hypotheses and conclusion are well formed in the
current signature, i.e., the types and constants known at that point.

Since the HOL logic has only eight primitive inference rules, a checker for proofs consisting
of only primitive inferences will be relatively simple, so it may possibly be verified formally.
This corresponds to the core level of the prf proof file format. A version of the checker, the
core checker, accepting only core level proof files was developed first. With the ultimate goal
of formal verification in mind, the core checker follows von Wright’s formal HOL proof theory
very closely.

However, the current version (HOL88 version 2.2) of the HOL system is not fully-expansive.
The proofs generated by HOL consist of all the basic inferences. The proof files are in an
extended level and cannot be accepted by the core checker.

There are basically two different approaches to implementing an extended level checker.
The first approach is to write a program to expand the inference steps involving derived rules
into a sequence of primitive steps before being sent to the core checker. This approach has
the advantage of utilising the core checker which may be formally verified, therefore, achieving
higher confidence in the consistency of the proof. However, this approach can increase the
number of inference steps considerably so the amount of time required to check the proof will
take much longer.! The second approach is to check all basic inference rules directly. This
approach can result in a more efficient checker since the basic derived rules are relatively simple
to check.

Since one of the requirements of this project is to demonstrate the feasibility of proof
checking for real practical proofs, which consist of thousands or tens of thousands of inference
steps, the checker should be fast and efficient, and should be able to perform reasonably well
with limited resources, i.e., limited amount of physical memory and disk space.

Described in Part II of this report is an implementation of the checker using the second
approach. This version is known as the efficient checker. It defers from the core level checker
mainly in the internal representation of the terms, the handling of the derived theorems. Other
parts of the checker, such as the file I/O, the proof file parser and the error and exception
handling are identical.

For internal representation of terms, the efficient checker uses de Bruijn’s nameless repre-
sentation. This makes the a-equivalence test and substitution simpler.

1By examining the derivations of the derived rules, one can see that each derived rule may be expanded into
five to twenty primitive rules. A large proportion of inferences in normal proofs are non-primitive.
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No matter which approach is used to implement a checker, its memory requirements are very
large for large proofs because all theorems derived in the sequence have to be kept in memory.
This is because a theorem derived in an earlier step may be referred to by the very last step.
Logically, many modern systems are able to address many gigabytes, even up to terabytes of
virtual memory, but physical memory is still limited. When large numbers of theorems are kept
in memory, thrashing occurs, thus slowing down the process. This problem has been solved in
the efficient checker by processing the proof file in two passes (see Section 2.3).

2.2 Using the Proof Checker

To a user, the checker is a program which reads a proof file, checks the proofs in it and reports
back with either a success which means the proofs are correct or a failure which means the
opposite (see Figure 1.1). It creates a log file containing information of what hypotheses and
stored theorems have been used and the resulting theorems of the proofs. The log file is in a
format similar to the proof file. It is mainly for use by other programs.

2.2.1 Loading the checker

Currently, the checker program modules have to be loaded into SML by evaluating the expres-
sion ) ‘

use "joinl.sml";

This will compile and link the modules to form the checker. A top-level function, namely
check_proof, will then be defined as the entry point of the checker. When the program
becomes stable, it will be possible to savean executable image of the checker. Then, it can be
invoked as a shell command.

2.2.2 Invoking the checker

After loading the checker, it can be invoked by evaluating the function check_proof which
takes a string as its sole argument. The string is the proof file name which, by convention, has
the suffix .prf but the checker accepts any name. If the filename has a suffix . gz, the checker
will assume it is a compressed file. It will run a decompresser automatically, and the log file
will also be stored in a compressed form. The default compression/decompression utilities are
the GNU gzip/gunzip programs. Below is a sample session of using the checker to check a
compressed proof file named MUL_FUN_CURRY in the directory proofs parallel to the current
directory. (Some of the output produced by the checker are omitted for brevity.)
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- check_proof "../proofs/MULT_FUN_CURRY.prf.gz";
Current environment: MULT_FUN_CURRY

Proof: MULT_FUN_CURRY
Proof MULT_FUN_CURRY has been checked

Proof: MULT_FUN_CURRY_THM
Proof MULT_FUN_CURRY_THM has been checked

Using the following hypotheses:
<-8> |- T :bool

{ ... some theorems omitted ...}

Proof: MULT_FUN
Proof MULT_FUN has been checked

Proof: MULT_FUN_DEF
Proof MULT_FUN_DEF has been checked

Using the following hypotheses:
{ ... some theorems omitted ...}

val it = () : unit

The name of the log file is derived from the input file name. If the input file name has the
suffix .prf, it is replaced by the suffix .clg (stands for checker log file). If the input file name
has no suffix, the log file suffix is appended.

2.3 Operations of the checker

When the checker is invoked, it creates a decompress process running as a filter in the back-
ground. The communication between this process and the checker is via a socket. In the case
where the file is not compressed, no decompression process is needed, but the communication is
still via a socket. This arrangement simplifies the checker as its input routine always reads from
the input socket. Similarly, an output socket is created with a compression process running to
compress the output to the log file on the fly. Figure 2.1 illustrates this arrangement.

The checker processes the input file in fwo passes. In the first pass, it builds up a table
of theorem references. Each inference step (also known as proof line) may refer to theorems
derived in any previous steps. The table has an entry for each line. The entry contains the
largest line number that that proof line is referenced by. As the references only occur in some
justifications, most of the text can be quickly skipped over.

In the second pass, the checker analyses and checks every proof line according to the spec-
ification of the inference rules. After checking each line, the derived theorem is saved in a
dictionary keyed by the line numbers if it is referred to by later lines. When a theorem is
fetched from the dictionary for the last time, it is removed. Thus, a minimum amount of
memory is required.
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Proof file Log file
Input filter g a6, Output filter
Input Output
socket socket

Figure 2.1: Checker input/output arrangement

HOLProofKey
Jo:1O_sig :Keyword_sig

Debug:Debug_sig [

Report:Report_sig

,—l

Htype: Htype_sig

Hterm:Hterm_sig

‘ORD_KEY Parsing
:Parsing_sig
[

Henv:Henv_sig Hthm:Hthm_sig

Proof:Proof_sig

]

Check:Check_sig

Pass1:Pass_sig l Pass2:Pass_sig

Figure 2.2: Organisation of modules

[_

2.4 Organisation of modules

The checker is structured into a number of modules as shown in Fig. 2.2. The modules can be
divided into two groups: the core group and the auxiliary group. Modules in the core group are
shown in the figure with a thick border, whereas other modules are shown with a thin border.
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gy a) The inference rule

|- !Typl Conl as t tm.
PASSUME Typl Conl (Pseq as t) tm = | fun chk_Assume (term, thm) =
let val [ass] =
HtermSet.listItems (hyp thm)
val conc = concl thm

Pwell_typed Typl Conl tm /\ in
Pboolean tm /\ is_bool_ty term andalso
(t = tm) /\ (conc = term) andalso
(as = {tm}) (conc = ass)
end;
b) The formal definition ¢) The checking function

Figure 2.3: Checking function and formal definition of the primitive rule ASSUME

2.4.1 The Core Modules

The core modules implement the internal representation of HOL types, terms, theorems, proofs,
and proof environment. Each kind of objects is represented by an ML type. The type and
associated operations on the objects of the type are implemented in a module. The module
names are generally descriptive so it is very easy to identify the module for a particular kind of
object. The Check module contains functions for checking the consistency of all basic inference
rules. All checking functions for the primitive rules are the same as the formal version except
for very minor changes to take care of the slightly different representation of HOL types and
terms. Figure 2.3 shows the primitive rule ASSUME , its formal definition in the HOL proof theory
and the checking function. The SML function and the HOL definition are very close.

The functions for checking other basic rules are derived from specification of these rules
found in [5]. Fig. 2.4 shows the basic inference rule SYM and its checking function.

2.4.2 The two passes

In the first pass, the checker builds a theorem reference table. This table consists of two dynamic
arrays whose elements are integers as shown in Fig. 2.5a. Each element represents a proof line.
The indices to the elements are the proof line numbers. Since the proof lines are numbered with
both positive and negative numbers, but only non-negative numbers are allowed in indexing
the array, two arrays are used. The TabHyp array is for the hypothesis lines whose line numbers
are negative, and the TabLine array is for proof lines whose numbers are positive. These arrays

fun chk_Sym(line, n, thm) =
let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thmi)
'+ t]_ = tz in
Thto=1t ((right,left) = dest_eq (concl thm)) andalso
(HtermSet.equal((hyp thm), (hyp thml)))
end

Figure 2.4: Basic rule SYM and its checking function
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. are created using the DynamicArray module in the SML/NJ library. The use of dynamic arrays

instead of static ones removes the upper limit of the number of lines in the proof.

TabHyp TabLine key theorem
1 3 0 -1 ..
2 0 5 2
31 0 0
4 0 5
510 0
a) Theorem reference table b) Theorem table

Figure 2.5: Data structures for theorem references

In the first pass, the checker looks at the justification part of the proof lines. When it
encounters a reference to a theorem in a previous proof line, it enters the current line number
into the element corresponding to the referred line in the table. For example, when the checker
is at Line 3, it finds that this line refers to the theorem in hypothesis Line 1. It enters 3 into the
first element of TabHyp. To speed up the Pass 1 process, the checker skips over other parts of
the proof line quickly. This is done by scanning the input and looking for matching parentheses
only. At the end of this pass, each element of the theorem reference table will contain the
highest line number which is the latest line referring to the theorem. In the table shown in
Fig. 2.5a, Line 5 is the last line referring to the theorem derived in Line 2 and Line 4.

In the second pass, the checker stores theorems referred to by other proof lines in a theorem
table. This table is implemented by a dictionary in the Dict module of the SML/NJ library.
The key of each entry is the line number. Since the dictionary is represented by a balanced
splay tree, searching for a theorem is fast. After checking a proof line, the checker examines
the theorem reference table, if the value of the current element is greater than the current line
number, i.e., it will be referred to later, the theorem is saved in the theorem table. Fig. 2.5b
illustrates the situation in which the checker has just stored the theorem derived in Line 2.
When the checker retrieves a theorem, it also examines the theorem reference table. If the
current line is the last one to refer to the theorem, i.e., the current line number is equal to
the value in the table, the theorem is removed from the dictionary. Continuing the scenario in
Fig. 2.5b, the next line is Line 3, which refers to hypotheses Line 1. Since this is the last line
referring to the theorem, the checker removes it from the table. This arrangement minimises
the number of theorems stored in the table, thus reducing the memory requirement.

2.4.3 Auxiliary Modules

The HOLProofKey module defines the concrete syntax, i.e., the tags, of the proof files. The
Parsing module consists of several higher order parsing functions. The parser proper is in the
modules Pass1 and Pass2. It is a recursive descent parser.

The Exception and Debug modules are responsible for handling errors. The Debug module
maintains a debug flag for each module. The values of these flags are non-negative integers. The



2.4. ORGANISATION OF MODULES 13

higher the value, the more information will be displayed while checking a proof. The Report
module is for formatting the output to the log file.

The Io module handles all file input and output. When the checker is invoked, it creates
a decompression process running as a filter in the background. The communication between
this process and the checker is via a. UNIX domain socket. If the file is uncompressed, no
decompression is needed, but a dummy cat process is created, and the communication is still
via a socket. This arrangement simplifies the checker as its input routine always reads from
the input socket. Similarly, an output socket is created with a compression process to compress
the output to the log file on the fly. This arrangement is illustrated in Fig. 2.1.




3 | Benchmarking

The proof checker has been tested with many small proof files generated by the HOL system,
including all derivations of basic derived rules. The largest proof that has been checked by the
checker is a proof of correctness of a simple multiplier described in [4]. This is a medium size
proof which generates 14500 intermediate theorems. This proof has been used as a benchmark
for many versions of the HOL system.

The multiplier proof consists of four ML files. A proof file is generated for each ML file. It
contains all the sub-proofs in the corresponding ML file. [10] describes how to generate these
proof files and lists the time required and the files sizes.

Table 3.1: Benchmark for checking the multiplier proof (Time in seconds)

Proof No. of Time
File Thm. Run | System | GC | Real
mk_NEXT 2972 | 139.3 15.3 3.7 | 170.0
MULT_FUN_CURRY 670 77.3 9.6 2.6 | 1004
MULT_FUN 6943 | 406.3 446 | 154 | 488.8
HOL_MULT 3946 | 1472.1 152.0 § 98.5 | 1783.3
Total 14531 | 2095.0 138.8 | 120.2 | 2542.5

The multiplier proof files were successfully checked by the checker. No error was found
from the proof files. Table 3.1 lists the time taken to check the proof files. This test ran on
a SUN SparcStation 20. The time is in the same order of magnitude as the recording. One
important observation is that the process size is relatively small when performing the checking.
The process size of the checker when it is just loaded is 14 Mbytes. The maximum size when
performing the checking is only 16 Mbtyes. This shows that the implementation does keep the
memory usage very small.

14



Part 1l

The Program

In this part, the checker program is described in detail. 'Each module of the checker is
described in its own chapter. There are two sections within most chapters: the first describes
the specification of the module, and the second the implementation. The specification describes
the interface between the module and its user. The specifications of the modules are SML
signatures. The modules are implemented as SML structures. The order of the chapters follows
roughly the reversed sequence in Figure 2.2, i.e., the chapter of the bottom module appears
first.

The checker program is written in the M1Web format, a simple literate programming tool[1].
In the literate programming paradigm[6], the master file contains both the program source
and its documentation. This encourages people to write more human readable programs and
helps to keep the program and its document consistent. Literate programming tools extract
the program source and the documentation from the master file separately. The former will
be in a format acceptable to a compiler so that an executable program can be produced. The
latter will be processed by a text formatter to produce a printed document. The M1Web format
and tools allow a single master file to contain programs and other machine readable text, such
as specifications, in more than one language.

15






4 The first pass

The primary task of the first pass is to build a table of theorem references. Therefore, it only
looks at those justifications which refer to theorems. Any irrelevant items can be skipped over
in high speed.

4.1 The specification

The only exported function is parse_file. It takes a file name as its sole argument and
processes it. If the file name ends with the suffix .gz, it is taken as a compressed file. The
default decompresser gzcat is passed to the IO module for preprocessing the file.

signature Pass_sig =
sig
val parse_file : string -> unit
end

4.2 The implementatiori

The Pass 1 parser is implemented as the functor Pass1FUN with the signature Pass_sig,

functor Passi1FUN (structure Parsing :Parsing_sig and Henv: Henv_sig
and Proof: Proof_sig and Hthm: Hthm_sig
and Hterm: Hterm_sig and Htype: Htype_sig
sharing Hterm = Hthm.Hterm = Proof.Hterm
and Htype = Hterm.Htype = Hthm.Hterm.Htype =
Proof .Htype = Henv.Htype
and Hthm = Proof.Hthm) : Pass_sig =
struct

structure Parsing = Parsing

structure Io = Parsing.Io

structure Keyword = Parsing.Keyword

structure Henv = Henv;

structure Proof = Proof;

structure Hthm = Hthm;

structure Hterm = Hterm;

structure Htype = Htype;

open Parsing Htype Hterm Hthm Proof

fun PASS1_ERR {function, message} =
Exception.CHK_ERR{origin_structure = "Passl",
origin_function = function, message=messagel;
val debug = Debug.get_debug("Passi");
fun write_out s = (output(std_err, s); flush_out std_err)

17
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4.2.1 Parser The parser is a recursive descent parser. The top expression is a proof file.
The exact syntax of the file can be found in [10]. In this pass, we are only interested in theorem
references in the justifications, so a lot of input can be skipped.

fun parse_proof_file () =
(parse_item parse_ver ();
parse_item parse_env() ;
parse_closure parse_proof ();
M
and parse_ver () =
(get_tag Keyword.VERSION;
skip_sp O;
if check_ver_string() then ()
else raise (PASS1_ERR
{function = "parse_ver", message="incorrect format"})
)
and parse_env () =
(get_tag Keyword.ENV;
get_name() ;
skip_item ();
skip_item ();
0D

The function parse_proof parses a proof. The local variable thms contains a list of goals
which are the subexpressions after the tag. Then, it calls new_proof1 to initialise the current
proof data structures. Next, parse_list is called to parse the proof lines. At the end of the
proof, the pline table is saved for the second pass.

and parse_proof () =
(get_tag Keyword.PROOF;
let val name = get_name()
val thms = parse_list parse_thm ()
in
new_proofl (name,thms);
parse_list parse_line ();(* handle PARSE_DONE => []
| e => raise e; *)
Proof.add_pline_table name;
if (debug > 0) then (write_out("\nProof: "“name~"\n");
Proof.print_prooftab()) else ()
end;

0
The function parse_line processes each proof line.

and parse_line () =

(get_tag Keyword.LINE;

let val n = get_num ()
val nl = parse_item parse_just ()
val th = parse_item parse_thm ()

in
if (debug > 1) then write_out("\nline "“makestring n) else ();
let

val proved = Proof.add_pline_tab(n,nl,th)

in
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if proved then raise PARSE_DONE else ()
end
end;

0))

Now, we are looking at the justification field of a proof line. The function get_name is used
to get the name of the justification which is case insensitive, so the call to toupper folds all
letters to upper case. As we are only interested in the theorem references, we skip over all other
items. The function get_numis used to get the line numbers. A list of line numbers is returned
by parse_just.

and parse_just () =
let
val toupper = StringUtil.stringTrans
~ ("abcdefghi jklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
in
case toupper(get_name()) of
"ABS" => (skip_item(); [get_num ()])
| "DISCH" => (skip_item(); [get_num ()])
| "INSTTYPE" => (skip_item(); [get_num ()3)
| "MP" => [get_num(), get_num()]
!

"SUBST" =>
let
val 1 = map (#1) (parse_list_pairs (get_num,skip_item) ())
in
(skip_item(); get_num () :: 1)
end

| "ADDASSUM" => (skip_item(); [get_num()])
| "APTERM" => (skip_item(); [get_num()])

I "APTHM" =>
let val n = [get_num()]
in
skip_item(); n
end
| "CCONTR" => (skip_item();[get_num()])
| "CHOOSE" =>
let val (_,nl1) = parse_pair ((parse_item parse_term),get_num) ()
in
([n1,get_num()]1)
end

"CONJ" => ([get_num(),get_num()])
"CONJUNCT1" => ([get_num()])
"CONJUNCT2" => ([get_num()])

"CONTR" => (skip_item(); [get_num()])

"DISJ1" =>
let val n = [get_num()]
in ’
skip_item(); n
end

I "DISJ2" => (skip_item(); [get_num()])
| "DISJCASES" => ([get_num(),get_num(),get_num()])
| "EQIMPRULEL" => ([get_num()])
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|

I

I
end

"EQIMPRULER" => ([get_num()])
"EQMP" => ([get_num(),get_num()])
"EQTINTRO" => ([get_num()])
"EXISTS" => (skip_item(); (* skip a pair *) [get_num()])
VEXT" => ([get_num()])
"GEN" => (skip_item(); [get_num()])
"IMPANTISYMRULE" => ([get_num(),get_num()])
"IMPTRANS" => ([get_num(),get_num()])
"INST" => (skip_item(); [get_num()])
"MKABS" => ([get_num()])
"MKCOMB" => ([get_num(),get_num()])
"MKEXISTS" => ([get_num()])
"NOTELIM" => ([get_num()])
"NOTINTRO" => ([get_num()])
"SPEC" => (skip_item(); [get_num()])
"SUBS" =>
let val nl = parse_num_list ()
in
(get_num())::nl
end
"SUBSOCCS" =>
let ‘
val nlnl = parse_list (parse_subs_list) ()
val n = get_num()
in »
n :: (map #2 nlnl)
end -
"SUBSTCONV" =>
let
val ntl = parse_list_pairs (get_num, (parse_item parse_term)) ()
in
skip_item (); skip_item ();
(map #1 ntl)
end
"SYM" => ([get_num(}])
"TRANS" => ([get_num(),get_num()])
_ => (skip_long_string false [RP]; [])

A little auxiliary parsing function for substitution lists.

and p
((p

arse_subs_list () =
arse_num_list ()), get_num())

The function parse_thm recognises a theorem and returns it.

and p
(ge
le

arse_thm () =

t_tag Keyword.THM;

t val hyp = parse_list parse_term ()
val concl = parse_item parse_term ()

in(if (debug > 2) then write_out("<THM>") else ();

Hthm.mk_thm(hyp,concl))

end )
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The function parse_term recognises a term. There are four kinds of terms, two of them,
namely variables and constants, have type information attached. The appropriate term con-
structor is called to create a term, and it is returned as the value of this function.

and parse_term() =
let val tag = get_name() in
if(tag = Keyword.VAR) then
let val name = get_name()
val ty = parse_item parse_type ()
in (if (debug > 2) then write_out("-""name) else ();
mk_var (name,ty))
end
else if (tag = Keyword.CONST) then
let val name = get_const_name()
val ty = parse_item parse_type ()
in (if (debug > 2) then write_out("$""name) else ();
mk_const (name,ty))
end
else if (tag = Keyword.APP) then
let val rator = parse_item parse_term ()
val rand = parse_item parse_term ()
in (if (debug > 2) then write_out(""") else ();
mk_comb(rator,rand))
end :
else if (tag = Keyword.ABS) then
let val v = parse_item parse_term ()
val body = parse_item parse_term ()
in (if (debug > 2) then write_out("\\") else ();
mk_abs (v,body))
end
else raise (PASS1_ERR{function="parse_term",
message=("Unknown term"“tag)l)
end

The function parse_type recognises a type. There are three kinds of types: type operators,
type constants and type variables. The first two are represented by type operators in the HType
module. The appropriate type constructor is called to create a type, and it is returned as the
value of this function.

and parse_type () =
let val tag = get_name() in
if (tag = Keyword.TYVAR) then
let val name = get_tyvar_name()
in (if (debug > 2) then write_out("=""name) else ();
mk_vartype name)
end
else if (tag = Keyword.TYCONST) then
let val name = get_name() _
in (if (debug > 2) then write_out("#"“name) else ();
mk_type {Tyargs=[],Tyop=name})
end
else if (tag = Keyword.TYOP) then
let val name = get_name()
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val tyl = parse_list parse_type ()
in (if (debug > 2) then write_out("&""name) else ();
mk_type {Tyargs=(rev tyl),Tyop=name})
end
else raise (PASS1_ERR{function="parse_type",
message=("Unknown type"“tag)})
end

4.2.2 The user function This is the entry point of the Pass 1 parser. It takes the hame
of the proof file as its sole argument. This string should include all the suffixes and possibly
the path of the file name. It calls the function mk_command in the Io module to work out any
compressing and decompressing command if they are necessary. See Page 141 for details of how
the file name is interpreted.

fun parse_file fname =
(Parsing.init(); Proof.init();
let val (outname, incmd, outcmd) = Io.mk_command fname
in
Io.open_input_socket fname incmd
end;
let val plst = parse_proof_file () in
(To.close_io_socket(); (plst))
end) handle e =>
(Io.close_io_socket(); raise e)

end; (* functor Pass1FUN *)



The second pass

This is the main pass of the checker. It parses and checks the proof file. It has the same
signature as the module Pass1. It is repeated here for easy reference.

signature Pass_sig =

sig

val parse_file : string -> unit

end

5.1 The implementation

The Pass 2 parser is implemented as the functor Pass2FUN with the same signature as the

Pass 1 parser.

functor Pass2FUN (structure Parsing :Parsing_sig and Henv: Henv_sig

struct
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

and Proof: Proof_sig and Hthm: Hthm_sig
and Hterm: Hterm_sig and Htype: Htype_sig
and Check :Check_sig and Report : Report_sig
sharing Hterm = Hthm.Hterm = Proof.Hterm = Check.Hterm
and Htype = Hterm.Htype = Hthm.Hterm.Htype =
Proof .Htype = Henv.Htype = Check.Htype
and Hthm = Proof.Hthm = Check.Hthm
and Report = Check.Report = Htype.Report = Hterm.Report
and Report.Keyword = Parsing.Keyword
and Proof = Check.Proof) : Pass_sig =

Report = Report

Parsing = Parsing

Io = Parsing.Io

Keyword = Parsing.Keyword
Henv = Henv

Proof = Proof

Hthm = Hthm

Hterm = Hterm

Htype = Htype

Check = Check

open Parsing Htype Hterm Proof

fun PASS2_

ERR {function, message} =

Exception.CHK_ERR{origin_structure = "Pass2",

val debug

fun write_

origin_function = function, message=messagel;
= Debug.get_debug("Pass2");
out s = (output(std_err, s); flush_out std_err)

23
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5.1.1 Parser The parser is a recursive descent parser. It is organised in the same way as
the Pass 1 parser. The top expression is a proof file. The éxact syntax of the file can be found
in [10]. In this pass, the parser calls the checking function after recognising each proof line.

fun parse_proof_file () =
(parse_item parse_ver ();
parse_item parse_env ();
parse_closure parse_proof ();
)
and parse_ver () =
(get_tag Keyword.VERSION;
skip_sp Q;
if check_ver_string() then ()
else raise (PASS2_ERR
{function = "parse_ver", message="incorrect format"})
)
and parse_env () =
(get_tag Keyword.ENV;
let val name = get_name()
val tyl = map Henv.mk_typeconst(parse_list_pairs (get_name,get_num) ())
val cl = map Henv.mk_termconst
(parse_list_pairs (get_name, (parse_item parse_type)) ()

in
(if (debug > 0) then write_out("\nCurrent enviromment: "“name~"\n") else (
)s
Henv.mk_proof_env(name, tyl, cl))
end
)

At the beginning of a proof, the function new_proo£2 is called to initialise the internal data
structures which hold the theorem reference table and the list of goals. Also, the opening tag
of a proof is written to the log file. After parsing all lines, the USED list in the log file is closed.
Then, chk_proof is called to verify that all goals have been proved. The proof in the log file is
closed. See the Report module on Page 151 for details of the log file format.

and parse_proof () =
(get_tag Keyword.PROOF;
let val name = get_name()
val thms = parse_list parse_thm ()
in
if (debug > 0) then write_out("\nProof: "“name~"\n") else ();
Report.write_line_opening2(Keyword.PROOF,name) ;
Report.write_line_opening(Keyword.USED);
Report.write_tok Keyword.LB;
new_proof2 name;
let
val 1s = parse_list parse_line ()
in
Report.write_tok Keyword.RB;
Report.write_closing_line ();
Check.chk_proof (name,thms,1s);
Report.write_closing_line ()
end
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end;

O

The function parse_line processes a proof line. After parsing all fields, namely the line
number 7, the justification just and the derived theorem th, it calls chk_pline to check the
line. A line number is returned by the checking function. If it is the same as the current
line number n, all the goals have been proved. All remaining proof lines can be ignored. The
exception PARSE_DONE is raised to pass this signal up. Otherwise, this function returns the line
number n.

and parse_line () =

(get_tag Keyword.LINE;

let val n = get_num ()
val just = parse_item parse_just ()
val th = parse_item parse_thm ()

in
if (debug > 1) then write_out("\nline "“makestring n) else ();
if (Check.chk_pline(n, just, th) = n)
then raise PARSE_DONE
else n

end)

This function parses the justification field in a proof line, and returns it. The name of the
justification is case insensitive.

and parse_just () =
let
val toupper = StringUtil.stringTrans
("abcdefghijklmnopqrstuvuxyz" ,"ABCDEFGHIJKLMNOPQRSTUVWXYZ")
in
case toupper(get_name()) of
"ABS“ =>
let val tm = parse_item parse_term ()
val n = get_num ()
in
(Abs (tm, n))
end
| "ASSUME" => (Assume (parse_item parse_term ()))
| "BETACONV" => (BetaConv (parse_item parse_term ()))
| "DISCH" =>
let val tm = parse_item parse_term ()
val n = get_num ()

in
(Disch (tm, n))
end
| "INSTTYPE" =>

let val tytyl = parse_list_pairs
((parse_item parse_type), (parse_item parse_type)) ()
val n = get_num ()
in
(InstType (tytyl, n))
end
| "MP" => (Mp (get_num(), get_num()))
| "REFL" => (Refl (parse_item parse_term ()))
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IIS'U’BST" =>
let
val 1 = (parse_list_pairs (get_num, (parse_item parse_term)) ())
val tm = parse_item parse_term ()

in
(Subst (1, tm, get_num ()))
end
WAXIOM" =>

let val sl = get_name()
val s2 = get_name()

in
(Axiom (s1,s2))
end
"DEFINITION" =>

let val s1 = get_name()
val s2 = get_name()
in
(Definition (s1,s2))
end
"DEFEXISTSRULE" =>
(DefExistsRule (parse_item parse_term ()))
"HYPOTHESIS" => (Hypothesis)
"NEWAXIOM" =>
let val name = get_name()
val tm = (parse_item parse_term ())
in
(NewAxiom (name,tm))
end
"NEWCONSTANT" =>
let val name = get_name()
val ty = (parse_item parse_type ())

in
(NewConstant (name,ty))
end
"NEWTYPE" =>

let val n = get_num()
val name = get_name()

in
(NewType (n,name))
end
"NUMCONV" =>

(Numconv (parse_item parse_term ()))
"STOREDEFINITION" =>
let val name = get_name()
val tm = (parse_item parse_term ())

in
(StoreDefinition (name,tm))
end
"THEOREM" =>

let val sl = get_name()
val s2 = get_name()
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in
(Theorem (s1,s2))
end
"ADDASSUM" =>
let

val tm = parse_item parse_term ()
val n = get_num ()

in
(AddAssum (tm,n))
end
n ALPHA " =>
let

val tml = parse_item parse_term ()
val tm2 = parse_item parse_term ()
in
(Alpha (tml,tm2))
end
"APTERM" => (ApTerm ((parse_item parse_term ()), get_num()))
"APTHM" => (ApThm ((get_num()),(parse_item parse_term ())))
"CCONTR" => (Ccontr ((parse_item parse_term ()), get_num()))
"CHOOSE" =>
let val (tm,nl) = parse_pair ((parse_item parse_term),get_num) ()
in
(Choose (tm, ni, get_num()))
end
"CONJ" => (Conj (get_num(),get_num()))
"CONJUNCT1" => (Conjunctl (get_num()))
"CONJUNCT2" => (Conjunct2 (get_num()))
"CONTR" => (Contr ((parse_item parse_term ()), get_num()))
"DISJ1" => (Disj1((get_num()), (parse_item parse_term ())))
"DISJ2" => (Disj2 ((parse_item parse_term ()), get_num()))
"DISJCASES" => (DisjCases (get_num(), get_num(), get_num()))
"EQIMPRULEL" => (EqImpRulel (get_num()))
"EQIMPRULER" => (EqImpRuleR (get_num()))
"EQMP" => (EqMp (get_num(),get_num()))
"EQTINTRO" => (EqTIntro (get_num()))
"ETACONV" => (EtaConv (parse_item parse_term ()))
"EXISTS" => (Exists (
(parse_pair(parse_item parse_term,parse_item parse_term)()),

(get_num())))
"EXT" => (Ext (get_num()))
"GEN" => (Gen ((parse_item parse_term ()), get_num()))
"IMPANTISYMRULE" => (ImpAntisymRule (get_num(),get_num()))
"IMPTRANS" => (ImpTrans (get_num(),get_num()))
"INST" => (Inst ((parse_list_pairs
(parse_item parse_term,parse_item parse_term) ()),
(get_num())))
"MKABS" => (MkAbs (get_num()))
"MKCOMB" => (MkComb (get_num(),get_num()))
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end

"MKEXISTS" => (MkExists (get_num()))
"NOTELIM" => (NotElim (get_num()))

"NOTI
"SPEC
"SUBS
"SUBS
let
v

in
(
end
"SUBS
let
v
v
v

in

NTRO" => (NotIntro (get_num()))

" => (Spec ({(parse_item parse_term ()), (get_num())))
" => (Subs ((parse_num_list ()), (get_num())))

0ccs" =>

al nlnl = parse_list (parse_subs_list) ()

SubsOccs (nlnl, (get_num())))

fl

TCONV" =>

al ntl = parse_list_pairs (get_num, (parse_item parse_term)) ()
al tml = parse_item parse_term ()

al tm2 = parse_item parse_term ()

(SubstConv (ntl, tmi, tm2))

end
IISYM"
"TRAN

=> (Sym (get_num()))
S" => (Trans (get_num(), get_num()))

_ => raise (PASS2_ERR{function="parse_just",

message="Unknown justification"})

A little auxiliary parsing function for substitution lists.

and parse_subs_list () =
((parse_num_list ()), get_num())

The functions for parsing theorems, terms and types, namely parse_thm, parse;term and
parse_type respectively, are the same as their counterparts in the module Pass1.

and parse_thm () =
(get_tag Keyword.THM;
let val hyp = parse_list parse_term ()
val concl = parse_item parse_term ()
in(if (debug > 2) then write_out("<THM>") else ();
Hthm.mk_thm(hyp,concl))
end )
and parse_term() =
let val tag = get_name() in
if (tag = Keyword.VAR) then

let

val name = get_name()

val ty = parse_item parse_type ()

in (

end

if (debug > 2) then write_out("-""name) else ();
mk_var (name,ty))

"else if (tag = Keyword.CONST) then

let

val name = get_const_name()

val ty = parse_item parse_type ()

in (

end

if (debug > 2) then write_out("$""name) else ();
mk_const (name,ty))
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else if (tag = Keyword.APP) then
let val rator = parse_item parse_term ()
val rand = parse_item parse_term ()
in (if (debug > 2) then write_out(""") else ();
mk_comb(rator,rand))
end
else if (tag = Keyword.ABS) then
let val v = parse_item parse_term ()
val body = parse_item parse_term ()
in (if (debug > 2) then write_out("\\") else ();
mk_abs (v,body))
end
else raise (PASS2_ERR{function="parse_term",
message=("Unknown term""tag)l})
end
and parse_type () =
let val tag = get_name() in
if (tag = Keyword.TYVAR) then
let val name = get_tyvar_name()
in (if (debug > 2) then write_out("=""name) else ();
mk_vartype name)
end
else if (tag = Keyword.TYCONST) then
let val name = get_name()
in (if (debug > 2) then write_out("#""name) else ();
mk_type {Tyargs=[],Tyop=name})
end
else if (tag = Keyword.TYOP) then
let val name = get_name()
val tyl = parse_list parse_type ()
in (if (debug > 2) then write_out("&""name) else ();
mk_type {Tyargs=(rev tyl),Tyop=name})
end
else raise (PASS2_ERR{function="parse_type",
message=("Unknown type""tag)l})
end

5.1.2 The user function This function is the entry point to the Pass 2 parser. It is
similar to the entry function in the module Pass1. It takes the name of the proof file as its sole
argument. This string should include all the suffixes and possibly the path of the file name.
It calls the function mk_command in the Io module to work out the name of the log file and of
any compressing and decompressing command if they are necessary. See Page 141 for details
of how the file name is interpreted.

fun parse_file fname =
(Parsing.init();
Henv.init(); Proof.clear_proof(); Check.init();
let val (outname, incmd, outcmd) = Io.mk_command fname
in
Jo.open_input_socket fname incmd;
Io.open_output_socket outname outcmd;
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end;

Report.write_log_preamble ()
end;
let val plst = parse_proof_file () in
(To.close_io_socket(); (plst))
end) handle e =>
(Io.close_io_socket(); raise e)

(x functor Pass2FUN *)



6 The parsing functions

The Parsing module includes all the lexical analysis and parsing functions. The parsing of the
proof files can be considered in two tiers: the lexical analysis and parsing. Due to the slowness
of string functions in SML, we do not work on strings. Instead, the input bytes returned by
the input function are converted to abstract characters represented by the type ctype. These
characters are converted to strings only when it is necessary.

Functions provided by this module are used by both passes. They can be divided into three
groups: the character functions which convert input bytes to abstract characters and are local
to this module, the atom functions which recognise atoms, such as identifiers and numbers, and
the parsing functionals which recognise larger syntactic structures, such as lists and pairs.

The module is implemented by a functor, ParsingFUN. The interface is specified by the
signature Parsing_sig.

6.1 The specification

The signature Parsing_sig specifies the interface of the Parsing module. The structure Io
provides the input functions to the parser. The structure Keyword defines the concrete input
syntax.
The type ctype is an abstract representation of input characters. The parser works with
abstract characters except in certain special situations.
signature Parsing_sig =
sig
structure Io : IO_sig .
structure Keyword : Keyword_sig

exception PARSE_DONE

datatype ctype = ALPHA of string | NUM of int | SYM of string
| LP | RP | LB | RB | LC | RC | PL | MI | EOF | SP;

The first group of functions provided by this module are for parsing atoms, e.g., tags,
identifiers and numbers. Their names are all prefixed by get_. '

val get_const_name : unit -> string

val get_name : unit -> string

val get_num : unit -> int

val get_string : unit -> ctype list

val get_symbolic_name : unit -> string

val get_tag : string -> unit

val get_tyvar_name : unit -> string

The function check_ver_string verifies the file format string.

val check_ver_string : unit -> bool

The function init initialises this module. It should be called at the beginning of every pass.

val init : unit -> unit

31
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These functions are parsing functionals. They recognise larger syntactic structures, such as
lists and pairs.

val parse_closure : (unit -> ’a) -> unit -> ’a list

val parse_item : (unit -> ’a) -> unit -> ’a

val parse_list : (unit -> ’a) -> unit -> ’a list

val parse_num_list : unit -> int list

val parse_list_pairs : (unit -> ’a) * (unit -> ’b) -> uwnit ~> (’a * ’b)list

val parse_pair : (unit -> ’a) * (unit -> ’b) -> unit -> ’a * b

These functions are for skipping certain input at high speed. They are used only in the first
pass.

val skip_item : unit -> unit
val skip_long_string : bool -> ctype list -> unit
val skip_sp : unit -> unit

end (* signature *)

6.2 The implementation

The functor ParsingFUN implements the Parsing module. It requires two structures: the first
Io provides input and file management functions, and the second Keyword defines the concrete
input syntax.
functor ParsingFUN
(structure Io:I0_sig and Keyword :Keyword_sig) : Parsing_sig =
struct
structure Io = Io
structure Keyword = Keyword

exception PARSE_DONE

fun PARSING_ERR {function, message} =
Exception.CHK_ERR{origin_structure = "Parsing",
origin_function = function, message=messagel};
val debug = Debug.get_debug("Parsing");
fun write_out s = (output(std_err, s); flush_out std_err);

6.2.1 Abstract characters . The type ctype is an abstract internal representation of the
input characters. The input structure Io has a function for inputing a fixed size block of bytes
represented as a list of ASCII codes. It is very time-consuming to convert this into SML strings
since the string operation is rather slow. So, we work on the abstract characters.

The type of abstract characters consists of four kinds of characters:

o letters represented by the constructor ALPHA;
o digits represented by the constructor NUM;
e symbols represented by the constructor SYM;

e special characters each of which has a constructor.

datatype ctype = ALPHA of string | NUM of int | SYM of string
|LP | RP | LB | RB | LC | RC | PL | MI | EOF | SP;
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6.2.2 Mapping functions The function byte_to_char maps a byte (ASCII code) to the
abstract character of type ctype. Symbolic names are defined locally for some ASCII characters.
Upper and lower case letters are mapped to ALPHA with single character string containing the
letter. Digits are mapped to NUM with their corresponding numeric value. Other printable
characters except () [1{}+- are mapped to SYM with single character string containing the
character. The special characters () [1{}+- are mapped to their respective symbolic names,
LP, RP, LB, RB, LC, RC, PL and MI. All other input bytes are mapped to SP, the space character
which is ignored in most cases. The special character EQF is used to indicate the end of file.
This function needs to be modified if the concrete syntax is changed.

local
val ASCII_code_sp = ordof(" ",0)
and ASCII_code_0 = ordof("0",0)
and ASCII_code_9 = ordof("9",0)
and ASCII_code_a = ordof("a",0)
and ASCII_code_z = ordof ("z",0)
and ASCII_code_A = ordof("A",0)
and ASCII_code_Z = ordof("Z",0);
in
fun byte_to_char n =
if(n <= ASCII_code_sp) then (SP)
else
case n of
40 => (LP) (* "(" *)
| 41 => (RP) (* ")" %)
| _ =
if(n < ASCII_code_0) then
case n of
43 => (PL) (* "+" %)
| 45 => (MI) (* "-" %)
| - => (SYM (chr n))
else if (n <= ASCII_code_9) then (NUM (n - ASCII_code_0))
else if (n < ASCII_code_A) then (SYM (chr n))
else if (n <= ASCII_code_Z) then (ALPHA (chr n))
else if (n < ASCII_code_a) then
case n of
91 => (LB) (* "[" %)
| 93 => (RB) (* "1" %)
| - => (SYM (chr n))
else if (n <= ASCII_code_z) then (ALPHA (chr n))
else
case n of
123 => (LC) (> "{" =)
| 125 => (RC) (x "}" %)
I - => (SYM (chr n))

end (* local *)

The function char_to_str maps an abstract character to its name string. It is mainly used
for debugging.

fun char_to_str (LP) = "LP"
| char_to_str (RP) = "RP"
| char_to_str (LB) = "LB"
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char_to_str (RB) = "RB"

char_to_str (LC) = "LC"
char_to_str (RC) = "RC"
char_to_str (PL) = "PL"

char_to_str (MI) = "MI"
char_to_str (SP) = " "

char_to_str (EOF) = "EOF"
char_to_str (ALPHA c¢) = ¢
char_to_str (SYM c) = ¢
char_to_str (NUM n) = makestring n

6.2.3 character functions This section contains several low level functions which are used
by the string functions and parsing functionals to obtain the next input character.

This module keeps an internal input buffer char_buf which is a byte array. The current
length of the buffer is kept in char_buf_len. The identifier charp always points to the next
available byte. The local function chk_buf is called every time a character is accessed. It calls
the input function Io.read_bytes to get a new block of bytes if the end of the buffer is reached.

local
val char_buf = ref (ByteArray.array(256,0))
and char_buf_len = ref 0
and charp = ref 0;

fun chk_buf () =
if (Icharp >= !char_buf_len) then
let val (len,cs) = Io.read_bytes () in
(char_buf_len := len;
char_buf := cs;
charp := 0;
if (debug > 1) then
write_out(
ByteArray.extract((!char_buf), (l!charp), (!char_buf_len)))
else ()
)
end
else ()
in
The function init clears the internal input buffer. It should be called at the beginning of
each pass.

fun init () =

(charp := 0;
char_buf_len := 0;
)

The function peek reads the next byte without removing it from the buffer. It converts the
byte into an abstract character and returns it.

fun peek() =
(chk_buf (;
if (!char_buf_len = 0) then (EOF)
else
let
val b = (ByteArray.sub(!char_buf, !charp))
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in
(if (debug > 3) then write_out( ("."~(chr b))) else ();
byte_to_char b)
end)

The function next removes the next byte from the buffer. It converts the byte into an
abstract character and returns it.

and next() =
(chk_buf ();
if (!char_buf_len = 0) then (EQOF)
else let val c = (ByteArray.sub(!char_buf, !charp))
in
(charp :=(!charp) + 1;
if (debug > 2) then write_out( (":"~(chr c))) else ();
byte_to_char c)
end )

The function unget puts its argument ¢ which is an abstract character back into the buffer.
Since the contents of the buffer is not destroyed before the next call to the input function,
unget makes sure that c is the same as the character in the buffer. It should always be the
same since a character can only be put back immediately after it is removed from the buffer.
No intervening reading is allowed. It is not possible to put back a character at the beginning
of the buffer.

and unget ¢ =

if (!charp = 0) then

raise (PARSING_ERR{function="unget",

message="Can’t unget--beginning of buffer"})

else if (c = byte_to_char(ByteArray.sub(!char_buf, (!charp-1)))) then

charp := (!charp) - 1

else raise (PARSING_ERR{function="unget",
message="Can’t unget--not the same char"})

The following two functions, peekb and nextb, are the same as peek and next except their
return values are bytes instead of abstract characters.

and peekb() =
(chk_buf (;
if (Ichar_buf_len = 0) then 0
else
let val b = (ByteArray.sub(!char_buf, !charp))
in
(if (debug > 3) then write_out( (",""(chr b))) else ();
b)
end)
and nextb() =
(chk_buf ();

if (!char_buf_len = 0) then 0
else let val ¢ = (ByteArray.sub(!char_buf, !charp))
in
(chaxp :=(!charp) + 1;
if (debug > 2) then write_out( (";""(chr ¢))) else (;
c)
end)
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The function strip removes the next byte from the internal buffer. It is usually used after
a peek which finds the desired character, thus avoiding using unget.

and strip() = (charp :=(!charp) + 1)

end (* local *);

6.2.4 String Functions Functions in this section are for parsing atoms. We first describe
the local functions. The function skip takes a predicate f as its argument. It skips all characters
that satisfy f, i.e., it removes all initial characters from the internal buffer until the first
character ¢ such that evaluating f c returns false.

The function get_str is similar to skip but it returns a list of characters which satisfy the
predicate f. The second argument ! is used for cumulating the characters so the function is
more efficient. NOTE: the resulting list is in reverse order. The function get_bytes is the
same as get_str except the return value is a list of bytes.

The function get_long_str returns a list of character which may contain matched pairs
of delimiters. The delimiter pairs it recognises are LP and RP, LB and RB, and LC and RC. It
takes two arguments. The first is a list of right (closing) delimiters, and the second is a list
for cumulating the characters. It returns its second argument if the delimiter list is empty.
Otherwise, it scans through the input characters. If it finds a closing delimiter which is the
same as the head of the delimiter list, the head is removed. If it sees an open delimiter, the
matching closing delimiter is pushed on to the delimiter list. Then, it calls itself recursively.

local
fun skip £ = while (f (peek())) do strip();

fun get_str £ 1 =
let val c = peek() in
if (£ c) then (strip(); get_str £ (c::1)) else 1
end
and get_bytes £ 1 =
let val ¢ = peekb() in
if (f c) then (strip(); get_bytes £ (c::1)) else 1
end -
and get_long str [J] 1 =1
| get_long_str (dl as (delim: :ds)) 1 =
let val ¢ = next() in
if (delim = ¢) then get_long_str ds (c::1)
else
case c of
LP => get_long_str (RP::dl) (c::1)
| LB => get_long_str (RB::dl) (c::1)
| LC => get_long_str (RC::dl) (c::1)
| EOF => raise (PARSING_ERR{function="get_long_str",
message="Unexpected end of file"})
| _ => get_long_str dl (c::1)
end
Here is a list of predicates to be used in conjunction with the above functions to get input
characters.
fun is_alpha (ALPHA c) = true
| is_alpha _ = false

and is_num (NUM c) = true
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| is_num _ = false
and is_sym (SYM c) = true
| is_sym _ = false
and is_lp (LP) = true

| is_1lp _ = false
and is_rp (RP) = true

| is_rp _ = false
and is_eof (EOF) = true

| is_eof _ = false
and is_sp (SP) = true

| is_sp _ = false
and is_notrp RP = true

| is_notrp _ = false

and is_delim (LP) = true

| is_delim (RP) = true

| is_delim (LC) = true
| is_delim (RC)
!
|
]

= true
is_delim (LB) = true
is_delim (RB) = true

is_delim _ = false
val not_alpha = (not o is_alpha)

Here are local copies of the special characters defined in the Keyword structure. They are all
ASCII codes (bytes). idcharl is a list of non-letters allowed in identifiers. tyvchar is the first
character of type variables. specials is a list of characters allowed to be the first character of
a symbolic identifier.

val idcharl = map ord (explode Keyword.idchars)
and tyvchar = ord Keyword.tyvar
and specials = setify (map (fn s => ordof(s,0)) Keyword.symbols);

The following three predicates are used in conjunction with the string functions above to
get alphanumeric identifiers, type variables and symbolic identifiers, respectively.

fun is_id_charQOrd c =
(CType.isAlphaOrd c) orelse (CType.isDigitOrd c) orelse
(exists (fn x => (¢ = x)) idcharl)
and is_tyv_char0Ord c =
(CType.isAlphalrd c) orelse (CType.isDigitOrd c) orelse
(c = tyvchar) orelse (exists (fn x => (¢ = x)) idcharl)
and is_spec_charOrd c = (exists (fn x => (c = x)) specials)
in
Here are the user functions. The function skip_sp skips all consecutive space characters.
The function skip_long_string skips a string until all matching delimiters in the argument
list delim are found. The string may contain matching delimiters as well. The first argument
flag is a boolean value if it is false, the last delimiter is not removed from the internal
buffer. The function skip_item skips the next delimited item which may be an item enclosed
in parentheses, or a list or a pair. -

fun skip_sp () = skip is_sp
and skip_long_string flag delim =

(get_long_str delim []; if flag then () else unget(hd delim))
and skip_item () =

(skip_spQ);
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case next() of
(LP) => get_long_str [RP] []
| (LC) => get_long_str [RC] []
| (LB) => get_long_str [RB] []
I - =>1;
0>

The function get_string returns a string containing only letters. The function get_num
returns a number containing only digits and optionally preceded by a plus or minus sign.

fun get_string () = (rev(get_str is_alpha []))
and get_num () =
let
fun £ sum =
case peek() of
(NUM n) => (strip(); £ (sum * 10 + n))
| _ => sum
in
(skip_spQ);
case (peek()) of
(PL) => (strip(); £ 0)
| (MI) => (strip(Q); ~(£f 0))
| (NUM n) => (£ 0)
| _ => raise (PARSING_ERR{function="get_num",
message="Expecting a number"}))
end

The function get_name returns an alphanumeric identifier. The function get_tyvar_name
returns a type variable name.

fun get_name ()
(skip_spQ);
let val name

(implode o rev) (map chr(get_bytes (is_id_charOrd) [1))

in

(if (debug > 1) then write_out("|""name~"|") else ();

name)
end)
and get_tyvar_name () =

(skip_spQ);
if (tyvchar = peekb()) then

(implode o rev)(map chr(get_bytes (is_tyv_charOrd) [mextb()]))
else raise (PARSING_ERR{function="get_tyvar_name",

message="Illegal type variable name"})

)

The function get_const_name returns a string which is a valid constant name. It may
be either alphanumeric or symbolic. The function get_symbolic_name returns a symbolic
identifier. :

and get_const_name () =
(skip_spQ);
if (is_id_charOrd(peekb())) then
(implode o rev) (map chr(get_bytes (is_id_charOrd) [1))
else if (is_spec_charOrd(peekb())) then
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get_symbolic_name ()
else raise (PARSING_ERR{function="get_const_name",
message="Illegal constant name"})
)
and get_symbolic_name () =
let fun symn 1 1lsym =
let val c = peekb()
val lsym’ = ListUtil.filter
(fn s => (if (ordof(s,n) = c¢) then SOME s else NONE)
handle Ord => NONE) lsym
in
if (debug > 2) then
(write_out("get_sym_name "~ (makestring n));
(write_out o implode o (map chr)) 1; ())
else );
if (null 1lsym’) then ((implode o rev) (map chr 1))
else (strip(); sym (a+1) (c::1) 1lsym’)
end
in
sym 0 [] Keyword.symbols
end
handle e => raise
(PARSING_ERR{function="get_symbolic_name",
message="error"})

The function check_ver_string verifies the version string which identifies the file format.

fun check_ver_string () =
let val s = rev (tl(get_long_str [RP] [1)) in
(unget RP;
(s = (map (byte_to_char o ord) (explode Keyword.versionName))))
end

The function get_tag takes a string str which is the tag expected to be read from the input.
It scans through the input characters comparing each character with successive character of
str until the end of it. If the end of str is reached and all corresponding characters agree, the
required tag is found. Otherwise it raises an exception.

fun get_tag str =

let
fun £ [J = true
| £ (x::x8) =
case (peek()) of
(ALPHA c¢) => if(c = x) then (strip(); f xs) else false
| _ => false
in

if (f (explode str)) then ()
else raise (PARSING_ERR {function="get_tag",
message="Expecting tag ("“str~")"})
end
end (* local *)

6.2.5 Parsing functionals Functions in this section are parsing functionals. They process
the higher level objects, such as an item, a list or a pair. In general, they take parsing functions
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as arguments. The functionals parse the delimiters of the object and use the supplied functions
to parse the sub-objects. :

An item is always enclosed in a pair of parentheses. The function parse_item takes a
function kind which parses the contents between the parentheses. parse_item ignores any
leading blanks before the open parenthesis LP. It applies the parsing function kind to process
the contents after the LP. It then skips any blanks before the closing parenthesis RP and gets
the RP. An exception is raised if neither the LP nor the RP is found. If the paring function kind
fails with the special exception PARSE_DONE, we skip to the end of the item and propagate the
exception. This situation occurs when all goals are proved, so the remaining proof lines are
skipped over.

fun parse_item kind ) =
(skip_sp O;
if (LP = peek()) then
(stripQ;
let
val x = kind()
handle PARSE_DONE => (skip_long_string true [RP];
raise PARSE_DONE)
| e => raise e
in
(skip_sp(Q);
if (RP = next()) then x
else raise (PARSING_ERR
{function="parse_item", message="expecting RP"}))
end)
else raise (PARSING_ERR
{function="parse_item", message="expecting LP"})

)

A pair is always enclosed in a pair of braces. The function parse_pair processes a pair.
The argument is a pair of parsing functions which parse the first and second field of the pair,
respectively.

and parse_pair (£f1,f2) () =

(skip_spQ);
if (LC = peek()) then
(strip();
let
val x1 = f1() and x2 = £2()
in

(skip_spQ);
if (RC = next()‘) then (x1,x2)
else raise (PARSING_ERR

{function = "parse_pair", message = "expecting RC"}))
end)
else raise (PARSING_ERR
{function = "parse_pair", message = "expecting LC"}))

A list is always enclosed in a pair of brackets. The function parse_list parses lists. Its argu-
ment kind is a parsing function for a single element. It uses the local function get_list_items
to process the elements recursively.

A closure is a list without the enclosing brackets. The function parse_closure uses the
same local function as parse_list to process the elements.
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NOTE: the list of items returned is in reverse order.

local
fun get_list_items f 1 =
get_list_items £ ((parse_item £ ())::1)
handle PARSE_DONE => (skip_long_string false [RB]; 1)
" (* raise PARSE_DONE *)
| CHK_ERR {message = "expecting LP",
origin_function = "parse_item",
origin_structure = "Parsing"} => 1
| e => raise e
fun get_list_pum 1 =
get_list_num ((get_num ())::1)
handle CHK_ERR {message,origin_function,origin_structure} => 1
| e => raise e
in
fun parse_list kind () =
(skip_spQ);
if (LB = peek()) then
(stripQ;
let val items = get_list_items kind [] in
(skip_spQ;
if (RB = next()) then items
else raise (PARSING_ERR

{function = "parse_list", message = "expecting RB"})
)

end)

else raise (PARSING_ERR
{function = "parse_list", message = "expecting LB"}))
and parse_closure kind () =
(skip_sp(); get_list_items kind [])
and parse_num_list () =

(skip_spQ);
if (LB = peek()) then

(strip(Q;

let val items = get_list_num [] in

(skip_spQ);
if (RB = next()) then items
" else raise (PARSING_ERR
{function = "parse_num_list", message = "expecting R
B"}))

end)

else raise (PARSING_ERR
{function = "parse_num_list", message = "expecting LB"}))

end (* local *)

The function parse_list_pairs is similar to parse_list_items except that the elements
are pairs. NOTE: the list of pairs returned is in reverse order.

local
fun get_list _pairs f 1 =
get_list_pairs £ ((parse_pair £ ())::1)
handle PARSE_DONE => (skip_long_string true [RB];
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raise PARSE_DONE)
| CHK_ERR {message = "expecting LC",
origin_function = "parse_pair",
origin_structure = "Parsing"} => 1
| e => raise e

in
fun parse_list_pairs kind () =
(skip_sp();
if (LB = peek()) then
(stripQ;
let val items = get_list_pairs kind [] in
(skip_sp(Q);
if (RB = next()) then items
else raise (PARSING_ERR
{function = "parse_list", message = "expecting RB"}))
end)
else raise (PARSING_ERR

{function = "parse_list", message = "expecting LB"}))
end; (* local *)

end; (* functor Parsing *)



Keywords

The module keyword specifies the concrete strings of the proof file and the log file. Throughout
the program, symbolic names defined in this module are used instead of concrete strings. If the
formats are changed, only definitions in this module need to be modified.

7.1 The specification

The signature Keyword_sig specifies a structure containing all the keywords the lexical analyser
and the parser understand. These keywords constitute the concrete syntax of the proof format.

signature Keyword_sig =

sig
val
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

end;

alphas: string list
symbols: string list
idchars: string
tyvar: string

LP:
RP:
LC:
RC:
LB:
RB:
PLUS

string
string
string
string
string
string

: string
MINUS: string

PM: string list
versionName: string
log_versionName: string
TYOP: string
TYVAR: string
TYCONST: string
VAR: string
CONST: string
APP: string

ABS: string

THM: string

LINE: string
PROOF: string
VERSION: string
ENV: string
TIMESTAMP: string
USED: string
PROVED: string
and UNSOLVED: string

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

(*

Alphanumeric keywords *)

Symbolic identifiers *)

Special characters in alphanumeric id *)
The leading charcter of type variables *)
Begin of an item *)

End of an item *)

Begin of a pair *)

End of a pair *)

Begin of a list *)

End of a list *)

The optional signs before a number *)
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7.2 The implementation

Here is the keyword structure. alphas is a list of tags, i.e., the first atom in an expression that
identifies what kind of expression this is. symbols is a list of allowable symbolic identifiers. All
initial substrings of these strings can be the names of constants. idchars are characters, in
addition to letters and digits, allowed in alphanumeric identifiers. tyvar is the initial character
of a type variable. LP and RP are the left and right parentheses. They enclose an expression.
LC and RC are the left and right braces which enclose a pair. LB and RB are the left and right
brackets which enclose a list. PM is a list of characters which may appear in front of a number,
i.e., the optional signs. versionName is a string identifying the version of the input file format.
log_versionName is a string identifying the version of the output file format.

VERSION is a special tag. All characters after the blanks following this tag until the closing
RP are taken as a single string. A list of symbolic names are defined for the tags of all kinds of
expressions. They are exported and used by the parser.

structure HOLProofKey :Keyword_sig =
struct
Val alphas = [lloll’ "V", "cll’ llv"’ "CII, llAll’ IILII’
IITHMII , "LINEII R IIPRDUF" R IIVERSIUNII , "ENVII R
"TIMESTAMP", "USED", "PROVED", "UNSOLVED"]

and symbols - [n-n, n**"’ ll++"’ ll<__ll’ ng->n, ||__>n, e mygn LSS
n>=n’ n<==", "<=>u’ ll___==", ||==>", n\\/u, n//n’ ll/\\"’ }
n!?n’ n!!u’ ll!\\ll’ ll?!ll’ u??n’ "?\\ll’ "ozt n<>n, l|’ll’ll@ll,
ng-n, ll<<", ll<=l|’ nosn o uzyu N=n

and idchars = "_’}"

and tyvar = "*"

and LP = Il(ll and RP Il)ll

and LC = "{" and RC = "}"

and LB = n[" and RB = n]"

and PLUS = "+" and MINUS = "-"

and PM = ["-", "+"] (* There should be no space between these signs
and the following digits. The first should be
the minus sign, the second the plus. *)

and versionName = "PRF FORMAT 1.0 EXTENDED"

and log_versionName = "HOL CHECKER 0.1";

val idchar_codes = map ord (explode idchars)
and tyvar_code = ord tyvar;

val [TYOP, TYVAR, TYCONST, VAR, CONST, APP, ABS,
THM, LINE, PROOF, VERSION, ENV,
TIMESTAMP, USED, PRUVED, UNSOLVED] = alphas;
end;



8 The checking rules

The module Check is the critical part of the checker. It implements the checking rules. For
each basic inference rule basicrule, a checking function chk_basicrule is defined. The functions
return true if the inference is correct, otherwise, they return false. If the theorem is not in
the expected form, an exception is raised due to the failure in pattern matching.

8.1 The specification

signature Check_sig =
sig

structure Report: Report_sig
structure Htype: Htype_sig
structure Hterm: Hterm_sig
structure Hthm: Hthm_sig
structure Henv: Henv_sig
structure Proof: Proof_sig
structure HtermSet: ORD_SET

The main functions provided by this module are init which should be called to initialise
the module at the beginning of a proof; chk_pline which is called for each proof line; and
chk_proof which is called at the end of each proof.

val init : unit -> unit

val chk_pline: (int * Proof.justification * Hthm.hthm) -> int
val chk_proof: (string * Hthm.hthm list * int list) -> unit

Below are checking functions for each kind of justification. They do not need to be exported.
They should be removed from the signature when the program is stable.

val chk_Abs: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_Assume: (Hterm.hterm * Hthm.hthm) -> bool
val chk_BetaConv: (Hterm.hterm * Hthm.hthm) -> bool
val chk_Disch: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_InstType:
(int * (Htype.htype * Htype.htype)list * int * Hthm.hthm) -> bool
val chk_Mp: (int * int * int * Hthm.hthm) -> bool
val chk_Refl: (Hterm.hterm * Hthm.hthm) -> bool
val chk_Subst:
(int * (int * Hterm.hterm)list * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_Axiom: (string * string * Hthm.hthm) -> bool

val chk_Definition: (string * string * Hthm.hthm) -> bool
val chk_DefExistsRule: (Hterm.hterm * Hthm.hthm) -> bool
val chk_Hypothesis: Hthm.hthm -> bool

val chk_NewAxiom: (string * Hterm.hterm * Hthm.hthm) -> bool
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val chk_NewConstant: (string * Htype.htype) -> bool

val chk_NewType: (int * string) -> bool

val chk_Numconv: (Hterm.hterm * Hthm.hthm) -> bool

val chk_StoreDefinition: (string * Hterm.hterm # Hthm.hthm) -> bool
val chk_Theorem: (string * string * Hthm.hthm) -> bool

val chk_AddAssum: (int * Hterm.hterm * int- * Hthm.hthm) -> bool
val chk_Alpha: (Hterm.hterm * Hterm.hterm * Hthm.hthm) -> bool

val chk_ApTerm: (int * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_ApThm: (int * int * Hterm.hterm * Hthm.hthm) -> bool

val chk_Ccontr: (int * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_Choose: (int # Hterm.hterm * int * int * Hthm.hthm) -> bool
val chk_Conj: (int # int * int * Hthm.hthm) -> bool

val chk_Conjunctl: (int * int * Hthm.hthm) -> bool

val chk_Conjunct2: (int * int * Hthm.hthm) -> bool

val chk _Disji: (int * int * Hterm.hterm * Hthm.hthm) -> bool

val chk_Disj2: (int * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_DisjCases: (int * int * int * int * Hthm.hthm) -> bool

val chk_EqImpRuleL: (int * int * Hthm.hthm) -> bool

val chk_EqImpRuleR: (int * int * Hthm.hthm) -> bool

val chk_EqMp: (int * int * int * Hthm.htbm) -> bool

val chk_EqTIntro: (int * int * Htbm.hthm) -> bool

val chk_EtaConv: (Hterm.hterm * Hthm.hthm) -> bool

val chk_Exists: (int * Hterm.hterm * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_Ext: (int * int * Hthm.hthm) -> bool
" val chk_Gen: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_ImpAntisymRule: (int * int * int * Hthm.hthm) -> bool
val chk_ImpTrans: (int * int * int * Hthm.hthm) -> bool
val chk_Inst: (int * (Hterm.hterm * Hterm.hterm) list * int * Hthm.hthm)
-> bool
val chk_MkAbs: (int * int * Hthm.hthm) -> bool
val chk_MkComb: (int * int * int * Hthm.hthm) -> bool
val chk_MkExists: (int * int * Hthm.hthm) -> bool
val chk_NotElim: (int * int * Hthm.hthm) -> bool
val chk_NotIntro: (int * int * Hthm.hthm) -> bool
val chk_Spec: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_Subs: (int * int list * int * Hthm.hthm) -> bool
val chk_SubsOccs: (int * (int list * int) list * int * Hthm.hthm) -> bool
val chk_SubstConv: (int * (int * Hterm.hterm) list *
Hterm.hterm * Hterm.hterm * Hthm.hthm) -> bool
val chk_Sym: (int * int * Hthm.hthm) -> bool
val chk_Trans: (int * int * int * Hthm.hthm) -> bool
end

8.2 The implementation

functor CheckFUN (structure Report: Report_sig and Htype:Htype_sig
and Hterm:Hterm_sig and Hthm: Hthm_sig
and Henv: Henv_sig and Proof: Proof_sig
and HtermSet: ORD_SET
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struct
structure
structure
structure
structure
structure
structure
structure

sharing Report = Htype.Report = Hterm.Report = Hthm.Report
and Htype = Hterm.Htype = Hthm.Hterm.Htype =
Henv.Htype = Proof.Htype
and Hterm = Hthm.Hterm = Henv.Hterm = Proof.Hterm
and Hthm = Proof.Hthm
and HtermSet = Hthm.HtermSet
sharing type Hterm.hterm = HtermSet.item) : Check_sig =

Report = Report;

Htype = Htype;
Hterm = Hterm;
Hthm = Hthm;

Henv = Henv;
Proof = Proof;
HtermSet = HtermSet;

open Htype Hterm Hthm Henv Proof;

fun Check_ERR{function,message} =
Exception7CHK_ERR{message = message,

origin_function = function,
origin_structure = "Check"};

val debug = ref 0;
fun write_out s = (output(std_err, s); flush_out std_err);
fun init Q) = (

debug := Debug.get_debug "Check";
M;

8.2.1 Functions for outputting to log file These two functions are convenient for writing
to the log file. The tag is the name of the justification. The function write_used is used for the
justifications DEFINITION and THEOREM. The first string s; is the name of the theory and the
second string s, is the name of the theorem. The function write_used?2 is for the justifications
NEWAXIOM and STOREDEFINITION.

local

open Report

open Keyword Io

in

fun write_used (tag,sl,s2,thm) =
(write_output_string (LP ~ tag =~ " " ~ s1 =~ " " = g2);
Hthm.pr_hthm thm;
write_closing_line ())
and write_used2 (tag,sl,tm,thm) =
(write_output_string (LP ~ tag = " " ~ s1);
Hterm.pr_hterm tm;
Hthm.pr_hthm thm;
write_closing_lime ())

end
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8.3 Checking functions

All checking functions are described below in detail. They are grouped into three subsections:
primitive rules, miscellaneous functions and derived ules. For each rule, the syntax in the proof
file is given in a box first. It is followed by a specification, the name of the rule and the type of
the ML function which implements the rule in HOL and a more detail description. The checking
function is shown at the end. In the case of a derived rule, a proof in terms of primitive rules
and other derived rules is given. Care has been taken not to introduce circular dependency in
these proofs. Some of the proofs were adapted from [5] with some modifications.

8.3.1 Primitive rules

e Abstraction
[ABS term NUMBER

TFt =t
TF(z.t1) = (Mz.te)

ABS : term -> thm -> thm

The term argument must be a variable, and must not be free in the assumptions of the
hypothesis I'. The NUMBER refers to the theorem in a line having the given line number.
This theorem must be an equation.

fun chk_Abs (line,term,ni,thm) =

let val thml = (get_thm (line,nl))
val hypl = hyp thml and conl = concl thmil
val (left,right) = dest_eq (concl thm)
val (1v,lbody) = dest_abs left and (rv,rbody) = dest_abs right
val hyps = hyp thm

in
well_typed term andalso is_var term andalso
is_eq conl andalso (HtermSet.equal(hypl, hyps)) andalso
(v = rv) andalso (term = rv) andalso
not(mem 1lv (freesl (HtermSet.listItems hyps))) andalso
(1body = (1hs conl)) andalso (rbody = (rhs conl))

end;

e Assumption introduction
{ASSUME term

tHt

ASSUME : term -> thm

The term ¢ must be of type : bool. There should be only a single assumption, and it must
be the same as the conclusion.
fun chk_Assume (term, thm) =
let val [ass] = HtermSet.listItems (hyp thm)
val conc = concl thm
in
is_bool_ty term andalso (conc = term) andalso (conc = ass)
end;
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e [(-conversion
[BETACONV term

F (/\.’I;.tl)tz = tl[tz/.'lt]
BETA_CONV : term -> thm

The term argument must be a B-redex in the form (Az.t;)t2. The right-hand side of the
resulting theorem is obtained by substituting ¢, for = in ¢; with suitable renaming of
variables in ¢; to avoid variable capture.

fun chk_BetaConv (term, thm) =
let val (rat,rnd) = dest_comb term
val (v,body) = dest_abs rat
val conc = concl thm
in :
well_typed term andalso
is_eq conc andalso ((lhs conc) = term) andalso
(HtermSet.isEmpty (hyp thm)) andalso
term_subst_chk [((v,rnd),v)] body (rhs conc) body
end;

¢ Discharging an assumption
[DISCH term NUMBER

'kt
r—{t1}|'t1 Dt

DISCH : term -> thm -> thm

The input term ¢; must be of type : bool. The NUMBER refers to the theorem in the line
having the given number. The expression I' — {¢,} denotes the set subtraction of {t;}
from I'. If ¢; is not in T, the result of the subtraction is I" itself.
fun chk_Disch (line, term, nl, thm) =
let val thmi = get_thm (line,nl)
val (ante,conc) = dest_imp (concl thm)
in
is_bool_ty term andalso
(ante = term) andalso (conc = (concl thml)) andalso
(HtermSet.equal ((hyp thm),

(HtermSet.difference((hyp thmi), (HtermSet.singleton term)))))
end;

s Type instantiation
[INSTIYPE type_type_list NUMBER |

L'kt
Lk to1,...,0n Q1,...,00]

INST_TYPE : (type # type)list -> thm -> thm

The first argument is a list of type pairs [(61,1); .. .; (0, @n)] which specifies the simul-
taneous type substitutions to be made in the theorem referred to by NUMBER. The second
fields a; of the pairs must be type variables, and @; must occur in any assumption in I'.
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All occurrences of «; in ¢ are replaced by the corresponding o;. Furthermore, if distinct
variables in ¢ become identical after the instantiation, they will be renamed. -
fun chk_InstType (line, type_type_list,ni,thm) =
let
val thml = get_thm (line,nl)
val tyvar_list = map snd type_type_list
val hypp = hyp thm
val hypl = HtermSet.listItems hypp
in
every is_vartype tyvar_list andalso
every (type_0K o fst) type_type_list andalso
HtermSet.equal (hypp, (hyp thml)) andalso
null(intersect tyvar_list (tyvarsl hypl)) andalso
term_inst_chk type_type_list (freesl hypl) (concl thm) (concl thml)
end; ’

¢ Modus Ponens
|MP NUMBER NUMBER |

TiFt1 Dt Taokty
Ul iy

MP : thm -> thm -> thm

The theorem referred to by the first NUMBER must be an implication. The theorem referred
to by the second NUMBER must match the antecedent of the first theorem exactly.

fun chk_Mp (line, nl,n2,thm) =
let val thml = get_thm (line,nl) and thm2 = get_thm (line,n2)
val (ante,conc) = dest_imp (concl thmil)
in
(conc = concl thm) andalso (ante = concl thm2) andalso
HtermSet.equal ((hyp thm), (HtermSet.union((hyp thmi), (hyp thm2))))
end;

o Reflexivity
|REFL term |

REFL : term -> thm

The term t must be of type : bool. The resulting theorem must be an equation with
identical terms on both sides.

fun chk_Refl (term,thm) =
let val conc = concl thm
in
well_typed term andalso HtermSet.isEmpty(hyp thm) andalso
is_eq conc andalso (lhs conc = term) andalso (rhs conc = term)
end;
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e Substitution
| SUBST NUMBER.term_list term NUMBER ]

1"1I-t1=t’1 I‘nl—tn=t;1 r|‘t[t1,...,tn]
FlU---UI‘,,,UI‘}'t[ti,...,t.'n/tl,...,tn]

SUBST : (thm # term)list —-> term -> thm -> thm

The first argument is a list of pairs whose first fields are equational theorems ¢; = ¢}, and
whose second fields are simple variables ;. The second argument is a term of the form
t[x1,...,2Zs). It should match the conclusion of the theorem referred to by NUMBER. The
variables z; in the term mark the places where substitutions using the theorems + t; = ¢}
are to be done. The type of z; must be the same as of #;. Variables in ¢ may be renamed
to avoid capture.

fun chk_Subst (line, num_term_list,term,nl,thm) =

let val thml = get_thm (line,nl)
val thms = map (fn n => get_thm(line, (fst n))) num_term_list
val hyps = fold HtermSet.union (map hyp thms) HtermSet.empty
val 1rl = map (dest_eq o concl) thms
val (_,vl) = ListUtil.unzip num_term_list
in

every (is_eq o concl) thms andalso

HtermSet.equal ((hyp thm), (HtermSet.union(hyps, (hyp thmi)))) andalso

term_subst_chk (ListUtil.zip(lrl,vl)) term (concl thm) (concl thmi)
end;

8.3.2 Miscellaneous Functions

¢ Retrieving an axiom
[AXIOM STRING STRING |

axiom : string -> string -> thm
This justification indicates that the theorem in this inference step is an axiom whose name

is the second string and which is stored in the theory specified as the first string. The
well-typedness of the axiom should be checked. An entry is written to the log file.

fun chk_Axiom (s1,s2,thm) =
(write_used ("AXIOM", sl, s2, thm);
is_bool_ty(concl thm) andalso
every is_bool_ty (HtermSet.listItems(hyp thm)))

¢ Retrieving a definition
 [DEFINITION STRING STRING |

definition : string -> string -> thm

This justification indicates that the theorem in this inference step is a previously defined
definition whose name is the second string and which is stored in the theory specified as
the first string. The well-typedness of the theorem should be checked. An entry is written
to the log file.

fun chk_Definition (s1,s2,thm) =
(write_used ("DEFINITION", si1, s2, thm);
is_bool_ty(concl thm) andalso
every is_bool_ty (HtermSet.listItems(hyp thm)))
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¢ Create a definitional theorem
| DEFEXISTSRULE term |

DEF_EXISTS_RULE : term -> thm

This justification introduces a new definitional theorem. The input term must be an
equation and both sides must be of the same type.

fun chk_DefExistsRule (tm,thm) =
let val (left,right) = dest_eq (snd(strip_forall tm))
val (1,r) = dest_eq(snd(strip_forall(snd(dest_exists(concl thm)))))
in
(well_typed left) andalso (well_typed right) andalso
((type_of left) = (type_of right)) andalso
(left = 1) andalso (r = right)
end

¢ Hypothesis
|HYPOTHESIS A |

This justification indicates that the theorem is one of the initial theorems of the proof. It
should have been proven in a previous proof. An entry is written to the log file.

fun chk_Hypothesis thm =
(write_used ("HYPOTHESIS", "", "', thm);
is_bool_ty (concl thm))

e Introducing a new axiom
INEWAXIOM STRING term

F Vz; ...:vn.t[a:l,...,a:n]

nev_axiom : (string # term) -> thm

This justification introduces a new axiom. It is in the form given as the term. The
STRING is the name of the axiom. All free variables in the input term are automatically
generalised. An entry is written to the log file.

fun chk_NewAxiom (s,term,thm) =
let val (vs,body) = (strip_forall (concl thm)) in
write_used2 ("NEWAXIOM", s, term, thm);
(term = body) andalso (every (fn x => mem x vs) (frees term))
end

e Introducing a new constant
| NEWCONSTANT STRING type

new_constant : string -> type -> void

This justification declares a new constant whose name is the given STRING and whose type
is the given type. The name should be unique, i.e., different from any existing constant,
and the type should be well-formed. The current signature should be updated. There
should be no conclusion (derived theorem) in this inference step. To satisfy the type
checker, the theorem TRUTH is used as a dummy.

fun chk_NewConstant (string,ty) =
if (type_OK ty) then
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let val _ = add_const(string,ty)
handle (CHK_ERR{origin_function=f,
origin_structure=s,message=m}) =>
raise (Check_ERR{function="chk_NewConstant",
message=(s~".""f"":""m)})
| e => raise e
in true end
else raise (Check_ERR{function="chk_NewConstant",
message="type of new constant not well-formed"})

e Introducing a new type
[NEWIYPE NUMBER STRING |

new_type : int -> string -> void

‘This justification declares a new type constructor whose name is the given STRING and
whose arity is the given NUMBER. The name should be unique, i.e., different from any
existing type constructor. The current type structure should be updated. The theorem
in this inference step is not used. To satisfy the type checker, the theorem TRUTH is used
as a dummy.

fun chk_NewType (num,string) =
let val _ = add_type(string,num)
handle (CHK_ERR{origin_function=f,origin_structure=s,message=m}) =>
raise (Check_ERR{function="chk_NewType",
message=(s~".""f"":""m)})
| e => raise e
in true end

e Definition of non-zero numbers
[ NUMCONV term

Fn=SUCm

num_CONV : term -> thm

The input term must be a constant denoting a non-zero natural number. m is a numeric -
constant denoting the predecessor of n.

fun chk_Numconv (term,thm) =
let val (left,right) = dest_eq (comcl thm)
val n = StringCvt.atoi(fst(dest_const left))
and (s,m) =
((fst o dest_const) ## (StringCvt.atoi o fst o dest_const))
(dest_comb right)
in
(term = left) andalso (n = (m + 1)) andalso (s = "SUC")
end

e Storing a definition
[STOREDEFINITION STRING term |

store_definition : (string # term) -> thm

This justification introduces a new definition. In fact, making a new definition is a three-
step process:
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1. a theorem asserting the existence of the definition is derived with the justification
DEFEXISTSRULE;

2. a new constant is declared with the justification NEWCONSTANT;
3. the definition is saved in the current theory with the justification STOREDEFINITION.

Since this file format allows only the four kinds of primitive terms, special syntactic status
of constants, i.e., infix or binder, are not recognised. The input term must be a series
of conjunctions. Each conjunct is an equation and both sides are of the same type. An
entry is written to the log file.

fun chk_StoreDefinition (s,term,thm) =
let
fun chk_tm ((1,r),t) =
t andalso (well_typed 1) andalso (well_typed r) andalso
((type_of 1) = (type_of 1))
val conjs = strip_conj (snd(strip_forall term))
val 1lrlst = map (dest_eq o snd o strip_forall) comnjs
in
write_used2 ("STOREDEFINITION", s, term, thm);
(fold chk_tm lrlst true) andalso (term = (concl thm))
end

¢ Retrieving a theorem
[THEOREM STRING STRING |

theorem : string -> string -> thm

This justification indicates that the theorem in this inference step has been derived pre-
viously. It has been stored in the theory, whose name is the first string, under the name
specified as the second string. The well-typedness of the theorem should be checked. An
entry is written to the log file.

fun chk_Theorem (s1,s2,thm) =
(write_used ("THEOREM", s1, s2, thm);
is_bool_ty(concl thm) andalso
every is_bool_ty (HtermSet.listItems(hyp thm)))

8.3.3 Derived Rules

¢ Adding an assumption
| ADDASSUM term NUMBER

rrt
I, 'kt

ADD_ASSUM : term -> thm -> thm
The input term is the new assumption ¢’ to be added to the theorem. It must be of type

bool. -
1. Rt . [ASSUME]
2. Tkt [Hypothesis]
3. THt'Dt [DISCH 2]
4. T, ¢+t [MP 3,1]
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fun chk_AddAssum (line, term, n, thm) =
let val thmi = get_thm(line, n)

in
(concl thm = concl thml) andalso (ty_is_bool(type_of term)) andalso

(HtermSet.equal ((HtermSet.delete((hyp thm), term)), (Chyp thml1)))
end

e g~-conversion
|ALPHA term term

Fit =1t

ALPHA : term -> term -> thm

The input terms #; and ¢; must be a-equivalent, otherwise, it fails.
fun chk_Alpha (termi, term2, thm) =

let val (left,right) = dest_eq (concl thm)

in
well_typed terml andalso well_typed term2 andalso

aconv left right andalso (terml = left) andalso (term2 = right)

end

e Application of a term to a theorem
|APTERM term NUMBER

I‘i‘t1=t2
Thtty =tts

'AP_TERM : term -> thm -> thm
The input term must have a function type whose domain is the type of the left-hand side
(or right-hand side as the type of both sides must be the same) of the input theorem.

1. THti=t [Hypothesis]
2. Ftti=th ' [REFL]
[SUBST 1,2]

3. Thrtty=tts

fun chk_ApTerm (line, term, n, thm) =
let val ((1t,left), (rt,right)) =
(dest_comb ## dest_comb) (dest_eq(concl thm))
val thml = get_thm(line, mn)
val (1ft,rgt) = dest_eq (concl thml)
in
(1t = rt) andalso (term = 1lt) andalso
(1ft = left) andalso (rgt = right) andalso
(HtermSet.equal ((hyp thm), (hyp thml))) andalso
(domain_of (type_of term) = (type_of left))

end
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e Application of a theorem to a term
|APTHM NUMBER term

'kt =t
TrHtit=1t1

AP_THM : thm -> term -> thm

The input term must have the same type as the domain of the left-hand side (or the
right-hand side) of the input theorem.

1. T =1 [Hypothesis]
2. Ftht=tt [REFL]
3. I'ktyt=trt [SUBST 1,2]

fun chk_ApThm (line, n, term, thm) =
let val ((left,lt), (right,rt)) =
(dest_comb ## dest_comb) (dest_eq(concl thm))
val thml = get_thm(line, n)
val (1ft,rgt) = dest_eq (concl thml)
in
(1t = rt) andalso (1t = term) andalso
(left = 1ft) andalso (right = rgt) andalso
(HtermSet.equal ((hyp thm), Chyp thml))) andalso
(domain_of (type_of left) = (type_of term))
-end

e Classical contradiction rule
[CCONTR term NUMBER

THF
T-{-t}F¢

CCONTR : term -> thm —-> thm

The theorem referred to by the NUMBER must have F as its conclusion. The input term
t should be of type :bool, and the negation of it should occur in the assumption of the

input theorem.
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1. Fa=X.bDF [Definition of -]
2. F-t=(\b.bDF)t [AP_THM 1]
3. F(Ab.bDF)t=tDF [BETA_CONV]
4. F-t=t>F [TRANS 2,3]
5. TFF [Hypothesis]
6. TF-tDF [DISCH 5]
7. TFEDF)OF [SUBST 4,6]
8. t=Frt=F [ASSUME]
9. I,t=FF(FOF)DOF [SUBST 8,7]
10. FFF [ASSUME]
1. FFOF [DISCH 10]
12. T,t=FFF [MP 9,11]
13. FF=Vb.b [Definition of F]
4. T, t=FFVbb [SUBST 13,12]
15. T,t=FFkt [SPEC 14]
16. FVb.(b=T)V(b=F) [Axiom EXCLUDED_MIDDLE]
17 F(=T)V(t=F) [SPEC 16]
18. t=Tkrt=T [ASSUME]
19. t=TFT=t [SYM 18]
2. T [Theorem TRUTH]
21. t=Tkt [EQ_MP 19,20]
22. TFHt [DISJ_CASES 17,21,15]

fun chk_Ccontr (line, term, n, thm) =
let val thml = get_thm(line, n)

in

and not_term =

mk_comb (mk_const ("~",mk_funtype(bool_ty,bool_ty)), term)
and F = mk_const("F", bool_ty)
val hypi = (HtermSet.delete((hyp thml), not_term))
handle NotFound => (hyp thmi)

(concl thml = F) andalso (concl thm = term) andalso
(HtermSet.equal((hyp thm), hypi))

end

e J-elimination

|CHOOSE term NUMBER NUMBER

CHO

OSE :

Ty b 3z.tfz] Ty, tv] ¢

LUl ¢

(term # thm) -> thm -> thm

The input term must be a variable v and its type must be the same as the existentially
quantified variable z in the first theorem. #[v] is a term occurring in the assumptions
of the second theorem. It is the same as t[z], the body of the first theorem, up to a-
conversion. The variable v must not occur free in the conclusion of the first theorem, i.e.,
3z. t[z], and neither can it occur free in I'; or ¢'.
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1. F3=)P.PeP) [Definition of 3']
2. F3(Az.t[z]) = (A\P. P(e P))(\z.t[z]) [AP_THM 1]
3. Ty F3Iz.tz]) [Hypothesis]
4. Ty (AP.P(e P))(Az.t[z]) [EQMP 2,3]
5. F(AP.P(e P))(Az.t[z]) = (Az. t[z]) (e(Az. t[z])) [BETA_CONV]
6. Tk (z.t[z])(e(Az. t[z]) [EQMP 5,4]
7. F (Az.tfz])v = t[v] [BETA_CONV]
8. k] = (z.t[z])v [sYM 7]
9. T, tlu]Ft [Hypothesis]
10. Ty ktp]D¢ [DISCH 9]
11. To b (Qz.tfz])v Dt [SUBST 8,10]
12.  (Az.t[z])v F (Az. t[z])v [ASSUME]
13. Ty, (Az.t[z])v ¢ [MP 11,12]
14. ThUl Rt [SELECT_ELIM 6,13]

fun chk_Choose(line, term, nl, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (evar,ebody) = dest_exists(concl thml)
val hypl = hyp thml and hyp2 = hyp thm2
val hyp2l = HtermSet.listItems hyp2
val wit = ListUtil.findOne (aconv ebody) hyp2l
in
case wit of
NONE => false
| SOME tm =>
let
val hyp2’ = HtermSet.delete(hyp2, tm)
in
(is_var term) andalso not(mem term(frees(concl thmi))) andalso
(not (mem term (frees (concl thm2)))) andalso
(not (mem term (freesl (HtermSet.listItems hyp2’)))) andalso
(concl thm = concl thm2) andalso
(HtermSet.equal((hyp thm), (HtermSet.union(hypl, hyp2’))))
end
end

e A-introduction
|CUNJ NUMBER NUMBER

Tyt Tolkis
Ul Ats

CONJ : thm -> thm -> thm
The two NUMBERs refer to two theorems which are to be combined by the A operator.

lwith suitable type instantiation.
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L FA=Xb1 ba.Vo.(b1 D (b2 D b)) Db [Definition of A]
2. FS8At =S$AL [REFL]
3.+ (Aby ba.Vb. (by D (b2 D b)) D b)Yty =

Aba V. (21 D (b2 D b)) Db [BETA_CONV]
4. FSAH; = (Ab1 bs. Vb. (bl D (bz » b)) D b)tl [SUBST 1,2]
5. FSAt; = Abo.Vb. (21 D (b2 D b)) Db [SUBST 3,4]
6. FtiAta=t1 Aty [REFL]
7. F(Ab2.Vb.(t1 D (b2 D b)) D b)t2
=Vb.(t; D (.2 D b)) Db) [BETA_CONV]
8. ki1 Aty = (Ab.Vb. (¢ D (b2 D b)) D bty [SUBST 5,6]
9. FtaAta=Vb.(t1 D ((.2Db)) Db [suBST 7,8]
10 t:4D(2Db)Ft1D(t2Db) [ASSUME]
11. ThkYy [Hypothesis]
12 Ty, 51 D(2Db)Fi2Db [MP 10,11]
13. Tolkt, [Hypothesis]
14. Ty ULy, t1 D (#2D b)Fb [MP 12,13]
15, TiUTl (1D (2Db) Db [DISCH 14]
16. THUT FVb.(t1 D (t2Db)) Db [GEN 15]
17. kWb (t]_ D (tz D b)) Db=t Aty [SUBST 9,6]
18. ThuTls ki3 Ats [SUBST 17,16]

fun chk_Conj(line, nl, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val hypl = hyp thml and hyp2 = hyp thm2
and concls = map concl [thml, thm2]
val (AND,conjs) = strip_comb (concl thm)
val hyps = hyp thm

in

(well_typed AND) andalso (fst(dest_const AND) = "/\\") andalso
(every is_bool_ty concls) andalso (conjs = concls) andalso
(every is_bool_ty (HtermSet.listItems hyps)) andalso
(HtermSet.equal(hyps, (HtermSet.union(hypl, hyp2))))

end

¢ A-elimination(left)
[ CONJUNCT1 NUMBER

THt At
'kt
CONJUNCT1 : thm -> thm

This inference step extracts the left conjunct from the theorem referred to by NUMBER.
The conclusion of the input theorem must be a conjunction.
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W

N otk

8.

9.
10.
11.
12.
13.
14.
15.
16.

F A = Aby by. Vb (bl D (b2 )] b)) Db

F 8AtL = $AL,

- (Abl bs. Vb. (b1 D) (bz D b)) D b)tl
=Ab2.Vb. (21 D (62D b)) Db

F $At = (Ab]_ by. Vb. (b1 D (bz D b)) D b)tl
F8Aty = Ab2.Vb. (21 D (b2 D b)) Db

Flhi Aty =t Nts

- ()\bQVb (t]_ D (b2 D b)) D b)t2

=Vb.(t1 D (22 Db)) D b)

Fti Al = (}\bg‘V’b (tl > (bz 2 b)) D b)tz
FtaAta=VYb.(t1 D (t2Db) Db

ThHti AL

CEHVYb.(t1D(t2D0) Db
TF#D(@2D4))Dh

tHhFi

thFtaDH

Ft, D (tz D tl)

Tt

fun chk_Conjuncti(line, n, thm) =
let val thml = get_thm(line, n)
val (AND, [conjl,conj2]) = strip_comb (concl thmi)
and hyps = (hyp thmi)

in

[Definition of A]
[REFL]

[BETA_CONV]
[SUBST 1,2]
[SUBST 3,4]

[REFL)

[BETA_CONV]
[SUBST 5,6]
[SUBST 7,8]

[Hypothesis]

[SUBST 9,10

[SPEC 11]
[ASSUME]
[DISCH 13]
[DISCH 14]
[MP 12,15]

(every is_bool_ty (HtermSet.listItems hyps)) andalso
(HtermSet.equal(hyps, (hyp thml))) andalso

(well_typed AND) andalso (fst(dest_comst AND) = "/\\") andalso
(conjl = (concl thm))

end

e A-elimination(right)

{ CONJUNCT2 NUMBER

TFt AL

TFt

CONJUNCT2 : thm -> thm

This inference step extracts the right conjunct from the theorem referred to by NUMBER.
The conclusion of the input theorem must be a conjunction.
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I FA=Abiba.Vb.(by D(b2Db) Db [Definition of A]
2. FSAL =8AL [REFL]
3. F (Aby b2.Vb. (b1 D (b2 D b)) D)y
T =AYb (t1 D (B2D b)) Db [BETA_CONV]
4. Aty = (Aby ba.Vb. (b1 D (b2.0 1)) D b)ty [SUBST 1,2]
5. FSAt; = Aba.Vb. (81 D (62D D)) Db [SUBST 3,4]
6. FtiAta=t1 At [REFL]
7. F ()\bz.Vb. (t1D(b2D b)) D b)te
=Vb. (t1 D (t2 D b)) D b) [BETA_CONV]
8. ki3 Aty = (Ab2.Vb.(t1 D (by D b)) D bty [SUBST 5,6]
9. FtiAta=Vb.((1 D ((2Db)) Db [SUBST 7,8]
10. ThHt1 AL [Hypothesis]
11. TF V. (tl D (tz o b)) b [SUBST 9,10]
12. TF (t11 D (tz D tz)) Dig [SPEC 11]
13. to bk ts [ASSUME]
14. ki Dt [DIScH 13]
15. Ft1 D (tz D tz) [DISCH 14]
16. Tkt [MP 12,15]
fun chk_Conjunct2 (line, n, thm) = !
let val thml = get_thm(line, n)
val (AND, [conji,conj2]) = strip_comb (concl thmi)
and hyps = hyp thml
in
(every is_bool_ty (HtermSet.listItems hyps)) andalso
" (HtermSet.equal (hyps, (hyp thm))) andalso
(well_typed AND) andalso (fst(dest_const AND) = "/\\") andalso
(conj2 = (concl thm))
end
o Intuitionistic contradiction rule
|CONTR term NUMBER
THF
THt
CONTR : term -> thm -> thm
The theorem referred to by NUMBER should have falsity (F) as its conclusion.
1. FVLFDt [Theorem FALSITY]
2. TFF [Hypothesis]
3. FFDOt [SPEC 1]
4. Tht [MP 3,2]

fun chk_Contr(line, term, n, thm) =
let val thml = get_thm(line, n)
and hyps = hyp thm
in
(well_typed(concl thml)) andalso
(fst (dest_const (concl thml)) = "F") andalso
(every is_bool_ty (HtermSet.listItems hyps)) andalso
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(HtermSet .equal (hyps, (hyp thml))) andalso
(is_bool_ty term) andalso (term = concl thm)
end

¢ Right V-introduction

|DISJ1 NUMBER term

DISJ1 :

'kt
Tkt Vi

thm -> term -> thm

The result of this inference rule is a disjunctive theorem whose second disjunct is the
input term. This term must be of type :bool.

1. FV=Abba.Vb.(b1Db)D(b2Db) Db [Definition of V]
2. F8vt =8ty [REFL]
3. ()\bl bs. Vb. (b1 )] b) D (bz D b) D b)tl
=Abp.Vb.(t1 D) D (b Db) Db [BETA_CONV]
4. F8Vt; = (Aby b2.Vb. (b1 Db) D (b2 D b) D)ty : [SUBST 1,2]
5. FSVty =Ab.Vb.(t; Db0) D (b2 Db) Db [SUBST 3,4]
6. Ft1Via=1t1Vi [REFL]
7. (Ab2.Vbh.(t1 D b) D (b2 D b) D bt
=Vb.(t1Db)D(t2Db) Db [BETA_CONV]
8. ki3 Vip = (Ab2.Vb. (83 D b) D (b2 D b) D b)t2 [SUBST 5,6]
C 9. FHiVie=Vb.(t1D20)D(t2Db)Db [suBST 7,8]
10. Tk [Hypothesis}
11. $ DbFt1 Db [ASSUME]
12. T,t,Dbkb [MP 11,10]
13. T, t1DbF({2Db)Db [DISCH 12]
14. T Db)D(2Db)Db [DISCH 13]
15. THVYb.(t1Db)D(t2Db) Db [GEN 14]
16. FVb.(t1Db0)D(t2Db)Db=t1 Vi , : [suBST 9,6]
17. THt Vi [SUBST 16,15]

fun chk_Disji(line, n, term, thm) =
let val thml = get_thm(line, n)
val (OR, [disj1,disj2]) = strip_comb(concl thm)

in

(is_bool_ty disji) andalso (is_bool_ty disj2) andalso
(well_typed OR) andalso ((fst(dest_comnst OR)) = "\\/") andalso
(concl thml = disjl) andalso (term = disj2) andalso
(HtermSet.equal((hyp thm), Chyp thm1)))

end

o Left V-introduction

[DISJ2 term NUMBER

't
Tttt Vi

DISJ2 : term -> thm -> thm

The result of this inference rule is a d1s3unct1ve theorem whose first disjunct is the input

term. This term must be of type :bool.
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1. FV=Xb1ba.Vb.(b1 Db)D(b2Db) Db [Definition of V]
2. F8§vt; =8viy [REFL]
3. (Aby b2.Vb.(by D b) D (b2 DB) D b)Yty
=Aba.Vb.(t1 Db) D (b2Db) Db [BETA_CONV]
4. F8Vty = (Aby b2.Vb.(by D b) D (b2 D b) D b)Yty [SUBST 1,2]
5. F8Vti=Xba.Vb. (21 D0) D (b2Db) Db [SUBST 3,4]
6. FtyVia=1% Vi [REFL]
7. (Ab2.Vb.(t1 D b) D (b2 D b) D b)ts ,
=Vb.(2,D0b)D(#2Db) Db [BETA_CONV]
8. ki1 Vig = (Ab2.Vb.(t; D b) D (b2 D b) D b)ts [SUBST 5,6]
9. Ft;Via=Vb.(t1Db)D((2Db) Db [SUBST 7,8]
10 Tkt [Hypothesis]
11. t3 Dbkt Db [ASSUME]
12. T,t,DbFb [MP 11,10]
1. T, t2DbF(t2Db) Db [DIScH 12]
14. TH@Db)D(@Db)Db [DIscH 13]
15, THEVbL.(t1 20D (220 Db [GEN 14]
16. FVb.(t1Db)D(t2Db)Db=1t Vi, [SUBST 9,6]
17. TkFt Ve [SUBST 16,15]

fun chk_Disj2(line, term, n, thm) =

let val thml = get_thm(line, n)
val (OR, [disj1,disj2]) = strip_comb(concl thm)

in
(is_bool_ty disjl) andalso (is_bool_ty disj2) andalso
(well_typed OR) andalso ((fst(dest_const OR)) = "\\/") andalso
((concl thml) = disj2) andalso (term = disjl) andalso
(HtermSet.equal((hyp thm), (hyp thml)))

end

e V-elimination
|DISJCASES NUMBER NUMBER NUMBER

Pty Ve, T, 80kt T, to bkt
Tubuls ¢

DISJ_CASES : thm -> thm -> thm -> thm

The theorem referred to by the first NUMBER must be a disjunction. The assumptions of
the second and the third theorems must include the first and second disjunct of the first
theorem, respectively.
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1. FV=Xb1beVo. (01 D0)D(B2Db) DB [Definition of V]
2. F§vi =8vty [REFL]
3. (A b2.Vb.(by Db) D (b2 Db) D)y =
Aba.Vb. (]2 D0) D (b2 D) Db [BETA_CONV]
4. F$vt; = ()\bl by. Vb. (bl 2 b) D (bz D b) D b)t]_ [SUBST 1,2]
5. FS8VE=Aba.Vb. (21 Db0) D (b2 Db) Db [SUBST 3,4]
6. Ft1Vie=t Vi [REFL]
7. (Ab2.Vh.(t1 D b) D (b2 D b) D b)E2
=Vb.(t1 D) D(t2Db) Db [BETA_cCONV]
8 FtHivia= (/\bz.Vb. (tl ) b) D (bz ] b) ) b)tz [SUBST 5,6]
9. Ft1Via=Vb.(t;Db)D(2Db) Db [SUBST 7,8]
10. THti Ve [Hypothesis]
11. THEVYb.(t12b)D((2Db) Db , [SUBST 9,10]
12 TH@ D) D(@EDt)Dt . [sPEC 11]
13. I‘]_, t1 Fit [Hypothesis]
14. TiFt Dt [DISCH 13]
15. TU k(D) ' [MP 12,14]
16. T'g, ta ¢ [Hypothesis]
17. Tekt2 Dt [DISCH 16]
18. TUuTl Ukt [MP 15,17]

fun chk_DisjCases(line, nl, n2, n3, thm) =
let val thml = get_thm(line, nil)
and thm2 = get_thm(line, n2) and thm3 = get_thm(line, n3)
val (OR,[disj1l,disj2]) = strip_comb (concl thml)
in :
(well_typed OR) andalso ((fst(dest_comst OR)) = "\\/") andalso
(HtermSet .member ((hyp thm2), disj1)) andalso
(HtermSet .member ((hyp thm3), disj2)) andalso
((concl thm2) = (concl thm3)) andalso
((concl thm) = (concl thm2)) andalso
(HtermSet.equal ((hyp thm), (HtermSet.union((hyp thmi),
(HtermSet .union( (HtermSet.delete((hyp thm2),disjl1)),
(HtermSet .delete((hyp thm3),disj2))))))))
end

e Implication from equality (left)
| EQIMPRULEL NUMBER

Fl"t1=t2
'kt Dt

EQ_IMP_RULE : thm —> (thm # thm)

The theorem referred to by NUMBER must be an equation, and both sides of it must be of
type :bool. The resulting theorem of this justification is the second theorem returned by
the function EQ_IMP_RULE. It is an implication whose antecedent is the right-hand side
of the hypothesis and whose conclusion is the left-hand side of the hypothesis.

1. Trt=t [Hypothesis]
2. takts [ASSUME]
3. Thiz=t [sYM 1]
4. T, tokt [SUBST 3,2]
5. Tkt Dty [DISCH 4]
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fun chk_EqImpRuleL(line, n, thm) =

let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thmil)

in
(is_bool_ty left) andalso (is_bool_ty right) andalso
((right,left) = dest_imp(concl thm)) andalso
(HtermSet.equal ((hyp thm), (hyp thm1)))

end

¢ Implication from equality (right)
|EQIMPRULER NUMBER

ThH =t
Tkt Dt

EQ_IMP_RULE : thm -> (thm # thm)

The theorem referred to by NUMBER must be an equation, and both sides of it must be of
type :bool. The resulting theorem of this justification is the first theorem returned by
the function EQ_IMP_RULE. It is.an implication whose antecedent is the left-hand side of
the hypothesis and whose conclusion is the right-hand side of the hypothesis .

1. TFti=¢ [Hypothesis]
2. tikty [ASSUME]
3. T,tikt [SUBST 1,2]
4. TFt Dt [DISCH 3]

fun chk_EqImpRuleR(line, n, thm) =

let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thmi)

in
(is_bool_ty left) andalso (is_bool_ty right) andalso
((left,right) = dest_imp(concl thm)) andalso
(HtermSet.equal((hyp thm), (hyp thml)))

end

e Modus Ponens for equality
|EQMP NUMBER NUMBER

IMEti=ty Tl
TbuTla i,

EQ_MP : thm -> thm -> thm

The first theorem should be an equation. The second theorem should be identical to
the left-hand side of the first. The resulting theorem is the right-hand side of the first

theorem.
1. Thht1 =t [Hypothesis]
2. Thky [Hypothesis]

3. THuTla ki, [SUBST 1,2]
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fun chk_EqMp(line, ni, n2, thm) =
let val thml = get_thm(line, ni) and thm2 = get_thm(line, n2)
val (left,right) = dest_eq (concl thml)
in
(left = (concl thm2)) andalso (right = (concl thm)) andalso
(HtermSet.equal((hyp thm), (HtermSet.union((hyp thml), Chyp thm2)))))
end :

e Equality-with-T introduction
[EQTINTRO NUMBER |

LHt
T'Ht=T

EQT_INTRO : thm -> thm This inference introduces an equality. The left-hand side of
the conclusion must be the same as the hypothesis. The right-hand side must be a single

constant T.
1. F Vb be.(by Db2) D (b2 Db1) D (b1 =b2) [IMP_ANTISYM_AX]
2. FVbe.(tDb2)D(b2Dt) D (t=1b2) [SPEC 1]
3. F@EDOTO(T2H)D@E=T) [SPEC 2]
4. +T ' [TRUTH]
5. FtDOT [DIscH 4]
6. F(To)o(@=T) [MP 3,5]
7. Tkt [Hypothesis]
8 TFTOt [DISCH 7)
9. Tkt=T [MP 6,8]

fun chk_EqTIntro(line, n, thm) =

let val thml = get_thm(line, n)
val (lhs,rhs) = dest_eq (concl thm)
and T = mk_const("T", bool_ty)

in
(rhs = T) andalso (lhs = (concl thml)) andalso
(HtermSet.equal((hyp thml), (hyp thm)))

end

e 7-conversion
|ETACONV term

F('.tz) =t

ETA_CONV : term -> thm

The variable 2’ does not occur free in ¢. The input term is the same as the left-hand side
of the resulting theorem.

1. FYf.Qz.fz)=f [ETA_AX]
2. F(Az.tz)=t _ [SPEC 1]
3. F(O2'.tz) = (Az.tz) . [@~conversion)]
4. F(2'.td) =t [TRANS 3,2]
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fun chk_EtaConv(term, thm) =

let val (left,right) = dest_eq (concl thm)

in :
(left = term) andalso (null (HtermSet.listItems(hyp thm))) andalso
(right = (fst o dest_comb o snd o dest_abs)left)

end

e J-introduction
|EXISTS term term NUMBER

T+ tfte/z]
T} 3z. tz]

EXISTS : (term # term) -> thm -> thm

The first term is an existentially quantified term which matches exactly the conclusion of
the resulting theorem, i.e., 3z.t[z]. The second term ¢, must be of the same type as the
bound variable z. When t; is substituted into ¢ for the bound variable z, it results in a
theorem which is the same as the input theorem referred to by NUMBER.

1. + (Afl: t]_ [.’E])tz = t]_ [tz] [BETA_CONV]
2. F t]_ [tg] = (A.’I: t1 [z])tz [SYM 1]
3. Tktto] [Hypothesis]
4. TF (/\{l: i1 [:E])tz [EQ_MP 2,3]
5. Ttk (Az.ty[z])(e(Mz. t1[z])) [SELECT_INTRO 4]
6. F3=VP.P(e P) [Definition of 3]
7. F3I(z.ty[z]) = (AP. P(e P))(\z.t1[z]) [AP_THM 6]
8. F (AP.P(e P))(\z.t1[z]) = (Az. t1[z]) (e(Az. 1 [2])) [BETA_CONY]
9. F3I(Az.t1[z]) = (Az. t1[z])(e(Az. L1 [2])) - [TRANS 7,8]
10. F Az t1[z])(e(Az. ta1[2])) = I(Az. t1[z]) [sYM 9]
11. T+ 30z t[z]) [EQ_MP 10,5]

fun chk_Exists(line, terml, term2, n, thm) =

let val thml = get_thm(line, n) ‘
val (x,body) = dest_exists (concl thm)

in
(terml = (concl thm)) andalso
(term_subst_chk [((x,term2),x)] body (concl thmi) body) andalso
(HtermSet.equal((hyp thm), (hyp thmi)))

end

e Extensionality
|EXT NUMBER |

T'FVYz.thz=t z
Tkt =1,

EXT : thm -> thm

The variable z’ in the proof below is a new variable which does not occur free anywhere
in the input theorem. Both the hypothesis and the conclusion must be equality. Both

lwith appropriate type instantiation.
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sides of the hypothesis must be function applications, and their operands must be the
same variable. Both sides of the conclusion must be the same as the function on the

corresponding side of the hypothesis.

fun chk_Ext(line, n, thm) =
let val (left,right) = dest_eq(concl thm)
val thml = get_thm(line, n)
val (x, con) = dest_forall (concl thml)
val (left’,right’) = dest_eq con
in
(mk_comb(left,x) = left’) andalso
(mk_comb(right,x) = right’) andalso
(HtermSet.equal ((hyp thm), (hyp thmi))) andalso
(not (mem x (freesl (HtermSet.listItems(hyp thm))))) andalso
(not (free_in x left)) andalso (not(free_in x right))
end

o Generalisation(V-introduction)

1. THVz.tiz=tz [Hypothesis]
2. Trtiz'=tya [SPEC 1]
3. T2 .ty o) =\’ t2 ') [ABS 2]
4. F(2t1 )=t [ETA_CONV]
5. Fty=(z'.t; &) [sYM 4]
6. Tkt =zt ) [TRANS 5,3]
7. FOT.tz) =ty [ETA_CONV]
8. ThHty=ty [TRANS 6,7]

|GEN term NUMBER

'+t
I'E-Vz.t

GEN : term -> thm -> thm

fun chk_Gen(line, term, n, thm) =
let val thmil = get_thm(line, n)
val (x,body) = dest_forall(concl thm)

2with appropriate type instantiation.

The input term z is a variable which does not occur free in the assumption I.

1. Dkt [Hypothesis]
2. TrHt=T [EQT_INTRO 1]
3. Tk (Az.t)=(Az.T) [aBs 2]
4. FV(Az.t) =V(Az.t) [REFL]
5. FV=(QP.P=(A2.T)) [Definition of V?]
6. FV(z.t)=(AP.P={(z.T))(\z.t) [SUBST 5,4]
7. F(AP.P=(z.T)(Az.t) = ((Az.t) = (Az. T)) [BETA_CONV]
8. FV(Oz.t) =((Az.t) = (\z.T)) [TRANS 6,7]
9. F((Az.t) =(\z.T)) =V(z.T) [sYM 8]
10. TFV(iz.?) [EQ_MP 9,3]
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val fs = freesl (HtermSet.listItems(hyp thm))

in
(body = concl thml) andalso (not (mem x fs)) andalso
(HtermSet.equal((hyp thm), (hyp thmi)))

end '

¢ Deducing equality from implications
lIMPANTISYMRULE NUMBER NUMBER

I'i1Ft1 Dty Tabkta Dty
uTs Ft =t

IMP_ANTISYM_RULE : thm -> thm -> thm

The two hypotheses should be implications. The antecedent of first must be the same
as the conclusion of the second, and vice versa. The conclusion should be an equality
whose left-hand side must be the same as the antecedent of the first hypothesis and whose
right-hand side must be the same as the conclusion of the first hypothesis.

1. F Vb bs. (b1 D bz) ) (b2 > b1) D (bl = bz) [IMP_ANTISYM_AX]
2. TWFt1 Dt [Hypothesis]
3. ThbkteDty [Hypothesis]
4. FVbo.(t1 Db2) D (b2 Dt1) D (81 =b2) [sPEC]
5 F (t1 D tz) D (tz D t1) D (t1 = tz) [SPEC]
6. T1F(t2Dt1) D(ti=tp) [MP 5,2]
7. Thuls bt =t [MP 6,3]

fun chk_ImpAntisymRule(line, nl, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (left,right) = dest_eq (concl thm)
in
((left,right) = dest_imp(concl thml)) andalso
((right,left) = dest_imp(concl thm2)) andalso
(HtermSet.equal ((hyp thm), (HtermSet.union((hyp thmi), (hyp thm2)))))
end

e Transitivity of implications
|IMPTRANS NUMBER NUMBER

Thhti Dt Tkt D3
Ut Dts

IMP_TRANS : thm -> thm -> thm

"Both theorems referred to by the numbers must be implications. The conclusion of the
first theorem must be the same as the antecedent of the second theorem.

1. Tkt Dt ' [Hypothesis]
2. Tkt D3 [Hypothesis]
3. thtt _ [ASSUME]
4. TyU{ti}Ft, [MP 1,3]
5. Thuryu {t]_} bt . [MP 2,4]
6. 71Ut Dits [DISCH 5]
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fun chk_ImpTrans(line, nl, n2, thm) =

let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (left’,right’) = dest_imp(concl thmi)
and (left’’,right’’) = dest_imp(con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>