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Abstract

Formal proofs generated mechanically by theorem provers are often very large and shallow,
and the theorem provers are themselves very complex. Therefore, in certain application areas,
such as in safety-critical systems, it is necessary to have an independent means for ensuring
the consistency of such formal proofs. This report describes an efficient proof checker for the
HOL theorem prover. This proof checker has been tested with practical proofs consisting of
thousands of inference steps. It was implemented in Standard ML of New Jersey.

The first part of the report gives an overview of the program. It describes

e the rationale of developing a proof checker,
e how to use the checker, and
e how the checker works.

The second part of the report describes the program in detail. The complete source code is
included in the description.
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1 Introduction

Formal methods have been used in the development of many safety-critical systems in the form
of formal specification and formal proof of correctness. Formal proofs are usually carried out
using theorem provers or proof assistants. These systems are based on well-founded formal
logic, and provide a programming environment within which the user can discover, construct
and perform proofs. The result of this process is usually a set of theorems which can be stored
in a disk file and used in subsequent proofs. HOL is one of the most popular theorem proving
environments. The users interact with the system by writing and evaluating ML programs.
The programs instruct the system how to perform proofs. A proof is a sequence of inferences.
It is transient in the HOL system in the sense that there is no object that exists as a proof once
a theorem has been derived.

In some safety-critical applications, computer systems are used to implement some of the
highest risk category functions. The design of such a system is often formally verified. The
verification usually produces a large proof consisting of tens of thousands, even up to several
millions, of inferences. [9] describes a proof of correctness of an ALU consisting of a quarter
of a million inference steps. In such situations, it is desirable to check the consistency of the
sequence of inferences with an independent checker. The reasons for requiring independent
checking are:

e the mechanically generated formal proofs are usually very long, often consists of thou-
sands, even millions of inferences;

o the mechanically generated formal proofs are usually very shallow in the sense that they
are not mathematically interesting;

o the theorem proving systems are usually very complex so that it is extremely difficult (if
not impossible) to verify their correctness;

e the programs that a user develops while doing the proof are very often too complicated
and do not have a simple mapping to the sequence of inferences performed by the system;

¢ the requirement of the certification bodies, for example, the U. K. Defence standard 00 —
55 calls for such an independent proof checker when the ‘highest degree of assurance in
the design’ is required [7].

An independent proof checker can be much simpler than the theorem prover so that it is
possible to be verified formally. The relation between the checker and the HOL system is shown
in Figure 1.1. The top half shows the usual process of using the HOL system to perform proofs.
The bottom half shows the process of checking proofs generated by the HOL system. These two
process may be carried out at different times by different people in different places since the
checker is a totally independent system.

Described in this document is a proof checker for the HOL theorem prover. The dominant
requirement of this checker is that it is able to check large proofs generated from real appli-
cations. This means that the implementation should be fast and efficient, and should be able
to perform reasonably well with limited resources, i.e., limited amount of memory. With its
possible verification in mind, the checker fairly closely follows von Wright’s formal theory[8]
which is described briefly in Section 1.2.
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(Interactive)

Theory files
User input \ /

Proving

Proof files

Checking

Results of
Checking

(Yes/No)

N

Log file

Figure 1.1: Relation between the checker and the HOL system

The proof checker is implemented in Standard ML of New Jersey (SML/NJ). Two versions
of the checker have been implemented: the core version and the efficient version. The core
version is able to check proofs consisting of only primitive inferences and its critical part is
translated directly from the formal theory. The efficient version is able to check larger proofs.
The remainder of PART I gives an overview of the checker, and PART II describes the entire
program of the efficient version in detail.

1.1 Proofs in HOL

A proof is a sequence of logical inferences. All theorems in a logic can be derived from the
axioms by applying the inference rules. The proof theory of the logic specifies what the valid
inferences are. _

In the HOL logic, there are five axioms and eight primitive inference rules. Derived inference
rules are sequences of inferences grouped together. Both primitive and derived inference rules
are implemented by ML functions in the HOL system. By calling these ML functions, a user
can carry out simple proofs to derive theorems from existing theorems. This style is known as
forward proof, and it is used mainly in simple proofs.

More often, users will do goal-directed proofs in HOL. In this style, a conjecture is set up
as a goal. Tactics are then applied to reduce the goal to simpler subgoals recursively until the
resulting subgoals are all resolved. The HOL system validates the tactics, assembles a derivation,
and performs the inferences to derive the theorem.

Both proof styles in HOL can be modelled by Hilbert’s proof style, i.e., a proof is a sequence
of inference steps, each step is written on a single line with a line number, the theorem derived
in the step and a justification, such as the simple example in Figure 1.2.

According to whether or not proofs are generated entirely in terms of primitive inferences
of the logic, theorem provers can be classified as fully-ezpansive or partially-ezpansive[2]. Fully-
expansive theorem provers perform every single primitive inference when deriving theorems.
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1. Tkt =t [Hypothesis]
2. Ft1=1 [Reflexivity]
3. Thth=t [Substitution of 1 into 2]

Figure 1.2: A simple proof in Hilbert style

Because of the lengthy process, the performance of this type of theorem prover is often limited.
Early versions of the HOL system were fully-expansive. To improve the performance, thirty-four
frequently used derived inference rules are implemented directly in the current version of HOL.
The primitive rules, directly implemented derived rules and several functions for introducing
new constants and accessing stored theorems are collectively known as basic inference rules.

The proofs generated by the HOL system can be saved in a proof file which contains a textual
representation of the sequences of inferences constituting the proofs. This file is the interface
between the theorem prover and the proof checker.

1.2 Formal HOL proof theory

A formal theory of the HOL logic proof theory has been developed in HOL by von Wright [8].
This provides a theoretical base on which a formal specification of a proof checker may be
developed and against which verification of the checker may be performed.

In von Wright’s theory of the HOL logic, a type Type is defined to represent HOL types.
Similarly, a type Pterm is defined to represent HOL terms. Theorems are represented by the
type Pseq, standing for sequent.

HOL inference rules are written as

ikt - Tplkt,
Tkt

where the sequents above the line are known as hypotheses and the sequent below the line is
known as the conclusion. The name of the inference rule and the side conditions, if any, are
written next to the line. Inference rules are implemented in the HOL system as ML functions
which usually take the hypotheses as the arguments and returns the conclusion. In von Wright’s
theory, inference rules are presented by predicates on the hypotheses and conclusion. A theorem
asserting the validity of an inference can be derived if the conclusion can be derived from the
set of hypothesis sequents using the inference rule. For example, if Pinfrule is the predicate
representing the hypothetical inference INF_RULE above, if the inference is valid, the following
theorem can be derived.

INF_RULE

Pinf,-uze{r]_ Ft; --- T,F tn} TFt

1.3 Proof file format

The proof accepted by the checker is in a proof file format prf. The format is described in
detail in the Cambridge University Computer Laboratory technical report No. 306 [10]. The
prf format is based on the Hilbert proof style model described in Section 1.1.

The proof file format prf has two levels: the core level, which allows proofs consisting of
only primitive inference rules to be written into the file, and the extended level, which allows
all basic inference rules.

A proof file may contain one or more proofs. Each proof has a name, a goal list and a list
of proof lines. The name is a string used to identify the proof. The goal list may be empty or
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have one or more theorems. This is a mechanism for improving the efficiency of the checker.
If the goal list is empty, the checker will check the entire proof. If all the theorems in the
goal list have been found in the proof lines, the checker can conclude that the goals have been
proved and stop processing the remainder of the proof. This is useful because certain automatic
proof procedures may perform more inferences than necessary to derive the required theorem.
This is based on some observations on the proofs generated by HOL. Its usefulness in practice
is still not known. However, the checker can always ignore the goal list and check the entire
proof. In fact, this is the default behaviour of the checker. Each proof line has three parts:
the line number, the justification, which is the name of the inference rule and the arguments
supplied to the rule, and the derived theorem.

The proof file format is primarily an interface between the HOL theorem prover and other
independent proof checkers. Files in prf format are intended to be read by machines not
humans. The concrete syntax of the prf format is similar to a LISP S-expression. For example,
the proof file in prf format of the proof shown in Figure 1.2 is listed in Figure 1.3 below.

(VERSION PRF FORMAT 1.0 EXTENDED)
(Env HOL[I L)

(PROOF sym
(d
C
(LINE -1(Hypothesis)
(TEM [J(A (A (C = (o fun[(c bool) (o funl[(c bool) (¢ bool)1)]))
(4 (A (C /\ (o fun[(c bool) (o fun[(c bool) (c bool)]1)1))
(V t1(c bool))) (V t2(c bool))))
(4 (4 (€ /\ (o funl(c bool) (0 funl(c bool) (c bool)1)]))
(V t2(c bool))) (V ti(c bool)))))
)
(LINE 1(Refl (A (& (C /\ (o fun[(c bool) (0 fun[(c bool) (c bool)1)1))
(V t1(c bo0ol))) (V t2(c bool))))
(THM [JCA (A (C = (o funl(c bool) (o funl(c bool)(c bool)]1)1))
(A (A4 (C /\ (o fun[(c bool) (o fun[(c bool) (c bool)])]1))
(V t1(c bool)))(V t2(c bool))))(A (A (C /\ (o fun[(c bool)
(o fun[(c bool) (c bool)1)1)) (V t1(c bool))) (V t2(c bool)))))
)
(LINE 2(Subst [{-1(V GENY%VARY509(c bool))}]
(A4 (A4 (C = (o fun[(c bool) (o funl(c bool) (c bool)])]1))
(V GEN%VARY509(c bool)))(A (A (C /\ (o fun[(c bool)
(o fun[(c bool) (¢ bool)]1)1))(V ti(c bool)))(V t2(c bool))))1)
(THM O(A (A (C = (o fun[(c bool) (o funl(c bool) (c bool)1)]))
(A (4 (C /\ (o fun[(c bool) (o fun[(c bool) (¢ bool)]1)]))
(V t2(c bool))) (V ti(c bool))))(A (A (C /\ (o fun[(c bool)
(o furl[(c bool) (c b00l)])1))(V ti(c bool)))(V t2(c bool)))))
)
1)

Figure 1.3: Proof file in prf format of a simple proof



2 The Checker

2.1 Checking HOL Proofs

To check a HOL proof is to make sure that every inference step in the proof is valid. An inference
step is valid if and only if

¢ all hypotheses are in the correct form as specified by the inference rule;
¢ all hypotheses are either axioms or theorems derived in previous inference steps;
o the conclusion is in the correct form as specified by the inference rule; and

¢ all the types and terms appeared in the hypotheses and conclusion are well formed in the
current signature, i.e., the types and constants known at that point.

Since the HOL logic has only eight primitive inference rules, a checker for proofs consisting
of only primitive inferences will be relatively simple, so it may possibly be verified formally.
This corresponds to the core level of the prf proof file format. A version of the checker, the
core checker, accepting only core level proof files was developed first. With the ultimate goal
of formal verification in mind, the core checker follows von Wright’s formal HOL proof theory
very closely.

However, the current version (HOL88 version 2.2) of the HOL system is not fully-expansive.
The proofs generated by HOL consist of all the basic inferences. The proof files are in an
extended level and cannot be accepted by the core checker.

There are basically two different approaches to implementing an extended level checker.
The first approach is to write a program to expand the inference steps involving derived rules
into a sequence of primitive steps before being sent to the core checker. This approach has
the advantage of utilising the core checker which may be formally verified, therefore, achieving
higher confidence in the consistency of the proof. However, this approach can increase the
number of inference steps considerably so the amount of time required to check the proof will
take much longer.! The second approach is to check all basic inference rules directly. This
approach can result in a more efficient checker since the basic derived rules are relatively simple
to check.

Since one of the requirements of this project is to demonstrate the feasibility of proof
checking for real practical proofs, which consist of thousands or tens of thousands of inference
steps, the checker should be fast and efficient, and should be able to perform reasonably well
with limited resources, i.e., limited amount of physical memory and disk space.

Described in Part II of this report is an implementation of the checker using the second
approach. This version is known as the efficient checker. It defers from the core level checker
mainly in the internal representation of the terms, the handling of the derived theorems. Other
parts of the checker, such as the file I/O, the proof file parser and the error and exception
handling are identical.

For internal representation of terms, the efficient checker uses de Bruijn’s nameless repre-
sentation. This makes the a-equivalence test and substitution simpler.

1By examining the derivations of the derived rules, one can see that each derived rule may be expanded into
five to twenty primitive rules. A large proportion of inferences in normal proofs are non-primitive.
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No matter which approach is used to implement a checker, its memory requirements are very
large for large proofs because all theorems derived in the sequence have to be kept in memory.
This is because a theorem derived in an earlier step may be referred to by the very last step.
Logically, many modern systems are able to address many gigabytes, even up to terabytes of
virtual memory, but physical memory is still limited. When large numbers of theorems are kept
in memory, thrashing occurs, thus slowing down the process. This problem has been solved in
the efficient checker by processing the proof file in two passes (see Section 2.3).

2.2 Using the Proof Checker

To a user, the checker is a program which reads a proof file, checks the proofs in it and reports
back with either a success which means the proofs are correct or a failure which means the
opposite (see Figure 1.1). It creates a log file containing information of what hypotheses and
stored theorems have been used and the resulting theorems of the proofs. The log file is in a
format similar to the proof file. It is mainly for use by other programs.

2.2.1 Loading the checker

Currently, the checker program modules have to be loaded into SML by evaluating the expres-
sion ) ‘

use "joinl.sml";

This will compile and link the modules to form the checker. A top-level function, namely
check_proof, will then be defined as the entry point of the checker. When the program
becomes stable, it will be possible to savean executable image of the checker. Then, it can be
invoked as a shell command.

2.2.2 Invoking the checker

After loading the checker, it can be invoked by evaluating the function check_proof which
takes a string as its sole argument. The string is the proof file name which, by convention, has
the suffix .prf but the checker accepts any name. If the filename has a suffix . gz, the checker
will assume it is a compressed file. It will run a decompresser automatically, and the log file
will also be stored in a compressed form. The default compression/decompression utilities are
the GNU gzip/gunzip programs. Below is a sample session of using the checker to check a
compressed proof file named MUL_FUN_CURRY in the directory proofs parallel to the current
directory. (Some of the output produced by the checker are omitted for brevity.)
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- check_proof "../proofs/MULT_FUN_CURRY.prf.gz";
Current environment: MULT_FUN_CURRY

Proof: MULT_FUN_CURRY
Proof MULT_FUN_CURRY has been checked

Proof: MULT_FUN_CURRY_THM
Proof MULT_FUN_CURRY_THM has been checked

Using the following hypotheses:
<-8> |- T :bool

{ ... some theorems omitted ...}

Proof: MULT_FUN
Proof MULT_FUN has been checked

Proof: MULT_FUN_DEF
Proof MULT_FUN_DEF has been checked

Using the following hypotheses:
{ ... some theorems omitted ...}

val it = () : unit

The name of the log file is derived from the input file name. If the input file name has the
suffix .prf, it is replaced by the suffix .clg (stands for checker log file). If the input file name
has no suffix, the log file suffix is appended.

2.3 Operations of the checker

When the checker is invoked, it creates a decompress process running as a filter in the back-
ground. The communication between this process and the checker is via a socket. In the case
where the file is not compressed, no decompression process is needed, but the communication is
still via a socket. This arrangement simplifies the checker as its input routine always reads from
the input socket. Similarly, an output socket is created with a compression process running to
compress the output to the log file on the fly. Figure 2.1 illustrates this arrangement.

The checker processes the input file in fwo passes. In the first pass, it builds up a table
of theorem references. Each inference step (also known as proof line) may refer to theorems
derived in any previous steps. The table has an entry for each line. The entry contains the
largest line number that that proof line is referenced by. As the references only occur in some
justifications, most of the text can be quickly skipped over.

In the second pass, the checker analyses and checks every proof line according to the spec-
ification of the inference rules. After checking each line, the derived theorem is saved in a
dictionary keyed by the line numbers if it is referred to by later lines. When a theorem is
fetched from the dictionary for the last time, it is removed. Thus, a minimum amount of
memory is required.
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Proof file Log file
Input filter g a6, Output filter
Input Output
socket socket

Figure 2.1: Checker input/output arrangement

HOLProofKey
Jo:1O_sig :Keyword_sig

Debug:Debug_sig [

Report:Report_sig

,—l

Htype: Htype_sig

Hterm:Hterm_sig

‘ORD_KEY Parsing
:Parsing_sig
[

Henv:Henv_sig Hthm:Hthm_sig

Proof:Proof_sig

]

Check:Check_sig

Pass1:Pass_sig l Pass2:Pass_sig

Figure 2.2: Organisation of modules

[_

2.4 Organisation of modules

The checker is structured into a number of modules as shown in Fig. 2.2. The modules can be
divided into two groups: the core group and the auxiliary group. Modules in the core group are
shown in the figure with a thick border, whereas other modules are shown with a thin border.
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gy a) The inference rule

|- !Typl Conl as t tm.
PASSUME Typl Conl (Pseq as t) tm = | fun chk_Assume (term, thm) =
let val [ass] =
HtermSet.listItems (hyp thm)
val conc = concl thm

Pwell_typed Typl Conl tm /\ in
Pboolean tm /\ is_bool_ty term andalso
(t = tm) /\ (conc = term) andalso
(as = {tm}) (conc = ass)
end;
b) The formal definition ¢) The checking function

Figure 2.3: Checking function and formal definition of the primitive rule ASSUME

2.4.1 The Core Modules

The core modules implement the internal representation of HOL types, terms, theorems, proofs,
and proof environment. Each kind of objects is represented by an ML type. The type and
associated operations on the objects of the type are implemented in a module. The module
names are generally descriptive so it is very easy to identify the module for a particular kind of
object. The Check module contains functions for checking the consistency of all basic inference
rules. All checking functions for the primitive rules are the same as the formal version except
for very minor changes to take care of the slightly different representation of HOL types and
terms. Figure 2.3 shows the primitive rule ASSUME , its formal definition in the HOL proof theory
and the checking function. The SML function and the HOL definition are very close.

The functions for checking other basic rules are derived from specification of these rules
found in [5]. Fig. 2.4 shows the basic inference rule SYM and its checking function.

2.4.2 The two passes

In the first pass, the checker builds a theorem reference table. This table consists of two dynamic
arrays whose elements are integers as shown in Fig. 2.5a. Each element represents a proof line.
The indices to the elements are the proof line numbers. Since the proof lines are numbered with
both positive and negative numbers, but only non-negative numbers are allowed in indexing
the array, two arrays are used. The TabHyp array is for the hypothesis lines whose line numbers
are negative, and the TabLine array is for proof lines whose numbers are positive. These arrays

fun chk_Sym(line, n, thm) =
let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thmi)
'+ t]_ = tz in
Thto=1t ((right,left) = dest_eq (concl thm)) andalso
(HtermSet.equal((hyp thm), (hyp thml)))
end

Figure 2.4: Basic rule SYM and its checking function
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. are created using the DynamicArray module in the SML/NJ library. The use of dynamic arrays

instead of static ones removes the upper limit of the number of lines in the proof.

TabHyp TabLine key theorem
1 3 0 -1 ..
2 0 5 2
31 0 0
4 0 5
510 0
a) Theorem reference table b) Theorem table

Figure 2.5: Data structures for theorem references

In the first pass, the checker looks at the justification part of the proof lines. When it
encounters a reference to a theorem in a previous proof line, it enters the current line number
into the element corresponding to the referred line in the table. For example, when the checker
is at Line 3, it finds that this line refers to the theorem in hypothesis Line 1. It enters 3 into the
first element of TabHyp. To speed up the Pass 1 process, the checker skips over other parts of
the proof line quickly. This is done by scanning the input and looking for matching parentheses
only. At the end of this pass, each element of the theorem reference table will contain the
highest line number which is the latest line referring to the theorem. In the table shown in
Fig. 2.5a, Line 5 is the last line referring to the theorem derived in Line 2 and Line 4.

In the second pass, the checker stores theorems referred to by other proof lines in a theorem
table. This table is implemented by a dictionary in the Dict module of the SML/NJ library.
The key of each entry is the line number. Since the dictionary is represented by a balanced
splay tree, searching for a theorem is fast. After checking a proof line, the checker examines
the theorem reference table, if the value of the current element is greater than the current line
number, i.e., it will be referred to later, the theorem is saved in the theorem table. Fig. 2.5b
illustrates the situation in which the checker has just stored the theorem derived in Line 2.
When the checker retrieves a theorem, it also examines the theorem reference table. If the
current line is the last one to refer to the theorem, i.e., the current line number is equal to
the value in the table, the theorem is removed from the dictionary. Continuing the scenario in
Fig. 2.5b, the next line is Line 3, which refers to hypotheses Line 1. Since this is the last line
referring to the theorem, the checker removes it from the table. This arrangement minimises
the number of theorems stored in the table, thus reducing the memory requirement.

2.4.3 Auxiliary Modules

The HOLProofKey module defines the concrete syntax, i.e., the tags, of the proof files. The
Parsing module consists of several higher order parsing functions. The parser proper is in the
modules Pass1 and Pass2. It is a recursive descent parser.

The Exception and Debug modules are responsible for handling errors. The Debug module
maintains a debug flag for each module. The values of these flags are non-negative integers. The
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higher the value, the more information will be displayed while checking a proof. The Report
module is for formatting the output to the log file.

The Io module handles all file input and output. When the checker is invoked, it creates
a decompression process running as a filter in the background. The communication between
this process and the checker is via a. UNIX domain socket. If the file is uncompressed, no
decompression is needed, but a dummy cat process is created, and the communication is still
via a socket. This arrangement simplifies the checker as its input routine always reads from
the input socket. Similarly, an output socket is created with a compression process to compress
the output to the log file on the fly. This arrangement is illustrated in Fig. 2.1.




3 | Benchmarking

The proof checker has been tested with many small proof files generated by the HOL system,
including all derivations of basic derived rules. The largest proof that has been checked by the
checker is a proof of correctness of a simple multiplier described in [4]. This is a medium size
proof which generates 14500 intermediate theorems. This proof has been used as a benchmark
for many versions of the HOL system.

The multiplier proof consists of four ML files. A proof file is generated for each ML file. It
contains all the sub-proofs in the corresponding ML file. [10] describes how to generate these
proof files and lists the time required and the files sizes.

Table 3.1: Benchmark for checking the multiplier proof (Time in seconds)

Proof No. of Time
File Thm. Run | System | GC | Real
mk_NEXT 2972 | 139.3 15.3 3.7 | 170.0
MULT_FUN_CURRY 670 77.3 9.6 2.6 | 1004
MULT_FUN 6943 | 406.3 446 | 154 | 488.8
HOL_MULT 3946 | 1472.1 152.0 § 98.5 | 1783.3
Total 14531 | 2095.0 138.8 | 120.2 | 2542.5

The multiplier proof files were successfully checked by the checker. No error was found
from the proof files. Table 3.1 lists the time taken to check the proof files. This test ran on
a SUN SparcStation 20. The time is in the same order of magnitude as the recording. One
important observation is that the process size is relatively small when performing the checking.
The process size of the checker when it is just loaded is 14 Mbytes. The maximum size when
performing the checking is only 16 Mbtyes. This shows that the implementation does keep the
memory usage very small.

14



Part 1l

The Program

In this part, the checker program is described in detail. 'Each module of the checker is
described in its own chapter. There are two sections within most chapters: the first describes
the specification of the module, and the second the implementation. The specification describes
the interface between the module and its user. The specifications of the modules are SML
signatures. The modules are implemented as SML structures. The order of the chapters follows
roughly the reversed sequence in Figure 2.2, i.e., the chapter of the bottom module appears
first.

The checker program is written in the M1Web format, a simple literate programming tool[1].
In the literate programming paradigm[6], the master file contains both the program source
and its documentation. This encourages people to write more human readable programs and
helps to keep the program and its document consistent. Literate programming tools extract
the program source and the documentation from the master file separately. The former will
be in a format acceptable to a compiler so that an executable program can be produced. The
latter will be processed by a text formatter to produce a printed document. The M1Web format
and tools allow a single master file to contain programs and other machine readable text, such
as specifications, in more than one language.

15






4 The first pass

The primary task of the first pass is to build a table of theorem references. Therefore, it only
looks at those justifications which refer to theorems. Any irrelevant items can be skipped over
in high speed.

4.1 The specification

The only exported function is parse_file. It takes a file name as its sole argument and
processes it. If the file name ends with the suffix .gz, it is taken as a compressed file. The
default decompresser gzcat is passed to the IO module for preprocessing the file.

signature Pass_sig =
sig
val parse_file : string -> unit
end

4.2 The implementatiori

The Pass 1 parser is implemented as the functor Pass1FUN with the signature Pass_sig,

functor Passi1FUN (structure Parsing :Parsing_sig and Henv: Henv_sig
and Proof: Proof_sig and Hthm: Hthm_sig
and Hterm: Hterm_sig and Htype: Htype_sig
sharing Hterm = Hthm.Hterm = Proof.Hterm
and Htype = Hterm.Htype = Hthm.Hterm.Htype =
Proof .Htype = Henv.Htype
and Hthm = Proof.Hthm) : Pass_sig =
struct

structure Parsing = Parsing

structure Io = Parsing.Io

structure Keyword = Parsing.Keyword

structure Henv = Henv;

structure Proof = Proof;

structure Hthm = Hthm;

structure Hterm = Hterm;

structure Htype = Htype;

open Parsing Htype Hterm Hthm Proof

fun PASS1_ERR {function, message} =
Exception.CHK_ERR{origin_structure = "Passl",
origin_function = function, message=messagel;
val debug = Debug.get_debug("Passi");
fun write_out s = (output(std_err, s); flush_out std_err)

17
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4.2.1 Parser The parser is a recursive descent parser. The top expression is a proof file.
The exact syntax of the file can be found in [10]. In this pass, we are only interested in theorem
references in the justifications, so a lot of input can be skipped.

fun parse_proof_file () =
(parse_item parse_ver ();
parse_item parse_env() ;
parse_closure parse_proof ();
M
and parse_ver () =
(get_tag Keyword.VERSION;
skip_sp O;
if check_ver_string() then ()
else raise (PASS1_ERR
{function = "parse_ver", message="incorrect format"})
)
and parse_env () =
(get_tag Keyword.ENV;
get_name() ;
skip_item ();
skip_item ();
0D

The function parse_proof parses a proof. The local variable thms contains a list of goals
which are the subexpressions after the tag. Then, it calls new_proof1 to initialise the current
proof data structures. Next, parse_list is called to parse the proof lines. At the end of the
proof, the pline table is saved for the second pass.

and parse_proof () =
(get_tag Keyword.PROOF;
let val name = get_name()
val thms = parse_list parse_thm ()
in
new_proofl (name,thms);
parse_list parse_line ();(* handle PARSE_DONE => []
| e => raise e; *)
Proof.add_pline_table name;
if (debug > 0) then (write_out("\nProof: "“name~"\n");
Proof.print_prooftab()) else ()
end;

0
The function parse_line processes each proof line.

and parse_line () =

(get_tag Keyword.LINE;

let val n = get_num ()
val nl = parse_item parse_just ()
val th = parse_item parse_thm ()

in
if (debug > 1) then write_out("\nline "“makestring n) else ();
let

val proved = Proof.add_pline_tab(n,nl,th)

in
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if proved then raise PARSE_DONE else ()
end
end;

0))

Now, we are looking at the justification field of a proof line. The function get_name is used
to get the name of the justification which is case insensitive, so the call to toupper folds all
letters to upper case. As we are only interested in the theorem references, we skip over all other
items. The function get_numis used to get the line numbers. A list of line numbers is returned
by parse_just.

and parse_just () =
let
val toupper = StringUtil.stringTrans
~ ("abcdefghi jklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
in
case toupper(get_name()) of
"ABS" => (skip_item(); [get_num ()])
| "DISCH" => (skip_item(); [get_num ()])
| "INSTTYPE" => (skip_item(); [get_num ()3)
| "MP" => [get_num(), get_num()]
!

"SUBST" =>
let
val 1 = map (#1) (parse_list_pairs (get_num,skip_item) ())
in
(skip_item(); get_num () :: 1)
end

| "ADDASSUM" => (skip_item(); [get_num()])
| "APTERM" => (skip_item(); [get_num()])

I "APTHM" =>
let val n = [get_num()]
in
skip_item(); n
end
| "CCONTR" => (skip_item();[get_num()])
| "CHOOSE" =>
let val (_,nl1) = parse_pair ((parse_item parse_term),get_num) ()
in
([n1,get_num()]1)
end

"CONJ" => ([get_num(),get_num()])
"CONJUNCT1" => ([get_num()])
"CONJUNCT2" => ([get_num()])

"CONTR" => (skip_item(); [get_num()])

"DISJ1" =>
let val n = [get_num()]
in ’
skip_item(); n
end

I "DISJ2" => (skip_item(); [get_num()])
| "DISJCASES" => ([get_num(),get_num(),get_num()])
| "EQIMPRULEL" => ([get_num()])
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|

I

I
end

"EQIMPRULER" => ([get_num()])
"EQMP" => ([get_num(),get_num()])
"EQTINTRO" => ([get_num()])
"EXISTS" => (skip_item(); (* skip a pair *) [get_num()])
VEXT" => ([get_num()])
"GEN" => (skip_item(); [get_num()])
"IMPANTISYMRULE" => ([get_num(),get_num()])
"IMPTRANS" => ([get_num(),get_num()])
"INST" => (skip_item(); [get_num()])
"MKABS" => ([get_num()])
"MKCOMB" => ([get_num(),get_num()])
"MKEXISTS" => ([get_num()])
"NOTELIM" => ([get_num()])
"NOTINTRO" => ([get_num()])
"SPEC" => (skip_item(); [get_num()])
"SUBS" =>
let val nl = parse_num_list ()
in
(get_num())::nl
end
"SUBSOCCS" =>
let ‘
val nlnl = parse_list (parse_subs_list) ()
val n = get_num()
in »
n :: (map #2 nlnl)
end -
"SUBSTCONV" =>
let
val ntl = parse_list_pairs (get_num, (parse_item parse_term)) ()
in
skip_item (); skip_item ();
(map #1 ntl)
end
"SYM" => ([get_num(}])
"TRANS" => ([get_num(),get_num()])
_ => (skip_long_string false [RP]; [])

A little auxiliary parsing function for substitution lists.

and p
((p

arse_subs_list () =
arse_num_list ()), get_num())

The function parse_thm recognises a theorem and returns it.

and p
(ge
le

arse_thm () =

t_tag Keyword.THM;

t val hyp = parse_list parse_term ()
val concl = parse_item parse_term ()

in(if (debug > 2) then write_out("<THM>") else ();

Hthm.mk_thm(hyp,concl))

end )
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The function parse_term recognises a term. There are four kinds of terms, two of them,
namely variables and constants, have type information attached. The appropriate term con-
structor is called to create a term, and it is returned as the value of this function.

and parse_term() =
let val tag = get_name() in
if(tag = Keyword.VAR) then
let val name = get_name()
val ty = parse_item parse_type ()
in (if (debug > 2) then write_out("-""name) else ();
mk_var (name,ty))
end
else if (tag = Keyword.CONST) then
let val name = get_const_name()
val ty = parse_item parse_type ()
in (if (debug > 2) then write_out("$""name) else ();
mk_const (name,ty))
end
else if (tag = Keyword.APP) then
let val rator = parse_item parse_term ()
val rand = parse_item parse_term ()
in (if (debug > 2) then write_out(""") else ();
mk_comb(rator,rand))
end :
else if (tag = Keyword.ABS) then
let val v = parse_item parse_term ()
val body = parse_item parse_term ()
in (if (debug > 2) then write_out("\\") else ();
mk_abs (v,body))
end
else raise (PASS1_ERR{function="parse_term",
message=("Unknown term"“tag)l)
end

The function parse_type recognises a type. There are three kinds of types: type operators,
type constants and type variables. The first two are represented by type operators in the HType
module. The appropriate type constructor is called to create a type, and it is returned as the
value of this function.

and parse_type () =
let val tag = get_name() in
if (tag = Keyword.TYVAR) then
let val name = get_tyvar_name()
in (if (debug > 2) then write_out("=""name) else ();
mk_vartype name)
end
else if (tag = Keyword.TYCONST) then
let val name = get_name() _
in (if (debug > 2) then write_out("#"“name) else ();
mk_type {Tyargs=[],Tyop=name})
end
else if (tag = Keyword.TYOP) then
let val name = get_name()
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val tyl = parse_list parse_type ()
in (if (debug > 2) then write_out("&""name) else ();
mk_type {Tyargs=(rev tyl),Tyop=name})
end
else raise (PASS1_ERR{function="parse_type",
message=("Unknown type"“tag)})
end

4.2.2 The user function This is the entry point of the Pass 1 parser. It takes the hame
of the proof file as its sole argument. This string should include all the suffixes and possibly
the path of the file name. It calls the function mk_command in the Io module to work out any
compressing and decompressing command if they are necessary. See Page 141 for details of how
the file name is interpreted.

fun parse_file fname =
(Parsing.init(); Proof.init();
let val (outname, incmd, outcmd) = Io.mk_command fname
in
Io.open_input_socket fname incmd
end;
let val plst = parse_proof_file () in
(To.close_io_socket(); (plst))
end) handle e =>
(Io.close_io_socket(); raise e)

end; (* functor Pass1FUN *)



The second pass

This is the main pass of the checker. It parses and checks the proof file. It has the same
signature as the module Pass1. It is repeated here for easy reference.

signature Pass_sig =

sig

val parse_file : string -> unit

end

5.1 The implementation

The Pass 2 parser is implemented as the functor Pass2FUN with the same signature as the

Pass 1 parser.

functor Pass2FUN (structure Parsing :Parsing_sig and Henv: Henv_sig

struct
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

and Proof: Proof_sig and Hthm: Hthm_sig
and Hterm: Hterm_sig and Htype: Htype_sig
and Check :Check_sig and Report : Report_sig
sharing Hterm = Hthm.Hterm = Proof.Hterm = Check.Hterm
and Htype = Hterm.Htype = Hthm.Hterm.Htype =
Proof .Htype = Henv.Htype = Check.Htype
and Hthm = Proof.Hthm = Check.Hthm
and Report = Check.Report = Htype.Report = Hterm.Report
and Report.Keyword = Parsing.Keyword
and Proof = Check.Proof) : Pass_sig =

Report = Report

Parsing = Parsing

Io = Parsing.Io

Keyword = Parsing.Keyword
Henv = Henv

Proof = Proof

Hthm = Hthm

Hterm = Hterm

Htype = Htype

Check = Check

open Parsing Htype Hterm Proof

fun PASS2_

ERR {function, message} =

Exception.CHK_ERR{origin_structure = "Pass2",

val debug

fun write_

origin_function = function, message=messagel;
= Debug.get_debug("Pass2");
out s = (output(std_err, s); flush_out std_err)

23
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5.1.1 Parser The parser is a recursive descent parser. It is organised in the same way as
the Pass 1 parser. The top expression is a proof file. The éxact syntax of the file can be found
in [10]. In this pass, the parser calls the checking function after recognising each proof line.

fun parse_proof_file () =
(parse_item parse_ver ();
parse_item parse_env ();
parse_closure parse_proof ();
)
and parse_ver () =
(get_tag Keyword.VERSION;
skip_sp Q;
if check_ver_string() then ()
else raise (PASS2_ERR
{function = "parse_ver", message="incorrect format"})
)
and parse_env () =
(get_tag Keyword.ENV;
let val name = get_name()
val tyl = map Henv.mk_typeconst(parse_list_pairs (get_name,get_num) ())
val cl = map Henv.mk_termconst
(parse_list_pairs (get_name, (parse_item parse_type)) ()

in
(if (debug > 0) then write_out("\nCurrent enviromment: "“name~"\n") else (
)s
Henv.mk_proof_env(name, tyl, cl))
end
)

At the beginning of a proof, the function new_proo£2 is called to initialise the internal data
structures which hold the theorem reference table and the list of goals. Also, the opening tag
of a proof is written to the log file. After parsing all lines, the USED list in the log file is closed.
Then, chk_proof is called to verify that all goals have been proved. The proof in the log file is
closed. See the Report module on Page 151 for details of the log file format.

and parse_proof () =
(get_tag Keyword.PROOF;
let val name = get_name()
val thms = parse_list parse_thm ()
in
if (debug > 0) then write_out("\nProof: "“name~"\n") else ();
Report.write_line_opening2(Keyword.PROOF,name) ;
Report.write_line_opening(Keyword.USED);
Report.write_tok Keyword.LB;
new_proof2 name;
let
val 1s = parse_list parse_line ()
in
Report.write_tok Keyword.RB;
Report.write_closing_line ();
Check.chk_proof (name,thms,1s);
Report.write_closing_line ()
end
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end;

O

The function parse_line processes a proof line. After parsing all fields, namely the line
number 7, the justification just and the derived theorem th, it calls chk_pline to check the
line. A line number is returned by the checking function. If it is the same as the current
line number n, all the goals have been proved. All remaining proof lines can be ignored. The
exception PARSE_DONE is raised to pass this signal up. Otherwise, this function returns the line
number n.

and parse_line () =

(get_tag Keyword.LINE;

let val n = get_num ()
val just = parse_item parse_just ()
val th = parse_item parse_thm ()

in
if (debug > 1) then write_out("\nline "“makestring n) else ();
if (Check.chk_pline(n, just, th) = n)
then raise PARSE_DONE
else n

end)

This function parses the justification field in a proof line, and returns it. The name of the
justification is case insensitive.

and parse_just () =
let
val toupper = StringUtil.stringTrans
("abcdefghijklmnopqrstuvuxyz" ,"ABCDEFGHIJKLMNOPQRSTUVWXYZ")
in
case toupper(get_name()) of
"ABS“ =>
let val tm = parse_item parse_term ()
val n = get_num ()
in
(Abs (tm, n))
end
| "ASSUME" => (Assume (parse_item parse_term ()))
| "BETACONV" => (BetaConv (parse_item parse_term ()))
| "DISCH" =>
let val tm = parse_item parse_term ()
val n = get_num ()

in
(Disch (tm, n))
end
| "INSTTYPE" =>

let val tytyl = parse_list_pairs
((parse_item parse_type), (parse_item parse_type)) ()
val n = get_num ()
in
(InstType (tytyl, n))
end
| "MP" => (Mp (get_num(), get_num()))
| "REFL" => (Refl (parse_item parse_term ()))
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IIS'U’BST" =>
let
val 1 = (parse_list_pairs (get_num, (parse_item parse_term)) ())
val tm = parse_item parse_term ()

in
(Subst (1, tm, get_num ()))
end
WAXIOM" =>

let val sl = get_name()
val s2 = get_name()

in
(Axiom (s1,s2))
end
"DEFINITION" =>

let val s1 = get_name()
val s2 = get_name()
in
(Definition (s1,s2))
end
"DEFEXISTSRULE" =>
(DefExistsRule (parse_item parse_term ()))
"HYPOTHESIS" => (Hypothesis)
"NEWAXIOM" =>
let val name = get_name()
val tm = (parse_item parse_term ())
in
(NewAxiom (name,tm))
end
"NEWCONSTANT" =>
let val name = get_name()
val ty = (parse_item parse_type ())

in
(NewConstant (name,ty))
end
"NEWTYPE" =>

let val n = get_num()
val name = get_name()

in
(NewType (n,name))
end
"NUMCONV" =>

(Numconv (parse_item parse_term ()))
"STOREDEFINITION" =>
let val name = get_name()
val tm = (parse_item parse_term ())

in
(StoreDefinition (name,tm))
end
"THEOREM" =>

let val sl = get_name()
val s2 = get_name()
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in
(Theorem (s1,s2))
end
"ADDASSUM" =>
let

val tm = parse_item parse_term ()
val n = get_num ()

in
(AddAssum (tm,n))
end
n ALPHA " =>
let

val tml = parse_item parse_term ()
val tm2 = parse_item parse_term ()
in
(Alpha (tml,tm2))
end
"APTERM" => (ApTerm ((parse_item parse_term ()), get_num()))
"APTHM" => (ApThm ((get_num()),(parse_item parse_term ())))
"CCONTR" => (Ccontr ((parse_item parse_term ()), get_num()))
"CHOOSE" =>
let val (tm,nl) = parse_pair ((parse_item parse_term),get_num) ()
in
(Choose (tm, ni, get_num()))
end
"CONJ" => (Conj (get_num(),get_num()))
"CONJUNCT1" => (Conjunctl (get_num()))
"CONJUNCT2" => (Conjunct2 (get_num()))
"CONTR" => (Contr ((parse_item parse_term ()), get_num()))
"DISJ1" => (Disj1((get_num()), (parse_item parse_term ())))
"DISJ2" => (Disj2 ((parse_item parse_term ()), get_num()))
"DISJCASES" => (DisjCases (get_num(), get_num(), get_num()))
"EQIMPRULEL" => (EqImpRulel (get_num()))
"EQIMPRULER" => (EqImpRuleR (get_num()))
"EQMP" => (EqMp (get_num(),get_num()))
"EQTINTRO" => (EqTIntro (get_num()))
"ETACONV" => (EtaConv (parse_item parse_term ()))
"EXISTS" => (Exists (
(parse_pair(parse_item parse_term,parse_item parse_term)()),

(get_num())))
"EXT" => (Ext (get_num()))
"GEN" => (Gen ((parse_item parse_term ()), get_num()))
"IMPANTISYMRULE" => (ImpAntisymRule (get_num(),get_num()))
"IMPTRANS" => (ImpTrans (get_num(),get_num()))
"INST" => (Inst ((parse_list_pairs
(parse_item parse_term,parse_item parse_term) ()),
(get_num())))
"MKABS" => (MkAbs (get_num()))
"MKCOMB" => (MkComb (get_num(),get_num()))
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end

"MKEXISTS" => (MkExists (get_num()))
"NOTELIM" => (NotElim (get_num()))

"NOTI
"SPEC
"SUBS
"SUBS
let
v

in
(
end
"SUBS
let
v
v
v

in

NTRO" => (NotIntro (get_num()))

" => (Spec ({(parse_item parse_term ()), (get_num())))
" => (Subs ((parse_num_list ()), (get_num())))

0ccs" =>

al nlnl = parse_list (parse_subs_list) ()

SubsOccs (nlnl, (get_num())))

fl

TCONV" =>

al ntl = parse_list_pairs (get_num, (parse_item parse_term)) ()
al tml = parse_item parse_term ()

al tm2 = parse_item parse_term ()

(SubstConv (ntl, tmi, tm2))

end
IISYM"
"TRAN

=> (Sym (get_num()))
S" => (Trans (get_num(), get_num()))

_ => raise (PASS2_ERR{function="parse_just",

message="Unknown justification"})

A little auxiliary parsing function for substitution lists.

and parse_subs_list () =
((parse_num_list ()), get_num())

The functions for parsing theorems, terms and types, namely parse_thm, parse;term and
parse_type respectively, are the same as their counterparts in the module Pass1.

and parse_thm () =
(get_tag Keyword.THM;
let val hyp = parse_list parse_term ()
val concl = parse_item parse_term ()
in(if (debug > 2) then write_out("<THM>") else ();
Hthm.mk_thm(hyp,concl))
end )
and parse_term() =
let val tag = get_name() in
if (tag = Keyword.VAR) then

let

val name = get_name()

val ty = parse_item parse_type ()

in (

end

if (debug > 2) then write_out("-""name) else ();
mk_var (name,ty))

"else if (tag = Keyword.CONST) then

let

val name = get_const_name()

val ty = parse_item parse_type ()

in (

end

if (debug > 2) then write_out("$""name) else ();
mk_const (name,ty))
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else if (tag = Keyword.APP) then
let val rator = parse_item parse_term ()
val rand = parse_item parse_term ()
in (if (debug > 2) then write_out(""") else ();
mk_comb(rator,rand))
end
else if (tag = Keyword.ABS) then
let val v = parse_item parse_term ()
val body = parse_item parse_term ()
in (if (debug > 2) then write_out("\\") else ();
mk_abs (v,body))
end
else raise (PASS2_ERR{function="parse_term",
message=("Unknown term""tag)l})
end
and parse_type () =
let val tag = get_name() in
if (tag = Keyword.TYVAR) then
let val name = get_tyvar_name()
in (if (debug > 2) then write_out("=""name) else ();
mk_vartype name)
end
else if (tag = Keyword.TYCONST) then
let val name = get_name()
in (if (debug > 2) then write_out("#""name) else ();
mk_type {Tyargs=[],Tyop=name})
end
else if (tag = Keyword.TYOP) then
let val name = get_name()
val tyl = parse_list parse_type ()
in (if (debug > 2) then write_out("&""name) else ();
mk_type {Tyargs=(rev tyl),Tyop=name})
end
else raise (PASS2_ERR{function="parse_type",
message=("Unknown type""tag)l})
end

5.1.2 The user function This function is the entry point to the Pass 2 parser. It is
similar to the entry function in the module Pass1. It takes the name of the proof file as its sole
argument. This string should include all the suffixes and possibly the path of the file name.
It calls the function mk_command in the Io module to work out the name of the log file and of
any compressing and decompressing command if they are necessary. See Page 141 for details
of how the file name is interpreted.

fun parse_file fname =
(Parsing.init();
Henv.init(); Proof.clear_proof(); Check.init();
let val (outname, incmd, outcmd) = Io.mk_command fname
in
Jo.open_input_socket fname incmd;
Io.open_output_socket outname outcmd;
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end;

Report.write_log_preamble ()
end;
let val plst = parse_proof_file () in
(To.close_io_socket(); (plst))
end) handle e =>
(Io.close_io_socket(); raise e)

(x functor Pass2FUN *)



6 The parsing functions

The Parsing module includes all the lexical analysis and parsing functions. The parsing of the
proof files can be considered in two tiers: the lexical analysis and parsing. Due to the slowness
of string functions in SML, we do not work on strings. Instead, the input bytes returned by
the input function are converted to abstract characters represented by the type ctype. These
characters are converted to strings only when it is necessary.

Functions provided by this module are used by both passes. They can be divided into three
groups: the character functions which convert input bytes to abstract characters and are local
to this module, the atom functions which recognise atoms, such as identifiers and numbers, and
the parsing functionals which recognise larger syntactic structures, such as lists and pairs.

The module is implemented by a functor, ParsingFUN. The interface is specified by the
signature Parsing_sig.

6.1 The specification

The signature Parsing_sig specifies the interface of the Parsing module. The structure Io
provides the input functions to the parser. The structure Keyword defines the concrete input
syntax.
The type ctype is an abstract representation of input characters. The parser works with
abstract characters except in certain special situations.
signature Parsing_sig =
sig
structure Io : IO_sig .
structure Keyword : Keyword_sig

exception PARSE_DONE

datatype ctype = ALPHA of string | NUM of int | SYM of string
| LP | RP | LB | RB | LC | RC | PL | MI | EOF | SP;

The first group of functions provided by this module are for parsing atoms, e.g., tags,
identifiers and numbers. Their names are all prefixed by get_. '

val get_const_name : unit -> string

val get_name : unit -> string

val get_num : unit -> int

val get_string : unit -> ctype list

val get_symbolic_name : unit -> string

val get_tag : string -> unit

val get_tyvar_name : unit -> string

The function check_ver_string verifies the file format string.

val check_ver_string : unit -> bool

The function init initialises this module. It should be called at the beginning of every pass.

val init : unit -> unit

31
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These functions are parsing functionals. They recognise larger syntactic structures, such as
lists and pairs.

val parse_closure : (unit -> ’a) -> unit -> ’a list

val parse_item : (unit -> ’a) -> unit -> ’a

val parse_list : (unit -> ’a) -> unit -> ’a list

val parse_num_list : unit -> int list

val parse_list_pairs : (unit -> ’a) * (unit -> ’b) -> uwnit ~> (’a * ’b)list

val parse_pair : (unit -> ’a) * (unit -> ’b) -> unit -> ’a * b

These functions are for skipping certain input at high speed. They are used only in the first
pass.

val skip_item : unit -> unit
val skip_long_string : bool -> ctype list -> unit
val skip_sp : unit -> unit

end (* signature *)

6.2 The implementation

The functor ParsingFUN implements the Parsing module. It requires two structures: the first
Io provides input and file management functions, and the second Keyword defines the concrete
input syntax.
functor ParsingFUN
(structure Io:I0_sig and Keyword :Keyword_sig) : Parsing_sig =
struct
structure Io = Io
structure Keyword = Keyword

exception PARSE_DONE

fun PARSING_ERR {function, message} =
Exception.CHK_ERR{origin_structure = "Parsing",
origin_function = function, message=messagel};
val debug = Debug.get_debug("Parsing");
fun write_out s = (output(std_err, s); flush_out std_err);

6.2.1 Abstract characters . The type ctype is an abstract internal representation of the
input characters. The input structure Io has a function for inputing a fixed size block of bytes
represented as a list of ASCII codes. It is very time-consuming to convert this into SML strings
since the string operation is rather slow. So, we work on the abstract characters.

The type of abstract characters consists of four kinds of characters:

o letters represented by the constructor ALPHA;
o digits represented by the constructor NUM;
e symbols represented by the constructor SYM;

e special characters each of which has a constructor.

datatype ctype = ALPHA of string | NUM of int | SYM of string
|LP | RP | LB | RB | LC | RC | PL | MI | EOF | SP;
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6.2.2 Mapping functions The function byte_to_char maps a byte (ASCII code) to the
abstract character of type ctype. Symbolic names are defined locally for some ASCII characters.
Upper and lower case letters are mapped to ALPHA with single character string containing the
letter. Digits are mapped to NUM with their corresponding numeric value. Other printable
characters except () [1{}+- are mapped to SYM with single character string containing the
character. The special characters () [1{}+- are mapped to their respective symbolic names,
LP, RP, LB, RB, LC, RC, PL and MI. All other input bytes are mapped to SP, the space character
which is ignored in most cases. The special character EQF is used to indicate the end of file.
This function needs to be modified if the concrete syntax is changed.

local
val ASCII_code_sp = ordof(" ",0)
and ASCII_code_0 = ordof("0",0)
and ASCII_code_9 = ordof("9",0)
and ASCII_code_a = ordof("a",0)
and ASCII_code_z = ordof ("z",0)
and ASCII_code_A = ordof("A",0)
and ASCII_code_Z = ordof("Z",0);
in
fun byte_to_char n =
if(n <= ASCII_code_sp) then (SP)
else
case n of
40 => (LP) (* "(" *)
| 41 => (RP) (* ")" %)
| _ =
if(n < ASCII_code_0) then
case n of
43 => (PL) (* "+" %)
| 45 => (MI) (* "-" %)
| - => (SYM (chr n))
else if (n <= ASCII_code_9) then (NUM (n - ASCII_code_0))
else if (n < ASCII_code_A) then (SYM (chr n))
else if (n <= ASCII_code_Z) then (ALPHA (chr n))
else if (n < ASCII_code_a) then
case n of
91 => (LB) (* "[" %)
| 93 => (RB) (* "1" %)
| - => (SYM (chr n))
else if (n <= ASCII_code_z) then (ALPHA (chr n))
else
case n of
123 => (LC) (> "{" =)
| 125 => (RC) (x "}" %)
I - => (SYM (chr n))

end (* local *)

The function char_to_str maps an abstract character to its name string. It is mainly used
for debugging.

fun char_to_str (LP) = "LP"
| char_to_str (RP) = "RP"
| char_to_str (LB) = "LB"
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char_to_str (RB) = "RB"

char_to_str (LC) = "LC"
char_to_str (RC) = "RC"
char_to_str (PL) = "PL"

char_to_str (MI) = "MI"
char_to_str (SP) = " "

char_to_str (EOF) = "EOF"
char_to_str (ALPHA c¢) = ¢
char_to_str (SYM c) = ¢
char_to_str (NUM n) = makestring n

6.2.3 character functions This section contains several low level functions which are used
by the string functions and parsing functionals to obtain the next input character.

This module keeps an internal input buffer char_buf which is a byte array. The current
length of the buffer is kept in char_buf_len. The identifier charp always points to the next
available byte. The local function chk_buf is called every time a character is accessed. It calls
the input function Io.read_bytes to get a new block of bytes if the end of the buffer is reached.

local
val char_buf = ref (ByteArray.array(256,0))
and char_buf_len = ref 0
and charp = ref 0;

fun chk_buf () =
if (Icharp >= !char_buf_len) then
let val (len,cs) = Io.read_bytes () in
(char_buf_len := len;
char_buf := cs;
charp := 0;
if (debug > 1) then
write_out(
ByteArray.extract((!char_buf), (l!charp), (!char_buf_len)))
else ()
)
end
else ()
in
The function init clears the internal input buffer. It should be called at the beginning of
each pass.

fun init () =

(charp := 0;
char_buf_len := 0;
)

The function peek reads the next byte without removing it from the buffer. It converts the
byte into an abstract character and returns it.

fun peek() =
(chk_buf (;
if (!char_buf_len = 0) then (EOF)
else
let
val b = (ByteArray.sub(!char_buf, !charp))
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in
(if (debug > 3) then write_out( ("."~(chr b))) else ();
byte_to_char b)
end)

The function next removes the next byte from the buffer. It converts the byte into an
abstract character and returns it.

and next() =
(chk_buf ();
if (!char_buf_len = 0) then (EQOF)
else let val c = (ByteArray.sub(!char_buf, !charp))
in
(charp :=(!charp) + 1;
if (debug > 2) then write_out( (":"~(chr c))) else ();
byte_to_char c)
end )

The function unget puts its argument ¢ which is an abstract character back into the buffer.
Since the contents of the buffer is not destroyed before the next call to the input function,
unget makes sure that c is the same as the character in the buffer. It should always be the
same since a character can only be put back immediately after it is removed from the buffer.
No intervening reading is allowed. It is not possible to put back a character at the beginning
of the buffer.

and unget ¢ =

if (!charp = 0) then

raise (PARSING_ERR{function="unget",

message="Can’t unget--beginning of buffer"})

else if (c = byte_to_char(ByteArray.sub(!char_buf, (!charp-1)))) then

charp := (!charp) - 1

else raise (PARSING_ERR{function="unget",
message="Can’t unget--not the same char"})

The following two functions, peekb and nextb, are the same as peek and next except their
return values are bytes instead of abstract characters.

and peekb() =
(chk_buf (;
if (Ichar_buf_len = 0) then 0
else
let val b = (ByteArray.sub(!char_buf, !charp))
in
(if (debug > 3) then write_out( (",""(chr b))) else ();
b)
end)
and nextb() =
(chk_buf ();

if (!char_buf_len = 0) then 0
else let val ¢ = (ByteArray.sub(!char_buf, !charp))
in
(chaxp :=(!charp) + 1;
if (debug > 2) then write_out( (";""(chr ¢))) else (;
c)
end)
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The function strip removes the next byte from the internal buffer. It is usually used after
a peek which finds the desired character, thus avoiding using unget.

and strip() = (charp :=(!charp) + 1)

end (* local *);

6.2.4 String Functions Functions in this section are for parsing atoms. We first describe
the local functions. The function skip takes a predicate f as its argument. It skips all characters
that satisfy f, i.e., it removes all initial characters from the internal buffer until the first
character ¢ such that evaluating f c returns false.

The function get_str is similar to skip but it returns a list of characters which satisfy the
predicate f. The second argument ! is used for cumulating the characters so the function is
more efficient. NOTE: the resulting list is in reverse order. The function get_bytes is the
same as get_str except the return value is a list of bytes.

The function get_long_str returns a list of character which may contain matched pairs
of delimiters. The delimiter pairs it recognises are LP and RP, LB and RB, and LC and RC. It
takes two arguments. The first is a list of right (closing) delimiters, and the second is a list
for cumulating the characters. It returns its second argument if the delimiter list is empty.
Otherwise, it scans through the input characters. If it finds a closing delimiter which is the
same as the head of the delimiter list, the head is removed. If it sees an open delimiter, the
matching closing delimiter is pushed on to the delimiter list. Then, it calls itself recursively.

local
fun skip £ = while (f (peek())) do strip();

fun get_str £ 1 =
let val c = peek() in
if (£ c) then (strip(); get_str £ (c::1)) else 1
end
and get_bytes £ 1 =
let val ¢ = peekb() in
if (f c) then (strip(); get_bytes £ (c::1)) else 1
end -
and get_long str [J] 1 =1
| get_long_str (dl as (delim: :ds)) 1 =
let val ¢ = next() in
if (delim = ¢) then get_long_str ds (c::1)
else
case c of
LP => get_long_str (RP::dl) (c::1)
| LB => get_long_str (RB::dl) (c::1)
| LC => get_long_str (RC::dl) (c::1)
| EOF => raise (PARSING_ERR{function="get_long_str",
message="Unexpected end of file"})
| _ => get_long_str dl (c::1)
end
Here is a list of predicates to be used in conjunction with the above functions to get input
characters.
fun is_alpha (ALPHA c) = true
| is_alpha _ = false

and is_num (NUM c) = true
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| is_num _ = false
and is_sym (SYM c) = true
| is_sym _ = false
and is_lp (LP) = true

| is_1lp _ = false
and is_rp (RP) = true

| is_rp _ = false
and is_eof (EOF) = true

| is_eof _ = false
and is_sp (SP) = true

| is_sp _ = false
and is_notrp RP = true

| is_notrp _ = false

and is_delim (LP) = true

| is_delim (RP) = true

| is_delim (LC) = true
| is_delim (RC)
!
|
]

= true
is_delim (LB) = true
is_delim (RB) = true

is_delim _ = false
val not_alpha = (not o is_alpha)

Here are local copies of the special characters defined in the Keyword structure. They are all
ASCII codes (bytes). idcharl is a list of non-letters allowed in identifiers. tyvchar is the first
character of type variables. specials is a list of characters allowed to be the first character of
a symbolic identifier.

val idcharl = map ord (explode Keyword.idchars)
and tyvchar = ord Keyword.tyvar
and specials = setify (map (fn s => ordof(s,0)) Keyword.symbols);

The following three predicates are used in conjunction with the string functions above to
get alphanumeric identifiers, type variables and symbolic identifiers, respectively.

fun is_id_charQOrd c =
(CType.isAlphaOrd c) orelse (CType.isDigitOrd c) orelse
(exists (fn x => (¢ = x)) idcharl)
and is_tyv_char0Ord c =
(CType.isAlphalrd c) orelse (CType.isDigitOrd c) orelse
(c = tyvchar) orelse (exists (fn x => (¢ = x)) idcharl)
and is_spec_charOrd c = (exists (fn x => (c = x)) specials)
in
Here are the user functions. The function skip_sp skips all consecutive space characters.
The function skip_long_string skips a string until all matching delimiters in the argument
list delim are found. The string may contain matching delimiters as well. The first argument
flag is a boolean value if it is false, the last delimiter is not removed from the internal
buffer. The function skip_item skips the next delimited item which may be an item enclosed
in parentheses, or a list or a pair. -

fun skip_sp () = skip is_sp
and skip_long_string flag delim =

(get_long_str delim []; if flag then () else unget(hd delim))
and skip_item () =

(skip_spQ);
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case next() of
(LP) => get_long_str [RP] []
| (LC) => get_long_str [RC] []
| (LB) => get_long_str [RB] []
I - =>1;
0>

The function get_string returns a string containing only letters. The function get_num
returns a number containing only digits and optionally preceded by a plus or minus sign.

fun get_string () = (rev(get_str is_alpha []))
and get_num () =
let
fun £ sum =
case peek() of
(NUM n) => (strip(); £ (sum * 10 + n))
| _ => sum
in
(skip_spQ);
case (peek()) of
(PL) => (strip(); £ 0)
| (MI) => (strip(Q); ~(£f 0))
| (NUM n) => (£ 0)
| _ => raise (PARSING_ERR{function="get_num",
message="Expecting a number"}))
end

The function get_name returns an alphanumeric identifier. The function get_tyvar_name
returns a type variable name.

fun get_name ()
(skip_spQ);
let val name

(implode o rev) (map chr(get_bytes (is_id_charOrd) [1))

in

(if (debug > 1) then write_out("|""name~"|") else ();

name)
end)
and get_tyvar_name () =

(skip_spQ);
if (tyvchar = peekb()) then

(implode o rev)(map chr(get_bytes (is_tyv_charOrd) [mextb()]))
else raise (PARSING_ERR{function="get_tyvar_name",

message="Illegal type variable name"})

)

The function get_const_name returns a string which is a valid constant name. It may
be either alphanumeric or symbolic. The function get_symbolic_name returns a symbolic
identifier. :

and get_const_name () =
(skip_spQ);
if (is_id_charOrd(peekb())) then
(implode o rev) (map chr(get_bytes (is_id_charOrd) [1))
else if (is_spec_charOrd(peekb())) then
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get_symbolic_name ()
else raise (PARSING_ERR{function="get_const_name",
message="Illegal constant name"})
)
and get_symbolic_name () =
let fun symn 1 1lsym =
let val c = peekb()
val lsym’ = ListUtil.filter
(fn s => (if (ordof(s,n) = c¢) then SOME s else NONE)
handle Ord => NONE) lsym
in
if (debug > 2) then
(write_out("get_sym_name "~ (makestring n));
(write_out o implode o (map chr)) 1; ())
else );
if (null 1lsym’) then ((implode o rev) (map chr 1))
else (strip(); sym (a+1) (c::1) 1lsym’)
end
in
sym 0 [] Keyword.symbols
end
handle e => raise
(PARSING_ERR{function="get_symbolic_name",
message="error"})

The function check_ver_string verifies the version string which identifies the file format.

fun check_ver_string () =
let val s = rev (tl(get_long_str [RP] [1)) in
(unget RP;
(s = (map (byte_to_char o ord) (explode Keyword.versionName))))
end

The function get_tag takes a string str which is the tag expected to be read from the input.
It scans through the input characters comparing each character with successive character of
str until the end of it. If the end of str is reached and all corresponding characters agree, the
required tag is found. Otherwise it raises an exception.

fun get_tag str =

let
fun £ [J = true
| £ (x::x8) =
case (peek()) of
(ALPHA c¢) => if(c = x) then (strip(); f xs) else false
| _ => false
in

if (f (explode str)) then ()
else raise (PARSING_ERR {function="get_tag",
message="Expecting tag ("“str~")"})
end
end (* local *)

6.2.5 Parsing functionals Functions in this section are parsing functionals. They process
the higher level objects, such as an item, a list or a pair. In general, they take parsing functions
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as arguments. The functionals parse the delimiters of the object and use the supplied functions
to parse the sub-objects. :

An item is always enclosed in a pair of parentheses. The function parse_item takes a
function kind which parses the contents between the parentheses. parse_item ignores any
leading blanks before the open parenthesis LP. It applies the parsing function kind to process
the contents after the LP. It then skips any blanks before the closing parenthesis RP and gets
the RP. An exception is raised if neither the LP nor the RP is found. If the paring function kind
fails with the special exception PARSE_DONE, we skip to the end of the item and propagate the
exception. This situation occurs when all goals are proved, so the remaining proof lines are
skipped over.

fun parse_item kind ) =
(skip_sp O;
if (LP = peek()) then
(stripQ;
let
val x = kind()
handle PARSE_DONE => (skip_long_string true [RP];
raise PARSE_DONE)
| e => raise e
in
(skip_sp(Q);
if (RP = next()) then x
else raise (PARSING_ERR
{function="parse_item", message="expecting RP"}))
end)
else raise (PARSING_ERR
{function="parse_item", message="expecting LP"})

)

A pair is always enclosed in a pair of braces. The function parse_pair processes a pair.
The argument is a pair of parsing functions which parse the first and second field of the pair,
respectively.

and parse_pair (£f1,f2) () =

(skip_spQ);
if (LC = peek()) then
(strip();
let
val x1 = f1() and x2 = £2()
in

(skip_spQ);
if (RC = next()‘) then (x1,x2)
else raise (PARSING_ERR

{function = "parse_pair", message = "expecting RC"}))
end)
else raise (PARSING_ERR
{function = "parse_pair", message = "expecting LC"}))

A list is always enclosed in a pair of brackets. The function parse_list parses lists. Its argu-
ment kind is a parsing function for a single element. It uses the local function get_list_items
to process the elements recursively.

A closure is a list without the enclosing brackets. The function parse_closure uses the
same local function as parse_list to process the elements.
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NOTE: the list of items returned is in reverse order.

local
fun get_list_items f 1 =
get_list_items £ ((parse_item £ ())::1)
handle PARSE_DONE => (skip_long_string false [RB]; 1)
" (* raise PARSE_DONE *)
| CHK_ERR {message = "expecting LP",
origin_function = "parse_item",
origin_structure = "Parsing"} => 1
| e => raise e
fun get_list_pum 1 =
get_list_num ((get_num ())::1)
handle CHK_ERR {message,origin_function,origin_structure} => 1
| e => raise e
in
fun parse_list kind () =
(skip_spQ);
if (LB = peek()) then
(stripQ;
let val items = get_list_items kind [] in
(skip_spQ;
if (RB = next()) then items
else raise (PARSING_ERR

{function = "parse_list", message = "expecting RB"})
)

end)

else raise (PARSING_ERR
{function = "parse_list", message = "expecting LB"}))
and parse_closure kind () =
(skip_sp(); get_list_items kind [])
and parse_num_list () =

(skip_spQ);
if (LB = peek()) then

(strip(Q;

let val items = get_list_num [] in

(skip_spQ);
if (RB = next()) then items
" else raise (PARSING_ERR
{function = "parse_num_list", message = "expecting R
B"}))

end)

else raise (PARSING_ERR
{function = "parse_num_list", message = "expecting LB"}))

end (* local *)

The function parse_list_pairs is similar to parse_list_items except that the elements
are pairs. NOTE: the list of pairs returned is in reverse order.

local
fun get_list _pairs f 1 =
get_list_pairs £ ((parse_pair £ ())::1)
handle PARSE_DONE => (skip_long_string true [RB];
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raise PARSE_DONE)
| CHK_ERR {message = "expecting LC",
origin_function = "parse_pair",
origin_structure = "Parsing"} => 1
| e => raise e

in
fun parse_list_pairs kind () =
(skip_sp();
if (LB = peek()) then
(stripQ;
let val items = get_list_pairs kind [] in
(skip_sp(Q);
if (RB = next()) then items
else raise (PARSING_ERR
{function = "parse_list", message = "expecting RB"}))
end)
else raise (PARSING_ERR

{function = "parse_list", message = "expecting LB"}))
end; (* local *)

end; (* functor Parsing *)



Keywords

The module keyword specifies the concrete strings of the proof file and the log file. Throughout
the program, symbolic names defined in this module are used instead of concrete strings. If the
formats are changed, only definitions in this module need to be modified.

7.1 The specification

The signature Keyword_sig specifies a structure containing all the keywords the lexical analyser
and the parser understand. These keywords constitute the concrete syntax of the proof format.

signature Keyword_sig =

sig
val
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

end;

alphas: string list
symbols: string list
idchars: string
tyvar: string

LP:
RP:
LC:
RC:
LB:
RB:
PLUS

string
string
string
string
string
string

: string
MINUS: string

PM: string list
versionName: string
log_versionName: string
TYOP: string
TYVAR: string
TYCONST: string
VAR: string
CONST: string
APP: string

ABS: string

THM: string

LINE: string
PROOF: string
VERSION: string
ENV: string
TIMESTAMP: string
USED: string
PROVED: string
and UNSOLVED: string

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

(*

Alphanumeric keywords *)

Symbolic identifiers *)

Special characters in alphanumeric id *)
The leading charcter of type variables *)
Begin of an item *)

End of an item *)

Begin of a pair *)

End of a pair *)

Begin of a list *)

End of a list *)

The optional signs before a number *)
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7.2 The implementation

Here is the keyword structure. alphas is a list of tags, i.e., the first atom in an expression that
identifies what kind of expression this is. symbols is a list of allowable symbolic identifiers. All
initial substrings of these strings can be the names of constants. idchars are characters, in
addition to letters and digits, allowed in alphanumeric identifiers. tyvar is the initial character
of a type variable. LP and RP are the left and right parentheses. They enclose an expression.
LC and RC are the left and right braces which enclose a pair. LB and RB are the left and right
brackets which enclose a list. PM is a list of characters which may appear in front of a number,
i.e., the optional signs. versionName is a string identifying the version of the input file format.
log_versionName is a string identifying the version of the output file format.

VERSION is a special tag. All characters after the blanks following this tag until the closing
RP are taken as a single string. A list of symbolic names are defined for the tags of all kinds of
expressions. They are exported and used by the parser.

structure HOLProofKey :Keyword_sig =
struct
Val alphas = [lloll’ "V", "cll’ llv"’ "CII, llAll’ IILII’
IITHMII , "LINEII R IIPRDUF" R IIVERSIUNII , "ENVII R
"TIMESTAMP", "USED", "PROVED", "UNSOLVED"]

and symbols - [n-n, n**"’ ll++"’ ll<__ll’ ng->n, ||__>n, e mygn LSS
n>=n’ n<==", "<=>u’ ll___==", ||==>", n\\/u, n//n’ ll/\\"’ }
n!?n’ n!!u’ ll!\\ll’ ll?!ll’ u??n’ "?\\ll’ "ozt n<>n, l|’ll’ll@ll,
ng-n, ll<<", ll<=l|’ nosn o uzyu N=n

and idchars = "_’}"

and tyvar = "*"

and LP = Il(ll and RP Il)ll

and LC = "{" and RC = "}"

and LB = n[" and RB = n]"

and PLUS = "+" and MINUS = "-"

and PM = ["-", "+"] (* There should be no space between these signs
and the following digits. The first should be
the minus sign, the second the plus. *)

and versionName = "PRF FORMAT 1.0 EXTENDED"

and log_versionName = "HOL CHECKER 0.1";

val idchar_codes = map ord (explode idchars)
and tyvar_code = ord tyvar;

val [TYOP, TYVAR, TYCONST, VAR, CONST, APP, ABS,
THM, LINE, PROOF, VERSION, ENV,
TIMESTAMP, USED, PRUVED, UNSOLVED] = alphas;
end;



8 The checking rules

The module Check is the critical part of the checker. It implements the checking rules. For
each basic inference rule basicrule, a checking function chk_basicrule is defined. The functions
return true if the inference is correct, otherwise, they return false. If the theorem is not in
the expected form, an exception is raised due to the failure in pattern matching.

8.1 The specification

signature Check_sig =
sig

structure Report: Report_sig
structure Htype: Htype_sig
structure Hterm: Hterm_sig
structure Hthm: Hthm_sig
structure Henv: Henv_sig
structure Proof: Proof_sig
structure HtermSet: ORD_SET

The main functions provided by this module are init which should be called to initialise
the module at the beginning of a proof; chk_pline which is called for each proof line; and
chk_proof which is called at the end of each proof.

val init : unit -> unit

val chk_pline: (int * Proof.justification * Hthm.hthm) -> int
val chk_proof: (string * Hthm.hthm list * int list) -> unit

Below are checking functions for each kind of justification. They do not need to be exported.
They should be removed from the signature when the program is stable.

val chk_Abs: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_Assume: (Hterm.hterm * Hthm.hthm) -> bool
val chk_BetaConv: (Hterm.hterm * Hthm.hthm) -> bool
val chk_Disch: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_InstType:
(int * (Htype.htype * Htype.htype)list * int * Hthm.hthm) -> bool
val chk_Mp: (int * int * int * Hthm.hthm) -> bool
val chk_Refl: (Hterm.hterm * Hthm.hthm) -> bool
val chk_Subst:
(int * (int * Hterm.hterm)list * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_Axiom: (string * string * Hthm.hthm) -> bool

val chk_Definition: (string * string * Hthm.hthm) -> bool
val chk_DefExistsRule: (Hterm.hterm * Hthm.hthm) -> bool
val chk_Hypothesis: Hthm.hthm -> bool

val chk_NewAxiom: (string * Hterm.hterm * Hthm.hthm) -> bool
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val chk_NewConstant: (string * Htype.htype) -> bool

val chk_NewType: (int * string) -> bool

val chk_Numconv: (Hterm.hterm * Hthm.hthm) -> bool

val chk_StoreDefinition: (string * Hterm.hterm # Hthm.hthm) -> bool
val chk_Theorem: (string * string * Hthm.hthm) -> bool

val chk_AddAssum: (int * Hterm.hterm * int- * Hthm.hthm) -> bool
val chk_Alpha: (Hterm.hterm * Hterm.hterm * Hthm.hthm) -> bool

val chk_ApTerm: (int * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_ApThm: (int * int * Hterm.hterm * Hthm.hthm) -> bool

val chk_Ccontr: (int * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_Choose: (int # Hterm.hterm * int * int * Hthm.hthm) -> bool
val chk_Conj: (int # int * int * Hthm.hthm) -> bool

val chk_Conjunctl: (int * int * Hthm.hthm) -> bool

val chk_Conjunct2: (int * int * Hthm.hthm) -> bool

val chk _Disji: (int * int * Hterm.hterm * Hthm.hthm) -> bool

val chk_Disj2: (int * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_DisjCases: (int * int * int * int * Hthm.hthm) -> bool

val chk_EqImpRuleL: (int * int * Hthm.hthm) -> bool

val chk_EqImpRuleR: (int * int * Hthm.hthm) -> bool

val chk_EqMp: (int * int * int * Hthm.htbm) -> bool

val chk_EqTIntro: (int * int * Htbm.hthm) -> bool

val chk_EtaConv: (Hterm.hterm * Hthm.hthm) -> bool

val chk_Exists: (int * Hterm.hterm * Hterm.hterm * int * Hthm.hthm) -> bool

val chk_Ext: (int * int * Hthm.hthm) -> bool
" val chk_Gen: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_ImpAntisymRule: (int * int * int * Hthm.hthm) -> bool
val chk_ImpTrans: (int * int * int * Hthm.hthm) -> bool
val chk_Inst: (int * (Hterm.hterm * Hterm.hterm) list * int * Hthm.hthm)
-> bool
val chk_MkAbs: (int * int * Hthm.hthm) -> bool
val chk_MkComb: (int * int * int * Hthm.hthm) -> bool
val chk_MkExists: (int * int * Hthm.hthm) -> bool
val chk_NotElim: (int * int * Hthm.hthm) -> bool
val chk_NotIntro: (int * int * Hthm.hthm) -> bool
val chk_Spec: (int * Hterm.hterm * int * Hthm.hthm) -> bool
val chk_Subs: (int * int list * int * Hthm.hthm) -> bool
val chk_SubsOccs: (int * (int list * int) list * int * Hthm.hthm) -> bool
val chk_SubstConv: (int * (int * Hterm.hterm) list *
Hterm.hterm * Hterm.hterm * Hthm.hthm) -> bool
val chk_Sym: (int * int * Hthm.hthm) -> bool
val chk_Trans: (int * int * int * Hthm.hthm) -> bool
end

8.2 The implementation

functor CheckFUN (structure Report: Report_sig and Htype:Htype_sig
and Hterm:Hterm_sig and Hthm: Hthm_sig
and Henv: Henv_sig and Proof: Proof_sig
and HtermSet: ORD_SET
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struct
structure
structure
structure
structure
structure
structure
structure

sharing Report = Htype.Report = Hterm.Report = Hthm.Report
and Htype = Hterm.Htype = Hthm.Hterm.Htype =
Henv.Htype = Proof.Htype
and Hterm = Hthm.Hterm = Henv.Hterm = Proof.Hterm
and Hthm = Proof.Hthm
and HtermSet = Hthm.HtermSet
sharing type Hterm.hterm = HtermSet.item) : Check_sig =

Report = Report;

Htype = Htype;
Hterm = Hterm;
Hthm = Hthm;

Henv = Henv;
Proof = Proof;
HtermSet = HtermSet;

open Htype Hterm Hthm Henv Proof;

fun Check_ERR{function,message} =
Exception7CHK_ERR{message = message,

origin_function = function,
origin_structure = "Check"};

val debug = ref 0;
fun write_out s = (output(std_err, s); flush_out std_err);
fun init Q) = (

debug := Debug.get_debug "Check";
M;

8.2.1 Functions for outputting to log file These two functions are convenient for writing
to the log file. The tag is the name of the justification. The function write_used is used for the
justifications DEFINITION and THEOREM. The first string s; is the name of the theory and the
second string s, is the name of the theorem. The function write_used?2 is for the justifications
NEWAXIOM and STOREDEFINITION.

local

open Report

open Keyword Io

in

fun write_used (tag,sl,s2,thm) =
(write_output_string (LP ~ tag =~ " " ~ s1 =~ " " = g2);
Hthm.pr_hthm thm;
write_closing_line ())
and write_used2 (tag,sl,tm,thm) =
(write_output_string (LP ~ tag = " " ~ s1);
Hterm.pr_hterm tm;
Hthm.pr_hthm thm;
write_closing_lime ())

end
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8.3 Checking functions

All checking functions are described below in detail. They are grouped into three subsections:
primitive rules, miscellaneous functions and derived ules. For each rule, the syntax in the proof
file is given in a box first. It is followed by a specification, the name of the rule and the type of
the ML function which implements the rule in HOL and a more detail description. The checking
function is shown at the end. In the case of a derived rule, a proof in terms of primitive rules
and other derived rules is given. Care has been taken not to introduce circular dependency in
these proofs. Some of the proofs were adapted from [5] with some modifications.

8.3.1 Primitive rules

e Abstraction
[ABS term NUMBER

TFt =t
TF(z.t1) = (Mz.te)

ABS : term -> thm -> thm

The term argument must be a variable, and must not be free in the assumptions of the
hypothesis I'. The NUMBER refers to the theorem in a line having the given line number.
This theorem must be an equation.

fun chk_Abs (line,term,ni,thm) =

let val thml = (get_thm (line,nl))
val hypl = hyp thml and conl = concl thmil
val (left,right) = dest_eq (concl thm)
val (1v,lbody) = dest_abs left and (rv,rbody) = dest_abs right
val hyps = hyp thm

in
well_typed term andalso is_var term andalso
is_eq conl andalso (HtermSet.equal(hypl, hyps)) andalso
(v = rv) andalso (term = rv) andalso
not(mem 1lv (freesl (HtermSet.listItems hyps))) andalso
(1body = (1hs conl)) andalso (rbody = (rhs conl))

end;

e Assumption introduction
{ASSUME term

tHt

ASSUME : term -> thm

The term ¢ must be of type : bool. There should be only a single assumption, and it must
be the same as the conclusion.
fun chk_Assume (term, thm) =
let val [ass] = HtermSet.listItems (hyp thm)
val conc = concl thm
in
is_bool_ty term andalso (conc = term) andalso (conc = ass)
end;
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e [(-conversion
[BETACONV term

F (/\.’I;.tl)tz = tl[tz/.'lt]
BETA_CONV : term -> thm

The term argument must be a B-redex in the form (Az.t;)t2. The right-hand side of the
resulting theorem is obtained by substituting ¢, for = in ¢; with suitable renaming of
variables in ¢; to avoid variable capture.

fun chk_BetaConv (term, thm) =
let val (rat,rnd) = dest_comb term
val (v,body) = dest_abs rat
val conc = concl thm
in :
well_typed term andalso
is_eq conc andalso ((lhs conc) = term) andalso
(HtermSet.isEmpty (hyp thm)) andalso
term_subst_chk [((v,rnd),v)] body (rhs conc) body
end;

¢ Discharging an assumption
[DISCH term NUMBER

'kt
r—{t1}|'t1 Dt

DISCH : term -> thm -> thm

The input term ¢; must be of type : bool. The NUMBER refers to the theorem in the line
having the given number. The expression I' — {¢,} denotes the set subtraction of {t;}
from I'. If ¢; is not in T, the result of the subtraction is I" itself.
fun chk_Disch (line, term, nl, thm) =
let val thmi = get_thm (line,nl)
val (ante,conc) = dest_imp (concl thm)
in
is_bool_ty term andalso
(ante = term) andalso (conc = (concl thml)) andalso
(HtermSet.equal ((hyp thm),

(HtermSet.difference((hyp thmi), (HtermSet.singleton term)))))
end;

s Type instantiation
[INSTIYPE type_type_list NUMBER |

L'kt
Lk to1,...,0n Q1,...,00]

INST_TYPE : (type # type)list -> thm -> thm

The first argument is a list of type pairs [(61,1); .. .; (0, @n)] which specifies the simul-
taneous type substitutions to be made in the theorem referred to by NUMBER. The second
fields a; of the pairs must be type variables, and @; must occur in any assumption in I'.
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All occurrences of «; in ¢ are replaced by the corresponding o;. Furthermore, if distinct
variables in ¢ become identical after the instantiation, they will be renamed. -
fun chk_InstType (line, type_type_list,ni,thm) =
let
val thml = get_thm (line,nl)
val tyvar_list = map snd type_type_list
val hypp = hyp thm
val hypl = HtermSet.listItems hypp
in
every is_vartype tyvar_list andalso
every (type_0K o fst) type_type_list andalso
HtermSet.equal (hypp, (hyp thml)) andalso
null(intersect tyvar_list (tyvarsl hypl)) andalso
term_inst_chk type_type_list (freesl hypl) (concl thm) (concl thml)
end; ’

¢ Modus Ponens
|MP NUMBER NUMBER |

TiFt1 Dt Taokty
Ul iy

MP : thm -> thm -> thm

The theorem referred to by the first NUMBER must be an implication. The theorem referred
to by the second NUMBER must match the antecedent of the first theorem exactly.

fun chk_Mp (line, nl,n2,thm) =
let val thml = get_thm (line,nl) and thm2 = get_thm (line,n2)
val (ante,conc) = dest_imp (concl thmil)
in
(conc = concl thm) andalso (ante = concl thm2) andalso
HtermSet.equal ((hyp thm), (HtermSet.union((hyp thmi), (hyp thm2))))
end;

o Reflexivity
|REFL term |

REFL : term -> thm

The term t must be of type : bool. The resulting theorem must be an equation with
identical terms on both sides.

fun chk_Refl (term,thm) =
let val conc = concl thm
in
well_typed term andalso HtermSet.isEmpty(hyp thm) andalso
is_eq conc andalso (lhs conc = term) andalso (rhs conc = term)
end;
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e Substitution
| SUBST NUMBER.term_list term NUMBER ]

1"1I-t1=t’1 I‘nl—tn=t;1 r|‘t[t1,...,tn]
FlU---UI‘,,,UI‘}'t[ti,...,t.'n/tl,...,tn]

SUBST : (thm # term)list —-> term -> thm -> thm

The first argument is a list of pairs whose first fields are equational theorems ¢; = ¢}, and
whose second fields are simple variables ;. The second argument is a term of the form
t[x1,...,2Zs). It should match the conclusion of the theorem referred to by NUMBER. The
variables z; in the term mark the places where substitutions using the theorems + t; = ¢}
are to be done. The type of z; must be the same as of #;. Variables in ¢ may be renamed
to avoid capture.

fun chk_Subst (line, num_term_list,term,nl,thm) =

let val thml = get_thm (line,nl)
val thms = map (fn n => get_thm(line, (fst n))) num_term_list
val hyps = fold HtermSet.union (map hyp thms) HtermSet.empty
val 1rl = map (dest_eq o concl) thms
val (_,vl) = ListUtil.unzip num_term_list
in

every (is_eq o concl) thms andalso

HtermSet.equal ((hyp thm), (HtermSet.union(hyps, (hyp thmi)))) andalso

term_subst_chk (ListUtil.zip(lrl,vl)) term (concl thm) (concl thmi)
end;

8.3.2 Miscellaneous Functions

¢ Retrieving an axiom
[AXIOM STRING STRING |

axiom : string -> string -> thm
This justification indicates that the theorem in this inference step is an axiom whose name

is the second string and which is stored in the theory specified as the first string. The
well-typedness of the axiom should be checked. An entry is written to the log file.

fun chk_Axiom (s1,s2,thm) =
(write_used ("AXIOM", sl, s2, thm);
is_bool_ty(concl thm) andalso
every is_bool_ty (HtermSet.listItems(hyp thm)))

¢ Retrieving a definition
 [DEFINITION STRING STRING |

definition : string -> string -> thm

This justification indicates that the theorem in this inference step is a previously defined
definition whose name is the second string and which is stored in the theory specified as
the first string. The well-typedness of the theorem should be checked. An entry is written
to the log file.

fun chk_Definition (s1,s2,thm) =
(write_used ("DEFINITION", si1, s2, thm);
is_bool_ty(concl thm) andalso
every is_bool_ty (HtermSet.listItems(hyp thm)))
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¢ Create a definitional theorem
| DEFEXISTSRULE term |

DEF_EXISTS_RULE : term -> thm

This justification introduces a new definitional theorem. The input term must be an
equation and both sides must be of the same type.

fun chk_DefExistsRule (tm,thm) =
let val (left,right) = dest_eq (snd(strip_forall tm))
val (1,r) = dest_eq(snd(strip_forall(snd(dest_exists(concl thm)))))
in
(well_typed left) andalso (well_typed right) andalso
((type_of left) = (type_of right)) andalso
(left = 1) andalso (r = right)
end

¢ Hypothesis
|HYPOTHESIS A |

This justification indicates that the theorem is one of the initial theorems of the proof. It
should have been proven in a previous proof. An entry is written to the log file.

fun chk_Hypothesis thm =
(write_used ("HYPOTHESIS", "", "', thm);
is_bool_ty (concl thm))

e Introducing a new axiom
INEWAXIOM STRING term

F Vz; ...:vn.t[a:l,...,a:n]

nev_axiom : (string # term) -> thm

This justification introduces a new axiom. It is in the form given as the term. The
STRING is the name of the axiom. All free variables in the input term are automatically
generalised. An entry is written to the log file.

fun chk_NewAxiom (s,term,thm) =
let val (vs,body) = (strip_forall (concl thm)) in
write_used2 ("NEWAXIOM", s, term, thm);
(term = body) andalso (every (fn x => mem x vs) (frees term))
end

e Introducing a new constant
| NEWCONSTANT STRING type

new_constant : string -> type -> void

This justification declares a new constant whose name is the given STRING and whose type
is the given type. The name should be unique, i.e., different from any existing constant,
and the type should be well-formed. The current signature should be updated. There
should be no conclusion (derived theorem) in this inference step. To satisfy the type
checker, the theorem TRUTH is used as a dummy.

fun chk_NewConstant (string,ty) =
if (type_OK ty) then
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let val _ = add_const(string,ty)
handle (CHK_ERR{origin_function=f,
origin_structure=s,message=m}) =>
raise (Check_ERR{function="chk_NewConstant",
message=(s~".""f"":""m)})
| e => raise e
in true end
else raise (Check_ERR{function="chk_NewConstant",
message="type of new constant not well-formed"})

e Introducing a new type
[NEWIYPE NUMBER STRING |

new_type : int -> string -> void

‘This justification declares a new type constructor whose name is the given STRING and
whose arity is the given NUMBER. The name should be unique, i.e., different from any
existing type constructor. The current type structure should be updated. The theorem
in this inference step is not used. To satisfy the type checker, the theorem TRUTH is used
as a dummy.

fun chk_NewType (num,string) =
let val _ = add_type(string,num)
handle (CHK_ERR{origin_function=f,origin_structure=s,message=m}) =>
raise (Check_ERR{function="chk_NewType",
message=(s~".""f"":""m)})
| e => raise e
in true end

e Definition of non-zero numbers
[ NUMCONV term

Fn=SUCm

num_CONV : term -> thm

The input term must be a constant denoting a non-zero natural number. m is a numeric -
constant denoting the predecessor of n.

fun chk_Numconv (term,thm) =
let val (left,right) = dest_eq (comcl thm)
val n = StringCvt.atoi(fst(dest_const left))
and (s,m) =
((fst o dest_const) ## (StringCvt.atoi o fst o dest_const))
(dest_comb right)
in
(term = left) andalso (n = (m + 1)) andalso (s = "SUC")
end

e Storing a definition
[STOREDEFINITION STRING term |

store_definition : (string # term) -> thm

This justification introduces a new definition. In fact, making a new definition is a three-
step process:
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1. a theorem asserting the existence of the definition is derived with the justification
DEFEXISTSRULE;

2. a new constant is declared with the justification NEWCONSTANT;
3. the definition is saved in the current theory with the justification STOREDEFINITION.

Since this file format allows only the four kinds of primitive terms, special syntactic status
of constants, i.e., infix or binder, are not recognised. The input term must be a series
of conjunctions. Each conjunct is an equation and both sides are of the same type. An
entry is written to the log file.

fun chk_StoreDefinition (s,term,thm) =
let
fun chk_tm ((1,r),t) =
t andalso (well_typed 1) andalso (well_typed r) andalso
((type_of 1) = (type_of 1))
val conjs = strip_conj (snd(strip_forall term))
val 1lrlst = map (dest_eq o snd o strip_forall) comnjs
in
write_used2 ("STOREDEFINITION", s, term, thm);
(fold chk_tm lrlst true) andalso (term = (concl thm))
end

¢ Retrieving a theorem
[THEOREM STRING STRING |

theorem : string -> string -> thm

This justification indicates that the theorem in this inference step has been derived pre-
viously. It has been stored in the theory, whose name is the first string, under the name
specified as the second string. The well-typedness of the theorem should be checked. An
entry is written to the log file.

fun chk_Theorem (s1,s2,thm) =
(write_used ("THEOREM", s1, s2, thm);
is_bool_ty(concl thm) andalso
every is_bool_ty (HtermSet.listItems(hyp thm)))

8.3.3 Derived Rules

¢ Adding an assumption
| ADDASSUM term NUMBER

rrt
I, 'kt

ADD_ASSUM : term -> thm -> thm
The input term is the new assumption ¢’ to be added to the theorem. It must be of type

bool. -
1. Rt . [ASSUME]
2. Tkt [Hypothesis]
3. THt'Dt [DISCH 2]
4. T, ¢+t [MP 3,1]
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fun chk_AddAssum (line, term, n, thm) =
let val thmi = get_thm(line, n)

in
(concl thm = concl thml) andalso (ty_is_bool(type_of term)) andalso

(HtermSet.equal ((HtermSet.delete((hyp thm), term)), (Chyp thml1)))
end

e g~-conversion
|ALPHA term term

Fit =1t

ALPHA : term -> term -> thm

The input terms #; and ¢; must be a-equivalent, otherwise, it fails.
fun chk_Alpha (termi, term2, thm) =

let val (left,right) = dest_eq (concl thm)

in
well_typed terml andalso well_typed term2 andalso

aconv left right andalso (terml = left) andalso (term2 = right)

end

e Application of a term to a theorem
|APTERM term NUMBER

I‘i‘t1=t2
Thtty =tts

'AP_TERM : term -> thm -> thm
The input term must have a function type whose domain is the type of the left-hand side
(or right-hand side as the type of both sides must be the same) of the input theorem.

1. THti=t [Hypothesis]
2. Ftti=th ' [REFL]
[SUBST 1,2]

3. Thrtty=tts

fun chk_ApTerm (line, term, n, thm) =
let val ((1t,left), (rt,right)) =
(dest_comb ## dest_comb) (dest_eq(concl thm))
val thml = get_thm(line, mn)
val (1ft,rgt) = dest_eq (concl thml)
in
(1t = rt) andalso (term = 1lt) andalso
(1ft = left) andalso (rgt = right) andalso
(HtermSet.equal ((hyp thm), (hyp thml))) andalso
(domain_of (type_of term) = (type_of left))

end
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e Application of a theorem to a term
|APTHM NUMBER term

'kt =t
TrHtit=1t1

AP_THM : thm -> term -> thm

The input term must have the same type as the domain of the left-hand side (or the
right-hand side) of the input theorem.

1. T =1 [Hypothesis]
2. Ftht=tt [REFL]
3. I'ktyt=trt [SUBST 1,2]

fun chk_ApThm (line, n, term, thm) =
let val ((left,lt), (right,rt)) =
(dest_comb ## dest_comb) (dest_eq(concl thm))
val thml = get_thm(line, n)
val (1ft,rgt) = dest_eq (concl thml)
in
(1t = rt) andalso (1t = term) andalso
(left = 1ft) andalso (right = rgt) andalso
(HtermSet.equal ((hyp thm), Chyp thml))) andalso
(domain_of (type_of left) = (type_of term))
-end

e Classical contradiction rule
[CCONTR term NUMBER

THF
T-{-t}F¢

CCONTR : term -> thm —-> thm

The theorem referred to by the NUMBER must have F as its conclusion. The input term
t should be of type :bool, and the negation of it should occur in the assumption of the

input theorem.
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1. Fa=X.bDF [Definition of -]
2. F-t=(\b.bDF)t [AP_THM 1]
3. F(Ab.bDF)t=tDF [BETA_CONV]
4. F-t=t>F [TRANS 2,3]
5. TFF [Hypothesis]
6. TF-tDF [DISCH 5]
7. TFEDF)OF [SUBST 4,6]
8. t=Frt=F [ASSUME]
9. I,t=FF(FOF)DOF [SUBST 8,7]
10. FFF [ASSUME]
1. FFOF [DISCH 10]
12. T,t=FFF [MP 9,11]
13. FF=Vb.b [Definition of F]
4. T, t=FFVbb [SUBST 13,12]
15. T,t=FFkt [SPEC 14]
16. FVb.(b=T)V(b=F) [Axiom EXCLUDED_MIDDLE]
17 F(=T)V(t=F) [SPEC 16]
18. t=Tkrt=T [ASSUME]
19. t=TFT=t [SYM 18]
2. T [Theorem TRUTH]
21. t=Tkt [EQ_MP 19,20]
22. TFHt [DISJ_CASES 17,21,15]

fun chk_Ccontr (line, term, n, thm) =
let val thml = get_thm(line, n)

in

and not_term =

mk_comb (mk_const ("~",mk_funtype(bool_ty,bool_ty)), term)
and F = mk_const("F", bool_ty)
val hypi = (HtermSet.delete((hyp thml), not_term))
handle NotFound => (hyp thmi)

(concl thml = F) andalso (concl thm = term) andalso
(HtermSet.equal((hyp thm), hypi))

end

e J-elimination

|CHOOSE term NUMBER NUMBER

CHO

OSE :

Ty b 3z.tfz] Ty, tv] ¢

LUl ¢

(term # thm) -> thm -> thm

The input term must be a variable v and its type must be the same as the existentially
quantified variable z in the first theorem. #[v] is a term occurring in the assumptions
of the second theorem. It is the same as t[z], the body of the first theorem, up to a-
conversion. The variable v must not occur free in the conclusion of the first theorem, i.e.,
3z. t[z], and neither can it occur free in I'; or ¢'.
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1. F3=)P.PeP) [Definition of 3']
2. F3(Az.t[z]) = (A\P. P(e P))(\z.t[z]) [AP_THM 1]
3. Ty F3Iz.tz]) [Hypothesis]
4. Ty (AP.P(e P))(Az.t[z]) [EQMP 2,3]
5. F(AP.P(e P))(Az.t[z]) = (Az. t[z]) (e(Az. t[z])) [BETA_CONV]
6. Tk (z.t[z])(e(Az. t[z]) [EQMP 5,4]
7. F (Az.tfz])v = t[v] [BETA_CONV]
8. k] = (z.t[z])v [sYM 7]
9. T, tlu]Ft [Hypothesis]
10. Ty ktp]D¢ [DISCH 9]
11. To b (Qz.tfz])v Dt [SUBST 8,10]
12.  (Az.t[z])v F (Az. t[z])v [ASSUME]
13. Ty, (Az.t[z])v ¢ [MP 11,12]
14. ThUl Rt [SELECT_ELIM 6,13]

fun chk_Choose(line, term, nl, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (evar,ebody) = dest_exists(concl thml)
val hypl = hyp thml and hyp2 = hyp thm2
val hyp2l = HtermSet.listItems hyp2
val wit = ListUtil.findOne (aconv ebody) hyp2l
in
case wit of
NONE => false
| SOME tm =>
let
val hyp2’ = HtermSet.delete(hyp2, tm)
in
(is_var term) andalso not(mem term(frees(concl thmi))) andalso
(not (mem term (frees (concl thm2)))) andalso
(not (mem term (freesl (HtermSet.listItems hyp2’)))) andalso
(concl thm = concl thm2) andalso
(HtermSet.equal((hyp thm), (HtermSet.union(hypl, hyp2’))))
end
end

e A-introduction
|CUNJ NUMBER NUMBER

Tyt Tolkis
Ul Ats

CONJ : thm -> thm -> thm
The two NUMBERs refer to two theorems which are to be combined by the A operator.

lwith suitable type instantiation.
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L FA=Xb1 ba.Vo.(b1 D (b2 D b)) Db [Definition of A]
2. FS8At =S$AL [REFL]
3.+ (Aby ba.Vb. (by D (b2 D b)) D b)Yty =

Aba V. (21 D (b2 D b)) Db [BETA_CONV]
4. FSAH; = (Ab1 bs. Vb. (bl D (bz » b)) D b)tl [SUBST 1,2]
5. FSAt; = Abo.Vb. (21 D (b2 D b)) Db [SUBST 3,4]
6. FtiAta=t1 Aty [REFL]
7. F(Ab2.Vb.(t1 D (b2 D b)) D b)t2
=Vb.(t; D (.2 D b)) Db) [BETA_CONV]
8. ki1 Aty = (Ab.Vb. (¢ D (b2 D b)) D bty [SUBST 5,6]
9. FtaAta=Vb.(t1 D ((.2Db)) Db [suBST 7,8]
10 t:4D(2Db)Ft1D(t2Db) [ASSUME]
11. ThkYy [Hypothesis]
12 Ty, 51 D(2Db)Fi2Db [MP 10,11]
13. Tolkt, [Hypothesis]
14. Ty ULy, t1 D (#2D b)Fb [MP 12,13]
15, TiUTl (1D (2Db) Db [DISCH 14]
16. THUT FVb.(t1 D (t2Db)) Db [GEN 15]
17. kWb (t]_ D (tz D b)) Db=t Aty [SUBST 9,6]
18. ThuTls ki3 Ats [SUBST 17,16]

fun chk_Conj(line, nl, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val hypl = hyp thml and hyp2 = hyp thm2
and concls = map concl [thml, thm2]
val (AND,conjs) = strip_comb (concl thm)
val hyps = hyp thm

in

(well_typed AND) andalso (fst(dest_const AND) = "/\\") andalso
(every is_bool_ty concls) andalso (conjs = concls) andalso
(every is_bool_ty (HtermSet.listItems hyps)) andalso
(HtermSet.equal(hyps, (HtermSet.union(hypl, hyp2))))

end

¢ A-elimination(left)
[ CONJUNCT1 NUMBER

THt At
'kt
CONJUNCT1 : thm -> thm

This inference step extracts the left conjunct from the theorem referred to by NUMBER.
The conclusion of the input theorem must be a conjunction.
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W

N otk

8.

9.
10.
11.
12.
13.
14.
15.
16.

F A = Aby by. Vb (bl D (b2 )] b)) Db

F 8AtL = $AL,

- (Abl bs. Vb. (b1 D) (bz D b)) D b)tl
=Ab2.Vb. (21 D (62D b)) Db

F $At = (Ab]_ by. Vb. (b1 D (bz D b)) D b)tl
F8Aty = Ab2.Vb. (21 D (b2 D b)) Db

Flhi Aty =t Nts

- ()\bQVb (t]_ D (b2 D b)) D b)t2

=Vb.(t1 D (22 Db)) D b)

Fti Al = (}\bg‘V’b (tl > (bz 2 b)) D b)tz
FtaAta=VYb.(t1 D (t2Db) Db

ThHti AL

CEHVYb.(t1D(t2D0) Db
TF#D(@2D4))Dh

tHhFi

thFtaDH

Ft, D (tz D tl)

Tt

fun chk_Conjuncti(line, n, thm) =
let val thml = get_thm(line, n)
val (AND, [conjl,conj2]) = strip_comb (concl thmi)
and hyps = (hyp thmi)

in

[Definition of A]
[REFL]

[BETA_CONV]
[SUBST 1,2]
[SUBST 3,4]

[REFL)

[BETA_CONV]
[SUBST 5,6]
[SUBST 7,8]

[Hypothesis]

[SUBST 9,10

[SPEC 11]
[ASSUME]
[DISCH 13]
[DISCH 14]
[MP 12,15]

(every is_bool_ty (HtermSet.listItems hyps)) andalso
(HtermSet.equal(hyps, (hyp thml))) andalso

(well_typed AND) andalso (fst(dest_comst AND) = "/\\") andalso
(conjl = (concl thm))

end

e A-elimination(right)

{ CONJUNCT2 NUMBER

TFt AL

TFt

CONJUNCT2 : thm -> thm

This inference step extracts the right conjunct from the theorem referred to by NUMBER.
The conclusion of the input theorem must be a conjunction.
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I FA=Abiba.Vb.(by D(b2Db) Db [Definition of A]
2. FSAL =8AL [REFL]
3. F (Aby b2.Vb. (b1 D (b2 D b)) D)y
T =AYb (t1 D (B2D b)) Db [BETA_CONV]
4. Aty = (Aby ba.Vb. (b1 D (b2.0 1)) D b)ty [SUBST 1,2]
5. FSAt; = Aba.Vb. (81 D (62D D)) Db [SUBST 3,4]
6. FtiAta=t1 At [REFL]
7. F ()\bz.Vb. (t1D(b2D b)) D b)te
=Vb. (t1 D (t2 D b)) D b) [BETA_CONV]
8. ki3 Aty = (Ab2.Vb.(t1 D (by D b)) D bty [SUBST 5,6]
9. FtiAta=Vb.((1 D ((2Db)) Db [SUBST 7,8]
10. ThHt1 AL [Hypothesis]
11. TF V. (tl D (tz o b)) b [SUBST 9,10]
12. TF (t11 D (tz D tz)) Dig [SPEC 11]
13. to bk ts [ASSUME]
14. ki Dt [DIScH 13]
15. Ft1 D (tz D tz) [DISCH 14]
16. Tkt [MP 12,15]
fun chk_Conjunct2 (line, n, thm) = !
let val thml = get_thm(line, n)
val (AND, [conji,conj2]) = strip_comb (concl thmi)
and hyps = hyp thml
in
(every is_bool_ty (HtermSet.listItems hyps)) andalso
" (HtermSet.equal (hyps, (hyp thm))) andalso
(well_typed AND) andalso (fst(dest_const AND) = "/\\") andalso
(conj2 = (concl thm))
end
o Intuitionistic contradiction rule
|CONTR term NUMBER
THF
THt
CONTR : term -> thm -> thm
The theorem referred to by NUMBER should have falsity (F) as its conclusion.
1. FVLFDt [Theorem FALSITY]
2. TFF [Hypothesis]
3. FFDOt [SPEC 1]
4. Tht [MP 3,2]

fun chk_Contr(line, term, n, thm) =
let val thml = get_thm(line, n)
and hyps = hyp thm
in
(well_typed(concl thml)) andalso
(fst (dest_const (concl thml)) = "F") andalso
(every is_bool_ty (HtermSet.listItems hyps)) andalso
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(HtermSet .equal (hyps, (hyp thml))) andalso
(is_bool_ty term) andalso (term = concl thm)
end

¢ Right V-introduction

|DISJ1 NUMBER term

DISJ1 :

'kt
Tkt Vi

thm -> term -> thm

The result of this inference rule is a disjunctive theorem whose second disjunct is the
input term. This term must be of type :bool.

1. FV=Abba.Vb.(b1Db)D(b2Db) Db [Definition of V]
2. F8vt =8ty [REFL]
3. ()\bl bs. Vb. (b1 )] b) D (bz D b) D b)tl
=Abp.Vb.(t1 D) D (b Db) Db [BETA_CONV]
4. F8Vt; = (Aby b2.Vb. (b1 Db) D (b2 D b) D)ty : [SUBST 1,2]
5. FSVty =Ab.Vb.(t; Db0) D (b2 Db) Db [SUBST 3,4]
6. Ft1Via=1t1Vi [REFL]
7. (Ab2.Vbh.(t1 D b) D (b2 D b) D bt
=Vb.(t1Db)D(t2Db) Db [BETA_CONV]
8. ki3 Vip = (Ab2.Vb. (83 D b) D (b2 D b) D b)t2 [SUBST 5,6]
C 9. FHiVie=Vb.(t1D20)D(t2Db)Db [suBST 7,8]
10. Tk [Hypothesis}
11. $ DbFt1 Db [ASSUME]
12. T,t,Dbkb [MP 11,10]
13. T, t1DbF({2Db)Db [DISCH 12]
14. T Db)D(2Db)Db [DISCH 13]
15. THVYb.(t1Db)D(t2Db) Db [GEN 14]
16. FVb.(t1Db0)D(t2Db)Db=t1 Vi , : [suBST 9,6]
17. THt Vi [SUBST 16,15]

fun chk_Disji(line, n, term, thm) =
let val thml = get_thm(line, n)
val (OR, [disj1,disj2]) = strip_comb(concl thm)

in

(is_bool_ty disji) andalso (is_bool_ty disj2) andalso
(well_typed OR) andalso ((fst(dest_comnst OR)) = "\\/") andalso
(concl thml = disjl) andalso (term = disj2) andalso
(HtermSet.equal((hyp thm), Chyp thm1)))

end

o Left V-introduction

[DISJ2 term NUMBER

't
Tttt Vi

DISJ2 : term -> thm -> thm

The result of this inference rule is a d1s3unct1ve theorem whose first disjunct is the input

term. This term must be of type :bool.
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1. FV=Xb1ba.Vb.(b1 Db)D(b2Db) Db [Definition of V]
2. F8§vt; =8viy [REFL]
3. (Aby b2.Vb.(by D b) D (b2 DB) D b)Yty
=Aba.Vb.(t1 Db) D (b2Db) Db [BETA_CONV]
4. F8Vty = (Aby b2.Vb.(by D b) D (b2 D b) D b)Yty [SUBST 1,2]
5. F8Vti=Xba.Vb. (21 D0) D (b2Db) Db [SUBST 3,4]
6. FtyVia=1% Vi [REFL]
7. (Ab2.Vb.(t1 D b) D (b2 D b) D b)ts ,
=Vb.(2,D0b)D(#2Db) Db [BETA_CONV]
8. ki1 Vig = (Ab2.Vb.(t; D b) D (b2 D b) D b)ts [SUBST 5,6]
9. Ft;Via=Vb.(t1Db)D((2Db) Db [SUBST 7,8]
10 Tkt [Hypothesis]
11. t3 Dbkt Db [ASSUME]
12. T,t,DbFb [MP 11,10]
1. T, t2DbF(t2Db) Db [DIScH 12]
14. TH@Db)D(@Db)Db [DIscH 13]
15, THEVbL.(t1 20D (220 Db [GEN 14]
16. FVb.(t1Db)D(t2Db)Db=1t Vi, [SUBST 9,6]
17. TkFt Ve [SUBST 16,15]

fun chk_Disj2(line, term, n, thm) =

let val thml = get_thm(line, n)
val (OR, [disj1,disj2]) = strip_comb(concl thm)

in
(is_bool_ty disjl) andalso (is_bool_ty disj2) andalso
(well_typed OR) andalso ((fst(dest_const OR)) = "\\/") andalso
((concl thml) = disj2) andalso (term = disjl) andalso
(HtermSet.equal((hyp thm), (hyp thml)))

end

e V-elimination
|DISJCASES NUMBER NUMBER NUMBER

Pty Ve, T, 80kt T, to bkt
Tubuls ¢

DISJ_CASES : thm -> thm -> thm -> thm

The theorem referred to by the first NUMBER must be a disjunction. The assumptions of
the second and the third theorems must include the first and second disjunct of the first
theorem, respectively.
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1. FV=Xb1beVo. (01 D0)D(B2Db) DB [Definition of V]
2. F§vi =8vty [REFL]
3. (A b2.Vb.(by Db) D (b2 Db) D)y =
Aba.Vb. (]2 D0) D (b2 D) Db [BETA_CONV]
4. F$vt; = ()\bl by. Vb. (bl 2 b) D (bz D b) D b)t]_ [SUBST 1,2]
5. FS8VE=Aba.Vb. (21 Db0) D (b2 Db) Db [SUBST 3,4]
6. Ft1Vie=t Vi [REFL]
7. (Ab2.Vh.(t1 D b) D (b2 D b) D b)E2
=Vb.(t1 D) D(t2Db) Db [BETA_cCONV]
8 FtHivia= (/\bz.Vb. (tl ) b) D (bz ] b) ) b)tz [SUBST 5,6]
9. Ft1Via=Vb.(t;Db)D(2Db) Db [SUBST 7,8]
10. THti Ve [Hypothesis]
11. THEVYb.(t12b)D((2Db) Db , [SUBST 9,10]
12 TH@ D) D(@EDt)Dt . [sPEC 11]
13. I‘]_, t1 Fit [Hypothesis]
14. TiFt Dt [DISCH 13]
15. TU k(D) ' [MP 12,14]
16. T'g, ta ¢ [Hypothesis]
17. Tekt2 Dt [DISCH 16]
18. TUuTl Ukt [MP 15,17]

fun chk_DisjCases(line, nl, n2, n3, thm) =
let val thml = get_thm(line, nil)
and thm2 = get_thm(line, n2) and thm3 = get_thm(line, n3)
val (OR,[disj1l,disj2]) = strip_comb (concl thml)
in :
(well_typed OR) andalso ((fst(dest_comst OR)) = "\\/") andalso
(HtermSet .member ((hyp thm2), disj1)) andalso
(HtermSet .member ((hyp thm3), disj2)) andalso
((concl thm2) = (concl thm3)) andalso
((concl thm) = (concl thm2)) andalso
(HtermSet.equal ((hyp thm), (HtermSet.union((hyp thmi),
(HtermSet .union( (HtermSet.delete((hyp thm2),disjl1)),
(HtermSet .delete((hyp thm3),disj2))))))))
end

e Implication from equality (left)
| EQIMPRULEL NUMBER

Fl"t1=t2
'kt Dt

EQ_IMP_RULE : thm —> (thm # thm)

The theorem referred to by NUMBER must be an equation, and both sides of it must be of
type :bool. The resulting theorem of this justification is the second theorem returned by
the function EQ_IMP_RULE. It is an implication whose antecedent is the right-hand side
of the hypothesis and whose conclusion is the left-hand side of the hypothesis.

1. Trt=t [Hypothesis]
2. takts [ASSUME]
3. Thiz=t [sYM 1]
4. T, tokt [SUBST 3,2]
5. Tkt Dty [DISCH 4]
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fun chk_EqImpRuleL(line, n, thm) =

let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thmil)

in
(is_bool_ty left) andalso (is_bool_ty right) andalso
((right,left) = dest_imp(concl thm)) andalso
(HtermSet.equal ((hyp thm), (hyp thm1)))

end

¢ Implication from equality (right)
|EQIMPRULER NUMBER

ThH =t
Tkt Dt

EQ_IMP_RULE : thm -> (thm # thm)

The theorem referred to by NUMBER must be an equation, and both sides of it must be of
type :bool. The resulting theorem of this justification is the first theorem returned by
the function EQ_IMP_RULE. It is.an implication whose antecedent is the left-hand side of
the hypothesis and whose conclusion is the right-hand side of the hypothesis .

1. TFti=¢ [Hypothesis]
2. tikty [ASSUME]
3. T,tikt [SUBST 1,2]
4. TFt Dt [DISCH 3]

fun chk_EqImpRuleR(line, n, thm) =

let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thmi)

in
(is_bool_ty left) andalso (is_bool_ty right) andalso
((left,right) = dest_imp(concl thm)) andalso
(HtermSet.equal((hyp thm), (hyp thml)))

end

e Modus Ponens for equality
|EQMP NUMBER NUMBER

IMEti=ty Tl
TbuTla i,

EQ_MP : thm -> thm -> thm

The first theorem should be an equation. The second theorem should be identical to
the left-hand side of the first. The resulting theorem is the right-hand side of the first

theorem.
1. Thht1 =t [Hypothesis]
2. Thky [Hypothesis]

3. THuTla ki, [SUBST 1,2]
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fun chk_EqMp(line, ni, n2, thm) =
let val thml = get_thm(line, ni) and thm2 = get_thm(line, n2)
val (left,right) = dest_eq (concl thml)
in
(left = (concl thm2)) andalso (right = (concl thm)) andalso
(HtermSet.equal((hyp thm), (HtermSet.union((hyp thml), Chyp thm2)))))
end :

e Equality-with-T introduction
[EQTINTRO NUMBER |

LHt
T'Ht=T

EQT_INTRO : thm -> thm This inference introduces an equality. The left-hand side of
the conclusion must be the same as the hypothesis. The right-hand side must be a single

constant T.
1. F Vb be.(by Db2) D (b2 Db1) D (b1 =b2) [IMP_ANTISYM_AX]
2. FVbe.(tDb2)D(b2Dt) D (t=1b2) [SPEC 1]
3. F@EDOTO(T2H)D@E=T) [SPEC 2]
4. +T ' [TRUTH]
5. FtDOT [DIscH 4]
6. F(To)o(@=T) [MP 3,5]
7. Tkt [Hypothesis]
8 TFTOt [DISCH 7)
9. Tkt=T [MP 6,8]

fun chk_EqTIntro(line, n, thm) =

let val thml = get_thm(line, n)
val (lhs,rhs) = dest_eq (concl thm)
and T = mk_const("T", bool_ty)

in
(rhs = T) andalso (lhs = (concl thml)) andalso
(HtermSet.equal((hyp thml), (hyp thm)))

end

e 7-conversion
|ETACONV term

F('.tz) =t

ETA_CONV : term -> thm

The variable 2’ does not occur free in ¢. The input term is the same as the left-hand side
of the resulting theorem.

1. FYf.Qz.fz)=f [ETA_AX]
2. F(Az.tz)=t _ [SPEC 1]
3. F(O2'.tz) = (Az.tz) . [@~conversion)]
4. F(2'.td) =t [TRANS 3,2]
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fun chk_EtaConv(term, thm) =

let val (left,right) = dest_eq (concl thm)

in :
(left = term) andalso (null (HtermSet.listItems(hyp thm))) andalso
(right = (fst o dest_comb o snd o dest_abs)left)

end

e J-introduction
|EXISTS term term NUMBER

T+ tfte/z]
T} 3z. tz]

EXISTS : (term # term) -> thm -> thm

The first term is an existentially quantified term which matches exactly the conclusion of
the resulting theorem, i.e., 3z.t[z]. The second term ¢, must be of the same type as the
bound variable z. When t; is substituted into ¢ for the bound variable z, it results in a
theorem which is the same as the input theorem referred to by NUMBER.

1. + (Afl: t]_ [.’E])tz = t]_ [tz] [BETA_CONV]
2. F t]_ [tg] = (A.’I: t1 [z])tz [SYM 1]
3. Tktto] [Hypothesis]
4. TF (/\{l: i1 [:E])tz [EQ_MP 2,3]
5. Ttk (Az.ty[z])(e(Mz. t1[z])) [SELECT_INTRO 4]
6. F3=VP.P(e P) [Definition of 3]
7. F3I(z.ty[z]) = (AP. P(e P))(\z.t1[z]) [AP_THM 6]
8. F (AP.P(e P))(\z.t1[z]) = (Az. t1[z]) (e(Az. 1 [2])) [BETA_CONY]
9. F3I(Az.t1[z]) = (Az. t1[z])(e(Az. L1 [2])) - [TRANS 7,8]
10. F Az t1[z])(e(Az. ta1[2])) = I(Az. t1[z]) [sYM 9]
11. T+ 30z t[z]) [EQ_MP 10,5]

fun chk_Exists(line, terml, term2, n, thm) =

let val thml = get_thm(line, n) ‘
val (x,body) = dest_exists (concl thm)

in
(terml = (concl thm)) andalso
(term_subst_chk [((x,term2),x)] body (concl thmi) body) andalso
(HtermSet.equal((hyp thm), (hyp thmi)))

end

e Extensionality
|EXT NUMBER |

T'FVYz.thz=t z
Tkt =1,

EXT : thm -> thm

The variable z’ in the proof below is a new variable which does not occur free anywhere
in the input theorem. Both the hypothesis and the conclusion must be equality. Both

lwith appropriate type instantiation.
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sides of the hypothesis must be function applications, and their operands must be the
same variable. Both sides of the conclusion must be the same as the function on the

corresponding side of the hypothesis.

fun chk_Ext(line, n, thm) =
let val (left,right) = dest_eq(concl thm)
val thml = get_thm(line, n)
val (x, con) = dest_forall (concl thml)
val (left’,right’) = dest_eq con
in
(mk_comb(left,x) = left’) andalso
(mk_comb(right,x) = right’) andalso
(HtermSet.equal ((hyp thm), (hyp thmi))) andalso
(not (mem x (freesl (HtermSet.listItems(hyp thm))))) andalso
(not (free_in x left)) andalso (not(free_in x right))
end

o Generalisation(V-introduction)

1. THVz.tiz=tz [Hypothesis]
2. Trtiz'=tya [SPEC 1]
3. T2 .ty o) =\’ t2 ') [ABS 2]
4. F(2t1 )=t [ETA_CONV]
5. Fty=(z'.t; &) [sYM 4]
6. Tkt =zt ) [TRANS 5,3]
7. FOT.tz) =ty [ETA_CONV]
8. ThHty=ty [TRANS 6,7]

|GEN term NUMBER

'+t
I'E-Vz.t

GEN : term -> thm -> thm

fun chk_Gen(line, term, n, thm) =
let val thmil = get_thm(line, n)
val (x,body) = dest_forall(concl thm)

2with appropriate type instantiation.

The input term z is a variable which does not occur free in the assumption I.

1. Dkt [Hypothesis]
2. TrHt=T [EQT_INTRO 1]
3. Tk (Az.t)=(Az.T) [aBs 2]
4. FV(Az.t) =V(Az.t) [REFL]
5. FV=(QP.P=(A2.T)) [Definition of V?]
6. FV(z.t)=(AP.P={(z.T))(\z.t) [SUBST 5,4]
7. F(AP.P=(z.T)(Az.t) = ((Az.t) = (Az. T)) [BETA_CONV]
8. FV(Oz.t) =((Az.t) = (\z.T)) [TRANS 6,7]
9. F((Az.t) =(\z.T)) =V(z.T) [sYM 8]
10. TFV(iz.?) [EQ_MP 9,3]
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val fs = freesl (HtermSet.listItems(hyp thm))

in
(body = concl thml) andalso (not (mem x fs)) andalso
(HtermSet.equal((hyp thm), (hyp thmi)))

end '

¢ Deducing equality from implications
lIMPANTISYMRULE NUMBER NUMBER

I'i1Ft1 Dty Tabkta Dty
uTs Ft =t

IMP_ANTISYM_RULE : thm -> thm -> thm

The two hypotheses should be implications. The antecedent of first must be the same
as the conclusion of the second, and vice versa. The conclusion should be an equality
whose left-hand side must be the same as the antecedent of the first hypothesis and whose
right-hand side must be the same as the conclusion of the first hypothesis.

1. F Vb bs. (b1 D bz) ) (b2 > b1) D (bl = bz) [IMP_ANTISYM_AX]
2. TWFt1 Dt [Hypothesis]
3. ThbkteDty [Hypothesis]
4. FVbo.(t1 Db2) D (b2 Dt1) D (81 =b2) [sPEC]
5 F (t1 D tz) D (tz D t1) D (t1 = tz) [SPEC]
6. T1F(t2Dt1) D(ti=tp) [MP 5,2]
7. Thuls bt =t [MP 6,3]

fun chk_ImpAntisymRule(line, nl, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (left,right) = dest_eq (concl thm)
in
((left,right) = dest_imp(concl thml)) andalso
((right,left) = dest_imp(concl thm2)) andalso
(HtermSet.equal ((hyp thm), (HtermSet.union((hyp thmi), (hyp thm2)))))
end

e Transitivity of implications
|IMPTRANS NUMBER NUMBER

Thhti Dt Tkt D3
Ut Dts

IMP_TRANS : thm -> thm -> thm

"Both theorems referred to by the numbers must be implications. The conclusion of the
first theorem must be the same as the antecedent of the second theorem.

1. Tkt Dt ' [Hypothesis]
2. Tkt D3 [Hypothesis]
3. thtt _ [ASSUME]
4. TyU{ti}Ft, [MP 1,3]
5. Thuryu {t]_} bt . [MP 2,4]
6. 71Ut Dits [DISCH 5]
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fun chk_ImpTrans(line, nl, n2, thm) =

let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (left’,right’) = dest_imp(concl thmi)
and (left’’,right’’) = dest_imp(concl thm2)
val (left,right) = dest_imp(concl thm)

in
(left = left’) andalso (right’ = left”) andalso
(right = right’’) andalso

(HtermSet.equal((hyp thm), (HtermSet.union((hyp thml), (hyp thm2)))))
end

¢ Instantiation of free variables
|INST term term.list NUMBER |

T'Ht
I‘I—t[tl,...,tn/:vl,...,zn]

INST : (term # term) list -> thm ~-> thm

The term_term_list is a list of pairs. Their second fields are variables which do not
occur free in the assumption I'. Their first fields are terms having the same type as the
corresponding variables. They are substituted for the variables in the theorem referred
to by the NUMBER.

1. Tkt [Hypothesis]
2. TFVzy...5,.tz1,.-.,Z0) [GENL31]
3. TFritr,...,ta/%1,---,Tn] [SPECL*2]

fun chk_Inst(line, ttl, n, thm) =

let val thml = get_thm(line, n)
val vars = map snd ttl
val fs = freesl (HtermSet.listItems(hyp thml))
val conl = concl thmi
val (t1l1,t12) = ListUtil.unzip ttl
val ttl’ = ListUtil.zip(t12,t11)

in
(every (fn x => not (mem x fs)) vars) andalso
(term_subst_chk

(ListUtil.zip(ttl’,vars)) conl (concl thm) coni) andalso

(HtermSet.equal((hyp thm), Chyp thml)))

end

e Abstraction introduction on equality
|MKABS NUMBER |

TFVz.t; =t
Tk (Az.t1) = (Az.t2)

MK_ABS : thm -> thm

The theorem referred to by the NUMBER must be an equality inside a single universal
quantification.

3GENL is an iterative version of GEN that applies GEN repeatedly to a list of variables.
4SPECL is an iterative version of SPEC that applies SPEC repeatedly to a list of terms.
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1. THVz.ty=¢t [Hypothesis]
2. F(z.ty)a' =t[z' /1] [BETA_CONV]
3. Tk tz'/z] =12z /2] [sPEC 1]
4. F (Az.to)z' = to[z' /] [BETA_CONV]
5. Ftaz'/z] = Oz t2)’ [sTM 4]
6. TF(Az.t)z' = ts[z'/z] [TRANS 2,3]
7. TF(QAz.t)z' = (Oz.t2)2’ [TRANS 5,6]
8. TFVz'. (Az.t1)z' = (Az. 1)z’ [GEN 7]
9. TF(z.t1) = (Az.t) [EXT 8]

fun chk_MkAbs(line, n, thm) =
let val thml = get_thm(line, n)
val (x,body) = dest_forall(concl thmi)
val (left,right) = dest_eq (concl thm)
in
(left = mk_abs(x,1lhs body)) andalso
(right = mk_abs(x, rhs body)) andalso
(HtermSet.equal((hyp thm), (hyp thmi)))
end

¢ Equality of combinations
[MKCOMB NUMBER NUMBER

I‘ll"_f=g r2|-m=y
ule k- fr=gy

MK_COMB : (thm # thm) -> thm

Both theorems referred to by the NUMBERs must be equations. Both sides of the first
theorem are functions whose domains are the type of z in the second theorem.

1. Whf=g [Hypothesis]
2. Thtz=y [Hypothesis]
3. Ffz=fz [REFL]
4 T Ffz=gz [SUBST 1,3]
5. ThFfz=gy [SUBST 2,4]

fun chk_MkComb(line, nl, n2, thm) =

let val thml = get_thm(line, nl) and thm2 =
val (£f,g) = dest_eq(concl thmi) and (x,y)
val (left,right) = dest_eq(concl thm)

in
(left = mk_comb(f,x)) andalso (right = mk_comb(g,y)) andalso
(HtermSet.equal((hyp thm), (HtermSet.union((hyp thmil), Chyp thm2)))))

end

get_thm(line, n2)
= dest_eq(concl thm2)

e Converting V to 3
[MKEXISTS NUMBER |

CHVz.t =
TFz.t) = (3z.t2)

MK_EXISTS : thm -> thm
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The theorem referred to by the NUMBER must be an equality inside a single universal
quantification. The terms #; and ¢, must be of type :bool.

1. TFVz.tyfz] =ts[z] [Hypothesis]
2. Ttz /z] =tz /] [SPEC 1]
3a. T'Ftfa'/z] D tofz' /2] [EQ_IMP_RULE(right) 2]
3b. T Fifz'/z] D ti[2' /1] [EQ_IMP_RULE(left) 2]
4. tz'/z] F t]z' /] [ASSUME]
5. TU{t1[z'/z]} F t2[z' /2] [MP 3a,4]
6. I'U{t[z'/z]} I 3z.t2[z] [EXISTS 5]
7. Fz.tiz] b 3zt [z] [ASSUME]
8. TU{3=z.t1[z]} b Iz.t,[z] [CHOOSE 7,6]
9. T'F 3z.ti[z] D 3z. t[z] [pIscH §]
9. to[z'/z] F ta[z’ /] [ASSUNME]
10. T U {t2[z'/z]} F t1[2' /=] [MP 3Db,9]
11. T U {t2[z'/z]} I 3z. 8 [z] [EXISTS 10]
12.  3z.to[z] F 3z.t2[z] [ASSUNME]
13. T U{3z.ta[z]} F 3z. 41 [z] [CHOOSE 12,11]
14. T F 3z.tp(x] D 3z. 1 [z] [DISCH 13]

15. T'F 3z.ty[z] = 3z. to]2]

fun chk_MkExists(line, n, thm) =
let val thml = get_thm(line, n)
val (x,body) = dest_forall (concl thml)
val (left’,right’) = dest_eq body
val (left,right) = dest_eq (concl thm)
in
((x,left’) = dest_exists left) andalso
((x,right’) = dest_exists right) andalso
(HtermSet.equal((hyp thm), (hyp thmi))) °
end

e —-elimination

[IMP_ANTISYM_RULE 9,14]

[NOTELIM NUMBER

'kt
FFtDOF

NOT_ELIM : thm -> thm
The theorem referred to by NUMBER must be a negation.

fun chk_NotElim(line, n, thm) = .

let val thml = get_thm(line, n)

val t = dest_not (concl thml)
val (t’,f) = dest_imp (concl thm)

1. F==X0.bDF [Definition of -
2. Tk=t [Hypothesis]
3. TF(\b.bDF) [SUBST 1,2]
4. F(Ab.bDF)t=tDF [BETA_CONV]
5. THtDF [SUBST 4,3]
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in
(t = t’) andalso (well_typed f) andalso
(fst(dest_const £f) = "F") andalso
(HtermSet.equal((hyp thm), (hyp thmi)))
end

e —-introduction
|NOTINTRO NUMBER

I'FtDOF
Tt

NOT_INTRD : thm -> thm
The theorem referred to by NUMBER must be an implication whose conclusion is the con-

stant F.
1. F==AbbDF [Definition of ]
2. THtDF [Hypothesis]
3. Fat=-t [REFL]
4. F-t=(Ab.bDF)t [SUBST 1,3]
5 FQbbDF)t=tDF [BETA_CONV]
6. F—t=t>DF [SUBST 5,4]
7. FtDF=-t ' [SUBST 6,3]
8. Tkt [SUBST 7,2]

fun chk_NotIntro(line, n, thm) =

let val thml = get_thm(line, n)
val t = dest_not (concl thm)
val (t’,f) = dest_imp (concl thmil)

in
(t = t’) andalso (well_typed f) andalso
(fst(dest_const £) = "F") andalso
(HtermSet.equal((hyp thm), (hyp thml)))

end

¢ Specialisation (V-elimination)
[SPEC term NUMBER

'Vt
T+t /]
SPEC : term -> thm -> thm

The theorem referred to by the NUMBER must be universally quantified. The input term
must have the same type as the bound variable z of the theorem.
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FV=(P.P=(\z.T))
T'FVY(\z.t)

Tk (AP.P=(z.T)(Az.t)
FAP.P=(Az.T))(\z.t) = ((Mz.1) = (Az.T))
Tk (Az.t) = (\z.T)
FQz.t) t'=(Mz.t)
TFQAz.t)t' =z T) ¢

F (Az.t) t' =t[t' /]
F(Az.t) t' = (Az.t) ¢/

10. Fit'/z] = Qz.t) ¢

11. THtE/z]=0z.T) ¢

12. FQz.T) =T

13. TrHet)z]=T

14. Ft[t'[z] =tt' /=]

15. TFT=t[t'/a]

16. T

17. T+t /2]

© 0N oR W

fun chk_Spec(line, term, n, thm) =
let val thml = get_thm(line, n)
val (x,body) = dest_forall (concl thml)
in

if (term_subst_chk [((x,term),x)] body (concl thm) body)

then if (HtermSet.equal((hyp thm), (hyp thm1)))
then true
else raise (Check ERR{function="chk_Spec",

[Definition of V°]
[Hypothesis]
[SUBST 1,2]
[BETA_CONV]
[SUBST 4,3]
[REFL]

[SUBST 5,6]
[BETA_CONV]
[REFL]

[SUBST 8,9]
[suBST 10,7]
[BETA_CONV]
[SUBST 12,11]
[REFL]

[SUBST 13,14]
[Theorem TRUTH]
[SUBST 15,16]

message="Assumption set not equal"})

else raise (Check_ERR{function="chk_Spec",

message="Substitution check failed"})

end

e Substitution (for all instances)

| SUBS NUMBER.list NUMBER

I‘1 |‘$1 =t1...1",,}-a:n=tn THt

I‘1U...UI‘nUI‘l-t{tl,...,tn/zl,...mn]

SUBS : thm list -> thm -> thm

This is a generalised version of the primitive rule SUBST. It replaces all occurrences of the

variables x; in ¢ by the corresponding term ¢;.

Since the term substitution checking function term_subst_chk requires a template to
indicate where the substitutions occur, we build one using the function mk_subs_templ.

fun chk_Subs(line, nl, n, thm) =
let val thms = map (fn n’ => get_thm(line, n’)) nl
and thml = get_thm(line, n)
val conl = concl thmi
val vtl = map (dest_eq o concl) thms
val sub_list =

ListUtil.zip (vtl, (map (mk_gen_var o type_of o (#1)) vtl))

Swith appropriate type instantiation.
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val templ = mk_subs_templ sub_list conl
fun out_ppstream outstrm n =
System.PrettyPrint.mk_ppstream{linewidth = n,
flush = fn () => flush_out outstrm,
consumer = outputc outstrm}
val ppstrm = out_ppstream std_out 78
in
if ((!debug) > 1) then
(Hterm.pp_qterm ppstrm templ;
System.PrettyPrint.flush_ppstream ppstrm)
else ();
(term_subst_chk sub_list templ (concl-thm) conl) andalso
(HtermSet.equal((hyp thm),
(HtermSet .union ((hyp thmil),
(fold HtermSet.union
(map hyp thms) HtermSet.empty)))))
end

o Substitution (for some instances)
|SUBSUCCS NUMBER_1ist NUMBER_1list NUMBER

’ Fll-x1=t1...1"ni-:z:n=tn 'kt
I‘1U...UI‘nUFFt[tl,...,tn/zl,...a;n]

SUBS_0CCS : ((num)list # thm)list -> thm -> thm

This is another version of the primitive rule SUBST. It is more selective than SUBS. The
first argument is a list of pairs whose general form is

([kix;-- s kim), Ti F i = t5)

This inference replaces only the occurrences of z; in ¢ specified by the numbers in the
list [ki1;...;k1m]. The occurrences are numbered from left to right starting from 1. In
addition to the similar checks to SUBS, checking of whether only the specific occurrences
are replaced needs to be carried out. This is done using a template which is created by the
function mk_suboccs_template. This function replaces the occurrences of z; in ¢ which
are to be substituted by a new variable, and it replaces the z; in the substitution list
with the same variable. Then it uses the standard term substitution checking function
term_subst_chk to check the results.

The local function mk_vlist creates a list of new variables for the z;s. The first argument
is a triple (ninl,thms, fs) where ninl is the NUMBER_1ist_NUMBER_list argument to this
inference rule acting as a counter, thms is a list of equational terms obtained from the
substitution theorems I'; F z; = ¢;, and fs is the list of free variables occurring in all
theorems. Its second argument is a list of triples whose first fields are the two side of the
substitution theorem, whose second fields are the new variables and whose third fields
are the occurrence lists. When reaching the end of the list ninl, it returns its second
argument.

Because the function mk_subs_occu_templ which creates the template requires the oc-
currence list in ascending order and the function get_thm also requires the line number
in ascending order, the list ninl is sorted first. The substitution theorems are fetched and
bound to thms. allhyps is bound to the assumptions of all input theorems. fvs are the
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free variables of all the assumptions and the conclusion of thml. The template is bound
to templ.

fun chk_Subsbccs(line, nlnl, n, thm) =
let
fun mk_vlist ([J,[], £fs) 1 =1
| mk_vlist (((nl,n)::nlnl), thm::thms, fs) 1 =
let val(x,tm) = dest_eq thm
val v = variant fs x
in
mk_vliist (nlnl,thms,(v :: fs)) (((tm,x),v,nl)::1)
end _
fun mk_subsoccs_template (((tm,x),v,nl),tm’) =
#1 (mk_subs_occu_templ tm’ x v 0 nl)
val nlnl’ =
map (fn (nl,n) => ((ListMergeSort.sort (op>) mnl),n))
(ListMergeSort.sort(fn ((nli,n1),(nl2,n2)) => nl > n2)nlnl)
val thms = map (fn ((1:int list),n’) => get_thm(line, n’)) nlnl’
and thml = get_thm(line, n)
val conl = concl thml
val allhyps = HtermSet.union ((hyp thmi),

(fold HtermSet.union (map hyp thms) HtermSet.empty))
val fvs = (frees conl) @ (freesl (HtermSet.listItems allhyps))
val ol = mk_vlist(nlnl’,(map concl thms), fvs) []
val sublst = map (fn ((tm,x),v,nl) => ((x,tm),v)) ol
val templ = fold mk_subsoccs_template ol conl
fun out_ppstream outstrm n =

System.PrettyPrint.mk_ppstream{linewidth = n,
flush = fn () => flush_out outstrm,
consumer = outputc outstrm}
val ppstrm = out_ppstream std_out 78
in
if ((!debug) > 1) then
(Hterm.pp_qterm ppstrm templ;
System.PrettyPrint.flush_ppstream ppstrm)
else ();
(term_subst_chk sublst templ (concl thm) conl) andalso
(HtermSet.equal((hyp thm), allhyps))

end

¢ Substitution (conversion)
| SUBSTCONV NUMBER.term list term term

I i 7 =t§_ I‘nl-tn—_-t;
F1U"'Urn|'t[t1,...,tn/Z1,...,zn]=t[ta,...,t,’,.,'/£v1,...,$n]

SUBST_CONV : (thm # term)list -> term -> term -> thm

This is a conversion performing substitution in a term similar to the primitive rule SUBST.
The elements of the first argument to this conversion have the following form:

(r,; Fit; = t;:, ”Zi”)
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The first term argument term; = t[zi,...,%y,], contains the variables z; marking the
places where substitution is required. The second term argument termy should match
term; with occurrences of z; replaced by the corresponding ¢; which is the left-hand side
of the corresponding theorem in the list. The term termg is the left-hand side of the
resulting theorem. The right-hand side is obtained by replacing the occurrences of z; in
t by the corresponding t;. The term term; is used as the template.

fun chk_SubstConv(line, ntl, terml, term2, thm) =
let
val thms = map (fn (n,tm) => get_thm(line, n)) ntl
val allhyps = fold HtermSet.union (map hyp thms) HtermSet.empty
val sublst = ListUtil.zip((map (dest_eq o concl) thms),
(map (#2) ntl))
val conc = concl thm
val (left,right) = dest_eq conc
in
(term_subst_chk sublst terml right left) andalso
(left = term2) andalso (HtermSet.equal((hyp thm), allhyps))
end

o Symmetry of equality
|SYM NUMBER

Tkt =t
Thrta=t

SYM : thm -> thm
The theorem referred to by NUMBER must be an equation.

1. Tt =t [Hypothesis]
2. Ft=t [REFL]
3. 'k t2 = t1 [SUBST 1,2]

fun chk_Sym(line, n, thm) =
let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thml)
in
((right,left) = dest_eq (concl thm)) andalso
(HtermSet.equal ((hyp thm), (hyp thmi)))
end

¢ Transitivity of equality
[ TRANS NUMBER NUMBER

Tibti=ty Tobta=1t;
LUl Ft =143

TRANS : thm -> thm -> thm

Both theorems referred to by the NUMBERs must be equations. The right-hand side of the
first theorem must be the same as the left-hand side of the second.

1. Thkty=¢t [Hypothesis]
2. Tolta=ts [Hypothesis]
3. F]_ U Fg F t1 = t3 [SUBST 2,1]
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fun chk_Trans(line, ni, n2, thm) =
let val thml = get_thm(line, nl) and thm2 = get_thm(line, n2)
val (left’,right’) = dest_eq (concl thml)
and (left’’,right’’) = dest_eq (concl thm2)
in =
(right’ = left’’) andalso
((Qeft’, right’’) = dest_eq (concl thm)) andalso
(HtermSet.equal ((hyp thm), (HtermSet.union ((hyp thmi), (hyp thm2)))))
end

8.3.4 Checking proof lines The function chk_pline is the checking function dispatcher.
It is called by the parser after recognising a line.

local
open System.PrettyPrint Report
fun out_ppstream outstrm n =
mk_ppstream{linewidth = n,
flush = fn () => flush_out outstrm,
: consumer = outputc outstrm};
val check_message = ref "";

in
fun chk_pline (thisline, just, thm) =
let
val n’ = get_last_lineNo ()
in

if not((thisline >= n’) orelse (n’ = 0)) then
raise (Check_ERR {function = "chk_pline",
message = "incorrect line number"})
else (* line number 0K *)
let
val line_OK =
(case just of
(Hypothesis) => chk_Hypothesis thm
| (Abs (term, n)) => chk_Abs (thisline,term,n,thm)
| (Assume term) => chk_Assume (term, thm)
| (BetaConv term) => chk_BetaConv (term,thm)
| (Disch (term,n)) => chk_Disch (thisline,term,n,thm)
| (InstType (ttl,n)) => chk_InstType (thisline,ttl,n,thm)
| (Mp (n1,n2)) => chk_Mp (thisline,nl,n2,thm)
| (Refl term) => chk_Refl (term, thm)
| (Subst (itmlist,term,n)) =>
chk_Subst(thisline,itmlist,term,n,thm)
| (Axiom (s1,s2)) => chk_Axiom(sl,s2,thm)
| (Definition (s1,s2)) => chk_Definition(sl,s2,thm)
| (DefExistsRule term) => chk_DefExistsRule(term,thm)
| (NewAxiom (s,term)) => chk_NewAxiom(s,term,thm)
| (NewConstant (s,ty)) => chk_NewConstant(s,ty)
| (NewType (mn,s)) => chk_NewType(n,s)
| (Numconv term) => chk_Numconv(term,thm)
| (StoreDefinition (s,term)) => chk_StoreDefinition(s,term,thm)
| (Theorem (s1, s2)) => chk_Theorem(sl,s2,thm)
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(AddAssum (term,n)) => chk_AddAssum(thisline,term,n,thm)

(Alpha (terml,term2)) => chk_Alpha(terml,term2,thm)

(ApTerm(term,n)) => chk_ApTerm(thisline,term,n,thm)

(ApThm (n,term)) => chk_ApThm(thisline,n,term,thm)

(Ccontr (term,n)) => chk_Ccontr(thisline,term,n,thm)

(Choose (term,n1,n2)) => chk_Choose(thisline,term,nl,n2,thm)

(Conj (n1,n2)) => chk_Conj(thisline,nl,n2,thm)

(Conjunctl n) => chk_Conjunctl(thisline,n,thm)

(Conjunct2 n) => chk_Conjunct2(thisline,n,thm)

(Contr (term,n)) => chk_Contr(thisline,term,n,thm)

(Disjl (n,term)) => chk_Disji(thisline,n,term,thm)

(Disj2 (term,n)) => chk_Disj2(thisline,term,n,thm)

(DisjCases(n1,n2,n3)) => chk_DisjCases(thisline,nl,n2,n3,thm)

(EqImpRulel n) => chk_EqImpRuleL(thisline,n,thm)

(EqImpRuleR n) => chk_EqImpRuleR(thisline,n,thm)

(EqMp (n1,n2)) => chk_EqMp(thisline,nl,n2,thm)

(EqTIntro n) => chk_EqTIntro(thisline,n,thm)

(EtaConv term) => chk_EtaConv(term,thm)

(Exists ((tml,tm2),n)) => chk_Exists(thisline,tml,tm2,n,thm)

(Ext n) => chk_Ext(thisline,n,thm)

(Gen (term,n)) => chk_Gen(thisline,term,n,thm)

(ImpAntisymRule (n1,n2)) =>
chk_ImpAntisymRule(thisline,nl,n2,thm)

(ImpTrans (nl,n2)) => chk_ImpTrans(thisline,nl,n2,thm)

(Inst (ttl,n)) => chk_Inst(thisline,ttl,n,thm)

(MkAbs n) => chk_MkAbs(thisline,n,thm)

(MkComb (n1,n2)) => chk_MkComb(thisline,nl,n2,thm)

(MkExists n) => chk_MkExists(thisline,n,thm)

(NotElim n) => chk_NotElim(thisline,n,thm)

(NotIntro n) => chk_NotIntro(thisline,n,thm)

(Spec (term,n)) => chk_Spec(thisline,term,n,thm)

(Subs (nl,n)) => chk_Subs(thisline,nl,n,thm)

(SubsOccs (nlnl,n)) => chk_SubsOccs(thisline,nlnl,n,thm)

(SubstConv(ntl,tml,tm2)) =>
chk_SubstConv(thisline,ntl,tmi,tm2,thm)

| (Sym n) => chk_Sym(thisline,n,thm)

| (Trans (n1,n2)) => chk_Trans(thisline,ni,n2,thm)

) handle (CHK_ERR{message=m,origin_function=f,...}) =>

(check_message := (£ “":"" m);
write_out(!check_message);
false)
| e =>
(check_message := "Unexpected error"; false)

in
(if ((!debug) > 0)
then (pp_pline (out_ppstream std_err 78)
(mk_pline (thisline, just, thm)))
else ();
if line_OK then add_pline(thisline, just,thm)
else(raise (Check_ERR{function = "chk_pline",
message =
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("Proof line "~ (makestring thisline) "
" fails:"~(!check_message))}))
)
end (* let *)
~end (* let *)

The function chk_proof is called when the end of a proof is found in Pass 2. The first
argument name is the name of the proof, which is a string. The second is a list of goals. It
writes the result of checking the proof to the log file, i.e., whether all goals have been proved,
and so on.

fun chk_proof (name, thmlst, nlst) =
let
fun splitpp [ (1p,1luw) = (1p,1lw)
| splitpp ((Goal{Thm,Proved})::gs) (lp,lu) =
if Proved then splitpp gs ((Thm::1lp),lu)
else splitpp gs (1p, (Thm::1u))
in
(output(std_out, ("Proof "~“name~" has been checked\n"));
if (null thmlst) then
(write_line_opening Keyword.PROVED;
write_list Hthm.pr_htbm [Proof.get_final thm()];
write_closing_line())
else
let
val (thmsi,thms2) = splitpp (goal_table()) ([1,[1)
val out_ppstr = out_ppstream std_out 78
in
(if (null thms1) then ()
else(if ((length thmsl) > 1)
then output(std_out,"\nFollowing theorems are proved:\n")
else output(std_out,"\nFollowing theorem is proved:\n");
map (fn thm => pp_hthm out_ppstr thm) thmsi;
System.PrettyPrint.flush_ppstream out_ppstr;
write_line_opening Keyword.PROVED;
write_list Hthm.pr_hthm thmsi;
write_closing_line()
)3
if (null thms2) then ()
else(if ((length thms2) > 1)
then output(std_out,"\nFollowing goals are NOT proved:\n")

else output(std_out,"\nFollowing goal is not proved:\n");
map . (fn thm => pp_hthm out_ppstr thm) thms2;
System.PrettyPrint.flush_ppstream out_ppstr;
write_line_opening Keyword.UNSOLVED;
write_list Hthm.pr_hthm thmsi;
write_closing_line());

output (std_out, "\nUsing the following hypotheses:");

Proof .pp_proof_thm out_ppstr)

end;
clear_proof ())
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end

end(* local *)

end; (* functor *)



9 Proof objects

The proof module models HOL proofs. A proof is a sequence of inferences. Each element of this
sequence is called a proof line which represents a single inference step. It has a line number, a
justification indicating which inference rule is applied, and a theorem derived by this inference.

The interface of the proof module is specified by the signature Proof_sig. The module is
implemented by the functor ProofFUN. It requires the modules of type, term and theorem.

Its main task is to maintain several internal data structures which contain information about
the proof. They are used to communicate between the two passes. The functions available to
other modules can be roughly divided into two groups: those used in Pass 1 and those used in
Pass 2.

9.1 The specification

The signature Proof_sig specifies the interface of the proof module. A proof is represented by
the type proof. Each proof is a triple (name, goals, lines). The name of a proof is a string.
The goals are conjectures to be proved in the proof, and they are represented by the type Hthm
list. The field 1ines is a sequence of proof lines represented by a list whose elements are of
type pline.

Each pline is again a triple (int * justificatiom * hthm). The first field is the line
number, the second is the justification, and the third is the derived theorem. The justification
is represented by the type justification. The representations of these two types, proof and
Pline are private to this module.

signature Proof_sig =
sig
structure Hthm: Hthm_sig
structure Hterm: Hterm_sig
structure Htype: Htype_sig

type pline
type proof
The type justification represents the justifications allowed in the proof lines. There are
53 different justifications which can be divided into three groups: the primitive rules, derived
rules and miscellaneous function such as using a theorem stored in a theory. They are described
in detail in the checking module in Chapter 8.

datatype justification =
Hypothesis
| Assume of Hterm.hterm
| Refl of Hterm.hterm
| Subst of (int*Hterm.hterm)list * Hterm.hterm * int
| BetaConv of Hterm.hterm
| Abs of Hterm.hterm * int
| InstType of (Htype.htype * Htype.htype)list * int
| Disch of Hterm.hterm * int

82
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Mp of int * int

Axiom of (string * string)
Definition of (string * string)
DefExistsRule of (Hterm.hterm)
NewAxiom of (string *Hterm.hterm)
NewConstant of (string * Htype.htype)
NewType of (int * string)

Numconv of Hterm.hterm
StoreDefinition of (string * Hterm.hterm)
Theorem of (string * string)
AddAssum of Hterm.hterm * int

Alpha of Hterm.hterm * Hterm.hterm
ApTerm of Hterm.hterm * int

ApThm of int * Hterm.hterm

Ccontr of Hterm.hterm * int

Choose of Hterm.hterm * int * int
Conj of int * int

Conjunctl of int

Conjunct2 of int

Contr of Hterm.hterm * int

Disjl of int * Hterm.hterm

Disj2 of Hterm.hterm * int

DisjCases of int * int * int
EqImpRulel of int

EqImpRuleR of int

EgMp of int * int

EqTIntro of int

EtaConv of Hterm.hterm

Exists of (Hterm.hterm * Hterm.hterm) * int
Ext of int

Gen of Hterm.hterm * int
ImpAntisymRule of int * int

ImpTrans of int * int

Inst of (Hterm.hterm * Hterm.hterm)list * int
MkAbs of int

MkComb of int * int

MkExists of int

NotElim of int

NotIntro of int

Spec of Hterm.hterm * int

Subs of int 1list * int

SubsOccs of (int list * int) list * int

SubstConv of (int * Hterm.hterm)list * Hterm.hterm * Hterm.hterm

Sym of int
Trans of int * int

The functions below are for resetting and initialising the internal data structures at var-
ious points. The function init is for cold start, i.e., it should be called before processing a
file. The function clear_proof should be called when the second pass starts. The functions
new_proofl and new_proof2 should be called at the beginning of every proof in Pass 1 and
Pass 2, respectively.
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val init: unit -> unit

val clear_proof: unit -> unit

val new_proofl: (string * Hthm.hthm list) -> unit
val new_proof2: string -> unit

The type goal represents goals in proof tables. If the field Proved is true, the goals have
been proved.

datatype goal = Goal of {Thm: Hthm.hthm, Proved: booll}

The function lazy_mode is used to set or clear the lazy mode. When the lazy mode is set,
the checker compresses the goals with the theorem derived in each step. When a match is
found, the goal is flagged as proved. When all goals in a proof are proved, the checker skips
the remaining proof lines.

val lazy_mode : bool -> unit

The function goal_table returns the current goal list. The function last_pline returns
the line number of the last line in the current proof. The function get_final_thm returns the
theorem in the last proof line.

val goal_table: unit -> goal list
val last_pline: unit -> int
val get_final_thm: unit -> Hthm.hthm

The following three functions are used in Pass 1. The function add_pline_tab should be
called for each proof line to update the pline table. The function add_pline_table should
be called at the end of a proof to save the current pline table. The function print_prooftab
outputs the current pline table. It is mainly for debugging. The structure and the use of
pline tables will be explained below.

val add_pline_tab : (int * int list * Hthm.hthm) -> bool
val add_pline_table : string -> unit
val print_prooftab : unit -> unit

The functions below are for use in Pass 2. The function add_pline should be called for
every proof line. It saves the proof line in the current proof. The function get_last_lineNo
returns the line number of the previous line. The function get_thm is called to fetch a theorem.
Given the line number of the required theorem, it retrieves it from the current proof. The
function find_thm takes a theorem, and searches the current proof to find the theorem. If it
finds it, SOME is returned, otherwise, NONE is returned.

val add_pline: (int * justification * Hthm.hthm) -> int
val get_last_lineNo: unit -> int

val get_thm: (int * int) -> Hthm.hthm

val find_thm : Hthm.hthm -> Hthm.hthm option

The functions mk_pline and mk_proof are constructors for the types pline and proof,
respectively.

val mk_pline: (int * justification * Hthm.hthm) -> pline
val mk_proof: (string * Hthm.hthm list * pline list) -> proof

The functions pp_just and pp_pline are the pretty printers for the justifications and proof
lines, respectively. The function pp_proof_thm is used only in debugging.

val pp_just : System.PrettyPrint.ppstream -> justification -> unit
val pp_pline : System.PrettyPrint.ppstream -> pline -> unit
val pp_proof_thm : System.PrettyPrint.ppstream -> unit

end;
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9.2 The implementation

The functor ProofFUN implements the proof module. It requires three modules: type, term
and theorem.

functor ProofFUN(structure Hthm: Hthm_sig
and Hterm: Hterm_sig and Htype: Htype_sig
sharing Htype = Hterm.Htype = Hthm.Hterm.Htype
and Hterm = Hthm.Hterm): Proof_sig =
struct

structure Hthm = Hthm;

structure Hterm = Hterm;

structure Htype = Htype;

The internal data structures in this module need the dynamic array structure and binary
dictionary structure. The functors creating these structures are from the SML/NJ library.

A dynamic array is an array which can grow in size. When an attempt to access an element
with an index greater than the current size, the dynamic array is enlarged to accommodate
the element, thus, it provides an unbounded storage space. It is used to store the theorem
references. Using dynamic arrays, there is no hard limit on the number of proof lines in a
proof.

The integer-keyed dictionary is used to stored theorems. The keys are the line numbers.

1]

structure Sarray = StaticArrayFUN(type elemType = int);
structure Darray = DynamicArray (Sarray);
structure Int_key : ORD_KEY =
struct
type ord_key'= int
fun cmpKey (i,j:ord_key) =
if (i = j) then LibBase.Equal
else if (i < j) then LibBase.Less
else LibBase.Greater

end;
structure Dict = BinaryDict(Int_key);

open Darray;

9.2.1 Defining types The type justification represents the justifications. The mean-
ings of various fields are explained in the Check module in Chapter 8.

datatype justification =
Hypothesis
| Assume of Hterm.hterm
| Refl of Hterm.hterm
| Subst of (int*Hterm.hterm)list * Hterm.hterm * int
| BetaConv of Hterm.hterm
| Abs of Hterm.hterm * int
| InstType of (Htype.htype * Htype.htype)list * int
| Disch of Hterm.hterm * int
| Mp of int * int
| Axiom of (string * string)
| Definition of (string * string)
| DefExistsRule of (Hterm.hterm)
| NewAxiom of (string * Hterm.hterm)




86 CHAPTER 9. PROOF OBJECTS

| NewConstant of (string * Htype.htype)
| NewType of (int * string)
] Numconv of Hterm.hterm
| StoreDefinition of (string * Hterm.hterm)
| Theorem of (string * string)
| AddAssum of Hterm.hterm * int
| Alpha of Hterm.hterm * Hterm.hterm
| ApTerm of Hterm.hterm * int
| ApThm of int * Hterm.hterm
| Ccontr of Hterm.hterm * int
| Choose of Hterm.hterm * int * int
| Conj of int * int
| Conjunctl of int
| Conjunct2 of int
| Contr of Hterm.hterm * int
| Disj1l of int * Hterm.hterm
| Disj2 of Hterm.hterm * int
| DisjCases of int * int * int
| EqImpRuleL of int
| EqImpRuleR of int
| EqMp of int * int
| EqTIntro of int

| EtaConv of Hterm.hterm

| Exists of (Hterm.hterm * Hterm.hterm) * int

| Ext of int

| Gen of Hterm.hterm * int

| ImpAntisymRule of int * int

| ImpTrans of int * int

| Inst of (Hterm.hterm * Hterm.hterm)list * int

| MkAbs of int

| MkComb of int * int

| MkExists of int

| NotElim of int

| NotIntro of int

| Spec of Hterm.hterm * int

| Subs of int list * int

| SubsOccs of (int list * int) list * int

| SubstConv of (int * Hterm.hterm) list * Hterm.hterm * Hterm.hterm
] Sym of int

| Trans of int * int ;;

The record type pline represents proof lines with the following three fields:
Line — the line number;
Just — the justification;

Thm — the derived theorem.

datatype pline =
Pline of {Line: int, Just: justification, Thm: Hthm.hthm};

The record type proof represents proofs with the following three fields:
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Name — the name of the proof;
Goals — a list of theorems to be derived in this proof;

Proof — a list of proof lines.

datatype proof =
Proof of {Name: string, Goals: Hthm.hthm list, Proof: pline list};

The type pline_tab represents pline tables. They are used to store theorem reference
information found in the first pass. They also store the goals of proofs. Every proof will have
a pline table. Each table has the following fields:

Name — the name of the proof;

Last — the line number of the last proof line;
Goals — the goals of the proof;

TabHyp — hypothesis table;

TabLine — inference line table.

The Goals field is a list of goals. Each element of the list represents a single goal. It has two
fields: Thm is the goal, and Proved is a boolean value indicating whether the theorem is found
in one of the proof lines. The fields TabHyp and TabLine are dynamic arrays whose elements
are line numbers. These arrays are use to record the highest line which refers to a theorem. For
example, if TabLine[2] equals 5, then the last reference to the theorem in Line 2 is in Line 5.
This means that the derived theorem of Line 2 is no longer needed after Line 5 is checked.
Since the indexes must be non-negative number, two arrays are used. One for the hypotheses
whose line numbers are negative, and the other for the remaining lines. The TabHyp index is
the absolute value of the hypothesis line number, e.g., the element TabHyp[3] is the hypothesis
line —3. The default value of these array elements is 0.

datatype goal = Goal of {Thm: Hthm.hthm, Proved: booll};
datatype pline_tab =
PlineTab of {Name:string, Last:int, Goals: goal list,
TabHyp:Darray.array, TabLine:Darray.arrayl};

9.2.2 Exception This function defines the exception in this module.

fun PROOF_ERR{function,message} =
Exception.CHK_ERR{message = message,
origin_function = function,
origin_structure = "Proof"};

val debug = Debug.get_debug("Proof");

9.2.3 Internal data structures The main purpose of the internal data structures is to
store information about the proofs to be found in the first pass so that it can be used in
the later pass. There are four dynamic objects for working with the current proof. Their
names are prefixed by current_, and their usages are described below. They are initialised
at the beginning of a proof, i.e., when the tag PROOF is found. In the first pass, information
is cumulated in three of the dynamic structures. At the end of a proof, a structure of type
pline_tab is created to group all information in these three structures. It is then inserted into
the list containing all tables of the proofs in the current file to be used by the next pass.
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The identifier current_goal refers to a list of goals of the current proof. From the ob-
servation of some proof generated by the HOL system, it has been found that sometimes the
proof continues after the theorem matching the goal has been derived. In such a case, it is not
necessary to check the entire proof if all goals are proved before the end of the proof is reached.
The derived theorem of each line is compared with the goals. If a goal is found to be equal to
the theorem, the goal is deleted from the list of current goals. Wher the last goal is deleted,
we can ignore any remaining lines in the proof. By including this mechanism, it is hoped that
the checker may be able to save some time so it is more efficient. However, the usefulness of
this mechanism in practical, large proofs is still not clear, because it may not save time as
comparing the goals with the derived theorem in every line takes time.

The line number of the last line is recorded in the Last field of the pline table. However, if
there is no goal, we are obliged to check the entire proof. This laziness feature is enabled if the
value of lazy is true. The default value is false when the checker starts. The value of lazy
should not be changed in the middle of a proof.

At the beginning of a proof, proof_goal is bound to the same list of goals as current_goal.
In Pass 1, as the proof lines are processed, when a goal is found to be the same as a theorem, it
is deleted from current_goal. At the end of the proof, what remains in the list current_goal
will be unsolved. A pline table is built for the proof, in which Goals contains the list bound
to proof_goal with all goals proved (i.e., not in current_goal) flagged as such.

The identifier current_ptab refers to a pair of dynamic arrays containing theorem reference
information. This information is used in the same way as in the description of type pline_tab
above. :

The identifier current_pline refers to the line number of the latest line being processed.

The identifier current_proof refers to a dictionary of theorems keyed by their line numbers.
This dictionary is used only in Pass 2. Initially, it is empty. When a proof line is processed,
the derived theorem is added to the dictionary if it is referenced by later line(s), i.e., the value
of the corresponding element in the pline table array is greater than the current line number.
When the theorem is retrieved from the dictionary for the last line referencing it, it is deleted.
In this way, the size of the dictionary is kept to a minimum.

The name final_thm is bound to the theorem of the last line in a proof. This is assumed
to be the goal of the proof if there is no goal specified explicitly at the beginning of the proof.

val default_ptab = ((Darray.array(10,0)), (Darray.array(10,0)))

val current_ptab = ref default_ptab

and proof_goal = ref([]:Hthm.hthm list)

and current_goal = ref ([]:Hthm.hthm list)

and goal_tab = ref([]l:goal list)

and pline_tables = ref ([]:pline_tab list)

and current_pline = ref 0

and last_line = ref 0

and dummy_thm = (Hthm.mk_thm([],Hterm.mk_const("T",Htype.bool_ty)))
and dummy_proof = (Dict.mkDict()):Hthm.hthm Dict.dict

val final_thm = ref dummy_thm
and current_proof = ref dummy_proof

val lazy = ref false
fun lazy_mode b = (lazy := b)

9.2.4 Functions for Pass 1 The function add_pline_tab processes a proof line in Pass 1.
It takes a triple as its argument. The first field n is the line number, the second ks is a list
of line numbers to which this line references, the last thm is the derived theorem. It returns a
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boolean value true if all the goals of the current proof have been found, otherwise, false.
The current pline table, i.e., the arrays pointed to by current_ptab, is updated. The values
of the array elements whose indices occur in the line number list ks are updated to the current
line number. This is performed by the local function update_tab. Likewise, the current line
number current_pline is updated. The local function chk checks the current goal list. If
one of the goals is the same as the theorem thm, it is deleted. If this is the last goal, true
is returned to indicate that all the goals have been proved. This checking is done only if laz
mode is enabled. :

fun add_pline_tab (n, ks, thm) =
let
fun update_tab 0
| update_tab k
if k > 0 then update(#2(!current_ptab), k, n)
else update(#1(!current_ptab), "k, n)
and check_goal thm =
let
fun chk th [] = false
| chk th (th’ :: thms) =
if (Hthm.thm_eq th th’) then
(current_goal := thms;
if (null thms) then true else false)
else chk th thms

0O

in
chk thm (!current_goal)
end
in
(map update_tab ks; current_pline := n;
if (!lazy) then check_goal(thm) else false)
end

The function add_pline_table is called at the end of a proof. It builds a pline table (of
type pline_tab) and adds it to the pline table list pline_tables.

fun add_pline_table name =
let
val gls = (lcurrent_goal)
val gl0 = null gls
fun chk_goal th =
if glO then true
else (not(exists (fn th’ => Hthm.thm_eq th th’) gls))
val (tabh,tabl) = lcurrent_ptab
val gs =
if not(!lazy) then []
else map (fn th => Goal{Thm=th,Proved=chk_goal th}) (!proof_goal)

in
pline_tables := (PlineTab{Name=name,Last=(!current_pline),
Goals = gs,
TabHyp=tabh,TabLine=tabl})::(!pline_tables);
0O
end

The internal function ptab_value retrieves the value of an element from the current pline
arrays.
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The function print_prooftab outputs the current pline table arrays to the std_out
stream. It is mainly for debugging.
fun ptab_value n =
if (n > 0) then sub(#2(!current_ptab), n)
else sub(#1(!current_ptab), “n)

fun print_prooftab () =

let )
val (hyptab,linetab) = (!current_ptab)
val hb = bound hyptab
and 1b = bound linetab
val i = ref hb

in
(while((!'i) > 0) do
(output (std_out,

("-""makestring (!i) " = "~ makestring (sub(hyptab,(!i)))~"\n"

));
i= (1) - 1);

while((!i) < 1b) do

(output(std_out, .
(makestring (!i) ~" = "~ makestring (sub(linetab, (!i)))~"\n"));

i:= (1) + 1);
0))

end
fun reset_line_num () = (current_pline := 0);

9.2.5 Functions for Pass 2 Functions in this section are used in Pass 2. The function
print_cur_proof prints out the current proof dictionary. It is mainly for debugging.

fun print_cur_proof () =
let
val thms = Dict.listItems(!current_proof)
fun prt (1n,thm) = output(std_out, ((makestring 1n)~" "))

in
output (std_out, ("current_proof:[ "));
map prt thms;
output (std_out, "}\n")

end

The function add_pline should be called for every proof line after it is checked. It inserts
the derived theorem into the current proof dictionary if it is referenced by later line(s). It

returns the line number of the expected last proof line in the proof.

fun add_pline (line,just,thm) =
(if (ptab_value line > line) then
(if (debug > 1) then
output (std_out, ("add_pline: "~ (makestring line)~"\n"))
else ();
current_proof := Dict.insert( (!current_proof),line,thm);
if (debug > 1) then print_cur_proof() else ())
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else();

current_pline := line;

if (line = (!last_line)) then final_thm := thm else ();
(1last_line));

fun get_last_lineNo () = !current_pline;

The function get_thm retrieves a theorem from the current proof dictionary. It takes two
line numbers as its arguments. The first one In is the line number of the required theorem.
The second n is the line number of the line which uses the theorem. If n is the last line that
references the theorem in line In, the theorem is removed from the dictionary. However, no
hypothesis will be removed as they are reported at the end of the proof.

local
fun get_th n [] = NONE
| get_th n ({1 as Pline{Line#line,...}) :: thmlst) =
if (n = line) then (SOME 1) else get_th n thmlst
fun find_th th [] = NONE
| find_th th ((Pline{Thm=thm,...}) :: thmlst) =
if (Hthm.thm_eq th thm) then (SOME thm) else find_th th thmlst
in
fun get_thm (In, n) =
if (In < (ptab_value n)) orelse (n < 0) then
Dict.find ((!current_proof) ,n)

else
let
val (dict,th) = Dict.remove(!current_proof, mn)
in
current_proof := dict;
th
end

handle Dict.NotFound =>
raise (PROOF_ERR {function="get_thm",
message="Line "~ (makestring n)~" not found"})
| e => raise e
and find_thm thm = NONE (* find_th thm (!current_proof) *)
end;

9.2.6 Constructors and field selector These two functions, mk_pline and mk_proof,
are the constructors for the types pline and proof, respectively.
The functions pline_No, pline_Just and pline_Thmreturn the respective fields of a pline.

fun mk_pline (line,just,thm) =
Pline{Line=line, Just=just, Thm=thm}

and mk_proof (name, goals, lines) =
Proof{Name=name, Goals=goals, Proof=lines};

fun pline_No (Pline{Line,...}) = Line
and pline_Just (Pline{Just,...}) = Just
and pline_Thm (Pline{Thm,...}) = Thm;

9.2.7 Initialisation The function init initialises the internal data structures. It should be
called at the beginning of the first pass. The function new_proof1 initialises the current goal
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list and pline table. It should be called at the beginning of every proof in Pass 1.
fun init () =
(current_proof := dummy_proof;
current_ptab := ((Darray.array(10,0)), (Darray.array(10,0)));
pline_tables := [];
)
and new_proofl (name,thms) =
(current_goal := thms;
proof_goal := thms;
current_ptab := ((Darray.array(10,0)), (Darray.array(10,0)));
0D

_The next two functions, clear_proof and new_proof2, are used in the second pass to
initialise the internal data structures in a way similar to the above first pass functions.

fun clear_proof () =
(current_proof := dummy_proof; ())
and new_proof2 name =
let
fun find_ptab name [] =
raise (PROOF_ERR {function="new_proof2",
message=("Proof "“name~" not found")})
| find_ptab name :
((tab as PlineTab{Name,Goals,Last,TabHyp,TabLine})::xs) =
if (name = Name) then tab
else find _ptab name xs
val (PlineTab ptab) = find_ptab name (!pline_tables)
in
current_ptab := ((#TabHyp ptab), (#TabLine ptab));
goal_tab := (#Goals ptab);
last_line := #Last ptab;

current_proof := dummy_proof;
current_pline := ~(Darray.bound(#1(!current_ptab)));
0O

end

The following three functions are provided to allow other modules to access some internal
data. The function goal_table returns the current goal list. The function last_pline returns
the line number of the last line in the current proof. The function get_final_thm returns the
theorem in the last proof line.

and goal_table () = (!goal_tab)
and last_pline () = (!last_line)
and get_final thm () = (!final_thm)

9.2.8 Pretty Printer The function pp_proof_thmprints the theorems in the current_proof
theorem table. Each theorem is preceded by its line number. This is used in debugging.
The functions pp_just and pp_pline print a justification and a proof line, respectively, to a
ppstream. They use the system pretty printer structure.

local
open System.PrettyPrint;
fun with_ppstream ppstrm =
{add_string = add_string ppstrm,
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add_break = add_break ppstrm,

begin_block = begin_block ppstrm,

end_block = fn () => end_block ppstrm,

flush_ppstream = fn () => flush_ppstream ppstrm};
in

fun pp_proof_thm ppstrm =
let
val {add_string, add_break,
begin_block, end_block, flush_ppstream} =
with_ppstream ppstrm
and pp_hthm = Hthm.pp_hthm ppstrm
and thms = Dict.listItems(!current_proof)
fun pp_thmno n =
(add_string "\n<";
add_string (Format.format "/d" [(Format.INT n)]);
add_string ">") '
and prt (ln,thm) =
(pp_thmno 1n; add_string " "; pp_hthm thm; add_break (1,0))
in
if (debug > 1) then
output (std_out, ("pp_proof_thm:"~ (makestring (length thms))~"\n"))
else ();
if null thms then ()
else (begin_block CONSISTENT O;
map prt thms;
end_block ();
add_string "\n";
flush_ppstream())
end

9.2.9 Pretty printer for justification Each justification is enclosed in a pair of paren-
theses. The name of the justification is printed first followed by the other fields. A theorem
is printed as a line number surrounded by angle brackets. Terms are printed using the term
pretty printer.

fun pp_just ppstrm just =
let
val {add_string, add_break,
begin_block, end_block, flush_ppstream} =
with_ppstream ppstrm;
val pp_hthm = Hthm.pp_hthm ppstrm
and pp_qterm = Hterm.pp._gterm ppstrm
and pp_htype = Htype.pp_htype ppstrm
fun pp_thmno n =
(add_string "<";
add_string (Format.format "%d" [(Format.INT n)l);
add_string ">")
and pp_arity n =
if (a2 = 0) then ()
else (add_string "("; add_string (makestring mn);
add_string ")")
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fun pp_list pf 1 =
let
fun pplist pf [J = ()
| pplist pf [x] = pf x
| pplist pf (x::(1 as (y::ys))) =
(pf x; add_string";"; add_break(1,0); pplist pf 1)
in
(begin_block CONSISTENT O;
add_string "[";
pplist pf 1;
add_string "]";
end_block ())
end
and pp_pair (£f1,£f2) (x1,x2) =
(begin_block CONSISTENT O0;
add_string"("; f1 x1; add_string",“;
£2 x2; add_string")";
end_block ())
in
case just of
Hypothesis => add_string "Hypothsis"
| (Assume term) => (add_string "ASSUME "; pp_qterm term)
| (Refl term) => (add_string "REFL "; pp_qterm term)
| (Subst (itml,tm,n)) => (add_string "SUBST ";
pp_list (pp_pair (pp_thmno,pp_qterm)) itml;
add_break (1,3);
pp-qterm tm; add_string",";
pp_thmno n)
| (BetaConv term) => (add_string "BETA_CONV "; pp_qterm term)
| (Abs (term,n)) => (add_string "ABS ";
pp_qterm term; add_string","; pp_thmno n)
| (InstType (ttl,n)) => (add_string "INST_TYPE ";
pp_list (pp_pair (pp_htype,pp_htype)) ttl;
pp_thmno n)
| (Disch (term,n)) => (add_string "DISCH ";
pp_qterm term; add_string","; pp_thmno n)
| (Mp (n1,n2)) => (add_string "MP ";
pp_thmno ni; add_string","; pp_thmno n2)

| (Axiom (s1,s2)) => (add_string "AXIOM ";
add_string sl; add_string"."; add_string s2)
| (Definition (s1,s2)) => (add_string "DEFINITION “;
add_string s1; add_string"."; add_string s2)
| (DefExistsRule term) => (add_string "DEF_EXISTS_RULE";
pp_gterm term)
| (NewAxiom (s,term)) => (add_string "NEW_AXIOM ";
pp_qterm term)
| (NewConstant (s, ty)) => (add_string "NEW_CONSTANT ";
pp_qterm (Hterm.mk_const(s,ty)))
| (NewType (n,s)) => (add_string "NEW_TYPE ";
pp_arity n; add_string s)
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| (Numconv term) => (add_string "num_CONV ";
PP_qterm term)
| (StoreDefinition (s,term)) => (add_string "STORE_DEFINITION “;
add_string s; pp_qterm term)
| (Theorem (s1,s2)) => (add_string "THEOREM *;
add_string sl1; add strlng" "; add_string s2)
| (AddAssum (term, n)) => (add_string "ADDASSUM ";
PpP_qterm term; pp_thmno n)
| (Alpha (termi,term2)) => (add_string "ALPHA ";
Pp_qterm terml; pp_qterm term2)
| (ApTerm (term,n)) => (add_string "APTERM ";
PP_qterm term; pp_thmno n)
| (ApThm (n,term)) => (add_string "APTHM ";
pp_thmno n; pp_qterm term)
| (Ccontr (term,n)) => (add_string "CCONTR ";
pp_gqterm term; pp_thmno n)
| (Choose (term,n1,n2)) => (add_string "CHOOSE ";
PpP_qterm term; pp_thmno nl; pp_thmno n2)
| (Conj (n1,n2)) => (add_string "CONJ ";
pp_thmno ni; pp_thmno n2)
| (Conjunctl n) => (add_string "CONJUNCT1 "; pp_thmno n)
| (Conjunct2 n) => (add_string "CONJUNCT2 "; pp_thmno n)
| (Contr (term,n)) => (add_string "CONTR "“;
pp.qterm term; pp_thmno n)
| (Disj1 (n,term)) => (add_string "DISJ1 ";
pp_thmno n; pp_gterm term)
| (Disj2 (term,n)) => (add_string "DISJ2 ";
PpP_gterm term; pp_thmno n)
| (DisjCases (n1,n2,n3)) => (add_string "DISJCASES ";
pp_thmno nl; pp_thmno n2; pp_thmno n3)
| (EqImpRulel n) => (add_string "EQIMPRULEL "; pp_thmno n)
| (EqImpRuleR n) => (add_string "EQIMPRULER "; pp_thmno n)
| (EqMp (ni,n2)) => (add_string "EQMP "; pp_thmno nl; pp_thmno n2)
| (EqTIntro n) => (add_string "EQTINTRO "; pp_thmno n)
|
|

(EtaConv term) => (add_string "ETACONV "; pp_qterm term)
(Exists ((terml,term2),n)) => (add_string "EXISTS “;
PP-_qterm terml; pp_gqterm term?2;
pp_thmno n)
| (Ext n) => (add_string "EXT "; pp_thmno n)
| (Gen (term,n)) => (add_string "GEN ";
PP_qterm term; pp_thmno n)
| (ImpAntisymRule (nl1,n2)) => (add_string "IMPANTISYMRULE ";
pp_thmno ni; pp_thmno n2)
| (ImpTrans (ni,n2)) => (add_string "IMPTRANS ";
pp_thmno nl; pp_thmno n2)
| (Inst (ttl,n)) => (add_string "INST “;
pp_list (pp_pair (pp_qterm, pp_gterm)) ttl;
add_break(1,3);
pp_thmno n)
| (MkAbs n) => (add_string "MKABS "; pp_thmno n)
| (MkComb (n1,n2)) => (add_string "MKCOMB ";
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pp_thmno nl; pp_thmno n2)
(MkExists n) => (add_string " "; pp_thmno n)
(NotElim n) => (add_string "NOTELIM "; pp_thmno n)
(NotIntro n) => (add_string "NOTINTRO "; pp_thmno n)
(Spec (term,n)) => (add_string "SPEC ";
pp_qterm term; pp_thmno n)
| (Subs (n1,n)) => (add_string "SUBS ";
pp_list pp_thmno nl; pp_thmno n)

| (SubsOccs (nlnl,n)) =>

(add_string "SUBSOCCS ";

pp_list(pp_pair(pp_list pp_thmno,pp_thmno)) nlnl;

add_break (1,3); pp_thmno n)
| (SubstConv (ntml,termi,term?)) =>

(add_string "SUBSTCONV ";

pp_list (pp_pair(pp_thmno,pp_qterm))ntml;

add_break(1,3);

Pp_qterm terml; pp_gterm term2)
| (Sym n) => (add_string "SYM "; pp_thmno n)
| (Trans (nl1,n2)) => (add_string "TRANS ";

pp_thmno ni; pp_thmno n2)

end
9.2.10 Pretty pfinter for proof line The proof lines are printed in the following form:

{linenumber): (justification)
(theorem)

fun pp_pline ppstrm (Pline{Line,Just,Thm}) =
let
val {add_string, add_break,
begin_block, end_block, flush_ppstream} =
with_ppstream ppstrm;
val pp_hthm = Hthm.pp_hthm ppstrm
and pp_just = pp_just ppstrm;
fun mk_str n = Format.format "%6d: " [(Format.INT n)]
in
(begin_block CONSISTENT O;
add_string (mk_str Line);
pp-just Just;
add_break (1,6);
case Just of
(NewType _) => ()
| (NewConstant _) => ()
| _ => pp_hthm Thm;
add_string "\n";
end_block ();
flush_ppstream())
end
end(* local *)

end; (% end of functor ProofFUN *)



10 Proof environment

The proof checker works within an environment which consists of a type structure and a constant
structure. The type structure contains all currently known type operators and their arities.
The constant structure contains all known constants and their types. The proof file format
prf specifies that every proof file has an environment expression at the beginning. It gives
the type and constant structures to be used in checking the proofs in the file. There are three
default environments. The checker starts with the default environment HOL which contains
the same types and constants as when the HOL system starts. This default environment will
be augmented first by the environment specified at the beginning of a proof file. Then, as
checking progresses, new types and constants may be added by the justifications new.type and
new_constant, respectively.

10.1 The specification

The environment module has the following signature:

signature Henv_sig =

sig
structure Htype : Htype_sig
structure Hterm : Hterm_sig

10.1.1 New types The type htypeConst represents an element in the type structure. The
type structure is part of the current environment of the checker. A type constant has a name
and an arity.

The type htermConst represents a constant in the signatures (or constant structure) of the
current environment. It contains a set of constants known to the current theory.

The type henv represents the current environment. It consists of the type structure and the
constant structure.

type htypeConst
type htermConst
type henv

10.1.2 Functions and identifiers The function mk_proof_env creates a new proof envi-
ronment. It is called when an ENV expression is found by the parser. It takes a triple (name,
tylst, clst) asits argument. The name envList is bound to the list of default environments.

val mk_proof_env : (string * htypeConst list * htermConst list) -> unit

val envList : (string * htypeConst list * htermConst list) list

val mk_typeconst : (string * int) -> htypeConst

val mk_termconst : (string * Htype.htype) -> htermConst

The function init should be called to initialise the environment before starting reading a
proof file.

val init: unit -> unit

The function envName returns the name of the current environment. A list of all type

operators in the current environment is returned by the function knownTypes. Similarly, the
function knownConstants returns a list of constants in the current environment.

97
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val envName : unit -> string
val knownTypes : unit -> htypeConst list
val knownConstants : unit -> htermConst list

The functions add_type and add_const add a new type operator and a new constant to
the current environment, respectively.

val add_type : (string * int) -> unit
val add_const : (string * Htype.htype) -> unit

10.1.8 Checking type well-formedness The function type_OK takes a type ty. It checks
whether ty is well-formed under the current environment. A type is well-formed if and only
if (i) it is a type variable; or (ii) its name appears in the type structure and the number of
arguments equals to the arity given in the structure. The function well_typed returns true if
its argument term is well-typed in the current environment.

val type_OK : Htype.htype -> bool
val well_typed : Hterm.hterm -> bool
"end; (* signature *)

10.2 The implementation

functor HenvFUN (structure Htype : Htype_sig
and Hterm : Hterm_sig
sharing Htype = Hterm.Htype) : Henv_sig =
struct
structure Htype = Htype;
structure Hterm = Hterm;

10.2.1 Types The type htypeConst represents type constructors. It is a pair consisting of
a string and a number. The string is the name of the type constructor. The number is its arity.
A type structure is a list of type constructors.

datatype htypeConst = TYCON of {Name:string, Arity:int};

The type htermConst represents Constant terms. The type henv represents a proof envi-
ronment which consists of a type structure and a constant structure.

datatype htermConst = CCON of {Name:string, Ty:Htype.htypel;
datatype henv = HENV of {Name: string,

Tys: htypeConst list,

Tms: htermConst list};

open ListUtil Htype Hterm;

10.2.2 Error handling The function ENV_ERR defines exceptions of this module.

fun ENV_ERR{function,message} =
Exception.CHK_ERR{origin_structure="Henv",
origin_function = function, message = message};
val debug = ref 0;

10.2.3 Constructors and destructors These are the constructors and destructors of the
type operators and constant terms.

fun mk_typeconst (name,arity) = TYCON {Name=name, Arity=arity}
and mk_termconst (name,ty) = CCON {Name=name, Ty=ty}
and dest_typeconst (TYCON{Name,Arity}) = (Name, Arity)
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and dest_termconst (CCON{Name,Ty}) = (Name, Ty)

10.2.4 Current environment An empty environment is bound to the name dummy_env.
The internal variable current_env is always pointing to an environment to be used as the
current environment. Initially, the current environment is the dummy environment. This is set
in the function init.

val dummy_env = (HENV {Name="", Tys=[1, Tms=[1});
val current_env = ref dummy_env;

fun init () =
(debug := Debug.get_debug "Henv";
current_env := dummy_env; ());

The functions envName, knownTypes and knownConstants return respectively the name,
type structures and constant structures of the current environment. The function init should
be called to clear the current environment when the checker begins.

fun envName () =

let val HENV {Name,...} = !current_env in Name end
and knownTypes () =

let val HENV {Tys,...} = !current_env in Tys end
and knownConstants () =

let val HENV {Tms,...} = !current_env in Tms end

10.2.5 Default environments We first initialise the default environments. To improve
the readability of these environments, some identifiers are defined locally. Amongst these local
identifiers, some are symbolic, and they stand for type variables, such as *, and type operators,
such as —->. Others are normal identifiers. They stand for type constants and type operators,
such as bool and list and so on.

local
nonfix *;

val * = mk_vartype "*"
and ** = mk_vartype "**"
and ***x = mk_vartype "k*x";

val bool = bool_ty

and num = mk_type {Tyargs=[],Tyop="num"}
and ind = mk_type {Tyargs=[],Tyop="ind"}
and one = mk_type {Tyargs=[],Tyop="one"} -
and tree = mk_type {Tyargs=[],Tyop="tree"};

infixr 3 -->;
infix 4 ++;
infix 5 #i;

fun tyl --> ty2 = mk_funtype (tyi,ty2)

and tyl ++ ty2 = mk_type {Tyargs=[tyl,ty2],Tyop="sum"}
and tyl ## ty2 = mk_type {Tyargs=[tyl,ty2],Tyop="prod"}
and list ty = mk_type {Tyargs=[ty],Tyop="list"}

and ltree ty = mk_type {Tyargs=[ty],Tyop="1ltree"};
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in
There are three default environments, MIN, LOG and HOL. See Section 16.4 of [5] for the
definition of the first two environments. Each environment in the list includes all the types and

constants of its preceding environments, e.g., HOL includes all the types and constants of MIN
and LOG. HOL is the initial environment when the HOL system starts.

val envlist = [
("HOL",
map mk_typeconst
[("fun", 2), ("prod", 2), ("num", 0), ("list", 1),
(’Itreell, o), (I‘ltreell’ 1)’ ("Sum", 2)’ (Ilonell’ o)],
map mk_termconst
[("=", (pum --> (pum --> num))),
"+", (num --> (pum —-> num))),
(", (o ==> (kR —=> & ## xx ),
(=", (num --> (aum --> num))),
("o", (num)),
("<=", (npum --> (num --> bool))),
("<", (num --> (pum --> bool))),
(">=", (qaum --> (aum --> bool))),
(">", (aum --> (num --> bool))),
("?1", (( * -=> bool) --> bool)),
("ABS_list", ((num --> * ) ## num --> list( * ))),
("ABS_ltree", (tree ## list( * ) =-> ltree( * ))),
("ABS_num", (ind --> num)),
("ABS_sum", ((bool —=> ( * ==> ( #* ==> bool))) --> * ++ **x )),
("ABS_tree", (num --> tree)),
("APPEND", (list( * ) ==> (list( * ) --> list( * )))),
("AP", (list( * —=> ** ) -=> (List( * ) —--> list( ** )))),
("ARB", ( %* ))’ .
("BINDERS", ( * =-> bool)),
("COND", (bool ==> ( * —=> ( * —=> % )))),
("CONS", ( * ——> (list( * ) --> list( * )))),
("CURRY", (( * ## %% —=> dokk ) =~=> ( * ==> ( ** ==> **x )))),
("DIV", (num --> (pum --> num))),
("EL", (num --> (list( * ) ~=> % ))),
("EVEN", (num ~-> bool)),
("EVERY", (( * --> bool) --> (1List( * ) —--> bool))),
("EXP", (pum --> (num --> num))),
("FACT", (num --> num)),
("FLAT", (list(list( * )) --> list( * ))),
("FST", ( * ## *x —=> * )),
("HD", (QQist( * ) --> * )),
("HOL_DEFINITION", (bool --> bool)),
("HT", (tree --> num)),
("INL", ( * ==> * ++ %% )),
("INR", ( #*%k —=> % ++ %% )),
("ISL", ( * ++ ** ——> bool)),
("ISR", ( * ++ ** —--=> bool)),
("IS_ASSUMPTION_OF", (bool --> (bool --> bool))),
("IS_NUM_REP", (ind --> bool)), -
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("IS_PAIR", (( * --> ( ** —--> bool)) --> bool)),
("IS_SUM_REP", ((bool --> ( * —==> ( ** —-> bool))) --> bool)),
("IS_1list_REP", ((num --> * ) ## num --> bool)),
("I“, ( *k ==> % ))s
("Is_ltree", (tree ## list( * ) --> bool)),
("Is_tree_REP", (num --> bool)),
("K", (* —=> (% —=> *x ))),
("LENGTH", (list( * ) --> num)),
("LET", (( * =—=> *% ) ==> ( * —=> **x ))),
("MAP2", (( * ==> ( %% ——> *xx )) —-> (list( * ) -->
(List( #* )—->1list( *** ))))), _

("MAP", (( * ==> ** ) -=> (List( * ) -=> list( *x )))),
("MK_PATIR", ( * —=> ( #* -—> ( % ==> ( ** --> bool))))),
("MOD", (num --> (num --> num))),
("NIL", (list( * ))),
("NULL", (list( * ) -=> bool)),
("Node", ( * --> (list(ltree( * )) --> ltree( * )))),
("0DD", (num --> bool)),
("OUTL", ( * ++ %% =—> *x }),
("OUTR", ( * 4+ %x ==> %% )),
("PART", (Qlist(num) --> (List( * ) --> list(list( * ))))),
("PRE", (num --> num)),
("PRIM_REC_FUN", ( * ==> (( * ==> (num --> * )) =-->

(aum --> (aum --> * ))))),
("PRIM_REC", ( * —> (( * —=> (num --> * )) --> (aum --> * )))),
("REP_list", (list( * ) -=> (aum --> * ) ## num)),
("REP_ltree", (ltree( * ) ——> tree ## list( * ))),
("REP_num", (num --> ind)),
("REP_prod", ( * ## *x —=> ( * —=> ( ** —-> bool)))),
("REP_sum", ( * ++ **x ——> (bool —-> ( * --> ( %% -=> bool))))),
("REP_tree", (tree ~-> num)),
("RES_ABSTRACT", (( * =—> bool) —-> (( * —=> *x ) -—>

(% -=> *xx )))),
("RES_EXISTS", (( * -=> bool) --> (( * --> bool) --> bool))),
("RES_FORALL", (( * ==> bool) --> (( * --> bool) --> bool))),
("RES_SELECT", (( * -=> bool) --> (( * --> bool) --> * ))),
("SIMP_REC_FUN", ( * —=> (( * ==> * ) -=> (aum --> (mum --> * ))))),
("SIMP_REC_REL", ((num --> * ) ==> ( * ==> (( * —=> % )=->

(num --> bool))))),
("SIMP_REC", ( * ==> (( * ==> % ) -=> (num --> * )))),
("SND", ( * ## ** —=> *x )),
("SPLIT", (num --> (list( * ) —--> list( * ) ## list( * )))),
("SUC_REP", (ind --> ind)),
("suc", (num --> num)),
("SUM", (list(num) --> num)),
(MS", (( % —=> ( *%x ==> *kk )) ——>

(O ==> %% ) ==> (% ==> ***x )))),
("Size", (tree --> num)),
("TL", (list( * ) --> 1list( * ))),
("TRP", (( * -—> (list(ltree( * )) —-> bool)) -->
(ltree( * ) --> bool))),
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("ONCURRY", (( * ==> (%% ==> #4x )) ==> ( * ## *x —=> xxx ))),
("ZERD_REP", (ind)),
("bht", (num --> (tree --> bool))) N
("dest_node", (tree --> list(tree))),
("node_REP", (list(num) --> num)),
("node", (list(tree) --> tree)),
(o™, (( %k —=> sk ) —=> (( * -=> *x ) —=> ( % —=> *xx )))),
("one", (ome)),
("trf", (pum —-> ((Llist( %k ) —=> %k ) -=> (tree —-> ** ))))]
) >
(n UG", []’
map mk_termconst
[(n!n, (( * ==> bool) ——> bOOl)),
(u?n, (( * ==> bool) -—> bOOl)),
("T", (bool)),
("F", (bool)),
("~", (bool --> bool)),
("/\\", (bool --> (bool --> bool))),
("M\/", (bool —-> (bool -—> bool))),
("ONE_ONE"; (( * == ¥k ) -—> bOOl)),
("ONTO", (( * -=> ** ) --> bool)),
("TYPE_DEFINITION", (( * ==> bool) --> (( ** ==> * ) ==> bool)))]
) >
("MIN", map mk_typeconst [("bool", 0), ("ind", 0)],
map mk_termconst
[("==>", (bool --> (bool --> bool))),
(u=n, (% ==> (% —=> bOOl))),
("e", (( * --> bool) —-> * ))]
)1;

end(* local *)

10.2.6 Setting up the environment When an ENVironment expression is found in the in-
put, the function mk_proof_env is called. This function sets up the current proof environment.
The expression, represented as a triple (name, tylst, clst), is passed to this function as its
argument.

If name is the name of one of the default environments in the list envList, tylst and clst
are ignored. The current environment will consist of all the type and constant structures of
the environment(s) in the default list from the first element up to and including the element
having the same name as name.

If name is not in the default environment, it is taken as a new environment built on top of
the default environment HOL. The type and constant structures in the argument, together with
the default structures, are set up as the current environment.

local
fun mk_env ((n,tyl’,conl’),(tyl,conl)) =
((tyl’ @ tyl), (conl’ @ conl))
in
fun mk_proof_env (name, tyl, conl) =
let val (11,12) =
splitp (fn (n,11,12) => (n = name)) envlist
in
if (null 12) then
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let val (tys,tms) =
fold mk_env ((name,tyl,conl)::envList) ([1,[])
in
current_env := HENV{Name=name, Tys=tys, Tms=tms};
if ((!debug) > 0)
then output(std_out, ("Current environment: "“name~"\n"))
else ()
end
else let val (tl,cl) = fold mk_env 12 ([1,[1)
in
current_env := HENV {Name= #1(hd 12), Tys=tl, Tms=cl};
if ((!debug) > 0)
then output(std_out,
("Current enviromment: "~ (#1(hd 12))~"\n"))
else ()
end
end
end

10.2.7 Well-formedness and well-typedness A type is well-formed under an environ-
ment if it is a type variable, or if the name of the type operator appears in the type structure
env and all its arguments are also well-formed.

A variable is well-typed under the environment (tysl, constsl) if and only if its type is well-
formed. A constant is well-typed if and only if it occurs in the constant structure constsl and
its type is an instance of the type given in the constant structure. Numerical constants are
exceptions since they are not in the constant structure. They are well-typed if and only if
their type is num and their names are strings consists only of digits. Terms which are function
applications, are well-typed if and only if the operator is of function type and is well-typed,
and the operand is well-typed and in the domain of the operator. For abstractions, the bound
variables and the bodies should be well-typed.

The predicate type_OK returns true if its argument is a well-formed type under the current
environment. Similarly, the predicate well_typed returns true if its argument is a well-typed
term under the current environment.

local
fun in_consts cl (name,cty) =
let val found = findOne (fn (s,ty) => (s = name)) cl
in
case found of
NONE => false
| SOME(_,ty) => is_type_inst cty ty
end;
in
fun type_ 0K ty =
if (is_vartype ty) then true
else
let
val {Tyop,Tyargs} = dest_type ty
val tysl = map dest_typeconst (knownTypes())
val found = findOne (fan (s,a) => (s = Tyop)) tysl
in
case found of
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NONE => false
| SOME (_,arity) =>
(arity = length Tyargs) andalso (every type_0K Tyargs)
end;

fun well_typed tm =
let
fun is_digit_str s =
every (CType.isDigitOrd o ord) (explode s)
val constsl = map dest_termconst (knownConstants())
| in
1 if (is_var tm) then
let val ty = #2(dest_var tm) in (type_OK ty) end
else if (is_const tm) then
let val (name,ty) = dest_const tm in
if (is_digit_str name) then (ty_is_num ty)
| else (in_consts constsl (name,ty)) andalso (type_OK ty)
end
else if (is_comb tm) then
let .
val (rator,rand) = dest_comb tm
val (ranty,rty) = dest_funtype (type_of rator)
: in

(well_typed rator) andalso (well_typed rand) andalso
(ranty = (type_of rand))
end handle CHK_ERR _ => false
else if (is_abs tm) then .
let val (bv,body) = dest_abs tm
in
(well_typed bv) andalso (well_typed body)
end
else false
end

end; (* local *)

10.2.8 Augmenting the environment The functions add_type and add_const add a
new type and a new constant to the current environment, respectively. We need to check
whether the new type or the new constant is already in the environment. When adding con-
stants, we also need to check the well-formedness of its type.

fun add_t&pe (tyname, arity) =
let val HENV {Name=n,Tys=tys,Tms=tms} = !current_env
val found = findOne (fn (ty,ar) => (ty = tyname))
(map dest_typeconst tys)
in
case found of
SOME (_, ar) =>
if (ar = arity)
then raise (ENV_ERR {function="add_type",
message="type already in enrivonment"})
else raise (ENV_ERR {function="add_type",
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message="type name crash"})

| NONE =>
(current_env := HENV{Name=n,
Tys=((TYCON{Name=tyname,Arity=arity})::tys),
Tms=tms};
0))

end
and add_const (name, ty) =
let val HENV {Name=n,Tys=tys,Tms=tms} = !current_env
val found = findOne (fn (n,ty) => (n=name)) (map dest_termconst tms)
in
case found of
SOME (_,typ) =>
if (typ = ty)
then raise (ENV_ERR {function="add_comnst",
message="constant already in enrivonment"})
else raise (ENV_ERR {function="add_const",
message="constant name crash"})
| NONE =>
if (type_OK ty) then
(current_env := HENV{Name=n, Tys=tys,
Tms=( (CCON{Name=name, Ty=ty}) : :tms)};
0D
else raise (ENV_ERR {function="add_const",
message="type of constant badly formed"})
end

end; (¥ functor HenvFun *)




11 HOL theorems

The abstraction of HOL theorems is in the module Hthm. The signature Hthm_sig specifies this
abstraction.

11.1 The specification

The type hthm represents theorems. A theorem has two parts: the set of hypotheses and the
conclusion. These two parts are accessed by the functions hyp and concl, respectively. The
function mk_thm creates a theorem when supplied a list of hypotheses and a conclusion. All of
these must be boolean terms.

The function thm_eq returns true when applied to two theorems if the conclusions are
identical and their sets of hypotheses are equivalent.

The pretty printer for theorems is pp_hthm.

signature Hthm_sig =
sig
structure Report : Report_sig
structure Hterm: Hterm_sig
structure HtermSet: ORD_SET

type hthm

val concl : hthm -> Hterm.hterm

val hyp : hthm -> HtermSet.set ,

val mk_thm: (Hterm.hterm list * Hterm.hterm) -> hthm

val thm_eq: hthm -> hthm -> bool

val pr_hthm : hthm ~> unit

val pp.hthm : System.PrettyPrint.ppstream -> hthm -> unit
end

11.2 The implementation

The functor HthmFUN generates a structure for theorems when applied to the correct argu-
ments. The argument structure Hterm represents terms, and the argument structure HtermSet
represents sets of terms.

functor HthmFUN (structure Report : Report_sig
and Hterm: Hterm_sig and HtermSet: ORD_SET
sharing type Hterm.hterm = HtermSet.item
and Report = Hterm.Report) : Hthm_sig =
struct

structure Report = Report;

structure Hterm = Hterm;

structure HtermSet = HtermSet;

fun THM_ERR{function,message} =
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Exception.CHK_ERR{origin_structure = "Hthm",
origin_function = function, message = message};

11.2.1 The type hthm The type representing theorems consists of a record of two fields.
The field Hyp is a set of terms representing the hypotheses. The field Concl is a term repre-
senting the conclusion. :

datatype hthm = THM of {Hyp: HtermSet.set, Concl: Hterm.hterm};

11.2.2 The constructor The function mk_thm creates a theorem from a list of terms as
assumptions and a term as conclusion. It checks to make sure all terms in the hypotheses and
the conclusion are of boolean type.
fun mk_thm (hyplst, concl) =
if (every Hterm.is_bool_ty (concl::hyplst))

then
let
val hyp = .
fold (fn (i,s) => HtermSet.add(s, i)) hyplst (HtermSet.empty)
in
(THM {Hyp=hyp, Concl=concll})
end

else raise (THM_ERR {function="mk_thm",
message="terms are not all of boolean type"});

11.2.3 The destructors The functions concl and hyp extract the conclusion and the
hypotheses of their argument theorem, respectively.

fun concl (THM {Comncl,...}) = Concl
and hyp (THM {Hyp,...}) = Hyp

11.2.4 The comparator The theorems are equal if and only if their conclusions are iden-
tical and their sets of hypotheses are equivalent. As equal compares the elements of the sets,
corresponding hypotheses must be identical. o-equivalent theorems are considered not equal
by this function.

fun thm_eq (THM{Concl=conl,Hyp=hypl}) (THM{Concl=con2,Hyp=hyp2}) =
(conl = con2) andalso (HtermSet.equal(hypi, hyp2))

11.2.5 Output function The function pr_hthm outputs a theorem to the default output
stream in the proof file format.

local
open Report
in
fun pr_hthm (THM {Hyp, Concll}) =
(write_opening(Keyword.THM) ;
write_list Hterm.pr_hterm (HtermSet.listItems Hyp);
Hterm.pr_hterm Concl;
write_closing_line())
end

11.2.6 Pretty Printer The function pp_hthm is a pretty printer for theorems. It outputs
its second argument to the pretty printing stream given as the first argument. The conclusion
of a theorem is always prefixed by the turnstile [-. The hypotheses are enclosed in square
brackets and are printed before the turnstile if they occur. The individual hypotheses and the
conclusion are printed by the term pretty printer.
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local
open System.PrettyPrint;
fun with_ppstream ppstrm =
{add_string = add_string ppstrm,
add_break = add_break ppstrm,
begin_block = begin_block ppstrm,
end_block = fn () => end_block ppstrm,
flush_ppstream =fn () => flush_ppstream ppstrm};
in
fun pp_hthm ppstrm (THM {Hyp,Concl}) =
let
val {add_string, add_break,
begin_block, end_block, flush_ppstream} =
with_ppstream ppstrm;
val pp_hterm = Hterm.pp_hterm ppstrm
and pp_qterm = Hterm.pp_gterm ppstrm
fun pp_hyp [1 = O
| pp_hyp terml =
let
fun p_hyp [1 = O
| p_hyp [tm] = pp_gterm tm
} p_hyp (tm::(tml as (x::1))) =
(pp_qterm tm;
add_string ";"; add_break (1,1);
p_hyp tml)
in
(begin_block CONSISTENT O;
add_string"["; p_hyp terml;
add_string"]";
end_block ())
end
val hyps = HtermSet.listItems Hyp
in
(begin_block CONSISTENT O;
PP-hyp hyps;
add_break (1,1); add_string "|- ";
pp_hterm Concl;
end_block ())
end
end(* local *)
end; (* functor HthmFUN *)



12 HOL terms

The Hterm module is the abstraction of HOL terms. It is created by applying the functor
HtermFUN.

12.1 The specification

The signature Hterm_sig is the specification of the term structure. It contains the type struc-
ture Htype and the report generation module Report.

signature Hterm_sig =
sig
structure Report : Report_sig
structure Htype : Htype_sig

12.1.1 Types The type hterm represents HOL terms. It admits equality so two terms are
considered equal if their representations are the same. There are four kinds of primitive terms:
variables, constants, A-abstractions and combinations.(also known as function applications).
The actual representation of different kinds of terms within the type hterm is local to this
module.

eqtype hterm

12.1.2 Constructors and destructors The following functions are provided for con-
structing, destructing and testing primitive terms. All constructors have prefix mk_. They
all take a pair as their argument. All destructors have prefix dest_. They all return a pair.
All term testers have prefix is_.

val mk_var : string * Htype.htype -> hterm
val mk_const : string * Htype.htype -> hterm
val mk_comb : hterm * hterm -> hterm

val mk_abs : hterm * hterm -> hterm

val dest_var : hterm -> string * Htype.htype
val dest_const : hterm -> string * Htype.htype
val dest_comb : hterm -> hterm * hterm

val dest_abs : hterm -> hterm * hterm

val is_var : hterm -> bool
val is_const : hterm —-> bool
val is_comb : hterm -> bool
val is_abs : hterm -> bool

12.1.3 More destructors and testers These are destructors for higher level terms, i.e.,
for terms of certain common structures, for instance equalities. They follow the naming con-
vention described above.

val dest_eq : hterm -> hterm * hterm
val dest_forall : hterm -> hterm * hterm
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val dest_exists : hterm -> hterm * hterm
val dest_imp : hterm -> hterm * hterm
val dest_not : hterm -> hterm

val dest_conj : hterm -> hterm * hterm
val is_eq : hterm -> bool

val is_conj : hterm -> bool

Listed below are special destructors. rev_dest_eq is the same as dest_eq except the order
of the fields returned is reversed. The destructors whose names have the prefix strip_ are the
repetitive version of their simple counterparts.

val rev_dest_eq : hterm -> (hterm * hterm)

val strip_comb : hterm -> (hterm * hterm list)
val strip_forall : hterm -> (hterm list * hterm)
val strip_exists : hterm -> (hterm list * hterm)
val strip_conj : hterm -> hterm list

val lhs : hterm -> hterm

val rhs : hterm -> hterm

12.1.4 Term comparison The function cmpTerm is an ordering function for terms. The
expression cmpTermim, tmg evaluates to Equal if ¢m; and ¢m, are exactly the same. Otherwise,
it is either Less or Greater depending on their kinds and names.

val cmpTerm :(hterm * hterm) -> LibBase.relation

12.1.5 Type of a term This group of functions deal with types of a term. When applied
to a term tm, the function type_of returns the type of tm. The expression tyvars tm evaluates
to a list of distinct type variables occured in tm. The function tyvarsl is similar to tyvars
but it takes a list of terms.

The expression type_in ty tm evaluates to true if tm or any of its subterms has the type
ty. ’

The expression vty_occurs vty tm evaluates to true if the type variable vty occurs in
any subtype of any subterm of ¢tm. This is a combination of the functions type_in and
type_in_type in Htype with the restriction that the type to be checked must be a type variable.

val type_of : hterm -> Htype.htype

val tyvars : hterm -> Htype.htype list

val tyvarsl : hterm list —> Htype.htype list
val type_in : Htype.htype -> hterm -> bool
val vty_occurs : Htype.htype -> hterm -> bool

12.1.6 a-conversion The predicate aconv takes two terms as its arguments. It returns
true if they are o convertible from each other.

val aconv : hterm -> hterm -> bool
12.1.7 Type instantiation The function term_is_type_inst tests two terms to see whether

one is the result of type-instantiating the other. The first argument is a list of type pairs spec-
ifying the type instantiations.

val term_is_type_inst : (Htype.htype * Htype.htype)list ->
hterm -> hterm -> bool '
The function term_is_tyty_inst is a bounded version which takes an extra argument of
a list of variable pairs. This list specifies the variables renamed when the term is instantiated.
val term_is_tyty_inst : (Htype.htype * Htype.htype)list ->
(hterm * hterm) list -> hterm -> hterm -> bool
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The function term_inst_renames returns the list of variable pairs which are renamed in
the instantiation.

val term_inst_renames : (Htype.htype * Htype.htype)list ->
hterm -> hterm -> (hterm * hterm)list

The function term_inst_chk takes an extra list of variables. These are assumed to be the
free variables in the assumptions of a theorem. Any variables occurring in this list should not
be renamed. The new variables should not be the same as any of these variables.

val term_inst_chk : (Htype.htype * Htype.htype)list ->
(hterm)list -> hterm -> hterm -> bool

12.1.8 Free and bound variables The function frees returns a list of the free variables
in the input term. The function freesl is similar but takes a list of terms. The resulting list
is treated as a set, i.e., every free variable appears only once in the list if it occurs one or more
times in the term.

The expression free_in tm; tmy evaluates to true if ¢m; occurs free in tmy where tm;
must be a variable. (Note that this is different from the function having the same name in
HOLS88.)

The expression variant vl z returns a variable which is a variant of £ and is different from
any of the variables in the list vl. The variant is created by appending a prime(’) to the name
of z. '

val frees : hterm ->hterm list
val freesl : hterm list -> hterm list
val free_in : hterm -> hterm -> bool

val variant : hterm list -> hterm -> hterm

12.1.9 Substitutions A substitution of a term tm|[ty,..., ) is a term
tmt],...,th/t1, .- ta)

in which free occurrences of ¢; are replaced by ¢} for i = 1,...,n. The type of ¢; must be the
same as ;. If free occurrences of variables in ¢; will be captured, the corresponding bound
variables will be renamed. A substitution can be specified as a pair (¢}, ;).

A list of substitutions [(t},%1),...,(t,,ts)] is consistent if and only if

1. all the ¢;’s are distinct, or
2. if t; = ¢;, then t; = ¢.

The function term_subst_chk checks the correctness of a substitution. It takes four argu-
ments in the following order:

o a substitution list whose elements are triples, ((¢;,z;),v;), specifying the substitutions;
e a template which specifies the positions where substitutions are performed;

e a substituted term which is the result of the substitutions;

e an original term which is to be substituted.

Positions of substitutions are indicated in the template by the occurrences of dummy variable v;.
The corresponding positions of the original term should be free occurrences of the variable z;.
They are replaced by the term %; in the substituted term. The function term_subst_chkreturns
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true if the substituted term is a consistent substitution according to the above description.
Otherwise, it returns false.

val term_subst_chk : ((hterm * hterm) * hterm)list ->
hterm -> hterm -> hterm -> bool

The function mk_subs_templ is used in the check module. They generate a substitution
template..

val mk_subs_templ : ((hterm * hterm) * hterm) list -> hterm -> hterm
val mk_subs_occu_templ : hterm -> hterm -> hterm -> int -> int list
-> (hterm * int * int list)

12.1.10 Generating unique variables The function mk_gen_var creates a unique vari-
able every time it is called. This is used when the checker needs an internal general variable,
e.g., for renaming.

val mk_gen_var : Htype.htype -> hterm

12.1.11 Special types Since it is frequently required to check whether a term has boolean
type, the function is_bool_ty is defined for this purpose. Similarly, the function is_num_ty
returns true if applied to a term whose type is num.

val is_bool_ty : hterm -> bool
val is_num_ty : hterm -> bool

12.1.12 Output function This function prints a term to the default output stream in the
prf format. :

val pr_hterm : hterm -> unit

12.1.13 Pretty Printer The function pp_qterm is a pretty printer for quoted terms. The
function pp_hterm is a pretty printer for terms without being enclosed in double quotes. They
use the system pretty-printer module to print terms.

val pp_qterm : System.PrettyPrint.ppstream -> hterm -> unit
val pp_hterm : System.PrettyPrint.ppstream -> hterm -> unit

end; (* signature Hterm_sig *)

12.2 The implementation

The functor HtermFUN takes three structures: Report the report generation module, Htype the
abstraction of HOL types and their operations and HtypeCmp the ordering of HOL types. The
last two have to share the type representing HOL types. The Report structure should be the
same as the Report structure in the type module.

functor HtermFUN (structure Report : Report_sig
and Htype: Htype_sig and HtypeCmp: ORD_KEY
sharing type Htype.htype = HtypeCmp.ord_key
and Report = Htype.Report) : Hterm_ sig =
struct

structure Report = Report;

structure Htype = Htype;

structure HtypeCmp = HtypeCmp;

val debug = ref O; :
fun write_out s = (output(std_err, s); flush_out std_err);
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fun init () = (
debug := Debug.get_debug "Hterm";
0);

12.2.1 Type for HOL terms The type representing HOL terms is hterm. In addition to the
four kinds of primitive terms, an extra kind of term BVAR is allowed. It represents the bound
variable in an abstraction. This follows the de Bruijn’s name-free representation[3]. The integer
in a BVAR is the depth (or level) of A’s between the bound variable and its binder.

type atom = {Name: string, Ty: Htype.htypel};

datatype hterm = BVAR of int
| VAR of atom
| CONST of atom
| COMB of {Rator: hterm, Rand: hterm}
| ABS of {Bvar: hterm, Body: hterm};

12.2.2 Exception This function generates exception for this module.

fun TERM_ERR{function,message} =
Exception.CHK_ERR{origin_structure = "Hterm",
origin_function = function, message = messagel};

12.2.3 Ordering function The function cmpTerm compares two terms. By convention,
variables are Less than constants, which are in turn Less than function applications, and
which are in turn Less than \-abstraction. If two terms are both variables, or constants, their
names are compared in alphabetical order. If two terms are both function applications, the
operators are compared first. If they are the same, the operands are compared. If two terms are
both A-abstractions, the bound variables are compared first, then the bodies. This function is
required to create the HtermCmp structure which is used by the ordered-set of terms structure.

local open LibBase
in
fun cmpTerm (tml, tm2) =
case tml of
(BVAR n1) =>
(case tm2 of
(BVAR n2) =>
if (nl1 = n2) then Equal
else if (nl < n2) then Less else Greater
| _ => Less)
| (VAR {Name=name, Ty=ty})
(case tm2 of
(VAR {Name=name2, Ty=ty2}) =>
if (name < name2) then Less
else if (name > name2) then Greater
else Htype.cmpType (ty,ty2)
| _ => Less)
| (CONST {Name=name, Ty=ty}) =>
(case tm2 of
(VAR _) => Greater
| (CONST {Name=name2, Ty=ty2}) =>
if (pname < name2) then Less
else if (name > name2) then Greater

>
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else Htype.cmpType (ty,ty2)
| _ => Less)
! (COMB {Rator=rat, Rand=rnd}) =>
(case tm2 of
(ABS _) => Less
| (COMB {Rator=rat2, Rand=rnd2}) =>
| let val ¢ = cmpTerm(rat,rat2)
: in

if not(c = Equal) then c else cmpTerm(rnd,rnd2)
end
: | _ => Greater)
| | (ABS {Bvar=var, Body=body}) =>
| (case tm2 of
|

(ABS {Bvar=var2, Body=body2}) =>
| let val ¢ = cmpTerm(var,var2)
| in
%’ if not(c = Equal) then c else cmpTerm(body,body2)
| end .
| | _ => Greater)
; end ;

12.2.4 Term constructors The term constructors create terms like their counterparts in
HOL, namely taking the appropriate arguments and returning a term. A special case is the
w A term constructor since de Bruijn’s name-free representation is used. The function mk_bind
binds the variable in the body of an abstraction. It is called when a A term is created. It
recursively descends into the body of the abstraction to change the free occurrences of the
variable into BVARs. A variable is considered to be the same as the bound variable if its name
and its type are identical to those of the bound variable. The integer argument 7 is incremented
when an abstraction is entered.

fun mk_var (name, ty) = VAR {Name = name, Ty = ty};
fun mk_const (name, ty) = CONST {Name = name, Ty = ty};
fun mk_comb (rator, rand) = COMB {Rator = rator, Rand = rand};

fun mk_bind (n, (bv as VAR{Name=bvname,Ty=bvtyl}),
; (v as VAR{Name=name,Ty=ty})) =
; if ((bvname = name) andalso (bvty = ty)) then (BVAR n) else v
1 | mk_bind (n, (bv as VAR{Name=bvname,Ty=bvty}),
(CoMB{Rator=rator,Rand=rand})) =
(COMB{Rator=(mk_bind(n,bv,rator)), Rand=(mk_bind(n,bv,rand))})
| mk_bind (n, (bv as VAR{Name=bvname,Ty=bvty}),
(ABS {Bvar=v,Body=body})) =
(ABS {Bvar=v,Body=(mk_bind((n+1),bv,body))})
| mk_bind (n, (bv as VAR{Name=bvname,Ty=bvty}), tm as _) = tm
| mk_bind (n,_,.) =
raise (TERM_ERR {function="mk_bind",
message="not a variable"});;

fun mk_abs (bv as VAR _, body) =
ABS {Bvar = bv, Body = (mk_bind(0,bv,body))}
| mk_abs _ = raise TERM_ERR {function = "mk_abs",
message = "first term not a variable"};
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12.2.5 System generated variables The names of all system generated unique variables
begin with the string gvi/, and are followed by a number. The variable gen_var_count keeps
a count of the number of variable generated.
val gen_var_prefix = "gvii"
and gen_var_count = ref 0
fun mk_gen_var ty
(gen_var_count := (!gen_var_count) + 1;
mk_var ((gen_var_prefix~ (makestring (!gen_var_count))), ty))

!

12.2.6 Term destructors The function dest_bind performs the inverse process of mk_bind.

It is called by dest_abs. It recursively descends into the body of the abstraction and converts
the bound variable into a free variable. The integer argument n indicates the depth of the
nested As. If it encounters a bound variable of the same level, it changes it to free variable.

fun dest_var (VAR {Name=s, Ty=ty}) = (s,ty)

! dest_var _ = raise TERM_ERR {function = "dest_var",
message = "not a variable"};
fun dest_const (CONST {Name=s, Ty=ty}) = (s,ty)
| dest_const _ = raise TERM_ERR {function = "dest_const",
message = "not a constant"};
fun dest_comb (COMB {Rator=ra,Rand=rnd}) = (ra,rnd)
| dest_comb _ = raise TERM_ERR {function = "dest_comb",
message = "not an application"};

fun dest_bind (n, (bv as VAR{Name=bvname,Ty=bvtyl}),
(BVAR n?)) =
if (n = n’) then bv else (BVAR n’)
} dest_bind (n, (bv as VAR{Name=bvname,Ty=bvty}),
(CoMB{Rator=rator,Rand=rand})) =
(CoMB{Rator=(dest_bind(n,bv,rator)), Rand=(dest_bind(n,bv,rand))})
| dest_bind (n, (bv as VAR{Name=bvname,Ty=bvty}),
(ABS {Bvar=v,Body=body})) =
(ABS {Bvar=v,Body=(dest_bind((n+1),bv,body))})
| dest_bind (n, (bv as VAR{Name=bvname,Ty=bvty}), tm as _) = tm
| dest_bind (n,_,_ ) =
raise (TERM_ERR {function="dest_bind",
message="not a variable"});

fun dest_abs (ABS {Bvar=v, Body=b}) = (v, (dest_bind(0,v,b)))
| dest_abs _ = raise TERM_ERR {function = "dest_abs",
message = "not an abstraction"};

12.2.7 Term testers The primitive term testers are implemented using the primitive term
destructors in the previous section.

val is_var = can dest_var;
val is_const = can dest_const;
val is_comb = can dest_comb;
val is_abs = can dest_abs;

12.2.8 More destructors and testers There are also destructors for special terms, such
as equations, negations, universal and existential quantifiers, implications and conjunctions.

fun dest_eq (COMB {Rator=(COMB {Rator=eq,Rand=1lhs}), Rand=rhs}) =
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let
val (eqname,ety) = dest_const eq
handle CHK_ERR _ => (""", (Htype.mk_vartype"*"))
in
if (eqgname = "=") then (lhs,rhs)
else raise (TERM_ERR {function="dest_eq",
message="not an equality"})
end
| dest_eq _ =
raise (TERM_ERR {function="dest_eq",
message="not an equality"});

fun rev_dest_eq tm =
let val (1,r) = dest_eq tm in (r,1) end
and lhs tm =
let val (1,r)
and rhs tm =
let val (1,r)

dest_eq tm in 1 end

dest_eq tm in r end;
val is_eq = can dest_eq;

fun dest_forall (COMB{Rator=(CONST u),Rand=abs as (ABS{Bvar,Body})}) =
if ((#Name u) = "!") then dest_abs abs
else raise (TERM_ERR {function="dest_forall",
message="Not a universal quantification"})
| dest_forall _ =
raise (TERM_ERR {function="dest_forall",
message="Not a universal quantification"});

fun dest_exists (COMB {Rator=(CONST u), Rand=abs as (ABS {Bvar,Body})}) =
if ((#Name u) = "7?") then dest_abs abs
else raise (TERM_ERR {function="dest_exists",
message="Not an existential quantification"})
| dest_exists _ =
raise (TERM_ERR {function="dest_exists",
message="Not an existential quantification"});

fun dest_imp (COMB {Rator=(COMB {Rator=eq,Rand=ante}), Rand=conc}) =
let
val (eqname,ety) = dest_const eq
handle CHK_ERR _ => (""", (Htype.mk_vartype"*"))
in )
if (egname = "==>") then (ante,conc)
else raise (TERM_ERR {function="dest_imp",
message="not an implication"})
end
| dest_imp _ =
raise (TERM_ERR {function="dest_imp",
message="not an implication"});

fun dést_not (COMB {Rator=(CONST{Name=name, ...}), Rand=bodyl}) =
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if (name = """) then body
else raise (TERM_ERR {function="dest_not",
message="not a negation"})
| dest_not _ =
raise (TERM_ERR {function="dest_not",
message="not a negation"});

local
fun str_comb (tm,1) =
if is_comb tm then
let val (rator,rand) = dest_comb tm

in
str_comb (rator, (rand::1))
end
else (tm,l)
in
fun strip_comb tm = str_comb (tm,[])

end;
local

fun it_right £ (1,tm)
if (can f tm) then

let val (fst,snd) = £ tm
in
it_right £ ((fst::1), snd)
end
else (1,tm)

in
fun strip_forall tm =

let val(vs,b) = it_right dest_forall ([],tm) in ((rev vs),b) end

fun strip_exists tm =

let val (vs,b) = it_right dest_exists ([1,tm) in ((rev vs),b) end

end;

fun dest_conj (COMB {Rator=(COMB {Rator=conj,Rand=lhs}), Rand=rhs}) =

let
val (cname,cty) = dest_const conj
handle CHK_ERR _ => ("",(Htype.mk_vartype"*"))
in
if (cname = "/\\") then (lhs,rhs)
else raise (TERM_ERR {function="dest_conj",
message="not a conjunction"})
end
| dest_conj _ =
raise (TERM_ERR {function="dest_conj",
message="not a conjunction"})

val is_conj = can dest_conj

"fun strip_conj term =
let
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fun stripc tm 1lrl =
if (is_conj tm) then
let
val (1,r) = dest_conj tm
in
stripc 1 (stripc r 1rl)
end
else (tm :: 1rl)
in
stripc term []
end

12.2.9 Free variables The task of finding free occurrences of variables is made simple by
the name-free representation. All we need to do is to recursively descend into the subterms to
pick up all the VAR nodes since bound occurrences are represented by BVAR.

The local function freevars does the actual job of finding free variables. Its second argu-
ment is used to cumulate the free variables found in the term. This improves the performance.

local
fun freevars ((tm as VAR _), 1) =tm :: 1
| freevars ((COMB{Rator,Rand}), 1) =
(freevars (Rator, (freevars (Rand, 1))))
| freevars ((ABS{Body,...}), 1) = freevars (Body, 1)
| freevars (_, 1) =1
in
fun frees tm = setify (freevars (tm, [1))
and freesl tms = setify (fold freevars tms [1)
and free_in (v as VAR _) tm = mem v (freevars (tm, []))
| free_in _ tm =
raise (TERM_ERR{function="freein",
message="argument not a variable"})
end;

12.2.10 Variant of variable This function generates a variant of the given variable by
appending prime(’) on to it. The new variant is tested against the list vl. More primes are
added if required.

fun variant [] x = x
| variant vl (x as VAR{Name,Ty}) =
if (mem x v1) then variant vl (VAR{Name=(Name~"’"),Ty=Ty})
else x :
| variant vl _ = raise (TERM_ERR {function="variant",
message="not a variable"});

12.2.11 Typeofaterm The types of variables and constants are carried in them explicitly.
The types of combinations and abstractions are worked out dynamically. The operator of a
combination must be of a function type. If it is not, dest_funtype will fail. The type of the
operand must be the same as the domain of the operator. An exception is raised if this is not
the case. The type of an abstraction is guaranteed to be a function type. Its domain is the
type of the bound variable, and its range is the type of the body. dest_abs is called to convert
the bound occurrences of the variable into free occurrences before the type of the body can be
worked out. ‘

fun type_of (VAR {Ty,...}) = Ty
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| type_of (CONST {Ty,...}) = Ty
| type_of (COMB {Rator,Rand}) =
let
val (randty,rty) = (Htype.dest_funtype (type_of Rator))
in
if (randty = type_of Rand) then rty
else raise (TERM_ERR {function="type_of",
message="incompatible types in application"})
end
| type_of (tm as (ABS _)) =
let val (bv,body) = dest_abs tm
in
Htype.mk_funtype ((type_of bv), (type_of body))
end
| type_of _ = raise (TERM_ERR {function="type_of",
message="type_of bound variable"});

12.2.12 Special types testers These functions return true if the term is of type bool or
num, respectively.

fun is_bool_ty tm = ((type_of tm) = Htype.bool_ty)
and is_num_ty tm = ((type_of tm) = Htype.num_ty)

12.2.13 Type variables in term The function tyvars, when applied to a term, returns
a list of the distinct type variables occurring in the term. These include the type variables
occurring in any subterm of the input term. The resulting list is like a set, i.e., no repeated
variables.

The function tyvarsl is similar but taking a list of terms.

local
fun ty_vars ((VAR {Ty,...}),vl) = union (Htype.type_tyvars Ty) vl
| ty_vars ((CONST {Ty,...}),vl) = union (Htype.type_tyvars Ty) vl
| ty_vars ((ABS {Bvar,Body}),vl) =
union (Htype.type_tyvars (type_of Bvar)) (ty_vars(Body,vl))
| ty_vars ((COMB {Rator,Rand}),vl) = ty_vars(Rand, (ty_vars(Rator,vl)))
| ty_vars (_,vl) = vl '
in
fun tyvars tm = ty_vars(tm, []1)
and tyvarsl tml = fold ty_vars tml []
end;

12.2.14 Type in a termm The function type_in returns true if its first argument ty is the
type of the term or the type of any of its proper subterm. If the term is a combination, its type
is the range of the operator. We find the types of the operator and the operand separately. If ty
is equal to the range of the operator, we require the type of the operand to be the same as the
domain of the operator. We also find the types of the bound variable and the body separately
if the term is an abstraction.

fun type_in ty (VAR {Ty,...}) = (ty = Ty)
| type_in ty (CONST {Ty,...}) = (ty = Ty)
| type_in ty (COMB {Rator, Rand}) =
let val (aty,rty) = Htype.dest_funtype (type_of Rator)
and ranty = type_of Rand
in
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((ty = rty) andalso (rty = ranty)) orelse

(type_in ty Rator) orelse (type_in ty Rand)
end '

| type_in ty (tm as ABS _) =
let val (bv,body) = dest_abs tm
val bty = type_of body and vty = type_of bv

in

(ty = Htype.mk_funtype(vty,bty)) orelse

(ty = vty) orelse (ty = bty) orelse
(type_in ty body)
end
| type_in ty _ = false;

12.2.15 Occurrence of type variables The expression vty_occurs vty tm evaluates to
true if the type variable vty occurs in any subtype of any subterm of tm. This is implemented
by first finding all type variables occurring in the type of the term or the types of any subterms
using tyvars; and then checking whether vty is one of these type variables.

fun vty_occurs vty tm =
if (Htype.is_vartype vty) then mem vty (tyvars tm)
else raise (TERM_ERR {function="vty_occurs",
message="not a type variable"});

12.2.16 Checking type instantiation The function term_is_type_inst calls the local
function is_ty_inst to perform the type instantiation checking. The local function takes, as
its arguments, two-terms tm; and tmg, a list of type pairs tytyl and a list of pairs variables
nl. It checks to see if ¢m; is an instance of tmg according to tytyl. The pairs of variables in
nl are the renaming found in the checking. The function will raise an exception if inconsistent
renaming is found, i.e., two occurrences of a variable are renamed differently or two distinct
variables become identical.

The checking uses the fact that the structure of term trees of ¢m; and ¢m. must be the same
if one is a type instantiation of the other, i.e., the corresponding nodes are of the same kind.
The complication due to renaming only occurs at the nodes which are free variables. There are
five different cases corresponding to the five kinds of primitive terms:

¢ For bound variable nodes, they must be at the same level of nested abstraction.

o For constant nodes, they must be the same constant and their types must be a consistent
instantiation according to the list yéyl.

o For free variable nodes, their names must be the same and their types must be a consistent
instantiation according to the list tytyl if renaming does not occur. Otherwise, the re-
naming is checked against the list nl. This is performed by the local function chk_rename.
It takes, as arguments, the pair of variables (vy,v2) which are the current nodes, and the
list nl which contains all the renaming found so far. If v, has not been seen before, then
v; must not have been seen either. Then, the pair (v;,v;) is added into nl. I v, is not
seen before but v; is found in the list nl, we have a renaming that makes two variables
identical. The function returns false. If vs is found in nl, then v; must be the same as
the first field of the pair found in the list, otherwise, we find an inconsistent renaming.
In the latter case, the function returns false.

e For COMB nodes, we check the rator (left) subtree first. If it is OK, we check the rand
(right) subtree. '
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e For ABS nodes, the type tyl of a bound variable in #m; must be a consistent instantiation
of ty2. This variable may be renamed, but it does not matter what it is renamed to as
long as the name is not the name of any free variable in the body. The renaming does
not need to be recorded in nl.

local
open Htype ListUtil
fun chk_rename (v1,v2) nl =
let
val foundl = ListUtil.findOne (fn (v,u)=> (v2 = u)) nl
in
case foundl of
NONE =>
let val found2 = ListUtil.findOne (fn (v,u)=> (vl = v)) nl
in
case found2 of
NONE => (true, ((v1i,v2)::nl))
| SOME _ => (* renaming makes two variables identical *)
(false, nl)
end .
| SOME(v,u) => (* variable already seen *)
((vi = v), nl)
end

fun is_ty_inst (BVAR nl) (BVAR n2) tytyl nl =
((n1 = n2), tytyl, nl)
| is_ty_inst (CONST{Name=n1,Ty=ty1}) (CONST{Name=n2,Ty=ty2}) tytyl nl =
(((n1 = n2) andalso (is_tyty_inst tytyl tyl ty2)), tytyl, nl)
| is_ty_inst (vl as VAR{Name=n1,Ty=tyll})
(v2 as VAR{Name=n2,Ty=ty2}) tytyl nl =
if (is_tyty_imst tytyl tyl ty2) then
let val (nameok, nl’) = chk_rename (v1,v2) nl
in
(nameok, tytyl, nl’)
end
else (false, tytyl, nl)
| is_ty_inst (COMB{Rator=ratl,Rand=rani})
(COMB{Rator=rat2,Rand=ran2}) tytyl nl =
let val (rat,tytyl’,nl’) = is_ty_inst ratl rat2 tytyl nl
in
if rat then is_ty_inst ranl ran2 tytyl’ nl’
else (false, tytyl, nl)
end
| is_ty_inst (ABS{Bvar=(vl as VAR{Name=bv1,Ty=ty1}),Body=bol})
(ABS{Bvar=(VAR{Name=bv2,Ty=ty2}) ,Body=bo2}) tytyl nl =
if ((is_tyty_inst tytyl tyl ty2) andalso
((bvli = bv2) orelse (not (free_in vl bol))))
then (is_ty_inst bol bo2 tytyl nl)
else (false, tytyl, nl)
| is_ty_inst tml tm2 tytyl nl =
raise (TERM_ERR{function="is_ty_inst",
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message="term structures are different"})
in
Here comes the type instantiation checking function and its variants.
fun term_is_type_inst tytyl tml tm2 =

let
val (0K, ttl, nnl) = is_ty_inst tmi tm2 tytyl []
in
0K
end
fun term_is_tyty_inst tytyl nl tml tm2 =
let
val (0K, ttl, nnl) = is_ty_inst tml tm2 tytyl []
in
OK andalso ((length nl) = (length nnl))
end
fun term_inst_renames tytyl tml tm2 =
let
val (0K, ttl, nnl) = is_ty_inst tml tm2 tytyl []
in
ListUtil.remove (fn .(v,u) => (v = u)) nnl
end
fun term_inst_chk tytyl vl tml tm2 =
let

val (0K, ttl, mnl) = is_ty_inst tml tm2 tytyl []
val (nl,vl’) = unzip(remove (fn (v,u) => (v = u)) nmnl)
in
(0K andalso (null(intersect vl vl’)) andalso
(null(intersect vl nl)))
end
end

12.2.17 a-conversion Two terms are « equivalent if and only if
1. they are of the same kind of term; and
2. all corresponding subterms are o equivalent. This can be divided into the following cases:

e if they are combinations the operators and the operands are a equivalent, respec-
tively;

o if they are abstractions, the bound variables must be of the same type and the bodies
must be a equivalent;

e otherwise they must be the same constant, or the same free variable (the same in
name and type), or they must both be bound variables associated with the bounder
of the same level, i.e., with the same depth index number.

fun aconv (COMB{Rator = M1, Rand = M2}) (COMB{Rator=N1,Rand=N2}) =
aconv Mi N1 andalso aconv M2 N2
| aconv (ABS{Bvar=VAR{Ty=tyl,...}, Body = bodyl})
(ABS{Bvar=VAR{Ty=ty2, ...}, Body = body2}) =
(tyl=ty2) andalso (aconv bodyl body2)
| aconv tml tm2 = (tml=tm2);
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12.2.18 Pretty Printer The pretty printer prints a term to the pretty printing stream
given as the first argument. No special syntactic treatment is performed on the term since
the checker knows nothing about special syntactic status of constants, such as infix or binder
status. Although it is entirely primitive, a term printed by the pretty printer is a legal HOL
input term, i.e., it is accepted by the HOL system parser. Therefore, one can cut a pretty
printed term from the checker and paste it to HOL. The latter will print the term in the proper

infix and binder form.

local

open System.PrettyPrint;
fun with_ppstream ppstrm =
{add_string = add_string ppstrm,
add_break = add_break ppstrm,
begin_block = begin_block ppstrm,
end_block = fn () => end_block ppstrm,
flush_ppstream =fn () => flush_ppstream ppstrm};

in

fun pp_hterm ppstrm tm =

let

val {add_string, add_break,

begin_block, end_block, flush_ppstream} =

with_ppstream ppstrm;

val pp_htype = Htype.pp_htype ppstrm;
fun pp_term (VAR {Name,...}) = add_string Name

in

| pp_term (CONST {Name,...}) =

(if not(CType.isAlphaNum(Name,0))
then add_string"$" else ();
add_string Name)

| pp_term (COMB {Rator,Rand}) =

(begin_block CONSISTENT 0;
add_string "(";

pp_term Rator; add_break (1,1);
pp_term Rand;

add_string ")";

end_block ())

| pp_term (ABS {Bvar,Body}) =

let val btm = dest_bind(0,Bvar,Body)
in
(begin_block CONSISTENT O;
add_string "(\\";
pp_term Bvar;
add_string "."; add_break(1,2);
pp_term btm;
add_string")";
end_block ())
end
pp.term _ =
raise (TERM_ERR {function="pp_term",
message="Unknown term"})

(begin_block CONSISTENT O;

pp_term tm; add_break(1,1);
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pp_htype (type_of tm);
end_block ()) handle e => (flush_ppstream();
clear_ppstream ppstrm; raise e)
end
and pp_qterm ppstrm tm =
let
val {add_string, add_break,
begin_block, end_block, flush_ppstream} =
with_ppstream ppstrm;
in
(begin_block CONSISTENT O;
add_string "\"";
pp_hterm ppstrm tm;
add_string "\"";
end_block ()) handle e => (flush_ppstream();
clear_ppstream ppstrm; raise e)
end

end(* local *)

12.2.19 Substitutions The local function sublst_chk checks the consistency of the sub-
stitution list subl which is in the following form: [...,((¢;,}),v:),...]- The v;’s must all be
variables. Their types must be the same as the corresponding ¢; and t}.

local
open ListUtil

fun sublst_chk [] = true
| sublst_chk (((t, t’), (VAR{Ty,...}))::1) =
(Ty = (type_of t)) andalso (Ty = (type_of t’)) andalso (sublst_chk 1)

| sublst_chk (((t, t?), _)::1) =
raise (TERM_ERR{function="sublst_chk",
message="substitution list contains non-variable"})

The local function mk_sublst converts the substitution list subl into a pair of lists of pairs.
The second fields of the list elements are the dummy variables v;. The first fields of the first
list are the terms or variables to be replaced #;. The first fields of the second list are the new
terms t;.

and mk_sublst ttvl =
let val (1,vl) = unzip ttvl
val (tl, t1’) = unzip 1
in
(zip(tl’,vl1), zip(tl,vl))
end

The local function is_tm_subst checks two terms #m; and tmg to see if the first is a
substitution of the second according to the list sublst. The elements of the list are pairs of the
form (tm;,v;) where the v;’s are variables and the ¢m;’s are terms to replace the free occurrences
of the corresponding v; in tms.

The term trees should be the same except where substitutions occur and bound variables
are renamed. Substitutions only occur at the VAR nodes of tm.. For any VAR nodes v in tma,
if there is a pair (t,v) in the list sublst, then the corresponding node in ¢m; must be the same
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as t. For bound variables and constants, the corresponding nodes in the two terms must be
the same. For function applications, the left subtrees are checked, then the right subtrees. For
abstraction, only the bodies are checked against each other. The bound variable may have been
renamed. Their names can be different, but their types should be identical.

fun is_tm_subst tml (v as VAR{Name,Ty}) sublst =
let
val found = findOne (fn (t,v’) => (v = v’)) sublst
in .
case found of
NONE => (tml = v)
| SOME (t,v’) => (aconv tml t)
end
| is_tm_subst (BVAR nl1) (BVAR n2) sublst = (nl = n2)
| is_tm_subst (cl as CONST{...})
(c2 as CONST{...}) sublst = (ci1 = c2)
| is_tm_subst (COMB{Rator=ratl,Rand=rani})
(coMB{Rator=rat2,Rand=ran2}) sublst =
(is_tm_subst ratl rat2 sublst) andalso
(is_tm_subst ranl ran2 sublst)
| is_tm_subst (ABS{Bvar=(VAR{Ty=tyi,...}),Body=boi})
(ABS{Bvar=(VAR{Ty=ty2,...}) ,Body=bo2}) sublst =
(tyl = ty2) andalso (is_tm_subst bol bo2 sublst)
| is_tm_subst tml tm2 sublst = false

The user function term_subst_chk returns true if tm; is a substitution of tms according
to the template tmpl and the substitution list ttwl. It first verifies the substitution list by
calling the local function sublst_chk. It then calls is_tm_subst to check whether tm; is a
substitution of the template and also ¢ms is a substitution of the template.

in
fun term_subst_chk ttvl tmpl tml tm2 =
if (sublst_chk ttvl) then
let
val (sublstl,sublst2) = mk_sublst ttvl
fun out_ppstream outstrm n =
System.PrettyPrint.mk_ppstream{linewidth = n,
flush = fn () => flush_out outstrm,
consumer = outputc outstrm}
val pstrm = out_ppstream std_err 78
in
if (is_tm_subst tml tmpl sublstl)
then if (is_tm_subst tm2 tmpl sublst2)
then true
else raise (TERM_ERR{function="term_subst_chk",
message="second check failed"})
else(pp_gterm pstrm (#1(hd sublstl));
pp_gterm pstrm (#2(hd sublstl));
Pp_qterm pstrm tmi;
pp_qterm pstrm tmpl;
System.PrettyPrint.flush_ppstream pstrm;
raise (TERM_ERR{function="term_subst_chk",
message="first check failed"}))
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end
else false
end

12.2.20 -Create template for substitution The function mk_subs_occu_templ builds a
template for use in the substitution checking function. It takes five arguments: £ is the original
term to which the substitution is done. z is the variable to be replaced. v is a new variable
which indicates where the required substitutions are. It should not occur anywhere in ¢. seen
is the number of times z is encountered during the left-to-right scan of £. [ is a list of numbers
indicating the occurrences of z in ¢t where the substitutions are required. This list should be
sorted in ascending order. :

It returns a triple. The first is the template. The second is the number of times z is found.
The third is the list of occurrences.

The algorithm of this function is to perform a preorder scan on the term ¢ while recording
the number of times z is found. When the occurrence matches the required one in the list [, ¢
is replaced by the new variable v. This should only occur at a VAR node.

fun mk_subs_occu_templ t x v seen [] = (t, seen, [1)
| mk_subs_occu_templ (COMB {Rator,Rand}) x v seen 1 =
let
val (tm’,s, nl) = mk_subs_occu_templ Rator x v seen 1
val (tm’’, s’, nl’) = mk_subs_occu_templ Rand x v s nl
in
(COMB{Rator=tm’ ,Rand=tm’’}, s’, nl’)
end
| mk_subs_occu_templ (ABS{Bvar,Body}) x v seen 1 =
let .
val (tm,s,nl) = mk_subs_occu_templ Body x v seen 1
in
(ABS{Bvar=Bvar ,Body=tm}, s, nl)
end
| mk_subs_occu_templ (t as VAR{Name,Ty}) x v seen 1 =
if (t = x) then
let val seen’ = seen + 1
in
if (seen’ = (hd 1)) then (v, seen’, (tl 1))
else (t, seen’, 1)
end
else (t, seemn, 1)
| mk_subs_occu_templ t x v seen 1 = (t, seen, 1)

The function mk_subs_templ is similar to the previous one except it scans the term to find
all free occurrences of variables specified in the substitution list sub_list.

fun mk_subs_templ [] tm = tm
| mk_subs_templ sub_list tm =
(
case ListUtil.findOne (fn ((t,t’),v) => (t = tm)) sub_list of
SOME((t,t°),v) => ( v)
| NONE =>
case tm of
(coMB{Rand,Rator}) =>
let
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val rand = mk_subs_templ sub_list Rand
and rator = mk_subs_templ sub_list Rator
in
(COMB{Rand=rand,Rator=rator})
end
| (ABS{Bvar,Body}) =>
(ABS{Bvar=Bvar,Body=mk_subs_templ sub_list Bodyl})
| _ => tm)

12.2.21 Output function The function pr_hterm outputs a term to the default output
stream in the prf format.

local
open Report
in
fun pr_hterm (VAR {Name,...}) = write_sitem(Keyword.VAR,Name)
| pr_hterm (CONST {Name,...}) = write_sitem(Keyword.CONST,Name)
| pr_hterm (COMB {Rator,Rand}) =
(Io.urite_output_string(Keyword.LP ~ Keyword.APP ~" ");
pr_hterm Rator; pr_hterm Rand;
Io.write_output_string Keyword.RP)
| pr_hterm (ABS {Bvar,Body}) =
let
val btm = dest_bind(0,Bvar,Body)
in
Io.write_output_string(Keyword.LP "~ Keyword.APP ~" ");
pr_hterm Bvar; pr_hterm btm;
Io.write_output_string Keyword.RP
end
end

end; (* functor Hterm *)

12.3 Structure HtermCmp

This structure encapsulates the term ordering function cmpTerm. It is used to create ordered
sets of terms.

functor HtermCmpFUN(Hterm : Hterm_sig) : ORD_KEY =
struct

type ord_key = Hterm.hterm

fun cmpKey (tml,tm2) = Hterm.cmpTerm (tml, tm2)
end;




13 - HOL types

The structure Htype is the abstraction for HOL types. It defines a type htype for representing
HOL types. There are a number of constructors and destructors. Their names are the same as
their counterpart in the HOL system if they perform the same operation.

13.1 The specification

The signature Htype_sig is the specification of the type structure.

signature Htype_sig = '
sig
structure Report : Report_sig

13.1.1 Types The type htype represents HOL types. It admits equality as two types are
equal if and only if their representations are the same. There are two kind of HOL types: type
variables and type operators. Although atomic types and function types are treated separately
in Section 15.2 of [5], they are treated as special cases of type operators. Atomic types are type
operators taking no arguments, i.e., having an arity of 0. Function types are type operators
having name fun and arity of 2.

eqtype htype

13.1.2 Constructors and destructor The functions mk_type and mk_vartype return a
type operator and a type variable, respectively. The string argument to these functions is the
name of the type. The type list argument of mk_type is the list of argument types of the type
operator.

val mk_type: {Tyargs:htype list, Tyop:string} -> htype

val mk_vartype: string -> htype

The function dest_type and dest_vartype return the constituent part(s) of the type. If

an incorrect kind of type is supplied to these functions, they will raise an exception.

val dest_type : htype -> {Tyargs:htype list, Tyop:string}
val dest_vartype: htype -> string
As function types are used very often, a constructor and a destructor are provided for

creating and taking apart function types. Their names are mk_funtype and dest_funtype,
respectively. The function domain_of takes a function type and returns the type of its domain.

val mk_funtype: (htype * htype) -> htype -
val dest_funtype : htype -> (htype * htype)
val domain_of : htype -> htype
Two predicates is_vartype and is_funtype are provided for testing whether a type is a
type variable or a function type respectively.
val is_vartype : htype -> bool
val is_funtype : htype -> bool

128
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13.1.3 Type comparison The function cmpType is an ordering function for types. The
expression cmpType ty; ty» evaluates to Equal if ty; and ty, are exactly the same. Otherwise,
it is either Less or Greater depending on their kinds and names. Type variables are Less than
type operators. Types of the same kind are ordered according to their names. If they are of
the same type operator, the order depends on their arguments.

val cmpType : (htype * htype) ~> LibBase.relation

13.1.4 Getting type variables The expression type_tyvars ty evaluates to a list of all
distinct type variables occurring in the type ty. The function ty_tyvarsl is similar except it
takes a list of types.

val type_tyvars: htype -> htype list
val type_tyvarsl: htype list -> htype list

13.1.5 Test for sub-types The expression type_in_type ty; tys evaluates to true if ty;
is equal to tys or any sub-type of it.

val type_in_type : htype -> htype -> bool

13.1.6 Special types Some types are used very frequently. Symbolic names are bound to
these types for convenience.

val bool_ty : htype
val ty_is_bool : htype -> bool
val num_ty : htype
val ty_is_num : htype -> bool

13.1.7 Type instantiation The expression is_type_inst ty; tys evaluates to true if ty;
is an instance of ty.. An instantiation of a type ¢ is defined as

0" =0'[T1,...,Tn/ﬂ11--'7ﬁn]

where 7; fori = 1,...,n are types and 3; are type variables in 0. ¢’ is the result of simultaneous
substitution of 7; for §; in .

The function is_tyty_inst is a bounded version of is_type_inst. It takes an extra
argument of type (htype * htype) list. This specifies the type variables to be instantiated
and the corresponding types. The type instantiations must be compatible with this list.

val is_type_inst : htype -> htype -> bool
val is_tyty_inst : (htype * htype)list -> htype -> htype -> bool

When applied to two types ty; and ty., the function type_instl returns a list of type
instantiations in the form
[...(75,0%),...]

if ty; is an instance of ty». Otherwise it fails. If the list is null, no instantiation is necessary
to unify the two types, i.e., they are exactly the same. The first fields of the list elements
7; are types. The second fields o; are type variables. If 7; for all ¢ are substituted into ty.
for corresponding o;, the result is ty;. This Substitution can be performed by the function
inst_type.

The expression type_compatty; tys evaluates to true if the types ty; and ty, are compatible.
The definition of compatible is that they have similar structure, i.e., the shape of the tree
representing the two are the same. A type variable is compatible to any type. Two type
operators are compatible if and only if they are the same operator and their arguments are
pair-wise compatible. ’

val type_instl : htype —> htype -> (htype * htype) list
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val inst_type : (htype * htype) list -> htype -> htype
val type_replace : (htype * string) list -> htype -> htype
val type_compat : htype -> htype -> bool

13.1.8 Output function The function pr_htype outputs a type to the default output
stream in the proof file format prf.

val pr_htype : htype -> unit

13.1.9 Pretty Printer The function pp_htype is a pretty printer for types. It uses the
system pretty-printer module to print types.

val pp_htype : System.PrettyPrint.ppstream -> htype -> unit
end;

13.2 The implementation

The functor HtypeFUN implements HOL types which are represented by the datatype htype.
It has two cases:

1. TV represents type variables whose name is the argument string;
2. TO represents type operators.

The type operators consist of a record. The Tyop field is the name of the operator, and the
Tyargs is the arguments of the operator which is a list of types. The length of this list is the
arity of the operator. The atomic types in HOL are treated as type operators with O-arity.

Since this representation has the same semantics as the abstract HOL type under equality,
it admits equality. However, the type constructors are hidden.

functor HtypeFUN (structure Report : Report_sig) : Htype_sig =
struct
structure Report = Report

datatype htype = TV of string
| TO of {Tyop: string, Tyargs: htype list};

13.2.1 Exception This function generates exceptions for this module.

fun TYPE_ERR{function,message} =
Exception.CHK_ERR{message = message,
origin_function = function,
origin_structure = "HType"};

13.2.2 cmpType This function is the ordering function for htype. The convention is that
if two types are both variables, their names are compared. If two types are of the same type
operator, their arguments are paired up and compared by calling the function cmp_Type_list
which recursively calls cmpType. We can stop as soon as a non-equal pair is found.

open LibBase ListUtil
fun cmpType ((TV s), ty2) =
(case ty2 of
(TV s2) =>
if (s < s2) then Less
else if (s > s2) then Greater
else Equal
| _ => Less)
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* | cmpType ((TO {Tyop=tyop, Tyargs=tyargsl}), ty2) =
(case ty2 of
(TO0 {Tyop=tyop2, Tyargs=tyargs2}) =>
if (tyop < tyop2) then Less
else if (tyop > tyop2) then Greater
else cmp_type_list (zip(tyargs,tyargs2))
| _ => Greater)
and cmp_type_list [] = Equal
| cmp_type_list ((tyl,ty2)::tys) =
let val ¢ = cmpType (tyl,ty2)
in
if not(c = Equal) then c else cmp_type_list tys
end

13.2.3 type_tyvars and type_tyvarsl These functions return a list of the type variables
occurring in their arguments. The local function tyvars does the actual work. The argument
vlist is used to cumulate the type variables.

local
fun tyvars (v as (TV _)) vlist =
if (mem v vlist) then vlist else v::vlist
| tyvars (TO{Tyargs,...}) vlist = tyvarsl Tyargs vlist
and tyvarsl tylist vlist = rev_itlist tyvars tylist vlist
in
fun type_tyvars ty = rev(tyvars ty [1)
fun type_tyvarsl tyl = rev(tyvarsl tyl [])
end;

13.2.4 Type constructors, destructors and testers These are the interface functions
to the datatype htype. The real constructors are hidden so that the type appears as an abstract
type and its implementation may be changed without affecting the user. Note that an exception
is raised if a destructor is applied to the wrong kind of argument.

fun mk_type {Tyop, Tyargs} = TO {Tyop=Tyop, Tyargs=Tyargsl};
fun mk_vartype s = TV s;
fun mk_funtype (ratty, randty) =

TO {Tyop = "fun", Tyargs=[ratty, randtyll};

fun dest_type (TOr) =r
| dest_type _ = raise TYPE_ERR{function="dest_type",
message="Not compound type"};
fun dest_vartype (TV v) = v
| dest_vartype _ = raise TYPE_ERR{function="dest_vartype",
message="Not type variable"};
fun dest_funtype (TO {Tyop="fun", Tyargs=[ratty, randtyl}) =
(ratty, randty)
| dest_funtype _ =
raise (TYPE_ERR {function="dest_funtype",
message="Not a function type"});

val is_vartype = can dest_vartype;
fun is_funtype (T0 {Tyop,Tyargs}) =
(Tyop = "fun") andalso (length Tyargs = 2)
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| is_funtype _ = false;

fun domain_of ty = #1(dest_funtype ty);

13.2.5 type_in_type We use cmpType to test whether two types are equal. If they are type
operators, their arguments are compared.

fun type_in_type ty (TV v2) = (cmpType (ty, (TV v2))
| type_in_type ty (T0 {Tyargs=tyargs2,Tyop=tyop2})
(case ty of
(TV v) => exists (type_in_type ty) tyargs2
| (TO {Tyargs,Tyop}) =>
((Tyop = tyop2) andalso
((cmp_type_list (zip(Tyargs,tyargs2))) = Equal))
orelse )
(exists (type_in_type ty) tyargs2));

Equal)

13.2.6 Special type constants Since :bool and :num types are used very frequently, we
define the following constructors and predicates for them.

val bool_ty = (TO {Tyop="bool",Tyargs=[11});
val num_ty = (TD {Tyop="num",Tyargs=[11});
fun ty_is_bool (TD {Tyop="bool",Tyargs=[]}) = true

| ty_is_bool _ = false
and ty_is_num (TO {Tyop="num",Tyargs=[]}) = true
| ty_is_num _ = false

13.2.7 Type instantiation The local function inst_compat checks a type instantiation,
specified as a pair (ty,vty) against an instantiation list, instl. vty should be a type variable.
If no such variable appears in the list, then this is a new instantiation, it can be added to the
list. If it does appear in the list, the type ty must be equal to the corresponding type in the
list. Otherwise, it is incompatible and the function fails.

The local function is_ty_inst takes a pair of types (y1,ty») and a list of type pairs. It
does the actual checking of the type instantiation. It returns true if ty; is an instance of ty,.
The list instl is used to cumulate the type instantiations found so far. It calls inst_compat to
check the compatibility of instantiation. It fails if ¢y, is not an instance of ¢y2. The function
is_ty_instl checks a list of type pairs.

local
exception TY_INST
fun inst_compat instl (ty,vty) =
case (findOne (fn (ty’,v’)=> (vty = v’)) instl) of
NONE => (true, ((ty,vty)::instl))
| SOME (ty’,v’) =>
if (ty = ty’) then (true, instl)
else raise TY_INST
(* TYPE_ERR {function="inst_compat",
message="incompatible instantiation"} *)

fun is_ty_inst (ty, v as (TV s)) instl =
(inst_compat instl (ty,v))
| is_ty_inst (ty2, (T0 {Tyop=tyopl,Tyargs=tyargsi})) imnstl =
(case ty2 of ' :
(TO0 {Tyop=tyop2,Tyargs=tyargs2}) =>
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if not (tyopl = tyop2)
then raise TY_INST
(* TYPE_ERR {function="is_ty_inst",
message="different type op"} *)
else is_ty_instl instl (zip(tyargs2,tyargsl))
| _ => raise TY_INST)
(* TYPE_ERR {function="is_ty_inst",
message="different types"} *)
and is_ty_instl instl [] = (true, instl)
| is_ty_instl instl (tt::ttl) =
let
val (f,1) = is_ty_inst tt instl
in
if f then is_ty_instl 1 ttl
else raise TY_INST
(* TYPE_ERR {function="is_ty_instl",
message="different type argument"} *)
end
in
fun is_type_inst tyl ty2 = can (is_ty_inst (tyl,ty2)) []
and is_tyty_inst tytyl tyl ty2 =
let val (OK,ilst) = (is_ty_inst (tyl,ty2) tytyl)
handle TY_INST => (false,tytyl) | e => raise e

in
0K andalso (ilst = tytyl)
end
and type_instl tyl ty2 = #2(is_ty_inst (tyi,ty2) [1)

end

13.2.8 Perform type instantiation The function inst_type performs the substitution
of types in its second argument. Its first argument is a type-pair list specifying the substitution.
In the case that its second argument is a type variable, the function looks for the same variable
in the second fields of type pairs in the substitution list. If this is found, the corresponding
type is returned. Otherwise, no substitution is performed. In the case the second argument is
a type operator, the function recurses down to its arguments.

fun inst_type tytyl (v as (TV s)) =

let
val typ = findOne (fn (ty,tv) => (s = dest_vartype tv)) tytyl
in
case typ of
NONE => v
| SOME (ty,tv) => ty
end

| inst_type tytyl (TO0 {Tyop=tyop,Tyargs=tyargs}) =
(T0 {Tyop=tyop, Tyargs=(map (inst_type tytyl) tyargs)});
The function type_replace is the same as inst_type except it takes a (type, string)-
pair as its first argument. The string is the variable name.

fun type_replace tytynamel (v as (TV s)) =
let ‘
val typ = findOne (fn (ty,tvname) => (s = tvname)) tytynamel
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in
case typ of
NONE => v
| SOME (ty,tv) => ty
end
| type_replace tytynamel (TO {Tyop=tyop,Tyargs=tyargs}) =
(TO0 {Tyop=tyop, Tyargs=(map (type_replace tytynamel) tyargs)});

13.2.9 Compatibility of types This implements the function having the same name in
JVW’s theory. The local function ty_compat compares the structure of the two types.

local
fun ty_compat (ty, (TV s)) = true
| ty_compat ((TO {Tyop=tyop, Tyargs=tyargs}),
(TO {Tyop=tyop2, Tyargs=tyargs2})) =
(tyop = tyop2) andalso (length tyargs = length tyargs2) andalso
(every ty_compat (zip(tyargs,tyargs2)))
| ty_compat _ = false
in
fun type_compat tyl ty2 = ty_compat(tyl,ty2)
end

13.2.10 Output function The function pr_htype prints its argument to the default out-
put stream in the same format as in the proof file.

local
open Report
in
fun pr_htype (TV name) = write_sitem (Keyword.TYVAR, name)
| pr_htype (TO{Tyop,Tyargs}) =
if (aull Tyargs) then write_sitem (Keyword.TYCONST, Tyop)
else write_item_list (Keyword.TYOP, Tyop, (pr_htype, Tyargs))
end

13.2.11 Pretty Printer The function pp_htype is a pretty printer for htypes. It outputs
its second argument to the pretty printing stream specified by the first argument. A type is
always prefixed by a colon (:). If the type is a type variable, its name is printed. If the type is
an atomic type, the name of the type operator is printed. If a type is a type operator having
one or more arguments, its arguments are printed first, which are enclosed in parentheses and
separated by commas, then the name of the type operator are printed. The exceptions are
that if the type operator is a function type, a product type or-a disjoint sum type, their name
become infix, for instance, a function type taking a num to bool is printed as :num -> bool
instead of : (num,bool) fun.

local
open System.PrettyPrint;
fun with_ppstream ppstrm =
{add_string = add_string ppstrm,
add_break = add_break ppstrm,
begin_block = begin_block ppstrm,
end_block = fn () => end_block ppstrm,
flush_ppstream =fn () => flush_ppstream ppstrm};
in
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fun pp_htype ppstrm ty =
let
val {add_string, add_break,
begin_block, end_block, flush_ppstream} =
with_ppstream ppstrm;

fun pp_type (TV s) = add_string s
| pp_type (TO {Tyop="fun",Tyargs=[tyl,ty21}) =
(begin_block CONSISTENT 0;
add_string "(";
Pp-type tyl;
add_string " ->"; add_break(1,1);
PP-type ty2;
add_string ")";
end_block ())

| pp_type (TO {Tyop="prod",Tyargs=[tyl,ty2]}) =

(begin_block CONSISTENT 0;
add_string "(";
pp-type tyl;
add_string ","; add_break(1,1);
pPp-type ty2;
add_string ")";
end_block ())

| pp_type (TO {Tyop="sum",Tyargs=[tyl,ty21}) =
(begin_block CONSISTENT 0;
add_string "(";
Pp-type tyl;
add_string " +"; add_break(1,1);
PP-type ty2;
add_string ")";
end_block ())

| pp_type (TO {Tyop,Tyargs}) =
(begin_block CONSISTENT 0;
Pp-type_list Tyargs;
add_string Tyop;
end_block ())

and pp_type_list [J = ()

| pp_type_list tyl =
(begin_block CONSISTENT 0;
add_string" (";
pp-tyl tyl;
-add_string")";
end_block())

and pp_tyl [0 = O

| pp_tyl [tyl = pp_type ty

| pp_tyl (ty::tyl) =
(pp-type ty;
add_string ",";
add_break(1,2);
pp_tyl tyl)

in
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(begin_block CONSISTENT 0;
add_string ":";

pp-type ty;
end_block ()) handle e => (flush_ppstream();
clear_ppstream ppstrm; raise e)

end
end

end; (* functor HtypeFUN *)

13.3 Structure HtypeCmp

This structure encapsulates the type ordering function cmpType. It is used to create ordered
sets of types.

functor HtypeCmpFUN (Htype:Htype_sig) : ORD_KEY =
struct

type ord_key = Htype.htype
fun cmpKey (tyl,ty2) = Htype.cmpType (tyl,ty2)

end (* functor HtypeCmpFUN *)



14 Error handling

Error handling can be divided into two parts: debugging and ezception handling. Debugging
is for use while developing the program. Exception handling is used to trap abnormal inputs
while the program is in operation. They are implemented as two separate structures.

14.1 Debugging utilities

The debugging utilities consist of a centralised database for storing debugging settings and
three functions to access the data. Each individual module in the program has an entry in
the debugging database. An entry is keyed by module name, and the associated data is an
integer. The higher the value, the more debugging information is printed. The default value is
0 which means no debugging information is printed. This provides a flexible way of controlling
the amount of information.

There are 3 levels of debugging settings. Level 0 suppresses any messages. Level 1 will show
informative messages, such as the name of the inference rule of the current proof line. Level 2
provides more messages including the names of the functions.

The function set_debug sets a new debugging level for a module. It takes the module name
and the new value as arguments. The function get_debug returns the current setting of a
module. The function print_flags shows all the entries in the database.

However, a new value stored into the database will not take effect immediately. It is up to
each individual module to decide when to update its own private copy of the setting. Generally,
this happens when the module’s initialisation function is called, or the structure is created by
applying the functor. Otherwise, the user has no way of updating the private copies of the
settings in individual modules directly.

signature Debug_sig =
sig
(* structure Dict : DICT *)
val set_debug : (string * int) -> unit
val get_debug : string -> int
val print_flags : unit -> unit
end

14.1.1 The implementation The debugging setting database is implemented as a dictio-
nary whose signature is DICT (from the SML/NJ library). It requires a structure implementing
a key comparison function. The StrCmp structure is for this purpose. It has the signature
ORD_KEY as specified in the library. It has a function for comparing two strings.

structure StrCmp : ORD_KEY =
struct
open LibBase
type ord_key = string
fun cmpKey (sl:ord_key,s2:ord_key) =
if (s1 < s2) then Less
else if (s1 = s2) then Equal else Greater;
end;
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The structure Debug implements the debugging database in its private structure Dict and
the data accessing functions. An empty dictionary is created initially.

structure Debug :Debug_sig =
struct
structure Dict = BinaryDict(StrCmp);

val status_dict = ref ((Dict.mkDict()):(int) Dict.dict)

Since the dictionary entries cannot be updated in place, to assign a new value to an entry,
one has to remove the entry first and then insert a new entry with the new value.

fun set_debug (name, value) =
let
val dic = #1(Dict.remove((!status_dict), name))
handle NotFound => (!status_dict)
in
(status_dict := Dict.insert(dic, name, value); ())
end

If no entry having the key name is found in the dictionary, the default value of 0 is returned.

and get_debug name =
case Dict.peek((!status_dict), name) of
NONE => 0
| SOMEn => n

The function print_flags simply lists all the entries in the dictionary.
and print_flags () =

let
val 1lst = Dict.listItems(!status_dict)

in
map (fn (s,n) => output(std_err,(s~": "~ (makestring n)~"\n"))) 1lst;
O

end

end; (* struct *)

14.1.2 Initialisation The database is initialised with the following values when this file is
loaded.

map Debug.set_debug
[("Io", 0), ("Htype", 0), ("Hterm", 0), ("Hthm", 0), ("Henv", 1),
("Proof", 0), ("Parsing", 0), ("Check",2), ("Passi", 0), ("Pass2", 1)];

14.2 Exception handling

This is the same as the HOL90 exception handling system!. It defines a single exception format
for the entire checker. There is one exception constructor:

signature Exception_sig =
sig
exception CHK_ERR of {message:string,
origin_function:string,
origin_structure:string}

1Thanks to Elsa Gunter who wrote the HOL90 exception handling structure.
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It takes three strings: the structure name, the routine name, and the message. There is an
(assignable) function for printing CHK_ERRs, plus a function Raise that will print out exceptions
at the site of occurrence.

The function Raise can be used to raise an exception instead of the SML operation raise.
By defauit, it prints the three fields of a CHK_ERR exception in a readable form. Suppose that
the evaluation of the expression ezxp raises an exception, this can be handled as

ezp handle e => Raise e

which will print the fields of the exception.
val Raise : exn -> ’a

The boolean value print_exceptions is for controlling the display of exceptions. The
(assignable) function output_CHK_ERR is for printing the exception messages. Its default value
is to print the three fields of CHK_ERR. The function print_CHK_ERR prints a checker exception
package.

val print_exceptions : bool ref
val output_CHK_ERR : ({message:string,
origin_function:string,
origin_structure:string} -> unit) ref
val print_CHK_ERR : exn -> unit
end;

14.2.1 The structure Exception The implementation of the structure Exception is as
follows:

structure Exception : Exception_sig =
struct

exception CHK_ERR of {origin_structure:string,
origin_function:string,
message:string}

val print_exceptions = ref true;
(* Assignable function for printing errors *)

val output_CHK_ERR =
ref (frn {message,origin_function,origin_structure} =>

( output(std_err, ("\nException raised at "“origin_structure~".""
origin_function™
(if (origin_structure = "")
then ""
else ":\n")"

message”"\n"));
flush_out std_err));

fun print_CHK_ERR (CHK_ERR sss) = !output_CHK_ERR sss
} print_CHK_ERR _ = print_CHK_ERR(CHK_ERR{origin_structure="Exception",
origin_function="print_CHK_ERR",
message="not a checker error"})

fun Raise (e as CHK_ERR sss) =
( if (!print_exceptions)
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‘then !output_CHK_ERR sss
else ();
raise e)
| Raise (e as _) = raise e

end (* Exception *)



15 Input and output management

The input and output of the checker is managed by the Io module. This provides a simple
interface between the file system and the core of the checker. Conceptually, the checker accepts
input from a single input stream which is connected to a named proof file. The checker outputs
to a single output stream connected to a log file. The connections are made via sockets.

15.1 The specification

The signature I0_sig specifies the interface of the input/output manager. It consists of a small
set of functions for opening/closing a file, reading from an opened file via an input socket or
writing to an opened file via an output socket. '

This arrangement provides a convenient way of filtering the input and output text. Since
the proof file is expected to be stored in compressed form, instead of decompressing the file
then reading the decompressed file directly, a decompresser can be run as a filter which outputs
the decompressed text into a socket, and the checker gets its input from the socket.

The I0 manager maintains a pair of sockets, as the current input/output sockets, one to
input from and one to output to. After the sockets are opened, all subsequent input is read
from the input socket, and output is written to the output socket.

The functions open_input_socket and open_output_socket open a socket to input from
and output to, respectively. They take two strings as their arguments. The first string is the
name of the file. The second string is the name of the filter. In the case that no filter is required,
the second argument should be a null string. The function close_io_socket closes both the
input and output sockets.

signature I0_sig =
sig
val open_input_socket : string -> string —> unit
val open_output_socket : string -> string -> unit
val close_io_socket : unit -> unit

There are two functions for reading the input file. The function read_bytes reads a fixed
number of bytes from the input socket. It returns a pair whose first field is an integer giving
the actual number of bytes read and whose second field is a ByteArray containing the input
bytes. The function read_input_line reads a line (terminated by carriage return or newline)
from the input socket, and returns it as a string. The function write_output_string writes
its argument string to the default output socket.

val read_bytes : unit -> (int * ByteArray.bytearray)

val read_input_line : unit -> string

val write_output_string : string -> unit

The function mk_command takes a file name as its sole argument. It creates and returns

three strings: the name of the log file, and the command strings of the input and output filters.
The rules for deriving the output file name are as follows:

e if the input file name ends with suffix .gz, it is assumed to be a compressed file. The out-
put file will be compressed. The decompression command is gzcat, and the compression
command is gzip. The output file name will also end with the suffix .gz.
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o if the input input name ends with suffix .prf after deleting the .gz suffix if it occurs,
then the output file name is the same as the input file name with the string prf replaced
by the string clg.

e otherwise, the suffix .clg is appended to the input name to obtain the output name.

The rules are applied in the order listed.

val mk_command : string -> string * string * string
end;

15.2 The structure Io

This structure implements the input/output manager. It uses the low level input/output func-
tions in the structure System.Unsafe.SysI0in the SML/NJ library because we need to create
a separate filter process and to manage sockets.

structure Io : IO_sig =
struct

fun IO_ERR{function,messagel} =
Exception.CHK_ERR{message = message,
origin_function = function,
origin_structure = "Io"};

15.2.1 Local variables A set of internal variables is used by the IO manager. The variables
in_sname and out_sname are assigned the names of the input and output sockets, respectively.

val in_sname = ref ""
and out_sname = ref ""

The sockets are accessed through file descriptors. After the sockets are opened, the file
descriptors are assigned to the identifiers default_ifp and default_ofp. When the sockets
are not opened, the names are assigned a null string and the default file descriptors are the
invalid descriptor which has the symbolic name NULL.

val NULL = (("1):System.Unsafe.SysI0.fd)
val default_ifp = ref NULL
and default_ofp = ref NULL

The name of the socket server is bound to the identifier server. This server is a separate
program which creates the sockets and the filter process, and connects them together. Refer to
Appendix C for detailed description of the server.

val server = "so_server"
str_buf is the input buffer. The default input block size is bound to default_block_size.

val str_buf = ref ""
and default_block_size = 80
The local variable debug holds the current debugging setting for this module. The function
write_out simply writes a message to the standard error stream. It is used for displaying
debugging messages.

val debug = Debug.get_debug("Io");
fun write_out s = (output(std_err,s);flush_out std_err);
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15.2.2 Data conversions Because the low level system IO functions work with bytearrays
rather than strings, conversion functions are needed. The function str_to_barray takes a
string and its length as its arguments. It returns a byte array containing a sequence of ASCII
codes representing the string. Since the element type of a byte array must by integer, and the
elements can only be updated one-by-one, the input string is converted into a list of integers
(character codes) first; then, they fill the byte array one-by-one.

local
fun str_to_barray (s,n) =
let
val len = ref n
val si = (map ord (explode s));
val barray = ByteArray.array(n, 0)
in
(while ((!len) > 0) do
(len := (llen) - 1;
ByteArray.update(barray, (!len), (nth(si, (!lemn))))));
barray
end

The function barray_to_string does the reverse conversion. It takes a byte array and
returns a string. The conversion from byte array to string is simpler since the SML/NJ library
has a function for this task.

fun barray_to_string ba =
ByteArray.extract(ba, 0, ByteArray.length(ba))

15.2.3 Reading input file The actual reading of a file is carried out by the function
read_string. It takes a file descriptor and an integer indicating the required number of bytes.
It returns a pair whose first field len is an integer giving the actual number of characters read,
and whose second field is a string containing the input characters. On reaching the end of file,
len is 0.

fun read_string fp n =
let
val barray = ByteArray.array(n, 0)
val len = System.Unsafe.SysI0.read(fp, barray, n)
in
(len, ByteArray.extract(barray, 0, len))
end

15.2.4 Input buffering Because the logical input unit of the lexical analyser is the line, but
the system input function is byte oriented, a local string buffer, namely str_buf, is managed.
It can hold at most one string. When a block of characters is read, it is split into two parts just
after the first end of line character (\n) if such a character occurs. The first part is returned
whilst the second part is saved in the buffer str_buf. .
When an input line is needed, the function get_stringis called. It checks the string buffer
first. If it is not empty, the string is returned. Otherwise, the function read_string is called
to read a block of characters from the input file.
fun get_string fp =
if (!str_buf) = "" then (read_string fp default_block_size)
else
let
val s = !str_buf
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in
(str_buf := ""; ((size s),s))
end;

The function unget_string puts a string back in the string buffer provided the latter is
empty. Otherwise, it raises an exception.

fun unget_string s =
if (!str_buf) = "" then str_buf := s
else raise
(I0_ERR{function="unget_string", message="Buffer not empty"});

15.2.5 Splitting a string This function split_string takes two strings (cs, s) as its ar-
guments. It returns a triple (found, s1,s2). If one of the characters in cs, say ¢, occurs in s,
then s is split into two sub-strings s; and s2. The last character of s; is ¢. found is set to
true. If none of the characters in ¢s occurs in s, found is set to false, s; becomes s and s»
is a null string.

fun split_string chrs s =
let
val n = size s
val (found,ix) = ((true, StringUtil.index chrs (s,0) )
handle StringUtil.NotFound => (false,n))
val (s1,s2) = if (ix = n) then (s, "")
else (substring(s,0,ix+1), substring(s,ix+1l, n-ix~1))
in
(found, s1, s2)
end;
in ’

15.2.6 Input functions The function read_line reads a line from the file pointed to by
the file descriptor fp. A line is a string whose last character is the ‘end of line’ character (“\n”
by convention). If the end of file is reached, get_string returns 0 to indicate that no character
is read. This function returns a null string. Otherwise, the input string is checked for an end of
line by calling split_string. If none is found, another string is read, the process is repeated
until an end of line or end of file is found. If an end of line is found, the characters after it are
pushed back to the string buffer.

fun read_line fp =
let
val outstr = ref ""
val done = ref false
in
while not (!done) do
let
val (n,s) = get_string fp
in
if (n = 0) then (done := true)
else
let val (found, sl1,s2) = split_string "\n" s
in
outstr := loutstr ~ si;
if found
then (done := true;
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if not(size s2 = 0) then unget_string s2 else ())
else done := false
end
end;
(loutstr)
end;

The function read_input_line reads an input line from the default input file. If no default
input file is opened, it raises an exception.

fun read_input_line () =
if (('default_ifp) = NULL)
then raise (I0_ERR{function="read_input_line",
message="No default input stream"})
else read_line (!default_ifp);

The function read_bytes reads a block of bytes from the default input stream. The size of
the block is determined by the value in default_block_size. The checker now works directly
on bytes, i.e., ASCII codes, therefore, the local functions for converting bytes to strings and
buffering are not needed. They have not been deleted in case they are needed in the future.
See Chapter 6 for details of how the checker recognises ASCII codes.

fun read_bytes () =
if ((!default_ifp) = NULL)
then raise (I0_ERR{function="read_bytes",
message="No default input stream"})
else
let
val barray = ByteArray.array(default_block_size,0)
val len = System.Unsafe.SysIO.read
((ldefault_ifp), barray, default_block_size)
in
(len, barray)
end

15.2.7 Output functions The function write_string writes its second argument str to
the file pointed by the file descriptor fp.

fun write_string fp str =
let val len = size str
val ba = str_to_barray(str,len)
val n = makestring(ByteArray.length ba) and n0 = makestring len
in
if (debug > 3) then
write_out ("write_string:" n0~"‘""str~"¢""n)
else ();
System.Unsafe.SysI0.write(fp, ba, lemn)
end;
The function write_output_string writes its argument str to the default output file. If
no default output file is opened, it raises an exception.
fun write_output_string str =
if ((!default_ofp) = NULL)
then raise (IO_ERR{function="read_output_string",
message="No default output stream"})
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else write_string (!default_ofp) str;
end(* local *)

15.2.8 Closing sockets The function close_socket takes the file descriptor £p and the
file name sname of a socket as its argument. It closes the socket and removes the socket file

without any checking.

fun close_socket (fp,sname) =
(System.Unsafe.SysIO.closef fp;
System.Unsafe.SysI0.unlink sname)
handle e => raise I0O_ERR {function="close_socket",
message= "Error in closing socket"};

The function close_io_socket closes the default IO sockets. It checks to ensure at least
one socket is currently opened. If no socket is opened, it raises an exception.

fun close_io_socket () =
if ((!defanlt_ifp) = NULL) andalso ((!default_ofp) = NULL)
then raise (IO_ERR {function="close_io_socket”,
message= "No open socket"})
else
(if not(!default_ifp = NULL)
then (close_socket ((!defanlt_ifp), (!in_sname));
default_ifp := NULL;
in_sname := ""; ())
else ();
if not(!default_ofp = NULL)
then (close_socket ((!default_ofp), (lout_sname));
default_ofp := NULL;
out_sname := ""; ())
else ));

15.2.9 File access checking The function check_file takes a file name and an access
mode. Both arguments are strings. It performs the following actions according to the value of

the access mode string:

e mode = "R" — return true if the file fname exists and can be read;

¢ mode = "W" — return true if the file fname exists and can be written or if the file frname
can be created with write permission;

e mode = anything else — return true if the file fname exists.

fun check_file (fname, mode) =
case mode of
"RII => .
(System.Unsafe.SysI0.access(fname, [System.Unsafe.SysI0.A_READ]))
I Ilw" =>
if (System.Unsafe.SysI0.access(fname, [System.Unsafe.SysI0.A_WRITE]))
then true
else
let
val fp =
System.Unsafe.SysI0.openf (fname,System.Unsafe.SysI0.0_WRITE)
handle e => (~1)



15.2. THE STRUCTURE I0 147

in
if (fp = ~1) then false
else
. (System.Unsafe.SysI0.closef fp;

System.Unsafe.SysI0.unlink fname; true)
end
| - =
(System.Unsafe.SysI0.access(fname, []));

15.2.10 Delay function This function is used to delay the program in retrying to open a
socket. It sleeps for sec seconds before it returns.

fun sleep sec =
let val cmd = System.Unsafe.CInterface.c_string("sleep "“sec) in
System.Unsafe.CInterface.system cmd
end;

15.2.11 Opening sockets There are four functions for opening sockets arranged into two
tiers. All of these take two strings as their arguments. The first string is the name of the file to
be opened. The second string is the filter to be run. The lower tier functions open_in_socket
and open_out_socket return a file descriptor to the socket and the name of the socket as a
pair. The higher tier functions open_input_socket and open_output_socket return a unit
on successful opening of a socket and make it the default input or output file, respectively.

Conceptually, the input file whose name is given as the first argument to open_input_socket
becomes the default input file. In fact, the file is opened for reading and connected to the input
end of the filter specified as the second argument. The filter sends its output to the socket.
The socket is created with a unique name sname by a socket server server. The default socket
server is an auxiliary program whose name is bound to the identifier server. The new socket
is connected by calling the system function connectunix which returns a file descriptor to
the socket. This becomes the default input file descriptor and is used to read all inputs. The
process of creating the filter process and socket and connecting them up is carried out by the
lower tier function open_in_socket. The output channel is managed in the same way as the
input.

fun open_in_socket fname proc =
let '
val pid = System.Unsafe.CInterface.getpid()
val sname = "RTMP"~ (makestring pid)
val cmd’ = server ~ " R "“sname
val cmd = if (proc = "") then (cmd’ ~" < "“fname~" &")
else (proc ~" < "“fname~ " | ""cmd’ "~ " &")
val ifp = ref NULL
val n = ref 10
in
if not(check_file (fname, "R"))
then raise (I0_ERR{function="open_in_socket",
message = "Cannot read file "“fname})
else
(System.Unsafe.CInterface.system
(System.Unsafe.CInterface.c_string cmd)
handle e => raise (I0_ERR{function="open_in_socket",
message= "Error in creating socket"});
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while ((!n > 0) anmdalso (!ifp = NULL)) do
(sleep " 2 ";
n:=!'n-1;
ifp := (System.Unsafe.SysIO.connect_unix sname handle e=> NULL));

if (!ifp = NULL)
then raise (I0O_ERR {function="open_in_socket",
message= "Error in commecting socket"})
else
(1ifp, sname)
)

end;

fun open_out_socket fname proc =
let
val pid = System.Unsafe.CInterface.getpid()
val sname = "WIMP"~(makestring pid)
val cmd’ = server ~ " W "“sname
val cmd = if (proc = "") then (cmd’ ~" > "“fname~™" &")
else (emd’ = " | " = proc ~" > "“fname~" &")
val NULL = ((~1):System.Unsafe.SysIO0.fd)
val ofp = ref NULL
wval n = ref 10
in '
if not(check_file (fname, "W"))
then raise (I0O_ERR{function="open_out_socket",
message = "Cannot create file "“fname})
else
(System.Unsafe.CInterface.system
(System.Unsafe.CInterface.c_string cmd)
handle e => raise (IO_ERR{function="open_out_socket",
message= "Error in creating socket"});

while ((!n > 0) andalso (!ofp = NULL)) do
(sleep " 2 ";
n:=!n-1;
ofp := (System.Unsafe.SysI0.connect_unix sname handle e => NULL))

if (lofp = NULL)
then raise (I0_ERR {function="open_out_socket",.
message= "Error in connecting socket"})
else
(lofp, sname)
)

end;

fun open_input_socket fname proc =
if not((!default_ifp) = NULL)
then raise (IO_ERR{function="open_input_socket",
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message="socket already opened"})
else
let
val (fp, sname) = (open_in_socket fname proc
handle e => raise (IO_ERR{function="open_input_socket",
message="error in opening socket"}))

in
(default_ifp := fp;
in_sname := sname;
str_buf := ""; ())
end;

fun open_output_socket fname proc =
if not((!default_ofp) = NULL)
then raise (IO_ERR{function="open_output_socket",
message="socket already opened"})
else
let
val (fp, sname) = (open_out_socket fname proc
handle e => raise (IO_ERR{function="open_output_socket",
message="error in opening socket"l}))

in
(default_ofp := fp;
out_sname := sname; ())
end;

15.2.12 Local variables for file name parsing The names compr_cmd and decompr_cmd
are bound to the shell commands for compressing and decompressing files, respectively. They
are the filtering processes connecting the sockets to the files.

val compr_cmd = "gzip - "
and decompr_cmd = "gzcat"

The names prf_suff, log_suff and compr_suff are bound to strings which are the file
name suffixes of proof files, log files and compressed files, respectively. The name suf_sep is
the suffix separator.

val prf_suff = "prf"
and log_suff = "clg"
and compr_suff = "gz"
and suf_sep = "."

The names log_suf, compr_suf and log_compr_suf are bound to the suffixes with sepa-
rators of the log files, compressed files and compressed log files, respectively.

val log_suf = (suf_sep "~ log_suff)
and compr_suf = (suf_sep ~ compr_suff)
and log_compr_suf = (suf_sep ~ log_suff ~ suf_sep ~ compr_suff)

15.2.13 File name parsing The function mk_command parses its string argument and re-
turns a triple (outname, incmd, outcmd) where outname is a string to be used as the output
file name, incmd and outcmd are strings to be used to invoke the input and output filter pro-
cesses, respectively. These filters are decompression and compression programs. The rules for
generating these strings are described in the signature section.

fun mk_command in_name =
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let

fun imploded 1 =
let fun £(x,s)
fun do_path name

let
val i = StringUtil.revindex "/" (name,(size name) -1)

handle NotFound => ~1
| e => raise e

x"".""s in fold f (butlast 1) (last 1) end

in

if (i < 0) then ("",name)

else (substring(name,0,i+1), StringUtil.suffix(name,i+1))
end

val (path,fname) = do_path in_name

val len = String.size fname

val 1 = StringUtil.tokenize suf_sep (fname,len-1)
val n = length 1

val compressed = ((ath(l,n-1)) = compr_suff)

val (outname,incmd,outcmd) =

case n of
1 => ((:fname -~ 1og_suf), nn’ nu)
| 2=

if compressed then
(((hd 1)"log_compr_suf), decompr_cmd, compr_cmd)
else if ((ath(l,n-1)) = prf_suff) then
(((hd 1) -~ log_suf), uu, llll)
else (((imploded 1) ~ log_suf), "", "")
=> (llchecker.clg", llll, "")
=>
if compressed then
if (last(butlast 1) = prf_suff) then
((imploded(butlast(butlast 1))) - log_compr_suf,
decompr_cmd, compr_cmd)
else ((imploded(butlast 1)) ~ log_compr_suf,
decompr_cmd, compr_cmd)
else if ((last 1) = prf_suff) then
((imploded(butlast 1)) ~ log_suf, "", "")
else ((imploded 1) - log_suf, "", "")

I O

in
if (path = "") then (outhame,incmd,outcmd)
else (path ~ outname,incmd,outcmd)

end

end; (* end of structure Io %)



16 Report generation

The Report module contains several utility functions for outputting various objects to the log
file. The log file is assumed connected to the default output stream managed by the Io module.
All writings targeted to this file are performed by the function write_output_stringin Page
15.2.7.

The format of the log file is essentially the same as the proof file. For each proof, all the
hypotheses, theorems and definitions which have been used are written into the log file.
The complete syntax of the log file format in an augmented BNF is as below:

log_file ::= version time stamp proof_logs ;;

version ::= LP VERSION STRING RP ;;

timestamp ::= LP TIMESTAMP STRING RP ;;

proof_logs ::= proof_log | proof_logs proof_log ;;
proof_log ::= LP PROOF STRING used proved unsolve RP ;;
used ::= LP USED just_list RP ;;

proved ::= LP PROVED thm_list RP ;;

unsolved ::= LP UNSOLVED thm_list RP ;;

just ::A= LP justi RP ;;

justi ::= HYPOTHESIS thm

| DEFINITION STRING STRING thm

| AXIOM STRING STRING thm

| THEOREM STRING STRING thm

| STOREDEFINITION STRING STRING thm
I

NEWAXIOM STRING STRING thm ;;

Below is a log file generated by the checker when checking a simple proof named ap_term.
In this proof, one hypothesis is used and one theorem is proved.

(VERSION HOL CHECKER 0.1)
(TIMESTAMP Thu Nov 23 14:39:55 HKT 1995 )

(PROOF ap_term

(USED [(HYPOTHESIS (THM [1(A (A (C=)(A (A (C H(Vm)(V n)))
(A4 (€ +HWWn))Wm))

)

D
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(PROVED [(THM [J(A (A (C =)(A (C SUC)(A (A (C ©)(Vm))(V n))))
(A (CsUCY(A (A (CHn))Vm))

D

)

-16.1 The specification

The signature Report_sig is the specification of the report geﬁeration module.

signature Report_sig =
sig
structure Io : I0_sig
structure Keyword : Keyword_sig

val write_tok : string -> unit

val write_opening : string -> unit

val write_line_opening : string -> unit

val write_opening?2 : string * string -> it

val write_line_opening2 : string * string -> unit
val write_closing : unit -> unit

val write_closing_line : unit -> unit

val write_item_list : string * string * ((’a -> ’b) * ’a list) -> unit
val write_list : (’a -> ’b) -> ’a list -> unit
val write_sitem : string * string -> unit
The function timeofday returns a string containing the current date and time in the format
as returned by the UNIX shell command date. It is used by the function write_log_preamble
which writes the version and timestamp to the log file.

val timeofday : unit -> string
val write_log_preamble : unit ~> unit
end ‘

16.2 The implementation

The functor takes two structures: Io, the input/output manager and Keword which specifies
the concrete syntax of the file format.

functor ReportFUN (structure Io : I0_sig and Keyword : Keyword_sig
) : Report_sig = "
struct
structure Yo = Io
structure Keyword = Keyword

open Io Keyword

16.2.1 Simple items The function write_sitem outputs a simple item to the log file. A
simple item is an item which has a tag and a string as its only fields. The tag and the string
is enclosed in a pair of parentheses and separated by a blank.

fun write_sitem(tag,s) =
Io.write_output_string (Keyword.LP ~ tag "" "~ s ~ Keyword.RP)
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16.2.2 A list of items The function write_list outputs a list of items. Each individual
item is output by the function f which is the first argument to this function. The entire list is
enclosed in a pair of brackets.

and write_list f xs = (write_output_string LB;
map f xs;
write_output_string RB)

16.2.3 Item having a list The function write_item_list outputs an item which contains
a list. It take a triple whose first and second field are the tag and a string, respectively. The
tag identifies the type of the item. The last field of the triple is itself a pair whose first field f is
an output function and whose second field is the list of items which are output by the function
I
and write_item_list (tag,name, (f,args)) =
(write_output_string (LP ~ tag =~ " " ~ name);
write_list f args;
write_output_string RP)

16.2.4 Item opening and closing The function write_opening outputs the open paren-
thesis and the tag of an item. The function write_opening2 outputs the open parenthesis
and the first two fields of an item. The first field of an item is always a tag. The second field
accepted by this function is a string.

The function write_closingsimply outputs a closing parenthesis. The function write_closing line

is a variant of write_closing. It closes the item and adds a new line. There are also variants
of opening functions which begin a new line before writing the opening parenthesis.

There should always be a matching call to one of the closing functions for every call to an
opening function. '

and write_line_opening tag =
write_output_string ("\n" =~ LP =~ tag ~ " ")
and write_opening tag =
write_output_string (LP ~ tag = " ")
and write_line_opening2(tag, s) =

write_output_string ("\n" ~ LP ~ tag "~ " " " s)
and write_opening2(tag, s) =
write_output_string (LP ~ tag = " " ~ s)

and write_closing () =
write_output_string RP

and write_closing_line () =
write_output_string (RP ~ "\n")

val write_tok = write_output_string

16.2.5 Time of day The function timeofday is implemented by calling the UNIX com-
mand date. The output of the command is written in a temporary file whose name consists of
the current process number (so it is unique). The output is a string showing the current date
and time, and its terminated by a newline character. This string is read from the file. The
newline character is replaced by a space character. The string is returned as the value of the
function.

fun timeofday () =
let
val fname = "CHK""~ (makestring(System.Unsafe.CInterface.getpid()))
val n = System.Unsafe.CInterface.system
(System.Unsafe.CInterface.c_string("date > "~fname))
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val inf = open_in fname
val date = input_line inf
in
close_in inf;
System.Unsafe.SysI0D.unlink (System.Unsafe.CInterface.c_string fname);
StringUtil.stringTrans("\n"," ") date
end

16.2.6 Writing the preamble This function simply writes out the version and the time
stamp.

fun write_log_preamble () =
(write_opening2 (VERSION, log_versionName) ;
write_closing_line ();
write_opening2 (TIMESTAMP, (timeofday()));
write_closing_line ())

end (* functor Report *)



A Static arrays

The functor StaticArrayFUN is an implementation of the signature STATIC_ARRAY in the
SML/NJ library. This is in turn used by the library functor DynamicArray to implement
dynamic arrays.

A static array is a data structure whose size is fixed at the time the array is created. An
attempt to access an element using an out-of-bound index raises the exception Subscript. In
contrast, a dynamic array is a data structure whose size can grow when required. Its elements
can be accessed randomly using their indices like an ordinary static array. When an out-of-
bound element is accessed, the array grows to a size larger than the given index so that the
element will be in the array. This feature may be unsafe, but provides an unbounded data
structure so there is no hard limit imposed on the size of data.

Dynamic arrays are used in the checker to hold theorem reference information. See Chapter 9
for more detail.

A.1 The static array functor

The static array module is similar to the Array structure in the pervaswe env1ronment Actu-
ally, it is implemented using the Array structure.

functor StaticArrayFUN (type elemType) : STATIC_ARRAY =
struct
type elem = elemType
type array = elem Array.array

exception Size
exception Subscript

fun array (n,e:elem) =
(Array.array (n,e)
handle Array.Size => raise Size | exn => raise exn);

fun sub (a:array,n) =
(Array.sub (a,n)
handle Array.Subscript => raise Subscript | exn => raise exn);

fun update (a:array,n,e)
(Array.update (a,n,e)
handle Array.Subscript => raise Subscript | exn => raise exn);

fun length (a:arrajr) = Array.length a;
fun tabulate (n,f:int -> elem) = Array.tabulate (n,f);
fun arrayoflist (l:elem list) = Array.arrayoflist 1;

end
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B Linking the modules

This appendix contains the SML file joinl.sml for loading and linking the modules. To use
the checker, one simply loads this file in an SML session by typing the command

use "joinl.sml";

Afer SML processes this file, a function check_proof will be defined at the top level as the
entry point to the checker. This function takes a single string as its argument. The sting is the
name of a proof file.

(* loading some libraries from the SML/NJ library *)

val libpath = "/u/compstaff/wwong/lib/sml/smlnj-1ib/";

fun load_libs libs = app (fn 1lib => use (libpath~1lib)) libs;

load_libs
["1lib-base-sig.sml", "1ib-base.sml",
"charset-sig.sml", “charset.sml",
"ctype-sig.sml", "ctype.smi",
"makestring-sig.sml", "makestring.sml”,
"list-util-sig.sml", "list-util.sml",
"listsort-sig.sml", "list-mergesort.sml",
"string-util-sig.sml", "string-util.sml",
"string-cvt-sig.sml", "string-cvt.sml",
"format-sig.sml", "format.sml", -
"static-array-sig.sml", "dynamic-array-sig.sml",

"dynamic-array.sml",

"ord-key-sig.sml",

"dict-sig.sml", "binary-dict.sml",
"ord-set-sig.sml", "binary-set.sml"1;

use "array.sml";
use "genfuns.sml";
use "debug.sml";
open Exception;

use "io.sml";

use "keyword.sml";
use "report.sml";
use "parsing.sml";
use "type.sml";
use "term.sml";
use "thm.sml";
use "proof.sml";
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use "env.sml";

use "check.sml";
use "passl.sml";
use "pass2.sml";

structure Report =
ReportFUN(structure Io = Io and Keyword = HOLProofKey);

structure Parsing =
ParsingFUN(structure Io = Io and Keyword = HOLProofKey);

structure Htype = HtypeFUN(structure Report = Report);
structure HtypeCmp = HtypeCmpFUN(Htype);

structure Hterm = HtermFUN(structure Report = Report
and Htype = Htype and HtypeCmp = HtypeCmp);

structure Termcmp = HtermCmpFUN(Hterm) ;

structure HtermSet = BinarySet(Termcmp) ;

structure Hthm = HthmFUN(structure Report = Report
and Hterm = Hterm and HtermSet = HtermSet);

structure Hproof = ProofFUN(structure Hthm = Hthm
and Hterm = Hterm and Htype = Htype);

structure Henv = HenvFUN(structure Htype = Htype and Hterm = Hterm);

structure Check = CheckFUN(structure Report = Report and Htype = Htype
and Hterm = Hterm and Hthm = Hthm
and Proof = Hproof and Henv = Henv
and HtermSet = HtermSet);

structure Passl =
Pass1FUN(structure Parsing = Parsing and Henv = Henv
and Proof = Hproof and Hthm = Hthm
and Hterm = Hterm and Htype = Htype);

structure Pass2 =
Pass2FUN(structure Parsing = Parsing and Henv = Henv
and Proof = Hproof and Hthm = Hthm
and Hterm = Hterm and Htype = Htype
and Check = Check and Report = Report);

fun check_proof fname =
(Passl.parse_file fname; Pass2.parse_file fname);




C Socket server

This appendix contains a small C program which manages sockets and spawns external processes
for the checker. It should be invoked with two arguments: the first is a single character which
can be either ‘R’ for reading or ‘W’ for writing; the second is the name for the socket.

C.1 The program

This is a rather simple program. It starts by including some standard header files and defining
a number of symbolic constants.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define STDIN O
#define STDOUT 1

#define READ O
#define WRITE 1

#define NAME "mysocket"

C.1.1 The main function Here comes the beginning of the main function.

main(argc, argv)

int argc;
char *argvi{l;
{

int sock, msgsock, rval, rc;
int rw, nchars;

struct sockaddr_un server;
char buf [BUFSIZ], *bp;

The command line arguments are checked first.

if (argc != 3)
{
fprintf (stderr,"(so_server) command line: number of arguments\n");
exit(1);
}
if (*argv[i] == ’R’) rw = READ;
else if (xargv[1] == ’W’) rw = WRITE;
else
{
fprintf (stderr," (so_server) command line: direction\n");
exit(1);
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The system function socket is called to open a socket. If an error occurs, a negative value
is returned.

/* create a socket */
sock = socket (AF_UNIX, SOCK_STREAM, 0);
if(sock < 0)
{
perror("Opening stream socket");
exit(1);
}

The name specified by the command line is bound to the socket. The socket appears to the
program just as a UNIX file.

server.sun_family = AF_UNIX;
strcpy(server.sun_path, argv[2]);
if (bind(sock, (struct sockaddr #*)&server,
sizeof (struct sockaddr_un)) < 0)
{
perror("Binding stream socket");
exit(1);
}

fprintf (stderr,"socket name:%s\n", server.sun_path);

Now, we are ready to accept a connection to the socket. When an incoming request is
processed, accept returns a value to indicate the outcome.

listen(sock, 1);

msgsock = accept(sock, (struct sockaddr *)0, (int *)0);
fprintf(stderr,"SERVER:accept socket No.%d\n", msgsock);

If the connection is successful, we initialise the input/output buffer buf and start passing
characters. If the socket was opened for reading, we pass everything from the standard input
to the socket until the end of the file is found, in this case, read returns 0. If the socket was
opened for writing, we pass anything from the socket to the standard output until read returns
0.

if (msgsock == -1) perror("accept");
else

{

bzero(buf, sizeof buf);

if (rw == READ)

{
while((nchars = read(STDIN, buf, BUFSIZ)) > 0)
{
if((rval = write(msgsock, buf, nchars)) < 0)

{
perror ("Writing stream message");
rc = 1;
break;

}
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}
else
{
do
{
if((rval = read(msgsock, buf, (BUFSIZ-1))) < 0)
perror ("Reading stream message");
else if (rval == 0)
/* printf ("Ending connection\n"); */
rc = 1;
elseq{
*(buf + rval) = °\0’;
write(STDOUT, buf, rval);
}
}while (xval > 0);
}
}
All sockets are closed before exit.
close (msgsock) ;
close(sock) ;
/* unlink (NAME); */
exit(re);

}



References

[1] mweb: proof script management utilities.

[2] R. J. Boulton. On efficiency in theorem provers which fully expand proofs into primitive
inferences. Technical Report 248, University of Cambridge Computer Laboratory, 1992.

[3] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser Theorem. Indagations
Mathematicae, (34):381-392, 1972.

[4] M. J. C. Gordon. LCF_LSM, A system for specifying and verifying hardware. Technical
Report 41, University of Cambridge Computer Laborartory, 1983.

[6] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL—a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

(6] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, May 1984.

[7] Ministry of Defence. Regquirements for the procurement of safety-critical software in defence
equipment. Interim Standard 00-55, April 1991.

[8] J. von Wright. Representing higher-order logic proofs in HOL. Technical Report 323,
University of Cambridge Computer Laboratory, January 1994.

[9) W. Wong. Formal verification of VIPER’s ALU. Technical Report 300, University of
Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge CB2
3QG, ENGLAND, May 1993.

[10] W. Wong. Recording HOL proofs. Technical Report 306, University of Cambridge Com-
puter Laboratory, New Museums Site, Pembroke Street, Cambridge CB2 3QG, ENG-
LAND, July 1993.

161




Index

prf file, 5

accept, 159

aconv, 110
add_const, 98, 104
add_pline, 84, 90
add_pline_tab, 84, 88
add_pline_table, 84, 89
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close_socket, 146
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compr_suff, 149
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core, 5
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current_goal, 88
current_pline, 88, 89
current_proof, 88, 92
current_ptab, 88, 89
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default_ifp, 142
default_ofp, 142
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dest_abs, 115, 118
dest_bind, 115
dest_eq, 110
dest_funtype, 118, 128
dest_type, 128
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domain_of, 128
DynamicArray, 155
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EOF, 33

Equal, 110, 129
equal, 107
extended, 5
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final_thm, 88
find_thm, 84
forward proof, 4
free_in, 111
frees, 111
freesl, 111
freevars, 118
fully-ezxpansive, 4

gen_var_count, 115
get_bytes, 36
get_const_name, 38
get_debug, 137

get_final_thm, 84, 92

get_last_lineNo, 84
get_list_items, 40
get_long_str, 36
get_name, 19, 38
get_num, 19, 38
get_str, 36

get_string, 38, 143, 144
get_symbolic_name, 38

get_tag, 39
get_thm, 75, 84, 91
get_tyvar_name, 38
goal, 84
goal-directed proofs, 4
goal_table, 84, 92
Greater, 110, 129

handle, 139
henv, 97
Hterm, 106, 109
hterm, 109 _
Hterm_sig, 109
htermConst, 97
HtermFUN, 109
HtermSet, 106
Hthm, 106
hthm, 106
Hthm_sig, 106
HthmFUN, 106
Htype, 109, 128
htype, 128, 131
Htype_sig, 128
htypeConst, 97
Hyp, 107

hyp, 106, 107
hypotheses, 5

idcharl, 37
idchars, 44

in_sname, 142
init, 31, 34, 45, 83, 91, 97, 99
inst_compat, 132
inst_type, 129, 133
Io, 31, 32, 151
Io.read_bytes, 34
I0_sig, 141
is_bool_ty, 112
is_funtype, 128
is_num_ty, 112
is_tm_subst, 124, 125
is_ty_inst, 120, 132
is_ty_instl, 132
is_type_inst, 129
is_tyty_inst, 129
is_vartype, 128

justification, 6

Keyword, 31, 32, 37
Keyword_sig, 43

“knownConstants, 97, 99

knownTypes, 97, 99

last_pline, 84, 92
lazy, 88
lazy_mode, 84

LB, 33, 36, 44

LC, 33, 36, 44

Less, 110, 129

line number, 6
log_compr_suf, 149
log_suf, 149
log_suff, 149
log_versionName, 44
LP, 33, 36, 40, 44

MI, 33

mk_bind, 114, 115
mk_command, 22, 29, 141, 149
mk_funtype, 128
mk_gen_var, 112
mk_pline, 84, 91
mk_proof, 84, 91
mk_proof_env, 97, 102
mk_sublst, 124
mk_suboccs_template, 75
mk_subs_occu_templ, 75, 126
mk_subs_templ, 74, 112, 126
mk_thm, 106, 107
mk_type, 128
mk_vartype, 128
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mk_vlist, 75

new_proofl, 18, 83, 91
new_proof2, 24, 83, 92
next, 35

nextb, 35

NULL, 142

NUM, 32, 33

open_in_socket, 147
open_input_socket, 141, 147
open_out_socket, 147
open_output_socket, 141, 147
ORD_KEY, 137

out_sname, 142
output_CHK_ERR, 139

parse_closure, 40
PARSE_DONE, 25, 40
parse_file, 17
parse_item, 40
parse_just, 19
parse_line, 18, 25
parse_list, 18, 40
parse_list_items, 41
parse_list_pairs, 41
parse_pair, 40
parse_proof, 18
parse_term, 21, 28
parse_thm, 20, 28
parse_type, 21, 28
Parsing, 32
Parsing_sig, 31
ParsingFUN, 31, 32
partially-ezpansive, 4
Passi1FUN, 17
Pass2FUN, 23
Pass_sig, 17
peek, 34, 35
peekb, 35

PL, 33
pline_Just, 91
pline_No, 91
pline_tab, 87, 89
pline_tables, 89
pline_Thm, 91

PM, 44
pp_hterm, 112
pp_hthm, 106, 107
pp_htype, 130, 134
pp_just, 84, 92
pp_pline, 84, 92

pp_proof_thm, 84, 92
pp_gqterm, 112
ppstream, 92
pr_hterm, 127
pr_hthm, 107
pr_htype, 130, 134
pri_suff, 149
print_CHK_ERR, 139
print_cur_proof, 90
print_exceptions, 139
print_flags, 137, 138
print_prooftab, 84, 90
proof assistants, 3
Proof file format, 5
proof_goal, 88
Proof_sig, 82
ProofFUN, 82, 85
Proved, 84
ptab_value, 89

Raise, 139

raise, 139

RB, 33, 36, 44

RC, 33, 36, 44

read, 159
read_bytes, 141, 145
read_input_line, 141, 145
read_line, 144
read_string, 143
Report, 151
Report_sig, 152
rev_dest_eq, 110
RP, 33, 36, 40, 44

server, 142, 147
set_debug, 137
skip, 36
skip_item, 37
skip_long_string, 37
skip_sp, 37

socket, 159

SP, 33

specials, 37
split_string, 144
STATIC_ARRAY, 155
StaticArrayFUN, 155
std_out, 90
str_buf, 142, 143
str_to_barray, 143
StrCmp, 137
strip, 36
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sub_list, 126
sublst_chk, 124, 125
Subscript, 155

SUC, 53
suf_sep, 149

SYM, 32, 33
symbols, 44

T, 57, 66, 68, 74
term_inst_chk, 111
term_inst_renames, 111
term_is_type_inst, 110, 120
term_is_tyty_inst, 110
term_subst_chk, 74, 75, 111, 125
theorem provers, 3

thm_eq, 106
timeofday, 152, 153
toupper, 19

true, 84, 88, 106, 125, 129
ty_compat, 134
ty_tyvarsl, 129
type_compat, 129
type_in, 110, 119
type_in_type, 110, 129
type_instl, 129

type_of, 110
type_OK, 98, 103
type_replace, 133

type_tyvars, 129
tyvar, 44
tyvars, 110, 119, 120, 131
tyvarsl, 110, 119
tyvchar, 37

unget, 35, 36
unget_string, 144
update_tab, 89

variant, 111
VERSION, 44
versionName, 44
vty_occurs, 110, 120

well_typed, 98, 103
write_closing, 153
write_closing_line, 153
write_item_list, 153
write_list, 153
write_log_preamble, 152
write_opening, 153
write_opening2, 153
write_out, 142
write_output_string, 141, 145, 151
write_sitem, 152
write_string, 145
write_used, 47
write_used?2, 47







