Technical Report RIS

Number 383

Computer Laboratory

Management of replicated data
in large scale systems

Noha Adly

November 1995

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1995 Noha Adly

This technical report is based on a dissertation submitted
August 1995 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Corpus Christi
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-383

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-383

Contents

List of Figures
List of Tables
Glossary of Terms

1 Introduction

1.1 Replication in Distributed Systems
1.2 Motivation
13 Scope
1.4 Dissertation Outline

2 Background

2.1 Synchronous Replication Protocols
21.1 Primary Copy. . - - - & . ot i i e e e e e e e e e e
2.1.2° Quorum Comsensus (QC)
2.1.3 ROWA and Available Copies« o....
2.1.4 Virtual Partitions and Dynamic Voting
2.1.5 Logical Structured Protocols

2.2 Asynchronous Replication Protocols

2.2.1 Grapevine, Clearinghouse and GNS

iid

ix

xii

xiii

2.2.2 Epidemic Replication 9
2.2.3 Wuu’s Algorithm and Two Phase Gossip. 9

224 TSAE e e e 10

2.2.5 Lazy Replication, 11
226 OSCAR e e 11
227 Quasi-Copies e e e e e e e e e 12

2.2.8 Epsilon Serializability 12
229 Escrow Techniqueso 13
2210 Currency Tokens v v v it it e e e e e 14
2211 Coda. it e e e e e e e e e e e e 15
2212 TSIS . « v v v e 15

2.3 Applications using Weak Consistency 15
24 SUIMINATY v v e 18
3 Hierarchical Replication Protocol (HARP) V 19
3.1 TheSystem Model i it ittt ee e 19
3.2 The Logical Hierarchical Structure 20
3.3 The Propagation Scheme 22
33.1 DataStructures. B 22
3.3.2 The Propagation Algorithm 25

3.4 Levelsof Asynchromy o o vt v ittt e et e e 27
3.5 Levelsof Staleness e e e e e 29
3.6 Reconciliation Methods 30
3.7 Discussion L e e e e e e e 32
3.8 Summary e e e e e e e e e e e 34
4 Restructuring the Hierarchy : ' 35

iv

4.1 Imtroduction. i i e e e e e e 35
42 BasicOperations i i i it e e e e e e e 36
421 TheLEAVE Operation v v v v vt vt v iv e i n v o 38
422 TheJOINOperation ot i it ittt it e e e ot 40
4.2.3 The INITIATE Operation cououno... 44
4.2.4 The DESTROY Operation e e e e 44
4.3 Composite Operations v ittt ittt e L 44
44 Failuresand Partitions L i i oo 47
441 PFailures, e 47
442 Partitions L e 49
4.5 Optimisation of Composite Operations 50
4.5.1 The CHANGE-PARENT Operation 50
452 The TAKE-OVER Operation. 54
4.6 Space Optimisations 56
4.6.1 The AckMandthe Log. 56
4.6.2 The ViewStructure, 57
4.7 SUMIMATY . . -« o o v v e e et e e e e e e e e e e e e e e e e e 58
Causal Order 61
5.1 What is Causal Ordering 7 i ittt 61
52 Vector Clocks o i i e 62
53 Related Work e 63
5.4 Causal Order in HARP with Version Vectors 65
5.5 Causal Order in HARP with Compact Vectors 65
5.5.1 Compact Vectors (CV).o ittt it 66
5.5.2 The Causal Delivery Condition 67

5.6 Modifications to the Restructuring Operations 69
5.6.1 The Basic Operations e e e e e e e e e e e 70
5.6.2 The CHANGE-PARENT Operation 73
8.7 Failures e e e e e 75
5.8 Partitions L 76
5.9 Summary e e e e e e e e e e e e e 77
Performance Evaluation of HARP 79
6.1 Imtroduction. e 79
6.2 The Simulation Model 80
6.2.1 TheSystem Model 80
6.2.2 The Network Model« o i i i it ittt e e ie e e e 81
6.2.3 Overhead of the Algorithms 83
6.2.4 Operation Modelling 84
6.2.5 Parameter Setting oo, 85
6.2.6 Performance Metrics 86
6.2.7 Verification of the Simulator 87
6.3 Experiments with Synchronous Updates 87
6.3.1 Varying Read Mixes, when all Writes are Slow Write 87
6.3.2 Varying Opt_Write versus Slow Write 89
6.3.3 Varying the Load Intensity 91
6.3.4 Varying the Communication Overhead 92
6.3.5 Varying the Hierarchical Network Topologies 94
6.3.6 Comparing with a Non-hierarchical Network 97
6.4 Experiments with Asynchronous Updates 98

6.4.1 Comparing Slow_Write versus Fast_Write, Varying a Mix of Fast_Reads 99

vi

6.4.2 Varying the Load Intensity

6.4.3 Varying the Communication Overhead
6.4.4 A Varying the Hierarchical Network Topologies

6.4.5 Comparing with a Non-hierarchical Network

Comparison with TSAE Protocol

7.1 TSAE Protocol Description i i it i it e e et e

7.2 The Simulation Model e

7.3 Experimentsand Results.,
7.3.1 Varying the Activation Period
7.3.2 Varying the Frequency of Reads versus Writes
7.3.3 Varyingthe Arrival Rate
7.3.4 Varying the Number of Messages per Packet
7.3.5 Varying the Communication Processing Overhead
7.3.6 Varying the Network Delay

74 Discussion e B IR

7.5 SUmMMATY e

An Alternative Hierarchical Propagation Protocol (HPP)

81 Imtroduction., e e e e e e

8.2 Propagation During Normal Operation

8.3 Reorgamisation e e

84 Failures e e e
84.1 Tramsition L e e
84.2 Diffusion e e

vii

8.4.3 Recovery e e e e e
844 Partitionsot
8.4.5 Reorganisation Despite Failure
8.5 DiSCUSSION i i e e e e e e e e e e e e e e e e e e
8.6 SUmMmATY i it i e e e e e e e e e e e e e e e e e

9 Conclusions

Appendix

A Correctness of Restructuring Operations
A.1l TheBasic Operations it i i, .
A.2 The change-parent Operationo .eno..

A.3 Thetake-over Operation o i i i ittt et

B Correctness of the Causal Order Protocol
B.1 The Causal Order Algorithm
B.2 Theleave Operation« innnene..
B.3 Thejoin Operation i i i it it et e e e e e

B.4 The change-parent Operation,
C Correctness of HPP

Bibliography

viii

143

143

146

149

149

149

157

158

160

160

162

163

165

168

173

List of Figures

3.1

3.2

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14

4.15

5.1

40 nodes organised in a hierarchy of threelevels 20

Steps taken by node ¢ upon originating or receiving a message for propagation 26

The hierarchical structure when node d leaves Ci; then joins, or vice versa. . 37
The leave protocol i i e e e e e e e 39
The function Get_View() o 40
The join protocol B 41
The join protocol (Continued) 42
The function Exchange() i i e 43
Anode fmovesfrom C;3t0Cia« o o i i il i e 45
Chi2 changes parent frometod 46
Crizmergedinto Cigg - - - - o o v o v oo oL e 46
Split Crigto Cri2and Cfyp - o o o o o o v o i e e 47
Partition isolating e, d and their descendants from the rest of the hierarchy . 49

Scenario of message exchanges when old_p changes the parent of its two chil-

dreniand j tothenewparent newp 51
The change-parent protocol L o oo 52
The change-parent protocol (Continued) 53
Steps taken by a node % takingoveramode f 56
An illustration of Isis method to maintain causality 64

5.2
5.3
5.4
5.5

5.6

5.7

Steps a node i takes to deliver a meséa.ge m and to update the Compact

Vectors, upon originating m or receiving m from its neighbours or children . 68
Steps a node i takes to deliver a message m and to update the Compact
Vectors, upon receiving m from itsparent 69
Scenario of message exchange between a node ¢ joining a cluster C; and node
jamemberortheparentof Cp L. T2

Checks and actions performed by node j on receiving a message m from node
k, a neighbour or the parent of j, while a node ¢ is joining or leaving j’s cluster 73

Scenario of message exchange while a node 7 is changing its parent to newp . 74

Checks and actions performed by node %, a member of C;, on receiving a
message m from another member j while they are changing their parent . . . 75

6.1 The physical network modelled, Net 1 82
6.2 Varying read mix, ﬁrrites areSlowWrite 88
6.3 Varying Opt_Write versus Slow Write 90
6.4 Varying the arrival rate, writes are synchronous 91
6.5 Varying wan_del, writes are synchronous 93
6.6 Different hierarchical network topologies for 12 replicas 94
6.7 Varying read mix on Net 5, writes are synchronous 95
6.8 Varying read mix on Net 2, writes are synchronous 96
6.9 A non-hierarchical network, Net 6 97
6.10 Varying read mix on Net 6, writes are synchronous 98
6.11 Comparing Slow_Write versus Fast.Write, varying a mix of Fast_Read 99
6.12 Varying the arrival rate, writes are asynchronous 101
6.13 Varying cpu_msg, cémpa.ring asynchronous and synchronous operations 102
6.14 Varying read mix on Net 3, writes are asynchronous 103
6.15 Varying read mix on Net 4, writes are asynchronous 104
6.16 Varying the arrival rate on Network 6, writes are asynchronous 105

6.17 Different network topologies for 39 replicas 106
6.18 Varying read mix, comparing Net 7 and Net 8, writes are synchronous 107
6.19 Varying read mix, comparing Net 7 and Net 9, writes are synchronous 107
6.20 Varying read mix, comparing Net 7 and Net 8, writes are asynchronous . 108
6.21 Varying read mix, comparing Net 7 and Net 9, writes are asynchronous . 108
7.1 Varying the activation period, tsae_per 116
7.2 Varying the frequency of reads versus writes e e e ... 117
7.3 Varying thearrivalrate 119
7.4 Varying the number of messages per packet 120
7.5 Varying the communication processing overhead 121
7.6 Varying thenetworkdelay 122
8.1 A multilevel hierarchy of nodes with HPP 126
8.2 Algorithm for updating the state vectors in HPP, upon originating or receiving
AIOESSAZE + « = v v v v v e 129
8.3 Scenario of message exchange while a node 7 is changing its parent from old_p
tonmewpwithin HPP 131
8.4 Reorganisation algorithm in HPP 133
8.5 Tranmsition algorithm e 136
A.1 Two nodes leaving the same cluster simultaneously 152

A.2 Node i is joining a cluster and node j is leaving the same cluster simultaneously153

A.3 Nodes i and j are joining the same cluster simultaneously

List of Tables

3.1 Data structures kept at node zin HARP 23
3.2 A part of the View data structure. IEEEEEEEEEEREEIEE 24
6.1 System parameters of HARP i, 81
7.1 System parameters of TSAEo it i ittt 114
8.1 Summary of data structures in HPP, their descriptions and sizes e 130

8.2 A summary of failure scenarios and conditions to detect upwards and down-
wards propagation in HPP 137

xii

Glossary of Terms

CENA
CPU
cv
ESR
ET
FIFO
FTP
GMT
GNS
GSE
HARP
HPP
HQC
I/0
JANET
LAN
NOC
OSCAR
QC
ROWA

Centre d’Etudes de la Navigation Aérienne
Central Processing Unit

Compact Vector

Epsilon Serializability

Escrow Transaction

Fist In First Out

File Transfer Program

Greenwich Mean Time

Global Name Service

Generalised Site Escrow

Hierarchical Asynchronous Replication Protocol
Hierarchical Propagation Protocol
Hierarchical Quorum Consensus

Input and Output

Joint Academic Network

Local Area Network

Network Operating Centre

Open System for Consistency and Replication

Quorum Consensus

Read One Write All

xiii

SE
STV
2PC
TQP
TSAE
UNS
vC

WAIS
WAN

Site Escrow

Summary Timestamp Vector
Two-Phase Commit

Tree Quorum Protocol
Time Stamped Anti Entropy
Universal Name Service
Vector Clock

Version Vector

Wide Area Information Service
Wide Area Network

World Wide Web

xiv

Chapter 1

Introduction

1.1 Replication in Distributed Systems

Data is replicated in distributed systems to improve system availability and performance.
In recent years, the growth of internetworks and distributed applications has increased the
need for large scale replicated systems. The Internet news systems (Usenet) [Kantor 86]
is one example of such systems. It is replicated at thousands of hosts and manages a
large database while responding to queries in seconds. In contrast, Archie [Emtage 92], a
directory service for Internet FTP archives, which is replicated at only 12 sites, can take 15
minutes to answer a simple query against a much smaller database. As Internet is growing
significantly beyond its present two million nodes, and as WWW, Archie and many other
information services [Obraczka 93] become more popular, the database of these services
must be massively replicated for a reasonable performance.

Traditional approaches for managing replicated data are synchronous; that is, they require
that read and write operations be synchronised in order to ensure that replicas are mutually
consistent. Protocols requiring synchronisation among a large number of replicas are difficult
to implement across internetworks. They suffer from high latency and low throughput since
links tend to be slow and unreliable and a large number of replicas generate considerable
traffic over the network. Further, they lock or restrain access to resources during protocol
execution and reduce the system availability when one or more nodes fail, or when the
network is partitioned.

In contrast, weak consistency protocols allow updates and queries to occur asynchronously
at any replica. They operate under the optimistic assumption that concurrent updates will
rarely conflict and therefore synchronisation at each step is unnecessary. Updates commit
at the local replica, then they are propagated to other replicas and eventually, all replicas
observe the updates. During the propagation, the data is in transient inconsistency and the
value returned by a read request depends on whether that replica has observed the update

or not yet. A weak consistency approach should provide a propagation mechanism which
ensures that updates are efficiently and reliably propagated to all replicas even if the com-
munication network does not provide such a guarantee. When link or node failures result
in network partitions, replicas are allowed to diverge and continue providing service. When
the partition heals, replicas merge their state and converge to a consistent state. There-
fore, asynchronous approaches provide higher availability and better response time than
synchronous approaches. However, this approach is based on the assumption that the ap-
plications can tolerate some inconsistency and reconciliation methods should be available to
resolve conflicts. Typical applications that have used weak consistency are naming systems,
information services, air traffic control and stock exchanges.

1.2 Motivation

Although extensive research has been done for managing replicated data, the issues of
scalability and autonomy have not been addressed adequately. Typical replication systems,
which were designed for local area networks, are not well suited for wide area networks.
Internetworks introduce new problems because they are geographically dispersed and they
often contain slow and unreliable links. Existing protocols do not scale well because they
manage replicas as one flat group of nodes. Requiring a node to communicate with all
other nodes in the system might be appropriate for small networks with few replicas, but is
unrealistic for wide area networks like the Internet.

With replicated systems, some applications require strong consistency but there are many
applications with semantics that can tolerate some inconsistency and weaker forms of consis-
tency are adequate and acceptable. Therefore, it is desired to design a flexible protocol that
integrates both strong consistency and weak consistency into the same framework and gives
the application the ability to select between them depending on its requirements. When
strong consistency is provided, synchronisation should be limited to a small number of nodes
to achieve acceptable performance.

Weak consistency protocols provide the users with the guarantee that the data will even-
tually reach all replicas and become consistent. This guarantee might not be sufficient for
the needs of some applications which would like to read a more up-to-date version than
the local replica at a certain point of time. Therefore, it is desirable to provide the users
with different levels of staleness, by giving access to replicas that are more up-to-date than
others.

Reconfiguration schemes are necessary to allow a node to join or leave the set of replicas
and the ability to recover from failures. Contemporary schemes ensure a consistent view
of all replicas, using two- or three-phase commit protocols or atomic broadcast protocols,
at the expense of latency and communication overhead. Again, such protocols can be very
inefficient and entirely impractical across internetworks.:

1.3 Scope

Based on the above considerations, this dissertation proposes a protocol for managing repli-
cated data that is suitable for large scale systems. It is believed that a weak consistency
(asynchronous) approach is more appropriate for applications that need to massively repli-
cate their data provided they can tolerate some inconsistency, and therefore the dissertation
focusses on this approach.

The protocol, called Hierarchical Asynchronous Replication Protocol (HARP), is based on
organising the replicas into a logical multilevel hierarchy to exploit localised communication.
It provides an efficient propagation scheme where each node has to communicate with a few
nodes only, typically those in its neighbourhood, thus reducing communication overhead and
making the system scalable, while ensuring reliable delivery. Since different applications
require different degrees of consistency, a new service interface is proposed that provides
different levels of asynchrony allowing strong and weak consistency to be integrated into
the same framework. Strong consistency is achieved by assembling a quorum from a small
number of nodes, namely, nodes in the top level of the hierarchy. Further, the scheme
provides the ability to access replicas that are more up-to-date than others, while using
asynchronous queries, by reading from different levels of the hierarchy.

Reconfiguration schemes and methods for handling failures are presented. They are different
from contemporary approaches because they rely on a weak consistency semantic, that
allows temporary inconsistencies to develop in the view of each node but guarantees that all
replicas eventually converge to a single consistent view when the changes cease. They exploit
localised communication to reduce network traffic and do not suspend normal operation
while ensuring no loss of information.

Reconciliation methods based on delivery order mechanisms are provided to resolve tem-
porary inconsistencies resulting from asynchronous updates. One type of ordering that is
of special interest is causal ordering. A new algorithm for maintaining causal ordering is
described which, unlike most existing protocols, imposes a little space overhead appended
to each message. The algorithm takes advantage of the hierarchical propagation scheme,
where each node sends and receives messages from a few nodes-only, and cuts down the size
of the timestamp required to verify causality significantly. This low cost of timestamp size
results in reduced communication overhead and increased performance and scalability.

A simulation study is carried out to evaluate the performance of HARP and to quantify the
benefits in performance and losses in consistency resulting from moving from strong consis-
tency to weak consistency under different load mixes and system configurations. Further, a
quantitative comparison is performed between HARP and one of the most recent and widely
used weak consistency replication protocols, Time Stamped Anti Entropy.

Within HARP, global state information is exchanged while reconfiguration takes place, which
might impose a high overhead in very large scale systems. Therefore, an alternative hier-

archical protocol, called HPP, is proposed as an optimisation. HPP encapsulates the state
information such that each node keeps local information which is exchanged in case of fail-
ures or reorganisation. Therefore, HPP is more scalable than HARP; however, it can tolerate
only special patterns of failure and its support for ordering of updates is weaker; hence, it
represents a tradeoff.

1.4 Dissertation Outline

Chapter 2 reviews the development of replication protocols, both synchronous and asyn-
chronous and points out the limitations of these protocols. The chapter also discusses some
applications where a weak consistency approach is adequate.

Chapter 3 presents the prdpagation algorithm used to disseminate updates to all replicas
within HARP. Next, the new service interface that integrates synchronous and asynchronous
operations is defined. Also, the different levels of staleness and the reconciliation methods
provided by the protocol are discussed.

Chapter 4 presents the restructuring operations which allow the hierarchy to be built and
reconfigured. Also, methods for handling failures and partitions are described.

Chapter 5 describes a simple and efficient protocol that provides causal order delivery. The
protocol manages to reduce significantly the size of the causal order information associated
with each message.

Chapter 6 presents the simulation model used to evaluate the proposed protocol. This
chapter also outlines the performance results and analysis, obtained experimentally from
the implemented simulator.

Cha.pterv 7 compares the performance of HARP with the Time Stamped Anti Entropy protocol
through simulation. The simulation model is described, then the experiments and the results
are discussed.

Chapter 8 presents the Hierarchical Propagation Protocol (HPP) which encapsulates the
state information such that each node keeps local information. Methods for handling failures
and reconfiguring the hierarchy are described based on these local states. Then, the strengths
and limitations of the suggested protocol are analysed and compared to HARP.

Chapter 9 concludes the dissertation with a summary of the presented work and some
suggestions for future work.

Chapter 2

Background

This chapter reviews some of the existing replication protocols. Since synchronous ap-
proaches have been addressed extensively in the literature, only a few protocols are outlined
and published surveys are indicated. Section 2.2 gives an overview of the well known asyn-
chronous replication protocols and points out the limitations of these protocols. It is believed
that the asynchronous approach is more appropriate for applications that need to massively
replicate their data and require high performance, as long as they can accept a weaker form
of consistency. Section 2.3 gives an overview of some of those applications.

2.1 Synchronous Replication Protocols

Most of the schemes developed so far for managing replicated data synchronously are based
on one of two basic principles: Primary Copy and Quorum Consensus. These two schemes
are first described, then several variations are presented. Surveys of synchronous protocols
can be found in [Ceri 91, Son 88).

2.1.1 Primary Copy

In the Primary Copy approach [Stonebraker 79], one replica is designated as the primary,
all the other replicas are secondaries. Update requests are sent to the primary copy, which
acquires locks on all secondaries, performs the update, broadcasts the change to all secon-
daries and then releases the locks. The primary copy method maintains consistency in the
face of network partitions since updates are allowed only at the primary, but it does not
tolerate the failure of the primary copy and suffers from bottlenecks at that site.

2.1.2 Quorum Consensus (QC)

Quorum Consensus is a general class of synchronisation protocols for distributed systems.
An operation proceeds to completion only if it can obtain permission from nodes that
constitute a quorum group. Quorum groups used by conflicting operations have non-empty
intersection to guarantee proper synchronisation. A well known method for defining quorum
sets is Gifford’s scheme [Gifford 79] which is a generalisation of the majority consensus
method [Thomas 79]: consider n replicas of an object, each replica is assigned some number
of votes that can be used in gathering a quorum in order to execute an operation. A read
operation needs to assemble a read quorum, an arbitrary collection of any r replicas or
more. Similarly, to update the object, a write quorum of at least w replicas is required.
Each replica holds a version number, a write operation reads the version numbers of w
replicas, generates a number higher than any it has observed and stores the data at these
replicas. The values of 7 and w are subject to two constraints: (1) r +w > n, and (2)
w > n/2. The first constraint prevents reads and writes from conflicting and ensures that
the most recent copy is read while the second constraint prevents two write operations from
occurring at the same time.

These techniques are robust and they remain consistent in the face of node and communica-
tion failures including network partitions. Different quorums for read and write operations
can be defined and different weights, including zero, can be assigned to every copy. This
form is called weighted voting. Quorum consensus has received a great deal of attention and
many protocols present variations of it.

2.1.3 ROWA and Available Copies

The Read One Write All (ROWA) protocol [Bernstein 84] requires a write operation to be
executed on all copies synchronously, while a read operation can be executed at any copy.
This method can be viewed as QC with w = n and r = 1. It improves read availability
by reducing write availability. This approach does not tolerate node crashes for updates,
hence, it offers low reliability compared to other techniques.

The Awailable Copy protocol [Chan 86, Goodman 83] is a variation of ROWA, where a write
operation updates only copies that are available, ignoring copies that are down. Therefore,
it increases write availability. However, it cannot tolerate network partitions since different
partitions can update different copies leaving the system in an inconsistent state.

2.1.4 Virtual Partitions and Dynamic Voting

Algorithms have been devised for increasing availability in the face of site failures and
network partitions.

In the Virtual Partitions technique [El-Abbadi 85, El-Abbadi 86, El-Abbadi 89], the basic
idea is for each site to maintain a view consisting of the sites it believes it can communicate
with. Operations can proceed only at nodes belonging to the majority partition, which is
the partition that contains more than half of the nodes in the system. Views of sites change
as site and communication failures occur. View management protocols are devised, based
on two- or three-phase commit protocols, to ensure consistency of the views at all replicas.
Each object is assigned read and write quorums which are redefined based on the current
view to maximise availability, while ensuring that quorums can be formed in only one of the
partitions, namely, the majority partition.

Dynamic voting schemes [Davcev 85, Jajodia 87] redefine the majority partition to be the
partition containing more than half of the current replicas rather than the whole system.
Algorithms are presented so that a node can decide whether it is in the majority partition or
not based on how many sites it can communicate with and the new quorums are computed
accordingly. Operations are allowed to proceed only in the majority partition. In [Davcev 89,
Jajodia 90], dynamic voting has been extended by assigning weights to replicas and allowing
operations to proceed even if only one copy is available while guaranteeing that quorums
cannot be formed in more than one partition.

2.1.5 Logical Structured Protocols

Protocols have been proposed that exploit a logically structured set of replicas with the
objective of reducing quorum sizes. More precisely, the Hierarchical Quorum Consensus,
the Tree Quorum and the Grid protocols have been proposed. In the following is a brief
description of each.

The Hierarchical Quorum Consensus protocol (HQC) [Kumar 91] is based on constructing
a logical multilevel tree, of depth m, where the physical copies are stored only at the leaves
and the higher level nodes correspond to logical nodes. A read (write) quorum is formed by
assembling 7; (w;) quorums from each level of the tree such that r; + w; > I; and 2w; > I;
for all levels 4, where /;= number of nodes at level 7. An m-level tree with degree equal to
three results in read and write quorums of size 2/°93® versus I'L‘lz*'—l] in the case of majority
voting. However, in terms of availability the algorithm does not perform very well since it
can block if specific nodes are down.

In the Tree Quorum Protocol TQP [Agrawal 90], replicas are organised into a tree of height
h and degree 2d + 1. A write quorum is formed by selecting the root and a majority of its
children; for each selected node the majority of the children is also selected, until reaching
the leaves. A read quorum is formed by selecting the root of the tree; if it is inaccessible
due to failure, a majority of the root’s children forms a read quorum; if any of the selected
nodes fail, a majority of its children is also required to form a read quorum, and this occurs
recursively. The read quorum has a size of one, namely the root, under a failure free system,
and increases up to (d + 1)" under failures. The write quorum size is M, which is
d

7

generally less than the majority of copies. However, if more than a majority of the copies in
any level of the tree become unavailable, write operations cannot be executed. For example,
if the root of the tree is down, no write operations can proceed. Therefore, the protocol
provides low cost for read operations, however, there is an imbalance between the cost and
the availability of reads and writes. Further, it may produce a bottleneck at the root and
finally it is vulnerable to failure of the root.

In the Grid Protocol [Cheung 90], the nodes are arranged in a rectangular grid. A read
quorum is defined to be any set of nodes that includes a representative from every column
of the grid, and a write quorum is defined to include any read quorum plus an entire column
of the grid. For square grids, the size of read quorums is \/n and the size of the write
quorums is 24/n — 1. This protocol is vulnerable to the failure of an entire column or row
in the grid, hence, it incurs a penalty of reduced availability.

In [Rabinovich 92], a mechanism is presented that allows the reconstruction of the logical
structure if failures occur and the new read and write quorum sets to be recomputed. It
relies on performing a special operation periodically epoch checking, initiated by an elected
site, which polls all replicas and, from the responding nodes, it forms a list of alive replicas,
referred to as new epoch. The list of the new epoch members along with the epoch number
are then sent synchronously to every member of the new epoch.

2.2 Asynchronous Replication Protocols

Many asynchronous protocols have been suggested. In this section, the well known protocols
are reviewed. Their propagation schemes and their policies to reconcile conflicts are outlined
and their limitations are discussed.

2.2.1 Grapevine, Clearinghouse and GNS

Grapevine [Schroeder 84] and Clearinghouse [Oppen 83] are early examples of replicated
directory systems that achieve eventual consistency. A node originating an update, executes
it then propagates it to all other nodes using an unreliable multicast. Each update associates
the item with a unique timestamp and during propagation the most recent version, as
determined by timestamps, is the one retained. To ensure reliable delivery, copies of the
databases are exchanged and merged periodically. Each comparison must span all copies
in order to ensure reliability. However, the periodic updates impose a large load on the
network since each comparison involves sending a complete copy of the database to every
other node.

In the Global Name Service (GNS) [Lampson 86], a replicated naming database, updates
are done at one copy and propagation is done through a sweep operation moving deter-

ministically around servers which are organised in a logical ring. Periodically, the sweep
operation visits every replica, collects a complete set of updates then writes this set back to
every replica. The sweep operation is expensive, since it has to collect all updates from all
replicas, and cannot be executed frequently, hence, the speed of propagation is slow. Fur-
ther, in case of failures, partitions or addition of a new replica, the ring has to be reformed
from scratch. The reformation process must be controlled by an administrator during which
normal operation is suspended. That is, dynamic reconfiguration is not supported.

2.2.2 Epidemic Replication

In [Demers 87], several randomised algorithms based on epidemiology theory are described
for distributing updates asynchronously. They are intended to maintain a widely replicated
directory or name-lookup database. Three epidemic communication methods are specified:
direct mail, rumour mongering and anti-entropy. Direct mail propagates an update to other
replicas using a single unreliable multicast datagram. A replica can use rumour mongering
by selecting another replica randomly and sending it one or more kot rumours, again using
unreliable datagrams. Hot rumours are recent update messages that the replica believes
the other is unlikely to have observed. Several stopping rules are suggested to ensure that
a message does not continue propagating forever, but none of the rules can ensure that a
message has been propagated to every replica before stopping. Periodically, pairs of replicas
perform a reliable exchange of database contents in an anti-entropy session which ensures
that updates will eventually propagate to all sites.

Resolving conflicts is solved by associating each data item with a global unique timestamp
(denoting the GMT) and the value with the latest timestamp is kept. The techniques can
be combined, using direct mail or rumour mongering for fast, unreliable propagation, while
anti-entropy provides a reliable backup if the other methods fail. However, anti-entropy is an
expensive procedure since it involves comparing the contents of two copies of the database,
one of them sent over the network, which would not be acceptable for large databases nor for
large scale systems. Further, combining several techniques means that a node can receive a
message more than once, hence placing more load on the network.

2.2.3 Wuu’s Algorithm and Two Phase Gossip

Wuu and Bernstein in [Wuu 84], present a propagation scheme for maintaining a replicated
dictionary using logs. Each replica keeps a two dimensional time table (2DTT) recording
what messages have been received by other replicas. The 2DTT allows the exchange of
missing updates only rather than the whole copy of the database. Periodically, each node 4
sends to every node j a message containing its 2DTT and all messages in its log that i believes
Jj does not have. Node j receiving this message, extracts the new messages and updates its
2DTT by merging it with the incoming one. Although an attempt is made to send to a node

messages that this node has not received, redundant messages are still sent as 2DTT is just
an approximate view of what other nodes have. Another deficiency is that the 2DTT, of size
n2, is sent as part of each message, which incurs a high communication overhead especially
for large scale systems. Further, the speed of propagation is very sensitive to the activation
period.

In [Heddaya 89], the Two Phase Gossip protocol is presented for propagating messages and
controlling the size of logs used to represent replicated data. Messages are propagated in
the same way as in [Wuu 84] but the status stored and sent on every message is reduced
by a factor of n, based on the assumption that clocks are synchronised. More precisely, -
instead of storing n? timestamps, each replica i has to store two vectors o; and w;, each
of size n. Entry o;[j] = ¢; means that node 7 has received all messages that j had at
t < t1, and entry w;[j] = t, means that node i knows that node j has received every
message with timestamp < 3. Periodically, node ¢ sends a gossip message to every other
node j including o; and w; and every message with timestamp > wj;[j]. Node j receiving
the message, extracts the new messages and merges o; with o; and w; with w; taking the
element-wise maximum. Therefore, each message carries a stamp of size 2n rather than n2.
However, this optimisation is feasible only if clocks are synchronised. Further, the vector
w contains a lower bound on what other nodes have observed. Therefore, in comparison
with [Wuu 84], the Two Phase Gossip causes more duplicate messages to be sent and also
it purges the log less quickly.

2.2.4 TSAE

In [Golding 92c], a weak consistency replication protocol is proposed, called Time Stamped
Anti Entropy (TSAE), which is based on the epidemic anti-entropy protocol [Demers 87} and
uses a set of data structures much like those in [Wuu 84] and [Heddaya 89] to exchange up-
dates. Each replica keeps a summary vector containing the latest message timestamps it has
received from other replicas. Periodically, a replica selects a partner at random and starts
an anti-entropy session. First, they exchange their summary vectors, then the missing mes-
sages only are exchanged. A best-effort multicast is combined with the anti-entropy scheme
to speed propagation. The protocol ensures that replicas eventually converge to a consistent
state during normal operation and when recovering from failures. Reconciliation methods
based on FIFO and total delivery orderings are provided and group membership protocols
are described to allow a node to join and leave the group of replicas dynamically. TSAE has
been used to implement the replicated bibliographic database Refdbms [Wilkes 91] devel-
oped at Hewlett-Packard Laboratories, as well as the Tattler system [Long 92], a distributed
monitor for the Internet. Both applications will be discussed in Section 2.3.

Although TSAE attempts to reduce sending duplicate messages by exchanging states and
then deciding which messages to send, still redundant messages are exchanged during normal
operations. This is because a node can participate in several sessions concurrently and

10

also because the status messages are out-of-date due to network delays. The amount of
redundancy increases when TSAE is combined with the best-effort multicast. Also, the status
messages exchanged place an extra load on the resources. Further, like other replication
mechanisms, the scheme cannot scale to a large number of replicas since it is assumed that
any node can communicate with any other node. This protocol will be compared to our
proposed protocol and will be described in more detail in Chapter 7.

2.2.5 Lazy Replication

Liskov and Ladin in [Liskov 86] describe the lazy replication method, where updates take
place at one replica, then replicas lazily exchange new information through gossip messages.
They rely on mulii-part timestamps similar to the observation vector o; used in [Heddaya 89].
Periodically, each replica sends a gossip message containing its timestamp and its message log
to all other replicas and replicas are made consistent by merging the states and timestamps.
Total and causal orders are supported by relying on a central node generating the sequence
- order. In [Ladin 90, Ladin 92], an extension is made that allows clients to define exactly
what causal relations should be enforced between messages, so weaker orderings can be
specified and the service is responsible for scheduling operation execution to respect that
order. This method has been used by applications such as garbage collection in a distributed
heap [Ladin 89], and locating movable objects in distributed systems [Hwang 88].

However, lazy replication does not take full advantage of the information available in its
timestamps and sends a complete copy of the message log in a gossip message which increases
the communication and processing overhead. Also, it does not scale well as every node has
to communicate with all nodes. Further, it needs an extra log to prevent executing duplicate
updates, hence, using excessive storage. Finally, the scheme suffers from a slow speed of
propagation due to the periodic updates.

2.2.6 OSCAR

OSCAR - Open System for Consistency and Replication - [Downing 90b, Downing 90a] im-
plements weak consistency replication using a mixture of distributed and centralised ele-
ments. The architecture is based on two cooperating agents, called replicators and media-
tors. When an update is initiated, the local replicator sends the message to all other nodes
using an unreliable multicast. Periodically, a master mediator polls every replicator, obtain-
ing a version vector for every database item. The version vectors from different replicas are
combined, and the result is multicast to every replicator. A replicator uses this vector to
detect messages it has missed and ask other replicators for them. This vector is also used to
decide when to purge a message from the log. Reconciliation methods based on FIFO order
and overwrite order (latest timestamp wins) are supported to resolve conflicts. A negative
side of the scheme is that the mediator must contact all replicators, then, each replicator has

11

to contact other replicators to extract the missing messages, which causes a large network
traffic. Further, the mediator may become a bottleneck and prohibit scalability.

2.2.7 Quasi-copies

In [Alonso 88, Alonso 90}, a weak consistency replication protocol for information retrieval
systems is presented. The notion of quasi-copies is introduced, which are out-of-date replicas
that are allowed to diverge in a controlled fashion by taking advantage of the application
semantics. Users define how a quasi-copy is managed by specifying a predicate based on
a time, version or arithmetic condition. For instance, a user can specify that the value of
a copy should differ from the real value by no more than a constant, or that it should not
be out-of-date by more than some period or number of versions. The scheme relies on a
central location, where all updates are processed. The central node constantly watches for
updates and is responsible for propagating them when the predicate is about to be violated.
In [Barbara 90], the model is extended to involve multiple central sites where the database
is divided into segments, each one controlled by a single node.

Although this approach allows for controlling the inconsistencies of the replicated data, it
relies on centralised components which cause bottlenecks in the system, limit the update
availability and do not scale for large numbers of replicas. Also, the bound of consistency
given is only approximate since the possible occurrence of updates during the transmission
delay from the central node to the quasi-copies is not taken into account.

2.2.8 Epsilon Serializability

Pu and Leff [Pu 91a] present an asynchronous replication approach that applies an extension
of serializability called epsilon-serializability (ESR) [Pu 91b]. ESR is a correctness criterion
which allows temporary and bounded inconsistency in replicas to be seen by queries. In
contrast to our protocol and to the other mechanisms described in this section, this model
is concerned with transactions where several operations must be executed as a group.

Four replica control methods are presented that use operation semantics to increase con-
currency. The ordered updates method executes update transactions in the same order at
every replica. However, a reliable and ordered message delivery is not provided and is as-
sumed to be available. The commutative method is limited to commutative updates, and
the read-independent timestamp updates method supports operations that either produce
immutable versions or overwrite older versions. Finally, the backward method is based on
compensation, where operations are optimistically allowed to execute in any order, then
uses rollbacks to undo the effects of transactions if inconsistencies are detected later. These
four methods are supported by our proposed protocol.

Methods for bounding the amount, of inconsistency seen by queries are presented based on

12

ESR. The divergence is measured by the number of concurrent update transactions with
which the queries interleave. For ordered updates, each query is given a global order number
as if it is an update. Each time a query overlaps an update, an inconsistency counter is
incremented. When the counter reaches a predefined limit, the queries are forced to run in
total order. However, the details of the algorithm are left to the global ordering mechanism
adopted. For commutative updates, transactions can acquire a certain number of read-write
and write-write locks on objects - locks that are disallowed under strict serializability. If
a transaction attempts to acquire more conflicting locks than the limit, the transaction is
blocked. However, locking is not a good technique for a large number of replicas.

Although updates occur at one replica and propagate asynchronously to other replicas, it
is not specified how propagation occurs nor how eventual reliability is reached. However,
the definitions of operation compatibility presented can be used to build conflict reduction
mechanisms in weak consistency systems.

2.2.9 Escrow Techniques

Escrow techniques have been proposed to increase concurrency and throughput in replicated
databases for a class of applications involving resource allocation. In such applications, it is
required to allocate a number of resources such that the total number of allocated resources
is less than the total number of available resources. Typical applications are inventory
control systems controlling the quantity of an item in stock, airline reservation system
managing the number of seats available on an airplane, and so on. These techniques exploit
the commutativity property since transactions access aggregate fields which are updated by
positive or negative incremental changes.

The Escrow Transaction (ET) algorithm presented in [O’Neil 86], requires locking a quorum
of a majority of sites. Although locks are not held for the entire duration of the transac-
tion, still this approach lacks site autonomy. The Site Escrow (SE) techniques proposed in
[Kumar 88, Kumar 90] consist of allocating the amount of available resources in an aggre-
gate field across all replicas. A withdrawal transaction can successfully complete at a site
only if the number of resources allocated at that site exceeds the number of resources that
the transaction requires. If the amount available in the local escrow pool is not sufficient, the
transaction would attempt to borrow from the escrow pools at other sites. This approach
results in more site autonomy than ET, since each site can deplete its allocated resources
independently without having to consult any other site. However, the global state of the
system should be computed periodically by executing a global snapshot algorithm such that
the escrow quantities are adjusted at each site to reflect the consumption of the resources.
Transactions cannot proceed while the global algorithm is being executed, hence, its fre-
quent execution may itself degrade performance. Further, it requires the synchronisation of
all nodes which is a handicap for scalability.

The Generalised Site Escrow (GSE) algorithm [Krishnakumar 92], modifies the notion of SE

13

and eliminates the need for a global state algorithm. It employs a combination of quorum
locking [Herlihy 87] to control the number of transactions occurring simultaneously, with
broadcasting updates through gossip messages using the algorithm of Wuu and Bernstein
[Wuu 84] (see Section 2.2.3). The idea is to use the 2DTT to decide which transactions
are not yet known to other sites. So, a site ¢ makes a conservative estimate of its escrow
by estimating an upper bound on the escrow values of other sites, taking into account
the resources allocated by transactions known to i but not yet known to these sites, in
order not to violate the allocation constraint. If the escrow at site ¢ is not sufficient then
i attempts to enlarge it by locking additional sites. In the worst case, all sites are in the
quorum, at which point the transaction can be initiated. GSE requires gossip messages
to be piggybacked frequently so that new allocations become known to other sites more
quickly, thereby reducing the quorum size. However, these messages place an overhead on
the network, especially that they carry redundant updates.

The demarcation protocol proposed in [Barbara 92] addresses the same problem, but the
computation of escrow is based on agreement between two nodes rather than on estimation.
A limit L is associated with each item and a transaction can withdraw units as long as the
final value is above L. Two kinds of operations were introduced: safe operations which a
node uses to raise its limit and unsafe operations to decrease the limit. A node can perform
safe operations locally then inform the other nodes about the change. Whenever a node
wishes to perform an unsafe operation, it requests another node to perform a corresponding
safe operation, waits for notification, and then, it can lower its limit. The protocol for
changing limits is more complex than the GSE protocol, especially for more than two nodes,
but it yields less conservative escrow values.

2.2.10 Currency Tokens

In [Tait 92], Tait and Duchamp introduce a method for managing a replicated file system to
address the problem faced by mobile clients. They attempt to use asynchronous operations
and let the clients determine the level of consistency desired. Their model is that of a
primary-secondary server organisation. To perform an update, a client writes the update
in its cache and continues execution. The primary node performs periodic pickups from
the client’s cache and propagates the updates to the secondaries. A reliable communication
mechanism is assumed to be available. To read a file, the interface provides a loose-read
which reads from any copy with no guarantee concerning the value returned, and a strict-read
which returns “the most recent value”. However, the strict-read requires synchronisation
with at least the majority of the secondaries as well as with all caches, hence, it results in
mediocre performance. Further, to ensure consistency of the read value, every write must be
preceded by a strict-read to update a fresh copy of the file and to declare itself as a potential
writer. Therefore, although updates are asynchronous, they have to be preceded by all the
synchronised access of the sirict-read which incurs a large overhead and the benefits of the
asynchrony are lost. To reduce the cost of strict-read, an optimisation is given by offering

14

a currency token to replicas that have just performed a strict-read. A client possessing a
currency token, can read consistent data from its local cache provided that there are no
potential writers. However, this optimisation is beneficial only if writes are rare since any
write attempt will revoke the currency tokens and everybody is forced to strict-read again.

2.2.11 Coda

The Coda distributed file system [Satyanarayanan 90, Kistler 92] uses an optimistic repli-
cation protocol to manage distributed file services and support disconnected operations. It
uses the synchronous Read One Write All strategy during normal operation and allows op-
erations to occur asynchronously only if partitions occur. Synchronisation among all sites is
necessary to detect conflicts once the partition heals. It provides semantic-dependent rules
for automatic recovery of specific applications such as directories [Kumar 91a]. The scheme
aims at improving availability of the system in the face of partition rather than reducing
access time and it does not address the issue of scalability.

2.2.12 Isis

Isis [Birman 87, Birman 91] is a distributed programming toolkit that provides atomic,
interactive delivery with total or causal message ordering. It has been used to develop
many applications, including replicated file systems. Processes use a group membership
service to join and leave process groups, and a process can belong to more than one group.
Group multicast is provided using either the ABCAST totally-ordered multicast protocol or
the CBCAST causally-ordered protocol. Isis is based on virtual synchronous process groups
and ensures strong consistency of group views at the expense of latency and communication
overhead. It is therefore, unlike weak consistency mechanisms, aimed towards small systems
that must provide consistent, interactive service.

2.3 Applications using Weak Consistency

Asynchronous approaches trade availability and response time for consistency. This ap-
proach is suitable for applications that need to be massively replicated and where high
availability and performance are more crucial than strong consistency. In general, in these
applications the semantics of the operations can be used to tolerate inconsistency and it
is not necessary for every replica to observe updates immediately as long as updates are
propagated without too much delay. Many applications fall into this category and in this
section some of them are discussed.

As mentioned in Section 2.2.1 naming systems have been using asynchronous protocols since
it is more important to get a fast answer than to be guaranteed to get the absolutely latest

15

answer. It would not be tolerable for a user to be unable to lookup someone in MIT to find
their mailbox because not all the replicas in South America were known to be up-to-date.
Most changes to the naming database are non-conflicting or if they conflict they can easily
be reconciled. For instance, while updating the password or the mailbox site of a user, the
update with the highest timestamp is retained. Adding two users with the same name,
although this rarely occurs, can be solved by appending a hidden timestamp to make all
names unique. Furthér, the data is self-validating and can be treated as hints, i.e using stale
naming data at the application level is acceptable. For example, if an enquiry about the
Internet address of a server returns an obsolete value, the user can detect the error when he
or she tries to connect to the server.

Distributed information services is one of the applications that must scale to the vast num-
ber of users that can access a shared information system. For example, Archie [Emtage 92],
a directory service for Internet FTP archives, receives in the order of 100 000 queries per
day [Bowman 94]. Archie is a specialised service with a limited audience as compared to
widely-used services such as library cards and catalogues which receive around 100 queries
per second. Another example is the WAIS (Wide Area Information Service) [Kahle 91], 2
text retrieval system which covers over 255 publicly registered databases available by Inter-
net sites from around the world including: full-text papers of periodicals and conferences,
weather satellite pictures, poetry archives, an index to journals periodicals, etc. Such sys-
tems must be highly replicated to meet their scalability and performance requirements.
For instance, Archie with a dozen replicas, responds to queries in seconds on a Saturday
night, but it can take five minutes to several hours to answer simple queries during a week-
day afternoon. To yield a five-second response times during peak hours, an estimation of
1800 replicas is needed [Bowman 94]. In order to update an entry in the database of those
services, it is impractical and unnecessary to freeze large number of copies. Further, if a
user contacts a stale replica, a correct answer will be obtained, but may not be the most
up-to-date.

A typical information service that is implemented using a weak consistency protocol is the
Refdbms, a distributed bibliographic database developed at Hewlett-Packard laboratories
[Wilkes 91, Golding 92b]. A user enters a reference in one replica and the reference is
propagated to all other replicas using the TSAE protocol [Golding 92c]. Users can search
databases by keywords, locate copies of papers, and add, change, or delete references. Fields
of different entries are grouped together, and a separate reconciliation policy is used for each
group’s fields. These policies are based on message ordering delivery. For example, changes
to author-related fields overwrite old ones, while adding or deleting locations of copies can
be done in any order since they are commutative. Some operations can result in conflict,
such as adding two different references with the same tag, or changing one reference in
two different ways. These conflicts are handled by processing update messages in the same
order at every replica, i.e. in total order. While users search for references, searches need
not return completely current information; that is, eventual message delivery is acceptable
for such an application.

16

The Tattler system [Long 92], a distributed monitor for the Internet, adopts a weak consis-
tehcy replication protocol. It monitors a set of Internet hosts, measuring how often they are
rebooted and for what fraction of the time they are available. Only one operation updates
a Tattler database: merging a set of samples. When a site obtains a new sample, it logically
multicasts the sample to the other sites. Each sample represents an interval when the host
was known to be available. A sample that is being merged into a database will be either
disjoint from every other sample recorded for the same host, or it will overlap with another
sample. If it overlaps, the two samples are combined. Otherwise, the host has been rebooted
and a new interval has begun. Sample merging is commutative and idempotent, so message
ordering is unimportant as long as messages are delivered reliably.

One of the most obvious services that uses massive replication and weak consistency is
Usenet, the Internet news systems [Kantor 86]. In bulletin board applications, the main
consistency requirements are that messages generated by a node must be seen by all other
nodes in the order they were generated, and if a single node receives a message and posts
a response or a follow-up message, it should be seen by all other nodes after the original
message to which the follow-up relates. Hence, what is required is a method that can
asynchronously propagate messages generated at any node to all other nodes in a network
while respecting causal ordering of messages.

The French Civil Aviation Administration has developed a new flight plan service for air
traffic control systems in CENA ! [Queinnec 93]. The systems are intrinsically geographically
distributed and impose strict constraints on availability: a failure should never interrupt the
service and each operational site should be able to provide service even in stand alone mode.
The flight plan service is not involved in keeping planes from colliding. Instead, it maintains
the description of the flights, such as model of the aircraft, the current position of the flight,
the current speed, and it is responsible for planning arrivals, scheduling gates and so on.
The large size of the system and the high requirements of availability call for replication.
However, up-to-date information is not necessary as the fluctuation of performance is more
crucial. Controllers would like to know information about the current progress of flights
but it is useless to get the accurate position of a plane after a long delay. Therefore, weak
consistency is adopted and rumour mongering techniques [Demers 87] are used to propagate
flight data to controllers. Further, updating flight data is limited to one or few sites at a
time, and moves with time. Therefore, the degree of write-sharing is small and a new
update overwrites an old update according to a timestamp associated with the message.
The implemented system involves eight replicas but it is aimed for hundreds.

Weak consistency replication is also adequate for a mobile computing environment. If repli-
cas reside on mobile computers, the user can perform updates locally during disconnection.
When reconnected, mobile replicas will exchange updates with the other replicas. Other
applications include stock exchanges, railroad scheduling, keeping routeing tables for mobile
computing and so on.

!Centre d’Etudes de la Navigation Aérienne

17

2.4 Summary

Many replication protocols have been proposed. Synchronous protocols provide strong con- -
sistency, but they require synchronisation among a large number of replicas which imposes
limitations on performance. Recently, several asynchronous protocols have been suggested
that trade performance and availability for consistency. This approach is suitable for appli-
cations that can tolerate inconsistent or out-of-date information.

In the proposed asynchronous protocols, several limitations were found. First, only few
- of them provide eventual delivery, i.e. a guarantee that a message will be received by all
replicas despite failures. Many of them rely on the availability of reliable communication
delivery. Second, all protocols assumed that a node can communicate with all other nodes
in the system, which is unrealistic in internetworks. Third, most of the protocols involve
varying degrees of redundancy, which increases communication overhead and wastes network
bandwidth. Fourth, most of them experience a slow speed of propagation because they rely
on periodic updates. Finally, they cannot provide the user with more up-to-date information
if the results returned from the local replica are unsatisfactory.

The protocol presented in this dissertation improves on these systems by overcoming these

limijtations. In particular, it provides an efficient propagation scheme that is based on a
logical hierarchy, where a node communicates with few nodes only, while ensuring reliable
delivery. Further, it does not involve duplicate messages to be sent and relies on immediate
propagation to speed up dissemination of updates. Also, it allows locating replicas that are
more up-to-date than others, if desired.

18

Chapter 3

Hierarchical Replication Protocol
(HARP)

This chapter presents a Hierarchical Asynchronous Replication Protocol (HARP) that scales
well for thousands of replicas while ensuring reliable delivery [Adly 93b]. It provides an
efficient and scalable propagation scheme that is based on replicas organised into a logical
hierarchy. The logical hierarchy and the motivation behind choosing a hierarchical structure
are presented in Section 3.2. The propagation scheme is described in Section 3.3. A new
service interface is proposed in Section 3.4 that provides asynchronous operations, that
commit at any replica then propagate to other replicas, as well as synchronous operations
that commit after a quorum is assembled from nodes of the top level of the hierarchy then
propagate downwards. This interface gives the application the ability to select strong or weak
consistency semantics. Further, due to the hierarchical pattern of propagation, the scheme
provides the ability to offer different levels of staleness, depending upon the needs of various ‘
applications. This property is discussed in Section 3.5. Reconciliation methods based on
delivery order mechanisms are provided to resolve temporary inconsistencies, resulting from
asynchronous updates, and an application may choose from them (Section 3.6). Finally,
Section 3.7 discusses some issues regarding the design of the hierarchy.

3.1 The System Model

The system consists of n nodes connected by an internetwork. The set of nodes is denoted
- by N. Nodes communicate by exchanging messages; there is no global shared memory. Pro-
cessors may fail then restart, however, fail-stop processors [Schlichting 83] only are assumed
and Byzantine failures [Lamport 82] do not occur. Nodes communicate using point-to-point
and multicast messages; the latter may be transmitted using multiple point-to-point mes-
sages if no more efficient alternative is available. The underlying communication network is

19

level . b

rh
2 50
Cizz | C122 Ci21 as \ Cn2 Ci11
3 669 G0 (@) G0 CHRDECS

‘%pzpl Wu, 552 8 B pn hyhhi & 81 K LA ¢ ¢ @B eer d3d2d1

Figure 3.1: 40 nodes organised in a hierarchy of three levels

unreliable: it may lose or duplicate messages and does not guarantee any order of delivery.
However, it is assumed that messages are received incorrupted. Link failures can cause the
network to be partitioned. These partitions are eventually merged again. Messages are
delayed due to transmission over the network, but a finite delay is assumed. Therefore, a
node can eventually send a message to any other node by retransmitting the message if it
does not receive an acknowledgement after a certain timeout period. Each node has a local
clock, but clocks are not necessarily synchronised.

3.2 The Logical Hierarchical Structure

Replicas are organised into a logical, multilevel hierarchy. In this hierarchy, nodes are
grouped into clusters, and clusters are organised into a tree, such that each cluster is assigned
a parent node in its parent cluster. Figure 3.1 shows 40 nodes organised into a hierarchy of
three levels 1. Nodes in the same cluster, referred to as neighbours, have fast and efficient
communication between them as well as with their parent. The parent, neighbours and
children of a node are together referred to as its correspondents.

The idea of adopting a logical hierarchical structure has been based on the following grounds:

e Existing replication protocols do not scale well because they manage replicas as a
single, flat group of nodes requiring a node to communicate with all other nodes, which
is unrealistic for wide area networks where replicas are geographically dispersed. On
the other hand, within a hierarchy, a node communicates with few nodes only which

11t should be noted that the cluster names used in the figure are for clarity of exposition only and do not
imply a hierarchical naming scheme

20

reduces message traffic, improves latency, reduces the amount of information kept,
balances the load among the nodes and enhances scalability of the system.

o It is desirable to provide strong consistency while limiting synchronisation to a small
number of nodes to achieve an acceptable performance. This can be realised by des-
ignating the nodes in the top cluster of the hierarchy as the nodes from which syn-
chronous operations assemble quorums.

e It is desirable to design an asynchronous replication protocol that can provide the user
with different levels of staleness. This cannot be done if propagation relies on random
patterns since there will be no way to distinguish copies that are more up-to-date than
others.

¢ By fixing the pattern of propagation; the scheme can ensure reliable delivery with no
redundancy which makes efficient use of the network bandwidth. Further, this can be
achieved while relying on immediate propagation, rather than delayed propagation,
which speeds up the diffusion of updates.

e While restructuring the network, due to a node joining or leaving the group of replicas,
it is possible to limit the network traffic and the general overhead associated with the
reconfiguration to the nodes belonging to the cluster the node is joining or leaving,
rather than all nodes in the network. This issue will be addressed in detail in Chapter 4.

This idea has been supported by the observation that large scale networks (internetworks)
are usually connected in a hierarchical fashion. For instance, the JANET network in the
UK, has a mesh of 8 NOCs (Network Operation Centres) densely connected, forming the
backbone. Sites of regional networks are connected radially (as a star) to their NOC and
they feed local nodes connected in local area networks. The same applies to the Internet.
In a recent study measuring the performance of transaction message delivery in the Internet
[Zhang 94], it has been shown that communication delays follow a hierarchical behaviour.
By measuring the message round-trip times over 2000 hosts on the Internet, the results
have shown the clustering effect in the Internet topology: hosts in the same local network
have similar round-trip time (around 100 us to 10 msec) and variation between any two
hosts is very small. Further, communication between one site to many different sites in
another local network have similar performance (around 100 msec to 10 sec) which could be
represented by a major host of that network. Similar results were reported in [Golding 91].
Therefore, the logical hierarchy should be built to reflect the physical topology, grouping
nodes that have fast and efficient communication into one cluster in order to exploit localised
communication. For instance, nodes connected through the same LAN would belong to the
same cluster at a low level of the tree and nodes in the backbone would form the top cluster
of the hierarchy.

21

3.3 The Propagation Scheme

Classic propagation schemes fall into two categories: flooding techniques, and probabilistic
techniques. The Internet news (Usenet) [Kantor 86] uses the flooding approach to distribute
updates among its thousands of replicas. The propagation is based on the notion of “up-
stream” and “downstream” sites. A site can attache itself to one or more sites and start
receiving news feeds from them. The receiving site becomes a “downstream” site for the
sending “upstream” sites. To eénsure message delivery if failures occur, a node attach itself
to more than one “upstream” sites, receiving simultaneous feeds from them, and then elim-
inates duplicates. The flooding approach suffers from incurring a large number of messages
and lots of redundant traffic which wastes network bandwidth.

The probabilistic technique has been used by most of the previous weak consistency protocols.
The technique relies on delayed propagation, where nodes exchange status and new messages
periodically in sessions. Partners in these sessions are selected from a probabilistic function.
These protocols assume that a node can communicate with any other node. This would be
acceptable for small networks with a few replicas, but it will incur a large communication
overhead for wide area networks. Further, since a node sends not only messages it originates,
but also messages it has received from other replicas, there is redundancy with varying
degrees.

In HARP, the propagation scheme is based on the logical hierarchy described in Section 3.2
and is very simple: a node i, originating a message, sends it to its neighbours, parent and
children. Each receiving node j passes the message to the next level as follows: if the message
comes from a neighbour or from the parent, then j sends the message to its children; else,
if it comes from a child then j sends it to its neighbours, its parent and to its children
of clusters other than the one the message is coming from. This works recursively and a
message originating at any site will eventually propagate everywhere. Figure 3.1 shows the
path that a message would follow while propagating if it originated at node d.

In the following, the data structures used are described. Then, the details of the propagation
algorithm are presented.

3.3.1 Data Structures

The protocol requires each node to maintain a set of data structures which are assumed to
be kept on stable storage to survive failures. The set of data structures kept at node i are
summarised in Table 3.1.

o A Log keeping the set of messages received. When a message m is received, it is added
to the Log, then it is removed only if it has been reliably delivered everywhere and if
it has been applied to the local database.

22

Log; Log of all messages received

VV; Version vector

LL; Vector of linked lists

AckM; | Acknowledgement matrix

View; | Structure describing the hierarchy

Table 3.1: Data structures kept at node 7 in HARP

Log; = list of (uid,m,p1,ps), where

- uid is a unique identifier assigned to the message m by its originator,
, uid=(m_org,m_seq), where
- m_org is the node id that originated m, and
- m_seq is the value of a counter kept by node m_org and incremented by 1
to generate a new uid '
- p1 is a flag set to 1 if the message has been applied to the local database, and
- p2 is a flag set to 1 if the message has been already delivered to all nodes.

A message can be purged from the log only when both flags are set to 1.

e The node status, which records what updates it has received so far from other nodes
in the network. It consists of:

— VV;, a Version Vector of dimension n, where VV;[j] = k means that node ¢ has
received all messages which originated at § up to message number k.

— LL;, a Vector of Linked Lists of dimension n, where LL;[4] is a linked list keeping
the uid of messages received from node j out of FIFO order. LL; will be empty
-if all messages are received in FIFO order.

VV and LL are updated upon the generation or receipt of any message. When a
node % generates a new message, V'V;[i] is incremented by 1. When a node i receives
a message m that originated at node j, it increments V'V;[4] if m is received in FIFO
order. Otherwise, the uid of m is inserted in LL;[] until the missing messages arrive.
VV and LL represent the history of what messages the replica has received. They
are used by the reconciliation methods as well as by the reconfiguration algorithms
to determine which messages are missing from a node. Also they are used to detect
duplicate messages.

AckM, an Acknowledgement Matriz, used to tell what messages other nodes have
received so far. It is of dimension n — 1 x n and will be used to purge the log. If
AckM;[j,v] = 1 this means that node i knows that node j has learned of all the

23

messages that have originated at node r up to message number I. Basically, row j in
AckM; is a copy of V'V; as seen by i. AckM is similar to the 2DTT used in [Wuu 84].

e View;, describes the view of the hierarchy as seen by 4. It is a table of n rows kept in
each node. Each row j includes:
- Cid, the cluster id 5 belongs to,
- P, the node id of j’s parent,
- Child_Cids, the set of cluster ids that are children of j,
- up, a flag set to 1 if the node j is up; 0 otherwise, and
- r_seq, a sequence number assigned by j.

View = list of (row)
row = list of (Cid, P, Child_Cids, up,r_seq)
Child_Cids = list of (cluster ids)

Table 3.2 shows part of View for the logical hierarchy shown in Figure 3.1 as it should
appear at each node. In the rest of the dissertation, View;.a will be used to denote the row
of node a in the View of node 7 and fields of View will be referred to as follows:
Vz'ew,-.a.Cz'd = 01, Vz'ewi.e.Chz'ld_Cz'ds = {0112, 0113}, and so on.

| Node | Cid | P | Child_Cids |

a Ci |- |Cn

c Cy |- |Cis

d Cu |a | Cin

e Cu | a | Cu2,Cus
f Cu |a | Cug

dy Cua | d |-

d |Cu|d]|-

Table 3.2: A part of the View data structure

The hierarchy and the locality of propagation allows for optimisations to reduce the size of
AckM from O(n?) to O(n), to purge the Log more quickly and to reduce the size of the
View structure. This issue will be discussed in detail in Section 4.6.

It should be noticed that vector and matrix notations have been adopted to describe the
data structures used for simplicity of exposition, and for consistency with the literature.
Since the size of these structures is dynamic, and since each entry needs to be associated
with the corresponding global node identifier, a functional notation would have described
the structures more precisely. However, in order to retain the terminology of the literature,
for example TSAE, OSCAR, Isis, etc, it was decided to use vector and matrix notation.

24

3.3.2 The Propagation Algorithm

The propagation protocol relies on the hierarchical structure for sending messages to other
nodes while ensuring eventual reliable delivery. Basically it works as follows: a node i,
originating a message m, increments its entry in V'V; and assigns m the next uid. Next,
1 stores the message in Log;, sends the message to its neighbours, parent and children
and waits for acknowledgements (timeouts and retransmissions are used to overcome lost
messages). Also, it applies the update operation to the database, when the reconciliation
method allows it, and sets p; for m in Log; to 1. Each node j receiving a message checks if
it is a duplicate, and if so, discards it. Then, it updates its V'V; and LL; from the uid of the
message, inserts the message into Log;, and sends an acknowledgement to the sender. Node
J proceeds in propagating the message such that, if the message comes from a neighbour
or the parent, then j sends the message to its children; else, if it comes from a child then
J sends the message to its neighbours, its parent and to its children of clusters other than
the one the message comes from. Finally, it applies the update to the database according
to the reconciliation method associated with the data item. This works recursively and a
message originating at any site will eventually propagate everywhere. Steps taken by a node
originating or receiving a message for propagation are described in Figure 3.2.

From the fixed hierarchical pattern of propagation that messages obey, it follows that: If
any node originates a message m and if no failures or reconfiguration occur, then following
the above protocol, m will be reliably delivered to every node in the network and every node
will receive m only once.

Periodically, each node propagates its V'V, if it has changed since the last period, using the
above propagation scheme. When a node i receives such a message from node 7, it updates
row j of its AckM such that AckM;[j, k] = Max {AckM;[j, k], VV;[k]} for k =1 to n.

To purge unneeded messages from the log, each node ¢ summarises what other nodes know
by forming a vector min_ack such that min_ack[k] = Min; {AckM;[j,k]} for k£ = 1 to n. So,
if min_ack[k] = g this means that all nodes have received and acknowledged all messages
initiated from node & up to message number g. Therefore, node i sets p, to 1 for all messages
in Log; with uid = (k,m_seq), where m_seq < min_ack[k]. A message is purged from the
Log when both p; and py are set to 1. This ensures that messages are not deleted unless
they are no longer needed by any site (including failed or isolated nodes) and they have
been applied to the local database. As mentioned before, messages can be purged from the
Log more quickly, relying on the fact that a node communicates with a few nodes in the
hierarchy, as will be discussed in Section 4.6.

The described propagation scheme scales well for a large number of replicas and is well suited
to wide area networks. This is due to the fact that each node has to communicate with only
a few nodes (its neighbours, parent and children). Therefore, this scheme reduces message
traffic, produces low communication overhead, limits propagation delay and balances the
load among the nodes. Further, the scheme ensures that each node receives a message only

25

When a node 7 initiates an update m

{

increment VVj[i];

stamp m with uid = (i, VV;i[i]);

insert m into Log; (with p; =p2 =0);

perform the operation on the database and set p, = 1;

send m to j, where j= View;.i.P AView;jup=1;. /* parent */

send m to j, Vj: View;.j.Cid = View;.i.Cid # null AView;.jup=1; [* neighbours */
send m to j, Vj: View;.j.Cid € View;.i.Child Cids A View;.jup=1; [* children */
set timeouts to retransmit the message if acknowledgements are not received;

}

When a node j receives a message m with uid = (m_org,m_seq) from node i:

{

If VVj[m_org) > m-seq or m_seq € LLjim.org] Then
discard m and stop; /* duplicate message */
If VVj[m-org]+1=m_seq Then { /* m is in FIFO order, update V'V;[m_org] */
increment VVj[m_orgl;
~/* check LL;[m_org] for messages that are now in the right order to mcrement VVj[m_org] */
While m_seq in the head of LLj[m.org] = VVj[m_org]+1 {
increment VVj[m_org];
delete first entry in LL;j[m_org];
} .

}
Else /* m is out of FIFO order */

insert m.seq into LL;[m_org] in ascending order;
insert m into Log; (with p; =p2 = 0);
send acknowledgement to %; ‘
If i = View;.j.P or View;.i.Cid = View;.j.Cid Then
/* i is a parent or a neighbour, send m to all children */
send m to k, Vk: View;.k.Cid € View;.j.Child_Cids A View;.k.up=1;
If View;.i.Cid € View;.j.Child_Cids Then {
/* i is a child, send m to neighbours, parent and children of other clusters */

send m to k, where k = View;.j.P A View;.kup=1; /* parent */
send m to k, Vk:View;.k.Cid = View;.j.Cid # null A View;.kup=1; [* neighbours */
send m to k, /* children not in #’s cluster */

Vk:(View;.k.Cid € View;.j.Child_Cids) A (View;.k.Cid # View;.i.Cid) A View;.k.up = 1;
}
set timeouts to retransmit the message if acknowledgement are not received;
perform the operation on the database and set py =1 ;

}

Figure 3.2: Steps taken by node i upon originating or receiving a message for propagation

26

once; hence, there is no redundancy and the network bandwidth is used efficiently. Also, the
mechanism relies on nodes sending messages immediately (i.e. immediate propagation rather
than delayed propagation) which increases the speed of propagation. Finally, the system is
fully asynchronous; that is, it does not block the sender until remote delivery occurs.

3.4 Levels of Asynchrony

Different applications require different degreesl of consistency. Therefore, applications should
be given the ability to choose the level of consistency that is appropriate for their particular
semantics. As it has been pointed out recently in [Terry 95], current replicated data models
lack the ability to provide the applications with some degree of control over the tradeoffs
between consistency and performance.

HARP supports a set of operations that provide different levels of asynchrony allowing
strong and weak consistency to be integrated into the same framework. Hence, it gives the
application the flexibility to tailor the service to achieve the required degree of consistency
by choosing the appropriate operations to manage its data. More specifically, the protocol
supports the following operations:

Fast_Write: a Fast_Write can be initiated and committed locally at any replica (the site
of origin), and then propagated to other replicas using the propagation scheme.

Fast_Read: a Fast_Read returns the value read from any replica. It is associated with a
parameter r.node denoting the node to read from. The default of r_node is the local
node. If r_node is not the local node, then the local node sends the read request to
r_node which performs the read and returns the results to the local node.

Slow_Write: a Slow_Write can be initiated by any replica; but does not commit until a
quorum has been assembled from the root nodes at the top of the hierarchy.

For node 7 to perform a Slow_Write, it sends the message to its ancestor node j in the
top cluster, which acts as a coordinator. The coordinator assembles a quorum from its
neighbours (using majority quorum consensus or any other standard method). Once
the coordinator decides to commit, it assigns the message the next uid and sends
commit to its neighbours and to the origin node i. Each node in the top cluster
starts propagating the message by passing it to its children, excluding node . Node %,
receiving commit from the coordinator, updates its V'V and LL, inserts the message in
Log;, applies the operation on the database then proceeds in propagating the message
to its children.

Slow_Read: a Slow_Read returns the value read from a quorum of nodes of the top cluster.
A node ¢, wishing to perform a Slow_Read, sends the request to its ancestor node j in

27

the top cluster. Node ;j assembles a quorum from its neighbours and returns the read
value to <.

Opt_Write: an Opt_Write is similar to Slow_Write, but it is applied to the database of the
site of origin and, optionally, to some other selected replicas (called optimistic nodes)
before commitment. However, these updates are subject to being undone if while
assembling the quorum at the top level, the decision was to abort the update. Then,
every replica that has done the update must undo it.

This update is associated with a parameter opi_nodes denoting the set of optimistic
nodes that apply the update before committing. These nodes usually are nodes in
the neighbourhood of the origin node that like to observe the update as soon as it
originates.

A node ¢ wishing to perform an Opt_Write, applies the update on the database and
returns control to the user. Then, it sends the message to the set of nodes opt_nodes
as well as to its ancestor node j in the top cluster. An optimistic node receiving the
message, executes the update. Node j, acting as a coordinator, assembles a quorum
from its neighbours. If j decides to commit, then it assigns the message the next
uid and sends commit to its neighbours, to the origin node i and to the optimistic
nodes. Each node in the top cluster starts propagating the message by passing it to
its children, excluding the origin and the optimistic nodes. The origin node or an
optimistic node receiving a commit, updates its V'V and LL, inserts the update in its
Log and proceeds in propagation. Any other node will receive the update message
through normal propagation; it updates its VV and LL, inserts the message in the
Log, applies the operation on the database and proceeds in propagation. If j decides
to abort the update, it sends an abort message to the origin node and optimistic nodes
which then undo the update.

Slow_Write should be used by operations that are likely to result in conflict and where no
conflict reconciliation is acceptable, such as some banking applications. Slow_Read, if used
in conjunction with Slow_Write, will return the most up-to-date value. Opt_Write can be
used by operations that require fast response and that conflict with very low probability;
however, if conflicts occur their semantics can accept an abort. For instance, in air line
reservation, the semantics can be used to provide site autonomy by associating an integrity
constraint with the reservation operation; e.g. :
If number of available seats > 10 Then use Opt_write
Else use Slow Write

The probability of abort could be reduced by increasing the bound on the constraint. Other
applications can use Opt_-Write such as stock ordering, adding a user name in a naming
service and so on. Also, it can be used instead of Slow_Write if a partition occurs, allowing
operations to proceed; however, again, they should be ready to abort when the partition
heals in case conflicts occur.

28

If an application restricts all its operations to Slow_Write and Slow_Read, then strong con-
sistency (strict serializability) is achieved. It should be noticed that, by setting the number
of nodes in the top level to n, this will be equivalent to the conventional majority quorum
consensus method, or whatever standard technique is used to reach consensus. However,
by assigning the top level an adequate number of nodes, this scheme will result in better
availability than the primary copy method and better latency and communication overhead
than the usual quorum consensus methods since the number of nodes to synchronise with is
small. Applications that require a lower degree of consistency i.e. weak consistency can use
Fast_Write, Fast_Read and Opt_Write which offer better performance since they are executed
locally.

Combining strong and weak consistency has been introduced in the Cambridge Universal
Name Service (UNS) [Ma 92]. A two-class name service infrastructure is proposed, where
replicas are divided into first class servers and secondary servers. The first class replicas
run a synchronous replication protocol based on quorum consensus [Lamport 89), while the
secondary servers run the epidemic anti-entropy protocol [Demers 87]. Only the first class
servers are allowed to carry out updates. Secondary servers are updated asynchronously by
the first class servers through a two-way communication: the firsts use call-back to push
recent updates to the seconds; and the seconds contact the firsts periodically to pull new
updates and refresh their copies. Secondary servers are used as read-only copies, which may
return out-of-date data. The system provides the client with the ability to get the most
recent data, if desired, by reading a quorum from the first class servers. These guarantees
are similar to the ones provided in HARP by the Slow_Write, Slow_Read and Fast_Read
operations.

3.5 Levels of Staleness

Due to the hierarchical pattern of propagation that the updates follow, the scheme provides
the ability to locate replicas that are more up-to-date than others, depending upon the
needs of various applications. Therefore, Fast_Read can be used to provide different levels
of staleness by reading from replicas at different levels in the hierarchy.

More specifically, assume L is the number of levels in the hierarchy and D is the estimated
delay (in time units) required to send a message from a node to its neighbours, parent or
children. If a Fast_Read from a node at level [is used in conjunction with Slow_Write, then
the returned value will be at most D(I — 1) time units in divergence (stale) from the most
up-to-date value and will be D time units stale from nodes at level (I —1). This feature gives
the application the ability to provide different levels of services: querying from higher levels
of the hierarchy is likely to give better service (more recent information) than querying lower
levels, which may have slightly older data. If a Fast_Read, performed at a node in level I,
is used in conjunction with a Fast.Write or an Opt_Write, then the answer will be at most
(L +1—1)D time units in divergence from any other node. This allows a node at a low level

29

to have a better bound on the staleness of an item by querying nodes in higher levels. Also,
the information read at the nodes in the top level will be at most LD stale. Further, each
node will be at most D time units in divergence from its neighbours, parent and children.
This statement can be used recursively by a node to compare itself with other nodes in its
physical proximity. '

The usefulness of these features is application dependent. Applications in which updates
of interest are local can observe recent updates by reading from the local node or nodes
in the local subtree, and those which need a global view should query higher levels. For
example, in a flight plan service of an air traffic control system such as the one developed
at CENA [Queinnec 93] (see Section 2.3), controllers need to know information about the
current progress of flights which are still many hours away so that they can plan arrivals,
schedule gates and so on. However, the further (in time) controllers are from the current
position of a plane, the less precision they need. Therefore, in order to carry out short-term
planning, the needed flight plan data are those of the planes in their local sectors and they
may also need to consult information about the neighbouring sectors. To perform long-
term planning, more distant sectors need to be consulted in order to get a more global view.
Such an application may benefit from HARP by reading from different levels of the hierarchy
depending upon the kind of information needed. The same applies for other applications
such as monitoring the status of the network, weather forecast systems, scheduling trains
and so on. Also, it could be useful for operations that are associated with a condition, such
as requiring to read a replica updated to a certain timestamp, or if the data is self-checking
e.g. looking for the Internet address of a server or searching for a specific reference in a
bibliographic database. In these cases, if the results obtained locally are not satisfactory,
then replicas in higher levels could be contacted to get the desired data. ’

3.6 Reconciliation Methods

Fast_Write can create temporary inconsistencies because multiple users can update different
replicas simultaneously. Techniques for resolving conflicts depend on the semantics and the
requirements of the applications. In HARP, several reconciliation methods are provided,
based on delivery order mechanisms, and an application developer may choose from them.
Each data item (or parts of the database) should be associated with one of these methods
according to the update semantics of the data. HARP provides reconciliation methods that
support the following orders: ‘

Unordered: For some applications, all updates are commutative and associative. For
example, in the Tattler system [Long 92], a distributed monitor for the Internet, op-
erations are commutative and do not conflict (see Section 2.3). Similarly, for some
systems, certain data items can only be incremented or decremented. In this case, a
node can apply the update to the database as soon as it is received as the order is

30

irrelevant.

Latest-wins order: In this method, a new update overwrites an old value and an update

trying to overwrite a more recent version is ignored. The View structure, used to
describe the logical hierarchy, is one example of replicated data that uses this method. -
As will be seen in Chapter 4, when the row of node 7 changes in the View due to
reorganisation, node j propagates its row in an update_view message, to inform every
other node of the change. An update_view message is delivered only if it is a new
update. Since by the nature of the algorithm only node j can propagate its own
row then the r_seg field, which is a counter incremented by j for each change, can
be used to decide whether the incoming message is new or old. This method is also
appropriate for other applications such as updating a mail-box of a user, or updating
the current location of a plane and so on. In the case where any node can update
the data item, global timestamps based on synchronised clocks should be used to
decide whether the update is new or old. Grapevine [Schroeder 84], the Global Name
Service [Lampson 86], and the CENA air traffic control system [Queinnec 93] use such
a method to resolve inconsistencies.

FIFO order: In this method, messages originating from the same node are delivered in

order but messages from different nodes may be delivered in any order. So, a node j
should deliver a message originating from node 7 only if all previous messages originat-
ing from node 7 have been delivered. This method is useful for applications where a
replica has autonomous control over its data items; that is, it is the only one updating
this particular data item, however, these items should be read by other replicas in
order.

Guaranteeing FIFO order is relatively simple. The basic idea is to number the messages
at the source and to have destination sites deliver the messages in that order. With
HARP, this delivery order is supported as follows: a node j receiving a message with
uid = (i,k), delivers the message to the database only if VV;[i] + 1 = k; otherwise
inserts it into Log; for later processing, when the missing messages arrive. That is,
a received message is not delivered immediately, but its delivery is delayed until the
condition is satisfied.

Causal order: If two messages are causally related (one causes the other) [Lamport 78]

then they are delivered in the same order at every node. But if not, they may be
delivered in different orders. Mailing and news systems are among applications that
can use this ordering as it will ensure that no user will see a reply for a message before
seeing the message itself. In [Liskov 91, Ladin 90], some applications are suggested
that can use causal order such as garbage collection in a distributed heap and locating
movable objects in distributed systems. This ordering is of particular interest and it
will be addressed separately in Chapter 5.

Total order: Causal order places no constraints on the relative delivery ordering of con-

current events while total order does. With total ordering, messages are delivered in

31

the same order at every node and causal relations between messages are preserved.
This is the strongest order; it is more costly than causal ordering, thereby requiring
synchronous solutions.

Many methods have been suggested in the literature for supporting total order. Chang
and Maxemchuck’s [Chang 84] approach is that all sources transmit messages to a
central site, which assigns sequence numbers to messages and forwards them to the
destination sites, which deliver them following the order assigned by the central site.
The central site is identified with a token, and this token circulates through the system.
However, this approach does not scale. A similar approach has been used in [Ladin 90].
In Isis [Birman 91], the protocol relies on a coordinator (token-holder) and uses two
causal messages: one to send the messages and the second is sent by the token-holder to
indicate the order in which messages should be delivered. This protocol is quite costly
as it requires an extra message (order message) to be broadcast for each totally ordered
message sent. Further, these protocols suffer from the drawbacks of the centralised
approach.

In TSAE [Golding 92c], the approach relies on delaying the message delivery until the
replica guarantees that no messages with lesser timestamp will be received, which
happens when the timestamp associated with the message is less than or equal the
minimum timestamp in the summary vector. The disadvantage of this scheme is that
messages suffer from a long delay until delivered: if a node does not send any messages
for a while then all messages generated during this period at all other nodes will not
be delivered. Further, it relies on synchronised clocks which is hard to achieve in a
large scale system. Finally, it does not respect the potential causal relations. Not all
solutions are reviewed here; related work can be found in [Cheriton 85, Kaashoek 89,
Melliar-Smith 90, Garcia-Molina 91].

Total order delivery is supported in HARP by treating the message as a Slow_Write:
a node requiring to send a totally ordered message, sends the message to its ancestor
node in the top cluster, nodes of the top level vote to agree on the sequence number
(order) to give to the message. A majority of votes is enough to select a unique number.
Then, the message is propagated down the tree using the usual propagation scheme
and every node has to deliver it to the database according to the sequence number
assigned by the top level. This method is similar to the one suggested by Birman and
Joseph in [Birman 87]. However, in their method all nodes have to vote to agree on a
unique sequence, as opposed to nodes in the top cluster only, which results in a large
number of messages and increased delay which degrades performance.

3.7 Discussion

Designing the logical hierarchy is an optimisation problem that should take several factors
into account, such as minimising the delay and cost of communication; taking into consid-

32

eration the underlying topology, minimising the number of levels in the hierarchy to limit
the propagation delays, balancing the load evenly among the nodes and selecting an ade-
quate number of nodes for the top cluster. Also, nodes with higher capacity and reliability
are better placed in higher levels of the hierarchy since they may be assigned more load.
Another factor that might need to be considered is the volume of the traffic generated by
the applications. One should aim at producing a balanced tree in the sense that the volume
of messages generated from any sub-branch at the same level is roughly the same. Further,
if there are a set of nodes that are expected to generate a higher rate of transactions than
others, then those nodes might be better placed in higher levels of the hierarchy. In this
way, they will get better response while using synchronous operations, will provide higher
speed of propagation while using Fast_Write and will read more up-to-date data while using
Fast_Read.

This is a complex problem since it depends on many factors, some of them are contradictory.
Algorithms studying possible solutions need to be devised and evaluated. This topic is not
addressed here as it is beyond the scope of the dissertation. In Chapter 6, different physical
and logical topologies are evaluated just to illustrate their impact on performance and to
give broad guidelines on the construction of the hierarchy. In the rest of the dissertation, it
is assumed that an ezternal service exists that is responsible for determining which nodes
are grouped into which clusters as well as deciding which changes are to be made to the
hierarchy to cope with the dynamic characteristics of the network. The output of this service
can be fed to the reconfiguration protocols presented in Chapter 4 to build and restructure
the hierarchy.

A similar service is studied by Katia Obraczka as her Ph.D. topic [Obraczka 95]. She
proposes extending the TSAE protocol by organising replicas into hierarchical replication
groups imitating the Internet hierarchy and replicas select their anti-entropy session peers
from their logical neighbours. The architecture proposes a physical topology estimator that
probes the underlying physical network and estimates its characteristics. Based on the
estimated physical topology, the architecture builds automatically hierarchical logical update
topologies that are k-connected for resilience, minimise the communication costs, have a
limited diameter and reduce duplicate updates. The solutions rely on heuristic methods
based on graph theory. Changes in the physical topology (such as node or link failures,
network partitions, link congestion and so on) are detected periodically and a new logical
topology is recomputed accordingly. Experiments are carried out to validate and evaluate
the physical estimator for 12 Internet sites. Also, the logical calculator is evaluated and
tuned over several physical topologies for different objective functions.

The idea of adopting a logical hierarchical structure has been suggested recently in [Bowman 94],
where problems facing scalable resource discovery in the Internet have been discussed. It has
been pointed out that a major problem is that existing replication protocols ignore network
topology and that it is necessary to manage replication in groups that exploit the hierarchi-
cal structure of the Internet. The same idea has been used recently in [Dine 94, Renesse 95]

33

for scala,bility reasons but for addressing a different problem, namely, multicasting and
broadcasting in internetworks.

3.8 Summary

This chapter has presented a new protocol for managing massively replicated data based
on a logical hierarchy. It provides an efficient propagation scheme where each node has to
communicate with only a few other nodes, typically those in its physical proximity, thus
reducing communications overhead, improving latency and making the scheme scalable.
Further, it ensures reliable delivery with no redundancy.

A new service interface is proposed that provides different levels of asynchrony allowing
strong and weak consistency to be integrated into the same framework and gives the appli-
cation the ability to select between them. Further, the service provides the facility to offer
different levels of staleness, depending upon the needs of various applications, by querying
from different levels of the hierarchy. Finally, it allows the application to select from a
number of reconciliation methods based on delivery order mechanisms to resolve conflicts.
Therefore, the protocol provides a choice of service guarantees and gives the application
developer the flexibility to tailor the service to achieve the required degree of consistency
by choosing the appropriate operations to manage the data. It is then up to the application
developer to present the user with a simple interface, while hiding from the user the details
of the HARP’s service interface.

34

Chapter 4

Restructuring the Hierarchy

4.1 Introduction

Restructuring operations provide mechanisms for a node to, dynamically, join or leave a
cluster, to move from one cluster to another, to create or destroy clusters, to merge or split
clusters and so on. These operations are necessary to build the tree, expand it, reorganise
it to cope with performance problems such as node crashes, link congestion, partitions, and
so on. The decision by which a node joins or leaves a cluster is not of our concern. But
the manner in which the protocol deals with membership information of a node as well as
ensuring that messages are not lost as a result of a reorganisation are relevant.

HARP provides four basic operations to reorganise the logical hierarchy, namely for a node
to join, leave, initiate or destroy a cluster, while ensuring that no messages are lost and that
the data structures are updated correctly to reflect the change [Adly 93a]. The operations
are completely distributed, with no centralised components. Further, they do not rely on
synchronisation with all nodes, nor on two- or three-phase commit protocols to perform
the change. Instead, they rely on a weak consistency approach, that allows temporary
inconsistencies to develop in the view of each node but guarantees that all replicas eventually
converge to a single consistent view when the system stabilises and changes cease. This is
achieved while incurring a low communication overhead and ensuring no loss of information.

The basic idea behind the protocol, is that a change in one cluster does not affect the
operation of other clusters and that the View structure -which reflects a node’s view of the
hierarchy- can be considered as a replica that does not always need to be seen consistently
by all nodes. For instance, if node ¢ needs to make a change (e.g. leave or join a cluster),
it does not have to wait for replies from all nodes in order to commit the change. Instead,
it negotiates with the affected nodes only, i.e. the parent and the members of the cluster
that ¢ is leaving or joining. Each node j involved in the change alters its View to discard
or include 7 and sends an acknowledgement to <. When these nodes have acknowledged the

35

change, the operation is completed. Nodes in other clusters need not know about the change
immediately since they are not communicating directly with i. Therefore, ¢ can propagate
its updated row View;.i, using the usual propagation scheme, and eventually everybody
will be informed of the change. This feature enhances autonomy, reduces network traffic
and enables dynamic reconfiguration without disturbing normal operations which make the
scheme suitable for wide area and mobile systems.

The problem of joining and leaving a set of nodes has been addressed in the literature as com-
munication group membership for multicasting and broadcasting. Most of these protocols
provide consistent views of group membership; that is all nodes observe changes to the mem-
bership in the same order. For instance, group membership in Isis [Birman 87, Birman 91] as
well as in [Cristian 91] are built on top of atomic broadcast protocols imposing total order-
ing. In [Ricciardi 91], two- and three-phase commit protocols are used to maintain consistent
group views. The Arjuna system [Little 90] maintains a logically centralised group view via
atomic transactions. These protocols suffer from high latency and communication overhead.
Further, they suppress sending of new messages during a significant portion of the protocol.

In [Golding 92c], weak consistency membership protocols are presented that rely on chains
of anti-entropy sessions to inform all nodes that a replica is joining or leaving the set of
replicas. However, since sessions are performed periodically, this approach suffers from a
long delay until nodes are informed about a certain change, including nodes in the local
neighbourhood. Further, the leave operation is completed only when the leave request has
been observed by all nodes, which results in a significant delay. Meanwhile, the leaving node
cannot send any new messages.

Our protocol adopts a weak consistency approach and relies on the logical hierarchy to
limit the reconfiguration overhead by confining the changes to the nodes grouped in the
same cluster. Hence, it reduces the network traffic and the general overhead associated with
reconfiguration. In Section 4.2, the four basic operations will be described. Their proofs of
correctness are presented in Appendix A. Section 4.3 shows how these operations can be
used to form composite operations and to reconfigure the hierarchy. Methods for handling
failures and partitions are discussed in Section 4.4. Section 4.5 presents optimisations that
reduce the overhead of some of the composite operations. Finally, optimisations concerning
space and storage are discussed in Section 4.6.

4.2 Basic Operations

HARP provides four basic operations that allow the hierarchy to be reconfigured:
e leave: a node leaves its present cluster; keeping all its descendants, '
e join: a node joins a cluster; keeping all its descendants,
e initiate: creates a new empty cluster, and
e destroy: destroys an existing cluster.

36

Figure 4.1 shows a part of the hierarchy if node d leaves Ci; then joins again, and vice versa.

b 4 b

c C a
@} C1 @> C4
d leave
—_—
d join

Figure 4.1: The hierarchical structure when node d leaves Cj; then joins, or vice versa

Each node 7 keeps two variables:

e status; describing the status of node ¢, which is set to
- normal while ¢ is not performing any restructuring operations
- leaving while ¢ is performing a leave operation
- joining while 7 is performing a join operation

e old_cl; denoting the cluster id that ¢ is leaving. It is set to null while 4 is not performing
a leave operation.

The following definitions will be used along this chapter:

e A node p is the parent of cluster C; if C; € View,.p.Child_Cids

e A node ¢ is a current member of C; if View;.i.Cid = C, and status; = normal
® A node i is a leaving member of Cy if old_cl; = C; and status; = leaving

¢ A node i is a joining member of C; if View;.i.Cid = C; and status; = joining

In general, when a node j changes its row in View; (because it has performed one of the
restructuring operations), it propagates an update_view message containing its updated row
View;.j. Since messages can arrive to node i from node j in different orders, j increments
View;.j.r_seq before propagating the update_view and this will enable the latest update
from j to be kept. That is, when node i receives update_view containing View;.j, then i
checks: if View;.j.r_seq > View;.j.r_seq, then it discards the message as it is an old update.
Otherwise, it replaces View;.j by the new row as received from the message.

Node ¢ needs to keep some of the following (temporary) lists while it is performing a re-
structuring operation:

37

e join_list; contains the set of nodes i has to join with.

joinlist; = list of (7,flag:, flags), where
- j is the node to join with,
- flag; is a flag set to 1 if j acknowledged the change; 0 otherwise, and
- flago is a flag set to 1 if i has received from j the messages ¢ asked for; 0 otherwise.

e leave_list; contains the set of nodes ¢ is leaving. They are kept in the list until they
acknowledge that 7 is no longer in their View.

leave list; = list of (j,flag), where
- j is the node i is leaving, and
- flag is a flag set to 1 if j acknowledged the change; 0 otherwise.

e msg_list is a list of uids of the messages ¢ has asked other nodes for.

4.2.1 ' The LEAVE Operation

A node i leaves its cluster by executing a leave operation. The node keeps all its descendants
when leaving its cluster. The leaving node changes its status to leaving, stops sending
messages to its neighbours and parent -by discarding them from View;.i-, waits until they
have received and acknowledged every message sent by i previously, then, propagates an
update_view message containing its updated row and declaring that it is leaving. Each
correspondent j of node 4 receiving update_view from %, proceeds to propagate the message
and updates View;.i as received from the message. Further, the parent and every neighbour
j, sends i an ack.leave message. If j is leaving the cluster as well then it discards i from
leave_list;. When i gets an ack_leave from the parent and all neighbours, then the operation
is considered complete.

By the end of the operation, it is ensured that all members and the parent of the cluster have
received every message i had before leaving. Further, they will not receive any messages
from ¢ after it leaves and vice versa. If while the operation is in progress, i receives any
message for propagation from j such that j € leave.list;, i sends an acknowledgement to
j and it may either process the message and send it to its children or just reject it. This
situation can occur if j sends a message to ¢ before receiving the updateview. The leave
protocol is described in Figure 4.2. The function Get_View(), shown in Figure 4.3, returns
a list of the members and the parent of a certain cluster.

When a node leaves the top cluster, the quoruni size of Slow_Write, Slow_Read and Opt_Write
decreases dynamically. That is, when a node in the top cluster receives an update_view from
a neighbour declaring it is leaving, it decreases the number of nodes of the cluster by one
and computes the new quorum size. If a node while leaving receives a vote request, it does
not send its vote in order to ensure quorum intersection.

38

When a node ¢ decides to leave its cluster C,:

{

}

status; = leaving;
old_cl; = Cy;
leave list; = Get _View(s,C;) - {i}; /* insert neighbours and parent in leave list; */
View;.i.Cid = null; View;.i.P = null; /* stop sending messages to neighbours and parent */
Vj € leavelist;
wait until all messages sent to j have been acknowledged
/* propagate an update view message */
increment View;.i.r_seq;
propagate update_view (leaving, old_cl;, View;.i); (see Figure 3.2)
Vj € leave list;
send to j update view(leaving, old_cl;, View;i) for propagation;
when ackleave is received from j
If j € leave list; Then set flag in leavelist; to 1;
vhen flag=1, Vj € leavelist; {
discard leave list;;
old_cl; = null;
status; = normal;

}

A node j receiving update_view(stat, C;,row;) from i

{

}

proceed in propagating the update_view message; (see Figure 3.2)
If View;.i.r_seq > row;.r_seq Then /* old update */
discard the message and stop;
replace View;.i by row;;
If stat = leaving Then { /* i is leaving C */
If (View;.j.Cid = C; A status; = normal) VC; € View;.j.Child_Cids Then
/* j is a current member or the parent of C, */
send ackleave to i;
If old_cl; = C; A status; = leaving Then {
/* i is a leaving member of C, */
If i € leave list; Then remove i from leavelist;;
send ack_leave to i;

}
}

Figure 4.2: The leave protocol

39

Function Get_View(,C,)

{ .

/* returns a list of members of cluster C, and its parent as seen by node i */
Cl_view = ¢; .
VkeN

If (View;.k.Cid = C, V C; € View;.k.Child.Cids) A View;.k.up = 1 Then
. Clview = ClwiewU {k};
If View;.i.Cid = CyA status; = joining Then
/* add members of C; as seen by ¢ while joining */
Clview = ClwiewU {k}, Vk € joinlist;
return(Cloview);

}

Figure 4.3: The function Get_View()

4.2.2 The JOIN Operation

A node i joins a cluster C,; by contacting all members of C, and the parent of C; to inform
them of its desire to join. Further, it exchanges with them missing messages to ensure
that they have the same set of messages before normal propagation begins. The joining
node keeps all its descendants when joining a cluster. For node 7 to join Cg, it performs
join(Cz, q), where g is either the parent of C; or any member of C;. Node g is referred to
as the connect node and is responsible for supplying ¢ with a view of cluster Cy, i.e. a list
of members and the parent of C,. Apart from the first node to join the hierarchy where
q = null, the following conditions should hold:

(Cond 1): C; should have a parent or at least one current member while ¢ is joining

(Cond 2): g should be either the parent of Cy or a current or a leaving member of C;. If
q is a joining member and is joining through the connect node r, then r should be
either the parent of Cy or a current or a leaving member of C;. This condition works
recursively if r is a joining member.

The join protocol is described in Figures 4.4 and 4.5. The joining node changes its status to
Joining, and clears its previous view of C, in View; so that it does not start sending messages
to members of C, before they observe i as a member. Then, ¢ inserts ¢ in join.list; and
sends g a join_req. Node g replies by sending i its view of C; (members and parent) and
1 updates join.list; to include additional members and sends them join_req. The nodes
reply by sending ¢ their view of C,, 7 merges their views with join_list; and sends additional
members, if any, a join_req. This process occurs iteratively until 2 sends join_req to all
members of C;.

40

Node ¢ executing join(Cy, q)

{

status; = joining;
VieN
If View;.j.Cid = C; Then View;.j.Cid = null; /* clear previous view of C, */
/* initialise View;.i */
View;.i.Cid = Cp; View;.i.P = null; View;.iup=1;

If ¢ = null Then /* i is the only member */
change status; to normal and stop;
Else {
msglist = ¢; increment View;.i.r_seq;

insert ¢ in joinlist; and send q joinreq(C,,View;.i);
}
vhen node ¢ receives a reply to the join_reg from a node j {
If ack_join(VVj,LL;,row;,View.cl) is received Then {
Vk € Viewcl /* update joinlist; */
If k & joinlist; A View;.k.Cid # C, A View;.i.P # k Then
add k to joinlist; and send k a joinreq(C,,View;.i);
/* update View; */
If row;.r_seq > View;.j.r_seq Then replace View;.j by row;;
If C; € View;.j.Child_Cids Then View;.i.P = j;
Exchange(i, j); /* exchange missing messages with j */
set flag; for node j in joinlist; to i;
}
Else { " [* a nak(View_cl) is received from node j; j has already left C, */
. Vk € View.d /* update join list; */
If & & joinlist; A View;.k.Cid # C; A View;.i.P # k Then
add k to joinlist; and send k a join_req(Cy,View;.i);
/* i should ensure to receive messages that j had before leaving */
choose any other node k € joindist; with flag; =1;
reset flag; and flags for k in join.ist; to 0;
send joinreq(Cy,View;.i) to k;
remove j from join_list;;
}
}
when flag; =1, Vj € joinlist;
/* all members have included i as a member */
increment View;.i.r_seq and propagate update_view (joining, C.,View;.i);
when i receives extracted messages from j {
set flags for j in joinlist; to 1;

If View;.j.Cid = null Then send j an ackleave; /* j is a leaving member */
}

when flags =1, Vj € joinlist;
discard joinlist;; msglist = ¢; status; = normal;

Figure 4.4: The join protocol
41

Node j receiving a join.req(C,,row;) from i
{
If View;.j.Cid = C;V old_cl; = C; V C; € View;.j.Child_Cids Then {
/* j is a current, joining or leaving member of C; or is the parent of C; */
If View;.i.r_seq < row;.r_seqg Then

replace View;.i by row;; /* update row View;.i */
If View;.j.Cid = null A oldcl; = C; Then /* j is leaving C; */
insert ¢ in leavelist;; /* wait until i extracts missing messages from j */.
send i ack_join(VV;,LL;,View;.j, Get_Vieu(j,Cz));
}
Else
send { a nak(Get View(j,C;)); /* j has already left C; */

Figure 4.5: The join protocol (Continued)

Node 7, a member or the parent of C, receiving join_req accepts i’s membership by includ-
ing i in View; as a neighbour or as a child and sends i ack_join including its state VV; and
LL;. When i receives ack-join from j, it includes j in View; as a neighbour or as a parent
and it exchanges missing messages with j by sending to j what 4 has and j has not, and
by asking j for messages that ¢ is missing. Missing messages are determined by comparing
VV; and LL; with VV; and LL; and they are sent in one batch.

When i receives ack_join from the parent and every member of C;, then it propagates an
update_view message, including its new row View;.i, informing every node that it became
a member of C,. By exchanging missing messages with every member j, it is ensured that ¢
has received all messages other members have and that every member has all messages that
1 has. When ¢ has done so with every node in join_list; then the operation is over.

If a node j receives join.req when it has already left C; then it sends ¢ a negative acknowl-
edgement (nak). In this case, node i re-exchanges missing messages with any other current
member to ensure that it receives all messages j had before leaving. If, while joining, ¢
receives messages from a node & such that k € join_list; but i does not see k yet as a
neighbour or a parent in View;, then i should keep these messages in a list to be processed
when & replies with ack_join. This can happen if k receives join_req from 4, replies with
ack_join and starts propagating messages to ¢, however, i receives these messages before
receiving the ack_join.

It should be noted that ¢ does not have to wait for ack_join from all members to start
propagating messages. When i receives ack_join from a node, then i can start sending
it messages immediately. However, if ¢ is in the top cluster, it does not start assembling
quorums for Slow_Write, Slow_Read and Opt_Write until all members have sent ack_join so

42

Function Exchange(i, 7)
{

/* node i exchanges missing messages with node j */
msg-req = 0;
If View;.j.Cid = C; V View;.i.P = j Then {
/* j is a current or joining member of C,- or is the parent of C; */
/* i sends j what j is missing */
Vk € N,V seg s.t. (seq < VVi[k]V seq € LL;[k]) A (seq > VV;[k] A seq & LL;[k])
retrieve the message with wid = (k,seq) from Log; and send it to j;
/* ask j for what ¢ is missing */
Vk € N,V seq s.t. (seq < VV[k]V seq € LL;[k]) A (seq > VV;[k] A seq & LL;[k])
If (k, seq) § msglist Then {
extract the message with uid = (k,seq) from j;
add (k,seq) to msglist;
msg-req = 1;
}
}
Else { /* j is a leaving member of C; */
/* ask j for what ¢ is missing */ :
Vk € N,V seq s.t. (seq < VVj[k]V seq € LL;[k]) A (seq > VV;[k] A seq & LL;[k])
If (k,seq) € msglist Then {
extract the message with uid = (k,seq) from j;
add (k,seq) to msglist;
msg-req = 1;

}
}
If msg_req = 0 Then { /* i did not ask j for any messages */
set flags, for node j in join.list; to 1;
If View;.j.Cid = null Then /* j is a leaving member */

send j an ackleave;

Figure 4.6: The function Exchange()

that it can compute the quorum size correctly. When a node in the top cluster receives a
join_req from a node joining the cluster, it increases the number of nodes of the cluster by
one and computes the new quorum size. If a node while joining receives a vote request, it
sends its vote only if all members have sent ack_join (flag; is set Vj € join list;) in order
to ensure quorum intersection.

43

4.2.3 The INITIATE Operation

The initiate operation is performed by a parent to create an empty cluster as a child. A
node i executes the operation initiate(Cy) by adding the cluster C; to its sets of children.
That is, it sets View;.i.Child_Cids = View;.i.Child_Cids U {C;}. Then, it propagates an
update_view message containing its new row View;.i.

4.2.4 The DESTROY Operation

The destroy operation is performed by a parent to remove a cluster. The cluster should be
empty for a deletion to be permissible. Assume node i executes the operation destroy(Cy),
then it checks: ‘

If 3 j s.t.View;.j.Cid = Cz; A View;.j.up = 1 Then _
error /* cluster cannot be removed, it is not empty */
Else {
View;.i.Child_Cids = View;.i.Child_Cids — {Cyz};
increment View;.i.r-seg;
propagate update_view(status;, Cy, View;.i);

As a result of executing any of the basic operations, it is guaranteed that messages are even-
tually reliably delivered everywhere and that the View is kept consistent. For correctness, a
sequence of join and leave operations is executed at a certain node serially. That is, a node
has to be in the normal state before starting to execute any of the join or leave operations. If
it is in a leaving or joining state, then it queues any new operations until it becomes normal.
The correctness of the basic operations is established in Section A.1.

4.3 Composite Operations

The four basic operations allow the hierarchy to be built and reconfigured. For instance,
a possible sequence of operations that different nodes would execute to build part of the
subtree shown in the right-hand side of Figure 4.7 is as follows:

(1) a: join(Ch,-) "(2) a: initiate(C11) (3) d: join(Ch1,a)
(4) e: join(Ci1,a) (5) d: initiate(C111) - (6) dy: join(C111,d)
(7) da: join(Ci11,d) (8) ds: join(Ci11,d) etc

Further, any reorganisation in the logical hierarchy can be done as a sequence of these opera-
tions. In the following, several examples of composite operations that allow the hierarchy to

44

be reorganised are described. Each operation consists of a sequence of the basic operations.

move a node ¢ may need to move from cluster C; to another cluster Cy due to performance
reasons e.g. if the links between 7 and nodes of C, became congested while the com-
munication between i and nodes of C, are better or if a mobile computer needs to
disconnect then reconnect joining another cluster that will be in its new physical prox-
imity. The move can be done as a sequence of leave and join operations. For example,
for node f to move from Cy; to Ci2, as shown in Figure 4.7, it performs the following
operations:

e f: leave

e f: join(C12,9) (or join(C12, h) or join(Ci2,7) or join(Ci2,b))

fmoves from

LA &e @ee dad

Figure 4.7: A node f moves from Cjy; to Cio

join-new a new node joins the set of replicas by a simple join operation. If it is joining"
through the connect node k, then k sends the new node a copy of the database, the
message log Logy, the view of the hierarchy Viewy, as well as VVy and LLg.

change-parent changing the parent of a cluster is needed if the parent needs to shutdown or if
the communication between the parent and children becomes congested. Assume Ciio
needs to change its parent from e to d, as shown in Figure 4.8. Then, the following
sequence should be executed:
® e1,ey,e3: leave
e e: destroy(Cij2)
o d: initiate(C'112)
® ¢1,€2,€3: join(an,d)
shutdown assume node f needs to shutdown, say for repair, then f’s children change their

parent from f to another node, say e, by performing change-parent. Then, f performs
a simple leave operation.

45

G C112 change-parent

from e to d

Ci11

Cod €09

B LA & ¢ @Gee d3tbdl LA &e¢g ©Beea d3d2d1

Ci11

Figure 4.8: C112 changes pé.rent frometod

merge it merges two (or more) clusters into one. For example, to merge Cj13 into C114, as
shown in Figure 4.9, then the following sequence should be executed:

e e4,ex5: leave
?

® e4,es5: join(Ciug, f) (or join(Chua, f1) or join(Chu4, f2) or join(Ch14, f3))
e e: destroy(Ch13)

merge (113

into Ciia

ﬁféﬁ % ¢4 € ey e1 djbdl
Figure 4.9: C113 merged into Ch14

split it splits one cluster into two. For example, if it is required to split C112 such that e;
and ep form another cluster Cj;, with d as a parent, as shown in Figure 4.10, then
this is achieved by the following sequence:

® e1,eo: leave
e d : initiate(Ctya)

e e;,ez: join(Ciya, d)

Therefore, we can see that any operation needed to restructure the tree can be composed
as a sequence of the basic operations, while ensuring correctness. That is, no messages are
lost due to the change and the data structures are updated correctly to reflect the change.
However, it involves some excessive overhead which could be optimised as will be discussed
in Section 4.5.

46

split C112

Figure 4.10: Split C12 to C12 and Cfy,

4.4 Failures and Partitions

While the protocol is operational, nodes may fail and communication links may fail and
cause the network to be partitioned. When site or link failures occur, HARP continues to
propagate information between connected operational sites. In this section, methods for
reconfiguring the hierarchy when failures or partitions are detected and after repair will be
discussed such that eventual reliable delivery is achieved.

4.4.1 Failures

It is assumed that a standard failure detection mechanism is available that decides when a
particular node has failed. In the special case where a node loses its communication with
all other nodes in the network, it is treated like a node failure. When a node f fails and a
node ¢ is informed that f has failed, ¢ removes f from its view by resetting View;.f.up to
0 in order to mark f as down. Therefore, i will stop sending messages to f and will ignore
any subsequent messages sent from f. This is necessary to avoid a situation where f starts
to send messages without performing a recovery protocol. If f € join list; or leave list;,
then ¢ deletes f from the list so that ¢ does not block indefinitely waiting for replies from
f. Further, if f is in the top cluster, then nodes in the top cluster decrease the number of
nodes in the cluster by one and compute the new quorum size accordingly.

The failure of f causes the hierarchy to be partitioned, where the children of the failed node
and their descendants get isolated from the rest of the tree. Further, it might block the
propagation of some messages. For instance, if f originates a message m, sends it to only a
subset of its correspondents then dies, then m will not propagate everywhere. Similarly, if
f receives a message m from say a neighbour or the parent but it fails before sending m to
all its children, then all descendants of f will not receive m. Therefore, the protocol should
guarantee that, despite failures, the following is true:

1. All running nodes can continue exchanging messages. In order to ensure flow of propa-
gation while f is down, children of the failed node should be attached to a new parent

47

so that they are linked to the tree.

2. Any message that f failed to successfully send to all its correspondents before failing,
and at least one of its correspondents has it, will be propagated everywhere.

These two conditions are guaranteed by the following steps, taken when the failure is de-
tected. Assume node f, shown in the right-hand side subtree of Figure 4.7, fails and one of
its neighbours, say e, will be the new parent for f’s children. This node is elected by f’s
correspondents once they agree that f has failed. It is assumed that a standard election
algorithm is run (see [Garcia-Molina 82]).

1. e initiate a new child cluster C,. (e: initiate(Cy))

2. Children of f join C; (f1, f2, f3: join(Cz,e)). This will ensure that children of f will
be linked to the tree and will receive from e any messages they have missed. Further,
if a child f; of f has a message that another child f, of f does not have, then fo will
receive the message. Finally, if a child f; of f has a message that neighbours or the
parent of f do not have, then e will receive it and send it to other neighbours and the
-parent and consequently it will propagate everywhere.

3. Neighbours and parent of f exchange missing messages with each other. This will
ensure that if one or more of f’s neighbours or the parent have got a message then all
f’s correspondents will receive it and it will be propagated everywhere. This step can
be achieved by having neighbours of f rejoining f’s cluster. (e,d: join(Ci1,a))

It is assumed that the instructions for performing these operations are given to the corre-
spondents of f by the elected node. This method can be optimised, reducing some overhead,
as will be described in Section 4.5.2.

When a node recovers after failures, there are generally two tasks that must be accomplished
before normal processing can proceed. First, the operational nodes must be notified that
the failed node needs to be reintegrated and update their View consequently. Second, the
state of the failed node must be restored. This includes the Log, VV, LL, View and so
on. These two tasks can be achieved by having the recovered node performing a simple
join operation, to be reintegrated into the network. Hence, from Theorem 2, it will receive
any messages it has missed during the failure, will propagate any message it had and did
not send before it failed, and everybody will be informed of its recovery as the node will
propagate an update_view message.

Note that in practice, it is not always possible to determine with absolute certainty that
a particular node has failed; it may be slow or the network may be congested. Therefore,
it is possible that the failure detection mechanism decides that a node f has failed while
it has not. Further, when f comes up after a failure, its correspondents may be in the
process of isolating it, or even it may have not yet been detected that f has failed. The

48

recovery procedure copes with these situations since performing a join operation allows f to
be reintegrated to the hierarchy, regardless of its previous position and of how other nodes
were viewing f before it joins.

4.4.2 Partitions

In large scale systems, it is essential to consider link failures. A sequence of link failures
could lead to partitions. It is assumed that an external process is responsible for maintaining
link status, and detecting when partitions occur and are restored.

When a partition occurs, the gffected nodes are those which have been isolated from some
of their correspondents due to the partitioning. Affected nodes in each partition mark in
their View their correspondents in the other partition as being isolated in order not to
attempt sending them messages. Further, affected nodes in one partition exchange missing
messages with each other (i.e. with correspondents in the same partition). This ensures that
if a message m has reached at least one node in a partition then every other node in this
partition will receive m. When the partition heals, the structure can be integrated easily
by having nodes in the top level of one of the partitions perform a simple join operation.

For example, assume a partition occurs, isolating nodes e, d and their descendants from the
rest of the hierarchy as shown in Figure 4.11.. When partitions are detected, nodes in P1
(ie. a,f) remove e and d from their View, by resetting their up field to 0, hence stopping
sending them messages and delete them from their join_list and leave list. Further, a and
f exchange missing messages between them. Similarly, nodes in P2 (i.e. e,d) remove a and
f from their View and exchange missing messages between them. After healing, nodes e
and d perform join(Ciy, f) or join(Ci1,a). This will ensure that any messages that were
missed during the partition will be exchanged and the View will be updated correctly.

partition detected

_partition healed

Figure 4.11: Partition isolating e, d and their descendants from the rest of the hierarchy

During partitioning, Fast_Write can commit and propagate within one partition. Hence;
replicas are allowed to diverge while continuing to provide service. After the partition

49

heals, missing messages will be exchanged and replicas will converge to a consistent state.
Similarly, Fast_Read can proceed normally during partitions. Slow_Write and Slow_Read can
commit only if the node initiating the operation is in the majority partition (the partition
that contains more than half of the nodes in the top cluster). Opt_Write can be applied to
nodes in any partition but the decision to commit or abort (and subsequently undo) can
be known only by nodes in the majority partition. Nodes in other partitions will know the
decision when the partition heals.

If the partition occurs in the top cluster, then nodes in the majority partition update the
number of replicas in the top cluster to include only the nodes they can communicate with
and compute the new quorum size. Any dynamic voting algorithm such as [Davcev 89,
Jajodia 90] can be applied to the nodes of the top cluster.

4.5 Optimisation of Composité Operations

The composite restructuring operations are correct since they only consist of a sequence of
the four basic operations. However, some optimisations can be achieved by writing each
composite operation as an independent operation to reduce the overhead. For instance,
change-parent could be optimised by having the children negotiating with the old and new
parent only to update the View and exchange missing messages rather than leaving then
joining the same cluster. Another example is merging a cluster C; into Cy. The nodes of the
merging cluster C; could skip joining and exchanging missing messages with each other as
they were already in the same cluster and they can form their join_list to include members
of Cy only.

Similarly, the method for handling failures as described in Section 4.4.1, although correct as
it includes only basic operations, it could be optimised by having a single node responsible
for adopting the children of the failed node as well as exchanging missing messages with
the neighbours, parent and children of the failed node. This would save the neighbours and
the children from the overhead of rejoining the cluster and exchanging messages with each
other.

In this section, two operations are selectéd and described in details, namely, change-parent,
changing the parent of a node and take-over, for a node to take-over the responsibilities of
a node that failed. They were selected to be studied because it is believed that they might
be used more frequently than other operations.

4.5.1 The CHANGE-PARENT Operation

The change-parent operation is initiated by the old parent of a cluster and performed by
the new parent. Assume a parent old_p needs to change the parent of its child cluster Cy

50

from node old_p to node new_p. The basic idea of the protocol is for old_p to inform new_p,
which then contacts all members of C; and exchanges with them any missing messages to
ensure that they have the same set of messages before propagation begins.

The protocol is presented in Figures 4.13 and 4.14. An illustration of a scenario of message
exchanges where old.p has two children i and j is shown in Figure 4.12. The protocol starts
by old_p sending a request (change_req) to new_p asking it to be the parent of C;. The
request includes a list of members of C;. The new parent new.p replies to old_p by an
ack_req message and sends a change_par message to members of C,;. A child receiving a
change_par message, changes its parent from old_p to new_p in its View, sends new_p an
ack_par including its state (VV and LL) and a list of its neighbours, then it propagates its
new row in View. When new_p receives ack_par from a child, it updates its view of C; and
sends any additional member a change_per message. Also, it exchanges missing messages
with the child to ensure that they have the same set of messages, then starts sending it new
messages.

old_p new_p

~
~.

change_par

oum

c\}"”’%

0y

‘y‘par

ck,cmnge

L=

Figure 4.12: Scenario of message exchanges when old_p changes the parent of its two children
i and j to the new parent new.p

When new_p has received an ack_par from every member of C, then it sends an ack_change
to the old_p to inform it that all members have been notified. Then, it propagates an
update view message including its new row Viewney p.new_p informing everybody that
new_p is the new parent of C;. When old_p receives an ack._change from new_p, then
it propagates its row Viewgq p.0ld_p to inform everybody that it is not the parent of C,
anymore. When new_p has exchanged missing messages with all members of C; then the
operation is completed.

For correctness, new_p should not be in a joining or leaving status in order to be able to

51

The old parent old.p
{
/* stop sending to members of C, */
Vieworq_p-old.p.Child_Cids = Viewoig_p-0old_p.Child_Cids — {C.};
Children = ¢;
VieN
If Viewgig_pi.Cid = Cy A Viewog p.i-up = 1 Then Children = Children U {i};
increment View,iq_p.old.p.r_seq;
send to new_p changereq(Cy,Children,Viewod_p-old-p);
when old_p receives ack.reg(Towneyw_p) from new.p
/* update Viewoiq_p.new-p to denote that new_p is the parent of C; */
" If TOWnew_p-T-5€q > Viewory p-new-p.r-seq Then replace Viewoig_p-new-p by rowpew_p;
when ack.change is received from new.p
/* inform everybody that old_p is not the parent of C; anymore */
propagate update view (statusold_p,Viewod_p-0ld-p.Cid, Viewoq_p-old-p);

}

Node j receiving change.par(Cy, Towoid_p, T0Wnew_p) from new_p
{

"If roweq_p.r-seq > View;.old_p.r_seq Then replace View;.old_p by rowaid_p;
If rownew_p-r-seq > View;.new.p.r-seq Then replace View;.new_p by ToWnew._p;
Neigh = ¢;

Vke N
If View;.k.Cid = C, A View;.k.up = 1 Then Neigh = NeighU {k};
Case {

status; = normal AView;.j.Cid =C;,
/* 7 is a current member */
View;.j.P = new.p; increment View;.j.r-seq;
send new_p ack.par(VV;,LL;, View;.j, Neigh);
propagate update_view (status;, Cz,View;.j);

status; = joining AView;.j.Cid = C;
/* j is joining C; */
View;.j.P = new.p; increment View;.j.r_seg;
send new_p ack-par(VV;,LLj,View;.j, Neigh);
remove old_p from joinlist;;

status; = leaving A oldcl; = C;
/* j is leaving C; */
replace old_p by new_p in leavelist; with flag =0;
send new-p ack_par(VVj,LL;,View;.j, Neigh);

View;.j.P = new_p
/* j has joined C, and new._p is already the parent */
send new.-p ack.p; :

Otherwise /* j has already left C; */
send new_p a nak;

}

Figure 4.13: The change-parent protocol
52

The new parent new_p
{
when new_p receives change.req(Cy,Children,row,y_p) from old_p {
statuspew_p = adopting;
If rowoiq_p.r-5€q > Viewnew p-old_p.r_seq Then replace Viewpew p.old_p by rowoiq_p;
Viewnew_p-new-p.Child_Cids = Viewney_p.new p.Child_Cids U {C;};
increment Viewney_p.new_p.r_seg;
send old.p ack_req(Viewnew_p-new-p);
joinlistnew p = Children;
Vj € joindistpew p
send j change par(Cq,Viewnew p-old_p, Viewpey_p.-new-p);

}

when new.p receives reply from node j {
Case {
ack_par(VVj, LL;,row;, Neigh) is received
If row;.r_seq > Viewnew.p-j.T-seq Then replace Viewnew p.j by row;;
/* update join listpew_p from list of neighbours Neigh */
Vk € Neigh
If k & joinlistpew p Then {
add k to joinldistpew_p;
send k change par(C;, Viewnew_p-0ld_p, Viewney_p-new_p);

}

Exchange(newp, j); /* exchange missing messages with j */
set flagy for node j in joinlistnew p to 1;
ack_p is received /* j is already a child */

set flag: and flage for j in joinlistne., p, to 1;
nak is received
/* j has already left C; new_p ensures receiving messages that j had before leaving */
choose any other node k € joinlistnew p with flag =1;
reset flag:i and flags for k in join_listpey_p to O;
send change_par(Cy, Viewnew_p-old_p, Viewnew_p.new_p) to k;
remove J from join listyey p;

}
}

when flagyr =1, Vj€ joinlistnew p { /* all members have changed their parent to new.p */
send ack-change to old_p;
/* inform everybody that new_p is the new parent of C; */
propagate update view(statusnew p, VieWnew p-newp.Cid,Viewney p-new-p);
}
vhen new_p receives extracted messages from j {
set flag: for j in joinlistpew p to 1;
If Viewnew_p-j-Cid = null Then send j an ackleave; /* j is a leaving member */
}
when flage =1, Vj € join_ listaew_p
discard join_listpew _p; msg-list = ¢; statusnew_p = normal;

Figure 4.14: The change-parent protocol (Continued)
53

perform change-parent. If it is, then it should queue the change_req until it becomes normal.
However, old_p can be in any status since it is just initiating the change-parent operation
rather than performing it. As shown, the algorithm takes care of the cases where the
children of old_p are current, joining or leaving members of the cluster while the operation
is in progress. The correctness of the change-parent operation is established in Section A.2
showing that no messages are lost and that the View is kept consistent.

A special situation can occur if a node : is joining a cluster C; while C,’s parent has initiated
change-parent operation but has not received an ack_req from the new parent yet. In this
case, at the end of the join operation, the node ¢ might end up having no parent. Therefore,
an extra check needs to be added at the end of the join algorithm, described in Section 4.2.2;
that is, if View;.i.P = null, then i should enquire about the current parent of C, by polling
a neighbour for its view of C,. Then it sends the parent a join_regq.

The above protocol incurs less overhead than changing the parent of a cluster using the four
basic operations as was explained in Section 4.3, as it saves the members of the cluster from
the overhead of leaving the cluster then rejoining it again and exchanging missing messages
with each other. Instead, each member of the cluster negotiates with the new parent only
to update the View and to exchange missing messages, hence, incurring less overhead and
reducing message traffic while ensuring correctness.

4.5.2 The TAKE-OVER Operation

When a node f fails, then one of its current neighbours or children will perform the take-
over operation to take f’s responsibilities. As mentioned before, this node is elected by f’s
correspondents after failure detection. If f was joining a new cluster when failed, then one
of the new neighbours should take-over. The node must be in normal status before starting
to take-over.

As discussed in Section 4.4.1, the failure of f causes its children to be isolated from the rest
of the hierarchy. Further, it might block the propagation of some messages. Therefore, if a
node i will take-over f, then it should perform two functions:

1. Adopts f’s children, if any. This ensures flow of operation while the node is down.

2. Ensures that if f sent a message to, or received a message from, one of its correspon-
dents then failed before propagating the meéssage to all its other correspondents, then
such a message will be propagated everywhere.

These two functions are achieved by performing change-parent; that is, ¢ sends change_par
requests to all f’s children. So, they will assign 7 as the new parent, and if a child of f
has a message that ¢ does not have then it will be sent to i and vice versa. Further, ¢ joins
f’s cluster. Hence, it takes exactly f’s position and if a neighbour or the parent of f has

54

a message that 7 does not have then it will be sent to 7 and vice versa. Node i receiving a
missing message, sends it to all f’s neighbours, children and parent. This avoids a situation
where f sends a message m to a subset of the correspondents then fails and ensures that if
any correspondent of f has m, then all correspondents of f will receive m, and consequently
m will be propagated to every node in the network. ‘

In the case where f failed while it was leaving its cluster; if i has not yet received update_view
from f declaring that it is leaving, then f might not have completed the leave operation
before failing. Therefore, 7 joins f’s cluster and adopts f’s children as usual. If i has received
the update_view message from f, then it has completed the operation before failing. If 7 is
a neighbour, then it just adopts f’s children and there is no need to rejoin f’s cluster, as f
has sent every message to all neighbours before leaving. If 7 is a child of f, then it adopts
f’s children and joins any cluster to link with the rest of the hierarchy.

The take-over operation incurs less overhead than the method described in Section 4.4.1
using the four basic operations, as it saves the children of the failing node from the overhead
of joining a new cluster and exchanging messages between each other. Also, the neighbours
are exempted from rejoining f’s cluster and exchanging messages with each other. This
reduces message traffic and communication overhead.

The steps taken by node 7 while performing take-over are outlined in Figure 4.15. The rest
of the scenario of join and change-parent is the same as was described before, except when
1 receives any extracted message, it sends it to all its neighbours, children and the parent
that appear in View;.

If f failed while it was adopting the children of a cluster C, (i.e. while performing change-
parent), then the old parent j of Cy, would not have received an ack_change from f. In this
case, j asks members of C; to change their parent back to j (i.e. send them change_par),
and any message m that j extracts from a child should be sent to all neighbours, children
and parent to ensure that it is propagated everywhere. When j receives ack_par from all
members of C, then it can ask another node to be the new parent of C;, if desired.

The correctness of take-over is presented in Section A.3 showing that every child of f will
be linked to the hierarchy, regardless of the status of f or its children, and that if f fails
before sending a message m and at least one of its correspondents has m, then m will be
propagated everywhere.

In the case where f failed while it was taking over another node j, it is assumed that the
node % that will take-over f will take-over j as well. If j and f were neighbours, then 7
adopts the children of j and f and joins f’s cluster as before. If j was the parent of f, then
1 adopts the children of j and f and joins j’s cluster.

55

Node i executing take-over
{
_status; = taking-over;
/* join f’s cluster */
clust = View;.f.Cid;
If clust # null Then join(clust, k);
st. k € N A ((View;.k.Cid = clust V clust € View;.k.Child.Cids) A View; k.up =1)
If clust = null A View;.i.P = f Then
/* f fails while leaving, and i is a child */
join any cluster;
/* adopt f’s children */
increment View;.i.r_seq;
VC, € View;.f.Child_Cids {
View;.i.Child_Cids = View;.i.Child_Cids U {C;};
Vk € N s.t. View;.k.Cid = C, {
add k to joinlist;;
send k change_par(Cy, View;.f, View;.i);
}
}
}

Figure 4.15: Steps. taken by a node i taking over a node f

4.6 Space Optimisations

This section discusses some optimisations that allow reduction of the size of the acknowl-
edgement matrix, AckM, the Log and the View structure, hence, saving storage. Another
aspect of optimisation is to reduce the amount of status information transferred during
reconfiguration. This issue will be addressed separately in Chapter 8.

4.6.1 The AckM and the Log

The fact that a node discards a message from the Log when it has been received by all nodes
in the network, and that the size of AckM is O(n?) may cause excessive storage, especially
for a large number of replicas. Two separate optimisations can be made: -

1. Since a node i sends messages to nodes in its neighbourhood only (children, neighbours
and parent), then instead of discarding a message from the Log only when the message
has been received by all nodes in the network, it can discard the message when nodes
in its neighbourhood have acknowledged the message. This optimisation will enable ¢

56

to flush Log; more quickly, hence reducing its size. Consequently, the number of rows
in AckM; can be reduced to include only i’s correspondents instead of n — 1 rows.

This optimisation may impose some restrictions on reconfiguring the hierarchy. Basi-
cally, a node ¢ cannot move to other clusters freely as nodes of the new cluster might
not have in their Log messages that ¢ is missing. Similarly, a node after recovering,
has to join the same cluster it was affiliated with before it failed as its members are
the only ones that are keeping the messages the node has missed when it was down.
For instance, node e; in Figure 3.1 cannot move and be a child of node u, or if e fails
and recovers it cannot join C instead of Cy;. Without this optimisation it is feasible
to support such reconfigurations as u will have in its Log, messages that e; has not
received yet and will pass them to e; while joining. Hence, there is a tradeoff between
the cost of maintaining additional information and flexibility in the reorganisation of
the hierarchy.

However, it is believed that having a complete freedom for reconfiguring the hierarchy
is unlikely to be needed in most cases, especially in large scale systems connected
through internetworks. It seems more likely that a reorganisation will involve a rear-
rangement of the nodes within a local subtree of the hierarchy, spanning two, or may
be three levels. Such reconfigurations would need a node i to keep rows in AckM for
i’s correspondents and their correspondents only, and consequently to flush a message
from Log; when the message has been received by those nodes. Maintaining such
information would give more flexibility in the reconfiguration while the size of AckM
and the Log is kept small by storing only local information rather than a complete
state of all nodes. '

. If clocks are synchronised (i.e. global timestamps can be used) then the matrix AckM
can be optimised to a vector AckV of dimension 1 x n, where, AckV;[j] = ts means
that node ¢ knows that j has received every message from any sender with timestamp
< ts. In this case, when node ¢ initiates a message, it assigns it a timestamp from the
local clock. Periodically, each node k instead of propagating V'Vj, should propagate
the time ¢ such that it has received every message from any sender up to time ¢, which
is the minimum entry in VV;. When ¢ receives such a message, it updates its entry k
of its vector AckV;. Then, node i can purge a message from the log if its timestamp
is less than or equal to the minimum entry in AckV;. This idea has been used by the
propagation protocols presented in [Heddaya 89, Golding 92c]. Again optimisation 1
can apply here and the number of columns in AckV can be reduced.

4.6.2 The View Structure

Although the presentation of the propagation and the reconfiguration protocols considered
that each node keeps the view of the whole tree, this is not necessary for the correctness of
the operations. A node needs only to keep rows for itself and its correspondents and discard
rows about the other nodes. This will reduce the size of the View structure while the

57

propagation protocol, all the basic restructuring operations and the change-parent operation
are still correct. '

For handling failures, as described in Sections 4.4.1 and 4.5.2, more information needs to
be kept in the View of each node. For instance, for a node to take-over a neighbour or a
parent, it needs to keep rows for their correspondents. Similarly, for a node to take-over a
grand-parent, if consecutive failures occur, then it needs to keep rows of its correspondents
and so on. Therefore, there is a tradeoff between the amount of information kept in the
View of a node and the number of successive failures in different levels of the hierarchy that
the node should handle. Again, it is believed that a certain node is likely to take-over a
node in its local neighbourhood only. Consequently, it would suffice for a node to keep in
its View rows for its correspondents and their correspondents.

It should be noticed that the decisions of how many rows to keep in View and AckM
(and consequently when to flush a message from the Log) can be made dynamically and do
not have to be statically predefined. Since each node i propagates an update_view message
whenever a change in its row in View; occurs, a node j, receiving this message can then
decide whether it needs to keep a row for ¢ or not. Similarly, since each node 7 propagates
its V'V; periodically, then j can decide whether it wants to keep a row for i in AckM or not
on receiving this message. Therefore, the degree of flexibility in reconfiguring the hierarchy
and the levels of failures that a node should handle can be determined dyna.mtca.lly without
the need to alter the protocols.

In fact, it is possible to devise a propagation algorithm based on a logical hierarchical
structure where each node keeps only local state information. Not only can it keep a partial
view of the hierarchy, but the state vectors recording messages a node has received could
be confined to its local portion of the hierarchy rather than the whole network. These
local state vectors are exchanged in case of reorganisation, failures or partitions, instead of
exchanging V'V and LL, which could be large for very large scale networks. Such a protocol
would be more scalable than HARP since it reduces communication overhead. However, it
" imposes some limitations in handling failures due to the minimal information kept. Such a
protocol is presented in detail in Chapter 8 and its strengths and limitations are discussed.

4.7 Summary

Dynamic restructuring operations were presented which allow the hierarchy to be built and
reconfigured, including the restarting of failed nodes and re-merging of partitioned networks.
They rely on a weak consistency approach where a node performs a change after negotiating
with a small number of nodes. This might result in temporary inconsistency in the view of
- other nodes, but the protocol ensures that the views of all nodes eventually converge to a
single consistent view when the changes cease.

58

The protocol provides four basic operations for a node to join or leave a cluster or to initi-
ate or destroy a cluster. Methods for reconfiguring the hierarchy, for handling failures and
recovery as well as handling partitions using these basic operations have been presented.
Another two operations have been presented in detail, namely, changing the parent of a
cluster and taking over another node that failed. All the operations are distributed and
do not rely on two-phase commit protocols. So, they incur low message traffic, small com-
munication overhead and they do not suppress normal operation and the sending of new
messages while the protocols are running. This is achieved while ensuring that no messages
are lost. The scheme is therefore suitable for large scale systems.

59

60

Chapter 5

Causal Order

One way to guarantee consistency of replicated data is to impose a delivery order on messages
when reaching their destinations. One type of delivery ordering that is of interest is causal
ordering. A new protocol is proposed that encodes causal ordering information efficiently
with each message on an unreliable communication network [Adly 95a]. It is designed for
a replicated system where a message is sent to every replica in the network. It is based on
the hierarchical propagation scheme of HARP. The desirable characteristic of the protocol is
that it imposes little space overhead in the required timestamp appended to each message.
This low cost of timestamp size results in reduced communication overhead and increased
performance and scalability of the system.

This chapter describes the proposed protocol. It begins by defining causal ordering, then
it describes the notion of Vector Clocks which have been widely used to implement causal-
ity. Section 5.3 reviews some of the previous proposed solutions to maintain causality and
Sections 5.4 and 5.5 present two suggested algorithms to provide causal ordering within
HARP. In Sections 5.6 through 5.8, the restructuring operations and the procedures to
handle failures and partitions presented in Chapter 4 are revisited to introduce the neces-
sary modifications to allow the logical hierarchy to be reconfigured while causal ordering is
preserved.

5.1 What is Causal Ordering ?

Causal ordering is a generalisation of FIFO ordering, using the happened before relationship
introduced by Lamport [Lamport 78]. When processes in a network communicate, the
messages they exchange define a partial order of events. Two messages m and m' are said
to be causally related, noted m — m/, if the event of sending m could have caused the event
of sending m/; that is, the process that sent m’ had either sent m or already received m
before sending m'. Causal order is satisfied if m' is delivered after m at every process in the

61

system.

Protocols implementing causal order distinguish between received messages and delivered
messages such that, a received message is not delivered to the replica immediately, but its
delivery is delayed until a certain condition is verified. Consider the events send;(m) and
delv;(m) to denote the transmission of message m by node 7 and the delivery of message m
to the replica at node i, respectively. As in [Lamport 78], the happened before relation for
the system (noted —) is defined as follows: '

1. for any two events e; and ez produced by the same process:

if e; is produced before ez, then e; — ez
2. for any message sent from node i to node j: send;(m) — delv;(m)
3. if e = e and e — e3 then e; — e3 ’

Such a relation characterises any distributed computation based on multicast in an asyn-
chronous environment. In order to be a causal order, this relation has to satisfy the following
constraint:

If send;(m) — send;(m’') then for any node k: delvg(m) — delvi(m’)

Causal consistency has many important applications. For instance, the networks news sys-
tems can use this ordering to ensure that users will see follow-up messages only after seeing
the original posting. Other applications that can benefit from causal ordering are tele-
éonferencing, trading systems, locating movable objects in distributed systems, distributed
debugging and so on. Renesse in [Renesse 93] shows the usefulness of causal ordering in a
distributed system by presenting some important examples of common distributed applica-
tions where causality is a necessary and sufficient ordering of events.

5.2 Vector Clocks

The system of Vector Clocks was developed independently in [Fidge 88] and [Mattern 89).
In this system, each node maintains a local variable called Vector Clock, denoted by VC,
which is an integer vector of dimension n. The component V C;[i] reflects the logical time
at node i (measured in number of past events), while V'C;[j] is the best estimate that node
i was able to derive about node j’s current logical clock value V Cj[j].

A Vector Clock VC; at node 7 is maintained according to the following rules:
(1) Initially, VC; initialised to 0: VC;[j] =0, Vj
(2) On each internal or send event, node % increments VC;: VC;[i] = VC;i] + 1
(3) On sending a message m, node i attaches a timestamp VC(m) to m: VC(m) =V C;
(4) On receiving a message m with timestamp VC(m), node 7 updates V C;:
VCilil= Max {VC{i], VCm)[il}, V.

The following definitions are associated with Vector Clocks:
VC;=VC; & VCilk) = VCjlk], Vk

62

VC; < VCj & VG # VCj A VC,;[k] < VCj[k], Vk

From the construction of VC, we have:
e—>e & VC(e) <VC(e) (the proof can be found in [Schwarz 94])

This property can be exploited to efficiently determine the causal relationship between events
based on their Vector Clocks.

5.3 Related Work

A number of algorithms have been developed to provide causal message ordering.

Schiper et al describe a method based on Vector Clocks [Schiper 89]. Each process maintains
a Vector Clock and a buffer containing the Vector Clocks associated with the most recent
message sent to each process by this process, or known to be sent by any other process. The
buffer is, in essence, the Vector Clocks associated with the set of undelivered messages, as
seen by the current process. Every message carries a copy of the buffer as a timestamp. From
this buffer, a process can determine if a message has any undelivered causal predecessors, and
can delay delivery of the message appropriately. The size of message timestamps required
by this method is of order n?, where n is the number of processes.

Isis [Birman 87, Birman 91] developed protocols for maintaining causality in a general frame-
work where there can be several groups of processes, possibly overlapping, and each message
is multicast within a group. They are communication protocols, where external events only
are considered, namely, send and receive a message. Originally in [Birman 87], the protocol
consists of sending a sufficient set of predecessor messages (rather than just message ids)
along with each message. In [Birman 91], the protocol was improved by piggybacking the
message ids only. This protocol, based on the Vector Clocks and influenced by protocols
developed by Ladin [Ladin 90], may be summarised as follows:

- Bach node maintains a Vector Clock V C;

- Node i increments V' C;[i] before sending a message m and timestamps m with

VC(m) =VC; '
- On receipt of a message m originating at node i and timestamped with VC(m),
node j delays delivery of m until two conditions are satisfied:
(1) VC;[i] + 1 = VC(m)[i], and
@) VO 2 VOm)K Vk#i

The first condition ensures that j has received all messages that ¢ has originated before
m while the second condition ensures that j has received all messages that i has already
received from other nodes before originating m. Delayed messages are placed temporarily
into a holding queue until the appropriate messages arrive. When a message is delivered,
VC; is updated to the element-wise maximum of V'C; and VC(m). Figure 5.1 shows an
example where node N1 sends a message m; to nodes N2 and N3. N2 sends a message

63

my after receiving m;. However, N3 receives my before m;. Since the second condition
is not satisfied, then N3 delays the delivery of mg until m; arrives. The amount of in-
formation appended to each message requires a space proportional to the total number
of processes in the network. Similar propositions have been designed by several authors
[Golding 92c, Macedo 92, Raynal 91] based on Vector Clocks.

0,0,0) (1,0,0)
Figure 5.1: An illustration of Isis method to maintain causality

Psynch [Peterson 89, Mishra 89] and Transis [Amir 92] preserve causality by maintaining
a message dependency graph rather than passing Vector Clocks. In Psynch, the causal
relation is represented in the form of a directed acyclic graph, called the contezt graph.
The nodes in this graph represent the multicast messages, while the edges represent the
- causality relation between the receipt of one message by a process and the subsequent
sending of another message. When a process sends a message, it multicasts the message to
each remote host and attaches to the message causal ordering information consisting of the
edges that connect the message to the context graph. This information represents message
ids already seen by the sending process. When a process receives a message m, if one or more
of m’s predecessor messages have not arrived, then m is placed temporarily into a holding
queue until the appropriate messages arrive. The amount of information appended to each
message requires a space proportional to the total number of processes in the network.

However, the overhead of piggybacking with each message a timestamp of size proportional
to the total number of nodes in the network can be quite expensive, especially for a large
number of nodes. A number of optimisations have been suggested to reduce the size of
timestamps required to record causality: '

e A compression technique is proposed in [Singhal 92] that sends only entries in the
Vector Clock that changed since the last transmission. This technique can reduce the
size of the timestamps only if process interaction exhibits temporal or spatial localities,
and in the worst case the size is of order n. Compression also requires additional
storage which has a size of order n?. Further, it requires that communication channels
be FIFO.

e Fowler and Zwaenepoel [Fowler 90] have introduced methods that achieve a reduced
size timestamp by encoding only direct causal dependencies. A Vector Clock for an
event, that represents transitive dependencies on other processes, is constructed off-line

64

from a recursive search of the direct dependency information at processes. However,
these schemes require significant computation to calculate transitive dependencies,
and the dependencies can only be calculated with access to the event streams of all
processes. The methods require an order of h steps of computation, where h denotes
the total number of messages sent during the computation. Therefore, this technique
is not suitable for applications that require on-line computation of the Vector Clock.

Not all suggested solutions are cited here. Schwarz and Mattern in [Schwarz 94] present
a good survey of the published causal ordering protocols and their relative strengths and
weakness are discussed in detail. Also several methods that capture causality and based on
logical clocks are reviewed in [Raynal 95].

5.4 Causal Order in HARP with Version Vectors

Since the propagation protocol involves only communication events (i.e. message send and
receive) and no internal events, then the Version Vectors can be used as Vector Clocks and
an algorithm such as the one proposed in [Birman 91] can be adopted in HARP to capture
causality. It should be noticed that the model is designed for a replicated system where every
message is destined for all nodes. The modifications to the propagation protocol presented
in Section 3.3 would be as follows: |,

- Each node ¢ originating a message m timestamps m with VV(m) = VV;

- When a node j receives a message m for causal delivery, it compares V'V; with V'V (m)
and delays delivery of m until

VV;[i] + 1= VV(m)[i] and VV;[k] > VV (m)[k] Vk #1

The remainder of the propagation protocol is the same and the restructuring operations
presented in Chapter 4 do not require any modifications to ensure correctness. Note that
this method requires V'V; to be sent with every message propagated.

5.5 Causal Order in HARP with Compact Vectors

It has been shown that causal order can be implemented in HARP using V'V at the expense
of appending a timestamp of size O(n) to every message. However, it is believed that
a timestamp of size O(n) imposes a high communication overhead, especially for a large
number of nodes. In this section, a novel algorithm is presented to maintain causality which
reduces the size of the timestamp significantly. The algorithm relies on the hierarchical
propagation scheme described in Section 3.3 and is based on Vector Clocks.

The basic idea behind the algorithm is to take advantage of the hierarchical structure and
of the fixed pattern of propagation that messages follow. Consider any node ¢ belonging to
cluster C;. Following the propagation algorithm, node 7 receives every message -originating

65

at any node in the network- either from a neighbour, the parent or a child. Then, to preserve
causality, before delivering a message m, a node needs to check that it has received from
its correspondents and delivered every message that preceded, and therefore was causally
related to m. Therefore, each node needs to keep track of messages received from neigh-
bours, parent and children, and stamp messages with this information only. The algorithm
presented here cuts down the size of the timestamp appended to each message to be of
order g, where ¢ is the number of nodes in a cluster. In Section 5.5.1, Compact Vectors
are introduced, which are similar to Vector Clocks in that they reflect what messages have
been sent to and received from other nodes. However, the knowledge is confined to nodes in
a certain cluster rather than relating to every node in the network. Section 5.5.2 presents
the causal delivery condition using the Compact Vectors as well as the procedure to update
these vectors.

5.5.1 Compact Vectors (CV)

Each node keeps a Compact Vector (CV) ! for each cluster it communicates with directly
recording messages sent and received from the cluster. Assume that node i is the r** member
of the cluster C,; and that i has c child clusters (ordered from 1 to ¢). Further, assume that
each cluster contains ¢ nodes, ordered by global node identifier. Then, node ¢ maintains
¢+ 1 vectors (CV2,CV},...,CV¥) and each vector is of size g + 1: 2

e The CV? vector summarises what messages were sent to and received from neighbours
and parent. More specifically,

- CV2[0] = number of the last message received by ¢ from the parent and delivered at i

- CVY[r] = number of the last message delivered at i and sent to neighbours and parent

- CV[k] = number of the last message received by ¢ from member k of C;; and delivered
at i, Vk#r

e The CV? vector summarises what messages were sent to and received from children
belonging to cluster C,. More specifically,

- CV?[0] = number of the last message delivered at i and sent to children belonging to C,
- CV?[k] = number of the last message received by % from child k£ belonging to C, and
delivered at ¢

! As discussed in Section 3.3.1, vector notation is adopted for simplicity of exposition, and for consistency
with the literature. Again, a functional notation would have described the structures more precisely, since
each entry in the Compact Vector needs to be associated with the corresponding node identifier. Also, the size
of these structures changes when reconfiguration occurs. In this case, CV would be defined as CV : N — segq,
where seq is a set of integer sequence numbers. However, in order to keep the terminology of the literature,
we refer to the data structures as Compact Vectors. A likely implementation is by means of a linked list of
pairs (node id, sequence) which, after the first entry for the parent node, is ordered by global node identifier.

2The numbers ¢ and g are used for ease of presentation and are not a restriction of the algorithm.

66

5.5.2 The Causal Delivery Condition

Assume node i receives a message m from correspondent j. Then, there are three cases:

Case 1 if j is a neighbour
Then, ¢ needs to delay the delivery of m until it has received and delivered all messages
j had delivered before m. These messages are either sent directly from j or both ¢
and j have received them from other members of C, or the parent of C,. Therefore,
j stamps m with its C’Vj0 and i compares it with its own CV_? and applies the causal
delivery condition. That is, assuming that j is the k* neighbour:

e j stamps m with CV(m) = CV}, and

e i delays delivery of m until
CV(m)[k] = CVPk] +1IACV(m)[I) < CVO[ll, WVI#k

Case 2 if j is a child belonging to cluster C,

Then, ¢ needs to delay the delivery of m until it has received and delivered all messages
4 had delivered before m which are either sent directly from j or both i and j have
received them from other members of Cy. So, j stamps m with its C’Vj0 (which carries
information about cluster Cy) and ¢ compares it with its own CV;Y and applies the
causal delivery condition. That is, assuming that § is the k*® child belonging to cluster
Cy:

e j stamps m with CV(m) = CVJ-O, and

e i delays delivery of m until

CV(m)k] = CVPEl + 1ACV(m)[) < CVPLl, WVi#k

Case 3 if j is the parent
Then, ¢ needs to delay the delivery of m until it has received and delivered all messages
j had delivered before m which are either sent directly from j or both 7 and j have

received them from other members of C;;. So, j stamps m with its C’VJ-‘” and 7 compares -

it with its own CV (which contains information about cluster C;;) and applies the
causal delivery condition. That is:
e j stamps m with CV(m) = CV, and

e i delays delivery of m until
CV(m)[0] = CVR0]+ LACV(m)[I) < CVPll), WVI#0

Delayed messages are placed in a queue, undelv_g;, to be processed after the missing mes-
sages arrive 3. An undelivered message is marked with which correspondent it came from so

%It should be noticed that a node does not propagate a message to its correspondents until it has been
delivered.

67

When node i generates a message m:
{
increment CV[r};
stamp a copy of m with CV? and send it to parent and neighbours;
Vi=1toc{
increment CV][0] ;
stamp a copy of m with CV; and send it to children belonging to cluster Cj;
}
}

When node i receives a message m from its k** neighbour:
{ .
/* Check for causality */

If (CV(m)[k] = CVOk]+1ACV(m)[l) < CVP[l] Vi#E) Then {

deliver m;
set C’Vio[l] = Max {C’V;O[l],CV(m)[l] ¥, W
Vi=1toc{

increment CV/[0] ;
stamp a copy of m with CV] and send it to children belonging to cluster Cj;

}

process any messages in undelv.g; that are now in order ;

}
Else

Mark m as non-delivered and place it in undelv.g; for later processing;

}

When a node i receives a message m from the k** child belonging to cluster Cy:

{
/* Check for causality */

If (CV(m)[k] = CV2[k]+1ACV(m)[l] < CVP[l], VI#k) Then {
deliver m;
set CVY[l] = Max {CV?[l],CV(m)[I] }, VI ;
increment CV2[r);
stamp a copy of m with O’VZ-O and send it to parent and neighbours;
Vi=ltoec, j#y{
increment CVij 0] ;
stamp a copy of m with C'Vij and send it to children belonging to cluster Cj;

}

process any messages in undelv_g; that are now in order ;

}
Else

Mark m as non-delivered and place it in undelv_g; for later processing;

Figure 5.2: Steps a node i takes to deliver a message m and to update the Compact Vectors,
upon originating m or receiving m from its neighbours or children

68

When node 7 receives a message m from its parent:

{
/* Check for causality */

If (CV(m)[0] = CVO[0] + 1 A CV(m)[l] < CVPJl] Vi#0) Then {
deliver m;
set CV2[l] = Max {CVO[l],CV(m)[]] }, Vi;
Vi=1toc{
increment CV7[0] ;
stamp a copy of m with C’Vij and send it to children belonging to cluster Cj;

}

process any messages in undelv_g; that are now in order ;

}
Else

Mark m as non-delivered and place it in undelv_g; for later processing;

Figure 5.3: Steps a node % takes to deliver a message m and to update the Compact Vectors,
upon receiving m from its parent

that when delivered, the node knows to which correspondents it should be sent to. The steps
node 7 takes to deliver a message m and to update the Compact Vectors, upon originating
m or receiving m are described in Figures 5.2 and 5.3.

It is obvious from the protocol that each message is stamped by one Compact Vector which
is of size O(q), where g is the number of members in a cluster. This reduces significantly
the size of the message especially for a large number of nodes. This reduction in the size of
the timestamp results in a lower communication overhead and enhances scalability of the

system. Using the above protocol, it is guaranteed that causal order is preserved. The proof
of correctness is established in Section B.1.

5.6 Modifications to the Restructuring Operations

Unlike Version Vectors, a Compact Vector cannot be freely compared to any other Compact
Vector. Two Compact Vectors can be compared to each other only if both of them hold
message numbers sent or received by the members and the parent of the same cluster.

Definition 1 Two Compact Vectors, CVy and CVs are compatible if their entries hold -
message numbers sent or received by the same set of nodes.

69

Only compatible Compact Vectors can be compared to each other. Therefore, if a node 3
receives a message m timestamped with a CV(m) incompatible with i’s Compact Vectors, -
then the check of causality for m cannot be carried out and m will never get delivered at
i. During normal operation, a node i is ensured to receive all messages with timestamps
compatible with CV;.

When a reconfiguration occurs, since it involves nodes changing clusters and correspondents,
the Compact Vectors of each node ¢ participating in the change should be updated to reflect
the new configuration by adding (removing) entries for new (old) correspondents. While
updating them, it may happen that they become incompatible with the timestamp CV(m)
of an undelivered message m received by i before or during the reconfiguration. These
situations should be handled so that such a message m is eventually delivered at i. Further,
following the restructuring operations presented in Chapter 4, two new correspondents :
and j exchange missing messages during the reconfiguration. If i and j were belonging
~ to different clusters, then the Compact Vectors of i are incompatible with the timestamps
associated with messages in Log; and vice versa. Consequently, the messages received during
the exchange will remain blocked indefinitely at both ¢ and j.

Therefore, some modifications are needed to the restructuring operations. Mainly, the pro-
cedure by which messages are exchanged needs to be altered so that received messages can
be delivered in causal order. Further, a procedure for updating the Compact Vectors needs
to be added for each operation while ensuring that messages received before, during, and
after the reorganisation are delivered in causal order and that no undelivered messages are
blocked indefinitely. '

5.6.1 The Basic Operations

The modifications to the basic operations require adding a flag to the View structure so that
a node can distinguish between the different states of other nodes. The flag View;.i.state
is two bits long and is set to:
00’ if 4 is in the process of joining j’s cluster. It is set after j receives join_req from <.
’01° if 1 has joined j’s cluster. It is set after j receives update_view from 7 with
status; =joining and View;.:.Cid = View;.j.Cid.
10’ if ¢ has left j’s cluster. It is set after j receives update_view from i with status; =leaving.
’11’ if i belongs to another cluster. It is set after j receives update_view from i with
View;.i.Cid # View;.j.Cid.

For the leave operation presented in Section 4.2.1, the modifications are simple. When a
node j receives the update_view message from a neighbour or a child ¢ declaring that it is
leaving, it waits until all undelivered messages that have been received from 7 before the
update_view have been delivered. Then, j discards the corresponding entry of ¢ from its
Compact Vectors. The waiting step ensures that if § had a message m received from ¢ that
is still undelivered, then j’s Compact Vector will remain compatible with CV(m) until m is

70

delivered. Further, since a node does not leave except when it makes sure that all messages
it had to send to its neighbours and parent have been received and acknowledged, then the
neighbours and the parent of the leaving node will be able to deliver any message sent by
the leaving node before it leaves as well as any message that is causally related to messages
sent via the leaving node and no undelivered messages are blocked indefinitely.

A node ¢ can initiate or destroy a cluster C; as described in Sections 4.2.3 and 4.2.4 respec-
tively. Also, it needs to create or destroy the corresponding Compact Vector CVE.

The main modifications to the join operation presented in Section 4.2.2 are that nodes
exchange only messages that have been delivered rather than exchanging all messages that
have been received. Those messages are delivered at the recipient in the same order they were
delivered at the sender. Since the sender has already delivered them in causal order, then
the order is preserved at the recipient. Nodes need to stamp messages stored in the log with
the order in which they were delivered to pass on this order with each message sent during
the exchange. Further, the set of the missing messages are stamped with the corresponding
Compact Vectors so that the recipient updates its Compact Vectors accordingly before
normal propagation begins. The scenario of message exchange with the modifications is
outlined in Figure 5.4 and an explanation follows.

e Assume node i is joining a cluster C;. Node 7 starts by initialising its CV to 0.

e When node 7 sends join_reg to node j, a member or the parent of Cj, it associates
the message with V'V;* (rather than V'V;), which is equivalent to V'V; but omitting the
uids of messages that are undelivered; that is, messages queued in undelv_g; 4.

e When a node j, a member or the parent of C;, receives join_req from i, it creates a
new entry for 7 in its Compact Vector and initialises it to 0. Further, it compares
V'V with VV;* and sends ¢ messages that j has delivered and ¢ has not along with the
ack_join. The ack_join message is also stamped with VV, and CV}O, if § is a member
of Cz, or CVF if j is the parent of C;. Then, j can start propagating messages to i.

o On receiving ack_join from j, node ¢ sends j messages that i has delivered and j has
not stamped with CV;?. Further, it delivers the messages received from j in order,
then it updates CV? as follows:

If j is a neighbour then CV[l] = Max {CV[i], CV[i]}, VI

If j is the parent, then CV[l] = Max {CV][l], CVrly, Vi
Therefore, CV? is updated to reflect messages that have been received and delivered
from members and the parent of C; and CV,? becomes compatible with C’Vj0 of every
neighbour j and with CV}7 of the parent p. Consequently, ¢ is ready to accept messages
stamped from its new neighbours and parent and can start propagating messages to
them.

4VV* could be maintained at each node all the way through normal operation or it can be constructed
from VV and undelv_q at the time the reorganisation takes place.

71

e A neighbour j, on receiving the missing messages from 4, delivers them in order and it
updates its CV; to the element-wise maximum of CV;? and CV;. This ensures that if
i has sent any messages for propagation to other members or the parent of C; after it
has joined, these messages will be reflected in C’Vj0 5. Similarly, the parent p updates
CVy’ after delivering the received messages from .

i J

' initia]ise C‘IZO to 0 %

saddanentry for i in
CV}.O if j is a member of C, , or

cages cv]?‘ if j is the parent of Cx
. gﬁssingmes ¢+ include i in View;
ack_jo 0 CVJ-c s start normal propagation to i
or L¥j
u ¢V i S
¥ include j in View;
¥ deliver received messages

¢ update CVio

¢ start normal propagation ¢ deliver received messages
toj + update cvjo or CV]’.‘

Figure 5.4: Scenario of message exchange between a node i joining a cluster C,, and node j
a member or the parent of C;

It should be noted that during or after the join operation, a node ¢ might be receiving a
message m from a correspondent j that has been delivered at j but m already exists in
undelv_g; undelivered. This can happen if m has been already received by ¢ from another
correspondent k. In this case, 7 delivers 7 as received from j and updates its CV accordingly.
Further, if k is a current correspondent, then i updates its CV as if m has been received
from k to ensure the flow of message delivery. If k is a previous correspondent then i just
discards m.

Assume a node j, a member or the parent of Cy, receives a message m from another member
k while a node 1 is joining C,. The timestamp CV (m) might or might not carry an entry
for 4, depending on whether ¢ has or has not joined % yet. Consequently, the causality check
cannot be performed if an entry for ¢ exists in CV(m) but not in C’Vj0 or vice versa, since
they are incompatible and m will not be delivered at j. The same applies if node 7 is leaving
Cz. These cases need to be handled to ensure that comparing CV;-O with CV(m), m will
not be blocked indefinitely and that it is delivered in causal order. The checks carried out

®Recall that i does not have to wait for ack_join from all members and the parent of C: to start propa-
gating messages. When 7 receives ack-join from a node, then i can start sending it messages immediately.

72

by j to detect these situations and the associated actions taken are described in Figure 5.5.
In the figure, it is assumed that j is a neighbour of 4, where i is joining or leaving C. The
same modifications apply if j is the parent of C, (substituting C’Vj‘J by CVf) orif jis a
node joining C.

(1) If an entry for i exists in CV but not in CV(m) and View;.i.state =' 01' Then
/* k has left i while j has not yet */
J places m in undelv_g; until the entry of ¢ is discarded from CV}O, then
performs the causality check
(2) If an entry for i exists in CV(m) but not in CVj0 and View;.i.state =' 10’ Then
/* 7 has left ¢ while k has not yet */
j discards the entry of i from CV(m) before comparing CV(m) and CV}
(8) If an entry for i exists in CV} but not.in CV(m) and View;.i.state =' 00' Then
/* i has joined j but has not yet joined k */
J creates a entry for ¢ in CV(m) with value 0 before comparing CV(m) and cv?
(4) If an entry for i exists in CV(m) but not in CV) and Viewj.i.state =' 11’ Then
/* @ has joined k but has not yet joined j */
Jj places m in undelv_g; until join_req is received, then
performs the causality check

Figure 5.5: Checks and actions performed by node j on receiving a message m from node
k, a neighbour or the parent of j, while a node ¢ is joining or leaving j’s cluster

Following the above modifications it is ensured that no messages are lost during the leave
or join operations and that the Compact Vectors are updated such that all messages are
delivered in causal order and no undelivered messages are blocked indefinitely. The proof of
correctness is presented in Sections B.2 and B.3.

5.6.2 The CHANGE-PARENT Operation

Assume a node old_p needs to change the parenthood of its child cluster C; to a new parent
new_p. The change-parent operation, described in Section 4.5.1, needs some modifications
which are very similar to those of the leave and join operations. Members of C discard
old_p from their Compact Vectors only after delivering all messages sent by old_p before the
change. Also, members of C,; and new_p exchange only delivered messages, and the recipient
delivers the received messages in the same order they were delivered at the sender. Further,
compatible Compact Vectors are exchanged and updated before normal propagation begins.
The scenario of message exchange is outlined in Figure 5.6 and the modifications are as
follows:

e old_p stops sending new messages to members of Cy, but it waits until all previously
delivered messages that have been sent to members of C, have been received and

73

¢ create CV*
new_p

initialised to 0

¢ wait until undelivered messages that
came from old_p before the change
are delivered

¢ set CViO [0l t00
¢ include new_p in View i

¢ start normal propagation to new_p
¢ include i in View,, D
¢ deliver received messages

¢ update CV*
new_p

¢ start normal propagation - ¢ deliver received messages

toi ¢ update CVio

Figure 5.6: Scenario of message exchange while a node ¢ is changing its parent to new.p

acknowledged before issuing change_reg. This is to prevent undelivered messages at a
child from being blocked indefinitely.

e When a node i, a member of Cy, receives change_par from new.p, it waits until all
undelivered messages that have been received from old_p before receiving change_par
have been delivered. Then, it changes the first entry of CV? from oldp to new.p
and resets its value to 0 (CV[0] = 0), initialising the number of messages received
from new_p. The waiting step is necessary to ensure that no message that previously
came from a neighbour or old_p before the change and is causally related to messages
received from old_p is blocked indefinitely. Further, i includes new_p in its View; and
sends new_p the ack_par message associated with VV;*, the set of delivered messages
that new.p does not have and CV;0.

e When new_p receives ack_par from a node i, it sends 4 the set of delivered messages that
i does not have associated with CVj,,, ,. Further, it delivers the messages received
from i in order, then it updates CV.%,, , to the element-wise maximum of CVpey p
and CV?. Similarly, node % delivers the messages received from new.p in order and
updates CV? to the element-wise maximum of CV;%,, , and CV0.

e When the operation is completed, if old—p still has an undelivered message m that
came from a member of Cy, then old.p discards m; that is, it pretends it has not
received it. Then, it will receive m and messages causally related to it through normal
propagation when members of C, propagate those messages through new_p.

74

Assume node i, a member of C;, receives a message m from another member j while the
change is taking place. The first entry of CV(m) might carry the timestamp of new.p or
old_p depending on whether j has received change_par and has reset CV]-0 [0] to O or not.
The checks needed to detect these situations and the actions taken to ensure that comparing
CV? with CV(m), m will be delivered in order are described in Figure 5.7.

(1) If the first entry in CV(m) is for new_p while that of CV? is for old_p Then
/* 7 changed its parent to new_p while ¢ did not */
i places m in undelv.g; until chenge_par is received and CV?[0] set to 0, then
performs the causality check

(2) If the first entry in CV(m) is for old_p while that of CV? is for new.p Then
/* i changed its parent to new_p while j did not */
i sets CV(m)[0] to 0 before comparing CV? and CV(m)

Figure 5.7: Checks and actions performed by node 7, a member of C;, on receiving a message
m from another member j while they are changing their parent

The rest of the protocol is the same as described in Section 4.5.1. The protocol ensures that
new_p and the members of C, will receive the same set of messages delivered in causal order
and that no undelivered messages will be blocked indefinitely. The proof of correctness is
presented in Section B.4.

5.7 Failures

Either the procedure based on the basic operations (Section 4.4.1) or the take-over operation
(Section 4.5.2) is used for handling failures. Since take-over is mainly a combination of
change-parent and join operations performed by the node taking over the failed node, then
the modifications described in Sections 5.6.1 and 5.6.2 are adopted. However, while the
children of the failed node change their parent, they do not have to wait for undelivered
messages that came from neighbours and the failed node to get delivered before participating
in change-parent. The waiting step might block the take-over operation if the failed node
has died before sending messages causally related to those messages. Since those messages
are delivered at least at a neighbour, they will be received by the node taking over and will
be sent to all f’s correspondents.

Assume a node f has failed before sending or receiving a message m and that node i is
taking over f, then the take-over operation guarantees that:

1. if at least one correspondent of f, say j, has delivered m, then j will send m to ¢
-while 7 is performing join or change-parent- and 7 delivers it and sends it to all f’s
correspondents. Consequently, m will be received and delivered everywhere.

75

2. if §, a correspondent of f, has m as an undelivered message, then there are three cases:

Case 1 if m came from a correspondent of j, say k, that is not a correspondent of f.
Then CV(m) does not depend on messages sent from f and m will be delivered
at j. If m is delivered during the take-over, then j sends m to ¢ which will deliver
it and send it to all f’s correspondents. If m is delivered at j after the take-over,
then j sends m to its own correspondents including i. Since % takes exactly f’s
position, then m follows the same pattern of propagation it would have followed
if f was alive and consequently will be propagated and delivered everywhere.

Case 2 if m came from a correspondent of j, say k, that is a correspondent of f.
Then k has delivered m and will send it to ¢ during the take-over and 7 will send
it to all f’s correspondents. Consequently, m will be received and delivered by
all nodes through propagation.

Case 3 if m came from f itself. In this case there is no guarantee that m can be
delivered at j. This case occurs if say f received a message m’ from a child
c1, then it generates the message m (i.e m’ — m) but it sends m to only one
neighbour j then it dies. Since the Compact Vectors of ¢; and j are not compatible
then even if j receives m' from ¢; it will not be able to deliver it.

In other words, take-over ensures the flow of propagation while f is down. Further, it ensures
that if f had failed before sending or receiving a message m and at least one correspondent
of f has delivered m then m will be received and delivered everywhere. But if m is causally
dependent on a message m’' it guarantees that m and m’ will be propagated and delivered
everywhere provided that at least one of f’s correspondents has received and delivered both
m and m’'. If such a correspondent does not exist then m may remain undelivered until f
comes up. This restriction is due to the fact that not all correspondents of f have compatible
Compact Vectors.

When the failure is repaired, the node is reintegrated through a join operation.

5.8 Partitions

The procedure described in Section 4.4.2 can be used to handle partitions. However, in
order to ensure that if a message m has reached at least one node in a partition, then every
node in this partition will receive and deliver m, a modification is needed in the procedure
used by the affected nodes © in one partition to exchange missing messages with each other.
The modification is based on the fact that delivered and undelivered messages should be
treated separately to preserve the causal order. But since nodes exchanging messages are

SRecall that affected nodes are those which have been isolated from some of their correspondents due to
the partitioning.

76

members or the parent of the same cluster, then their Compact Vectors are compatible and
they can exchange undelivered messages.

Assume nodes 7 and j are two affected nodes in one partition. After exchanging VV and LL,
assume node ¢ asks j for a set of missing messages, then j should send to ¢ the requested
messages such that:

e For messages that were delivered at j, they are sent along with CVJ-O, if 7 is a neighbour

or a child of ¢, and with CV, if j is the parent of < and 7 belongs to cluster C;. Node
1 receiving those messages, processes them in the same order that they were delivered
at j, hence, preserving causal order. Further, 7 updates its Compact Vectors to reflect
the messages it has just delivered. Therefore,

If j is a neighbour of i then, CVP[l] = Max {CV2[l], CVP[1]}, VI

If j is the parent of i and i belongs to C; then CV[l] = Max {CV[I], CVF[l]}, VI

If j is a child of ¢ and j belongs to Cy then CV[l] = Max {CV[I], CV[l] }, VI

¢ For messages that have not been delivered yet at j, they are sent to ¢ such that if 4
is a neighbour or the parent of j, then j sends only undelivered messages that came
from other neighbours or the parent of j along with CV(m) and the identity of the
sender k. This information enables i to deliver the message when it is in the right
order. Node i treats the message as if it is coming from node k. For other undelivered
messages (sent to j from its children) they will be sent to ¢ when they are delivered
at j following the normal propagation algorithm.

Similarly, if ¢ is a child of j and i belongs to cluster Cy, then j should send ¢ only
undelivered messages that came to j from other children belonging to cluster C, along
with the identity of the sender and CV (m). Other undelivered messages will be sent
to ¢ when they are delivered at j.

5.9 Summary

This chapter has presented an efficient protocol that supports exchange of messages among
a set of nodes while preserving the causal ordering of message delivery in the presence
of communication and processor failures. The protocol has the desirable characteristic
that it imposes a low space overhead on the causal order information associated with each
message. This has been achieved by using the hierarchical propagation algorithm of HARP,
where each node sends and receives messages from a few nodes only. Consequently, a
node needs to keep track of messages received from those nodes and stamp messages with
this information only in order to verify the causal ordering. This reduction in the size of
timestamp -as opposed to previous solutions that used a timestamp of size n- results in
reduced communication overhead and makes the scheme suitable for large scale systems.
The protocol is asynchronous; that is, it does not block the sender until remote delivery

77

occurs, which is a key to high performance. Further, it makes very few assumptions about
the underlying network.

78

Chapter 6

Performance Evaluation of HARP

6.1 Introduction

A simulation study was carried out to evaluate the performance of the proposed protocol
HARP [Adly 95b, Adly 95d]. The aim of the study is to explore the following issues:

1. Synchronous operations are expected to impose limitations on performance such as
response time and throughput, while asynchronous operations are expected to give
better performance but suffering from accessing out-of-date information. It is desired
to study the tradeoffs between performance and staleness of data, especially under
different system configurations such as workload mixes, load intensity and communi-
cation overhead.

2. Reading from higher levels of the hierarchy is expected to give more up-to-date in-
formation in exchange of a higher response time. The performance of reading from
different levels of the hierarchy needs to be investigated.

3. It is desired to evaluate the protocol on different hierarchical network topologies, and
consequently different logical topologies, to see how they can affect performance.

4. Comparing the performance over a non-hierarchical topology versus a hierarchical one.
5. Exploring the effect of increasing the degree of replication on performance.
Previous performance studies of synchronous replication protocols were confined to evaluate
the quorum size and the availability of data. However, the costs of maintaining consistency
in terms of latency and communication overhead were not quantified. These costs are im-

portant to be evaluated, especially in internetworks environments. Therefore, the conducted
study models several components which affect the evaluation of these metrics, such as the

79

network delays, the overhead of running various algorithms, the quorum collection policy,
handling deadlocks and so on.

This chapter presents the simulation model designed and implemented (Section 6.2). Then,
the results are presented and analysed. Since a certain application cannot mix synchronous
and asynchronous writes together while updating the same data item, two groups of ex-
periments are carried out in order to evaluate the above points. The first group (Sec-
tion 6.3) considers synchronous updates only (i.e. Slow_Write and Opt_Write) and evaluates
the performance of mixing synchronous reads (i.e. Slow_Read) and asynchronous reads (i.e.
Fast_Read) under different system configurations and network topologies. The second group
(Section 6.4) performs a similar set of experiments when updates are asynchronous. Also, it
compares the performance of asynchronous and synchronous updates. Section 6.5 outlines
the results of a set of experiments performed with large number of replicas. The experi-
ments presented here are a subset of the total experiments performed. The full set of the
experiments and the analysis are reported in [Adly 95d]. '

6.2 The Simulation Model

This section presents the design of the simulation model. It describes the system and the
network models, the overhead of the algorithms and the way the various operations are
modelled. Then, it defines the performance metrics used for evaluation. The model is
described by a set of parameters which are listed in Table 6.1.

The simulator was implemented using the simulation package Simpack [Fishwick 92] devel-
oped at the University of Florida and based on the C programming language.

6.2.1 The System Model

The model consists of a number nodes connected by a communication network. Each node
is assumed to store a copy of the object being replicated. A node has nonvolatile storage
(disk) and a CPU. CPUs are modelled as single queue with single server; with no preemption.

- Bach disk has its own queue, which it serves in FIFO manner.

The system is modelled as an open system where requests arrive with arrival rate drawn
from a Poisson distribution. Each request is composed of a single operation (read or write).
Each operation is parametrised by cpu_req and i0_req specifying the average amount of CPU
and I/0 time required respectively; they are exponentially distributed. The fraction of read
requests is determined by the parameter freg,. In this study, two Fast_Read operations are -
evaluated to reflect the effect of reading from different levels of the hierarchy. The first
operation, denoted by Fast_Read_0, reads from the local node; and the second one, denoted
by Fast_Read_l, reads from a node at one level up in the hierarchy, that is from the parent

80

| parameter Description | Default value
n Number of nodes in the network 12
inter-arr_time Inter arrival time 1000 msec
freg: Frequency of read requests .85
fastro Frequency of Fast_Read_0 requests var [0-1]
fastry Frequency of Fast_Read_1 requests var [0-1]
slow, Frequency of Slow_Read requests var [0-1]
fasty -| Frequency of Fast_Write requests var [0-1]
slow,, Frequency of Slow_Write requests var ~[0-1]
opty, Frequency of Opt_Write requests var [0-1]
cpu._req Processing requirements of a request (exponential) 50 msec
to_req I/0 requirements of a request (exponential) 60 msec
cpu_-msg CPU overhead to send/receive a message 2.0 msec
lan_del Network delay over LAN (uniform) 0.02 msec
wan_del Network delay over WAN (exponential) '10.0 msec
prop_ovhd_const | Propagation overhead: constant part 2.0 msec
prop_ovhd_var Propagation overhead: variable part (per destination) 1.0 msec
pc-ovhd_const 2PC overhead: constant part 2.0 msec
pc-ovhd_var 2PC overhead: variable part (per participant) 1.0 msec
cpu_lock CPU time to acquire/release a lock 0.2 msec
deadlock_timeout | Timeout signalling a deadlock detection adaptive
backoff_per Time interval an aborted operation waits before restarting | adaptive
cpu_abort Overhead of aborting an operation 2.0 msec
pr_commit Probability an Opt_Write operation will commit 0.9
cpu_undo CPU time to undo an aborted operation 50 msec
to_undo I/O time to undo an aborted operation 60 msec
power-cpu; Speed of CPU at node ¢ 1
power-io; Speed of I/O at node % 1
power_transc; Speed of transceiver ¢ 1
batch_length Length of a single simulation batch 2000 job
num_batch Number of batches for which simulation runs 3
waermup_per Number of jobs after which statistics are reset 200 job

node. The parameters fast.g, fast;; and slow, specify the frequency of the Fast_Read.0,

Table 6.1: System parameters of HARP

Fast_Read.l and Slow_Read operations respectively. The parameters fast,,, slow, and opt,

specify the frequency of Fast_Write, Slow_Write and Opt_Write operations respectively. These

parameters allow the examination of a wide variation of workload mixes.

6.2.2 The Network Model

The physical network modelled is chosen to reflect a hierarchical structure, as shown in
Figure 6.1. It consists of 12 nodes, three of them are fully connected through long distance

81

links to form a backbone. The remaining nodes are grouped into three-clusters. Within
a cluster, nodes are fully connected through high speed links (LAN) and experience very
low delay in sending messages to each other. Each cluster is connected to a node on the
backbone through a long distance link. This is similar to the structure of the Internet today:
regions of high connectivity with regions weakly connected through a backbone. The logical
hierarchy is chosen to match the physical hierarchy; that is it consists of two levels, nodes
on the backbone form one cluster at level one and each LAN cluster forms a logical cluster
at level two.

Figure 6.1: The physical network modelled, Net 1

Messages are reliably delivered and FIFO channels are assumed. The system is modelled
during normal operation; that is, in the no failure case.

Sending messages between nodes involves the overhead of running the network protocols and
the operating system. This overhead is modelled as cpu-msg msec processing at the CPU.
A node performs this overhead when sending a message, receiving a message or relaying a
messa,ge‘as an intermediate node between a sender and a destination node. It is assumed
that there is a multicast facility rather than point-to-point communication. Also messages
encounter network delays which involve transmission delays, propagation delays and media
access time. Delay over a LAN is modelled as lan_del msec drawn from a uniform distribution
and transceivers are modelled as single queue with an infinite number of servers. For WAN
links this delay is modelled as wan_del msec, exponentially distributed, and transceivers are
modelled as single server single queue. When a node ¢ sends a message to a node j, this
involves communication processing overhead (cpu.msg) at i,j and at every intermediate
node on the route from ¢ to j. Further, the message encounters network delays at each link
(WAN or LAN) it crosses.

82

6.2.3 Overhead of the Algorithms

The propagation algorithm is modelled as a constant overhead (propg-ovhd-const), which
accounts for the time to check for duplicates, update status, decide from whom a message
came and to whom to send it to. Further, an overhead is added for every logical destina-
tion it is sent to (propg-ovhd_var), which accounts for the time to maintain timers, handie
acknowledgements and so on.

For Slow_Write, Slow_Read and Opt_Write, the generic Two-Phase-Commit algorithm
(2PC) [Bernstein 87] is adopted while collecting quorums. The overhead of 2PC at the
coordinator CO (for phase 1 and 2) is modelled as a constant overhead (pc.ovhd_const)
plus an overhead for each node participating in the quorum (pc.ovhd_var). The overhead
of acquiring and releasing locks is modelled as cpu_lock msec processing at the CPU. The
overhead of writing on logs is ignored. The simulator maintains lock tables and explicitly
simulates lock contention.

Deadlock avoidance is implemented by using a timeout interval based on the following
heuristic [Carey 87]: deadlock-timeout = avg(W) + k * o (W), where avg(W) is the average
waiting time of lock requests, o (W) is the standard deviation of waiting time of lock requests
and k is a weighting factor. Hence, deadlock_timeout is dynamically adjusted to reflect on-
line estimation of lock request time. k is taken to be 1 as recommended by [Carey 87]. When
deadlock is detected, each node releases held locks and aborts the operation. Aborting an
operation is modelled as processing time overhead (cpu-abort) at CO and each participant
involved in the quorum. A backoff_period= ax deadlock_timeout is used, then the operation
is restarted.

Majority quorum consensus has been adopted to collect quorums from the top cluster for
synchronous operations, although any other policy could have been used. Several quorum
collection policies are discussed in the literature [Ammar 91, Cheung 94, Golding 92a].
Two straightforward solutions are to poll nodes serially one at a time until ¢ nodes have
responded (where g is the quorum size) or to send the request in parallel to all nodes. The
first solution experiences excessive delay while the second incurs high traffic and causes
congestion. Other policies [Golding 92a] suggested sending to g nodes in parallel then con-
tacting more if report failures occur or to send to g + € nodes in parallel. Since the extra
nodes to send to are to account for failures, and since in our model it is assumed that
failures do not occur, the adopted policy is to send the request to exactly g nodes in paral-
lel. In [Cheung 94], several heuristics have been presented to access ¢ nodes out of m with
minimum costs given the topology and communication cost between each pair of nodes.
However, since nodes in the top cluster are assumed to be fully connected with the same
link speeds, then random selection is adopted.

83

6.2.4 Operation Modelling

In the following, a description of how each operation is modelled in the simulator is presented.
To maintain the version of replicas, the simulator keeps a global data version counter,
denoted by global_version, and a version counter for each node j, denoted by version;.

Fast_.Write : A node 7 originating a Fast_Write executes the request and updates versions by
incrementing the global_version and its own version version;. Then, it sends the mes-
sage to its correspondents according to the propagation algorithm. This involves pro-
cessing the overhead of the propagation algorithm as well as communication overhead.
When the message reaches a destination j, j sends the message to its correspondents
(which again involves propagation and communication overhead). Then, it executes
the request and updates its own version version;. The same procedure is repeated
until the update reaches all leaf nodes. The updates are delivered at the replicas in
any order.

Fast_Read 0 : this operation just involves executing the request at the origin node.

Fast_Read_1 : A node i originating a Fast_Read_1, sends the read request to its parent p.
When the message reaches p, it executes the read, then it sends back the results to <.
When 7 receives the message, the read is considered complete.

Slow_Write : A node i originating a Slow_Write, if 7 is not in the top cluster, then it sends the
update request to its ancestor in the top cluster, which acts as the coordinator (CO)
of the operation; otherwise, i acts as its own CO. CO, receiving the message, starts
processing phase one of 2PC, acquires locks and sends vote_req message to (quorum
size -1) nodes of its neighbours selected randbmly. A participant receiving vote.req,
acquires locks; when obtained it sends vote_yes to CO. When CO receives vote_yes
from all participants, it executes the overhead of phase two. At this point the update
has committed and CO sends commit message to the participants and the origin node
i. Then, it executes the update, updates the global_version and its own version and
releases locks. Next, it starts propagating the message by sending it to neighbours that
did not participate in the quorum and to children other than . A participant receiving
a commit, executes the update, updates its version, releases locks and propagates
the message to its children. Node i receiving commit, executes the update, updates
version;, returns control to the user then propagates the message to its children. Any
other node receiving the message, propagates the message to its children then executes
the update and updates its version. If CO times out before a quorum is assembled (2
deadlock has occurred), then it sends abort message to all participants, executes the
abort protocol and releases locks. It waits for backoff_per then restarts. A participant
receiving an abort, executes the abort protocol and releases locks.

Slow_Read : The same steps as Slow_Write are followed until CO decides to commit then
executes phase two of 2PC. Then, it checks if it has the highest version among the

84

quorum. If it does, then it sends commit to all participants, executes the read request,
releases locks and sends results to the origin node. A participant receiving a commit
releases locks. If CO is not the most up-to-date copy, it selects one of the participants
that has the highest version, sends it an exec_read message, and sends commit to
the remaining participants. A participant receiving an exec_read, executes the read
request, releases locks and sends back results to CO which will forward them to the
origin node.

Opt_Write : Opt_Write originating at top cluster nodes, are exactly the same as Slow_Write.
For Opt.Write originating at any other node 4, ¢ sends the request to CO, executes
the update and returns control to the user. In this study, nodes that are on the path
from ¢ to CO are selected to be the optimistic nodes; that is, they execute the update
as well before CO commits it. When the message reaches CO, it executes 2PC as
in Slow_Write. When CO assembles the quorum, it decides whether the update will
commit or abort according to an input parameter pr_commit. If the decision is to
commit, then CO sends commit to all participants, origin node and optimistic nodes,
executes the update, updates its version, releases locks and propagates updates to
children excluding 4 and all optimistic nodes. An origin or optimistic node receiving
commit, propagates the message to children, excluding any optimistic node. A partic-
ipant receiving a commit, executes the update, updates its version, releases locks and
propagates the message to its children. If the decision was to abort, then CO sends
abort to all participants, the origin node and optimistic nodes, executes the abort pro-
tocol and releases locks. A participant receiving abort executes the abort protocol and
releases locks. The origin or an optimistic node receiving abort, undo the operation.

6.2.5 Parameter Setting

Parameter settings are a difficult issue in simulating a distributed system. Qur parameters
for the database and requests are chosen to be comparable to previous simulation studies
such as [Ciciani 90, Carey 91]). The frequencies of different classes of requests vary from
experiment to experiment to generate a variety of load mixes. The values of the parameters
relating to the 2PC protocol are in accordance with [Ciciani 90].

The number of nodes is kept small for the tractability of the simulation. A single point
in the experiments with 12-nodes networks required a run time on MIPS machines ranging
from two to five hours, depending on the load mix, while with 39 nodes it required a run
time of eight to 20 hours.

The communication overhead (processing overhead and delay on links) are in keeping with
[Gray 88, Agrawala 92, Zhang 94] and with a study on measurements of wide area networks
presented in [Pu 91c]. It is based on a Layered Refinement methodology which measures
performance characteristics on a live Internet and build an overall profile of end-to-end
performance by collecting data and measurement of different layers such as application,

85

operating system and network layers. The delay over a LAN is taken to be 0.02 msec
split equally between propagation delay and transmission delay (assuming a message size
of 1 Kbyte and a bandwidth of 1 Gbps). The delay over a WAN is taken to be 10 msec
split equally between propagation delay and transmission delay (assuming a message size of
1 Kbyte and a bandwidth of 2 Mbps).

For many of the costs, the absolute values of the parameters are not particularly important;
the key is their magnitude relative to the other parameters. The default values used for the
system parameters are listed in Table 6.1.

6.2.6 Performance Metrics

The following performance metrics are considered:
- response time, the time from when the request is initiated until it is completed,
- commit time, the time it takes CO to commit a Slow_Write, Slow_Read or Opt_Write,
- utilisation of the resources,
- throughput of the system.

In order to evaluate the speed of propagation of updates, two metrics are introduced:
- reach time, the time at which an update reaches all replicas, and
- coverage;, the time at which an update originating at any node has reached 7 nodes.

In order to quantify the staleness of information read by a Fast_Read operation performed
at node j, a new metric is introduced, denoted by age;, which is defined as the number of
updates that a read has missed. Therefore, the higher the value, the more stale the data is.
This metric is computed as:
- age; = global_version — version; + -y * abort_.age;, where

abort_age; is the number of Opt_Write operations that j has executed but that will abort.
Since an optimistic node executes the update before it commits, then if a read occurs
meanwhile, its age (i.e.number of missing updates) would be less if the update will eventually
commit and will be higher if it will eventually abort. It is assumed that the penalty of reading
from a node that has executed z Opt.Writes which will abort, will add z units to its age
multiplied by a weighting factor <. <y is taken here to be 1. Therefore, in the simulation,
when a node i executes an Opt_Write that will eventually commit, it increments version;.
When a node i executes an Opt_Write that will eventually abort, it increments abort_age;
which will increase its age. When it receives the corresponding abort, and has undone the
update, it decrements abort_age;, which will restore its age and cancel the effect of having
executed an update which will abort.

Also, a metric which is of interest is the local age which measures the number of updates
missing between a node and other nodes in its neighbourhood rather than the global age.
This metric is computed by taking the average of the differences between the version of the
node performing the read and the versions of its neighbours, parent and children.

86

In the experiments, the means of the desired measurements are obtained by using the
methods of batch means [Ferrari 78]. Num_batch batches have been done for each run.
Each run is left to run until at least batch_length jobs are generated at each node in the
network. To eliminate the warmup effect, after generating warmup_per jobs at every node,
all the statistics are reset. The results reported here are within the 90% confidence interval
for the quantities measured. The measurements were within 10% of their true mean in
almost all cases. '

6.2.7 Verification of the Simulator

An analytical study has been performed to evaluate the performance of the suggested model.
The goal of the study is to verify the results of the simulator. The system has been modelled
as an Open Queueing Network Model with Multiple Job Classes. An approximate solution
based on the Mean Value Analysis approach [Lazowska 84] has been adopted and its results
has been compared to those obtained from the simulator.

It has been observed that the analytical results are generally close to the ones obtained
through simulation. The utilisation of the resources are identical for both models. Although
_ there is a difference between the response and reach times obtained from the analytical model
and those obtained through the simulation, the differences are small. Further, the differences
are justified by the approximations used in the analytical model. Also, the same conclusions
drawn from the simulation results can be deduced from the analytical ones. Therefore, it is
believed that the results presented by the simulation are correct. Details of the analytical
solution, the results and analysis are presented in [Adly 95d].

6.3 Experiments with Synchronous Updates

In this secﬁon, several experiments are presented where updates are either Slow_Write or
Opt_Write and reads are a mix of synchronous and asynchronous operations. Sections 6.3.1
through 6.3.4 present the results obtained under several parameter variations, namely, vary-
ing the read mix, the mix between Opt_Write and Slow_Write, the load intensity and the com-
munication overhead. Those experiments are performed over the physical network Net 1,
shown in Figure 6.1. Section 6.3.5 discusses the performance over different hierarchical net-
work topologies when the read mix is varied. Finally, Section 6.3.6 reports on the results
obtained when considering a non-hierarchical topology.

6.3.1 Varying Read Mixes, when all Writes are Slow_Write

Three experiments are carried out to explore the effect of varying a mix of Slow_Read and
Fast_Read when all updates are Slow_Write. Experiment A, does not include Fast_Read_1

87

operations and varies the mix between Fast_Read.0 and Slow_Read. Experiment B, does not
include Fast_Read_0 operations and varies the mix between Fast_Read.1 and Slow_Read. Ex-
periment C varies the mix between Fast_Read and Slow_Read operations such that Fast_Read
operations are split evenly between Fast_Read_0 and Fast_Read_1. The setting of the param-
eters is shown below; the remaining parameters are at their default values (Table 6.1).

Exp [sloww opty | fasty | fasteo | fast | slow, |
A 1 0 0 0-1 0 0-1
B 1 0 0 0 0-1 0-1
C 1 0 0 0-1* | 0-1* 0-1

* The ratio between fast.o to fast.; is kept 1:1

Results are plotted in Figure 6.2 and as shown, as the frequency of Fast_Read increases, the
average response time of reads and writes decreases substantially. For instance, for a point
where slow,=0.5, there is an improvement in read response over slow,=1 of 56% when all
fast reads are Fast_Read.0 (Exp A), 41% when all fast reads are Fast_Read_1 (Exp B) and
48% when fast reads are a combination of both (Exp C).

(a) Average Read Response Time . (b) Average Write Response Time

600 750 —T T T T
550 700 +“ Exp g ©—
G G —+-
g 500 T 50 FRE, R EE:((SC 8- -
g 45 2 e N
é 5 600 - ﬂ\ +‘\\ hn
g g ss0f O s -
- 350 = 500 ‘._.E -
g s00 g e e
8 250 g oor Cml]
€ 200 e 400 m. g
150 350 |- e
100 300 1 1 . 1
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Frequency of Fast_Read Frequency of Fast_Read
(c) Time Write reaches all replicas (d) Age of Fast_Read

oy > © 5
g ” —
E 0.25 |- -
E §’ = 8--4.. B
L e 3------ .. -
= 0.2 Ao 5 SRR E)]
[}
(]
& 0.15 &= -

: ey SO

Rt U, —~——o
0.1 [T T MU R NRG T
0 0.2 04 - 06 0.8 1 0 04 02 0.3 04 05 0.6 0.7 0.8 09 1
Frequency of Fast_Read Frequency of Fast_Read

Figure 6.2: Varying read mix, writes are Slow_Write

This improvement is due to the reduction of the load on the top cluster nodes and com-
munication links as Fast_Reads are introduced. Also, the data contention decreases as slow,
decreases, which improves the commit time of Slow_Read and Slow_Write. Consequently, the

88

time at which updates reach all replicas improves significantly as depicted in Figure 6.2(c).
The penalty paid by converting Slow_Read to Fast_Read is that fast reads return old infor-
mation. It is observed that for a point of slow,=0.5; the age of information returned by
Fast_Read is around .27 (Exp A), .12 (Exp B), and .2 (Exp C) as shown in Figure 6.2(d).
So, it is noticed that it is only a fraction of an update that it is missed (Age=0.2 could
be interpreted as one update is missed once in five reads). As the frequency of Fast_Read
increases, the age decreases: since the reach time decreases, then replicas are updated more
quickly and hence less stale.

From Figure 6.2(d), it is observed that Fast_Read_1 offers better age than Fast_Read_0 with
an improvement ranging between 51% to 57%. On the other hand Fast_Read_0 has better
performance in terms of response time, nearly 41% lower than Fast_Read_l. Therefore,
an even mix of fast.o and fast,; appears to be a good compromise that combines the two
benefits.

As shown above, converting Slow_Read to Fast_Read improves all performance metrics with
a little loss in age. So, the choice for the mix of synchronous versus asynchronous reads
depends on the application: to the extent that the application is ready to accept some loss
in the age, as the performance gets better.

6.3.2» Varying Opt_Write versus Slow_Write

Opt_Write is expected to give better response time than Slow_Write, however, it applies
the update to the replica before commit takes place. In this experiment, slow, versus
opty, is varied to study the tradeoffs between Slow_Write and Opt_Write and to evaluate the
performance of a combination of load mix between them. Parameters setting is as shown
below; the remaining parameters are at their default values.

| slow,, | opty | fasty, | fast.g | fasty | slow, |
[01 [o1] 0o [025] 025] 05 |

As shown in Figure 6.3(a), the average write response time decreases as opt, increases. This
is because the response returns to the user before the update actually commits. As shown,
the response time of Slow_Write, Opt_Write and read are basically the same; since converting
Slow_Write to Opt_Write does not alter either the load on processors or the load on the links
or the level of the data contention. Therefore, the improvement in write response time is
nearly a linear combination of the response of Opt_Write and Slow_Write. As opt,, increases,
the coverage time decreases (Figure 6.3(b)), especially for the first few nodes (optimistic
nodes), then it follows the same curve as Slow_Write.

However, as shown in Figure 6.3(c), the average age increases as opt, increases. The reason
of the degradation is that updates commit at local replicas and update the global version

89

(a) Response Time (b) Coverage Time

! I I"'Read ©—
600 [~ Write +-
— = Slow_ Wnte -EI-- e
© e = — — Opt Write -%--- =
] 500Ei—-,_,\ B--8--3--5- %F --E!--{J . §
E Shes E
o 400 f~ ~ - =
.E *‘*\ g
s 300¢——0—0—0—0—F0—o o 3 ‘s
@ '~ =)
s e nee D *\"Ix g
§ 200 4570 3 A Qs ST VSRR TIE VIR 2, - 4 g
o~ [&]
100 |~ -
) 1 | L l : 100 1 1 | 1 1
0 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12
Frequency of Opt_Write ' Nodes
08 (c) Age of Fast_Read
) Avg Age -e— ' S
0.7 -Abort Age —--
Local Age {=--
0.6 -
0.5 -
% o4 -
03 -
02F : ~
0_1[!J_---E!---El---B--E--G---EI—--EI---B--E--.{!J
o ; ! : 1 g 1 1 I 3 -
0 0.2 - 04 0.8 1
Frequency of Opt_Wnte

Figure 6.3: Varying Opt_Write versus Slow_Write

rather than updating it while assembling the quorum. So nodes at the other extreme of
the tree experience higher age. The local age is slightly better with Opt_Write due to the
improvement in the coverage time. The abort age increases as opt,, increases but it is quite
low.

Therefore, it seems that an even mix between Opt_Write and Slow_Write can compromise
the benefit of reduction in write response time, coverage and local age with the loss in the
overall age.

In a different experiment, not plotted here, the probability by which an Opt_Write commits
(pr-commit) is varied. It has been observed that, as expected, as pr_commit decreases the
throughput decreases and the abort age increases due to the large number of aborts. The
results have revealed that applications that can guarantee that more than 80% of their
Opt_Write will commit can combine the benefits of reduction in response time and coverage
while not suﬁ'ermg from severe reduction in throughput. Further, it can still benefit from a
low local age and does not suffer from an increase in the abort age.

90

6.3.3 Varying the Load Intensity

In this experiment, the arrival rate is varied to see how sensitive performance is to the load
intensity. Two loads are considered with one load (A) containing more synchronous read
operations than the other load (B). The parameter setting is as follows:

Exp | slowy | opty | fast, | fasto | fast; | slow, | inter_arr_time |
A 0.5 0.5 0 0.25 | 0.25 0.5 | 600-1400 msec
B 0.5 0.5 0 04 0.4 0.2 | 600-1400 msec

For load A, as shown in Figure 6.4(a), the response time increases following an exponential
curve. Steady state was not able to be reached for inter_arr_time less than 700 msec; limiting
the overall throughput to 0.017 request/msec. Although utilisation of resources increases,
they are still very lightly loaded as shown in Figure 6.4(b). Therefore, the bottleneck of
the system lies in data contention (contentions for locks). The reach time also follows an
exponential curve (Figure 6.4(c)); which is due the fact that the updates are propagated
only after commitment, and are affected by contention for locks. Consequently, the age of

information returned by fast reads as well as the overall age seen by all reads increase as
shown in Figure 6.4(d).

(a) Response Time

Read A ©—
Write A -~
Read B - -
Write B -

600 700 800 900 1000 1100 1200 1300 1400

Inter Arrival Time

(c) Time updates reach all replicas

1 I 1 I

T
A-e—
B —-

F T
1600 - |
T 1400 3
@0 1
E 1200% \i
[A
E 1
B
[}
2
o
3
Q
>
3500 T
3000
5
g 2500
Qo .
£ 2000
'—
=
8 1500
]
[«
1000
500

600 700 800 900 1000 1100 1200 1300 1400

Inter Arrival Time

Utilisation

Age

(b) Processor Utilisation

45> -L l I T 1 | 1
. \ g
- 5 ‘kkk Max A —-
.X \\ Avg B -D--
L \\+ Max B - =
ESN
o T xS :
N e N
250 K. \‘*ﬁ“]
] K., 3. *‘5\
- o] 3 ek
15 |- - —
10 1 A l | e

600 700 800 900 1000 1100 1200 1300 1400

Inter Armrival Time
(d) Age of Information Read

Fast_Read Age A ©—
Local Age A —+- ~
Overall Age A -
Fast_Read Age B -
Local Age B -A--
Overall Age B -%--

Inter Arrival Time

Figure 6.4: Varying the arrival rate, writes are synchronous

91

Load B shows the effect of converting some Slow_Read to Fast_Read. Reducing slow, from
0.5 to 0.2 reduces the data contention and consequently, the response times of reads and
writes reduce as shown in Figure 6.4(a). The reduction in read (write) response is around
31% (19.5%) for inter_arr_time 1000, it increases to 45% (23.4%) for inter_arr_time 900 and
continues increasing as the load increases. Further, it is able to cope with a higher arrival
rate increasing the throughput by 16.8%. The reach time is better in B than A and the
improvement is more obvious for high load. The age returned by Fast_Read is nearly the
same for low loads at A and B, but it is much less for B as the load increases as shown
in Figure 6.4(d). It was interesting to see that although load B has only 20% of its read
Slow_Read while A has 50%, the reduction in the age returned by Fast_Read has affected the
overall age such that the overall age of B is only slightly higher than A for low loads and is
much better than A for high loads.

From here one can deduce that increasing a load involving synchronous operations slows
down the system operation and affects the performance tremendously. Response time de-
teriorates as well as age while resources are underutilised and throughput is limited due
to data contention. Therefore, this calls for applications that need better performance and
throughput to relax consistency to reduce data contention; if they can afford it.

In another experiment, not reported here, the mix between reads and writes (freg,) was
varied to explore the limitations that synchronous writes impose on the performance. It
was noticed that performance degrades by increasing the frequency of writes, which was
again due to data contention as writes do not share locks while reads do. A steady state
could not be reached for a frequency of writes more than 27%, when locks are saturated;
limiting utilization of the resources to 23% on the average.

6.3.4 Varying the Communication Overhead

The following experiments explore the sensitivity of performance to the delay on the network.
The ratio of lan_del:wan_del is varied from 1:10 to 1:5000. First, lan_del is fixed to 0.02 msec
and wan_del is varied from 0.2 to 100 msec. Then, wan_del is fixed to 10 msec and lan_del
is varied from 0.002 to 1.0 msec.

The performance has shown to be is insensitive to varying lan.del. This is expected since it
has low values so it does not have a great impact on performance in comparison to wan._del.
Therefore, the results are not shown and this parameter can be factored out. Results are
shown for varying wan.del for two load mixes; where load A contains more synchronous
reads than load B. Parameters setting is as follows:

l Exp | slow, optww fast,, | fastro | fast;, | slow, wan.del
A 0.5 0.5 0 0.25 | 0.25 0.5 | 0.2-100 msec
B 0.5 0.5 0 04 04 | 0.2 | 0.2-100 msec

92

(a) Response Time (b) Itemised Response Time (load B)

1400 T T T T T T 1 1800 T T T T T 11
_ 1600 |- E Slov&_Flgad -“— ~
— L —_ ast_Read_0 —+-
] X] 1400 |- Fasslt__Re‘all\;iJ - -
m ow_Write - -
& & 1200 Opt_Write -A— .
£ . E 1000 |- -
= =
g % § 800 |- -
2 S 600 -
3] 3 -4
o o 400 .. 2 g __ﬁ'_;..aaa—-g""
i 200 gy EeRE-- BT
0 AR M SN B U RN B | o N I I S A M
0O 10 20 30 40 50 60 70 80 90 O 10 20 30 40 50 60 70 80 90
wan_del wan_del
(c) Time updates reach all replicas (d) Age of Information Read
2600 T T T T T T T 1.6 T T T T T T T T
2400 1.4 |- Fast_Read Age A ©— -
. 2200 . O\éera:’l ﬁge /B\ —+- A
S - 2 |- Fast_Read Age B - g
g 2000 12 Overall Age B -~ fof
E 1800 . =
@ o
E 1600 =] X
- < o -
5 1400
3 1200 .
[
1000
800 7]
600 .2 4 1
0O 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90
wan_del wan_del

Figure 6.5: Varying wan_del, writes are synchronous

As shown in Figure 6.5(a), the response times of reads and writes are very sensitive to
wan_del. They are quite low for values of wan_del less than 20 msec then, they increase
sharply. It is obvious that load A is more sensitive to wan.del than load B and satu-
ration is reached more quickly. Figure 6.5(b) shows that the responses of Fast_Read.0,
Fast_Read.1 and Opt_Write increase only slightly, while those of Slow_Write and Slow_Read
increase sharply and dominate the results. The resources were found to be underutilised .
and data contention was the bottleneck of the system. The reason is that: while wan._del
increases, the time it takes an operation to assemble a quorum and commit increases and
it holds locks for a longer time. Consequently, the time other operations wait for locks
increases. As shown in Figure 6.5(d), the age returned by Fast_Read with A is higher than B
since updates take longer to commit and consequently take longer for reaching other repli-
cas. The overall age of A is slightly lower than B for low values of wan_del then the gap
decreases and eventually it becomes higher than B for high values of wan.del.

From here it can be concluded that performance is very sensitive to wan_del. Synchronous
operations suffer and dominate the degradation in performance with the increase of the
delay. This suggests that if applications can accept observing some stale information then
they should increase their frequency of Fast_Read, especially when the network delay becomes
higher, as this offers better performance as well as lower age.

93

In a different experiment varying the communication processing overhead (cpu_msg), results
have revealed that performance is quite sensitive to high values of cpu.msg due to high
CPU contention and data contention, especially when the load mix has a high frequency of
synchronous operations. The performance has shown nearly the same sensitivity to cpu_msg

as wan_del, hence, the details are not described. ‘

6.3.5 Varying the Hierarchical Network Topologies

In the following experiments, the performance is evaluated for various hierarchical physical
(and hence logical) networks. Since the number of possible topologies can be infinite, we have
limited our choices to a 12-nodes network, three of them are fully connected through long
distance links to form a backbone and the remaining nodes are grouped into 3-clusters each
forming a LAN. The connections between the clusters are varied to reflect certain aspects

that might affect performance. The different networks considered are shown in Figure 6.6. '

3 2 WAN ik
e LAN ik

Net 2

Net 3

Figure 6.6: Different hierarchical network topologies for 12 replicas

As shown, Net 2, Net 3 and Net 4 explore the effect of increasing the number of levels
of the hierarchy. Net 2 spans three levels by connecting one of the LAN clusters to the
backbone, and the two other clusters are linked to the backbone through that cluster. Net 3
is organised like a chain, spanning four levels. Net 4 shows the effect of connecting the two
clusters in the bottom level -forming one logical cluster- and both clusters are connected

94

through the same node (node 5) to the higher level. Net 5 explores the effect of connecting
the three LAN-clusters at the bottom levels, forming one logical cluster, which is linked to
the backbone via node 1. -

For this set of experiments, the read mix is varied and the results are compared with those
of Net 1. The parameters setting is as follows:

[slow,, | opty, | fast, | fastyo | fast,y | slow, I
[05 05] 0 [oI* [01* [01 |
* The ratio between fast,g to fastr; is kept 1:1

It was observed that for the four networks, node 1 is overloaded with extra communication
and 2PC overhead; since it acts as a CO for most of the nodes. The load on this node
is the worst in Net 5 since it acts as the parent of most nodes as well, hence, it performs
all their Fast_Read_1 requests, which incurs extra processing and communication overhead.
Increasing the number of levels (Net 2, Net 3 and Net 4) increases the time Slow_Write and
Slow_Read spend in communication in order to send requests and receive results from COs,
which increases the response time, being the highest in Net 3 since it spans four levels.
Further, on these networks, the traffic on the link between nodes 1 and 4 was observed to
be higher than in Net 1. Due to the above factors, the response time of Slow_Write and
Slow_Read on all networks is higher than on Net 1 and the gap is larger for higher frequency
of Slow_Read. :

A sample of the results of Net 5 and Net 2 are plotted in Figures 6.7 and 6.8 respectively.
Results of Net 3 and Net 4 are nearly identical to Net 2 but with a slight degradation.
For Net 3 this is due to the higher communication time spent to cross the four levels. For
Net 4 it is due to the extra load placed on node 5 which performs more communication and
processing overhead.

- (a) Response Time (b) Time updates reach all replicas
700 - T T T T 1150 ¢ T T T | —
Read Net1 -©— 1100 &\ Net 1 -0—
— 6004 . Write Net 1 —-- — S Net5 —---
S . Head Net 5 - 5 1080 |- =
@ W N N Write Net 5 ->¢---
E 00k rite Net 5 ¢ _ g 1000 |-
£ @ 950 |-
F 400 E
@ E g00 |-
g kS
8 300 s 850 -
2 o«
800 |-
T 200
750 |-
100 1 . 1 L 700
o} 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Frequency of Fast_Read Frequency of Fast_Read

Figure 6.7: Varying read mix on Net 5, writes are synchronous

For Net 2, Net 3 and Net 4, since updates take longer to commit and since propagated
updates have to travel down three or four levels instead of two, the reach time is observed to

95

(a) Response Time 900 {(b) Response of Slow_Write, Opt_Write

800 T T T T T T T T
Read Net1 ©6— 800 Slow_Write Net 1 ©— _|
. 700 Write Net 1 —+— . Commit Net1 —-—
2 S Read Net 2 - @ 700 Slow_Write Net 2 - _|
2 600 Write Net 2 -~ — 2 Commit Net 2 -3¢
S AN £ 600 Opt_Write Net 1 -A—- _|
g g ______ . Opt_Write Net 2 -¥--
= EO500 FNn @
2 2 =
S S 400 TRy Vgl
2 & a4
3 @ 300
o [«
200 P —
100
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Frequency of Fast_Read Frequency of Fast_Read
(c) Response of Fast_Read (d) Age of Information Read
210 p—3= T 1 T T T T 0'58-: T T T T T T T
'200} U I — -l 0.56 | Net1 -0~ —
— : ¥ DA &\ Net2 —-
S 190 |- - . 054 \\ -
[}
E 180} Fast Read O Net 1 ©— 052 F \ " .
o ast_Read_1 Net1 ~- ey
E 170 |- Fast_Read_0 Net2 == 2 05 - e -
P 160 Fast_Read_1 Net2 -3 < ouas b S~k N
o \\\
% 0.46 | +\\\ -
< 0.44 |- ~od
0.42 |- -
0.4 1]] 1 1 1 1 3
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1
. Frequency of Fast_Read Frequency of Fast_Read

Figure 6.8: Varying read mix on Net 2, writes are synchronous

be constantly higher than on Net 1. On Net 5, an update on a leaf node needs to cross fewer
communication lines than in Net 1 to reach all other replicas. Hence, the communication
time to propagate an update on Net 5 is less than Net 1. However, the increase in the
commit time is higher than the decrease in the communication time and causes the reach
time to be higher than in Net 1, as shown in Figure 6.7(b). Consequently, the age returned
by Fast_Read is worse than Net 1 for the four networks.

On Net 2, Net 3 and Net 4, the response time of Fast_Read.1 experiences lower value than
Net 1, especially for high frequency of Slow_Read. This is because on those networks, nearly
half of the nodes grant their Fast_Read.1 re(juests from parents which are not in the top
" cluster, hence, less loaded, while in Net 1 all nodes grant their requests from the top cluster.
In Net 5, the response of Fast_Read_1 is constantly higher than in Net 1 due to the excessive
load on node 1.

From the above it can be concluded that Slow_Write and Slow_Read perform better on Net 1
than on the four networks considered; mainly because the load is evenly distributed among
the nodes in the top cluster. Increasing the number of levels in the hierarchy exempts the top
cluster from executing some of the Fast_Read_1 requests, which experience lower response
time on those networks. However, the response time of Slow_Write and Slow_Read increases
and the age returned by Fast_Read is higher due to the increase in the reach time, hence, it

96

is a tradeoff.

6.3.6 Comparing with a Non-hierarchical Network

This experiment shows the performance over a network where all nodes are in one logical
cluster, more or less fully connected (Net 6), as shown in Figure 6.9. Applying synchronous
operations on such a network represents the performance of standard protocols used in
the literature, more precisely, using majority quorum consensus over the whole network.
Since there are no levels in the hierarchy, then Opt_Write is converted to Slow_Write and
Fast_Read.l1 is converted to Fast_Read_0. In order to compare results with those of Net 1,
the experiment varies a read mix consisting of Slow_Read and Fast_Read_0 when all updates
are Slow_Write. That is the parameters setting is as follows:

slow,, | opty | fast, | fasteo | fast;: | slow,
1 0 0 0-1 0 0-1

Figure 6.9: A non-hierarchical network, Net 6

The results are plotted in Figure 6.10 and it has been observed that:

e Steady state was not able to be reached on Net 6 for slow, > 0.5. Assembling a quorum
from seven nodes (versus two in Net 1), increases data contention. Further, since each node
can be a CO, the rate at which deadlock occurs is higher. Finally, resources are more loaded
since all nodes are involved with 2PC and communication overhead. These factors increase
the time by which operations commit and eventually no steady state could be reached.

e For loads where a steady state could be reached, most of the performance metrics showed a
degradation. The average response time of writes is higher than in Net 1, with a degradation
between 46% and 52%, as shown in Figure 6.10(a), due to high commit time. Although in
Net 6 Slow_Write and Slow_Read avoid the communication time needed to send requests and
receive results from CO, this does not compensate for the huge increase in the commit time.

97

(a) Response Time (b) Age of Information Read

900 T T T T 0.31 T T T T T 71 T

800 Read Net 1 -o— _| 03
Write Net 1 == 0.29
700 & Read Net 6 -&F- _|

* Net1 ©—
\\\ Net6 —+-

0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21

Response Time (msec)

0.2
0 0.2 0.4 0.6 0.8 1 0 0.1 02 0.3 04 05 06 0.7 08 09 1
Frequency of Fast_Read Frequency of Fast_Read

Figure 6.10: Varying read mix on Net 6, writes are synchronous

The average response time of reads on Net 6 is higher than Net 1 for high slow,, then it
decreases to approach Net 1 when all reads are Fast_Read.0.

The time at which updates reach replicas for Net 6 is higher than Net 1. Although Net 6
needs to cross fewer links than Net 1 to propagate updates to other replicas not partici-
pating in the quorum, the increase in the commit time is higher than the reduction in the
communication time. The age returned by Fast_Read in Net 6 is lower than that of Net 1
for high frequency of Fast_Read, as shown in Figure 6.10(b). Since a majority of the nodes
participate in the quorum, they are up-to-date, and since Fast_Read is performed directly
from them, this explains the lower age. However, as slow, increases, the commit time of
updates increases which slows down the speed of propagation. Consequently, the age in
Net 6 increases and bypasses that of Net 1 when more than 30% of the reads are Slow_Read
as shown.

In conclusion, it is observed that performance of synchronous operations on Net 6 is much
worse than Net 1. Throughput is limited tremendously, especially with high loads. Within
Net 1, HARP is able to achieve better throughput for the same types of operations since it
assembles a smaller quorum. The response times of Slow_Write, Slow_Read and Fast_Read_0
are worse than Net 1, as well as the time at which updates reach all replicas. The gain
in the age over Net 1 is only for high frequency of Fast_Read, and the improvement is of a
maximum of 21%, which appears to be much less than the losses in all other metrics.

6.4 Experiments with Asynchronous Updates

In this section, several experiments are presented where updates are Fast Write. Sec-
tions 6.4.1 through 6.4.3 consider varying the read mix, the load intensity and the communi-
cation overhead to observe how sensitive asynchronous operations are to those parameters.
Also, the results are compared with those when updates are synchronous. These experiments

98

are performed over the physical network Net 1. Section 6.4.4 presents the performance when
other hierarchical network topologies are considered and the read mix is varied. Finally, Sec-
tion 6.4.5 reports on the results obtained when considering a non-hierarchical topology.

6.4.1 Comparing Slow_Write versus Fast_Write, Varying a Mix of Fast_Reads

In this experiment, a mix of Fast_Read is varied for two loads: load A where all updates
are Fast_Write and load B where all updates are Slow_Write. The parameters setting is as
follows:

Exp | slowy, | opty | fasty | fastro | fastyy | slow, | freg,
A 0 0 1 0-1 0-1 0 0.7
B 1 0 0 0-1 0-1 0 0.7
(a) Response Time (b) Response Time of Fast_Read
1000 1 1] 1 280 1 1] i
Read A -o— X Fast Read 0 A ©—
900 [~ Write A —+- 260 Fast_Read_1 A —+- -
o goo |-FeadB &-] = Fast Read OB &- . &
e Write B - x_.- 3 240 |Fast_Read_1B >~ . %_:,_..35-_--.--:---_
(S 700 e e — £ RV e
o s LV Sl by 220 |- o= -
E 600f e S = E ¥
= IS M = 200 _
@ P~ - [+
g £ 180} .
g 400 - - 8)
T 300 g 160
200 140
100 - 120
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Frequency of Fast_Read_1 Frequency of Fast_Read_1
(c) Time updates reach all replicas (d) Age of Information Read
1300 T T . I F 1.6 I Y . T
. Overall A ©o—
1200 - B —+- A 14 |- Fast_Read_0 A ——
< A Fast_Read_1 A -
& 1100 | ot - 12 | Overall B - -
g g Fast_geag_g B i—-
-~ = -~ - ast_Re: -
o 1000 J— - o 1& R Jast Re i
E e 2 U = Y - P L B
= 9004—-——F - 08 -
8 Formrm—-Ae—-A A e 4
e 800 - 0 KD, 7
.....-)(. ______________
700 b - 04 Heeveedgn., e
o—o- = o S B G st bt ek T
600 1 1 L 1 0.2 1 1 1 H
1] 0.2 0.4 0.6 0.8 1 o] 0.2 0.4 0.6 0.8 1

Frequency of Fast_Read_1 Frequency of Fast_Read_1.

Figure 6.11: Comparing Slow_Write versus Fast_Write, varying a mix of Fast_Read

There is a huge difference between the write response of Fast_Write and Slow_Write, ranging
between 3.9 and and 6 times better, as shown in Figure 6.11(a), since Fast_Write commits
at the local replica. Also, the increase in the response of Slow_Write with the increase of
fastr1 is much larger than that of Fast_Write. This is because with Fast_Read_1 nodes in the
top cluster are more loaded which increases the commit time and consequently the response

99

time. The response time of fast reads with Slow_Write is observed to be slightly higher than
with Fast_Write, as shown in Figure 6.11(b). .

Figure 6.11(c) shows the reach time which is much higher for Slow.Write than Fast_Write
and it increases sharply as fast.; increases (it is 27% higher for fast,;=0 and 95% higher
for fast.;=1), which is due to the high commit time. Similarly, the coverage time was
observed to be much better with Fast_Write than Slow_Write. However, the age returned by
Fast_Read with Slow_Write is better than that with Fast_ Write, as shown in Figure 6.11(d).
This is expected as replicas in the top cluster with Slow_Write are updated first, hence the
age (especially that of Fast_Read_1) is better. However, since the reach time is better with
Fast_Write than Slow_Write, so replicas with Fast_Write catch up quickly. It is observed that
the improvement in the age with Slow_Write ranges between 31% to 62%.

In conclusion, with Fast_Write every performance metric is better than with Slow_Write
except the age. However, the loss in age is considered to be low and the benefits appear to
be much higher than the losses.

As before, it is observed that Fast_Read_1 offers better age in exchange of some loss in the
response time. For instance, for an even mix of Fast_Read_0 and Fast_Read.1, Fast_Read.1
offers an improvement in the age of 10% for load A and 54% for load B, with a degradation
in the response time of 60%.

6.4.2 Varying the Load Intensity

This experiment explores the sensitivity of asynchronous operations to the load intensity and
compares it to that of synchronous operations. Therefore, it compares a load (A) consisting
of Fast_Write and Fast_Read with a load (B) where updates are a mix of Slow_Write and
Opt_Write and reads are a mix of Slow_Read and Fast_Read while the arrival rate is varied.
Parameters setting is as follows:

Exp | slow, | opty, | fasty | fasto | fast.1 | slow, | interarr_time

A 0 0 1 0.5 0.5 0 250-1300 msec
B 0.5 0.5 0 0.25 | 0.25 0.5 | 250-1300 msec

Results are plotted in Figure 6.12. As shown, the performance of load A degrades as the
arrival rate increases, which is mainly due to resource contention. However, in comparison
with load B, it is observed that with asynchronous operations we can achieve a much higher
throughput than with synchronous (2.8 times higher). Further, the performance is much
better with asynchronous operations; for instance for a point with inter_arr_time = 700
msec, the response time of writes is 12.7 times lower, the response time of reads is 7 times
lower and the reach time is 5 times lower. Even the age returned by Fast_Read is better:
0.682 versus 2.563 due to the quick coverage and low reach time associated with Fast_Write.

Similar results have been obtained by varying the mix between reads and writes and com-

100

(a) Response Time (f) Age of Fast_Read

1800 T T % 1 T T 14 T T T T T
1600 |- 1 Read A ©— 4 Age A ©—
— b 3 i Write A —+- 12 Fast_Read_0 Age A —-]
S 1400 y Fast_Read 0A G- Fast_Read_1 Age A -
@ ; 4 Fast_Read_1 A -X- 104 Age B X
E 1200<;- il Read B -4~ -] }
] 1! + — |
E 1000 [i Write B %-- _] ° 8 'l -
= 2
E 800 6 -
8 600
@» 4 -
] 400
200 2 . 7
Y AL s i,
400 600 800 1000 1200 400 600 00 1000 1200
Inter arrival time Inter arrival time)

Figure 6.12: Varying the arrival rate, writes are asynchfoﬁbus -

paring synchronous and asynchronous operations.

6.4.3 Varying the Communication Overhead

Figure 6.13 reports results of an experiment set to compare the behaviour of asynchronous
and synchronous operations under the same load intensity while varying the communication
processing overhead (cpu-msg). The parameters setting is as follows:

[Exp | slow, | opty | fast, | fasto | fast1 | slow, | cpu_-msg
A 0 0 1 0.5 0.5 0 0-15 msec
B 0.5 0.5 0 025 | 0.25 0.5 | 0-15 msec

As shown in Figure 6.13(a), the average read and write response times of load A are far
better than those of B. The difference is small for small values of cpu_msg then it increases as
cpu-msg increases. The reason is due to that the communication overhead that load B places
on the processors is much more than in A as shown in Figure 6.13(b). Consequently, the
time at which updates reach replicas in A is much better than B (Figure 6.13(c)). Although
it increases with the increase of cpu-msg, the increase is very small in comparison to that
of B. It is interesting to see that although load B contains mostly synchronous updates, the
age returned by Fast Read in A is better than B, especially for high values of cpu_msg, as
depicted in Figure 6.13(d).

Similar results have been obtained by varying the network delay. From here one can say that
asynchronous operations are less sensitive to communication overhead than are synchronous
operations and they perform better, especially under systems with high communication
overhead.

101

(a) Response Time (b) Communication Processor Utilisation

2000 T T T T T T T 35 T T T T T T >l< —X
1800 - Avg Read A ©— i
— Avg Write A ~— - 30 - Avg A ©o— WX
S 1600 i~ Fast Read_1 A - i Max A —+-- X
2 . AvgRead B - (25 |- Avg B - |
E 1400 Avg Write B -A— f‘({ Max B - X
@ 1200 - Fast Read 1B - /i . 8 20 o -
— > — X
F 1000 B :
] =
.8 800 3
& 600
€ 400
200 b
0
cpu_msg
(c) Time updates reach all replicas
4000 T T T T T T T
3500 | a3 -+
1
T 3000 |- A
£ 4
< 2500 7 ° ' /
E / 2 12 A
= 2000 | AT 1k ok -
8 e 4 AT
E 1500 /‘,k - 08 - ——”_Ff -
T * 05 W>
1000 &, gt . o 3 0438~ =
500 &= —o—1) 6 Y Y 1 0.2 1 L 1 1 i L 1
2 4 6 8 10 12 14 : 2 4 6 8 10 12 14
‘cpu_msg . cpu_msg

Figure 6.13: Varying cpu.msg, comparing asynchronous and synchronous operations
6.4.4 Varying the Hierarchical Network Topologies

This section explores how different hierarchical network topologies can affect the perfor-
mance of asynchronous operations. The same set of networks shown in Figure 6.6 is con-
sidered. For this set of experiments, the read mix between Fast_Read_0 and Fast_Read_1 is
varied when updates are Fast_.Write and the results compared to those of Net 1. Since asyn-
chronous operations can cope with higher load than synchronous operation, the experiments
are set to generate a higher load than the default. The following setting is considered:

slowy, | opty, | fast, | fasto | fast,, | slow, | inter_arr_time | freg,] cpuU-msg 'wan_del|
0 0 1 0-1 | 0-1 0 600 msec 0.7 | 5msec | 30 msec |

. The results have shown that, for low frequency of Fast_Read_1, the performance of Net 2 and
Net 3 is similar to Net 1. For high frequency of Fast_Read_1, Net 2 and Net 3 offer better
response time because they relieve nodes in the top cluster from satisfying all Fast_Read-1
requests, hence the load is more balanced. However, the age of information read is higher
than Net 1 because Fast_Read_1 requests are not satisfied from the most up-to-date nodes.
The increase in the age is higher in Net 3 because the reach time experiences higher value
on this network since an update needs to cross more hops to reach all replicas. Results of
Net 3 are plotted in Figure 6.14; those of Net 2 are omitted since they were found quite

102

(a) Average Response Time (b) Age of Information Read

500 T T T T e 34 T T T T 7
450 b Read Net1 — g 33 | Net1 -©—,/-
Py Write Net 1 —+— L 32 L Net3 —+7 |
] Read Net3 - - 4
g 400 Write Net 3 -~]
g 350 o
= =]
2 300 <
c
[=]
& 250
]
o
200
150 . -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Frequency of Fast_Read_1 Frequency of Fast_Read_1

Figure 6.14: Varying read mix on Net 3, writes are asynchronous

similar to Net 3, just slightly better.

For Net 4 and Net 5, it is observed that the response time is higher than in Net 1, especially
for high frequency of Fast_Read_1, being worst in Net 5. Results of Net 4 are plotted in
Figure 6.15. This is mainly due to the excessive load Net 4 and Net 5 place on node 5
and node 1 respectively. This extra load consists of the processing overhead of granting
Fast_Read.1 requests as well as excessive communication and propagation overhead since
those nodes are the link between their child clusters and the rest of the network. The reach
time and the coverage time of the first few nodes in Net 4 are better than in Net 1 because
the nodes in the bottom cluster are directly connected, so updates propagate faster to their
neighbours. However, this improvement applies only for low frequency of Fast_Read.1, then
the reach time increases sharply due to the contention on node 5. Consequently, the age is
slightly lower for low fast.;, then it increases by more than 45% at fast.;=1. Although in
Net 5 updates need to travel fewer hops to reach all replicas, the reach time was found to
be higher than Net 1 as well as the age because of the contention on the resources.

In conclusion, this set of experiments has revealed that increasing the number of levels in
the hierarchy reduces the load on nodes in the top cluster giving better response times, but
information read is more stale. So, it is a tradeoff. Further, it has shown that increasing the
number of communication lines connecting lower level clusters and grouping them into one
logical cluster would increase the speed of propagation of updates and reduce the staleness
only if the load is evenly distributed among all nodes in the network.

6.4.5 Comparing with a Non-hierarchical Network

This experiment shows the performance of asynchronous operations over the fully connected
network Net 6 (Figure 6.9) when the arrival rate is varied and results are compared to Net 1.
Since Net 6 involves 15 WAN links while Net 1 involves only six, assuming that lines of Net 6
have the same bandwidth as Net 1 seems unfair, if economical constraints are taken into

103

(a) Average Response Time (b) Coverage Time

700 T T T T 1400 — T r : |
650 - Read Net 1 -©— X
600 Write Net 1 —+- 1200 |- Fast_RO=1Net1 -6— A
g Read Net 4 =-- = Fast_R1=1 Net1 —+-— v
& 550 |- Write Net 4 -X---) 8 1000 |- Fast_RO=1Net4 iZ- g
£ 500 ~ . E Fast_R1=1 Net4 -3 XA e
@ 5| P et
E 450 g 800 .
= =) IS
g dor . 2 600
5 350 |~ . g
Q.
g a0 L s 400
T 250 | G : o
i 200 o
200 = ke R
150 1 1 1 o
V] 0.2 0.4 0.6 0.8 1 6
Frequency of Fast_Read_1 Nodes
(c) Time updates reach all replicas . (d) Age of Information Read
1300 T T T T 1 45 T . - ' 3
1250 |~ Net1 -— 4 Net1 -—/
Net4 —+-/ Net 4 =~
= 4 - /-
§ /”
E
g)
£ 2
=
8
D
o
2 1] 1 1
0 0.8 1 o 0.2 0.8 1

0.2 04 0.6 k » 0.4 0.6 X
Frequency of Fast_Read_1 Frequency of Fast_Read_1

Figure 6.15: Varying read mix on Net 4, writes are asynchrondﬁs

account in the comparison. Therefore, two versions of Net 6 are considered. The first one
(Net 6_A), assumes the bandwidth per line is equal to those of Net 1. The second one
(Net 6.B), simulates budget constraints by assuming that the total bandwidth is constant
and the bandwidth is reassigned per line accordingly. Therefore, wan_del is set to 75 msec
for Net 6_B versus 30 msec for Net 1 and Net 6_A. The parameters are set as follows:

Exp slow,, | opty | fast,] fastrg | fast.] slow, | freg, | cpu-msg | wan_del | inter_arr_time |

Net 1 0 0 1 1 0 0 0.5 | 5msec | 30 msec | 500-1200 msec
Net 6.A 0 0 1 1 0 0 0.5 | 5msec | 30 msec | 500-1200 msec
Net 6.B 0 0 1 1 0 0 0.5 | 5msec | 75 msec | 500-1200 msec

As shown in Figure 6.16(a), the response times for both Net 6_A and Net 6_B are higher than
Net 1 with a difference about 30-40 msec for high loads. This is because more processing
communication overhead is placed on the nodes in Net 6 due to the extra communication
lines. The processing load on the resources of those networks was observed to be constantly
higher than Net 1.

For the same reasons, the reach time is higher in Net 6_A than in Net 1. It is the highest
in Net 6B, since the transmission delays are higher which creates more contention at the
communication lines. Consequently, the age is the best in Net 1, followed by Net 6_A and

104

(a) Average Response Time (d) Age of Information Read

500)] LN { i 1 1 m 1 1 i] T T
Read Net1 -©— 10 % Net1 -©0— —

. 40 Write Net 1 ——] o I -+
[4 Read Net6_A 1I-- S\,
2 400 fc \ Write Net 6_A ¢~ 8 A\
= Read Net6_B -A--
2 350 |- Write Net 6_B - © 7
[2 6
g 300 5
o
& 280 | 4
[+']
@ 3

200 |- 2

150 1

500 600 700 800 900 1000 1100 1200 500 600 700 800 900 1000 1100 1200
Inter arrival time Inter arrival time

Figure 6.16: Varying the arrival rate on Network 6, writes are asynchronous

is the worst in Net 6_B as shown in Figure 6.16 (b).

Therefore, it can be concluded that the performance of the fully connected network with
asynchronous operations is constantly worse than Net 1 especially under high loads.

6.5 Experiments with a Larger Number of Nodes

These experiments explore the performance over a network consisting of 39 nodes to see
how a larger degree of replication can affect performance. Three different physical (and
hence logical) structures are considered, as shown in Figure 6.17. The experiments consider
a load consisting of synchronous updates and varying a mix of Slow_Read and Fast_Read.
The following setting is used:

| sloqu opty, | fasty, | fasto | fastn (slow,. inter_arr-time |
| 05 [05 [0 | 01 | 0-1* [0-1 | 3300 msec |
* The ratio between fast,q to fast,; is kept 1:1

As shown in Figure 6.18, comparing the results of Net 7 and Net 8, it is observed that
performance of Net 8 is constantly worse than Net 7. It could not cope with high loads
especially with a high frequency of Slow_Write and Slow_Read (steady state was not able
to be reached for slow, > 0.5). This is because Net 8 places more load on the resources
due to larger quorum size which increases the commit time and the rate of deadlock. Also,
Net 8 places more communication overhead on the nodes in the top cluster due to the extra
communication lines which increases the resource contention.

Comparing Net 7 and Net 9, as shown in Figure 6.19, Net 7 shows better performance than
Net 9 since it distributes the load more evenly among the nodes and does not overload nodes
in the top cluster with extra communication and propagation overhead and processing most
of the Fast_Read_1 requests.

105

—— WAN limk 2

T s ‘k. Net 7

211 » ‘ '5

Figure 6.17: Different network topologies for 39 replicas

106

37 31 28 22 19 13
0 034 0 0 25 0 0 16 0
39 38 36 35 33 32 30 29 27 26 24 23 21 20 18 14
{ 2
i 10 0
37 c/<:>3l\n : /25\3>2f\ j< c/ts\ :
39 38 36 35 33 32 30 29 27 26 24 23 21 20 18 - 14
2
Q
5/1‘\. Net 9
3 4 1 oAl .28 4% 22 07 19 6
3 38 36 35 33 212 11 30 29 27 26 24 239 8 21 20 18 1715 5

650
600
550
500
450
400
350
300
250
200
150

Response Time (msec)

(a) Response Time

'Read Net7 =—. ' ' < !
Write Net 7 —-- 7o 7

L\, Read Net8 &-- X, .
Write Net 8 ->¢--

0 0.1 02 03 04 05 0.6 0.7 0.8 09 1
Frequency of Fast_Read

Age

0.85

0.8

0.75

0.7

0.65

0.6

0.55

(b) Age of Information Read
LI 1 ! 1 1 1 I]

Net7 -o—
~ Net8 ~+- -

0 0.1 02 03 0.4 05 06 0.7 0.8 09 1
Frequency of Fast_Read .

Figure 6.18: Varying read mix, comparing Net 7 and Net 8, writes are synchronous

650
600
550
500
450
400
350
300
250
200
150

Response Time (msec)

(@) Response Time

T T T T T T T 1T 1

N Read Net 7 -0— -

Write Net 7 +-— _|
O\ Read Net 9 -

NS Write Net 9 ¢ -

il

D

0 0102 03 04 05 06 0.7 08 09 1

Frequency of Fast_Read

Age

0.85

0.8

0.75

07

0.65

0.6

0.55

(b) Age of Information Read
-] r 1 T T T T 1

0 0t 02 03 04 05 06 0.7 0.8 09 1
Frequency of Fast_Read

Figure 6.19: Varying read mix, comparing Net 7 and Net 9, writes are synchronous

Similarly, Net 7 and Net 8 have shown worse performance than Net 1 when updates are
asynchronous and the read mix is varied, as shown in Figure 6.20 and 6.21.

Therefore,' it can be concluded that for a large number of replicas, the hierarchy should
be designed such that the number of nodes in the top cluster is not too large in order to
reduce the overhead of quorum assembly. Also, for better performance, the nodes in the top
cluster should be freed from extra load resulting from asynchronous operations. This can
be achieved by increasing the number of levels in the hierarchy.

In general, it is observed that with 39 nodes, the limitations placed by synchronous oper-
ations are higher than with 12 nodes and the maximum achieved throughput dropped to
less than one-third. Further, the age returned by Fast_Read is generally higher with larger
number of replicas since updates take longer to reach all nodes.

107

(a) Average Response Time

0 0.1 02 03 04 05 06 0.7 08 09 1

Frequency of Fast_Read_1

6.2

(b) Age of Information Read

500 L} 1 1 L] 1 i 1 1) i ==X |]]] | 1 _L——
Read Net7 <— el N I
450 |- Write Net7 —+-- b 61 Ny -+ Net7 -o-
g Waad Netg - pol Net8 —
- rite Net 8 - - -
E 400 & el R
g 350 °
= 2 59 - -1
2 300
=
o
& 250
[:]
o«
200
150

5.6
0 0102 0304 0506 07 08 09 1
Frequency of Fast_Read_1

Figure 6.20: Varying read mix, comparing Net 7 and Net 8, writes are asynchronous

(a) Average Response Time

{b) Age of Information Read

1200 T T T 1 T ./ T 1 1T T T T 1T F 71
1100 |- Read Net 7 -6— ; -1 20 |- i Net7 o—
— 1000 Write Net 7 =~ : . 7/ Net9 —+-
) Read Net9 &&-- 18 - H -
g 200 - Write Net 9 -%- - ! .
< 800 . 16 / .
- . - 14 =] -
'F-E' 700 m c% /
9 600 - . -1 12 + -]
s 500 10 b /, -
400 A
[- " —
T 300 o
200 6 & =5 ————————3
[N SN NN TR NN N SN S

100
0 0.1 02 03 04 05 06 07 08 09 1

Frequency of Fast_Read_1

0 0.1 02 03 04 05 06 07 08 09 1
Frequency of Fast_Read_1

Figure 6.21: Varying read mix, comparing Net 7 and Net 9, writes are asynchronous
6.6 Summary

A detailed simulation study was performed to evaluate the benefits and losses resulting from
using synchronous versus asynchronous operations under different system configurations and
load mixes. It has been shown that in internetworks, synchronous operations degrade the
performance and limit the throughput tremendously. This is mainly due to acquiring and
' maintaining locks across long distance links which increases the data contention as well as
the processing and communication overhead. The imposed limitations are severe with high
loads, slow links and high update rates, especially when the number of nodes is large. On
the other hand, asynchronous operations have shown much better performance and can cope
with heavily loaded systems with a little loss in reading some out-of-date information.

The obtained results revealed that Opt_Write offers better response time, coverage time and
local age than Slow_Write while it suffers an increase in the overall and abort age. For
applications that have high update rates, Fast_Write is more suitable than Slow_Write and
Opt_Write as long as the application can reconcile conflicting updates, since it offers much

108

better performance and throughput and can cope better with heavily loaded systems and
networks.

The results obtained about read operations have suggested that if the applications can accept
observing some stale information then they should increase their frequency of Fast_Read
especially under heavy load conditions, as this offers better performance as well as lower
age. Further, Fast_Read operations performed at higher level of the hierarchy have shown
to return less stale information with some increase in the response time.

The performance of the protocol has been evaluated on several network topologies that
reflect a hierarchical structure. It has been shown that a symmetric hierarchical structure,
where the load is balanced among the nodes yields the best results and that distributing
the load evenly among the nodes in the top cluster is crucial for synchronous operations.
Further, it is suggested to keep the number of nodes in the top cluster small, especially when
the number of replicas is large. This is to reduce the overhead of quorum assembly while
using synchronous operations, and to reduce the communication and propagation overhead
on those nodes while using asynchronous operations. Also, it has been shown that the
performance is very sensitive to the number of levels in the hierarchy. If it is too large, the
time updates reach all replicas and the staleness of the data increase. If it is too small,
nodes in the upper levels of the hierarchy suffer from a high overhead and may become a
‘bottleneck when the number of replicas is large.

For completeness, the performance was evaluated over a network that is more or less fully
connected and all nodes are in one logical cluster. Applying synchronous operations to such
a network represents the performance of traditional protocols such as the majority quorum
consensus protocol. It has been shown that in internetworks, assembling quorums from all
nodes in the system degrades the performance immensely and might not be feasible, even
for moderate loads, due to the high overhead generated and data contention.

109

110

Chapter 7

Comparison with TSAE Protocol

This chapter presents a simulation study conducted to compare the performance of HARP
to another weak consistency replication protocol, the Time Stamped Anti Entropy (TSAE)
[Golding 92c] (see Section 2.2.4). TSAE has been chosen for comparison since it is one
of the most recent and widely used weak consistency replication algorithms for wide area
services. The obtained results show that in internetworks, HARP results in considerable
performance improvement over TSAE despite the extra overhead generated from executing
HARP for every message rather than periodically. Further, it is shown that using localised
communication improves performance tremendously in internetworks. In Section 7.1, a brief
description of the TSAE protocol is given. Section 7.2 describes the simulation model and
Section 7.3 presents the obtained results and analysis.

7.1 TSAE Protocol Description

Inspired by Xerox Clearinghouse’s anti-entropy protocol [Oppen 83], TSAE provides a reli-
able, eventual delivery of messages. In TSAE, each replica maintains three data structures: a
message log, a timestamp vector and an acknowledgement matriz. The message log contains
messages received by a node. Messages are entered into the log on receipt, and removed
when all other replicas have received them. The messages are stamped with the identity
of the replica that initiated the message and a timestamp. The summary timestamp vector
(STV) records what updates a replica has received and is similar to V'V in HARP. The vector,
holds one timestamp for every replica. Replica i records a timestamp & for replica j when
1 has received all update messages originating at j up to message k. The acknowledgement
timestamp matriz (ATM) records what messages have been acknowledged by other replicas.
It is similar to AckM of HARP and is used to purge the log.

From time to time, a node ¢ selects a partner node j and starts an anti-entropy session.
A session begins with the two processes allocating a session timestamp, then exchanging

111

their STV and ATM. Each process determines if it has messages the other has perhaps not
yet received, by observing that some of its STV entries are greater than the corresponding
ones of its partner. These messages are retrieved from the log and sent to the other process
using a reliable stream protocol. The session ends with an exchange of acknowledgement
messages. If any step of the exchange fails, either process can abort the session. At the end
of a successful session, both replicas have the same continuous sequence of messages sent by
each replica. Nodes ¢ and j set their STV and ATM to the element-wise maximum of their
own STV and ATM and the ones received from the other process.

In [Golding 92c], several policies for partner selection have been suggested. Random selection
is the simplest one, where a node selects a partner randomly among all nodes with equal
probability. Distance-biased partner selection weights the chance of randomly selecting
a partner based on its distance. Oldest-biased partner selection selects a partner with a
probability proportional to the age of its entry in the summary vector. Oldest-first selects
the node with the oldest value in the summary vector. The performance implications of
these different policies have been examined in [Golding 92c]. The results have shown that
random and distance-biased policies give essentially identical performance. Oldest-biased
provide slightly better performance while Oldest-first was worse than the others regarding
message propagation time. Random policy has been adopted for the Refdbms system as it is
simple and performed quite well. However, it should be noticed that these results were built
on a model that considers a fully connected network, which is-not a realistic assumption for
a wide area network. Further, network delays were not considered in the model, which are
believed to have a great impact on performance.

7.2 The Simulation Model

The same model considered for simulating HARP was adopted for simulating TSAE with
some variations to cope with the differences. The only operations considered by TSAE are
Fast_Write and Fast_Read which are executed at the origin node. The algorithm overhead,;
that is, the overhead of executing a TSAE session is modelled by three components:

init_tsae-ovhd which is the time the originator of a TSAE session takes to start up a session.
This overhead accounts for maintaining and responding to timers, selecting a partner
" and preparing the message to send to the selected partner.

phs1_tsae_ovhd which is the time taken by either the originator or the partner to perform
phase one of TSAE. It accounts for comparing summary vectors, deciding which mes-
sages the other is missing and extracting them from the log.

phs2_tsae_ovhd which is the time taken by either the originator or the partner to perform
‘ phase two of TSAE. This overhead accounts for updating state information and han-
dling acknowledgements.

112

A TSAE session is triggered at each node periodically, every tsae_per seconds which is ex-
ponentially distributed. A node (originator) starts a session by executing the processing
overhead init_tsae_ovhd, selects a partner and sends it an init_tsae message including its
STV. When the partner receives init_tsae, it sends the originator a status message including
its STV. Then, it executes the processing overhead of phase one (phsi_tsae_ovhd), com-
pares its STV with the originator’s STV element by element, extracts the messages that the
originator is missing and sends them to him. When the originator receives the partner’s
status message, it performs the same steps: executes the processing overhead of phase one
(phs1_tsae_ovhd), compares the STV’s, extracts missing messages and sends them to the
partner. When the originator or partner receives the missing messages, it executes the pro-
cessing overhead of phase two (phs2_tsae_ovhd) and for every received message it executes
the update, increments its version and updates its STV. Modelling the log is ignored and
the system is modelled during normal operation; that is, in the no failure case.

Since a node can participate in more than one session at a time (either as an originator or as
a partner), and since status messages are received out-of-date due to network delays, then
duplicate messages can be sent from one node to another. When a node receives a duplicate
message, it discards it, however, sending duplicate messages consumes resources while sent
over the network.

Execution of local requests is given higher priority at the processing and I/O devices than
updates received through TSAE sessions. This is to avoid local requests facing long queueing
delays when a session results in scheduling a large batch of updates.

The network model is the same as in HARP. The physical network considered is Net 1
as shown in Figure 6.1. Since TSAE sends messages in batches, it is essential to model the
communication overhead taking into consideration the message length. For simplicity, it is
assumed that all update messages are of the same size and are treated as one unit (typical
value considered is 1 Kbyte).

Running the network protocols and the operating system consists of some functions that
their overhead depends on the size of the messages; such as fragmentation of messages
into packets and their assembly, checksum verification, moving data into memory and so on.
While other functions are independent of the size of the messages; such as processing message
header, searching for local state information of the connection, flow control and multiplexing,
routeing and host addressing, handling interrupts, managing timers and schedulers and
so on. Therefore, two new parameters are added: const.cpu_msg which is the portion of
cpu-msg that does not depend on the message size and msg_per_pckt which is the number
of messages that fit into one packet. The processing overhead associated with sending m
updates in one batch becomes: no_pckts * const_cpu-msg + (cpu-msg ~ const.cpu.msg) *m
where no_pckts = [m—sg_p’gm]. The ratio cpu_-msg:const_cpu_msg is taken in accordance
to [Clark 89]. As for the network delays, the propagation delay (lan_propg_del for LAN and
wan._propg-del for WAN) is independent of the message size; while the transmission delay
(lan_del - lan_propg_del for LAN and wan_del - wan_propg_del for WAN) is linearly proportional

113

to the message size.

Assuming a message size of 1 Kbyte, the number of messages that fit into one packet is
taken to be 1.5, considering the typical packet size in the Ethernet. The system parameters,
their description and default values used are listed in Table 7.1.

parameter Description Default value
n Number of nodes in the network 12
inter_arr_time | Inter arrival time 600 msec
freg, Frequency of read requests 0.7
cpu_reg Processing requirements of a request (exponential) 50 msec
i0_req I/0 requirements of a request (exponential) 60 msec
init_tsae.ovhd | Time originator takes to start up a TSAE session 1 msec
phsi_tsae_ovhd | Overhead of phase one of TSAE session 2 msec
phs2_tsae_ovhd | Overhead of phase two of TSAE session 1 msec
tsae_per The period by which TSAE sessions are triggered (exponential) | 5 sec
cpu-msg CPU overhead to send/receive a message 2.0 msec
const_cpu_msg | Portion of cpu_msg that does not depend on message size 0.7 msec
lan_del Network delay over LAN (uniform) 0.02 msec
lan_propg_del Portion of lan_del spent in propagation 0.01 msec
wan_del Network delay over WAN (exponential) 20.0 msec
wan_propg_del | Portion of wan_del spent in propa.gation' 5 msec
msg-per_pckt Number of messages that fit into one packet 1.5
power_cpu; Speed of CPU at node @ 1
power_io; Speed of I/O at node @ 1
power_transc; | Speed of transceiver i 1
batch_length Length of a single simulation batch 2000 job
num._batch Number of batches for which simulation runs 3
warmup_per Number of jobs after which statistics are reset 200 job

Table 7.1: System parameters of TSAE

The output metrics considered are the same as in HARP. Two additional metrics are
considered: session time which is the time it takes a node to complete a TSAE session. This
metric spans the time from which the node initiates the session until all updates are received
from the partner and processed. Also, the amount of duplicate messages sent, duplication,
is measured which is computed as the ratio between the total number of duplicate messages
sent to the total number of non-duplicate messages sent. '

7.3 Experiments and Results

In the following experiments, a number of parameters is varied to see how they affect the
performance of the TSAE protocol and the results are compared with their equivalent in

114

HARP. fast, and fast,o are set to 1 in HARP. Two variants of selecting a partner for TSAE
are considered: '

1. TSAER: where a node chooses a partner randomly from all nodes in the network.

2. TSAE.L: where a node chooses a partner from the local neighbourhood. The logical
hierarchy of HARP is used to implement TSAE_L. Simply, a node chooses a partner
randomly from its own correspondents in the logical hierarchy, i.e. a neighbour, the
parent or a child. Hence, it uses the principle of localised communication.

7.3.1 Varying the Activation Period

This experiment explores the effect of varying the period at which the TSAE protocol is
activated, ¢sae_per. Parameters are set to their default values and tsae_per is varied from
0.5 to 8 seconds.

As shown in Figure 7.1(a), the load on the transceivers is the least in HARP, followed by
TSAE_L then TSAE_R. The same applies to the load on the processors. Resource utilisation
of TSAE_L increases slowly as tsae_per decreases, while that of TSAER increases sharply
and resources are saturated for #sae_per < 2 seconds. The increase is mainly due to com-
munication overhead: as fsae_per decreases, more concurrent sessions take place and more
duplicates are sent (as originals are on the way but STV is not updated yet) which in-
creases the load on the resources. Further, both TSAE involve sending status information
in every session -which is not present at HARP- hence consuming more resources. As seen
in Figure 7.1(b), TSAER involves more duplicates than TSAE.L because TSAE_R contacts
more distant partners, hence state information is more out-of-date. Also, it consumes more
resources from intermediate nodes and links while TSAE_L uses only local communication.

The time by which a node completes a session in TSAEL is less than TSAER, as shown
in Figure 7.1(c), since resources are less loaded. Generally, the time decreases as tsae_per
decreases since there are less updates to be sent and executed at a session. For TSAE.R,
this applies only for {sae_per > 3, then it increases sharply due to overhead on the resources.
While in TSAE._L, it increases slowly only for Zsae_per < 1.

From Figure 7.1(d), we see that the response time of reads and writes is nearly the same for
all of them for high values of tsae_per with HARP being the best. The response of both TSAE
decreases as tsae_per decreases, since there are less updates to be executed per session, hence,
local requests are faced with less contention. The response of TSAE R increases sharply at
tsae_per < 3, while TSAE L starts increasing slightly at #sae_per < 1.

The reach time of TSAE_L is higher than TSAER for large values of tsae_per, as shown in
Figure 7.1(e). The reason is that in TSAE.L, updates needs more sessions to reach nodes
in the other extreme of the tree while TSAER contacts distant replicas directly. The reach

115

(a) Load on Transceivers

70 T T T T T T
* TSAE_R (Avg) ©—
€0 - g TSAE R (Max) ~+—
\ TSAE_L (Avg) ©F-
- 50 |- -L,i_ TSAE_L (Max) - =
£ HARP (Avg) -4~
=t 40 \Y HARP (Max) -¥-- 4
2 Sl e S A
2 30% .
5 ... o—o—o <
- . et S TR
[
10 #B—-ﬂ:-.:: R o Tty - Y S pe it
o L]] 1 1 1]
1 2 3 4 5 6 7 8
tsae_per (sec)
(c) Time taken to complete a TSAE session
8 T T T T T T
7+ TSAE_R -©— -
TSAE_L —+~
= 6
&
g T
= 4 +~
s
g S8F
[+
» 2|
1 e
-.+*_—‘
. o0 L 1 1 1 [1 1
1 2 3 4 5 6 8
tsae_per (sec)
(e) Time updates reach all replicas
60 T T T T T T 1
TSAE_R <©— e
SO TSAEL +- i
5 HARP -CF- o7
k3
Q
£
*—
-
[+]
[+
(]
[

tsae_per (sec)

Response Time (msec) Duplication (%)

Age

250

200

150

100

50

240
230
220
210
200
190
180

170 |

160

180
160
140
120
100

(b) Amount of Duplication
T T T T T T T

TSAE_R -0—
TSAE_L —+- |

L
3 4 5
tsae_per (sec)

(d) Response Time
T T T T T T T
L) TSAE_R ©— _|
TSAE_L =+~
= HARP &F- _|

o

©
1
—
1

ol ¢

-4

3 4 5
tsae_per (sec)

(f) Age of Information Read

T T T 1 T
TSAE_R -6— ot
TSAE_L —+- -
L HARP - e -

Local age TSAE_R - *
- Localage TSAE_L &—- .~ -
Local age HARP -ale:,+’

-

1 2 3 4 5
tsae_per (sec)

Figure 7.1: Varying the activation period, tsae_per

time of both TSAE_L and TSAE.R decreases as tsae_per decreases, but TSAE L’s decrease
is steeper and becomes better than TSAER for tsae_per < 3. It should be noticed that,
although TSAE.L incurs higher overhead for running the protocols for tsae_per < 3, it
generates less communication overhead than TSAER and the overall system overhead of
TSAEL is lower. It is observed that the reach time of both TSAE is much higher than
HARP. Partly, because of the overhead resulting from sending duplicates. Also, TSAE relies
on periodic rather than immediate propagation. The age follows the same curve as the reach
time as illustrated in Figure 7.1(f). Further, since TSAE.L uses local communication, the

116

coverage time of the first few nodes was found to be better than TSAE R and consequently
the local age is better as shown in Figure 7.1(f).

In conclusion, TSAE is very sensitive to the period at which the protocol is activated. If it.
is set too high, it takes longer for updates to reach other replicas, which increases the reach
time and age. If it is set too low, then this involves large overheads and the performance
degrades. TSAE.L performs better than TSAER in terms of coverage, local age, resource
consumption, duplication and overhead since it involves less communication. TSAE_R offers
better age and reach time only for large values of ¢sae_per. For low values of tsae_per, it
is worse than TSAE_L in all metrics. Finally, it is observed that HARP outperforms both
TSAER and TSAE_L. In the remaining experiments, tsae_per is set to 3 seconds for TSAE R,
and to 1 second for TSAE_L since this yields the best performance.

7.3.2 Varying the Frequency of Reads versus Writes

This experiment examines the effect of varying the frequency of reads versus writes (freg;).
freg, is varied from 0.5 to 0.95 and the remaining parameters are set to their default values.

(a) Processor Utilisation ~ (b) Amount of Duplication
100 T T T T 1 T 1 T 180 T T | p— T T T T
ok x ® TSAE_R (Avg) ©— - 160 | TSAE_R ~o—
N\ TSAE_R (Max) —- TSAE_L —=--
80 \ TSAE_L (Avg; - 140 |- —
— * TSAE_L (Max) -X-- =
S nor gt \ HARP (Avg) -&-- & 120 =
5 soi‘.:&‘x"-._ \ HARP (Max) -¥-- _| 5 100 -
= BT ® +
3 50 |- L8 80 N\
E . AN
5 40 - a 60 |- \
30 40 |-
20 +~ 20 -
10 1 0 1 1 1) 1 1 1 1 P
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Frequency of Read Frequency of Read
(c) Time updates reach all replicas (d) Age of Information Read
22 T T T T T T 1 70 T T T T T T 1
20 - TSAE_R -0— - TSAE_R -o0—
18k TSAE_L —+- | €0 - TSAE_L —+-
HARP - + HARP -
< 16 - -1 50 N Local age TSAE_R - —
a 14 | - N focal age TSAE_L -A—-
@ + 40 \ L\ocal age HARP -X%--
E 12 |- . Y
= 10 |- AN 3 <
£ e
[+] — ind ———t— .
s 6 +“+—~+_-...
4 .
2 i —
Ll L Rk e EE S O
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Frequency of Read Frequency of Read

Figure 7.2: Varying the frequency of reads versus writes

As shown in Figure 7.2(a), the resource utilisation increases for all protocols as more writes

117

are present since they need to be propagated and executed. The increase is small for
HARP but it is much higher for both TSAE due to the overhead placed on the resources

_for sending duplicates and status messages. The amount of duplication is small for low

frequency of writes, then it increases sharply for both TSAE as illustrated in Figure 7.2(b).
The duplication overhead causes instability of the system for freg, < 0.7 and 0.6 for TSAER
and TSAE_L respectively.

The reach time is the best for HARP, followed by TSAE_L, and both are better than TSAE_R
as shown in Figure 7.2(c). The same applies to the age and the local age of the information
read as illustrated in Figure 7.2(d). The time to complete a session in TSAE_L is found to be
better than TSAE R since the former uses local communication and produces less overhead.
The response time is the same for the three protocols for high values of freg., since the load
on the resources is nearly the same. However, TSAE experiences higher response for low
values of freg,.

Therefore, it is observed that in general, as freg. decreases performance degrades. However,
HARP copes with higher frequency of writes better than TSAE as it does not generate
duplicate messages and does not rely on periodic propagation. TSAE.L performs better than
TSAER since it produces less overhead and duplicates due to localised communication.

7.3.3 Varying the Arrival Rate

This experiment examines the sensitivity of performance to the load intensity. freg, is set
to 0.8, inter_arr_time is varied from 200 to 1000 msec and the remaining parameters are at
their default values.

As shown in Figure 7.3, the performance degrades as the arrival rate increases. The system
is saturated at arrival rates 5, 4 and 2.8 request/sec for HARP, TSAEL and TSAER re-
spectively. Resource utilisation is nearly the same for the three protocols at low loads then
it increases, being the highest with TSAER due to the communication overhead, mainly
because of duplicate messages. Since TSAE_L produces less duplicate than TSAER, it per-
forms better for all metrics as shown, while HARP has achieved better performance than
both of them.

7.3.4 Varying the Number of Messages per Packet

This experiment discusses the effect of varying the number of messages that can fit into
one packet (msg-per_pckt) on the performance. inter_arr_time is set to 400 msec, freg, to
0.8, msg_per_pckt is varied from 1.5 to 15 and the remaining parameters are at their default
values.

Since TSAE sends messages in batches, then increasing msg-per_pckt results in improving

118

(a) Processor Utilisation (b) Amount of Duplication

90 BL LR L T T T T T 90 T T T T T T T
80 \ TSAE_R (Avg; < _| 80 |- TSAE_R -o— _|
£ % TSAE_R (Max) +— + TSAE_L —+—
70 F&L TSAE_L (Avg) =+~ | 20 bL3 i
& el \§ \‘ TohARE (Avg) A € ef \
=t 3 HARP (Max) -¥-- s \
2 50 - ﬁ} = 50)
o L2
= = =3 =
g 40 E 40
30 - 30 |
20 - 20 |
10 1 10
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1
Inter Arrival Time (sec) Inter Arrival Time (sec)
(c) Time updates reach all replicas (d) Age of Information Read
18 T T T T T T T 60 T T T T T T T
16 |- TSAE_R ©o— + TSAE R -©o—
TSAE_L —- 50 | TSAE_L —+- —
14 HARP - — \ HARP -
) \ Local age TSAE_R -
2 12 % 40 X Local age TSAE. L -A—
o \ > \ Local age HARP -%--
E 10 = _‘_ - o 30[AY
= 8 Rl . < .
3] [t S ————— s
S -—t
[6K -1 20
[« .
4 -
o L 10 -
-5 . . (-
0 t?“""‘?'"@'"‘E""r""Ek----r---{J o Lk K
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 0.9 1
Inter Arrival Time (sec) . Inter Arrival Time (sec)

Figure 7.3: Varying the arrival rate

the processor utilisation, as shown in Figure 7.4(a), due to the reduction in communication
overhead. TSAE_L processor utilisation decreases and becomes lower than that of HARP
for msg_per_pckt > 5. As for TSAER, it decreases, but is still higher than both HARP and
TSAEL due to high duplication. As shown in Figure 7.4(b), the amount of duplication
decreases as msg_per_pckt increases, however, it is still at a high value. Due to the reduction
in the procéssing load, the response time decreases as shown in Figure 7.4(c) for both TSAE
and that of TSAE_L becomes eventually better than HARP for large values of msg_per.pckt.
There is a slight decrease in the reach time of both TSAE due to lower communication
overhead. However, they are still higher than that of HARP, since HARP does not rely
on periodic propagation and does not generate duplicate messages. Consequently, the age
and the local age returned by read operations experience a slight reduction, as shown in
Figure 7.4(d). But they are still higher than HARP which returns an age of 2.35 and a local
age of 0.5. So, there is a tradeoff between the load on the processors and the response time,
and between the reach time, the age and the load on the communication links.

119

(a) Processor Utilisation (b) Amount of Duplication

St T T T T T 60 T T T T T T
50 |- “F~<_ TSAE_R (Avg) ©— - TSAE_R -0—
e TSAE_R (Max) —+— 55 |- TSAE_L ~—- =
49 - *---J’.SA_EE__L (Avg) &F- -
. TSAE L - | —_
= 48 - HARP (Avg) -2—- 2 604 .
< 47 HARP (Max) %-- _|] c
2 £ 45t =
= E
= =
=] 8 40 - . -
35_;: -
e '
30 LL IO ik Rt 3]
2 4 6 8 10 12 14 2 4 6 8 10 12 14
msg_per_pckt msg_per_pckt
(c) Response Time (d) Age of Information Read
192 Y T T T 50 T T Y T T T
191 TSAE_R -0— _ BFEF o & =
— TSAE_L ~-- 4 TSAE_R -o—
S 100} ARP &-- | 0 - TSAE_L ~-
2 35 Local age TSAE_R &} -
- 189 & g a0 Local age TSAE_L -~
£ N A e e eme e mmmeemeeaceemeem—————- B T
E e g 28 25 4=ty . , -
8 \\\ < v ! !
g 187 - \+\ - 20 =
3 ™~ 15 |- -
@0 ~. . .
8 186 R 10 |
185 |- TN -~ sE--B----3------vo-o-e 2 . $11]
184 LL 1 i 1] 1 1T ol 1 vy i 1 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14
msg_per_pckt msg_per_pckt

" Figure 7.4: Varying the number of messages per packet
7.3.5 Varying the Communication Processing Overhead

This experiment shows the effect of varying the communication processing overhead (cpu-msg)
on performance. inter_arr_time is set to 400 msec, freg- to 0.8, msg_per_pckt to 10, cpu.msg
is varied from 0 to 10 msec and the remaining parameters are at their default values.

As shown in Figure 7.5(a), in TSAE.L the load on the processors is lower than that of HARP
for low values of cpu_msg. For high values of cpu_msyg, since the message delay increases, the
state information is more out-of-date. Consequently, the amount of duplication increases,
as shown in Figure 7.5(b), which increases the communication overhead and eventually,
the load on the processors bypasses that of HARP. TSAE R’s processing load is lower than
both TSAE_L and HARP for the ideal case of cpu_msg=0, when the only overhead is that
* of running the algorithm. However, for cpu_msg > 0, the load of TSAER increases sharply
and the system is saturated at cpu_msg > 7 msec.

Although for low values of cpu.msg TSAEL has lower processing overhead than HARP, it
consumes more bandwidth due to duplicate messages. Also, it relies on periodic updates.
Therefore, the reach time is higher than HARP, as shown in Figure 7.5(c), and it increases as
cpu-msg increases. The reach time of TSAER is much worse than both TSAE_L and HARP

120

(a) Processor Utilisation (b) Amount of Duplication

80 I T T T 140 T T T T
w TEARE S
B _| ax) —+-
70 | JSAEL (Avg) - 120 TSAER o— -
TSAE_L (I\;{ax : Ve TSAE_L —~
— 4 —_—
L Y g ; g 10 7
S 60 S X . _g_
= P et = 80 -
B 55 , Al - i S T
g WER g
= 50 :*”m;'.-.&---ﬁr" A 60 - -
45 L _,
X < -5 40 p: -
40
35 1 1 20 | 1
0 4 . 6 8 0 2 4 6 8 10
cpu_msg (msec) cpu_msg (msec)
(c) Time updates reach all replicas (d) Response Time
18 T T T T 270 T T T T
o) =f R T 1
TSAE_R <©— — = —+- -
14 & TSAEL —+- - g 20 HARP -
T 1 HARP - g 240
& 12r o | < 230
g 10 T - £ 220
= USSR TSt o =
= 8l et - g 210
8 S 200
) 6 i a
o 2 190':5
4 - c
180
2 |- -
D= A . o A M B ::&
0 2 4 6 8 10 0 2 4 6 10
cpu_msg (msec) cpu_msg (msec)

Figure 7.5: Varying the communication processing overhead

as it imposes higher communication overhead. The age returned by reads follows the same
curve as the reach time.

The response time of TSAE_L (Figure 7.5(d)) is better than HARP for low values of cpu_msg,
then it increases and bypasses it for high values due to the increase in the load of the
resources. TSAE.R is lower than HARP only when cpu_msg=0, and then it increases sharply
as shown.

From here it can be deduced that TSAE_L has lower processing communication overhead
and better response time than HARP for low values of cpu.msg, while HARP consumes
less bandwidth and offers better reach time and age. For high values of cpu_msg, HARP
outperforms TSAE_L in all metrics. As for TSAER, it has shown worse performance than
both TSAE L and HARP in general.

7.3.6 Varying the Network Delay

This experiment explores the effect of varying the communication delay (wan_del) on perfor-
mance. inter-err-time is set to 400 msec, freq, to 0.8, msg.per-pckt to 10, wan_del is varied

121

from 0 to 40 msec and the remaining parameters are at their default values.

(a) Load on Transceivers {b) Amount of Duplication
90 T T T T T_A 200 T T T T T 1
80 |- TSAE_R (Avg) <©— + 180 t~ TSAE_R ©o— -
TSAE_R (Max) —+- / 160 TSAE_L —+- _
70 [TSAE_L (Avg) - /
—_ 60 TSAE_L (Max) - S/ < 140 - 3
8 HARP (Avg) - # g y
= 50 HARP (Max e ’ s 120 Ve
£ % 100+ -
5 40 8
= a 80 - -
o] 30 g a 60 - _
20F AL g ; 40 - -
10 20 _ -
] == = o1~ 1 1 1 1)
0 5§ 10 15 ‘20 25 30 35 40 0 5 10 15 20 25 30 35 40
wan_del wan_del
{c) Age of Information Read (d) Response Time
o T j.rr%’}\EEI? o T La— 300 T T T T T T
L —+-— 280 ~ TSAE_R ©— -
60 - HARP -E!-- - T . TSAE_L —+- ‘
Local age TSAE_R - 2 260 - HARP - a
50 |Local age TSAE_L -A— - E
Local age HARP ¥ Y
o 40 . E 240
2 i 'a
a0k _,_4—"*—’- 2 220
o= g
0 F """ + . g 200
[+
180
; 160 i i N] i 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
. wan

del wan_del

Figure 7.6: Varying the network delay

The traffic on the communication links increases as wan_del increases, as shown in Fig-
ure 7.6(a). Bandwidth consumption is the least in HARP followed by TSAEL and is the
highest in TSAER, especially for high values of wan_del. There are two reasons for the
increase in the traffic. First, TSAE involves exchanging status information messages in ev-
ery session which places a load on communication links. Second, TSAE involves exchanging
duplicate messages which increases as wan_del increases, as shown in Figure 7.6(b), causing
more traffic to be generated and finally saturation of the links. Consequently, the reach
time in HARP is better than both TSAE with TSAER being the worst. The same applies
to the age of information read as shown in Figure 7.6(c).

Processor utilisation of TSAE.L is lower than HARP for low values of wan.del, and then
it increases sharply; mainly due to the communication overhead for processing duplicate
messages. Consequently, the response time of TSAE_L is better than HARP for low values
of wan_del, then it increases and bypasses it, as shown in Figure 7.6(d). The increase in the
response time of TSAE R is much larger for high values of network delay.

From this experiment, it can be concluded that the three protocols are sensitive to the in-
crease in the network delay, with HARP being the least sensitive. Both TSAE have shown se-

122

vere degradation in performance with high values of wan_del and the degradation in TSAER
is much higher due to contacting distant replicas.

7.4 Discussion

A variation of TSAE, suggested by its author, is to combine it with an unreliable multicast
to propagate updates rapidly. When a node originates an update, it multicasts it to other
nodes. Some of them might not receive the multicast, but they will receive the message later
when they conduct an anti-entropy session with another node that has received the message.
Although this suggestion seems to speed up dissemination of messages, it incurs a large
amount of duplication. This is because the anti-entropy session considers only summary
vectors when deciding whether to transmit a message to a partner, regardless of whether
the partner has already received the message by multicast. This means that if the multicast
is reliable, every message will be sent at least twice. Since the conducted experiments have
shown that a large amount of duplication is generated even without adding the multicast,
it is believed that adding the multicast will cause a high contention for the resources, and
therefore this option was not considered in the experiments. ‘

Although the log is not modelled in the simulation, the reach time gives an indication of its
size; since a message is deleted from the log when it is received by all replicas. As shown,
HARP has achieved a much better reach time than TSAE. Therefore, entries in the log are
purged more quickly and the log size is expected to be smaller. '

It was observed that TSAE can incur lower overhead than HARP since it relies on periodic
updates. A simple variation can be added to HARP such that it sends messages in batches
rather than individually. This requires a slight modification to the protocol such that it
propagates messages either:

e when a certain number of messages is generated or received, then it propagates them
in one aggregate message using the HARP propagation protocol. Or,

e periodically, each node gathers the updates generated and received into one message
and propagates it using the HARP propagation protocol.

In both cases, the recipient de-assembles the message and processes each message as if it
was received individually as before. This variation gains the advantage of sending messages
in batches, hence, it has lower overhead in running the propagation protocol and lower
communication overhead. So, it is asymptotically equivalent to TSAE in terms of protocol
and communication processing overhead. Further, it retains the advantages of not sending
duplicate messages and not exchanging status messages in propagation. Therefore, this
variant of HARP is expected to outperform TSAE in all metrics. However, as was shown
for TSAE, the periodic updates result in degradation in the reach time and the age of

123

the information read. Therefore, in choosing between HARP and its variation with periodic
updates, there is a tradeoff between reach time and age versus communication and processing
overhead.

7.5 Summary

This chapter has presented a comparison between HARP and two variants of the TSAE
protocol. The results have revealed that, TSAE_L has three disadvantages over HARP. First,
it exchanges status messages in every session which places an extra load on the resources.
Second, it involves exchanging duplicate messages which increases the traffic and degrades
performance. Finally, it relies on periodic propagation which slows down the speed by
which updates reach all replicas. On the other hand, TSAEL has two advantages over
HARP. First, it has lower overhead of running the protocol. Second, it sends messages in
batches so communication overhead is lower.

From the conducted experiments, it has been observed that HARP constantly offers better
reach time, coverage time, age and bandwidth consumption. TSAE_L offers better response
time and processing communication overhead only if the number of duplicate messages
generated is small. It was shown that this applies only when the number of messages that
can fit in a single packet is large, the processing communication overhead per message is low
and the network delay is small. However, since these parameters are not under the control
of the system manager (not tunable parameters), it is believed that HARP performs better
than TSAE_L under most system configurations.

TSAE_R has shown worse performance than TSAE_L because TSAE_R performs anti-entropy
sessions with distant replicas. Therefore, status information is more out-of-date due to
network delays. Consequently, more duplicate messages are exchanged. Further, while con-
tacting distant replicas,‘ TSAE_R places more load on intermediate nodes and links which
increases the overhead of the system. Therefore, it is concluded that using localised com-
munication has a large impact on performance in internetworks.

124

Chapter 8

An Alternative Hierarchical
Propagation Protocol (HPP)

8.1 Introduction

In Chapter 4, storage space optimisations within HARP have been discussed, where the size
of the data structures has been reduced significantly by exploiting locality of propagation.
However, HARP still requires the V'V structure to be propagated periodically and the VV'
and LL structures to be exchanged during the reconfiguration protocols and while han-
dling failures and partitions. Since the size of these structures is O(n), this may impose
a high communication overhead for very large scale systems. An alternative hierarchical
propagation protocol (HPP) is proposed [Adly 95¢] which overcomes this drawback.

The main difference between HPP and HARP is that HPP avoids the transmission of global
information. Similar to the idea of Compact Vectors, HPP uses aggregate state vectors
recording the messages a node has received from its correspondents only rather than from
all nodes. In HPP, each node maintains state vectors describing not only its own state, but
also the state of its correspondents. These vectors are of a size proportional to the number
of correspondents and they provide enough information for a node to determine missing
messages. Reorganisation protocols and methods for handling failures are suggested which
rely on these local state vectors and avoid exchanging global information. Therefore, HPP is
more scalable. However, it is less reliable than HARP as it can tolerate only special patterns
of failure. Further, its support for ordering delivery is weaker than HARP. Therefore, it
is suitable for applications that require no order of delivery or applications with simple
ordering requirements such as a bulletin board service.

This chapter presents the proposed protocol HPP. As in HARP, nodes in HPP are organised
in a logical hierarchy. For ease of presentation, the protocol is described for a simplified
hierarchy, where a node communicates only with its parent and children, but not with

125

neighbours. This could be regarded as a hierarchy where the size of each cluster is one,
although the protocol can be extended to support a hierarchical structure with clusters of
size greater than one.

The organisation of the chapter is as follows. Section 8.2 describes the operation of the
propagation algorithm during normal conditions and the data structures used. Then, Sec-
tion 8.3 explains how network reorganisation and restructuring take place. Next, Section 8.4
describes operation in failure mode. Section 8.5 reviews the strengths and limitations of the
protocol and compares it to HARP.

8.2 Propagation During Normal Operation

Figure 8.1 shows an example of the hierarchical structure considered. The notation P(7)
is used to denote the parent node of node 4, and Ch;(i) to denote the 4% child of node .
Without loss of generality, it is assumed that each node has ¢ children.

Ch; (i) Cly(i) Chi)
Figure 8.1: - A multilevel hierarchy of nodes with HPP

Messages on the network are classified into one of three categories: normal, reply or control
messages. Normal messages are assumed to be messages that are unrelated to any previ-
ous messages. These are treated slightly differently from reply messages which relate to a
previous message. This distinction is necessary to maintain the correct ordering between

126

a normal message and a reply message that might relate to it for applications like bulletin
board. Finally, control messages are special messages which are propagated through the
network like other normal and reply messages, but these messages only perform a control
function, such as the join-ack! and last_msg messages described in Section 8.3.

The basic scheme for propagation is very simple: a node generating a message sends it to all
its correspondents (parent and children). A node receiving a message from a correspondent,
sends the message to all correspondents ezcept the one the message comes from. This works
recursively and a message originating at any site will eventually propagate everywhere. A
node receives each message only once, so there is no redundancy during normal operation.

As in HARP, every message m keeps the identity of the originator m_org (i.e. the node that
creates the message) and a corresponding sequence number m_seg. The combination {m_oryg,
m_seq) creates a unique message identifier. Also, a node tags every message it sees with two
values W and W', where W is a sequence number of messages sent downwards, and W’ is a
sequence number of messages sent upwards by the node. Messages are also tagged with an
indication of the previous sender m_prev (m_prev = —1, if the message came from the parent;
m.prev = k, if it came from the . child; and m_prev = 0, if the node itself originated the
message). A bit map is kept along with each message (1 bit per correspondent) to keep
track of acknowledgements received from the correspondents.

Each node i keeps the following state vectors:

e V;, a vector to keep track of the messages node i has generated or received from its

own correspondents.
Vi = (U, Dy, Do, ..., D¢, L,W,W'), where

U = the number of the last message received by ¢ from up i.e. from the parent P(3)
Dj = the number of the last message received by i from down i.e. from child Ch;(?)
L = the number of the last local message generated by node 7 itself
W = sequence number of the downward stream i.e. a counter to keep track of the
number of messages sent by 7 to its child nodes.
W' = sequence number of the upward stream, i.e. another counter for messages sent
by 4 to its parent.

As before, the notation V;.z is used to denote entry z in the vector V;.

e VP, a vector describing node #’s view of its parent’s V vector.
Vz:P = (U, Dlv D2a eeey DC1 L)
The definition of each entry is the same as V; but with respect to the parent.

° V;Ch, a vector keeping track of received messages that were originated by child nodes
of node i.

VCP = (L1, Ly, La,, L), where

127

V,C* L;= the number of the last message generated lbcally by the child Ch;(i) and
received by 1.

e Each node maintains a Version Vector VV which keeps track of the last message
number received from every other node in the network; the same as in HARP. This
vector is local to each node; that is, it is not exchanged between nodes and is just used
to detect duplicates.

Therefore, state vector V; contains information about messages received by node ¢ itself, and
V¥ and VP contain information that node ¢ maintains about the states of its parent and
child nodes respectively. By aggregating messages this way, in terms of local (L’s), received
from down (D’s), and received from up (U’s), these three vectors encapsulate a large part
of the information that 7 needs to maintain and enable 7 to determine messages that have
been missed.

The state vectors V,VF,VCh and VV are updated upon the generation or receipt of any
message. The details of updating the state vectors are shown in Figure 8.2. The figure
lists the steps that a node must perform depending upon whether it originates a message,
receives a message from the parent node, or receives a message from a child node. In the
figure, it is assumed that node i is the 7% child of its parent P(s).

When node i sends messages to correspondent j, j processes these messages in the same
order they were sent from 7. Messages received out of order are inserted in a queue for later
processing. In general, there are c+1 such queues kept by each node, one per correspondent,
and this ensures that messages are received in the same order that they were sent between
a pair of correspondent nodes. This order is referred to as H-FIFO to distinguish it from the
standard FIFO order, and these queues are denoted by H.FIFO queues !. Since all nodes
observe H_FIFO order while propagating messages, and there is only one unique path in the
logical hierarchy for a message between any pair of nodes, then causal ordering is maintained
during normal operation. Theorem 9 given in Appendix C formally proves that causal order
is achieved during normal operation.

Each node keeps a partial view of the hierarchy including the identities of its own corre-
spondents (i.e., its parent node and all child nodes) and their correspondents. Therefore,
each node maintains a [c + 2][c + 1] matrix View, where, row 0 holds the ids of its own
correspondents, row 1 gives the ids of its parent’s correspondents, and row 2 through c+1
gives the ids of the correspondents of its children (i.e., child nodes 1 through c, respectively).
In each row, the first entry denotes the id of the parent and entries 1 through c are the ids

1To support H_FIFO order, each node should maintain two vectors VS and VR where V' S[j] = last
sequence number sent to correspondent j, and V R[j] = last sequence number received from correspondent j.
When node ¢ sends a message to correspondent 7, it increments V'.S[j] by 1 and tags the message with this
value. When node 7 receives a message from correspondent j it checks the order by comparing V R[j] with
the tag on the message; if VR[j] + 1 is equal to the tagged value, then the message is received in H FIFO
order. '

128

‘When node i generates a message m:
{
increment V;.L, V;.W, V;.W' and VV;[i];
set m._prev = 0;
send m to Ch;(i), Vi; /* children */
send m to P(i) and increment V;F.D,; /* parent */

}

When a node i receives a message m with uid = (m_org, m_seq) from its parent P(i):

{
If m is in HFIFO order Then

If m_seq < VV;[m_org] Then

discard m; /* it is a duplicate */

Else {
increment V;.U,V;.W and VV;[m_org] ;
If m_prev = —1 Then increment VF.U ;
If m_prev =k Then increment VF.D; ;
If m.prev =0 Then increment V7.L ;
set m_prev = -1;
send m to Ch;(i), Vj; /* children */
send acknowledgement to P(i);

}
Else

insert m in HFIFO queue corresponding to P(i);
}

When node ¢ receives a message m with uid = (m_org,m_seq) from its j** child Ch;(i):

{

If m is in H FIFO order Then
If m_seq < VV;[m.org] Then
discard m; /* it is a duplicate */
Else {
increment V;.D;, V;.W, Vi..W' and VV;[m-org];
If m_org = Ch;j(i) Then increment VC*.L; ;
set m_prev=7j ;
send m to Chi(i), VE#] ;
send m to P(i) and increment V.D, ;
send acknowledgement to Ch;(i) ;
} _
Else
insert m in H.FIFO queue corresponding to Ch;(3);

Figure 8.2: Algorithm for updating the state vectors in HPP, ﬁpon originating or receiving
a message

129

of the child nodes 1 through c, respectively.

Messages are kept in a log. A message is inserted into the log when received (in H_FIFO
order) and removed from the log when

1) all correspondents have acknowledged the receipt of the message, and

2) a timeout T has elapsed after the last acknowledgement was received.

The duration of T has to be specific to each site at the discretion of the site manager. It
is assumed to be large enough to ensure that correspondents of the node’s correspondents
have received the message before it is deleted. It is anticipated that a value of anywhere
between 1 and 7 days would be reasonable. A summary of the data structures maintained
at each node i, their descriptions and their sizes is presented in Table 8.1.

Variable name Description 7 Size |
Viewi[c+ 2][c+1] | Partial view of the tree (c+2)(c+1)
Vi Vector describing i’s state c+4

ViP Vector describing 7’s record of its parent’s state c+2

ViCh 1’s record of messages originated by its child nodes | ¢

VViln] Version Vector , n

log; Log keeping received messages : variable

c+1 H_FIFO queues | Queues maintained for H_ FIFO ordering messages | variable
VS;le+1) Vector keeping sequences of sent messages c+1
VRi[c+1] Vector keeping sequences of received messages c+1

Table 8.1: Summary of data structures in HPP, their descriptions and sizes

8.3 Reorganisation

HPP adopts a different approach than HARP to reorganise the hierarchy such that it avoids
exchanging global state information while still guaranteeing that no messages are lost while
the switch is taking place. Without comparing global states, a node cannot detach itself from
the hierarchy and rejoin as it happens in HARP. The basic idea behind the reconfiguration
scheme in HPP is that a node wishing to change its position in the hierarchy has to join
the new nodes it wishes to connect to first, then it detaches itself from the old nodes it was
affiliated with. That is, for a certain period of time, it is linked to both parties in order
to ensure no loss of messages while avoiding exchanging global state. The reorganisation
operation that is of interest is the one that allows a node to change its parent node, which
would be the same as a move operation, and it will be described in detail.

As before, the moving node must either be a leaf node or it should move all its descendants
along with it to the new position. The operation is initiated by the moving node which

130

informs the new parent of its intention to join. The new parent starts buffering any new
. messages for the new child. On receiving a confirmation from the new parent, it leaves the
old parent and joins the new parent, buffering any new messages for the new parent. During
the join, the new parent and the moving node exchange the messages they have buffered for
each other before starting propagating messages to one another. The protocol ensures that
no messages are lost even if a failure occurs along the path from the old parent to the new
parent while the reorganisation is in progress. To ensure correctness, a node attempts to
move only if its parent is not down.

Consider a node 4 with an old parent old_p that wishes to join a new parent new_p. The
details of the protocol are given in Figure 8.4, and a brief explanation of the protocol follows.
Without loss of generality, the algorithms in Figure 8.4 assume that i is the r* child of the
old parent and will become the ¢ + 1** child of the new parent. The scenario of message
exchange is illustrated in Figure 8.3.

old_p l hew_p ... control messages

Join_req;
\ * buffer messages in M_log;

y i S
leave—~ e buffer messagesin .
» M_log new_p

leave ack

auy)

M—log. . eadd i to Viewnew

join_aCk2 4 e start normal propagation to i

Moty
eadd new_p to View; i

e start normal propagation
to new_p

Figure 8.3: Scenario of message exchange while a node : is changing its parent from old_p
to new_p within HPP

Node i sends a join_req! message to new_p to inform it of its intention to join. On receiving
Jjoin_reql, new_p sends a join_ackl message to ¢ and starts buffering any further messages
generated or received for i in a log called M log;. When 4 receives join_ackl, it sends a
last_msg message to new_p to mark the last message sent from ¢ to new_p through old_p (in
the present hierarchy). The join_ackl and last-msg messages are special control messages
which travel through the hierarchy exactly like a normal data message. Then, ¢ sends to
old_p a leave_req message and stops sending further messages to old_p. However, it starts
buffering for new_p (in a log called M _10gpeq_p) all new messages generated or received from

131

its child nodes. When old_p receives the leave_req message, it stops sending further messages
to 4, discards i from its View, informs its own correspondents of the change and sends a
leave_ack message to i. On receiving leave_ack, i removes old.p from its View and sends -
join_req2 to new_p. new.p will then add 7 to its View, inform all its correspondents about
the new child, and send an acknowledgement join_ack2 to i including all messages it has
buffered for it in M _log; previously. On receiving join_ack2, i processes these messages, adds
new_p to its view and finally sends to new_p all messages it has buffered for it. new_p waits
for last_msg, and, after receiving it, starts processing messages received from i. The move
is considered complete when node 7 receives join_ack2 from new_p.

It can be shown that no messages will be lost as a result of the reorganisation by arguing
that old_p and new_p will receive all messages % receives from below, and that ¢ will receive all
messages that new_p has received before the move or will receive after the move 2. Assume
i sends leave.req at time ;. Then, new_p will receive directly from % every message i has
" received from below at time ¢ > ;. All messages received by 7 at ¢ < ¢; from below would
be propagated by it to old_p, and then old_p will further propagate them to new.p by the
normal propagation mechanism. Therefore, new_p receives all messages received by 7 from
below. Similarly, old_p receives directly from ¢ all messages it has received from below at
t < t;. All messages received by 7 from below at ¢ > ¢; will be sent to new_p and new_p will
further propagate them to old_p by the normal propagation mechanism. Therefore, old_p
receives all messages received by 7 from below. -

Assume new_p receives i’s join.reql at time ty. Messages received by new_p at t > ¢z will
be sent to i. new_p sends join.ackl at t = tp. Since join-ackl propagates through the
network like other normal messages and since the H_FIFO order is preserved in transmitting
messages between correspondents, any message that is received by new_p at t < tp will be
received by old_p and i before join_ackl. Thus, i is guaranteed to receive all messages that
new_p received at ¢t <ty from old_p and no messages are missed.

To preserve causal order while the switch is taking place, node new_p does not process
messages received directly from ¢ until the last_msg has been received. This ensures that
new.p processes all messages sent to new_p through old_p first, and then it processes any
new messages received directly from i. Further, since join_ackl propagates through the
network like a normal message (before the change of correspondents), i receives join_ackl
after all regular messages propagated by new_p before the move. Since ¢ starts receiving:
new messages directly from new_p after new_p receives join_req2 - which is sent by 7 only
after join_ackl is received - then the ordering is preserved. Based on the above arguments,
Theorem 10, given in Appendix C, shows that causal order is not violated while the change
is taking place.

For a new node to join the hierarchy, it follows the same pfotocol for joininé new-p from
the step of sending join_reg2. Node new_p sends the new node a copy of the database with

2The case of reorganisation in the presence of failures is discussed in Section 8.4.5.

132

Node ¢

send join_regl to new.p;

on receiving join.ackl from new._p,
send a special control message last-msg;
send to old_p leave_req and stop sending it messages;
insert new or child node messages in M _Lognew p;

on receiving leave_ack from old_p, ,
set old View = View;[1]; old VF = VF;
set View;[0,0] = new_p and send join_reg2(View;[0]) to new._p;

on receiving join_ack2(Vpew p, VieWnew p[0], M_Log;) from new_p,
process messages in M _Log;; _
set View;[l] = Viewnewp[0]; Vi¥ = Vaewyp: ViU = View pW;
send M_Lognew_p to mew.p;
send commit to old_p and discard old_View and old VF;

Node new_p

on receiving join_regl,
send a special control message join.ackl ;
insert new generated or received messages in M _Log;;

on receiving join_reg2(View;[0]) from ¢
add ¢ to its list of child nodes: set Viewnew p[0,c+ 1] =1;
set Viewnew plc+2] = View;[0]; Vhew p-Det1 =0; Vnce’,;_p.Lc.,_l =0;
send add_child(f) to its correspondents;

send ¢ an acknowledgement join_ack2(Vaew_p, VieWnew p[0], M_Log;);
on receiving M_Logpey._p from i,

wait for lasi_msg then process messages in M_Lognew p ;

Correspondent & of new_p on receiving add_child(z)
update Viewr to include ¢ as a child of mew_p;
If k is a child of new.p then add an entry V{¥.Dys;

Node ald_p'
upon receiving leave.req from 1,
keep old status for i¢: set
oldV; = Voi4p.Dr; old VCH = I{,?d”_p.L,.;
old View;[0] = Viewoa_p[0]; old_View;[1] = Viewoa_p[r +1];
remove i from Viewoq p[0], Voqgp and Vo?dh_p ;
remove row r+l from Viewozd_p and rearrange the rows ;
send del_child(i) to its correspondents;
send leave_ack message to ¢ ;

on receiving commit message from ¢, discard old status kept for g;

Correspondent k of old_p on receiving del_child(3)
remove 7 from Viewy;

If k is a child of old_p then remove the entry V¥.D,;

Figure 8.4: Reorganisation algorithm in HPP
133

join_ack2.

For a node to leave permanently the hierarchy, it has to be a leaf node. Any previous
descendants must already have moved. The node sends a leave request to the parent after
ensuring that the parent has received and acknowledged all previously sent messages. The
parent then removes the node from its view, informs its other children of the change and
sends an acknowledgement to the leaving node, which can then leave.

8.4 Failures

This section describes how the protocol circumvents failures, i.e. messages can be propagated

past a failed node in both directions. The protocol can bypass one failure per correspondent
group, i.e., if node 1 fails, and none of its correspondents are down, it is possible to propagate
messages past i in spite of the failure. As in HARP, the child nodes of the failed node elect
a coordinator which would take-over all the functions of the failed node. However, the
procedure for handling failures is different from the one adopted in HARP, basically because
HPP avoids exchanging global states and relies on the information in the aggregate state
vectors kept by the correspondents of the failed node.

Assume the failed node is f. Once all its child nodes agree that f has failed, they elect
a coordinator CO. The various steps required to be performed after a failure have been
grouped into three phases which are summarised below:

e Phase 1: Transition _
CO contacts all correspondents of f and a transition algorithm is run which is respon-
sible for propagating any message f failed to send successfully to all its correspondents
before failing.

e Phase 2: Diffusion
CO takes over the responsibilities of node f and acts as a temporary parent for each
child of f, Ch;(f), and as a temporary child for P(f) to ensure the continuity of
propagation flow while f is down.

o Phase 3: Recovery
When f comes up, f runs a recovery algorithm to bring itself up-to-date and takes
back its function from CO.

In the following, details of the three phases are described.

134

8.4.1 Transition

Assume f was in the process of sending a message to its correspondents when it failed.
The transition algorithm ensures that even if these messages were sent to a subset of the
correspondents (in the worst case to only one of them), still they will be delivered reliably
everywhere. The algorithm is initiated by CO after being elected.

Without loss of generality, assume that f is the §** child of its parent P(f). The algorithm
is run by CO and the steps in the algorithm are listed in Figure 8.5. In the first four steps,
CO gathers the state information it needs. In the next four steps, it instructs some nodes
to send to other nodes messages that the latter have missed. The objectives of this exercise
are: (1) to find out which node has the most current information as of the time node f
failed, and (2) to arrange for that node to send messages to other nodes which are behind.
At the end of this phase, all nodes are current as of the time node f failed, and then CO is
ready to assume the functions of its parent node f.

In steps 1 and 2, CO gathers the relevant state information from the parent and child nodes
of f. In step 3, it determines which correspondent of f (among f’s parent and child nodes)
has received the largest number of messages that were generated locally at f and keeps this
number in Maz_L #- Since each child node maintains a view of its parent’s V vector, and
these views could be different, step 4 compares these vectors maintained by the child nodes
of f. The objective is to determine the highest numbered message received by f from each
of its child nodes until failure, and also to determine for all messages received by f from
each child node, how far behind the other child nodes are (since f must propagate messages
received from one child node to all other child nodes). Consequently, V¥M4x [§] is the highest
numbered message f has received from its child node i; VFMI¥[i] is the number of messages
out of these that have reached the child node that is most behind.

The subsequent steps of the algorithm can be explained better by examining all possible ways
in which f might send a message to, or receive a message from, one of its correspondents and
then fail before propagating the message to all its other correspondents. In all such cases,
the transition algorithm must ensure that such a message does reach all correspondents
of f. This problem is divided into four cases depending upon whether the correspondent
of f is a parent node or a child node, and also depending upon whether f has sent a
message to, or received the message from, the correspondent. Each of these four cases
is discussed separately below, and in each case it is explained how the appropriate step
from the algorithm ensures that a message that falls in that case is propagated to all other
correspondents of f (the step numbers below refer to Figure 8.5).

e Case 1: P(f) generates a message itself (or receives a message from a child or a
parent node), sends it to f, and then f dies (denoted P(f) — f, f dies)
Since P(f) has the message, then it will get propagated upwards in spite of the failure
of f. However, to ensure that it will also be propagated downwards, CO must compare

135

(1) Ask node P(f) for Vp(s).W, VP(f) .L; and Vp(s).Dj;
(2) Ask nodes Ch;(f) for VCh (g i=1..
(3) Let Maz Ly = Max{VP(f) L;, Maxz{ch(f) L}};
If (Maz Ly = Vg(’}).L,-) Then i* =0;
Else i* =i s.t. Maz. Ly = Vgh‘_(f).L;
(4) Construct the vectors VFPMax and VPmiv g ¢,
VPmaxfjl = VE (f).D;, Vi;
VPmIn[j] = Mink{VCh ¢-Di} » Vi;
(5) Ask P(f) to send Chi(f), Vi, the last (Vp(y W VCh (f)-U) messages sent
downwards except messages with m._prev =j;
(6) If (¢* =0) Then
Ask P(f) to send Chi(f), Vi, the last (Mam_Lf—VcI,Jhi(f).L) messages
received with m.org=f;
Else {
Ask node i* to send P(f) the last (Maz Ly —V&’}).Lj) messages
received with m_org= f;
Vk # ¥,
Ask node i* to send Chy(f) the last (Maz Ly —VCPhk(f).L) messages
received with m.org=f;

}

(7) Ask nodes Ch;(f), Vi, to send to their neighbours their last
(VPmax[j] — VPmIN[j]) messages sent upwards;
(8) Let y = EkVCI',h;,(f)‘Dk - (Vp(f).Dj — Maz_Ly);
If y > 0 Then :
Ask Chi(f), Vi, to send the last y messages sent upwards to P(f);

Figure 8.5: Transition algorithm

Vp(s):W with Vé’hi(f).U: if Vpep). W > Vc%;,-(f).U, then Ch;(f) might have missed some
of those messages, and CO asks P(f) to send the missing messages to Ch;(f) (see
Step 5).

e Case 2: f has generated a message, sent it to P(f), and then died (denoted by f —

P(f), f dies)
Since P(f) has received the message, it will again get propagated upwards in spite of

the failure of f. To ensure that it is propagated downwards, CO compares VF?(’})
with VCh -Le i VP(f) L; > VCh ()" .L, then Ch;(f) has missed some messages and
CO asks P(f) to send Ch;(f) the missing messages (see Step 6). -

e Case 3: f has generated a message, sent it to one of its child nodes (say, Ch;(f)),
and then died (denoted f — Ch;(f), f dies)
In order to ensure that such messages are propagated upwards, CO compares Vcl”h,-(£ L

136

with V&’}).Lj: if Vc}?hi(nL > V}%*)-Ljv then P(f) has missed one or more messages
and CO must ask Ch;(f) to send the missing messages to P(f). In order to ensure
that the messages are propagated downwards, CO compares Vc{)h,- (f).L with VCI')hk) L:
if Vé’hi(n-L> Vcl‘th(f)-L» then Chi(f) has missed some messages and CO asks Ch;(f)
to send the missing messages to Chy(f) (see Step 6).

e Case 4: Ch;(f) generated a message locally (or received a message from below), sent
it to f, and then f died (denoted Ch;(f) — f, f dies)

To ensure that such messages are propagated downwards, CO compares VCI;H(£ .D;
with Vghk(p-Di if Vgh‘,(5-Di > VCI'Jhk(f)'Di’ then Chy(f) has missed some messages
sent by Ch;(f) and CO asks Ch;(f) to send those messages to Chi(f) (see Step 7).
To ensure that such messages are propagated upwards, CO checks if: (Vp(s).Dj —
Maz_L¢) < Zchl-Jhk(f)-Dk- If so, then P(f) is missing some messages sent by child
nodes and CO asks them to send those messages to P(f) (see Step 8).

The different cases along with the conditions used to detect the need for upwards and
downwards propagation are summarised in Table 8.2. A “~” in Table 8.2 means that the
message has already been propagated in that direction and no action is required.

| Case [Upwards Downwards
P(f) — f, f dies - Vo)W > VinnU
f — Chi(f), f dies VL > VElh-Li Venn-L > Vonn-L
f = P(f), f dies - VEth-Li > Vénn-L
Chi(f) = f, f dies | Vp(s)-Dj — Maz L < SkVE, 1v-Di | V& n-Di > V&, 5)-Di

Table 8.2: A summary of failure scenarios and conditions to detect upwards and downwards
propagation in HPP

Since missing messages can fall in only one of the four cases described above, and since
all of them are detected and propagated, it follows that: if a node fails and it has sent a
message to at least one of its correspondents before failing, then this message will be reliably
propagated to all its other correspondents and consequently, will be reliably propagated to
every other node in the network.

CO assembles all requests to P(f) or Ch;(f) into one message including the total number
of messages that each of them is supposed to receive from others. P(f) or Ch;(f) receiving
diffused messages treat them exactly as if they were coming from f. The only change is
that the child nodes Ch;(f) (i = 1...c) need not update V(f‘)h,-(_f)’ since it represents f’s
state, and that is frozen because f is down. Further, the batch of diffused messages should
be sorted such that normal messages are processed first, followed by reply messages, and,
lastly, control messages. This sorting step is necessary because now it is possible that a

137

message and its follow-up might be received by a node through different paths such that
the follow-up reply reaches before the original message, thus disturbing the causal order. In
such a case, sorting will ensure that the ordering requirements are still satisfied. Similarly,
if there are further replies to replies, it is possible to process them in the correct order by
attaching a tag field to each reply, and incrementing the field whenever there is a reply to a
reply. The replies would then be sorted in order of this tag field, and a reply (tag value =
1) would be processed before a reply-to-a-reply (tag value = 2).

8.4.2 Diffusion

While node f is down, CO takes over the responsibilities of f temporarily until f comes up
again. That is, Ch;(f)’s and P(f) send messages to CO, and CO will diffuse them to the
other correspondents of f. Therefore, it is ensured that the flow of propagation will continue
while f is down. Messages are transmitted in H FIFO order between CO and correspondents
of f. This phase starts once the transition phase is terminated, i.e., when P(f) or Ch;(f)’s
have received and processed all messages they were supposed to receive during the transition
phase. Then, each node can move into the diffusion phase independently.

CO, on receiving a message m from a correspondent of f, treats it as if it is coming from a
parent node, and performs the algorithm described in Section 8.2 (see Figure 8.2), i.e. CO
must update V' Vg, increment Voo.W and Vgo.U and send m to its own correspondents,
but it does not update V. Additionally, it must also send the message to correspondents
of f, other than the one the message is coming from.

If CO generates a message locally, or receives a message from one of its own correspondents,
it treats it normally (see Figure 8.2), but, in addition, sends it to all correspondents of f.

A correspondent of f, on receiving a message from CO, acts as follows: if the correspondent
is P(f), then it treats the message as if it is coming from a child (see Figure 8.2); if the
correspondent is a child node of f, then it treats the message as if it is coming from a parent
(again see Figure 8.2), but does not update Vc?h,-(-

8.4.3 Recovery

While f is down, each correspondent of f, on generating a new message, or receiving a
message from its own correspondents, inserts it in the log, marks it as not acknowledged
by f and sends it to CO. When node f comes up, it triggers the recovery algorithm which
consists of the following steps:

1. f sends recovering message to each of its correspondents. The message to correspon-
dent 7 includes any messages in f’s log which has not been acknowledged by <.

138

2. Correspondent 7 receiving such a message should:

(a) check whether any of the included messages is a duplicate - as it might have
already received it during the transition phase-, and, if so discards it; otherwise,
it accepts the message and updates V;.

(b) check whether it is holding any pending messages in the H_FIFO queue for f,
process the non-duplicates then flush the queue.

(c) extract from its log all messages not acknowledged by f and sends them to f
along with an ack.

3. f receiving the ack from correspondent %:

(a) accept non-duplicate messages (but does not forward them to its other corre-
spondents as they already have them).

b) increment V;.U, if ¢ is a parent, or V;.D;, if i is the j** child, by the number of
f f-ti
non-duplicate messages received from correspondent .

4. After f receives acks from all its correspondents:

(a) increment V;.W by the total number of non-duplicate message received from all
correspondents.

(b) send V7 to all its child nodes Ch;(f).
(C) ask P(f) for VP(f)

5. normal operation of f is resumed.

Steps 1 through 2(b) ensure that the diffusion process is completed e.g. if a node had
received a message from f but had deleted it from its log before the transition algorithm
starts and hence the message was not diffused, or, if f has generated a message but did
not send i_f to any other node before failing. Further, it is essential for correspondents of f,
who might or might not have received these messages, to flush any pending messages in the
H_FIFO queue each of them keeps for f. Step 2(c) ensures that f will receive all messages it
missed during the failure. Step 3 and 4 allows f to bring itself up-to-date before resuming
its functions. Recall that, while f was down, its child nodes were not required to update
their Vcl.ahi(f) vector. Therefore, on recovering, f sends its Vr vector to all its child nodes
Chi(f) so that they can use the incoming vector as their new Vé’hi(f)- Further, f needs to
update its record of its parent’s state; so, f requests P(f) for its Vp(s), and calls it VfP .
Afterwards, normal operation of f is resumed. 3 It should be noted that, unlike HARP,
when a node comes up, it must take the same position in the hierarchy it was taking when
it failed to ensure no loss of messages.

3If, CO receives a message from a correspondent of f after f comes up, then CO returns the message
back to the sender noting that f is alive and the sender must resend the message directly to f.

139

8.4.4 Partitions

When partitions are detected, correspondents in one partition mark in their view their
correspondents in the other partition as being isolated in order not to attempt sending
them messages. However, messages generated or received by correspondents in one partition
are kept in the log for the isolated correspondents. When the partition heals, each pair
of previously isolated correspondents exchanges messages that were kept for each other,
update their state vectors and propagate received messages as usual. This will ensure that
any messages that were missed during the partition will be received. Afterwards, normal
operation is restored.

8.4.5 Reorganisation Despite Failure

This section discusses the case in which failures occur while reorganisation is taking place.
The reorganisation algorithm can proceed in spite of some kinds of failures, but if any of
nodes old_p, new_p or 4 fail, then it is aborted.

The reorganisation algorithm assumes that nodes 4, old_p and new_p must not fail while
reorganisation is taking place. If one of these nodes fail, then the reorganisation must be
aborted. This is why nodes old_p and % maintain their old views and state vectors (see
Figure 8.4) - so that they can be restored in case of failure. In case new._p fails, node i is still
able to receive all messages from above through old_p, in spite of a temporary interruption
and small delay on account of the attempted reorganisation. In case old_p fails, then i is
able to participate in the transition, diffusion and recovery algorithms and vice versa.

On the other hand, if any of the other nodes, say the ones along the path between old_p and
new_p, were to fail, then the reorganisation algorithm can proceed in spite of these failures.
The detailed proof for this claim is given in Theorem 11 of Appendix C.

8.5 Discussion

The major advantage of HPP is that it allows aggregation of the important aspects of the
state into a few state vectors containing minimal information. By encapsulating the state
information, HPP requires each node to maintain vectors of size proportional to the number
of its correspondents. These aggregate state vectors provide enough information for the
determination of missing messages, and therefore, their exchange is sufficient to circumvent
failures. HARP on the other hand requires exchanging vectors of size n periodically or when
failures or reorganisation occur, which may result in high communication overhead for very
large scale systems. Therefore, HPP allows the system to scale better than HARP.

The main limitation of HPP lies in the fact that messages can be diffused past a failed node

140

only if its parent and all child nodes are alive. This means that “successive” failures (i.e.,
where a pair consisting of a parent node and a child node are down) will cause the diffusion
to stop and the tree to be partitioned. Of course, messages will still not be lost, and all
messages will be delivered when the failures are restored. Moreover, messages can also be
diffused in spite of other kinds of multiple failures that do not involve a parent-child pair.
The state information kept at each node at present is able to handle one level of failure; if
additional state information is maintained at each node, then the solution can be extended
to handle successive failures. For instance, if each node keeps vectors describing the state
of its correspondents and their correspondents, the presented algorithms can be extended
to handle two levels of failures and so on. In this case, there is a tradeoff between the
probability and associated cost of such successive failures and the cost and complexity of
maintaining the additional information.

In HARP, nodes keep AckM to record when messages have been received by all nodes - or
a subset of nodes- before discarding them from the log. HPP does not keep such a matrix,
hence, saving storage. However, its policy for discarding a message from the log relies on
the value T (a timeout duration after which a node discards a message) which is based on
estimation. Consequently, a message that has been missed by a node due to a failure is
sent to it during the transition algorithm only if the correspondents of the failed node are
still keeping the message in their log, which is highly dependent on how large the estimated
value of T is.

During reorganisation of the hierarchy, HPP avoids exchanging global information, which
reduces communication overhead. However, unlike HARP, a node cannot detach itself from
the hierarchy (leave) and then reintegrate (join) independently as it cannot compare its state
to the node it is joining. Rather, it has to join the node it wishes to join first, then it leaves
the node it wishes to leave to guarantee no loss of messages. This approach works fine for
a node moving from one location to another. However, if a node is required to be removed
from service temporarily, say for repair, it has to leave the tree permanently then join as a
new node and it will receive a complete copy of the database. This process could produce a
high overhead if the size of the database is large. However, it depends on the frequency at
which such a reorganisation occurs.

HPP’s support for ordering of delivery is weaker than HARP. More precisely, HPP supports
FIFO and causal ordering during normal operation. However, in the presence of failures the
ordering cannot be guaranteed. For applications where the causal dependency is known in
advance (such as replies or follow-ups are known to be dependent on the original posting),
then their causal order could be preserved. However, it cannot be generalised. Therefore,
HPP is suitable for applications such as bulletin board services or applications that require
no order to resolve inconsistencies.

141

8.6 Summary |

This chapter has presented a Hierarchical Propagation Protocol (HPP) where each node
encapsulates information about itself, its parent and children into state vectors. These
aggregate state vectors provide enough information for a node to determine messages that
have been missed. A reorganisation algorithm and a procedure for handling failures have
been described which rely on those vectors and avoid exchanging global state information.

Therefore, HPP takes advantage of the hierarchical structure in terms of distributing the
load evenly among the nodes and minimising redundancy. Further, it exploits the structure
to enhance the scalability of the system by compressing the state vectors required to be
exchanged to circumvent failures, which reduces the communication overhead. However, it
is less reliable as it can tolerate only special patterns of failure.

In comparison with HARP, HARP is a more general protocol than HPP, more reliable and can
handle any pattern of failures. Further, it provides several orders of delivery (FIFO, causal
and total order) from which an application may choose depending on its requirements. On
the other hand, it requires the exchange of global state information.

142

Chapter 9

Conclusions

This dissertation presented a protocol for management of replicated data in large scale
systems. This chapter summarises the main conclusions, and suggests possible further work.

9.1 Summary

Although extensive research has been done in managing replicated data, existing solutions
cannot scale to a large number of replicas. Mainly, this is because they manage replicas
as one flat group of nodes. Requiring a node to communicate with all other nodes in the
system might be adequate for local area networks with few replicas, but is inefficient and
entirely impractical for wide area, massively replicated systems. Also, it has been observed
that current applications require different degrees of consistency, varying between strong and
weak consistency. Further, with weak consistency, some applications require the ability to
access information that is more up-to-date than what is available locally. However, existing
replication models lack the ability to provide the application with the flexibility of choosing
the desired level of consistency.

Motivated by these observations, the new replication protocol presented in this dissertation
(HARP) is designed to be scalable to thousands of replicas linked across internetworks.
Further, it integrates both strong consistency and weak consistency into the same framework
and gives the application the ability to select between them depending on its requirements.
The protocol is designed on the basis that replicas are organised into a logical multilevel
hierarchy, where nodes are grouped into clusters, and clusters are organised into a tree. The
hierarchical structure allows for exploiting localised communication, which is taken as the
key to achieve scalability.

A new service interface is proposed (Chapter 3) that provides both asynchronous and syn-
chronous operations. Asynchronous operations commit at any replica, whereas synchronous

143

operations commit after a quorum is assembled from nodes of the top level of the hierarchy.
Strong consistency is achieved through synchronous operations, which are less expensive
than traditional replication protocols since synchronisation is limited to a small number
of nodes. In order to ensure that updates are observed by all replicas, HARP provides an
efficient propagation scheme where each node needs to communicate with a few other nodes
only, namely its parent, neighbours and children in the hierarchy. It has been shown that
the scheme reduces the communication overhead, limits the amount of state each node needs
to keep and reduces the size of the log, which enhances scalability. This is achieved while
ensuring reliable delivery and avoiding redundancy. Further, the hierarchical pattern of
propagation allows the service to provide different levels of staleness by reading from differ-
ent levels of the hierarchy. Therefore, the proposed interface gives the application developer
the flexibility to tailor the service to achieve the required degree of consistency by choosing
the appropriate operations to manage the data, while hiding the details of the interface
specifications from the users.

Reconfiguration schemes are necessary to allow a node to join or leave the set of replicas
and the ability to recover from failures. HARP provides restructuring operations that allow
the logical hierarchy to be built, expanded and dynamically reconfigured (Chapter 4). In
contrast to contemporary reconfiguration schemes, the proposed operations rely on a weak
consistency semantic where a node needs to negotiate with a few other nodes only to per-
form a change rather than synchronising will all nodes. This approach reduces the overhead
associated with reconfiguration, produces low message traffic and does not suspend normal
operation while the protocols are running. It has been shown that the operations are correct
by proving that no messages are lost as a result of a change and that all replicas converge
to a single consistent view of the hierarchy (Appendix A). Based on the reconfiguration
operations, methods for handling failures and partitions are presented which ensure propa-
gation flow between the operational and connected sites despite the failures and guarantee
that eventual reliable delivery is achieved after repair.

Many applications rely on delivery order mechanisms to resolve conflicts resulting from
asynchronous updates. HARP provides a variety of delivery orderings - latest-wins, FIFO,
causal and total order - and an application may choose from them. A new algorithm
supporting causal order within replicated systems is presented (Chapter 5). The novelty of
the algorithm is that it cuts down the size of the timestamp, required to verify causality, to
the number of nodes in a cluster as opposed to previous solutions that used a timestamp
of size n. Hence, it enhances scalability. This is achieved by relying on the locality of
‘propagation. It has been shown that causal delivery is guaranteed during normal operations
as well as under reconfiguration (Appendix B).

A detailed simulation study was carried out to evaluate the performance of HARP (Chap-
ter 6). The benefits and losses resulting from using synchronous versus asynchronous opera-
tions have been quantified under different system configurations and load mixes. It has been
shown that in internetworks synchronous operations degrade the performance tremendously.

144

The throughput is severely limited with high loads, high update rates and communication
delays, especially when the number of replicas is large. On the other hand, asynchronous
operations have shown much better performance and can cope with heavily loaded systems
with a little loss in reading some out-of-date information. The results obtained confirm our
claim that, for applications that need high performance, asynchronous operations are more
suitable as long as they can tolerate some inconsistency. As expected, asynchronous reads
performed at higher levels of the hierarchy have been shown to return less stale information
with some increase in the response time. Further, it has been shown that maintaining strong
consistency by assembling quorums from all nodes in the system, as it is the case in current
solutions, is not feasible in internetworks.

The performance has been evaluated on several network topologies and with different num-
bers of replicas. The results have revealed that a symmetric hierarchical structure yields the
best performance and that distributing the load evenly among the nodes in the top cluster
is crucial for synchronous operations. Further, it is suggested to keep the number of nodes
in the top cluster small to reduce the overhead on those nodes. Also, it has been shown
that performance is very sensitive to the number of levels in the hierarchy. These results
give some indications on the effect of the design of the logical hierarchy on the performance
and give broad guidelines on the factors that should be considered while designing it.

A simulation study was carried out to compare the performance of HARP to the TSAE
protocol under different load mixes and communication overhead (Chapter 7). The re-
sults obtained revealed that in internetworks, HARP results in considerable performance
improvement over TSAE, especially under heavily loaded systems. This is mainly because
TSAE involves exchanging a fair amount of duplicate messages which increases the traffic.
The speed of propagation was observed to be much lower than HARP due to the periodic
updates. Finally, it was shown that relying on a hierarchical structure and using localised
communication improves performance greatly.

It has been shown that HARP reduces communication traffic as well as storage space by
exploiting locality of propagation. However, it requires the exchange of vectors of size n
periodically and during reconfiguration. For some systems, O(n) state is unacceptably large.
An alternative hierarchical propagation protocol to HARP is presented in Chapter 8, HPP,
which reduces this overhead by encapsulating the state information such that each node
keeps state vectors of size proportional to the number of its correspondents in the hierarchy.
These aggregate vectors are exchanged when reorganisation or failures occur. Therefore,
HPP allows the system to scale better than HARP. However, it is less reliable as it can
tolerate only special patterns of failure due to the minimal information kept. Further, its
support for ordering delivery is weaker than HARP. Therefore, it is suitable for applications
that require no order of delivery or applications with simple ordering requirements.

To conclude, this work has proposed a protocol for managing replicated data based on a
logical hierarchy. It has been shown that the hierarchical structure allows the system to
scale well. Further, it gives the ability to provide different degrees of consistency. As many

145

design aspects were considered as time and resources allowed. It is believed that the protocol
is suitable for many distributed applications such as bibliographic databases, network news
systems, Archie and many other information services. With the growth of internetworks,
these services are accessed by a vast number of users. It is anticipated that they will be
highly replicated in order to meet their performance requirements, in which case current
replication solutions are inadequate since they cannot scale.

9.2 Future Work

In this work, methods by which the hierarchy can be reconfigured have been presented.
But the problem of designing the hierarchy and determining which nodes are grouped into
which clusters has not been addressed. This problem involves several issues that need to be
fully exploited. Since network behaviour changes over time, different mechanisms should be
examined to effectively monitor and report on the performance of the underlying network.
Based on this information, algorithms need to be developed to determine the appropriate
clustering to use within the hierarchy as well as deciding which changes are to be made to
the hierarchy to adapt to the dynamic characteristics of the network. As pointed out in
Section 3.7 and from the performance results of Chapter 6, the design of the hierarchy is an
optimisation problem that should consider several factors, such as topology, network delays,
reliability, number of levels in the hierarchy, number of nodes per cluster and so on. These
algorithms need to bevva,lida'ted and different objective functions should be examined.

A related problem to the above is hbow a new replica would know which cluster it should
join and how to inform nodes about the restructuring operations they should perform to
reconfigure the hierarchy. This service could be regarded as an enhanced location service,
which maintains a dynamic view of the logical hierarchy as well as information about the
nodes, such as their network addresses. When a new replica wants to join the hierarchy, the
replica queries the service which informs it which cluster to join. Similarly, when changes in
the network are detected and a new hierarchy is recomputed, the service informs the nodes
of the changes that need to be done. This service as well as its data should be replicated
and the weak consistency approach should be used to maintain it. The degree of replication
of this service is one design issue that has to be investigated. One option is to place a
replica at each node, and another option is to have a replica of the service responsible for a
certain portion of the hierarchy. Also, reconciliation methods need to be devised to reconcile
conflicting decisions taken by different servers. '

The performance study evaluating HARP can be extended to include the evaluation of the
restructuring protocols. The overhead of these protocols should be quantified under different
system configurations to evaluate how well they perform. Further, the simulation model has
considered only unordered Fast_Write. The various other delivery orderings supported need
to be incorporated to evaluate their performance. Also, the model needs to be extended to
account for site and link failures. Several metrics have to be evaluated such as the time it

146

takes the protocol to recover from these failures, how the speed of propagation is affected
as well as the associated overhead.

Due to the detailed simulation model adopted, we were unable to measure the performance
for more than 39 nodes. It is desirable to study the performance of the protocol for thousands
of replicas to evaluate its behaviour in very large scale systems. This requires the model
to be greatly simplified for those experiments to become feasible. Further, the performance
evaluations reported are all based on simulation and artificial loads. The analysis would
benefit from a re-evaluation using real workload and real network costs. For instance, traces
of usage of information services, such as Archie, could be used to drive the simulators.

Studying the availability of synchronous operations within HARP, which is the probability
that a quorum can be formed despite failures, and comparing it to previous synchronous
protocols is a topic which deserves further investigation. It is expected that the availability
can be kept high with HARP since the restructuring operations enable more functional
nodes to be added to the top cluster when failures occur, keeping the number of nodes in
this cluster nearly constant. Further research is needed to study this issue.

Another area that needs to be explored is to associate with HARP methods for controlling
the encountered inconsistency. It is believed that the General Site Escrow technique (GSE)
(see Section 2.2.9) could be extended using HARP for getting better performance. Since
nodes at higher levels of the tree have a better global view of the transactions occurring in
the system, then it might be advantageous to borrow escrow from those nodes rather than
from a randomly chosen node. This would result in a less conservative escrow estimate than
GSE, hence, granting more requests and increasing concurrency. Consequently, the issue of
allocating more escrow to nodes in higher levels needs to be studied to see whether it gives
better performance. Also, it would be interesting to see whether the hierarchical structure
can be used to reduce the worst case quorum size (n) of the GSE technique.

The reconfiguration schemes have provided four basic operations which have been used to
compose more complex operations. Two of the composite operations have been chosen
and optimised to reduce some of the overhead. Similarly, algorithms can be developed to
optimise other composite operations, such as move, merge, split, etc, if they are expected to
be used frequently.

HPP has been shown to survive one level of failure but not successive failures. Further
analysis should be performed to evaluate the probability of occurrence of such patterns of
failure and how they can affect the performance. Also, HPP can be extended to bypass
these failures by keeping additional information in the state vectors. This extension needs
to be exploited in detail and the additional cost has to be contrasted with the likelihood
that these situations occur.

147

148

Appendix A

Correctness of Restructuring
Operations

This appendix establishes the correctness of the restructuring operations presented in Chap-
ter 4. It begins by presenting the correctness of the basic operations. More specifically, it
will be proved that as a result of executing any of the basic operations, it is guaranteed that
messages are eventually reliably delivered everywhere and that the View is kept consistent.
Next, it presents the correctness of the change-parent and take-over operations.

A.1 The Basic Operations

Lemma 1 While node i is joining a cluster Cz, joinlist; is updated to include all current
members of Cy and the parent of C,.

Proof: The proof is based on the way the cluster is constructed. Assume join list; = {k};
that is, ¢ is executing join(Cy, k) and k is the connect node. Further, assume that p is the
parent of Cy; that is, C; € View,.p.Child_Cids.

Case 1 : C; is empty. Two subcases can occur:

Case 1.1 k = null
Then, join_list; = ¢, as ¢ is the only member in the hierarchy.

Case 1.2 k=p
The parent p receiving join_req from 4, sets View,.i.Cid = C; and replies with its
view of Cp Clview, = Get_View(p,C;) = {p} as there are no current members
and the lemma holds. ' ’
After 7 receives ack_join from p, it updates View; s.t. C; € View;.p.Child_Cids

149

and then, i becomes current. That is; 7 observes p as a parent in its View and p
observes 7 as a child. Therefore, '
When a cluster has one current member i and a parent p, then
- C; € View;.p.Child_Clids, and
- View,.i.Cid = Cy. (1)

Case 2 : C, contains one member j

Case 2.1 k=p
if § is a'current member, then from (1), j € Clview,. Since i updates join list;
from Cl_view, to include additional members then joinlist; = {p,j} and the
lemma, holds. "

Case 2.2 k = j
If j is a current or a leaving member, then from (1), p € Cl_view; and join.list; =
{p,3}. If j is a joining member, then from (Cond 2), j should be joining through
p i.e. p € Clview; and the lemma holds.
Further, if j is a current member (i.e. joinlist; = {p,j}) then p and j receiving
a join_req from i will set View,.i.Cid and View;.i.Cid to Cz. Node i receiving
ack_join from p and j includes them in View; as parent and neighbour respec-
tively and then it becomes current. Therefore, '
When Cy has two current members i,j and a parent p, then

- View;.1.Cid = C; and C; € View;.p.Child_Cids,

- View;.j.Cid = Cy and Cy € View;.p.Child_Cids, and

- Viewp.i.Cid = View,.j.Cid = Cy (2)

Case 3 : C, contains two members r and j

Case 3.1 k=p
If j (or 7) is a current member then, from (1), j (or) € Clview,. If j and r
are current then from (2) j and r € Cl_view, and the lemma holds.
Case 3.2 k=r
Case 3.2.1 r is a current or leaving member
If 7 is not current, then from (1) p € Clwiew,. If j is current, then from (2),
p and j € Clwiew,
Case 3.2.2 r is joining
From (Cond 2), either p € Clview, or j € Clview,, where j is a current
or a leaving member. Hence, ¢ will send p (or j) a join_req and from (1),
j € Cl_view, if j is current (or p € Clview;) and the lemma holds.

Case 3.3 k=3
same proof as Case 3.2 replacing every r by j and vice versa.

Further, if r and j are current, since join list; = {p,r,j} then p,r and j will set
Viewy.i.Cid, View,.i.Cid and View;.i.Cid respectively to C; after receiving join.req
from 4. Since ¢ becomes current only when it receives ack_join from p,r and j then

150

by then, it will have View; updated s.t. View;.r.Cid = View;.j.Cid = Cz and C; €
View;.p.Child_Cids. (3)

From (1), (2) and (3) we can generalise that from the way C; is constructed, if C; contains
m current members and a parent p then
For each current member j,
View;.r.Cid = Cz, Vr current members and C, € View;.p.Child_Clids.
For the parent p, '
Viewp.r.Cid = Cz, V r current members of Cy. 4)

Therefore, in general, while ¢ is joining C, through the connect node k:

If k is either current or leaving or is the parent of C, then from (4) Cl_viewy contains
all current members and the parent of C,.

If k is a joining member, then from (Cond 2), i updates join_list; from Cl_viewy such
that it will contain at least one node r where r is a leaving or current member of C, or the
parent of Cz. Since % sends a join_reg to r and updates join_list; from Cl_view,, then from
(4), the lemma holds. O

Corollary 1 If i is a current or a leaving member of Cy or is the parent of Cy, then the
function Get_View(i,Cy) returns all current members and the parent of Cy.

Proof: Node i becomes current only when it receives ack_join from j, V j € join.list;. By
Lemma 1, when ¢ is current View;.j.Cid = C,, for every current member j and if the parent
is p then C; € View;.p.Child_Cids. Therefore, the corollary holds if 7 is current. Since 7
while leaving, changes only View;.i, then its view of C; is the same as when it was current
but excluding 7 and the corollary holds. O

Lemma 2 If two nodes i and j are leaving cluster C; simultaneously then leave list; and
leave list; are formed or updated such that

2.1 1 ¢ leave list;

2.2 j & leave_list;

Proof: Assume node 7 (5)
- propagates an update_view declaring it is leaving at time ¢ = ¢; (t;),
- receives update.view from j (i) at t =t} (¢}), and
- receives ack-leave from j (i) at ¢ = #7 (t2)

The leave operation can occur in two ways:

Case 1 : in serial; that is, £} < ; or ¢} <1;

151

Case 1.1 t} < t; A
In this case, j receives i’s update_view before it sends its own, as shown in
Figure A.1(a). At t = ¢;, from Corollary 1, j € leavelist; and i sends j an
updateview. At t = t}, Jj sets View;.i.Cid = null and sends ¢ ack_leave. Then,
at t = t;, leave list; is formed s.t. i & leave.list; and 2.2 holds. At ¢t = £2, i
removes j from leave_list; and 2.1 holds.

Case 1.2 t} <t;
The same proof as Case 1.1 applies, replacing every 4 by j and vice versa.

[J
AR
l D %le\ Vl.eh,
1
tJ =
2 2
t i ,
]
Y
@ ®)

Figure A.1: Two nodes leaving the same cluster simultaneously

Case 2: in parallel; that is, ¢; < t} and ¢; < t]
Then j € leave list; and i € leave_list;. Three subcases could occur:

Case 2.1 ¢} < and t} < 2 (Figure A.1(b))
At t = t}, i removes § from leave list; and sends j ack_leave. Similarly, j removes
i from leave list; at t = ¢]. '
Case 2.2 t < t] and t} < ¢? (Figure A.1(c))
At t = 12, i sets flag of j in leave list; to 1. Node j discards i from leave list;
at t = t}. Node i discards j from leave list; at t > t? either when flag = 1,Vr €
leave. list; or at t = t}, whichever happens earlier.
Case 2.3] <t and £ < i
This case is similar to Case 2.2 replacing every 7 by j and vice versa.

Therefore, in any cases i removes j from leave_list; and vice versa and the lemma holds. O

Lemma 3 Ifi is joining C; and j is leaving C, simultaneously then join_list; and leave_list;
are updated such that i will receive any message that j had before leaving Cy and i does not
have.

152

Proof: Two cases can occur:

Case 1: while ¢ is joining, j € join.list;. Assume:
- j propagates update_view at t = t;,
- j receives join_req from i at ¢ = ¢}, and
- j receives ack_leave from k, Vk € leave list; at t = t? (tf > t5)

Case 1.1 t} < 7
In this case, join_req reaches j while it is leaving, as shown in Figure A.2 (a). At
t= t%, J adds i to leave_list; and sends ¢ ack_join. As i sends ack_leave to j only
when it has received the missing messages needed from j; and since j discards
leave_list; and leaves only when it has received ack leave from k, Vk € leave.list;;
then the lemma holds.

i J
b 2
N
3
. Loy ©
. tl
soilt
o.Ck—Jo1 I 80
5 =3
8 5
-~
%‘
2
£
7 | Y
a
® ®

Figure A.2: Node ¢ is joining a cluster and node j is leaving the same cluster simultaneously

Case 1.2 t] > 2
In this case, join_req reaches j after it discarded leave.list;, as shown in Fig-
ure A.2(b). At t= t}, j sends a nak to 4, then ¢ updates join_list; by replacing j
by any other member & of C, and asks k for any missing messages. Since j stops
sending messages at ¢ = ¢; and leaves at t = t?, then at ¢t = t?, k has received
every message j had at ¢ < ¢;. Since ¢ asks k for messages at ¢ > t?, then ¢
receives every message j had at ¢t < ¢; and the lemma holds.

Case 2: while i is joining, j € join_list;
In this case, i is joining after j has already left. From (Cond 1), there exists at least
one current member of C;. From Lemma 1, join_list; contains all current members

153

of C; and i sends them a join_req. Assume any current member k sends ack_join .
to ¢ at ¢ = tx. Then, ¢ updates join.list; from k’s view, and as j & join.list; then
Viewg.j.Cid # Cy at t = t;. This implies that j left C; at ¢ < #; and that at ¢ = ¢,
"k has received every message j had at t < ¢;. Since at ¢t > #;, ¢ extracts from k all
messages k had and 7 did not have, then ¢ will receive every message j had at t < ¢;
and the lemma holds. » O

Theorem 1 If node i is leaving C, at time t;, then

1.1 Any message m that i has originated or received from its children at t < t; will be
received by the current and joining members of C, and the parent of Cy.

1.2 Messages generated or received by i at t > t; are not sent to members or the parent
of Cy.

1.3 After leaving, i will not receive any messages from members or parent of Cy

1.4 View;,leave list; and joinlist;, Vj € N are updated to reflect the change.

Proof: From Corollary 1, leavelist; contains all current members and the parent of Ci.
Since before propagating update_view, ¢ waits until all messages sent to j at ¢ < ¢; have
been acknowledged Vj € leave_list; and since j sets View;.i.Cid to null only after receiv-
ing update_view from i then, 1.1 holds for current members and the parent of C;. From
Lemma, 3, it holds for the joining members as well.

At t = t;, 7 sets View;.i.Cid = null and View;...P = null. Therefore, i will not send
messages except to its children, if any, and 1.2 holds.

Vj current members and parent of Cy, j updates View;.i when it receives update_view from
i such that View;.i.Cid = null. Consequently, j will stop sending messages to i. Vj joining
members of Cy, since j will receive either nak or ack_join including View;.7 from %, then in
either case View;.i.Cid # C; and j will not send any messages to i. Vj leaving members of
Cz, they stopped sending messages to any member of C;. Therefore, 1.3 holds.

Since i’s row is the only row affected in the View and as all j current members and parent
of C; will receive update_view from i and will proceed in propagating the message, then
every node k in any other cluster will update Viewy.:.

Since Vj € N, leave_list; is affected by i leaving C only if j is leaving C; at the same time.
From Lemma 2, leave_list; and leave_list; are updated correctly.

Since Vj € N, join ist; is affected by i leaving C; only if j is joining C, simultaneously.
Lemma 3 showed how joinlist; is updated such that j will receive any messages 7 had
before leaving and j does not have. Then 1.4 is true and the lemma holds. o

Lemma 4 If two nodes i and j are joining Cy simultaneously, then at least one of them
will include the other in its join_list and will send it a join_req.

154

Proof: Assume ¢ performs join(Cy, %) and j performs join(Cy,7) i.e. % sends k a join_req
and j sends 7 a join_req. Nodes k and r are the connect nodes which are current, leaving
or joining members of C, or the parent of C;.

Casel r=k
Assume k receives join_req from 7 and j at t =, and t = t}c respectively.

Case 1.1 #; <t} (Figure A.3)
At t = ty, k includes 4 in its view by setting Views.i.Cid = C;. So, at t =}, k
sends j its view of C, including i. Consequently, j adds i to join_list; and sends
i a join_req (if 7 has not already joined) and the lemma holds.

i k J

./'Oi}z\ reg

x
awmn

Figure A.3: Nodes ¢ and j are joining the same cluster simultaneously

Case 1.2 t; > t,lc
Similarly, it can be shown that i adds j to joinlist; and sends j a join_req and
the lemma holds.

Case 2 r#k
From (Cond 1), while 7 and j are joining there exists at least one node ¢ s.t. ¢ is
the parent of C; or a current member of C;. From Lemma 1, ¢ € joinlist; and
g € joinlistj. Then, i and j will send ¢ a join_req and the same proof of Case 1
applies by replacing & by g. O

Theorem 2 If a node i joins cluster Cy then
2.1 i receives every message any member of Cy or the parent of Cy had or will receive.
2.2 every current or joining member of C,; and the parent of C, receives every message
1 had or will receive.

2.3 Viewj,leave list; and join_list; Vj € N are updated to reflect the change.

155

Proof: For any node j, a current or a joining member or the parent of Cy receiving a
join_req at t =t;, it sends i its V'V and LL; and sets View;.i.Cid = C;. Therefore,

If j is a member of Cz, then any message that j generates or receives from its children
at t > t; will be sent to ¢ ‘ (1)

If j is the parent, then any message that j generates or receives from its neighbours,
parent or children of other clusters than C; at ¢ > ¢; will be sent to ¢ (2)

When i receives ack_join from j at ¢t = t} (tj > t;), i sets View;.j.Cid = C; if j is a
neighbour and View;.i.P = j if j is a parent. Then,

all messages that ¢ generates or receives from its children at ¢ > t% will be sent to j (3)

Further, comparing V'V; and LL; with VV; and LLj;, i extracts from j every message j has
and ¢ does not have. Since V'V; and LL; reflect j’s state at ¢ = ¢;, then,

1 will receive every message j had at ¢t < ¢; (4
Since i sends to j every message ¢ has and j does not have, then,
j will receive every messé,ge i had at t < ¢} . (5)

From (1) and (4) i receives every message a neighbour j has generated or will generate or
has received or will receive from a child ‘ ' (6)

From (2) and (4) 7 receives every messége the parent has generated or will generate or has
received or will receive from a neighbour, parent or a child of another cluster (n

From (6) and (7), 2.1 holds for any node j, a current or joining member or the parent of
C, provided that j receives a join_req. From (3) and (5), for every node j, a current or
a joining member of C; or the parent of Cy, j will receive every message ¢ already had
and every message i generates or will receive from a child. Then 2.2 holds provided that j
receives a join_req. From Lemma 1, as all current members and the parent of C; receive a
join_req then 2.1 and 2.2 hold for current members and the parent. From Lemma 4, since
at least one of the joining nodes will include the other and sends a join_req then 2.1 and
2.2 hold for joining members. From Lemma 3, ¢ is guaranteed to receive any message that
a leaving member had before leaving C; and 7 did not have. Then 2.1 holds for leaving
members.

After i receives ack_join from j, Vj € joinlist;, i propagates an update_view message
containing its new row View;.i. From 2.2 every current or joining member and the parent
of C; will receive the message and will proceed in propagating the message. Then, every
node j in any other cluster will update Viewj.i.

Vj € N, join_list; should be updated to include i only if j is joining C;. From Lemma 4
join lists are updated correctly.

156

Vj € N, leave list; is affected by 4 joining C, only if j is leaving C;. Lemma 3 showed that
leave_list; is updated such that i will receive every message j had before leaving. Then, 2.3
holds and this completes the proof. m|

A.2 The change-parent Operation

Theorem 3 If a cluster C; change-parent from node old_p to node new_p, then
3.1 every member of C, will receive every message new_p had or will receive
3.2 new_p will receive every message a member of C; had or will receive
3.3 View;,leave list; and join_list; Vi € N are updated to reflect the change.

Proof: A node i, a current or a joining member of C, receiving change_par from new_p,
replaces its old parent old_p by the new parent new.p in View;.i and starts sending new_p
messages. Node new_p, receiving ack_par from i, places ¢ as a child in Viewneyw_p and starts
sending 7 messages after exchanging missing messages with it. Therefore, 3.1 and 3.2 hold
for every member of C; provided that it receives a change_par from new_p.

Since node old_p sends new.p a list of all current members of C, with change_req, then all
current members of C; receive change_par from new_p. Hence, 3.1 and 3.2 are true for all
current members of C..

If i is joining C; while C; is changing parent, then i sends a join_reg to old_p. If old.p
receives 7’s join_req before sending change_req to new_p, then the change_req to new_p will
include 7 as a member of C; and new_p will send ¢ a change_par, then 3.1 and 3.2 hold for 4.
If old_p receives i’s join_req after sending change_req to new._p, then old_p will return to ¢
its view of C; containing new_p as the new parent. Therefore, ¢ will add new_p in join_list;
and will send new.p a join_req, and from Theorem 2, 3.1 and 3.2 hold for . Therefore, 3.1
and 3.2 hold for all joining members of C;.

If ¢ is leaving C, while C; is changing parent: if ¢ receives change_par from new_p while
leaving, then 4 will replace old.p by new.p in leavelist; and will not leave until new_p
extracts needed messages from 3. If i receives change_par from new_p after it has already
left Cz, it will send new_p a nak. Since new_p receiving a nak will extract any missing
messages from any current member of C; then new_p will receive any message 7 had before
leaving. Then 3.2 holds for leaving members of C;.

Since every node that its row in View has been updated (members of C, old_p and new.p)
propagates an update_view message containing its new row, then, every node : € N will
update View; correctly.

Vi € N, join_list; should be updated only if ¢ is joining C,. It has been shown above that
join_list; is updated correctly when i is joining Cj.

157

Vi € N, leave list; is affected by C, changing parent only if ¢ is leaving C;. Since ¢ will
replace old_p by new.p in leave_list; after receiving change_par from new_p, then leave_list;
is updated correctly. Therefore, 3.3 holds and this completes the proof. O

A.3 The take-over Operation

Theorem 4 If a node f fails then the take-over operation ensures that:

4.1 every child of f will be linked to another parent node

4.2 if f fails before sending a message m, and at least one node k has m in its Log,
where k is a neighbour, a child or the parent of f, then m will be propagated to every node
1 €N.

Proof Assume a cluster C;, is a child of f and that node ¢ is taking over f.

If j is a current member of C;, then, whether status; was normal, joining or leaving when
it failed, C; € View;.f.Child_Cids and ¢ will send change_par to j. Then, 4.1 holds for
current members of Cy.

If j was joining C, when f failed then, if e, any member of C,, receives join_reg from j
before receiving change_par from i, then e will return to 7 a list of members of C; including
j, consequently ¢ will send j a change_par. If e receives change_par from ¢ before receiving
join_req from j, then e will return to j its view of C, including ¢ as the new parent and j
will send 7 a join_req. Therefore, 4.1 holds for joining children.

If j is a member of C; but was changing parent from a node k to node f when f failed
(i.e. statusy = adopting). If f has completed change-parent of C, before failing (i.e. it
has sent an ack_change to the old parent k£ and has propagated its new row), then C; €
View;.f.Child_Cids and j will receive a change_par from i. If f failed while performing the
operation, then the old parent k& will time out not receiving an ack-change from f and will
serid members of C, a change_par request to change their parent back to k. Hence, j will
receive a change_par from k. Then, 4.1 holds if C, was changing parent.

Therefore, 4.1 holds regardless of the status of f or its children.

Since ¢ joins f’s cluster, then by Theorem 2, ¢ will receive every message a neighbour or the
parent of f had and ¢ did not have, and vice versa, by exchanging missing messages. Since
% sends change_par to all f’s children, then from Theorem 3, ¢ will receive every message
a child of f had and ¢ did not have and vice versa. Therefore, if f had a message m and
at least a neighbour, a child or the parent of f has m in its Log, then ¢ will receive m.
Since ¢ receiving a missing message m, sends it to all neighbours, children and the parent,
then every correspondent of f will receive m. Further, since they are receiving it from a
node (z) which is in the same position as f, then they will proceed in propagating m and

158

m will follow the same pattern of propagation it should have followed if f was alive and
consequently will be propagated everywhere and 4.2 holds.

In the case where children were changing their parent to f while f failed, the old parent %
will change their parent back to k, hence, receiving any message m that f gave to any of
these children before it fails. Since k sends m to all neighbours, children and the parent
then m will be propagated everywhere and 4.2 holds which completes the proof. O

159

Appendix B |

Correctness of the Causal Order
Protocol

In this appendix, it will be shown that following the protocol described in Section 5.5, causal
order is preserved. Next, the correctness of the leave, join and change-parent operations with
the modifications presented in Section 5.6 is established.

B.1 The Causal Order Algorithm

Theorem 5 if a node ¢ om’gz’hates a message m' that is causally related to a previously
delivered message m (i.e. m — m'), then every other node in the network will deliver m
then m/.

Proof:

First it will be shown that i’s neighbours, parent and children will deliver m then m'. Then,
it is generalised for all nodes. In the proof, the timestamp associated with a message m
stamped by node i when i sends m to its neighbours and parent is denoted by CV?(m)
and the timestamp associated with a message m stamped by node 7 when i sends m to its
children belonging to cluster Cy is denoted by CV;Y(m). Assume that node j has ongmated
m and that i is the r** member of cluster C;. There are two cases:

Case 1: i = j (i.e. ¢ originated both messages)
Then, children, neighbours and the parent of ¢ will receive both m and m’ from 3.

Before sending m and m’ to its neighbours and parent, node ¢ stamps m and m/
with CV2(m) and CV?(m'), respectively. From CV construction, CV?(m)[r] <
CVY(m')[r]. Therefore, following the check for causality, a neighbour » comparing

160

CV2(m) and CV?(m') with CV? (CV2(m') > CV(m) > CV?), will deliver m’ only
after it delivers m. Also, node p, the parent of i, comparing CVO(m) and CV(m')
with CV;?, will deliver m then m'.

Similarly, before sending m and m’ to its children node i stamps m and m' with
CV?(m) and CV¥ (m') respectively, for every child cluster Cy. From CV construction,
CV¥(m)[0] < CV¥(m')[0] Vy. Therefore, following the check for causality, a child g
belonging to cluster Cy, comparing CV(m) and CV#(m') with CV) (CV¥(m') >
CV¥(m) > CV), will deliver m' only after it delivers m.

Case 2: i # j (i.e. m and m' originated at two different nodes)
Assume 7 receives m from node k. There are three subcases:

Case 2.1: k is the parent of 4
Then, node i receives m from k with stamp CV;#(m). Since i increments CV[r]
on originating m' and stamps m' with CV;? before sending it to its neighbours.
Therefore, CV(m)[r] < CV2(m’)[r]. Since a neighbour h of i receives m from
k with CV#(m) and m' from i with CV(m'), then comparing CV{%(m) and
CV(m') with CV? (CV2(m') > CVE(m) > CV}), h will deliver m’ only after it
delivers m. Therefore, parent and neighbours of ¢ will deliver m then m/.
Since children of i belonging to cluster Cy receive m and m’ from ¢ and since %
constructs CV¥(m) and CV¥(m') such that CVY(m)[0] < CV¥(m')[0] then, as
we argued in Case 1, children belonging to cluster Cy deliver m then m'.

Case 2.2: k is a neighbour of ¢
Then, node i receives m from k with stamp CV;2(m). Since ¢ mcrements CV[r]
on originating m’ and stamps m’ with CV; before sending it to its neighbours and
parent. Therefore, CV(m)[r] < CV?(m')[r]. Since the parent and neighbours of
i receive m from k with CV2(m) and m’ from i with CV,?(m/), then a neighbour
h comparing CV?(m) and CV2(m') with CV? (CV2(m') > CV¥(m) > CVP),
will deliver rn then m/. Similarly, the parent p, comparing CV?(m) and CV2(m')
with CVj? (CVP(m') > CV2(m) > CVy), will deliver m’ only after delivering
m. Therefore, parent and neighbours of ¢ will deliver m then m/’.
Since children of i belonging to cluster Cy receive m and m’ from ¢ and since %
constructs CV¥(m) and CV¥(m’) such that CVY(m)[0] < CV¥(m’)[0] then, as
we argued in Case 1 children belonging to cluster Cy deliver m then m’.

Case 2.3: k is a child of ¢ and k is a member of cluster C,
Then, node ¢ receives m from k with stamp CV;?(m). Since node i increments
CV![0] on originating m’ and stamps m’ with CV;Y before sending it to its children
belonging to cluster Cy, then CV¥(m)[0] < CV¥(m')[0]. Since a child g of i
belonging to cluster Cy (s.t. g # k) receives m from k with CV(m) and m’ from
i with CVY(m'), then following the check for causality: comparing C’Vg0 with
CVQ(m) and CV¥(m') (CV¥(m') > CV(m) > CVY), g delivers m’ only after
delivering m. Therefore, children of ¢ belonging to cluster Cy will deliver m then

m'.

161

Since neighbours and the parent of ¢ receive m and m' from i, and since ¢ con-
structs CV,?(m) and CV2(m') such that CV2(m)[r] < CV2(m')[r], then as we
argued in Case 1, neighbours and parent will deliver 7 then m'.

Children of i belonging to cluster C, # Cy, receive m and m’ from i. Since i
constructs CV7#(m) and CV;(m') such that CV#(m)[0] < CV#(m')[0], then as
we argued in Case 1, children of i belonging to cluster C, will deliver m then m’.

Now it has been shown that correspondents of 7 (i.e. neighbours, parent and children of %)
will deliver m then m’. A node j, a neighbour or a child of 4, will continue propagating
m and m' to its children such that CV(m)[0] < CV{(m')[0], for any child cluster C,.
Therefore, the children of i’s neighbours and the children of i’s children will deliver m then
m/. Similarly, node p the parent of 7, will continue propagating m and m’ to its neighbours
and parent, stamping the messages such that CV(m)[l] < CV)(m')[l] (assuming that 4's
parent is the I** member of its cluster). Therefore, correspondents of the correspondents of
i will deliver m then m'. This works recursively and every node in the network will deliver
m then m/. O

B.2 The leave Operation

Theorem 6 If a node i leaves cluster Cy according to the protocol described in Section 4.2.1
and the modifications described in Section 5.6.1, then

6.1 every member of C, and the parent of Cy receives every message i had before it leaves
and will deliver it in causal order.

6.2 if a member or the parent of Cy receives a message m at the time ¢ was leaving, then
it is guaranteed that m is delivered in causal order.

Proof:

Consider a node j, a member or the parent of C;. From Theorem 1, j is guaranteed to
receive every message that i had before it leaves. Since the last message sent by i is the
update_view message, and since j waits until all messages received from ¢ before receiving
update_view are delivered and then it discards i’s entry from its Compact Vectors, then j
will deliver all messages sent from 4 before update_view in the correct order and 6.1 holds.

Assume j is a neighbour of i. To show that 6.2 holds, two cases are considered:

Case 1 : m comes from a child of j belonging to cluster C,.
Then, CV(m) needs to be compared with CVJ?’ which is not affected by the leave
operation and m will be delivered correctly.

Case 2 : m comes from a node k, a neighbour or the parent of C;.
From Theorem 1, j is guaranteed to receive any message m' that is causally related

162

to m and sent via <. While comparing CV(m) and CVJ-O, there are three subcases:

Case 2.1 : If k has sent m and j has received m before (or after) both of them have
discarded i’s entry from their CV?, then an entry for i exists (or does not exist)
in both CV (m) and CV). Therefore, CV(m) and CV; are compatible and m will
be delivered in order.

Case 2.2 : If k has sent m after discarding i’s entry from CV)? but j has received
m before discarding ¢’s entry from CV}O, then an entry of 7 exists in C’Vj0 but
not in CV(m) and m might be causally dependent on messages sent by 4. Since
j delays carrying out the causality check for m until i’s entry is discarded from
CV;-O, then j will deliver m only after all causally related messages sent by ¢ have
been delivered (see Step (1) in Figure 5.5).

Case 2.3 : If k has sent m before discarding i's entry from CV but j has received
m after discarding i’s entry from C’Vjo, then an entry of i exists in CV(m) but
not in CVJ-O. Since j has received and delivered every message sent by 7 before
discarding #’s entry from CV}O, then m cannot be causally related to a message
m' sent by ¢ and not delivered at j. Therefore, discarding the entry of ¢ from
CV(m) ensures that m will not be indefinitely blocked and will be delivered in
order (see Step (2) in Figure 5.5).

Similar arguments hold if 5 is the parent of C, or if j is a node joining C,. ' O

B.3 The join Operation

Theorem 7 If a node i joins cluster Cy according to the protocol described in Section 4.2.2
and the modifications described in Section 5.6.1, then

7.1 © receives every message any member of Cy or the parent of Cy had or will receive
and will be delivered in causal order. . ‘

7.2 if i has any undelivered message m, then it is guaranteed that m is delivered in causal
order.

7.8 every member of C; and the parent of Cy receives every message i had or will receive
and will deliver it in causal order.

7.4 if a member or the parent of C; receives a message m at the time i was joining, then
it is guaranteed that m is delivered in causal order.

Proof:

Assume j is a member of C; and it receives join_req at ¢ = t;. At ¢ = t;, j sends i all
messages that j has delivered and 7 has not, and since ¢ delivers them in the same order
they were delivered at j, then ¢ receives all messages j has delivered at ¢ < ¢; and will

-deliver them in causal order. Since at £ = ¢; j includes ¢ in View; as a neighbour, then

163

for any message that j has received at ¢t < ¢; but has not yet delivered, or any message
that j generates or receives from its children at ¢ > t; will be sent to ¢ after it is delivered
at j, through normal propagation, stamped with CV;-O. Since 7 starts receiving messages
from j through propagation after ¢ has updated CV;” such that it is compatible with CV},
then ¢ can apply the causal delivery condition on the message when received and it will be
delivered in order. '

Therefore, i receives every message a neighbour j has generated or will generate or has
received or will receive from a child after it is delivered at j and will be delivered at 7
in causal order. Similarly, it can be shown that i receives every message the parent has
generated or will generate or has received or will receive from a neighbour, parent or a child
of a cluster other than Cj; once it is delivered and ¢ will deliver it in order. Therefore 7.1
holds.

Assume ¢ has an undelivered message m at the time it was joining. If m was received from
a child belonging to cluster Cy, then CV(m) needs to be compared with CV which is
not affected by the join operation. If m was received from a previous neighbour or parent,
then m will never be delivered since CV(m) is not compatible to CV? anymore and will
be discarded. In this case, the members or the parent of C, have either received m or will
receive m from a path not involving i !, and from 7.1 ¢ will receive and deliver m in casual
order. Then, 7.2 holds. ‘

Node ¢, on receiving ack_join from a node j, a member or the parent of C,, will send j
all messages that 7 has delivered and j has not, which are delivered at j in the same order
they were delivered at 7. Any further message 7 generates or receives from its children or
any message that ¢ has already received but has not yet delivered will be sent to j through
propagation stamped with CV? after it is delivered. Since 4 has updated CV? to reflect
messages that have been received and delivered from members and the parent of C; before
starting propagating messages to j, then j applying the causal delivery condition will deliver
m when all causally related messages are received from members or the parent of C; and
causal order is preserved. Then 7.3 holds.

Assume a neighbour j receives a message m at the time 7 was joining. There are two cases:
Case 1 : m comes from a child of J belonging to cluster C,.

Then, CV(m) needs to be compared with Cij which is not affected by the join
operation and m will be delivered in order.

Case 2 : m comes from a node %, a neighbour or the parent of C,.
While comparing CV (m) and CV:,-O, there are three subcases:

!Since 7 would have passed m to its descendants if delivered, and since members of C; or the parent of
C: cannot be the descendants of ¢, then members and parent of C, are not relying on 7 to pass on m to them
and will receive it from a different branch of the hierarchy.

164

Case 2.1 : If m was sent by k and received by j after (or before) both of them have

received join_reg from i, then an entry for ¢ exists (or does not exist) in both
CV(m) and CV; and m will be delivered in order.

Case 2.2 : If k has sent m before it has received join_req from i but j has received
m after receiving join_req from 4, then an entry of i exists in C’V}o but not in
CV(m). Since m cannot be causally related to a message sent to & by 4, then
adding an entry for ¢ in CV'(m) with value 0 before comparing CV(m) and C’V;-o
guarantees that m will not be indefinitely blocked and will be delivered in order
(see Step (3) in Figure 5.5).

Case 2.3 : If k has sent m after it has received join_req from i but j has received m
before receiving join_req from %, then an entry of 7 exists in CV(m) but not in
CVJ-0 and m might be causally dependent on messages sent by 2. Since j delays
carrying out the causality check for m until join_req is received from ¢ and an
entry for ¢ is created in CVJ-O, then m will be delivered only after delivering all
causally related messages received from members or the parent of C,, including
1, and causal order is preserved (see Step (4) in Figure 5.5).

Similar arguments apply if 7 is the parent of C, or if j is another joining node. Therefore
7.4 holds which completes the proof. m|

B.4 The change-parent Operation

Theorem 8 If a cluster C, change-parent from node old_p to node new_p, then

8.1 new_p will receive every message a member of C; had or will receive and will deliver
it in causal order.

8.2 every member of C, will receive every message new.p had or will receive and will
deliver it in causal order. '

8.3 if new_p or a member of C; receives a message m while the change is taking place,
it is guaranteed that m is delivered in causal order. '

Proof:

Assume node %, a member of C,, sends ack_par to new_p at t = ;. Then, at ¢t = ¢; ¢ sends
to new_p any messages ¢ has delivered at ¢ < ¢; and new_p has not. Since new_p delivers
them in the same order they were delivered at i, then causal order is preserved. Further,
at t = t;, < replaces old_p by new_p in View;.i, hence, any messages that ¢ has received at
t < t; but has not yet delivered, or messages that i generates or receives from its children at
t > ¢; will be sent to new_p after it is delivered at i, through normal propagation, stamped
with CV?. Since new_p starts receiving messages from i through propagation after it has
updated CV,,, , so that it reflects messages that have been received and delivered from

165

members of Cy, then CV? and CVZ,, _p are compatible. Therefore, new_p applying the
causal delivery condition on a message received from 4, will deliver it only when all causally
related messages are received from other members of C; and causal order is preserved. Then
8.1 holds.

: Similarly, new_p receiving ack_par from %, sends ¢ the delivered messages at new_p not yet

delivered at i, which are delivered at i in the same order. Further, it places i as a child
in Viewnew_p, hence, it will send 4, through propagation, any message new_p has received
but not delivered or any message new.p generates or receives from its neighbours, parent
or children from clusters other than C after it is delivered. Since i has updated CV;? so
that it reflects delivered messages that have been received from new.p, then i can apply the
causal delivery condition on messages received through propagation from new_p and they
will be delivered in order. Therefore, 8.2 holds.

Assume new_p receives a message m while the change is taking place. If m comes from either
new_p’s neighbours, parent or from children of another cluster Cy, then CV(m) needs to
be compared with either CV,,,, , or CV%,,, , which are not affected by the change-parent
operation and m will be delivered in order. If m comes from a member of C;, than as shown
above, (Part 8.1), m will be delivered in order.

Assume node i, a member of C, receives a message m while the change is taking place. -

There are two cases:

Case 1 : m comes from a child belonging to cluster C,.
Then CV(m) needs to be compared with CV;?* which is not affected by the change-
parent operation and m will be delivered in order.

Case 2 : m comes from old_p.
Since old_p waits until all delivered messages are received and acknowledged by all
children before issuing the change_parent, then 7 is guaranteed to receive any message
m! that is causally related to m and sent via old_p before the change starts. Fur-
ther, since i waits until m is delivered before resetting CV,2[0] to 0, then CV'(m) is
compatible with CV,? and m will be delivered in the correct order.

Case 3 : m comes from a neighbour j.
While comparing CV (m) and CV)?, there are three subcases:

Case 3.1 : If m was sent by j and received by ¢ before (or after) both of them have
reset their CV0[0] to 0, then and an entry for old_p (or new.p) exists in both
CV(m) and CV?. So, CV(m) and CV; are compatible and m will be delivered
correctly.

Case 3.2 : If j has sent m after resetting C’VjO[O] to 0 but ¢ has received m before
resetting CV,2[0] to 0, then the first entry in CV(m) is for new_p while that
of CV? is for old_p and m might be causally dependent on messages sent by

166

new_p. Since ¢ delays carrying out the causality check for m until change_par is
received and CV2[0] reset to 0, then m will be delivered only after delivering any
messages that are causally related to m that came from members of C; or new.p
(see Step (1) in Figure 5.7).

Case 3.3 : If j has sent m before resetting CV[0] to 0 but i has received m after
resetting CV2[0] to 0, then the first entry in CV/(m) is for old_p while that of CV?
is for new_p. Since ¢ has delivered all messages from old_p, then m cannot be
causally related to a message m’ sent by old_p and not delivered at i. Therefore,
setting CV (m)[0] to 0 before comparing CV(m) and CV? ensures that m will not
be indefinitely blocked and will be delivered in order (see Step (2) in Figure 5.7).

Case 4 : m comes from new_p.
From 8.2 m is delivered at < in causal order.

Therefore 8.3 holds and this completes the proof. O

167

Appendix C

Correctness of HPP

This appendix establishes the correctness the the Hierarchical Propagation Protocol pre-
sented in Chapter 8. First it shows that causal order is achieved during normal propagation.
Then, it shows that causal order is preserved while reorganisation is taking place. Finally, it
shows that if a reorganisation occurs, no messages are lost even in the presence of failures.

Definition 2 A path from node i to node j is the set of nodes that a message traverses
while propagating from node i to node j by following the hierarchical propagation protocol.

Corollary 2 There is a unique path between any pair of nodes i and j.

Proof: The proof follows directly from the propagation algorithm. Node i sends a message
to its correspondents, which in turn send the message (recursively) to their correspondents
until it reaches j. Since the nodes are organised in a tree hierarchy, messages from node i
to node j must take the same, unique path. a

Theorem 9 If every node observes HFIFO order while propagating messages, then causal
order is achieved provided the tree hierarchy is not reorganised and no node failures occur.

Proof: Assume node j originates a message m,; node i receives m; at ¢t = ¢; and then posts
mo after it sees m;. It will be shown that all nodes in the network will see my after my.
There are two cases:

Case 1: : =3
From Corollary 2, all other nodes (correspondents of i, their correspondents, etc) will
receive both m and mgy from node 7 by the same path. Since every node along a path
processes messages in H.FIFO order, it follows that all nodes will see m; before m.

168

Case 2: 1# 4 ‘
Consider S, the set of nodes along the unique path (see Corollary 2) from node i to
node j. For any node k € S, at ¢ = t; k has already received m;y, and therefore, it will
see my after m;. Any node k ¢ S will receive both m; and my from a node y, where
y € S. From Corollary 2, the path between k£ and y is unique. Since every node along
a path processes messages in H_FIFO order, k will see mgy after m;.

Therefore, every node in the network sees mgy after m;. m]

Theorem 10 If no node failures occur, then causal order is preserved while reorganisation
takes place.

Proof: The proof of causality in Theorem 9 was based on there being a unique path between
any two nodes. The causal order could conceivably be violated due to the fact that while
the change is taking place, messages sent from node ¢ may follow different paths to reach
new_p or old_p and vice versa. The proof is based on showing that even if messages follow
different paths: '
1) nodes new_p and old_p will still receive messages sent by 7 in their correct order, and
2) node 4 will still receive messages sent by new_p or old_p in their correct order.

Case 1: For messages received by new_p and old_p from 1:

Assume node 7 sends a message m; to old_p for propagation at ¢y, and then sends
the control message last_msg at t;. Subsequently, it sends a message msg to new_p
at o (fo < t1 < t3). mnew_p receives my and my through different paths: m; is
received through old_p, while my is received directly from ¢. Similarly, old_p receives
m; directly from ¢ while my is received through new_p. We shall show that both new_p
and old_p process m; before ms. Since the last_msg propagates through the network
like a normal message, from Theorem 9, both new_p and old_p must receive m; before
the last_msg. Since new_p will start processing messages received directly from 7 only
after it receives last_msg, new_p will process mso after m;. Moreover, since old_p will
receive mg through new_p, it follows that old_p will receive mo after m;.

Case 2: For messages received by ¢ from new_p or old_p:
Assume new.p sends a message m; for propagation at g, then it receives a join_reql
and sends a join_ackl at ;. Subsequently, it sends a message m for propagation at t2
(to < t1 < ty). We shall show that although 7 receives the messages via different paths
(i.e., my from old_p and my from new_p), it will still process my after m;. Since 2
receives both m; and join_ackl from old_p, from Theorem 9, 4 must receive m; before
the join_ackl. Since new_p will send mg to 7 only after new_p receives join_req2; and
since ¢ will send join_reg2 only after it receives join_ackl; then new_p will send mg only
after ¢ has processed m;. The same argument holds for messages sent to ¢ by old_p
while the change is taking place. m]

169

Theorem 11 If a node i changes its parent from old_p to new_p, then it is guaranteed that
no messages are lost as a result of the move, even if a failure occurs along the path from
old_p to new_p while the reorganisation takes place.

Proof: The proof is based on arguing that old.p and new_p will receive all messages ¢
receives from below, and that ¢ will receive all messages that new_p has received before the
move or will receive after the move.

Node new_p: Assume i sends leave_req at time ¢; and receives join_ack2 at time tp.
Every message generated by 7 or received from below at t; < ¢ < t2 will be buffered
by i in M _Logney_p. Since ¢ will send the log to new_p at time 2 and will then start
sending messages directly to new_p, this means that new_p will receive directly from ¢
every message received by ¢ from below at time ¢ > ¢;. All messages received by 4 at
t < t; from below are received by old_p directly from ¢, and old_p propagates them to
new_p by the normal propagation mechanism. If a failure occurs along the path from
old_p to new_p while messages are propagating, the transition and diffusion phases
guarantee that no messages will be missed by new_p. Therefore, new_p receives all
messages received by ¢ from below. '

Node old_p: Similarly, every message received by ¢ from below at ¢ < ¢; will be received
by old_p directly from i. All messages received by ¢ from below at ¢ > ¢; will be sent
to new_p, and new_p will further propagate them to old_p by the normal propagation
mechanism. If a failure occurs along the path from new_p to old_p while messages are
propagating, the transition and diffusion phases guarantee that no messages will be
missed by old_p. Therefore, old_p receives all messages received by ¢ from below.

Node i: Assume new.p receives ’s join_reql at time t;. We need to show that
(1) 4 receives every message received by new_p at t >t
(2) 7 receives every message received by new_p at t < £;

Assume new_p receives i’s join_reg2 at time g (f1 < t2). Since new.p will buffer every
message generated or received at ¢ > ¢; and will send the log at ¢ = ¢2; and since it adds
i as a correspondent at ¢ = 3, it follows that ¢ will receive every message received by
new_p at t > t; directly from new_p. To prove (2), we need to show that any message
that new_p has received at ¢ < ¢; will also be received by i through old.p. Assume
that new_p has received a message m at t < ¢;. Since new_p generates the join_ackl at
t = t; and since 7 will still be receiving messages from old_p until 7 receives join_ackl, we
need to show that old_p (and consequently 7) will receive m before receiving join_ackl.
Three cases can occur while m and join_ackl are propagating: '

Case 1: while m and join_ack! are propagating, there were no failures nor reorgan-
isation all along the path to old_p. Then, from Theorem 9, old_p will receive m
before receiving the join_ackl.

170

Case 2: while m and join_ackl are propagating, a failure occurs in their path of prop-
agation towards old_p. If the failure occurs after m reaches old_p, then whether
join_ackl is sent during the transition phase or the diffusion phase, it will be
received by old_p after m anyway. If the failure happens before m reaches old_p,
there are four subcases:

Case 2.1: m and join_ackl are diffused by the transition algorithm

If old_p was one of the failed node’s correspondents, then, upon sorting m
and join_ackl, join_ackl will always come last because it is a control mes-
sage. This guarantees that old_p will process m first, send it to %, and then
process join_ackl. If old_p was not one of the failed node’s correspondents,
then old_p will receive m and join_ackl through normal propagation. Since
each correspondent of the failed node sorts messages (such that join_ackl
comes last) before processing and further propagating them, and since they
maintain the H.FIFO order in propagation, then old_p will receive m first,
and then join_ackl.

Case 2.2: m and join_ackl are sent during the diffusion phase.
Since the coordinator CO becomes a correspondent of the failed node’s cor-
respondents and each node maintains H FIFO order, then from Theorem 9
old_p will receive m before join_ackl.

Case 2.3: m is diffused by the transition algorithm while join_ack! is sent during
the diffusion phase.
Since the diffusion phase starts only after the transition phase is over, m will
precede join_ackl! in propagation.

Case 2.4: join_ackl is diffused by the transition algorithm while m is sent during
the diffusion phase.
We will show that this case cannot occur. Assume that the failure occurs at
time i7. For this case to occur, at time ¢ < iy, one or more correspondents
of the failed node should have received the join_ackl but not m. Again,
from Theorem 9, this is not possible at ¢ < ¢, and, therefore, there is a
contradiction.

Case 3: while m and join_ackl are propagating, a reorganisation takes place.
. From Theorem 10, since the causal order is preserved while a reorganisation
occurs, old_p receives m before receiving join.ackl. m|

171

172

Bibliography

[Adly 93a]

[Adly 93b]

[Adly 95a]

[Adly 95b]

[Adly 95¢]-

[Adly 95d]

[Agrawal 90]

N. Adly. HARP: a hierarchical asynchronous replication protocol for
massively replicated data. Technical Report 310, Computer Laboratory,
University of Cambridge, August 1993.

N. Adly, M. Nagi and J. Bacon. A hierarchical asynchronous replication
protocol for large scale systems. In Proceedings of the IEEE Workshop
on Parallel and Distributed Systems, pages 152-157, Princeton, NJ,
October 1993. '

N. Adly and M. Nagi. Maintaining causal order in large scale dis-
tributed systems using a logical hierarchy. In Proceedings of the 12th
IASTED International Conference on Applied Informatics, pages 214~
219, Innsbruck, Austria, February 1995.

N. Adly, J. Bacon and M. Nagi. Performance evaluation of a hierar-
chical replication protocol: synchronous versus asynchronous. In Pro-
ceedings of the IEEE Second International Workshop on Services in
Distributed and Networked Environments (SDNE’95), pages 102-109,
Whistler, Canada, June 1995.

N. Adly and A. Kumar. HPP: a hierarchical propagation protocol for
large scale replication in wide area networks. In Proceedings of Seventh
International Conference of Computing and Information (ICCI), pages
237-257, Peterborough, Ontario, Canada, AJuly 1995.

N. Adly. Performance evaluation of HARP: a hierarchical asynchronous
replication protocol for large scale systems. Technical Report 378, Com-
puter Laboratory, University of Cambridge, August 1995.

D. Agrawal and A. El-Abbadi. The Tree Quorum Protocol: an efficient
approach for managing replicated data. In Proceedings of the IEEE 16th
International Conference on VLDB, Brisbane, pages 243-254, August
1990.

173

[Agrawala 92]

[Alonso 88]

[Alonso 90]

[Amir 92]

[Ammar 91]

[Barbara 90]

[Barbara 92]

[Bernstein 84]

[Bernstein 87]

[Birman 87]

[Birman 91]

[Bowman 94]

A. Agrawala and D. Sanghi. Networks dynamics: an experimental
study of the Internet. In Proceedings of the IEEE GLOBECOM’92,
pages 782-786, December 1992.

R. Alonso, D. Barbara and H. Garcia-Molina. Quasi-copies: efficient
data sharing for information retrieval systems. In Proceedings of the
Second International Conference on Extending Data Base Technology,
Venice, Italy, March 1988. ‘

R. Alonso, D. Barbara and H. Garcia-Molina. Data caching issues in
an information retrieval system. ACM TODS, 15(4), September 1990.

Y. Amir, D. Dolev, S. Kramer and D. Malki. Transis: a communica-~
tion subsystem for high availability. In Proceedings of the IEEE 22nd
International Symposium on Fault Tolerant Computing, July 1992.

M. Ammar and G. Rouskas. On the performance of protocols for col-
lecting responses over a multiple-access channel. In Proceedings of the
IEEE INFOCOM, Florida, pages 1490-1499, April 1991.

D. Barbara and H. Garcia-Molina. The case for controlled inconsistency
in replicated data. In Proceedings of the First Workshop on Manage-
ment of Replicated Data, Houston, Texas, pages 35-38, November 1990.

D. Barbara and H. Garcia-Molina. The demarcation protocol: a
technique for maintaining linear arithmetic constraints in distributed
database systems. In Proceedings of the Third International Conference
on Extending Database Technology (EDBT), pages 373-388, Vienna,
Austria, March 1992. '

P. Bernstein and N. Goodman. An algorithm for concurrency con-
trol and recovery in replicated distributed databases. ACM TODS,
9(4):596-615, December 1984.

P. Bernstein, V. Hadzilacos and N. Goodman. Concurrency control .and
recovery in database systems. Addison-Wesley, 1987.

K. Birman and T. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems, 5(1):272-314,
February 1987.

K. Birman, A. Schiper and P. Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems,
9(3):47-76, August 1991.

C. Bowman, P. Danzig, U. Manber and M. Schwartz. Scalable Internet
resource discovery: research problems and approaches. Communica-
tions of the ACM, 37(8):98-114, August 1994.

174

[Carey 87]
[Carey 91]
[Ceri 91]

[Chan 86]

[Chang 84]

[Cheriton 85]
[Cheung 90]
[Cheung 94]
[Ciciani 90]

[Clark 89]

[Cristian 91]

[Davcev 85]

[Davcev 89]

M. Carey, B. Lindsay and R. Obermarck. The performance of alterna-
tive strategies for dealing with deadlocks in database management sys-
tems. IEEE Transactions on Software Engineering, 13(12):1348-1363,
December 1987.

M. Carey and M. Livny. Conflict detection tradeoffs for replicated data.
ACM TODS, 16(4):703-746, December 1991.

S. Ceri, M. Houtsma, A. Keller and P. Samarati. A classification of
update methods for replicated databases. Technical Report STAN-CS-
91-1392, Stanford University, October 1991.

A. Chan and D. Skeen. The reliability subsystem of a distributed
database manager. Technical Report CCA-85-02, Computer Corpora-
tion of America, 1986.

J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM
Transactions on Computing Systems, 2(3):251-273, August 1984.

D. Cheriton and W. Zwaenepoel. Distributed process group in the V
Kernel. ACM Transactions on Computer Systems, 3(2):77-107, May
1985.

S. Cheung, M. Ammar and M. Ahamad. The Grid protocol: a high
performance scheme for maintaining replicated data. In Proceedings of

the IEEE Sizth International Conference on Data Engineering, pages
438-445, 1990.

S. Cheung and A. Kumar. Efficient quorumcast routing algorithms. In
Proceedings of the IEEE INFOCOM-9/, pages 840-847, June 1994.

B. Ciciani, D. Dias and P. Yu. Analysis of replication in distributed
database systems. IEEE Transactions on Knowledge and Data Engi-
neering, 2(2):247-261, June 1990.

D. Clark, V. Jacobson, J. Romkey and H. Salwen. An analysis of TCP
processing overhead. IEEE Communication Magazine, June 1989.

F. Cristian. Reaching agreement on processor group membership in
synchronous distributed systems. Distributed Computing, 6(4), 1991.

D. Davcev and W. Burkhard. Consistency and recovery control for
replicated files. In Proceedings of the ACM Tenth Symposium on Oper-
ating Systems Principles, pages 87-96, 1985.

D. Davcev. A dynamic voting scheme in distributed systems. IEEE
Transactions on Software Engineering, 15(1):93-97, January 1989.

175

[Demers 87]

[Dine 94]

[Downing 90a)

[Downing 90b]

[El-Abbadi 85]

[El-Abbadi 86]

[El-Abbadi 89]

[Emtage 92]

[Ferrari 78]

[Fidge 88]
[Fishwick 92]

[Fowler 90]

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart and D. Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the ACM Sizth Symposium
on Principles of Distributed Computing, SIGACT-SIGOPS, pages 1-
12, August 1987. :

O. Zein El Dine. Atomic broadcast in heterogeneous distributed systems.
PhD thesis, Old Dominion University, September 1994.

A. Downing, I. Greenberg and J. Peha. OSCAR: an architecture for
weak consistency replication. In Proceedings of the IEEE PARABASE-
90, pages 350-358, March 1990.

A. Downing, I. Greenberg and J. Peha. OSCAR: a system for weak
consistency replication. In Proceedings of the First Workshop on Man-
agement of Replicated Data, Houston, Texas, pages 26-30, November
1990.

A. El-Abbadi, D. Skeen and F. Christian. An efficient fault-tolerant
protocol for replicated data management. In Proceedings of the Fourth
ACM SIGACT-SIGMOD, Symposium on Principles of Database Sys-
tems, pages 215-228, Portland, OR, March 1985.

A. El-Abbadi and S. Toueg. Availability in partitioned replicated
databases. In Proceedings of the Fifth ACM SIGACT-SIGMOD, Sym-
posium on Principles of Database Systems, pages 240-251, March 1986.

A. El-Abbadi and S. Toueg. ‘Mainta.ining availability in partitioned
replicated databases. ACM TODS, 14(2):264-290, June 1989.

A. Emtage and P. Deutsch. Archie — An electronic directory service
for the Internet. In Conference Proceedings Useniz, San Francisco, CA,
January 1992.

D. Ferrari. Computer systems performance evaluation. Prentice Hall,
1978.

C. Fidge. Timestamps in message-passing systems that preserve the
partial order. In Proceedings of the 11th Australian Computer Science
Conference, pages 56-66, 1988.

P. Fishwick. Simpack: getting started with simulation programming
in C and C++. In Proceedings of the Winter Simulation Conference,
pages 154-162, Arlington, VA, December 1992.

J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In Pro-
ceedings of the IEEE Tenth International Conference on Distributed
Computing Systems, pages 134-141, May 1990.

176

[Garcia-Molina 82] H. Garcia-Molina. Elections in a distributed computing system. IEEE

[Garcia-Molina 91]

[Gifford 79]

[Golding 91]

[Golding 92a)

[Golding 92b]

[Golding 92c]

[Goodman 83]

[Gray 88]

[Heddaya 89]

[Herlihy 87]

[Hwang 88]

[Jajodia 87]

Transactions on Computers, C-31(1):48-59, January 1982.

H. Garcia-Molina and A. Spauster. Ordered and reliable multicast com-
munication. ACM Transactions on Computer Systems, 9(3):242-271,
August 1991.

D. K. Gifford. Weighted voting for replicated data. In Proceedings of the

ACM Seventh Symposium on Operating System Principles, December
1979.

R. Golding and D. Long. Accessing replicated data in large scale dis-
tributed systems. International Journal in Computer Simulation, 1(2),
June 1991.

R. Golding and D. Long. Quorum oriented multicast protocols for data

" replication. In Proceedings of the IEEE Eighth International Conference

on Data Engineering, June 1992.

R. Golding. A weak-consistency architecture for a distributed informa-
tion services. Technical Report UCSC-CRL-92-31, University of Cali-
fornia, Santa Cruz, July 1992.

R. Golding. Weak-consistency group communication and membership.
PhD thesis, University of California, Santa Cruz, December 1992.

N. Goodman et al. A recovery algorithm for a distributed database
system. In Proceedings of the Second ACM SIGACT-SIGMOD, Sym-
posium on Database Systems, pages 8-15, Atlanta, GA, March 1983.

J. Gray. The cost of messages. In Proceedings of the ACM Symposium

. on Principles of Distributed Computing, pages 1-7, August 1988.

A. Heddaya, M. Hsu and W. Weihl. Two Phase Gossip: managing
distributed event histories. Information Sciences, 49(1):35-57, January
1989. :

M. Herlihy. Concurrency vs. availability: atomicity mechanisms for
replicated data. ACM Transactions on Computer Systems, 5(3):249-
274, August 1987.

D. Hwang. Constructing a highly-available location service for a dis-
tributed environment. Technical Report MIT/LCS/TR-410, MIT Lab-
oratory for Computer Science, Cambridge, MA, January 1988.

S. Jajodia and D. Mutchler. Dynamic voting. In Proceedings of the
ACM International Conference on Management of Data, pages 227-
238, 1987.

177

[Jajodia 90]

[Kaashoek 89]
[Kahle 91]
[Kantor 86]
[Kistler 92]

[Krishnakumar 92]

[Kumar 88]
[Kumar 90]
[Kumar 91]
[Kumar 91a)]
[Ladin 89]

[Ladin 90]

S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining
consistency of a database. ACM TODS, 15(2), June 1990.

M. Kaashoek, A. Tanenbaum, S. Hummell and H. Bal. An efficient
reliable broadcast protocol. Operating Systems Review, 23(4):5-19, Oc-
tober 1989.

B. Kahle and A. Medlar. An information system for corporate users:
wide area information servers. Technical Report TMC-199, Thinking
Machines Corporation, April 1991.

B. Kantor and P. Lapsley. Network news transfer protocol - a proposed
standard for the stream-based transmission of news. Internet Request
for Comments, RFC 977, February 1986.

J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda
file system. ACM Transactions on Computer Systems, 10(1), February
1992.

N. Krishnakumar and A. Bernstein. High throughput escrow algorithms
for replicated databases. In Proceedings of the IEEE 18th International
Conference on VLDB, pages 175-186, Vancouver, Canada, September
1992.

A. Kumar and M. Stonebraker. Semantic based transaction manage-
ment techniques for replicated data. In Proceedings of the ACM SIG-
MOD Conferenice, Chicago, June 1988.

A. Kumar. An analysis of borrowing policies for escrow transactions in a
replicated environment. In Proceedings of the IEEE Sizth International
Conference on Data Engineering, pages 446-454, 1990.

A. Kumar. Hierarchical Quorum Consensus: a new algorithm for man-
aging replicated data. IEEE Transactions on Computers, 40(9):996-
1004, September 1991.

P. Kumar and M. Satyanarayanan. Log-based directory resolution in
the Coda file system. Technical Report CMU-CS-91-164, School of
Computer Science, Carnegie Mellon University, 1991.

R. Ladin. A method for constructing highly available services and an al-
gorithm for distributed garbage collection. PhD thesis, MIT Laboratory
for Computer Science, Cambridge, MA, 1989.

R. Ladin, B. Liskov and L. Shrira. Lazy replication: exploiting the se-
mantics of distributed services. In Proceedings of the ACM Ninth Sym-
posium on Principles of Distributed Computing, pages 43-57, Quebec
City, CA, August 1990.

178

[Ladin 92]

[Lamport 78]

[Lamport 82]

[Lamport 89]

[Lampson 86|

[Lazowska 84]

[Liskov 86]

[Liskov 91]

[Little 90]

[Long 92]

[Ma. 92]

[Macedo 92]

[Mattern 89]

R. Ladin, B. Liskov, L. Shrira and S. Ghemawat. Providing high avail-
ability using lazy replication. ACM Transactions on Computer Systems,
10(4):360-391, November 1992.

L. Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7), July 1978.

L. Lamport, R. Shostak and M. Pease. The Byzantine general problem.
ACM Transactions on Programming Languages and Systems, 4(3), July
1982.

L. Lamport. The part-time parliament. Technical Report 49, DEC Sys-
tem Research Centre, 1989.

B. Lampson. Designing a global name service. In Proceedings of
the ACM Fifth Symposium on Principles of Distributed Computing,
SIGACT-SIGOPS, pages 1-10, Vancouver, CA, August 1986.

E. Lazowska, J. Zahorjan, G. Graham and K. Sevcik. Quantitative sys-
tem performance: computer system analysis using queueing network
models, Prentice-Hall, 1984.

B. Liskov and R. Ladin. Highly-available distributed services and fault-

tolerant distributed garbage collection. In Proceedings of the ACM

Fifth Symposium on Principles of Distributed Computing, SIGACT-
SIGOPS, pages 29-39, Vancouver, CA, August 1986.

B. Liskov et al. Lazy replication: exploiting the semantics of distributed
systems. ACM Operating Systems Review, 25(1), January 1991.

M. Little and A. Shrivastava. Replicated k-resilient objects in Arjuna.
In Proceedings of the First Workshop on Management of Replicated
Data, pages 53-58, Houston, Texas, November 1990.

D. Long. A replicated monitoring tool. In Proceedings of the Second
Workshop on the Management of Replicated Data, Monterey, Califor-
nia, November 1992.

. C. Ma. Designing a universal name service. Phd thesis, Computer Lab-

oratory, Cambridge University, 1992.

R. Macedo, P. Ezhilchelvan and S. Shrivastava. Implementing robust
multicast protocols using causal blocks. Technical Report, CS Dept,
University of Newcastle upon Tyne, 1992.

F. Mattern. Time and global states in distributed systems. In Proceed-
ings of the International Workshop on Parallel and Distributed Algo-
rithms, North-Holland, Amsterdam, 1989.

179

[Melliar-Smith 90]
[Mishra 89]
[Obraczka 93]
[Obraczka 95]

[O"Neil 86]

[Oppen 83]
[Peterson 89]
[Pu 91a]

[Pu 91b]

[Pu 91c]
[Queinnec 93]
[Rabinovich 92]

[Raynal 91]

P. Melliar-Smith, P. Moser and V. Agrawala. Broadcast protocols for
distributed systems. IEEE Transactions on Parallel and Distributed
Systems, 1(1):17-25, January 1990. '

S. Mishra, L. Peterson and R. Schlichting. Implementing fault-tolerant
replicated objects using Psync. In Proceedings of the Eighth Symposium
on Reliable Distributed Systems, pages 42-52, Seattle, WA, October
1989.

K. Obraczka, P. Danzig and S.H. Li. Internet resource discovery ser-
vices. IEEE Computers, 26(9):8-22, September 1993.

K. Obraczka. Massively replicated services in wide-area internetworks.
PhD thesis, University of Southern California, 1995.

P. O’Neil. The escrow transactional model. ACM TODS, 11(4):405-430,
December 1986.

D. Oppen-and Y. Dalal. The Clearinghouse: a decentralised agent for
locating named objects in a distributed environment. ACM Transac-
tions on Office Information Systems, 1(3), July 1983.

L. Peterson, N. Buchholz and R. Schlichting. Preserving and using con-
text information in interprocess communication. ACM Transactions on

" Computer Systems, 7(3):217-246, August 1989.

C. Pu and A. Leff. Replica control in distributed systems: an asyn-
chronous approach. Technical Report CUCS-053-90, Columbia Univer-
sity, New York, NY 10027, January 1991.

C. Pu and A. Leff. Epsilon-Serializability. Technical Report CUCS-054-
90, Columbia University, New York, NY 10027, January 1991.

C. Pu, F. Korz and R. Lehman. A measurement methodology for wide
area networks. Technical Report CUCS-044-90, Columbia University,
New York, NY 10027, March 1991.

P. Queinnec and G. Padiou. Flight plan management in a distributed air
traffic control system. In Proceedings of the International Symposium
on Autonomous Decentralised Systems, Kawasaki, Japan, March 1993.

M. Rabinovich and E. Lazowska. Improving fault tolerance and sup-
porting partial writes in structured coterie protocols for replicated ob-
jects. In Proceedings of the ACM SIGMOD, pages 226-235, June 1992.

M. Raynal, A. Schiper and S. Toueg. The causal order abstraction and
a simple way to implement it. Information Processing Letters, 39:343-
350, 1991.

180

[Raynal 95]

[Renesse 93]

[Renesse 95]

[Ricciardi 91]

M. Raynal and M. Singhal. Logical time: a way to capture causality in
distributed systems. Technical Report TR-900, Institut de Recherche
en Informatique et Systéemes Aléatoires, Rennes, France, January 1995.

R. van Renesse. Causal controversy at le Mont St.-Michel. ACM Oper-
ating Systems Review, 27(2), April 1993.

R. van Renesse, K. Birman, B. Glade, K. Gub, M. Hayden, T. Hickey,

- D. Malki, A. Vaysburd and W. Vogels. Horus: a flexible group commu-

nications system. Submitted to the Symposium on Operating Systems
Principles, 1995.

A. Ricciardi and K. Birman. Using process groups to implement failure
detection in asynchronous environments. Technical Report TR91-1188,
Department of Computer Science, Cornell University, February 1991.

[Satyanarayanan 90] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel and

[Schiper 89]

[Schlichting 83]

[Schroeder 84]

[Schwarz 94]

[Singhal 92]

[Son 88]

[Stonebraker 79]

D. Steere. Coda: a highly available file system for a distributed work-
station environment. IEEE Transactions on Computers, 39(4), April
1990.

A. Schiper, J. Eggli and A. Sandoz. A new algorithm to implement
causal ordering. In Distributed Algorithms, Lecture Notes in Computer
Science, volume 392, pages 219-232, 1989.

R. Schlichting and R. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. IEEE Transactions on
Computer Systems, 1(3), April 1983.

M. Schroeder, A. Birrell and R. Needham. Experience with Grapevine.
ACM Transactions on Computer Systems, 2(1), February 1984.

R. Schwarz and F. Mattern. Detecting causal relationships in dis-
tributed computations: in search of the holy grail. Distributed Com-
puting, (7):149-174, July 1994.

M. Singhal and A. Kshemkalyani. An efficient implementation of Vec-
tor Clocks. Information Processing Letters, 43, Amsterdam, North-
Holland, 1992.

S. Son. Replicated data management in distributed database systems.
ACM SIGMOD Record, 17(4):62-69, December 1988.

M. Stonebraker. Concurrency control and consistency of multiple éopies ‘
of data in distributed INGRES. IEEE Transactions on Software Engi-
neering, 5(3):188-194, March 1979.

181

[Tait 92]

[Terry 95]

[Thomas 79]

- [Wilkes 91]

[Wuu 84]

[Zhang 94]

C. Tait and D. Duchamp. An efficient variable-consistency replicated
file service. In Useniz File System Workshop Proceedings, Michigan,
May 1992.

D. Terry. Towards a quality of service model for replicated data access.
In Proceedings of the IEEE Second International Workshop on Services
in Distributed and Networked Environments (SDNE’95), pages 118-121,
Whistler, Canada, June 1995.

R. Thomas. A majority consensus approach to concurrency control for
multiple copy databases. ACM TODS, 3(3):180-209, June 1979.

J. Wilkes. The Refdbms bibliographic database user guide and reference
manual. Technical Report HPL-CSP-91-11, Hewlett-Packard Laborato-
ries, May 1991.

G. Wuu and A. Bernstein. Efficient solutions to the replicated log and
dictionary problems. In Proceedings of the ACM Third Symposium on
Principles of Distributed Computing, pages 233-242, August 1984.

Y. Zhang. Communication ezperiments for distributed transaction pro-
cessing — from LAN to WAN. PhD thesis, Purdue University, December
1994.

182

