Technical Report RS

Number 381

Computer Laboratory

Rendering for free form deformations

Uwe Michael Nimscheck

October 1995

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1995 Uwe Michael Nimscheck

This technical report is based on a dissertation submitted
by the author for the degree of Doctor of Philosophy to the
University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-381

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-381

Abstract

Sederberg’s Free Form Deformation (FFD) is an intuitive modelling tech-
nique that lets users sculpt and deform objects without having to worry
about internal model representation issues. Unfortunately, displaying these
deformed objects is problematic and there exist no algorithms to display gen-
eral FFD deformed polygonal models. Based on deRose’s Bézier composition
algorithms, we develop geometrically intuitive composition algorithms to find
analytic expressions for deformed objects, which can then be rendered using
standard rendering hardware. Alternatively, one can adaptively tessellate
deformed objects into a mesh of triangles and display this deformed mesh.
The Finite Element method provides us with a wealth of algorithms to mesh
all types of objects. We show how to adapt these algorithms to computer
graphics problems. The main problem is to define curvature measures to vary
the mesh density according to the curvature of the deformed objects. We find
such measures and use them to develop a new meshing scheme, based on Lo’s
advancing front algorithm, to mesh and render FFD deformed objects. Our
algorithm is superior to existing schemes both in the quality of the generated
meshes and in the variety of solids that it can be applied to.
The major contributions of this dissertation are:

e Development of geometrically intuitive algorithms to determine closed
form expressions of FFD deformed surfaces.

e Transformation of tangent and normal vectors into deformed space.

e Development of a new advancing front meshing algorithm that allows to
mesh solids that have been deformed by non-uniform B-spline volumes.

e Systematic experiments to assess the performance and limitations of
the new meshing algorithm.

A cknowledgements

This report is, apart from some minor corrections, the dissertation which I
submitted for my PhD degree. For technical reasons, the colour images in
the Appendix have been replaced by greyscale images.

First of all, I should like to thank my supervisor, the late Neil Wiseman,
for his help, advice and support during the course of my work. I am par-
ticularly grateful for his help and encouragement during my early days in
Cambridge.

Also, I should like to thank Malcom Sabin for his advice during the course
of my work and for acting as my supervisor after Neil Wiseman’s untimely
death. His support, especially during the final stages of my work, has been
invaluable.

Particular thanks are also due to Peter Robinson for offering help when
I needed it most. Further thanks go to Tom Sederberg at Brigham Young
University for various helpful comments and to Rich Riesenfeld and Elaine
Cohen at Utah, who sparked my interest in splines and geometric modelling.

The Computer Laboratory, and the Rainbow graphics group in particu-
lar, have provided a stimulating working environment. Thanks go to Adrian,
Chris, Eileen, Jane, Jon, Kwai, Larry, Margaret, Martin, Neil, Oliver, Pe-
ter, Simon, Stanley, Stuart and Stefan. Chris and Jon deserve particular
acknowledgement for proofreading chapters of this thesis.

I also gratefully acknowledge the financial support provided by Professor
Roger Needham in form of a scholarship of the Computer Laboratory. Ad-
ditionally, this work has been supported by a departmental award and the
Isaac Newton Trust.

Finally, thanks go to my parents, whose support and encouragement made
this all possible.

Contents

1 Introduction 1
1.1 Free Form Deformation 1
1.2 Rendering and Meshing Deformed

Objects 3
1.3 ThesisOverview 5
2 Blossoms and Bézier curves 7
2.1 Polar Forms and Blossoming 8
2.1.1 Derivatives 9
2.2 BézierCurves 10
2.2.1 Extending the Domain 13
2.2.2 Derivatives e 13
2.2.3 Subdivision 14
2.24 DegreeElevation 15
2.2.5 General.Composition 16
23 B-splines. 21
23.1 Knotlnsertion 24
23.2 Continuity 25
24 Surfaces 26
2.4.1 Bézier Triangles 26
2.4.2 Tensor Product Bézier Patches 30
2.4.3 Tensor Product B-spline Patches 34
2.5 Higher Dimensional Bézier Patches 34
2.5.1 Bézier Simplexes 34
2.5.2 Tensor Product Hypersurfaces 35
2.6 SUMMATIY v v i e e e e e e e e e 36

CONTENTS ii

3 Composition Algorithms | 37
3.1 Imtroduction, 37
3.2 Composition of a Bézier Patch and a Bézier Curve 38

3.2.1 Monomial Form Composition Algorithm 39
3.2.2 Blossoming Form Composition Algorithm 42
3.2.3 Extension to Higher Dimensions 48
3.3 Composition of Bézier Patch and Bézier Triangle 51
3.3.1 Extension to Higher Dimensions 55
3.3.2 Composition of a Bézier Volume and a Bézier Patch . . 56
3.4 Further Composition Problems 57
3.5 Summary e 59

4 Free Form Deformations 60
4.1 Introduction, 60
4.2 The FFD Algorithm 60
4.3 Deformation Using a Trivariate Bernstein Basis 63

4.3.1 Object Representation 65
4.4 Expressions for Deformed Objects 65
441 CUIVeS i e e e e e e e 66
44.2 Polygonal Surfaces 67
4.5 Tangents and Normals 68
4.6 ExtensionstoFFD 70
4.7 Summaryo e e e e e e e e e 73

5 Rendering of Deformed Models 74
5.1 Introduction 74
5.2 Rendering of Deformed Polygons 75

5.2.1 Iterative Evaluation. 75
5.2.2 Recursive Subdivision 7
5.3 FFD Specific Subdivision Methods 78
5.3.1 Artefacts. 79
5.3.2 Parry’s Mesh Generation 82
5.3.3 Griessmair’s Algorithm 83
5.4 Finite Element Meshing 86
5.4.1 Topology First 87
5.4.2 Nodes First Meshing 88

5.4.3 Nodes and Topology Together e e e 92

CONTENTS

5.5 Application of FEM Meshingto FFD
5.5.1 Comparison of the Algorithms
5.6 Summary

6 A Modified Advancing Front Algorithm
6.1 Introduction
6.2 Overview.
6.3 Implementation
6.3.1 AdvancingtheFront
6.3.2 Generation of New Triangles
6.4 Adaptive Meshing According to Curvature
6.4.1 A Curvature Measure for Edges
6.4.2 A Curvature Measure for Triangles
6.4.3 Determining the Triangle Size
6.5 Summary

7 Results
7.1 Introduction
7.2 Deformation of a Rectangular Domain
7.3 DeformationofaSolid
7.4 Planar Distortion of a Solid
7.5 Deformation of a Tile into a Bell-Shape
7.6 Deformation of a Complex Solid
7.7 Deformation by a B-spline volume
7.8 Summary

8 Summary & Conclusions
81 Results.

Bibliography

A Colour Plates

11

95
96
100

101
101
101
102
104
107
111
111
112
116
116

118
118
119
123
125
127
129
131
133

134
134
135

138

147

Chapter 1
Introduction

The representation of geometric objects in computers is of importance to
areas as diverse as technical design, mechanical engineering, architecture,
scientific visualisation and computer graphics. A trend has developed from
modelling software that more or less resemble the designer’s drawing board to
systems that allow him to work with three-dimensional objects. A geometric
modelling system or modeller is a computer-based system for creating, editing
and accessing representation of geometric objects. Ways of characterising
modelling systems include their internal representation of objects and their
design method.

The Free Form Deformation (FFD) technique, introduced by Sederberg
and Parry [SP86b], is both a representation and design paradigm that lets
the user change the shape of objects in a free-form manner. This thesis deals
with representation and display aspects of FFD.

1.1 Free Form Deformation

Modelling systems for Computer-Aided Design can be divided into two main
categories: surface modellers and solid modellers. In surface modelling, 3D
surfaces such as polygonal meshes, parametric patches and quadric patches
are used to capture and intuitively manipulate the representation of surfaces.
Solid modelling deals with complete, unambiguous representation of whole
solids. The fields of solid modelling and surface modelling have been treated
independently for a long time. Fundamental limitations of each system make
it desirable to combine them. What is particularly sought is a system that
lets the user intuitively manipulate the shape of complete solids in a free-form

1

CHAPTER 1. INTRODUCTION 2

manner.

Combining the virtues of free form surfaces and solid modelling tech-
niques is thus an area of current research. Sederberg [SP86b] categorises the
approaches into three main classes:

e The combination of free-form surfaces with solid modellers by including
parametric surface patches. One of the main problems of this approach
is to ensure that the resulting representation meets the requirements
of an abstract solid.

° Usihg hyperpatches (generated by parametric mapping of unit cubes
into 3D space) as solid modelling primitives.

e Modelling directly with volumes bounded by implicit or algebraic sur-
faces.

A novel approach, known as the Free Form Deformation (FFD) technique,
has been introduced by Sederberg and Parry [SP86b]. It is independent of
the internal representation of the data in the solid modelling system (such
as CSG or b-rep) and allows deformations to be applied either globally or
locally.

Intuitively, FFD can be imagined as embedding a solid in a block of
clear, pliable plastic. The deformation is applied indirectly by deforming
this block of plastic, which in turn deforms the embedded solid. Figure 1.1
shows a deformation applied to a girder. The white lines indicate the edges
of the deformation solid.

(b)

Figure 1.1: Free Form Deformation of a girder

CHAPTER 1. INTRODUCTION 3

Mathematically, FFD is defined in terms of a trivariate tensor product
Bernstein polynomial. A point (u,v,w) is assigned a new position (z,y, 2)
through a mapping

m n P
flu,v,w) =D_>"Y bijx B (u)Bj(v) By (w),

=0 j=0 k=0
where b; ;; are a set of control points that determine the deformation. Sup-
pose g is a surface of an object. The deformed surface is then given by the
functional composition f o g. FFD thus yields an indirect deformation of
objects by deforming the surrounding space that the objects are embedded
in.

1.2 Rendering and Meshing Deformed
Objects

Currently, there is a lack of robust and efficient algorithms to render FFD
deformed objects.

The rendering process of curved surfaces is well investigated. However,
these existing surface rendering algorithms are not suited for FFD models,
because they usually require the curved surface be defined in parametric
form. In FFD, we only have the description of the undeformed surfaces g
and a deformation function f : R® — R3.

There are two ways of solving this problem:

e determining parametric expressions of the deformed objects that enable
us to use existing rendering algorithms

e developing a rendering algorithm that does not require such parametric
surface expressions.

In this thesis, we will consider both solutions. The first contribution
of this thesis is to develop geometrically intuitive algorithms, based on the
blossoming principle and deRose’s functional composition paper [DeR88], to
obtain a parametric description g = f o g of FFD deformed surfaces. Due to
the limited applicability in practice, our emphasis is on geometric intuitivity
rather than computational efficiency. Aided by the blossoming notation,
our algorithms illustrate the geometric relation between the undeformed and
deformed surfaces.

CHAPTER 1. INTRODUCTION | 4

We show that the parametric expression g of the deformed surfaces can
only be obtained for a certain class of deformation solids. Moreover, one
of the effects of FFD is a dramatic increase in the degree of the deformed
surfaces, which makes explicit evaluation prohibitively expensive. These two
problems motivate our development of a rendering algorithm that does not
require parametric surface expressions.

Modern graphics workstations are capable of rendering very large num-
bers of shaded triangle primitives, so an alternative algorithm would consist
of subdividing the surfaces of the deformed object into meshes of triangles
and rendering these meshes. The problem with subdividing the surfaces at a
constant density is that aliasing problems will occur due to undersampling in
regions of high curvature, whereas in regions of low curvature oversampling
will result in an unnecessarily high number of triangles. The obvious solution
to this problem is to subdivide adaptively according to curvature.

Existing adaptive meshing algorithms for FFD that do not require a para-
metric description of the deformed surfaces are due to Parry [Par86] and
Griessmair and Purgathofer [GP89]. Both techniques have fundamental lim-
itations: Parry’s algorithm is restricted to block, sphere and cylinder primi-
tives. Griessmair’s algorithm only meshes convex polygons and can produce
badly shaped triangles.

The process of meshing the surfaces of solids has received considerable
attention in finite element methods. We therefore survey a number of existing
finite element meshing algorithms with respect to their suitability to FFD
and identify Lo’s advancing front algorithm [Lo85] as a promising basis for
an FFD-specific meshing scheme.

The second contribution of this dissertation is therefore the design of an
FFD meshing algorithm with the following features:

e It produces triangle meshes with density varying according to the local
curvature of surfaces. The triangle size is determined by a curvature
measure based on the angle between surface normals. We show applica-
tions of our algorithm to a number of FFD meshing problems, including
solids containing concave polygons and arbitrarily shaped holes.

e It generates surface triangle meshes for solids bounded by non self-
intersecting polygons of any shape, convex or concave.

e It allows objects to be deformed by non-uniform B-spline volumes.

CHAPTER 1. INTRODUCTION 5

e Mesh compatibility is ensured across shared surface edges.
e ‘Triangles are well shaped and produce good results when rendered.

e It copes with polygons containing holes.

/b
424 A
s
sy
A ’:?"//P

Figure 1.2: Deformed girder, 2318 triangles

Figure 1.2 shows our meshing algorithm applied to the deformed girder
shown in Figure 1.1.

1.3 Thesis Overview

The remainder of this thesis is organised as follows:

e In Chapter 2, we provide a consistent framework for Bézier curves,
surfaces and volumes using the blossoming principle. The blossoming
notation, based on polar forms and introduced into computer graph-
ics by Ramshaw [Ram87], is a relatively recent, geometrically intuitive
way of defining Bézier curves and B-splines. The discussion of Bézier
volumes is of significance to FFD, because FFD deformation functions
are usually expressed as Bézier volumes. This chapter does not con-
tain any new results. However, the extension of blossoming to tensor

CHAPTER 1. INTRODUCTION 6

product surfaces and volumes has not yet received much attention. We
therefore develop a consistent system of notation that will be drawn
upon in the following chapters.

In Chapter 3, we investigate the composition process for curves and
surfaces with tensor product Bézier volume deformations. Using the
blossoming principle, we derive new, geometrically intuitive, algorithms
to find closed form expressions for deformed curves and surfaces.

Chapter 4 contains an in-depth discussion of the FFD technique and
shows how to apply the previously derived composition algorithms to
FFD. As a new result, we show how to determine normal vectors of
deformed objects analytically.

In Chapter 5 we discuss the rendering process of objects that have
undergone FFD. We discuss existing algorithms and survey finite ele-
ment based meshing schemes that can be used to adaptively generate
meshes of FFD models. The advancing front algorithm is identified as
a method suitable for meshing FFD deformed solids.

In Chapter 6, we develop a new, advancing front based, meshing scheme
for FFD deformed solids. Meshing algorithms can be divided into two
parts: how to subdivide and where to subdivide. The first part of the
chapter deals with the adaptation of the advancing front algorithm to
FFD problems. In the second part we develop curvature measures to
determine the triangle mesh density.

Chapter 7 contains applications of our newly developed meshing algo-
rithm. We show meshes and shaded images of a number of solids that
have undergone FFD. Shaded colour images of the deformed objects
can be found in Appendix A.

In Chapter 8, we summarise the main results of this thesis and conclude
with suggestions for further research.

Chapter 2

Blossoms and Bézier curves

Free Form Deformations are usually defined in terms of Bézier or B-spline vol-
umes. Bézier volumes are three dimensional generalisations of Bézier curves.
There are two basic ways of extending the concept of Bézier curves to higher
dimensions, these are Bézier simplexes and tensor product hypersurfaces.
This chapter gives a brief introduction to Bézier curves and then extends
these ideas to surfaces and volumes.

Bézier curves and their generalisations are well understood concepts, see
Farin [Far93]. Our introduction makes use of the blossoming principle, which
has been recently introduced into computer graphics to provide a simple and
intuitive way of developing Bézier curve theory.

This chapter introduces Bézier curves and provides a consistent frame-
work for our subsequent investigation of FFD. The discussion is self con-
tained, but it is not intended to serve as a general introduction to the theory
of Bézier curves. Readers with no knowledge of Bézier curves will proba-
bly find it helpful to read an introductory text such as Boehm [BFK84] or
Farin [Far93] first. Readers familiar with the concept of blossoming will still
find it useful to read this chapter to familiarise themselves with the notation
we develop to label curves and simplices. Particular attention is drawn to
the section on composing Bézier curves (Section 2.2.5) and on our labelling
scheme for surfaces and volumes (Section 2.4).

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 8

2.1 Polar Forms and Blossoming

Polar forms were developed as a mathematical tool for the analysis of polyno-
mials (van der Waerden [vdW70]). They have recently been introduced into
the field of computer graphics through the work of de Casteljau [dFdC86]
and Ramshaw [Ram88]. A good introduction can be found in Seidel [Sei93].
The main benefit of the polar form approach is its simplicity and clarity,
which make it easier to understand the standard theorems and algorithms of
Bézier and B-spline theory. _

The idea of polar forms is to replace a function of high degree in one
variable by an equivalent function of degree one but with many variables.
Ramshaw was initially not aware of the name polar form and coined the
term blossoming. We will use blossoming, as this is the name most widely
used in the computer graphics and computer aided design areas.

Let f(u) be a polynomial map R — R? of degree n. Then there is a
unique multiaffine polar form A(uy,...,u,) : R® — R4, called the blossom
of f, that has the following properties:

e It produces f on the diagonal:

f(u) = Ay, ...,u). o (21)

o It is symmetric for any permutation of variables:
AU, ..oy tn) = AUy, ..., U,), (2.2)

we will make frequent use of this property in the algebraic manipula-
tions that follow.

o It is multiaffine. Generally, a function F'(u) is called affine if it satisfies
F(T; aiu;) = ¥ 0 F (w;) for all @ € R with 3; ; = 1. It is multiaffine
if it is affine in each argument (while the others are held constant), that
is

Aug, ooy D005, Un) = 3 A (UL, .o, Ujsy e ey Un)
i i (2.3)

forallj=1,...,n.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 9

Every polynomial has a unique polar equivalent. Let f(u) be a degree n
polynomial expressed in monomial form

f(u) = iaﬂﬂ

=0

The corresponding blossom of f(u) is then given in Seidel [Sei93]:

n -1
n
i=0 SCAL...,n} €S
S| =1

()=

Example 1 For a cubic polynomial

with

f(u) = ag + ayu + ayu’® + azu®
the corresponding blossom is given by
a a
A(ul, U9, 'U,3) =y -+ ?l(ul 4+ U9 + U3) + ?2(’&1214 + Usuz + ’LL3U1) + as (U1U2U3).

Since blossoms often have a number of equal arguments, it is convenient
to have a shorthand notation. Let

A(r<®,s9>) = A(r,...,7,8,...,8 (2.5)
i J
where the superscript < 7> denotes a multiplicity ¢ of its argument. Note

that the symmetry property ensures that the ordering of the arguments does
not matter.

2.1.1 Derivatives

The general formula for the kth derivative of a degree n polynomial f(u) in
blossom notation is

k _ _nl k (k _1)*IA((u <G> o <n—j>
£t)(u)_(n——k)!j;)(j)(1) IA((u+ 1)<,). (2.6)

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 10

The derivation of this formula is quite involved as it requires extending the
domain of blossoms from affine space to linear space. A detailed discussion
is provided by Ramshaw [Ram87].

We can see that computing the kth derivative of a polynomial at param-
eter value u is done by varying k& arguments away from this value. If we
keep all arguments fixed, all the information we can obtain is the value at u.
Varying all arguments allows us to compute all derivatives at a point and we
therefore know the polynomial completely.

2.2 Bézier Curves

Having introduced the blossoming notation, we now show how this concept
helps us understand the theory underlying Bézier curves.

The de Casteljou algorithm [dFdC59] provides an intuitive way to con-
struct Bézier curves by repeated linear interpolation!. We now illustrate
the de Casteljau algorithm using the blossoming notation. This provides us
with insight into properties of Bézier curves which will be useful in further
developments.

A(,u,1) (0’1 1)

A(O’O’ 1 \
A(0,0,u) ¢ A

(u,u,u) Je)

A(1 ,U,U(u!1 11)

A(1,1,1)

A(0,0,0)
Figure 2.1: The De Casteljau algorithm for a cubic Bézier curve

Figure 2.1 shows a cubic (degree 3) Bézier curve f(u) = A(u,u,u) : R —
R4, defined over the interval [0, 1]. The Bézier points are labelled as blossom
values A(0,0,0), A(0,0,1), A(0,1,1) and A(1,1,1). A curve point A(u, u,u)
is now constructed as follows: By linearly interpolating between the Bézier

1As pointed out by Farin [Far93] (Chapter 2, page 20), the correct term is affine
interpolation, however, we shall use linear interpolation to be consistent with most of the
existing literature.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 11

points we obtain the intermediate points A(0,0,u), A(0,u,1) and A(y,1,1).
Repeated interpolation, permuting the arguments where necessary, yields
the blossom values A(0,u,u) and A(1,u,u), from which we finally obtain
the curve point A(u,u, u).

The blossom notation conveys a significant amount of geometrical infor-
mation: Three points lie on the same line if their corresponding blossom
arguments agree in all but one argument and their distance ratio is then
given by the varying argument. For example, the points

A(O’ @’ 1)’ A(Oa a l)a A(O’ 7 1)

agree in all but one argument (boxed) and lie therefore on the same line.
A(0,¢,1) divides the line in the ratio ¢ : (1 — t). This means that given two
points whose blossoms agree in all but one argument, we can construct any
other point on the same line by linear interpolation between them.

The de Casteljau algorithm provides a geometrically intuitive way of
constructing Bézier curves by recursive linear interpolation between control
points. We can use the blossom properties discussed in Section 2.1 to show
that the intermediate blossom values actually correspond to the intermediate
points of the de Casteljau algorithm.

Let us first express the parameter u as an affine combination of the in-
terval endpoints 0 and 1 '

u=(1-u)-04+u-1

If we express the n + 1 control points of a degree n Bézier curve defined
over the interval [0, 1] in blossom notation as A(0<"~*> 1<), we can use the
multiaffine invariance property of blossoms (Equation (2.3)) to recursively
generate intermediate points

A(O<n—i—j>, u<j>’ 1<z’>) —
(1 —_ u) A(O<"‘i_j+1>,’u,<j_1>, 1<i>) + 'U,A(0<"_i_j>, u<j——1>, 1<i+1>)
and
f(u) = A(u<™).

Figure 2.2 shows a schematic representation of the recursive generation
of blossoms for a cubic Bézier curve.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 12

A(u,u,u)

N

A(O,u,u) A(u,u,1)

N N

A(0,0,u) A(O,u A(u,1,1)

N 7N N

A0,0,0) A(0,0,1) A(0,171) A(1,1,1)

—

-
-—t
N

Figure 2.2: Recursive generation of intermediate points for the cubic case

By repeatedly applying Equation (2.3) we can obtain a non-recursive
expression for Bézier curve points f(u):

f(u) = Aly,...,u)
= A (1-u)-04+u-1) | |
= 1-uw)A@S™,0) +uA@<">,1) | |
= (1-u)A@S?,0°%) +2(1 —w)uA(w<""2>,0,1) '

+’U,2A(U<n_2> , 1<2>)

= Y BMu) A0, 1<7) 27)

=0

where B} are the Bernstein polynomials with

Br(u) = (’:) wi(1 — u)™),

If we compare this with the Bernstein-Bézier form given in standard
graphics texts such as Farin [Far93]

f(u) = 3 biBP(u),

=0

we can see that the Bézier points b; are the blossom values

bi — A(O<n—i>, 1<i>).

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 13

2.2.1 Extending the Domain

The above derivation of f(u) in blossom form is not restricted to the domain
interval [0, 1], rather, f(u) can be defined over any interval [r, s] by expressing
u as an affine combination of r and s:

_s—u u—r

u= T+ s (2.8)
s—r s—r

Equation (2.7) then becomes

f(u) = zn: BMu)A(r<n*>, s<>) (2.9)

=0

s =(7) (=) (=)

The Bézier points b; can now be found as blossom values

with

b; = A(r<">,). (2.10)

Thus, for a degree 3 curve defined over the interval [r, s, the Bézier points
bg, by, bs and bs can be expressed as the blossom values A(r, 7, 1), A(r, 1, 5),
A(r,s,s) and A(s, s, s).

The blossoming notation enables us to conveniently introduce standard
operations on Bézier curves such as computing derivatives, subdivision, de-
gree elevation and general composition.

2.2.2 Derivatives

We can use Equation (2.6) to determine the derivative of a Bézier curve.
Recall that

*) (1) = n! E (k —1)FIA(y 4 19>y <n—i>
79 = G 2 () A 19),

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 14

We can employ the multivariate invariance property and obtain?
df(’LL) — <n-—-1> <n-—-1>
— = n(A(u yu+1)— Au ,u))

= n (A(u<n—1>, 1))

= n (A(u<n_1> _S__—i))

’
S§—T

= . :rj - (A(u<n—1>, 3) _ A(U<n_1>, 7'))

n n—1) '
— (Z A(r<n=iz1> g<i1>) Br=i(y)

1=0

n—1

=0 ‘

n n—1 . » - . 1
= T Z ((A('r‘<’n—-z—- > gty A(r<n—z>7s<z>)) B 1(u)

=0

3 {(w)

= bil—bi)B?-' Uu),
§—Tizo "

so the derivative of a degree n Bézier curve is a Bézier curve® of degree n— 1.

2.2.3 Subdivision

A Bézier curve is generally defined over some interval [r, s|, but any piece
of it is also defined over some subinterval [t,u]. The process of finding the
Bézier points associated with this subinterval is called subdivision.

Figure 2.3 shows a quadratic Bézier curve defined over the parameter
interval [r, s]. Suppose we want to subdivide the curve and find the Bézier
points for the subinterval [t,u]. According to Equation (2.9), the Bézier
points of a curve associated with an arbitrary interval [r, s] are the blossom
values

A(T<n—i>, S<i>).
Thus the Bézier points for the curve over the interval [¢, u] are the blossom

values
A(t<n—i> u<i>) .

2This is a linear combination in linear space rather than in affine space, which is why
the coefficients sum up to O rather than 1.

3Note that the derivative curve is obtained by repeated linear interpolation of differ-
ences of points, therefore its range is in linear space rather than affine space.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 15

Figure 2.3: Subdivision of a quadratic Bézier curve

In the case of the quadratic curve in Figure 2.3, the Bézier points asso-
ciated with interval [r, s] are A(r,7), A(r, s) and A(s, s), whereas the Bézier
points for interval [t, u] are A(¢,t), A(t,u) and A(u,u).

2.2.4 Degree Elevation

In some situations it is desirable to increase the degree of a Bézier curve to
add flexibility. This is usually done by adding another Bézier point such that
the shape of the curve remains unchanged.

Let A™(uy,...,u,) be the blossom of a degree n Bézier curve. Then the
degree n + 1 blossom A™?(uy,...,us41) that describes the same curve is
given by

1 n+1
An“(“h ey Ungl) = Z A™(ug, - . .y Uis1, Ui, - - - Un41),
n+1 =

which can be verified by noting that the right-hand side is multiaffine,
symmetric and produces f(u) on the diagonal (Bartels [Bar91]).

Figure 2.4 shows the old and new control points of a quadratic Bézier
curve. The new Bézier points are given by

An+1 (,r.<n—j+1>’ s<j>)

j +1
— 1 iAn(T<n—j+1>’ S<j—1>) + nz An(,r.<n—j>78<j>)
n+1\;5 i=j+1
1

— g (J A"(r<"_j+1>,s<j'l>) + (n+1 ~4) A”(r<"—j>,s<j>)))
n

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 16

A*(r,s)

A’(r,n)=A%(r,r,1) A(s,8)=A’(s,s,s)

Figure 2.4: Degree elevation of a quadratic Bézier curve

Example 2 For a quadratic Bézier curve as in Figure 2.4, the new Bézier
points can be found as blossom values

3 (1A%, 597) 4 (3) MU, 59%).

A3 (7.<3—j>’ s<j>) —

2.2.5 General Composition

Evaluation and subdivision can be seen as special cases of the general func-
tional composition problem. The composition problem consists of finding the
composed curve f = f o g of a Bézier curve f and a polynomial function g.
The problem can be stated as follows:

Given a Bézier curve

f(t): R - R
and a polynomial function

g(u) : R =R,
find the corresponding reparametrised Bézier curve*

f(u) = f(g(u)): R —» R

Let us express the degree m Bézier curve, defined over the interval [0, 1]
as

£(1) = S bBP()
— iA(0<m—i>’1<i>)B{n(t)

=0 :

4Note that if the range of g(u) is only a part of the domain of f(¢), then the
reparametrised curve f(u) will only consist of a part of f(%).

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 17

and the degree k polynomial, also defined over [0, 1], as
k
u) =Y a,By(u)
p=0

A solution to this problem is given by deRose [DeR88]: For any s €
0,...,m,

_ m—s
f(u) =f(9(uw)) = > B (g Zb:,B,’fs (2.11)
=0 r=0
with b ,1=0,...,m—s,7=0,...,ks defined as
bs, = 3 Crlity -+, is)A(0S™ 57> a1 .., a4, 15),
i1,...,is €{0,...,k}
i1+ -+is =1
and C,(i1,...,%s) being combinatorial constants defined as

Colin, .. . yig) = LM(_))J_Z (2.12)
The parameter s defines how much of the curve is parametrised in u and
how much in g(u). s = 0 means the whole curve is parametrised in g(u),
whereas with s = m the curve is parametrised in u. We will now look at
Equation (2.11) with s =0 and s =m
With s = 0, Equation (2.11) becomes

flu) = ZBm(g(u Zbo Bl(u

- éA(o<m-i>,1<f>)B;"(g(u))
= f(g(u)).

The more interesting case occurs if we set s = m. Now the whole curve
is parametrised in u. Equation (2.11) becomes

flu) = ZBO(g(u Eb * BF™ (y)

z—O =0

= o B
r=0

= %n: b, Bf™ (u), (2.13)

r=0

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 18

where

Br = 67:7-: Z Cr(il,--wim)A(aiU"-’aim)
i1, sim € {0,...,k} (2.14)
14 +im=TrT
are the Bézier points for the reparametrised curve f(u).

We can use this to find the composed Bézier function f(u) of two Bézier
functions f(¢), g(u) with f(u) = f(g(u)). The composition of two functions
of degree m and k is of degree mk. With Equation (2.14), the new Bézier
points b, can be found using the following two-step algorithm:

1. Using repeated linear interpolation, generate all blossoms

A(aiy, ... ,a;,) withiy,... 4, € {0,...,k}.

2. Construct the new Bézier points b, as convex combinations of all blos-
soms A(a;,,...,a;,) whose argument indices sum up to r.

Example 3 Problem: Given a quadratic Bézier curve defined over the in-
terval [0, 1]

(1) = 3 A0, 19%)BX(1),

=0
and a polynomial g(u) with Bernstein coefficients ay, aj, az,

2
g(u) =" a,B2(u), ue€l0,1],
p=0 .
find the Bézier points of the reparametrised curve
f(g(u)) =f(u) = Zb B™(u).
' r=0

Solution: The new Bézier points b, = bg,r can be found as conver com-
binations of all blossoms A(a;,,a;,) where iy + iy =1 (Equation (2.18)):

Br = Z cr(i13i2)A(a'i1ya'i2)7
11,42 € {0)172}
i1 +ig=r1

where C,(11,12) are the combinatorial constants given in Equation (2.12).

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 19

Figure 2.5: Composition of a quadratic Bézier curve and a quadratic poly-
nomial

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 20

The first step consists of using repeated linear interpoldtz‘on to generate
all blossoms A(a;,, a;,) with 11,12 € {0,1,2}. Owing to symmetry, this yields
blossoms A(ap, ap), Aao, a1), A(ay, a1), A(as, a2), A(az, a2) (Figure 2.5).

As the second step, we generate the new Bézier points b, as conver com-

binations of these blossoms:

bo = 1A(a0,a0)
1 1
1 = §A(a0,a1)+§A(a’1,ao)
= A(Clo,al)

1 2 1
b2 = EA(ag,az) + EA(ala a’l) + _G-A(a'z’ ao)
1

= gA(ao,a2)+-§A(a1,a1)

By = %A(al,a2)+%A(a2,a1)
A(a, az)

by = 1A(ag,az)

Figure 2.5 shows the reparametrised curve with its new control points b,.

We can now see why evaluation and subdivision can be considered spe-
cial cases of the general composition problem. Evaluation corresponds to
composition with a constant function, whereas subdivision can be viewed as
composition with a linear function.

Composition of f(t) with a constant function g(u) = ao is equivalent to
evaluating f(t) at ap. With £ = r = 0 and s = m, Equation (2.12) becomes

flu) = Zb BF™(y,

- 0,0

Subdivision of f(t) corresponds to composition with a linear function g(u)
with Bernstein coefficients ag,a;. With k =1 and r =0, ..., m we obtain

f(u) = be”rB"‘(u)
— ZA <m-r> <r>)Bm()

CHAPTER 2. BLOSSOMS AND BEZIER CURVES ' 21

2.3 B-splines

The blossoming principle not only simplifies the notation of Bézier curves, it
is also extremely useful for the derivation of B-spline theory. Again, we do
not provide a complete introduction to B-splines; for a detailed treatment
refer to Farin [Far93]. |

Given a non decreasing knot vector

T = {to,...,tL+2n_2} with t; € R
and
tisti+1 fOI"i=0,...,L+2TL—3.

u can then be expressed as an affine combination of any two elements
t;,t; in the knot vector T' with ¢; # ¢;:
tj - U u—t;

u= t; t;
t;i —t; ’+tj—t,- ’

Let f(u) = A(u<") be a degree n polynomial curve with ¢; < u <
ti+1. We can use the multiaffine invariance property of blossoms to generate
intermediate points:

A(t'll—('n,—l—j—l)7 AR ti7 u<l>) ti+17 s 7t’i+j) (2'15)
~ ~ 4 N e
n—i-j i
biinr — U _
t_+ _+11+1_ t: (n—is) A(ti—(‘n—l—j)7 v at'b u<l 1>) ti+17 LK) tz+j)
1+ 1—(n—Il—7 N — ’ N, s’

n—l—j+1 J
U — bi-(n—i—j)

<l-1>
+ 't

A(tic(n—i—j=1),-- > iy U i1y -+ bikj1)
n—l—j j+1

Litj+1 — Lim(n—1—j)

Figure 2.6 shows a schematic representation of the recursive generation
of blossom values for a cubic B-spline (n = 3). It can be seen that the value
of f(u) with t; < u < t;4; is in fact only dependent on n + 1 blossoms

A(ti—(n—j—l)a ceny ti+j), j=0,...,n. (2.16)

We have shown that the shape of a Bézier curve is determined by its Bézier
polygon, the shape of a B-spline curve is determined by its knot vector and

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 22

A(u,u,u)
/ \
(A(l+1)
e \
A(tn-ﬂ iy) (Ut,+1) A(u’ti+1’ti+2)
A(ti-Z:ti-1 !ti) ‘ A(ti-nti:tin) A(tis‘l:i+1:ti+2) A(‘ti+1 ’ti+21ti+3)

Figure 2.6: Recursive Generation of intermediate points for a cubic B-spline
curve

its B-spline polygon. The vertices of the B-spline control polygon, known as
de Boor points in standard text books, are given by

d = A(t,, 1.+n—)

Using these points, we can also express a B-spline curve as
v L+n—-1

fu)= Y NP,
=0
where N}* are defined by the Coz-de Boor recurrence relationship (de Boor
[dBT72]).
NI = U N{“ t“fL NG
titn — & Litn+1 — b
and
Nin= 1 ift,-Su<t,-+1
0 else

Figure 2.7 shows a cubic B-spline curve with knot vector {0,0,0,1,2,4,5,5, 5}

and de Boor points {0,0,0}, {0,0,1}, {0,1,2}, {1,2,4}, {2,4,5}, {4,5,5},
{5,5,5}. It can be seen that the curve actually consists of four Bézier curves
over the parameter ranges [0, 1], [1,2], [2,4], [4,5]. The first Bézier curve, for
instance, is defined over the interval [0,1] and has control points A(0, 0, 0),
A(0,0,1), A(0,1,1), A(1,1,1). This allows us to subdivide the B-spline
curve into Bézier curves, which is useful for example if we want to render the
B-spline and have dedicated hardware to render Bézier curves efficiently.

In general, a Bézier curve that defines a segment of a B-spline curve in
the interval [t;,¢;+1], has control points

— <n—z> <i>
b; = A(i tz+1

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 23

A(0,1,2) A(1,1,2) A1,22) A(1,2,4)

A(2,2,2) A(2,2,4)

A©.1,1) A(1,1,1)

A(0,0,1) A2,4.4)
A(2,4,5)

A(4,4,4)
A(0,0,0) A(4,4,5)

A(5,5,5)

Figure 2.7: The de Boor algorithm for a cubic B-spline curve with knot vector
{0,0,0,1,2,4,5,5,5}

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 24

2.3.1 Knot Insertion

Inserting a new knot into B-splines adds a new control vertex and can be
used to increase the flexibility of a curve much like degree elevation is used
for Bézier curves (section 2.2.4).

Let us suppose we have a knot vector

U= {tO) ey tia ti+1, ey tL+2n—2}

and we would like to insert a new knot @ with ¢; < @ < t;4;. What are
the new de Boor points? ,

Once again employing the multiaffine invariance property of blossoms, we
can use Equation (2.15) to determine the new de Boor points:

A(?i—(n—j—Z), ey ti’ '&, Lt,,;+1, ‘e)ti+,7;) (217)
n—;—l 7
Livjr1 — U

= Atim(neio1)s- - - > tini
titj41 — tim(n—j-1) s m)

4~ ti-(n-j-1)

A t'_ —j§=2)y -+ t :
bitj+1 — Lim(n—j-1) (timug2), - - - i)

A(0,1,3) A(1,2,3) A(1,3,3)

A(2,3,3)
A(0,0,1)

A(3,3,3)

A(0,0,0)

Figure 2.8: Knot insertion into a cubic B-spline curve. The original knot
vector is {0,0,0,1,3, 3,3}, we insert knot 2 and obtain the new knot vector
{0,0,0,1,2,3,3,3}

Example 4 Given a cubic (degree 3) B-spline with knot vector {0,0,0,1, 3,3, 3}
and de Boor points A(0,0,0),A(0,0,1),A(0,1,3),A(1,3,3), A(3,3,3) (Fig-
ure 2.8) . We wish to insert a new knot 2. What are the new de Boor
points?

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 25

The new de Boor points, given by Equation (2.17) with n = 3, are
A(0,1,2), A(1,2,3) and A(2,3,3) and can be obtained by linear interpolation
of existing de Boor points:

7=0: A(0,1,2) =2 A(0,0,1) + 22 A(0,1,3)
j=1: A(1,2,3)=32A(0,1,3) + 2 A(1,3,3)
7=2: A(2,3,3) =%2A(1,3,3) + £ A(3,3,3)

2.3.2 Continuity

We have shown that B-splines are actually piecewise continuous Bézier curves.
Two degree n B-spline segments A;() and A,(), defined over parameter
ranges [to,t1] and [t;, to] respectively, join with C* continuity at ¢; if

Ap(ugy - up, 85577F) = Ay (ug, - . ., ug, k>,

that is if they agree in all blossoms that include at least (n — k) copies of t;.
Evaluating the kth derivative involves, according to Equation (2.6), varying
at most k arguments, so if A;() and A,() agree in all these arguments, they
must be C* continuous.

Figure 2.9: De Boor points for two adjacent cubic B-Spline segments

Figure 2.9 shows the overlapping schemes for the generation of two adja-
cent cubic B-spline curves A,() and A,(), defined over the interval [¢;, ¢;11]
and [t;41, tiyo|, respectively. If we use this scheme to calculate the curve at

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 26

parameter value %;,;, we see that

Ay (tig1s tigns tis1) = Ag(tivistivr, tiva)
Ay (g, tigr, tiv1) = Dg(ug, tigr, i)

A1(U1,U2,ti+1) = A2(u1,u27ti+l)-

The curves agree in all blossoms that contain at least 1 copy of ¢;,; and thus
meet with C? continuity.

Generally, two degree n spline segments meet with at least C"~" continu-
ity at a knot with multiplicity r.

2.4 Surfaces

Let us now extend the Bézier and B-spline ideas to surfaces. Surface patches
are generally either triangular or rectangular. The most natural general-
isation of Bézier curves are Bézier triangles (de Casteljau [dFdC59]), but
rectangular shaped tensor product Bézier patches have also gained wide pop-
ularity. For a comprehensive survey and classification of different types of
surface patches, see Barnhill [Bar85]. Our discussion starts with Bézier tri-
angles, as they are the most natural extension of Bézier curves to surfaces.

2.4.1 Bézier Triangles

Mathematically, a polynomial surface is a polynomial function with a two-
dimensional domain, so we have to extend our blossoming notation to multi-
variate functions. Let f(u) be a be a polynomial function R? — R of degree
n. The corresponding blossom A(uy,...,u,) : (R?)" — R? has the following
properties:

e It produces f on the diagonal:
f(u) = A(u,...,u)
e It is symmetric for any ordering of variables:

A(ul,...,un) == A(uila"')uin)

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 27

o It is multiaffine:
Alag,..., > aly,. .., 0,) = > oAy, ..., W), ..., Uy)
i B
forallj=1,...,n.

In our discussion of Bézier curves, we expressed the parameter u as an
affine combination of the endpoints of the interval [0,1]. For surfaces, we
will express u as an affine combination of a reference frame el, e2, e3, with
el = (1,0,0), e2 = (0,1,0), €3 = (0,0,1). These three vertices define a
plane and each point u in the plane can be expressed uniquely as an affine
combination of these points:

u=1uypel +u;e2+ ue3, Ug + Uy +up = 1.

The development of Bézier patches is strictly analogous to Bézier curves.
Let i be a multiindex with

i= (7:0, ?:1, 22)
We can use the multivariate invariance property to construct intermediate
blossoms by repeated linear interpolation:

A(u<n—|xl>, e1<io>’ 62<21>, e3<i2>) —
Uo A(u<n—|1|—1>, e1<io+l>, 32<i1>, e3<i2>)
+uy A(u<n-—|1|—1>’ e]_<’i(:.>7 e2<1.1+1>, e3<i2>)

<n-—|i|-1> <ig> <i1> <ig+1>
+ug A(uSnTlil=1> g1 <io> ga<ii> gg<iztl>)

and
f(u) = A(u<™).

Figure 2.10 shows the domain triangle el,e2,e3 and the intermediate
points for the evaluation of a point on the surface of a Bézier triangle.

As in the Bézier curve treatment, we can now use this to derive a non
recursive expression for Bézier patches:

f(u) = A@)
Uo A(u<n—1>’ e1<1>) + Uy A(u<n—1>, e2<1>) + U A(u<n—1>, e3<1>)

= Y BP(u) A(el<">, e2<1> e3<2>) (2.18)

lil=n

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 28

A(e1,e1)

Ae2,e2) Ale2.3) A(e3,e3)

Figure 2.10: The de Casteljau algorithm for a quadratic Bézier triangle

where BP'(u) are multivariate Bernstein polynomials with

Bru) = <’:) ul.

The multinomial coefficients are defined as

and
in

u' =ug -y

The standard expression for Bézier triangles given in the literature (Barn-
hill [Bar85]) is
f(u) = Z b,Bf‘(u)

li|=n
If we compare this with the expression in Equation (2.18), we can see that
the Bézier points can actually be expressed in blossoming notation as

b; = A(el<®> e2<1> e3<%2>)

Derivatives

When discussing surfaces, it is appropriate to define a directional derivative.
We define the direction as the difference of two points r and s in the domain

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 29

of the surface. With Equation (2.6), the directional derivative along a vector
d=s-ris

Bf(u) _ <n—-1>
3d = nA(u ,d)
= > A(d,el<> e2<1> e3<2>) Brl(y) (2.19)
lijl=n—1
Composition

The composition problem for Bézier triangles consists of finding the composed
triangle f = f o g, where f and g are Bézier triangles. We can extend the
composition algorithm for Bézier curves, given in Section 2.2.5, to handle the
composition of Bézier triangles:

Let f(t) : R? — R be a Bézier triangle of degree m and g(u) : R? — R?
be a Bézier triangle of degree k&,

ft) = > b:B(t),
lijl=m

g(u) = l; ap By (u).
pl=k

We are looking for the control points of the composed Bézier simplex

f(u) =f(g(u)) = Y b.B"(u)

|r|=km

DeRose [DeR88] derives an extension of the composition formula for
- Bézier curves (Equation (2.11)):

For any s €0,...,m,
fu) =f(g(w) = > B *(g(uw) Y. bi.B(u) (2.20)
lijl=m—s |r|=ks
with b{,, |i| = m — s, |r| = ks defined as
b, = Z Ce(is, - . .,1s)A(ay,,. .., a;,, 150> 21> 3<12>)
fial =+ = Jisl = &

i1+:--+is=r

and C.(iy,...,i;) being combinatorial constants defined as

Celin, . .., i;) = B E)-(E) (2.21)

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 30

Again, the parameter s defines to what degree the curve is parametrised
in u and to what degree in g(u). We are particularly interested in the case
s = m, because then the whole curve is parametrised in u. Equation (2.20)
becomes

fw) = Y Blgw) Y mekm

li|]=0 |r|—km

= > bg.Bf"(u (2.22)
|r|=km

= Z BrBzI?m(u)7
|r|=km

where
Br= 6’;: Z Cr(il,...,im)A(ail,...,aim)
lia] = =lim| =k (2.23)

h+--+ip=r

are the Bézier points for the reparametrised curve f(u).

We can use this to find the composed Bézier simplex f(u) of two Bézier
functions f(t), g(u) with f(u) = f(g(u)):

The new Bézier points b, can be found using the following two-step al-
gorithm:

1. Using repeated linear interpolation, generate all blossoms

Aay,, ... a;,) with [iz] =+ = [im| = k.

2. Construct the new Bézier points b, as convex combinations of all blos-
soms A(aj,,-..,a;,)
e whose argument indices sum up to r and

e all argument index metrices equal k.

2.4.2 Tensor Product Bézier Patches

One other popular variant of Bézier based surfaces is the tensor product
patch. A useful way of looking at a Bézier patch is to see it as a Bézier
curve that sweeps through space, because each of its control points changes
its position along another Bézier curve in space.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 31

We can make this explanation more precise. Given a Bézier curve of
degree m

f(u) = > b:B (u),

=0
we can let each b; trace out a different Bézier curve of degree n

bi = b,('v) = Z bz,]B;]'('U)
j=0

If we combine these two equations, we obtain the tensor product Bézier patch
f(u,v) : R xR = R% as

£(u,v) = f;o é buy B (u) B (0).

The corresponding blossom A(uy, ..., Upm;V1,...,V,) : R™ X R® = R% is
obtained by polarising each variable separately and has the following prop-
erties:

e It produces f(u,v) on the diagonal:

f(u,v) =A(u,...,uv,...,v) - (229)

e It is symmetric for any ordering of variables with each parameter group:

A(’Uq,. c oy Ums V1, ...,'Un) = A('u,,-l,. ey Ui,y Vgys - ..,’an)
(2.25)

e It is multiaffine in each variable u, v separately.

The Bézier points of a degree (m,n) tensor product Bézier patch over the
interval [p, g] X [r, s] can be expressed in Blossom notation as

_— <m—i> <i>. ,.<n—j> <j>
b;; = A(p g7 TSIz N7,

Figure 2.11 shows the control point net for a bicubic (3 x 3) Bézier patch.
Note that the patch edges are actually Bézier curves of degree m and n,
respectively. In fact, any isoparametric curve v = const is a Bézier curve of
degree m, whereas isoparametric curves with u = const are Bézier curves of
degree n. We will see in the next chapter that generally non isoparametric
straight lines on the patch are of degree m + n.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 32

A(9,9,9; S,8,9)

A(p,p,p; s;1i)
A(p,p,p; r,1,1)

Figure 2.11: The control point net for a bicubic tensor product Bézier patch

A(1,1,1; 1,1,1)

A(1,1,1; 0,0,0)

A(0,0,0; 0,0,0)

Figure 2.12: Direct evaluation of a point (u,v) on the surface of a bicubic
tensor product Bézier patch over the interval [0, 1] x [0, 1]

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 33

A point on the surface of a tensor product Bézier surface f(u,v) can be
expressed in blossom notation as

f(u,v) = Au,...,u;v,...,v).

There are two ways of evaluating a point on a Bézier patch, which we shall
call two step evaluation and direct evaluation.

The two step evaluation utilises the fact that tensor product patches can
be thought of as curves of curves. Starting from the control points

bi j= A(O<m_i>, 1<i>; 0<n—j>7 1<j>),

it first uses linear interpolation to generate the Bézier points of an isopara-
metric line with u = const

bz’ — A(0<m—i>’ 1<i>; ,U<n>)’

and subsequently linearly interpolates between these intermediate points
with parameter value u to obtain the surface point

f(u,v) = A(u<™;v<").

The direct evaluation approach is shown in Figure 2.12. It uses bilinear
interpolation to directly compute blossom values

A(O<m-—z—k>, uk, 1<z>; 0<n—g—k>, vk’ 1<_7>)

with £ = 0,...,min(m,n). If the surface is of different degree in u and v
(m # n), surface points can not be obtained using only bilinear interpolation.
In this case, the final steps are performed using linear interpolation (see Farin
[Far93], Chapter 16, for more details, although not in blossoming notation,
on evaluating patches of different degrees in u and v).

Derivatives

The computation of the partial derivative of tensor product patches along
their parameters u and v is a straightforward extension of the derivative of
a Bézier curve. We derive the formula for the u-partial:

0f(u,v) & A — n
5 = 3|3 Seure)| B
n m-—1

= m3 Y (bisry —big) BFWB}) (2.26)

3=0 i=0

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 34

2.4.3 Tensor Product B-spline Patches

Just as Bézier patches, a tensor product B-spline patch can be defined by
two B-spline curves as

f(u,v) = Z Z d; ;N[" (w) N7 (v).
1=0 j=0
A de Boor point d;; of a degree (m,n) B-spline can be expressed in
blossom notation as

— <m—i> <>, . <n—j> . <j>
dz,]_A(p »q 3T I »8 J)

Just as B-spline curves can be thought of as a collection of Bézier segments
with some degree of continuity across joints, B-spline patches are actually a
regular array of Bézier patches with some degree of continuity across common
edges.

The Bézier points of an individual Bézier patch defined over the interval
[si, si+1] X [tj,tj+1] can be expressed in blossoming notation as

A (e<m—i> <i><nej> <G>
b; = A(s] 3 8it1 5 b 27t

2.5 Higher Dimensional Bézier Patches

The concept of Bézier triangles and tensor product patches can easily be
extended to higher degrees. Although difficult to visualise, the three di-
mensional objects can perform a mapping R® — R? and are thus useful in
defining deformations of objects in space. We will briefly introduce them
here because they constitute the deformation basis for Free Form Deforma-
tion and will also be used in our discussions on composition algorithms in
Chapter 3.

2.5.1 Bézier Simplexes

The generalisation of Bézier triangles are Bézier simplexes. The three di-
mensional simplex is called a Bézier tetrahedron. A general Bézier simplex
of degree n can be expressed as

f(w) = 3 buB{(c),

il=n

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 35

or, in blossoming notation
= Y A(el®,e2”,...,e(n+1)")BP(u).
lij=n

The labelling scheme for a quadratic simplex, a Bézier tetrahedron, is
shown in Figure 2.13.

A(el,el)

A(e2,e2) A(e2.e3) A(e3,e3)

Figure 2.13: Control points of a Bézier tetrahedron

2.5.2 Tensor Product Hypersurfaces

Tensor product surfaces can be extended to tensor product hypersurfaces. A
Bézier volume, the three dimensional version of a tensor product hypersur-
face, is a mapping f(u,v,w): R xR x R = R

f(u,v,w) = Zzzb,g,kBm) B3 (v) B (w).

1=0 j=0 k=0

If the Bézier curves are of degree m,n,p, the corresponding blossom is
AUty -y Umj VL, - - Unj WL, - - -, Wp) : R™ X R™ x RP — R

In Figure 2.14 we show the blossom labelling scheme for the control points
of a triquadratic (2, 2, 2) Bézier volume over the interval [0, 1] x [0, 1] x [0, 1].

By keeping one or two parameters constant, one can easily verify that
the volume edges map into Bézier curves, whereas the sides map into Bézier
surfaces. A general straight line in parameter space, however, maps into a
degree [m + n + p] Bézier curve.

CHAPTER 2. BLOSSOMS AND BEZIER CURVES 36

A(1,1;1,151,1)

Figure 2.14: The control point net for a triquadratic tensor product Bézier
Volume ’

2.6 Summary

We have described Bézier curves using the blossoming principle and we have
shown how blossoming facilitates the introduction of standard operations
such as computation of derivatives, subdivision and composition with poly-
nomial functions. We have then shown two ways of extending the Bézier
curve concept to higher dimensions (i.e. surfaces and volumes): Bézier sim-
plices and tensor product patches.

Free Form Deformation uses tensor product Bézier volumes to deform
curves and surfaces. Finding analytical expressions for the deformed objects
is essentially a functional composition problem. In the next chapter, we
show how to use blossoming to find analytic expressions for the composed
(deformed) curves and surfaces.

Chapter 3

Composition Algorithms

3.1 Introduction

Let us take a closer look at the mapping between parameter space and world
space. In the previous section we stated that for a degree (m,n) tensor
product Bézier patch f(u,v) : R Xx R — RY, a general straight line g(t) :
R — R X R in parameter space gets mapped into a degree m + n Bézier
curve on the surface of the biparametric patch (Figure 3.1). The curve on
the patch can be expressed as the composed map §: R - Ré¢=fog

b‘l 2

b2,0

Figure 3.1: Mapping of a straight line in parameter space into world space

37

CHAPTER 3. COMPOSITION ALGORITHMS 38

Moving the control vertices of the bicubic patch thus enables us to indi-
rectly change the shape of the composed curve g. This is the basis of the
Free Form Deformation principle.

Rather then raising the degree of the curve and manipulating the curve
directly, we embed a curve in a patch and indirectly manipulate its shape by
changing the shape of the embedding solid. The advantage of this indirect
manipulation scheme is that it

e is independent of the representation of the embedded curve.

We can therefore change a whole object composed of curves in one step, with-
out having to change each of its defining curves individually. Obviously, this
principle can be extended to three dimensions to deform curves or surfaces
in trivariate hyperpatches.

In this section, we will investigate the deformation of Bézier curves and
triangles with tensor product surfaces and volumes. Using the knowledge of
functional composition of Bézier curves derived in the previous chapter, we
shall develop algorithms to determine analytic expressions g for curves and
surfaces that have undergone indirect deformation.

The first part of this chapter is devoted to the deformation of curves.
We investigate the deformation of Bézier curves embedded in tensor product
Bézier patches and volumes. In the second part we examine the deforma-
tion of surfaces, we therefore extend the curve algorithms to cope with the
deformation of Bézier triangles on surface patches and in volumes.

e can be applied to a number of embedded curves at once
|
|
\
|
|

3.2 Composition of a Bézier Patch and a Bézier
Curve

We first investigate the mapping of a Bézier curve g(t) : R — R x R onto a
tensor product Bézier patch f(u,v) : R x R — R We want to express the
resulting curve as a univariate Bézier curve g(u) : R — R? and determine
the control points of this new curve.

The problem can be stated as a functional composition problem: Given a
bivariate function f(u, v) and a univariate function g(t), what is the resulting,
composed function

g(t) = 1(g(?))-

CHAPTER 3. COMPOSITION ALGORITHMS 39

3.2.1 Monomial Form Composition Algorithm

We can simplify the problem by first converting the functions into their
monomial (power basis) form.
For every Bézier function in Bernstein-Bézier form,

n
f(u) =Y b;B}(u),
=0
there is an equivalent power basis form with
n
flu) =) au’.
=0
The choice of the representation depends on the application. The Bern-
stein-Bézier form with its control points b; is geometrically more intuitive,

whereas the monomial form can be computationally more convenient!. Bern-
stein bases and power bases are related by

=y %By(u) (3.1)
and

Bru) = 3 (-1~ (") (J) o, (3.2)

j=i J/ \?

Let f(u,v) : R x R = R be a degree (m, n) tensor product Bézier patch
in monomial form

flu,v) =) a; ju'v’

=0 j=0
and g(t) : R — R? be a degree p Bézier curve

P
g(t) =>_ et
k=0
with its projections onto the u,v axes
P
gu(t) = Z cuktk
k=0

P
g(t) = chktk'
k=0

1t has been shown by Farouki [Far91] however that the monomial form is numerically
less stable, which represents a significant problem for the implementation on finite precision
computers.

CHAPTER 3. COMPOSITION ALGORITHMS 40

The composed function g(¢) then becomes

g(t) = f(gu(t),g0(2)) :
= Z_:OX_;)% [9.(®)]" 90D
= ZZ% [Z cukt"] lZ cukt"]
=0 j=0 k=0

Expanding the expression and collecting the coefficients for each power e of
t as b, finally yields
p(m+n) :
gt)= Y &t (3.3)

e=0

which is the power form representation of a degree (p(m + n)) Bézier curve.

We can now retransform the power basis representation into the Bernstein-
Bézier representation and thus obtain the Bézier points of the composed
function g(t).

Example 5 Given a tensor product biquadratic patch

f(u,v) = zzawu v

=0 j=0

and a linear curve .
= Z thk,
k=0
with its projections onto the u,v azes
1
gu(t) = Z Cuktk
k=0
1
%) = > Cu, P
k=0

what are the coefficients of the composed function g(t) = £(gu(2), 9»(t)) ?

CHAPTER 3. COMPOSITION ALGORITHMS 41

g(t) = f(gu(t)ag'u(t))
= ZE a;,; [gu(t)] [gv(t)]j

=0 j=0
1 J
e[t [
=0 _7=0 k=0
= 3.2,20“1 12,12‘24

2 2 2 3
+ (a2,lcu1 Cy; + a1,20u1 c‘u1 + 2a2,2cuocul c’U1 + 2a272c’u.1 Cuo c’"l) t

+ (al 2CuoCay + 281,2Cy; CugCoy + 2,05, + 89 2C2,

2 2
+ 29,1 CugCuy Co, + 82,1C5 Cup + 81,1Cu; Co, + 82,265, C2,

+ 48 2Cuo Cuy Cog Co; + A22€2, cvo) t2

+ (20,160, + 281,2CugCogCoy + 81,260, €%y + 81,004, + 2822C% CunCoy
+ 28.2,26.,,,0 Cu, 630 + 230,26«00 Cu, + 3.2,1 C.lzmcvl + 232,10,,,06“1 Cuo
+ @1,1CuCo; + A1,1Cu; Cop + 282,0Cu0Cuy) T

+ (ao,o + 89,10y, + A,2€2 €2 + 82,1C2 Cup + A0,2C2, + A1,0Cu,

2 2
+ az’ocuo =+ al,lcuoc,,o -+ a1,2cuocv0)

4
= > a.t°
e=0

Following the same procedure, we can see that a degree p curve in pa-
rameter space gets mapped into a degree p(k + m + n) curve by a trivariate
tensor product volume of degree (k,m,n).

The monomial form algorithm allows us to calculate the Bézier points of
the composed function, but the conversion from the geometrically intuitive
Bernstein form to the monomial form and back is not only inconvenient but
also limits the geometric insight we can achieve.

To obtain more insight into the geometric details during the composition
process, we now develop a composition algorithm that uses only the Bernstein
representation.

'CHAPTER 3. COMPOSITION ALGORITHMS

3.2.2 Blossoming Form Composition Algorithm

42

Let f(u,v) : R x R = R? be a degree (m, n) tensor product Bézier patch in

Bernstein form

f(u,v)

m n

> > bi;B"(u)B}(v)

1=0 j=0

m n
3 30 A<, 1550797, 1597) B (u) B (v)
i=0 j=0

and g(t) : R — R? be a degree p Bézier curve

g(t) = z ceB2(),

with its projections onto the u,v axes

w®) = 3 cuB)
: k=0

0(t) = éckaﬁ(t).

The composed function g(t) then becomes

g(t)

£(9u(t), 94(2))

33 bus B (0u(6) B} 0:(0)
S5 iy B cuy BE(H) B;‘(éckaz(t»

i=0 j=0 k=0

o,

(3.4)

Our first objective is to eliminate the two summations over k. Let us
recall that Bézier patches can be thought of as curves of curves and rearrange
equation (3.4) accordingly:

m

50) = 3° B (S B0 32 B co () bis.

i=0 k=0 j=0 k=0

In Section 2.2.5 we showed how to determine the control points of a

CHAPTER 3. COMPOSITION ALGORITHMS 43

composed function g(u) = f(g(u)). We can apply this twice and obtain:

5 = iBmé cu BE(D) S BP(0) by

i=0 f=0

= fé) B (t) f; B{"’(Zp: cu, BE(t)) bi g

=0 k=0
np mp ~
= > B{(t) Y B(t)bes (3.5)
f=0 e=0

We can see that the composed Bézier patch is of degree (np, mp). How

can we determine the new Bézier points Be, 7
If we adapt Section 2.2.5, Equation (2.14), we can generate the Bézier
points b; ; of the composed function as

-~

b = A(0<m—i> 1<8>. g<mp—f> 1<f>)

- 2{ Cr(Jrs- -+ dn) A(O™,155 ¢, 4.0 ey;)) (3.6)
J15--:3n € {0,...,p}
j1+"'+jn=f

with

sl) = LoLlELE).

f

The Bézier points f)e, 7 can then be found as

be; = > Ce(t1y---,%m) Z&(cuil,...,cuim;0<"p"f>,1<f>)
lyeeesrim E{O,---,P}
i1+"‘+im =e€

= > 3 Celiny - - -1 im) Cs(d1y - - - 5 n)

i1,...,im€{0,...,p} J1,...,dn €{0,...,p}
i1+ +im =e i+t gu=f

ACusy s+ 5 Cuip 5 Cujys -+ 5 Cuzy)

with
Ce(iyy .- yim) = 5)(5) (& .

CHAPTER 3. COMPOSITION ALGORITHMS 44

We can now rewrite Equation (3.5) as

mp np

g = > > BM()B(
e=0 f=0
mp np pm

= Z Z (m+n) e-(F7}L+n) (t) be,f

e=0 f—O et+f
p(m+n)

= Y &B™M()
9=0

with

pm) (pn) =~

C= 2 (:(n)zf:)) Pe,i
e+f=g (g)

If we define a new combinatorial constant

Al

(p(m+n))

we can finally express the new reparametrised curve in Bézier form:

p(m-+n)

B)= Y &BIm(y), (3.7)

9=0

with

& = X 2 2
e+f=g il,-~-,im€{0,---,?} jl,---,jn€{01-~~7p}
i1+ +im=e i+ Fjn=f

cg(ea f) Ce(ih .. -,im) cf(]la .. '7jn)
ACusy s 5 Cuipy3 Cujy s -+ + 5 Cujy)

Although the resulting formulae seem quite complex, we will now show
that the blossoming form algorithm provides us with considerably more ge-
ometric insight than the monomial form algorithm.

Example 6 We will use the same composition problem as for the monomial
form algorithm (Ezample 5), so we are looking for the composed function
g(t) = £(gu(t), gu(2)) of the biquadratic Bézier patch

2 2

‘ : flu,v) =D b,-,jBf(u)Bf.(v)

i=0 j=0

CHAPTER 3. COMPOSITION ALGORITHMS 45

A0,

A(0,0; 0,0)

Figure 3.2: Linear Bézier

and a linear Bézier curve

0;1,1) A(1,1;1,1)

A(1,1; 0,0)

curve and biquadratic Bézier patch

=3 Bl
k=0

with its projections onto the u,v

9u(t)

9u(t)

ares
1
= Y cuBi()

= 20 Ckali (t)

Both the patch and the curve are shown in Figure 3.2. The composed function

bﬂuz%ﬁkzﬂi%@m>

=0

18
gt) = f(gu(t),90(¢))
= XX
= iéng (t)
with

¢}
Q
Il

6= Y %

Z Cy(e, f) Ce(i1,12) Cr (41, Jo)

e+f=g il"’;2 € {07 1} jl’j2 € {01 1}

i1+i2=e

i+i2=7f

AlCu;, » Cusys Cojy 5 Cuj,)-

CHAPTER 3. COMPOSITION ALGORITHMS 46

Our first step consists of constructing all blossoms A(cui1 » Cusy Cojy s c%).
By thinking of a tensor product patch as curves of curves, we can do this in
a two step process. Using repeated linear interpolation, we first construct the
intermediate points A(0*~%,1% ¢, , cyy,) (Figure 3.3).

A(0,0; 1,1)

. A(0,1; ¢yo,C\0)

QY A(0,0; Cvo,Cv0)

A(0,0 0,0) A(1,1;0,0)

Figure 3.3: Reparametrisation of a biquadratic Bézier patch: intermediate
Bézier points

In a second step, we use repeated linear interpolation between these inter-
mediate points to construct the points A(c, Cuiy’ Cojy 5 c%)' This process is
shown in Figure 8.4.

Convex combinations between these points yield the Bézier points €, of
the composed curve g(t). The combinatorial constants Ce(i1,i2), Cs(j1,J2)

i1 ?

CHAPTER 3. COMPOSITION ALGORITHMS 47

A(0,0; CV1,CV1) O A(1 »15 Cyy ’cv‘l)

A(1 11; Cvoscv1)

A(0,0; ch’Cv1) %.

o= | —O

/ \
A(cuO7cu ’ ch!ch)

=0 A(cy1,Cy1; © ,c‘,o
A(Cy0:Cu0 Cvo:Cvo) uirul e

® A(1,1; Cy0,Ci0)
A(0,0; ch!CVO) \

Figure 3.4: Reparametrisation of a biquadratic Bézier patch: intermediate
Bézier points

and Cy(e, f) are found to be

C.(0,0) = €;(0,0)=1

C.0,1) = 0,1 =7

C.(L1) = Cp(1,1)=1

C,(0,0) = 1

60,1 = 6,0=3
2

C,(1,1) = 3

C,(0,2) = cg(2,0)=%

69(1’2) = 69(271)2%

C,(2,2) = 1

CHAPTER 3. COMPOSITION ALGORITHMS - 48

Thus the new Bézier points T, of the composed curve are

Co = A(CUm Cug5.Cug>s c'vo)

- _ 1 ! ’

Cc; = §A(Cuoacm;cvoacvo) + EA(cumc’Ulo;c’UO’c’"l)

- 1 2 =

C = -G-A(Cuucm;cuoacvo) + gA(cuoacul;cvmcul) + EA(CUO,Cuo;C‘lu)cUl)
- 1 1

C3 = EA(Cuoacm;c'vucvl) + _2'A(c‘u17cu1;c”0’c'”1)

Cy = A(cuncm;cm;cvl)

The composition process and the new Bézier points of the composed curve
are shown in Figure 8.5. Grey lines indicate conver combinations of points
that yield the Bézier points of the composed curve. '

A(0,0; 1,1)

A(1,1;1,1)

A(Cy0sCyt; Cy1:C1)
} A(Cy1,Cut; Cy1:Cv1)

A(Cumcuo; Cn1 vcv1)

A(CUO’CUO; C cv1)

Cut5. CvosCvi)N
A(cu01cu1; cvO’cv1)

C,

) 3
0 A(Cy1,Cy1; Cvos
AlCursCuct CvarCro) (Cu1,Cy15 CvosCro)

A(0,0; 0,0) A(1,1;0,0)

Figure 3.5: Reparametrisation of a biquadratic Bézier patch: final Bézier
points

3.2.3 Extension to Higher Dimensions

Both the monomial form algorithm and the blossoming form algorithm can
be easily extended to higher dimensions.

CHAPTER 3. COMPOSITION ALGORITHMS 49

We first present the monomial form formula for the mapping of a Bézier
curve into a Bézier volume. The derivation is strictly analogous to the two-
dimensional case. '

Let f(u,v,w) : R Xx R x R = R? be a degree (m,n,p) tensor product
Bézier patch in monomial form

m n D
flu0,0) = 55555 vt
=0 j=0 k=0
and g(t) : R — R3 be a degree q Bézier curve
q
t) =) cett
e=0

with its projections onto the u, v, w axes

gu(t) = ic‘uete

e=0
q
g v (t) = z c'Ue te
e=0
q
9u) = D eyt
e=0

The composed function g(¢) then becomes

g(t) = f(gu(t), 90(2), 9u(2))

n

S e O [0 OF 5O

=0 j=0 k=0
i q J q k
L= Z Z Z a”:,jak [Z C'U'e te:| [Z c'l’e te:I [Z c'wete:|
=0 j=0 k=0 e=0 e=0 e=0

Expanding the expression and collecting the coefficients for each power of ¢

as b 7 finally yields
g(m+n-+p)

gty= Y ast,

f=0
which is the power form representation of a degree (g(m + n + p)) Bézier
curve.

CHAPTER 3. COMPOSITION ALGORITHMS 50

The derivation of the three-dimensional blossoming algorithm is exactly
along the lines of the two-dimensional algorithm. We start off with a degree
(m,n,p) tensor product Bézier volume in Bernstein form

n P
f(u,v,w) Z > bk B (u)B} (v) BE (w)
i=0 j=0 k=0
and a degree g Bézier curve
g
=Y c.Bl(t)
e=0

with its three projections g,(t), g,(t) and gu(2).

We can find the new Bézier points by, as

bsgn = > > >

21,00 5tm €{0,...,4} J1,...,dn € {0,...,9} k1,...,kp €{0,...,q}
i+ tim = f Jitetin=g k14 +kp=h

Ci(t1,---30m) Co(J1y- -5 Jn) Culkr, - - -, kp)
A(cuil,...,cuim;cvjl,...,c,,jn;cwkl,...,cwkp)

133

with o)
C Z,,Zm = 2)\a) i
i -otm) = 250
and - . :
C -,...,'n = A))
oo oda) = 5050
and
Cn(ky,..., kp) = (4) ('E:Z)(k) }
Now we can write the composed curve as
- mg ng pg
glt) = Z Z Z B B"‘I(t qu(t) bfg .
f=0g=0h=0

mqg ng pq mq

= z E Z q(m+n+p) }E:';i’;’;’*‘p)() Bf,g,h

Ff=09=0h=0 \ f+g+n

g(m-+n+p)
= 3 &BI™™P) (3.8)
d=0
with -
mq\ (nq =
W 3 G,
f4+g+h=d - ()

CHAPTER 3. COMPOSITION ALGORITHMS 51

Introducing a new combinatorial constant

Cd(f,g, h) = (_qu__)_(w

(q(mtlnﬂz))

we can see that with Equation (3.8) we have finally obtained the Bernstein-
Bézier representation of the new, composed curve:

g(m+n-+p)

g(t) — Z &y Bg(m+n+z7) (t)
d=0
with
& =) > > >

frg+h=d 4y,.. im €{0,...,q} G1,..-1n € {0,...,q} ki,...,5p € {0,...,q}

W+ +im=7F it +in=g ki+--+jp=nh
Ca(f,9,R)Cs(iry- .-, 0m) Cg(d1s - - -5 Jn) Chlka, - - -, kp)
A(cuil,---acu,-m§c'uj1,'--:cvjn;cwkly---ycwkp)

3.3 Composition of Bézier Patch and Bézier
Triangle

Considering the fact that Bézier triangles represent a generalisation of Bézier
curves, it is not surprising that the composition algorithm with Bézier trian-
gles can be developed along the same lines as the composition with Bézier
curves.

Let f(u,v) : R x R — R be a degree (m, n) tensor product Bézier patch
in Bernstein form

£(u,v) = iz bs; B (1) B (0)

and g(t) : R? — R? be a degree p Bézier simplex

g(t)= > aBg(t)
k|=p
with its projections onto the u,v axes
9u(t) = Z Cuy Bi(t)
[k|=p

g(t) = chkBﬂ(t)-

[k|=p

CHAPTER 3. COMPOSITION ALGORITHMS 52

The composed function g(t) becomes

g(t) = f(gu(t)’ Gv (t))

m n

= gozobw Bzm(gu(t)) B;'L(gv(t))
= iébm B,m(l¥ Cu BE(t)) B;-‘(lg_; o BR(1)) (3.9)

Again, we can rearrange Equation (3.9) and reparametrise twice:

g(t) = ZB’" > cu BL(t) ZB” > ey Bh(t))bi; (3.10)

=0 lk|—P j=0 [k|=p

= ZB’”(Z cuBE(®) X Bi(t)b

=0 If |=np

= > BP(t) ZB'”(Z cu BE (1)) big

|f|=np i=0
= 3 Bi*(t) Y. BM™(t)bes (3.11)
|f|=np le|=mp
We can generate the intermediate Bézier points Bi’f of the composed
function as

Bi,f — A(O<m-—i>’ 1<i>; e1<.fo>, e2<f1>, e3<f2>)

= Z Cf(jl,'-'aj'n)

IJ'1I='--= linl=p
j1 + - +jn =f .
A(Q<™—E> 1<m>, FCug e e Cy;,,) (3.12)
with
Celin,-3n) = BLELLR),
The Bézier points Be’f can be found as
besr = 3 Co(iy, - .-, im)
fiaf = - = fim| =
i1+ -+im=e _
Z&(cu. \ Cus 1<fo> e2<f> e3<f2>)
TR im ;)
= Z Z Ce(ila---,im) Cf(jla---,jn)
il=-=lim|=p Ijl=---=lin|l=p

i1+ +im=e jit+-+in=f

ACusy s+ Cugpy s Cogy - - - 3 Cay,)

CHAPTER 3. COMPOSITION ALGORITHMS 53

with
Ce(iy ..., ip) = (3"?) im)

we can now rewrite Equation (3.11) as

S S bes BT(t) BXP(t)

le|=mp |f|=np
p(m+n) (t) g
I,z o

= > gBrm(t) (3.13)

lgl=p(m+n)

g(t)

with o) 07 =
Eg: Z (:(m+:)) be

e+f=g g

Equation (3.13) is the Bernstein-Bézier representation of the composed
Bézier triangle and €y are its new control points.
Defining new combinatorial constants

Cale,) = b

we can express the new control points as

& = > > >
e+f=g }i1|=---=|im]=p Jil=--=linl=p
i+ - +im=e i+ F+ja=f

Cg(e7 f) Ce(ih ey im) cf(jl) .o 7jn)
A(cy, , - ce s Cuyp i Cag - e e Cuy)-

Example 7 We will now give a geometric interpretation of the algorithm by
giving an ezample of the composition of a tensor product Bézier patch and
a Bézier triangle. For the benefit of clarity, we will treat the composition of
the two simplest surfaces, i.e. bilinear patch and linear triangle.

We are looking for the composed function g(t) = £(gu(t), g,(t)) of the
bilinear Bézier patch

2 2

=Y b;;B}(u)B(v)

=0 j=0

CHAPTER 3. COMPOSITION ALGORITHMS 54

and a linear Bézier triangle

g(t) = > ciBi(t),

|k|=1

with its projections onto the u,v azes

gu(t) = ll}_: cukBllc(t)

9(t) = > cyBy(t).

|k|=1

Both the patch and the curve are shown in Figure 3.6.

A(1; 1)

C., A(0; 1)

Ce2 A(O; O) A('I; 0)
Figure 3.6: Mapping of a linear Bézier triangle onto a bilinear Bézier patch

By Equation (3.18), the composed function is

g(t) = f£(gu(t),9:(t))
= D EBg(t)

lgl=2

with

G = > X D> Cglef)Celin) Ce(Gn) Alcuy; e)-
etf=g |ijj=1 |ji]=1
ij=e ji=f

Our first step is to construct all points with the blossoms

A(ey, ; €y,)

CHAPTER 3. COMPOSITION ALGORITHMS 55

A(1; 1)

‘ Alcyea; Ce1)

Alcyet; Cves) |

Alcyes: Cves)

' A(Cye2; Sve2) AlCyetiCve2) [Alcyeas Cvep)
A(0; 0)
A(1; 0)

Figure 3.7: Composition algorithm: intermediate points

A; 1) ‘
°.

We obtain 9 points which are shown in Figure 3.7.
The control points Cg of the new, composed, Bézier triangle are now found
as linear combinations of these blossoms. We obtain

€C200) = Certel = A(Cues;Crer)

C020) = Ce24e2 = A(Cucs;Cuez)

5(002) = Ce3+e3 = A(Cues; Cve's)

_ _ 1 1

C110) = Celte2 = '2‘A(cue1§ Cuez) T §A(Cuez? o)
- - 1 1

Co11) = Ce2+e3 = §A(Cue2; Cues) + §A(Cues; Cvez)

- - 1 1
Cao1) = Ceites = EA(cuﬂ; Cues) + §A(Cue3; Cve1)

The composition process of the new Bézier triangle is shown in Figure 3.8.
The grey lines indicate convex combination of points.

3.3.1 Extension to Higher Dimensions

The extension of the algorithm to the composition of a Bézier volume with a
Bézier triangle is straightforward. For completeness, we give the expression
for the composed triangle:

CHAPTER 3. COMPOSITION ALGORITHMS 56

A(1; 1)

A(1; 0)

Figure 3.8: Composition algorithm: final points are obtained as convex com-
binations

gty= Y EBImTP(t)
|d]=g(m+n-+p)
with
& = Y > >)
frgth=d fij|=-..=lim|=q¢ litl=... linl=q [ka|+---+lipl=¢

4 tim=f ji4+-+jn=g ki+---+jp=h
Cd(f7 g, h) Cf(ila R aim) Cg(jl) <.)j'n.) Ch(kh .. 'akp)
A(C‘Ui17"‘)CUim;c‘Uj17""c‘an;c'(UkI’"”c'lUkp)

3.3.2 Composition of a Bézier Volume and a Bézier
Patch

Let us finally look at the degree of a patch that results when we compose a
Bézier volume and a Bézier patch. To obtain information on the degree of
the resulting patch, we use the monomial form algorithm.

Let f(u,v,w) : R x R x R — R% be a degree (m,n,p) tensor product

Bézier volume in monomial form
m n ¥4

flu,v,w) =Y > a; j puviwk

1=0 j=0 k=0

CHAPTER 3. COMPOSITION ALGORITHMS 57

and let g(t) : R x R — R3 be a degree (g,r) Bézier patch
q T
g(5,t) =Y. cecyset!
e=0 f=0

with projections onto the u,v, w axes g,(s,t), g,(s,t) and g,(s,t).
The composed function g(¢) then becomes

~~

g(s7t) = f gu(s’t)7 9u(s, t) gw(s t))

n P

Y3 aiik[gu(s,)] [90(s,) [gu(s, 1))

I
[V]s

1=0 j=0 k=0
m n P
= 20D ik
1=0 j=0 k=0
a T 9 r ITq r k
[Z Z Cue Cuy setf } [E Z Cue Cuy Setf] [Z Z CweCuy setf}
e=0 f=0 e=0 f=0 e=0 f=0

Expanding the expression and collecting the coefficients for each power of s
and t as by, yields
g(m+n+p) r(m+n+p)
Elst)= > Y &,,sith (3.14)
g=0 h=0

which is the power form representation of a degree [g(m+n+p),r(m+n+p)]
Bézier patch.

3.4 Further Composition Problems

Let us briefly remark on some further possible extensions of our composition
algorithms:

deformation of B-spline curves

deformation of tensor product B-spline surfaces

deformation of curves by a B-spline solid

deformation of surfaces by a B-spline solid

rational Bézier curves and non-uniform rational B-splines (NURBS)

CHAPTER 3. COMPOSITION ALGORITHMS 58

The deformation of B-spline curves can be achieved by considering them
as a number of Bézier curves with a certain continuity between them. In Sec-
tion 2.3, we have shown that the blossoming notation provides a convenient
way of expressing the control points of the individual Bézier curves. The
deformation of a B-spline curve is then reduced to the deformation of a num-
ber of Bézier curves. Let us suppose the B-spline is of degree ¢ with single
knot multiplicity ¥ (C97* continuity) and the deformation solid is of degree
(m,n,p). The composed Bézier curves will then be of degree g(m + n + p).
The composed Bézier curves will still join with C?~* continuity, as the com-
position is not going to change the continuity. We can therefore join them
into a B-spline with knot multiplicity ¢(m + n + p) — (¢ — k).

The deformation of tensor product B-spline surfaces can be done using
the same principle, if we consider them as a collection of Bézier patches with
a certain degree of continuity between them. Again, we use the blossoming
principle to find the individual Bézier patches, deform them, and rejoin the
deformed patches.

The deformation with B-spline surfaces and volumes is more involved.
Figure 3.9 (a) shows a curve in the parameter space of a B-spline patch,
where ty0, ty1, tue and ty,ty1,t,2 denote the knot lines. The composition
can again be done by considering the B-spline patch as a number of Bézier
patches. In order to determine which part of the curve falls into which Bézier
patch, we have to determine the intersections of the curve with the knot line
in which the Bézier patches join?. These intersection points constitute the
new knots of our deformed B-spline curve. The deformed curve is determined
by deforming each curve segment individually and re-joining them into a B-
spline.

The problem is more complex for the deformation of Bézier patches. If
the Bézier patch is aligned with the isoparametric lines of the B-spline patch
(Figure 3.9 (b)), the new knots can be determined for each parameter sepa-
rately. However, if the Bézier patch and the B-spline patch are not aligned,
it is not clear how to determine the knot vector of the composed patch,
as the intersection of the two parameters with the knot lines are no longer
independent of each other.

Finally, let us consider the generalisation of our composition algorithms to
rational curves (for an introduction to rational B-splines and Bézier curves,
see [Pie91]). A rational Bézier curve in R® can be viewed as a projection

2Note that a degree g curve can intersect a knot line up to g times.

CHAPTER 3. COMPOSITION ALGORITHMS 59

te ' te te

A1 LT tw’q//\

A U AP

two tu1 to two t

(a) (b) ()

Figure 3.9: Deformation by B-spline patch: curve (a), aligned Bézier
patch (b), general Bézier patch (c)

of a Bézier curve in R* onto the hyperplane w = 1 (Farin [Far83]). Bézier
patches and B-splines are extended the same way. To apply our composition
algorithms to rational curves, we can therefore simply apply the composition
algorithm in R* space.

3.5 Summary

In this chapter, we have developed functional composition algorithms to find
analytic expressions for curves and surfaces that have been embedded in ten-
sor product Bézier surfaces and volumes. The functional composition prob-
lem is posed in terms of composing Bézier simplexes with tensor product
Bézier hyperpatches. We chose Bézier curves to investigate the deformation
of curves and Bézier triangles for the deformation of surfaces. The deforma-
tion basis can be defined in terms of Bézier simplexes (triangles or tetrahedra)
or tensor product Bézier patches and volumes. We have used tensor product
deformation bases for this discussion as they are most frequently used for
Free Form Deformations.

Most of the composition problems were investigated using the blossoming
principle. The extensive use of the blossoming notation has led to algorithms
with geometrically meaningful interpretations.

We have concluded our chapter with a discussion of possible extensions
of our composition algorithms to B-splines and rational Bézier simplexes and
rational B-splines (NURBS).

In the next chapter, we shall investigate the relevance of these results to
the Free Form Deformation method.

Chapter 4

Free Form Deformations

4.1 Introduction

Functional composition algorithms are useful to understand and analyse the
Free Form Deformation (FFD) principle. FFD is a versatile representation-
independent technique for deforming geometric models in a free-form manner.

The original technique is due to Bézier [Béz78], although it gained popu-
larity through the more graphics-oriented implementation by Sederberg and
Parry [Par86).

We begin this chapter with a general introduction to the Free Form Defor-
mation algorithm. We then use the Sederberg-Parry implementation [SP86b],
based on a trivariate tensor product deformation basis, to provide a step-by-
step discussion of the algorithm and show how to evaluate deformed points,
tangents and normals. Using the results on functional composition, derived in
the previous chapter, we give expressions for edges and surfaces of deformed
objects. The chapter closes with a review of extensions to the original Free
Form Deformation Algorithm.

4.2 The FFD Algorithm

-FFD can be thought of as embedding an object in a block of clear, pliable
plastic. A deformation is applied to the plastic block and the embedded
object is deformed together with the surrounding solid. Thus we have an
indirect way of changing the shape of an object by deforming the surrounding
solid.

60

CHAPTER 4. FREE FORM DEFORMATIONS 61

Figure 4.1: Turning the teapot into a jug: Definition of the deformation
solid (a), deformation of the solid results in deformation of the enclosed
teapot (b)

Figure 4.1 shows the process of applying FFD to an object. First, a solid
is constructed around the object to be deformed (a). The deformation solid
is shown as a cube with bright edges. Then the deformation is applied by dis-
placing the control points of the deformation solid, which indirectly changes
the shape of the embedded object (b). The deformation solid in Figure 4.1
has twelve control points. Depending on the type of desired deformation,
deformation solids with more control points can be defined.

Mathematically, the FFD deformation solid is defined as a lattice of con-
trol points of a trivariate parametric function f(u,v,w), which performs a
mapping R® — R3. Assuming no singularities, each object point (z,y, z)
in world space can be mapped to a point (u,v,w) in parameter space*. The

1Note that this is the parameter space of the deformation solid and not of the object.
FFD does not require a parametrically defined object.

CHAPTER 4. FREE FORM DEFORMATIONS 62

deformation is applied by displacing the control points, which leads to a new
function f (u,v,w). Now each point (u,v,w) can be re-mapped using f toa
point (%, 9, Z) in deformed space. FFD therefore consists of a two stage map-
ping, where each point in world space is first mapped to parameter space
and then to deformed space:

(-T,y, Z) f;l) (U,'U,'LU) L(x’?L 2)

f(u,v,w) flu,v,w)

/_\
b/
NI

>
yl i; v,

(a) | (b) (©)

X1

Figure 4.2: Surface in world space (z,y, z), parameter space (u,v,w) and
deformed space (Z, 7, 2)

An implementation of FFD consists of four steps:

1. Defining a parametric solid that encloses the object or surface to be
deformed. The solid consists of a lattice of control points and a cor-
responding set of parametric basis functions and performs a mapping
R3 — R3. Assuming no singularities, each point in world space (z, y, 2)
can be expressed as a set of local parametric coordinates (u,v,w) in
the solid (Figure 4.2 (a)).

2. Determining the local coordinates (u,v,w) of all points (z,y, z) of the
embedded object (Figure 4.2(b)) such that

T
fu,v,w) = | y
z

CHAPTER 4. FREE FORM DEFORMATIONS 63

This can either be done iteratively or, if it exists, by determining the
inverse mapping f~1(z,y, 2).

3. Deforming the surrounding parametric solid by moving the control
points from the original lattice positions, thus changing the basis func-
tions. Let f(u, v, w) be the new parametric solid with displaced control
points.

4. Determining the new points (Z, 7, Z) of the embedded object (Figure 4.2
(c)). This is done by evaluating the modified basis functions

f(u,v,w) =

N < B

The choice of basis function determines what effect moving a control point
has on the shape of the embedded object. Depending on the basis functions,
moving a single control point can either deform the whole object (global
deformation) or only parts of it (local deformation).

Next we use the Sederberg and Parry implementation to provide a more
detailed discussion of FFD.

4.3 Deformation Using a Trivariate Bernstein
Basis

The first step in defining an FFD is the choice of a deformation function
f(u,v,w) : R® — R3. The deformation function can be defined in terms
of any polynomial or piecewise polynomial basis, such as a tensor product
Bézier , B-spline or nonuniform rational B-spline (NURBS) basis or some
non-tensor product volume such as a Bézier tetrahedron.

Both Bézier [Béz78] and Sederberg and Parry [SP86b] [Par86] use a tensor
product trivariate Bernstein-Bézier polynomial basis

m n ¥4
=0 7=0 k=0
The advantage of using a Bernstein basis is that there is a geometrically
meaningful relationship between the displacement of a control point and the
resulting deformation of the solid (cf. Section 2.5.2).

CHAPTER 4. FREE FORM DEFORMATIONS ' 64

Having defined the deformation solid, our next step consists of finding the
local coordinates of the object points. For a point with world coordinates
(z,y,z), we want to find the local solid coordinates (u, v, w) such that

f(u,v,w) =

N @ 8

The solution to this problem depends on the trivariate basis used. While
there is a closed form inversion of non-singular parametric curves and surfaces
(Sederberg [SAG84]), there is generally no closed form inversion for trivari-
ate hyperpatches (Sederberg [Sed83]), so it is not possible to express the
local solid coordinates (u, v, w) as rational polynomial functions of the world
space coordinates (z,y,z). Other functions that do not possess closed form
inversions are piecewise polynomial bases such as B-splines and NURBS.
Therefore, the inverse point problem usually involves general root finding,
© which is time consuming and prone to numerical errors. '

The main advantage of using a Bézier basis is that it simplifies this inverse
point problem. Let us for the moment assume that the embedded object has
coordinates (z, v, z) in the range [0,1] x [0, 1] x [0, 1]. Bézier curves have the
useful linear precision property (Farin [Far93]):

m
flu) =Y bB(u) =u (4.1)
=0
if we set the control points b; = i/m. This property extends to higher
dimensions. For the trivariate case,

u

f(u,v,w) = izn: Zp: b; ik B{"(u)B;?(v)Bﬁ(w) =|v], (4.2)

=0 j=0k=0 w

if we arrange the control points in a parallelepipedical lattice
bi,j,k =]/n . (43)
k/p
We find that if we arrange our initial lattice points according to Equa-

tion (4.3), the local solid space coordinates (u,v,w) of a point are identical
to its world space coordinates (z,y, 2).

CHAPTER 4. FREE FORM DEFORMATIONS 65

We can now alter the mapping function f by displacing the control points
b; ;. from their original positions to new positions b; ; » and obtain the new
mapping

f(u,v,w) = ZZZbJ’CB B} (v)Bf(w) =

1=0 7=0 k=0

N &

4.3.1 Object Representation

FFD performs a mapping R® — R3. It is independent of the underlying
representation of the deformed object and thus can be applied to Constructive
Solid Geometry (CSG) based solid objects as well as boundary representation
(b-rep) objects. B-rep objects can be bounded by any analytic surface such
as polygons, parametric surface patches or implicitly defined surfaces.

Although Bézier’s original paper [Béz78] investigates the deformation of
surfaces defined by tensor product Bézier patches and Parry [Par86] uses
FFD to deform objects in a solid modelling environment, the majority of
FFD applications (Sederberg and Parry [SP86b] [SP86a], Griessmair [GP89],
Coquillart [Coq90] [CJ91] and Hsu [HHK92]) use polygonal objects. One
reason for this concentration on polygonally bounded models is certainly
their wide availability.

We will now examine the deformation process of b-rep models bounded
by polygonal and Bézier patches.

4.4 Expressions for Deformed Objects

When we deform an object bounded by Bézier patches, the question arises
how to compute surface points of the deformed model. One solution is to
compute a surface point on the original patch, find its local solid coordinates
and then transform it into deformed world space. However, it would be con-
venient to find a direct description of the deformed surface for two reasons.
Firstly, it would give us a better idea of the type of surface we obtain through
FFD. Secondly, we could render the deformed model directly from its ana-
lytic description which would provide a clean, well defined interface between
modelling and rendering system.

We have shown that FFD is actually composed of two mapping processes:
The first is the inverse point problem to map from the object’s world coor-

CHAPTER 4. FREE FORM DEFORMATIONS | 66

dinates to the solid’s parametric coordinates and the second is the actual
deformation process that maps to deformed coordinates.

For a general trivariate polynomial basis there exists no closed form in-
version to express the parametric solid coordinates (u,v,w) as functions of
world coordinates (z,y, z) (and some affine transformation), so there will be
no closed form expression for deformed solids either. We will therefore re-
strict our treatment to the special case of a deformation solid defined by a
trivariate Bernstein basis with a parallelepipedical equally spaced lattice as
in Equation (4.3). By Equation (4.2), the mapping

can then be replaced by
affine

X—u —f—>i,
so the object’s local coordinates (u,v,w) will now coincide with its world
coordinates (z, v, z) and we only have to consider the deformation from pa-
rameter space to deformed space.

In the next two sections, we derive closed form expressions for objects
that have been deformed by a trivariate Bernstein basis. We consider the
deformation of curves and surfaces. Curves are represented in Bézier form,
because the deformed curves can also be represented in Bézier form. We
investigate the deformation of surfaces using Bézier triangles, because any
planar polygonally bounded surface can be decomposed into a number of
triangles. This decomposition process is the subject of Chapter 5.

4.4.1 Curves

We will first investigate the deformation of a parametric curve. A parametric
curve of degree g, defined in local solid space, can be expressed in Bézier form
as

q 9u(t)
g(t) =) ct®=| g() |,
e=0 Ju(t)

where g,(t),9,(t) and g,(t) are the projections of g(t) onto the u, v and w
axes.

CHAPTER 4. FREE FORM DEFORMATIONS 67

The deformation function is defined in terms of a trivariate Bernstein
basis:

m u
f(u,v,w) ZZZb,,,kB (uw)Bj (v)Bp(w) = | v |,
i=0 5=0 k=0 w

if the control points are initially arranged according to Equation (4.3).
By inserting the curve equation into the Bernstein basis and moving the

control points to their new positions b; ;x, we obtain an expression for the

deformed curve:
Flg) = 353 3 B B0 B} 0o 0) B0 1)

Finding a direct expression for the deformed curve can now be posed as
a functional composition problem of the form

&(t) = (g ().

We can now apply the knowledge of functional composition of tensor prod-
uct functions with polynomials that we derived in Chapter 3. The composed

function is
g(m+n-+p)

gt)= S agBImtn (),

d=0
A trivariate Bézier volume of degree (m, n,p) maps a curve of degree ¢ in
parameter space into a degree (g(m + n + p)) curve (Equation (3.8)). This
means that a straight line would be deformed into a degree (m+n+p) curve,
where m,n, p are the degrees of the trivariate Bézier polynomial. To express
the deformed curve in Bézier form, we can use the blossoming form algorithm
discussed in Section 3.2.2 to find the Bézier points of the composed function.

4.4.2 Polygonal Surfaces

Any planar polygonal surface can be subdivided into a number of planar
triangles, so we will use the triangle as the canonical primitive to investigate
the effect that FFD has on surfaces.

We can express a triangle as

9u(t)
g(t)= g'u(t) ’
9w (t)

CHAPTER 4. FREE FORM DEFORMATIONS 68

where t = (fp,%1,%2) are the barycentric coordinates of a point inside the
triangle.

Again using the trivariate Bernstein basis, we obtain the following ex-
pression for the deformed curve:

Fg(6) = 353 3 B BP0 (6) B} 0 (6) Lo (0).

Finding a direct expression for the deformed curve can now be posed as
a functional composition problem of the form

&(t) = f(g(t)).
In Chapter 3, we showed that the composed function is of the form

B(t) = Z ag B:Il(m+n+p) (t).
|d|=g(m+n-+p)

A planar triangle is a Bézier triangle of degree 1. Setting ¢ = 1, we
can see that a planar triangle gets mapped into a Bézier triangle of degree
(m+n+p).

4.5 Tangents and Normals

We have shown how to transform a point from world space via parameter
space to deformed world space. Popular shading techniques such as Gouraud
shading (Gouraud [Gou71]) or Phong shading (Bui-Tuong [BT75]) also re-
quire surface normals. If we want to render a deformed surface or obtain
curvature information, it would therefore also be be useful to transform tan-
gent and normal vectors into deformed space. Normal transformation is not
mentioned in the existing FFD literature, although it has been used in a
different context by Barr [Bar84].

Let x = (z, y, 2) be the coordinates of a point in world space, u = (u, v, w)
in parameter space and X = (Z, ¥, Z) in deformed space. For a given transfor-
mation f(u) = x, a tangent vector in parameter space t, can be transformed
into a tangent vector in world space, tx, by the contravariant transformation
(Millman [MP77])

ty = Jty, (4.4)

CHAPTER 4. FREE FORM DEFORMATIONS 69

where J is the Jacobian matriz given by

Mz(u) Ofz(u) 8fz(u)
du ov ow

J = ofy (u) ofy(u) Ify(u)
du v ow

8 (u) Of,(u) Of.(u)
ou ov ow

For the following discussion we assume that J is nonsingular, i.e. it has a
unique inverse and its determinant is non-zero.

To retransform a tangent vector from world space back into parameter
space, we can invert Equation (4.4) and obtain

ty = J 1ty (4.5)

Since the normal vector can be constructed from the cross product of any
two tangent vectors at a point, we can also transform normal vectors to and
from world space. Barr [Bar84] shows that a normal vector in parameter
space n, can be transformed to world space by the covariant transformation

n, = det (J) I~ 7n,. (4.6)

Since we are usually only interested in the direction of the normal vector, it
is not necessary to compute the determinant.

Given a normal vector ny in world space, to find the corresponding vector
n, in parameter space, we invert Equation (4.6) and obtain

n, = (det J)~'J7n,. (4.7)

This gives us a mapping of normal vectors from and to world space.

FFD uses two functions, f(u) and f(u). f(u) transforms from parameter
space to world space and f‘(u) transforms from parameter space to deformed
space. To transform a point from world space to deformed space, we apply
the mapping

x u Lz

Equations (4.4) and (4.5) enable us to transform a tangent vector from
world space to deformed space. Let J be the Jacobian of f(u) and J be the
Jacobian of f (u). As J is assumed nonsingular, we can then apply a mapping

-1
ty 2 ty sty

CHAPTER 4. FREE FORM DEFORMATIONS 70

to transform a given surface tangent in world space, ty, to deformed world
space:

u

ty = J!
J 1Tty

[T

Similarly, we can use the mapping

-1 37T 7\ 717
(et)=1I7 et @IV

X u 4 X

to transform a given surface normal in world space, ny, to deformed world
space:

ng = det(J)JTn,
= det (J) T (det J)~* IT n,
= det J(detJ)"*(IJ T !)Tn,.

Again, as we are usually only interested in the direction of the normal, it is
not necessary to compute the two determinants.

Note that the transformation of normals does not require knowledge of
the inverse f~!(x) = u of our transformation function, it only requires that
the determinants of J and J be non-zero. This makes this transformation
also valid for B-spline and NURBS based transformations.

4.6 Extensions to FFD

Since the introduction of FF'D to the graphics community, a number of exten-
sions have been added. The main disadvantage of Sederberg’s original version
is that the control points have to be arranged as a regular, parallelepipedi-
cal lattice. Thus flexibility can only be added by increasing the number of
control points, which also increases the degree of the polynomial basis. This
not only makes evaluating the deformed points more expensive, it also in-
creases the degree of the deformed surfaces. A cubic curve, mapped through
a 10 x 10 x 10 deformation lattice, will be of degree 3 - (10 + 10 + 10) = 90.

Coquillart introduces a technique called Ezxtended Free Form Deformation
(EFFD) [Coq90] [CJ91] that increases the flexibility of FFD by allowing ar-
bitrary lattice geometry. The lattice is now composed of a number of tricubic

CHAPTER 4. FREE FORM DEFORMATIONS 71

Bézier volumes, called “chunks”. The lattice can be of any parallelepipedi-
cal or cylindrical shape and composite lattices can be formed by joining a
number of lattices at their control points.

Each chunk corresponds to a (3 x 3 x 3) deformation grid of Sederberg’s
original FFD, although the spacing of the internal lattice points does not
have to be equal. Users are only allowed to manipulate the corner points of
a chunk, while the application updates the other points to guarantee first or-
der geometric continuity between the chunks. The determination of a point’s
local coordinates (u,v,w) is more complex, as the linear precision property
(Equation (4.1)) does not hold. Thus, determining the local coordinates of
embedded points (which Coquillart calls freezing the lattice) is done in two
steps. First, the convex hull property of Bézier volumes is used to determine
the chunk that contains the point. Then the point coordinates within the
chunk are computed using Newton iteration. Coquillart reports no conver-
gence problems. However, as the inverse-point problem has to be solved for
each object point, the computational costs of EFFD are significantly higher.

FFD does not have to be expressed in terms of a Bézier basis. In fact, any
set of parametric basis functions will do. Griessmair et al. have expressed
FFD in terms of a trivariate B-spline basis [GP89]. Any trivariate B-spline
volume can be split up into a number of trivariate Bézier volumes, with the
degree of the Bézier volume being the degree of the spline basis functions.
This reintroduces some form of local control. It also addresses the problem
of the high degree of the resulting deformed object surfaces, as the degree of
the deformation volumes no longer directly depends on the number of control
points.

Although Griessmair was the first to use a B-spline basis in FFD, he
did not address the inverse point problem. The inverse point problem, i.e.
determining the local coordinates (u,v,w) of the points of the embedded
object, needs special attention for B-splines as B-splines possess the linear
precision pfoperty

) = 3D NP w) = u (48)

1=0
only if we choose the control points according to
1
d; = - (ti + -+ tign-1)

where [to, ..., tr+on—2) With ¢; € R is the knot vector.

CHAPTER 4. FREE FORM DEFORMATIONS 72

If we choose all knots with multiplicity one, the image of the B-spline
function does not fill the convex hull of the control lattice. We can change
this by giving the outer control points a multiplicity of three, in which case
the control lattice will no longer be evenly spaced.

If we insist on an evenly spaced lattice and a B-spline function whose
image fills the convex hull of the control lattice, we have to abandon the
linear precision property and find the parameter space coordinates (u,v,w)
by general root finding, similar to the technique used in Coquillart’s EFFD.
This obviously signiﬁcantly increases the computational expense of solving
the inverse point problem.

The indirect deformation of objects through the displacement of control
points is problematic in itself. The user needs to have a basic knowledge of
Bézier curves or splines to understand the use of control points and the effect
that moving a control point has on the shape of the object. It is difficult
to predict the effect that a deformation will have on the object and this
makes it difficult to achieve an exact shape. Finally, control points might
be obstructed by the embedded object or a large number of control points
might clutter the screen.

Hsu et al. [HHK92] have addressed this problem by developing a Free
Form Deformation that allows the direct manipulation of object points rather
then the control points of the surrounding solid. It is based on existing
techniques for the direct manipulation of polygonal meshes (Parent [Par77]).
The user interacts with the object by selecting an object point and moving it
from its original position to a new position, called target point. Hsu developed
an algorithm that moves the control points of the surrounding solid such
that the resulting deformation will result in the selected object point getting
moved to the target position. The problem is underdetermined as there are
many control point displacements that will cause the same movement of a
single object point. Hsu tries to find a least-square solution to the control
point displacement. The resulting system is considerably more user-friendly
than the original FFD as it keeps the underlying B-spline implementation
details hidden from the user.

CHAPTER 4. FREE FORM DEFORMATIONS 73

4.7 Summary

We have introduced Sederberg’s Free Form Deformation (FFD) technique,
which consists of indirectly deforming an object by embedding it in a flexible
solid and then deforming this solid. FFD is independent of the underlying
representation of the object and can thus be used to add free form flexibility
to modelling schemes such as CSG that are based on a small number of
predefined shapes.

One of the most popular applications of FFD is the deformation of polyg-
onally bounded models; we have therefore provided a more detailed discus-
sion of the deformation in the context of trivariate Bernstein Polynomials
(Bézier hyperpatches) and polygonal surfaces and have shown how to eval-
uate deformed object points and normals. While it is generally not possible
to find closed form expressions for deformed objects, we have shown that
we can use the functional composition algorithms, derived in the previous
chapter, to find expressions for deformed Bézier curves and triangles if they

~ are deformed by trivariate Bernstein basis with a parallelepipedical lattice of

control points. By inspection of the closed form expression of these deformed
curves and triangles, we saw that FFD raises the degree of deformed surfaces
significantly, which makes their evaluation expensive.

In the next chapter, we discuss ways to efficiently generate shaded images
of deformed objects.

Chapter 5

Rendering of Deformed Models

5.1 Introduction

In this chapter, we investigate the rendering process of polygonally bounded
objects that have undergone Free Form Deformation. FFD deformed models
can be rendered using two main approaches:

e determining parametric expressions of the deformed objects that enable
us to use existing rendering algorithms

e using a rendering algorithm that does not require such parametric sur-
face expressions.

The first approach makes use of the composition algorithms discussed in
Chapter 3. We have seen that for a certain class of deformation solids, Bézier
volumes with parallelepipedical lattices of control points, we can express the
deformed surfaces in closed form as an ensemble of Bézier patches. The ren-
dering process of such curved surfaces is well investigated, see Coons [Co067],
Catmull [Cat74], Clark [Cla79], Lane and Carpenter [LC79] [LCWBS80] and
Lien et al. [LSP87] [SL87]. These approaches are based on two basic prin-
ciples: iterative evaluation and adaptive subdivision. We start this chapter
with a discussion of these two main approaches to rendering Bézier curves
and surfaces.

Since a closed form expression of the deformed objects can in most cases
not be obtained or is computationally very expensive, we then look at meth-
ods that do not require such closed form expressions. These methods replace

74

CHAPTER 5. RENDERING OF DEFORMED MODELS 75

the object by a triangle mesh and render the deformed mesh. One advan-
tage of such an approach is that it can also be applied to deformations by
Bézier volumes with irregularly spaced grids or B-spline and NURBS vol-
umes, where closed form expressions of the deformed objects usually do not
exist. First, we investigate artefacts that can be introduced by this triangular
approximation and then we discuss the two existing FFD-specific triangula-
tion algorithms. Having identified their major problems, we then proceed to

. discuss Finite Element Method (FEM) meshing algorithms. Mesh generation
is a central aspect of the Finite Element method and has received consider-
able attention. We evaluate several meshing algorithms with respect to Free
Form Deformation applications and close the chapter with the identification
of a meshing algorithm suitable for the FFD method.

5.2 Rendering of Deformed Polygons

In Chapter 3, we have shown that for a certain class of deformation solids,
i.e. trivariate Bézier volumes defined by regularly spaced parallelepipedical
lattices, it is possible to find the control points of Bézier curves and sur-
faces in deformed space. If we use these algorithms to obtain the parametric
equation of a deformed patch in deformed space, then there are two main ap-
proaches to rendering of parametric curves and surfaces: iterative evaluation
and subdivision. Iterative evaluation consists of rendering a surface directly
from its analytical description (Catmull [Cat74]), whereas subdivision tech-
niques recursively split a surface until the resulting segments are sufficiently
flat and then these primitives are rendered using a fast primitive drawing
routine.

5.2.1 Iterative Evaluation

Forward differencing (Coons [Co067]) is a fast technique for evaluating poly-
nomials at uniformly spaced intervals. It is based on the Gregory-Newton
forward difference interpolation formula, which states that a degree n poly-
nomial f(t) can be expressed at regular intervals t;,; =t; + h as

1
nlhn

(1) = fo + Aot — o)+ APy (t = o) -+ (¢ = tns),

CHAPTER 5. RENDERING OF DEFORMED MODELS 76

with the differences! A'f; given as
Ay = Ay — AT (5.1)

and
Aofj = f(tj)

If all the differences Af; at one point t; are known, Equation (5.1) can
be rearranged as

Aifj+1 = Azfj + Ai—Hfj (52)

and it is possible to reconstruct the polynomial at a point ¢;1; just by ad-
ditions. The advantage of the forward differencing algorithm is that every
successive point on f can be evaluated using only n additions per dimension.
After initialisation, the evaluation of an additional cubic curve point in R3
needs just 9 additions. For a tutorial on forward differencing, see Wallis
[Wal90].

For rendering application, it is desirable to evaluate the polynomial once

‘at every pixel location. This can be achieved by adapting the step size

during the evaluation of the curve. The technique is called adaptive forward
differencing and is discussed by Lien et al. [LSP87].

Forward differencing is also used to render biparametric patches. Patches
are rendered as a collection of isoparametric curves, so they are evaluated by
keeping one parameter constant and tracing the resulting curve. A discussion
of the algorithm can be found in Foley et al. [FvDFH90].

Forward differencing can be implemented in hardware very efficiently and
there are implementations for a number of cubic curves and bicubic surfaces
such as Bézier patches. The direct application for rendering FFD surfaces
is problematic, however, as they result in extremely high order patches for
which hardware implementations usually do not exist and the high degree
makes evaluation in software infeasibly slow.

A more general problem of forward differencing is that for large numbers
of points the roundoff error introduced by the additions will significantly
affect the accuracy and the results will increasingly deviate from the true
values.

Inote that A indicates here a difference and not a blossom

CHAPTER 5. RENDERING OF DEFORMED MODELS 7

5.2.2 Recursive Subdivision

Another popular approach to displaying curves and curved surfaces is recur-
sive subdivision (Lane and Carpenter [LC79]), a good introduction can be
found in Watt and Watt [WW92]. The idea is to replace the curve or surface
by a number of line segments or flat patches that represent a sufficiently close
approximation of the curve or surface.

Obviously, we have to ensure that the generated mesh is as close to the
original surface as possible. The finer we subdivide the surface, the more ac-
curate is our resulting mesh. However, as we are generating more patches, we
are also increasing our rendering costs. The advantage of recursive subdivi-
sion is that we can control the degree of accuracy with which we approximate
the original surface, thus trading off accuracy for speed.

In Section 2.2.3 we have shown how to subdivide a Bézier curve and
compute the new control points for the two resulting curves. The convex
hull of the new control points will be closer to the original curve than the
convex hull of the original points. If we repeat this process, we notice that the
new control points move closer and closer to the original curve and provide a
better approximation to the curve (Lane and Riesenfeld [LR80]) (Figure 5.1).

Figure 5.1: Approximation of a quadratic Bézier curve by repeated subdivi-
sion

We can use this to devise an algorithm to adaptively approximate a Bézier
curve by straight line segments (Lane et al. [LCWB80]): Suppose the orig-
inal curve is parametrised in u and defined over the interval v = [0,1]. We
now subdivide the curve about the midpoint © = 0.5 and compute the new

'~ CHAPTER 5. RENDERING OF DEFORMED MODELS 78

control points. The newly generated curves are again subdivided about their
midpoint. This recursive subdivision process of a particular curve segment
is terminated when the newly generated control points are sufficiently close
to a straight line. Thus we can approximate a curve by repeatedly subdivid-
ing it and computing the new control points. The curve is then drawn by
connecting the new control points by straight lines.

The subdivision technique can be easily extended to tensor product pat-
ches. The splitting process is then performed in each parameter indepen-
dently. Subdivision of a patch along one parameter splits a patch into two,
subsequent subdivision along the other parameter yields four subpatches.
The recursive subdivision of a subpatch is terminated when the subdivided
patch fulfills a predefined flatness criterion. Flatness could be determined by
defining a plane through three corner points of a subpatch and finding the
distance from the plane to the fourth corner. More sophisticated termination
criteria would also take into account the projected area of the subpatch on
the screen, as there is no use in subdividing a patch that only occupies one
pixel on the screen.

5.3 FFD Specific Subdivision Methods

The previously discussed methods operate in the object’s parameter space
and thus assume we have a parametric representation of the deformed object.
However, we have seen that obtaining this representation is only feasible for
the most simple cases, i.e. deformation with a Bézier volume defined by a
regularly spaced parallelepipedical lattice of control points. This is because
for this kind of lattice there exists an analytic solution to the inverse point
problem. For general lattice shapes, the inverse point problem (i.e. finding a
point’s parametric coordinates in deformation solid space) has to be solved
iteratively, which makes it impossible to find a Bernstein-Bezier expression
for the object in deformed space.

One solution to rendering these deformed objects is to substitute the
parametric representation of the object in world space by a mesh, composed
of triangular patches, apply the deformation to the mesh vertices and render
the resulting deformed mesh. _

A set A = {T;}Y, is called a triangulation of a domain © (Schumaker
[Sch93b]) if:

CHAPTER 5. RENDERING OF DEFORMED MODELS 79

e pairs of triangles intersect at most at a common vertex or a common
edge.

e the union of the triangles {T;}, is a connected set.

The triangle mesh represents an approximation to the original object,
where the triangles lie as close to the object’s surface as possible. Obviously,
the higher the number of triangles, the closer we can approximate the curva-
ture of the object. However, a large number of triangles also means a large
number of points to map to deformed space and a large number of triangles
to display, which increases the cost of rendering the deformed object.

It is therefore desirable to vary the size of the triangles, so small triangles
can be used to closely approximate areas of high curvature and larger trian-
gles can be used in flat regions of the object. This process is called adaptive
tessellation or, for triangular elements, adaptive triangulation of an object.
Adaptive triangulation has been applied extensively for rendering trimmed
NURBS patches (see Abi-Ezzi and Shirman [AES91], Rockwood [RHD89),
Sheng and Hirsch [SH92] and Piegl [PR95]). However, these methods are
applicable to FFD if parametric expressions of the deformed surfaces have
been determined.

5.3.1 Artefacts

Let us now identify two main artefacts that can be introduced when using
the triangle mesh representation of an object.

T-vertices

T-vertices are vertices that lie on the edge of another triangle (Figure 5.2 (a)).
After applying the deformation, this can result in a visible crack (shaded area
in Figure 5.2 (b)). T-vertices can either already exist in an original polygonal
model, or they can be introduced during the triangulation process.

Figure 5.3 (a) shows a t-vertex that has been introduced during the mod-
elling process. It can be avoided by requiring the database to contain maxi-
mally connected coplanar faces, i.e. coplanar connected faces have to be rep-
resented by a single polygon (Figure 5.3 (b)). An algorithm to join coplanar
connected faces is discussed by Baum [BMSW91]. However, joining all con-
nected coplanar faces can lead to concave polygons or even concave polygons

CHAPTER 5. RENDERING OF DEFORMED MODELS 80

d
a b
C E

(a) (b)

o

Figure 5.2: Crack caused by t-vertex

with holes, which puts additional demands on the subsequent triangulation

routine.

() (b)

Figure 5.3: T-vertices (a) can be avoided by joining coplanar connected faces

(b)

T-vertices can also be generated during the meshing process, if a triangle
is subdivided along a shared edge and the other triangle sharing the same
edge is not subdivided (Figure 5.2). This problem can be solved by always
splitting both triangles along a shared edge, other solutions include the gen-
eration of filler polygons (Nydegger [Nyd72|) or forcing the shared edge to
remain flat (Clark [Cla79]).

T-vertices are a topology feature. As the topology of the model remains
unchanged during a deformation, the t-vertex criterion is independent of the
space we triangulate in, i.e. if the triangulation of the undeformed model
does not contain t-vertices, neither will the deformed model.

CHAPTER 5. RENDERING OF DEFORMED MODELS 81

Slivers

Repeated subdivision of a triangle along the same edge can lead to triangles
of long and thin shape with small interior angles, called slivers (Figure 5.4).
Slivers are undesirable for several reasons: First, they causes artefacts when
interpolated shading techniques such as Gouraud shading or Phong shading
are employed (Foley et al. [FvDFH90]). Second, global illumination methods
such as radiosity rely on well shaped triangles (Baum [BRWS89]). A well
shaped triangle is a triangle as equilateral as possible. A suitable measure
to define the quality of shape of a triangle is its aspect ratio p, which is
defined as the ratio of the radius of the inscribed circle to the radius of the
circumscribed circle (Frey [Fre87]). The larger p, the better the shape of the
triangle.

As we want to render models in deformed space, it is important to note
that the aspect ratio is a geometric feature which changes as we move from
world space to deformed space. Our intention is to obtain well shaped trian-
gles in deformed space. Because of the distortion between world space and
deformed space, well shaped triangles in world space do not have to lead to
well shaped triangles in deformed space.

[oR}

c b

Figure 5.4: Generation of triangles of poor shape by repeated division of a
triangle along the same edge

CHAPTER 5. RENDERING OF DEFORMED MODELS 82

The main features of a good triangulation can be summarised as follows:
e approximates the shape of the object as closely as possible

e produces a minimum number of triangles

e produces well shaped triangles

e avoids cracks in the deformed object by not generating t-vertices.

Having identified desirable properties of a triangulation, we shall now
examine two existing triangulation algorithms for FFD and see how they
meet these criteria.

5.3.2 Parry’s Mesh Generation

Parry [Par86] investigates FFD in a solid modelling environment and all
his objects are composed of block, sphere and cylinder primitives. Each
object has an initial, uniform triangulation assigned to it and the subsequent
refinement is dependent on screen space and curvature.

The subdivision consists of splitting a triangle in half. In order to keep
the triangles fairly equilateral, each triangle has one edge assigned to it along
which to subdivide next. Parry calls this edge the long side, although it
doesn’t have to be the longest edge in the triangle. Initially, an arbitrary
edge of each triangle is labelled long side. After the subdivision, the two sides
that remained undivided become the long sides of the two newly generated
triangles.

In order to prevent t-vertices, we also have to subdivide the triangle that
shares the edge that we have just subdivided. However, triangles are only
allowed to be split along their long side. So if the shared edge happens to be
also the long side of the adjacent triangle, we can split the adjacent triangle
and the subdivision process of this triangle stops. If they have different edges,
a recursive subdivision process starts that subdivides adjacent triangles until
two triangles with a shared long side are found.

- The recursive subdivision process is shown in Figure 5.5. Triangle A’s long
side (indicated by a dotted line) is to be subdivided (Figure 5.5 (a)). Since
A and its neighbour B do not share their long side, we have to progress to C
to find a pair of triangles with a common long side(Figure 5.5 (a)). We now
split B and C along their common long side (Figure 5.5 (b)), which means

CHAPTER 5. RENDERING OF DEFORMED MODELS 83

that A and B now share a common long side and can be split (Figure 5.5

(c))-

A A
e [""'""" e
B\ N\ B i 5
(a) - (b) ()

Figure 5.5: Mesh refinement with Parry’s algorithm: long sides are shown as
dotted lines

The previous algorithm shows how to subdivide a triangle and avoid
artefacts such as t-vertices and poorly shaped triangles. Parry uses two
criteria to decide which triangles to subdivide: the screen space size of a
triangle and its curvature. A triangle is subdivided if its screen size exceeds
a certain measure or if the angle between its normal and the normal of an
adjacent triangle is greater than some pre-defined value.

5.3.3 Griessmair’s Algorithm

Griessmair and Purgathofer[GP89] develop an alternative subdivision method
that is based on individual edges rather than on triangles. All edges are stored
in a heap structure according to some measure of quality. The lowest quality
edge is taken off the heap, split, and the resulting new edges are stored in
the heap. Figure 5.6 shows an edge (ab) with the two adjacent triangles
in world space and the corresponding edge ab in deformed space. It is im-
portant to recall, however, that a straight line in world space maps into a
Bézier or B-spline curve in deformed space, so the displayed edges are only
approximations to the actual edges in deformed space. This is the reason
why the deformed point m generally will not be mapped onto the midpoint
between & and b.

CHAPTER 5. RENDERING OF DEFORMED MODELS 84

(b)

Figure 5.6: Edge splitting in undeformed (a) and deformed (b) space

CHAPTER 5. RENDERING OF DEFORMED MODELS 85

Suppose edge ab is the lowest quality edge. It is taken off the heap, split
along its midpoint m, and the four resulting new edges am, bm, cm and
dm are stored on the heap. The strength of this method lies in the fact that
the heap operations storing, deleting and retrieving can be performed very
efficiently.

To assess the quality of an edge, one could therefore measure the distance
between its deformed midpoint m and the midpoint on the straight line be-
tween the two deformed endpoints & and b, they will generally not coin-
cide. While this measure actually works well in practice (Sederberg [Sed93]),
Griessmair shows some cases where this proves too conservative and leads
to unnecessary subdivisions (one example is the case when the midpoint m
lies close to the plane of the two triangles 4¢b and dbd. The improved mea-
sure of edge quality therefore consists of the sum of distances between the
midpoint 7h and planes of the two triangles 46b and abd (Figure 5.7).

d

\

b

Figure 5.7: Measure of edge quality

While Griessmair develops a measure of the quality of edges, his algorithm
does not address the problem of graded meshes or equilateral triangles. Al-
though the generation of t-vertices is avoided, repeated subdivision along the
same edge of a triangle can lead to new triangles of poor aspect ratio.

Both Parry’s and Griessmair’s algorithms require the existence of some
initial triangulation. Since Parry’s algorithm is designed for a solid modelling
environment with a limited number of modelling primitives (block, sphere,
cylinder), he can predefine an initial triangulation for each primitive and

CHAPTER 5. RENDERING OF DEFORMED MODELS 86

stores it with the primitive. In a deformation system for general polygonally
bounded objects, finding the initial triangulation of the objects is not obvious,
especially for concave domains of complex shape.

Triangulation problems of surfaces and objects are frequently encountered
in finite element computations. We will therefore discuss different. finite
element meshing algorithms and assess their suitability for FFD applications.

5.4 Finite Element Meshing

The problem of domain discretisation, also referred to as meshing, is an im-
portant part of finite element analysis and has received considerable atten-
tion. A variety of different approaches have been investigated and surveys
can be found in George [Geo91], Shepard [She88] and Ho-Le [HL88]. Co-
hen and Wallace [CW93] discuss mesh generation in the context of radiosity
methods.

Most algorithms were initially developed for the discretisation of two-
dimensional planar domains and were only later extended to handle three-
dimensional input. Two dimensional input consists of planes and usually
produces triangular or quadrilateral input, whereas three dimensional input
consists of solids and produces tetrahedral or sometimes brick elements. Al-
though for most two-dimensional mesh generation algorithms an extension
to three dimensions is possible, it is difficult to ensure the generation of well
shaped elements.

A first classification of mesh generation algorithms can be made based
on the element type they produce. Most of the current automatic mesh gen-
erators produce simplex meshes, that is triangular elements in two dimen-
sions and tetrahedral elements in three dimensions. While these elements
are known to be problematic in certain finite element areas such as stress
analysis, they are useful for most computer graphics applications.

Meshes can be either structured or unstructured. A structured mesh has a
predetermined topology, i.e. each vertex is connected to a predefined number
of neighbours. A rectangular grid is an example of a structured mesh. In
an unstructured mesh, each node can be connected to a different number of
neighbours, but the type of the generated elements (triangles, quadrilaterals)
is usually predefined (Figure 5.8). Some mesh generators produce unstruc-
tured meshes of mixed element type.

Mesh generation algorithms can be classified according to a variety of

CHAPTER 5. RENDERING OF DEFORMED MODELS 87

(a) (b)

Figure 5.8: Structured (a) and unstructured (b) mesh

different criteria. For this discussion, we will organise meshing algorithms
according to the order in which topology (node connectivity) and geometry
(node position) are determined:

e topology first
e nodes first

e nodes and topology together

Most meshing algorithms decide on either the node placement or the
topology of a generated element first. We will classify algorithms as topology
first or nodes first if the decision on node placement and topology is done in
two distinct phases of the algorithm.

5.4.1 Topology First

Most early mesh generators were based on the mesh template approach and
produced structured meshes (Zienkiewicz and Phillips [ZP71]). These meshes
are constructed by mapping a template, such as a rectangular grid, onto the
polygon and subdividing the polygon accordingly (Figure 5.9). The topology
of the resulting mesh is determined by the template.

The mapping between template and polygon is the crucial step in the
mapped meshing process. Only if the mapping can be done without much
distortion of the template, will a well shaped mesh be generated. The quality
of the generated mesh can be improved by moving the generated nodes in a

CHAPTER 5. RENDERING OF DEFORMED MODELS 88

postprocessing step. The most popular technique is Laplacian smoothing and
iteratively moves each internal node into the centroid of the polygon consist-
ing of its connected neighbour vertices. However, the resulting improvement
is limited by the fact that only the position of existing nodes can be changed
but no nodes can be added or deleted.

Since the distortion introduced by the mapping process becomes more
severe with increasing complexity of the polygon shape, mapped meshing
approaches are only suitable for relatively simple polygon shapes. Complex
polygons have to be decomposed into mappable, less complex regions. This
can either be done by hand or by automatic decomposition methods which
will be discussed later, in Section 5.4.3.

/AR N I I D W

Figure 5.9: Mapped Mesh

5.4.2 Nodes First Meshing

In this approach, meshes are generated in two distinct steps:

1. Node generation. Nodes are placed inside or on the surface of the
object. The initial placement of the nodes largely influences the quality
of the generated mesh. Varying the number of the generated nodes
allows the user to make the mesh finer or coarser in different areas.

2. Element generation. Once a set of nodes has been generated, they
are connected to form elements that are usually triangular or tetrahe-
dral. Probably the most popular method to connect a set of generated
points that works both in two and three dimensions is the Delaunay
Triangulation.

CHAPTER 5. RENDERING OF DEFORMED MODELS 89

Since Delaunay Triangulation has been employed by a number of finite ele-
ment mesh generation schemes, we will discuss it first and then proceed with
the discussion of mesh generation schemes that make use of it.

Delaunay Triangulation

Delaunay triangulation is one of the best studied algorithms in Computa-
tional Geometry (Shamos [Sha78], Preparata and Shamos [PS85]. The basic
property that makes Delaunay triangulation so appealing to finite element
methods is that it maximises the smallest interior angle over all triangulations
(Edelsbrunner [Ede87]), that is, the resulting triangulation is as equilateral
as possible.

A convenient way of generating the Delaunay triangulation of a set of
points P in a plane is the construction of the Voronoi Diagram. A Voronoi
diagram is the subdivision of a polygon into polygonally bounded regions V;,
each associated with a point p; € P, such that every point in its region is
closer to p; than to any other other point p in P:

V(p:) = {x:|pi — x| < |p; — x|, Vj # i}

The Delaunay triangulation is the straight line dual of the Voronoi dia-
gram, hence it can be constructed by connecting pairs of points that share
a Voronoi boundary. Figure 5.10 shows a Voronoi diagram and the corre-
sponding Delaunay triangulation. '

The popularity of the Delaunay triangulation within the computational
geometry community has led to a number of very efficient construction algo-
rithms. A popular, easy to implement algorithm by Bowyer [Bow81] and a
similar version by Watson [Wat81] both use an incremental approach and run
in O(n?) time, with n being the number of nodes. An O(nlogn) sweepline
algorithm is introduced by Fortune [For87].

One serious limitation for the application of Delaunay triangulation for
finite element mesh generation is that it generates a tessellation of the convex
hull of the polygon vertices. For a concave polygon, the convex hull of the
polygon is different from the actual polygon boundary, which means that
some of the actual polygon boundary edges might not be included in the
tessellation. The problem can be solved by rejecting elements that are not
within the boundary. Proper placement of nodes both inside and outside
the domain ensures that the element boundaries are actually part of the

CHAPTER 5. RENDERING OF DEFORMED MODELS 90

Figure 5.10: Voronoi diagram (dashed) and Delaunay triangulation

tessellation, i.e. no elements cross the domain boundary (Cavendish et al.
[CFF85]). '

Another approach to meshing concave regions is the Constrained Delau-
nay triangulation (de Floriani et al. [dFFP85]), which provides a triangu-
lation as close as possible to the Delaunay triangulation given that certain
edges (i.e. the polygon boundary) must be included in the generated trian-
gulation. The constrained Delaunay triangulation has the advantage that
arbitrary edges can be included in the final triangulation, this makes mesh-
ing of regions with holes possible. Details on how to construct a constrained
Delaunay triangulation can be found in Chew [Che89].

Node placement

Delaunay Triangulation was first used for finite element mesh generation by
Cavendish et al. [CFF85]. They employ a semi-automatic node placement
strategy described in Cavendish [Cav74] which requires the user to specify
zones in the object with a desired node density assigned to them. Using some
random function, the algorithm automatically fills these zones with nodes of
the specified density.

Frey [Fre87] develops an extension to this algorithm that not only allows
to generate an initial mesh but also to selectively refine the mesh such that
it satisfies some measure of accuracy.

CHAPTER 5. RENDERING OF DEFORMED MODELS 91

Conceptually, the algorithm consists of the following steps:

1.
2.

Discretise the domain boundaries by inserting nodes into the edges.

Generate a Delaunay triangulation of only these boundary nodes (Fig-
ure 5.11 (a)).

. Identify a triangle that is too large (Figure 5.11 (b)).

. Insert a new node into the interior of the too large triangle (Fig-

ure 5.11 (c)).

Update the Delaunay triangulation by inserting the new node (Fig-
ure 5.11 (d)).

. Repeat steps 2-5 until no large triangles are left.

4
\

(©) (d)

Figure 5.11: Mesh generation by selective refinement: Boundary triangula-
tion (a), identification of a too large triangle (b), placement of new node (c),
update of triangulation (d)

There are different measures to decide which triangles are considered too
large and where inside a triangle to place new nodes, see Frey [Fre87] for

CHAPTER 5. RENDERING OF DEFORMED MODELS 92

details. An incremental implementation of the Delaunay triangulation such
as Watson’s algorithm [Wat81] is most suitable for this meshing scheme, as
it takes advantage of the fact that the interior nodes are being inserted one
at a time.

5.4.3 Nodes and Topology Together

We will now discuss methods that perform the node placement and the com-
position of elements in one step. Popular algorithms that follow this approach
are:

e removal of individual subdomains
e advancing front

e spatial decomposition and subdomain meshing

Removal of Individual Subdomains

Meshing by subdomain removal repeatedly splits off pieces of the domain
until the whole remaining domain consists of one acceptable piece. Most of
the subdomain removal algorithms split off pieces that will be directly used
as elements (Wordenweber [W6r81]), but there are also schemes available
that use the subdomain removal to decompose a complex region into simpler
parts and then use a different technique (such as mapped meshing) to mesh
these parts (Joe and Simpson [JS86]). Care must be taken to join these
individually meshed regions properly and not to generate t-vertices.

The subdomain removal is usually done in terms of high-level operators
that are used to split off vertices, edges or whole faces. Wordenweber [W6r81)
reports a O(n?) performance for his algorithm. However, the algorithms
usually rely on a set of complex rules to decide which vertices or edges to
split off next, which makes a robust implementation of the algorithm difficult
to achieve.

Figure 5.12 shows a mesh generated by direct element removal (adapted
from Wordenweber [Wor81]). The mesh in Figure 5.13 was generated by
removal of individual subdomains and subsequent mapped meshing.

CHAPTER 5. RENDERING OF DEFORMED MODELS 93

Figure 5.12: Mesh generated by removal of individual elements

Figure 5.13: Subdomain removal and subsequent mapped meshing

Advancing Front

The advancing front technique is similar to subdomain removal algorithms.
It starts off from the domain boundary and splits off finished elements one at
a time until the entire domain is converted into elements (Lo [Lo85], Peraire
[PVMZ88]). The current front consists of the boundary of the unmeshed
domain and advances into the interior of the domain as new elements are
formed. Different algorithms exist to decide which element of the current
front to process next and how to determine the desired shape of new elements.

Advancing front methods are capable of meshing domains of arbitrary
shape, including concave polygons with holes. However, a careful design is
necessary to ensure that the algorithm terminates for concave domains with
small interior angles.

Spatial Decomposition and Subdomain Meshing

Spatial decomposition followed by subdomain meshing is a two-step ap-
proach. The first step consists of a spatial subdivision of the initial domain

CHAPTER 5. RENDERING OF DEFORMED MODELS 94

(@) | (b)

Figure 5.14: Advancing front: propagation of the front (a) and final mesh

(b)

into simple cells and in the second step these cells are meshed individually.

The initial decomposition is usually done by a quadtree in two dimen-
sional domains and by an octree in three dimensional domains. Quadtree
based meshing was introduced by Yerry and Shepard [YS83], an octree ver-
sion for three dimensional domains can be found in Yerry and Shepard [YS84]
and a description of an improved quadtree version can be found in Bachmann
et al. [BWS*87].

For a two dimensional domain, the mesh is generated using the follow-
ing steps: The domain (a non self-penetrating polygon of convex or concave
shape, possibly with holes) is subdivided into the quadrants of a quadtree
with the quadrant size defining the mesh density. This subdivision is done
in terms of polygon edges, outside boundaries are oriented counterclockwise
and inside boundaries (holes) are oriented clockwise. Each edge of the poly-
gon is recursively subdivided until each fragment fits into a quadrant of the
tree and the mesh density is sufficient (Figure 5.15 (a)). In order to ensure
a certain homogeneity of the mesh, each quadrant is allowed to be only one
tree level different from its adjacent quadrants. Each quadrant is then classi-
fied as either interior, exterior or containing a boundary. Exterior quadrants
are simply discarded, while interior quadrants are meshed using templates
and boundary quadrants are meshed using previously discussed meshing al-
gorithms such as subdomain removal (Figure 5.15 (b)) or, more recently,

CHAPTER 5. RENDERING OF DEFORMED MODELS 95

Delaunay triangulation (Schroeder and Shepard [SS90]). Finally, Laplacian
smoothing can be employed to improve the mesh quality.

/

(@) (b)

Figure 5.15: Spatial decomposition by quad tree (a) and resulting mesh
before smoothing (b)

5.5 Application of FEM Meshing to FFD

The above finite element meshing methods decompose a domain in R2. In
FFD of polygonal objects, our objective is the discretisation of planar poly-
gons bounding a three dimensional object in R3. To discretise such an ob-
ject, we can either use an algorithm capable of decomposing the surface of
the whole object or we can discretise each surface patch separately. As each
bounding surface of the undeformed object is planar, we can transform each
patch into a plane and then use a planar mesh generation algorithm to decom-
pose each patch individually. The decomposed surface is then retransformed
into R3. Of course, reducing the 3D meshing problem to a number of 2D
patch meshing problems simplifies the decomposition algorithm significantly.

However, if we mesh each surface individually in R?, care must be taken
that after retransformation into R? the individually meshed surfaces join
properly and no t-vertices are generated along shared edges. Achieving this
continuity property across shared edges is more difficult with some mesh-
ing algorithms than with others. Subdomain removal algorithms obtain it
automatically by trying to split whole edges, and if no edges will be subdi-
vided, no t-vertices can be created. For Delaunay triangulation and advanc-

CHAPTER 5. RENDERING OF DEFORMED MODELS 96

NN

Figure 5.16: Generation of t-vertices introduced by individual meshing of
surfaces '

ing front algorithms, the problem can easily be avoided by subdividing the
edges first and meshing the interior afterwards. Ensuring the same shared
vertices across edges is more difficult for spatial decomposition algorithms
and can probably only be done by moving vertices along shared edges in a
postprocess.

5.5.1 Comparison of the Algorithms

Other properties that are important when identifying a finite element mesh-
ing method suitable for FFD include

e aspect ratio of the generated triahgles,

e control over the shape of the generated triangles

e control over mesh density

e time efﬁ‘ciency.
We will now discuss how these properties are met by different FEM meshing
methods.

Aspect Ratio

Let us first look at the quality of the original, undeformed mesh. Given an
existing set of nodes, Delaunay triangulation provides by definition the mesh
with triangles as equilateral as possible. The problem lies in an optimal
initial node placement and the fact that the Delaunay triangulation is only
defined for convex domains. Advancing front algorithms usually generate well
shaped triangles, although the quality of the mesh is largely influenced by
the implementation. The mesh quality of spatial decomposition algorithms

CHAPTER 5. RENDERING OF DEFORMED MODELS 97

is excellent for interior elements, but the generation of well shaped elements
close to the domain boundary tends to be difficult. Subdomain removal
algorithms depend on the topology of the domain, so high quality meshes are
difficult to guarantee. In summary, all meshing algorithms except subdomain
removal lead to meshes of reasonable quality in the undeformed domain.

Mesh Size and Grading

A property that provides an important criterion for the selection of a mesh-
ing algorithm is the control over mesh size and grading. We have to be able
to influence the triangle size as we want to adapt the size to the current cur-
vature. Moreover, as the mesh generation takes place in undeformed space,
it is desirable to have some influence on the shape of the generated triangles
such that the triangulation in deformed space meets certain criteria. It is
important to realise that a triangulation which is as equilateral as possible
in undeformed space is not always desirable, the requirements of FFD and
finite element methods are different here. Firstly, an equilateral triangula-
tion of the undeformed model does not necessarily result in a equilateral
triangulation of the deformed model, because the deformation might result
in some stretching of the original domain. Secondly, although triangles with
extremely poor aspect ratio (slivers) introduce rendering artefacts and are
thus unwanted, for FFD a certain stretching of triangles along a direction of
low curvature can be desirable.

Only the advancing front algorithm allows some form of control over
the shape of the generated triangles during the generation process. This is
achieved because triangles and nodes are generated together on a per-element
basis, so each element can be stretched into some desirable direction.

The ability to control the size of the generated elements is of crucial im-
portance to the application of any mesh generator in FFD. Spatial decompo-
sition, advancing front and Delaunay triangulation are capable of producing
triangles of varying size and thus generate graded meshes. The element size of
mapped mesh generator meshes is determined by the mesh template, whereas
for subdomain removal algorithms the topology of the domain defines the size
of the generated triangles.

CHAPTER 5. RENDERING OF DEFORMED MODELS 98

Time Efficiency

The mapped mesh generator shows the best time efficiency and runs in O(n)
time, with n being the number of triangles generated. Delaunay triangula-
tions and spatial decompositions can be achieved in O(nlogn) time. Advanc-
ing front is essentially a rule based algorithm and its execution time depends
largely on the types of rules employed. It usually involves nearest node or
closest edge searches, which can be supported by appropriate data struc-
tures, so an execution time of O(nlogn) seems realistic (Lohner [L5h88]).
Subdomain removal algorithms have with O(n?) the lowest time efficiency.

Discussion

Table 5.5.1 shows a summary of the comparison of the different meshing
algorithms.

Approach Aspect Density | Shape | Time
ratio control | control | efficiency
Mesh good no no O(n)
template (simple
domain)
Subdomain poor no no O(n?)
removal
Spatial internal yes no O(nlogn)
decomposition || excellent
Delaunay excellent | yes no O(nlogn)
triangulation
Advancing || good yes yes O(nlogn)
front

Table 5.1: Comparison of the different meshing approaches

Mesh template algorithms are fast, but their inability to cope with com-
plex domain shapes and their lack of mesh density and shape control make
them unsuitable for FFD. Subdomain removal algorithms do not score high in
any area, in particular do not allow any control over mesh density and shape.
Spatial decomposition algorithms are significantly better suited, they pro-

CHAPTER 5. RENDERING OF DEFORMED MODELS 99

duce well shaped meshes, especially in the domain interior. Their mesh qual-
ity can be further enhanced by a Laplacian smoothing postprocess. Further-
more, they allow control over the element size and produce graded meshes.
Their major shortcoming is that it is not clear how to ensure mesh com-
patibility across shared edges between two domains. Delaunay triangulation
produces a triangulation as equilateral as possible which makes it extremely
popular both in the finite element and computer graphics community. This
popularity means that a number of efficient algorithms have been developed
as well as extensions to handle concave domains or include certain interior
edges of the domain. Dependent on the initial node placement, graded meshes
can be achieved. However, for FFD applications, an equilateral triangulation
is not always desirable, so an edge swapping algorithm that adapts the trian-
gulation to the curvature is usually applied as a postprocess, see Schumaker
[Sch93a]. Advancing front algorithms produce well shaped meshes and allow
a lot of control over mesh density and element shape, which is reflected in
their popularity in the computational fluid dynamic (CFD) community. FFD
is essentially a three dimensional vector field of displacement vectors and has
thus a lot in common with CFD, so it seem that an advancing front based
algorithm would be a promising choice for FFD meshing. On the downside,
the lack of a theoretical foundation for advancing front algorithms makes it
difficult to ensure convergence.

The two best candidates for FFD meshing thus seem Delaunay triangu-
lation and advancing front. We decided to use an advancing front algorithm
for two reasons:

e When meshing FFD deformed objects, it is desirable to obtain triangles
of good aspect ratio, i.e. as equilateral as possible. In FFD meshing,
the triangulation takes place in the undeformed domain, whereas it
is the deformed domain that is actually being displayed. Applying a
Delaunay-based algorithm will guarantee a triangulation as equilateral
as possible in the undeformed domain, which will not necessarily result
in an optimal triangulation in the deformed domain, as the deformed
domain can be substantially distorted (stretched or squashed). Equi-
lateral triangles in the undeformed domain could therefore yield badly
shaped triangles in the deformed domain. The advancing front algo-
rithm offers us superior control over individual elements, as we can can
not only influence their shape but also stretch them into certain di-

CHAPTER 5. RENDERING OF DEFORMED MODELS 100

rections. It seems worth investigating how this additional control can
actually be used to generate triangulations that result in better graded
deformed meshes.

e Although well established in the finite element community, the advanc-
ing front algorithm has not yet made its way into computer graphics.
One of its problems is that it is based on a set of complex heuristics
which makes it hard to code a robust implementation. We therefore
felt that gaining experience of its applicability to computer graphics
problems would be worthwhile. The application of the advancing front
meshing scheme to a number of different meshing problems should an-
swer the question whether it is sufficiently robust to be employed in a
general rendering system.

5.6 Summary

We have shown the two standard approaches to rendering curved patches:
forward differencing and recursive subdivision. However, it is usually not
feasible to compute the closed form expressions of the deformed surfaces.
We therefore have presented Parry’s and Griessmair’s approach to subdivid-
ing the model into triangles and rendering the resulting triangle meshes. As
these algorithms are unable to cope with objects of complex shape, we have
surveyed FEM meshing algorithms and identified the advancing front algo-
rithm as a suitable candidate to adapt to the specific needs of Free Form
Deformation.

We will now develop a implementation of the modified advancing front
algorithm for rendering Free Form Deformation objects.

Chapter 6

A Modified Advancing Front
Algorithm

6.1 Introduction

The advancing front algorithm is well established in computational fluid dy-
namics applications and has undergone several stages of development. We
start this chapter with a brief overview of the major contributions to the
algorithm. We then discuss in detail the implementation of our FFD-specific
version of the algorithm.

This discussion consists of two parts: how to generate the triangles and
how to determine the triangle size according to curvature. The first part
starts with the preprocessing stage and then gives a detailed description of
our version of the advancing front technique. In the second part, we develop
a local curvature measure for the deformed surfaces and show how to use it
to determine the optimal triangle size.

6.2 Overview

Some early ideas of the advancing front technique can be found in (Gill
[Gil72]), who developed a meshing scheme for Finite Element computations
of shells defined by Coons patches. The original advancing front algorithm
was introduced by Lo [Lo85] for general meshing problems in Finite Ele-
ment computations. It can generate an unstructured triangular element mesh
within any simply connected or multiply connected planar domain with or

101

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 102

without holes. The boundary of the domain is represented as a set of straight
line segments which are entered in counterclockwise order for domain bound-
ary nodes and in clockwise order for interior boundary nodes (holes). Lo’s
original mesher is actually a nodes first algorithm: it first generates interior
nodes according to the average nodal spacing of all the boundary segments
that make up the domain to be triangulated. Starting from the domain
boundary, these nodes are then connected to triangular elements whilst en-
suring that none of the generated triangles intersect and the entire domain is
covered. The connection algorithm ensures that the generated triangles are
as equilateral as the set of generated nodes permits.

Peraire et al. [PVMZ88] provide the first extension to the algorithm that
makes it actually a nodes and topology together approach. It has been de-
veloped for the solution of steady state flow problems in fluid dynamics.
Like Lo’s algorithm, they start off with the line segments that connect the
domain boundary nodes. All the segments that are available to form a tri-
angle are called active and form the active front. Peraire’s algorithm differs
in how to form triangles. Rather than generating the interior nodes in ad-
vance, nodes and triangles are generated simultaneously as the active front
proceeds through the domain. The algorithm requires the user to define a
background grid over the domain to be meshed that contains the meshing
parameters such as triangle size, stretching and direction. This technique
has been extended to three dimensions (Peraire et al. [PPF*+88]).

Jin and Wiberg’s [JW90] improvement of Peraire’s algorithm consists of
eliminating the need for defining a background grid. Instead, the user can
define control lines in the domain that contain the initial meshing parameters.

Despite its appealing features, the advancing front algorithm has so far
only been applied to finite element computations in fluid dynamics and mag-
netic flow problems, but it has yet to find its way into the graphics commu-
nity. We will now introduce our algorithm that applies the experience gained
with advancing front algorithms in these areas to Free Form Deformation.

6.3 Implementation

Our implementation is based on Jin and Wiberg’s version of the advancing
front algorithm. The input to our FFD modelling system consists of polyg-
onally bounded objects. As a first step, the solid is decomposed into its
polygonal facets so that the mesher can process each facet individually.

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 103

X X' X'
2 ~—" ~—"
into Plane Meshing
(a) (b) (c)
y \Y/
X
7 ~—_"
inverse Point
(d) (e) (f)

Figure 6.1: Domain in world space (a), transformation into plane (b), mesh-
ing (c), retransformation into world space (d), transformation into local solid
space (e), FFD (f)

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 104

The new FFD process is shown in Figure 6.1. As we want to employ a
two dimensional meshing scheme, we first have to transform each polygon
into a 2D coordinate system (Figure 6.1 (b)). Care has to be taken to make
sure that the outside edges of the polygon in the plane are defined in a coun-
terclockwise manner, this enables the mesh generator to determine the inside
and outside of the polygon. We then apply the meshing algorithm (Figure 6.1
(c)) in the plane. The next step consists of retransforming the polygon mesh
back into world space (Figure 6.1 (d)). Now the mesh coordinates in local
solid space have to be determined (inverse point problem, Figure 6.1 (e)).
Finally, the actual deformation can be applied (Figure 6.1 (f)).

We will now describe the meshing process that happens once a polygon
has been transformed into the 2D coordinate system.

6.3.1 Advancing the Front

The main data structure of the advancing front algorithm is a heap (Cormen
et al. [CLR90]) that contains the active front and consists of the edge seg-
ments on which triangles can be created. The edge segments are stored on
the heap according to length. At each node in the heap, the length of the
associated edge is shorter than or equal to the lengths of the edges associ-
ated with its children. The shortest edge is therefore always on the top of
the heap.

Initially, the heap is empty. The meshing starts by taking all the domain
edges and subdividing them according to some measure of curvature which
will be discussed in Section 6.4.1. The resulting edge segments are then taken
one by one and stored on the heap. Outside domain edges are stored in a
counterclockwise manner and hole edges are stored in a clockwise manner,
therefore the interior of the domain is always towards the left of edges.

When meshing a solid, each edge is shared by two surfaces. The question

“arises whether to subdivide all edges once on a per-solid basis or for each

surface individually, which would result in all edges being meshed twice.
In our current implementation, we mesh all edges first and then proceed
to the individual surfaces. However, in a parallel implementation, where
surfaces are distributed across processors, edges can also be subdivided on a
per-surface basis. The edge subdivision criterion, discussed in Section 6.4.1,
then ensures that the mesh is consistent across edges and no t-vertices are
generated.

The process of generating a mesh is shown in Figure 6.2. The algorithm

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 105

(a) (b) (c)
Figure 6.2: Generation of a mesh for a planar domain

proceeds by extracting the shortest edge from the heap and constructing a
triangle from it. The front advances by storing the newly created edges on
the heap and deleting the edges that are now interior to the already meshed
region. The process terminates when no edges are left on the heap. The
algorithm can be summarised in C-style pseudocode:

while(edgeOnHeap) {
extractEdgeFromHeap() ;
generateTriangle();
updateHeap() ;

The process of updating the front during the triangle generation is shown
in Figure 6.3. The original domain consisted of vertices 1, 3,5, 7. After initial
subdivision, edges 12, 23, 34, 45, 56, 67, 78, 81 were stored in the heap. In
Figure 6.3 (a), we see the domain and the heap after two triangles 129 and 198
(dashed) have been created. The current front is shown as a solid line. Edge
89 is currently the shortest edge and therefore on top of heap. We extract
edge 89 and construct the triangle 897. The result is shown in Figure 6.3 (b).
Two changes have occurred: First, edges 78 and 89 are no longer part of the
active front and have therefore been deleted. Second, edge 79, which is now
part of the active front on which new triangles can be created, has been stored
on the heap. The ordering of the edges in the heap reflects their length, so
edge 34 on top is the shortest edge and will therefore be extracted next.

The two main operations performed on the heap are insertion and deletion
of edges. Both can be performed in O(lognegges) time, where megqes is the
number of edge segments on the heap. Since a new triangle will typically

CHAPTER 6.. A MODIFIED ADVANCING FRONT ALGORITHM 106

(a)
7 6 5
o ’e}
8 (;_ 04
e
1 2 3
(b)

Figure 6.3: Generation of a new triangle in the domain (left) and updating
the heap structure. The solid line indicates the current front.

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 107

yield two new edges, it is easy to see that this results in an O(nlogn) time
complexity of the meshing algorithm, where n is the number of generated
triangles.

The rule always to build a triangle from the shortest edge of the heap is
somewhat arbitrary, but works well in practice. However, if all edges are of
similar size, the order of extraction does not seem to matter and we can also
store edges in a first-in, first-out structure.

6.3.2 Generation of New Triangles

We will now discuss how to generate a new triangle on an edge ab of the
current front. There are two ways of constructing a new triangle:

e creating a new node.
e using an existing vertex on the current front.

The creation of a new node is shown in Figure 6.4. Let hy be the desired
edgelength of the triangle to be constructed. The process of determining hg4
will be discussed in Section 6.4.2. We first construct an isosceles triangle with
edgelength hy on edge ab. Let the resulting new node be c. This new node c
is the first candidate for the new triangle. To collect other candidate nodes,
we construct a node heap P of all existing nodes within a given distance of
c (Figure 6.4). We have used a distance of 3Ampax, Where hyay is the length
of the longest edge of the initially constructed isosceles triangle. Within the
heap, the nodes are sorted according to distance to c, with the node closest
to ¢ on top.

Now we have to decide whether to use node c or an existing node, con-
tained in the node heap P. Node c is rejected if

1. it is too close to an existing edge, i.e. its distance to any other edge on
the heap is less than 0.4hg (Figure 6.6 (a)).

2. there is an existing node in a certain, predefined region R, around c.

The construction of region R, is shown in Figure 6.5. The parameters
have to be determined heuristically by numerical experiments. We resorted

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 108

.
cerecccccnnne)
.

Figure 6.4: Construction of a candidate vertex c for a new triangle

to values used in the Jin and Wiberg implementation [JW90]!:

r = 1L14W/B+13

,31 = 15°+0.9a
B2 = min(170° — , 105°)
B = max(f,f)

a I, b

Figure 6.5: Region R, (shaded) where existing nodes are preferable to c.

If there is a vertex in our favourite region R, (condition 2), we choose this
vertex. Otherwise, we check the new node c. If ¢ is too close to an existing
edge (condition 1), we choose the vertex p € P closest to c.

1We found that varying the parameters slightly did not change the shape of the gener-
ated mesh noticably.

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 109

Let e be the chosen vertex. We now have to make sure that the newly
generated triangle abe would result in a valid mesh element. This is done
by checking the following conditions:

3. no existing node is closer than 0.3hmin to the newly generated edges
ae and be, where hp,;, is the length of the shortest edge in the new
triangle (Figure 6.6 (b)).

4. the two new edges ae and be do not cross or overlap any existing edges
on the active front (Figure 6.6 (c)).

Figure 6.6: Rejection of a node: too close to existing edge (a), existing node
too close to newly created edge (b), existing edge intersects new edge (c)

If our candidate node e fails to comply with any of these conditions, it is
discarded and replaced by the next node in our favourite region. If there are
no vertices left in this region, we choose the next p € P from the node heap.

Checking conditions 3 and 4 are O(n) operations. Since they have do be
performed for each new triangle, they result in a O(n?) overall complexity.
Lohner [Loh88] discusses how to use quadtree-based data structures to re-
duce this to O(nlogn). In practice, we did not find this necessary, as both
conditions can be checked very efficiently.

We give an implementation of this algorithm, written in C-style pseu-
docode:

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 110

generateTriangle (edgeSegment)
{

isoNode = constructIsoscelesTriangle(edgeSegxnent);
vicinityHeap = makeHeap(isoNode);

/* first try nodes in region */

while (node = extractHeap(vicinityHeap))
if (inRegion(node) && nodeAcceptable(node))
return node;

/* else see if the isosceles triangle is acceptable */

if (acceptable(isoNode))
return isoNode;

/* else take any acceptable node */
restore(vicinityHeap) ;

while (node = extractHeap(vicinityHeap))
if (nodeAcceptable(node))
return node;

/* fail =/

return NO_NODE_FOUND;

where nodeAcceptable(node) checks if node complies with conditions
(3) and (4).

We can see that the procedure is not guaranteed to find an acceptable
node and might fail. This is most likely to occur if two fronts meet and it
is one of the main problems of the nature of the advancing front algorithm.
Careful selection of the heuristic meshing parameters should ensure that this
situation does not occur. If the algorithm should fail to identify an acceptable
node, we have to backtrack a number of steps and extract a different edge

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 111

from the heap. In practice, we did not encounter any situations where the
algorithm was unable to find a suitable node and generate a valid mesh.

6.4 Adaptive Meshing According to Curva-
ture

In order to adapt the mesh to the local curvature of the surface, we have to
adapt the size of the generated triangles. For our advancing front algorithm,
there are two ways of influencing the size of the triangles:

1. splitting the polygon edges into smaller segments.

2. varying the desired triangle size hg.

Determining the optimal size for the edges and triangles requires the
definition of local curvature parameters for edges and surfaces. We first
introduce a measure for the local curvature of edges and discuss how to split
the polygon boundaries according to this measure. We then introduce a
measure for the local curvature of a surface that helps us determine values
for the desired edge length parameter hg4.

6.4.1 A Curvature Measure for Edges

The discretisation process starts with the adaptive subdivision of the domain
edges. Edges are recursively subdivided until the resulting segments are
sufficiently close to straight lines. The original curve is then replaced by the
straight line approximation. The curvature of a curve segment is determined
by evaluating the tangent vectors at its start and endpoint in world space
(Figure 6.7 (a)) and transforming them into deformed space (Figure 6.7 (b)).
Subdivision stops if the angle between the tangent vectors at the start and
endpoints of a curve segment in deformed space is sufficiently small. The
angle between two tangent vectors t; and t;,, is given by

t; - tis

[tl[Ei1

For sufficiently small angles and normalised tangent vectors, we can set
cosa = 1 — a?/2. Setting €2 = o?/2, we obtain

Cos =

82 =1- ('E,, . £i+1)-

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 112

.
-
.
-

(@) (b)

Figure 6.7: Subdivision of edge according to tangent vectors: world space (a)
and deformed space (b)

The direction of the tangent vector in world space coincides with the di-
rection of the edge. The tangent vectors can be transformed to deformed
space using the formulae given in Section 4.5, this involves two matrix mul-
tiplications. Note that the length of the tangent vectors is not important, as
our curvature estimate uses normalised tangent vectors.

It is important to sample the curve tangents initially at a sufficient num-
ber of points in order to avoid sampling errors such as illustrated in Figure 6.8.
We therefore initially subdivide each edge such that each segment is shorter
than some user-defined maximum edge length Apax.

ti+1

~ ~

t; bz

Figure 6.8: Undetected curvature due to coarse sampling

6.4.2 A Curvature Measure for Triangles

Once the edges have been subdivided according to tangent vectors, we can
start the advancing front triangulation process. We now want to generate
triangles with size according to the local curvature of the surface to be tri-
angulated. The meshing parameter that controls the size of the generated
elements is hg, the desired triangle size. Therefore, we have to adapt Ay
according to some curvature measure.

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 113

(b)

Figure 6.9: Determining the curvature of a triangle: normal vectors in world
space (a) and deformed space (b)

Figure 6.9 shows the process of determining the local curvature. Let ab
be the edge on which we want to generate the next triangle. We start by
constructing a vertex d that results in an equilateral reference triangle abd?.
To determine the curvature of this reference triangle, we evaluate the normals
at 5,}3 and d in deformed space.

For a planar domain, all normals in world space are collinear (figure 6.9(a)).
The transformation of normal vectors from world space to deformed space is

INote that the reference vertex d is only used to determine local curvature and is
usually different from vertex c¢ used in Section 6.3.2

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 114

described in Section 4.5 and only involves two matrix multiplications. Let
fi,,fi, and fig be the normal vectors in deformed space (Figure 6.9(b)).
The angle between two normal vectors n; and 1, is given by
n; - i
cosQ = ——,
~ |0y |y
which, for sufficiently small angles and normalised normal vectors, can be
approximated by :

€2= 1- (ﬁlﬁz)

We could now define a curvature measure by computing the normals
n,,n, and ng, transforming them to deformed space and determining the
largest angle between any pair of them.

In practice, we find that for short edges ab, this method of triangle curva-
ture estimation leads to inconsistent curvature estimates and poorly graded
meshes. We therefore replace the triangle abd by a larger equilateral triangle
efg, with the same centre as abd but with edgelength Am,y, the user-defined
maximum edge length F(Figure 6.10). We can now compute the normals fi.,
N and 0z in deformed space and use the largest angle between any pair of
normals as a new curvature measure. Let this largest angle be €,. Increasing
the size of the reference triangle has an effect similar to applying a low-pass
filter to the curvature estimates, which results in a smoother mesh.

Figure 6.10: Modified curvature measure

Determining the triangle curvature according to the vertex normals only
is not always sufficient. Figure 6.11 shows a domain that has been deformed

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 115

in a plane into a “u-shape”. Although the edge curvature measure would de-
tect the deformation of the rectangle edges, the normal vectors to any interior
triangle would stay parallel and our curvature measure would therefore detect
no curvature. The interior of such a domain would not receive finer subdi-
vision and the mesh of the deformed domain would contain badly distorted
triangles which cause rendering artefacts (see Figure 7.7 in Chapter 7).

1

(a) (b)

Q
ol

Figure 6.11: Planar deformation of a rectangular domain

Planar distortions can be detected by computing the tangent vectors
along triangle edges. Figure 6.12 shows the tangent vectors at the start
and endpoints of edges &g and f§. We use the edge curvature measures for
domain edges, given in Section 6.4.1, to compute a curvature term for each
pair of tangent vectors along an edge. Let ey = max (Eters Eteg) De the largest
angle between the tangent vectors of edge €g and fg.

Figure 6.12: Tangent vectors as a curvature measure

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 116

6.4.3 Determining the Triangle Size

The new vertex d has only been generated for the purpose of determining
the curvature and will not be part of the newly generated triangle. The new
triangle will be generated using the algorithm given in Section 6.3.2, which
generates a new triangle depending on the desired triangle size hy. We will
now show how to determine the triangle size measure hg.

We have determined two curvature parameters, €, and &, one based on
the normal vectors and one based on the tangent vectors. Our objective is to
construct a triangle such that no adjacent normal or tangent vectors differ
by more than some predefined measure €p,x. Let €cyry = max (eq,€¢) be a
measure of the triangle curvature. We then define the desired triangle size
as

hy = { Bmax if Ecurv < Emax , (6.1)

Emax i
Pmiax s otherwise

where €,y i a measure of the maximum acceptable triangle curvature.

The expression for hy is based on the assumption that if the angle be-
tween two normal or tangent vectors of the reference triangle is n times the
acceptable angle ep.x, generating a triangle with edgelength 1/nth of the
- original triangle will yield an acceptable triangle. Note, however, that it
is not guaranteed that all tangent and normal vectors of the resulting new
triangle will conform to the error measure €mnax.

6.5 Summary

The advancing front mesh generation scheme is well established in finite
element computations, but has not yet made its way into computer graphics.

We have developed a graphics-oriented version of the algorithm for objects
bounded by planar polygons. We have addressed two problems: how to
generate triangle meshes and how to adapt the mesh size to the curvature of
the objects to be meshed. v

The mesh generation consists of first composing the solid into its polygons.
Each polygon is meshed individually by first subdividing its edges according
to curvature and storing them on a heap. We then take edge segments of
the heap and construct triangles on them until the whole region is meshed
and no edges remain on the heap. Care has to be taken to ensure mesh

CHAPTER 6. A MODIFIED ADVANCING FRONT ALGORITHM 117

compatibility across shared edges. The size of the generated triangles is
determined according to a set of curvature measures. We have developed
measures that detect the curvature of triangles as well as planar distortions.

In the next chapter, we show results of the application of our algorithm
to a number of Free Form Deformation problems.

C»hapter 7

Results

7.1 Introduction

We now show results of the application of our advancing front algorithm to
a number of deformation problems.

The FFD algorithm and the advancing front mesh generator have been
implemented using the C programming language [KR88]. The program has
been developed on a SUN Sparc 10 workstation and later ported to a Sil-
icon Graphics Indy workstation running version V.4 of the IRIX operat-
ing system. The meshes shown in this section were drawn using PostScript
[Ado85]. The timings shows are for the Silicon Graphics Indy workstation® .

Shaded images were raytraced using rayshade (Kolb [Kol91]). Colour
images of the deformed objects can be found in Appendix A. These colour
plates were generated using Adobe Photoshop [Ado91] and printed as 300dpi
24 bit colour images on a Mitsubishi $3600-30D dye sublimation printer.

The images were Phong-shaded (Bui-Tuong [BT75]) with surface nor-
mals which were analytically determined using the procedures described in

Section 4.5.

Unless otherwise stated, objects have been deformed by a deformation
solid defined by a set of triparametric Bernstein polygons as in the Sederberg
and Parry [SP86b] implementation of FFD.

lsingle R4600SC CPU running at 133 MHz

118

CHAPTER 7. RESULTS 119

7.2 Deformation of a Rectangular Domain

We start with a rectangular polygon that has been deformed by a 7 x 2 x 2
deformation lattice. The original polygon is shown in Figure 7.1 (a), Fig-
ure 7.1 (b) shows the deformed polygon.

We have meshed the polygon using a number of different error parame-
ters Emax. Figure 7.3 shows the resulting meshes for emax = 0o (non-adaptive
meshing), €max = 0.5, Emax = 0.2 and €max = 0.05. It demonstrates that the
algorithm produces triangulations of variable size depending on the local cur-
vature of the surface and how a variation of the error parameter ep,,, affects
the number of generated triangles. The relationship between the timings and
numbers of generated triangles for a wider range of values of €nax is shown
in Table 7.1.

Figure 7.2 shows the number of generated triangles plotted against usage
- of CPU time. We notice a near-linear growth rate.

Emax none® | 0.50 | 0.20 | 0.10 | 0.05 0.02
triangles 36| 54| 322 | 1056 | 3680 | 19440
time? 0.19 | 0.29 | 2.30 | 10.40 | 60.37 | 826.83

®non-adaptive meshing
bseconds CPU time on an Silicon Graphics Indy workstation, obtained by the UNIX
clock() system call

Table 7.1: Numbers of triangles and timings for different error measures.

In Appendix A, Figure A.1, we show texture-mapped images for £qax = 00
(non-adaptive meshing), €max = 0.5 and emax = 0.2. The surface of all images
appears fairly smooth. This is largely due to the analytically determined
surface normals at the triangle mesh points. Difference in image quality can
be seen in three areas:

e polygon edges
e sharp shadows

e texture patterns

CHAPTER 7.

RESULTS

(b)

Figure 7.1: Deformation of a rectangular domain

120

CHAPTER 7. RESULTS 121

70 ——
60 .
50 |]
40 | :

30 .

CPU time [s]

20 ' .

10 T

0 1 L 1 1 Il 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
generated triangles

Figure 7.2: Mesh generation timings for rectangular domain

The non-adaptively meshed image shows visible artefacts along the bound-
ary edges and across texture edges. Also, the shadows cast by the deforma-
tion grid appear segmented. We can see that em,x = 0.5 already results in a
significantly improved image quality, but the artefacts across texture edges
are still visible. An error measure of . = 0.2 (322 triangles) is sufficient
to produce an image that is free of noticeable artefacts. Note that the mesh
for this image took only 2.3 seconds to generate.

CHAPTER 7. RESULTS 122

Figure 7.3: Resulting meshes for emax = 00, €max = 0.5, Emax = 0.2 and
Emax = 0.0

CHAPTER 7. RESULTS 123

7.3 Deformation of a Solid

In our next example, we show the meshing of a solid bar with a concave
hole (Figure 7.4). The top and bottom surface of this solid consist of only
one polygon each, the hole is treated as a feature of these polygons. This
example illustrates several points:

e mesh generation on the surfaces of a solid in boundary-representation
e meshing of domains with holes

e use of the tangent curvature measure (Section 6.4.2) to detect planar
distortions.

Figure 7.4: Solid with concave hole

Using a 5 x 2 x 2 deformation grid, we have deformed the solid into a wave
shape. The resulting mesh is shown in Figure 7.5, a shaded version can be
seen in Figure A.2 in Appendix A. With the error measure set t0 €max = 0.1,
it took 7.26 seconds to generate and consists of 1252 triangles.

The meshing algorithm generates a smooth mesh and copes well with
the hole in the top surface. The mesh is consistent across edges and does
not generate t-vertices which would result in visible cracks. Note that the
polygon along the visible long side of the solid has only undergone planar
distortion. The tangent curvature measure detects this distortion and adapts
the mesh accordingly.

124

CHAPTER 7. RESULTS

Figure 7.5: Meshed solid for emax = 0.1, 1252 triangles

CHAPTER 7. RESULTS 125

7.4 Planar Distortionvof a Solid

In order to illustrate more clearly the planar distortion problem, we have
applied a planar deformation to the solid of the previous example by bending
it into a “u-shape”. The resulting mesh, again with the error measure set
t0 £max = 0.1, is shown in Figure 7.6. It consists of 1606 triangles and took
9.38 seconds to generate. Figure A.3 contains the shaded image, which also
shows the deformed lattice.

Figure 7.6: Meshed solid for emax = 0.1, 1606 triangles

The top surface has undergone planar distortion and it can be seen that
the meshing algorithm detects this distortion and adapts the triangle size
accordingly.

It can be argued that a fine subdivision of surfaces that have undergone
only planar distortion is not necessary. We have therefore meshed the same
surface without the triangle tangent subdivision criterion. The resulting
mesh, again for £nay, is shown in Figure 7.7. It consists of 884 triangles and
took 3.37 seconds to generate, which represents a considerable improvement.
However, we can see that the top surface now contains a high number of
slivers, i.e. triangles that contain small interior angles. As discussed in
Section 5.3.1, slivers are undesirable due to the rendering artefacts they cause.

CHAPTER 7. RESULTS - 126

!

Figure 7.7: Meshed solid without planar distortion detection. €max = 0.1,
884 triangles

CHAPTER 7. RESULTS 127

7.5 Deformation of a Tile into a Bell-Shape

So far, our examples consisted of deformations that resulted in curvature
in only one direction. We will now deform a tile-shaped solid into a “bell-
shape”, which results in curvature along different directions. The tile, which
contains a star-shaped hole, is shown in Figure 7.8. The deformation grid
consists of 7 x 7 x 2 vertices. We obtained the deformation by moving the
two central control points to positions above the tile, see Figure A.4 for a
shaded image. ‘

Figure 7.8: Tile with star-shaped hole

We have meshed the deformed tile using error measures of €pax = 0.2 and
0.1, which resulted in 2920 and 9230 triangles. 'The mesh for epmax = 0.2 is”
shown in Figure 7.9. Zones of increased triangle density can be seen along
the rim of the bell and towards the star-shaped hole in the centre.

In Figure 7.10, we show the mesh of a tile deformed by the same defor-
mation grid, this time with a finer error tolerance of £nax = .1. The circular
region of high mesh density is now more pronounced, we can also see that
the mesh density increases towards the centre of the tile.

CHAPTER 7. RESULTS 128

¥

\/
W

ANV

X

o
R
(22BN

vy,
= \‘V‘*4
B

Figure 7.9: Mesh of bell-shaped tile. emax = 0.2, 2920 triangles

Figure 7.10: Mesh of bell-shaped tile. €max = 0.1, 9230 triangles

CHAPTER 7. RESULTS 129

7.6 Deformation of a Complex Solid

We now show the meshing process of a deformed girder. A shaded image of
the undeformed girder is shown in Figure 7.11. It consists of 26 polygons,
two of which are concave and two have three holes each assigned to them.

Figure 7.11: Girder

Using a 5 x 2 x 2 grid, we have deformed the girder into a shape similar to
the solid in Section 7.3. Figure A.5 shows a shaded image. Figure 7.12 shows
the meshed solid for £max = 0.1. It took 6.20 seconds to generate and consists
of 1402 triangles. We have then decreased the error measure t0 Emax = 0.05.
The resulting mesh, consisting of 2668 triangles, is shown in Figure 7.13 and
took 13.38 seconds to generate. The results are summarised in Table 7.2.
Again, we observe an almost linear relationship between generation time and
number of triangles.

Emax none* | 0.1 | 0.05
triangles 840 | 1402 | 2668
time 3.56 | 6.20 | 13.38

%non-adaptive meshing
\

Table 7.2: Numbers of triangles and timings for different error measures.

CHAPTER 7. RESULTS 130

Figure 7.12: Mesh of deformed girder. eémax = 0.1, 1402 triangles

RO NN~
(OO
XN

KT
ml;ifh
=S

§
W

Ay, p—— ~.
B ISk

b
ﬂ)

%
J

%
7
%

A
%

4
S

X7
X7

)
=
A
ﬂ/

\/]

Figure 7.13: Mesh of deformed girder. emax = 0.05, 2668 triangles

CHAPTER 7. RESULTS 131

7.7 Deformation by a B-spline volume

One advantage of our advancing front method is that it can be used to render
deformed objects where analytic expressions of the deformed surfaces can not
be found. It only relies on points, tangents and normals being transformed
from world to deformed space.

To illustrate this point, we show the meshing process of the same girder
deformed by a cubic B-spline volume with irregularly spaced control points
and a non-uniform knot vector. When applying our meshing scheme to de-
formations by B-spline volumes, attention has to be paid to two points:

e The B-spline volume has to be at least C* continuous for tangents and
normals to be transformed into deformed space.

e B-spline deformations can result in highly local deformations, so the
initial sampling density has to be fine enough to capture these defor-
mations.

The initial grid is shown in Figure 7.14.

Figure 7.14: Girder

The deformation has been applied by displacing the 8 control points in the
centre, see Figure A.6 for a shaded image. Note that the resulting curvature is
significantly higher than in the Bézier volume deformed girder. The resulting
mesh for £ = 0.1 is shown in Figure 7.15. We can see that the meshing
algorithm adapts to the higher curvature and produces a well graded mesh.

CHAPTER 7. RESULTS 132

W
ISISER
S
ﬂ% y&::‘aa >
b N S S
RN S

Figure 7.15: Mesh of B-spline deformed girder. €max = 0.1, 6378 triangles.

CHAPTER 7. RESULTS 133

7.8 Summary

We have implemented the FFD algorithm and our advancing front mesher on
a UNIX workstation and applied them to a number of deformation problems.
The meshed solids were of different complexity, from a simple single polygon
to complex solids containing a number of concave surfaces and holes. The
deformation solids were defined in terms of Bézier volumes and non-uniform
B-splines volumes.

The density of the generated meshes is well adapted to the curvature
of the surfaces and the triangles are generally well shaped. The algorithm
prevents cracks in deformed objects by generating consistent meshes without
t-vertices across shared edges.

The solids have been meshed using varying error measures €max, result-
ing in meshes of different density. The relationship between the number of
generated triangles and the running time of the mesher is almost linear. For
most of the solids, the algorithm generated a mesh that resulted in a smooth
shaded image of high quality in about 3-5 seconds.

Using the heuristic parameters given in Section 6.3.2, we found that the
meshing algorithm was very robust. We did not encounter any situations
where the algorithm got stuck and failed to produce a mesh.

Chapter 8

Summary & Conclusions

We conclude this thesis with a summary of our major results and some sug-
gestions for further work.

8.1 Results

We have provided a discussion of the rendering aspects of free-form defor-
mation. We started by developing a consistent framework for Bézier curves,
surfaces and hypersurfaces in blossoming notation. The blossoming notation,
introduced by Ramshaw, is a recent development and its extension to tensor
product surfaces and hypersurfaces has not received much attention.

The first contribution of this dissertation consisted of providing geomet-
rically intuitive algorithms for the composition of Bézier curves and surfaces
with tensor product Bézier hypersurfaces.

We have then shown that these composition algorithms can be applied to
Sederberg’s FFD technique. The deformed object surfaces can be expressed
in Bézier form, if the object has been deformed by a Bézier hyperpatch with
a grid of initially regularly spaced control points.

The FFD scheme can not only be used to obtain object points in de-
formed space. Obtaining correct surface normals is important to determine
information about surface curvature for subdivision and shading purposes.
Normal transformation has not been mentioned in the existing FFD liter-
ature. We have shown that, using Jacobian matrices, we can analytically
determine deformed surface normals.

134

CHAPTER 8. SUMMARY & CONCLUSIONS 135

The practical applicability of the functional composition algorithms to
rendering deformed objects is limited. Rendering the deformed surfaces di-
rectly from their analytic description is either not possible, because closed
form expressions for the surfaces can only be obtained for parallelepipedical
deformation grids, or prohibitively expensive, because the resulting surfaces
are of very high order.

An alternative approach consists of tessellating the surfaces into triangu-
lar meshes that approximate the surface closely and applying the deformation
to these meshes. Using dedicated rendering hardware, the triangle meshes
can then be rendered very efficiently. We have surveyed finite element mesh-
ing algorithms and found that the advancing front algorithm possesses a
number of properties that make it a suitable candidate for meshing FFD
deformed objects.

Our second major contribution consisted of developing such an advanc-
ing front meshing algorithm for meshing FFD deformed models. Deformed
surfaces are subdivided according to local curvature to a user-specified accu-
racy. The generated meshes are consistent across shared surface edges and
therefore do not cause visible cracks. Our meshing scheme is superior to the
existing two techniques by Parry and Griessmair in that it can cope with any
polygonally bounded object rather than only spheres, cyhnders and blocks
(Parry) or convex polygons (Griessmair).

Using a number of examples, we have shown that our implementation
meshes complex objects and produces well graded meshes. We did not en-
counter any convergence problems. Most objects can be meshed in an ad-
equate density in about 3 seconds and the growth rate between time and
number of generated triangles seems near linear.

8.2 Future Work

We can see possible extensions to this work in five main areas:
e extension of the composition algorithms to B-splines
e extension of meshable surfaces to NURBS

e parallel implementation

CHAPTER 8. SUMMARY & CONCLUSIONS 136

e view dependent meshing
e alternative meshing algorithms.

In Chapter 3, we have briefly mentioned the extension of our blossoming
composition algorithms to B-splines and rational curves. B-splines can be
decomposed into Bézier curves. We have therefore argued that we can ap-
ply our composition algorithms by decomposing the B-splines into Béziers,
composing the individual Béziers and rejoining the composed Béziers into
B-splines. However, it should be possible to derive a composition algorithm
that can be directly applied to the B-spline control points, thus relieving us
from the decomposition and rejoining process. Also, we have mentioned the
problems that arise when composing surfaces with B-spline volumes. Further
investigation of this type of composition problem is needed.

As for our meshing algorithm, our current implementation is restricted
to meshing solids defined by planar surface patches. However, in many CAD
applications, the objects are described in terms of trimmed non-uniform ra-
tional B-spline (NURBS) surfaces, see Versprille [Ver75] or Piegl [Pie9l].
Extending our meshing scheme to handle this type of surface type would be
possible by applying our meshing algorithm in the parameter space of the
NURBS patch. However, finding a curvature measure for the deformed edges
and surfaces is more complex now, because both the mapping from param-
eter space to the undeformed patch and from the undeformed patch to the
deformed patch have to be considered. ‘

Our meshing scheme meshes each surface individually whilst ensuring
mesh compatibility across adjacent surfaces. A parallel implementation, with
individual surfaces distributed across processors, would therefore be straight-
forward. Our current single processor implementation meshes objects in
about 3 seconds on a bottom-of-the-range, single processor Silicon Graphics
Indy workstation. A parallel implementation on a MIMD architecture should
achieve these results in well under a second.

The ability to obtain meshes at near interactive rates would make mesh-
ing dependent on the current viewpoint an option. Our shaded images of
deformed objects (Appendix A) show that meshing artefacts can most easily
be picked up along surface boundaries and silhouette lines. Given a view
vector, we could thus integrate a silhouette measure, based on the view vec-
tor and the surface normal vector, into our subdivision criterion and achieve
higher subdivision along silhouette lines.

CHAPTER 8. SUMMARY & CONCLUSIONS 137

Finally, using the same subdivision criteria, the use of alternative mesh-
ing algorithms should be investigated. Although we did not encounter any
convergence problems for our advancing front scheme, algorithms such as the
Guibas and Stolfi version of the Constrained Delaunay Triangulation (Guibas
and Stolfi [GS85]) seem to be more robust (Lischinski [Lis94]). Any float-
ing point implementation of a geometric algorithm has to rely on heuristics
to resolve degenerate cases and numerical problems due to finite precision.
However, due to the simplicity of the Delaunay triangulation, this seems to
be less of a problem than for geometrically more complex algorithms such as
the advancing front scheme.

Bibliography

[Ado85]

[Ado91]

[AES91]

[Barg4]

[Bar85]

[Bar91]

[Béz78|

[BFK84]

Adobe Systems Incorporated, Hill Place House, London, UK.
PostScript Language: Reference Manual, 1985.

Adobe Systems Incorporated, Hill Place House, London, UK.
Adobe Photoshop: User Guide, 1991.

S. S. Abi-Ezzi and L. A. Shirman. Tesselation of curved sur-
faces under highly varying transformations. In Proceedings of
Eurographics ° 91, pages 385-397. North Holland, 1991.

Alan H. Barr. Global and local deformations of solid primitives.
Computer Graphics, 18(3):21-30, July 1984. SIGGRAPH ’84
Conference Proceedings.

R. E. Barnhill. Surfaces in computer aided geometric design:
A survey with new results. Computer Aided Geometric Design,
2:1-17, 1985.

Richard Bartels. Polar forms and splines. In Topics in the
Construction, Manipulation and Assessment of Spline Surfaces,
number C 25 in SIGGRAPH Course Notes, pages 2.0-2.12. ACM
SIGGRAPH, 1991.

P. Bézier. General distortion of an ensemble of biparametric
surfaces. Computer Aided Design, 10(2):116-120, March 1978.

W. Bohm, G. Farin, and J. Kahmann. A survey of curve and
surface methods in CAGD. Computer Aided Geometric Design,
1(1):1-60, July 1984.

138

BIBLIOGRAPHY 139

[BMSW91] Daniel Baum, Stephen Mann, Kevin Smith, and James Winget.

[Bow81]

[BRW89)

[BT75]

[BWS*87]

[Cat74]

[Cav74]

[CFF85]

[Che89]

Making radiosity usable: Automatic preprocessing and mesh-
ing techniques for the generation of accurate radiosity solutions.
Computer Graphics, 25(4):51-60, July 1991. SIGGRAPH ’91
Conference Proceedings.

A. Bowyer. Computing dirichlet tessellations. Computer Jour-
nal, 24(2):162-166, 1981.

Daniel Baum, Holly Rushmeier, and James Winget. Improv-
ing radiosity solutions through the use of analytically deter-
mined form-factors. Computer Graphics, 23(3):325-334, July
1989. SIGGRAPH ’ 89 Conference Proceedings.

Phong Bui-Tuong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311-317, June 1975.

Peggy L. Bachmann, Scott L. Wittchen, Mark S. Shepard,
Kurt R. Grice, and Mark A. Yerry. Robust, geometrically based,
automatic two-dimensional mesh generation. International Jour-
nal for Numerical Methods in Engineering, 24:1043-1078, 1987.

E. Catmull. A subdivision algorithm for computer display of
curved surfaces. Technical Report UTEC-CSc-74-133, Depart-
ment of Computer Science, University of Utah, Salt Lake City,
UT, December 1974.

J. C. Cavendish. Automatic triangulation for arbitrary planar
domains for the finite element method. International Journal
for Numerical Methods in Engineering, 8:679-696, 1974.

J. C. Cavendish, D. A. Field, and W. H. Frey. An approach
to automatic three-dimensional finite element mesh generation.

International Journal for Numerical Methods in Engineering,
21:329-347, 1985.

L. Paul Chew. Guaranteed-quality triangular meshes. Technical
Report TR 89-983, Department of Computer Science, Cornell
University, Ithaca, NY, April 1989.

BIBLIOGRAPHY 140

(CJ91]

[ClaT79]

[CLR90]

[Co067]

[Coq90]

[CWo3]

[dB72]

[DeR83)

[dFdC59]

[dFdC86]

[dFFP85)

Sabine Coquillart and Pierre Jancene. Animated free-form defor-
mation: An interactive animation technique. Computer Graph-
ics, 25(4):23-26, July 91. SIGGRAPH ’91 Conference Proceed-

ings.

J. H. Clark. A fast scan-line algorithm for rendering parametric
surfaces. Computer Graphics, 13(2):174, August 1979. SIG-
GRAPH ’ 79 Conference Proceedings.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. The MIT electrical engineering and computer science
series. The MIT Press, Cambridge, MA, 1990.

Steven A. Coons. Surfaces for computer-aided design of space
forms. Technical Report MAC-TR-41, Massachusetts Institute
of Technology Project MAC, Cambridge, MA, 1967.

Sabine Coquillart. Extended free-form deformation: A sculp-
turing tool for 3D geometric modeling. Computer Graphics,
24(4):187-196, August 90. SIGGRAPH ’90 Conference Pro-
ceedings.

Micheal F. Cohen and John R. Wallace. Radiosity and Realistic
Image Synthesis, chapter 8. Academic Press, London, 1993.

Carl de Boor. On calculating with B-splines. Journal of Approz-
imation Theory, 6(1):60-62, 1972.

Tony DeRose. Composing bézier simplexes. ACM Transactions
on Graphics, 7(3):198-221, July 1988.

P. de Faget de Casteljau. Outillages méthodes calcul. Technical
report, A. Citroén, Paris, France, 1959.

P. de Faget de Casteljau. Shape Mathematics and CAD. Kogan
Page, London, 1986.

L. de Floriani, B. Falcidieno, and C. Pienovi. Delaunay-based
representation of surfaces defined of arbritrarily shaped domains.
Computer Vision, Graphics and Image Processing, 32:127-140,
1985.

[Edes87]

[Far83]

[Far91]

[Far93]

[For87]

[Fre87]

[FvDFH90]

[Geo91]

[Gil72]

[GouT1]

[GP89)

BIBLIOGRAPHY 141

H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer Verlag, Berlin, 1987.

G. Farin. Algorithms for rational bézier curves. Computer Aided
Design, 15(2):73-77, March 1983.

R. Farouki. On the stability of transformations between power
and bernstein polynomial forms. Computer Aided Geometric
Design, 8(1):29-36, 1991.

G. Farin. Curves and Surfaces for Computer Aided Geometric
Design. Academic Press, London, third edition, 1993.

S. Fortune. A sweepline algorithm for Voronoi diagrams. Algo-
rithmica, 2:153-174, 1987.

W. H. Frey. Selective refinement: A new strategy for automatic
node placement in graded triangular meshes. International Jour-
nal for Numerical Methods in Engineering, 24:2183-2200, 1987.

J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer
Graphics: Principles and Practise. IBM Systems Programming
Series. Addison Wesley, New York, NY, second edition, 1990.

P. L. George. Automatic mesh generation. John Wiley & Sons,
Chichester, 1991.

James Ian Gill. Computer-Aided Design of Shell Structures using
the Finite Element Method. PhD thesis, Cambridge University
Computer Laboratory, 1972. '

H. Gouraud. Continuous shading of curved surfaces. IEEE
Transactions on Computers, 20(6):302-308, June 1971.

Josef Griessmair and Werner Purgathofer. Deformation of solids
with trivariate B-Splines. In W. Hansmann, F.R.A. Hopgood,
and W. Strasser, editors, EUROGRAPHICS ’89, pages 137-
148. Eurographics Association, Elsevier Science Publishers B.V.
(North-Holland), 1989.

BIBLIOGRAPHY 142

[GS85]

[HHK92]

[HL8S)

[7586]

[JW90]

[Kol91]

[KR88]

[LCT79]

[LOWBS0]

[Lis94]

Leonidas Guibas and Jorge Stolfi. Primitives for the manipu-
lation of general subdivisions and the computation of voronoi
diagrams. ACM Transactions on Graphics, 4(2):74-123, April
1985. ‘

William M. Hsu, John F. Hughes, and Henry Kaufman. Direct
manipulation of free-form deformations. Computer Graphics,
26(2):177-184, July 1992. SIGGRAPH ’ 92 Conference Proceed-
ings.

K. Ho-Le. Finite element mesh generation methods: a review
and classifiation. Computer Aided Design, 20(1):27-38, January
1988.

B. Joe and R. B. Simpson. Triangular meshes for regions of com-
plicated shapes. International Journal for Numerical Methods in

- Engineering, 23:751-778, 1986.

H. Jin and N.-E. Wiberg. Two-dimensional mesh generation,
adaptive remeshing and refinement. International Journal for
Numerical Methods in Engineering, 29:1501-1526, 1990.

Craig E. Kolb. Rayshade User’s Guide and Reference Manual,
draft 0.1 edition, January 1991. Rayshade is available via anony-
mous ftp from ftp.princeton.edu.

Brian W. Kernighan and Dennis M. Ritchie. The C programming
language. Software Series. Prentice Hall, Englewood Cliffs, NJ,
second edition, 1988.

J. Lane and L. Carpenter. A generalized scan line algorithm for
the computer display of parametrically defined surfaces. Com-
puter Graphics and Image Processing, 11(3):290-297, November
1979.

J. Lane, L. Carpenter, T. Whitted, and J. Blinn. Scan line
methods for displaying parametrically defined surfaces. Com-
munications of the ACM, 23(1):23-34, January 1980.

D. Lischinski. Graphics Gems IV, chapter Incremental Delaunay
Triangulation, pages 47-59. Academic Press, 1994.

BIBLIOGRAPHY 143

[Lo85]

[L&h88]

[LRS0]

[LSP87]

[MP77]

[Nyd72]

[Par77]

[Par86]

[Pie91]

[PPF*88]

S. H. Lo. A new mesh generation scheme for arbitrary planar
domains. International Journal for Numerical Methods in Engi-
neering, 21:1403-1426, 1985.

Rainald Lohner. Some useful data structures for the genera-
tion of unstructured grids. International Journal for Numerical
Methods in Engineering, 4(1):123-135, 1988.

J. Lane and R. Riesenfeld. A theoretical development for the
computer generation of piecewise polynomial surfaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2(1):35-46, January 1980.

S.-L. Lien, M. Shantz, and V. Pratt. Adaptive forward differ-
encing for rendering curves and surfaces. Computer Graphics,
21(4):111-117, July 1987. SIGGRAPH ’ 84 Conference Proceed-
ings. '

R. S. Millman and G. D. Parker. Elements of Differential Ge-
ometry. Prentice-Hall, Englewood Cliffs, NJ, 1977.

R. Nydegger. A data minimization algorithm of analytical mod-
els for computer graphics. Master’s thesis, University of Utah,
Dept. of Computer Science, Salt Lake City, UT, 1972.

Richard E. Parent. A system for sculpting 3d data. Computer
Graphics, 11(2):138-147, August 1977. SIGGRAPH ’ 77 Confer-
ence Proceedings.

Scott A. Parry. Free-Form Deformations in a Constructive Solid’
Geometry Modeling System. PhD thesis, Department of Civil
Engineering, Brigham Young University, Provo, UT, 1986.

Leslie A. Piegl. On NURBS: A survey. IEEE Computer Graphics
& Applications, 11(1):55-71, January 1991.

J. Peraire, J. Peiro, L. Formaggia, K. Morgan, and
O. Zienkiewicz. Finite element euler computations in three di-
mensions. International Journal for Numerical Methods in En-
gineering, 26(10):2135-2159, 1988.

BIBLIOGRAPHY 144

[PRO3]

[PS85]

[PVMZ88]

[Ram87)

[Ram88]

[RHDSY]

[SAG84]

[Sch93a)

[Sch93b]

[Sed83]

[Sed93]

Leslie A. Piegl and Arnaud M. Richard. Tesselating trimmed
NURBS surfaces. Computer-Aided Design, 27(1):16-26, January
1995.

F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. Springer Verlag, New York, NY, 1985.

J. Peraire, M. Vahdati, K. Morgan, and O. Zienkiewicz. Adap-
tive remeshing for compressible flow computations. Journal of
Computational Physics, 72(2):449-466, 1988.

L. Ramshaw. Blossoming: a connect-the-dots approach to
splines. Technical Report 19, Digital Systems Research Center,
Palo Alto, CA, June 1987.

L. Ramshaw. Béziers and B-splines as multiaffine maps. In
R. A. Earnshaw, editor, Theoretical Foundations of Computer
Graphics and CAD, volume F40 of NATO ASI Series, pages
757-776, Berlin, 1988. Springer Verlag.

A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of
trimmed surfaces. Computer Graphics, 25(4):107-116, August
1989. SIGGRAPH ’89 Conference Proceedings.

T. W. Sederberg, D.C. Anderson, and R.N. Goldman. Implicit
representation of parametric curves and surfaces. Computer Vi-
sion, Graphics and Image Processing, 28:72-84, 1984.

Larry L. Schumaker. Computing optimal triangulations us-
ing simulated annealing. Computer Aided Geometric Design,
10:329-345, 1993.

Larry L. Schumaker. Triangulations in CAGD. IEEE Computer
Graphics & Applications, 13(1):47-52, January 1993.

Thomas W. Sederberg. Implicit and Parametric Curves and Sur-
faces for Computer Aided Geometric Design. PhD thesis, Purdue
University, West Lafayette, IN, 1983.

Thomas W. Sederberg. Personal communication, 1993.

BIBLIOGRAPHY 145

[Sei93]

[SHO2]

[ShaT8]

[She8s)]
[SL87]
[SP86a)
[SP8Gb)
[SS90]
[vdW70]
[Ver75)

[Wal90]

H.-P. Seidel. An introduction to polar forms. IEEE Computer
Graphics & Applications, 13(1):38-46, January 1993.

X. Sheng and B. E. Hirsch. Triangulation of trimmed surfaces
in parametric space. Compute-Aided Design, 24(8):437-444, Au-

~ gust 1992.

Michael I. Shamos. Computation Geometry. PhD thesis, Yale
University, New Haven, CT, 1978. UMI #7819047.

Mark S. Shepard. Approaches to the automatic generation and
control of finite element meshes. Applied Mechanics Review,
41(4):169-184, April 1983.

M. Shantz and S. Lien. Shading bicubic patches. Computer
Graphics, 23(4):189-196, July 1987. SIGGRAPH ’ 84 Conference
Proceedings.

Thomas W. Sederberg and Scott R. Parry. Free-form deforma-
tion of polygonal data. In Proceedings International Electronic
Image Week, pages 633-639, Nice, France, April 1986.

Thomas W. Sederberg and Scott R. Parry. Free-form deforma-
tion of solid geometric models. Computer Graphics, 20(4):151-
160, August 1986. SIGGRAPH ’86 Conference Proceedings.

W. J. Schroeder and M. S. Shepard. @A combined oc-
tree/Delaunay method for fully automatic 3-d mesh generation.
International Journal for Numerical Methods in Engineering,
29:37-55, 1990.

B. L. van der Waerden. Algebra, volume 2. Frederick Ungar,
New York, NY, fifth edition, 1970.

K. J. Versprille. Computer-Aided Design Application of the Ra-
tional B-Spline Approzimation Form. PhD thesis, Syracuse Uni-
versity, Syracuse, NY, 1975.

Bob Wallis. Graphics Gems, chapter Tutorial on Forward Dif-
ferencing, pages 594-603. Academic Press, 1990.

BIBLIOGRAPHY 146

[Wat81]

[Wor81]

[WW92]

[YS83)]

[YS84]

[ZP71]

D. F. Watson. Computing the n-dimensional delaunay tessela-
tion with application to voronoi polytopes. Computer Journal,
24(2):167-172, 1981.

Burkard Wordenweber. Automatic mesh generation of 2 and 3
dimension curvilinear manifolds. Technical Report 18, Computer
Laboratory, University of Cambridge, Cambridge, UK, Novem-
ber 1981.

Alan Watt and Mark Watt. Advanced Animation and Render-
ing Techniques: Theory and Practice, chapter The theory and
practice of parametric representation techniques. ACM Press.
Addison-Wesley, New York, NY, 1992.

Mark A. Yerry and Mark S. Shepard. A modified quadtree
approach to finite element mesh generation. IEEE Computer
Graphics & Applications, 3(1):39-46, January 1983.

Mark A. Yerry and Mark S. Shepard. Automatic tree-
dimensional mesh generation by the modified-octree technique.

International Journal for Numertical Methods in Engineering,
20:1965-1990, 1984.

0. C. Zienkiewicz and D. V. Phillips. An automatic mesh gen-
eration scheme for plane and curved surfaces by isoparametric
co-ordinates. International Journal for Numerical Methods in
Engineering, 3(4):518-528, 1971.

Appendix A

Colour Plates

147

APPENDIX A. COLOUR PLATES 148

Figure A.l: Deformed polygon with émax = 00, €max = 0.5 and €max = 0.2

APPENDIX A. COLOUR PLATES

Figure A.2: Solid with gmax = 0.1

Figure A.3: Planar deformation of solid with emax = 0.1

149

APPENDIX A. COLOUR PLATES 150

Figure A.4: Bell-shaped deformation of tile with star-shaped hole, €pmax = 0.2

Figure A.5: Deformed girder with emax = 0.05

APPENDIX A. COLOUR PLATES 151

Figure A.6: Girder deformed by non-uniform B-spline, emax = 0.1

