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June 9, 1995

The aim of this article is twofold. From a mathematical perspective we present a notion of convergence
which is suitably general such as to include the convergence of chains to their least upper bounds in preordered
sets, and the convergence of Cauchy sequences to their metric limits in metric spaces. Rather than presenting
this theory from a purely mathematical perspective however, we will use it to introduce a simple-minded
domain theory based on a generic notion of approximation. We might hope that this is not the only use of
the concepts we present, although it is the one that motivated us in the first place.

One possible kind of approximation one uses in domain theory as it is used in the study of denotational
semantics of programming languages is the binary one that we have in preorders: either an element is below
another in the preordering, or it is not. Another kind of approximation is the metric one, where we do not
just say whether one element approximates another, but to which degree it does so, with a non-negative real
number.

It turns out that we can separate out from a large part of domain theory considerations about a particular
notion of approximation, and just state a few axioms that should hold about a notion of approximation. In
this general theory, which encompasses preorders and metric spaces among many other kinds of structures,
we can then do general domain theory. The requirements for our notion of approximation turns out to be
that of a quite well-known mathematical structure, viz. that of a commutative, unital quantale. One such
quantale is the two point lattice, which gives rise to the theory of preorders, and another is that of the
non-negative real numbers, turned up-side down, giving rise to generalized metric spaces. The advantage of
this separation of concerns is obvious: we can see more easily what is common in different brands of domain
theory, and what is specifically dependent on the kind of approximation one uses.

The initial part of the machinery that we just sketched is well-known as the (even more general) theory
of enriched categories ([Eilenberg & Kelly 66]). At the core of our contribution is the concept of convergence
(liminf) which unifies least upper bound of chains in preorders with metric limit of Cauchy sequences in
metric spaces. This enables us to carry through a straightforward unification of the partial order and the
metric approaches to domain theory, employing only basic lattice theory. We show the scope of the unification
by providing one general proof for Scott’s inverse limit theorem, which subsumes both Scott’s original proof
in the partial order setting (see e.g. [Lambek & Scott 86] Chapter 18) and America and Rutten’s proof in the
metric setting ([America & Rutten 87]). Much of the background to this note is elaborated in the authors
PhD thesis, [Wagner 94], although the formulation of convergence has been streamlined in this document.

The first step in establishing the theory is to use Lawvere’s insight ([Lawvere 73]) that the notion of an
enriched category is a unifying concept for among many other structures, (generalized) metric spaces and
preorders. The difference is in which structure one enriches over. If the structure one enriches over (the base
category), 2, is the two-point lattice, then the category of {2-enriched categories and Q-functors is precisely
the category of preorders and monotone maps, and if  is the extended non-negative reals, [0, 0], with
the opposite ordering than the real numbers, and equipped with + as tensor, one obtains the category of
generalized metric spaces and conservative (non-expansive) maps.

The second step is to unify the notion of least upper bound of chains with metric limit of Cauchy
sequences. This is where the notion of liminf of sequences in enriched categories comes in. Tt is clear that




one can not just take the categorical notion of Cauchy completeness ([Lawvere 73]) as the unifying concept for
metric completeness and chain completeness. The reason is that this notion renders all preorders complete.
It only works in the symmetric case. It turns out however, that it is possible to define a unifying notion of
convergence. Using this we define completeness and continuity and prove a general version of Scott’s inverse
limit theorem.

In Section 1 we give an outline of the basic theory of Q-categories, which is a special case of enriched
categories. In Section 2 we present our notion of convergence in {)-categories, and state some basic properties
of this kind of convergence. Section 3 is devoted to a Fubini-like theorem concerning our notion of convergence
and is in a sense the conclusion of the presentation of the theory proper. The three following sections are
further considerations and an application. They are reasonably independent, and any can be skipped by the
reader. Section 4 shows how the notion of Scott open subsets and Scott continuous functions can be refound
in our more general setting, and Section 5 gives a categorical account of our notion of convergence. Finally
Section 6 contains our general version of Scott’s inverse limit theorem.

It is far from obvious what the right way of presenting this theory is. The main question is how much
category theoretical language to use. On the one hand, readers with a strong background in category theory
are bound to be impatient with a more pedestrian approach, but on the other hand many readers without
such a strong background will necessarily be prohibited from understanding the material if it relies heavily
on categorical notions. I have therefore chosen to use a certain minimum of category theory, where it has an
immediate benefit towards brevity of reasoning, not just brevity of expression. Another issue is how much
detail to include. Many of the calculations do not require much more than mindless rewriting following a
few rules given by a few basic properties of the structures in question, and are really rather trivial. Here I
have chosen to err on the side of giving too much detail, since the impatient reader always has the option of
skipping the more tedious parts of the proofs.

I wish to extend my thanks to Valeria de Paiva and Andrew Pitts for a thorough reading of a draft of
this paper.

1 -categories

We aim initially at unifying partial orders with metric spaces, and by accepting generalizations of both
notions we have a unifying concept ready at hand: enriched categories ([Lawvere 73]). The following two
definitions lead up to the general concept.

Definition 1.1 A preorder is a pair (Ao, [ < _]) where Ag is a set and [_ < ] : Ag X Ag — 2, where 2 stands
for the two point lattice {t, f} with f <2 ¢, and where [_ < ] is reflezive: [a < a] =t for all a, and transitive:

[a<bAb<c<L2fa< .
For morphisms between preorders (Ao,[. <4 _]) and (Bg,[. <p _]) we consider the monotone functions

on the underlying sets, i.e. the mappings f : A9 — By such that [a <4 '] <2 [f(a) <p f(a')]. We will
]

denote the category of preorders and monotone maps PreOrd.

We should remark that we have identified in the above, the underlying set of 2 with the lattice. Normally,
when we wish to emphasize that we are talking about the underlying set of some structure, we use subscript
0, as in Ay.

Lawvere coined in [Lawvere 73] the name for the following structures.

Definition 1.2 A generalized metric space is a pair (Ao, d) where Ay is a set and d : Ag X Ag — [0, o0}, where
[0, 00] is the interval of non-negative real numbers, extended with infinity and with the opposite ordering as
the usual real numbers, and where d is reflerive: d(a,a) = 0 and transitive: d(a,b) + d(b,c) <[0,00} d(a;C).
For morphisms between generalized metric spaces (Ag,d4) and (Bg,dp) we consider the conservative
functions on the underlying sets, i.e. the mappings f : Ao = Bo such that d4(a,a’) <p,00) dB(f(a), f(a')).
We will denote the category of generalized metric spaces and monotone maps GMet. a

Reflexivity and transitivity for the distance function in generalized metric spaces are two of the well-known
axioms for metric spaces, viz. identity and the triangular inequality. Compared with the usual axioms for



metric spaces we miss symmetry and separation (d(a,b) = 0 implies @ = b), but one can do a lot with the
weaker generalized structures. In particular, as we show in this article, one can do domain theory.

It should be evident from the above that the class of preorders and generalized metric spaces are generated
following the same pattern, only using a different ‘basis’: In the one case one uses (2,<,A) and in the other
([0,00],>,+). It should come as no surprise that these are not the only ‘bases’ (henceforth to be called base
categories) that can be used. In fact the general theory of enriched categories permits the base category to
be a proper (monoidal closed) category, not just a lattice. In order to make the exposition more accessible
we refrain from this generality here, thus working with lattice theoretic meets and joins instead of categorical
limits and colimits. We believe that by doing so we exclude many interesting examples and an extension to
the more general case is an obvious future task. Sticking with particular lattices, systematically named  in
the following, as base categories, we call our enriched categories {}-categories.

We give the basic definitions limiting the class of allowable Q and of 2-categories.

Definition 1.3 A complete lattice Q is called a commutative quantale when it has a commutative and
associative monotone operation, tensor, ® :  x Q0 — § such that p ® _ has a right adjoint for every p € Q.
We will call this right adjoint p — _. A commutative quantale is called unital if the tensor has a unit 1, that
is, p® 1 = p for all p. ]

Henceforward,  will denote a commutative, unital quantale.

Remark 1.4 Since we will use it so often, it is worth spelling out that the adjunction requirement above,
p® _ - p —o _ for every p, is to say (using commutativity) that p® g <r if and only if p< g —o . Also,
remember that left-adjoints preserve colimits and right-adjoints limits, in other words p® Vi =V;p®aq
andp —A\;qi = \;p — ¢-

It is also worth remarking that very often in the ezamples we will consider, the unit, 1, of the tensor will
be the top element, T, of §, but that this need not be the case.

Also, remember that every complete lattice is a partial order, not just a preorder, so equality in Q is really
equality, not just isomorphism. O

Definition 1.5 A category enriched over Q (or Q-category) is a pair, (Ao, [, ]) where Ag is a set and where
the second component (usually called the hom functor) to every two elements a, a' € Ay, yields an element
[a,a'] € ©, such that 1 < [a,a] for every a € Ap (reflexivity) and [a,b] ® [b,¢] < [a,c] for all a,b,c € Ao
(transitivity). m

Obviously we can generalize Definition 1.5 to large enriched categories, in that we allow the first component
to be a proper class. This will enable us to consider for instance the collection of retracts of a domain as an
Q-category. However, not all the constructions in the sequel are applicable to large (-categories, and unless
otherwise stated, the Q-categories in the sequel will be small, that is, their underlying class Ao will be a set,
and we will explicitly emphasize if an Q-category A is large. When we wish to emphasize the name of the
Q-category, A say, we write A[_, ] for the hom functor. As usual, we denote by A°P the Q-category with the
same underlying class, but with A°[a,a'] = Ald’, a].

Definition 1.6 An Q-functor between Q-categories A and B is a function f : Ap — Bo where Ala,a] £
B[f(a), f(a")] for all a,a’ € Ao. o

Q-functors are composed by composing the underlying functions on sets, and it is clear that the class of
small Q-categories and Q-functors form a category. We denote it Q-CAT. Whenever we in the sequel form
categories of Q-categories, it will be understood that we only consider the small {}-categories.

Example 1.7 Let Q = 2, the two point lattice, with ® = A. The category of 2-enriched categories and
2-functors is the category PreOrd of preorders and monotone maps from Definition 1.1. [

Example 1.8 Let Q = [0, co] with the opposite ordering as the reals (so 0 is the greatest element) and + as
tensor. We find that the adjoint to p+ _is _—p, where — is truncated subtraction, and where the operations




are extended to cope with infinity such that co—oo = 0 and everything else is as expected. In this case
the category of Q-categories is the category GMet of generalized metric spaces and conservative maps from
Definition 1.2. O

Example 1.9 The non-negative real numbers can be equipped with other tensors than +. Take for example
® as max. Transitivity now reads max{d(a,b),d(b, ¢)} (0,0} d(a,c). The Q-categories for this () are precisely
the (generalized) ultra-metric spaces. a

Thus we see that Q-categories will take the place of domains in our discussion, though we will have to
impose restrictions on them, corresponding to the completeness requirements one imposes on pre-orders or
metric spaces (chain and Cauchy completeness, respectively) in order to obtain feasible domains for recursive
domain equations.

Observation 1.10 It is easy to see that (Q,—o) is itself an Q-category, which justifies that we sometime
write [p,q] for p — g. It is an easy exercise to see that [, p] is a Q-functor from (Q,—)% to (R, —), and
that [p, ] and p® _ are endo-functors on (), —). We will often confuse Q as a quantale with (Q, —) as an
Q-category, writing Q for both. |

The tensor from 2 lifts to Q-categories thus.

tensor product, A ® B, with set part Ay X Bp, the Cartesian product of their underlying sets, and hom
functor part (A ® B)[(a,b), (a',V')] = Ala,a'] ® B[b,¥]. ]

Definition 1.11 Given -categories, (4o, A, ]) and (Bo, B[, ]) we can form the (2-category called their

The linear implication (—e) from Q lifts as follows.

Definition 1.12 We write f : X — Y when f is an Q-functor from X to Y. Given {2-categories X and Y’
we can form the Q-category [X,Y], the Q-category with set part all the Q-functors from X to Y and with
hom functor part :

(X, Yf,9l= N\ YIi(),9()].

rz€Xo

Proposition 1.13 Given an Q)-category A, the hom functor A[,_] is an Q-functor from A% @ A to .

Proof: Easy. O
The adjunction a ® _ -4 a —o _ in § lifts as well, implying that Q-CAT is a monoidal closed category.

Proposition 1.14 For every Q-category A it holds that A® _ [A, ] (see e.g. [Eilenberg & Kelly 66]). O

We remarked in [Wagner 94] that Q-CAT is Cartesian closed if and only if {2 is a complete Heyting algebra
with ® as meet. (This is by no means a new observation.)

Interestingly for domain theory, the category -CAT also has finite coproducts.

Proposition 1.15 The coproduct X + Y for two Q-categories X and Y is (({0} x Xo) U ({1} xYo), [, ]),
where [(0,2), (0,2')] = X[z,2'], [(1,9), (L") =Yy, y'), and [(5,2),(j§,v)] = L for i # j, together with the
injections inX : X — (X +Y) and inY : Y — (X +7Y) defined by inX (z) = (0,z) and inY (y) = (1,y).

Proof: Let X,Y and Z be Q-categories with f : X — Z and g: Y — Z. We define (f,g) : (X+Y) — Z
by (f,9)(0,z) = f(z) and (f,9)(1,¥) = g(y). It is obviously the unique morphism that will make f =
(f,9) cinX and g = (f,g) o inY, so existence and uniqueness in no problem, as long as we can show that
(f,9) is a morphism. To see this we have to check that [(f, g)(¢, 2), (f,9)(4,v)] = [(¢, 2), (j,v)], which is
obvious for ¢ = j, so assume without loss of generality that ¢ = 0 and § = 1. Then we need to show
[£(2),9(v)] = L, which is trivially the case. )



Observation 1.16 Q-CAT has a terminal object, the Q-category with one element, %, and [*,%] = Tq. We
denote this Q-category by 1. The morphism from X into 1 is denoted by -x. When T = 1 there is a
one-to-one correspondence between Q-functors from 1 to A and elements of Ao; a confusion we will use for
notational convenience whenever appropriate. 0

There is an object in the category Q-CAT which plays the role of the natural numbers. There are several
ways of defining it. Probably the simplest, though not the one starting from elementary categorical concepts
is the following.

Definition 1.17 By N we denote the Q-category ({0,1,2,...},[,,]), where Njn,m] is Tif n =m, and L
(the least element of () otherwise. We also define 0: 1 — N as 0(x) = 0, and succ : N — N in the obvious
way (which we could make precise if we were precise about the component {0,1,2,...}.) a

We could also have defined the natural numbers in a categorical style, using coproducts ([Freyd 90]).
Consider the endo-functor _+ 1 in Q-CAT which sends an §-category A into A + 1 and an -functor
f:A—o Binto f +idg = ((inBo f),inll) : (A+ 1) — (B + 1) according to the following diagram

A in.ALA_i_]1 inl_ 4

|
f lf + id]l 'idn

BogrB+lg 1

Proposition 1.18 (N, (succ,0)) is uniquely characterized as the initial algebra for the functor _+ 1.

Proof: Easy. o
Spelled out Proposition 1.18 says that N is an Q-category, and that 0 : 1 — N and succ : N — N are

Q-functors such that for any Q-category A and any Q-functors a: 1 — A and f : A — A there are unique
Q-functors s : (N+ 1) — (A + 1) and ¢ : N — A such that the following diagram commutes.

A+1+2-N+1
(f,a) (succ, 0)
A 7 N

It is also easy to see that the natural numbers thus defined are a (strong) natural numbers object in
the sense of Lawvere (see e.g. [Lambek & Scott 86]). This is to say that for every @ : 1 — A and every
f: A — A there are unique g, h : N — A such that the following diagram commutes.

1 .Q N succ N

idn\ g

A 7 A

Remark 1.19 Notice, how we here have an indication that the cases with T = 1 will be the most convenient
— the commutativity of the above diagram really only speaks about the elements a(x), f(a(*)), f(f(a(%))), ...,
which all are points ¢ where [z,z] =T.

h

1—3

2 Convergence of sequences and completeness of domains

In denotational semantics it is most often the case that the (co)limits that occur arise from countable
sequences, be it sequences of elements in a structured set such as a cpo or a metric space, or be it sequences




of domains as resulting from iterated application of a functor in a category of domains. We will therefore
restrict ourselves at this point to consider just sequences and their convergence, not e.g. directed sets. Thus
our notions of continuity and completeness will also be based on countable sequences.

Concerning completeness, in [Lawvere 73] Lawvere introduces the notion of Cauchy completeness for
enriched categories, but this notion renders all preorders Cauchy complete, and it is thus clear that we
cannot use his definition to unify chain completeness and Cauchy completeness (in the standard metric
sense). In [Wagner 94] we carried the notion of Cauchy sequence over basically verbatim from traditional
metric spaces to {l-categories, and gave our notion of convergence for such sequences. We can now do slightly
better, using a more general notion of Cauchy sequence that still generalizes chains and Cauchy sequences
in metric spaces, but which renders the ensuing theory more elegant and general. We need a few elementary
observations on sequences of elements of an Q-category first, though.

Definition 2.1 By a sequence of elements of an Q-category A we mean an Q-functor a : N — A. We will
usually write an element of a sequence, a(n) say, as ag. 0O

Thus we write [N, A]o for the set of sequences in A.

First we establish two elementary lemmas about sequences in quantales or more generally complete
lattices. The first (Lemma 2.2) says that prefixes are irrelevant when we consider ‘liminfs’ of sequences in
a complete lattice. The second (Lemma 2.3) says roughly that given two increasing sequences in {2, when
we want the join of all combinations of an element from one and an element from the other sequence, it is
enough to consider just the diagonal.

Lemma 2.2 For any sequence (Tn)nen of elements in a complete lattice, \/ yeny Apsn Zn = Vsy Ansn 2n
for any M e N. - -

Proof:
VA=Y A a=V AssV A :
NeNn>N NeNn>max{N,M} N>Mn>N NeNn>N

Lemma 2.3 For increasing sequences o < 21 < ... and Yo <11 < ... in ) we have

\/ (zn ®yn) = <\/ fl’n) ® (\/ yn) .
neN neN neN

Proof: ‘<’ is obvious, and ‘>’ is easy to see as follows:

\/ (o ®yn) = \/ \/ (mmax{‘n,m} ®yma.x{n,m})

neN neN meN

\/ V (mn ® Ym)

neNmeN

= (V) o (Vo)

where the inequality is due to the sequences being increasing (and ® being covariant in both its arguments).
The argument of course goes through for any covariant bifunctor which preserves joins in each argument,
instead of ‘®’. i

In addition to using the hom-functor [N, A] is ‘born’ with, viz. [a, 8] = A, nl@n,Br], We can compare
two sequences «, 8 : N — A by considering \/ yen An>nl@n, Bn]. Considering the special case of sequences
in preorders, we thus go from saying that o < f if it is so index for index to saying that a < B if it is so
(index for index) from some point (V) on. For the special case of metric spaces, we go from saying that the
distance between two sequences a and § is the supremum of the distance between a;, and 3, taken over
all indices, to being the limsup (in the metric sense) of d(ayn,B,) for n — co. That this is a nice way of
comparing sequences in our general setting follows from Lemma 2.4 below.

v



Lemma 2.4 The pair ([N, Alo,Vxy Ansnlnion)) is an Q-category and Vi Ansnlni-al is an Q-functor
from ([N, A]”” ® [N, 4]) to Q.

Proof: We want to show reflexivity and transitivity of the {2-valued relation VN Ans>nlins ). Reflexivity
is obvious, and to see transitivity we calculate as follows. -

V Alanwml 2 VA lan a) @ [Br, 7]

N a>N N a>N

\/ (/\ [anaﬁn]) ® /\ [ﬂn,'yﬂ]

N \n2N n>N

(\/ A [an,ﬂn]> ®\/ A Bl

N n2>N N n2N

v

Here we have the latter inequality by Lemma 2.3.
To see that \/y Aps>nlnin] is an Q-functor from (IN, 4] ® [N, A]) to 2 we have to show that for

sequences @, 3,7, : N — A we have [0, 8] ® [7,8] ® V y Apsn[Bns 1l SV An>nlcn, 0,), but this is easy
to see. - - m]

Lemma 2.4 makes the following definition legal.

Definition 2.5 We denote by seq(A) the Q-category ([N, Alo, V¥ An>n[ ). The diagonal functor embed-
ding A into seq(A), mapping an element a € A¢ into @ = (a,a,a,...) is denoted A. m|

Consider preorders (2-enriched categories). In this case, for two sequences & and 8 of a preorder,
1 € Vyen An>nlon, Bn] if and only if there exists N ¢ N such that a, < 8, for all n > N. A weaker
way of comparing the two sequences would be not to require that B dominates « index for index after
N, but eventually dominates every an after N, that is, IN e N. Vn > N.9M € NVm > M.a, £ Bm.

Generalizing to sequences in an ()-category we consider \/ /\ \/ /\ [@n, Bm)- 1t is easy to see that this
NeNn>N MeNm2>2M
is an Q-functor from [N, A]°° ® [N, 4] to Q.

Proposition 2.6 The relation V /\ \/ /\ Losorl £ (N, A} ® [N, A]) — Q is transitive.
NeNn>N MeNm>M

Proof: Let o, 3, and v : N — A be given. Then

(v AV /\[an,ﬂu)@ VAV /\wk,m)

NeNn2N K12n k2K, Ko k2K MeNm2M

<VAVY (/\ [an,.ﬂk]) s AV A [ﬁk,’Ym])

NeNn2N K1 2n Ko k2 K1 k>K2 MeNmz>M

< \/ /\ \/ v [amﬁmax{Kl,Kz}]® V /\ [ﬂmax{K;,Kz}"Yﬂl])

NeNn>N K12n Ko M>max{K1,K} m>M

sVAVV "V Alewml

NeNn>N Ki1>n K2 M>max{K1,Kz} m2M

= v \/ /\ [ana7m]- . a
N M

NeNn2N MeNm2>

Definition 2.7 A sequence o : N — A is Cauchy if 1 < Vyenw Ansn Viren Am>nl@n;@m]. The full
subcategory of seq(A), consisting of Cauchy sequences will be denoted cseq(A). B O




Thus, the Cauchy sequences are precisely the sequences on which the relation \/ y oy Apsn Viaren Amsaelans om)
is reflexive. This legitimates the following definition. - B

Definition 2.8 We denote by kseq(4) the Q-category of Cauchy sequences in A with the relation

VAV ALl 0

NeNn>2N MeNm2>M

Remark 2.9 We could call \/ yeny Ansn Viren Amsaelan, am] the extent of a (Inspired vaguely from the
theory of Q-sets ([Fourman & Scott 77])), to indicate how well o defines a unique point (its Uliminf’), re-
gardless of whether this point actually ezists or not. The main difference when comparing to Q-sets is that
the extent here is defined in terms of a non-symmetric relation. o

Remark 2.10 Recall the notion of directed net from [Gierz et al. 80]: A function x from a directed set J
into a set L equipped with a transitive relation ‘<’ is called o directed net if for every i € J there exists a
j € J such that for all k > j, we have z(3) < z(k).

Thus, what we call Cauchy sequences in A are really directed nets from (N, <) into A, with o couple
of generalizations. Firstly, we have generalized the two-valued relation < to an Q-valued one. Secondly,
we have internalized the notion of directed net accordingly, and thirdly, we have generalized to nets which
we could call eventually directed, since we require 1 < Vyen Ansn Viaren Ams>arl@n, am] and not 1 <

/\neN VMeN /\mZM[am am] : ]

Remark 2.11 Compare Definition 2.7 with the predicate 1 < \/ yen Ans N Am>nl0n, @m] which was used in
[Wagner 94], and which we now could call strongly Cauchy. For preorders the latter predicate ezpresses that
from some point (N ) the sequence is a chain. The former only that from some point (N) on, each element
(an) is eventually (after M) dominated by a suffic of a. For such a sequence in a preorder, we easily see
that we have a well-defined notion corresponding to least upper bound. Consider the unique sub-sequence (3
of a obtained by letting By = an, where N is the witness of AN e NVn > N.3M e NVm > M.a, < B,
and Bny1 = apr, where M is the witness for 3M > n.¥m > M.Bn < am. It is obvious that B is a chain,
and any possible least upper bound of B can be taken as a ‘liminf’ of a. This will be made precise when we
consider liminfs.

For an ezample of a sequence which is Cauchy, but not strongly Cauchy, consider the preorder consisting
of the natural numbers with the normal ordering, and consider further the sequence 1,3,2,4,3,5,4,6,...,
alternatingly adding 2 and subtracting 1.

As a slightly more complicated ezample, take as A the unit square, [0,1] %[0, 1] seen as a preorder, ordered
coordinatewise, such that (0,0) is the smallest element and (1,1) the biggest, and thus, the shape is that of a
diamond. Let o be any sequence with elements (Tp,yr), where Tp, Yy, € [0,1) such that T, +yn 22 — % for
all n. The idea is that the points of o are required to be closer and closer to (1,1), but not in a way which
Jorces them to form a chain. We will leave it as an ezercise to show that o is Cauchy, and that this need
not have been the case, had we allowed z,, and y,, to be 1. ]

Remark 2.12 It is clear that chains in preorders are Cauchy sequences in our sense. For Q = [0, 0]+,
the non-negative reals with the opposite ordering and with + as tensor, we saw that any Q-category A is a
generalized metric space, and we see that a sequence is strongly Cauchy ifinf NeN SUPp> N SUP > E(0n, Om) =
0, which is equivalent to Ye > 0.3N € NVm > n > N.d(an,am) < €, which is the usual definition of
Cauchy sequences in metric spaces, extended to cope with non-symmetry. A sequence is Cauchy if and only
if inf yenSUp,s v Inf preN SUP, > s A0, ) = 0. It is not difficult to see that for ordinary symmetric metric
spaces this is equivalent to the usual definition of Cauchy sequence, but notice that this equivalence rests on
fundamental and specific properties of the real numbers. m|

Remark 2.13 The relation \/ yen Ansn Viren Am>arlo ) 18 not idempotent in general. For an Q-valued
relation R : A% ® A — ) to be idempotent we mean that for every a and c € Ay we have R(a,c) <
Viea, Bla,b) ® R(b,c), which is just to say (with suitable definition of composition of relations) that R <
Ro R. We need only consider preorders to find a counterezample. What we want is to find sequences a and



B of a preorder, such that AN ¢ NVn > N.9M € NVm 2> M.an < Bm, but such that there is no v such
that AN e N.Yn > N.3M e NYm > M.a, < ¥m and 3N e NVn > N.3M e NVm > M.vp < B

Toke as an example the following preorder.
0b
1b
2b

2z . .2y
1z ly
Oz Oy

Let B = (0b,1b,2b,...) and a = (0z,0y,1z,1y,...). It is easy to see that they behave as we requested
above: the only sequences ‘above’ o are sequences that from some point on consist entirely of elements of the
form nb, and the only sequences ‘below’ B are sequences that from some point on consists entirely of elements
of the form nz or ny. No sequence fulfills all those requirements. 0O

From Lemma 2.2 we have the following corollary.

Corollary 2.14 A sequence is Cauchy if and only if any one of its suffizes is, and in this case, all the
suffizes are Cauchy. m|

As a slogan, the property of being Cauchy is prefix independent.
It is also easy to see the following,.

Proposition 2.15 Every subsequence of o Cauchy sequence is Cauchy. . ]

It is natural as a generalization of least upper bounds in preorders and metric limits in metric spaces to
consider a liminf-like convergence. To make the presentation smoother we discuss representable {:-functors
briefly.

Definition 2.16 Given an -category A, an Q-functor ¢ : A — Q (which you can think of as a covariant
predicate, if you like, or as an ‘upward closed’ subset of A) is representable if there exists a € Ag such that
¢ = [a,_]. In this case a is called the representing element. a

For example, in the case of preorders, ¢ = [a,_] means ¢(b) iff @ < b, so ¢ is the characteristic function for
1+ a. In the case of generalized metric spaces, ¢ = [a, ] means that ¢(b) is the distance from a to b. The
representing element a is in a sense the ‘least’ element to fulfill ¢. It is unique up to isomorphism. Naturally,
with contravariant Q-functors we have what we could call corepresentables, viz. those of the form [, a}.

We are now ready to define our notion of convergence.

Definition 2.17 A Cauchy sequence o : N — A converges to a € Ag if V/ yeny Answlon, ) = [a,]. In this
case we write ¢ = liminf o. - o

We could just have said that \/ yen An> [, ] should be representable, and that in this case the representing
element is the liminf. -

The following easy proposition turns out to be very useful in various calculations in the sequel.




Proposition 2.18 Given an Q-category A, an Q-functor ¢ : A —o Q is representable if and only if
(i) ¢(z) < [a,z] for all z € Ao, and
(i) 1< ¢(a).

Proof: Easy. |
As an immediate corollary of Proposition 2.18 we have the following.

Corollary 2.19 A Cauchy sequence a : N — A converges to a € Ao if and only if

(i) Ausnloan, 3] < [a,2] for any N € N and any z € Ao,

(ii) 1< Viyen /\nZN[ama]'

(]

For preorders (2 = 2) the first condition expresses that a is less than any upper bound of any suffix of
a and the second condition says that a is an upper bound for some suffix,

For metric spaces the first condition says that the distance from the liminf a to any point z, is less than
the supremum of the distances from any of the elements of any suffix of the sequence to z, and the second
condition says that the distances from the elements of the sequence to a converge to 0.

We see that once we have the right categories set up, we can define liminf as the left adjoint to A, the

functor that maps z into the sequence with all elements equal to x. This gives us for free for instance that
liminf preserves colimits.

Our definition of liminf completeness and continuity should not surprise anyone.
Definition 2.20 An Q-category is liminf complete if every Cauchy sequence has a liminf. ]
Definition 2.21 An Q-functor is lminf continuous if it preserves liminfs of Cauchy sequences. O

Definition 2.22 We denote by Q-CCAT the subcategory of 2-CAT with liminf complete 2-categories and
liminf continuous Q-functors. Given Q-categories A and B we write [4, B]° for the Q-category of liminf
continuous Q-functors with the hom functor inherited from [4, B]. m

Proposition 2.23 A4 sequence is liminf convergent if and only if any one of its suffizes is, and in this case
all the suffizes are, and they all converge to the same element.

Proof: Obvious by Lemma, 2.2. m|
So, as desired, liminfs are also prefix independent.

Observation 2.24 If every Cauchy sequence (in our sense) in a preorder has a liminf then every chain
(in the traditional sense) has a least upper bound. This is obvious, since every chain is a Cauchy sequence.
More interestingly, if every chain in a preorder has a least upper bound, then every Cauchy sequence has a
liminf. Take the Cauchy sequence. It has a chain as a subsequence, and you can just take the least upper
bound of that chain, since — as is easy to see — every subsequence which is a chain necessarily has the same
least upper bound. This least upper bound is the liminf of the Cauchy sequence. All this means that when we
consider completeness, the preorder version of completeness we get as a special case of the above definitions
is the same as the traditional one.

Concerning our second special case, (symmetric) metric spaces, it is even more straightforward that the
old and the new completeness coincide, since the concept of Cauchy sequence is preserved. m

The following proposition shows that we could have replaced condition (#) in Definition 2.17 with a dual
to condition (7).
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Proposition 2.25 A Cauchy sequence o : N — A is convergent to a if and only if (i) \,> vian, 7] < [a,7]
(as above) and (i) \,sn[%; on] < [3,0] for any N e N and any z € Ao.

Proof: Assume that a Cauchy sequence a : N — A is convergent to a, and let N € N and z € Ag be
given. We then have

ANz < [ Almanl]® VA lam,ad
n2N n>N MeNm>M
= \/ /\ [z,an] | ® /\ [em, a]
MeN \n2N mz>2M

<V [5, Cmax(v, 3] @ [Cmaxin, 3, 9]
MeN
< [za}

On the other hand, assume that a Cauchy sequence o : N — A fulfills (i) A,>y[on, 2] < [a,2] and (¢°P)

Ans @, an] < [z,0] for any N € N and any z € Ap. In this case, 1 < Vyen Ansn Varen Amsarlan am] <
Nen Nasnlom; al, so it also fulfills (14). m]

We could also have replaced the join of a meet with a meet of a join, as the following theorem shows,
reminiscent of the fact about real numbers that for convergent sequences, liminf is equal to limsup.

Theorem 2.26 For any Cauchy sequence a: N — A, we have \ ey Ansnl@n: 2 = Anen Vasnlon, 7.

Proof: The inequality ‘<’ is obvious, just by general properties of meets and joins. We can prove the
other inequality using that ¢ is Cauchy, as follows.

/\ V[%@]S \/ /\ \/ /\ [an,am] | ® /\ \/[ak,z]

KeNk>K NeNn>N MeNm>2M KeNk>K
< V /\ \/ /\ [amam] ® \/ [akax]
NeNn>N MeN \ \m>M k>M

< \/ /\ v \/ /\ [an, am] | ® [ak, 7]

NeNn>N MeNkz2M \m=>2M

<V AV YV (e

NeNn2N MeNk>M

< \/ /\ [an, z]. o

NeNn>N

Remark 2.27 It is obviously tempting to try to mimic the situation in the real numbers and do away with
the Cauchy condition and define a sequence o to be convergent to a if and only if \/ yey Ansnlon, 2] =

Anen Vesnlon, @ ) = [a,x] for all . This elegant notion of convergence seems unfortunately at best to
make it very difficult to prove the following theorems, such as the Fubini theorem (Theorem 3.1), at worst to
make them false. Consider for illustration Ezample 2.28, where Q = 2, and where we are thus dealing with
preorders. The ezample illustrates how liberal the suggested convergence criteria is, but provides no counter
example to e.g. the Fubini theorem. We have not been able to find such an example. m]

Example 2.28 Let (4, <) be the ‘diamond’ [0, 1] x [0, 1] with ( ) (u,v) if and only 1f z<uandy L.
Consider the sequence ((an,1 — an))nen, Where (an)nen = (0,2,2,%,...), that is, ap = - (-nm.27" 1,
That is, in the sequence (an)nen we halve the distance to % each step in the sequence, and the elements

are alternatingly greater than and less than % Then all the points in o have the same sum of their
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coordinates, viz. 1, and so they are all unrelated. It is easy to see that 3N € N.Vn > N.a, < z says that
ze(:1]x(3, ] whereas YN € N.3n > N.a, < 7 means that = € [$,1] x [1,1]\ (,3), and (},3) <=z
means that z € [3,1] x [3,1].

Thus, if we removed from (A4,<) the points that are % in one but not in both coordinates, then
Vven Ans> ~lens 7] = Anen Vpsnlan, 2] (but not equal to [a,3]) for all z. The consequence would be

that our sequence, consisting of entirely unrelated elements, would be convergent to (2 , 2) in this very re-
laxed form, and intuitively this seems quite plausible. Notice also, that if we view our structure not as a
preorder, but as a (generalized) metric space, then the sequence above is convergent. ]

It will be important that  itself, as an Q-category, is liminf complete.

Remark 2.29 We have\/ /\ \/ /\ [:vn,a:m]=\/ /\ \/[a:n, /\ Tpn] S\/ /\ [.'z:n,\/ /\ Tm] for ev-

N n>2N M m>2M N n>N M m>M N n2N M m2>2M
ery sequence (Tn)nen in (2, —o). |

Proposition 2.30 The Q-category (2,—) is liminf complete, and liminfpenn = Vyeny Apyy Tn for any
sequence of elements z,, in Q.

Proof: We want to prove that [\ y Apsn Zns 4] = Vv ApsnlZn, y] for every Cauchy sequence (n)nen
in (€, —) and every y € . B

To see ‘<’, note that [\/ /\ Zn,Yy] < \/ /\ [zn,\/ /\ mm]) ®[\/ /\ Tn, Y] < \/ /\ [zn,y]. Here

N n>N Nn>N  Mm>M N n>N N a>N

we have the first inequality by Remark 2.29 and the second by (V ~ Nasn(@n, z]) ®[2,9] £ Vn Ansnlzn 1),
which is a special case of Lemma 2.4.
To see ‘>’ we first observe that [1,z] = z for all € {2, and then that [\ y A5 Zn, ¥yl > Vy /\nZN[”’my]

by adjointness is equivalent to y > (V N An>n a:n) ®Vn Ansnlzn, y], which is true since (V N Anzw xn) ®
Vn /\nzN[f"my] = (VN /\nzN[l’mﬂ]) ®Vn AnZN[mmy] <Vn /\nZN[]"y] =Y. o
Accordingly, for any convergent sequence (fa)nen in [4,§] we have liminfren fn = Vyen Ansn fni Where

(Answv fa)(@) = Apsn(fnla)) ete.

It is not surprising that the process of taking liminf in A respects the ordering on cseq(A), making lim inf
a functor for each liminf complete §)-category, as the following lemma shows.

Lemma 2.31 For Cauchy sequences o, 8 in A with liminf a and b respectively, we have \/ 5y \,.5 n[0tn, Bn)
< [a, 8. B

Proof: We calculate as follows.

V A lon, 8 <® (\/ A [an,ﬂn]) @\ A 8]

N n>N N a>N N n2N
<@ V /\ [on, B
N n2N
= a9
Here we have (1) because b = liminf 8, (2) by Lemma 2.4. 0

Notice, as a corollary that if two converging sequences of elements from A are equivalent in seq(A) then
their liminfs are equivalent according to A. The converse is not true. Take as example two sequences in the
real numbers, say, which both converge to the same real number, both are chains (i.e. increasing), and for
all indices, the element of the first sequence is strictly less than the corresponding element from the second
sequence. The real line is our A, which is a preorder. Thus for two sequences to be ordered in seq(A) thus,
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a < 8 means that there exists an index, N, such that after that index, an < B,. Equivalence then means
that there is an index after which the two sequences are equivalent element for element. This is clearly not
the case for our two sequences, but still they may have the same least upper bound.

Since liminf respects the ordering we have the following.

Observation 2.32 By the definition of liminf we see that given a liminf complete Q-category, A say, lim inf
(which we should suffiz with A) is an Q-functor from the category cseq(A) to A, and we have the following
adjunction.
lim inf
cseq(4) L A
A

a

Liminf also respects the other Q-valued relation we have considered on sequences - the one that is the basis
for the definition of being Cauchy.

Proposition 2.33 For Cauchy sequences o and 8 in A with liminf a = liminf @ and b = liminf §, we have

Vi Aasn Vs Amsulon, Bm] < [a,8]-

Proof: We calculate as follows.

VAV A lenbnl <

N n2N M m2M

ﬂn, B

IN

2N M
V A lon,b]
N M m2M

11

a,b).

® z< /—\
>
£
P
~
®
z<
|v>
s<
|v>

O

We used transitivity (Proposition 2.6) in the last inequality.

Observation 2.34 By Proposition 2.33, given a liminf complete Q-category A, we have an Q-functor
liminf : kseq(A) — A. Further, if we by abus de language denote by A the embedding of A into kseq(A) by
taking constant sequences, then we have the following adjunction.
lim inf
kseq(A) L A
A

o

Remark 2.35 Since [z, ] is covariant it is clear that [z, yn]nen is Cauchy whenever (Yn)nen is. Thus, for
Cauchy sequences a and (3, we can write \/ y Ausn Vs Amsmrl@n: Bm] as Vi Aps v liminfm[om, Bl

Obviously though, it is not the case that for Cauchy sequences o and B, also [0n, Br),en i Cauchy. The
best we can do is to notice the easy inequality

\/ /\ hmmf [[ens Br)s [om,y Bml] 2 \/ /\ hmmf [[an, aml, [Br, Bm])- O

N n2N N n>N

Remark 2.36 For o sequence of sequences a we introduce the notation a* for the sequence of sequences
such that a*(n)(m) = a(m)(n), called the transpose of a. Then we notice that for any sequence o we have
Aoa==a". This means that for any two sequences & and B we have

kseq(A)fe, Bl =\ AV A AlanBnl=V N csea(d)(am, 6] = cseq®(4)(a", B]. O

N n2N M m2>2M N n2N
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When considering one of the two main examples that we had in mind from the outset, viz. ordinary (that
is, among other things symmetric) metric spaces, one question poses itself: a function between symmetric
metric spaces that is conservative is also automatically continuous. Does this generalize to our setting? The
following definition and proposition answer this question.

Definition 2.37 An Q-category (Ao, [, ]) is symmetric if [a,a'] = [a’, a] for all a,a’ € Aq. O

Proposition 2.38 Given an Q-functor f : A — B, if either A or B is symmetric, then f is liminf contin-
UOUS.

Proof: Let a = liminf & for @ : N — A. We want to show that [f(a),4] = V yen Ansn(f(@n), 9] for all
y € By. To see one way we calculate as follows.

[fa),y] =\ A (f(), flen)] ® [f(an),y])

NeNn>N

> [V Av@ sei] eV A e
NeNn>N NeNn2N

> [V Alemad|e|\ Alfen)s
NeNnz2N NeNn>N

> \/ A lfen)sl
NeNn2>2N

Here the second inequality is due to symmetry of either A or B.
To see the other way we calculate as follows.

V AU, 2 VA [flen), f@] @ [f(a)y]

NeNn>N NeNn>N

> \/ /\ [ama] ® [f(a)’y]

NeNn>N
2 [f(a), ] u]

Remark 2.39 In ordinary symmetric metric spaces every convergent sequence is Cauchy. Proposition 2.25
gives instantly that whenever A is symmetric, given a sequence o in A and a € Ay, if [a,7] = V 5 A s nlan, z
for all © € Ao, then a is Cauchy. This implies that for symmetric §)-categories in general, we can let the
liminf notion be the basic one, and define the notion of Cauchy from that. |

Proposition 2.40 cseq and kseq are both endo-functors on the category of -categories and Q)-functors.

Proof: Easy. O

In a suitable sense the Cauchy sequences are also characterized by being liminfs of their finite truncations.
Noticing that A o @ maps a natural number 7 into the sequence (a(n), @(n),...) we can make this statement
precise as follows.

Proposition 2.41 In kseq(A), we have @ = liminf(A o a) for any Cauchy sequence a.

Proof: For any Cauchy sequence 3 we have

kseq(Ao, A=\ AV A lenBal =\ A ksea(d)a, 6] o

N n>2N M m>2M N n2>2N

Notice that this does not hold for cseq(A4).
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3 A Fubini theorem for liminfs
Theorem 3.1 For any Q-category B, if B is liminf complete, so is [A, B)] for every A.

Proof: Let A and B be Q-categories with B liminf complete, and let (fn)nen be a Cauchy sequence of
Q-functors from A to B. This means that 1 < Ve Ansy Viren Amsarlfn, fm]. Consider the sequence
(fa(@))nen in B for each a € Ag. It is Cauchy since B N

V AV AU@m@zV AV A Unfnl

NeNn>N MeNm>M NeNn>N MeNm>2M

Therefore we can define the mapping f : Ao —= Bo as f(a) = liminfaen fn(a). To see that f is a morphism
from A to B we calculate

@), f(@)] = [imint fa(a), minf fu(a")]

>\ N Ua(@) (@)
NeNn2N ‘
> [a,d].

Here we have the first inequality by Lemma 2.31, and the second because each f, is a morphism. To see
that f = liminf, f,, we must show
[fag] = \/ /\ [fn:g]

NeNn>N
forallg: A — B.
fa= A\ UF@,e@l= AV A ), 9@),

z€Ao z€Ao NeNn>2N
so we are left to show
AV Al@g@=V A A fale) (@)
z€Ag NeNn2N NeNn>N zeAo

The inequality ‘>’ is obvious, and to see ‘<’ we calculate as follows.

AV A fale),9(@)] < (/\ V /\[fk(y),g(y)])® VAV A N @), i@l
z€Ag NeNn2N yeAo KeNk2K NeNn>N MeNm2>M zeAo
<V A ((/\ V /\[fk(y),g(y)l)e» V A /\[fn<w),fm(w>1)
NeNn2N yeAo KeNk2K MeNm>M zeAq
<VAA ((V /\[fk(m),gw)]) oV A [fn(w),fm(a:)])
‘NeN n>N z€Ao KeNk2>K MeNm2>2M
<V A A Un@,9() =
NeNn>N zeAo

Here we have used transitivity (Lemma 2.4) in the last inequality. An immediate corollary from the proof
of Theorem 3.1 is that liminf is pointwise on functions.

Corollary 3.2 If (fa)nen is a convergent sequence of Q-functors from A to B, then (liminf, f,) (a) =
liminf,(fn(a)) for all a € Ay. o

We wish to prove the theorem corresponding to Theorem 3.1, restricting ourselves this time to liminf
continuous functions.
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Lemma 3.3 Given a Cauchy sequence (fn)nen of liminf continuous functions, with each f, : A —o B, where
B is liminf complete, and given a convergent sequence o in A with liminf a = a. Then we have

limninf lim minf( falaw)) = linil inf fpo(an) = linzninf lin?1 inf(fn(om)),
with the implicit claim that the liminfs above ezist, and where the equality as always is up to isomorphism.

Proof: First we notice that Theorem 3.1 ensures that all the liminfs above exist. The proof then has
four parts.

(Part 1)

[limninf(fn (an)), limninf Iin}ninf falam)] = v /\ [fn(om), lin}ninf falam)]
N n2N

=V A Unlan), fa(liminf o))

N nz2N

V /\ [on, liminf o)
N n>N ™

1.

v

v

In the first equality we have used Lemma 2.31.
(Part 2)

V A liminf f(cm), lim inf(fm(em))]

N n>N

VAV A Unlem), fm(em)]

N n>N M m>M

> VAV A U fml

N n2N M m2M

[lim inf lim inf fo(om), liminf (fa(en))]

1\

[y

2

Here we have used Lemma, 2.31 twice, and we get the last inequality from (f,)nen being Cauchy.
(Part 3)

[lim inf lim inf fo(am), liminf(fa(en)] = \/ /\ (iminf fo(om), liminf(fa(an))]
M m>M

> \/ /\ v /\[fn(am),fn(an)]
M m>M N n2N

>V AV A leman]
M m>M N n>N

> 1.

Again we have used Lemma 2.31 twice, and we get the last inequality from (o, )nen being Cauchy.
(Part 4)

[lim minf (Ffm(am)),lim minf limninf (falom))] 2 \/ /\ [fm(om), im inf(fr(am))]
M m>2M "
>V A fm 1]
M m>M
> 1
Here we have the last inequality because f = liminf, f,. O
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Theorem 3.4 Let B be liminf complete and let (fn)nen be a Cauchy sequence of liminf continuous functions,
fn: A—o B. Then liminf, fn is liminf continuous.

Proof: As in the proof of Theorem 3.1 we define the function f : A — B as f(a) = liminf,(fa(a)) and
as there it is a legitimate definition, in that (fn(a))nen is Cauchy, and f monotone.

Given then a Cauchy sequence o in A with liminfo = a, we know that f o « is Cauchy, because, as
we have seen, f is conservative. We then just have left to prove that f(a) = liminf f o . Spelled out this
means that we must show lim infn, (f, (lim inf, @) = liminf, liminf,(f,(em)), but since each f, is liminf
continuous, this is equivalent to showing

lin% inf lixr11ninf (falam)) = lim minf lirr}2 inf(fr(am)),

but this is true by Lemma 3.3. O
Theorem 3.4 says that when B is liminf complete, so is [4, B)° for every A.

4 Scott topology

A usual line in denotational semantics is to equip a partial order with the Scott topology and show e.g. that
order continuity (preservation of w-chains) coincides with continuity wrt. the Scott topology. In this way
one has obtained a topological view on convergence and completeness, something which can be conceptually
helpful. We can mimic this entire development, replacing the complete Heyting algebras of topology with
commutative unital quantales.

The standard definition of a Scott open subset of a partial order is one that is up-closed and where every
directed subset with least upper bound in the subset has an element in common with the subset.

Thus we define, using only sequences, not directed sets, as follows.

Definition 4.1 An §)-functor ¢ : A — Q is Scott open if for all convergent sequences ¢ in A,
#(liminf @) < liminf(¢ o @). 0

It should be clear that the definition is the expected internalization of a statement that says that if liminf «
belongs to ¢, then so does some a,. We have used VyenAnzn (as it occurs in the unfolding of the
definition of liminf on the right-hand side of the inequation according to Proposition 2.30) instead of just
V .en because of the liminf nature of our convergence. In the preorder case we know that 3n. ¢(a,) implies
3N.Vn > N.¢(an), after the point where ¢ is a chain.

Proposition 4.2 For all ¢ : A — Q and all convergent a in A we have
liminf(¢ o @) < ¢(liminf c).

Proof: First, notice that the definition of liminf gives that 1 < [liminf e, liminf o] =
VNeN /\nZN[am lim inf a] < VNeN AnZN[qS(an)a ¢(lim inf a)]
The following easy calculation then shows the result:

liminf(poa)=\/ A é(an)

NeNn>N

< (\/ A ¢(an>) ® \ N [6(en), $(liminf )]

NeNn>N NeNn>N

<V A ¢len) ®[$(an), (liminf o))
NeNn2N
< ¢(liminf a). o

This means that we have the following.
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Observation 4.3 An Q-functor ¢ : A — Q is Scott open if and only if it is liminf continuous. m]
Dually to Scott open we define what it means to be Scott closed.

Definition 4.4 An Q-functor 9 : A% —o Q is Scott closed if for all convergent sequences  in A4,
liminf(¢ o @) < Y(liminf ).

We denote by [A°,Q]" the subcategory of [A°, Q] consisting of the Scott closed Q-functors from A% to Q
with the inherited hom-functor. O

Notice, that when we compose two functors, F': A — B and G : B®® — C we get a functor Go F' : A% — C,
and in our particular case, when we compose a: N —o A with ¢ : A% — Q we get Ypoa : N°P —o 2, but NP
is equal to N, since N is discrete.

We have the standard results, modified to our general setting:

¢ The Scott opens form a commutative unital quantale.

e Liminf continuity coincides with Scott continuity (to be defined below).

We first have to define suitable lattice operations on the Scott opens, and then we prove that with this
structure the lattice of Scott opens form a commutative unital quantale.

Definition 4.5 For a family {¢; : A — Q|4 € I'} of Scott opens and ¢,% : A — Q Scott open, we define
(Vier 94) (@) = Ve1(¢i(a)) and (¢ ® ¥)(a) = ¢(a) ® ¥(a). o

Lemma 4.6 Whenever ¢ and v : A — 2 are Scott open, so is ¢ Q@ 1.

Proof: Up-closedness is clear. Let @ = liminf a.

(¢ ®¢)(a) ¢(a) ® P(a)

( V A ¢(an)> ® (\/ A ¢(am))

NeNn>N MeNm>M
V /\ d(an) ® P(an)
NeNn2N
= liminf(poa® o a)
liminf((¢ ® ¥) 0 ).

IA

IA

where we have the second inequality by Lemma, 2.3. O
Lemma 4.7 Whenever ¢; are open for all i € I, then so is \/,c; ¢;.

Proof: Up-closedness is clear. Let a = liminf a.

V(i(e)) < \/ligleglf(@(an))

iel iel
= liminf(\/ gs(an)).
iel
Here we have the inequality by open-ness of the ¢;’s and the equality by left-adjointness of liminf. O

Definition 4.8 We denote by SA the set of Scott opens of A, equipped with the operations \/ and ® as
defined above. (]
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Tt is clear that SA is a complete lattice with / as join.
Lemma 4.9 The tensor, ®, distributes over \/ in SA.

Proof: Let 9 and ¢; : A — Q be Scott opens for i € I, and let a € Ap.

(«/) ®\/ ¢i> (@) = ¥(a) ® \/(¢i(a))
iel iel

\/ ¥(a) ® ¢i(a)

iel

=\/ves U

iel

We therefore, noticing that the solution set condition is trivially fulfilled in preorders, have the following
theorem.

Theorem 4.10 SA is a commutative unital quantale.

One of the usual formulations of continuity in topological terms is to say that a function is continuous if
and only if the inverse image of any open is open. This definition is naturally extended to our setting in the
following way.

Definition 4.11 A function f : A — B is Scott continuous if for all Scott open ¢ : B —o ) the ‘inverse
image’, ¢ o f : A —o ) is Scott open. 0

We will show that Scott continuous is the same as liminf continuous.
Lemma 4.12 Whenever ¢ : B — C and 9 : A — B are liminf continuous, so is ¢ o .

Proof: Let a = liminf o in A. We must show that [$((a)), 2] = V yen Ansn[¢(¥(an)), 2] for all z € Ap.
But this is trivial since by liminf continuity of ¢ we have 1(a) = liminf(3) o @). O

Lemma 4.13 For any A and any T € Ao, the Q-functor [,z : A —o Q is Scott closed.

Proof: Let z € Ag and a = liminf a in A. We want [a,2] > V ey Apsnl@n, @], which is true by definition
of liminf. - a

Lemma 4.14 When f: A — B is Scott continuous and 1) : B —o Q) Scott closed, then o f: A% — ) is
Scott closed.

Proof: Let a = liminf o in A. We must show that [¥(f(a)), 2] 2 Vi An>n[¥(f(@n)), z]. This follows from
the fact that (f(an))nen converges to f(a), and that 3 is Scott closed. O

Proposition 4.15 A function is Scott continuous if and only if it is liminf continuous.

Proof: Let f : A — B be Scott continuous and let ¢ = liminfa in A. We will show that f (a) =
liminf(f o @), that is,

[f(iminfa), J=\/ A [f(en),].

NeNa>N
Now, [f(liminf ), z] = ([, z] o f)(lim inf @). Since f is Scott continuous and [, z] Scott closed, then [fQ),z]
is Scott closed, that is, [f(lim inf @), z] > lim inf,[f(an), 2] for all z, as desired. O

We have thus not only showed how the dual structure on ! (as a commutative unital quantale, which is a
particularly simple symmetric monoidal closed category, and as an -category) lifts to the functor category
[4, Q] for any given A, but also showed how our notion of convergence and completeness is consistent with
this lifting, in the sense that the categorical structure is preserved in the subcategory of [A, ] consisting of
the liminf continuous Q-functors. Further, we have shown that if we just define our notion of liminf on €,
we can use the Scott definition of convergence as a basis for defining our notion of continuity of an {2-functor
into €.
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5 A categorical account

Our intuition is that the liminf of a sequence is a colimit of a limit. In this section we give an account of
how to make our intuition valid, that is, in which categories we take the limits and colimits.

When we look at sequences in 2, and want to describe in categorical terms the liminf operation, we
observe first, that in general we do not have a functor a : (N;<) — ), wheren < mis T if m =
succ(suce(. .. sucen)) for some number (possibly 0) of succ’s, and L otherwise. To see this, remember for
instance, that in preorders we allow sequences which are not chains. However, when we just look at a
sequence as a functor from N (that is, the discrete natural numbers), to 2, then we miss the information
about the ordering on the natural numbers when we want to describe liminf as a colimit of a limit. There is
no inherent ordering in the natural numbers to be taken directly from their structure as an (2-category.

For sequences in ) itself, we can replace a@ : N — Q with @ : (N, <) — Q where we define a(n) =
limen a(n +m). It is clear that @ is in fact a functor from (N, <) to €2, and now we have that liminf o =
colim(@). We notice that whereas the colimit is filtered, the limit is not. We take the limit of the ‘arbitrary’
diagram that « after n constitutes. To sum up, based on a we define for each n € N the functor e, : N —
as ap(m) = a(n +m). Then we define the functor @ : (N, <) — Q as @(n) = lim a,,, and then we can define
liminf @ = colim(@&).

The construction above relies on the fact that € is complete. When we deal with sequences in §2-categories
other than Q we do not always have completeness. Think for example of a (metrically complete, if you like)
generalized metric space A, and let a be a Cauchy sequence in A. For a € A to be a categorical limit of a,
means that Alz,a] = suppen Az, @s)] for all z € Ao. So this holds in particular for z = a, for any n. This
means that in the case of symmetric metric spaces, for every n € N the whole sequence lies within the disk
with center in a, and radius Afap,a]. This is not very interesting in the case of symmetric metric spaces,
since in this case only constant sequences have limits. Thus, any symmetric generalized metric space with
more than one point is not complete in the categorical sense.

We can restore completeness by introducing partial elements. Instead of taking the limit of o, in A we
Yoneda-embed A into [A°P, ] which is complete (by completeness of ) and take the limit there. It turns
out then, that when we take the colimit of the limits (which then can be partial elements) we have to be
careful do it in the right category, viz. that consisting of the Scott closed functors from A° to Q. Under
fortunate circumstances (when A is liminf complete), it so happens that the colimit is then representable,
and that the representing element is the liminf of the original sequence. The following spells out the details.

Definition 5.1 Given an Q-category A, the Yonede-embedding Y (if necessary disambiguated as Y 4) is the
mapping that takes an element a € Ag into [, a] : A% — Q. a

The following lemma in its original (non-enriched) form is attributed to Yoneda.

Lemma 5.2 For a functor F : A — Q and a € Ay we have [[a, ], F] = F(a), and dually, for a functor
G : A% — Q and a € Ag we have [[_,a],G] = G(a). |

Remark 5.3 Since, by Yoneda’s lemma (Lemma 5.2), in particular Ala,a’] < [A%,Q)([, a], [, a]), we see
that Y 4 is an Q-functor from A to [A%P,9)]. O

So, instead of considering sequences @ : N — A we consider their embedded versions, Y o o : N — [A%, Q).
We recall a few elementary categorical lemmas.

Lemma 5.4 Given an Q-functor F: D — A, then Y o F : D —o [A% Q)] has limitlimg(Y o F(d)). o
Lemma 5.5 Y reflects limits, that is, iflim(Y o F') is representable as Y(a) = [_,a], then a = lim F'. O

Lemma 5.6 If F : D — [A%,Q] is an Q-functor such that F(d) is Scott closed for every d, then im F is
also Scott closed.

Proof: Let a: E — A% with lim o = a. We must show that
(lim F)(liminf &) > limninf((lim F)(an)).
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We calculate as follows.

liminf((lim F) (o)) = liminf ( A F(d)(an)>
d
< /\ limninf F(d)(ap)
d
< /\ F(d)(liminf o)
= (tliim F)(liminf o),
where we have the second inequality because F(d) is Scott closed for every d. a

Definition 5.7 Given N € N the functor ay : N —o A is defined as an(n) = (N + n).

Lemma 5.8 Given any sequence a : N — A, the mapping that takes N into lim(Y o apy) is an Q-functor
from (N, <) to [A%,Q)".

Proof: We know that Y o an(n) = [,an(n)] is Scott closed for every n, and by Lemma 5.6 then that
lim(Y o ay) is Scott closed. For N < M we have

im(Yoan) = ALa(N+k]= A Le®l < A Lak)]= AL (M + k)] = Im(Y o an).

keN k2N k2M keN
a

For purposes of illustration, consider the Q-functor from Lemma 5.8 in the special case of preorders.
Given a sequence « in a preorder, the functor takes an index N into A,>N @n, the infimum of the sequence
after N. Taking the supremum of this resulting sequence of infima will then give us the liminf of .

What we want to do now is

(3) explicitly construct the colimit for the functor from Lemma 5.8 above,
(i) show that when o is Cauchy, the colimit is representable, and

(4i1) show that the representing element is liminf o.

For the explicit construction of the colimit it is convenient to introduce a couple of concepts from [Wagner 94].

Definition 5.9 For an Q-functor G : A% —o 0 we define ubG : A — Q as ubG(a) = [G, [, a]], and for an
Q-functor F': A — Q we define Ib F : A% — Q as b F(a) = [F, [a, ]]. o

The intuition behind ub and Ib respectively is that they generalize upper and lower bounds respectively,
in the following way. Read ‘ubG(a)’ as ‘a is an upper bound of G’. We see G as a down-closed subset of A,
and thus we interpret G(b) as ‘b belongs to G’. Then, for @ to be an upper bound of G means that given
any b in G, necessarily b is less than a, that is, [b,a]. In the same way Ib generalizes lower bounds.

Proposition 5.10 ub and Ib are Q-functors, ub : [A%,Q]% — [4,Q], and Ib : [4,Q] — [4%, Q).
Proof: A straightforward calculation verifies the claim:
[G2,G1] = [[G1, ), (G, )
< NIG1, L all, (G, Lyl
a
= /\[ubGl(a),ung(a)]
a

= [ubGl,ung].
Dually for Ib. a
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Proposition 5.11 We have an adjunction ub - 1b

Proof: Easy. ]
The functors Ib and ub are useful in slightly wider contexts than ours. For instance, they are central in

formulating the MacNeille completion of an enriched category (see [Wagner 94]). The following concept is
not strictly necessary for our exposition here, but serves to shed light on how Ib and ub work.

Definition 5.12 A cut in an Q-category A is a pair (F,G), with F : A — Q and G : A°° — ), where
F=ubGand G=IbF. o

We have reversed the order of the elements of the pair, compared to [Wagner 94], because it turns out that
when we formulate the theory in terms of bimodules (see [Wagner 94]) often the pair is also an adjoint pair,
and F is then the left adjoint.

Remark 5.13 It is easy to see that ([a,_], [, a]) is a cut for every a € Ao. O

Remark 5.14 It is clear that a cut is determined by one of its components. We will call the covariant part
the upper cut (F' above) and the, contravariant one (G above) the lower cut. The upper cuts are precisely the
fized-points of ub o Ib and the lower cuts are precisely the fized-points of Ib o ub. Obuviously we can look at
either composition of ub and Ib as e (and the same) kind of closure. From the adjointness of Ib and ub,
notice that Ib o ub > idj4e,q) and ub olb > idj4 ). ' a

Lemma 5.15 When a = liminf o then [a, ] = ub\/ lim(Y o an).

Proof: For be Ay we have
ub\/lm(Y o an)(®) = [\/lm(Yoan),[,8]]
N N

V AL en@)], L8]
N n
V Al en@), L8]l
N n

= \/ /\[aN(n)’ b]
N n
= [a,b].

Here we have the third equality by (the remark after) Proposition 2.30, since we (by Yoneda) have that
whenever a sequence « is Cauchy, so is Y o a.. ]

Ii

As an immediate corollary we have the following.

Theorem 5.16 When a = liminf o then [_,a] =lbubV/ 5 lim(Y o an).

Proof: By Lemma 5.15, since always [, z] = Ib[z, ]. a
The advantage of this theorem over Theorem 5.17 below is that it provides an explicit construction.
We can now show that liminf is indeed the representing element of a colimit.

Theorem 5.17 When a = liminf o, then [_, a] = colimy Km(Y oa), where the colimit is taken in [A%, Q)" .

Proof: We must show [[,a], f] = Ay[im(Y o ayn), f] for any Scott closed Q-functor f : A%® — Q. By
Yoneda, [[,a], f] = f(a), and since liminf, [, an(n)] = V yen Ansnls an(n)] we have

Alim(Yoan), f1 = [\ ALan(®), f]
N N n
V AL ax(®)], f]
N n

= VAslenm)
N n
f(a),
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where we have the last equality from the fact that f is Scott closed. ' m|

6 Scott’s inverse limit theorem

We will here give a general version of Scott’s inverse limit theorem. The theorem as well as its proof
specializes to the particular cases of preorders and generalized metric spaces. We give a little more than just
the proof, for instance we notice that in a suitable sense, the space of retracts of the inverse limit object is
liminf complete, and we show that a sequence of domains fulfills the conditions that guarantee that it has
an inverse limit in the traditional sense, if a corresponding sequence in the space of retracts is Cauchy in our
sense.

First we will give an important lemma.
Definition 6.1 A function f is called idempotent if f o f = f. 0
Lemma 6.2 In Q-CCAT a liminf of idempotents is idempotent.

Let fn : D — D be idempotent for every n € N, and assume that (fn)nen is Cauchy with liminf f. This
means that f(d) = liminfnen(fn(d)), and we calculate as follows, to see that f is idempotent.

FF@) lim inf( Fa(lminf(fm(d))))
= liminflimiof f, (fm(d)
= liminf Fa(fa(d)
= lim inf fn(d)
= f (d)’

where we have the third equality by Lemma 3.3. O

Remark 6.3 We remind the reader of some simple definitions and facts about idempotents and retracts. A
retract of an object A in a category is a pair of morphisms (B “(gi A), written (f,g), such that f o g = idp.
Here f is called the projection and g the embedding. A split idempotent is an idempotent e : A — A such
that there ezists a retract (B ‘{gi A) of A with go f = e. For every retract (f,g) the morphisms g o f is an
idempotent, and by definition tJ; split one. O

Definition 6.4 Given any Q-category D we can form the possibly large Q-category R(D) of retracts of D
9 g k
as follows. The class part of R(D) is the class of all retracts (A ?f_') D) of D, and R(D)[A 2 D,B ("-h_“) D)=
)
[go fikohl. m

$o é1

Definition 6.5 [The inverse limit construction] Given a diagram Dy Dy .+ in Q-CCAT,

0
where (1n,, ¢y) is a retract of Dpyy for all n € N. Define 7pp : Dy —0 D, as follows.

{ ¢m°"l’m-1°---°'¢'n—l(an) if n>m,
Tam(@n) = Qn if n=m,
Gm-10Pm—20...0¢5(an) if n<m.

We define the Q-category Deo as follows. Dogy = {T € HneNDn | ¥n(Znt1) = zq foralln e N} and
Doo[ja ?7] = /\neN[wm yn]

We further define ¥, : Doy —o Dy, as ¥,,(F) = z, and &, : Dy, — Do 85 ®p(x) = (70i(2))ien for each
nelN O
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Notice, that Duo[Z, 7] = V NeN Ansn[@n;yn]. Both ¥y, and &y are obviously Q-functors for every n, and it
is easy to see that (¥,,®,) is a retract of Do, for every n e N.

Lemma 6.6 For everyn € N, we have ®,41 0 ¢y, = &, and ¢, 0 Uy = ¥y,
Proof: Easy. 0O
Proposition 6.7 Do, is liminf complete.

Proof: Let (Tn)nen be a Cauchy sequence in Doo. Then, (2in)nen is a Cauchy sequence in D; for each 7 € N,
and we can define z; = liminf,, z:n. It is easy to check that (z;)ien thus defined is an element of Do, , and
that it is the liminf of (Z5)nen- o

Proposition 6.8 For every n € N, both ¥, and &, are liminf continuous.

Proof: The proof of liminf continuity of ¥, is easy. To see liminf continuity of &, we reason much like in
the proof of Theorem 3.1, using a kind of uniformity argument wrt. convergence.

To see that ®, : D, — D is liminf continuous means to verify that given any convergent sequence o
in D, we have that ®,(liminf &) = liminf(®, o a), that is,

[8,(liminf @), 7] = \/ A\ [Bala(k)), 7).

K k2K

Here the left-hand side reduces to A, Vg Ags k[Tam (@(k)), ym] by liminf continuity of Thm for each n and
m, and the right-hand side to \/ g Ag> g Am[Tnm (2(k)), ym]. Here ‘2’ is obvious, and we see ‘<’ as follows.

AV N Fam(@(®),ym] < (/\\/ A [rnm(a(k)),ym]) a\/ AV A e®),a®)

m K k2K m K k>K L I>L K k2K
<VAA ((\/ A [Tnm(a(k))aym]) o\ A [a(l),a(k)])
Li>Lm K k>K K k>K

K k2K K k2K

((v /\ [ram(a(k)), ym]) ® \/ /\ [Tnm(a(l))"rnm(a(k))])

I™> 3>

[Tﬂ’m (a(l))a ym]- ]

By now we have established that the Do, construction yields a cone above the diagram, when considered
in the proper category.

Definition 6.9 We denote by 2-CCAT = the category of liminf complete Q-categories with liminf continuous

retracts as morphisms, where the morphisms go in the direction of the projection. a
Po P o i
Thus, the sequence Dg 7 Dy 7 -+« is a diagram in Q-CCAT =, and the arrows go from right to
0 1
left.

Proposition 6.10 The diagram

S0 Wy BT 22\ T2

do &1
D D
‘ Yo ' ()
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is a cone in -CCAT= with Dy as cone object.
Proof: By Lemma 6.6, Proposition 6.7, and Proposition 6.8. ]
Proposition 6.11 R(De) with Do, defined as above, is liminf complete.

Proof: Let (fn,gn)nen be a Cauchy sequence in R(Doo). Thus 1 <V Ansn Vi N> 1el9n © fry gm o fm)-
9
We want to construct a retract (B 2 Doo) such that (f,g) = liminfn(fn,gs), that is, [go f,g' 0 fl=

f
Vn /\nZN[gn o fn,g' o f'] for all (f', ') € R(Doo)o.

Define f : Do —0 Doo as limsupn(gn © fn), Which we can because Do and thus [Doos Do) are liminf
complete. Let E be the image of Deo under f, that is, Eo = { f(d) | d € Do, } and E[d,d'] = D[d,d']. As
a liminf of idempotents f is idempotent (Lemma 6.2), and we just have to find a splitting of f. For any
d € By, e.g. with d = f(d'), we have f(d) = f(f(d)) = f(d') = d, so defining f' : Do — E as fl(d) = f(d)
and ' : E —o Dy as g'(d) = d we have f'og/(d) =d and g'o f'(d) = f(d), so (f',g') is the desired splitting

(i.e. retract of D). m
s , ¢o $1 : . .
Definition 6.12 A diagram D = Dy 7 D, = 7 .-+ in Q-CCAT is called Cauchy, if
0 1
1< v /\ \/ /\ [Tnm °TmnaidDm]- a
NeNn>N MeNm2M

Definition 6.13 An Q-functor ¢ : B — A is called mono if [z,y] = [¢ o z, ¢ o y] for any pair of Q-functors
z,y:C — B. 0O

Definition 6.14 An Q-functor ¢ : A — B is called epi if [s,t] = [s 0 ¢, t 0 9] for any pair of Q-functors
s,t:B—C. O

¢
Lemma 6.15 For any retract B ‘4‘5 A, the embedding ¢ is mono and the projection 1 is epi.

Proof: Let z,y : C — B be given. Then [z,y] = [ ooz, Ppodoy] > [poz, ¢ oy] > [z,y], which shows
that ¢ is mono.

Let s,¢: B —o C be given. Then [s,t] = [sopo¢, tohog] > [soth, toyh] > [s,t], which shows that 7 is
epi. O

¢
Proposition 6.16 A diagram D = Dy = D, = i > ... in Q-CCAT is Cauchy if the corresponding

0 1
sequence (¥n, @p)nen in R(Doo) is Cauchy. In that case (idp,,,idp,,) = liminf,(¥n, Bn).

Proof: Given n <m e N, we have

[Qn oV, ®,0 ‘I’m] = [‘I’m © Tpm © Tmn © ¥, @m0 ‘I’m]

[Tnm O Tmn, idDoo]~

Here we have the last equality by Lemma 6.15. We have yet to show that liminf, (&, o ¥,) = idp,,. To do
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this we calculate as follows.

lidp.,t] = A[¥m,¥mot]

2 /\ \//\[‘ym,\I’mc"I)no‘I’n] ®\/ /\[\I’mOQnO\I’n,\I’mot]
m N n2N N na>2N
Z /\\/ /\ [‘I’mo‘}n°\1'm\1'm°t]
m N n>N
z \/ /\ /\[‘I’mo‘I’no‘I’m‘I’mot]
N n2N m
= \/ /\ [‘I’no‘I'mt]a
N n2N
and
V A@ro®nt] = \/ A [®n0¥n,idp,.]®lidp,,,1]
N n>N N n>N
> [Tum © Tmn,idp,,] ® [idp,, , ]
Z [idDeo H t]7
where we have the last inequality because D is Cauchy. O

In addition to Proposition 6.10 we can show that the Do, construction yields a limit in Q-CCAT= of D,
seen as a diagram in that category.

do #

Theorem 6.17 (Scott’s inverse limit theorem) When a diagram D = Dg = D, ceeim

o 1
Q-CCAT = is Cauchy, then it has a limit in Q-CCAT=, viz. (Doo, (®n, Tn)neN)-

Proof: We have already seen that Do, with (¥,, ®,)nen forms a cone over D in Q-CCAT=. Let E with
(1, ®! Jnen be another cone over D. First we show that the sequence (®!, o ¥,,) ye is Cauchy in [Deo, E)°.
We calculate for n < m as follows.

(8], 0 Up, B, 0 U] = [B], © Tnm © Uy, L, 0 U]
= [Tnm oW, ‘I’m]
= [Tnm © Tnn © ¥, ‘I’m]

= ['Tnm © Tmn, idDm];

and since D is Cauchy we have shown that (®/, o ¥,,)yen is Cauchy in [D, E)°.

Since FE is liminf complete and ®/, o ¥, is liminf continuous for every n we can define @ : D, — E as
liminf, (®], 0 ¥,,) and know that & is liminf continuous (Lemma, 3.3).

In a precisely analogous way we can see that the sequence (2, o ¥!)nen is Cauchy in [F, Dy)°, and by
liminf completeness of Dy, we can define ¥ : E — Do, = liminf,(®, o ¥}) and we know that ¥ is liminf
continuous.

We need to show that ¥ o ® = idp_,. We have that ¥ o & = (liminf,(®, o ¥})) o liminf,, (¥, o ¥p,),
which by liminf continuity of ¥ is liminf,, (liminf,(®, o ¥!)) 0 &' o ¥,,, which by Corollary 3.2 is equal
to liminf,, liminf,, (®, o ¥}, 0 &}, o ¥,), which by Lemma 3.3 is equal to liminf, (®,0 ¥/ 0¥/ o ¥,) =
liminf,, (®, o ¥, ), which by Proposition 6.16 is idp,, .

Finally, to see that (®,¥) thus defined is unique in making the suitable diagram commute, observe
that by Proposition 6.16 we know that ® = & o liminf, (®, o ¥,), which by liminf continuity of & is
liminf, (® 0 &, o ¥,,) = liminf, (3! o T,). ]

Theorem 6.17 specializes, including our proof, straightforwardly to the preorder and the metric case. It
is instructive to see how the Cauchy condition on the diagram D specializes. In the preorder case, we see
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that D is Cauchy if and only if every retract (¥, ¢») fulfills ¢, o ¢, < idp,,,,, which is Scott’s traditional

condition. In the metric case we see immediately that the condition specializes to the one given by America
and Rutten in [America & Rutten 87].

7 Conclusion

We have given an account of a simple and general domain theory using enriched categories and a notion of
liminf convergence as the main conceptual tools. By this simplicity we can obtain greater generality than
related approaches to unifying metric spaces with partial orders ([Smyth 88] and [Flagg & Kopperman 94}).
Naturally, by allowing a wider class of categories as categories of domains, we also have weaker properties
than the above mentioned approaches, which are rich in topological structure. However, as we have shown,
ours is enough to do general domain theory. In [Wagner 94] it is further discussed how one can also model
a notion of compactness and finiteness inside our framework, but much concerning algebraicity and models
of non-determinacy remains open for future investigation. Recently we have developed a notion of ideal
completion, based on a generalization of directed sets. This construction will be published in a forthcoming
article.

Our most immediate concern is however the development of a language that bases itself naturally on
the structure of §2, that is, on a commutative unital quantale. In this language one would be able to assert
properties about our general domains, and about elements in them, and for instance derive Scott’s inverse
limit theorem. The advantage of developing such a language is that it would clarify the logical rather than
the structural properties needed to solve recursive domain equations in a way similar to what we do now.

The aim of finding a logical (as opposed to ad hoc) unification of metric space and partial order domain
theory was set out already in the MSc thesis by Rowlands-Hughes ([Rowlands-Hughes 87]), and we have
found that by so doing, we encompass many more structures than just partial orders and metric spaces.
It is our hope that applications will make use of these more expressive structures, for instance in semantic
analysis that deal with more than just the extensional properties of programs. One such example might be
in the work of Schellekens ([Schellekens 94]) which include considerations about complexity, but hopefully
many other applications will emerge.
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