Technical Report RS

Number 370

Computer Laboratory

A package for non-primitive recursive
function definitions in HOL

Sten Agerholm

July 1995

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1995 Sten Agerholm

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Package for Non-primitive
Recursive Function Definitions in HOL*

Sten Agerholm
University of Cambridge Computer Laboratory,
New Museums Site, Cambridge CB2 3QG, UK

Abstract

This paper provides an approach to the problem of introducing non-primitive
recursive function definitions in the HOL system. A recursive specification is trans-
lated into a domain theory version, where the recursive calls are treated as poten-
tially non-terminating. Once we have proved termination, the original specification
can be derived easily. Automated tools implemented in HOL88 are provided to
support the definition of both partial recursive functions and total recursive func-
tions which have well-founded recursive specifications. There are constructions for
building well-founded relations easily.

*This work was supported by an HCMP fellowship under the EuroForm network.

1

Contents

1 Introduction

2 Well-founded Relations
3 Domain Theory

4 Automation
4.1 Generating the Functional (Step 1)
4.2 The Continuity Prover (Step2)
4.3 The Well-founded Induction (Step 3)

5 Example: Partial Recursive Functions

6 Examples: Well-founded Recursive Functions
6.1 A Fast Exponential e
6.2 Quicksort e e e

7 A Larger Example: The Unification Algorithm
8 Conclusions and Related Work

A Theorems and Tools
A.1 Partial Recursive Function Definitions
A.2 Well-founded Recursive Function Definitions
A.3 Well-founded Relations v v v i i i i e e e
A4 Domain Theory« v v v v v i i i e e e

B Examples
B.1 A Well-founded Recursive Definition
B.2 Partial Recursive Functions and Domain Theoretic Reasoning

10
11
12
13

14

18
18
20

21

1 Introduction

In order to introduce a recursive function in the HOL system, we are required to prove its
existence as a total function in higher order logic (see [8] page 263). While this has been
automated for certain primitive recursive functions in the type definition package [10], the
HOL system does not support the definition of recursive functions which are not also prim-
itive recursive. In particular, it does not support partial functions whose undefinedness
is induced by non-terminating recursive calls.

Previous work [3, 4, 2] has shown that a formalization of domain theory in HOL
provides some useful concepts and techniques for reasoning about both partial and total
recursive functions in HOL. However, the formalization previously presented has been too
complicated and difficult to use, for instance because it required the use of a dependent
A-abstraction instead of the standard HOL one and because all function constructions
like the fixed point operator were parameterized with cpos. If we focus on just extending
HOL with better support for recursive function definitions, then the formalization can be
simplified considerably.

This paper presents a package for non-primitive recursive function definitions which is
based on a much simplified (and weaker) formalization. This formalization is integrated
more closely with the HOL logic in order to allow very smooth and easy transitions
between higher order logic and domain theory. A main goal was to make the domain
theory as invisible as possible whilst providing efficient automated support for difficult
recursive function definitions at the same time. A similar methodology of having domain
theory behind the scenes may be useful for other purposes. '

In treating partial recursive functions, the user will be faced with only very few sim-
ple constructs of domain theory, which are needed to represent partiality. However,
these have straightforward syntactic interpretations and are inserted automatically by
the package, so no knowledge of domain theory is necessary. As an example consider
the following interaction with HOL which defines a partial recursive function of type
"prf: (num) list#num->(num)1ift", though the variable of the specification has type
"prf: (num)list#num->num" (HOL sessions are framed):

#let prf_def = new_prec_definition ‘prf_def®

"pri(l,y) =
(NULL 1 => y | prf(APPEND(r(HD 1,y))(TL 1),s(HD 1,y)))";;
prf_def = «
[- 11 y.
prf(l,y) =

(NULL 1 => lift y | prf(APPEND(r(HD 1,y))(TL 1),s(HD 1,y)))
Run time: 1.7s
Intermediate theorems generated: 3563

The definitions of the constants r and s are not important here; in fact we could have
chosen to represent r and s as variables. The constant prf is a partial function since
we do not know whether or not the recursive call terminates (unless r always returns
the empty list from a certain point it will not terminate). where r and s are constants
denoting arbitrary values. Partiality is represented by lifting types. The constant 1ift,
which is inserted in the definition automatically, is a constructor of the abstract datatype

3

of syntax (*)1ift = bot | lift *, which is used to add a new element to types. A
partial function is undefined if it equals the new element bot, and defined otherwise. The
constant prf is introduced by a definition using the fixed point operator of domain theory;
the above equation is derived from this definition. An advantage of domain theory is that
it allows a (partial) recursive function to be defined and reasoned about directly, rather
than having to first prove the existence of a total function satisfying a specification in
HOL. ‘

The paper also presents an automated tool for introducing a wide class of recursive
functions whose termination can be proved by well-founded induction. The problem of
proving the existence of a total function in higher order logic is approached by first defining
a potentially partial recursive function in domain theory using the fixed point operator,
and then proving this function terminates on all inputs by well-founded induction. The
details of domain theory never appear to the user who just supplies a well-founded relation,
a recursive specification, and a list of termination properties of the specification.

Let us consider a famous example of a well-founded recursive function: the (binary)
Ackermann function. Often it is specified by a collection of recursion equations

Al0,y) = y+1
Az +1, 0) = Az, 1)

which are equivalent to the following conditional style of specification in HOL:

"ACK(m,n) =
((m =0) =>8SUC n |
(n = 0) => ACK(PRE m,1) | ACK(PRE m,ACK(m,PRE n)))".

In this term, called ack_tm below, ACK is a variable but we wish to obtain a constant
ACK that satisfies the recursive specification. The Ackermann function is not primitive
recursive since it contains recursive calls that roughly speaking do not decrease precisely
one of its arguments. In other words, it cannot be defined using the syntax of primitive
recursive specifications. However, its recursive specification can be proved to terminate by
showing that in each recursive call the arguments are decreased with respect to some well-
founded relation. A binary relation "R:#*->%->bool" is called well-founded, written "wf
R", if it is does not allow any infinite decreasing sequences of values. Hence, recursions
will terminate eventually.

In addition to the recursive specification, we must supply a well-founded relation and
a list of termination properties of the specification. An ML function calculates the proof
obligations for termination:

#calc_prf_obl ack_tm;;

[""(m=0) /\ (n=0) ==> R(PRE m,1) (m,n)";
"(m=0) /\ “(n=0) ==> R(PRE m,k0) (m,n)";
"“(m =0) /\ “(n =0) ==> R(m,PRE n) (m,n)"]
: term list

Il

These are constructed by looking at the arguments of each recursive call. Note that the
function does not guess a well-founded relation but uses instead a variable R. We must

4

find a proper instantiation for R and prove each resulting term is a theorem. It is easy to
see that a suitable well-founded relation in this example is a lexicographic combination of
the less-than ordering on natural numbers with itself. Proving that this relation is well-
founded is trivial since lexicographic combination and the less-than ordering are standard
constructions on well-founded relations which are provided by the package (see Section 2):

#wf_less;;
|- wf $<

#wf_lex;;
|- {R. wf R ==> (IR’. wf R’ ==> wf(lex(R,R’)))

#let wf_ack = MATCH_MP (MATCH_MP wf_lex wf_less) wf_less;;
wf_ack = |- wf(lex($<,$<))

Hence, we substitute lex($<, $<) for the variable R in the proof obligations above (there is
a separate tool for this). We shall omit the proofs here but assume the proven termination
properties have been saved in the ML variable obl_thl.

The Ackermann function can now be defined automatically using a definition tool
called new_wfrec_definition. This introduces a new constant "ACK:num#num->num"
and proves that it satisfies the recursive specification presented above:

#let ACK_DEF = new_wfrec_definition ‘ACK_DEF‘ wf_ack obl_thl ack_tm;;
ACK_DEF =
|- 'm n.

ACK(m,n) =

((m=0) =>8UCn |

(n = 0) => ACK(PRE m,1) | ACK(PRE m,ACK(m,PRE n)))
Run time: 4.3s
Intermediate theorems generated: 788

If we wish we can now prove that ACK satisfies the recursion equations listed above. The
run time is measured on a standard Sun Sparc ELC, and is acceptable, I believe. The
present implementation of new_wfrec_definition is a prototype which I have made no
serious attempts to optimize for efficiency.

For simplicity of implementation, the function definition package only accepts recursive
specifications written in the conditional style:

fm = (bl[fax] - hl[f,x] | O] l bn[f7m] — hn[f,.’D] l hn—}-l[f)m])'

Recursion equation specifications can (probably) always be written equivalently in the
conditional style, but eventually it would be nice to support these. Furthermore, the
package expects the recursive function being specified to be uncurried as in f(z,y), hence,
f zy is not allowed, and it does not allow recursive calls within the body of a A-abstraction.
However, it does support the use of let-terms where the left-hand sides are variables, for

instance:
fo=
(bl[f) :E] - hl[fa 5(3] I
let Y= g[f: x] in bZ[fa z, y] - h2[f7 z, y] l h3[f, z, y])

Finally, the package expects recursive occurrences of a function to be applied to an argu-
ment and does not allow recursive occurrences in the body of M-abstractions®.

The rest of the paper is organized as follows. A theory of well-founded relations is
presented in Section 2 and a minimal theory of domain theory is presented in Section 3.
The underlying algorithms of the package are presented in Section 4. Section 5 treats
an example of reasoning about partial recursive functions and Section 6 provides two
additional examples of well-founded recursive functions. Section 7 presents a non-trivial
example of a well-founded recursive function: the unification algorithm. Section 8 contains
the conclusions and related work. Appendix A shows a list of theorems and tools provided
by the package and Appendix B presents the ML code of the Ackermann example treated
above and of the example of Section 5.

2 Well-founded Relations

A binary relation is defined to be well-founded on some type if all non-empty subsets of
the type have a minimal element with respect to the relation:

(1A, "(A=(O\x. F)) ==> (?x. Ax/\ "(?y. Ay /AN Ry).

The HOL theory of well-founded relations presented here was obtained by developing a
special case of the theory presented in [1], which was based on a chapter of the book by
Dijkstra and Scholten [7].

In general, it can be non-trivial to prove a given relation is well-founded. It is therefore
useful to have standard ways of combining well-founded relations to build new ones. The
package provides the following standard constructions on well-founded relations, which
can be used to prove very easily that relations are well-founded:

Less-than on numbers: ML name wf_less:
|- wf $<.
Product: ML name wf_prod:
|- !R. wf R ==> (IR’. wf R’ ==> wf(prod(R,R’))).
Defined by

[- IR R’ b c. prod(R,R’)b c = R(FST b) (FST ¢) /\ R’ (SND b) (SND c).

!Let-terms are represented using A-abstractions but recursive calls in the body of such abstractions
are supported.

Lexicographic combination: ML name wf_lex:
|- IR. wf R ==> (IR’. wf R’ ==> wf(lex(R,R’))).
Defined by

|- 'R R’ b c.
lex(R,R’)b c =
R(FST b)(FST ¢) \/ (FST b = FST c¢) /\ R’(SND b)(SND c).

Inverse image: ML name wf_inv_gen:
|- {R. wf R ==> (IR’ £. (!x y. R’ x y ==> R(£ x)(f y)) ==> wf R’).
A useful special case of the construction is (ML name wf_inv):
{- 'R. wf R ==> (If. wf(nv(R,f))).
Defined by
- 'R £. inv(R,f)x y = R(f) (£ y).

In the examples, we construct well-founded relations solely by instantiating these con-
structions.

When the built-in constructions do not suffice, a relation can be proved to be well-
founded from the definition of wf, or, which is often more convenient, either from the
theorem

|- 'R. wf R = "(?X. !n. R(X(SUC n))(X n)),

which states that a relation is well-founded if and only if there are no infinite decreasing
sequences of values, or from the principle of well-founded induction:

|- 'IR. wf R = (IP. (Ix. (!y. Ryx==>Py) ==>P x) ==> (Ix. P x)),

which states that a relation is well-founded if and only if it admits mathematical induction.
Note that this theorem can be used both to prove a relation is well-founded by proving
it admits induction and to perform an induction with a relation which is known to be
well-founded.

3 Domain Theory

In [3], I presented a formalization of basic concepts of domain theory in the HOL system.
Using this extension of HOL, it was possible to reason about non-termination and general
recursive functions defined as fixed points. The main challenge of the present work has
been to simplify the previous formalization to be more useful for automation, in particular
more concrete, and to automate the previously manual process of giving a domain theo-
retic (fixed point) definition of a partial recursive function, and possibly, if the function
can be proved to be total, then deriving a pure HOL definition from this. The simplified
formalization is presented in this section and the automation in the following section.

The basic concepts of domain theory can be formalized as follows. A partial order is
a binary relation "R:*->%->bool" which is reflexive, transitive and antisymmetric:

7

[- IR.
po R =
(Ix. R x x) /\
(Ixyz. Rxy/\Ryz==>Rxz) /\
(xy.Rxy /N\Ryx==> (x=y)).

A complete partial order is a partial order which contains the least upper bounds of all
non-decreasing chains of values:

|- 'R. cpo R = po R /\ (!X. chain R X ==> (7x. islub R X x)),
where we have defined

- IR X x. isub R X x = (!n. R(ZX n)x)
|- 'R X x. islubR X x = isub R X x /\ (ly. isubR X y ==> R x ¥y)
|- IR X. chain R X = (!n. R(X n) (X(SUC n))).

Also essential to domain theory is the notion of continuous functions, which are monotonic
functions that preserve least upper bounds of chains:

|- 'f RR’.
cont £(R,R’) =
(Ixy. Rxy==>R{Ex(E y) /\
(1X, chain R X ==> (£(1ub R X) = 1ub R’(\n. £(X n))))

where
|- IR X. lubR X = (@x. islub R X x).

Compared to the more powerful formalization presented in [3], a main simplification above
is the formalization of partial orders as just relations instead of pairs of sets and relations.
This simplification is possible since it is not necessary to consider the cpo construction on
continuous functions generally, which is also called the continuous function space, but only
to consider one particular instance of this construction (called frel below). Thereby we
in turn avoid the need for for a notion of partially specified functions, which are specified
on cpo subsets only. In turn, a new A-abstraction would have to be defined to make
continuous functions determined by their action on the subsets, by ensuring that they
yield a fixed arbitrary value outside the subsets. Otherwise, it is not possible to show
that continuous functions constitute a cpo with the pointwise ordering.

We are able to manage the entire development with just two different cpo relations,
defined as follows

|- Ixy. Irel x y = (x = bot) \/ (x =)
|- tf g. frel £ g = (Ix. lrel(f x)(g x)),

where bot is a constructor of a new datatype of syntax specified by

lift = bot | 1ift *.

Note that 1ift is the name of both the type being specified and of one of the two
constructors. The relation 1rel ensures that bot is the bottom element, i.e. a least value
which can be used to represent undefinedness, and behaves as the discrete ordering on
lifted values. The relation frel is the pointwise ordering on functions and works on
functions with a lifted range type. The cpo frel also has a bottom element, which is the
everywhere undefined function, i.e. the constant function that sends all values to bot.

The notions of cpos and continuous functions allow a fixed point operator to be defined
for continuous functions on a cpo with a bottom element. However, we shall only wish to
take the fixed points of continuous functionals on frel whose types are instances of the
type ": (%=>(**) 1ift) -> (*-> (k%) Lift) ":

|- 1f. cont f(frel,frel) ==> (f(fix f) = fix f).

This theorem is called the fixed point property, and is essential to the automation. Re-
cursive functions are defined as fixed points of continuous functionals. The fixed point
operator is defined by

[- tf. fix £ = lub frel(\n. power n f)

where

|- (tf. power 0 £ = (\x. bot)) /\
(!n £. power(SUC n)f = f(power n £)).

The need for the lifted type constructor appears in the definition of the fixed point operator
and in turn in the definition of power. Note that the function returned by power in the
zero case is the bottom element of the cpo frel.

Note that a recursive function defined as a fixed point has a type of the form ":*
-> (*#*%)1ift", where the range type is lifted. This means that recursive calls in its
specification cannot be used directly with other HOL terms, which would expect an
unlifted term of type ":**". In order to solve this problem, we introduce a construction
ext, called function extension, which can be used to extend HOL functions in a strict
way:

- (tf. ext £ bot = bot) /\ (If x. ext f(lift x) = f x).

For instance, the term "ext(\x. x+5)" extends addition to a strict function in its first
argument. In the automation presented below, we shall use function extension to isolate

recursive calls from pure HOL terms.
It is easy to derive domain theoretic techniques for recursion such as Park induction,

which is stated by the theorem
|- 1f. cont f(frel,frel) ==> Ix. frel(f x)x ==> frel(fix f)x,
and the principle of fixed point induction, which is stated by

[- IP £.
cont f(frel,frel) ==
admiss P /\ P(\x. bot) /\ (Ix. P x ==> P(f x)) ==
P(fix f)

where the notion of admissibility of a predicate for fixed point induction is defined by

|- 1P.
admiss P = (1X. chain frel X /\ (In. P(X n)) ==> P(lub frel X)).

4 Automation

The purpose of the above formalization is to serve as a basis for defining recursive functions
in HOL. A recuxrsive function specification "g x = rhs[g,x]" must be given (x may be a
pair), where rhs is specified using the conditional style mentioned in the introduction; we
shall say that the conditionals constitute a “backbone” of the specification. The function
g must be uncurried, i.e. it must have a type like "g:*1#. . .#xn->**x". We make two
assumptions about rhs([g,x]:
o All occurrences of g must be applied to a term, in order to avoid function types
with a lifted range type in unexpected places—these are allowed in arguments of
ext only.

e No occurrences of recursive calls appear in the body of a A-abstraction (unless it is
part of a let-term), again in order to avoid function types with a lifted range type.
The definition of a constant g that satisfies the specification can be automated in the
following steps:
1. Generate a functional G in domain theory from the recursive specification. This
functional has the form \g’ x. rhs’[g’,x], where g’ is a variable like g but with
a lifted range type and where rhs’ is a lifted domain theory version of rhs. The
type of G is ": (x1#. . . #*n->(**) 1ift) > Ckl#. . . #xn-> (k*) 1ift) ",

2. Prove G is continuous: |- cont G(frel,frel).
For a partial recursive function definition the final steps are:
3’. Define a constant g by |- g = fix G. Its type is "g:*1#. . . #+n->(**) 1ift".
4’. Derive the recursive definition |- !{x. g x = rhs’[g,x], where rhs’ is a domain

theoretic version of rhs, corresponding to the body of G. The derivation exploits
continuity and the fixed point property.

These are both trivial steps. For a well-founded recursive function definition a well-
founded relation, gR say, and a number of termination properties of the form

- b1 /\ ... /\ “bi-1 /\ bi ==> gR ¥ x,

where the b’s are conditions in the conditional backbone of the rhs and y is the argument
of a recursive call of the i’th branch, must be given in addition to the specification, and
the final steps are:

3. Prove the statement |- 7g. !x. lift(g x) = fix G x, saying that the recursive

function defined by "fix G" always terminates. The proof is conducted by well-
founded induction (using the termination properties) and exploits continuity.

4. Define a constant g from this theorem using constant specification. The type of g
is "grxl#, . Hxn->Hk",

5. Finally, prove "fix G x" is equal to "G(fix G)x", by the fixed point theorem and
continuity, in turn this is equal to "rhs’ [g,x]" by definition of g and finally, this is
equal to "rhs [g,x]" by straight-forward case analyses on the conditional structure
of rhs. Hence, we have derived the desired specification |- !x. g x = rhs[g,x].

Each of the first three (non-trivial) steps are described in separate sections below.

10

4.1 Generating the Functional (Step 1)

As explained above the goal is to generate a domain theory version of the right-hand side
rhs[g,x]. This is done by two recursive algorithms, one for the backbone conditionals
(nested with let-terms) and one for branches and conditions. We imagine the backbone
algorithm is called first with the right-hand side of a specification. In the description
below, we use primes to indicate that a term has been transformed, and therefore has a
lifted type. In particular, the function variable "g:#1#. . .##n->*" is replaced by the
primed variable "g? :*1#. . . #*n->(**) 1ift" with a lifted range type.

Algorithm for Backbone

The input is either a conditional, a let-term, or the last branch of the backbone conditional:

Conditional: The input term has the form (b — ¢; | £3). The branch t;, which may
be a new condition or let-term in the backbone, is transformed recursively, and
ty is transformed using the branch and condition algorithm described below. If
the condition does not contain g then the result is (b — &} | ¢;). Otherwise, b is
transformed using the branch and condition algorithm and the result is ext(Aa. (@ —
t; | t5))b’, where the condition b has been separated from the conditional using
function extension.

Let-term: The input has the form let ¢ = ¢; in t;, which may use a list of bindings
separated by and’s. Transform ¢, recursively and use the branch algorithm on ¢;.
The result has the form ext(Aa. t5)t]. Lists of bindings are transformed into nested
uses of function extension.

Otherwise: The term is considered to be the last branch of the backbone and therefore
transformed using the branch algorithm.

Algorithm for Branches and Conditions

The input has no particular form. The purpose of the algorithm is to lift terms that do
not contain recursive calls and to isolate recursive calls using function extension in the
terms that do.

No recursive call: If the variable g does not appear in a free position in the input term
" t, then return 1ift ¢.

Recursive call: Assume the input term is a recursive call g(t;,...,t,). Each t; that
contains g must be transformed recursively. Separate these from the argument pair
of g using function extension and replace g with g’. Assuming for illustration that g
takes four arguments of which the first and the third ones contain g, then the result
has the form
ext(Aay. ext(Aas. ¢'(a1, t2, as, £4))t5)E] .

Let-term: The input has the form let a = #; in t5, which may use a list of bind-
ings separated by and’s. Transform ¢; and ¢, recursively. The result has the form
ext(Aa. ty)t]. Lists of bindings are transformed into nested uses of function exten-
sion.

11

Combination: The term has the form ¢ ¢; ... t,, where ¢ is not a combination (or
an abstraction containing g). Each argument of ¢ that contains g is transformed
recursively and these arguments are separated from the combination using nested
function extensions. The combination in the body of the function extensions is
lifted. Assuming for illustration that the input is ¢ ¢; ¢y t3 t4, and that ¢; and t3
contain g, then the result has the form

ext(Aay. ext(Aas. Lift(t a1 tg as t4))t5)E] .
For a simple example consider the term 5 + g(2,3) which is transformed into the

term ext(Aa. 1ift(5 + a))(g'(2, 3)).

4.2 The Continuity Prover (Step 2)

The most complicated part of the automation is perhaps the continuity prover. Given the
functional G constructed in the first step above, it must prove the continuity statement:
|~ cont G(frel,frel). .

Recall that G is the abstraction "\g’ x. rhs’[g’,x]". We first prove

|- !x. cont(\g’. rhs’[g’,x]) (frel,1lrel)
and then establish the desired result using the continuity-abstraction theorem:
[- (1x. cont(\f. t f x) (frel,lrel)) ==> cont(\f x. t £ x)(frel,frel).

To prove the first theorem, we let the conditional and ext term structure of rhs’
guide our action in a recursive traversal. At each stage of the recursion, we have one of
the following four cases (selected top-down):

No recursive call: The term does not contain any free occurrences of g’. The desired
continuity theorem (upto a-conversion) is obtained by instantiating

|- 1t. cont(\f. t)(frel,lrel).

Recursive call: The term is a recursive call "g’ (t1,...,tn)". Instantiate the following
theorem with " (t1,...,tn)" and do an a-conversion:

[- 1t. cont(\f. £ t)(frel,lrel)

Conditional; The term is a conditional "(b => t1 | t2)". Traverse the branches re-
cursively, yielding

|- cont(\g’. t1) (frel,lrel)
|- cont(\g’. t2) (frel,lrel).

Note that the boolean guard b cannot depend on g’ since such dependency would

have been removed when the functional was generated. The desired result is ob-
tained essentially by instantiating the following theorem (and using modus ponens):

12

- 161 £2.
cont ti(frel,lrel) ==>
cont t2(frel,lrel) ==>
(Ib. cont(\f. (b => t1 £ | t2 £)) (frel,lrel)).

Function extension: The term is an ext term "ext(\y. t1)t2". The terms t1 and
t2 are traversed recursively, yielding

I- cont(\g’. t1) (frel,lrel)
|- cont(\g’. t2) (frel,lrel).

Next, the first of these and the continuity-abstraction theorem is used to deduce
|- cont(\g’ y. t1)(frel,frel). The desired result is obtained essentially by
instantiating the following theorem:

|- 151 t2.
cont ti(frel,frel) ==
cont t2(frel,lrel) ==
cont (\f. ext(tl £)(t2 £))(frel,lrel).

This completes the description of the continuity prover.

4.3 The Well-founded Induction (Step 3)

The goal of step 3 is to prove the statement "?g. !x. lift(g x) = fix G x" by well-
founded induction. A user supplies a theorem stating some relation, gR say, is well-founded
and a theorem list of termination properties of the original specification.

The principle of well-founded induction is stated as follows

I-'R. wE R = (IP. (!x. (!y. Ry x==>Py) ==>Px) ==> (lx. Px)).

Since our induction proofs always have the same structure, it is advantageous to derive
the desired instance of this theorem once and for all:

|- IR.
wf R ==
(1f.
cont f(frel,frel) ==
(Ix.
(Ix’. R x? x ==> (?7y. fix f x’ = lift y)) ==
(7y. £(fix f)x = lift y)) ==
(?7g. !x. lift(g x) = fix f x))

Note that the conclusion matches the goal of step 3. The theorem is obtained by a few
trivial manipulations. The induction predicate of the previous theorem is instantiated
with "\x. ?y. fix f x = 1ift y". Then the consequent of the theorem is skolemized,
which means that the existential 7y is moved outside the !x where it becomes ?g; note
that y is a value while g is a function. Symmetry of equality is also used on the consequent.

13

Then the continuity assumption is used to obtain the term "?y. £(fix £)x = lift y"
instead of "?y. fix f x = lift y" in the induction proof (i.e. the third antecedent);
the fixed point property justifies this.

In step 3, the first two assumptions of the previous theorem are discharged by the user-
supplied theorem |- wf gR and the continuity prover, respectively. The last assumption
yields the induction proof:

"1x.
(1x’. gR x? x ==> (7y. fix G x’ = lift y)) ==>
(?7y. G(fix G)x = lift y)",

where the variables R and f have been instantiated. This proof is guided by the syntactic
structure of the term "G(fix G)x", which by S-conversion is equal to "rhs’ [fix G,x]".
A case analysis is done for each conditional. For each recursive call, there must be a
termination theorem in the user-supplied list of proof obligations. This allows us to use
the induction hypothesis, i.e. the antecedent above. Hence, from the hypothesis and some
proof obligation we derive that each recursive call terminates. In this way, we become
able to reduce away all occurrences of ext and arrive at statements of the form "?y. 1lift
t = 1lift y", which hold trivally.

5 Example: Partial Recursive Functions

Exercise 10.20 in Section 10.5 of Winskel’s book [17] is a small but non-trivial exercise
using various techniques for recursion to show the equality of two partial recursive func-
tions on finite lists. Below, we present a solution to this exercise, the actual ML code is

shown in Appendix B.
The two partial recursive functions are defined by:

14

#let f_def = new_prec_definition ‘f_def’
"f(l,y) =
(NULL 1 => y |
let x =HD 1 and 1’ = TL 1 in f(APPEND(x(x,y))1’,s(x,y)))";;
f_def =
|- 11 y.
£(1,y) =
(NULL 1 =>
lift y |
let x =HD 1 and 1’
Run time: 2.4s
Intermediate theorems generated: 532

TL 1 in f(APPEND(xr(x,y))1’,s(x,y)))

#let g_def = new_prec_definition ‘g_def®
"g(l,y)
(NULL 1 => y |
let x = HD 1 and 1’
g_def =
[- 11 y.
g(l,y) =
(NULL 1 =>
lift y |
let x = HD 1 and 1’
Run time: 3.0s
Intermediate theorems generated: 599

TL 1 in g(1’,g(xr(x,y),s(x,y))N)";;

i

TL 1 in ext(\v. g(1’,v)) (glx(x,y),s(x,y))))

Note that the domain theory for representing partiality is introduced automatically. In
particular, function extension is used at the nested recursive call since a recursive call may
not terminate. The function new_prec_definition has various side effects on the theory
file, apart from saving the returned theorem under the name supplied as an argument. It
also saves the fixed point definition of the partial function (under the name const_fix_def,
e.g. f_fix_def in the definition of £ above), and defines a constant for the functional of
this definition (const_fun_def). Finally, it saves a theorem stating the functional is
continuous (const_fun_cont). These definitions and theorems are autoloaded, but the
induction tactics reads the theory files directly.

The exercise is to prove the non-trivial statement: "f = g". The proof starts by using
antisymmetry of the cpo frel to reduce the statement to "frel £ g" and "frel g £".
The first relation follows by proving g is a fixed point of the functional used in f’s fixed
point definition, this functional is called £ _fun, and exploiting that £ is the least prefixed
point of f_fun, by Park induction. The second relation is proved in a slightly different
way since f is not a fixed point of g_fun directly. The proof also employs a Park induction
and in addition a fixed point induction.

It is easy and convenient to prove the following recursion equations for f, g, and for
the functionals used to define £ and g:

f_EQS =

15

b= (ty. £C00,y) = 1ift y) /\
(tx xs y. £(CONS x xs,y) = £(APPEND(r(x,y))xs,s(x,y)))

g_EQS =
- Cy. g(ll,y) = 1ift y) /\
(1x xs y. g(CONS x xs,y) = ext(\v. g(xs,v)) (g(r(x,y),s(x,y))))

f_fun_EQS
[- (ty h. £f_fun h([l,y) = lift y) /\
(!x xs y h. £_fun h(CONS x xs,y) = h(APPEND(r(x,y))xs,s(x,y)))

g_fun_EQS
|- (!y h. g_fun h([l,y) = lift y) /\
(Ix xs y h.
g_fun h(CONS x xs,y) = ext(\v. h(xs,v)) (h(r(x,y),s(x,y))))

Now, we can start an overview of the proof.
We first prove that g is a fixed point of £_fun, i.e. that the following statement holds:

|- f fung=g

From this, the desired relation "frel £ g" follows by Park induction (see below for an
example on using the Park induction tactic).

By function equality, we must prove "f_fun g(1,n) = g(1,n)" for all lists 1 and
natural numbers n. From the equations for g and £_fun listed above it appears that the
equality holds trivially when 1 is the empty list []J and when 1 is a list "CONS h t" it
reduces to the goal

“g (APPEND (r (h,y))t,s(h,y)) = ext(\v. g(t,v)) (glr(h,y),sh,y)))"
We prove the following slightly more general statement
"Ixs 1 y. g(APPEND 1 xs,y) = ext(\v. g(xs,v)) (g(1,y))",

using structural induction on the universally quantified list 1. By definition of APPEND
and by the equations for g we must prove the following two subgoals:

(step)
"hy.
ext(\v. g(APPEND 1 xs,v)) (g(r(h,y),s(h,y))) =
ext(\v. g(xs,v)) (ext(\v. g(1,v)) (g(r(h,y),s(h,y))))"
1 ["ly. g(APPEND 1 xs,y) = ext(\v. g(xs,v))(g@,yN)"]

(base)
"iy. g(xs,y) = ext(\v. g(xs,v)) (Lift y)"

The base case is first reduced using the equations for ext. There is a special tactic for
this:

16

#e ext_REDUCE_TAC;;
0K..
"ly. g(xs,y) = glxs,y)"

The resulting subgoal holds trivially. In the induction step, we first perform a case analysis
on the argument of ext, i.e. on whether it equals bot or 1ift. Again, there is a special
tactic for this purpose:

#E(GEN_TAC THEN GEN_TAC THEN ext_CASES_TAC "g(r(h,y),sCh,y))");;
OK. .
2 subgoals
"g(APPEND 1 xs,x) = ext(\v. g(xs,v))(g(l,x))"
2 ["!y. g(APPEND 1 xs,y) = ext(\v. g(xs,v)) (g(L,y))"]
1 ["gx(h,y),sth,y)) = Lift x"]

"bot = bot"
2 ["!y. g(APPEND 1 xs,y) = ext(\v. g(xs,v)) (g(1,y))"]
1 ["glx(h,y),sh,y)) = bot"]

The first subgoals holds by reflexivity and the seconds holds ~by the assumption. This
completes the proof of |- frel f g.

Next, we consider the proof of the statement "frel g £". The first step is a Park
induction:

#e PARK_INDUCT_TAC;;
CK..
"frel(g_fun f£)£"

The tactic automatically fetches the fixed point definition of g and the continuity theo-
rem about g_fun from the theory file (and uses these theorems with the Park induc-
tion theorem of Section 3). To prove this goal, it is enough to prove "lrel(g_fun
£(1,y)) (£(1,y))" for any (1,y), since the function ordering relation is defined point-
wise. Doing a case split on the list 1 and rewriting with the equations for £ and g.fun,
we obtain the following two subgoals:

"lrel(ext(\v. £(t,v))(£(x(h,y),s(h,y)))) (£(APPEND(r (h,y))t,sCh,y)))"
1 ["1=CONS ht"]

"lrel(lift y) (1ift y)"
1 [lll = [] n]

The first subgoal, where 1 is the empty list, is finished off using reflexivity of the cpo
1rel, and in the proof of the second subgoal, where 1 is a non-empty list, we choose to
abstract over the occurrences of r and s by proving the lemma:

“1xs 1 y. lrel(ext(\u. f£(xs,u)) (£(1,y))) (£(APPEND 1 xs,y))".

17

The first step is a fixed point induction on the second occurrence of £:

#e (FP_INDUCT_TAC ‘f‘ [2]);;

0K. .

2 subgoals

“1xs 1 y. lrel(ext(\u. f(xs,u)) (f_fun x’’(1,y))) (£(APPEND 1 xs,y))"
1 ["Ixs 1y. lrel(ext(\u. £(xs,u))(x’’(1,y))) (£(APPEND 1 xs,y))"]

"1xs 1 y. lrel(ext(\u. f(xs,u))bot) (£(APPEND 1 xs,y))"

This tactic automatically fetches the fixed point definition of £ and the continuity of the
functional £_fun from the theory file (see the fixed point induction theorem of Section 3).
It also proves that the predicate admits induction, using some ad hoc syntactic checks

(see Appendix A).
The first goal is the base case of the induction. It is proved by reducing ext, using the
theorem |- !f. ext f bot = bot or the tactic used above, and using that bot is the

least element with respect to lrel. In the induction step, we first do a case analysis on
the list 1 and then uses the ext reduction tactic and various theorems (e.g. the definition
and associativity of APPEND, the equations for £ and f_fun and the reflexivity property
of the cpo 1rel). We shall not go into the details of the proof here. This completes the
proof of |- frel g £.

To sum up, we have proved the equality |- £ = g of two partial recursive functions
f and g on finite lists. The equality was first split up into two (relation) cases, using
the antisymmetry property of the cpo frel. Various techniques for recursion were then
applied: structural induction on lists, Park induction and fixed point induction (which
proved admissibility behind the scenes).

6 Examples: Well-founded Recursive Functions

This section provides another two examples of well-founded recursive function definitions.
These were done previously by van der Voort in [16], which describes another approach to
introducing well-founded recursive function definitions inspired by Boyer-Moore [5]. He
avoids domain theory and does not treat partial functions. The examples below show that
van der Voorts approach (or prototype implementation) is much less efficient than the
present. Both examples yield less than half as many ‘intermediate theorems generated’
and executes 6 times faster using the present package (but of course this is machine
dependent and so on). Van der Voort’s approach is also discussed briefly in Section 8.

6.1 A Fast Exponential

We first consider a fast exponential:

18

#FASTEXP; ;
"FASTEXP(m,n) =

((n=0) =
1|
(EVEN n =>

let x = FASTEXP(m,n DIV 2) in x * x |
m * (FASTEXP(m,PRE n))))"
. term

When the exponent is even it is divided by two. In this way, the fast exponential roughly
speaking halves the number of computation steps compared to the standard primitive

recursive definition.
Once the recursive specification has been written we can calculate the proof obligations

for the termination proof:

#calc_prf_obl FASTEXP;;

["(n = 0) /\ EVEN n ==> R(m,n DIV 2)(m,n)";
"“(n = 0) /\ "EVEN n ==> R(m,PRE n)(m,n)"]
: term list

From these we read that the well-founded relation that relates the second components
of pairs of natural numbers by the less-than ordering is suitable for this example. The
well-founded relation is obtained easily using the inverse image construction:

#let wf_fastexp = ISPEC"SND:num#num->num" (MATCH_MP wf_inv wf_less);;
wf_fastexp = |- wf(inv($<,SND))

Next, the instantiated proof obligations are calculated:

#let obl_tml = get_prf_obl wf_fastexp FASTEXP;;
obl_tml =

[""(n = 0) /\ EVEN n ==> inv($<,SND) (m,n DIV 2) (m,n)";
"“(n = 0) /\ “EVEN n ==> inv($<,SND) (u,PRE n) (m,n)"]
1 term list

I

Again we shall omit the simple proofs of these obligations, and just assume the desired
theorems are bound to the ML variable obl_thl. The fast exponential is now defined

automatically as follows:

19

#let FASTEXP_DEF =
new_wfrec_definition ‘FASTEXP_DEF‘ wf_fastexp obl_thl FASTEXP;;
FASTEXP_DEF =
|- 'm n.
FASTEXP(m,n) =
((n =0 =
1|
(EVEN n =>
let x = FASTEXP(m,n DIV 2) in x * x |
m * (FASTEXP(m,PRE n))))
Run time: 4.8s
Intermediate theorems generated: 858

1f

6.2 Quicksort

A specification of the well-known quicksort algorithm may be written as follows:

#QSORT; ;
"QSORT 1 =
(=11 =
11
let x =HD 1
and xs = TL 1
in
APPEND
(APPEND(QSORT(FILTER(\y. v < x)xs)) [x])
(QSORT(FILTER(\y. "y < x)xs)))"
: term

The proof obligations for termination are then calculated:

#calc_prf_obl QSORT;;

["~(L = []) ==> R(FILTER(\y. y < (HD 1))(TL 1))1";
"~(1 = []) ==> R(FILTER(\y. "y < (HD 1)) (TL 1))1"]
: term list

Here, we see that the length of the list argument is reduced in each recursive call. Hence,
a suitable well-founded relation is obtained by the inverse image construction and the

less-than ordering:

#let wf_qgsort =
ISPEC"LENGTH: (num)list->num" (MATCH_MP wf_inv wf_less);;

wf_gsort = |- wf(inv($<,LENGTH))

20

Assume the proven proof obligations are bound to the ML variable obl_thl. The defini-
tion of quick sort is introduced by:

#let QSORT_DEF =
new_wfrec_definition ‘QSORT_DEF‘ wf_gsort obl_thl QSORT;;
QSORT_DEF =
[- 1.
QSORT 1
(L=1[
11
let x =HD 1
and xs = TL 1
in
APPEND '
(APPEND(QSORT(FILTER(\y. y < x)xs)) [x])
(QSORT(FILTER(\y. "y < x)xs)))
Run time: 4.3s
Intermediate theorems generated: 764

1) =

7 A Larger Example: The Unification Algorithm

A larger and non-trivial example, the unification algorithm, is presented in this section.
The example is non-trivial for two reasons. The termination properties are very difficult
to prove, and further, their proofs rely on the correctness of the algorithm. In other words,
we cannot separate the proof of termination from the proof of correctness, as we did in
the Ackermann example in Section 1. Still, a temporary well-founded definition can be
specified in the conditional style and introduced by new_wfrec_definition. Once the
correctness of the temporary definition has been established, we can deduce the desired
definition. Alternatively, we could have defined a partial recursive function first and
proved correctness and termination in the same well-founded induction (as in [3]). This
would introduce lifting and function extension in many places and therefore be more
inconvenient to work with (partiality is avoided in the approach below).

Unification is the problem of finding a substitution to yield a common instance of
two expressions, if this is possible, and if not, to yield a failure. An expression, also
called a term, can be a constant, a variable or a combination. Variables are regarded as
place holders for which any expression may be substituted. The unification algorithm is
a prescription for computing such a substitution, also called a unifier. Furthermore, the
desired substitution must be the most general unifier in a certain sense.

I also considered the unification algorithm in details in [3] and partly in [4], exploting
previous work by Manna and Waldinger [9] and Paulson [14]. In this paper, we shall
therefore skip many details and concentrate on the well-founded definition.

A recursive type of terms can be defined using the type definition package with the
following specification

term = Const name | Var name | Comb term term,

21

where name can be a type like num or string (or any type).
A central notion is substitution. The operation of applying a substitution to a term
can be defined by primitive recursion as follows

|- (Jc s. (Const c) subst s = Const ¢) /\
('v s. (Var v) subst s = lookup v s) /\
(1t1 t2 s. (Comb t1 t2) subst s = Comb(tl subst s) (t2 subst s))

where the constant lookup is defined by

|- (!v. lookup v[] = Var v) /\
(1v x s. lookup v(CONS x s) = ((v = FST x) => SND x | lookup v s))

Hence, we have chosen to represent a substitution as a list of pairs of variables and terms.
A more natural representation could be as a function from variables to terms (see [11])
since this representation avoids dealing with potentially multiple occurences of a variable
as in a list representation. For instance, due to the potentially multiple occurences, we
must define a special equality for substitution:

[~ lr s. r==85 = (!1t. t subst r = t subst s).

Here, HOL equality does not work since it looks at lists syntactically. Note that 1ookup
is defined such that it chooses the first occurence of a variable in a substitution (if there
is more than one).

We wish the unification algorithm to yield a failure or a successful substitution. It is
therefore convenient to introduce a type of attempts to represent the result of a unification:

attempt = Failure | Success (name#term)list

A first (and sensible) suggestion for a recursive specification of the unification algorithm
could then be:

"UNIFY(t,u) =
(is_Const t => unifyC(dest_Const t)u |
is_Var t => (dest_Var t) assign u |
is_Const u => Failure |
is_Var u => (dest_Var u) assign t |
let a = UNIFY(dest_Combl t,dest_Combl u)
in
(is_Failure a => Failure |
let 5 = dest_Success a in
let a’ = UNIFY((dest_Comb2 t) subst s, (dest_Comb2 u) subst s)
in
(is_Failure a’ => Failure |
let s’ = dest_Success a’ in Success(s thens s’))))",

which relies on the following (unimportant) definitions

|- (tc ¢’. unifyC c(Const c¢’) = ((c¢ = ¢’) => Success[] | Failure)) /\
('c v. unifyC c(Var v) = v assign (Const c)) /\
(lc t u. unifyC c(Comb t u) = Failure)

22

|- (!s. [] thens s = s) /\
(Ix r s.
(CONS x r) thens s = CONS(FST x, (SND x) subst s)(r thens s))
|- v t. v assign t = ((Var v) << t => Failure | Success[v,t])
|- (1t c. t << (Const ¢) = F) /\
(1t v. t << (Var v) = F) /\
(1t t1 t2.
t << (Comb t1 t2) = (£ = t1) \/ (£t = t2) \/ t << t1 \/ t << £2)

where << is an occurs-in relation and thens defines composition of substitutions. However,
this recursive specification is not suitable for proving the proof obligations for termination.

In order to explain why, let us first consider the complicated well-founded relation for
the termination proof. It can be defined using built-in constructions as follows:

- unifyR =
inv(lex ($PSUBSET, $<<), (\(t,u). ((vars t) UNION (vars u),t)))
|~ wf unifyR,

where vars gives the finite set of variables of a term:

|- (1c. vars(Const c) = {}) /\
(lv. vars(Var v) = {v}) /\
(1t1 t2. vars(Comb t1 t2) = (vars t1) UNION (vars t2))

Here, we use the library of finite sets [13]. The general inverse image theorem can be used
to obtain that both PSUBSET and << are well-founded relations by using respectively the
cardinality function on finite sets and a size function on terms. In this way, a proof of the
well-foundedness of the two relations is reduced to the well-foundedness of the less-than
ordering on natural numbers.

Given this well-founded relation, we can calculate the proof obligations for the above
specification (using an ML function get_prf_obl):

["~is_Const t /\ ~is_Var t /\ ~is_Const u /\ “is_Var u ==
unifyR(dest_Combl t,dest_Combl u) (t,u)";
"~ig_Const t /\ “is_Var t /\
“is_Const u /\ ~is_Var u /\ “is_Failure a ==
unifyR
((dest_Comb2 t) subst (dest_Success a),
(dest_Comb2 u) subst (dest_Success a))
(t,w"]

The problem of the specification is that we cannot prove the second obligation, obtained
from the second recursive call, without knowing that the variable a, which corresponds to
the result of unifying the first components of two combinations, denotes a best unifier in a
certain sense, i.e. without knowing that the recursive specification is correct. We cannot
separate the termination proof from the correctness proof in this example.

Fortunately, there is a way of cheating. We can add a test in the recursive specifica-
tion temporarily to ensure that the result of the unification is correct, otherwise let the
algorithm yield an arbitrary value:

23

#unify_tm;;
"UNIFY(t,u) =
(is_Const t => unifyC(dest_Const t)u |
is_Var t => (dest_Var t) assign u |
is_Const u => Failure |
is_Var u => (dest_Var u) assign t |
let a = UNIFY(dest_Combi t,dest_Combl u)
in
(is_Failure a => Failure |
let s = dest_Success a
in
(("best_unifier(s,dest_Combl t,dest_Combi u)) => ARB |
let a’ = UNIFY((dest_Comb2 t) subst s,(dest_Comb2 u) subst s)
in
(is_Failure a’ => Failure |
let s’ = dest_Success a’ in Success(s thens s’)))))"
: term

The notion of best unifier is defined as follows, though the reader does not have to
understand such details:

|- 's t u. unifier(s,t,u) = (t subst s = u subst s)
|- sl s2. more_gen(sl,s2) = (?r. s2 == (sl thens r))
|- 1s t u.
most_gen_unifier(s,t,u) =
unifier(s,t,u) /\ (Ir. unifier(r,t,u) ==> more_gen(s,r))
I- s t u.
best_unifier(s,t,u) = most_gen_unifier(s,t,u) /\ (s thens s) == s

The proof obligations now becomes

#get_prf_obl wf_unifyR unify_tm;;
["“is_Const t /\ “is_Var t /\ ~is_Const u /\ "is_Var u ==
unifyR(dest_Combl t,dest_Combl u) (t,u)";
"ig_Const t /\
~is_Var t /\
~is_Const u /\
“is_Var u /\
“is_Failure a /\
““best_unifier(dest_Success a,dest_Combl t,dest_Combl u) ==
unifyR
((dest_Comb2 t) subst (dest_Success a),
(dest_Comb2 u) subst (dest_Success a))
(t,u)"]

: term list

24

which can be proved (though this is not straightforward).
Assume theorems for the proof obligations are in the list obl_thl., A well-founded
recursive definition of the unification algorithm can now be introduced by:

#let UNIFY_DEF_TMP =
new_wfrec_definition ‘UNIFY_DEF_TMP‘ wf_unifyR obl_thl unify_tm;;
UNIFY_DEF_TMP =
[~ 't u.
UNIFY(t,u) =
(is_Const t => . . .)
Run time: 11.8s
Garbage collection time: 3.7s
Intermediate theorems generated: 1705

Here, parts of the definition have been omitted to save space. This is only a temporary
definition and not the desired one. However, once we have proved the correctness of
UNIFY, stated by the theorem (which was also proved by well-founded induction)

[~ It u. best_unify_try(UNIFY(t,u),t,u)
where best_unify_try is defined by

|- la t u.
best_unify_try(a,t,u) =
(a = Failure) /\ (!s. “unifier(s,t,uw)) \/
(?s. (a = Success s) /\ best_unifier(s,t,u)),

we can get rid of the additional unifier test and easily derive the desired definition:

#UNIFY_DEF; ;
|- 1t u.
UNIFY(t,un) =
(is_Const t => unifyC(dest_Const tlu |
is_Var t => (dest_Var t) assign u |
is_Const u => Failure |
is_Var u => (dest_Var u) assign t |
let a = UNIFY(dest_Combl t,dest_Combi u)
in
(is_Failure a => Failure |
let s = dest_Success a in
let a’ = UNIFY((dest_Comb2 t) subst s, (dest_Comb2 u) subst s)
in
(is_Failure a’ => Failure |
let s’ = dest_Success a’ in Success(s thens s’))))

25

8 Conclusions and Related Work

The paper has described a package for automating non-primitive recursive function defi-
nitions in HOL. Given a recursive function specification in higher order logic, the package
works by constructing a potentially partial domain theory version of the function, which
is defined using the fixed point operator. In case this function can be proved to be total,
it further constructs a pure HOL recursive function which satisfies the original specifi-
cation. The proof of termination is performed by well-founded induction automatically
but the user of the package must supply a well-founded relation and a list of termination
properties for the induction proof. The latter is calculated but not proved by the package.
Furthermore, the package provides a number of constructions for well-founded relations,
which make it essentially trivial to prove most relations that occur in practice are well-
founded. Finally, the package also provides a number of theorems and tools to support
the domain theoretic techniques for recursion, such as Park induction and fixed point
induction (see Section 3 and Appendix A), which may be useful to reason about partial
recursive functions (but not to reason about total well-founded recursive functions).

This work was motivated by previous work on formalizing domain theory in HOL
[3, 4]. Some examples were also considered there, though in a much more complicated
domain theoretic framework than the present one; further, both partial and total well-
founded recursive functions were only treated manually. Since the package exploits domain
theory in a very precise and concrete way, we have been able to instantiate the theory
considerably. We have restricted ourselves to consider domain theory as a means to extend
the support for recursive function definitions in HOL only, not for instance recursive
functions on arbitrary domains with e.g. infinite values. We use just two different cpos
and one kind of continuous functional for recursive definitions via the fixed point operator.
Further, being able to exploit HOL functions directly, we avoid the use of a dependent
A-abstraction, which was a main reason for complication previously; it was used to make
functions determined by their action, in turn this notion was required to prove that the
continuous function space was a construction on cpos.

These simplifications and the design and engineering of proper tools have been the
main challenges of this work. The goal was to make domain theory as invisible as possible
by integrating the theory closely with higher order logic. Indeed, in defining well-founded
recursive functions the user never sees any domain theory, and in defining partial recur-
sive functions, the domain theory constructs needed to represent partiality are inserted
automatically. No knowledge of domain theory is required to use the package.

There might be recursive definitions which cannot be introduced by the package. A
main restriction might be that a recursive call is not allowed to appear in the body of
a A-abstraction (unless it is part of a let-expression). The problem occurs when the
recursive call uses the variable of the abstraction, in other cases the call can be moved
out of the body. It might be possible to implement support for abstractions, but this
would complicate the domain theory and the implementation of the package considerably.
Another associated restriction is that the function being defined must be applied to its
argument at all occurences in the right-hand side of a definition?. Finally, functions must
be specified using conditionals nested with let-expressions. This conditional style is fairly

2This requirement ensures that we can treat a recursive call (function plus argument) as a unit. In
general, we want to avoid a function type where the right-most type is lifted. This is also the reason for
abandoning recursive calls in the body of abstractions.

26

powerful but there is no evidence that it will always work.

Konrad Slind has developed a similar package for well-founded recursive function def-
initions (in HOLQ0), but this does not support other recursive functions. Its implemen-
tation is based on the well-founded recursion theorem, which gives a more direct and
efficient implementation, since all domain theory is avoided. Further, the well-founded
induction is performed once and for all in the proof of the well-founded recursion theorem,
whereas in the present package an induction is performed for each definition. However,
an advantage of domain theory is that it allows a recursive function to be defined directly
without proving whether it is total. Sometimes, recursive functions are partial, or the
proof of termination may depend on properties of the function (which is the case with the
unification algorithm, see Section 7), in which case it may be advantageous that we can
define a version of the function and reason about this before deriving the desired total
one.

Mark van der Voort describes another approach to introducing well-founded recursive
function definitions in [16], inspired by the one employed in Boyer-Moore [5]. Like Slind,
he also avoids domain theory and does not treat partial functions. However, instead of
using well-founded relations like Slind and we do, he supplies a natural number measure
with each definition. A recursive call must reduce this measure with respect to the
less-than ordering. It seems more direct to use well-founded relations rather than a
measure which destroys the structure of data. Further, an induction principle must be
derived with each recursive definition. It is difficult to compare the two packages directly,
since van der Voort’s is not available. Some unscientific experiments on defining van der
Voort’s examples using the present package (see Section 6) shows that his approach (or
prototype implementation) is much less efficient. Both examples yield less than half as
many ‘intermediate theorems generated’ and executes 6 times faster using the present
package (but of course this is machine dependent).

Tom Melham’s package for inductive relation definitions [12, 6] could be used to de-
fine many recursive functions as well. This would require a recursive specification to be
transformed into a set of inference rules which gives an inductive definition of a relation
representation of the function. The recursive function could then be extracted from the
inductively defined relation by a uniqueness proof, showing that the relation specifies a
(potentially partial) function, and a definedness proof, showing that the relation specifies
a total function. It is difficult to say whether or not such an approach would be simpler
than the present one, which works with HOL functions directly.

References

[1] S. Agerholm, Mechanizing Program Verification in HOL. M.Sc. thesis, Aarhus Uni-
versity, Computer Science Department, Report IR-111, April 1992. See also: Pro-
ceedings of the 1991 International Workshop on the HOL Theorem Proving System
and Its Applications, Davis California, 1991 (IEEE Computer Society Press, 1992.)

[2] S. Agerholm, ‘Domain Theory in HOL'. In the Proceedings of the 6th International
Workshop on Higher Order Logic Theorem Proving and its Applications, Jeffrey J.
Joyce and Carl-Johan H. Seger (Eds.), Vancouver, B.C., Canada, 1993, LNCS 780,

Springer-Verlag 1994.

27

[3] S. Agerholm, A HOL Basis for Reasoning about Functional Programs. Ph.D. Thesis,
BRICS RS-94-44, University of Aarhus, Department of Computer Science, December
1994.

[4] S. Agerholm, ‘LCF Examples in HOL'. The Computer Journal, Vol. 38, No. 2, 1995.
[5] R.S. Boyer and J.S. Moore, A Computational Logic. Academic Press, 1979.

[6] J. Camilleri and T.F. Melham, ‘Reasoning with Inductively Defined Relations in the
HOL Theorem Prover’. Technical Report No. 265, University of Cambridge Computer
Laboratory, August 1992.

[7] E.W. Dijkstra and C. Scholten, Predicate Calculus and Program Semantics. Springer-
Verlag, 1990.

[8] M.J.C. Gordon and T.F. Melham (Eds.), Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[9] Z. Manna and R. Waldinger, ‘Deductive Synthesis of the Unification Algorithm’.
Science of Computer Programming, Vol. 1, 1981, pp. 5-48.

[10] T.F. Melham, ‘Automating Recursive Type Definitions in Higher Order Logic’. In G.
Birtwistle and P.A. Subrahmanyam (Eds.), Current Trends in Hardware Verification
and Theorem Proving, Springer-Verlag, 1989,

[11] T.F. Melham, ‘A Mechanized Theory of the w-calculus in HOL’, Technical Report
No. 244, University of Cambridge Computer Laboratory, January 1992. To appear
in the Nordic Journal of Computing.

[12] T. Melham, ‘A Package for Inductive Relation Definitions in HOL’. In the Proceedings
of the 1991 International Workshop on the HOL Theorem Proving System and Its
Applications, Davis California, 1991 (IEEE Computer Society Press, 1992).

[13] T.F. Melham, “The HOL finite_sets Library’ (Draft). University of Cambridge, Com-
puter Laboratory, February 1992. (Appears in [15].)

[14] L.C. Paulson, ‘Verifying the Unification Algorithm in LCF’. Science of Computer
Programming, Vol. 5, 1985, pp. 143-169. '

[15] University of Cambridge Computer Laboratory, The HOL System: Libraries. Version
2 (for HOL88.2.02), March 1994. (This documentation is distributed with the HOL

system.)

[16] M. van der Voort, ‘Introducing Well-founded Function Definitions in HOL'. In High-
er Order Logic Theorem Proving and its Applications, L.J.M. Claesen and M.J.C.
Gordon (Eds.), IFIP Transactions A-20, North-Holland, 1993.

[17] G. Winskel, The Formal Semantics of Programming Languages. The MIT Press,
1993.

28

A Theorems and Tools

In this appendix, we list the ML names of some theorems and tools that may be useful for
someone defining partial or well-founded recursive functions with the package. Examples
of the use of tools are provided in the previous sections and in Appendix B.

A.1 Partial Recursive Function Definitions

File: prec.ml.

A partial recursive function can be defined using the function
new_prec_definition: (string -> conv).

It takes two arguments: a string, which is the name under which the returned (derived)
definition is saved, and a term, which is a recursive specification in higher order logic. The
tool defines a partial function and the returned specification will contain domain theory
constructs (see also Section 5).

A.2 Well-founded Recursive Function Definitions

File: wfrec.ml.

Proof obligations for well-founded recursive function definitions are calculated by
calc_prf_obl: (term -> term list)

which takes a recursive specification and produces the proof obligations containing a
variable relation. The function

inst_prf_obl: (thm -> term list -> term list)

can be used to instantiate the obligations according to a theorem stating a well-founded
relation. The function

get_prf_obl: (thm -> term -> term list)

combines the previous two functions.
A well-founded recursive function definition can be introduced using:

new_wfrec_definition: (string -> thm -> thm list -> conv)

It takes four arguments: a string which is the name under which the derived definition is
saved, a theorem which states a well-founded relation, a theorem list which provides the
proven proof obligations, and a term which is the well-founded recursive specification. It
returns the derived definition.

29

A.3 Well-founded Relations

File: mk_wfrec.ml. Theory: wfrec.th.

‘Well-foundedness

wf_def:
|- IR.
wf R = (A, “(A = empty) ==> (?x. Ax /\ "(?y. Ay /\Ryx)))
wf_no_inf_decr_chain:
|- 1R. wf R = ~(?X. !n. R(X(SUC n)) (X n))
wf_induct:
|- IR. ,
wf R = (IP. (Ix. (ly. Ry x ==>Py) ==> P x) ==> (Ix. P x))

Constructions

prod_def:
[- IRR’ b c. prod(R,R’)b ¢ = R(FST b) (FST ¢) /\ R’(SND b) (SND c)
lex_def:
|- IRR’ b c.
lex(R,R’)b ¢ =
R(FST b) (FST ¢) \/ (FST b = FST c¢) /\ R’ (SND b) (SND c)
inv_def:
|- IR £. inv(R,f)x y = R(f x)(£ y)

wf_prod:

|- 'R. wf R ==> (IR’. wf R’ ==> wf(prod(R,R’)))
wf_lex:

|- IR, wf R ==> (IR’. wf R’ ==> wi(lex(R,R’)))
wf_inv:

|- IR. wf R ==> (If. wf(inv(R,f)))
wf_inv_gen:

|- IR. wf R ==> (IR’ £. (Ixy. B> xy ==> R(f x)(f y)) ==> wf R’)
wf_less:

|- wf $<

A.4 Domain Theory
Files: mk_dom.ml and tools.ml. Theory: dom.th.

It can sometimes be useful to employ the following theorems and tools to reason about
partial recursive functions.

Partial orders

cpo._refl:
|- cpo R ==> (Ix. R x Xx)

30

cpo_trans: :

|- cpoR==>(lxyz. Rxy/\Ryz==>Rx2z)
cpo_antisym:

|- cpoR==> (Ixy. Rxy /\Ryx==>(x=y))

Partiality Type specification: (¥)1ift = bot | lift *.

lift_Axiom:
|- te £. 7! fn. (fn bot = e) /\ (Ix. fn(lift x) = £ x)

1ift_CASES_THM:
- 11, (1 = bot) \/ (7x. 1 = lift x)

There is a tactic to apply the last theorem:
1ift_CASES_TAC: (term -> tactic)

The term argument is used to instantiate the theorem which is stripped apart and
then the equalities are substituted in both the goal and the assumptions, and finally

assumed.

Concrete cpos

lrel:

|- Ix y. Irel x y = (x = bot) \/ (x = y)
frel:

|- 1f g. frel £ g = (I1x. lrel(f x)(g x))
lrel_bot:

|- !x. lrel bot x
lrel lift:

|- I1x y. lrel(lift x) (Qift y) = (x = y)
frel_bot:

|- 'f. frel(\x. bot)f
cpo_lrel:

|- cpo 1lrel
cpo_frel:

|- cpo frel

Function extension

ext:

|- (1f. ext £ bot = bot) /\ (If x. ext £(1lift x) = £ x)
ext_bot:

|- 1f. ext £ bot = bot
ext_lift:

|- If x. ext £(lift x) = f x

31

There is a tactic to reduce occurrences of ext that performs a fB-conversion after
using the last theorem:

ext_REDUCE_TAC: tactic
Park induction

Park_induct:
|- 1£. cont f(frel,frel) ==> (lx. frel(f x)x ==> frel(fix f)x)

Continuity of functionals for recursive definitions is saved by new_prec_definition
and loaded by the tactic:

PARK_INDUCT_TAC: tactic

Hence, this only produces one subgoal (corresponding to the second antecedent of
the previous theorem). The tactic expects a constant instead of a fixed point term.
It looks up the fixed point definition of the constant behind the scenes.

Fixed point induction

fp_induct:
|- IP f£.
cont f(frel,frel) ==
admiss P /\ P(\x. bot) /\ (1x. P x ==> P(f x)) ==>

P(fix f)
admiss:
|- 1P,
adniss P =

(!'X. chain frel X /\ (In. P(X n)) ==> P(lub frel X))

The fixed point induction tactic loads continuity like the Park induction tactic and
also expects a constant rather than a fixed point term:

FP_INDUCT_TAC: (string -> int list -> tactic)

The string argument is the name of the partial recursive function on which the
induction must be performed, and the integer list argument specifies on which oc-
currences of the constant the induction must be performed.

The tactic produces two or three subgoals dependent on whether or not the built-in
admissibility prover is able to prove the admiss condition automatically. Present-
ly, it implements the following syntactic notation, assuming we wish to prove the
statement "admiss(\x.P[x])":

P::=e==¢’ | lrelee’ | P1L/\P2]| ly. P

32

where e and e’ are continuous in x, i.e. the continuity prover must be able to
prove e.g. cont(\x.e) (frel,1lrel). The admissibility prover implements a stan-
dard backwards chaining on the theorems (this strategy was used often in [3], see
also the description of the continuity prover in Section 4):

|- le e’.
cont e(frel,lrel) /\ cont e’ (frel,lrel) ==
admiss(\x. e x = e’ x)
|- le e,
cont e(frel,lrel) /\ cont e’(frel,lrel) ==>
admiss(\x. lrel(e x) (e’ x))
|- 1P1 P2, admiss P1 /\ admiss P2 ==> admiss(\x. P1 x /\ P2 x)
[- 1P, (ly. admiss(P y)) ==> admiss(\x. !ly. P y x)

B Examples
B.1 A Well-founded Recursive Definition
File: mk_ex_ack.ml.
new_theory‘ex_ack’;;
let ACK =
"ACK(m,n) = (m = 0) => SUC n
| (m = 0) => ACK(PRE n, 1)
| ACK(PRE m,ACK(m,PRE n))";;
calc_prf_obl ACK;;
let wf_ack = MATCH_MP (MATCH_MP wf_lex wf_less) wf_less;;
let obl = get_prf_obl wf_ack ACK;;
let not_zero = prove(

"in. “(n=0) ==> 7k. n = SUC k",
INDUCT_TAC THEN RT[] THEN DISCH_TAC THEN EXISTS_TAC"n:num" THEN REFL_TAC);;

let obl_proof = \tm.
prove(tm,
RT[FST;SND;lex_def] THEN STRIP_TAC
THEN IMP_RES_THEN STRIP_SUBST1_TAC not_zero
THEN RT[PRE;LESS_SUC_REFL]);;
let obl_thl = map obl_proof obl;;

timer true;;

let ACK_DEF = new_wfrec_definition ‘ACK_DEF‘ wf_ack obl_thl ACK;;

33

timer false;;

B.2 Partial Recursive Functions and Domain Theoretic Reason-
ing

File: mk_ex_10_20.ml.

% This file gives a solution to exercise 10.20 [Winskel93, section 10.5]. ¥%
loadf‘extras‘;;
new_theory‘ex_10_20¢;;

ney_constant(‘r¢," :num#num->(num)list");;
new_constant(‘s‘," :numinum->num");;

timer true;;
% Would be one second faster without the use of let. ¥
let f_def = new_prec_definition ‘f_def®

"f(l,y)

(NULL 1 => y |
let x =HD 1 and 1’ = TL 1 in £(APPEND(x(x,y))1’,s(x,y)))";;

1]

let g_def = new_prec_definition ‘g_def®
"g(l,y)

(NULL 1 => y |
let x = HD 1 and 1’ = TL 1 in g(1’,g(x(x,y),s(x,y))))";;

timer false;;

L)

%
We wish to prove "f = g", a non-trivial statement! Since frel
is a cpo it is enough to prove "frel f g" and "frel g f",
by antisymmetry. We first prove these two statements and then
assemble them at the end.

h

% For convenience we derive recursion equations for functions. %

let f£_fun_EQS = prove_thm
(“f_fun_EQS‘,
"(!y h. £_fun h([],y) = 1ift y) /\
('x xs y h.

34

f_fun h(CONS x xs,y) = h{(APPEND(r(x,y))xs,s(x,y)))",
PORT [f_fun_def] THEN PBETA_TAC
THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV)
THEN RT[NULL;HD;TL]);;

let g_fun_EQS = prove_thm
(‘g_fun_EQS‘,
"(ty h. g_fun h([],y) = lift y) /\
(!x xs y h.
g-fun h(CONS x xs,y) = ext(\v. h(xs,v)) (h(r(x,y),s(x,y)))N)",

PORT[g_fun_def] THEN PBETA_TAC
THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV)
THEN RTINULL;HD;TL]);;

let £_EQS = prove_thm
(‘£f_EQS°®,
"“(ly. £C0,y) = 1ift y) /\
(!x xs y.
£(CONS x xs,y) = f(APPEND(xr(x,y))xs,s(x,y)))",
REPEAT STRIP_TAC
THEN CONV_TAC(RATOR_CONV(RAND_CONV(REWR_CONV f_def)))
THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV)
THEN RT[NULL;HD;TL]);;

let g EQS = prove_thm
(‘g_EQs‘,
"(ly. g(D,y) = 1ift y) /\
(Ix xs y.
g(CONS x xs,y) = ext(\v. g(xs,v)) (gx(x,y),sx,y)ON",
REPEAT STRIP_TAC
THEN CONV_TAC(RATOR..CONV(RAND_CONV(REWR_CONV g_def)))
THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV)
THEN RTINULL;HD;TL1);; -

% We prove the first hint in [Winskel93]: lemmal. 7%

let lemmal = prove_thm) Lemma for g_fixp. %
(‘lemmal‘,
"Ixs 1 y. g(APPEND 1 xs,y) = ext(\v. g(xs,v))(g(l,y",
GEN_TAC THEN LIST_INDUCT_TAC THEN PRT[APPEND;g_EQS]
THENL
[ext_REDUCE_TAC THEN GEN_TAC THEN REFL_TAC
;GEN_TAC THEN GEN_TAC THEN ext_CASES_TAC "g(r(h,y),s(h,y))"
THEN ART[11);;

h
Next the hint says that we must deduce |- frel f g. In order
to prove this we prove g is a fixed point of f_fun. Since £
is the least prefixed point (Park induction) the result follows.

h

35

let g_fixp = prove_thm
(‘g_fixp*,
"f fun g = gu, i
CONV_TAC(FUN_EQ_CONV THENC RAND_CONV (PALPHA_CONV" (1,y) : (num) list#num"))
THEN PGEN_TAC
THEN CASES_TAC(ISPEC"1: (aum)list"list_CASES)
THEN RT([g_EQS;lemmal;f_fun_EQS]
)is : ’

let frel_f_g = prove_thm
(‘frel_f g*,
“frel £ g",
PARK_INDUCT_TAC THEN RT[g_fixp;MATCH_MP cpo_refl cpo_frell);;

%
This completes the first part of the proof. Next we wish to prove
g is at least as defined as f. A hint says that we should
prove the following lemma2 first.

h

let lemma2 = prove_thm
(‘lemma2°,
"Ixs 1 y. lrel(ext(\u. f(xs,u))(£(1,y))) (£(APPEND 1 xs,y))",
FP_INDUCT_TAC ‘f£¢ [2]
THENL
[RT [ext_bot;lrel_bot]
;REPEAT GEN_TAC THEN CASES_TAC(ISPEC "l: (num)list" list_CASES)
THEN PRT[f_fun-EQS;APPEND;f_EQS]
THENL
(ext_REDUCE_TAC THEN RT[MATCH_MP cpo_refl cpo_lrel]
; PORT [APPEND_ASSOC] THEN FIRST_ASSUM MATCH_ACCEPT_TACI1);;

let frel_g_f = prove_thm
(‘frel_g_f°,
"frel g f",
PARK_INDUCT_TAC THEN PORT[frell
THEN CONV_TAC(RAND_CONV(PALPHA_CONV" (1,y): (num)list#num"))
THEN PGEN_TAC THEN CASES_TAC(ISPEC "1: (num)list" list_CASES)
THEN RT[f_EQS;g_fun_EQS;MATCH_MP cpo_refl cpo_lrell
THEN MATCH_ACCEPT_TAC lemma2);;

let ex_10_20 = prove_thm
(‘ex_10_20°,
Wf = g",
MATCH_MP_TAC(MATCH_MP cpo_antisym cpo_frel)
THEN CONJ_TAC THENL[ACCEPT_TAC frel f_g;ACCEPT_TAC frel_ g £1);;

36

