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A Comparison of HOL-ST and Isabelle/ZF

Sten Agerholm
University of Cambridge Computer Laboratory
New Museums Site, Cambridge CB2 3QG, UK

Abstract

The use of higher order logic (simple type theory) is often limited by its re-
strictive type system. Set theory allows many constructions on sets that are not
possible on types in higher order logic. This paper presents a comparison of two
theorem provers supporting set theory, namely HOL-ST and Isabelle/ZF, based on
a formalization of the inverse limit construction of domain theory; this construc-
tion cannot be formalized in higher order logic directly. We argue that whilst the
combination of higher order logic and set theory in HOL-ST has advantages over
the first order set theory in Isabelle/ZF, the proof infrastructure of Isabelle/ZF has
better support for set theory proofs than HOL-ST. Proofs in Isabelle/ZF are both
considerably shorter and easier to write.
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1 Introduction

Though higher order logic (simple type theory) is a useful framework for doing mathe-
matics, there are situations where it is too weak, due to its simple type system. One can
then use a stronger type theory, or observe that many constructions that are not possible
on types in higher order logic would be possible on sets in set theory (which is complete-
ly untyped). Set theory might therefore provide a simple alternative to the increasing
interest in applying stronger type theories in theorem proving.

Paulson has done a lot of pioneering work on mechanizing set theory. He has developed
a very large amount of set theory in his Isabelle/ZF system [7, 8], which is an extension
of a first order logic instantiation of the generic theorem prover Isabelle [9] with axioms of
Zermelo-Fraenkel (ZF) set theory. Gordon has also been experimenting with mechanizing
set theory in an attempt to combine the usefulness of higher order logic with the expressive
power of set theory in a single system [4]. A prototype system, called HOL-ST, has been
implemented by extending the existing HOL system [3] with axioms of ZF set theory (this
is not a conservative extension).

A larger case study on HOL-ST was presented in [1]. By formalizing the inverse limit
construction of domain theory, which would not be possible in HOL directly [2], the case
study demonstrated how one can make essential use of the additional expressive power
of set theory. The inverse limit construction is a method to give solutions to recursive
domain equations that may involve non-trivial constructions such as the (continuous)
function space. In [1], it was used to obtain a non-trivial model Dy of the untyped
M-calculus, i.e. Dy, was proved to be isomorphic to its own (continuous) function space:

Dy = [Do — D).

This paper presents a comparison of HOL-ST and Isabelle/ZF based on a formalization
of the inverse limit construction in both systems. We concentrate on their different support
for the formalization, i.e. for definitions, theorems and proofs, but do not give a detailed
presentation of the formalization (see [1]). The version of the inverse limit construction
employed here is based on categorical methods using embedding project pairs, see e.g.
[6, 11, 10].

Comparing systems is difficult. The lack of some feature supported by one system
does not mean that it could not be supported by another. In this paper, we have chosen
to freeze time in the sense that the systems are compared in their state when this project
started (Autumn 1994). The size and scope of the paper could easily grow out of hand if
we had to argue about the alternatives for implementing all differences (and better proof
support in general).

The rest of the paper is organized as follows. In Section 2, we introduce Isabelle
and its first order logic instantiation FOL briefly. Then the set theories of HOL-ST and
Isabelle/ZF are introduced in Section 3. The comparison starts in Section 4 where we
consider the definitions of the formalizations. It continues in Section 5 which discusses how
the systems support the proofs of theorems of the formalization. Section 6 summarizes
the conclusions and can be read immediately after this introduction.

NB! This paper is written for someone who is familiar with HOL and may know little or
nothing about Isabelle.



2 Isabelle

Isabelle [9] is a generic theorem prover. It provides support for mechanizing logics, called
object logics, in its own logic, called the meta logic. Isabelle comes with various object
logics, including Zermelo-Fraenkel (ZF) set theory. Isabelle/ZF [7, 8] was developed as
an extension of another object logic, namely a many-sorted first order logic, called FOL.
Below we first very briefly introduce the Isabelle meta logic and proof infrastructure,
along with a few comments on the object logic FOL. The set theories of Isabelle/ZF and
HOL-ST are presented in Section 3. A gentle introduction to Isabelle is provided in [5]
and for a full introduction (and manual) see [9], which also contains references to a good
number of papers about Isabelle.

2.1 Meta Logic

The Isabelle meta logic is a polymorphic (intuitionistic) higher order logic (simply typed
A-calculus) with type classes to control polymorphism. It is not meant for theorem proving
in itself, but for providing a logical framework in which to state other logics, the so-called
object logics. As usual, a term can be a constant, a variable, an abstraction, or an
application. A term must be well-typed in the sense that we know from HOL. We shall
often use the function type, which is written as "a => §". All functions must be curried
and function application is written f(¢), not f ¢t as in HOL; curried application is written
f(t1,...,t,). The notation " [a;, 02, ... ,a,] => §"is a short-hand for the function type
"oy => (g =>...=> (ay => B)...0".
The meta logic only provides the following three connectives:

e Implication: "a ==> b".
e Universal quantification: "!!x. P(x)".
¢ Equality: "a == b".

Implication is useful to represent object logic inference rules like the conjunction intro-
duction rule, which is often written using the following graphical (natural deduction style)
notation:

P Q

PAQ -
This rule is represented as "P ==> (Q ==> P & Q)", usually written using the short-hand
"[] P; Q |1 ==> P & Q". Note that & is object logic conjunction (the meta logic does

not have one). The universal quantifier is useful for expressing generality in rules and
axiom schemes. For instance, the forall introduction rule of first order logic

_P
Vz. P’

which has the side condition that z is not free in the assumptions, can be formalized by
“(11x. P(x)) ==> (ALL x. P(x))". Note that there are two different universal quan-
tifiers here, the meta level !! and an object level ALL. Finally, equality is useful for ex-
pressing definitional axioms, usually just called definitions; at present, there is no freeness
check as in HOL to ensure that definitions are sound.

4



2.2 Object Logic (Isabelle/FOL)

Logical connectives of object logics are introduced as new constants of the meta logic.
For instance, the FOL connectives for implication, universal quantification and equality
are —-> of type "[0,0] => o", ALL of type "(’a => o) => o" and = of type "[’a, ’a)
=> o", where ’a is a type variable of the meta logic and o is the meta logic type of FOL
formulas. FOL also provides conjunction (&), disjunction (1), bi-implication (<->) and
existential quantification (EX). It is important that one does not confuse the connectives
of the meta logic with those of the object logics. In HOL, we do not have a similar
distinction between meta and object logic.

Object logic extensions of the meta logic are organized hierarchically in theories, which
consist of a signature and a list of axioms. The signature contains various type and
parsing/pretty-printing information; in particular, it specifies constants and their type,
types, and type classes (which are not considered in this paper).

2.3 Theorem Proving

The theorem proving infrastructure of Isabelle is mainly provided by the principle of
resolution, which is based on (higher-order) unification. This elegantly supports a very
small number of tools for forward and backward proof. By forward resolution, a theorem
can be used like a HOL inference rule, whilst backward resolution turns the theorem into
a tactic. Roughly speaking, forward proof by resolution is unifying the conclusion of
one theorem with some assumption of another; the assumption is then replaced with the
assumptions of the first theorem. Backward proof by resolution is unifying the conclusion
of a theorem with the conclusion of a goal; the assumptions of the theorem become new
subgoals. The subgoal module supports interactive tactic-based proofs.

In addition, Isabelle provides a simplification package, which implements tactics for
contextual conditional rewriting, and the classical reasoning package, which implements
tactics based on some simple proof procedures (see [9] for more information). These
packages were only used a little in this work.

Finally, Isabelle implements a notion of schematic variables, or unknown variables as
they are also called, which are written with a question mark in front, e.g. 7P. Free variables
of axioms, definitions, and theorems are translated automatically to schematic variables.
Existentially quantified variables of object logics are also represented by unknowns via
axioms. The purpose of schematic variables is to support and ease quantifier reasoning.
Schematic variables can be instantiated, possibly in stages, by employing resolution in
proofs. Hence, it is only rarely necessary to provide witnesses for existentials explicitly
as in HOL; these are constructed behind the scenes. Similarly, explicit instantiations of
universally quantified variables are rarely necessary.

3 Set Theory

HOL-ST and Isabelle/ZF provide two slightly different ZF-like set theories. Isabelle/ZF
is an axiomatic extension of the object logic FOL, which, as mentioned above, provides
a first order logic. HOL-ST is an axiomatic extension of HOL’s higher order logic. This
means that HOL’s set theory is slightly more powerful than Isabelle’s (see [4]), though
we shall not exploit this in an essential way in this paper. Apart from this difference in
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logic, the two axiomatizations of set theory are essentially the same. We will not consider
the axioms of the set theories in this paper since they are not important; they are easy to
look up in [4] and [9]. Instead we will focus on syntactic issues, to introduce set theory
syntax used later.

3.1 Representation and Notation

HOL is extended with set theory by declaring a new type V and a new constant ‘::’ (set
membership) of type " : V#V->bool",! and then postulating eight new axioms about V and
“::’. Similarly, Isabelle/FOL is extended by declaring a new type i and a new constant
“:' (set membership) of type "[i,i] => o", and then postulating the eight axioms of
set theory. In Isabelle/ZF, the type i (for individuals) instantiates the many-sorted first
order logic. Hence, we can quantify over sets as in ALL x. x:X --> f(x):Y (elements of
sets are themselves sets), which could equivalently be written as ALL x:X. £(x):Y, and
compare sets by the equality =. The subset relation C is written Subset in HOL-ST and
<= in Isabelle/ZF.

Both systems provide a notation for set abstraction {z € X | P[z]}. In Isabelle/ZF
this is written as {x:X . P(x)} and in HOL-ST as {x::X | P x}.

3.2 Pairs and Numbers

Isabelle/FOL does not provide pairs or natural numbers but these are provided in set
theory. Pairs are written <x,y>, which is a set and therefore has type i, and the usual
destructors fst and snd are provided (both have the type "i => i"). The binary product
X * Y consists of all pairs whose first component is in X and whose second component is
in Y. In HOL-ST, we use pairs of higher order logic, but pairs are also available in set
theory.

In Isabelle/ZF, the set nat provides natural numbers, so 0:nat and succ(n) :nat, for
any n:nat. In HOL-ST, natural numbers are available as both the type ":num" and the
set Num. The type and the set are isomorphic with translation functions called num2Num
and Num2num. The HOL constants 0 and SUC are used with the translation functions to
build members of Num.

3.3 Functions and Dependent Products

We distinguish between set and logical functions. Set functions are elements of the func-
tion set, written X->Y in both systems. A set function is represented by a set of pairs,
which must satisfy the obvious conditions to specify a function (definedness and unique-
ness). In HOL-ST, logical functions are functions of higher order logic. In Isabelle/ZF,
logical functions are functions of the meta logic (the object logic FOL does not pro-
vide functions). Set function application is written £ ~~ x in HOL-ST and £ ‘ x in

Isabelle/ZF. If £ is in X->Y and x in X then we can conclude that £ applied to x is in Y,
otherwise not.

Tn the type of the set membership operator, note that elements of sets are themselves sets. Generally
speaking, new sets must be constructed from existing sets some way, in principle starting from the empty
set and then using axioms.



Set functions may be written using a (dependent) lambda abstraction. The syntax is
Fn x::X. b[x] in HOL-ST and lam x:X. b[x] in Isabelle/ZF. The lambda abstraction
consists of all set theory pairs of the form <x,b[x]>, where x is in X. Set function identity
is written as id in Isabelle/ZF and as Id in HOL-ST. Set function composition is written
as 0 in both systems.

Finally, both systems also provide a dependent product construction. The syntax is
PI x::X. Y[x] in HOL-ST (see [1]) and PROD x:X. Y[x] in Isabelle/ZF. The elements
of a dependent product are sets of pairs, corresponding to set functions that map elements
x of the first set X to elements of the second (dependent) set Y[x].

4 Definitions

In this section, we study the definitions of two formalizations of the inverse limit con-
struction in HOL-ST and Isabelle/ZF. We try to compare the definitions and discuss the
issue of which notions to represent in the meta logic of Isabelle/ZF and which to represent
in first order logic and set theory. This is related to the question of whether to work in
higher order logic or set theory in HOL-ST (discussed in [1]).

4.1 Basic Concepts

The differences between HOL-ST and Isabelle/ZF appear already in the first definitions
of basic concepts of domain theory. Recall that domain theory is the study of complete
partial orders (cpos) and continuous functions. A partial order is usually thought of as a
set with an associated ordering relation which is reflexive, transitive and antisymmetric
on all elements of the set. A complete partial order is a partial order in which all non-
decreasing chains (sequences) of elements of the partial order have a least upper bound.
Continuous functions are monotonic functions that preserve such least upper bounds.

In HOL-ST, we can represent the notion of partial order as a pair consisting of a set
and a relation. The predicate po for partial orders can then be defined by

|- !D.
po D =
('x :: set D. rel D x x) /\
('xyz::setD. relDxy /\NrelDyz==>relDxz) /\
(!xy ::setD. relDxy /\NrelDyx==>(x=y))),

where the type of po is ": V#(V->V->bool)", and for convenience

|- ID. set D
|- ID. rel D

FST D
SND D.

Hence, we have used the type constructor ‘#’ for pairs of higher order logic in the repre-
senting type.

Neither Isabelle’s meta logic nor Isabelle/FOL support pairs. So, our only choice is
to represent the set and relation as a pair in set theory. Alternatively, we could represent
a partial order as a relation, defining the set as the reflexive elements. We chose the
pair approach because it is closer to the HOL-ST formalization, which was done first,
and because we then avoid proofs about what the elements of the set component of cpo
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constructions are. Hence, the type of the constant po is "i=>i" in Isabelle. Its definition
is the same as the one above, though the right-hand side uses symbols of first order logic
instead of higher order logic. The set and rel constants are defined by

"set(D) == fst(D)"
"rel(D, x, y) == <x, y> : snd(D)".

This makes rel a meta logic function of type "[i,1,i] => o"; set has type "i => i".
It later turns out (when we consider subcpos) that it would have been more appropriate
to define rel slightly differently as a meta logic function of just one argument (D) that
returns a set function (or relation) of two arguments (x and y). In terms, we would then
write the less convenient rel(D) ‘ x ° y (or <x, y> : rel(D)) instead of the present
rel(D, x, y).

Next, we introduce the notion of a chain, which is a sequence of values in non-
decreasing order:

|- 1D X.
chain D X = (In. (X n) :: (set D)) /\ (!n. rel DX n)(X(n + 1))).

Hence, in HOL-ST a chain is represented as a function of type ":num->V". Complete
partial orders are then defined as follows

|- 'D. cpo D = po D /\ (!X. chain D X ==> (?x. islub D X x))
where the notion of least upper bound (lub) is defined by

|- 1D X x. isubD X x =x :: (set D) /\ (!n. rel D(X n)x)
|- ID X x.
islub D X x = isub D X x /\ (!y. isub D X y ==> rel D x y).

Using Hilbert’s choice operator we can give an expression for the least upper bound (if it
exists):

|- 'D X. lub D X = (@x. islub D X x).

In Isabelle/ZF, neither the meta logic nor first order logic support natural numbers so
we must turn to the set of natural numbers, called nat, to represent infinite sequences.
One could represent chains as a meta logic function of type "i=>i", where the first i
would correspond to the set of natural numbers and the second would correspond to the
underlying set of a cpo. However, this representation is problematic. In the definition of
cpo we must quantify over chains but in first order logic this is impossible since we can
only quantify over individuals, not meta logic functions like such chains of type "i=>i".
Hence, in Isabelle chains must be represented as functions in set theory; thus chains have
type i. The Isabelle definition of chain looks as follows:

"chain(D,X) == X:nat->set(D) & (ALL n:nat. rel(D,X‘n,X‘(succ(n))))".
The first-order definition of cpo is

"cpo(D) == po(D) & (ALL X. chain(D,X) --> (EX x. islub(D,X,x)))",



where islub is defined as in HOL-ST. As above, we define a constant for the least upper
bound but we use the definite description operator instead of Hilbert’s choice operator
(which is not available, though it probably could be axiomatized):

"lub(D, X) == THE x. islub(D, X, x)".

The term "THE x. P(x)" is read ‘the z such that P(z)’ and requires both existence and
uniqueness. In contrast, the HOL logic provides the choice operator, which just requires
existence, and this is inherited by set theory, which thus automatically satisfies the axiom
of choice. The use of the definite description operator made a few proofs slightly more
complicated in Isabelle/ZF than in HOL-ST, due to the additional obligation of proving
uniqueness.

A consequence of representing chains as functions in set theory is that the type check-
ing, which ensures arguments of chains are numbers, must be done manually. Simi-
larly, proving that chains are functions, and not just relations, and proving that they
are functions on the right domains must be done manually as well (though usually the
A-abstraction is used and then it is only necessary to check the body of this due to a pre-

proved theorem). Thus, proving that terms are chains is more complicated in Isabelle/ZF
than in HOL-ST.

4.2 Continuous Functions

Monotonic and continuous functions have essentially the same definitions in the two sys-
tems. We only list the HOL-ST definitions:

|- I'D E.
mono(D,E) =
{f :: (set D) -> (set E) |
(1xy :: set D. rel Dxy ==>rel E(f "~ x)(f "~ y)}
|- D E.
cont(D,E) =
{f :: mono(D,E) |
(1X. chain D X ==> (f ~~ (Qub D X) = lub E(\n. £ ~~ (X m))))}.

Functions are represented in set theory because we wish continuous functions to constitute
a cpo, called the continuous function space, and the underlying set of a cpo must be a
set. The continuous function space construction is defined as follows in HOL-ST:

|- D E.
cf(D,E) = cont(D,E),(\f g. !x :: set D. rel E(f " x)(g °~ x)).

However, the construction is defined slightly differently in Isabelle/ZF, due to the fact
that the cpo pair, and more importantly the underlying relation, must be defined in set
theory entirely:

"cf(D,E) ==
<cont(D,E),
{y : cont(D,E) * cont(D,E).
ALL x:set(D). rel(E, (fst(y)) ‘x,(snd(y)) ‘x)}>".



In Isabelle/ZF, the relation must be constructed from existing sets, i.e. it must be con-
structed from the domains D and E in the function space. In contrast, the HOL-ST relation
is just a higher order logic function. The Isabelle relation not only looks more compli-
cated: due to additional type checking, it is also more complicated to use. Each time
we define a construction on cpos, which we do twice below, we will experience a similar
complication due to the set relation.

4.3 The Inverse Limit Construction

Next, we consider the definitions of some concepts associated with the inverse limit con-
struction. Inverse limits may be viewed as “least upper bounds” of “chains” of cpos, not
just of chains of elements of cpos as above. The ordering on elements of cpos is generalized
to the notion of embedding morphisms between cpos. A certain constant Dinf, parame-
terized by a chain of cpos, can be proven once and for all to yield the inverse limit of the
chain. This cannot be defined in higher order logic directly (assuming that the underlying
set of a cpo is represented as a subset of a HOL type, as in [2]), since it yields a cpo of
infinite tuples whose components may be in different cpos (subsets of types). Defining the
construction in higher order logic would require a (probably difficult) conservative deriva-
tion of a universal type with dependent products. However, formalizing the construction
is straightforward in set theory, exploiting the dependent product construction on sets.

Embedding morphisms come in pairs with projections, forming the so-called embed-
ding projection pairs. The HOL-ST definition of (embedding) projection pairs is stated
as follows:

|- 'DE e p.
projpair(D,E)(e,p) =
e :: (cont(D,E)) /\
p :: (cont(E,D)) /\
(p 0 e = Id(set D)) /\
rel(cf(E,E)) (e 0 p)(Id(set E)).

The Isabelle/ZF definition is similar. The conditions make sure that the structure of E is
richer than that of D (and can contain it). D is embedded into E by e (one-one) which in
turn is projected onto D by p.

Embeddings uniquely determine projections (and vice versa). Hence, it is enough to
consider embeddings

|- ID E e. emb(D,E)de = (7p. projpair(D,E)(e,p))

and define the associated projections, or retracts as they are often called, using the choice
operator:

|- 'DE e. Rp(D,E)e = (@p. projpair(D,E)(e,p)).

Again, these are the HOL-ST definitions; the Isabelle/ZF definitions are similar (though
the definite description operator is used instead of the choice operator).

Embeddings are used to form chains of cpos in a similar way to the formation of chains
from elements of cpos. Recall that standard chains are represented as logical functions of
type " :num->V" in HOL-ST and as set functions of type i in Isabelle/ZF. We choose to
stick to this difference when representing embedding chains of cpos. Hence, the HOL-ST
definition is stated like this:
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|- 1DD ee.
emb_chain DD ee =
(In. cpo(DD n)) /\ (!n. emb(DD n,DD(SUC n))(ee n)).

And the Isabelle/ZF definition is:

"emb_chain(DD, ee) ==
(ALL n:nat. cpo(DD ‘ n)) &
(ALL n:nat. emb(DD ‘ n, DD ¢ succ(n), ee ¢ n))".

We do not quantify over embedding chains in any definitions immediately and therefore
we could perhaps represent such chains as meta logic functions of type "i=>i" in Isabelle.
However, the above choice is safer, in case it turns out that we later wish to quantify over
chains.

One is often in a situation where a function can be represented in the meta logic or
in the object logic (set theory). In general, one should only choose the first alternative
if the function is not really part of a formalization and thus never would appear in the
right-hand side of definitions (without its arguments). Hence, it is fine to use meta logic
functions for constants in definitions (but one must be careful which I was not when I
defined rel and rho_emb, see below). However, a choice must be made when functions
are arguments of constants. For instance, due to the above criteria, we would use a meta
logic function for the predicate of the following construction

"mkcpo(D, P) ==
<{x: set(D) . P(x)},
{x: set(D) * set(D) . rel(D, fst(x), snd(x))}>",

which is useful for constructing a subcpo of a cpo by restricting the set component accord-
ing to the predicate. Thus, the type of mkcpois "[i,i=>0]=>i". But most constants with
function arguments would have a type of the form "[i,i]=>0", e.g. emb_chain above,
where functions are set functions.

The notion of subcpo is defined as follows in Isabelle/ZF:

"subcpo(D, E) ==
set(D) <= set(E) &
(ALL x:set(D). ALL y:set(D). rel(D, x, y) <-> rel(E, x, y)) &
(ALL X. chain(D, X) --> lub(E, X) : set(D))".

Both this and the previous definition of a subcpo constructor have simpler formulations
in HOL-ST:

|- 'D P. mkcpo D P = {x :: set D | P x},rel D
|- 'D E.

subcpo D E =

(set D) Subset (set E) /\

(rel D = rel E) /\

(1X. chain D X ==> (lub E X) :: (set D)).

In both Isabelle/ZF definitions, the complications are due to a mismatch between the
type of "rel(D)", namely "[i,i]=>0", and the type of the relation component of cpos,
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namely i. Probably, we made a bad choice in not representing "rel(D)" as a set function
(or a set relation) instead of a logical function. The problem in the mkcpo definition is
due to the fact that each component of a pair must be a set. The problem in the subcpo
definition is that meta logic functions cannot be compared using FOL equality =.

The constant mkcpo is used to define the inverse limit construction on cpos as a subcpo
of the infinite Cartesian product cpo. Let us first consider the HOL-ST definition of the
infinite product:

|- 1DD.
iprod DD =
(PI n :: Num. set(DD(Num2num n))),
(\x y. !'n. rel(DD n)(x ~~ (num2Num n))(y =~ (num2Num n))).

The relation is defined componentwise and the set is the infinite tuples whose i’th com-
ponent is in "DD i"; in general, the dependent product "PI x :: X. Y[x]" consists of
the functions that map an element x of X to an element of Y [x]. This construction cannot
be defined on HOL types (though it might be possible to derive a universal type with this
construction). The annoying num2Num and Num2num conversions could be avoided by using
the set of numbers Num instead of the type of numbers " :num" to represent chains of cpos.
However, the present choice makes proofs simpler in the long run (see [1]). The reason
for this is associated with the choice of using the type of numbers in the representation
of ordinary chains. To avoid the translation functions, we would have to stay within set
theory all the time, since the dependent product construction is only available there.
The Isabelle/ZF definition of the infinite product construction on cpos is:

"iprod(DD) ==
<PROD n:nat. set(DD ‘ n),
{x: (PROD n:nat. set(DD ‘ n)) * (PROD n:nat. set(DD ‘ n)) .
ALL n:nat. rel(DD ¢ n, fst(x) ¢ n, snd(x) ¢ n)}>".

Here, the translation functions are avoided since we do not have the choice of leaving
set theory. However, for the same reason, the definition and use of the componentwise
relation is much more complicated, since the relation must be a set constructed from
existing sets.

The definitions of the inverse limit construction are essentially the same in the two
system, both use the mkcpo constant. The HOL-ST definition is stated as follows:

|- 'DD ee.

Dinf DD ee =

mkcpo

(iprod DD)

(\x.
In.
(Rp(DD n,DD(SUC n)) (ee n)) ~° (x °~ (num2Num(SUC n))) =
x =~ (num2Num n)).

The only difference is that the Isabelle/ZF definition quantifies over elements of the set
of natural numbers (instead of over elements of the type as above) and it does not use
translation functions. Informally, the underlying set of Dinf is defined as the subset of
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all infinite tuples z on which the n-th projection (retract) e? maps the (n + 1)-st index
to the n-th index for all n: e2(x,.1) = z,. The underlying relation is inherited from the
infinite product construction.

It takes a fairly large development to prove that Dinf yields an inverse limit of any
chain of cpos. For the proof, we need an embedding of any element "DD n" of the chain
"(DD,ee)" into the inverse limit "Dinf DD ee". This embedding is defined as follows in
HOL-ST

|- 'DD ee n.
rho_emb DD ee n =
(Fn x :: set(DD n). Fom :: Num. (eps DD ee n(Num2num m)) ~~ x),

which was copied almost directly to Isabelle/ZF (removing the translation function):

"rho_emb(DD, ee, n) ==
lam x:set(DD ¢ n). lam m:nat. eps(DD, ee, n, m) ‘ x".

The definitions of the constant called eps in both systems are not important here?. While
the definition of rho_emb worked fine in HOL-ST we realized at a later stage that the
Isabelle/ZF definition should have been

"rho_emb(DD, ee) ==

lam n:nat. lam x:set(DD ¢ n). lam m:nat. eps(DD, ee, n, m) °

xll ,
where rho_emb is a logical function of just two arguments instead of three; thus, while
"rho_emb (DD, ee) " before was a logical function of type "i => i", it is now a set function.
The present representation would be unfortunate if we wanted to define a constant for
the property that Dinf always yields the inverse limit of a cpo. This is not possible using
a meta logic function for "rho_emb(DD,ee)", since the definition would need to quantify
over such sequences of embeddings. Furthermore, similar sequences like the sequences
of cpos DD and embeddings ee are represented as object logic functions. So, a constant
may be a meta logic function of some arguments and an object logic function of other
arguments. If one is not careful the wrong choices are made.

5 Proofs

In the previous section, we concentrated on the differences between using HOL-ST and
Isabelle/ZF to formalize the definitions of some basic concepts and the inverse limit con-
struction of domain theory. In this section, we dive into a discussion of how the two
systems support the proofs of related theorems.

Due to limitations of Isabelle’s first-order set theory, we were forced to work in set
theory in situations where we could stay in higher order logic in HOL-ST. As mentioned
above, this obviously yields more complicated proofs in Isabelle, in the sense of more
typing conditions to prove. For instance, in a backward proof of a statement saying that
two functions are related by the continuous function space relation, we would first rewrite
with the HOL-ST theorem

2By composing embeddings (and projections) eps generalizes the embeddings "ee n" between con-
secutive cpos of a chain to convert between any two cpos.
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|- IDE £ g.
rel(cf(D,E))f g = (!x. x :: (set D) ==> rel E(f "~ x)(g ~~ %)),

but in the Isabelle/ZF the first step would be to resolve with the theorem

"[] '1x. x : set(D) ==> rel(E, f ‘ x, g * x); £ : cont(D, E);
g : cont(D, E) |] ==> rel(cf(D, E), £, g)",

which, in contrast to the HOL-ST theorem, contains typing assumptions. The same thing
is true of the other constructions on cpos, like the infinite Cartesian product and the
inverse limit constructions. Similarly, the necessity of representing chains as set functions
yields a number of additional proof obligations in the Isabelle/ZF proofs.

Despite these additional proof obligations, Isabelle proofs are usually shorter in terms
of number of lines, and easier to write. Usually, backward proofs are reduced in size
(number of lines) by more than 50% and in some cases by 75%. The main reasons for
this are Isabelle’s support for unknown variables for quantifier reasoning and the design
of its proof infrastructure.

The main method of proof in Isabelle is based on resolution using higher order unifica-
tion, which supports both the forward and the backward style of proof. In fact, the same
theorem can be used as an inference rule by forward resolution and as a tactic by back-
ward resolution. In this way, Isabelle elegantly avoids the need for a large collection of
ML functions implementing derived inference rules and tactics. Furthermore, it supports
a compact notation for proofs since the main resolution tactic can be employed with a
theorem list argument, and repeated.

Further, the notion of resolution in Isabelle supports ‘real’ backward proof better than
in HOL. One almost always works from the conclusion of a goal backward towards the
assumptions, which is supported by Isabelle resolution tactics. In HOL, one often ends up
doing a lot of sometimes ugly assumption hacking working forward using HOL resolution
from the assumptions towards the conclusion. More natural backward strategies like
conditional rewriting and a matching modus ponens style strategy like MATCH_MP_TAC
(which may be viewed as a simplified version of Isabelle resolution) are not supported
well in HOL.

Real backward strategies are useful due the fact that many theorems have assumptions.
It is irritating to have to first derive the antecedents of theorems for HOL resolution. On
the other hand, a negative consequence of using theorems in a real backward fashion
is that existential quantifiers are often introduced. For instance, this happens when we
employ the transitivity of a cpo relation or the fact that function composition preserves
the function set (or continuity or embeddings):

"[l g : A->B; f:B->C|]==>f0g:4A->C".

In HOL, we must provide witnesses for existentials on the spot and manually. But in
Isabelle, both universally and existentially quantified variables are represented as unknown
variables that are usually instantiated behind the scenes in proofs, possibly in stages.

Finally, the subgoal module provides a kind of flat structure on proof states which
makes it possible to access all goals at any time and to prove many (or all) subgoals by
just repeating a tactic—no matter where the subgoals would appear in a HOL proof tree.

In the rest of this section, we illustrate some of the points made above by looking at
a couple of examples of proof in Isabelle/ZF.
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5.1 Backward Proof

The purpose of the first example is to illustrate the benefits of the subgoal module. We
prove the following theorem about relating elements of chains:

“[] chain(D, X); cpo(D); n : nat; m : nat |] ==>
rel(D, X *n, X ¢ (m #+ n))".

The theorem states that an element of a chain is related to (itself or) any element which
appears later in the chain. Thus, it generalizes the definition of chains, which just says
that an element is related to its successor. The theorem clearly holds due to the (reflexivity
and) transitivity of cpos.

The goal is set up as follows:

> val prems = goal basic.thy
# "[lchain(D,X);cpo(D);n:nat;m:nat|] ==> rel(D,X‘n,(X‘(m #+ n)))";
Level O
rel(D, X ‘n, X ¢ (m #+ n))
1. rel(D, X ‘“n, X * (m #+ n))
val prems = ["chain(D, X) [chain(D, X)]", "cpo(D) [cpo(D)]",
"n : nat [n : natl]", "m : nat [m : nat]"] : thm list

The goal command returns the assumed premises of the statement, which are not part of
the proof state of the subgoal module. These are bound to the theorem list called prems.
The output from the subgoal module is the three lines starting with ‘Level 0’. The level
of a proof is increased every time we apply a tactic. The second line is really redundant
since it remains the same throughout the goal; it just reminds us of what the original goal
of the proof was. Finally, the third line, labelled ‘1’, shows subgoal one. Since there are
no more labelled lines, this is the only subgoal at this level.

The proof is conducted by an induction on the natural number m. Induction is provided
by the theorem

nat_induct:
"[| ?n : nat; 7P(0);
tix. [I x : nat; ?P(x) |] ==> ?P(succ(x)) |] ==> 7P(7n)",

which supports the proof of any property P by induction on a variable n. Free vari-
ables of theorems are represented by unknowns, which may be interpreted as if they are
implicitly universally quantified (above we removed question marks for readability). In
order to apply the theorem, it is necessary to instantiate the variable n to m manually,
then the proper instantiation of P, which is a certain meta level function, is constructed
automatically, and meta level 3-conversion is performed behind the scenes:
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> by(res_inst_tac [("n","m")] nat_induct 1);
Level 1
rel(D, X ‘“n, X ¢ (m #+ n))

1. m : nat

2. rel(D, X “n, X ¢ (0 #+ n))

3. t1x. [| x: nat; rel(D, X ‘' n, X ¢ (x #+ n)) |[] ==

rel(D, X “n, X ¢ (succ(x) #+ n))

val it = () : unit

The by command applies a tactic to the proof state. The res_inst_tac tactic first
instantiates the theorem argument according to the list argument, and then resolves
the specified subgoal (here no. 1) with the resulting theorem. Above the result is three
subgoals, corresponding to the three assumptions of induction. The subgoal module allows
us to access any one of them, or all of them at the same time, in the following steps.

Our next step is to simplify all subgoals using theorems about addition. Therefore we
apply the simplifier tactic® with the built-in simplification set about arithmetic (which is
not very powerful):

> by (ALLGOALS (simp_tac arith_ss));

Level 2
rel(D, X ‘n, X ¢ (m #+ n))

1. m : nat

2. rel(D, X “n, X “ n)

3. "lx. [| x: nat; rel(D, X “n, X * (x #+ n)) |] ==>

rel(D, X “ n, X ¢ succ(x #+ n))

val it = () : unit

Subgoal 1 is proved below by a premise; it is left unchanged by simplification since the
simplifier does not have acces to the premise (unless we provide it manually). Subgoal 2
follows from the reflexivity property of cpos (see below) and subgoal 3 from the transitivity
property and the induction hypothesis. Transitivity is stated by

cpo_trans:
"[l cpo(?D); rel(?D, 7x, 7y); rel(?D, 7y, 72); ?x : set(?D);
?7y : set(?D); ?z : set(?D) |] ==> rel(?D, 7x, 72)".

We first resolve with transitivity on subgoal 3:

3Simplification supports contextual conditional rewriting. It only uses a conditional rewrite theorem
if it can prove its assumptions. Some of my proofs could have been easier if there was a contextual
conditional rewriter which created a subgoal for the assumptions that it could not prove.
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> br cpo_trans 3;
Level 3
rel(D, X “n, X * (m #+ n))
1. m : nat
2. rel(D, X “n, X ¢ n)
3. Mx. [l x: nat; rel(D, X “ n, X ° (x #+ n)) |] ==> cpo(D)
4, x. [| x : nat; rel(D, X ‘' n, X ¢ (x #+ n)) [] ==>
rel(D, X ¢ n, ?7y1(x))
5. x. [| x : nat; rel(D, X ‘n, X * (x #+ n)) |] ==>
rel(D, ?y1(x), X ¢ succ(x #+ n))
6. !'x. [| x : nat; rel(D, X ‘n, X * (x#+ n)) |] ==> X “ n : set(D)
7. 'x. [l x : nat; rel(D, X “n, X ° (x #+ n)) |] ==> ?y1(x): set(D)
8. !lx. [| x: nat; rel(D, X “n, X ¢ (x #+ n)) |] ==>
X ¢ succ(x #+ n) : set(D)
val it = () : unit

This yields six new subgoals, labelled 3 to 8. Now, the remaining eight subgoals are all
proved in a single stroke:

> brr(cpo_refl::chain_in::chain_rel::nat_succl::add_type: :prems)1;
Level 4

rel(D, X “n, X * (m #+ n))

No subgoals!

val it = () : unit

where the following theorems are used

cpo_refl:

"[l cpo(?D); ?x : set(?D) |] ==> rel(?D, 7x, 7x)"
chain_in:

"[| chain(?D, ?X); ?n : nat |] ==> 7X ¢ ?n : set(7D)"
chain_rel:

"[| chain(?D, ?X); ?n : nat |] ==> rel(?D, ?X ¢ 7n, ?X ¢ succ(7n))"
nat_succl:

"?n : nat ==> succ(?n) : nat"
add_type:

“[] ?m : nat; ?n : nat |] ==> 7?m #+ ?n : nat",

and brr is a short-hand defined by
fun brr thl n = by(REPEAT(ares_tac thl n));

which repeatedly applies a tactic to a subgoal. The brr command can solve many con-
secutive subgoals since when a subgoal, n say, has been proved it is removed from the
goal stack, and subgoal n+1 becomes the new subgoal n; all subgoals below subgoal n are
shifted. The tactic ares_tac tries to solve a goal by assumption and, if this fails, it tries
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to resolve with one of the theorems in the theorem list argument (if this is impossible it
fails). A subgoal is solved, or proved, by assumption if its conclusion can be unified with
one of the assumptions. In the proof, we did not apply transitivity repeatedly since this
would loop. Note that applying transitivity (early) introduces an unknown, called ?7y1(x)
above, representing an existential quantified variable for which a witness is constructed
automatically in the proof. Also note that we applied transitivity early. In a HOL proof,
we would apply transitivity late using IMP_RES_TAC (see below), having first derived the
antecedents of the theorem by forward proof. Real backwards proofs are more direct and
natural than the semi-backwards proof one gets from using HOL resolution too much.
This was a four lines long proof:

val prems = goal basic.thy

"[|chain(D,X);cpo(D);n:nat;m:nat|] ==> rel(D,X‘n,(X‘(m #+ n)))";
by(res_inst_tac [("n","m")] nat_induct 1);
by (ALLGOALS (simp_tac arith_ss));
br cpo_trans 3;
brr(cpo_refl::chain_in::chain_rel::nat_succl::add_type::prems)1;
val chain_rel_gen_add = result();

A typical HOL proof could be this eleven lines long proof:

let chain_rel_gen_add = prove_thm(‘chain_rel_gen_add®,
"ID X. chain D X ==> cpo D ==> (!n m. rel D(X n) (X(m+n)))",
GEN_TAC THEN GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN GEN_TAC
THEN INDUCT_TAC THEN PORT [ADD_CLAUSES]
THENL
[IMP_RES_THEN (ASSUME_TAC o SPEC "n:num") chain_in
THEN IMP_RES_TAC cpo_refl
; IMP_RES_THEN (ASSUME_TAC o SPEC "m+n") chain_rel
THEN IMP_RES_THEN (\th.
ASSUME_TAC(SPEC"n:num"th)
THEN ASSUME_TAC(SPEC"m+n"th)
THEN ASSUME_TAC(SPEC"SUC(m+n)"th)) chain_in
THEN IMP_RES_TAC cpo_trans]);;

which exploits the HOL theorems
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chain_in:
|- ID X. chain D X ==> (!n. (X n) :: (set D))
chain_rel:
|- D X. chain D X ==> (!n. rel D{(X n)(X(n + 1)))
cpo_refl:
|- ID. cpo D ==> (!x. x :: (set D) ==>rel D x x)
cpo_trans:
|- ID.
cpo D ==
(Ixy z.
relDxy==>rel Dy z ==>x :: (set D) ==
y :: (set D) ==>2z :: (set D) ==>rel D x z)

Thus, the HOL proof is essentially the same as the Isabelle proof above, but it is a strange
mixture of forward and backward proof and requires a larger effort to do; for instance,
variables are often instantiated manually. Using transitivity early as in the Isabelle proof,
employing a variant of MATCH_MP_TAC, would introduce an existential, which we would
have to provide a witness for on the spot.

In one sense, the HOL proof is simpler than the Isabelle proof: it applies fewer the-
orems. The Isabelle proof must prove the additional type assumptions on the chain
theorems but this is straightforward in this example. However, the additional theorems
are a product of the representation in set theory, not of the proof system (see Section 4).

The above observations also hold in general for the more difficult proofs: proofs are
usually shorter and easier to write in Isabelle, despite the fact that they perform more
steps. For instance, one example had a 42 lines long HOL proof with a lot of ugly
assumption hacking whereas the Isabelle proof was only 10 lines long, and a lot easier
to write. In most cases, Isabelle proofs were more than 50% shorter than HOL proofs.
Further, they required less thought to write. Lists of theorems for brr, which was used
a lot, were easy to write by just looking at goals. Isabelle takes care of applying the
theorems, instantiating unknowns and proving the assumptions by adding them as new
subgoals; we do not have to think about the tree structure of proofs and about which
tactics (or theorems) are applied where.

5.2 Forward Proof

Isabelle forward proofs by resolution can also be performed very elegantly. However, in the
present work forward proof is used much less than in HOL, due to better support for real
backward proofs. Meta logic theorems can be joined by the unification-based resolution
and therefore interpreted as inference rules. As an example consider the following (useful)
theorem

> cont_fun RSN(2,cont_fun RS comp_fun_apply);

val it =

"[| ?g : cont(?D1, ?E2); ?f : cont(?7E2, 7E4); 7a : set(?7D1) |] ==
(?f 07g) “7a=7f ¢ (7g ¢ 7a)" : thm
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which states a composition application theorem for continuous functions. It is obtained
easily from the corresponding theorem about set functions by exploiting that continuous
functions constitute a subset of the function set:

cont_fun:
"?f : cont(?D, ?PE) ==> ?f : set(?D) -> set(7E)"
comp_fun_apply:
“[| ?7g : ?7A -> 7B; ?f : 7B -> 7?C; %a : 7A |] ==>
(7f 07g) “7a=7f ¢ (7g ¢ 7a)".

The RSN function resolves the conclusion of the first theorem with a specified assumption
of the second theorem. RS resolves with the first assumption. The corresponding forward
proof in HOL-ST could be

GEN_ALL(DISCH_ALL
(MATCH_MP ApO
(CONJ(MATCH_MP cont_fun(ASSUME "g :: cont(D,E)"))
(MATCH_MP cont_fun(ASSUME "f :: cont(E,E’)"))))),

where
cont_fun:
|- 1f DE. f :: cont(D,E) ==> f :: (set D) -> (set E)
ApO:

- 1fgXYZ.
f:Y>Z/N\Ng::X->Y=>
(lx. x :: X==>((f0g) " x=1f"" (g~ x)).

This proof is both longer and less convenient to write. Note that the theorem would
introduce three existentially quantified variables if it was used in a backward fashion.

6 Conclusions

We have presented a comparison of HOL-ST and Isabelle/ZF based on a case study from
domain theory. The case study formalizes a construction for inverse limits of embedding
projection chains of cpos. This formalization exploits set theory in an essential way since
it requires a dependent product construction that cannot be defined on HOL types. The
main observations, which are summarized below, say that HOL-ST is supported by the
powerful HOL logic, which provides a more convenient set theory allowing set and type
theoretic reasoning to be mixed to advantage. Isabelle/ZF provides better proof support
for set theory. Set theory introduces a lot of set membership assumptions in theorems as
well as the need for real backward proof strategies and good support for quantifier reason-
ing. Generally speaking, HOL lacks ways of handling conditional theorems conveniently,
and does not provide the support for unknown variables for quantifier reasoning available
in Isabelle.
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It is advantageous to be able to exploit higher order logic where possible, as in HOL-
ST, since one of the main disadvantages of set theory is the presence of explicit type
(set membership) conditions. This means that type checking is done late by theorem
proving whereas in higher order logic type checking is done early in ML. Furthermore,
type checking is automatic in HOL but cannot be fully automated in set theory. On the
other hand, a disadvantage of mixing higher order logic and set theory as in HOL-ST is
the need for translation functions to identify HOL types with their corresponding sets.
Therefore, it is not obvious whether set theory in higher order logic is right, or just more
support for set theory in first order logic is needed.

6.1 First-order versus Higher-order Set Theory

The HOL-ST formalization presented above (see [1] for more details) exploited higher
order logic as much as possible. Hence, cpos were HOL pairs, ordering relations were
HOL functions, and chains were HOL functions from the HOL type of natural numbers
num to V. Alternatively, we could have chosen to do more work in set theory. For instance,
the natural number argument of chains could have been represented using the set Num
and cpos could have been represented by (non-reflexive) relations of set theory.

It makes a difference whether sets of set theory or types of HOL are used. Using the
latter, set membership (type) conditions are avoided and furthermore, type checking is
automatic (static) in ML. Using sets, type checking, i.e. ensuring terms are in the right
sets, is done by theorem proving (dynamic), and it is done late.

Obviously, exploiting the additional power of set theory will require leaving higher
order logic and paying a price. It is an interesting and difficult question which parts of
the formalization should be done in set theory and which should be done in higher order
logic. As noted in Section 4, the definition of the inverse limit constructor Dinf could have
been simplified if chains of cpos had been represented using the set of natural numbers
instead of the HOL type. However, experiments showed that it was worth dealing with the
inconvenience of the translation functions at this stage since many theorems and proofs
became quite horrible later, with the set approach [1]. This in turn is related to the choice
of representing ordinary chains in higher order logic.

In Isabelle/ZF, there is much less choice. Most of the development must be done in
set theory since the first order logic is so weak. Isabelle’s polymorphic weak higher-order
meta logic is meant for expressing and reasoning in logic instantiations of Isabelle, the so-
called object-logics, and it does not provide basic types such as pairs and numbers. Thus,
chains must be represented as set functions and cpos must be represented as pairs of set
theory such that both the set and the relation components must be sets. In principle, the
function type of the meta logic could be used to represent chains, but the definition of
cpos must quantify over chains and in first order logic it is only possible to quantify over
individuals (sets), not meta level functions. This is a difficult part of using Isabelle/ZF,
deciding whether to represent functions in set theory or in the meta logic.

The consequence of working mostly in set theory is that terms and proofs become more
complicated, since set membership conditions appear more often. For instance, to prove
that a term is a chain we must prove that it is a set function, i.e. that it is a relation on the
right sets that defines a function. Similarly, constructions on cpos have more complicated
definitions and proofs: before applying the relation of a cpo to its arguments, these must
be shown to be in the right sets.
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6.2 Proof Support

Whilst there are benefits from the more powerful higher order logic of HOL-ST, Is-
abelle/ZF has the advantage of providing better proof support for set theory. Though
proofs in principle are longer in terms of number of proof steps (of applying theorems),
due to the additional typing conditions, they are in fact much shorter in terms of number
of lines, and easier to write.

Isabelle provides an elegant proof infrastructure. Meta logic theorems can express
both object logic theorems, inference rules and tactics. There is not a separate inference
rule and tactic for each operation as in HOL—instead the same theorem is applied either
in a forward or backward fashion. Hence, there are only very few tools for forward and
backward proof. In fact, the main way to prove theorems is by the principle of resolution,
which supports both styles.

Backward proofs are often more than 50% shorter in Isabelle. The subgoal module
provides a kind of flat structure on proof states which makes it possible to access all goals
at any time and to prove several subgoals by just repeating a tactic supplied with the
right list of theorems—no matter where they would appear in a HOL proof tree. Further,
the notion of resolution in Isabelle supports ‘real’ backward proofs better than they are
supported in HOL. Isabelle resolution tactics allowed one to almost always work from
the conclusion of a goal backward towards the assumptions. In HOL, one often ends up
doing a lot of sometimes ugly assumption hacking, working forward from the assumptions
towards the conclusion. More natural backward strategies like conditional rewriting and
a matching modus ponens style strategy are not well supported in HOL. These are useful
due the fact that many theorems have set membership assumptions.

HOL proofs could probably be simplified if there was a way of handling existential
quantifiers. At the moment, witnesses must be provided on the spot and manually. Ex-
istential quantifiers are often introduced by the backward strategies mentioned above,
for instance, when employing the transitivity of a cpo relation or the facts that function
composition preserves the function set, continuity or embeddings. In HOL proofs, it is
also often necessary to instantiate universally quantified variables manually.

These cases are usually handled automatically in Isabelle. It provides a notion of
unknown variables, which can be instantiated in proofs. This means that witnesses and
proper instantiations of universally quantified variables are constructed behind the scenes,
possibly in stages. Unification is essential for allowing this.
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