Technical Report A

Number 345

Computer Laboratory

A proof environment for
arithmetic with the Omega rule

Siani L. Baker

August 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1994 Siani L. Baker

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Proof Environment for Arithmetic
with the Omega Rule*

Siani L. Baker
Computer Laboratory
University of Cambridge
Pembroke Street

Cambridge CB2 3QG
Siani.Baker@cl.cam.ac.uk

Abstract

An important technique for investigating derivability in formal systems
of arithmetic has been to embed such systems into semi-formal systems with
the w-rule. This paper exploits this notion within the domain of automated
theorem-proving and discusses the implementation of such a proof environ-
ment, namely the CORE system which implements a version of the primitive
recursive w-rule. This involves providing an appropriate representation for in-
finite proofs, and a means of verifying properties of such objects. By means of
the CORE system, from a finite number of instances a conjecture for a proof
of the universally quantified formula is automatically derived by an inductive
inference algorithm, and checked for correctness. In addition, candidates for
cut formulae may be generated by an explanation-based learning algorithm.
This is an alternative approach to reasoning about inductively defined do-
mains from traditional structural induction, which may sometimes be more
intuitive.

Key words. Automated theorem proving, w-rule, infinite proofs.

*Research funded by the SERC (grant RF/1389).

CONTENTS

Contents

1

2

Introduction
The Constructive Omega Rule

PA,,: Arithmetic with the Constructive Omega Rule

3.1 Definition of Effective Prooftrees for PA,,
3.1.1 Consequences of this Definition

3.2 Correctness of Prooftrees o o

w-Proofs

Showing correctness of w-proofs.

5.1 Schematic Syntax« v v i
5.2 Rewrite rules as derived rules of inference
5.3 Multiple rule applications oo
5.4 Relationship between w-proof representation and PAg,
5.5 Correctness of the w-Proof Representation

A Proof Environment for the Constructive Omega Rule
An Application

Conclusions

12

14

15

1 Introduction

Normally, proofs considered in theorem-proving are finite; however, there is a rea-
sonable notion of infinite proof involving the w-rule, which infers a proposition from
an infinite number of individual cases of that proposition. The w-rule involves the
use of infinite proofs, and therefore poses a problem as far as implementation is
concerned.

With the goal of automatic derivation of proofs within some formalisation of
arithmetic in mind, an (implementable) representation for an arithmetical system
including the w-rule is proposed. The implemented system is useful as a proof
environment (and incidentally also as a guide to generalisation in the more usual
formalisation of arithmetic [Baker 94]).

The following sections present a formalisation of arithmetic with the w-rule
(PAy,), discuss how this was correctly implemented to produce the framework of the
CORE proof environment, and establish soundness of the implementational system
with respect to PA,,. We also give an indication of how the system can be used.

2 The Constructive Omega Rule

In this section a constructive version of the infinitary w-rule is introduced as an
interesting alternative to induction proofs in arithmetic. A standard form of the

w-rule is
A0), AQD) ... Alm)
A(z)

where n is a formal numeral, which for natural number n consists in the n-fold
iteration of the successor function applied to zero, and A is formulated within the
language of arithmetic. This rule is not derivable in Peano Arithmetic (PA)!, since
for example, for the Godel formula G(z), for each natural number n, PA - G(n)
but it is not true that PA G(z). This rule together with Peano’s axioms gives a
complete theory — the usual incompleteness results do not apply since this is not a
formal system in the usual sense.

However, this is not a good candidate for implementation since there are an in-
finite number of premises. It would be desirable to restrict the w-rule so that the
infinite proofs considered possess some important properties of finite proofs. One
suitable option is to use a constructive w-rule. The w-rule is said to be construc-
tive if there is a recursive function f such that for every n, f(n) is a G6del number
of P(n), where P(n) is defined for every natural number n and is a proof of A(n)
[Takeuti 87]. This is equivalent to the requirement that there is a uniform, com-
putable procedure describing P(n), or alternatively that the proofs are recursive (in
the sense that both the proof-tree and the function describing the use of the differ-
ent rules must be recursive) [Yoccoz 89]. There is a primitive recursive counterpart?

1Gee for example [Schwichtenberg 77] for a formalisation.

2In other words, such that there is a primitive recursive function f for which, for every n, f(n)
is a Gdédel number of the proof of A(n), the nth numerator of the w-rule.

2 3 PAg,: ARITHMETIC WITH THE CONSTRUCTIVE OMEGA RULE

which is also a candidate for implementation. Note that in particular these rules
differ from the form of the w-rule (involving the notion of provability) considered by
Rosser [Rosser 37] and subsequently Feferman [Feferman 62].

Various theoretical results are known for these systems. Shoenfield has shown
that ‘PA + w-rule’ (PA,)? is equivalent to ‘PA + recursively restricted w-rule’
[Shoenfield 59]. The sequent calculus enriched with the recursively restricted w-rule
in place of the rule of induction (let us call it PA,, *) has cut elimination, and is
complete [Shoenfield 59].

The primitive recursive variant has also been shown to be complete by Nelson
[Nelson 71]. If one has the rule of repetition %—‘E% in PA,, any recursive derivation
can be “stretched out” to a primitive recursive derivation using the same rules
of inference, plus this rule [Lopez-Escobar 76, P169]. Since our implementation
is developed using effective operations over representations of object-level syntax
(where effectiveness is an analogous concept to primitive recursion), and PA with
the unrestricted w-rule forms a conservative extension of this system, the (classical)
system PA with a primitive recursive restriction on the proof-trees was chosen as a
basis for implementation.

In the context of theorem proving, the presence of cut elimination for these
systems means that generalisation steps are not required. In the implementation,
although we do not claim completeness, some proofs that normally require general-
isation can be generated more easily in PA., than PA.

3 PA,: Arithmetic with the Constructive Omega
Rule

The system PA, is essentially PA enriched with the w-rule in place of the rule of
induction. The derivations are then infinite trees of formulae; a formula is demon-
strated in PA, by “exhibiting” a proof-tree labelled at the root with the given
formula. Syntactical details about this system PA,, are given in [Lépez-Escobar 76,
P162] (see [Prawitz 71, P266-267] for a natural deduction representation). PA, has
been described by Schiitte as a semi-formal system to stress the difference between
this and usual formal systems which use finitary rules [Schiitte 77, P174].

For implementational purposes, infinite proofs must be thought of in the con-
structive sense of being generated, rather than absolute. It is necessary to place
a restriction on the proof-trees of PA, such that only those which have been con-
structively generated are allowed, in order to capture the notion of infinite labelled
trees in a finite way. The normal approach when dealing with a system with infini-
tary proofs such as PA, is to work with numeric codes for the derivations rather
than using the derivations themselves. See [Schwichtenberg 77, P886] for further
details, including the case of the w-rule. By adding the provability relation and nu-
meric encoding, a reflection system which necessarily extends the original one may

3Gee Section 3 below for description.

4For a more formal description see [Baker 92a].

3.1 Definition of effective prooftrees for PA,, 3

be formed [Kreisel 65, P163]. However, the necessity of using this Gédel number-
ing approach may be avoided by following Tucker in defining primitive recursion
(“effectiveness”) over various data-types that are better adapted to computational
purposes [Tucker et al 90].

If an arithmetical encoding method were to be used, the primitive recursive
constraint could be attached directly to the w-rule. However, without using such an
approach the restriction must be placed on the shape of the proof tree in which the
w-rule appears: only derivations which are “effective” will be accepted.

Hence we define

Fpa,, ® iff 3f. fis an ‘effective’ proof-tree of PA,, with ® as initial sequent.

PA,, may be defined as a (semi-)formal system by further specifying axioms and
rules of inference (in this case, corresponding to those of PA: “this wholesale carry
over of derived rules from predicate logic is one of the special virtues of cut free
infinite proofs” [Kreisel 65, P166]).

The alternative, standard approach is to use numeric encoding (using notation
r.7) and strengthen PA by adding an arithmetic schema of the form:

(30 (proof-tree(IT) A conc(Il) =r®7)) — @.

We must now provide some means for reasoning about primitive recursive infinite
proof trees. The objects of interest are recursive (possibly infinite) proof-trees (in
the sense of Lopez-Escobar [Lopez-Escobar 76]), labelled with formulae (namely,
the sequents to be proved at each point) and rules. The notion of effectiveness
of a tree, which corresponds to primitive recursion, is defined in [Baker 92al. In
addition, a (proof) tree must be well-founded, in the sense that it does not have
an infinitely deep branch. The rules that relate the formulae between node and
subnode are the standard rules for the logical connectives, the extra w-rule with
subgoals ®(0), ®(1),..., and substitution. A formula in PA is demonstrated in
the extended theory by exhibiting a proof-tree labelled at the root with the given
formula. Properties of such primitively recursively defined trees can be proved using
induction principles associated with the datatypes, as we see in section 5. These are
the sorts of proofs that have been automated by [Bundy et al 93], and we are able
to automate the simpler proofs that arise here. This involves, for example, giving
a proof that a given rewrite applied a given number of times to a formula schema
yields a particular formula schema.

3.1 Definition of effective prooftrees for PA,,

These notions are now formalised. We define prooftrees as functions
f : Position of Node +— (Sequent at Node, Rule used at Node),

where the range specifies labels, or symbols, in the tree associated with each node,
and the position is represented by lists of natural numbers.

4 3 PAg,: ARITHMETIC WITH THE CONSTRUCTIVE OMEGA RULE

Definition 3.1 (Effective prooftree for PA.,) f is an effective prooftree for PAq,
if and only if f is an effective function f : nat list — seq X rule such that f is well-
founded and correct.

Definition 3.2 (Order in tree) Define the relation < on nat list X nat list by:

Posl < Pos2 « 3l Pos2 = Posl <> 1, | € nat list

Definition 3.3 (Empty node) &, the empty label, is shorthand for (dummy seq,
dummy rule), and indicates that there is nothing at a particular node.

Definition 3.4 (Derivation in PA.,) f : nat list — seqxrule describes a deriva-
tion in PAg, for the sequent ®, where @ is the sequent at the top of the tree (viz. at
the node [1) if:

1. {p: nat list|f(p) # €} is a well-founded tree according to <.

2. If f(p) # €, then g3(f(p)) is a sentence associated with the node p (namely
the sequent to be proved), and g2(f(p)) is the name of a rule of P A, used to

produce its immediate successors, where g; are projection functions such that
GA(A, B) = A and G3(4, B) = B,

3. Ifp is a bottommost node in the tree, ie. f(q) = € for all ¢ such thatp < g, and
Fp) # &, then either g5 (f(p)) s an aziom of PA,, and g5(f(p)) is aziom, or
else f(p) is set to incomplete to indicate that the tree is incomplete.

4. If Pos <> [K1 (K € IN) is not a bottommost node, then g;(f(Pos <> [K1))
is the Kth subgoal of ¢2(f(Pos <> [K1)) applied to g3(f(Pos)).

Definition 3.5 (Incomplete tree) The derivation is incomplete if not all the leaves
are closed ie. if incomplete is associated with any node in the tree.

Definition 3.6 (Prooftree) The derivation will be a prooftree if it is a complete
derivation, in other words if all its leaves are azioms (and the others marked as
dummy nodes, if appropriate, since there is infinite branching at each node).

Definition 3.7 (Subgoals) The subgoals of p may be defined as
subgoals(p) = {gi(f(p <> [nl))ln € IN, f(p <> [n]) # €}.

3.1.1 Consequences of this definition
Properties of the tree will be:

1. Defining br(Rule), where Rule is a rule of PA,,, as the number of subgoals
of Rule (ie. br(¥r,) = w, br(—= r =1, br(— [) = 2 etc.), if L # w, where
br(2(f(Pos))) = L, L € IN, then f(Pos <> [M]1)=¢& VM > L,M € N.°
Since br(aziom) = 0, if p < ¢ and p # ¢ for some position representation p,g,
where p is a bottommost node in the tree, then f(g) = €.

5>, since the natural numbers, and the subnodes, are taken to start at 0.

3.2 Correctness of prooftrees 5

2. If f(Pos <> [I1) = &, then f(Pos <> [J])=€VJ>TeN.

The approach described above is suitable for automation, since it generates the
subgoals of the w-rule, rather than having to check their presence.

3.2 Correctness of prooftrees

There are two main notions of correctness of well-founded trees, namely ‘local’ cor-
rectness, which checks that an appropriate rule is applied at each node of the tree,
and ‘global’ correctness, which is concerned with whether the tree is well-founded.

To check for local correctness, structural induction is used over the prooftrees. In
this case, the corresponding meta-induction (for nat list) is used for the tree-defining
function f : nat list — string x string. Thus:

f(L]) f(Pos) = f(Pos <> [kl)
Vz f(z)

where Pos,z € nat list and k € nat. That is to say that given an initial sequent
(and initial rule used), plus a way of obtaining from a sequent at some position the
sequent at a node directly below that position, then the sequent at each node of the
tree is defined. This process of obtaining sequents at subnodes, given a sequent at
a node, is carried out by applying the rule associated with the node to the sequent
at the node, and is described above. The result is uniquely determined, given a rule
and sequent, and hence the prooftrees are locally correct. Transfinite induction over
the partial ordering < of the tree representation is allowable if numeric encoding is
used at each node [Kreisel 65, P163].

At this stage it could be objected that there might be circularity, for although
the w-rule is used instead of induction, meta-induction is being introduced here,
which might result in there being no advance. However, the generalisation problem
does not in practice occur in the theory of trees, and so there is a gain after all.

4 w-Proofs

This section deals with the issues involved in making the w-rule into a rule for ma-
chine proof. Omne use of the constructive w-rule is to enable automated proof of
formulae, such as (z +) +2 = 2 + (z + z), which cannot be proved in the normal
axiomatisation of arithmetic without recourse to the cut rule, which is the logical
justification of any generalisation step. In these cases the correct proof could be ex-
tremely difficult to find automatically. However, it is possible to prove this equation
using the w-rule since the proofs of the instances (0+0)+0 = 04(0+0), (1+1)+1 =
1+ (1+1),... are easily found, and the general pattern determined by inductive
inference. The algorithm used to automatically recognise the general pattern gener-
alises an initial set of rewrite rules describing an individual proof, and then updates
this generalisation according to other individual proof examples until the general
proof representation (w-proof) satisfies all of the (large number of) cases consid-
ered; any appropriate inductive inference algorithm, such as Plotkin’s least general

6 4 w-PROOFS

generalisation [Plotkin 69], or that of Rouveirol, who has tackled the problem of
controlling the hypothesis generation process to get only the most relevant candi-
dates [Rouveirol 90], could be used to guess the w-proof from the individual proof
instances. In general, the complexity of the algorithm needed to guess an w-proof
from non-uniformly generated examples is exponential, whereas the stages of check-
ing the w-proof and suggesting a cut formula are less complex, and this is reflected
in the time taken to produce the result. As an alternative, the user may bypass this
whole stage by specifying the w-proof directly. Meta-induction is used to ensure that
the proposed general rule applications do indeed give a proper proof when applied
to the general case of the sequent to be proved. Note that such inductive inference
algorithms for generating generalisation produce a proof for an arbitrary instance:
the penultimate section suggests how this can relate to finding the proper induction
formulae for inductive theorem provers.

Such w-proofs are not simply disguised PA-proofs, since the system PA., is a
logically stronger system than that of PA [Shoenfield 59]. Moreover, these w-proofs
may be considered to be more intuitive than standard inductive proofs of the same
theorems, in the sense of corresponding more closely to the way in which people
convince themselves of the correctness of the proof. Philosophical induction (from
“trivial” test cases) may sometimes be the means of construction by humans of
a generic proof for case n. In addition, the generic proof itself might have some
psychological validity. For instance, in order to show that Vi rotate(length(l),l) =1
where

rotate(0,1) = | and rotate(s(n), b :: t) = rotate(n, append(T, h :: nil))
a human might provide the following explanation

“Imagine applying the definition of rotate n times. The elements pop off
the front of the list in order and stack up at the end in the same order.
Eventually you get back to the original expression.”

rather than “ Suppose it were true for n. Now consider the case n+1...”.

For the implementation it is necessary to provide (for the nth case) a description
for the w-proof in a constructive way which captures the notion that each P(n) is
being proved in a uniform way (from parameter n). This is done by manipulating
A(n), where A(z) is the sequent to be proved, and using recursively defined function
definitions of PA as rewrite rules, with the aim of reducing both sides of the equation
to the same formula. The primitive recursive function sought is described by the
sequence of rule applications, parameterised over n. In practice, the first few proofs
will be special cases, and it is rather the correspondence between the proofs of
P(99), say, and P(100), which should be captured. The processes of generation of
a (recursive) w-proof from individual proof instances, and the (metalevel) checking
that this is indeed the correct proof have been automated (see [Baker 92b}). Further
details of the algorithms and representations used, together with the correspondence
between the adopted implementational approach and the formal theory of the system
are described in [Baker 92a).

Axioms
O+y = vy (1
s(z)+y = s(z+y) (2)
Proof
(n+n)+n = n+(+n)
n = s"(0) (57(0) +5"(0)) +s7(0) = s"(0) + (s"(0) +5"(0))
(2) n TIMES ON LEFT s"(0 + s™(0)) +s*(0) = s™(0) + (s™(0) + s™(0))
(1) ON LEFT s"(s"(0)) +s™(0) = s™(0) + (s™(0) + s™(0))
(2) n TIMES ON RIGHT s*(s"(0)) +s™(0) = s™(0+ (s"(0) + s™(0)))
(1) ON RIGHT s"(s™(0)) +s™(0) = s"(s™(0) + s™(0))
(2) n TIMES ON LEFT (s7(0) + s*(0)) = s"(s™(0) + s™(0))
EQUALITY

Figure 1: An w-Proof of (z+2z)+2z =z + (z +)

Thus, the w-proof representation represents P(n), the proof of the nth numerator
of the constructive w-rule, in terms of rewrite rules applied f(n) or a constant
number of times to formulae (dependent upon the parameter n). As an example,
the implementational representation of the w-proof for (z + z) + = = z + (z + 7)
takes the form given in Figure 1 (although it may be represented in a variety of
ways) presuming that, within the particular formalisation of arithmetic chosen, one
is given the axioms of addition of Figure 1.

By s"(0) is meant the numeral n, ie. the term formed by applying the succes-
sor function 7 times to 0. The next stages use the axioms as rewrite rules from
left to right, and substitution in the w-proof, under the appropriate instantiation of
variables, with the aim of reducing both sides of the equation to the same formula.
The w-proof represents, and highlights, blocks of rewrite rules which are being ap-
plied. Meta-induction may be used (on the first argument) to prove the more general
rewrite rules from one block to the next: for example, Vn s"(z) +y = s"(z +y)
corresponds to n applications of axiom (2) above. We now describe in more detail
how this is done.

5 Showing Correctness of w-Proofs.

By an effective proof-tree, as discussed in Section 3, we understand a function which
returns for each potential position in the tree either a pair representing the sequent
and rule associated with that position, or a token indicating that the position is
outside the tree. Positions are given by a list of positive integers referring to the
path through the tree from the root. We thus have a partial function

tree : list(int) — sequent X rule

8 5 SHOWING CORRECTNESS OF w-PROOEFS.

where we must define rule, sequent.

5.1 Schematic syntax

The representation of sequents as a function of position is achieved as follows. For
simplicity, we will concentrate on the single goal formula of a sequent, though the
discussion extends to the full sequent.

We consider formulae simply as strings®. A function

form . int — string

can be considered as representing formulae schematically, provided that the function
always takes values among the formulae of the language.

For example, using ML syntax we can define the following functions (where ~ is
infix string concatenation; nth_suc implements s"(t) above):

val zero = "Q"
fun plus x y = "plus(" ~ x = ",0 "y~ M
fun nth_suc 0 x = x
| nth_suc n x = "s("* ~ (nth_suc (n-1) x) =~ ")"
funegxy=x""=""y

fun goal n =
let val m = nth_suc n zero
in
eq (plus (plus m m) m) (plus m (plus m m))
end;

The function goal here returns a string representing the nth subgoal to the
w-rule application in our example above:

- goal O;

"plus(plus(0,0),0) = plus(0,plus(0,0))" : string

- goal 1;

"plus (plus(s(0),s(0)),s(0)) = plus(s(0),plus(s(0),s(0)))" : string

In this way a proof-tree can be built up by assigning such formulae to positions.
There are constraints on which positions have attached formulae, to ensure that the
tree is indeed a tree, and is well-founded. The rule specification is likewise given
by a string, corresponding to the name of the rule applied at this position, and
any parameters used. The function gives an w-proof if, at every node of the tree,
the formulae at the sub-nodes and the formula at the node are correctly related
according to the rule of inference associated with the node.

It would be extremely cumbersome to build up such tree functions explicitly, and
we do not do this in practice. However, the system is intended to ensure that such
a tree is constructible whenever an w-rule application is shown correct.

6 Alternatively, and more elegantly, we could have made use of abstract syntax here.

5.2 Rewrite rules as derived rules of inference 9

5.2 Rewrite rules as derived rules of inference

It is customary to use recursion equations as rewrite rules in order to evaluate
expressions. Since we have a substitution rule, we can show that such applications
to quantifier-free formulae are sound. For example, the axiom (2) gives us the rewrite

s(X)+Y = s(X+Y). (3)

The rewrite rule of inference then, given a goal and a specified sub-term that matches
the left hand side of the rewrite, yields as the single subgoal the rewritten goal. Note
that any use of this derived rule could be expanded into a small proof tree of fixed
shape in our original theory.

In reasoning about w-proofs, we will chiefly use this derived rule.

5.3 Multiple rule applications

In the simpler examples of the use of the w-rule, there is only one application of that
rule, and by using the rewrite inference rule we can regard each subsequent branch
of the proof as linear, with no further branching of the tree.

In this case, what we want to know is that the sequence of rewrites along the
branch is correct, and leads to an axiom. To capture the generality of the shape
of the tree, we need to be able to reason about such things as the application of a
given rewrite n times in a particular position of the nth formula. (More generally,
the position and the number of applications can both be functions of n.)

Supposing that we have defined what it is for one-step rewriting to apply using
a given rule at a given position, we can define n-fold rewriting by:

wff

fun nfoldRewrite 0 rule pos wff
| nfoldRewrite n rule pos wff
rewrite rule pos (nfoldRewrite (n-1) rule pos)

Notice that our definitions of schematic syntax and multiple rewriting are primi-
tive recursive. In order to prove properties of them, we can use standard techniques
for proof of primitive recursively defined functions. For example, as part of the
correctness proof for our example, we want to show that n applications of (3) on the
left hand side of

(s"(0) + 5™(0)) + "(0) = s™(0) + (s™(0) + s"(0))

yields
s"(0 4 5"(0)) + s"(0) = 5"(0) + (s"(0) + s"(0)).

Writing the second expression as a function of n as goal2(n), calling the rewrite
rule plus2, and noting that the left hand side is picked out by position [2], what
has to be shown is that

nfoldRewrite n plus2 [2] (goal n) = goal2 n.

The proof of this proceeds by induction; show that

10 5 SHOWING CORRECTNESS OF w-PROOFS.

nfoldRewrite 0 plus2 [2] (goal 0) = goal2 O
and that

nfoldRewrite n plus2 [2] (goal n) = goal2 n
- nfoldRewrite (n+1) plus2 [2] (goal (n+1)) = goal2 (n+1)

This is the proof that is carried out automatically. When each of the rewrite steps
has been verified in this way, and the leaf checked as an axiom, we conclude that
there is a correct w-proof.

Next we move on to consider further the relationship between the w-proof rep-
resentation and the system PA,,.

5.4 Relationship between w-proof representation and PA,,

In the representation of PA,,, a derived form of primitive recursive function-defining
equations as inference rules is required to allow rewriting of formulae (which takes
place in w-proof examples, and hence an analogy is needed). These are of the type
T below — it is just convenient to define these as single steps, as shorthand in order
to avoid going through all the equivalent tedious steps of PA.

I'FVayR(z,y) = S(z,y) AFT(R(p,q))

T, AFT(5(p,q) ’

An example of such a derived step would be the justification of s(0+40) = s(0) from
5(0) + 0 = s(0), given rewrite rule (3) above. Z is a derived rule of PA, as it is
equivalent to the following:

aziom

R(p,q) = S{p,q) F R(p,q) = S(p,q)

Vi(%2)

Vay R(z,y) = S(z,y) - R(p,q) = S(p,q) I' - Vay R(z,y) = S(z,y)

cut

'+ R(p,q) = S(p,q) A+ T(R(p,q))

subst

T, A+ T(S(p,q))

One may deduce a more general rule Z', in a similar manner, where Z' is the
following;:
[+VZR(Z) = S(Z) AF T(R(p))
I, A+T(S(p))

where if the arity of & is k, then 7 = {py,...px} for terms p; (1 < ¢ < k) in the
language of PA,,.

The derived rule Z above corresponds to “apply R once”, where R is the rewrite
rule R(z,y) = S(z,y). “Apply R a constant number of times, k" just repeats 7
k times. Z corresponds to the basic formulation of PA,,, so if the given procedure
about tree construction from rules is followed, a recursive prooftree will be obtained.
Note that in the tree there is infinite branching, so dummy subtrees will have to be
inserted if necessary.

II

5.4 Relationship between w-proof representation and PA,, 11

In the w-proof, one starts with something to be proved, and ends with equality,
corresponding to an axiom. In practice, only rewrite rules are usually used, but it is
possible to use logical rules which might cause the w-proof to split. However, such
case splits of conditionals do not pose any problem, because they correspond exactly
to the logical rules of PA,,,.

Note that if such derived rules were to be used in the prooftree representation, the
whole equivalent subtree should be substituted instead, since the new node position
otherwise would not be a direct subnode (in terms of its position representation) of
the original node at which such a rule was applied.

The other case to consider is when a rewrite rule of the form “apply R some
function of n times” is applied in the w-proof. This corresponds to the (derived)
rule J below, which may be proven in PA,,, with the use of induction.

T+ VaVyR(z,y) = S(z,y) A+ T(R/™(p,q))
I A FT(S/™(p,q))

where Sf™(p,q) is the result of applying the rule R f(n) times to Rf™(p,q)
(assuming that such a rule application may be carried out). One such example
is that s"(z) +y = s"(z + y) corresponds to n applications of the rewrite rule
s(z) +y = s(z +y). It is also possible to derive a more general version J', which

is analogous to Z'.
The proof in PA., of J is as follows:

ar
R(R" (p,q)) = S(R" (p,2)) + R(R" (p,q) = S(R" (p,)
vi

T+ VoyR{z,y) = S(=,y) F R(R" (p,q)) = S(R (p,q))

cut az
T+ R(R"(p,q)) = S(R" (p,9)) T(S(R"(p,0))) F T(S(R" (p,)))

z

F T(S(R" (p,q))) = T(S(R" (p,q)))
T

T(R" (p,0)) = T(S" (0, 0) F T(R* M (9, 0)) = T(8* M (p,0))
ind

Tk T(R™(p,q)) = T(S™(p,9))

-3 r

A+ T(R™(p,q)) T, T(R™(p,) + T(S™ (p,9))
cut

r,AFT(S™(p,0)

At « there is the prooftree:

ar

R(p,q) = S(p,q) F R(p,q) = S(p,q)
ax Vi
I+ VeyR(z,y) = S(z,y) VeyR(z,y) = S(z,y) - R(p,q) = S(p,q)
aw cut

R(p,q) = S(p,q), T(R(p,q)) F T(S(p, 0)) L'+ R(p,q) = S(p,a)

cut

T+ T(R(p,q)) - T(S(p,q))

A summary of the above consideration of the relationship of the w-proof repre-

sentation with PA,, is that the proof of A(n) in the w-rule %)ﬂh is represented

126 A PROOF ENVIRONMENT FOR THE CONSTRUCTIVE OMEGA RULE

in the w-proof using notation which is not that of PA,,, but which is more suitable
for implementation. However, the notation (represented by derived rules Z and J),
may be converted to that of PA.,, as may be seen by the fact that the rules Z and
J correspond to proofs in PA,,. Hence, the w-proof can be accounted for in terms
of PA.,.

5.5 Correctness of the w-proof representation

Global correctness necessitates showing that for each w-proof construct there is a
primitive recursive function which indicates what is at any particular node in the tree
representation described above. This is possible by inspecting the tree diagrams for
the derived inference rules 7 and J above. The primitive recursive function would
be analogous to the definition of f above. When “apply rule R k times” appears in
the w-proof, the function would generate the tree as previously described, but using
the rules from Z (repeated as appropriate), or J, and generating the rest of each
infinite layer as dummy variables. Of course, the layer is not literally filled in, as this
will be a non-terminating process. It is merely necessary to note that, for example,
f(Pos <> [11) = € VI € nat list, and that any particular individual position could
be checked as yielding €. This is enough to give correctness of the tree. A tree
with infinite branching points may be generated using the constructive w-rule (ie.
from the w-proof). This should be using a depth-first generation, because the tree
is required to be well-founded; in this way the tree would in essence be completed
— after a certain point with generating the subgoals of the w-rule, the case for the
kth subtree could be given if termination was required.

Therefore, in order to convert from w-proofs to a recursive prooftree form, it is
necessary to substitute k for n, where k € IN, to get the kth subtree. Rewrite rules
should be converted to the appropriate rules of PA,, (from the trees given above
for 7 and J) and applied as appropriate; this also covers the case of the application
of rules f(n) times.

In this section a justification for the implemented representation of w-proofs has
been given. The following section describes the overall structure of the implemented
system.

6 A Proof Environment for the Constructive Omega
Rule

This section describes the Constructive Omega Rule Environment (CORE), which is
a proof development environment in which a (constructive) version of the w-rule may
be used as a rule of inference, and a system in which w-proofs may be displayed and
investigated. The implementation allows both the automatic or incremental con-
struction of w-proofs, and the validations of descriptions of w-proofs. It is carried
out within the framework of an interactive theorem-prover with Prolog as the tactic
language, namely Oyster, which is a reimplementation of NuPRL [Bundy et al 90].
This embodies a higher-order, typed constructive logic in sequent-calculus form.

‘13

| Theorem | Cut Formula
Vo (z+2)+z=a+(z+x) VaVyVz (z+y) +z =z + (y + 2)
Vz x + s(z) = s(z +) VaVy x + s(y) = s(z + y)
Vo z + s(z) = s(z) +x VaVy z + s(y) = s(z) +y
Vez.(z+2)=zz+20 VaVyVz z.(y + 2) = z.y + 5.2
Vz (z+ %) =22+ 3.2 VaVyVz (z +y).z =y.z + 2.2
Vo (2+2)+z=2+ (z+2) VaVy 2+ z) +y =2+ (z +y)
VeVy (z+y)+z=2+ (y+2z) VaVyVz (z+y) +z =2+ (y + 2)
Vo 20 pla) 1 s(s(@)) =s(@) 17| VaVya £ 0 po) T s6) = 5@) + 4
Vz even(z + x) Vz even(2.z)
Vi len(rev(l)) = len(l) Vi len(rev(l) <> a) = len(rev(a) <> 1)
VI rotate(len(l),l) =1 Vi rotate(len(l),l <> a) =a <>1
Virev(rev(l) <>y nil) =y = rev(rev(l)) |Vl rev(a <>y : nil) =y :: rev(a)
Vi rev2(l, nil) = rev(l) Vi rev2(l,a) = rev(l) <> a
Vi(l<>)<>l=1<>(1<>]1) VIVpVq (I <> p) <> qg=1<> (p <> q)

Table 1: Cut Formulae Suggested by Guiding Method for Various Examples

Within the Oyster framework, the object-level logic is replaced with Peano and
Heyting arithmetic and the rules that can be applied are those of the sequent cal-
culus axiomatisation of first order logic given in [Dummett 77, P133], together with
mathematical induction. The search for a proof must be guided either by a human
user or by a proof tactic. Each proof is built up in the form of a tree, and every stage
of the tree may be displayed on the screen with information as to the hypotheses,
goals, position in the tree and whether the subtree is proved below it.

Within CORE, any finitely large number of individual instances of proofs of
a proposition may be generated automatically by the use of various tactics. The
general representation of the proofs is provided by an inductive inference algorithm,
which starts with an initial generalisation and then works by updating this w-proof
using the other individual proofs, until the w-proof seems to have reached a stable
form. This w-proof is then automatically checked to see if it is indeed the correct
one, as described above. There are two options which are allowable from a goal
I' - VzP(z). One is to ask to use the constructive w-rule, whereby the system will
check to see whether it can find a correct w-proof, and then return to the former
system and close the branch, or else report failure. The user may then continue
to investigate other positions in the proof-tree. The other option, which shall be
discussed more fully in the following section, is to ask for an appropriate cut to be
carried out in PA (the cut being worked out by the system from the w-proof), with
a further option to complete the tree as far as possible (using standard theorem-
proving techniques). The w-proof may be provided automatically, but there is an
option in each case to switch temporarily to another system which will allow for the
description, manipulation and display of the w-proof. The user may specify the proof
incrementally, in terms of applications in positions in the tree, plus induction over

14 7 AN APPLICATION

a distinguished parameter, or all at once — and this is checked. The system builds
up a recursive function description of the w-proof, and is able to display individual
proofs in addition to the general case.

[Baker 92b] provides details of the proof development systems upon which the
implementation is based; representation of the w-rule and its subgoals; generation
of individual proofs; the application of rewrite rules; provision of a w-proof; correct-
ness checking of the w-proof (using meta-induction); generalisation, and finally, the
interactive system, and how to use it.

7 An Application

As mentioned above, the CORE system provides implementation of a new general-
isation method (described in [Baker 94]). A cut formula is automatically suggested
from w-proofs using an implementation based on the method of explanation-based
generalisation, which is a technique for formulating general concepts on the basis of
specific training examples, first described in [Mitchell 82]. In general terms the pro-
cess works by generalising a particular solution to the most general possible solution
which uses the rules of the original solution. It does this by applying these rules,
making no assumptions about the form of the generalised solution, and using unifi-
cation to fill in this form. The method is applied in this instance to a new domain,
namely that of w-proofs. It is of course possible to carry out explanation-based
generalisation upon proofs in PA in order to produce a more general expression.
However, if inductive proof is not possible (because induction is blocked) and there-
fore use of the cut rule is required, such a method will not work, and another proof
(such as the w-proof) must be used in order to obtain a generalisation. Further
details regarding such a generalisation method, including details of how w-proofs
may be “linearised” to suggest inductive proofs, are given in [Baker 94].

The resulting system has been tested on a variety of arithmetical examples: cut
formulae are automatically suggested for examples including all the arithmetical
examples of Table 1. Although the examples listed in the table are of a similar
simple form, this method may also be applied to complicated examples containing
nested quantifiers, etc., for the w-rule applies to arbitrary sequents. The seventh
example provides an instance of nested use of the w-rule, which carries through
directly. If an w-proof is provided, even without a generalisation being suggested,
something has still been achieved, in the sense that a pattern might still emerge
for the user. For example, the cut formula of even(2.z) could possibly be extracted
by a user from the form of the w-proof for even(z + z), which is an improvement
over other generalisation methods. Thus the generalisation method may still be
useful within a co-operative environment if it breaks down. This contrasts with
alternative methods of generalisation, which do not provide much information if they
fail. Moreover, because the suggested method explicitly exploits general patterns,
it has a higher-level structure and thus greater potential for extension than other
more special-purpose approaches.

Hence a new method for generalisation has been proposed which is robust enough

15

to capture in many cases what the alternative methods can do (in some cases with
less work), plus it works on examples on which they fail (cf. Table 1, many of the
examples in which pose a problem for other theorem provers). This same generalisa-
tion method can be used in a more general context for lemma generation, regardless
of the way an w-proof was obtained, so long as one can represent in the particular
system of interest the notions of nth-successor, parametrised applications of rewrite
rules and also the correctness check. Hence, although the learning device for cut
formulae is not reliant upon the given proof system involving use of the w-rule, in
practice suitable proof environments such as HOL [Gordon 88] would require ex-
tension, and moreover the user would have to input the proof directly unless some
other method of generation could be provided.

8 Conclusions

Implementation of a system of arithmetic with the w-rule has been carried out within
the framework of an interactive theorem-prover with Prolog as the tactic language.
This can provide a useful aid to automated deduction. The approach suggested
in this paper is of general relevance, both regarding lemma generation in systems
for reasoning about inductive domains, and also the representation of infinite and
schematic proofs.

Acknowledgements I would like to acknowledge the help of Alan Smaill from
the Mathematical Reasoning Group in Edinburgh University.

References

[Baker 92a] S. Baker. Aspects of the Constructive Omega Rule within Automated
Deduction. PhD thesis, University of Edinburgh, 1992.

[Baker 92b] S. Baker. CORE manual. Technical Paper 10, Dept. of Artificial Intel-
ligence, Edinburgh, 1992.

[Baker 94] S. Baker. A new application for explanation-based generalisation within
automated deduction. In A. Bundy, editor, 12th International Conference on
Automated Deduction, pages 177-191, Springer-Verlag, 1994. Also available
from Cambridge as Computer Laboratory Technical Report 327.

[Bundy et al 90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-
Clam system. In M.E. Stickel, editor, 10th International Conference on Au-
tomated Deduction, pages 647-648. Springer-Verlag, 1990. Lecture Notes in
Artificial Intelligence No. 449. Also available from Edinburgh as DAI Research
Paper 507.

[Bundy et al 93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill.
Rippling: A heuristic for guiding inductive proofs. Artificial Intelligence,

16 REFERENCES

62:185-253, 1993. Also available from Edinburgh as DAI Research Paper No.
567.

[Dummett 77] M. Dummett. Elements of Intuitionism. Oxford Logic Guides. Oxford
Univ. Press, Oxford, 1977.

[Feferman 62] S. Feferman. Transfinite recursive progressions of axiomatic theories.
Journal of Symbolic Logic, 27:259-316, 1962.

[Gordon 88] M. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis. Kluwer, 1988.

[Kreisel 65] G. Kreisel. Mathematical logic. In T.L. Saaty, editor, Lectures on Mod-
ern Mathematics, volume III, pages 95-195. John Wiley and Sons, 1965.

[Lopez-Escobar 76] E.G.K. Lopez-Escobar. On an extremely restricted w-rule. Fun-
damenta Mathematicae, 90:1569-72, 1976.

[Mitchell 82] T.M. Mitchell. Toward combining empirical and analytical methods for
inferring heuristics. Technical Report LCSR-TR-27, Laboratory for Computer
Science Research, Rutgers University, 1982.

[Nelson 71] G.C. Nelson. A further restricted w-rule. Colloguium Mathematicum,
23, 1971.

[Plotkin 69] G. Plotkin. A note on inductive generalization. In D Michie and
B Meltzer, editors, Machine Intelligence 5, pages 153-164. Edinburgh Univer-
sity Press, 1969.

[Prawitz 71] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor,
Studies in Logic and the Foundations of Mathematics: Proceedings of the Sec-
ond Scandinavian Logic Symposium, volume 63, pages 235-307. North Holland,
1971.

[Rosser 37] B. Rosser. Godel-theorems for non-constructive logics. JSL, 2(3):129-
137, September 1937.

[Rouveirol 90] C. Rouveirol. Saturation: Postponing choices when inverting resolu-
tion. In Proceedings of ECAI-90, pages 557562, Stockholm, August 1990.

[Schiitte 77] K. Schiitte. Proof Theory. Springer-Verlag, 1977.

[Schwichtenberg 77] H. Schwichtenberg. Proof theory: Some applications of cut-
elimination. In Barwise, editor, Handbook of Mathematical Logic, pages 867—
896. North-Holland, 1977.

[Shoenfield 59] J.R. Shoenfield. On a restricted w-rule. Bull. Acad. Sc. Polon. Sci.,
Ser. des sc. math., astr. et phys., 7:405-7, 1959.

REFERENCES 17

[Takeuti 87] G. Takeuti. Proof theory. North-Holland, 2 edition, 1987.

[Tucker et al 90] J.V. Tucker, S.S. Wainer, and J.I. Zucker. Provable computable
functions on abstract-data-types. In M.S. Paterson, editor, Automata, Lan-
guages and Programming, pages 660-673. Springer-Verlag, 1990. Lecture Notes
in Computer Science, vol 443.

[Yoccoz 89] S. Yoccoz. Constructive aspects of the omega-rule: Application to proof

systems in computer science and algorithmic logic. Lecture Notes in Computer
Science, 379:553-565, 1989.

