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Abstract

Computing systems have changed rapidly since the first graphical user interfaces were developed.
Hardware has become faster and software architectures have become more flexible and more open; a
modern computing system consists of many communicating machines rather than a central host.
Understanding of human-computer interaction has also become more sophisticated and places new
demands on interactive software; these include, in particular, support for multi-user applications,
continuous media, and ‘ubiquitous’ computing. The layer which binds user requirements and
computing systems together, the user interface, has not changed as quickly; few user interface
architectures can easily support the new requirements placed on them and few take advantage of the
facilities offered by advanced computing systems.

Experiences of implementing systems with unusual user interfaces have shown that current window
system models are only a special case of possible user interface architectures. These window systems
are too strongly tied to assumptions about how users and computers interact to provide a suitable
platform for further evolution. Users and application builders may reasonably expect to be able to use
multiple input and ocutput devices as their needs arise. Experimental applications show that flexible
user interface architectures, which can support multiple devices and users, can be built without
excessive implementation and processing costs.

This dissertation describes Gemma, a model for a new generation of interactive systems that are not
confined to virtual terminals but allows collections of independent devices to be bound together for the
task at hand. It provides mediated shared access to basic devices and higher-level virtual devices so
that people can share computational facilities in the real world, rather than in a virtual world. An
example window system shows how these features may be exploited to provide a flexible, collaborative
and mobile interactive environment.
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Part I. Introduction

The general acceptance of graphical user interfaces has dramatically changed over the last ten years. .
Window systems used to be limited to high-performance workstations or unusual personal computers,
but now few desktop machines are sold without one and staid corporations are investing in X
terminals. The decrease in cost and size of computers, with the related increase in performance,
allowed the development of the personal computer in the late 1970’s—the computer was relegated to
being the servant of the user, rather than vice-versa. Processing power became sufficiently cheap that
a computer could be dedicated to a single user, without the need for time-sharing, and a large part of
that power could be allocated to providing graphical user interfaces which are more accessible than

command line interpreters.

Networked window systems were developed in the 1980s to provide common mechanisms for
distributing graphical applications; users could easily run the body of an application on one host and
its graphical interface on another. This is now regarded as the normal means of interacting with a
workstation, but most implementations embed the assumptions about computing systems and human-
computer interaction of that time into their architecture. For example, workstations and displays are
seen as large, expensive devices which are installed on a desk with a mouse and keyboard and, while
many people may use a display in turn, only one person may do so at a time. Similarly, a common
unspoken assumption is that the user interface layer is to help an individual interact with a computer
system and that people who need to work together may do so through the computer, rather than the

computer providing part of a larger collaborative environment.

These assumptions may no longer be valid. Lightweight, portable displays with tetherless
communications challenge the assumption that displays need to be large and desk-bound, forcing
users to fit all their activity onto one or two screens. Faster networks, with predictable message
delivery times, and process scheduling which allows more control over end devices mean that devices

and processors need not be so closely bound together to provide interactive response times.

A decade of experience has also seen improved understanding of how people work with computers,
particularly in groups. The assumption that applications and interfaces need only cater for a single
user is now less tenable. Even some explicitly single-user applications, such as the spreadsheet, turn
out to be used by groups in practice. Experimental synchronous groupware applications show that
single-user assumptions in networked window systems make multi-user facilities, such as tele-
pointers, difficult to implement; they also show that group activity is dynamic and so can be hindered
by an inflexible infrastructure. While virtual realities demonstrate increasingly complex modes of
interaction with a computer, another approach is to distribute computing power around the user’s
environment—providing many interconnected devices each of which may represent a particular user
activity. Thus, people can work together by sharing devices in their physical world rather than the

computer’s virtual world.
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These trends suggest that existing software architectures will no longer be appropriate in the light of
more sophisticated user needs and of technical developments which allow the connections between
system components to be more flexible. It is necessary and feasible to develop more open user
interface architectures which support: dynamic grouping together of interactive devices, dynamic
association of users with device groups, devices shared between users, applications which can accept

and distinguish between input from many sources, continuous media, and mobile devices.

This dissertation proposes such an architecture, the Graphical Environment for Multiple users and
Multiple devices Architecture (Gemma), in which all the components of a user interface may be
distributed and shared. Gemma then provides mechanisms for collecting low-level devices into

higher-level abstractions.
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1. Dissertation structure

The dissertation is divided into four parts. After this introduction, I present a survey of the current
state of user interface software. This shows that new types of application have been stretching the
limits of existing architectures, while recent developments in computing systems have not been
exploited in the user interface. Squeezed between new demands and a shift in technology, user
interface architectures need to become more open and to embed fewer assumptions about how people
and computers interact. The virtual reality community has been addressing these issues but its
emphasis is on embedding people in a virtual world, whereas Gemma is intended to support

computing devices embedded and shareable in the user’s world.

Part III presents several experiments which motivated Gemma and contributed to its design. The first
chapter describes two separate experiences with the X Window System and shows how X’s
assumptions about user interfaces make it an unsuitable platform for applications which do not share
those assumptions. The next chapter describes the Multi-device Multi-user Multi-editor (MMM)
which demonstrated that the hegemony of the notion of the personal computer is needlessly
restrictive; people can share an interface as well as the data in an application. Finally, the Double
" Digital Desk (DDD) showed that it is possible, and sometimes necessary, to distribute the components
of a user interface. The DDD prototyped various features of Gemma such as networked, shareable
devices and applications pulling together devices as they need them; it also showed what sort of

infrastructure is needed to support such an environment.

Finally, Part IV describes Gemma itself. The first chapter presents the motivations for Gemma,
defining the types of user interaction it is intended to support and the architectural features required to
support them, and relating them to the experimental work described in Part IIl. The next chapter
describes low-level Gemma, showing how basic user interface components may be made available
across a network and shared, how different aspects of a device may be revealed to different clients,
and how continuous media may be managed. The sw window system is an example of how low-level
Gemma may be used to provide a highly flexible interactive system which allows people to interact
with dynamic collections of devices, rather than individual workstations. The discussion chapter
shows how several example applications, including MMM and DDD, would benefit from being
implemented over Gemma; the chapter also presents two examples, naming and persistence, of issues
which are unresolved in the current design of Gemma. The final chapter summarises the conclusions

of the dissertation and suggests directions for further work.




Part II. Users and Computers: the Current Status.

User requirements and computer systems have been changing faster than the layer which binds them
together—the user interface. Much of this can be attributed to the foresight of those who designed the
most popular window systems, some to the efforts of those who found ways of implementing advanced
applications over those window systems, and some to the influence of commerce. This part presents a
survey of current distributed user interface architectures and describes how new user requirements and

new computing infrastructure are challenging the assumptions on which those architectures are based.

Chapter 2 describes some of the user interface facilities that human-computer interaction research
shows will be required. Chapter 3 describes approaches to building synchronous multi-user
applications and shows how these are hindered by current window system designs. Chapter 4 surveys
current trends in networks, operating systems and mobile computing which are not yet being widely
used in user interface implementations. Chapter 5 surveys current user interface architectures and

discusses the trade-offs made in different designs.
The lessons drawn from this survey are that:

s research into human-computer interaction is generating requirements that current user-interface
architectures cannot easily support. These include multi-user applications, continuous media, and
“Ubiquitous” computing;

e computer systems are becoming faster, more flexible and more open, but few user interface

architectures have as yet taken advantage of these facilities; and,

e the issues in existing window systems are well understood, but work in virtual realities has shown

other approaches to building user interfaces.
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2. User Interface Requirements

2.1. Introduction

Much of the foundations of current window system architectures was laid by the mid-1980’s. As the
technology has become established and widespread, researchers have experimented with more
demanding applications and acquired a more sophisticated understanding of their use. This, in turn,
has led to new requirements that stretch the limits of current window systems, so it is time to look
again at window systems and consider what facilities should be included in the next generation. This
chapter presents some current work in human-computer interaction which points away from the

single-user workstation approach.

2.2. Computer Supported Cooperative Work

After almost 10 years with a distinct title, there are still arguments over a definition of Computer
Supported Co-operative Work (CSCW), see Bannon and Schmidt [Bannon91], for example. It is
clear, however, that the implementation of any computer system involves social issues. As pointed out

in [ANSAB89]:

All of the events and interactions which take place in a distributed system have an effect on other
parts of the system and, in particular, on other users. These events and interactions are, therefore,
social in nature. Information systems do not simply provide a single user with a piece of

technology; they provide a medium for interacting with other people.
Bannon and Schmidt isolate three factors which distingnish CSCW from other systems:

e articulating the co-operative work: CSCW systems must benefit group activity by making it
easier, or more fruitful, for example. This implies that the application must take on some of the
burden of administering, in the widest sense, the group. This "administration” may range from
the creation of group artefacts and the relations between them (manipulating shared objects), to

explicit message filtering and archiving (project management tools).

o sharing an information space. it is clear that people must have access to common information if
they are to co-operate. It is also clear that, in many cases, people are the common information
space. An example is the USENET UNIX "Gurus" group where the skill and experience of a

software community is available for the cost of the occasional contribution.

o adapting the technology to the organisation, and vice versa: CSCW systems cannot exist outside
an organisation, however ad hoc the organisation or the system. By definition, the design of
CSCW systems must include some model of the intended group of users, whether the model is

adapted to the users, or the users to the model.

It can be argued that there is a thread in the development of Computer Science which represents an

expansion of the sphere of interest: from the focus on hardware in the earliest days, through interest in




2.3. Single-user/multi-user 7

technical staff which gave rise to "automatic" programming languages, to interest in individual users

which produced the direct manipulation interface. As Moran writes [Moran81]:

A system does not, alas, terminate at its terminals—users are attached. The user is one of the
critical components determining whether the system as a whole—the human-computer

system—works or not.

CSCW can be said to represent a further expansion of interest to include the environment, social and
otherwise, in which individual users work. While many CSCW applications do not require advanced
user interface technology—messaging systems still work on text terminals—the following sections

discuss those which do make greater demands on their infrastructure.

2.3. Single-user/multi-user

An example of how CSCW consists of more than the technology is the shared use of single-user
applications. Nardi and Miller [Nardi90] studied spreadsheet use and found that many spreadsheets
are developed by more than one person and that people were aware of the co-operative nature of the
development process. In addition, the emphasis on end-user programming supports the sharing of
both programming and domain expertise. Programming expertise is shared in two ways: first, end-
users become the main developers, building the bulk of a spreadsheet to which expert programmers
contribute difficult code. Second, less experienced users informally learn from expert programmers
by, for example, inquiring about a detail in someone else’s spreadsheet. Domain experts no longer
specify applications for programmers to build, rather they build their own applications and are

assisted by programmers who supply training and pieces of complex code.

In an analogous study, Mackay [Mackay90] studied how people in an organisation customised an
application and how those customisations were shared. She found three levels of customisation: first,
technical staff explore the structure of the software, and make customisations they find interesting
available throughout the organisation. A second group of translators—end users with more interest
than their colleagues in the details of their software—create simplified and more task-specific custom-
isations, Third, most users have not enough time or interest to perform more than the simplest
customisations and so copy those provided by the technical experts and translators, even when not
entirely suitable, so some customisations may survive for long periods within an organisation despite

containing errors or inefficiencies.

The lesson for software providers is that, apart from delivering their products with a well-tested set of
defaults, they need to provide tools to help with sharing customisations. One lesson for those
developing user interface architectures is that people may need to collaborate closely regardless of the

intentions of the software designer.
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2.4. Desktop conferencing

2.4.1. Introduction

Connecting remote users together via shared applications seems to have been an obvious application
of networked workstations with interactive graphics; examples date back to the Augmented Human
Intellect Center in the early 70’s [Engelbart88]. How to do it well is less obvious. Ellis et al [Elis91]

list several features which characterise many multi-user applications:

e shared context—a set of objects where the objects and changes made to them are visible to a set of

users.

® yiew—a representation of some or all of the shared context. Views may differ in their presen-

tation of the same data, or the part of the shared context they represent.

®  group window—a set of similar windows on different users' displays; changes made to one are

reflected in the others.
® session—a period of synchronous interaction, such as a meeting or informal interaction.

® role—a set of privileges and responsibilities attributed to a person or system module. These may

or may not be formally built into the system.

® tele-pointers—a cursor which appears in the corresponding position on more than one display
and can be used for gesturing. This might also include annotations which allow users to sketch

over a shared application or image.

Two approaches were described by Lauwers and Lantz [Lauwers90a]: collaboration transparent
architectures take single-user applications and filter their input and output to allow them to be shared
without alteration; collaboration aware architectures are explicitly written for simultaneous use by
several people and are able to distinguish between different sources of input and destinations for
output. A second issue as to whether the architectures of multi-user applications should be centralised

or replicated is discussed in chapter 3.

2.4.2. Collaboration transparency

Investment in existing software, both financial and personal, means that users may wish to share
single-user applications. Terminal linking exists in some time-sharing systems, and the Colab
[Stefik87] included video switches which allowed users to watch someone else’s display, although
input was not switched. Distributed window systems, however, provide a natural mechanism for
window sharing by tapping into the connection between application and display. Several new
components are required when an application is shared: the output must be multiplexed to all the
clients, which may involve mapping output data for different display server characteristics; there must
be some arbitration or floor control, however lightweight, between different input sources to avoid
race conditions; a registration manager is required to allow users to join and leave an existing

conference, and to make the address of the conference known to other users; the current state of the
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conference may be held somewhere so that new users can be brought up to date when they join; users
may wish to move or resize the conference window independently of the other users or they may wish
their views to be tied together, so workspace management policies are required; conference logging
may be useful for providing latecomers with history or recording the session for analysis or legal

reasons; and a user interface is needed to allow users to control the conferencing components.

Floor control is an example of the issues that arise from application sharing; policies may range from
open access to strict chalk passing. Lauwers and Lantz [Lauwers90a] isolate three characteristic

dimensions:

s the number of floors—per conference, per application, or per window;
¢ the number of people who can hold a floor at the same time; and,

¢ how the floor is passed between participants.

Some systems have a policy built in: Matrix [Jeffay92] users metaphorically “pass the keyboard”
around and VConf [Lauwers90] required the current floor holder to explicitly release control. As Gust
points out in [Lauwers90a], however, the most suitable floor control policy may vary with the activity
of the group from open-floor “brainstorming” to serial access for record taking. Altenhofen
[Altenhofen91] and Greenberg [Greenberg91] separate the setting of floor control policy from its

interpretation so that the group can dynamically change the policy.

There are, however, limitations to collaboration-transparent approach, summarised in [Sarin88]: all
users must share a single context, such as the insertion point; private views (as against private
windows) of shared information are not supported; there may not be suitable support for transfer of
application information between the shared and private spaces, such as copy and paste; and access
control is limited, users must either be restricted to shadowing the current view, or be allowed to do
everything. If these limitations are significant, it is necessary to write a multi-user application which

is aware of the participants in a session.

2.4.3. Collaboration awareness

In collaboration-aware systems, the multi-user part of the architecture has access to the contents of the
application, whereas collaboration-transparent systems only have access to the input and output
streams. Collaboration-aware systems can also distinguish which user performed an action and so
manage concurrent streams of input and output. This allows a much finer grain of activity, access per
data object rather than per display, so that different users can safely manipulate parts of the shared

context in parallel.

There are a number of real-time shared editors. Grove [Ellis91], for example, is a distributed outline
editor which allows users to see and manipulate one or more views of the shared text being worked
on. It maintains a distinction between a view, a subset of the items in the outline determined by the
read access privileges, and a viewer, a group window for seeing a contiguous part of a view. Views

and viewers may be restricted to one user (private), a set of users (shared), or visible to everyone
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(public). Group windows provide synchronous shared viewers for a set of users and show a list of
currently active users along the lower border of the window so that people can tell who is participating
in the session. In use, working in one's own office meant that information access was improved as
people could refer to books and papers at hand. The limited range of social cues in a distributed
session meant that parallel activity was easier as people could drop out for a while without offending
the group but that people had to work harder to maintain the meeting; for example, turn-taking had to
be more explicit to avoid confusion. Similarly, the parallelism within the editor meant that sessions
could be confusing and unfocused but that co-ordinated activity was more efficient and there was less
information loss than if one person alone was entering data. Finally, tutoring became a natural side-
product of a shared environment as there was always someone at hand who could see what one was
doing.

There are also shared virtual realities. The MultiG Distributed Interactive Virtual Environment
(DIVE) [Fahlén93], for example, is investigating the use of presence and proximity in a 3-
dimensional space to allow users to interact with tools, services and other users in a distributed
environment. Each participant in the space is represented by a 3D icon with an aura—a geometric
volume around the icon. A user establishes communication with a tool or another user by moving her
or his icon until the auras intersect; for example, users can set up a voice connection by moving their
icons together. Tools can also be used to mediate between users. The conference table, for example,
allows users to meet and have a discussion; a user establishes communication with others present at

the table by entering the table's aura.

2.4.4. Summary

Desktop conferencing is increasingly being promoted as an aid to remote collaboration, although most
current commercial systems support only collaboration-transparent sharing for personal computers.
The search for the best group user interface, however, has shown that groupware needs to be flexible,
as the dynamics of a group may change constantly during a session. Beck and Bellottii [Beck93], for
example, describe how individuals joined, performed multiple tasks and left a team writing a paper
together. Computer system infrastructures, including window systems, need to be flexible enough to

support dynamic collaborative applications.
2.5. Continuous media

2.5.1. Introduction

Audio and video are becoming commonplace components of interactive user interfaces, although
much current video is taken from storage, such as CD-ROM, local to the display machine.
Researchers, however, have been developing and finding uses for network video as a means of
bringing people and objects together. Many of the experimental systems, such as the Touring Machine
[Bellcore93] use analogue video with digital control, but fully digital systems, such as Pandora

[King92] and Mermaid [Ohmori92], are becoming more established. This section describes some uses
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of continuous media, video in particular, and the demands they place on the user interface

architecture.

2.6.2. Media spaces

One of the lessons of CSCW is the importance of informal communication for building teams of
people, see [Kraut88] for example. Some researchers have been exploiting video and audio to link
parts of a team split across sites, a media space, where “people can create real-time visual and
acoustic environments that span physically separate areas” [Stults86]. A media space node in an office
generally consists of a microphone, loudspeaker, video monitor and camera which can be dynamically
linked to the corresponding devices on other nodes, so two people who work together might establish

a long-term video link to “share” offices even when separated.

Bly et al [Bly93] found a number of uses of their media space. In particular, awareness—passively
acquired knowledge about who is around and what they are doing—encourages informal interactions,
spontaneous connections between people and the development of shared culture. Portholes
[Dourish92] is a low bandwidth system which periodically (every 10 minutes) grabs images from
offices and public areas into a distributed database. Members of the group can display these images on
their workstations, updating the display as the images change. Experience with Portholes suggests
that it helps to maintain working relationships within a group split over two sites; communication
between remote colleagues increased after the system was installed. The media space supports normal
social activities which are difficult at a distance such as chance encounters with colleagues in a third
person's office, or locating people by seeing them walk though a public area. The media space also
provides flexible support for more formal activities such as video recording and playback of meetings
and broadcasting presentations. Social activity over a media space can, of course, be subtly different
from the same activity face-to-face; while the media space forms of communication are more limited
than direct contact they can also be less intrusive and are less inhibited by physical constraints
[Gaver92]. A number of media spaces are summarised in [Bly93] each of which differs in architecture
and approach. As with many CSCW projects, each media space evolved out a combination of the

culture, experience and technology of the group that commissioned it.

Media space research shows that there is a real use for widespread audio and video, but that the
infrastructure to support it needs to be flexible enough to support multiple patterns of use and to

support lightweight activity.

2.5.3. Mixing Graphics and Video.

A number of researchers have been experimenting with user interfaces that mix digital graphics and
video images to support collaboration, Tang and Minnenman [Tang90] aligned two analogue video
systems to experiment with a shared drawing surface. TeamWorkstation [Ishii90] merged digital
graphics and analogue video so that a user could, for example, annotate a digital image by drawing on

a piece of paper underneath a video camera. A later development, ClearBoard [Ishii92], uses two
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drawing surfaces with back-projected video and a shared drawing application; each video display
shows the head and shoulders of the person at the other drawing surface, aligned so that both people
can see what their partner is looking at and where they are working. Hodges et al [Hodges89] allowed
users to navigate through a stored video training session by using the mouse to select parts of a screen.
For example, a user could phone a character in a drama to teach French by pressing the digits on a
telephone in an image of a desk. Tani et al [Tani92] provide real-time “direct” manipulation of
remote real-world objects by superimposing digital control objects on a video of real control objects; a
user can press a real button on a remote machine by clicking with a mouse on its image in a video
view. Feiner et al [Feiner93] went further by using a head-mounted display to superimpose digital
information on objects in the real world as the user moves around them. Pagani and Mackay
[Pagani93] examined the use of a video connection between design and manufacturing sites and noted
that the users were frustrated by the lack of telepointing or annotation when using video to discuss a

physical object.

There are difficulties, however, in mixing media with different characteristics, highlighted in
[Ishii90]. The different media can be difficult to align and keep aligned should a camera or a drawing
surface be moved; this also makes scrolling problematic. Storage requirements also differ: digital
drawing packages are unlikely to keep time-based histories of a session, but storing a session only as a
video sequence discards information about the structure of the drawing. These problems should
diminish as audio and video are increasingly transmitted digitally, and so become more tractable, but
they highlight the need for integration between different media. For example, while many are still in
use, document processors which do not integrate text and graphics are now regarded as primitive, and

even video segments can now be inserted into commercial word processors.

2.5.4. Summary

This section describes two example types of use of continuous media, concentrating on video. Media
spaces provide a mechanism for holding dispersed groups together. They demonstrate one role for
widespread digital audio and video, providing a flexible mechanism for people to establish
connections with each other without special cabling. The rest of the section describes several
experiments in using digital overlays to augment the use of video, particularly for interacting with
people or objects at a distance. These show the need to be able to integrate and co-ordinate different

media within a display system.
2.6. Not Just Workstations

2.6.1. Introduction

There is, of course, much speculation about how people will interact with computers in the near
future. Rashid, for example, points out that current children’s toys include the most powerful micro-
processors of ten years ago, so today’s fastest processors may be equally widespread in another ten

years [Rashid93]. This implies that everyday devices will have powerful (by current standards)
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processing abilities to interpret our input and provide feedback. The two articles summarised in this

section present visions of how people and computers may interact in the not-too-distant future.

2.6.2. Ubiquitous Computing

Weiser [Weiser91][Weiser93] describes a computing environment made up of many input and output
devices, which are portable and range from the hand- to the wall-sized. They will know where they
are, and who is in the room, and be able to adjust their displays accordingly. Rather than stacking
virtual windows on a desktop metaphor, users will have many cheap and compact display pads which
they can spread on their physical desktop (or floor), dedicating pads to particular tasks as paper and
folders are at present. Rather than shrinking a window to an icon, users can shrink a window to a
palm-sized tab display which can then represent the task which was being displayed in the window.
The tab can then be arranged with other tabs or taken to another office where the task can be
unpacked again. Wall displays will provide larger surfaces to work on and share discussions (see
[Pedersen93]); they can also be used as notice boards which tailor their display to those present in

front of it. All these devices will be bound together by ubiquitous wireless communications.

As Weiser points out, this has significant implications for operating and display systems. In
particular, the devices in a given room will not remain stable, or always visible to the infrastructure,
so the level of software which binds them together must be able to cope with intermittent devices.
Similarly, the display system will need to support tasks moving between devices which may be of

different sizes and use different communication systems.

2.6.3. Next Generation Interfaces

Nielsen [Nielsen93] proposes that the next generation of user interfaces will involve a wide range of
technologies: virtual reality, sound, artificial intelligence, video, pen-based, portable, and so forth. It
is unlikely that a single approach will be able to support all of these, unlike the current “Windows,
Icons, Menus, Pointer” (WIMP) hegemony. One trend he outlines, however, is a move towards
computational environments of data objects which manage their own interactions; so users see
documents with embedded components, rather than one application or another. For example, “dumb”
file systems should be replaced with a generalised information space containing a large number of
data objects. A user’s view of the information space depends on the mechanism chosen to gain access
to it; for example, Rao et al [Ra092] describe retrieval-centred workspaces. Nielsen raises a number
of dimensions which may change in future interfaces; three are relevant to the “window-system” level

of infrastructure:

¢ increasing use of multi-threaded input and output, such as a combination of voice and a pointer,
which avoids overloading functions onto narrow bandwidth devices like mice and reduces the

possibilities for ambiguity; Nigay and Coutaz discuss this further [Nigay93].
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e more parallel activity between user and computer, rather than current turn-taking dialogues. An
example is the Alternative Reality Kit [Smith87], a physics simulation in which the objects on the
screen move subject to their virtual mass and momentum even while the user is engaged in other
activity. This issue also arises in multi-user editors where one user’s view may be changed by

another user’s activity.

¢ moving away from the interactive terminal (textual or graphical) as the primary medium for
interaction. Nielsen looks towards mobile devices, location sensors, input by gesture recognition,
toy animals as input devices and so forth, all of which break the assumption of the desk-bound
computer. One mundane, but practical, example is a supermarket chain which uses wireless bar-
code readers, connected to the company’s inventory database, to allow its staff to do stock control

at the display shelves rather than in an office [Economist93].

2.6.4. The Pad model

An example of how user interfaces might develop away from conventional workstations is the Pad
model [Perlin93] in which Pad Objects all inhabit an infinite two-dimensional Pad Surface. Pad
Objects are divided into graphics and portals: a graphic is any kind of mark such as a bitmap or
vector, whereas a portal is like a magnifying glass which can roam and peer into parts of the Pad
Surface, including other portals, at arbitrary levels of magnification; the user’s screen is treated as a
special root portal. The Pad model also provides several techniques to allow users to customise their
view of the Pad Surface. The significance of Pad for user interface architectures is that it is based on a
persistent object space which can be shared between devices and users, unlike conventional window
systems where a window or icon only exists on one user’s screen. As the authors point out, the Pad
model is more suitable than the WIMP approach for an environment containing many display surfaces

as it places the user in a information landscape which is not tied to any particular machine.

2.6.5. Summary

Both Nielsen and Weiser see a move to people using many more devices which support a wider range
of interactions. In many cases, the distinction between a device and the service it provides will
diminish as devices become cheap and powerful enough to dedicate to a particular task. This implies,
on one hand, that no single paradigm, such as WIMP, will be sufficient for all these devices; the Pad
Model shows an example of an alternative approach. On the other hand, there will be a need for a
common infrastructure to bind these devices together as the user’s activity requires. These
developments also raise interesting questions about the “ownership” of devices—from hand-held

portable devices to common wall displays.

2.7. Summary

This chapter discusses some current work in human-computer interaction which suggests that the
assumptions on which many current interactive systems were built are beginning to prove inadequate.

In particular, the individual user sitting at a terminal driven by an individual machine (real or virtual)
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is proving to be only a special case of how most people work. Not only are single-user applications
turning out to support multiple users in practice, but multi-user applications are becoming
increasingly common, We are also seeing a move towards integrating isochronous media, particularly
digital video, into user-interfaces to help bring disparate groups together, especially when combined
with end-user annotation. Finally, some researchers are looking towards computer intelligence
embedded in the world around us, rather than manacled to the desktop. Instead of a single device onto
which we overload all our computing activity, we will have many devices for which we will have a
wide variety of uses. Some devices will belong to a particular person and task, whereas others are for
public use but can be customised for those present at the time. Interactions may become less static as
software agents perform tasks for us, reporting to us as results appear, and multiple modes of

interaction will widen the bandwidth between user and machine.

The implications for window-system design are that we can make fewer assumptions about how
people interact with computers and that application writers need support for more flexible and
complex applications, with a less predictable dialogue between person and machine. There are new
media and interaction techniques which need to be integrated into user interface architectures, and

people will need mechanisms to draw together collections of the proposed myriad of devices.
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3. Architectures for Synchronous systems

3.1. Introduction

An example of the way current user interface architectures are being stretched is the number of
synchronous multi-user applications which have been implemented. Collaboration-transparent and
collaboration-aware applications, as defined in the chapter 2, require different implementations. A
collaboration-transparent application is not aware of being shared, so the distribution must be done in
the display system: window sharing. Distribution for collaboration-aware applications, however, takes
place within the application—they are multi-user applications. This chapter describes some example

systems which provide synchronous multi-user applications.

3.2, Window sharing

Window sharing can be done in several places. First, the display servers can communicate, as in
Shared X [Gust88] (Figure 3-1). The advantages to this approach are that the sharing mechanism has
full access to the server state, and that a separate window-sharing protocol extension can be used
without altering the core graphics protocol. It is also used for sharing single-user window systems
such as Timbuktu for the Apple Macintosh, The disadvantage, however, is that alterations must be
made to the display server, which is the most device-dependant component, and its source code may

not be available.

Figure 3-1. Window sharing in the display server.
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A second approach is to insert a pseudo-server between the application and the actual display server
(Figure 3-2). The pseudo-server maintains the state of a virtual display and filters input and output
between the client and multiple displays; examples include Matrix [Jeffay92] and XTV [Abdul-
Wahab90]. Matrix, in fact, creates a virtual X server above the real X server, so that users may even
run, and share, a window manager in their pseudo-server as well as their normal applications. This
approach allows the use of unaltered applications but may require the pseudo-server to store much of
the state of the application and there may not be enough information in the core protocol to map data
such as images across heterogeneous display servers. Furthermore, applications must be started with

the pseudo-server as it cannot be introduced later.
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Figure 3-2. Pseudo-server between application and display servers.
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A third approach is to alter the client-side library, the standard low-level programming interface
(Figure 3-3). This solves some of the above problems, as the shared library has access to the state of
the client, but client applications must be relinked with the new library and the library still has to
support common data on heterogeneous displays. Altenhofen’s approach [Altenhofen91] is to limit the

display to those facilities provided by the least powerful server being used.

Figure 3-3  Integration in the client library.

Application

Server X Server Y

§\\\\\\ \

\é\

&)

Finally, a hybrid approach is to replicate the application at each site but distribute the input so that
each display looks the same. This was used in VConf [Lauwers90] which took advantage of the
separation of input and output streams in the architecture of the TheWA window system (Figure 3-4):
input devices are managed by a TheWA-in process, whereas output is managed by a TheWA-out
process. Each host has a Conference Agent which routes input under the direction of a common
Conference Manager; input is accepted from only one TheWA-in at a time and broadcast to all the
members of the conference. Only events which affect the state of the application are broadcast, as
against events which are local to a particular host; Mermaid [Ohmori92] makes a similar distinction.

Each copy of the application, however, communicates directly with its local TheWA-out.
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Figure 3-4. Replication of input for VDraw in TheWA window system.
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Sharing a single-user application by distributing its input and output must require compromise as it is
an unanticipated use of the software. The consensus appears to be that distributed window systems use
the pseudo-server approach, as this requires the least change to existing software and workstations are
now powerful enough to support the extra computation required. Single-machine window systems,
such as Timbuktu, tend to distribute events between servers, as the division between application and

graphics system is not so easy to intercept.

3.3. Multi-user applications

Patterson [Patterson91] argues that there are three main implementation dimensions in which single-

user applications differ from multi-user applications:

®  Concurrency: single users schedule their actions in predictable ways—they are unlikely to press
two buttons at once—and they will tolerate delays resulting from their own actions, but multiple
users introduce a new level of unpredictability into the dialogue between user and application and
delays introduced by others are seen as system delays. This implies that pre-emptive scheduling is

needed in at least part of a shared application to handle the interaction dialogue of each user.

¢  Abstraction: the separation of underlying information structures from their display is a user
interface commonplace. This can be ignored in some single-user systems to make development
easier but is impossible where several people are to view the same abstract object. On the other
hand, the need for multiple views provides a focus for distinguishing data structures from their

views and makes the discovery of abstractions easier.

® Roles: any multi-user system will need to characterise different users, including their access
rights and preferences. Aspects of this characterisation may not be visible to the users and may be
changing dynamically—as Beck and Bellotti point out, the membership of a group may be
constantly changing—but a shared application may need to tailor users’ views of the underlying

data to suit their roles.

A synchronous shared application must distribute its input and output but there is a long-standing
discussion about how this should be done, particularly over the extent to which the components of the

software should be replicated at each site. Replication can reduce network traffic and improve
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response times by managing output on the user’s local processor but centralisation avoids problems of

inconsistency between sites.

An extreme case of centralisation is Commune [Bly90] which is driven by a single processor. More
commonly, a central application drives windows on several personal computers, as with WScrawl
(described in [Greenberg92])..The users” computers provide the window system, but the central
process must handle all user interactions: refreshing exposed windows, popping-up a user’s private
menu, and so on. In addition, a single-threaded application may block everyone if one site suffers
delays. The next step is to maintain a central store for the underlying data but manage the user
interaction on the users’ machines. For example, the Abstraction-Link-View [Hill92] approach for the
Rendezvous architecture [Hill93] uses constraints to link the shared abstraction and view components,
The abstraction provides centralised access to the shared underlying information, whereas a view
presents the information to the users so they can modify the information or its display. Views of the
same information can, of course, differ from each other, the same numbers might be displayed as a
table or graph. Links are bundles of constraints which maintain consistency between an abstraction
and its views, they work in both directions and so provide inter-process communication. Thus, when a
user changes a value in a view, the link updates the value in the shared abstraction; the other links to

the abstraction, in turn, then update their views.

Bentley et al [Bentley92] take this partition a step further. A User Display has three components: a
selection is a set of entities which are dynamically chosen from the information store according to
selection criteria, such as all the aeroplanes in a given sector; a presentation is a set of views to
represent the entities in a selection—the view used depends on presentation criteria, so aeroplanes at
different heights may be shown by different symbols; and a composition is a set of positions which
represent the spatial arrangement of the views in the user display, subject to composition criteria, so a
list of aircraft may be ordered by landing time. User Display agents keep User Displays consistent
with the shared information space they refer to. To present the same User Display on several screens,
Surrogate User Display agents are available which hold only the current state of the User Display held
by a Master User Display agent!. The shared display state is held by the Master agent, but local

customisation may still be possible in the Surrogate agent.

The next option is to distribute the whole application, running a copy of the same application at each
site. Colab [Stefik87] maintained copies of the database at each site, multicasting events between
them. Colab distinguished three types of operation on a data object: user inputs control the user
interactions, such as a mouse drag, that specify the changes to the database; display actions update the
display following changes to the database; and semantic actions make the actual changes to the

database and are the only operations broadcast. Actions were broadcast optimistically, without a

! confirming the remark often attributed to David Wheeler that the solution to any problem in Computer Science

is another level of indirection.
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centralised controller, on the grounds that clashing operations are rare and can be dealt with socially
by the users. The MultiG TelePresence project [Fahlén93] replicates the state of its virtual world at
each site and uses virtual synchrony [Birman91] to ensure consistency. GroupDesign [Beaudoin92]
exploits its knowledge of the application to allow simultaneous operations on the same object to

proceed if their effects do not clash—for example, changing the colour and location of a rectangle.

3.4. Summary

This chapter describes a number of approaches for sharing applications. Unfortunately, most current
user interface architectures did not consider groupware issues in their designs, and implementers of
multi-user applications must often struggle with the window system to provide the functionality they
need. The architecture of the window system is particularly important for collaboration-transparent
sharing as is shown by the greater difficulty of implementing window sharing over X as against over
TheWA. Collaboration-aware applications could also benefit from direct window system support, or at
least by allowing suitable facilities to co-exist with single-user environments. Navarro et al
[Navarro92] propose an open CSCW architecture that would allow users to assemble a working
environment out of compatible CSCW components as they require; at least one of those components

should be a window system.
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4. Computer Systems Trends

4.1. Introduction

Most current window systems are based on models defined a decade ago, but the infrastructures over
which they operate are changing. One trend is an “opening up” of computer architectures, particularly
operating systems, so that components that once were part of the kernel are being moved into user
space and so made easier to alter or replace. Another trend is the ferocious rise in network bandwidth
which, combined with new techniques for sharing that bandwidth between media, promises to make

continuous media widely available without the need for dedicated hardware or cabling.

A panel session at UIST 1990 [Jones90] discussed the relationship between operating systems and
user interfaces. The participants described facilities they would like to have available to support the
development of advanced user interfaces, including: better support for real-time scheduling, object-
based persistent storage, and interoperability for class libraries and data transfer. Many of these
facilities have been available in research operating systems for some time but are only recently
becoming more widely used. Another interesting issue is the tension between the need for
transparency, to insulate users and applications from the details of a particular operating system or
device, and the need to avoid transparency, for time-critical applications and to help resolve
performance problems. There have been similar discussions amongst the network community about
the difficulties of providing efficient performance when the details of an implementation are hidden in

the protocol stack [Clark90].

This chapter discusses current work in networks and distributed systems which is changing the
assumptions on which current window system designs were based. It then describes a workstation
architecture which exploits such developments and shows how computer infrastructures may change.
At present, few existing user interface systems take full advantage of these technologies, which

suggests that there is an interesting path to be explored.

4.2. Networks

High speed networks are approaching data rates of several Gigabits per second [Wittie91]. To support
time-critical traffic (audio and video) over such networks many groups are experimenting with
Asynchronous Transfer Mode (ATM) (see [Leslie93]). This technique allows users of the network to
make statements to the communication subsystems about the relative importance of various properties
for a given connection (latency, jitter, reliability). For example, when sending video data, it is more
important that the data arrives in time than that all of it arrives reliably, whereas the contrary is true

when sending text.

Until recently, there were two approaches in common use for multiplexing multiple channels over a
single network. In Synchronous Transfer Mode (STM) a frame is transmitted at regular intervals and
each channel is allocated a time slot in that frame. This approach is simple and efficient to

implement, provides guaranteed bandwidth to each channel and, although the costs of allocating slots
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are high, the switching time is minimal; it is typically used in telephone networks for digital voice. It
suffers, however, from inflexibility and expense as the number of channels is bounded by the
hardware and empty slots in one time slot cannot be used by another channel. In Packet Transfer
Mode (PTM) each node decides independently when it wishes to transmit and attempts to monopolise
the network for a time to do so; there is a protocol for resolving contentions when more than one node
tries to transmit at once. PTM networks need minimal set-up time but may have significant switch
time, so it is possible for a pair of nodes to use all of the available bandwidth for a time, but there is no
guarantee of when a packet will arrive. This mode is suitable for data transfer between general-

purpose computers as the traffic tends to be bursty and asynchronous.

ATM represents a compromise between STM and PTM. It is characterised by a fixed cell size,
asynchronous access and bounded access time. The fixed cell size allows fast switching in hardware
and their small size reduces the grain of multiplexing and contention resolution, which reduces delay
and jitter. One major advantage of ATM is that a single cable can carry a wide range of traffic. There
is also an advantage over STM in that a channel does not need to retain bandwidth space when silent,
reducing the cost to the caller and freeing bandwidth for other users. Better control of access to the
medium than PTM means that, when the network is overloaded, packets tend to be queued in the
transmitter, rather than lost in the receiver or a router; in addition, the reduced jitter makes rate-based
flow control easier. On the other hand, the simplicity of the lowest levels makes implementation of the

whole protocol stack more difficult.

ATM becomes useful when a network is shared by many channels with different traffic
characteristics, so there must be a mechanism for arbitrating between the demands of those channels.
Two end-points establish communication by setting up a virtual circuit. A route through the network
infrastructure is associated with the circuit (although the network management may close a circuit) so
packets on a virtual circuit will arrive in the same order as they were sent. Many end-points will need
to establish virtual circuits over common resources which, if unconstrained, may lead to congestion
and so make traffic guarantees impossible. The solution is to require each end-point to describe the
traffic it will offer in a Quality of Service (QoS) specification. QoS may be described in terms of
bandwidth, burstiness and, for multi-service traffic, maximum delay, jitter and cell loss. The routing
mechanism may then determine whether it can honour the connection request or offer one with a
lower QoS; it may also break lower priority connections to free network resources. Thus, an
application can negotiate with the network over a QoS it would prefer and one it is prepared to accept.

Nicolaou [Nicolaou91] describes an application-level language for specifying QoS requirements.

The significance of ATM to application builders and users is that it provides a common infrastructure
for multi-medium communication. Users no longer need special cabling for time-based media so
individual entry costs are lower, particularly as standard workstations become fast enough to support
such media without extra hardware; examples include Pandora [King92] and ViewStation
[Tennenhouse92]. In addition, the Broadband Integrated Services Digital Network (B-ISDN) is to be

based on ATM, providing integration between local and wide-area networks. For example,
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MERMAID [Ohmori92], a distributed multi-media desktop conferencing system, has used ISDN to
transmit video within Japan and ROCOCO [Clark92], a project to study collaborations between
designers, has run a multi-user sketching program between England and Australia. Subject to
hardware limitations, the speed of light (see [Kleinrock92]) and the telephone budget, ATM allows a
user to say something about when a packet will arrive, even if the source and destination are on

different hosts.

4.3. Micro-kernel Operating Systems

The collection of papers in Karshmer and Nehmer [Karshmer91] makes clear the current trend
towards micro-kernel (ukernel) based operating systems. As application demands become more
complex it is decreasingly likely that they can be satisfied by a general purpose, monolithic operating
system. One solution is to build an efficient pkernel which provides processor scheduling, core
memory management, and inter-process communication. The efficiency of a well-written pkernel with
fast inter-process communication, as against calls to kernel procedures, means that services, such as
file systems and high-level communications, can be implemented in user-level processes. For
example, to locate a file, a monolithic operating system like UNIX calls a system subroutine which
runs within the kernel, whereas an application on a pkernel operating system would send a message to
the directory service. In addition, traditional operating systems can be implemented over pikernel
systems so that existing software may still be run; for example, Chorus and Mach support UNIX, and
L3 [Liedtke91] supports MSDOS. Programmers can use conventional operating system services but
also have access to low-level facilities without bypassing the operating system kernel or rewriting

parts of it.

This modularity makes maintenance easier and allows flexibility and specialisation when configuring
a machine. Armand [Armand91], for example, has experimented with user-level device drivers over
the Chorus architecture. The Chorus kernel provides actors (which define an address space) that
contain threads (one or more of which run within an actor) and exchange messages through ports
(destination ports can be on the same host as the source or remote). The storage hardware might be on
a different host from the one the user is working on, but moving the filing subsystem to the storage
host may create a lot of network traffic for requests which do not access the disk—such as operations
on pipes or on cached data. Separating the filing subsystem from the device driver allows the two

parts to run on the most appropriate host (Figure 4-1).
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Figure 4-1. A file subsystem and device driver on different hosts. Many file system
requests can be handled within the File Manager, reducing traffic to the disk
array host.
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A user-level device driver is also easier to share between clients so that, for example, a UNIX-style
file system and a persistent object service on separate processors can have concurrent access to the
same hardware without one being superimposing on the other. User-level drivers are easy to change
dynamically, new types of service can be added without installing a new kernel and so stopping the
processor (as Needham [Needham91] points out, as machine memories grow very large, their state
becomes more valuable and rebooting less acceptable). Finally, communicating with a device through
an actor allows systern servers to run without using privileged instructions, strengthening “firewalls”
between components and making possible user-level debugging of subsystems. The implementers of
L3 also found that user level device drivers and file systems were efficient and flexible. They could
run multiple file systems at the same time and so experiment with different name spaces and access

methods or different versions of the same file system.

The Choices object-oriented operating system [Campbell92] has similar levels of indirection and,
hence, flexibility, Hardware devices are accessed through three major components: the Device object
provides a service for a logical device to other components in the operating system and the
DevicesController provides DeviceObjects with access to the hardware. Only Device objects may be
clients of DevicesControllers; other client types must go through a Device. A Device may control
more than one DevicesController, and several Devices may be clients of the same DevicesController.
The DevicesManager supports changes to devices and controllers. There is only one DevicesManager
object per system; it instantiates DevicesControllers when hardware is added and produces new
Devices objects on request which are then made accessible via the name server. Other objects find
Devices objects through the name server and may then ask for one of a number of interfaces,
according to the level of access they need. Devices and DevicesControllers communicate by passing
typed Command objects, such as FlushOutputCommand, which allows a Device to be used with
different DevicesControllers or different versions of the same DevicesController, without changes to
the two class hierarchies. Although this makes static type-checking impossible, the interface is
internal to the device management subsystem and so causes few problems and is redeemed by its great
flexibility. Similarly, Mapp [Mapp92] has implemented an object-oriented virtual memory system in

which most of the work is done by a user-level object manager. The kernel need not know everything
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about the characteristics of the objects in its core memory and paging policies can be changed by

substituting different object managers rather than rebuilding the kernel.

This partitioning of operating systems into separate components, however, has not been extended to
higher level software. Most current user interface systems are monolithic, assuming a static collection
of devices bound into a desktop terminal, with little opportunity to change the devices or how they are
managed. Modern operating systems show that very little functionality must be embedded in the
kernel and that the assumption of a central unit containing all the devices no longer holds. This
approach has yet to be applied rigorously to window systems. A useful comparison is with distributed
file systems. Few workstation users would accept that they have to restart the machine with a different
copy of the operating system in order to mount a disk, yet that is what is now required for the window

system to add a new input or output device.

4.4. The Desk Area Network

An example of the application of some of these trends is the Desk Area Network (DAN) [Hayter91],
which is an attempt to solve a problem inherent in the traditional interface between workstation and
network. The purpose of carrying large amounts of data across a network is to deliver it to a device or
pfocessor within the end system, so some thought must be given to the transfer of data between the
network interface and the real endpoint of the communication, such as a framebuffer for video data. In
a standard workstation, incoming data is demultiplexed according to information held within the
packet and sent, via the bus, to its internal destination. This locks up various central resources, such
as the bus, during the transfer so nothing else can happen in core parts of the workstation. As
Tennenhouse points cut [Tennenhouse90], current workstations are monolithic externally (a standard
set of devices bound to a box which is assigned to an individual user) and internally (the internal
routing is designed for computation-intensive activity in which only a fraction of the network and

storage traffic within the workstation is intended for the display).
Figure 4-2. A Desk Area Network. Several different devices are connected by a small
ATM network.
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A DAN can be thought of as a small distributed system with devices, such as displays, cameras, and
processors, directly connected to an ATM switch. Figure 4-2 shows a DAN with, amongst other
devices, a framestore and audio device; a synchronisation server (see [Sreenan93]) may be used

between the incoming connection and the output devices to ensure “lip-synchrony” for networked
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digital audio and video. Communication paths within the DAN are considered reliable, so no effort is
made to deal with cell loss or broken circuits, A failure of one component is considered to be a failure
of the whole system, as is the case with a conventional workstation, which greatly simplifies the
protocol software. The small scale of the DAN means that there is not enough traffic to benefit from
statistical multiplexing but, in compensation, this allows the controlling software to be aware of all

the communications demands being made and arbitrate accordingly.

When a DAN is connected to an ATM LAN, the network interface is reduced, in effect, to a switch
which routes packets to the relevant device. The in-band processing, such as header translation and
routing, is greatly reduced and may be implemented in hardware—unlike the demultiplexing step in
conventional workstations. The network interface is also a security boundary and so may be the best
place to provide encryption and decryption services. This approach does not involve passing
continuous data via a common bus or central CPU and so avoids blocking other activity within the
workstation. One can view the DAN as blurring the boundary between workstation and network so
that data connections can be routed, with a user-specified QoS, from end-device to end-device. This is
unlike current window systems in which graphics and control data are transmitted over reliable byte
streams, with unpredictable delivery times, and continuous data have to be sent by another mechanism

(and possibly other hardware) to reach the end-device

4.5. Mobile Computing

Tetherless personal communications have been improving rapidly; Cox [Cox92] describes a range of
communication types, from those limited to within the home to portable satellite dishes, and the
technologies to support them. A number of researchers have been investigating the application of this
technology to mobile computing, Leslie et al [Leslie93], for example, propose a wriststation. Some
have concentrated on infrastructure, for example by implemented an internet protocol for mobile hosts

[Ioannidis93], whereas others have looked at possible new applications.

The Active Badge [Want92] is a small-scale, clip-on tag (weighing 40g) that sends infrared signals to
wall-mounted stations distributed around a site. A badge periodically broadcasts an identifying signal
which is sent by any local stations to a badge database so that the current position of the badge (and,
implicitly, its wearer) is kept up to date. A user may also press a button on the badge to generate an
extra signal which can be sent to clients of the badge service. For example, active badges have been
used with Khronika, a general event-handling service [Lévstrand91], so that users can have their mail
status spoken to them when they click on their badge. The latest version of the badge can also accept

input from the wall-stations to play a short tune.

Xerox PARC are building prototype notepad-sized (Pad) and hand-sized (Tab) portables [Weiser91]
[Weiser93]; they view these as eventually becoming so cheap and numerous that a user can dedicate
them to particular tasks—as cardboard folders are at present (see section 2.6). The Pad uses high-
speed radio links, whereas the Tab uses slower infra-red; both are stylus-based. Such devices are

expected to become most useful when there are very many of them, so that users inhabit an
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environment with many “intelligent” components, rather than being restricted to a single user
interface. As Cox points out [Cox92], a number of media will be needed to support the range of
communication settings (building, campus, region, etc.), and a single network connection to support

all these functions has not yet been developed.

Sheng et al [Sheng92] present a design for a radio-based portable multimedia terminal that will
support video. Apart from pen input, the terminal is passive; user computations are run on servers
connected by a wired network to the radio base-stations, rather than on the terminals. The key to
providing video on the terminal is the observation that continuous media have a greater tolerance of
bit errors than “normal” data and so can deal with the higher error rates of wireless communication by
(more or less) ignoring it; normal data, on the other hand, must still pay the overhead of an etror-
correcting protocol. This combination of error-free and error-prone communication distinguishes the
multimedia terminal from a wireless notebook computer and could be regarded as a simple (and hard-

wired) form of QoS specification.

The PenPoint system [Carr91] has a different approach to supporting mobile computing. Long-term
storage for documents is held on a network file system, but the network connection to that storage is
assumed to be unstable—for example, the portable may be removed without first notifying the system.
When the portable is connected, the user’s changes are committed immediately, as with any desktop
system. When the connection has been broken, however, the user’s changes are stored until the

portable is reconnected, at which point the changes are automatically uploaded to the permanent host.

The rise in mobile computing signifies another potential direction away from current desktop
computing, Most of the portable devices being investigated are either terminals or independent units,
whereas the Active Badge is a mobile input device. One can envisage an environment in which most
input and output devices are mobile, providing extra information about the location and identity of

their users; this approach is developed further in Chapter 11.

4.6. Summary

This chapter describes some trends in computing systems. Faster network hardware, combined with
techniques to manage multi-service traffic, promises to make multi-medium communications
commonly available, even across wide areas; this includes support for continuous media and
synchronisation between media streams. Modern operating systems are based on micro-kernels with
much of what was once considered core functionality moved into user-level processes; they are no
longer designed to manage a single monolithic host but to tie together many hosts and devices. This
allows more flexibility in choosing which components to use and on which machine to run them.
These trends are being exploited in the DAN, which supports time-dependant traffic within a
workstation without intruding on its other components, and allows events to be scheduled from end-
device to end-device. Finally, the chapter discusses some work on mobile computing which shows that
hosts can no longer be relied upon always to stay in the same place, and that devices can be associated

with users and user tasks.
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To summarise, developments in computer infrastructure suggest that we should not rely on current
assumptions about how computers are used or how user interface architectures should be structured.
In particular, the decomposition of operating systems has not yet extended been into user interface
software. Fast networks and efficient micro-kernels mean that interactive response times acceptable to
people can be achieved with input devices attached to a local network, rather than built into the
display host, so interactive systems can be built which do not assume, or require, a fixed hardware
configuration—allowing devices to be attached and detached as the need arises. Previous chapters
have provided a motivation for greater flexibility in user interface architectures and this chapter has
described the infrastructure which can support such flexibility. The next chapter discusses the current

state of user interface architectures.
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5. User Interface Architectures

5.1. Introduction

This chapter provides a brief overview of some distributed user interface architectures. With the
spectacular exception of NLS/Augment [Engelbart88], which included shared hypertext and computer
support for meetings, many graphical user interface systems have been motivated by the notion of the
personal computer. Kay’s notion of a Dynabook [Kay88] was a portable intelligent notebook, for
which the Alto [Thacker79] was intended as a interim desktop implementation [Lampson88]. Hence,
although Wirth, for example, wrote a multi-user version of the document editor CIL [Swinehart92],
distribution was largely at the level of a common file system, electronic mail and remote debugging.
As distributed systems, however, became more widespread and networked graphical workstations
became widely available, a number of researchers experimented with networked window systems to
provide distributed graphics. In the following section, I discuss three influential network window
systems and some issues arising from their design and implementation. Another area of research has
been the construction of virtual realities, environments in which the graphic objects the user sees
respond as if governed by the laws of physics. Many such systems use unusual interaction devices
such as data gloves or head-mounted displays which, combined with the need for near real-time
animation, place greater demands on the user interface system than window system dialogues. In the
next section, I describe some architectures for virtual realities and how they support the demands

made on them.
5.2. Networked Window Systems

5.2.1. Introduction

The basic issue when considering distributed graphical applications is choosing which level to
distribute. Does one transmit many individual pixels or a shorter description of structures to display?
Does one return selection events as points in a plane or with reference to the structure of the image
being displayed? This decision also has to take into account the conflicting demands of generality

(more and lower-level traffic) and efficiency (less and higher-level traffic).

This section describes three window systems, of which X has come to dominate but the other two had
considerable technical merit and are worth studying. VGTS used a high-level protocol which
described graphical objects, X uses a low-level protocol which describes drawing operations, and

NeWS allows clients to define their own protocol at the level which suits them.

522 VGTS

Lantz and Nowicki [Lantz84] chose to make the workstation a multifunction component of the larger
distributed system, unlike dedicated terminals such as the Blit [Pike83] or personal computers such as

the Alto. The use of a distributed operating system, in this case V [Cheriton84], allows the user to run
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software components on the most appropriate machine—local or remote; the workstation provides a

virtual graphics terminal service (VGTS) to the user. The main features of the VGTS are:

» The application specifies what to draw, not how to draw it, the user then specifies where to
display the result. The server retains a model of the objects to be drawn and provides facilities for

viewing them unlike X, for example, where any object models are held in the client.

*  The display objects are stored in a hierarchy: an individual object may contain primitives or calls

to other objects. The objects are stored in the server in a structured display file.

« The service can be provided by a range of devices. There is a standard interface, the virtual
graphics terminal protocol (VGTP), between server and client, although servers must be powerful

enough to support display files.

+  Applications can be distributed over a number of machines. The high-level protocol hides
machine dependencies and it may be possible to use the same code wherever the application is

running.
«  Users can access multiple applications simultaneously.

The system was designed for “mega-workstations”: a mega-pixel display, a 1 MIPS processor, and 1
Mbyte of memory. These are connected by a 1 MHz network to a range of dedicated servers (print,

storage, compute) and also have access to long-haul networks.

A user can initiate one or more activities that may run locally or remotely. Each activity is associated
with one or more device-independent virtual terminals that may emulate a real terminal, providing
text or graphics. The user then maps the virtual terminals to the screen; such mappings are called
views. A user may create additional views of the same virtual terminal, manipulating each view
independently, showing a different pan or zoom, for example. A view manager provides a
standardised mechanism for the user to initiate activities, and manipulate and move between virtual
terminals (and, hence, activities); the view manager also handles authentication when a user wishes to
start a session. There are standard editing facilities so that users can copy text or graphics between

virtual terminals, and a standard command interpreter shared across applications.

Applications use the terminal-independent Virtual Graphics Terminal Protocol (VGTP) to
communicate with the VGTS; the VGTP can be thought of as a graphics language that is
implemented by the VGTS. The VGTS, in turn, uses the terminal-dependent Real Terminal Protocol
(RTP) to communicate with the hardware; the RTP can be thought of as a virtual device interface. The

VGTS provides, in effect, a translation service between the two protocols.

The designers observed that an interactive program consists of a front-end, for the user to interact
with, and a back-end that provides the computation. A VGTS that provides a common editing

function also allows some of the interactive response cycle to be short-circuited. In particular:

e the cursor is directly driven by the mouse;
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e screen management in the server allows multiple applications to run without interfering with

each other;

e applications can wait for significant events, such as selection of an object, rather than tracking the

cursor; and

¢ some editing can be done in the server so that only high-level changes need to be sent to the

application.

Such short-circuits provide better interactive response for the user, better use of workstation resources,
less network traffic when an application is distributed, and less programming and processing in
applications. These optimisations, however, require the server to store a high-level model of the
application data, not just its image, so the VGTS stores graphical objects in hierarchical Structured
Display Files (SDF). Once a graphical object has been defined in a SDF, the user must associate the
SDF with a Virtual Graphics Terminal (VGT) and then map that VGT to the screen.

The VGTS, however, is not all of the user interface software, it runs with a view manager (described
above), an exec server and a number of executives—instances of the basic command line interpreter.
Users communicate with the view manager to manipulate the screen layout and to request new
executives which the view manager, in turn, requests from the exec server. Any of these components

can be replaced with another implementation, including the VGTS itself.

The authors conducted performance experiments using Sun 8MHz and 10MHz workstations, VAX
11-750 and 11-780 remote hosts, and 3Mbit and 10Mbit Ethernet networks. The most important
factor was the speed of the workstation—increases in processor speed produced almost linear
increases in the application speed. The next factor was the speed of the remote host where a 100%
increase in processor speed produced a 50% speed-up of the application. The third influence was the
level of communicatioﬁ protocol—high-level protocols and batching requests together considerably
increased the application speed, swamping the effects of increasing raw network bandwidth. Of
course, ever faster processors will improve performance until the network becomes swamped with
traffic; a faster network will then improve performance, but the authors considered that they had

reached the limits of optimising the protocol.

5.2.3. The X Window System

Scheilfer and Gettys [Scheifler86] designed the X Window System to be a generic window system,
allowing applications to drive windows on displays regardless of hardware or location on the network;
it derives from a UNIX port of the W window system, which was built as an alternative to VGTS. X
inherited the concept of a network-transparent hierarchical window system but W, like VGTS,
required applications to define a window to be one of a fixed set of types, such as text or graphics,

which was too limited.

The response was to move many graphics and system functions across the network, requiring the

application to store the model of its state. Clients do not download graphical objects into the server but
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must redraw the image using basic drawing, pixmap and text operations when a window needs
refreshing. This imposes fewer restrictions on what can be drawn—the ideal is to provide
“mechanism, not policy”—but forces the client to do more work. NeWS (see below), for example, has
a device-independent imaging model—images are specified in terms of world co-ordinates and
absolute colours, the server must translate these into pixel values on the display. The X imaging
model, however, is based on raster operations so clients must get details of the display hardware from
the server and perform their own transformations. This processing has been implemented in some
client libraries, such as Interviews [Linton89], relieving the application programmer of extra coding

and allowing applications with different imaging models to work on the same server.

Desktop management was moved out of the display server into a separate process, a window manager.
X now defines an Inter-Client Communication Convention (ICCC) [Widener90] which provides a
standard for clients to pass messages to each other via the server. Applications and the window
manager (which is also a client) use this convention to negotiate over access to shared resources, such
as screen space. Users can change window management policies, such as input focus, and the
interaction mechanisms for controlling them, such as title bars, by running a different window
manager rather than changing the server. The ICCC also provides selections, so that users can cut
and paste between independent clients, and session management, which provides a consistent

mechanism for starting and stopping clients so that clients can be closed down cleanly.

The major low-level change was from synchronous to asynchronous communication; unlike UNIX
(unfortunately), V had very fast networking primitives. Experience with version 10 of X showed that
communication costs had a significant effect on interactive performance. In particular, round trip
messages were expensive and unpacking messages in the main server loop could be a bottleneck
[Gettys90]. Version 11 of X reduced round trip messages by storing more state in the client—the
server sends details of its characteristics to the client, that the client is expected to remember, when a
connection is first established and allocates to each client a range of resource IDs, so that clients can
allocate IDs to resources locally rather than waiting for the server. Version 11 optimised network
traffic by allowing variable length messages, the message length is stored in a fixed location in the
message so it can be extracted without unpacking the message, and by storing more state in the server.
For example, a new resource type, graphics context (GC), was introduced to encapsulate the state
required for a graphics operation. Once a GC has been defined, the client need send only its ID in a
graphics request rather than a complete list of parameters. GCs can be applied to any window so client
toolkits, such as Xt [McCormack88], encourage their reuse by providing virtual GCs which map to

the same server GC when their attributes are the same.

X is essentially a network protocol which defines a logical display server with a minimum
configuration and says as little as possible about the internals of that server. Clients may negotiate
with the server over the availability of extra features, such as 3D graphics or extra input devices, but

they cannot change it. The low semantic level of the protocol makes it possible for developers to
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implement new graphic models in clients or libraries and run them on any standard server, so a

disparate user community has been able to provide much of the infrastructure.

X, however, was designed for a particular environment and ties us into those assumptions. At one
extreme, it cannot cope well with connections which clump blocks of data together (bursty
connections) rather than transmitting a steady stream [Droms90], there is a round-trip communication
every time the user performs an action which changes the display. There are a number of problems
with the protocol, described in [Gajewska90], some of which, such as race conditions, derive from
mistakes during the design, but others derive from policy decisions. For example, a client cannot
retrieve all of a resource's state from the server which makes shared window systems difficult to
implement (see section 3.2) The rationale for this is that round-trip queries are too expensive and that
clients should remember the information they need—<clearly an embedded assumption about how X is
to be used. At the other extreme, X cannot take full advantage of new input and output technologies
without binding in the extra capabilities as an extension. The only way to add in some local
enhancement is to hack the server, a daunting prospect for many sites and not always available. The X

server is a mass-production item—reliable (mostly), generic, and not easy to change.

5.24. NeWs

The Network Extensible Window System (NeWS) [Gosling89] is a networked window system with
some similarities to X in that input and output is provided by a window server which communicates
with device-independent client applications over network connections. One major difference is that
the protocol is a programming language, PostScript [Adobe85], so clients can download programs
into the server. Thus, a client can define its own protocol and send a program to interpret it to the
server. For example, if a client sends a rubber-banding procedure to the server, the intermediate
activity while a user resizes a display object can all be performed in the server, avoiding network
traffic as the client need only be told the final result. This approach is also used for the window
manager; rather than running as a separate client, window management routines are loaded into the
server and run within it. The extendibility also provides flexibility during the development process. A
developer can start by implementing most of the activity in the client then move parts of the
implementation into PostScript procedures to be loaded into the server, reducing network traffic and

improving local response, as the design stabilises.

The second major difference is that PostScript provides a device-independent graphics model. Clients
specify the images they want drawn in absolute co-ordinates and rely on the server to draw them as
best it can, so clients know nothing about pixel sizes or colour maps. One consequence is that
operations such as scaling and rotating text and graphics, which require much effort in raster-based
systems, are implemented in the server at no greater cost than normal graphics operations and are
simple to program. NeWS also provides lightweight processes and garbage collection within the
server to simplify programming a graphical application with multiple streams of control. Clients of

fixed-protocol systems, such as X and VGTS, have no interest in such services as they have little
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control over the internal processing of the server, whereas NeWS clients may partly be running in the

Server,

NeWS provides an interprocess communication mechanism based on events, which are objects that
can be generated by lightweight processes, the server (from input devices, for example) or clients.
Processes generate a template event to express interest in a set of events (of a given type on a given
canvas, for example) and when an event reaches the front of the server's event queue it is broadcast to
all processes whose templates match it. The canvas hierarchy determines the order of the interest

search during event distribution.

NeWS provides great flexibility to both the end user and application developer. Clients can be tuned
to balance the costs of client and server host processing and network traffic. Program fragments can
be developed interactively by sending PostScript text to the server, and the same code that displays an
image on the screen can be sent to a printer. This flexibility, however, is not without costs. It is
relatively easy for a rogue client to disturb the server; NeWS lightweight processes, for example,
cannot be pre-empted, so a function which loops forever may lock the server. This is similar to
Apple’s System 7 [Apple91] where applications must be “well-behaved” and periodically cede control
during long activities to allow multi-tasking on the screen. In addition, the client/server/protocol
which a developer implements in one environment may not be appropriate when delivered to the
users—even assuming that all the users are in similar environments. Unlike X, where the role of the
server is more rigidly defined, system administrators may not be able to predict where the bottlenecks
are in arbitrary NeWS applications—the developer may even have built a dynamic protocol to move
the work to the least busy host. Of course, all this potential complexity is only necessary if one
assumes that network bandwidth and latency are the limiting factors in a distributed environment;
protocol optimisations are not an advantage if the application is already delivering data faster than the
server can accept it . Finally, major extensions, such as desktop video, still require changes to the

basic server, although the generic event mechanism makes easier the addition of input devices.

5.2.5. Summary

This section describes three server-based network window systems. VGTS implemented a graphics
service in which the data structures were stored in the server. It provided features such as device-
independence and a separate view manager to manage user access to the server, but depended on the
(for the time) unusual facilities provided by the V operating system. X, on the other hand, was
intended to work on multiple platforms, with standard transport mechanisms and for an unpredictable
range of applications, so it uses a lower-level asynchronous protocol. Placing more functionality in the
clients has made X very flexible but requires every client to resolve issues such as hardware
dependencies. NeWS allows clients to construct their own protocol by downloading code into the
server, so clients can adapt the server to their needs but at the risk of disturbing each other and

corrupting the server. At present, X is the most common network window system but there are
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applications it cannot support; in particular, some example virtual realities are described in the next

section.
5.3. Virtual Realities

5.3.1. Introduction

A virtual reality is an interactive environment where the human-computer interaction attempts to
simulate the way we interact with the real world. The environment must accept input and update the
display across a range of devices, while preserving the illusion of manipulating a physically-consistent
world at a speed which is, to humans, instantaneous. The demands on hardware and software are,
consequently, high. The Cognitive Co-processor show how the needs of different asynchronous clients
can be resolved in the display service. Both VUE and IBIS show how an interactive system can be

(and sometimes must be) made up of components distributed between hosts.

5.3.2. Cognitive Co-processor

The Cognitive Co-processor architecture [Robertson89] was designed to deal with the conflicting
requirements of multiple asynchronous agents interacting with a user interface system and smooth
animation. An interactive system can be viewed as driven by at least three agents: a User, a Task
Machine (or application) and a User Discourse Machine, which mediates between the other two.
These agents are, of course, very different, in particular in the speed at which they operate. For
example, a search process in an application and the graphical display of its results may be slow
compared to the user's ability to understand the results. The user interface needs to provide
“impedance matching” between the agents as well as translating between their languages of
interaction; that is, it should provide mechanisms for agents to interrupt and redirect each other’s
work. The conflict is that multiple agents want rapid interaction without being forced to wait for other
agents, requiring widely varying computational resources, whereas animation requires steady but

guaranteed computation.

The Cognitive Co-processor maintains this three agent division: the user (of course) remains the
same, the task machine is an application which contains the state of the virtual world and
communicates with components in the user discourse machine (see Figure 5-1). The user discourse
machine is based on an inner Animation Loop which maintains a Task Queue, a Display Queue and a
Governor. The Task Queue contains pending computational tasks from agents; these tasks may spawn
heavyweight (operating system) or lightweight (run-time) processes, or directly execute a short
procedure. The Display Queue contains mechanisms for painting aspects of the display, in practice it
holds all the objects to be redrawn on the next cycle. The Animation Loop must run no slower than
some minimum speed to maintain smoothness; the Governor keeps track of how long a cycle is taking
so that agents can tailor their activity to maintain constant real-time motion. For example, if an
animated ball is supposed to bounce once a second, the distance it is moved for the next animation

step depends on how long a cycle is taking. The Application Loop itself is quite simple, it: updates the
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Governer’s clock, processes pending input from the user or spawned task processes, processes pending
tasks on the Task Queue, and updates the display. The user discourse level also contains support for
3D simulated environments, for navigating around those environments and for Interactive Objects

which provide I/O mechanisms for the user interface.

Figure 5-1, Cognitive Co-processor Interaction Architecture,
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While the Cognitive Co-processor is optimised for a single user manipulating data at a workstation,
one lesson which is more widely applicable is that user interface architectures need mechanisms to

simultaneously handle input streams with very different characteristics,

53.3. VUE

The Veridical User Environment (VUE) [Appino92] consists of devices servers, which manage input
and output devices, and application servers, which create the objects in a virtual world that a user
perceives through the devices. A central dialogue manager is a client of both devices and applications
and binds them all together. It is rule-based, with rules collected into modular subdialogues that
define the interaction techniques available in a virtual world. The application server provide the
content of the virtual world, while the device servers and dialogue manager produce its style. All the
components use asynchronous message passing to communicate. The authors claim that this division
provides increased computational power, as the architecture can easily be distributed over multiple
hosts, with relatively low communication bandwidth and natural support for overlapping the

processing in the various components.

An application process can have multiple inputs, outputs, and parameters that affect its execution. The
parameters are controlled by the devices servers via a mapping established by a set of rules—a
dialogue; the dialogue is executed by the dialogue manager. Application processes pass parameter

values to, and receive values from, the dialogue manager.
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The Dialogue Manager coordinates the multiple input and output events in a virtual world; its
dialogue is divided into subdialogues—collections of related rules that comprise a small state diagram
with shared state. Each rule has the form “INCOMING_EVENT produces RESULT_EVENT” and
can perform some state tests to cancel the execution of the rest of the rule. The authors’ experience is
that rules should be short and local and that subdialogues should deal with only a single device or

interaction technique. Dialogues are divided into three conceptual levels (Figure 5-2):

e at the bottom there are specific subdialogues to provide an interface to basic devices. This level
interprets low-level details, combining several events into a single message or smoothing jittery

input, and passing the event to all the subdialogues above which are interested in such events.

e the generic level transforms specific events into more general interactions, independent of a
particular device. There is not necessarily a one-to-one mapping between specific and generic
subdialogues—a moving hand technique may be composed from tracker and glove events.

Similarly, a tracking event may be sent to both flying and rotation subdialogues.

e the third, executive, level may then chose between the flying and rotation techniques according to
the state of the virtual world and the current interaction modes. This level also handles higher

level co-ordination.

Figure 5-2. The flow of tracker events in a VUE dialogue
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The division between content and style, combined with the use of message-passing to communicate,
provides a flexible architecture. Device and application processes can be run on any host on the local
area network and added to or dropped from the dialogue manager while it is running. In addition, the
division of dialogues into independent subdialogues means that interaction techniques can be
dynamically changed by remapping the subdialogues for a set of events. Furthermore, the use of
message-passing throughout makes the implementation of multi-user worlds easier by providing each
user with a dialogue manager and passing broadcasting events between them [Codella92]. VUE is a
large and complex system because it has to maintain the illusion of an entire virtual world, but it

demonstrates how a flexible user interface architecture can be composed of communicating processes.

5.34. KARMA

A smaller-scale virtual world is the Knowledge-based Augmented Reality for Maintenance Assistance

(KARMA) system [Feiner93] (Figure 5-35-3) which uses a “see-through” head-mounted display to
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overlay a 3D virtual world on the user’s view of real-world objects as the user moves around them.
Both the user’s head and the objects being worked on are tracked with position and orientation
sensors so that the virtual and physical worlds can be aligned in the user’s view. The example
application is to provide dynamic assistance for laser printer maintenance; the user sees parts of the
printer highlighted or shown in the position required for the next action while working on it. An
Intent-Based Illustration System (IBIS) process uses knowledge-based techniques to decide which
virtual objects to display according to specified communicative goals (what an illustration is supposed
to convey) subject to design (what to show) and style (how to show it) goals. The head-mounted
display is driven by a display server that maintains a 3-D display list. The position and orientation of
the user’s head and the objects being manipulated are tracked by processes which feed the current
positions to head and object servers. The head and object servers then notify the display server of user
or object movements so that the user’s view can be updated—these updates are atomic to ensure that
the display server remains consistent. The servers also notify the IBIS process at the same time so that
it can adjust its illustrations. Sending multiple messages allows the processes to operate in parallel
(user interactions with the current illustration do not reference the IBIS) and avoids the IBIS

becoming a bottleneck or a source of extra latency.
Figure 5-3. Message passing in KARMA.,
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KARMA provides an example of an user interface architecture which is not based on a virtual
terminal approach—there is no straightforward user-machine dialogue, the display is driven by the
user performing everyday real-world actions. As with VUE, the KARMA architecture is constructed

from a set of distributed processes providing specialised functions.

5.3.5. Summary

This section describes three examples of virtual reality systems. The Cognitive Co-processor shows
that different applications may have different scheduling requirements for their output, which current
window systems do not support. The VUE architecture shows how a user interface can be built up
from multiple components supporting a changing set of devices and the dynamic interpretation of

their input. KARMA superimposes a virtual world on the physical world, also building up a user
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interface system from a set of communicating processes. It also shows another way of interacting with

a computer than by “direct manipulation”.

5.4. Summary

This chapter describes a number of distributed user interface architectures designed for a range of
applications and operating systems. The X Window System has proved the most popular of the
networked window systems, partly because of accidents of history, but largely because its low-level
protocol allows each client to implement its own imaging and interaction models. Not every
application, however, can run over X; in particular, it provides no support for scheduling between
clients or for more complex forms of interaction, In addition, the networked window systems were all
designed to manage single-user workstations which, as has been shown in chapters 2 and 3, is a
restrictive model; they cannot easily support an interactive environment in which the set of input and

output devices changes dynamically to meet the users’ needs.

Some virtual reality architectures have approached these issues and provide mechanisms to support
smooth animation, multi-modal interaction, dynamic system configuration and so on. As yet,
however, these techniques have not been implemented in a common virtual reality toolkit or folded
back into window systems. Furthermore, virtual reality systems only allow users to collaborate in the
computational world, rather than supporting collaboration in the real world by allowing people to

share physical devices.
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6. Summary

This part has surveyed current developments in human-computer interaction, computer systems, and
user interface architectures. The first chapter described how user interface requirements are changing.
The study of Computer-Supported Co-operative Work has produced a more sophisticated
understanding of how people and computers interact, and it is clear that the model of the single-user
in dialogue with a single-machine is inadequate for many situations. Some user interfaces incorporate
continuous media which become particularly interesting when integrated with existing digital media.
Finally, some researchers are looking towards a new generation of user interaction in which there will
be large numbers of portable devices and the bandwidth between user and computer can be increased

by using a wider range of input and output media and greater parallel activity.

Chapter 3 described strategies for implementing multi-user applications, both collaboration-
transparent and collaboration-aware, and notes how support in the user interface system would
facilitate their implementation. Future user interface architectures must be based on different

assumptions about use than current designs and provide greater flexibility.

Chapter 4 discussed current trends in computer systems. Networks have become much faster and
allow processes to specify a minimum Quality of Service for a connection, providing support for
networked audio and video. Operating systems have become more modular and open, so that users can
assemble a computing environment from a set of host and services rather than relying on a monolithic
operating system. The Desk Area Network shows how these trends may be applied throughout a
workstation, routing data to the appropriate end-device without overloading central resources. Finally,
there is now a range of mobile computing devices, although no common integrated communication
medium has yet been developed. Computer systems are becoming faster, more flexible and more open,

but few user interface architectures have as yet taken advantage of these facilities.

Chapter 5 surveyed existing user interface architectures. It discussed three networked window systems
describing some of the tradeoffs in each design. Work on virtual realities shows how media with
different characteristics can be accommodated in the same interface and how user interfaces can be
built up from multiple communicating components. Virtnal realities also show the limitations of the

assumption of the single user at the desktop machine.

This survey suggests that current user interface systems have not followed developments in human-
computer interaction or computer system infrastructures. The next part describes some experimental

applications, noting their implications for the design of user interface architectures.




Part III. Experiments

The limits of existing user interface architectures become most clear when one tries to use them for
unusual purposes. The range of applications which have been built over X, for example, show how
successful the original design has been (and how ingenious application writers are), but it does have
fundamental limitations. This part presents three sets of experiments which look towards models of
interaction other than the standard desktop workstation and discusses their implications for the

development of user interface systems.

Chapter 7 discusses experiences with the X Window System and the limitations of its model. Chapter
8 describes the Multi-Device Multi-User Multi-Editor which allows people to collaborate on a shared
screen. Chapter 9 describes the addition of multiple networked devices to the DigitalDesk and how

this supported the development of an application which provides a shared virtual space.
The lessons drawn from these experiments are that:

e current window systems are only a special case of user interface architectures. Users and
application builders may reasonably expect to be able to use multiple input and output devices,

changing the devices used as the need arises;

e more flexible user interface architectures, which can distinguish multiple input devices and users,

can be built without excessive implementation costs; and,

e current window system models are too strongly tied to their assumptions about user interfaces to

provide a suitable platform for further evolution.
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7. Experiences with X

7.1. Introduction

At present, any discussion on distributed window systems must include a consideration of the X
Window System. It has been a de facto standard for some time and is becoming a de jure standard. As
described in chapter 5, X was intended to manage a wide range of hardware which it achieves by only
guaranteeing support for a limited model of a display. Other facilities are managed by extensions to
the protocol which an individual X server may or may not provide. While a wide range of applications
have been built over X, some have required considerable effort from their designers to implement new
features, particularly for groupware, as they are based on a different model of user interaction with
computer hardware. We should consider whether there are user interfaces which X cannot, or is

highly unsuitable to, support.

This chapter describes two experiments, a collaborative application implemented with X and an
extension to X, and discusses the implications for window system design. The second experiment was
actually implemented after the MMM system described in the next chapter, but is presented here as

part of the discussion of X.
7.2. MultiMed

7.2.1. Introduction

The MultiMed project [Unison90] investigated the use of digital telephony, in particular ISDN, to
support medical practice. For example, medical advances have greatly reduced the incidence of some
conditions, so clinical staff need to consult experts at other sites as such cases arise; in addition, a

larger number of medical staff need to see these cases as part of their training.

My responsibility was to build an example application to show how doctors at different sites could use
digital technology—colour workstations connected by ISDN—to discuss medical images without the
need to travel. The prototype, however, was only intended to work over a local area network as the
ISDN lines would not be available during the project. The design of the user interface was motivated
by discussion with and observation of the work of a consultant histo-pathologist in a London teaching
hospital. In brief, it allowed the participants to share images grabbed from video cameras, such as
microscope slides and pictures of dissections, and to use telepointers to draw attention to areas of
interest; the participants were also to use conventional telephones to speak to each other during a

conference. The user interface is described in detail in [Unison90].

The central concept of the MultiMed application is the Session, which is a discussion started by a user
at any MultiMed workstation and controlled by that user—the session owner. The owner controls the
display and placement of images during a session and the lifetime of the session, which ends when the
owner leaves. Other users may join an existing session as passive participants and any changes made

by the session owner are broadcast to the other participants and displayed on their workstations.
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To help remote users discuss the images, MultiMed provides telepointers—labelléd arrows which are
displayed in the corresponding position on the screen of each participant in a session. Any member of
a session, not just the session owner, may create any number of telepointers, and a telepointer belongs
to the user who creates it. A telepointer’s owner may drag it around the screen to draw attention to

items of interest, the telepointer movement is mirrored on the other users’ screens.

The MultiMed application was implemented using X11.4 and the Athena widget set to ensure

compatibility with other parts of the project.

7.2.2. Architecture

MultiMed uses local clients to manage the display, with centralised servers to control the shared data
(Figure 7-1). Demons on each host keep track of which users are logged on, which sessions are
active, and who is a member of each session. To start a session, a user notifies a demon which forks

the processes that act as servers for the session and then notifies the other demons of the new session.

There are two servers per session so that one can handle “lightweight” events, such as telepointer
actions, maintaining responsiveness while “heavyweight” events, such as image transmission, take up
computing resources. Images are large units of data, which do not change often, and are controlled
solely by the session owner. Telepointers involve little data, which may change often, and may be
controlled by any session participant. The division of processing into two servers allows telepointer
movement and, hence, discussion to continue while a frame is being grabbed and broadcast. Both
session servers have a similar structure in that they hold a list of session members and a list of items
(telepointers or images), and both receive messages from clients which they broadcast to all the
members of the session, Consistency is maintained because all the objects in the session are centrally

managed by the servers.

Figure 7-1. The MultiMed architecture. The session owner runs the Image and Pointer
servers which session participants can connect to.
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User requests (a telepointer motion, for example) are sent by the client to the relevant session server
(telepointer or image) which processes the request and then broadcasts the result to all the
participants. Thus, any disparity between when the members of a session see an event occur on their

screens does not include the delay between the originating user and server, which helps to preserve
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pointing gestures and to synchronise movement with speech. This is in contrast to systems such as
MMConf [Crowley90] or Colab [Stefik87] in which changes are implemented locally before being
optimistically broadcast to other participants. MMConf was intended as a user’s main working
environment and so had to provide good local response and the Colab team reported confusion during

meetings due to delays in displaying objects [Tatar91].

To reduce network traffic, the session servers do not directly drive objects on the clients’ screens; that
is, they are not responsible for drawing or redrawing objects or handling user input. The clients
maintain the display and interpret between the user and the session servers, so client and server
communicate at the abstract level (“move telepointer 3 to this position” rather than “draw the
following set of lines”). This means that as much processing as possible takes place locally, and also
makes it easier to adapt the application to work with different implementations of the client. This
model is common to many multi-user toolkits, such as Rendezvous [Hill93] or LIZA [Gibbs88]. One
can think of the session as a set of objects which are stored in the servers. The clients hold shadows of

the objects and define the mapping from the ‘true’ objects to the screen.

The pointers were implemented as shaped windows and could be hidden by other windows, such as a
new image, so they were made “self-raising.” That is, when a pointer is obscured by another window
it cycles itself back to the top of the stack. To avoid infinite loops, with two pointers repeatedly

attempting to raise themselves, pointers are not allowed to overlay each other.

7.2.3. Limitations

A number of issues arose from the implementation of this project, of which three concern the window
system: the imaging model, support for overlays, and synchronisation between displays. Some of the
other issues raised by Lauwers and Lantz [Lauwers90a], such as floor control or the placement of
shared windows, were avoided by restricting the user interface—MultiMed took over the whole screen

and was intended for use with similar displays.

X has a pixel-based imaging model—its co-ordinates are specified in terms of pixels and it is up to the
client to make any necessary transformations for data specified in absolute measurements. Similarly,
each client must implement its own mapping of an image to a colourmap. This is in contrast to the
Cedar Imager [Swinehart86] or PostScript [Adobe85] where the output is described in terms of an
ideal device and the implementation renders it as best it can. If a shared application shows the same
information on multiple screens, pixel-based imaging requires the programmers to implement their
own device-independent model to give everyone a consistent view. It is arguable that the standard
release of X should have included some support for device-independent graphics so that application
writers who do not need per-pixel accuracy would not have to consider different display

types—although X’s use of bitmapped fonts makes this more difficult.

Much of the effort for MultiMed went into implementing telepointers which would be responsive and
work over a colour image (so excluding simple XOR techniques). In the end it was necessary to avoid

using part of the toolkit and implement a paint pipeline, with double-buffering, within a basic widget.
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Support for overlays could be implemented more efficiently in the server, as happens in NeWS, and
would be of particular benefit to those writing groupware applications—as is pointed out in

[Lauwers90a].

Finally, X’s asynchronous communications, although efficient, mean that it is not possible to know
when an event happens on the screen. This can cause inconsistencies between the users’ conversation
and what each one sees, especially if an X server is occupied with processing a new image rather than
showing pointer movements, so applications must implement their own scheduling policies. The Shdr
shared drawing tool, for example, [Dourish] waits for acknowledgement of previous telepointer events
before sending the current cursor position to avoid events being batched in the network. The ability to
assign priorities to graphics requests would make display events more predictable for clients, although
the promised multi-threaded X server (in release 11.6 of X) should reduce the problem of a particular

action hogging the server.

7.3. An Input Extension Extension

The X Input Extension (XIE) [Patrick89] was designed to allow extra input devices to be used in an X
server while staying within the X model. It defines extra protocol messages which allow a client to
query the server to see what devices are available and to chose the default pointing and keyboard
devices. Multiple devices may also be used simultaneously; more than one message is used for each
event to supply the client with the extra information about the source of the device. The main
limitation of the XIE, from the viewpoint of this dissertation, is that extra devices must be bound into
the server when it is compiled. To plug in an extra mouse, for example, a user must close down the
session and restart it with another implementation of the server. While it would be possible to write an
implementation of the server which can be prompted to look for particular extra devices, polling a

serial port for example, this technique is not general.

To attempt to resolve this problem, I wrote an X Input Extension Extension (XIEE) to provide support
for connecting to and disconnecting from remote devices on demand, using sockets to communicate
between device servers and the X server, A first step in the description of the XIEE is to understand
the structure of the X11 sample server; the implementation described below is that for the Sun

SPARC architecture.
7.3.1. Inside the X11 Sample Server

The sample server [Angebranndt88] is divided into several components, (Figure 7-2):

e the Device Independent X (DIX) layer contains software which is common across all

implementations;
o the Operating System (OS) layer contains software which is different between operating systems,

but is common to all the devices for a given operating system. It schedules activity in the server,

provides communications with the clients, and other utilities such as memory management; and,
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e the Device Dependent X (DDX) layer contains the software which may vary for each combination
of device and operating system. It includes a Machine Independent (MI) library that implements
common graphics functions in software.

There is also an Extension Interface that provides a standard mechanism to add features to the server.

Figure 7-2. The structure of the X11 sample server.
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Input events are processed in two stages. First, an interrupt handling procedure, EnqueueEvents, is

called when data arrives at any input device port. The algorithm for this procedure is:

LOOP {forever)

(* get raw data from devices, timestamping them as they arrive *)

IF pointer.bufferEmpty () AND pointer.inputPending() THEN
pointer.putEventsInBuffer();

END;

IF keyboard.bufferEmpty() AND keyboard.inputPending() THEN
keyboard.putEventsInBuffer() ;

END;

IF pointer.bufferfmpty() AND keyboard.bufferEmpty() THEN EXIT; END;

(* put oldest event on DIX input queue *)

IF Age{pointer.firstEventInBuffer) > Age(keyboard.firstEventInBuffer) THEN
pointer.enqueueEvent () ;

ELSE

keyboard. enqueueEvent () ;

END;

END LOOP
The device-dependent part of each device record contains some device state, including a buffer in
which to store raw events from the device port, and some procedures to manipulate it. The loop
attempts to load new events into any devices whose buffers are empty, then transfers the oldest event
from all the devices to the server’s input queue, until there are no more events to process. Meanwhile,
the main dispatch loop in the server calls WaitForSomething(), in the OS layer, which waits until
there is a request from a known client, a new client tries to connect, or there is an input event from a
device. When WaitForSomething returns, the dispatch loop checks for pending input and calls
ProcessInputEvents () if there is any. ProcessInputEvents then dispatches all the events in the

queue.

The XIE provides a structure for new devices to be registered so that they are visible to the server and,
hence, the clients. The implementer of the new device code must define a procedure (newDeviceProc,
for example) for the device that responds to four requests: initialise, turn on, turn off, and close. The
implementer adds an extra call to AddInputDevice() for the device in the procedure, InitInput,

which initialises the X server data structures for input devices. AddTnputDevice creates a new devices
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record, held in the DIX, in which it stores newbDeviceProc, A DIX procedure, InitAndStartDevices,
later uses these device procedures to initialises all the devices. Finally, the implementer must add the
new device to EnqueueEvents so that its events will be copied to the main input queue when the

device is started.

7.3.2. Adding Networked Devices

I wanted to be able to experiment with an arbitrary set of devices per display, to support an X
implementation of MMM (chapter 8) for example, and to be able to move devices between displays, so
that several displays on a desk could be driven by a single mouse and keyboard. The first requires that
input devices can be added dynamically, rather than compiled into the X server, and both suggest the
use of networked input devices so that a client on one machine can connect to a device on another.
Unfortunately, XSendEvent () cannot be used to transmit basic device events because X events sent
this way are marked as such, which some X clients exploit, and because it does not change the state of
the device in the X server, which some X clients query. The solution was to provide device servers

and extend the XIE to allow X clients to request a connection to such servers.

The XIEE defines an extra request, XOpenRemoteDevice(), which allows a client to specify the
address of a device server. The X server attempts to open a connection to the device and, if successful,
receives a description of the new device and registers it. The client may then gain access to the device
using the id returned from XListDevices (), which will now return a list including the new device. In
the server, the device records are stored in a list, so they can be added and removed dynamically,

rather than in a fixed-length array.

7.3.3. Limitations

The main issue arising from the addition of networked devices is how to handle device failures. The
previous solution was to stop the X server, but the connection between devices and server has now
become more vulnerable. Furthermore, an individual device may no longer be as important to the
functioning of the X server as a static device, so stopping the server on the failure of a device may be
an overreaction. On the other hand, as Tanner points out [Tanner86], simply ignoring a device when

it fails may not be acceptable either; it should be possible to report device failures to the user.

The structure of this implementation of the X server, however, makes such error handling complex as
actions to alter device structures originate in a client or in the DIX and are passed down to the DDX,
whereas device events are passed up from the DDX to the client. The loss of a network device involves
a change to a device structure arising from a device event. Perhaps the best approach would be to
define a new event, X_LostInputDevice, which would be distributed to the clients of the device as an
extension event; clients could then chose whether or not to listen for such events. Cleaning up the data
structures for the lost device, however, requires some care, as race conditions may arise if one client is

opening a new device while an old device is being cleaned up and both are allocated the same device
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id. Furthermore, the XIEE should also define server events to notify a client when devices have been

added or removed to allow device management tools.

A further point is that the XIE still assumes only one core pointer, although it allows clients to select
which input device is used as such. The focus for a second keyboard, for example, may follow the core
keyboard or be explicitly set to a particular window, but there is no provision for it to follow an
arbitrary pointing device. Similarly, the assumption of a single cursor runs throughout the design of
X, although the MI library includes software cursor support which could be extended for multiple
cursors. As MMM shows (chapter 8), there are applications and architectures which require more

than one.

In the end, the final stages of the XIEE were not implemented as a more practical (in the short term)

approach was found; this is described in chapter 9.

7.4. Conclusions

This chapter describes two experiments which highlight the limitations of the X approach to user
interface systems. The MultiMed application showed the need for generic support in the server for
overlays (to implement multiple cursors, for example), for clients to be able to schedule their requests
(to give priority to gestures or events which should be synchronised with other media, for example),
and for a common device-independent imaging model (to reduce the effort involved in making clients
appear the same on different displays). The Input Extension Extension highlighted the bias towards a
particular model of user interaction in the implementation of the sample server, which (not
unreasonably) has been optimised for the existing protocol. Extensions to the protocol, such as
dynamic devices or multiple cursors are possible but only by breaking conceptual boundaries in the

software architecture, increasing the interdependence within and fragility of the implementation.

This is not to argue that X is a flawed design, it is appropriate for the uses for which it was intended
(with a few reservations, see [Gajewska90]). The low level of its protocol allows a variety of user
interfaces to be implemented over it, but also forces programmers to implement in the client features
which would be better implemented in the server. The X Window System provides many benefits in
terms of a standard graphics environment for distributed workstations, but two generations of
computer hardware have passed since release 10 of X, which suggests that it may be time to consider
new approaches. The next two chapters describe experimental applications and discuss the

implications for user interface architectures.
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8. The Multi-Device Multi-User Multi-Editor

8.1. Introduction

The Multi-Device Multi-User Multi-Editor? (MMM) [Bier91] was a project to investigate a software
architecture and user interface to aid the development of multi-user editors that are convenient to use.
While most previous multi-user editors assume that each user has his or her own networked
workstation, MMM concentrated on editors shared on a single display with multiple pointing devices.
This restriction allowed us to avoid the problems of co-ordinating multiple workstations and to focus
on user interface and internal architecture issues. We also envisioned situations in which collaboration

on a single display would be useful in its own right:

e users may wish to collaborate on the same workstation screen. For example, two programmers
working together at a workstation may both require input devices to avoid interrupting the

discussion by passing a keyboard between them.

e several people can share a computer with a blackboard-sized display by writing directly on the
display with a stylus or by controlling it from hand-held computers. In addition, people can share
a hand-held computer by passing it back and forth, so a quick mechanism for allocating the stylus

to a person would help them tell the application who is currently providing input.

e even when multiple workstations are available, such conference-aware editors will enhance the

ability of participants to contribute simultaneously.

¢ future software applications may provide an “assistant”—a program that acts like another user
with which we collaborate on workstation tasks. A conference-aware architecture will make such

assistants easier to integrate.

Our architecture also supports a single user with pointing devices in both hands; two-handed
interfaces have been motivated by Buxton and Myers [Buxton86]. We believed that large-screen and
portable computers will use a stylus as their main input device, so we focused on user interfaces that

do not require a keyboard.

MMM consists of a set of simple editors, for rectangles and text, that support simultaneous real-time
collaboration. They allow fine-grained sharing, often permitting simultaneous access to the same text
string or graphical object. A mouse can be registered with a user and will work with that user’s

defaults and preferences (such as insertion points, modes, selection colours and mouse parameters)

21 spent a summer at Xerox PARC working with Eric Bier on the initial implementation of MMM. The concept
and basic structure are Eric’s and he implemented, in particular, low-level event handling and the input queue
optimisations, Ken Pier added multiple pointers to Cedar. I implemented the bulk of the editors and contributed
to the design of the user interface and some of the more specialised structures, in particular, the Home Area

editor,
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until the device is registered with another user. Registration is sufficiently fast that users can pass
devices back and forth during a session. Users can alternately collaborate tightly and work separately

with little interference.

The project addressed four user interface problems:

e registration: how can an input device be registered quickly with a user?

e real estate: how should the screen be managed so that collaboration is practical in limited space?
e per-user feedback: how can the system direct feedback to the right user without disturbing others?
e interference: how can users engage in separate tasks without interfering with each other?

and three software architecture problems:

e input handling: how should input events from multiple devices and/or multiple users be queued

and combined to allow fine-grained sharing?

e replication: which data structures of a document editor need to be replicated per user, to support

per-user modes, selections, and preferences?

e screen update: which screen update algorithms will produce an image consistent with the editing
activities of all users?

MMM was implemented in the Mesa programming language and runs in the Portable Cedar

environment [Swinehart86] on SUN SPARCstations. The workstations were augmented with extra

mice to control the additional cursors.

8.2. MMM’s User Interface

MMM’s user interface consists of three visible components: Home Areas provide iconic
representations of users; Edifors allow users to view and modify document media; and Menus provide
buttons that users can press to invoke commands. This section describes how we use these components

to solve our four user interface problems.
Figure 8-1. A typical MMM screen.
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Figure 8-1 shows a typical MMM display with (clockwise from upper left) a command menu, a

rectangle editor (with nested text editor), a text editor, a colour menu, and a home area.

8.2.1. Home Areas

MMM displays a home area for each user participating in a session. To join a session, a new user
types his or her name and clicks the New User button. MMM creates a home area that displays the
selected name. To begin using MMM, a user chooses a mouse and uses it to click on the name bar in a
home area, as shown in Figure 8-2. As a result, MMM assigns that mouse to that user, and any
actions performed with this mouse will take his or her preferences into account. The change of
ownership causes the cursor colour to change to that of the home area, as shown in Figure 8-2(b). A
user may have more than one home area, and extra home areas allow users to switch back and forth

between different sets of preferences. Each home area is said to belong to a different user instance.

Figure 8-2.  Clicking on a home area to register a mouse.

8.2.2. Two Editors

There are two main types of editor, for rectangles and text, that are both functionally very simple. The
rectangle editor permits users to create solid-coloured rectangles, select and delete groups of them,
and change their size, position and colour. The text editor allows users to place a starting point for a
line of text, enter characters, choose a font and colour, move a line of text, select a sequence of

characters, and change the colour of, or delete, selected characters.

8.2.3. Spatial Command Choice

We were interested in keyboardless interfaces, so all editor commands, except text entry, are activated
by a pointing device. For many MMM operations, command selection involves pointing to different

parts of graphical objects to invoke different operations.
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Figure 8-3. Spatial command choice in the rectangle editor, (a) Dragging a rectangle by
its edge. (b) resizing a rectangle by its corner. (The black arrows indicate
cursor motion; they do not appear on the screen.)

(@ (b)
In particular, objects in the rectangle editor are surrounded by a border, a frame. The user drags an
edge of a frame to move (Figure 8-3(a)), and a corner to resize (Figure 8-3(b)) the rectangle. In each
case, the part of the frame being dragged is highlighted. Users create a new rectangle by clicking on

the editor background.

Spatial command choice has many advantages in a multi-user context: it reduces the use of persistent
modes; it is easy to see—novices can learn from experienced users by watching them, and
collaborators can see what others are doing; and, because the cursor need not travel to an off-screen
menu, the command motion is unlikely to be misinterpreted as a conversational gesture (see the

description of Sketchtool in [Bobrow90]).

8.2.4. Per-User Commands, Modes, and Preferences

Several users can work simultaneously in an editor, performing different operations and using
different modes. In the rectangle editor, for example, one user may drag one rectangle while someone
else resizes another. The editor keeps track of both operations and updates the screen to show their
progress. Similarly, one user may choose blue as the current colour for that editor while another
chooses red. The editor stores both users” modes and creates a rectangle of a colour appropriate to the

creating user.

8.2.5. fine-grained Edjtor Sharing

Users can work simultaneously on the same object; one user can add characters to a text string while
another changes the colour of existing characters. Very fine-grained sharing is also possible; one user
can stretch a rectangle by one corner while another stretches its opposite corner, as shown in Figure
8-4. Spatial command choice in the rectangle editor, or one user can type a string of characters while
another repositions it. Fine-grained sharing may not often be necessary, but it allows a user to make a

change confident that other users will not be locked out, reducing interference among users.
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Figure 8-4. Two users stretching a rectangle at the same time.

¥

8.2.6. Editors as Window Systems

MMM has no conventional window manager. Instead, the desktop is an instance of our rectangle
editor. The rectangle editor allows other editors to be nested inside it. Each editor presents a finite
window, or porthole, onto an “infinite” plane that contains the objects and child editors that that
editor manages, which may overlap. The shape and position of this window is managed by the editor’s
parent. Editors may be partly or entirely hidden. Figure 8-5 shows several rectangle editors and a text
editor. Note that the text editor C is partly hidden by sibling editor B (and by a rectangle), and that

rectangle editor D is partly outside the porthole of its parent editor B.

Figure 8-5. The visible parts of four editors. A, B, and D are rectangle editors. Cis a text
editor. B’s highlighted border indicates that a user has selected it.

The use of an editor for a window system means that users do not need to learn both window manager
and editor operations, unlike systems where selection of an editor is different from selection within an
editor. Users can also place shared tools, such as panels of buttons, in the document in which they are

working, as tools need not remain at the top level.

8.2.7. Per-User Feedback

In single-user environments, graphical feedback is used to display aspects of system state, such as the
current application, mode, colour, or insertion point; any feedback given is certain to be directed to
the correct user as there is only one. This is no longer the case when several people share a screen, so
graphical feedback must show all of this information and indicate to which user the feedback applies.

We used colour and spatial placement to indicate this correspondence.
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Figure 8-6. (a) A doubly-selected rectangle. (b) Doubly-selected text characters.

Cooperate

(b)

Each user has a colour to identify his or her cursors, insertion points, and selections. In Figure 8-6(a)
two users have selected a rectangle; each user’s selection is shown by highlighting a corner of the
rectangle frame in that user’s colour, Similarly, Figure 8-6(b) shows two selections in a text string,
each marked by an underline in one user’s colour; the overlapping part of the selection is underlined
twice. Likewise, a narrow band in the frame around a user’s current editor is set to that user’s colour.
Where several people are using the same editor, a band is coloured for each user. If too many users
have selected an object (rectangle, text or editor) to identify them all in the space available in the
frame then only the most recent selections are shown. This is not ideal, but is a reasonable approach

for small groups.

Figure 8-7. Mode feedback in the home area. (a) Rectangle creation colour feedback. (b)
Current font feedback.

(b)

A user’s mode within his or her current editor is displayed in the lower half of that user’s home area.

For example, when a user is working in a rectangle editor, his or her home area displays that user’s
default colour in that editor (Figure 8-7(a)). Similarly, MMM shows the current font and colours for a

text editor (Figure 8-7(b)).

8.2.8. Shared Menus

In many desktop environments, menus are displayed once for each application window or at a unique
location on the screen (e.g., the Apple Macintosh pull-down menus are at the top of the screen). For a
shared application on a single screen, however, menus displayed once per window take up too much
space and menus displayed at a fixed location only allow a single application to be used at once.
Instead, menus in MMM can be shared among users and editors and positioned anywhere on the
screen, even in documents. For example, the menus in Figure 8-1 can be placed in a rectangle editor,

regardless of its nesting level, and then applied to objects in any user’s selected editor, regardless of
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that editor’s nesting level. Allowing people and editors to share menus reduces the screen real estate
needed for control. Also, menus can be created or positioned where a user is working, avoiding user
interference. Finally, users can group menus into a document to use as a customised control panel.

Some advantages of such “active documents” have been described by Bier [Bier91a].

8.2.9. Home Area Menus

Shared menus work well for commands, like changing colour or deleting, that apply to several editors.
Some functions, however, are specific to a particular editor; for example, only text editors are
concerned with fonts. Menus for these functions need only be displayed when such an editor is in use,
MMM displays the menus for a user’s selected editor in that user’s home area. These menus can be
combined with feedback that shows current modes in the selected editor. For example, Figure 8-7(b)

displays a menu of possible font choices with the user’s currently selected font highlighted.

8.2.10. Editing at Different Levels

Users can edit simultaneously at different levels in the editor hierarchy which reduces interference
between users; one user can reposition or resize a document while another edits its contents. While
some multi-level edits may disturb the user editing at a lower level, others work well. For example,
one user may resize a rectangle editor to uncover an object beneath it without disturbing another user

who is editing child rectangles that are away from the border being moved.
8.3. MMM'’s Architecture

The user interface requires a software architecture that is unusual in several ways:

¢ it must support a hierarchy of concurrently active editors; it must handle multiple devices and

users, and make links between them,;

e each input event must be directed to the correct editor, even though other input events may be

modifying the editor tree;
e each editor must store state for all of the users who have referenced it; and,
¢ the editors must co-ordinate their screen updates to produce a consistent image.

This section discusses the editor hierarchy, the preparation of new input events, the routing of events
to editors, how editors update documents in response to events, and the algorithms for updating the

screen.
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8.3.11. The Hierarchy of Editors

Figure 8-8. Input handling processes and queues.
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The editors are arranged in a tree; the editor at the root can have any number of child editors, each of

which can have any number of children and so on (recall Figure 8-5). Each editor has an application
queue of input events and its own lightweight application process (a thread) to dequeue and execute
events (Figure 8-8). When an editor receives an input event, it may act on the event immediately,

place it on its queue for sequenced execution, or pass it to a child editor.

At any moment, up to three editors are important to each user. A user’s selected editor will receive
his or her keyboard events and commands generated by clicking on a menu. If a user performs an
interactive operation (dragging a rectangle, for example), the editor in which that operation began is
the mouse focus editor. The mouse focus editor receives mouse motion and mouse button events until
the interactive operation completes, so it is possible to drag objects out of view. The most deeply
nested visible editor that contains a user’s cursor is his or her containing editor. If no interactive
operation is in progress, the containing editor receives all events which specify a position, such as

mouse motion or button events.

8.3.12. Preparing Input Events
Figure 8-9. Constructing an MMM event record
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Figure 8-9 summarises the processes and queues used in input handling. When the user manipulates
an input device, MMM'’s device process builds an event record to represent this event and fills in the
time when the event occurred, the device, and the event type (mouse movement or key press, for

example). The record is then placed on the system queue. The device process runs at a high priority so
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that the time-stamps will be close to real-time—to support the interpretation of gestures and double
clicks. The notify process removes the record from the system queue and fills in the identity of the
user (or user instance if a user has several home areas) who generated the event, by looking up the
association in the device ownership table, and fills in the current state of all devices owned by that
user (e.g., whether any mouse buttons are being held down). Only the notify process is allowed to
modify the device ownership table, so the table lookup produces a consistent value. Storage is also
allocated to hold local information as the event is passed between editors; for instance, x-y co-

ordinates will be modified to reflect the local co-ordinate system of each editor.

8.3.13. Editor and user data structures

There are two basic types of object in MMM, users and editors. The behaviour of an editor is defined
by its editor class, which contains a set of methods, and there may be multiple editor instances of an
editor class. A user record is defined for each person connected to MMM, for which there may be one
or more user instances (Uinst) records which hold a set of preferences and state for a given user
record. Each editor in the tree is represented by an editor instance (Einst) record, of which part is
editor-specific and accessible only to that editor’s application process (internal) and the rest is
accessible to the notify process (external). All Einst records include a list of user-state records, one for
each Uinst which has referenced the editor during the current session. As with the Einst records, the
user-state records are split into internal and external components; the external component includes
fields for finding the users’ current editors (described below). Each Uinst is linked to a Home Area
editor that provides graphical access to the contents of the Uinst, such as whether the Uinst has
control of a keyboard. The Home Area editor also holds a pointer to the Uinst’s current selected

editor. These relationships are shown in Figure 8-10.
Figure 8-10. MMM editor and user data structures.
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The EditorClass methods are divided into three main categories: the editor acting as a child (messages
sent down from root to a leaf); the editor acting as a parent (messages sent up from leaf to root); and
communication with a Uinst’s Home Area. The “down” methods include initialisation and requests to
repaint, handle a resize, and delete the editor contents. The parent may also enquire of a child

whether it is prepared to be deleted; this avoids deleting an editor while a descendent is being dragged
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by another user or deleting the last menu (which would leave MMM without controls). The notify
method provides a generic mechanism for handling input (discussed in more detail below). Event
types are identified by atoms, values unique within the process, so new event types can be defined and
distributed without changing editors which do not handle them. Thus, a mouse button event and a
request to change the colour of the selected object are both managed by the notify method. Editors
ignore events which they do not recognise and cannot pass on to a child, and so do not fail if they
receive a generic event (such as a delete) which does not apply. “Up” methods allow children to call
their parents, for example to request a repaint or to get a system-wide value such as the device table. A
generic parentNotify method allows children to perform actions such as grabbing the input focus.
Finally, there are three Home area methods: to request a repaint, to perform a repaint, and to handle
user input in the Home area such as the selection of a font button. The Home Area is also
implemented as an editor, but its lower half is used to present a graphical view of some of the state of
the user’s selected editor, so the selected editor drives this region directly. This allows each editor type
to implement its own Home Area window, and any controls it might contain, without changes to the

Home Area editor type.

8.3.14. Delivering Events to Editors

When an event reaches the head of the system queue, the notify process walks down the tree of
editors, beginning at the root, asking each editor either to accept it or to pass it to a child (see Figure
8-8). When an editor accepts the event, the notify process performs any actions that must be done
before the next event can be handled (see the next section), dequeues the next event from the system

queue and then repeats this procedure.

Each user-state record in an editor describes the child editor that is on the path to the user’s selected
editor and the child editor that is on the path to the user’s mouse focus editor. MMM can find a user’s
selected editor, for example, by chaining down the path from the root editor. If a user has a mouse
focus editor, events are passed to the child editor that lies on the path to that editor; on the way, the
event’s position information must be translated into that child’s co-ordinate system. If the application
process of the parent editor is busy, the child may be moving, so the notify process waits for this
application process to finish its current event before translating the co-ordinates. Then, if the child
editor is the mouse focus editor, this child editor accepts the event, otherwise the notify process

continues down the path of editors.

The notify process is a potential bottleneck as the editors will all stop responding to the users if it does
not process events fast enough. This is, however, necessary, as it ensures that events are delivered to
editors in the proper sequence and maintains the consistency of the devices table and of the chains of
pointers for users’ selected and mouse focus editors. Timeouts were added to ensure that the notify
process does not wait too long. If the notify process needs to wait for more than a few seconds for an
application process, it gives up, throws the event away, and marks that process as “sick.” Subsequent

events that must pass through a sick editor are discarded until its application process is idle,
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whereupon it is once again marked as “healthy.” While events are sometimes lost by this scheme, this
seems an acceptable price to pay for guaranteed responsiveness; ideally, synchronous collaborations

should proceed at a conversational pace.

If there is no mouse focus editor, the notify process passes mouse events to the containing editor. As
the event is passed down the tree, the notify process waits for each editor’s application process to be
idle before translating event co-ordinates and passing the event to a child editor. Keyboard events do

not contain co-ordinates so they are passed down the tree to the selected editor without any waiting.

8.3.15. Editor Input Handling

When an editor receives a user event, it looks in the editor-specific fields of its user-state record for
that user to discover his or her current modes and preferences. Our rectangle editor, for example,
stores the user’s default colour for creating rectangles, the user’s interactive command (dragging
versus resizing a rectangle) and the last co-ordinates of the user’s cursor that were processed during

dragging. In addition, each rectangle records a list of all users who have selected it.

Editors respond to events in two phases. First, the editor may request that it become the mouse focus
or selected editor for the user who originated the event. This is done by the notify process to ensure
that the chains of pointers in the editor hierarchy that represent the path to the mouse focus and
selected editors are updated atomically. The editor may then place the event on its application queue.
In the second phase, if any, the application process chooses an action from its queue and executes it.
To choose an action, it inspects all the queued actions. It performs the oldest mandatory action or, if
there are no mandatory actions, it executes the most recent optional actions (e.g., motions during
rubber-banding are optional), skipping older ones. This helps the editor handle large volumes of
input. Editors place incoming events from all users on the same queue, so it is necessary to decide
which user’s event to respond to first. Mandatory actions are handled in the order in which they are
received, regardless of user. For optional actions, the editor selects the user who has been least

recently served, so the editor feels equally responsive to all.

8.3.16. Screen Update

Any application process can make changes that require the screen to be refreshed. Objects and editors
can overlap so refreshing the screen for one editor may require the co-operation of both parent and
sibling editors. If each application process were allowed to walk the entire editor tree as needed to
update the screen after a change, one process might read editor data while another is modifying it.
Instead, when an editor, E, wishes to paint, it creates a paint request record which includes (in the co-
ordinates of E) a rectangle that bounds the region to be repainted. The editor notifies MMM that it
would like to paint and then turns off its application process and waits. The system asks all
application processes to pause and waits until they all have stopped, then the system paint process
walks the tree of editors to determine a rectangle or rectangles bounding all the regions that have

changed. It then walks the tree again asking each editor in turn to repaint itself within these
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rectangles. The resulting paint actions are double-buffered so that they appear to the user all at once,
enhancing the perception of simultaneous motion. Once all editors have finished painting, their

application processes are reactivated.

8.4. Conclusions

MMM proved valuable for testing ideas about the architecture and user interface of multi-user editors
and for demonstrating that fine-grained editing with per-user customisation can be achieved with
reasonable performance and only a modest increase in data structure complexity. As a simple testbed,
MMM does not have a large community of users, but many of the ideas embodied in MMM have been
of value in other projects, such as GroupKit [Roseman92] and Tivoli [Pedersen93]. We drew the

following conclusions about the user interface of shared editors:

» the home area is effective as a quick way to register a pointing device with a user and as a place

in which to display per-user feedback;

¢ selecting operations by pointing at specific object positions works well because it is easy to learn

and hard to misinterpret as a gesture,

e when editors are used as window systems, users can work at different document levels

simultaneously and can copy control objects, such as menus, into editors for convenient access;

e using colour to associate feedback with particular users allows the use of traditional shapes and
sizes of feedback, such as underlines in the text editor and control point highlighting in the
rectangle editor, although this technique is less effective on black and white displays or with

colour-blind users; and,

e allowing menus to be shared among users and among editors simplifies the interface and

conserves screen space.
To support this user interface, we provided four elements of system architecture:

e when an input event arrives, we identify which user it comes from using a table of user-device

associations;

e events with co-ordinates, when destined for a nested editor, wait until that editor has a well-

defined position relative to its parent before they are delivered to the nested editor;

e many editor data structures, including those representing the current modes, operations, insertion

point, and selected objects, are replicated once for each active user; and,

e all editors stop manipulating their document data structures during screen refresh to produce a

consistent view of the screen and a smooth view of simultaneous motions.

The main lesson from MMM for this dissertation is that the pointer/keyboard/display configuration of
the standard personal computer is only a special case of a user interface. It is both feasible and useful
for people to share input and output devices, rather than the “advanced glass teletype” approach which

many user interface architectures implement. Furthermore, MMM devices are shared in the user’s
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world (on their desk, in their office) unlike shared virtual realities in which people use private input

and output devices to share virtual objects in a digital world.
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9. Multiple Input on a DigitalDesk

9.1. Introduction

The Double DigitalDesk® (DDD) was a project to investigate the extension for multiple users of an
unusual user interface. The design and implementation of the DDD required the solution of a number
of technical problems which highlighted issues of relevance to the design of user interface

architectures:

« the DDD is an example of a user interface for which some of the component devices must be
distributed. We implemented virtual devices to hide the location of physical devices from the

application so that the same code could be used for local and networked devices;

¢ a DDD session is started by sharing the input from two individual DigitalDesks and we also
wanted to support collaboration on the same desk, so the DDD has to allow input devices to be
dynamically attached and detached. We achieved this by modifying the toolkit in which the DDD
was implemented. The changes also allow input devices to be attached at any level in the window

hierarchy; and,

o the sharing of DigitalDesks by distributing input means that connections between input devices
and applications are unpredictable, so input devices are managed by servers rather than being tied
to a virtual terminal. This means that any application can acquire input from a device, and

devices can be shared between multiple clients.

The DDD provided a motivation for a user interface architecture which allows applications
temporarily to assemble the devices they need for the task in hand, rather than having the devices
bound into the display server. It shows that such an architecture can, in principle, be implemented
over conventional computer systems even without the advantages of the improved technologies
described in Chapter 4. There are, however, some issues unresolved in this implementation. For
example, there is no mechanism to arbitrate between input sources; we had to throttle back the stream
of pen events at the device, rather than being able to do so in the application. Furthermore, we did not
have time to investigate how to handle race conditions in our highly replicated approach, except to

note that they occurred rarely in practice.

This chapter first describes the original DigitalDesk and our motivations for extending it. The next
section describes the shared desk application which provides digital copy and paste on paper for

multiple users. The chapter then describes the distributed approach taken with the implementation

3 The Double DigitalDesk was developed by Pierre Wellner and myself. The original DigitalDesk was developed
by Pierre Wellner who implemented a single-user version of digital copy and paste. In particular he developed
the thresholding and self-calibration, although I optimised part of it for this application. I worked on the
distributed aspects of this project, including the decomposition into component parts, virtual devices, and

handling multiple input sources.
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and how images and events are aligned on multiple desks. The next sections describe how multiple
input is handled within a DigitalDesk and how input devices, particularly the frame grabber, are

distributed. Finally, the chapter summarises our experiences and presents some unresolved issues.

9.2. The DigitalDesk

The world of the electronic desktop and the world of the physical desk top are normally very separate.
The desktop metaphor has been very successful at helping users understand the electronic world by
making it similar to a real desk. Studies of work in real world environments, however, have revealed
that the use of paper documents persists after the introduction of computers [Luff92]. It appears that
paper supports well both individual and shared activity, which suggests the potential value of a system
that could merge paper and digital activity. An alternative explored by the DigitalDesk [Wellner93] is

to keep the familiar physical desktop and enhance it with some of the features of electronic desktops.

The DigitalDesk (Figure 9-1) consists of a normal office desk with a computer-controlled projector
and video camera above it. The computer display is projected onto the desk, superimposing electronic
objects onto the paper objects lying on the desk. The user can interact with the system using the
normal workstation mouse, a digitising tablet and stylus, or by pointing with a finger that is tracked

through the camera with an image processing system. Text that is printed on paper can be recognised

computer and image
processing system

and used by the system.
Figure 9-1. A DigitalDesk.

projector

Experience with the Digital Desk has shown the value of the concept, [Newman92] for example, but
existing implementations were still bound by workstation limitations; in particular, they were limited
to one location input device and one display. Where an unusual input device, such as following the
user’s finger, was used the locations were translated into normal workstation mouse events. When two
people are at a real desktop they do not normally have to pass a token around to be allowed to move
items on it—I can set down my coffee cup while you wield a pencil—yet this is how applications on
the DigitalDesk were controlled (the token being a mouse or pen); our experience was that this felt

unnatural and constrained.

Pierre Wellner and I wanted to relax these boundaries and experiment with multiple input devices; we
also wanted to advance the technology to allow people to draw on the same “virtual” piece of paper at
a distance. To this end, we combined two DigitalDesks into a Double DigitalDesk by multiplexing

pointer and image input to both sites. There were other motivations for distributing parts of a single
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DigitalDesk between hosts, as some components of the system, such as image processing, make heavy
computational demands on the host. We expected that we could improve performance and user
responsiveness by distributing the system between more than one machine. Furthermore, some input

devices needed for a single client are attached to different hosts and so are inherently distributed.

9.3. The Double DigitalDesk

The DDD is a pair of DigitalDesks that allows users in two separate locations to share their physical
desks, both seeing and editing each other’s documents. The following sections describe the shared

desk and the “copy and paste” application we implemented on it.

9.3.1. Shared Desk

People often use documents to help them work together and they often need to be able to view and
modify a document together. Shared editing of documents has been the focus of a great number of
research projects; see [Olson91] for example for a survey. Most work has concentrated on screen-
based or virtual documents, but we wanted to support shared editing of paper documents. This has
some similarity to VideoDraw [Tang90], but with the addition of digital image alignment and copy

and pasting.
Figure 9-2. The Double DigitalDesk. The applications accept input from devices at both
desks.

projector projector

Figure 9-2 shows the basic DDD set-up. Each desk has a computer-controlled video camera and
display that point down at the desks. Each computer grabs images from its local desk approximately
every three seconds and projects images from the remote desk—pseudo-video. The result is that both
users see what is on both desks; when a paper document is placed on desk A, its image is projected
onto desk B and vice versa. The projections are precisely scaled and positioned to provide What You
See Is What I See (WYSIWIS) and useré can draw (using a real pen) on either paper documents or on
virtual documents. In both cases, the remote user will see the new drawing projected in the

corresponding position.

Hand motions are also transmitted, so if a user points to a certain place on a document the other user

sees this. Hands block the view of what is underneath them, but this is also true when sharing an
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ordinary desk and can be dealt with though social protocols. Figure 9-34 shows two users drawing in a

shared virtual space, giving a sense of how the images of the two drawing sutfaces merge. The users

are normally connected by telephone or with an audio-video link via EuroPARC’s RAVE system

[Gaver92a].

Figure 9-3. Two users playing Noughts and Crosses in a shared virtual space. The remote
user’s hand is visible in the projected image.

9.3.2. Copy and paste with real paper

Although copy and paste is now a standard feature of electronic documents, the same operation is
awkward to perform with real paper. The DigitalDesk, however, makes it possible to copy and paste
paper documents in the same way that we copy and paste electronic documents. The system, of course,
cannot erase real paper, so we cannot implement cut and paste. In our prototype, a selection is created
by sweeping out an area of the paper with a stylus. This selection is a copy of the area combining the
local and remote images and it can be moved around or deleted. Selections are normally not
distinguishable—they merge with the rest of the projected image—but a border appears around a
selection when any user’s pointer is over it, so that it may be found again. The selection can be moved
by dragging it with the stylus; the border disappears during dragging to make alignment with other
parts of the image easier to see. Figure 9-4 shows a single-user version of copy and paste; the user’s

selection, a flower, is copied digitally and can be “pasted” onto the front of the house.

4] am grateful to Pierre Wellner for generating these illustrations.
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Figure 9-4, Single-user copy and paste.

When a user performs an action, such as moving a selection, it is mirrored on the other desk so that
both users are effectively sharing the same surface. Selections can be created or moved by either user
at any time. If both users select the same area, then two copies are made. If both users attempt to drag
the same selection then the first one to grab it gains control, and one user may drag a selection while

the other is creating a new one.

9.3.3. Tasks that can benefit from the DDD

One task the DDD may be well suited for is collaborative layout. Two people could, for example, work
on designing the cover of a brochure: moving in and out of shared work copying images of standard
parts from a catalogue, copying photographs to be included, and drawing (digitally or on paper) any
non-standard items to be added. These can be projected onto a standard backing sheet placed on one
partner’s desk, combining the availability and familiarity of paper with the flexibility of the digital
medium. Another task might be the early stages of architectural design, where a customer is
discussing requirements for a building with an architect, laying out the facade or a floor plan. So far,

we have only briefly tested it on a facade layout task and the game of tic-tac-toe.

9.4. Implementation Approach

There is a long-standing debate amongst implementers of groupware over the merits of centralised
versus replicated architectures, discussed in chapter 3. A centralised implementation, although it has
many advantages, would be overloaded by the processing for the pseudo-video, so we chose a

replicated architecture. We made the input and output components of the DDD—the tablets, the video
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cameras, and the displays—available as services to client applications. Each tablet, for example, is
managed by a tablet server which is a process that accepts events from the physical device, translates
them into a common format, and sends them to all interested clients. Each copy of the DDD
application connects to the services it needs. Thus, each half of a DDD can work as a stand-alone
system, providing local digital copy and paste by connecting to the local tablet, display and camera.
The independent sessions become collaborative when each side connects to the other’s devices in
addition to its own. Two central issues for implementing the DDD are sharing the desk views, and

sharing the desk input.

9.4.1. Sharing Desk Views

To give the illusion of a shared desk, some regions of the desk must provide WYSIWIS. One
approach would be to use identical DDDs and for both to display exactly the same thing, but this
approach is impractical and restrictive. It is very difficult to adjust cameras to point at exactly the
same spot, with the same zoom factor on each desk, and to maintain this calibration over time, and
the projectors we have are of different resolutions. Users will want to maintain full control over the
non-shared portion of their desks (i.e. they should be able to move windows around) and will expect
control over the view that the local overhead camera is sending out. A fully digital video capture and
projection system allows arbitrary scaling and positioning of the video images.

Figure 9-5. Image alignment between desks.

logical image

common
logical space

physical space

desktop 1 desktop 2

To align the DDD views, it is necessary to select a global co-ordinate space that all DDDs can share.
The systems communicate with reference to the global space and each DDD transforms its view of
other DDDs according to its own mapping. Projected pixels (i.e. the image on the desk surface)
cannot be used as the global co-ordinate space because different DDDs have different resolutions and
sizes of projected image, so we use the camera’s field of view. The applications automatically project
the remote camera’s image scaled and positioned on the desk such that it corresponds exactly to the
field of view of the local camera, relying on self-calibration to determine the size and position of the

camera’s field of view (Figure 9-5).

Aligning the cameras and projected images in this way generates video feedback: a mark drawn under
one camera is shown on the remote display which, in turn, is seen by the remote camera and shown on

the local display. This is undesirable if it makes images too stable: the image of a user’s hand may




68 9. Multiple input on a DigitalDesk

loop through the system after the user has moved it out of the way. Fortunately, it is easy to adjust the
ambient light and projection contrast so that the persistence of moving images is reduced to only one
or two cycles. The feedback may also be useful to test the alignment of the system. When properly

aligned, projected feedback matches perfectly with the original mark.

Instead of projecting a grey-scale or colour image of the remote desk, the DDD projects thresholded
images. A greyscale or dithered image would interfere with the appearance of paper documents on the
local desk, and this effect would get worse when combining the images of more than one remote desk.
One bit per pixel thresholded images are not only faster to transmit across the network, but they look
good when superimposed on paper documents and are easy to combine together. Generating these
thresholded images is not, however, trivial because lighting varies across the camera’s field of view
and over time. An adaptive thresholding algorithm is used that takes into account the local
background illumination at each point of the image; the current version takes approximately half a
second per frame, enough to demonstrate the principle. Self-calibration and adaptive thresholding are

both described in [Wellner93].

9.4.2. Sharing Desk Input

Just as it is necessary to align the video images, it is also necessary to align the digitising tablets so
input events for one DDD are mirrored on the other so those events must be aligned with both
displays. Our solution is to express device events in the global co-ordinate space described above. We
have three co-ordinate spaces mapped onto each other: at the bottom we have the actual device (the
tablet). Then there is a mapping from the device co-ordinates to the global co-ordinates used for
sending events to client DDDs. Finally, each DDD is calibrated to the global co-ordinate space and so
can translate global input events to. its local (screen pixel) co-ordinate space. This means that when a
user points with a stylus on one DDD, the event is duplicated in the corresponding position on any

other DDD which is attached to the same device.

We calibrate a device through its local display. Each local camera represents the global co-ordinate
space, so once a camera and projector are aligned to each other we can unmap from projector co-
ordinates to global ones. To calibrate the tablet, a series of cross-hairs are projected onto the desk
which the user must select with the stylus. This gives a set of point pairs which maps between the

tablet and global co-ordinate spaces.

The link between a DDD and a device server is called a connection; each connection has a name and
a mapping associated with it that relates the device co-ordinate space to the global co-ordinate space.
DDDs that share events also share mappings which ensures that when a user points at a specific place
on one desk, the corresponding place is pointed to on the other desk. This is discussed further in

section 9.6.




9.5. Multiple Input Within A DDD. 69

9.4.3. Input Distribution

A shared application must distribute its activity between its instances. We chose to distribute basic
device events to allow us to experiment with a highly distributed approach and different input device
types. This is in contrast with many groupware systems, such as Colab [Stefik87], which distinguish
between syntactic (i.e. raw input) and semantic (i.e. changes to the shared state) events—although it
could be argued that the mapping of event co-ordinates between physical and logical spaces represents
part of such a conversion, At present, copies of the DDD involved in a conference are co-ordinated
only through their input devices, they do not communicate directly with each other. This means that
DDDs can be hooked together without the need for an explicit conference component, including (in

principle, as we do not have the hardware to do so) many DDDs.

There are two levels involved in distributing input events in this way: managing multiple input
streams within a DDD and routing events from devices to DDDs. The next sections discuss how we

implemented these two levels.

9.5. Multtiple Input Within A DDD.

We wanted to take advantage of existing software and provide a path for future reuse of the DDD
implementation. We were alre.ady working in Modula-3 [Nelson91] which provides language support
for objects, modules, strong type-checking, lightweight threads and garbage collection, so we chose
the Modula-3 user interface toolkit Trestle [Manasse91]. This section describes the changes we made

to Trestle to support our new requirements.

9.5.1. Trestle

Trestle has a strong model of user interaction which influenced the implementation of the DDD. The
basic screen component is an abstract object type, the Virtual Bitmap Terminal (VBT), which
represents a share of the workstation’s screen, keyboard and mouse. New interaction object types can
be defined by subclassing existing VBT types. Like many user interface systems, Trestle maintains a
hierarchy of windows in which children of the same parent may overlap; each window is represented
by a VBT. A VBT includes a set of methods to handle user input events which a programmer may
override to define the behaviour of the VBT. VBTs which are parents of other VBTs, splits and
Filters, generally pass these events to a child until the event reaches a Leaf (the lowest level of
child) which may take some action. The top-level VBT in a Trestle implementation provides the
connection to the graphics hardware or the host window system; the current version, XClient,
interprets between Trestle and the X Window System. One of the original goals of Trestle was to
investigate the benefits of multiprocessor hardware to a window system—each VBT may be locked
separately—so it also has a sophisticated locking strategy to allow individual VBTs to be locked

without risking deadlock.

Each VBT also has a cage field which represents a set of cursor positions. Cursor motion is only

reported to a VBT when the cursor leaves the cage. A VBT can, for example, be notified of the cursor
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entering its domain by setting its cage to be everywhere outside the VBT—the cursor leaves the cage
when it enters the VBT. On the other hand a VBT can track a cursor by resetting the cage to the
cursor’s current position each time a motion event is reported. When the cage is set for a VBT, it is
propagated up the hierarchy so that the cage for each parent VBT is the intersection of its children’s
cages. This approach avoids unnecessary processing of motion events and reduces the range of events
a VBT must handle but, as is discussed later, makes the management of multiple pointers more

difficult to handle.

9.5.2. The InputVBT

We wanted to be able to dynamically add and remove input devices to a Trestle application without
changing existing code. One option is to synthesise events in the X server, as with earlier versions of
the Digital Desk, but this makes it impossible to distinguish between sources of events without
changes to the X server and parts of Trestle; chapter 7 discusses the difficulties in extending the X
server. Instead, we adopted the solution of inserting external events directly into the application and

using Trestle’s event-handling mechanism to process them.

The InputVBT is a Filter which forks a thread to accept input from an external source and pass
events to its child as if from the main input device. This allows most VBTs, which cannot distinguish
between multiple input sources, to process events as if they had come from the default input devices,
thus avoiding alterations to the toolkit. Some VBTSs, however, need to distinguish between input
sources to allow multiple paths of control, so we provide a Devices interface which allows VBTs to
determine the origin of the current event. The implementation of Devices is based on the observation
that input from each device is handled by a different thread and that the general Trestle lock is held
during the processing of an individual event so different input threads cannot interrupt each other.
Device-handling threads register their association with the device before statting to process events so
VBT methods can then use the current thread as a key to look up the input device. A more thorough
conversion would implement separate cage hierarchies for each device so that position events from
one device would not be reported to a VBT because another device needed finer tracking. Some effort
went towards implementing such a scheme, but it was found to be needlessly complex for our
purposes, especially as pointer events were not the main computational bottleneck.

Figure 9-6. Adding devices with the InputVBT.
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To add an input device, an application inserts an InputVBT at the top of its VBT tree and attaches a

Device object to it. This can be seen in Figure 9-6: the XClient at the top provides the main window,
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and input events from the X server are passed through to the relevant descendant VBT. Events from
an extra device are distributed by a thread attached to the InputVBT, which is a child of the XClient.
Both the XClient and InputVBT threads are registered with the Devices table. Any number of devices
may be added by inserting extra InputVBTs and, similarly, devices may be disconnected by removing

the associated InputVBT.

One tricky point occurs when an application sets a new cage and propagates it up the VBT hierarchy.
If the new cage no longer includes the current point, the cursor has effectively left the cage. This
requires a new position event to inform the VBT tree but the VBT hierarchy will be locked until the
cage-setting procedure returns, so the event cannot be generated from within the call. The solution is
to call a procedure, ForceEscape, to fork a thread to wait until the VBT hierarchy has been released
and then generate the dummy event. This thread, however, will not be registered with the Devices
interface and so dummy events will always be associated with the default devices. The implementation
of ForceEscape, however, is embedded in the core Trestle library so we avoided changing it by
provided extra cage handling in the DDD code. In particular, cage requests are filtered by each
InputVBT, so when the cage is set for its associated device, an InputVBT calls a version of
ForceEscape that registers the device and new thread. The top-level cage, however, must still be set to
the new area, so the method which sets the cage for the XClient was modified to only call

ForceEscape for events from the default pointer.

9.5.3. Arbitration between devices

The InputVBT approach does not, however, provide a mechanism for balancing input from several
input sources—the next event comes from whichever thread acquires the lock. In MMM, each editor
has an input queue so it can pre-process outstanding input events, determining which event to accept
next. In Trestle, the thread which delivers events to VBTs also performs the processing for the event
in the leaf VBT, so each event is handled in isolation. Even were there a separate VBT cage per
device, this would only allow crude control over which device to select input from next (by widening
the cage during pointer following). Nor would it be easy to filter input by placing all events into a
single top-level queue, as the meaning of an event (and, hence, whether it can be dropped) depends on
the interpretation placed on it by the destination VBT. There would be other problems with providing
each VBT with an individual input queue. In particular, the cage must be reset at the end of the
position method to receive any further position events, so if the position method does not interpret
the event but only attaches it to a queue, the choice of cage must be arbitrary. In practice, we found
that our tablet, when running at full speed, swamps the application, so we throttled back the rate of

event generation in the tablet hardware. This is clearly a pragmatic, rather than a general, solution.

9.6. Distributed Input Devices.

As described in section 9.4, the shared application is based on multiple DDDs having access to
common input devices, even when on separate hosts. Furthermore, applications may need to share a

view of a device rather than access to the base device. In addition, we wanted to be able to use the
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same infrastructure for both local and remote devices, for testing and other applications. We followed
an approach, similar to Network Objects [Birrell93], in which devices are represented by objects
which may either drive a local device or be proxies for device objects in a remote server. Modula-3’s
class system allows us to define a virtual device object type which can then be subclassed for the local
and remote implementations. While this technique has been used to provide location-transparent
access to more complex devices, such as video recorders in the Component Kit [deMey93], it has not

so far been applied to basic user input devices such as mice and pens.

This approach proved particularly useful during the development of the image processing software.
The initial implementation of the DDD performed both image processing and display in the same
process. This simplified the implementation, as there was no need to write another server or define a
protocol for inter-process communication, but there were two main problems. First, the cameras had
analogue connections to the frame-grabbers which became impractical after our DigitalDesks were
separated for organisational reasons, whereas the computer network covered the whole building.
Second, the computational effort devoted to image processing degraded the responsiveness of the user
interface, so distributing this part of the system spread the load over more processors and made it

easier to isolate bottlenecks.

9.6.1. Virtual Devices

We wanted to hide the fact that a device is shared from its clients, so that applications could be
written without having to provide explicit support for sharing. We based our design on a notion of
virtual devices, analogous to virtual memory, in which a set of logical devices are supported by a
common physical device, giving each client the illusion of having its own hardware. Some
characteristics of a virtual device are fixed when it is created, such as the image type of a Grabber.T
(our frame grabber object); if a client needs a device with different characteristics, it should create
another virtual device. For example, a client would open a Grabber of type
Grabber . ImageType . FastThresholded to get images quickly for our pseudo-video, but would open a
second Grabber of type Grabber . ImageType.GreyScale to get an image for detailed processing. This
avoids synchronisation problems if multiple threads within a client need to use different settings with
the same device. Each thread allocates a separate virtual device with different characteristics and the
shared implementation of the device determines when to change the physical device settings. There

are similar complications when virtual devices are shared between clients (as described below).

Other device characteristics, however, may be changed during the lifetime of a device, as they are
more related to the client’s view of the physical device rather than its hardware attributes. One
example is the warping (mapping from the physical co-ordinate space on the desk to the DDD’s
logical co-ordinate space), which may change if the desk or projector move after a calibration. The
warpings are held in the virtual grabber, as the frame grabber was designated as the logical co-

ordinate space, and other parts of the application query the Grabber.T to warp or unwarp pairs of co-
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ordinates between logical and physical spaces. Of course, the distinction between device-specific and

view-specific attributes may not always be clear.

Figure 9-7. Multiple virtual devices and clients in a device server.
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As with shared virtual memory, clients can share a virtual device if they can agree on a common
name. When a client opens a virtual device it specifies a name for the device. If a device is networked,
the server will look to see if it already has a virtual device with that name and either establishes a
second connection to it if such a device exists, or creates a new one. The device servers support an
arbitrary number of virtual devices and an arbitrary number of clients of each device. For example, in
Figure 9-7, A is the only client of device o, but B and C share the use of device . This is similar to
the Switchboatrd approach to devices [Tanner86]; a device view can be thought of as logical device
implemented over another logical device, except that DDD devices are distributed between hosts and

we can use the Modula-3 class system to support a hierarchy of device types.

9.6.2. Network Devices

Given our emphasis on reducing the distinction between local and remote devices, we decided to use
Remote Procedure Calls (RPC) [Birrell84] to structure the communication between components, so we
took advantage of a Modula-3 implementation from Xerox PARC of SunRPC. This also made
interoperability between languages easier as the same interface file could be used to generate C and
Modula-3. SunRPC, however, identifies a contact point by a host name and program number, which
implies that there is only one logical instance of a program on a given host. SunRPC, unlike ANSA
[ANSAS9], does not support callbacks from server to client, to notify the client of device events, so
some of our device clients exported an RPC interface for the server to call. While it is unlikely
(although not inconceivable) that two instances of a device server may exist on a host, it is more likely
that there be multiple instances of a client on a given host, which this naming scheme cannot support.
Of course, the interface can define a set of query procedures which clients can fork threads to call,
each blocking until the server responds, but the inelegance of this solution suggests that we should use

a more suitable interface (such as ANSA’s).

RPC also proved inappropriate for our high-bandwidth communication such as transmission of our
pseudo-video images. The first implementation of our VideoVBT.T (a VBT which repeatedly gets
images from a Grabber.T and displays them in the background) simply looped calling the
Grabber.T.grabRect method (a synchronous call to grab an area of the frame). While this allowed us

to use exactly the same code in local and networked implementations for most of the layers of the
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application—the networked version is simply an RPC call to the server—it was inefficient in two
ways: first, extra copies of the data are made during marshalling and unmarshalling; and, second,
RPC is synchronous, so some resources are held locked in the client during the entire processing and
transmission of an image. In addition, the RPC model does not map well on to the conceptual model
of the application, which is of a device broadcasting data to a set of clients. While group RPC could be
used, to take advantage of network-level multicasting for example, this would still be a call from

server to client and so subject to the naming limitations described above.

Figure 9-8. Multiple connections in a networked Grabber.T
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The solution was to provide a second connection, using sockets, to transmit image data controlled

through the Grakber.T; a separate thread processes the images as they arrive (Figure 9-8). This is
similar to other architectures that support isochronous data, such as IMAC [Nicolaou91] or the
TouringMachine [Bellcore93], which provide separate paths for the data stream and the object which
controls it. We added a set of methods to the Grabber.T to control the extra thread, which repeatedly
acquires an image and calls a client-specified procedure, FrameProc, to process it. This still allows
similar code to be used for different parts of the implementation, but partitions the code which
acquires an image from that which uses it. The local version of the image thread gets the image
directly from the frame grabber, whereas the networked version waits for the server to send an image
through the socket. The FrameProc in the server transmits the image to all the clients of that

Grabber.T, while the FrameProc in the client displays the image in the application.

In practice, these techniques, with a few other optimisations, mean that the communication part of our
network devices is not the bottleneck in our application—at least in our environment (Sun
SparcStations, SunOS, Ethernet). The slowest part of the system is the grabbing, thresholding and
warping of the images which require specialised, or very much faster, hardware to approach real-time
performance. Other applications implemented over the same infrastructure but without the image

processing demands, such as a shared sketching program, were acceptably responsive.

9.7. Conclusions

This chapter describes the Double DigitalDesk and its implementation. The DDD shows how the
single-user DigitalDesk can be extended to provide support for multiple users, both at a distance and
on the same desk. We envisaged our application forming part of the working environment of a
DigitalDesk user, allowing lightweight collaborations at a distance between people using both paper

and digital media. The architecture of the DDD demonstrates how facilities in the user interface layer
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can support the dynamic construction of applications by gathering together distributed input and

output devices, providing user collaboration through shared devices.

The implementation of the DDD shows how a user interface architecture, in this case Trestle, had to

be extended to support a novel user interface. These extensions were:

« networked virtual devices, which allow applications to be written without regard to the location of

the source of an input stream;

o the ability to dynamically attach and detach input devices to a display at arbitrary levels in the

window hierarchy; and,

« implementing all input devices as networked services so that clients can acquire an input stream

from any device.

The DDD, like MMM, shows that there are models other than the desktop workstation which user
interface architectures will have to support and that facilities provided at the level of the user interface

system can simplify the construction of distributed multi-user applications.

There are, of course, unresolved issues in the current implementation of the DDD. In particular, we
did not develop a general mechanism for arbitrating between input streams to avoid one device
swamping the others. It is clear from MMM that the individual VBT must determine which events
may be discarded, as this is the level at which an event becomes meaningful to the application, but
Trestle handles each event as it arrives rather than queuing it with the VBT. It is also not clear how
complex an application this extreme form of distribution can support. Current performance slows the
users down sufficiently to avoid many race conditions, but this may get worse as the implementation
improves. On the other hand, work such as [Karsenty93] shows that more complex protocols can
support parallel activity in replicated applications, and an implementation based on virtual synchrony

[Birman91] would be interesting to explore.
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10. Summary

This part of the dissertation has described three sets of experiments and their implications for the
design of user interface architectures. The first chapter describes two experiences with the X Window
System: a multi-user application and an attempt to introduce dynamic input device loading to the X
server. These made apparent how strongly the assumptions about how users will interact with a
display are built into its design. Clients have no influence over the scheduling of an activity in the
server, making synchronisation with other media or other servers difficult. Similarly, the optimisation
of the internal structure of the server for the model defined in the X protocol makes it difficult to

extend for new user interface requirements,

Chapter 8 described the Multi-Device Multi-User Multi-Editor (MMM), a user interface and
architecture for multiple users and multiple devices sharing the same screen. It supports fine-grained
editing and per-user customisation within an editor. This requires four extra features not normally
present in single-user architectures: associations between devices and users are maintained in a
system-wide table; events with co-ordinates wait until the destination editor has a well-defined
position before being delivered; many data structures, such as modes, selections and insertion points,
are replicated for each active editor; and, all editor activity is suspended during a screen refresh to
produce a consistent view and smooth motion. MMM shows how input and output devices may be
shared in the user’s world rather than in a virtual reality and that the implementation costs of

providing such flexibility need not be excessive.

Chapter 9 described the addition of multiple input to the DigitalDesk. The Double DigitalDesk (DDD)
provides a common virtual drawing space between two DigitalDesks by multicasting its input to both
sites, allowing lightweight collaboration using both paper and digital media. If we regard Trestle as a
user interface layer, the DDD provides three additional features: networked virtual devices which hide
from the application the location of the physical devices they represent; dynamic incorporation of
extra input devices into the general event handling mechanisms; and, network devices which allow
clients to access and share remote input devices. As with MMM, the DDD shows that user interface
systems need to support device models other than the desktop workstation and that such support can

simplify the implementation of distributed multi-user applications.

These experiments suggest that user interface architectures should provide support for dynamic
associations with multiple users and devices and that such an architecture cannot be easily evolved
from existing standards. The next part of this dissertation proposes a model of a user interface

architecture which meets some of these demands.




Part IV. The Gemma Architecture

So far, this dissertation has shown that current user interface systems do not support new user
requirements or take full advantage of innovations in computer systems. The experiments have shown
that existing user interface systems are difficult to extend beyond the model of the desktop
workstation, but that there is evidence that multiple and distributed devices can be used to provide a
more flexible approach. This part proposes a distributed user interface architecture, the Graphical
Environment for Multiple users and Multiple devices Architecture (Gemma), based on networked
devices which provide input and output services to clients. These clients can then assemble low-level

devices to provide higher-level services, such as window servers, to application clients.

Chapter 11 discusses the computing environment for which Gemma is intended and some of the user
interfaces to be supported, outlines the required features of the architecture, and then relates its main
features to the work described in Part III. Chapter 12 describes how low-level devices are defined and
made available to higher-level clients, such as applications and window servers. Chapter 13 describes
an example of a simple window system, sw, built over Gemma which provides some of the
functionality identified in Chapter 11. Chapter 14 discusses the architecture, describing how Gemma
may be used to implement some example applications, some unresolved issues in its design and the

infrastructure required to support it.

Gemma provides a model for a new generation of interactive systems which are not confined to virtual
terminals but use collections of independent devices which may be bound together for the task at
hand. It provides mediated shared access to basic devices and higher-level virtual devices. An
example window system, sw, shows how these features may be exploited to provide a flexible,

collaborative and mobile window system.
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11. Introduction

11.1. User Requirements

A first step towards a design is to clarify the activities to be supported. Consider a group of people in a
room, working on related tasks, who occasionally want to share devices and applications, without
performing complex dialogues to establish a connection, and who want to be able to identify who
performed each action; they also want to use multiple devices for simultaneous multi-modal input.

The following scenarios provide several interesting user-level requirements:

i) an accountant is having difficulty implementing a calculation on a spreadsheet so he calls over a
technical support person. She brings an extra keyboard and the two of them work together for a
time at the accountant’s desktop. The company has an internal charging system for technical
help, so the technical person’s presence is logged in her diary as is the formula she develops.
Sometimes the client is too far away, in which case the discussion is held over the network using

desktop video.

ii) a user has a problem, so she asks a colleague for help. He comes to her desk and they discuss the
problem, both making annotations on her desktop display. As they need to look at more
information, he brings over a couple of notebook displays which they add to her desktop, but there

is still not enough space so they transfer her desktop image to the wall display.

iii) a group holds a design meeting around a wall display. Users write and draw on the display with
their pens and the meeting software keeps track of each person’s contribution. One person has
forgotten his pen and must share his neighbour’s, so there must be easy mechanisms for changing
the association between person and device. In addition, some people have their own notepads on

which they make notes that they sometimes transfer to the display.

iv) in a design class, each student has his or her own drafting display. The teacher wanders around
the room correcting and annotating the students’ designs with her own pen. Her marks are
distinguishable from the students’ and can be shown or hidden independently. Sometimes she
refers to a document in her own file space; the system can pop it up by identifying her as the
origin of the input gesture. Finally, she signs off each student’s work on the display in question;

the sign-off is automatically copied to a register in her own persistent storage.

These scenarios assume a hardware environment of a room full of output devices: a wall-mounted
display, desktop displays, many portable displays ranging in size from a notebook to a badge, and
several loudspeakers; there is also a range of input devices: keyboards, pens, mice, position sensors

and so on. Many of these devices are mobile.
Aspects of these scenarios can be extrapolated from studies and systems such as:

e Colab [Stefik87] and Tivoli [Pedersen93] which show how large-scale displays can support

people meeting in the same room;
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¢ Grove [Ellis91], MMM [Bier91], and CaveDraw [L.u91] which show fine-grained collaboration

within an editor;
¢ Nardi and Miller [Nardi90] who show how people collaborate with “single-user” tools;

¢ Pettersson [Pettersson89] and Wolf and Rhyne [Wolf92] who show the need to distinguish

individual contributions to a shared document;
¢ Mermaid [Ohmori92] which demonstrates multi-medium collaboration across a wide area;

e Rooms [Card87] which highlights the insatiable need for more display space and demonstrates a

portable user environment;
e Tivoli, WeMet [Wolf92] and Commune which show pen-based collaboration; and,
e TeamWorkstation [Ishii92] which shows the integration of different media.

The user-level reqliirements can be reduced to the following (the numbers in parentheses refer to the
relevant scenarios): mobile input devices, ownership of input devices, and shared displays and

media (i).

11.2. Architectural requirements

The user requirements place several demands on the user interface architecture of which the first is to
allow dynamic association of input and output devices. Current user interface architectures view the
set of user interface devices as static, but this is too limited as devices become mobile and “group
interfaces” become more common. Users could, instead, define relations between sets of devices to
combine them together. For example, two people editing together may each define a compound device
consisting of their own input devices and the shared screen; the input focus for the keyboard of each
compound device is determined by its related mouse. This approach also requires that the user
interface software be able to make connections to new devices and handle the loss of existing

connections.

Some devices may be shared between users, such as wall-sized displays or touch screens divided into
virtual windows [Brown90], or shared between applications—for example, a mouse driving
telepointers on several displays or two window systems sharing a screen, Thus, devices must be able to
support multiple clients and provide access to special attributes, such as portability or the display of
video, without subverting the architecture. Similarly, the user interface software must be able to
manage input from multiple sources, providing built-in support for the association of devices with

roles—either different users or different functions.

Users must be able to dynamically associate themselves with compound devices. At its simplest, this is
equivalent to current login procedures where a user acquires control over a fixed combination of
devices (a terminal or workstation) by typing an identifier and password. A more general approach,
however, allows users to establish a connection to a group of devices, such as all those within a given

room, where the group may change during the connection period. Flexible grouping of devices allows,
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for example, a user to move between displays while keeping the same set of input devices; this at least
would help those with several machines on a desk who have nowhere to put all the keyboards. It also
makes easier the impromptu lightweight collaborations which studies such as [Stults89] show to be a
feature of teamwork. Thirdly, it allows users to join in each other’s interactions without interrupting a
session, and facilitates transitions between modes of input—such as from one-handed to two-handed.

Finally, it must be possible to locate and connect to all these disparate components.

The architectural requirements can be reduced to: a general mechanism for grouping input and output
devices into compound devices; provision for sharing compound and basic devices and for controlling

access to particular attributes of a device; and, the ability to identify devices and the sources of events.

11.3. A Distributed User Interface

The following chapters present a design for, Gemma, a highly distributed user interface architecture
which addresses some of the issues described above. The design assumes the support of some of the
facilities discussed in Chapter 4, in particular, support for distributed processing: a lightweight
operating system with efficient scheduling, and fast, low-latency connections between hosts. It is also
intended to support mobile displays connected by a wireless network which can determine their

position in a room.

I use Modula3-like interfaces to specify the components as this is a compact nptation which matches
the object/interface model on which the architecture is based; these code fragments are intended to
show the concepts of the architecture rather than samples of working software. This part presents
designs for two abstractions: the Gemma model which provides access to networked and mobile low-
level input and output devices, and a window system, sw, which dynamically ties low-level devices

together.

A first step, however, is to describe how the Gemma approach was motivated by the experimental
work presented in Part IIL: the experiences with X, the MMM and the DDD. The attempts to enhance
the X server showed that current window systems provide an inappropriate model for a user interface
environment not based on workstations; the existing implementations have been optimised over many
years to support a particular form of user interaction. Extensions, such as the XIEE, allow developers
to enhance the protocol but the core model remains, and some extra facilities, such as multiple
cursors, can only be added with ingenuity. Gemma is founded on the belief that, to construct user
interface environments for multiple mobile devices, the component parts of a distributed user interface

system must be made accessible rather than encapsulated in a virtual terminal.

MMM shows that support for multiple devices and multiple users on a display is both useful and
possible. The shared user interface encouraged the emphasis on pen-based input and suggested some
of the scenarios in Section 11.1, such as the meeting room and design class. Sw inherits several

features of MMM'’s architecture:
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like an MMM editor, a window in sw may be embedded in a parent and provides some behaviour
for that part of its parent’s area. The process associated with a window may handle and

distinguish between input from multiple users and devices;

many window data structures, such as modes, selections, and input focus, are replicated for each
active user or input device. sw makes a greater distinction between user and device attributes than
MMM,; input focus, for example, is associated with a user instance in MMM but a virtual input

device in sw; and,

when an input event arrives, the user it belongs to is identified in a table of user-device
associations, swincludes a device registry which allows these associations to be maintained across

displays and sessions.

MMM demonstrates how users can share their input and output devices in the physical world, rather

than in a virtual world. In addition, sw, unlike MMM, makes provision for its components to be

distributed; devices may be remote and the same infrastructure may be used to provide protocols for

distributing applications. sw also allows windows to enforce per-user access control to the data they

display.

The DDD shows that an interactive environment can be assembled from a set of distributed input and

output devices, allowing users to interact with and share computing devices in the real world. The

aspects of DDD which have been retained in Gemma and sw are:

basic devices are provided as services, available remotely, rather than bound into a display server.
Device services may be multicast to multiple clients. Both DDD and Gemma provide a common
interface so that clients of a device can ignore implementation issues, such as location, in which

they are not interested;

a client may make its customisation of an input stream, such as the calibration of a pointer,
available to other clients. In the DDD, this is retained in the server and other clients ask for a

calibrated stream by name, whereas in Gemrma the calibration is exported as a new virtual device;

input devices may be dynamically attached to arbitrary levels in the window hierarchy. This has
been expanded in sw to make the window the principal point of co-ordination between input and
output devices. Unlike Trestle there is not necessarily a separate top-level entity to represent a
particular hardware terminal, but such a device may be implemented by attaching input devices to

a display window; and,

a client application assembles those devices it needs for the duration of an interaction. An
instance of the DDD can be made multi-handed by incorporating an extra pointer, and a
collaborative application can be assembled by two DDD’s importing each other’s input devices.
Gemma provides a model for acquiring access to remote devices and sw for tying those devices

together.
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The DDD is as an antecedent to Gemma, it showed how the components of such an architecture would
fit together and what infrastructure support is needed. Within DDD, Trestle provided a useful model
for the management of embedded windows, particularly its use of filter VBTs to provide particular
functions, but it also shows that applications need access to their input queues to arbitrate between

input sources.

The next two chapters present low-level Gemma and the sw window system. After that I describe how
this infrastructure may be used to implement MMM, DDD and an example application. I then discuss
two examples of issues which have not been resolved within the current design: naming and

persistence.
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12. Low-level Services

12.1. Introduction

Any interactive system must eventually communicate with its physical devices which, in Gemma, may
be distributed. The task is to find a means of representing these devices to programmers which is both
practical and flexible, especially when devices may be shared or mobile. Gemma uses network objects
[Birrell93] as handles on its devices; a network object has a core object in one address space and is
represented in other address spaces by proxies which appear the same to the programmer. The state of
a network object may only be obtained through a method, rather than accessing a field, so the location
of that state is hidden from the client of the object. Network objects provide a mechanism for
distributing data and events across address spaces within the discipline of a strong type system, and so

are a convenient approach for specifying the components of a system.

Most current user interface systems combine their input and output mechanisms into a virtual
terminal (such as Trestle’s Virtual Bitmap Terminal [Manasse91]) which simplifies the model but
makes it too limited for applications which support simultaneous multiple input or users (or both).
This is why Lantz et al [Lantz87a], in their Workstation Agent model, advocated the separation of
input and output software, similar to that implemented in TheWA [Lantz87], in which separate
processes managed the input devices and the display. Hence, basic Gemma devices are categorised as
input or output with as few assumptions as possible made about the user-level interactions they are to
support. These objects may be gathered together by higher-level objects to provide more complex
devices, such as a conventional window server or a virtual terminal, for other clients; an example

higher-level system is described in the next chapter.

In this chapter, I define some basic types which provide shared access to low-level devices, using
displays and input devices as examples, although there may be other device types such as audio. The
core Device class provides connection management and naming. It has Basicbisplay and
InputDevice subtypes which define those operations which are common to all displays and input
devices. These types, in turn, are further specialised to input and output types that, eventually,
describe the features of particular physical devices. Figure 12-1 shows the class hierarchy for the
device types described in this chapter.
Figure 12-1. A hierarchy of device types.
PixrectDisplay. T

BasicDisplay. T—— OverlayDisplay. T

\ VideoDisplay.T
Device.T
VideoSource. T

InputDevice.T
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12.2. A Basic Device

While devices may have different characteristics, there are commonalities in how we communicate
with them which map naturally onto a type hierarchy. The basic Device type is concerned with
locating the device service and establishing a connection to it. Note that the device details are
specified during the initialisation of the object rather than when the device is opened. A Device.T
represents a particular virtual device; if a client needs a connection to another device it should create a
new Device.T rather than reusing an existing one; this avoids problems such as an interface of one

type being used to import a device of another type.

INTERFACE Device;

TYPE Changes = OBJECT (* described below *)
METHODS
properties(t: T; properties: Propertylist.T);
context (t: T; context: TEXT);
END;
TYPE Details = REFANY;
(* Fach device type will subclass this with a record which describes the characteristics of
the device. Returned from the open method. #*)

TYPE Private <: ROOT;
TYPE T = Private OBJECT
METHODS

init (device: TEXT; client: TEXT; changes: Changes := NIL): T
RAISES {Failed.T};

(* initialise the state of the object. device describes how to find the device to open,
client describes and identifies the caller which may help the device make policy
decisions.
changes determines how to handle changes in the device context or properties *)

setChangeHandler (changes: Changes) RAISES {Failed.T};

(* set how client handles changes to the device’s status *)

open(): Details RAISES {Failed.T};

(* attempt to open a connection to the device. If successful, the method returns a field
which describes the device characteristics. *)

close() RAISES {}:
(* explicitly close the device. If the device is already closed, then NoOp.
This method is always called when the T is garbage collected *)

isOpen(): BOOLEAN RATISES {Failed.T}; (* is the device currently open? *)
description(): Description RATSES {Failed.T};
(* return the current context *)
END;
PROCEDURE Lookup (READONLY description: Description): TEXT RAISES {Failed.T};
(* described below, the text value returned can be used for the device field in the
init method *)
TYPE Description = RECORD

type: TEXT;
context := "/";
properties: Propertylist.T := NIL;
END;
END Device.

The device parameter of the init method describes how to contact the device and a text string is used
to allow flexibility in how it is specified; if the caller is creating a new virtual device then it sets this
parameter to NIL. The Lookup procedure provides a mechanism for finding device names from a name
server or trader, using ANSA terminclogy [ANSA89]. The parameters to Lookup follow ANSA
trading conventions and, briefly, consist of a type description, a name space in which to look, and
optional properties to constrain the search. While the device type may not change, moving devices

may alter their context or some properties, so the client may define a Changes object to handle such
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events. If no Changes object is defined, the default response is to mark the Device so that the next
method call will raise an exception. Access to the devices on a host could be managed by a process

such as Nicolaou’s DesktopManager [Nicolaou91].
A companion interface reveals that Device.T is based on a mutual exclusion lock, and provides
mechanisms to register it with the trader:

INTERFACE DeviceF;

REVFAL, Device.Private = MUTEX OBJECT
METHODS
setContext (context: TEXT) RAISES {Failed.T};
setProperties (property: Propertylist.T) RAISES {Failed.T};
(* change the current trading values *)}

lookupName () : TEXT RAISES {Failed.T};
(* returns the trader name for the device *)

END;
PROCEDURE Export (device: Device.T; READONLY description: Description) RATISES
{Failed.T};

END DeviceF;

12.3. Display Servers

12.3.1. Introduction

A display server provides controlled access to arbitrary regions of its screen without imposing a model
of a window structure—as Took shows [Took91], not every user interface system need have
overlapping windows. A window server can then establish itself as a client of a framebuffer server,
requesting regions of the display which represent parts of overlapping windows, as in Figure 12-2.
Another window server may also be a client of the same framebuffer, making its own requests for
space, so the framebuffer server must arbitrate between conflicting requests and notify other clients
when they lose part of their allocation. This, in turn, implies that a window server can no longer
assume exclusive control of the frame buffer and must be prepared to handle messages which change
its output region.

Figure 12-2, Arbitrary regions give the illusion of overlapping windows.
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One benefit from this extra complexity is that a display can support multiple window systems
simultaneously. Some advantages of such a facility are outlined by Pascale and Epstein who

implemented the Virtual Window System [Pascale92]:

e debugging becomes easier as the different window system implementations can be presented on

the same screen and server grabs are limited to the guest window system;
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e confidential windows can run on a secure window system while public windows run on another,

with copy and paste allowed from less to more secure windows;

e applications written for different window systems can run on the same display. There are many
commercial examples of window system integrations, such as X with Microsoft Windows

[Giokas92)].

12.3.2. A basic display object

A basic display object provides access to a graphic output service; it is used to acquire control over
regions of the display. The display service, however, may change the state of a Region and the client
must be able to respond to such changes, so each client must instantiate a callback object which
defines its response to such changes. For example, applications A and B have regions on a display and
A moves its region to obscure B’s, B’s callback will call regionChanged so that B may, for example,
reshape the image being shown in its region.

INTERFACE BasicDisplay;

TYPE Callbacks = OBJECT
METHODS
regionChanged(t: T; r: Region; old, new: Region.T);
(* the server has changed the area of the region *)

regionReleased(t: T; r: Region.T); (* the server has released the region *)
discomnected(t: T); (* the server has disconnected the object *)
END;
TYPE T <: Device.T OBJECT
METHODS

requestRegion(area: Region.T;
callbacks: Callbacks; name: TEXT := NIL): Region RATISES {Failed.T};

(* request a new region of the BasicDisplay, the callbacks define what the client does when
notified by the server, the client may also specify a name which identifies the region
within the server to other clients *)

shareRegion (name: TEXT; callbacks: Callbacks): Region RATSES {Failed.T};

(* request a connection to a named Region in the server. This client may or may not be able
to change the region depending on the permissions set by its creator, but it will
receive copies of the callbacks *)

listRegions(): List.T RAISES {Failed.T};
(* returns a list of all the Regions in the T with names and properties *)

END;
A BasicDisplay.Region gives the client rights over an arbitrarily-shaped area of the display, such as
the ability to change its shape; these rights depend on the type of region and the policies of the display
service. The extent to which the shape is truly arbitrary (as against polygonal) depends on the

implementation of the display.
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RegionPrivate <: ROOT;
Region = RegionPrivate OBJECT
METHODS
display(}: T; (* return the Display for the Region *)
area(): Region.T RATISES {Failed.T};
(* return the current area of the BasicDisplay *)

name () : TEXT RAISES {Failed.T};
(* return the name of the Region or NIL if there is none *)

setArea(area: Region.T): Region.T RAISES {Failed.T};
(* request a different area. Return the area actually granted by the server *)

release() RAISES {Failed.T}; (* explicitly free the region in the server *)
END;
END BasicDisplay.

12.3.3. More complex display types

Clearly, an interface which provides only the allocation and deallocation of areas of a display is of
limited use. Clients must be able to write to the display so a Pixrect [Sun90a] subtype, for example,

could be implemented to provide basic drawing operations to the client.

Note that the drawing is done in the Region rather than the Display, the caller might not be the only
client of the display and so cannot assume the right to draw everywhere; a client may, of course,
attempt to acquire a Region which covers the whole display. Another issue is how the server should
respond when a client tries to draw outside its region. The most suitable action for this interface is for
the display to clip the drawing operation without informing the client; other interfaces might raise an

exception, similar to an address violation in virtual memory systems.

INTERFACE PixrectDisplay;

TYPE Region <: RegionPublic;
TYPE RegionPublic = BasicDisplay.Region OBJECT
METHODS
rop(destination: Region.T; op: PaintOp.T; source: Point.T) RAISES {Failed.T};
(* raster operation *)

polypoint (READONLY points: ARRAY OF Point.T; op: PaintOp.T;
offset := Point.Origin) RAISES {Failed.T};
(* draw an array of points *)

putcolormap (map: Colormap.T) RATSES {Failed.T};
getcolormap () : Colormap.T RAISES {Failed.T};
(* routines to change the state of the Region *)

(* etc. %)

END;
TYPE T <: BasgicDisplay.T;

END PixrectDisplay.
Many graphics libraries, such as Pixrect and SRGP [Foley90], set values in the device to be used by
subsequent calls to the library. This is straightforward where there is only one client of the library, but
a shared device has to multiplex its state between its clients. The techniques for doing so are obvious
but an inappropriate implementation may be slow if the client is constantly swapping the device
settings. Batching can greatly improve performance [Manasse88], so another interface allows a client

to group calls together:
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INTERFACE BasicDisplayF EXPORTS BasicDisplay;

REVEAL: BasicDisplay.RegionPrivate = OBJECT
METHODS
startBatch (suggestedSize: CARDINAL := 0) RAISES {Failed.T};
endBatch() RAISES {Failed.T};
flush() RAISES (Failed.T}; (* walt until any outstanding requests have been sent *)
END;
END BasicDisplayF.

As Schmidtmann et al. [Schmidtmann93] point out in their description of a multi-threaded XIib, it is
increasingly the case that every library should be written with support for multiple threads, regardless
of whether the original platform supports them. Similarly, it might be that software designers should
also consider the possible distribution of the components of their systems, even if the first
implementation is entirely local. This could involve providing hooks in the code where distribution

issues arise, or changing the encapsulation boundaries within the software architecture.

12.3.4. Multiple interfaces to a Region

A client may hold more than one connection to a display server at once, so a client can open multiple
connections to represent multiple characteristics. This avoids the need for multiple inheritance in the
type system when a virtual device with several characteristics is needed, as a client can open several
connections to the same named region from multiple interfaces. A client timestamps its requests so

communications with multiple interfaces to a Region from a single client can be kept in order.

Multiple interfaces also allow access to individual facilities in the server to be controlled for each
client. For example, in Figure 12-3, a server supports the BasicDisplay and PixrectDisplay types
and a client requests a named BasicDisplay.Region which it can manipulate. Another client asks to
share the Region using the PixrectDisplay interface and receives a connection which is a
PixrectDisplay.Region. Both Regions (the BasicDisplay and the PixrectDisplay) refer to a
common structure in the server, but have access to different aspects of it. This differs from X, for

example, where a client, once connected to the server, has access to all its facilities.

Bas.ic < Display
Region Manager

Figure 12-3, Multiple interfaces to a Region.
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One situation where multiple connections are useful is in the manipulation of overlays and cursors

HIIMNmmRhrssss

(which are, in effect, a special case of overlays). A telepointing system, for example, might allow
remote clients to acquire an overlay region, to make annotations, but not a drawing region to change

the common image.
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INTERFACE OverlayDisplay;

(* The overlay is defined as a (PostScript-like) path which will always be displayed
on top while it is not empty. To clear an overlay, set the path to NIL.
The overlay is clipped by the Region, but the Region is transparent and can
overlap any other Region in the server %)

TYPE Region <: BasicDisplay.Region OBJECT

METHODS
setPath(path: Path.T) RAISES {Failed.T}; (* set the overlay path *)
movePath (offset: Point.T) RAISES {Failed.T}; (* move the path by offset*)
getPath(): Path.T RATSES {Failed.T}; (* get the overlay path *)
END;
TYPE T <: BasicDisplay.T OBJECT END;
(* etc. *)

END OverlayDisplay.

The interface does not specify how the overlay is implemented, so the server might use a hardware
plane for the first overlay and software for others. Another approach would be for the server to
allocate a bit plane for overlays and export a private interface for it to a separate overlay manager; the
overlay manager would then export the OverlayDisplay interface and combine the requests from its
clients into a single image. Overlay managers with different policies can be optimised, for example,
for either pen-based or mouse-based interfaces. In addition, the interface places no explicit limits on
the number of overlays to be supported, so extra cursors may be dynamically added to the higher level

window system.

12.3.5. Display servers and graphics systems

This approach could, of course, be implemented over standard hardware (although an efficient version
would take some effort),” but some other graphics systems suggest interesting possibilities. The
approach maps nicely onto the concept of virtual graphics, first proposed by Voorhies et al.
[Voorhies88]. The authors noted that, whereas. CPUs provide hardware support for virtual memory
and virtual processors, graphics systems are still oriented to a single client. Current user interfaces,
however, support multiple windows, each of which may have different state—this is comparable to the
mismatch between trends in hardware and operating system software described by Ousterhout
[Ousterhout89]. The authors proposed elevating graphics to a first-class system resource, such as main
memory, and providing a virtual interface. Each client then has the illusion of having its own

graphics renderer and is protected from other clients’ activity.

Virtual graphics also formed part of the Thistle display system [Brown91] in which the components of
the graphics system, such as rendering and screen update processors, form a symmetric,
heterogeneous multiprocessor—they share a consistent view of a single memory system. This supports
virtual graphics, as pages of framebuffer images can be swapped out to main memory, and gives client
applications access to specialised hardware which would normally be inaccessible in the graphics
subsystem, such as the rendering processor. Regions and virtual displays both provide a mechanism
for multiple clients to share a common display, switching the state of the display device for each
client, for example. Virtual displays, however, hide changes on the physical display from the client,

whereas Regions notify the client of such changes.
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The Psychology Workstation [Cowan91] was built to provide precise timings for displaying images
and user responses with multiple simultaneous tasks. Server-based approaches, such as X, do not
allow the client to know exactly when an image reaches the screen as multiple clients can make
unpredictable demands on the server. The solution was to provide a separate rendering agent for each
client, including the window manager, with direct access to the frame buffer; a client may be running
on its own processor, thus avoiding CPU and memory contention with other clients. Access to the
display hardware is controlled by a layer administrator which keeps track of all the client windows
and determines which client ‘owns’ each pixel. The layer administrator informs renderers of changes
in window layering or placement, but the renderers manage the contents of the windows without
interference, explicit or implicit, from other clients. Again, the relation to the Region and Display
approach is clear, although the Psychology Workstation is limited by its implementation and does not

support distributed applications.

These examples show that there are ways to organise display hardware which are not well supported
by current window systems. In particular, systems which allow clients access to components of the

graphics pipeline do not match well with the virtual terminal approach.

12.3.6. Summary

This section described a model for allowing clients to share displays. Clients establish a connection to
a display and then request control of arbitrary regions, which may be accessed by other clients.
Policies for arbitrating between clients are implemented by a separate display manager. Regions are
subclassed to provide access to particular features of a display, such as drawing operations or ovetlays,

s0 access to a display can be controlled more finely than in conventional output servers.
12.4. Input Servers

12.4.1. Introduction

This section describes a model for sharing input devices. As with display servers, input servers
provide controlled access to devices which may be shared between clients. There are fewer cases for
input than for output where a single device is shared, although Brown et al. divide a tablet into
windows [Brown90] and the use of multiple pens on a shared desk or Liveboard requires that multiple
input sources are abstracted from shared input sensors. An input stream may also be multicast; for
example, pen input might be sent to both a display manager and a recognition process to generate
feedback and provide ‘eager’ interpretation of gestures in parallel. More important, perhaps,
developments in user interfaces, such as MMM, show the need for flexible and dynamic routing of
input events. DDD, Dialogo [Lauwers90] and Mermaid [Ohmori92], for example, implement multi-

user applications by distributing low-level input events, rather than application-level events.

12.4.2. Devices and components

Unlike Displays and Regions, there are difficulties in using multiple objects to represent aspects of a

single input device. The events in an input sequence must arrive in a consistent order and multiple




12.4. Input Servers 91

objects with multiple threads of control would require co-ordination in the client. The solution is to
allow users to add components to a virtual device, rather than abstract them from it. Figure 12-4, for
example, shows a conventional input device assembled from keyboard, buttons and 2D position
components. The virtual device provides a synchronisation point for the physical devices it manages;
it timestamps events as they pass through it.

Figure 12-4. Assembling an input device from components

Components

keyboard

buttons

2D position

Multiple virtual devices may be constructed over the same physical devices, but a client which uses

Device

more than one virtual device must perform its own synchronisation between them; this is similar to
the input model for the Workstation Agent. For example, a tablet may be able to distinguish between a
pen and a puck, and detect whether either is present, so two virtual devices could be extracted from
the same physical device. As in Figure 12-5, both the pen and puck devices contain position and
present components, but the pen also contains a point pressure component and the puck contains a
puck buttons component. The pen and the puck can be treated as different devices, although both

drive the same tablet, and can be handled by different dialogue threads.

Figure 12-5. Sharing components between two input devices
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12.4.3. The basic InputDevice

The TnputDevice.Component provides access to all or part of a physical input device or an existing
virtual input device; the basic interface provides details of the device and simple flow control. The
getsState method returns the current state of the component and so can be used for sample mode input
(as described in [Duce90]) in which the client periodically polls the device. If the component is
disabled, then no events will be delivered until it is re-enabled, although getState will still return its

current state.
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INTERFACE InputDevice;

TYPE Event = OBJECT
t: TimeStamp.T;

device: T;
conmponent: Component;
END;
TYPE Component <: Device,T OBJECT
METHODS

getState(): Event RAISES {Failed.T}; (* return the current state of the component *)
enable(on := TRUE; flush := FALSE) RAISES {Failed.T};
(* tell the component to start or stop sending events.

If flush, then clear any input queues *)

isFnabled(): BOOLEAN RAISES {Failed.T}; (* returns whether device is on or not *)
reset () RAISES {Failed.T}; (* clear the device and reset it. Could be noop *)

END;
The InputDevice.T allows the client to assemble a compound device. The enable method enables or
disables the components of the device and also manages any internal threads which feed input from
the components to the device queue. The getState method gets the state of all the components and
returns a compound state, if a suitable type is defined, or a list of the individual states. The nextEvent

method returns the event at the head of the device’s input queue, if one is available, or blocks the

calling thread until one arrives.

TYPE T <: Public;
TYPE Public = Device.T OBJECT

METHODS
addComponent (component: Component) RAISES {Failed.T};

removeComponent (component: Component) RATSES {Failed.T};

(* add or remove components from the device, addComponent fails if (amongst other things)
component is already present in the device *)

listComponents () : ComponentList.T RAISES {Failed.T};

(* return a list of all the current components ¥*)

getState() : Event RATSES {Failed.T}; (¥ return the current state of the device *)

nextEvent () : Event RAISES {Failed.T};
(* return the next event from the device. If there are no events to be processed,

it blocks the thread until one arrives *)

enable(on := TRUE; flush := FALSE) RAISES {Failed.T};
isFnabled(): BOOLEAN RAISES {Failed.T};

reset () RAISES {Failed.T};
END;
END InputDevice,

Where performance is an issue, some clients may need more detail, which the following interface
reveals. The eventFromRaw method translates data as it arrives from a component device into typed
data structures, the InputDevice.T uses this method to parse the input stream and insert the result in
its input queue. This interface allows clients to implement their own processing of the input stream.

INTERFACE InputDeviceF EXPORTS EventInputDevice;

REVEAL InputDevice.Component = Device.T OBJECT

METHODS
eventFromRaw (READONLY buffer: ARRAY OF WORD): Event RAISES {Failed.T};

END;
Some clients may find repeated calls of nextEvent too inefficient and require access to the input

queue—as Clark and Tennenhouse [Clark90] point out for networks, performance can suffer from

inappropriate enforcement of protocol layers. One possible optimisation is that a client starts a thread
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which periodically examines the input queue to remove unnecessary events. The following revelation

makes the queue available to clients and provides a method for raising errors:

REVEAL InputDevice.T = InputDevice,Public OBJECT

queue: InputQueue.T; (* incoming events, not yet processed *)
components: ComponentList.T; (* a list of the components of the device *)
METHODS

markFailed(failure: Failed.Failure);
(* mark the device so that failure will be raised during the next method call *)

END;
END InputDeviceF.

12.4.4. More complex input types

As with the display types, we need to subclass these basic classes to do something useful; a two-

dimensional pointer, for example:

INTERFACE TwoDPointer;

TYPE Event = InputDevice.GenericEvent OBJECT
point: Point.T;

END;

TYPE T <: InputDevice.Component;

Pointers may give absolute or relative co-ordinates, so the TwoDPointer.T needs two subclasses which
provide different controls for each type. Absolute pointing devices, such as pens, may need
calibration, so in the TwoDPointer.Absolute, a Warping.T defines a mapping from one set of points
to another and setting warping to NIL clears any current warping. In addition, the warping is a value
which might be changed by other clients which share this connection, so an extra Changes method

must be defined.

TYPE AbsoluteChanges = Device.Changes OBJECT
METHODS
warping (absolute: Absolute; READONLY newWarping: Warping.T);
END;
TYPE Absolute <: T OBJECT
METHODS
setCalibration (READONLY warping: Warping.T := NIL) RAISES {Failed.T};
getCalibration(): Warping.T RAISES {Failed.T};
END;

On the other hand, there are pointing devices, such as mice, which give relative motion. In this case

the relevant control is to set the acceleration parameters.

TYPE Relative <: T OBJECT
METHODS
setAcceleration (READONLY acceleration: Acceleration.T) RAISES {Failed.T};
getAcceleration(): Acceleration.T RAISES {Failed.T};
END;
(* etc. *)

END TwoDPointer.

12.4.5. Other input models

There are some interactive systems based on input devices providing services to clients. The Adagio
workstation [Tanner86], for example, used a multi-tasking operating system (Harmony) to support

parallel input from several devices; a Switchboard task routed events from device tasks to interested
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clients. The Adagio implemented generic devices and provided a flexible mechanism for linking
applications with input and output devices, but was not distributed and was specialised for its role as a
robotics workstation. The VUE architecture [Appino92] is based on distributed device servers which
filter raw device events and pass them to higher level interpreters. VUE is designed for virtual reality
and so the emphasis is on combining devices together into a common shared virtual world. The
Gemma architecture, however, is aimed towards embedding computation in the users’ environment

and so the emphasis is on extracting the features of a device which interest a particular client.

There are also models which construct logical input devices from smaller components. Duce et al
[Duce90], working within GKS, propose a hierarchy in which composite devices can be used to build
higher level logical devices. This hierarchy can be supported within Gemma as is shown by the Tablet
example (Figure 12-4) in which two components are combined into a single service, although the
GKS model also includes feedback. The X Input Extension [Patrick89] specifies complex devices in
terms of their constituent parts, but the devices must be compiled into the X server and so cannot be
changed dynamically. Furthermore, clients cannot acquire access to individual component parts, as
against the whole device. This is not so significant when everything is in a single process and input
can be filtered at the window level, but Gemma devices may be distributed and unnecessary events

consume bandwidth.

12.4.6. Summary

This section described a model for collecting together distributed input devices. A compound input
device is constructed from simpler components for which it provides a serialisation point. Compound
devices may share components to reflect different uses of the same device and components, and

exported InputDevice.Ts, .may be shared between clients.

12.5. Continuous media

Gemma devices can also manage continuous media such as audio and video. The VideoDisplay
interface allows video to be displayed on a screen. Unlike other input devices, continuous media
distinguish between in-band and out-of-band data (in-band data consist of the video frames or audio
signal, out-of-band data are control and synchronisation signals) so the video stream itself is
controlled by a Video.Sink object which manages quality of service specifications, for example. This
division between device state and network state is common in continuous media systems, examples
include the Touring Machine [Bellcore93] and the Etherphone [Vin91]. The connections between

components for displaying video in a Region are shown in Figure 12-6.
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Figure 12-6. The components of a video stream.
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The VideoDisplay.Region establishes a link between a video sink and a display and provides access
through its event handlers to the out-of-band data which is relevant to the user interface layer.
INTERFACE VideoDisplay;

TYPE Region <: BasicDisplay.Region OBJECT
METHODS

setSink (sink: Video.Sink; syncHandler: SyncHandler := NIL) RAISES {Failed.T};

(* set the video sink to use. A SyncHandler will only by called if syncHandler <> NIL.
reset the sink to change the handler *)

sink(): Video.Sink RAISES {Failed.T};

(* return the video sink associated with the Region *)
END;

There are two types of event handler: the Callbacks handles events arising from control of the stream
and the SyncHandler handles events arising from the contents of the stream. The video.Sink object
may, of course, have handlers of its own to manage communications-level activity whereas these
handlers should specify user-interface level behaviours. For example, a VideoDisplay.SyncHandler

would be used to drive an application’s frame counter, whereas a Video.SyncHandler would be used
to smooth jitter.

TYPE Callbacks = BasicDisplay.Callbacks ORJECT
METHODS

started(t: T); (* video stream has been started *)

stopped(t: T); (* video stream has been stopped *)
failed(t: T; failure: Failed.Failure); (* video stream has failed *)

END;
TYPE SyncHandler = OBJECT
METHODS
frame (region: Region; frameNumber: Video.FrameNumber; time: TimeStamp.T);
END;

TYPE T <: BasicDisplay.T OBJECT END;

(* etc. *)

END VideoDisplay.
For example, in Figure 12-7, the display manager controls the shape of the region, an overlay region
allows a pointer device to drive a cursor, and the video region tells the video controller which parts of

the screen to send images to; this provides the user with a pointer-driven cursor over a moving video
image.
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Figure 12-7. A Region with a video interface.
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The VideoSource interface is a subclass of an InputDevice.Component which allows control over the
source of a video stream; communications-level issues are managed by the Video.Source object. As
with the VideoDisplay, the started, stopped and failed events are handled by callbacks because
they are part of the administration of the stream, whereas the frame number is part of the contents of

the stream.
INTERFACE VideoSource;
TYPE Changes = InputDevice.Changes OBJECT

METHODS
started(t: T); (* video stream has been started *)
stopped(t: T); (* video stream has been stopped *)
failed{t: T; failure: Failed.Failure); (* video stream has failed *)
END;
TYPE Event = InputDevice.GenericEvent OBJECT
frameNumber: Video.FrameNumber; (* sequence number of last frame sent *)
END;
TYPE T <: InputDevice.Component OBJECT
METHODS

start() RAISES {Failed.T};

stop() RAISES {Failed.T};

(* these methods start and stop the video stream, the inherited enable method
controls the delivery of frame numbers to the client *)

setSource (source: Video.Source) RAISES {Failed.T};
source () : Video.Source RAISES {Failed.T};
END;
END VideoSource.

This application is similar to the desktop video example in Chapter 8 of [Nicolaou91] except that it
hides more of the networking detail and is more integrated with the user interface layer. As pointed
out above, it allows more specific control over access to facilities in the server, unlike the Pandora
extension to X [King92], for example, in which a client, once connected to the server, has access to
everything including (as the author points out) other peoples’ video cameras. A similar approach can
be applied to audio services, as shown by Angebranndt et al [Angebranndt91], who construct logical
audio devices (LOUDS) from virtual device objects, which can be described with a class name and a
set of attributes, to provide server-based audio. For example, an answering machine is made up of a
recorder, a player and a telephone. These virtual devices are then mapped onto the physical devices
the server controls. The AudioServer, however, only allows devices in the same server to be put

together, whereas Gemma allows arbitrary devices to be combined. Constructing applications from
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connections to multiple servers has been shown by Arons, [Arons92], who combines audio and

graphics servers.

The Desk Area Network (see Chapter 4) provides an interesting platform for multiple media
applications. It allows distributed access to end-devices within a host, unlike existing workstations
where interactions with devices must pass through the host operating systems. Remote clients, such as
a video source or sink, can have a data stream directly routed through to the device, but they still need
to co-operate with other clients of the device. Multiple virtnal interfaces to components provide
flexible access to the hardware, or software implementations of hardware functions, and flexible

control of that access.

12.6. Summary

This chapter describes how low-level input and output devices are specified in Gemma using a class
hierarchy and network objects. Output devices may support multiple virtual devices (Displays and
Regions) each of which exposes one or more facilities of the base device. Virtual input devices may be
built up from one or more base components and provide a synchronisation point for those input
streams. Time-sensitive media are controlled by virtual devices which provide a handle for control of

the medium—the data themselves are managed by the communications objects.

Gemma supports some of the architectural requirements described in Chapter 11: the basic device type
makes devices accessible to arbitrary clients and notifies those clients when the status of a device,
such as its location, changes; clients may share a device by importing the same device object; the
output model provides controlled access to facets of a display device; the input model allows input
devices to be assembled into compound devices, clients of the compound device may then unpack

input events to obtain as much detail as they need; and, the model supports continuous media.

Other requirements, such as the association of input and output devices and compound output devices,

are supported in the window system described in the next chapter.
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13. A Simplistic Window System

13.1. Introduction

Low-level devices are too primitive for building all but the simplest applications, so we need a level
which will bind them into more complex services. In particular, logical devices at this level provide a
synchronisation point for their components: in space, by defining a mapping between input and output
device co-ordinates, and in time, by timestamping events. These are the objects usually described as
servers in window systems; they provide higher-level services from the low-level devices they import.
This level defines how the input and output devices are to be combined, and presents a logical set of
devices to the application level above it. For example, a windowing object manages polygonal regions
of a screen which the users see as overlapping windows, and the relative motion events of a mouse are

mapped to absolute display co-ordinates.

This chapter describes a simplistic window server, sw, that provides basic support for a hierarchy of
windows and event dispatching in a highly distributed user interface. This design is intended to
demonstrate how a window service might be constructed using Gemma, rather than describing a
definitive system. Sw is unusual in that it is intended to support an environment in which there are
many input and output devices scattered around a room, some of which may be arbitrarily combined.

Two user interaction styles from those described in Chapter 11 show the sort of issues that need to be

addressed:

e a person uses an identifiable pen to draw on a liveboard for the first time. The window system

must provide hooks to allow applications to accept and validate this new source of input.

e a person uses a portable display to enlarge another display, then carries it away bearing the new
data from this interaction. The window system must be able to manage multiple displays which

might be used together.

SW uses two techniques to support these requirements: a common window abstraction used at all
levels of the hierarchy which can also bind physical displays together, and the ability to group input
devices and attach them to a window at any level of the hierarchy. sw provides a model within which
multiple distributed devices can be combined into a higher-level user interface, using the window as a
co-ordination point for linking input and output to provide timestamping and alignment between
devices. After describing these techniques, the chapter discusses input handling in more detail and the

relationship between sw and Gemma.
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13.2. The SWwindow

The basic component in Sw is the window" which is an arbitrary area of 2D space that may contain
child windows. An unusual point is that this general definition does not require a top-level window to
be associated with a physical display—it is not always the case that the top-level window is the
“closest” to the output device. A top-level logical window may handle drawing requests by either

refusing to accept the request and raising an exception or by passing it down to the relevant child.

For example, a logical window may contain a set of displays around a room with an arbitrary policy
for defining the spatial relationships between the children (Figure 13-1). A logical window may allow
paint operations to span two children, so two physical displays could be tiled together to make a larger
virtual display; the parent forwards its paint requests to the children who overlap the image being

drawn.

Figure 13-1. A logical hierarchy of windows. Windows A, B and C represent the top level
of displays 1,2, and 3 respectively. A and B are children of a logical window D
which is used to bind displays 1 and 2 together, so that window E can cross
between them. C and D are children of a logical window F which represents a
common domain for access control and handling unexpected events.

D Display 3
Display 1

The use of a single abstraction means that applications need only be concerned with manipulating a
single top-level window. An application may be moved between displays by reparenting its top-level
window, and the role that a display plays with respect to neighbouring devices may also be changed by

reparenting the window associated with that display.

The basic window type is subclassed from a Gemma Device.T which provides import/export facilities.
Distribution is achieved by inserting a network window between parent and child that relays events
and requests between the two. This is similar to Trestle’s cross-address-space filter, except that the
child window does not have to be attached to a parent window—if exported, it can maintain its
existing state and be attached to another parent, local or remote. A process may then export its
significant windows, such as the bottom-level window of a display or the top-level window of an

application, which other applications may then import and use as an interaction device. In addition, a

It may no longer be possible to find a term for this component which does not have connotations from

existing systems. Other systems use “sheet,” “screen,” “canvas,” “frame” and so on. I stick with window for

simplicity.
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window subclass, such as one which manages the layout of its children, may encapsulate its
specialised behaviour in an object like a Silica contract [Rao90]; a network version of this object may
then be driven from another process (Figure 13-2). This is similar to the X window manager where
some of the functionality of the window system is implemented by a remote process using a

specialised protocol.

Figure 13-2. Two mechanisms for application distribution. Network windows to connect
parent and child in different address spaces and a confract object to
encapsulate, and distribute, the behaviour of the contents of a window.

contract
object

'y ' implementation

sw only supports a single parent per window but it is possible to conceive of other models where, for

network
window

example, the parent is a group or there may be a different parent per client for different functions of a

window; these, however, raise too many issues to be treated within the scope of this dissertation.

13.3. Input Handling

Much input handling in swis simply concerned with routing events that pass through a window to the
appropriate child, as with any conventional window system. A client may also, however, attach an
input device to a window which makes that window the root of the tree for interactions with that
device. For example, selections made with a device are retained at the level of the window to which
the device is attached. A thread is then attached to the window to dispatch events from its devices to
its descendants, This is similar to the InputVBT in the DDD in which most of the interactions with a
particular device are handled below the VBT to which the device is attached. As with MMM, each
window maintains an input queue with an associated thread to process its events and arbitrate between

devices; parents may ask children to accept events to add to their input queue (see section 13.5).

In Figure 13-3, for example, application B sees a window service which includes window B and
mouse b, application A creates an internal window hierarchy of which window B is a member; server
A sees only events from mouse a, while server B sees events from both mice. The approach allows
input to be managed at multiple levels in a window hierarchy; in Figure 13-4 (c), mouse b may only
move within window B, whereas mouse a can cover both windows. In the example of the drafting
class, all the drafting boards are children of a common logical window; input from the students’ pens
is handled at the level of the individual board, whereas the teacher’s pen is registered with the top-

level window so she does not have to establish a separate connection with each board.
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Figure 13-3. Event dispatching in different window levels. Server B uses mouse b and
window B, which is the top-level window of a display device, and provides a
window service to application B, Application A creates a virtual window A4,
which includes window B, and accepts input from mouse «; input events and
output requests which fall into the domain of window B are passed on to
server B.

This approach also allows clients to determine whether event handling for two neighbouring displays
should be kept separate or combined in a larger virtual display (Figure 13-4, (a) and (b)). In the latter
case, a client can make both displays descendants of the same logical window and associate the input

devices with that ancestor.

Figure 13-4, Cursors and windows. In (a) the pointers are restricted to their respective
displays; (b) the displays are part of the same logical window and the pointers
have access to both. In (¢) mouse a is attached to window A and drives cursor
o, mouse b is attached to window B and drives cursor B; cursor P is restricted
to window B, but o may enter window A or B.

13.4. The SWinputDevice

(a)

Users need a mechanism for grouping arbitrary sets of devices to provide an event order across the
devices and an input focus for non-positional events such as key presses. In addition, other clients may
wish to receive a copy of the event stream from an input device once it has been calibrated with a
display. The approach taken here is to create a further virtual device which may be exported for other
clients. When attached to a window, events from the component devices are distributed through the
window hierarchy as if from a single device—although a client can unpack the original source of the
event. There may be an arbitrary number of pointing components, of which one may be nominated as
the focus pointer which is then used set the input focus window; the default input focus window is the
one to which the device is attached. As with the swwindow, the application may chose to export the

new device.
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INTERFACE SWinputDevice;

TYPE T <: Public;
TYPE Public = InputDevice.T OBJECT
METHODS
setFocusPointer (pointer: InputDevice.Component) RAISES {Failed.T};
focusPointer () : InputDevice.Component RAISES {Failed.T};

setCursor (pointer: InputDevice.Component; cursor := SWcursor.None)
RAISES {Failed.T};

cursor (pointer: InputDevice.Component) SWcoursor.T RAISES {Failed.T};

(* set the cursor shape for a pointing camponent which is part of this device.
used when the device is attached to a window *)

calibratePointer (component: InputDevice.Component;
warping := Warping.None) RAISES {Failed.T};

(* sets transformation for positional events from input co-ordinates to
display co-ordinates *)

END;
END SWinputDevice;
This arbitrary combination of input sources allows some novel interaction techniques. For example, a
person at a digital drafting board could switch between two or three different pens with one hand, to
represent different drawing functions, with a button device in the other hand to provide modifier keys
common across all the pens. Each pen can be represented by a different SwinputDevice.T, all of

which include a copy of the button device.
13.5. Users and Input Devices

13.5.1. Making associations

MMM shows that multi-user and multi-device interfaces need to be able to make associations between
devices and users and roles. MMM runs within a single address space and so can maintain internal
device and user tables, but many of the scenarios described in Chapter 11 need to maintain device
associations between displays. This assumes that some input devices have an identity which they carry
with them, rather like an IP address on an Ethernet, which is a property of the physical device rather
than the virtual devices implemented over it. To make these associations available across hosts, sw
holds them in a device registry which is accessible over the network; the need for rapid response
means that device registries may need to be cached locally, but this matches the intended use. Clearly,
at most one user can own an identifiable device, although there may be multiple clients receiving
events from it. Sw also provides a user registry which holds details about users, including their

application preferences.

Within sw, each event dispatcher keeps a list of devices it recognises, with their respective owners.
When a dispatcher encounters an event from a device it does not recognise, it queries its device
registry to see if the device is registered with anyone. Figure 13-5 revisits MMM, Figure 8-9 (page 56)
to show how processes and data structures which were internal in MMM are now distributed. If the
registry returns an unrecognised owner, SW queriés the user registry to acquire the user’s details. In
addition, the new device may also be part of a user’s compound device, such as a pen associated with
a portable button pad, in which case the dispatcher must import the compound device. The dispatcher

then attempts to pass the event to a descendant window for interpretation by a client application.
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Figure 13-5, Distributed event handling in SW. The Notify Process is attached to a window
and feeds events to its children. The Device Server and Device Registry are
remote services.
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Assembling all this information may take some time for an interactive application, so it may best be
delegated to another thread. To avoid excessive switching, a user who is moving frequently between
displays can make them children of a common logical window and attach the input device at that

level; the logical window will store the user details and dispatch events to the appropriate child.

13.5.2. Access control

The device registry is also used to control user access in a shared interface. The event mechanism
attempts to dispatch positional events from leaf to root (unless the device has been grabbed). Each
window has an acceptOrRejectEvent method which either accepts the event and returns TRUE or
returns FALSE, where a window contains children, acceptorRejectEvent should first try to pass the
event to any child which is appropriate before considering it for its own window. Thus, the
interpretation of an event and access control is localised to the application in charge of each window.
Client applications can retain a list of users who may make changes to an application’s appearance or
its data and check the owner of the source device with the access list before accepting an event. An

implementation of acceptOrRejectEvent for a leaf application would be:
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PROC AcceptOrRejectEvent (event: Event): BOOLEAN =
device ¢« event.device();

ownerRec « LookupOwner (device) ;
IF ownerRec = None THEN
RETURN FALSE; (* we're not interested in anonymous devices *)
FI1;
deviceRec ¢« LookuplocalDeviceRec (device) ;
IF deviceRec = None THEN
deviceRec ¢ NewlLocalDeviceRec (device);
FI;
IF ISTYPE(event, Event.AcquireFocus) THEN
(* only owner may alter the contents of this window *)
IF ownerRec.writePermission() THEN
AcquireInputFocus (device, event);
RETURN TRUE;
ELSE
RETURN FALSE;
Fi;
FI;
(* add event to local application queue *)
AddEventToQueue (event, deviceRec, ownerRec);
RETURN TRUE;
END;

Whereas the implementation for a simple parent which allows anyone to change the positions of its

children would be:

PROC AcceptOrRejectEvent (event: Event): BOOLEAN =
device ¢« event.device();
(* try to pass event on to child #)
child ¢ FindDestinationChild(event, device);
IF NOT child = None THEN
IF child.acceptOrRejectEvent (event) THEN
RETURN TRUE;
END;
END;
(* event not for any child, add to local queue #*)
deviceRec ¢« LookupLocalDeviceRec {device) ;
IF deviceRec = None THEN
deviceRec ¢ NewlLocalDeviceRec (device) ;
FI;
AddEventToQueue (event, deviceRec, None); -- not interested in owner of device
RETURN TRUE;
END;

If stricter control is needed, the application can query the device registry, to validate its cached values,
before making significant changes. For example, a mail tool may use locally-stored owner
identification for altering the appearance of the tool and for constructing a message, but query the

registry before sending a message.

Unaccepted device events are returned to the device window which can provide a default handler. Pen
strokes, for example, could be passed to a signature recogniser to allow people to “sign in.” Otherwise,
events might be passed further up the window hierarchy, if any, to be caught by a higher-level
handler. This can be exploited by users who wish to switch between a number of displays by making
all the displays children of the same logical parent. The users may then connect to the parent window
and move freely between the displays; the parent will perform all the ownership validations for its

children.
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13.6. Summary

This chapter describes the example Simplistic Window system and how it provides a mechanism for
grouping sets of devices. It supports the architectural requirements defined in Chapter 11 of co-
ordinating input and output devices and provides a mechanism for constructing and making available
compound interaction devices. Users can construct their own interaction environments by dynamically
linking together input and output devices. sw would, for example, be particularly suitable as an

infrastructure to support the Pad model of user interaction, described in section 2.6.

The window provides a common abstraction for defining the scope of interactions. It can be extended
above the hardware (“meta-windows”) to link displays together, and it provides a co-ordination point
between input and output devices. It also allows applications to move between displays by reparenting
their top-level window. In addition, input devices may be gathered into a SWinputDevice.T to impose

an order on events from multiple source and to route non-positional events.

sw supports the two interaction styles described in the introduction. The input mechanism can provide
default handling for unfamiliar devices, such as looking up the owner, and the device and user

registries allow users to maintain the ownership of devices as they move between displays.
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14. Discussion

14.1. Introduction

The desigﬁ of Gemma and sw grew out the experiences and frustrations of writing several multi-user
applications. It defines a model for constructing user interface software for the ubiquitous approach to
computing outlined by Weiser [Weisef9l], of which some examples are described in Chapter 11. This
chapter first shows how Gemma may be used to construct such applications, using MMM, DDD and
one of the scenarios from Section 11.1 as examples. It then discusses two examples of issues which
are unresolved in the current design but will have to be addressed in any implementation of Gemina,

and the state of the computing infrastructure needed to support such an architecture.

14.2. Applying SW and Gemma

How, then, might Gemma be used to actually build an application? This section shows how the
systems which motivated Gemma, namely MMM and DDD, would benefit from it. MMM becomes
more open and various components of the interface, such as user management, become eligible for
distribution. DDD, on the other hand, acquires a clearer division between its logical and physical co-
ordinate spaces so that applications can operate entirely in the logical space and be expected to handle
arbitrary combinations of hardware. Finally, 1 describe how the design meeting example from Section
11.1 may be implemented. This shows, again, that a Gemma application can be written independently
of a specific combination of hardware and that its behaviour can be changed to match external

circumstances by connecting to a different set of virtual devices.

14.2.1. Implementing MMM

Consider, as an example, an environment to support MMM-like activity (Figure 14-6). Each person
has a desk-based display and uses cordless input devices, such as mice and keyboards, which
communicate via low-power infra-red (to avoid the signals being picked up at other desks). The local
sw Server implements a top-level window which it attaches to the display; one of its sub-windows is
driven by the Application. There is also a Device Watcher which manages the input device sensors
and implements virtual devices for the physical devices it detects. This is similar to Lantz’s
Workstation Agent [Lantz87] except that we also provide support for distributed components and for

multiple users sharing an interface.
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Figure 14-6. Using SW and Gemma to support MMM-like activity, Remote connections are
shown by a dashed line and infrared by a zigzag.
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As a user moves an input device into the range of the sensors, its presence is noted by the Device
Watcher. Like Active Badges, the input devices periodically broadcast a signature to announce their
location—this also allows the Device Watcher to detect whether a device is not in use at the moment
or has been moved away. The Device Watcher then contacts the Device Registry to get the details of
the device and to claim ownership. If the device is still registered at another site, the Device Watcher
at the previous site can be notified to clean up any local data structures. The Device Registry also
records whether a device is owned by a particular user. If not, then the device may simply be
presented on the display, as a cursor for a pointing device or an icon for a keyboard, to allow a user to

acquire control of it. Otherwise, possibilities include:

e if this is the first device for this user on this sw Server, this action may count as a form of login.
The sw Server may then query the User Registry to acquire details of the user and create a Home
Area to represent him or her. The sw Server may start a dialogue to ask the user to further

authenticate himself or herself,

s if a pointer is registered as the focus pointer of a virtual swInputDevice, the Device Watcher at
the previous site may be notified to send the current state of the SwInputDevice and to route its

non-positional events to this sw Server.

o for other devices, the sw Server may create a representation of the device to be added to the user’s
state on the screen. The representation may depend on the role the user has registered for the

device—a trackball, for example, may be used with the weak hand for scrolling.

The Device Watcher feeds events from its devices to the sw Server which places them on its system
input queue for dispatching to its associated applications. When a new device arrives, the sw Server
creates a new entry in its devices table and attaches the device to its top-level sw window so that

further events are associated with the Server’s co-ordinate space.

This approach opens up the MMM architecture to make it considerably more flexible. For example,
the focus window for non-positional events is associated with a virtual SWInputDevice.T, rather than

the UserInstance record as in MMM, so users can maintained combinations of devices as they move
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around. Similarly, users can attach arbitrary devices to a particular display, maintaining ownership,
state and preferences as they move between displays. This approach allows new device types to be
connected, without interrupting the session, by starting a new Device Watcher and directing its output
to the sw Server. Furthermore, the display can be shared with other systems; a video application, for
example, could acquire a region of the display and draw directly to it without affecting the
performance of the sw server. The addition of distribution also allows components to be implemented
separately. For example, the representation of users within the sw Server could be managed by another
process, a user manager, which determines access policies, maintains user/device associations and
provides a user interface, such as the Home Areas. Different user managers could then be run to

support different policies.

14.2.2. Implementing DDD

The DDD, on the other hand, is already distributed but benefits from the infrastructure which Gemma
provides. Figure 14-7 shows the component parts of one end of a Gemma DDD. The DDD logical
space is defined with respect to the camera’s frame buffer, so mappings must be defined between this
space and the input and output devices. The DDD includes a Camera Warper which provides a
dialogue to calibrate the display with the camera and makes that calibration, or warping, available to
interested clients. The most important local client is the virtual display, VDisplay, which translates
display requests from the DDD’s logical space to the physical display’s co-ordinates; this translation
is managed by the Camera Warper. Frames from the remote camera are translated to the local display
by a virtual camera, VCamera, which paints directly into an SW Region on the display; this avoids
unnecessary processing in the sw Server. The tablet has a virtual device, VTablet, to translate its
input to the logical co-ordinate space; this translation is managed by a Tablet Warper which also

provides a calibration dialogue.

Figure 14-7. The components for one half of a DDD. The “V” devices translate between the
physical device co-ordinates and the common logical space in which the
Application and SW Server operate. The logical space is defined with respect
to the camera’s frame buffer, so it has no local virtual device.
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This approach allows the application and sw Server to run entirely in the DDD logical space; all the
warping is managed by virtual devices so new hardware, and new fypes of hardware, can be

introduced simply by connecting to different services.
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14.2.3. The design meeting

The implementation of the design meeting described in Section 11.1 breaks down into two parts.
Firstly, the use of the shared wall display is simply a case of the MMM approach in which a Device
Watcher monitors the pens applied to the display. As with mice and keyboards above, the wall display
Device Watcher detects different pens from their infra-red signatures and establishes a virtual input
device for each one. The second part implements the communication with the notepad displays. Much
of the time, notepad owners will be working independently of the main display, but occasionally they
will want to transfer work between the notepad and the display and to use the notepad as an input

device for the wall display.

One approach is to include both the wall display and the notepad in a common Sw window—the
notepad area is treated as if attached to an edge of the wall display area. Graphical objects may then
be dragged from one display to the other, even though the two displays are physically separate; once
an object has been moved to the main display it can then be picked up with another device. Figure 14-
8 shows how input events from the notepad may be diverted to the common sw Server process which,
in turn, drives the notepad display. All the pens are absolute pointing devices, so their input events
can be mapped so that their range is limited to the area of the display with which they are associated.
As with the DDD, the application is removed from the details of the hardware and sees only an oddly-

shaped top-level window with input coming from multiple users.

Figure 14-8. The connections for combining a wall display and a notepad into an SW
window. Notepad input events are forwarded to the SW server which, in turn,
dispatches output requests to the two displays.
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Another approach is to use simple cut and paste by associating the selection with the user, rather than
the window server, and storing it with the User Registry; the selection may then be retrieved from the
User Registry if the user pastes to another display. Thus, a user can make a selection on his or her
notepad, to be stored with the User Registry, and paste to the wall display with any pen with which
they are associated. This is related to a technique used in some meeting room systems, such as the
Capture Lab [Mantei88], which allow users to maintain their copy buffer when switching between
control of their personal machine and of a common display. A further step is to allow a notepad owner
to switch between using it as a local device and as a pointer for the wall display. When used as a
pointer, the notepad display replicates a part of the main display which can be panned around using a
local dialogue area; the notepad owner can interact with the replicated area as if drawing on the wall

display.
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Figure 14-9. The connections for using a notepad as a pointer on a wall display. The Scroll
Dialogue process allows the user to confrol which part of the wall display the
notebook replicates.
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Figure 14-9 shows how this may be achieved. The sw Server draws to a Virfual Display device which
replicates parts of the display image to its connected displays. The input from the notepad pen is sent
to a Virtual Input process which maps its co-ordinates to that part of the virtual display which is
visible on the notepad. The Scroll Dialogue process manages a dialogue box on the notepad which
provides an interface to allow the user to move around the virtual display; as the user scrolls, the
scroll dialogue notifies the virtual input and output devices of the change of view. If the user switches
to a local application, the Scroll Dialogue notifies the virtual devices to suspend their connections
with the notepad. Once again, the application sees only a display with input coming from a variety of

sources.

14.3. Unresolved Issues

There are, of course, many unresolved issues in the design of Gemma which are beyond the scope of
this dissertation, such as the sort of user interface that would allow users to manage numbers of virtual

devices. Naming and persistence, however, provide interesting examples for further discussion:

14.3.1. Naming

The interface to a Device.T uses a naming scheme like ANSA [ANSAR9], in which a name consists
of a type description, a hierarchical context and a list of properties, to allow clients to find devices.
The type description may be determined by the device class, but the context depends on the meaning a
user associates with the device. For example, where location is important the context for a display
might be:

/uk/canbridge/darwin-college/reading-room/by-window

with properties including
being-used-by: steve-freeman@computer-lab,cambridge.academic.uk
top-window-application: diary
display-type: pad-vl7.2

Where the role the device is playing is important, the context and properties might be:




14.4. System Requirements 111

/uk/academic/cambridge/computer-lab/steve-freeman/diary

location: by-window.reading-room.darwin-college.cambridge
digplay-type: pad-vl7.2

The physical device itself might also have a context:
/uk/academic/cambridge/computing-service/pad-v17.2

location: by-window.reading-room.darwin-college.cambridge
serial-no: 358483
allocated-to: steve-freeman@computer-lab.cambridge.academic.uk

Which name space is appropriate depends on the client’s use of the device, so an application which
concatenates several displays into a logical window will use the location context, a pager application
will use the role context, and system administration will use the device context. The complexities of
maintaining such interrelated name spaces and of finding one device from among a large number are
obvious. Some subtle issues also arise if, for example, the process of looking up a service reveals
information about the person using a device. The architectural consequences are being considered by
researchers involved with Active Badges, such as Spreitzer and Theimer [Spreitzer93], and, as Harper
points out [Harper92], the social organisation of the institution which administers the devices is also

significant.

14.3.2. Persistence

Like MMM, sw embeds applications in windows, so a natural model for storing application state is a
persistent object store, the question being which components to store. A user may wish to keep a
“home” window tree which can be attached to the user’s current device and retained when not being
used; the user will expect the tree to include his or her interaction preferences within each window. If
other users also work in this tree and set up preferences of their own then it is not clear how, or
whether, the storage system should drop one user’s state but not the other’s. Maintaining per-user
state for each application instance could lead to the storage of large volumes of data which may never
be used again. One possible avenue is to store user preference data with the user; it is then up to the
user to remove unnecessary records or acquire more space. This has the added benefit that more
information about the user stays within her or his domain, but complicates the storage and restoration
of application state. The approach might be combined with a convention for specifying default
preferences for categories of window, as with X Resources; window-specific user preferences would
then be required only for exceptional cases. Another avenue, possibly complementary, is to run a very
slow garbage collection over the application objects to remove user preference data which has not
been accessed for some time (weeks or moﬁths). These data may be viewed as expendable on the
grounds that no user need remember the previous insertion point in small file, for example, after

several weeks.

14.4. System Requirements

The Gemma places some severe demands on its computing infrastructure. It requires mobile output
devices which can be accurately located, input devices which can be uniquely identified, low-latency

communications, and large amounts of rapidly accessible storage. The system software must also
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provide mechanisms to dynamically bind this hardware together without imposing too great a
computational cost; these include storage services for naming, user and device details and application
data, efficient higher-level communication protocols, and real-time scheduling in the operating

system,

Some of these facilities are available or becoming so, as described in Chapter 4; these include, in
particular, ATM networks, micro-kernel operating systems and mobile computing. Other examples of
infrastructure are Chameleon [Fitzmaurice93], which includes a prototype hand-held display that uses
its position and attitude in 3D space as an input device, and Liveboard [Elrod92] which supports
multiple pens on wall-sized display. Many of the required facilities, however, are still experimental or
too expensive and so are unstable platforms on which to build higher-level systems. For example,
there is at present no technology that could be used across a range of displays that would identify an

individual stylus.

The existing environment which is closest to these requirements is that at Xerox PARC, described in
[Weiser93]; it includes Liveboards, portable Tabs and Pads, and wireless networks. Their user
interface software (apart from that for the Tabs), however, is based on an X toolkit which allows an X
window to migrate between servers and so bears some resemblance to an orphan Swwindow.T; such an

approach differs from sw by restricting a display to a single pointer and keyboard.

14.5. Summary

This chapter discusses some implications of Gemma, showing first how it facilitates the construction
of applications such as MMM and DDD and how it may be used to support one of the scenarios
described in Section 11.1. Gemma provides a flexible environment with a clean separation between
the application and hardware environments, and even allows an application’s behaviour to be
modified by changing the virtual devices it is connected to. The next section discusses two examples
of issues which must be resolved in order to implement Gemma: a suitable naming scheme, or set of
naming schemes, for Gemma entities; and, how persistent storage for applications and user
preferences is to be managed. The final section outlines some of the infrastructure needed to support
the implementation of such a system and notes the experimental status of many of necessary

technologies.
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15. Conclusions

15.1. Introduction

This dissertation proposes a novel architecture, Gemma, for distributed user interfaces. The phrase

“distributed user interface” can be understood in three ways, all of which are supported by Gemma:

e distributed user interface: this is the conventional meaning in which the user interface for a
single display is implemented across several machines, examples include the X Window System
and NeWS. Gemma can be used to gather a set of input and output devices together to implement

a window server.

e distributed user interface: groupware applications and architectures tie together multiple users
who may physically separated. Gemma allows applications to share devices at the most

appropriate level of abstraction.

e (distributed user interface: this is the sense implied by the Ubiquitous computing approach in
which the user interface is not limited to a machine on a single desk, but is made up of many

devices. Each device may represent a particular aspect of the collective interface.

Gemma allows applications to bind devices together for the task in hand, with as few assumptions as

possible about the type of interaction to be supported.

15.2. An Architecture for Distributed User Interfaces

Gemma defines a model for interactive systems which exploits new developments in computing
systems to support new user requirements. It is based on a rigorous distribution of basic user interface
components which existing monoloithic systems have kept inaccessible to client applications.
Gemma’s open architecture allows people to use input and output devices as the need arises without
having to restart applications, while its use of multiple interfaces supports fine-grained access control
for any Gemma service. Gemma devices may be shared in the users’ familiar physical world, so people
may exploit their existing everyday skills rather than having to learn to survive in the computer’s

virtual world.

The sw system shows how basic Gemma devices may be combined to support the user interaction
scenarios described in Section 11.1. It provides a clear separation between an application and the
devices, or even the types of devices, that application is running on. Thus, a core behaviour can be
defined in an application object, but its manifestation can be changed by connecting the application to
different virtual devices. Device ownership and user state are managed by networked services and so
can be maintained across applications, devices and sessions. The provision of such services at the sw

level means that Sw applications automatically support the sharing and mobility which users require.

The design of Gemma and sw was motivated and informed by three sets of experiments which showed,
first, how existing window systems are fundamentally unsuited to support the next generation of user

requirements. Second, the MMM showed that it is possible to break the assumption of the single-user
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at a display—that the personal computer is not the only model for user interfaces. Third, the DDD
showed that it is feasible, and sometime necessary, to distribute the internal components of a user
interface, rather than the user interface as a whole. The implementation of these unusual applications
made clear the limitiations of existing user interface architectures and provided prototypes for aspects

of the design of Gemma.

Finally, existing user interface architectures are udner pressure from two directions. One the one
hand, people are attempting to build applications which stretch the limits of available
architectures—motivated by both a more sophisticated understanding of users’ needs and practices
and by the assumption that more powerful computers can take on a large part of the effort of human-
computer communication. One the other hand, computing systems now consist of collections of
hardware bound together by fast networks and flexible operating systems. The general purpose
operating system which implements all the necessary services, is being replaced by a micro-kernel
which binds service-providers together. Gemma exploits these developments in computing systems to

provide an infrastructure suitable for the next generation of user interface.

15.3. Further Work

Gemma is based on a model of user interaction in which many people use a large number of
communicating user interaction devices. Much of the infrastructure which would make Gemma most
useful, such as ATM networks and identifiable pens, is not yet widely available, but there are some

smaller projects which could prove, or disprove aspects of the design, for example:

s a workstation-based implementation which included an X server would show whether Gemma
could be made efficient enough to support conventional forms of user interaction. Building
further window systems over the same platform would highlight problems of interoperability and

arbitration between device clients.

¢  Gemma may be particularly suitable for use with low-power devices, such as mobile displays. For
example, using multiple levels of virtual devices allows output processing to be distributed to

optimise the use of computational power and network communication.

* the issue of maintaining per-user state could be investigated in a conventional object-oriented user
interface system with persistence; users’ interaction preferences and state could be stored for each
interactive object they work with. The issues concern which data are to be stored by whom and for

how long.

The greatest benefits of the Gemma approach, however, will accrue when most of the people in an
organisation can operate within the same system, sharing devices and applications and taking
advantage of its flexibility; the issue is similar to that of critical mass for CSCW applications
[Markus90]. Thus, the Gemma design ultimately requires a large scale implementation in everyday

use to be fully validated.
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