Technical Report A

Number 338

Computer Laboratory

A new approach to
implementing atomic data types

Zhixue Wu

May 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1994 Zhixue Wu

This technical report is based on a dissertation submitted
October 1993 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Abstract

Many researchers have suggested the atomic data type approach to maintaining data
consistency in a system. In this approach, atomicity is ensured by the data objects that
are shared by concurrent activities. By using the semantics of the operations of the
shared objects, greater concurrency among activities can be permitted. In addition, by
encapsulating synchronisation and recovery in the implementation of the shared objects,
modularity can be enhanced. Existing systems support user-defined atomic data types in
an explicit approach. They either permit limited semantics to be presented thus providing
less concurrency, or permit a high level of semantics to be presented but in an encapsulated
way, thus resulting in a complicated implementation. This research was done to make the
implementation of user-defined atomic data types simple, efficient, while still permitting

great concurrency.

The research aims to lessen the programmer’s burden by supporting an implicit approach
for implementing atomic data types. It permits a high level of semantics to be specified in
a declarative way, which makes the implementation of user-defined atomic data types as
simple as in a sequential environment. A special concurrency control mechanism is imple-
mented by the system. By using type inheritance, user-defined atomic data types can use
the mechanism directly to provide local atomicity for their objects. A language has been
developed for specifying the conflicts between object operations. Since the concurrency
control mechanism can take operation semantics into account, the approach permits great

concurrency.

To support the implicit approach, an appropriate concurrency control protocol must be
proposed which can take advantage of operation semantics to increase concurrency and
which can be implemented independently from user-defined atomic data types. Such a
protocol, called the dual-level validation method, is presented and verified in this thesis.
The method can make use of the parameters and results of object operations to achieve
great concurrency. In addition, it also provides great internal concurrency by permitting

operations to take place on an object concurrently.

The prototyping of the implicit approach in a persistent programming language called
PC++ is described. The feasibility of the approach is shown by an application, namely
a naming database for an active badge system. Some related issues are also addressed
in the thesis, such as remote object invocation, distributed transaction commitment and

data persistence.

iii

Contents

List of Figures xiii
List of Tables xiv
1 Introduction 1
1.1 Properties of Transactions v v v v v v v i oo e 2
1.2 Concurrency Control Techniqueso oo 3
1.2.1 Pessimistic Concurrency Control, 3

1.2.2 Optimistic Concurrency Control, 6

1.3 Atomic Data Types. . . . v v v v v v i i s e e 7
1.3.1 Specifications e 7

1.3.2 Global Atomicity and Local Atomicity 7

1.4 TImplementations of Atomic Data Types, 8
1.41 The Argus Approach v v e 9

1.4.2 The Extended Two-Phase Locking Approach 10

1.4.3 Conclusions v v v v v v v it 11

1.5 Research Statement e 12
1.6 Structureof the Thesis o o o o 13

2 Issues on Providing Local Atomicity 14
2.1 Type-Specific Concurrency Control 14

2.2 Representation of Semantics o oo 15

2.3 Transaction Concurrency and Process Concurrency 16
2.4 Recoverability o e e e 17
2.5 Durability e e 19
2.6 SUMIMATY + v v v v v o v et et e e e e e e e e e e 21
Dual-Level Synchronisation 22
3.1 Internal Concurrency Control v v 22
3.2 Introduction to Dual-Level Synchronisation 24
321 Overview v i i e e e 24
3.2.2 Validation Algorithms oo 26
3.3 Specification of the DLV Method 28
3.3.1 The Read Phase Manager v v v v v v o 29
3.3.2 The Logical Validator 30
3.3.3 The Write Phase Manager« . v v v v v v v v v oo v 32
3.4 SUMIMATY v v v v v v e e e e e e e e 34
3.4.1 Evaluation e e e 34
3.4.2 Comparison . . . v v v v v v e e e 34
Formalisation and Correctness 36
4.1 Assumptions and Definitions 0o 0oL 37
4.2 Serial Dependency 0 e 38
4.3 Views of Transactions v v v v v i e 41
4.3.1 Translation Function 41
4.3.2 Views of a Transaction 42
4,3.3 An Important Lemma 45

4.4 The Dual Level Validation Automaton

vi

4.5

4.6

Atomicity of the DLV Method

SUMMATY v v v v v v v e e e e v et e e

Global Atomicity and Resilience

5.1

5.2

5.3

5.4

Atomic Commitment e
Recovery v i v v e e
5.2.1 Three Kinds of Recovery, ...
52,2 CrashRecovery v v
523 LogRecords.
5.2.4 Recovery Procedure
Distributed Transactions v v v v v oo
5.3.1 The Computation Model
5.3.2 Atomic Commitment Protocol
5.3.3 Other Commitment Protocols
5.3.4 Timestamp Generation
5.3.5 Recovery of Distributed Transactions.
SUMMATY « v v v v v vt e v e et e e e

Constructing Atomic Objects and Transactions

6.1

6.2

6.3

6.4

Atomic Data Types. v o v v v vt i
Approaches oo o e e
An Implicit Approach o oo
Representing the Semantics of Operations
6.4.1 Levels of Semantics.
6.4.2 Two Different Ways
6.4.3 The Language

6.44 AnExample

vii

.......

.......

.......

.......

.......

.......

.......

6.5 Concepts of Object Orientation 74

6.5.1 Data Abstraction e e 74

6.5.2 Inheritance e e 75
6.5.3 Object Identity v v it e 76
6.5.4 SUMMALY . .« v v v v e e e e e e e e e 76

6.6 Constructing Atomic Objects v o 7
6.6.1 The Type-Inheritance Method 77
6.6.2 The Interface of the Scheduler. 78
6.6.3 Constructing User-Defined Atomic Data Types 79
6.6.4 Remarks. o i e e e e 81
6.6.5 SUMMATLY . . . v v v v e e vt e e e 81

6.7 Constructing Transactions v v v i e 82
6.7.1 The Transaction Model 82
6.7.2 The TransactionClass v v v v v v v v i i 83
6.7.3 Constructing Transactions v v 83
6.74 Remarks. i i 84

6.8 SUMIMATY .« v v v v e vt e e e et e e e 85
7 A Prototyping Implementation 86
7.1 TheScheduler i e 86
7.1.1 The Definition e 87
7.1.2 Validating a Transaction 90
7.1.3 Recording Events e 91
7.1.4 Manipulating Physical Objects 92
7.1.5 Physical Validation and Physical Write 94

7.2 The Persistent Object Store Service, 95

viii

7.3

7.4

7.5

7.6

7.7

7.8

The

8.1

8.2

721 The LLSS . . . v o e e e e 95
722 The HLSS . o . v v v e i e e e e e e 96
Conflict Relations v v v v v v i e e s e e 97
7.3.1 The Internal Form e 97
7.3.2 Checking Transactions v v v v v v v v 98
The LTM . . . 0 ot e e e e e e e e i e e e 98
The DTM . . . o e e e e e e e e e e e 99
Remote Object Invocation v v v v v v v v v i 100
7.6.1 The Object Model oo i 101
7.6.2 The ROI Mechanism v v v v v i i 101
7.6.3 The Stub Generator 103
7 7.6.4 Naming and Binding oo oo 103
Implementing Concurrency v v v v v v v v v v i e 104
771 Threads . o v v v v v vt e e 104
7.7.2 Object Operations as Threads 105
SUIMIMATY v v v v v e e e e e e et e e e e 106
Persistent Programming Language—P C+-+- 107
ISSUES v v v o e e e e e e e e e e e e e e e e e e 108
Object Model o v i e 109
8.2.1 ODbJects . v v v v e e e e e 110
8.2.2 Object Definitions: Classes v oo oo 110
8.2.3 Type Inheritance i e e 113
824 ObjectIdentity v 114
8.2.5 Overloading and Dynamic Binding 114
8.2.6 Accessing Persistent Object State. 115

ix

8.3 The Current Implementation of PC+4. oo oo oo oo b 115

8.3.1 Representation of Persistent Objects 116
8.3.2 The PCH++ Preprocessor v v v v v v v v v v oo 117
8.3.3 Implementing Applications oL, 121
8.3.4 Object Naming v v v v v vttt e 122
8.3.5 Type Checking v v v i it i i e 123
8.3.6 Binding and Data Migration, 124
8.3.7 Data Abstraction and Protection, 125
8.3.8 Referential Integrity i o e 127

84 Remarks . . v v v v v v i e e e e 128
8.5 Implementing Atomic Data Typesin PC++4 129
8.6 SUMMATY .+ v v v v v v v v e e bt e e 129
9 An Application—An Active Badge System 131
9.1 Imtroduction v v v v i i i i e e 131
9.2 The Naming Database Server v v 134
9.2.1 The Definition oo e 134
9.2.2 Implementation i i e 137
0.2.3 Experience i e e e e 137

9.3 Clients of ABNaming o v v v v v vt it e v e e e e 140
9.3.1 The Implementation of abwho, 141
9.3.2 The Implementation of abupdate 144
0.3.3 EXperience ittt e 145

0.4 SUMMATY .+ . v v v v v v vt e e e e e e e e 146
10 Comparison with Related Work 147
101 ATEUS o v v v e e e e e e e e 148

10.2 Arjuna o L e e e e e e e e e e e e
10.3 TABS . . 0 o e
104 Clouds/Aeolus i i e
10.5 Camelot/Avalon
10.6 Comparison with PCH+ o . o o e e e

10.7 SUMMATY . v v v v o e e e e e e e e e e e e e

11 Conclusion
B T 1 ' '
11.2 Further Work o o o e e e e e e

11.3 Conclusions e e e e e e e

A Conflict Relation Syntax

xi

List of Figures

3.1

3.2

3.3

3.4

4.1

4.2

5.1

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

7.5

7.6

The Four Phases of a Transaction oo 24
Possible Interleaving of Two Transactions 27
The Architecture of Atomic Objects oo 28
Possible Validation Failures (f; <¢; <tr) . . .« oo v v v v v oo v oo 31
Permanent States When Executing Operations L. 42
Views of a Transaction v v v v v v v v v i e 45
The Architecture of the Distributed Transaction System 62
The Interface of the Scheduler v 78
The Class Account v v v v v v v it e e e e e 79
The Implementation of Class Account 80
The Transaction Class . . v v v v v v v v v i it i e e e 83
A Transfer Transaction v v v v v v v v v i i 84
Types Used by the Scheduler 88
The Definition of the Scheduler 89
Validating a Transaction o 91
The Definition of the Conflict_Relation Type 97
The Definition of the LTM oo oo v oo 98
The Definition of the DTM v v i v e v 100

xii

7.7

8.1

8.2

8.3

8.4

8.5

8.6

8.7

9.1

9.2

9.3

9.4

9.4

9.5

9.5

9.6

The Model of the ROI Mechanism v v v v v v v v v v oo 102

Persistent Object Compositionso v v v v v v oo oo 116
Processing a Persistent Class Specification 118
Processing a Persistent Class Body 120
The Process of Implementing Applications 121
Access Control Points . . . v v v v v v i h e e e e .. . 126
Preserving Referential Integrity in PCH++4 oo oot 127
The Implementation of Class Account 130
The Architecture of the Active Badge System 133
The Definition of Badge« v v v i i i e 135
The Definition of Class badges o v v v v i v v v oo 136
Some badges Member Functions o o o 138
Some badges Member Functions(continued) 139
Part of the Implementation of abwho o o 142
Part of the Implementation of abwho (continued) 143
The Implementation of Operation addbadge 144

xiii

List of Tables

2.1 The Commutativity for Account. . .

2.2 The New Commutativity for Account

xiv

Chapter 1

Introduction

Over the past few decades increasing reliance has been placed upon computers to such
an extent that many applications are totally dependent on the correct functioning of
their computer systems. In these applications the manipulation and preservation of long-
lived, on-line data is of primary importance. Examples of such applications are banking
systems, airline reservation systems, database systems, and office automation systems. A
major issue in such systems is preserving the consistency of on-line data in the presence
of concurrency and failures. This thesis is concerned with how to define and implerhent

data objects that help to provide needed consistency.

To support consistency it is useful to make concurrent activities that use and manipulate
data objects atomic. Atomic activities are referred to as transactions or actions, which are
first identified in work on database systems [Dav73, Dav78, EGLT76]. Transactions are
characterised informally by the following properties: recoverability, serialisability, isolation
and durability. Recoverability means that either all or none of the transaction’s operations
are performed. Serialisability means that if several transactions are executed concurrently,
the results must be the same as if they were executed serially in some order. Serialisability
together with recoverability are called atomicity. Isolation means that a transaction cannot
reveal its results to other transactions before its commitment. Durability means that once
a transaction has committed the system must guarantee that the results of its operations

will never be lost, regardless of subsequent failures.

Transactions simplify the problem of maintaining consistency by decreasing the number
of cases that need to be considered. The properties of transactions allow one to guaran-
tee that the data objects remain consistent by ensuring that each transaction, when run

alone and to completion, preserves consistency. Given that each transaction preserves con-

CHAPTER 1. INTRODUCTION 2

sistency, any serial execution of transactions without failures also preserves consistency.
In a transaction system, a concurrent execution with failures is equivalent to some se-
rial execution without failures; thus, a concurrent execution with failures also preserves

consistency.

Atomicity can be achieved by implementing applications in terms of atomic data types:
data types whose objects, atomic data objects, provide serialisability and recoverability for
transactions using them. Atomicity of transactions is guaranteed when all objects shared
by transactions are atomic objects [WL85]. By encapsulating the synchronisation and
recovery needed to support atomicity in the implementation of the shared objects, one
can enhance modularity; in addition, by using the information about the specification of
the shared objects, one can increase concurrency among transactions while still ensuring

atomicity.

Implementing atomic data types is a difficult task, as shown in previous work [Wei84,
WL85, Wei90]. Increasing concurrency would lead to complicated implementations. The
research results at present are not satisfying; further work is needed in designing and
evaluating alternative methods. The subject of this thesis is to explore a new approach to
implementing atomic data types, which permits a high level of concurrency and leads to

a much easier implementation.

1.1 Properties of Transactions

The transaction concept has emerged as an abstraction which allows programmers to group
a sequence of operations into a logical execution unit. If executed atomically, a transaction
transforms a consistent state of data objects into a new consistent state. A transaction is

characterised by the following properties [CP84]:

Recoverability Either all or none of the transaction’s operations are performed.
Recoverability requires that if a transaction is interrupted by a failure, its partial results

are undone.

There are two typical reasons why a transaction is not completed: transaction aborts
and system crashes. The abort of a transaction can be requested by the transaction
itself (or by its user) because some of its input is wrong or because some conditions are
recognised that make transaction completion inappropriate or useless. A transaction abort
can also be forced by the system for system-dependent reasons, typically system overloads

and deadlocks. The activity of ensuring recoverability in the presence of transaction aborts

CHAPTER 1. INTRODUCTION 3

is called transaction recovery, and the activity of ensuring recoverability in the presence

of system crashes is called crash recovery.

Serialisability If several transactions are executed concurrently, the results must be
the same as if they were executed serially in some order. The activity of guaranteeing

transactions’ serialisability is called concurrency control.

Durability Once a transaction has committed, the system must guarantee that the
results of its operations will never be lost, regardless of subsequent failures. The activity

of providing the transaction’s durability is called database recovery.

Isolation A transaction cannot reveal its results to other transactions before its com-
mitment. This property is needed in order to avoid the problem of cascading aborts,
i.e., the necessity to abort all the transactions which have observed the partial results of

a transaction which was later aborted.

Note that these properties relate to the definition of transactions and do not imply par-
ticular methods of implementation. The effect on system state of running transactions is

constrained by these properties.

1.2 Concurrency Control Techniques

Many concurrency control techniques have been developed for synchronising concurrent
activities to ensure serialisability. A good survey of these techniques can be found in
[Koh81, BG81, BHG87]. Concurrency control techniques can be broadly classified into
two distinct classes: pessimistic and optimistic. Pessimistic schedulers prevent potentially
conflicting operations from occurring. In doing so they must always assume the worst
possible case in that if two operations might conflict, they assume that the conflict will
happen. Optimistic schedulers, on the other hand, allow free access to the data objects
and then attempt to determine if any conflict has occurred at some later point, usually
when a transaction commits. Thus, they assume that conflict will not occur, and only

take action if it actually does.

1.2.1 Pessimistic Concurrency Control

Pessimistic approaches to concurrency control prevent potentially conflicting operations
from occurring. Such techniques are pessimistic because they always assume the worst

possible case. Consequently pessimistic approaches tend to restrict concurrency somewhat

CHAPTER 1. INTRODUCTION 4

more than necessary. Most pessimistic techniques are variations or hybrids of two simple
techniques: two-phase locking (2PL) [EGLT76, BG81] and timestamp ordering (TSO)
[Ree78]. These two techniques and a hybrid of them are discussed below.

Two-Phase Locking

Locking is the most widely used form of concurrency control mechanism for controlling
access to shared resources. The basic mechanism is simple and easy to implement and has

been the method of choice in the majority of existing systems.

One of the earliest locking protocols developed for concurrency control is 2PL. It works as
follows: Before reading an object, a transaction must acquire a read lock on the object.
Similarly, before writing an object, a transaction must acquire a write lock on the object.
A transaction can acquire a lock on an object only if no concurrent transaction holds a
conflicting lock on the object. In addition, once a transaction releases one lock, it is not

allowed to acquire any additional locks.

The requirement that a transaction not acquire any more locks after it releases a lock
divides the acquisition and release of locks into two distinct phases. During the first phase
(called the growing phase) locks can only be acquired. During the second phase (called
the shrinking phase) locks may only be released. In the paper [EGLT76], it was proved
that by following this approach then serialisability was guaranteed.

A variant of 2PL, called strict 2PL, is more suitable. Under strict 2PL, transactions
hold all locks until they commit or abort. This avoids cascading aborts, a problem with
non-strict 2PL.

Timestamp-Based Protocols

The serialisation order of transactions maintained by 2PL is determined dynamically by the
order in which activities lock objects. In contrast, timestamp-based protocols determine
the serialisation order statically by selecting timestamps for transactions when they start,

and then force the execution of transactions to obey this order.

Timestamps are values drawn from a totally ordered domain [BHG87]. Each transaction
T; is assigned a timestamp, denoted T'S;, such that if T; # T} then either T'S; < T'S; or
TS; <TS;.

The rules of timestamp-based concurrency control state that conflicting operations must

CHAPTER 1. INTRODUCTION 5

be carried out in timestamp order, thus if any request arrives out of order it must be
rejected. Basic timestamping concurrency schedulers are thus aggressive in nature since

operations are performed strictly first in, first out.

Basic timestamping could abort a large number of requests if the order in which requests
are processed by the scheduler differs badly from the timestamp order. A conservative
timestamping concurrency scheduler attempts to avoid this problem by queueing requests
for a while to see if any requests with earlier timestamps will arrive [BRGP78]. Obvi-
ously the longer the delay imposed, the smaller the number of rejections that should be

generated. However this will slow the processing rate.

Multi-version timestamping was introduced by Reed [Ree83]. The protocol works as fol-
lows: A transaction is assigned a unique timestamp when it begins execution. When a
transaction wants to modify an object, it creates a new version of the object. A ver-
sion of an object has two timestamps associated with it: a write timestamp, which is the
timestamp of the transaction that created the version; and a read timestamp, which is the
maximum of the timestamp of transactions that have read the version. When a transac-
tion with timestamp t wants to read an object, it selects the version with the largest write
timestamp less than ¢ and changes the read timestamp of the version to the maximum of

its current value and ¢

In a case where a transaction with timestamp ¢ wants to write an object, and a version v of
the object already exists with a write timestamp less than ¢ and a read timestamp greater
than ¢, then the write operation must be refused in order to ensure the serialisability. To
avoid cascading aborts, read operations sometimes must be delayed: if a transaction with
timestamp ¢ wants to read an object and the version selected was written by a transaction
that has not yet committed or aborted, the read operation must wait until that transaction
completes. Otherwise, if the activity that created the version later aborts, the reader must

also be aborted.

Hybrid Protocols

Locking and timestamp-based protocols can be combined to yield hybrid protocols that
achieve greater concurrency [BG81, BG83, Wei87]. Transactions are divided into two

classes: read-only transactions, which never modify objects; and update transactions.

The mized method in [BG83] is a hybrid protocol. It uses multiversion timestamping to
process read-only transactions, and multiversion locking to process update transactions.

Update transactions set locks on objects as in strict 2PL, but two locks conflict only if one is

CHAPTER 1. INTRODUCTION 6

a read lock and the other is a write lock; a write lock no longer conflicts with another write
lock. As with Reed’s protocol, timestamps for read-only transactions are chosen when they
begin execution, and each write operation creates a separate version and each version has
two timestamps. Rather than choosing timestamps for update transactions when they
begin executing, however, it waits until they attempt to commit. Then, using a Lamport
clock [Lam78], it ensures that the timestamps chosen for updates give a serialisation order
consistent with the order induced by the locks. The order of conflicting write operations

is sorted out using the timestamps.

Update transactions that invoke read operations always read the version with the largest
timestamp. Read-only transactions, however, may read older versions, permitting them
to run without interfering with update transactions. Timestamps for read-only transac-
tions are chosen when they start executing. When a read-only transaction wants to read
an object, it simply selects the version with the largest write timestamp less than the

transaction’s timestamp.

1.2.2 Optimistic Concurrency Control

Optimistic concurrency control is based upon the premise that it is sometimes easier to
apologise than to ask permission [Her90]. That is, whereas pessimistic approaches always
obtain permission to use an object before they actually do so, optimistic approaches use
an object and then determine at a later stage whether this has caused problems. The
methods are optimistic because they assume that conflicts between processes are likely to
be very rare such that checking for conflict later is likely to be cheaper than preventing
conflicts from occurring in the first place. Any optimistic scheme‘, however clever, is cost

effective only if validation succeeds sufficiently often.
Optimistic approaches divide transaction execution into three stages:
e Read Phase. During this phase transactions read objects but only write to local
copies that are not visible to others and subsequently read from these.

e Validation Phase. Prior to making objects they have written visible to others, trans-

actions must be validated to ensure that no conflicts have occurred.

e Write Phase. Assuming that validation was successful the local copies of the object

replace the originals and become globally visible.

Hirder [H84] has distinguished between backward validation, in which each transaction

checks that its own results have not been invalidated by concurrent transactions, and

CHAPTER 1. INTRODUCTION 7

forward validation, in which each transaction checks that its own effects will not invalidate

any concurrent transaction’s results.

Herlihy [Her87a, Her90] has distinguished between conflict-based validation, a simple vali-
dation technique based on predefined conflicts, and state-based validation, a more complex
scheme that validates additional interleaving by exploiting knowledge about the object’s

state.

1.3 Atomic Data Types

An atomic data type, like an ordinary abstract data type, provides a set of objects and a
set of operations; and the operations provided are the only means to access or manipulate
objects of the type. Unlike ordinary abstract data types, however, an atomic data type

provides serialisability and recoverability for transactions that use objects of the type.

1.3.1 Specifications

An atomic data type is defined by two specifications: a serial specification, which de-
scribes the object’s permissible behaviour in the absence of concurrency and failures, and
a behavioural specification, which describes how the object responds to concurrency and
failures [WL85]. The serial specification can be used by users to reason about the partial
correctness of an individual transaction without considering the other transactions that
might be sharing objects with it. The behavioural specification describes the kinds of
concurrent executions permitted by the type and how the type handles failures. For the
type to be atomic, these executions must be constrained so that transactions using objects

of the type are serialisable and recoverable.

1.3.2 Global Atomicity and Local Atomicity

Atomicity of transactions is called global atomicity because it is a property of all of the
transactions in a system; and atomicity for a type is called local atomicity because it deals
only with the events (invocations and returns of operations and commits and aborts of
transactions) involving the particular type [Wei84]. Such locality is essential if atomic
types are to be specified and implemented independently of each other and of the trans-

actions that use them.

Weihl [Wei84, Wei89] has identified three local atomicity properties that result in global

CHAPTER 1. INTRODUCTION 8

atomicity. The three properties characterise the behaviour of three common classes of con-
currency control protocols. The dynamic atomicity characterises the behaviour of a class
of types that ensures serialisability dynamically based on the order in which transactions
execute operations provided by the type. Dynamic atomic types can be implemented with
protocols like two-phase locking. The static atomicity characterises the behaviour of a
class of types that ensures serialisability statically based on some predetermined order of
transactions. Static atomic types can be implemented with protocols like Reed’s multi-
version timestamp protocol. The hybrid atomicity characterises the behaviour of a class of
types that ensures serialisability based on the order in which transactions commit. Hybrid

atomic types can be implemented with protocols like the multi-version scheme proposed
in [BG83].

Each of these three local atomicity properties is optimal: no strictly weaker local property
suffices to ensure atomicity; and each of these three properties is adequate to ensure
global atomicity of transactions. For example, if all types shared by transactions are
static atomic, transactions are guaranteed to be serialisable and recoverable. However,
different local properties may be incompatible. For example, if some types shared by
transactions are dynamic atomic and others are static atomic, non-serialisable executions
of the transactions can result. Thus in any system, it is necessary to choose a particular

local atomicity property that will be used for all shared types in the system.

1.4 Implementations of Atomic Data Types

To some extent the issues involved in implementing an atomic data type are similar to
those that arise in implementing other abstract types. The implementation must define
a representation for the atomic objects, and an irhplementation for each operation of the
type in terms of that representation. However, there are two other essential problems that
must be solved by the implementation of atomic data types, namely: inter-transaction

synchronisation, and inter-operation synchronisation.

Inter-transaction synchronisation is a mechanism for managing transaction concurrency
and failures, ¢.e. ensuring appropriate synchronisation and recovery for transactions using
objects of the type. On the other hand, inter-operation synchronisation is a mechanism for
managing process concurrency [WL85] and operation failures. That is, making operations
defined on the objects behave like an elementary operation, i.e. to appear serial and

isolated from each other.

There are a number of systems which support transactions by utilising atomic objects: Ar-

CHAPTER 1. INTRODUCTION 9

gus [LS83, WL85, LCJIS87],Clouds [AM83, LW85], Arjuna [SDP91, Dix88, Par88], TABS
[SBD*85, SDD*85], and Camelot [SBD*85, STP*87]. Although they differ in detail, their
methods to implement user-defined atomic data types can be classified into two kinds: the
Argus approach and the extended two-phase locking approach. In this section, we briefly
describe these two approaches, analyse them and illustrate their problems. For each of
them, we consider how the two synchronisations are implemented, how the semantics of
object operations is represented and used, and how a user-defined atomic data type is

represented.

1.4.1 The Argus Approach

The Argus approach is designed to support implementation of (pessimistic) dynamic
atomic types. It is an explicit approach in that both inter-transaction synchronisation
and inter-operation synchronisation need to be implemented by atomic type designers. To
help designers to implement inter-operation synchronisation, Argus provides the built-in
type generator mutex and the seize statement. A mutex object is essentially a container
for another object and provides mutual exclusion. Designers can use mutex and seize to
ensure mutual exclusion among regions of code executed by concurrently executing oper-
ations; thus, for example, implementations can prevent interference among concurrently

executing operations by forcing them to run serially.

The Argus approach ensures that an operation is elementary by using exclusive locks to
prevent interference among concurrently executing operations. Since locks are only held
during an operation, measures need to be taken to prevent the partial result of a transac-
tion being seen by others. Argus provides a special type called atomic_variant for this
purpose. Whenever a data item is created, it should be associated with an atomic variant
that is used to indicate the status of the data item: only when the corresponding transac-
tion has committed can that data item be seen by other transactions. However, implemen-
tations of user-defined atomic types are not informed about commit and abort events, but
must instead find out about them after the fact through the use of built-in atomic types.
This approach makes atomic data type implementation complicated and likely to have
bugs, it also results in poor performance. For example, in the semiqueue example given
by [Wei84], besides an array defined to record data items, an atomic_variant object is
created for each newly entered data item; this atomic variant will have a tag “enqueued”
if the calling transaction commits later, and a tag “dequeued” if it aborts. Therefore,
to find the next data item to dequeue, the dequeue operation has to scan the array and

check whether the atomic variant associated with a data item has a tag “enqueued”. The

CHAPTER 1. INTRODUCTION 10

dequeue operation is inefficient, since in the worst case it takes time proportional to the

size of the representation of the semiqueue.

In the Argus approach, transaction synchronisation is realised in the implementation of
object operations. Thus, the semantics of object operations can be used directly for
synchronising transactions without representing explicitly. The advantage of this approach
is that more information such as the object state, local variables, operation’s parameters
and operation’s results can be used for making synchronisation decisions, hence greater
concurrency may be achieved. However, the drawback of this approach is obvious. First,
this approach makes the atomic data types become difficult to implement. Second, there
exists potential dangers, since careless programming could lead to chaos. Third, changing

the concurrency control method will result in the re-implementation of atomic objects.

The representation of a user-defined atomic type in the Argus approach is a combination of
atomic and non-atomic objects, with the non-atomic objects used to hold the application
information that can be accessed by concurrent transactions, and the atomic objects con-

taining the synchronisation information that allows the non-atomic data to be interpreted

properly.

1.4.2 The Extended Two-Phase Locking Approach

The extended two-phase locking (E2PL) approach is also an explicit approach. Like in
Argus, exclusive locks are used for providing inter-operation synchronisation. An ex-
tended two-phase locking protocol [BG81, Kor81], which permits type-specific locks to
increase concurrency, is used for providing inter-transaction synchronisation. However,
unlike Argus, the synchronisation information and the application information are repre-
sented independently and the semantics of object operations is specified in a declarative

way through a lock compatibility matrix.

The E2PL approach partitions the set of object operations into classes, and uses a different
lock mode for each class. A lock mode for one class is compatible with a lock mode for
another class if all operations in the first class commute with all operations in the second
class. Two lock modes conflict if they are not compatible. The execution of an operation
must first acquire a lock in the mode defined for its class. A lock can be acquired if no
concurrent activity holds a conflicting lock. Locks are released when activities complete.
If an operation is unable to acquire its lock, it waits until conflicting activities complete.
Implementing inter-transaction synchronisation is much easier in this approach than in the

Argus approach, because it is not implemented in an ad hoc way, but in the typical locking

CHAPTER 1. INTRODUCTION 11

pattern. However, this approach provides less concurrency than the Argus approach in
that it uses less semantics of object operations when making synchronisation decisions.

For example, it does not take operation’s parameters and results into account.

Another problem of the E2PL approach is that only the operation-based recovery can be
used, and that recovery operations need to be provided by the programmer. This is caused
by the short duration of locks set for inter-operation synchronisation(see Chapter 2 for
detail).

The representation of a user-defined atomic data type in the E2PL approach consists of
data items and locks. Data items are used for representing application information, locks

for making synchronisation decisions.

1.4.3 Conclusions

In summary, the Argus approach makes the system flexible, for the designer can choose
variant protocols freely in a certain scope (e.g. within dynamic protocols). It also permits
high concurrency, for it allows great amount of semantics to be used for making synchro-
nisation decisions. However, it is clear from the example implementations presented in the
related papers [LS83, WL85, LCJS87] that implementing user-defined atomic data types
in Argus is a difficult task, although some linguistic support has been provided. It requires
considerable sophistication on the part of the programmer to implement atomic data types,
since the programmer has to provide both inter-operation and inter-transaction synchro-
nisation, and to encapsulate the semantics of object operations in their implementations.
It may result in a complicated object representation and operation implementation, and
consequently, poor performance. It also makes the implementation difficult to verify and

likely to have bugs.

On the other hand, the E2PL approach makes atomic data types become less difficult
to implement. The inter-transaction synchronisation can be done in the typical locking
pattern and the semantics of object operations can be specified in a declarative way. The
E2PL approach, however, permits less concurrency than the Argus approach because less

semantical information can be taken into account when making synchronisation decisions.

Atomic data types are clearly useful in many applications for supporting atomicity. How-
ever, it is not clear how often the programmer will need to take on the job of implementing
synchronisation and recovery. It may be that the performance demands of most applica-
tions can be satisfied without basing synchronisations on the specifications of objects, or

that only a few types in a system need to provide this extra concurrency. It is clear that

CHAPTER 1. INTRODUCTION 12

this extra concurrency will be provided rarely as long as it is so difficult to construct an
implementation that provides it [Wei84]. Therefore, the implementation of atomic data
types needs to be further explored in an attempt to develop new approaches which lead

to a simple and efficient implementation, and still permit great concurrency.

1.5 Research Statement

The aim of this research is to investigate whether it is feasible to provide a mechanism
that makes the implementation of user-defined atomic data types simple, efficient, while

still permitting great concurrency.

An implicit approach is proposed in this thesis. This approach has the following charac-

teristics:

1. It permits the designer to represent the semantics of object operations in a declarative
way instead of by encapsulating it into the implementation of object operations.

Moreover, it can represent a great amount of semantics.

2. It releases the designer from the burden of implementing inter-transaction and inter-
operation synchronisation by making the system do the work according to the se-

mantics provided by the designer.

3. It increases internal concurrency by permitting operations on an object to be exe-

cuted concurrently.

4. It limits the linguistic requirement for the language to a minimum by using the

preprocessing method and type-inheritance facility to provide appropriate support.

The thesis explores how the targets envisaged above may be reached. First, a concurrency
control protocol, called the dual-level validation (DLV) method, is presented, formalised
and verified; then an implicit approach by which user-defined atomic data types can be
implemented is explained; and then the language used for specifying the semantics of object
operations is described. The thesis also describes briefly how distributed transactions are
constructed, how fault-tolerance is supported, how data persistence is achieved, and how

remote object invocation transparency is provided.

The thesis describes how such an implicit approach can be provided by taking a prototype
implementation of a persistent extension to C++ as an example, and also presents an

application illustrating how user defined atomic data types can be implemented and used.

CHAPTER 1. INTRODUCTION 13

1.6 Structure of the Thesis

The general problem of concurrency control has been discussed in this chapter. However,
some special issues on concurrency control arise when implementing atomic data types,

and these are examined in some detail in Chapter 2.

Chapter 3 and Chapter 4 are devoted to the concurrency control method DLV. It is
introduced and specified in Chapter 3, and formalised and verified in Chapter 4.

Chapter 5 focusses on global atomicity in both the absence and the presence of failures.
First, a model in a centralised system is established and then extended to be usable in

distributed systems.

In Chapter 6, the type-inheritance concept of object-orientation is introduced and the type-
inheritance approach used to implement user defined atomic data types and to construct
transactions is described. The language developed for specifying operation semantics is

also discussed.
Chapter 7 presents a prototyping implementation of the proposed approach.

Chapter 8 considers how to make a programming language provide data persistence. The
related problems such as object naming, binding and type checking, data abstraction and
protection, and referential integrity are also discussed and methods to solve these problems

are described.

In Chapter 9, an example, namely to maintain the database for an active badge system,
is presented as an application of the prototype implementation to show its feasibility.

Experience gained in implementing this application is also given.

Comparisons with other systems addressing the same problems are given in Chapter 10.
Chapter 11 concludes the thesis by providing a summary of work done and suggestions

for future work.

Chapter 2

Issues on Providing Local

Atomicity

An atomic data type, like an ordinary abstract data type, provides a set of objects and a
set of operations. As with ordinary abstract types, the operations provided by an atomic
data type are the only way for users to access the objects of the type. Unlike regular
types, however, an atomic data type needs to provide local atomicity (serialisability and
recoverability) for transactions that use objects of the type. In this chapter we discuss

some issues arising when providing local atomicity for atomic data types.

2.1 Type-Specific Concurrency Control

The concurrency control protocols discussed in Chapter 1 were developed for simple data
~ types, such as files or relations, with only read and write operations. To support atomic
data types that can be defined by users, they must be extended to cope with arbitrary op-
erations. An important aim of implementing atomic data types is to achieve a high degree
of concurrency: by taking into consideration the semantics of the operations provided by
types, we can allow concurrent executions that would otherwise be forbidden if operations

are simply characterised as reads and writes.

Consider, for example, a bank account abstract data type, that has an associated set of
operations: credit money to an account, debit money from an account, and check the bal-
ance of an account. These three operations can be partitioned into three classes instead of
only reads and writes. The commutativity between them is shown in Table 2.1. Informally,
we say that two operations U and V commute if for all states s, U(V(s)) = V(U(s)). Now

14

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 15

credit debit check

credit X X
debit X X X
check X X

Table 2.1: The Commutativity for Account

consider the following concurrent execution of two transactions, 77 and T5:

T : credit(£1000);
Ty : credit(£2000);
Ty : Commits.

Ty : Commits.

Since the transaction 7; and T3 both issue credit operation to increment the balance of
the account and since the order of credit is insignificant (because of commutativity), the
execution above is serialisable. It is not permitted, however, by any of the protocols
discussed in Chapter 1, because Ty and T3 both update the account (reading the current

balance, and then writing a new balance), and so cannot access the account concurrently.

The example above shows a general phenomenon: by describing a system in terms of
abstract objects (rather than primitive objects with read and write operations), we can
permit greater concurrency than would otherwise be possible. This additional concurrency
may be essential for achieving adequate performance in an application. Particularly, in a
distributed system, transactions may take a relatively long time to complete; by permitting
more concurrent access to objects, we may be able to avoid creating bottlenecks in the

system.

2.2 Representation of Semantics

In the last section, the defined commutativity of object operations must be true for all
possible parameters, all possible results and all possible object states. However, in many
cases, more commutativity can be specified by taking into account operation parameters,
operation results and/or object states. Consider the bank account example again. If we
take the result of a debit operation into account, then an unsuccessful debit and a check are
commutative, and two unsuccessful debits are also commutative. The new commutativity

is shown in Table 2.2. Now consider the following concurrent execution of two transactions,

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 16

credit ~ debit(OK) debit(over) check

credit X X X
debit(OK) X X X X
debit(over) X X
check X X

Table 2.2: The New Commutativity for Account

Ty and Ty, supposing the account balance is £500 initially:

T, : debit(£700) / Overdraw;
T : debit(£800) / Overdraw;
Ty : check() / £500;

Ty : Commits.

T : Commits.

The execution above is serialisable according to the new commutativity. It is not serialis-

able, however, according to the one specified in the last section.

Generally speaking, the more semantics of object operations is considered for specifying
commutativity, the more concurrency can be achieved. However, representing and using

operation semantics, especially the high level of semantics, is not easy.

Traditionally, the semantics of object operations is either represented in the implemen-
tation code of the operations, or represented in a lock compatibility matrix. The former
‘permits a high level of semantics to be specified, but unfortunately it also makes the object
operations complicated and difficult to implement. The latter is simple but only permits

limited semantics to be specified, thus providing less concurrency.

To lessen the programmer’s burden of implementing atomic data types but still permitting
great concurrency, it is desirable that programmers can represent the semantics of object
operations in a declarative way and that the system makes use of the semantics provided

to synchronise concurrent activities.

2.3 Transaction Concurrency and Process Concurrency

As indicated by the previous examples, greater concurrency can be achieved by using

operation semantics. However, this requires a more complex implementation. In the

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 17

examples, the concurrent execution seems to be legal with respect to the standard notion
of conflict-based serialisability. In classical concurrency control theory, however, operations
are supposed to be elementary, that is, to appear serial and isolated from each other. This
basic assumption naturally holds for system operations, that is, reads and writes, but, may
be violated for abstract object operations unless additional measures are provided. In the
examples, credit is composed of a read and a write, so it is not elementary. However, two
credits in the example are allowed to execute concurrently, and thus could interfere with
each other on lower level, giving rise to all sorts of anomalies. For example, consider the

following synchronisation at the low level:

Ty : balance; ¢read();

Ty : balancey «read();

Ty : write(balance; + £1000);
Ty : write(balancey + £2000);
T, : Commits.

Ti : Commits.
The credit of transaction 7} is lost in the execution above.

Therefore, some form of concurrency control needs to be applied to the low level, so as to
ensure that high-level operations can be considered elementary. Thus, the implementation
of atomic data types needs to deal with two levels of concurrency: transaction concurrency
and process concurrency [WL85]. The transaction concurrency control mechanism provides
appropriate synchronisation and recovery for transactions using objects of the type; while

the process concurrency control mechanism copes with internal concurrency and failures.

2.4 Recoverability

Most concurrency control protocols rely on the capability to roll back transactions when
a non-serialisable situation is detected, for example, when a deadlock occurs or, in an
optimistic approach, when a validation fails. For that reason, it is necessary to consider
transaction aborts for a comprehensive treatment of concurrency, even if all transactions
involved and the underlying system never fail. Recovery may be provided by a number of
techniques[Ver78]. This section investigates to what extent the execution of aborts may

influence serialisability in an atomic data type environment.

When a transaction aborts, all the effect of it must be removed. This capability is sup-

ported by the property that is termed recoverability. Techniques that provide abstraction

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 18

of recovery generally take one of two forms: either state or operation based. A state based
recovery technique takes a copy of the state of an object before the object is modified.
During recovery, the current object state is replaced by the old state. An operation based
recovery technique records the operations invoked on an object, enabling the state to be

recovered by invoking the inverse operation of each operation recorded.

Both recovery techniques require recovery information, which consists of the recovery data
required by the transaction, to be created during operations that modify the state of an
object. Each time an object is modified within a new transaction, recovery information
must be created and added to the transaction. Some objects are inherently more recov-
erable than others and more suitable for a particular recovery technique. For example,
objects that provide an assignment operation may be recovered using a state based ap-
proach that involves saving a copy of the object and reassigning this copy during recovery
of the object. An object that provides increment and decrement operations, however, may
be better suited to an operation based approach, as record of the increment and decrement
operations (and parameters) could be used to recover the object by invoking the inverse

operation of each operation recorded in the recovery data.

For abstract data types, however, further difficulties turn up when providing recoverability.
Again, consider the account example. Since two credit operations commute with each
other, thus, if credit is elementary, there is no reason why two credit operations should
not be allowed to proceed in parallel with each other. In order to make credit become
elementary, we suppose that an exclusive lock is held on the object during the execution

of credit.

Unfortunately this has a disastrous interaction with the recovery system. Consider some
object A that initially has the value £2000. If two concurrent transactions T and T
both attempt a credit(£1000) operation on A, then providing both transactions commit
the result would be that A has the value of £4000.

However, consider the following sequences of events. Transaction Tj sets a credit lock
on A and changes the value to £3000, in doing so it records the old value as £2000.
Similarly, transaction T; sets a credit lock and sets the value of A to £4000, recording the
old value of £3000 (since the inter-operation synchronisation mechanism has allowed the
two transactions simultaneous access to the object). Ty then commits producing £4000
as the final value for A, while T} aborts, and thus restores the prior value of A to what it
believes it should be, in this case £2000. This also backs out T5’s modification on account

A, hence, causes the T3 to be ineffective, in spite of Tj being committed.

The reason for this problem is quite obvious: the execution of the transactions is scheduled

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 19

by two levels of concurrency synchronisation mechanisms. The exclusive locks set by the
inter-operation synchronisation mechanism at the lower level are released at the end of
each operation, thus if the inter-transaction synchrdnisation allows non-strict conflicting
operations to be executed concurrently, the isolation property of transaction is violated.
In the example above, the result of 7} has been seen at the lower level by T3, hence we
cannot simply undo T} by means of restoring the prior state recorded by Ty. Neither can

we take no action at all; otherwise, T3 has to abort.

However, it is the intention of atomic data types to allow access to uncommitted low-
level data in order to provide greater concurrency. Therefore, we should not resolve the
problem by restricting the high-level synchronisation to prevent violating the property
of isolation, otherwise, we cannot achieve the aim of greater concurrency by considering

operation semantics; instead, we should find other methods to provide recoverability.

The operation based technique does not have this problem. We assume that every operation
has an inverse operation and that a record of invocations is kept with the object. When
a transaction aborts, each of its invocations must be undone. For a given object, if there
have been no conflicting invocations since the one that is to be undone then we simply
apply the inverse operation to the current state. In the example above, the inverse of
credit is debit. When Ty aborts we can simply debit(£1000) and remove the record of the

original invocation from the object.

Unfortunately, not all operations have natural inverses. For example, it is unlikely to define
an inverse for assign operation because we cannot deduce the old value of the object from

the assign operation. The insert operation on a set object is another example.

Therefore, suitable methods need to be proposed to provide recoverability for atomic data
types that can undo a transaction’s effect even if its partial results have been seen by some
other transactions; or a more suitable concurrency control method should be proposed that
can take advantage of operation semantics to provide greater concurrency but does not

violate the isolation property.

2.5 Durability

Atomicity alone is not sufficient to provide consistency, because it only concerns running
transactions. In addition, the objects must be resilient : the probability of loss of data due
to a hardware failure such as a node or media crash must be acceptably small. Resilient

objects are needed to ensure the durability of transactions, that is, to guarantee that

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 20

effects of committed transactions are not lost in crashes that occur later.

Various methods of achieving resilience for traditional transactions have been proposed
[Koh81, Dat86]. There are two universal rules to be obeyed by any crash recovery mech-
anism, independently of particular implementation techniques such as logging or shadow

versions:

1. Application transactions are guaranteed to appear atomic. Therefore, sufficient
UNDO information has to be written to a stable place before modifications are

propagated to the permanent database.

2. Application transactions are guaranteed to appear persistent. Therefore, sufficient
REDO information has to be written to a stable place before a transaction is defi-

nitely committed.

The first rule is often called the “write-ahead-log principle”, having its origin in log-based
implementation techniques; and the second one may be known as the “committed rule”.
As a consequence of these rules, the warm-start after a crash requires UNDO operations to
be executed for all incomplete transactions, and REDO operations to be executed for all

committed transactions, unless the permanent database already reflects the desired state.

In a system that uses atomic data types to provide data consistency, it is atomic objects
themselves that are responsible for ensuring data resilience. Therefore, for user defined
atomic data types, it is the programmer, not the system, who provides crash recovery.
In order to make the work easy, usually the system provides persistent transparency to
users by taking a persistent programming language [RC89, ACC81, ABC*83] approach.
A persistent programming language generally provides data persistence by employing an
object store[Low87, EM90]. Objects entrusted to an object store are extremely unlikely
to be lost. To provide resilience, objects must be saved in the object store that will not
be corrupted by system failures. To move objects to and from the object store requires a
mechanism for mapping the volatile state into, and out of, the form expected by the object
store system. In a programming system supporting persistence, automatic movement of
objects to and from object store, and the mapping mechanisms, are provided for objects

of each type.

Taking a persistent programming approach to provide data resilience introduces new issues.
These will be addressed in Chapter 8.

CHAPTER 2. ISSUES ON PROVIDING LOCAL ATOMICITY 21
2.6 Summary

In this chapter, we have shown that although greater concurrency can be achieved by
taking account of operation semantics when doing concurrency control, some problems
also arise by doing so. First, this makes object operations become more complicated, and
consequently, more difficult to implement and more likely to have bugs. Therefore, re-
search should be done on providing suitable methods to permit programmers to represent
operation semantics in a declarative way, and leaving the system to synchronise concur-
rent activities based on the semantics provided. Second, concurrency control needs to be
applied at two levels, namely, the transaction level and the process level. The concurrency
control methods applied at each level not only need to be correct in themselves but also
need to be compatible with each other to guarantee the correctness of the whole protocol.
Third, the isolation property of transactions is usually violated in such cases to achieve
greater concurrency. Therefore, a suitable method needs to be designed to provide re-
coverability that can undo a transaction’s effect even if its partial results have been seen
by some other transactions; or a concurrency control method should be proposed that
can take advantage of operation semantics to provide greater concurrency but without
violating the isolation property. Fourth, a system that supports data consistency through
atomic data types usually uses a persistent programming language approach to provide

data resilience, and new issues arising in such an approach need to be resolved.

Chapter 3

Dual-Level Synchronisation

An atomic data type must provide local atomicity (serialisability and recoverability) for
transactions that use objects of the type. In the last chapter, we addressed some issues
that arise when implementing atomic data types. In this chapter, we introduce a new

concurrency control method that can be used to provide local atomicity for atomic data

types.

3.1 Internal Concurrency Control

As we pointed out in the last chapter, when implementing atomic data types, some form
of concurrency control needs to be applied to low level objects, so as to ensure that
operations on high level objects can be considered elementary. A simple way to ensure
an object operation to be elementary is by using locks to ensure mutual exclusion among
regions of code executed by concurrent operations; thus, for example, implementations
can prevent interference among concurrently executing operations by forcing them to run

serially.

A problem with the above approach is that it limits concurrency. To ensure the elementary
property of object operations, at any one time only one operation is allowed to access the
object state by applying mutual exclusive locks. Although a lock only needs to be held
during the execution of an operation (much shorter than the locks set for synchronising
transactions in the strict two-phase locking protocol, which need to be held until the end
of the transaction), it still limits object concurrency considerably if the execution takes a

long time.
Another problem with the above approach concerns isolation of the result of a transaction.

22

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 23

Because a lock is held only during the execution of an operation, a transaction’s partial
results may be seen by other transactions; therefore a special method needs to be followed
for preventing cascading aborts. For the same reason, a special recovery technique needs

to be used for providing recoverability, as indicated in Chapter 2.

This thesis takes a multi-level transaction management {Wei91] approach to provide object
atomicity by utilising layer-specific semantics. We view an atomic object as a two-layered
architecture. The high layer, called the logical level, is the object’s interface to users: a
set of operations defined on the object, which are the only means for users to access the
object. The low layer, called the physical level, is the interface between the supporting
system and the objects: a set of operations provided by the system to manage primitive

objects.

Usually an object is composed of several primitive objects, and operations provided by
an object are composite operations [Bac93], i.e., an operation consisting of a number of
lower level operations, here, the operations provided by the supporting system. Consider
the bank account example. At the logical level, an object interface is composed of a set
of operations: create, credit, debit and check. At the physical level, an account object is
composed of several primitive objects: a number for the current balance, a string for the
account name, and an integer for the account number. These primitive objects can be
accessed by system operations: read and write. System operations are elementary, i.e.,
the execution of a system operation never appears to overlap (or contain) the execution of
any other system operations, even when the operations are run concurrently (serialisabil-
ity), and the overall effect of a system operation is all-or-nothing (recoverability). This
assumption is reasonable, for most systems support this property; and even if a system

does not support this property, certain methods can be used to provide it [Bac93].

In our approach, an atomic object provides local atomicity by providing two levels of syn-
chronisation: logical level synchronisation and physical level synchronisatibn. The logical
level synchronisation mechanism schedules transactions that access the object concurrently
according to the semantics of object operations. It considers object operations as elemen-
tary, i.e. to appear serial and isolated from each other. The implementation of object
operations is transparent to the logical synchronisation mechanism. It is the responsibility
of the physical synchronisation mechanism to ensure the elementary property of object
operations. The physical level synchronisation mechanism, in turn, considers the system
operations as elementary ones. It classifies them into four kinds: create, delete, read and
write, and synchronises them based on this classification. We call this approach dual-level

synchronisation.

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 24
3.2 Introduction to Dual-Level Synchronisation

Several concurrency control techniques have been discussed in Chapter 1, any of which
can be used to implement single level synchronisation. However, as indicated in Chapter
2, these techniques cannot be used directly to provide dual-level synchronisation. Some
coordination between the two levels is needed in order to provide object atomicity. In this
section, we introduce a concurrency control method, called the dual-level validation (DLV)

method, which can be used to provide dual-level synchronisation.

3.2.1 Overview

In the DLV method, the synchronisation mechanism at both levels uses an optimistic con-
currency control technique, i.e., it allows transactions to execute without synchronisation,
relying on commit-time validation to ensure serialisability. Both levels use the conflict-
based validation technique [Her90], i.e. based on predefined conflicts between pairs of

operations, for validating transactions.

Our objects are tree structured with primitive objects as leaves. We assume that objects
may be large. Our approach is to take a shadow copy only of the subobject of the (tree
structured) physical object that is required for a given invocation. A copy of a subobject
is taken on the first invocation that updates it and all subsequent invocations on that
subobject, for read or update, are performed on that shadow. A later invocation by the
transaction may cause a shadow of a different subobject to be taken and this shadow may

contain the committed updates of concurrent transactions.

An execution of a transaction consists of two, three or four phases: a read phase, a

validation phase, and possibly a pending phase and a write phase (See Figure 3.1).

read | validation : pending L write

Figure 3.1: The Four Phases of a Transaction

A transaction usually encloses operations on several objects. The sequence of operations
of a transaction on a particular object forms the component of the transaction at that

object.

During the read phase, the transaction manager passes each operation enclosed in a trans-
action to the appropriate object. The object arranges immediate execution of the operation

and records details of the invocation. If the invocation involves an update, this takes place

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 25

at a local shadow copy of the physical subobject as described above. Each object there-
fore has a record of which object operations have been performed by each transaction,
and which physical (sub)objects, together with their version numbers, have been read or
written by each transaction. A performed-operations table and an accessed-objects table

are used to record the relevant information.

The validation phase begins when the execution of a transaction reaches the end, i.e., a
Commit is met!. During the validation, the transaction manager first assigns a timestamp
to the transaction, and then communicates with every object involved, passing it the
transaction identifier and the timestamp. Each object validates its component of the
transaction and indicates accepted or rejected. The aim is to establish whether any of
the invocations of the transaction have been invalidated by the invocations of concurrent

transactions. This stage is called logical validation.

Each accepted component of the transaction enters the pending phase with a “waiting”
status, while each rejected component is aborted. Note that aborting simply involves dis-
carding the shadow subobjects. The transaction manager then asks every object involved
whether the component of the transaction handled at that object is accepted. If all are
accepted, the transaction as a whole is committed, otherwise the transaction as a whole is
aborted. The transaction manager informs every object involved of the result. If the result
is commit, then the component at each object remains in the pending phase but with a
new status “commit”; otherwise the component at each object is aborted and removed

from the pending queue.

A component of a transaction in the pending phase will not enter the write phase, if the
transaction as a whole cannot be accepted. Even if the transaction as a whole is accepted,
a component of the transaction does not necessarily enter the write phase immediately
after the object gets the final result from the transaction manager. This is because there
may be several pending components in an object, and they must enter the write phase
in the order defined by their timestamps. Only the component that has the smallest
timestamp and is in “commit” status can enter the write phase, and at any time there is

at most one component that can be in the write phase in an object.

After entering the write phase, a component of a transaction is validated again by the
object to check whether it can be accepted at the physical level. This stage is called
physical validation. The purpose of this validation is to check whether the values read by

the component are still up to date. If they are, the transaction is committed by merging

11f & transaction is ended by an Abort, then the transaction manager simply asks each object involved

to abort the transaction locally.

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 26

its shadow copies into the permanent state. Otherwise the shadow copies are discarded
and the operations of the component are re-executed. During the re-execution, any update
to a physical object takes place in a shadow copy of the object as in the read phase. After

the re-execution, shadow copies are merged into the permanent state.

Physical validation can be done by using the information recorded in the accessed-objects
table based on read/write conflict. The operations of a component can be found in the

performed-operations table.

3.2.2 Validation Algorithms

From the overview, we can see that validation algorithms play a very important role in

the DLV method. In this section, we introduce some concepts related to validation.

Transaction Timestamp

The purpose of logical validation in DLV is to ensure that the concurrent execution of
a set of transactions is equivalent to executing these transactions serially in some order.
Therefore, an order, say 7, must be found, so that the validation algorithm can validate
transactions based on 7. This can be handled by explicitly assigning each transaction
T; a unique number t;, called the timestamp of the transaction, during the course of its
execution. The validation algorithm then ensures that there exists a serially equivalent

schedule in which transaction T; comes before transaction T; whenever ¢; < ;.

When should transactions be assigned timestamps? It depends on the validation algo-
rithm being used. Generally speaking, timestamps should be assigned to transactions as
late as possible. For example, suppose that we use a validation algorithm that requires
transactions to be validated in the order defined by their timestamps. If we assign times-
tamps at the beginning of the read phase, this might make a short transaction have to
wait for a long transaction unnecessarily. Consider the case of two transactions T and Ty
starting at roughly the same time, assigned timestamps t; and t, respectively. Then even
if T, completes its read phase much earlier than Ty, before being validated T, must wait
for the completion of the read phase of T. Instead, we can assign timestamps at the end

of the read phase, so that the above problem will not arise.

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 27

Validation Conditions

We have pointed out that the aim of a validation algorithm is to ensure that: there
must exist a serial schedule in which transaction T; comes before transaction T; whenever
t; < t;. This can be guaranteed by the following validation condition [KR81, Pap79]. For
each transaction T; with transaction number t;, and for all T; with #; < t;, one of the

following three conditions must hold (see Figure 3.2):

1. T; completes its write phase before T; starts its read phase.

2. The operation set of T; does not invalidate the operation set of T}, and T; completes

its write phase before T} starts its write phase.

3. Neither the operation set of T} invalidates the operation set of T; nor the operation
set of T} invalidates the operation set of T}, and T; completes its read phase before

T; completes its read phase.

1 | I S R | I |
l I N I | I
2) | I SN N | F—— |
l I R D | J
3 | | L I | I |
1 IS R | I J

Figure 3.2: Possible Interleaving of Two Transactions

Here, we say an operation set OP; invalidates an operation set OF; if and only if there
exist at least one operation p in OP; and one operation ¢ in OP; such that p invalidates ¢.
Informally, “an operation p invalidates an operation ¢’ means that the result of executing
g on an object d might not be the same as the result of executing ¢ after executing p on d.
The formal definition will be given in Chapter 4. Note that in our definition “p invalidates
g” does not imply that “g invalidates p”. For example, a write operation invalidates a

read operation, but a read does not invalidate a write.

Condition 1 states that T} actually completes before T} starts. Condition 2 states that
T;’s operations do not affect the read phase of T; and T; finishes writing before T; starts
writing, hence does not overwrite T} (also, note that T; cannot affect the read phase of

T;). Finally, condition 3 is similar to condition 2 but does not require that 7; finishes

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 28

writing before T} starts writing; it simply requires that T; not affect the read phase or the
write phase of T; (again note that T; cannot affect the read phase of T;, by the last part

of the condition).

In [KR81], the algorithms that are an implementation of validation conditions 1 and 2 are
called serial validation algorithms, for the write phases must be serial in such a case. The
algorithms that are an implementation of all three conditions are called parallel validation
algorithms, for then the write phases may take place in parallel. The parallel validation
algorithm allows more concurrency, but requires more complicated checking. Note that a
serial validation algorithm does not mean that validation must be done serially, concurrent

validation is allowable.

3.3 Specification of the DLV Method

From the last section, we know that the DLV method involves two types of participant:
the transaction manager and atomic objects. They provide data atomicity cooperatively
according to a protocol. In this section we specify what functionality should be provided

by atomic objects and how it is provided.

RPM
COM LOV
PHV
WEM PWM
REM

Figure 3.3: The Architecture of Atomic Objects

An atomic object is composed of seven modules: a COoperation Manager (COM), a Read
Phase Manager (RPM), a LOgical Validator (LOV), a Write Phase Manager (WPM),
a PHysical Validator (PHV), a Physical Writing Manager (PWM), and a Re-Execution
Manager (REM) (see Figure 3.3). They work together to ensure the local atomicity of the
object.

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 29

On the object’s side, the communication protocol between the transaction manager and

atomic objects proceeds as follows in the absence of failures:

1. During the read phase: the COM receives operations from the transaction manager,
and then asks the RPM to execute them.

2. During the validation phase: after receiving a validation request from the transaction
manager, the COM asks the LOV to validate the relevant transaction component,
and then returns the result to the transaction manager. If the result is accepted
the component is put in the pending queue with a “waiting” status, otherwise the

component is aborted.

3. During the pending phase: after receiving the transaction outcome from the trans-
action manager, the COM sends an ACK message to it, and then either aborts the
component if the outcome is abort, or changes the component’s status from “waiting”

to “commit” if the outcome is commit.

4. During the write phase: when a component meets the write condition (stated in
Section 3.3.3), the COM asks the WPM to write it out. Then the WPM asks the
PHV to do a physical validation to the component. If the validation result is accept,
it asks the PWM to write the component result to the object; otherwise it asks the
REM to re-execute the component before asking the PWM to write the result.

It is worth pointing out that all the steps in the protocol are independent actions, there
is no requirement for making any two or more of them become an atomic action. This
property is important for achieving great object concurrency and availability, especially

in a distributed environment (see Section 5.3.2 for details).

3.3.1 The Read Phase Manager

The RPM of an atomic object executes object operations, but any update to a physical
object is done on a local shadow copy. For each transaction that shares the object,
the RPM creates a performed-operations table (POT) to record the operations done by
the transaction, together with their parameters and results; and an accessed-objects table
(AOT), consisting of a read set and a write set, to record the physical objects read or

written by the transaction, together with their version numbers.

After receiving an operation from a transaction through the COM, the RPM records

the operation with its parameters into the POT, and then executes the operation. An

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 30

operation usually calls some system operations to read or write some physical objects.
When writing a physical object, the RPM records its Old (Object Identifier) and version
number to the write set of the AOT. Whenever the first write to a given physical object is
requested, a shadow copy of it is made, and all subsequent operations from that transaction
to that object are directed to the shadow copy. A shadow copy of a physical object is local
to the transaction for which it is created; it is inaccessible to other transactions. When
reading a physical object, the RPM records its Old and version number in the read set of
the AOT. If there is a local shadow copy for that physical object, the operation will read
from the shadow copy, otherwise the physical object will be read.

3.3.2 The Logical Validator

The LOV of an atomic object is responsible for validating transaction components han-
dled by the object, i.e. checking whether committing a component would violate object

atomicity.

The validation algorithm used by the LOV is a serial validation algorithm, thus write
phases must be serial. A property of the algorithm is that it does not require transaction
components to be validated in the order defined by the transaction’s timestamps. This

property is important for distributed transactions (see Chapter 5 for details).

A serial validation algorithm only uses the first two validation conditions of Section 3.2.2.
GQince the first validation condition can be checked easily by remembering the latest com-
mitted transaction’s timestamp when a transaction starts, the main work of the validation
algorithm is to check whether validation condition 2 holds, which is done by the following

three checks (suppose transaction T is under validation):

e check 1: For every transaction T; that is older than T} and had not committed when
T; began, check whether the operation set of T; invalidates the operation set of T7;

if it does, the validation fails.

e check 2 For every transaction T} that is in its pending phase and is younger than
T;, check whether the operation set of T; invalidates the operation set of Ty; if it

does, the validation fails.

e check 3: check whether any committed transaction T} is younger than Tj; if any Tk

is, the validation fails.

Check 1 and check 2 ensure that the first part of validaﬁon condition 2 holds, i.e., the

operation set of an older transaction does not invalidate the operation set of a younger

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 31

T3t debit (100);...
l l | | —)

T § icheck(); debit(100);...

a. Ty fails in check 1

Ti: debit(100);...
| 1]

T4 :check(); debit (100) ;...
| |

b. Ty fails in check 1

T4 ¢+ debit(100) ;...
| |

Tk : check(); debit(100);...
| I]

c. Ty fails in check 2

L | | —

d. Ty fails in check 3

Figure 3.4: Possible Validation Failures (¢; < t; < t)

transaction. Check 3 ensures that the second part of validation condition 2 holds, i.e.,

transactions are committed in the order defined by their timestamps.

A transaction T; will have seen the results of transactions that completed their write
phase before it began. Tj, however, might not see the whole result of transactions that
completed their write phase after it began, thus they may invalidate T}(see Figure 3.4 a).
Furthermore, since T} cannot see the results of any pending transactions, they may also
invalidate T; if they are older than T} (see Figure 3.4 b). It is the responsibility of check

1 to check whether the above situations have happened.

Because the validation algorithm does not require transactions to be validated in their
timestamp order, it is possible that a transaction T} finishes its validation earlier than a
transaction T, where T} is older than T} (see Figure 3.4 c). Therefore, when validating
T;, the algorithm needs to check whether T; invalidates T} in order to ensure that the first

part of validation condition 2 holds, which is the responsibility of check 2.

For the same reason as above, it is possible that before a transaction T} finishes its valida-

tion, a younger transaction T} has committed (see Figure 3.4 d); thus T} has to be rejected

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 32

to ensure that the last part of validation condition 2 holds. This is the responsibility of
check 3.

Check 1 and check 2 are done by using the information recorded in the performed-operations
tables. Check 8 is done by comparing the timestamp of the transaction being validated

with the timestamp of the latest committed transaction.

A transaction that fails its validation is aborted, while a transaction that succeeds is put
in the pending queue waiting for completion. The pending queue is organised in the order

defined by the timestamps of transactions.

3.3.3 The Write Phase Manager

The WPM of an atomic object is responsible for ensuring that transactions are committed
in the order defined by their timestamps. The WPM guarantees this property by ensuring
that a transaction component can enter the write phase only when the following write

conditions hold:

1. the component is at the head of the pending queue, thus no older transactions are

waiting for committing;

2. the component is in “commit” status, i.e., the transaction manager has decided to

commit the transaction;

3. there is no other transaction in the write phase at this particular object.

The WPM commits a transaction component by coordinating the PHV, the PWM and the
REM. At first, it asks the PHV to validate the transaction component to see whether the
component can be accepted at the physical level. Then, if the validation result is accept,
it asks the PWM to do the writing. Otherwise, i.e. if the result is reject, it asks the REM
to re-execute the component and then asks the PWM to do the writing. The operations

of the component can be found in the performed-operations table for the transaction.

The Physical Validator

The DLV method permits only one transaction at any time to be in the write phase in a
particular object, and transactions enter the write phase in their timestamp order. There-
fore, to validate a transaction T, the PHV only needs to check whether any transaction

T;, that committed after T; began, invalidates Tj.

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 33

As we have seen, only four kinds of operation are recognised at the physical level: create,
delete, read and write. Among them only a write operation invalidates a read operation in
such a case. Therefore, to check whether 7} invalidates T, the PHV only needs to check

whether the write set of 7; intersects with the read set of Tj.

The physical validation can also be done by using the version number technique. Each
physical object is associated with a version number, which starts from zero and increases
whenever the physical object is updated. When a transaction reads a physical object
during the read phase, the RPM records the object together with its version number in
the read set. To validate a transaction Tj, the PHV compares, for each physical object
in the read set, its version number in the read set with its current version number to
see whether the object has been updated since the read. If any physical object has been

updated, the validation fails; otherwise, it succeeds.

The Physical Write Manager

The PWM of an object is responsible for writing the results of a transaction component
into the object atomically. It writes the results by overwriting the original physical objects
with the “shadow copies” created for the transaction component. The “shadow copies”

are then discarded.

The overwriting operation must be done atomically even in the presence of system crashes,
otherwise the object may be brought into an inconsistent state, i.e., some of the “shadow

copies” may be written out but others not.

The Re-Execution Manager

The REM of an object is responsible for re-executing a transaction component. The
operations of a transaction component and also their parameters are recorded in the

performed-operation table; they can therefore be re-executed.

Like the RPM, when re-executing a transaction component, the REM also causes any
update to a physical object to be done on a “shadow copy”. Unlike the RPM, however,
the REM does not record any information in the performed-operations table or accessed-

objects table.

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 34
3.4 Summary

This section concludes the chapter by evaluating the DLV method and comparing it with
a related method [Her90].

3.4.1 Evaluation

An important issue when implementing atomic data types is how to deal with low-level
concurrency to guarantee that operation executions appear serial and isolated from each
other. The transaction scheduler can then use the semantics of high-level operations for
synchronising transactions to achieve great concurrency. The DLV method resolves the
issue by applying synchronisation at two levels. A logical level synchronisation mechanism
schedules transactions according to the semantics of operations, while a physical level
synchronisation mechanism ensures the elementary property of operations by scheduling

its accesses to physical objects based on the read/write conflict.

The DLV method separates conflicts between transactions into two levels: logical level
and physical level. Whether two transactions conflict at the logical level depends on the
semantics of operations enclosed in the transactions. Whether two transactions conflict
at the physical level depends on what physical objects they have accessed. Generally
speaking, transactions that conflict at the logical level must conflict at the physical level;
however, transactions that conflict at the physical level may not conflict at the logical
level. Therefore, if we can solve physical level conflicts at that level, fewer transactions
need to be aborted. The REM is provided in the DLV method to ensure that the physical
level conflicts can be solved locally, without causing transaction aborts. This saves much
system resource and improves system performance when a transaction involves several

objects, especially when some of them are remote ones.

The recoverability problem mentioned in Chapter 2 is automatically solved in the DLV
method, for the result of a transaction is isolated from other transactions until it is com-
mitted.

3.4.2 Comparison

The DLV method is very similar to the method proposed by Herlihy [Her90] in that both
of them utilise the semantics of operations to validate more interleavings and both of them
can be used to implement atomic data types. However, there is a large difference between

the two approaches. Herlihy’s method represents the partial results of a transaction com-

CHAPTER 3. DUAL-LEVEL SYNCHRONISATION 35

ponent by a snapshot of the object’s permanent state plus an intentions-list, and commits
a transaction component by applying the intentions-list to the current permanent state se-
rially. The DLV method, on the other hand, represents the partial results of a transaction
component by a group of “shadow copies” of physical objects, and commits a transaction

component by writing the shadow copies back.

A drawback of Herlihy’s method is that when taking a snapshot of an object’s state for a
transaction, it needs to create a whole copy of the object state, even if the transaction only
accesses a small part of it, thus wasting system resource. The DLV method can create
shadow copies at any level of an object’s structure, so keeping shadow copies as small as
possible. Another drawback of Herlihy’s method is that it takes more time and uses more
system resources than the DLV method when committing a transaction component, for it
needs to re-execute the intentions-list, while the DLV method usually needs only to write
the shadow copies back. Furthermore, since applying the intentions-list needs to be done
serially, if there are several transaction components waiting to commit, some of them may

need to wait for a long time.

An important issue in the DLV method is that transactions cannot be committed by
writing shadow copies back without checking, for transactions may conflict at the physical
level. Thus, a physical validation phase is required in the DLV method. Transactions that
pass the physical validation are committed directly by writing the shadow copies back.
Transactions that fail the physical validation need to be re-executed locally before being

committed.

How much performance can be gained by the DLV method depends on the success rate of
physical validation. The more the transactions that succeed in it, the greater the gain in
performance. Since the DLV method permits shadow copies to be created at any level of
an object’s structure, it reduces the possibility of physical confliction greatly, thus making

more transactions pass the physical validation.

Chapter 4

Formalisation and Correctness

In the last chapter, we introduced a concurrency control technique for atomic data types,
the DLV method. In this chapter, we formalise this method, and verify that it is atomic,
i.e., every schedule produced by it is atomic. The formal method developed by Weihl
[Wei89] and the serial dependency relation introduced by Herlihy [Her90] are used in this

formalisation and verification process.

As we pointed out in the last chapter, there is a large difference between the DLV method
and Herlihy’s method. Herlihy’s method uses abstract objects as the granularity of object
access. A snapshot of an (abstract) object state is taken for a transaction at the first time
it accesses the object, and all subsequent operations of the transaction on the object are
performed on the snapshot. Therefore, the operations of a transaction on an object are
performed based on the same permanent state of the object. However, the DLV method
uses physical objects as the granularity of object access. A shadow copy of a physical object
is created for a transaction at the first time that it intends to update the physical object.
Its operations on the physical object are then performed on the shadow copy. Since shadow
copies of different physical objects are created at different times, it is possible that they do
not come from the same permanent state. Therefore, different operations of a transaction
on the same abstract object may be performed based on different permanent states of it.
This difference between the two methods makes the DLV method permit more internal
concurrency and take less commitment time than Herlihy’s method, but also makes it

more difficult to formalise and verify; thus new concepts need to be introduced.

36

CHAPTER 4. FORMALISATION AND CORRECTNESS 37

4.1 Assumptions and Definitions

Each object has a type which defines a state and a set of operations. The operations are
the only means available for users to create and manipulate objects of that type. An event

is a pair consisting of an operation invocation and a response.

In the absence of failure and concurrency, an object’s state is modelled by a sequence of
events called a history. For example, the following sequence of events h is a history for an
Account object defined in Chapter 1.

credit(£1000) / OK

credit(£1000) / OK

debit(£1500) / OK

debit(£700) / Overdrawn

A specification for an object is the set of permissible histories for that object. For example,
the specification for an Account object should contain the following event sequence:
credit(£1000) / OK

debit(£700) / OK

but should not contain the following event sequence:
check() / £2000
debit(£1500) / overdrawn

A legal history is one that is included in the object’s specification. The history h above is
a legal history. A subhistory of a history h is a subsequence of events of h. Histories are

denoted by lower-case letters in this thesis.

In the presence of failure and concurrency, an object’s state is given by a schedule, which is
a sequence of operation executions (events), transaction commits, and transaction aborts.
To keep track of interleaving, a transaction identifier is associated with each step in a
schedule. For example, the following is a schedule for an Account object:

Ty: credit(£800) / OK

Ty: credit(£1000) / OK

Ty: commit

Ty: debit(£1500) / OK

To: commit

Here, Ty and T, are transaction identifiers. The ordering of operations in a schedule
reflects the order in which the object returned responses, not necessarily the order in

which it received invocations.

CHAPTER 4. FORMALISATION AND CORRECTNESS 38

(Serial) histories and (concurrent) schedules are related by the notion of atomicity. Let
& denote a total order on committed and active transactions, and let H be a schedule
(schedules are denoted by upper-case letters in this thesis). The serialisation of H in the
order < is the history k constructed by reordering the events in H so that if Ty < Tj then
the subsequence of events associated with T} precedes the subsequence of events associated
with Tp. H is serialisable in order < if h is legal. The schedule in the example above is
serialisable in order 77 < T3, for the following history is legal:

credit(£800) / OK

credit(£1000) / OK

debit(£1500) / OK

However, it is not serialisable in order Ty < T4, for the following history is illegal (suppose
the account balance is zero initially):

credit(£1000) / OK

debit(£1500) / OK

credit(£800) / OK

H is serialisable if it is serialisable in some order. H is atomic if the subschedule associated
with committed transactions is serialisable. It is obvious that the schedule above is atomic.

An object is atomic if it only produces atomic schedules.

A transaction usually encloses operations on several objects. The sequence of operations
of a transaction on a particular object forms the component of the transaction at that

object.

4.2 Serial Dependency

We wish to take account of all events that might, directly or indirectly, have influenced e.
Let <g4 be a relation between pairs of events, and let & be a history. A subhistory (i.e. a
subsequence) g of h is closed under <q if whenever it contains an event e it also contains
every event € of h such that e’ <4 e. A subhistory g is a view of h for e under <y if gis

closed under <, and if g contains every e of hsuch that ¢ <4 e.

Again, consider the Account example, suppose we have the following relation <y:
debit/OK <4 debit/OK

credit/OK <4 debit/Over

debit/OK <4 check

credit/OK <4 check

CHAPTER 4. FORMALISATION AND CORRECTNESS 39

and a history h:
credit(£1000) / OK
debit(£500) / OK
check() / £500
debit(£100) /OK
credit(£200) /OK
check() /£600

Then, the following subhistory g is closed under <g:
credit(£1000) / OK

debit(£500) / OK

debit(£100) /OK

credit(£200) /OK

check() /£600

s0 is the following subhistory:
debit(£500) / OK
debit(£100) /OK
credit(£200) /OK -

although it is an illegal subhistory; while the following subhistory is not:
credit(£1000) / OK

debit(£100) /OK

credit(£200) /OK

for it does not contain debit(£500) which is required by debit(£100), for debit(£500) <4
debit(.£100).

Suppose there is an event e:
debit(£300) / OK

Then, the subhistory g above is a view of h for e under <g, for gis closed under <4 and

contains every debit event of h.

Informally, <4 is a serial dependency relation if whenever an event is legal for a view, it

is legal for the complete history. More precisely, let “ ® ” denote concatenation:

Definition 1 A relation <4 is a serial dependency relation if g e € is legal implies that
h e e is legal, for all events e and all legal histories ¢ and h, such that ¢ is a view of & for

e under <.

CHAPTER 4. FORMALISATION AND CORRECTNESS 40

It is not easy to check whether a given relation is a serial dependency relation according
to the definition. Fortunately, Herlihy [HW88] has proved that an invalid-by relation must
be a serial dependency relation, and it is much easier to check whether a given relation is

an invalid-by relation.

Informally, we say that an operation p invalidates an operation ¢ means that the result
of executing g on an object d might not be the same as the result of executing ¢ after

executing p on d. More precisely,

Definition 2 Invalid-by relation <. is a relation between pairs of events. Let h be a legal
history, e and € be events, we say that e <, ¢ (e invalidates ¢') if and only if that hee

and hee are legal, but heee ¢ might be illegal.

The legal histories for an object is related to the semantics of the object, and the invalid-by
relation for an object depends on its legal histories. Therefore, changing the semantics of

an object would affect its invalid-by relation.

In the Account example above, the relation <4 is an invalid-by relation, thus a serial
dependency relation. Where successful, debits do not depend on prior credits, because the
debit cannot be invalidated by increasing the balance. Attempted overdrafts, however, do
depend on prior credits, because the overdraft exception can be invalidated by increasing
the balance. Successful debits do depend on prior successful debits, because the debit can
be invalidated by decreasing the balance. Attempted overdrafts, however, do not depend
on prior debits, because the overdraft exception cannot be invalidated by decreasing the
balance. Checks depend on both credits and successful debits, because the result of check

can be invalidated by any change in the balance.

We make extensive use of the following lemma introduced and proved in [Her90] when
reasoning about serial dependency relations. It states that any sequence of events can
be inserted into the middle of a history provided no later event depends on any inserted

events.

Lemma 1 If <4 is a serial dependency relation, f, g and h histories such that f e g and

f o h are legal, and there is no e in g and ¢ in h such that e <q ¢, then fegeh is legal.

Proof: The proof is by induction on the length of h. If h is empty, the result is immediate.
Otherwise, let h=h"e ¢'. By assumption, f e ' is a view of fegeh' for e'. Moreover,
fegeh islegal by the inductive hypothesis and f o b’ is legal because f o h is legal by
assumption and an initial subsequence of a legal history is legal. Because f o g e b is legal

and <4 is a serial dependency relation, fege h' ec = fegehislegal by Definition 1.0

CHAPTER 4. FORMALISATION AND CORRECTNESS 41
4.3 Views of Transactions

Internally, an object is implemented by two components: a permanent state that records
the effect of committed transactions, and a set of local versions (shadow copies) that record
each active transaction’s tentative changes. When a transaction commits, its local version
is merged into the permanent state. At any time, there is at most one transaction that
is in the write phase at a particular object. However, there may be several transactions
that are in the read phase at a time. A transaction in its read phase writes to its local
version of physical objects, and reads either from its local version or from the permanent
state. The permanent state of an object can only be changed by transaction commits. A
transaction may see different permanent states of an object in its read phase, for some

transactions may commit and change the permanent state in this period.

4.3.1 Translation Function

We formalise an operation on an object as a function that reads from some primitive
physical objects (maybe none), and based on the results of reading and its parameters
writes to some primitive physical objects (maybe none). We use o(R, W) to denote an
operation, which reads from a set of primitive physical objects R = [ro, .. ., rm) and writes

to a set of primitive physical objects W = [wo, ..., wn].

Let T =[Ty,..., T}] be a set of transactions, d,, be a primitive physical object. We use
di, to denote a specific version i (created for transaction T;) of dy, and df, to denote its
permanent state. To process operations from T}, an object must translate an operation of
T; on a (single version) primitive physical object into an operation on a specific version of

that physical object. This translation is formalised by a function ¢r.

Definition 3 Let o(R, W) be an operation from transaction T;, R = [ro,...,Tm], W =
[Wo, ..., W], B = [r, ., rir], W' = [we,...,wi"]. Then tr(o(R,W)) = o(R,\ W),
where

1. ky=1for 0 <u < n;

2. ju =1 for 0 < u < m, if an operation of T; has written to wy;

3. ju = p for 0 < u < m, if no operation of T; has written to wy.

Rule 1 states that a transaction can only write to its own version of physical objects. Rule

2 states that if a version of a physical object has been created for a transaction, then it

CHAPTER 4. FORMALISATION AND CORRECTNESS 42

must read from its version. Rule 3 states that if a transaction has not written to a physical

object, it must read from the current permanent state of the object.

4.3.2 Views of a Transaction

The permanent state of an object may be changed at any time, therefore different op-
erations of a transaction may view different permanent states from each other. Since a
transaction can only affect the permanent state of an object during the write phase in the
DLV method, the change in the permanent state between the execution of two operations
of a transaction can be modelled by the sequence of events caused by the transactions
that commit during this period of time. Therefore, the permanent state of an object when
executing an operation can be represented by the initial state of the object followed by a

sequence of changes. More precisely,

Definition 4 Let C = 0, ® 05+ ® 0, be the component of transaction T; at an object
and h; denote the change in the permanent state of the object between the execution of
0; and 041, then the permanent state of the object when executing o; (1 < j < n) is

ps;j(T;) = ho® - e hj_y, where hg is the initial state of the object before executing o;.

permanent state: h0 ®h, i ®h, ; e h3 ® h,
Tl L : : F;------lil . I
T, : = : R |...:' |
T, ! | | {EEEEEEEE ;....l....q: | V
[} 3
T 4 : : i [-:--}------------------ llllll
7 R
T4 : check(); debjit(100j; credit (200) ¢ credit(100);..
i !

Figure 4.1: Permanent States When Executing Operations

Consider the example in Figure 4.1, the permanent state is ho (the initial state) when
executing check(), is ho ® hy (hy is empty) when executing debit(100), is ho @ hy ® hy (ho
is composed of the events of Tj) when executing credit(200), is ho @ hy @ ho @ h3 (ha is

composed of the events of Tp and T3) when executing credit(100).

CHAPTER 4. FORMALISATION AND CORRECTNESS 43

An object state consists of a set of primitive physical objects, the leaves in the tree struc-
ture. A change on an object D made by an operation can be represented by corresponding
changes on D’s primitive physical objects. A read from D issued by an operation can be
represented by corresponding reads from D’s primitive physical objects. If we denote an

object D consisting of a set of physical objects dy -+ - dy, as:
dy
p=| : |,
din

then an operation o on D can be represented by a group of operations on the primitive

physical objects:

where o' is an operation on physical object d;. We call o' a suboperation of o on physical
object d;.

An event e on D can be represented by a group of events:

1 1 1

ejo---0e, h
h=e o --0¢, = =

m m m

efe.. .ol h

Wecallelo- -0 ¢! the subhistory of h on physical object d;, denoted by h.

The history for a physical object d;, hf = el o - el is locally legal if it is the same
as executing the corresponding operations on d; in a sequential environment in the same

order.

Lemma 2 Suppose object D consists of a set of primitive physical objects dy -+ +dy,, h =
ey ®---e®e, is the history for D. Then h is legal if and only if every subhistory of h for

each primitive physical object is locally legal.

Proof: At first we prove that if h is legal, then every subhistory of h for a primitive physical

object is locally legal. Since h = ej ®--- @ ¢, is legal, h must be a permissible history for

CHAPTER 4. FORMALISATION AND CORRECTNESS 44

the object. That is, h must be the same as executing the corresponding operations on
D in a sequential environment. Hence, every subhistory hi of h must be the same as
executing the corresponding suboperations on d; in a sequential environment. Therefore,

hi is locally legal by its definition.

Now let’s prove that if every subhistory of h for a primitive physical object is locally legal,
then h is legal. Since every subhistory, A/ = e{ o .. eel is locally legal, it is the same
as executing the corresponding suboperations on d; in a sequential environment in the
same order. Moreover, e; is the composite of e} - - -e™. Therefore, h must be the same as
executing the corresponding operations on D in a sequential environment. Hence, A must
be legal.O |

A view of a transaction T; for an (abstract) object, denoted by View(T;), is the value of
the object that T; observes at some moment. It is a composite of the values of primitive
physical objects. From Definition 3, we know that the value of a primitive physical object
seen by a transaction is either from its local version, or from the permanent state of the

object. More precisely,

Definition 5 Let C' = o e --00, be the component of transaction T; at an object and e;
be an event of executing operation o; (1 < j < n), suppose that the object state consists
of primitive physical objects dy -+ -d,, and we have ps;(T;) = hoe - e h;_;. Then after

executing operation 0;(1 < j < n), we have

1 1 1 1 1

v ho""'hk,_1‘ek1°"‘°ej
View(T;) = = :

™ hglo---oh;c"m_loe;cnmo---oe?’“

where el is the subevent of e, on physical object dj, (1 <1 < m,k; < u < j). Here, efw
(1 <1< m) is the first subevent that writes physical object d;. We call v! the subview of
View(T;) on physical object d.

Note that a view of a transaction for an object is different from the permanent state of
that object, because a view of a transaction is a mixture of local (physical) objects and
permanent physical objects. Consider the example in Figure 4.2: T;’s view is composed
of, at t;, one local object d; and two permanent objects ds and dg; at tg, two local objects

d; and dy and one permanent object dp.

Lemma 3 Suppose View (T;) is a view of transaction T; for an object. Then every subview

of it is locally legal, if the permanent state of the object is legal.

CHAPTER 4. FORMALISATION AND CORRECTNESS 45

Permanent state:

d,: 20 d,+ 70 a,:r 70
. 30 ;30 :
dz' dz' d2 90
d,: 40 dy + g0 d,+ 100
T,
1
"y 5 X g
d, : 5 4, 60 d, 60
d, 70 d;; 70
T;s view:
Lt 55 d; ! 60 d, 60
dy: 30 d,t 30 dyf 90
d, ! 40 d,t 70 d, 70
l | I - Time
ty t, t,

Figure 4.2: Views of a Transaction

Proof: Let’s consider the subview for dj, v = hle-. -ohfw_loesw o . -oeé. Since the permanent
state of an object is legal by assumption, hle-- -ohfcr_1 is locally legal. By Definition 3, we
know that when executing operation oy, the object creates a local version of dj, which has
the value hle- - -ohil_l, and all the subsequent operations of T; on d; are done on this local
version. Since the local version can only be accessed by T}, the event sequence efcl °. -0 eé.
happened in a sequential environment. Therefore, o' =hhe.. e hfw_l . efw ..o eé' is
locally legal.OO

4.3.3 An Important Lemma

Now we can get the lemma that is important to the proof of the DLV method.

Lemma 4 Let <y be a serial dependency relation, C = oy ® - ® 0, be the component
of transaction T; at an object, e; be the ezecution of oj, ho be the object state before ey,
h; (1 < j < n) be the change that happened at the object between e; and ejyy, hy be the
change that happened after e,. Then hoe---ehy,eei - oe, islegal, if hoo - hy is

legal and if there is no e in hy -+ ® hy, and e ine o -ee, such that e <q e.

Proof: The proof is by induction on the length of C, that is, the number of its operations.
If the length n = 1, by Definition 3, ko ® ey is legal. By assumption, ho ® hy is legal and

CHAPTER 4. FORMALISATION AND CORRECTNESS 46

there is no event e in hy such that e <q e;. That is, hg is a view of hgehy for e;. Therefore,

ho @ hy e ey is legal by Definition 1.

If the length n» >1, then

1. (a) by assumption, hoe - ®hy_y .\hlb is legal,
f g
(b) by the inductive hypothesis, hg® -0 h,_jee; - 0¢e, ; is legal, and
f n

c¢) by assumption, there is no event e in g = h, and e inh=eje---ee, 1 such
1

that e <y €.

Therefore, p = hpe®--+0h,_1@ h, ee;e---0¢,_1 is legal by Lemma 1. Conse-
i s
f g h

quently, every p/ = hé o .ohiecle -0 efl_l is locally legal by Lemma 2.

2. (a) By Definition 5, there is no event e’ in e -oefcj_1 that writes d;. Therefore,

there is no event €’ in e’ @--.@¢€) . such that e/ <4 el. This is because in the
1 kj—1 n

physical level there is only one serial dependency relation: write <4 read.

(b) By assumption, there is no e in hy, @ --- @ hy such that e <g en. Notice that
if nonsense can arise at a physical level, the user must declare the potential
nonsense in the abstract semantics. Hence we know that there is no e’ in

hf;j o-.-ehl such that ¢/ <qel.

Therefore, ¢/ = hf) o ..o hf;j~1 ° ef;j o -0 ei_l is a view of p’ for ei;.
3. Since hg e -+ ® hy, is legal by assumption, every subview of View(T}) is locally legal
by Lemma 3. Hence v/ = ¢’ @ ¢}, = h{; o--:0 hij_l) e};j o...¢l is locally legal.

Therefore, p’ o e, = hg o -0 hfl_l ohie e{ o -0 ef;__l eel for 1 < j < mis locally legal

by Definition 1. Hence hpe---o h, ®e; e 0¢, is legal by Lemma 2. O

4.4 The Dual Level Validation Automaton

Formally, each object is modelled by an automaton that accepts certain schedules. The
automaton’s state is defined by using the following primitive domains: TRANS is the set
of transaction identifiers, DIDS is the set of physical object identifiers, EVENTS is the set
of events, and TIMESTAMP is a totally ordered set of timestamps. The derived domain
HISTORY is the set of sequences of events. A dual-level validation automaton has the

following state components:

CHAPTER 4. FORMALISATION AND CORRECTNESS 47
Perm: HISTORY

View: TRANS — HISTORY

Intentions: TRANS — HISTORY

ReadSet: TRANS — DIDS

ReadVersion: (TRANS, DIDS) — TIMESTAMP
WriteSet: TRANS — DIDS

WriteVersion: (TRANS, DIDS) — TIMESTAMP
TimeStamp: TRANS — TIMESTAMP
BeginTime: TRANS — TIMESTAMP
CommitTime: TRANS — TIMESTAMP
Version: DIDS — TIMESTAMP

LastCommitTime: TIMESTAMP

Clock: TIMESTAMP
Committed: 9TRANS
Aborted: 9TRANS

Perm is the history that represents the object’s permanent state, initially empty. View(T;)
is the view of transaction T} for the object. Intentions(T;) is the history of operations
executed by transaction T;. ReadSet(T;) is a set of primitive physical objects that are
read by transaction T;, and ReadVersion(T;,d) indicates the version from which physical
object d is read. WriteSet(T;) is a set of primitive physical objects that transaction T;
intends to write, and WriteVersion(T;,d) indicates the version from which the shadow
copy of physical object d is created. Version(d) is the version number of physical object
d in the permanent state. TimeStamp(T;) is the transaction timestamp assigned by the
transaction manager to transaction 7;. LastCommitTime is the transaction timestamp of

the latest committed transaction.

The DLV automaton enforces the atomicity of schedules generated at the object. Its be-
haviour is specified by giving the transitions during the read phase and the write phase.
Each transition has a precondition and a postcondition. In postconditions, primed com-

ponent names denote new values, and unprimed names denote old values.

At the read phase:

For a transaction T; to execute operation o(R, W) at an object, where R = [r1,: -+, "],
W= [wla"')wn] :
Pre: T; ¢ Committed U Aborted.

e is the event of executing o(R, W).

CHAPTER 4. FORMALISATION AND CORRECTNESS 48

Post: View' (T3) = View(T;) @ o(R, W)
Intentions (T}) = Intentions(T}) e
ReadSet (T}) = ReadSet(T;)U[r1, "+,]
WriteSet' (T;) = WriteSet(T3)U[wy, - « +, wy]
BeginTime' (T}) = min(BeginTime(T}),Clock)
ReadVersion (T}, r;) if r; € ReadSet(T7)
ReadVersion' (T}, ;) = { WriteVersion (T}, r;) if r; € WriteSet(T})

Version(r;) otherwise
' WriteVersion (T}, w;) if w; € WriteSet(T;
WriteVersion' (T;, w;) = riteVersion (T}, w;) if w; riteSet(T5)
Version (w;) otherwise

where “@” denotes executing an operation according to Definition 3.

The DLV automaton does not undergo any transition during the validation phase. The
result of logical validation is reported to the transaction manager, which returns a decision
commit or abort for the transaction. Committed transactions will subsequently enter the
write phase. Logical validation at an object is governed by a conflict relation <. defined
at the object.

Definition 6 A transaction T is logically valid for relation <, on an object, if the fol-

lowing three conditions hold:

e For each transaction T; such that TimeStamp(7T}) < TimeStamp(7;) and
BeginTime(T;) < CommitTime(T}), there is no e in Intentions(7;) and no e in

Intentions(7T}) such that ¢’ <, e.

e For each transaction T}, such that TimeStamp(T;) < TimeStamp(Tk) and Ty is in
its pending phase, there is no e in Intentions(7;) and no ¢ in Intentions(T}) such
that e <, €.

e TimeStamp(T;) > LastCommitTime.

When a committed transaction proceeds to the write phase we perform physical validation
to check whether we can avoid re-executing the operations. If so, then the transaction is
committed by using its view for the object to replace the permanent state of the object;

otherwise we must apply Intentions(7}) to the permanent state of the object.

Physical validation is done by checking whether the version number of each physical object

in the read set of a transaction is still current. More precisely,

CHAPTER 4. FORMALISATION AND CORRECTNESS 49

Definition 7 A transaction 7} is physically valid at an object if there is no physical object
d in ReadSet(T;) such that Version(d) > ReadVersion(T},d). That is, the value of d read
by T; is still current.

At the write phase:

Depending on the result of physical validation transaction commitment is defined by the

following transition of the DLV automaton.

If physical validation succeeds:

Pre:

T; ¢ Committed U Aborted.

T; is logically valid.

T; is physically valid.

TimeStamp(T;) > LastCommitTime.
Post:

Perm’ = View(T})

Clock’ > Clock

Version' (d;) = {

'LastCommitTime' = TimeStamp(T};)

Clock if d; € WriteSet(T3)

Version(d;) otherwisw

If physical validation fails:

Pre:
T; ¢ Committed U Aborted.
T; is logically valid.
T; is not physically valid.
TimeStamp(T;) > LastCommitTime.
Post:
Perm’ = Perm e Intentions(T})
Clock” > Clock

Version' (d;) = {

LastCommitTime = TimeStamp(7;)

Clock if d; € WriteSet(T5)

Version(d;) otherwisw

CHAPTER 4. FORMALISATION AND CORRECTNESS 50

4.5 Atomicity of the DLV Method

To verify the dual-level validation method, a new concept needs to be introduced. We
want to define equivalence so that two histories of an object are equivalent if they have
the same effects on the object. The effects of a history on an object are the values produced

by write operations in the history.

Definition 8 Two histories of an object are view equivalent if they produce the same

object value, denoted by “=".

Recall that in Section 4.3.2, we model an (abstract) object as a set of primitive physical
objects. As a primitive object, its value cannot be further divided, i.e., an operation can
read or write either the whole value or none of it. Therefore, two histories of a primitive
physical object are equivalent if the last write to the object in two histories are of the same

value.

Recall that in Section 4.3.1, we formalise an operation as a function that reads some values
from and writes some values produced by it to an object. We do not know anything about
the computation that each operation performs, we do not know much about the value
written by an operation. All we know is that if an operation reads the same values in two

histories, then the values it writes will be the same in both histories.
Lemma 5 If View(T;) is the view of T; for an object when it entered the write phase,
Perm is the permanent state of the object, then View(T;) = Perm o Intentions(T;) for any

physically valid transaction T;.

Proof: Suppose the view of T; for the object when it entered the write phase is

hl h(l)o'uoh,lcl_loe,lclo-uoe}h
View(T}) = =1 :
h™ hi ®---ohll ecp o .o

Since T; is physically valid, for any d; either it does not belong to the read set of T; or it
has not been changed after T} read it. That is, there is no e in hf;j o..-ohj and ¢ in
ef o ..o ¢l such that e/ writes d; and ef reads d;. Moreover, by Definition 3, e{, x -,eij_l
are each either a read only event or an empty event, otherwise a shadow copy would have
been crea‘Fed. Thus, b/ = h{)o---ohf;j_l ohij o---ohﬁ;oez oo ei:j_I oefcj o ..ocl,
because el’cj e ... ¢l reads the same values, thus writes the same values in both histories.

Therefore, View(T;) = hge---oh,eej e . 0¢e, = Perm o Intentions(73). O

CHAPTER 4. FORMALISATION AND CORRECTNESS 51

Notice that in the DLV method, at any time there is at most one transaction in the write
phase at a particular object. Therefore, the view of a transaction for an object will be the

same throughout the write phase.

Lemma 6 For any dual-level validation automaton whose logical validation relation <. is

a serial dependency relation, Perm e Intentions(T;) is legal for any logically valid T5.

Proof: Suppose C = 0y ®---00, is the component of T; at the object. We may now write
Perm = hge Intentions(7}) e ---e Intentions(T;_;) = hg e - ® hy,, and Intentions(T;) =
er®:--®e,, where Ty, -+, T;_1 have been committed with timestamp earlier than that of
T;. The proof is by induction on the number of transactions that have entered the write

phase before T;.

When ¢ = 1, Perm o Intentions(7}) = hoe Intentions(Ty): it is legal by Lemma 4 because

hie-.-eoh, is empty.

When i > 1, by the inductive hypothesis, hge Intentions(7}) e - - - Intentions(T;_1) is legal.
Since T is logically valid by assumption, there is no e in Intentions(7})e- - - Intentions(T;_1)
and € in e; @ -+- @ ¢, such that e <, e. Moreover, <, is a serial dependency relation.

Therefore, hoe Intentions(7}) e - - - Intentions(T;_1)e Intentions(T;) is legal by Lemma 4.
a

The following lemma, is a direct consequence of Lemma 5 and Lemma 6:

Lemma 7 The dual-level validation method is atomic, if the conflict relation used by the

logical validator is a serial dependency relation.

Proof: From the dual-level validation automaton, we know that the permanent state of an
object is the serialisation in timestamp order of the schedule accepted by the automaton.
Moreover, Lemma 5 and Lemma 6 imply that each commit carries the permanent state
from one legal history to another. Therefore, the schedule is atomic. Since its automaton

only accepts atomic schedules, the DLV method is atomic.O

Since the DLV method is atomic, an object which uses the DLV method to control concur-
rent accesses to it will be atomic. Atomicity for an object is called local atomicity because
it deals only with the events involving the particular object. In a system composing many
objects, the fact that all component objects are locally atomic cannot guarantee that the
system is atomic — in addition there must be at least one serialisation order for commit-

ted transactions on which all objects can agree. Therefore, a property should be found

CHAPTER 4. FORMALISATION AND CORRECTNESS 52

such that if each object in the system satisfies it then the system is atomic. This kind of

property is called a local atomicity property [Wei89].

Weihl [Wei89] has identified three local atomicity properties: dynamic atomicity, static
atomicity and hybrid atomicity. The dynamic atomicity characterises the behaviour of a
class of types that ensures serialisability dynamically based on the order in which transac-
tions execute operations. Static atomicity characterises the behaviour of a class of types
that ensures serialisability statically based on some predetermined order of transactions.
Hybrid atomicity characterises the behaviour of a class of types that ensures serialisability

based on the order in which transactions commit.

Lemma 8 The dual-level validation method is hybrid atomic, if the conflict relation used

by the logical validator is a serial dependency relation.

Proof: From Lemma 7 we know that the DLV method is atomic. Furthermore, from
the dual-level validation automaton we know that any schedule accepted by the DLV
automaton is serialisable in the order in which transactions commit. Therefore, the DLV

method is hybrid atomic according to Weih!’s definition.O

Since the DLV method is hybrid atomic and hybrid atomicity is a local atomicity property,
a system will be atomic if all objects in the system use the DLV method to provide local

atomicity.

4.6 Summary

In this chapter, we have proved the DLV method is hybrid atomic, hence can be used to
provide local atomicity for atomic data types. The proof is conducted in three steps. We
first prove the correctness of an important lemma, the Lemma 4, then verify the DLV

method by using the lemma, and finally certify that the DLV method is hybrid atomic.

To prove Lemma 4, we first decompose an abstract object into a set of primitive physical
objects, and formalise an operation on an abstract object as a function that reads some
values from and write some values produced by it to some primitive physical objects.
Then we apply the formal method developed by Weihl [Wei89] and the serial dependency
relation introduced by Herlihy [Her90] to reason the local legal property of each individual
primitive physical object. Finally, we reason the relationship between the legal property

of an abstract object and the local legal property of its primitive physical objects.

Chapter 5
Global Atomicity and Resilience

In the last two chapters we focussed on local atomicity of atomic data types. However,
local atomicity does not automatically guarantee atomicity of a system. In this chapter,
we discuss how to ensure the global atomicity of a system when objects use the DLV
method for providing local atomicity, in both the absence and the presence of failures.
First a model in a centralised system is established, then it is extended to be usable in

distributed systems.

5.1 Atomic Commitment

In a system which takes the atomic object approach for providing data consistency, com-
mitment of a transaction must be atomic over all objects involved in the transaction to
ensure global atomicity. First the objects involved agree on whether to commit or abort

a transaction, then all the objects must implement the agreement whatever happened.

To ensure that all the objects involved in a transaction make a common decision on a
commit request, a transaction manager is introduced into the system to be responsible
for making the final commit or abort decision. The transaction manager and objects
cooperate according to a protocol, called the local 2-phase-commitment (L2PC) protocol,
for its similarity to the 2-phase-commitment (2PC) protocol developed for distributed
transactions[Gra79]. Transactions are controlled by and interact with objects through
the transaction manager. The transaction manager may simultaneously control multiple

independent transactions.

To process transactions, the transaction manager forwards object operations enclosed

in transactions to corresponding objects. Objects are responsible for executing object

53

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 54

operations requested by the transaction manager. Operations on an object from the
same transaction form a transaction component. When a commit request comes from
a transaction, the transaction manager asks objects involved in the transaction, called
participant objects, to vote whether the transaction should be committed. Then, it makes
the final decision based on the replies: commit, if all the replies are “commit”; or abort,
otherwise. Finally, it propagates the final decision to all participant objects. A participant

object implements the decision accordingly after receiving it.

Like 2PC, the basic idea of L2PC is to determine a unique decision for all participant
objects with respect to committing or aborting a transaction. If an object is unable to
commit the transaction, then all participant objects must abort the transaction. The
L2PC protocol consists of two phases. The goal of the first phase is to reach a common

decision; the goal of the second phase is to implement this decision.
The L2PC protocol on the transaction manager side can be described as follows:
1. During the read phase: when receiving an object operation from a transaction, the
transaction manager forwards it to the corresponding object.

2. Asking for votes: when receiving a commit request from a transaction, the trans-
action manager generates a timestamp for the transaction, sends an asking-for-vote

command with the timestamp to each participant object, then waits for replies.

3. Making decision: the transaction manager decides to commit the transaction if all

replies are “commit”, to abort the transaction otherwise.

4. Propagating decision: the transaction manager propagates the final decision to par-

ticipant objects.

5. Waiting for acknowledgement: the transaction manager waits for ACK messages

from participant objects.

The protocol on the object side has been given in Section 3.3. Briefly speaking, an object
performs any operations forwarded to it, decides its vote based on the result of logical

validation, and commits transactions through the Write Phase Manager.

5.2 Recovery

In the last section, we described the protocol for atomic commitment in the absence of

failures. However, the possibility of failure always exists; recovery methods therefore must

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 55

be provided so that the system can be restored to a consistent point when a failure occurs.

5.2.1 Three Kinds of Recovery

To ensure data consistency a system needs to provide three kinds of recovery [CP84]. The
activity of ensuring a transaction’s atomicity in the presence of transaction aborts is called
transaction recovery. The activity of ensuring a transaction’s atomicity in the presence
of system crashes, in which only volatile storage is lost, is called crash recovery. The
activity of providing a transaction’s durability in the presence of media failures, in which

nonvolatile storage is lost, is called database recovery.

In Chapter 2 we pointed out that a transaction’s isolation property may be violated in
an implementation of transactions based on atomic data types. This results in the failure
of traditional state-based recovery. The DLV method uses optimistic concurrency control
in which a transaction performs update operations on local copies of objects during its
read phase. Transaction abort is therefore achieved by discarding these shadow copies.

Persistent object values are not affected until the write phase of a transaction.

Database recovery is independent of the concurrency control method used by a transaction
system. Various methods such as stable storage [Lam81] can be used for providing database
recovery. The method is typically implemented by replicating the same information on
several disks that have independent failure modes and using a so-called careful replacement
strategy[Koh81]. At every update operation, first one copy of the information is updated,

then the correctness of the update is verified, and finally the second copy is updated.

5.2.2 Crash Recovery

Our crash recovery method is log-based [Gra79]. A log usually contains information for

undoing or redoing all actions which are performed by transactions; whenever a transac-

tion performs an action on an object, a log record is written in the log file in the form:
(Transaction id, object id, old value, new value)

Moreover, when a transaction is started, committed, or aborted, a begin_transaction, com-

mit, or abort record is written in the log.

In a system using the DLV method for providing local atomicity, however, there is no need
to write a log record for every action. This is because, in this method, updates to an

object can only be made on its shadow copies, before a transaction commits.

A log record is recorded on stable storage when each phase of a transaction starts, and

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 56

when a transaction completes (aborts or commits). Hence, during a recovery procedure

after a system crash, the status of a transaction can be determined.

If a transaction was in its read phase when the system crashed, it will be aborted when
the system restarts. No special recovery operation needs to be done, since the transaction
neither made any change to a persistent object, nor made any promise. Any local copy of

objects it has created will be collected by the garbage collector.

Before entering the validation phase, the performed-operations table (POT) and the accessed-
objects table (AOT) of the transaction must be recorded on stable storage. If a transaction
was in its validation phase when the system crashed, the object will do the validation again
at testart. The information necessary for the validation, i.e. the POT, has been recorded

on stable storage.

If a transaction was in its pending phase when the system crashed, it will remain in this
phase at restart. No special action needs to be taken. However the pending queue of an
object which records all the transactions in their pending phase needs to be refreshed to

stable storage whenever a change is made to it.

The write phase of a transaction is separated into two or three steps: a physical validation
step, possibly a re-execution step, and a merging step. A log record is necessary to indicate
the end of a step. Moreover, if a re-execution step is required, the new POT and AOT
produced by the re-execution need to be recorded on stable storage before the merging

step.

If a transaction was in its physical validation step when the system crashed, at restart
the object will perform physical validation again for that transaction. The validation can
be performed because the AOT with the required information has been written to stable
storage. If a transaction was in the merging step, at restart the object will redo the merging
operation. This can be done because all the shadow copies as well as the AOT have been
written to stable storage. Notice that a merging operation is idempotent. If a transaction
was in the re-execution step, at restart the object will re-execute the operations on the
object of the transaction. The re-execution can be done since the POT which recorded

the operations of the transaction has been written to stable storage.

5.2.3 Log Records

We describe in detail the log protocol used by the DLV method in the following two

subsections. We discuss when and in what form a log record is needed in this subsection,

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 57

and explain how to restore a system to a consistent state in the next subsection.

Every object and the transaction manager have their own log file. The log protocol can

be described as follows:

e Before asking for votes from participant objects, the transaction manager writes an

“asking_for_votes” record in its log.

e After finishing a logical validation but before casting its vote to a transaction, an object

records the related information in its log.

1. If voting for “commit”, it should ensure that it is able to commit the transaction
even if failure occurs afterwards. In practice, this requires two things to be recorded

on the log of the object:

(a) All the information which is required for locally committing the transaction.
This means the performed-operation table (POT) and the accessed-objects table
(AOT) of the transaction have to be recorded on the log of the object.

(b) The fact that this object has voted for “commit” for the transaction. This
means that a log record of a type, called a “voted_for_commit” log record, must
be recorded on the log in the form:

object id, transaction id, timestamp, “voted_for_commit”).
)

2. If voting for abort, it only needs to write a “voted_for_abort” record on its log in the

form: (object id, transaction id, timestamp, “voted._for_abort”)

o After deciding whether to commit or abort a transaction, the transaction manager must
record its decision on its log. This corresponds to writing a “transaction_commit” or
“transaction_abort’ record in its log. The fact that the transaction manager records its
decision on its log means that the transaction will eventually be committed or aborted, in

spite of failures.

e After receiving a decision about a transaction’s outcome from the transaction manager,

an object writes an “object_commit” or “object-abort’ record in its log accordingly.

e When the transaction manager has received an ACK message from every participant
object, it writes an “end_transaction” record in its log. From this moment, the transaction

can forget the outcome of the transaction.

e When an object commits or aborts a transaction locally, recovery measures are still

necessary.

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 58

* Tt writes an “object_abort’ record in its log before performing an abort, and writes

an “end_object_abort” record afterwards.
* Performing commit is more complex.

— Tt writes an “object_commit® record in its log before starting the physical vali-

dation.

— If the validation result is “accept”, it writes a “to_write” record in its log be-
fore merging shadow copies into the object permanent state, and writes an

“end_write” record afterwards.

— If the validation result is “reject”, then it writes a “to_redo” record in its log
before performing the re-execution, and writes the new AOT and a “redo_write”
record afterwards. Then it performs the merging action, following by writing

an “end_redo_write” and an “end_redo” record in its log.

— An “end_commit’ and an “end_subtransaction” record are written in the log.

In summary, for a completed transaction T;, the transaction manager should have written

the following log records in its log:

begin_transaction T;
asking_for_votes T}
transaction_commit or transaction_abort T;

end_transaction T;

The log records written in the log of an object for a committed transaction T; are as

follows:

begin_subtransaction T;
AOT and POT T;
voted.for_commit T;
to_commit T;

(physical validation)

(succeed) (failed)
to_write T to_redo T
AOTT;

redo_write T;
end_redo.write T;

end_write T; end_redo T;

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 59

end_commit T}

end_subtransaction T;
and for an aborted transaction T;:

begin_subtransaction T;
voted_for_commit or voted_for_abort T;
object_abort T;
‘end_object_abort T;

end_subtransaction T;

5.2.4 Recovery Procedure

We have described when and what kinds of log records should be written in logs in the last
subsection. In this subsection, we discuss how these logs are used to restore a system to a
consistent state when system crashes occur, i.e., we analyse the behaviour of the protocol

when failures occur at different times.

We suppose that the transaction manager and all atomic objects run in the system as
threads in a single memory address space. Therefore, if a failure with loss of volatile

storage occurs, then the whole system stops running, ¢.e., a fail-stop model is assumed.

e The transaction manager:

1. A failure occurs before writing the transaction_commit or transaction_abort record.
In this case, the transaction manager simply sends an “abort_transaction” command
to every participant object to ask it to abort the transaction locally. Since the
transaction manager has not already propagated its decision, no object can have

updated the object permanent state. Therefore, it is safe to abort the transaction.

2. A failure occurs after writing the transaction_commit record, but before writing the
end_transaction record. In this case, the transaction must be committed in all partic-
ipant objects, for some objects may have already made changes to object permanent
states. The transaction manager must send the final decision to all participant ob-
jects again, since some or all of them may not have received the decision. An object
that has received the decision must recognise that the new decision message is a

repetition of a previous one.

3. A failure occurs after writing the transaction.abort record, but before writing the

end_transaction record. In this case, the transaction manager must send the “abort”

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 60

command to all participant objects again, for some or all of them may not have
received it. As before, participant objects must not be affected by receiving the

command twice.
e At an object:

1. A failure occurs before writing the voted for_commit or voted for.abort record. In
this case, at restart the object can abort the transaction locally without delay, for
the transaction manager must be in case 1, thus “abort” must be the final decision.
When it receives the “abort” command from the transaction manager later, the

object simply sends an ACK message to the transaction manager.

2. A failure occurs after writing the object_abort record, but before writing an
end_object_abort record. In this case, the object simply performs the aborting opera-
tion again. Notice that the aborting operation should be idempotent, i.e., performing

it several times is equivalent to performing it once.

3. A failure occurs after writing the voted for_commit record, but before writing a
to_commit or to_abort record. In this case, the object must wait for further messages

from the transaction manager.

4. A failure occurs after writing the to_commit record, but before writing any other

record. In this case, the object at restart resumes by doing physical validation.

5. A failure occurs after writing the to_write record, but before writing an end_write
record. In this case, the object at restart resumes by doing merging operation; the
merging operation can be performed because all the shadow copies as well as the
AOT have been written on stable storage. Notice that the merging operation is

idempotent.

6. A failure occurs after writing the toxedo record, but before writing a redo_write
record. In this case, the object simply deletes the AOT and then performs the re-
execution action. Operations of the transaction component can be found from the

POT that has been written in the log.

7. A failure occurs after writing a redo_write record, but before writing an end redo_write
record. In this case, the object at restart continues working from doing the merging

operation. All the shadow copies as well as the AOT can be found from the log.

It can be seen from the above description that a log must be very large. Processing a

large log might be tolerable on media failure but transaction abort must be efficient and

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 61

recovery after a crash should be reasonably fast [Bac93]. A checkpoint technique [Koh81]
therefore is introduced to reduce the log by deleting the records related to completed
transactions. We are not going to discuss this technique in this thesis, for it has been well

developed already.

5.3 Distributed Transactions

In this section, we discuss global atomicity in a distributed environment. First we establish
a distributed transaction system model, and then describe an atomic commitment protocol

which ensures the commitment of a transaction is atomic over all participants.

5.3.1 The Computation Model

We consider an environment consisting of one or more virtual sites, and connected by a
virtual communication network. Every site can communicate with any other. Messages
may be delayed, or lost, but not duplicated, nor created by the communication network,

and they are always delivered in order.

The architecture of the distributed transaction system can be described by Figure 5.1. The
four basic components are Transactions, Distributed Transaction Managers (DTMs), (Lo-
cal) Transaction Managers (LTMs), and Atomic Objects. Each transaction is controlled
by and interacts with atomic objects through a single DTM. The DTMs may simulta-
neously control multiple independent transactions. The DTM in charge of a transaction
forwards object operations to the LTM local to the object. The LTMs are responsible for
managing their own objects. Objects are responsible for completing object operations on

behalf of transactions.

In the distributed transaction system model, atomic objects work exactly the same as
in the centralised model, and the communication protocol between the LTM and atomic
objects remains the same. However, the LTM accepts operations from DTMs, instead of

from transactions.

A distributed transaction T usually accesses several atomic objects resident at different
sites, but it has a “home site” — the site where it originated. 7' submits its operations to
the DTM at its home site, which is then known as the coordinator for that transaction. This
DTM subsequently forwards the operations to the LTMs in the appropriate sites, which
are then known as participants in the transaction. After an LTM becomes a participant

in the transaction, the coordinator establishes a connection with it. Thereafter, whenever

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 62

Transaction Object
Transaction — DTM L LTM
Transaction Object
Transaction Object
Trans%action —! DTM) LM
Transaction Object
Transaction Object
Transaction —| DTM LTM
Transaction | | Object

Figure 5.1: The Architecture of the Distributed Transaction System

there is access to an object at that site, the coordinator forwards the operation to the
participant LTM; the participant then forwards it to the appropriate object where the
operation will be performed. However, when an end_transaction request comes from a
transaction, a protocol is needed between the coordinator and participants to ensure that
the commit of a transaction is atomic over all participants. The general idea of 2-phase
commitment (2PC) has been developed to meet this requirement. Other such protocols
have been defined which vary with respect to the failures they can tolerate, the number
of communications that are needed, etc.[DS83]. In the rest of this section, we describe
how to make the 2PC protocol work together with the L2PC protocol to ensure atomic

commitment of distributed transactions.

5.3.2 Atomic Commitment Protocol

In the previous sections, we presented an L2PC protocol to ensure atomic commitment of

a transaction over all participant objects. In this subsection, we describe a protocol that

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 63

ensures atomic commitment of transactions over all participant LTMs in the distributed
transaction model. The protocol, referred as the distributed 2-phase-commitment (D2PC)

protocol, is described as a modification to the basic 2PC protocol.

To commit a transaction T:

1. The coordinator generates a timestamp ts(T) from its logical clock.

2. The coordinator sends a prepare-to-commit command with the timestamp and the

transaction identifier to each participant LTM.

3. After receiving the prepare-to-commit command, each participant LTM sends an
asking-for-vote command with the timestamp ts(T) to each participant object at its

site.

4, If all the votes received from participant objects are “commit”, the participant LTM

returns “success” to the coordinator; otherwise, it returns “failure”.

5. The coordinator receives responses and determines what action to take. If all replies
are “success”, it decides to commit the transaction; otherwise, it decides to abort

the transaction.
6. The coordinator propagates the decision to all participant LTMs.

7. Each participant LTM, after receiving the decision, sends an ACK to the coordinator

and forwards the decision to every participant object at its site.
8. The coordinator waits for ACK messages from participant LTMs.
Notice that the actions taken by a participant LTM are almost the same as the transaction
manager in the L2PC protocol, except:

1. The timestamp is forwarded from the coordinator, not generated by the LTM itself.

2. The final decision to commit or abort a transaction is made by the coordinator.
After making its local decision based on the replies from participant objects, instead
of propagating that decision to objects, an LTM reports its local decision to the
coordinator, and waits for the final decision from the coordinator. When it gets that

decision, it forwards it to every participant object at its site.

The actions taken by an object are not affected by this extension.

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 64

It is worth pointing out that the validation algorithm applied by the DLV method does
not require that transactions do their logical validation in timestamp order. This fea-
ture is important for the above protocol. Since in a distributed system, it is very likely
that a transaction with a smaller timestamp requests to validate later than a transaction
with a larger timestamp. Without this feature, such kind of requests would be rejected

automatically.

It is also worth pointing out that performing logical validation, waiting for the final deci-

sion, and applying updates are three indep ndent actions in the D2PC protocol, they need
not to be a single atomic one. An object «.n begin validating a new transaction as soon
as it has finished an earlier one. This i~ #n important feature of the D2PC protocol. If

an object cannot begin validating a new iransaction until the earlier one finishes its write
phase or gets the final decision, object concurrency and availability will be reduced greatly.

This is because getting the final decision involves communication between different sites.

5.3.3 Other Commitment Protocols

Herlihy [Her90] proposed two commitment protocols that are also based on the 2PC pro-
tocol. The first one, like the D2PC protocol, assigns timestamps to transactions at the
start of the first phase. However, unlike the D2PC protocol, its validation method requires
transactions to be validated in timestamp order; it therefore aborts transactions that try
to validate out of order automatically, thus causing unnecessary transaction aborts. The
second protocol has the advantage that it does not abort transactions with out-of-order
validation requests, because it chooses the timestamp for a transaction in the second phase,
i.e., after the coordinator has decided to commit the transaction. However, it can cause

incipient deadlocks, which are broken by timeout.

The major drawback of these two protocols is that they permit only one transaction at a
time to validate at any particular object, and an object is held by a transaction during
the whole process of its commitment. This reduces both object concurrency and object
availability greatly. The problem is caused by the concurrency control methods on which
the protocols are based. First, they require that transactions are validated in timestamp
order. Second, they require that the validation phase and write phase of a transaction are
atomic. The D2PC protocol does not have the problem since the DLV method does not

have such requirements.

Bacon [Bac93] proposed a two-phase-validation method that aims to provide greater ob-

ject availability by separating out the write phase of a transaction from the two phase

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 65

commitment protocol. An update manager is introduced to be responsible for the queue
of transactions that have been validated for update. If a transaction is validated success-
fully in the first phase, the participants do not need to apply the intention updates during
the second phase. Instead the validation manager applies to the update manager for a
timestamp for the transaction, and then informs each participant object of the decision.
Once a transaction has its updates guaranteed, these can be applied asynchronously at
participant objects. Objects are therefore held only during the validation, unlike the case
of Herlihy’s protocols that need to hold objects during the whole commitment process.
However, it still requires performing local validation and waiting for the final decision to

be an atomic action, thus reducing object concurrency in the validation phase.

5.3.4 Timestamp Generation

In the D2PC protocol, DTMs need to generate timestamps for transactions. Two things
need to be taken into account when designing a timestamp generation algorithm. First,
timestamps must be system-wide unique. Second, timestamps generated by different
DTMs at a time should not vary widely. Otherwise, transactions submitted to some
DTMs will have little chance to pass the logical validation because their timestamps are

too small.

Lamport’s method [Lam78] can be used to generate timestamps for transactions. Each
DTM is given a unique site number which is always used as the second part of timestamps
generated by the DTM. Each DTM also maintains a number counter, called timestamp
counter. To generate a timestamp, a DTM simply increases the timestamp counter, and
takes the resulting value as the first part of the timestamp. To compare two timestamps,
the first parts are compared; only if the first parts are equal, the second parts are compared.

In such a way, timestamps are ensured to be system-wide unique.

5.3.5 Recovery of Distributed Transactions

Recovery mechanisms for distributed transactions require understanding not only the fail-
ures which can occur at each site but also the failures which may occur in the communi-
cations between sites. There is a great variety of possible failures with communications.
However, modern communication networks are capable of eliminating most of them. In
a distributed system, it is usually assumed that there are two basic types of possible

communication error: lost messages and network partitions.

Dealing with network partitions is a harder problem than dealing with site crashes or lost

CHAPTER 5. GLOBAL ATOMICITY AND RESILIENCE 66

messages. Fortunately, in many computer networks partitions are much less frequent than
site crashes. Therefore, algorithms of several levels of reliability can be designed, which

are capable of dealing with the following failures, in order of increasing difficulty:

e class 1: site failures only.
e class 2: site failures and lost messages.

o class 3: site failures, lost messages, and network partitions.

The D2PC protocol is a modification of the basic 2PC protocol, hence they have the same
capability for dealing with failures. They can deal with failures in class 3, but may cause
objects to be blocked when the coordinator site crashes or communication failure occurs.
We are not going to discuss this issue further, for it is beyond the research of this thesis.

Ceri [CP84] gives a good description about how the 2PC protocol deals with failures.

5.4 Summary

In this chapter, the issue of global atomicity has been addressed, i.e., how to ensure that
transactions commit atomically over all participant objects. In the first section, an L2PC
protocol is described which ensures a transaction’s global atomicity in a centralised system.
In the second section it is extended to provide recovery after failure with loss of volatile

storage.

In the third section, a distributed transaction system model is established, and an atomic
commitment protocol for distributed transactions, the D2PC, is described and compared

with some other commitment protocols.

Both the L2PC and the D2PC protocols are designed based on the assumption that objects
use the DLV method for providing local atomicity.

Chapter 6

Constructing Atomic Objects and

Transactions

In the previous chapters, a concurrency control protocol, the DLV method, was presented
and verified, and a distributed transaction model was described. In this chapter, the
approach taken in this thesis for implementing the user-defined atomic data types and the

"method for constructing transactions are described.

6.1 Atomic Data Types

An atomic data type, like an ordinary abstract data type, provides a set of objects and a set
of operations. As with ordinary abstract data types, the operations provided by an atomic
data type are the only means for users to access or manipulate objects of the type. Unlike
regular types, however, an atomic data type provides serialisability and recoverability for
transactions that use objects of the type. That is, a regular type defines the behaviour
of objects in a sequential and reliable environment, while an atomic data type defines
the behaviour of objects in a concurrent and unreliable environment. Therefore, more
information needs to be maintained and more operations need to be defined in atomic

data types.

Definition of an atomic data type needs to represent application information, synchro-
nisation information and recovery information; to implement synchronisation operation,
recovery operation and object operations in terms of their representations; and to specify
the semantics of object operations. Application information is the data an application

intends to maintain; other kinds of information are used for ensuring the consistency of

67

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 68

application information in a concurrent and unreliable environment. For example, for a
bank account object, a variable balance is used to represent the current balance of the
account. If a two-phase locking protocol is used for providing concurrency control, then
data needs to be maintained to indicate the current locks set on the object as well as their
modes and their holders. Data also needs to be maintained for transaction recovery, for
example, through recording the object state before a transaction starts so that its effect,

if required, can be removed by restoring this state.

Obviously, the concurrency control method used by an object affects what kind of synchro-
nisation and recovery information needs to be kept. Using a two-phase locking protocol,
an object needs to keep locks set on it; using an optimistic method, an object needs to
keep shadow copies and accessing sets for every transaction. The concurrency control
method can also affect the representation of application information, consequently object
operations. For example, in order that results of operations can be used for scheduling
transactions, an object in Argus is implemented as a history (log). The balance of a bank
account is represented by a number and a history (log), with the number representing the
balance at some previous stage and the history representing the operations executed since
then.

6.2 Approaches

Approaches taken for defining atomic data types can be divided into three classes: im-
plicit approach, explicit approach and hybrid approach, according to whether the system
or programmers are responsible for implementing the synchronisation and recovery oper-
ations. In an implicit approach, programmers need only describe the semantics of object
operations and implement object operations based on the assumption that there is no
concurrency and no failure. It is the system which is responsible for implementing the

synchronisation and recovery operations by using the semantics of objects.

In an explicit approach, as well as object operations, programmers need also to implement
the synchronisation and recovery operations themselves. The system only provides some

support to make the implementation easier.

In a hybrid approach, the work of implementing the synchronisation and recovery opera-
tions is shared by the system and programmers. For example, transaction synchronisation
in Argus is done by programmers, but committing or aborting a transaction is done by
the system. That is, programmers are responsible for deciding whether an operation can

be executed immediately or has to be retried, while the system is responsible for making

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 69

the outcome of a committed transaction become permanent and removing the effect of
an aborted transaction. A special kind of variable is provided by which the system and

programmers communicate with each other according to a predefined protocol.

Each approach has its advantages and disadvantages. The implicit approach makes the
definition and implementation of user-defined atomic data types simple, but it is not
flexible. The strategy for synchronisation and recovery is decided by the system, which
may not be suitable for all applications. The explicit approach is more flexible but requires
more work on the part of programmers. Using an explicit approach programmers have
control over what level of concurrency a type supports, and can choose the synchronisation
and recovery method within a certain range. However, this flexibility has its potential
penalties, since careless programming could lead to chaos as objects are manipulated
without being supervised by a concurrency controller. How much flexibility a hybrid
approach can provide and how much work on the part of programmers it requires depend
on how the work of implementing synchronisation and recovery is shared by the system

and programmers,

6.3 An Implicit Approach

The aim of this research is to lessen the programmer’s burden in implementing atomic

data types, thus an implicit approach is taken for their definitions.

To support an implicit approach, the system must provide the synchronisation and recov-
ery operations for atomic objects. This requires that it should be possible to implement
the concurrency control method used by the system independently from atomic objects.
Furthermore, the concurrency control method should be able to use the semantics of object
operations to achieve greater concurrency. The DLV method meets these requirements. It
can be implemented without knowledge of the individual objects which will make use of

it, and can synchronise transactions according to the semantics of object operations.

Supporting type-specific concurrency in an implicit approach requires that a mechanism

should be provided for programmers to specify the semantics of object operations.

The system designed in this thesis provides four kinds of mechanisms to support the im-
plicit approach. First, a special type, called Scheduler, is presented for providing the syn-
chronisation and recovery operations. It is an implementation of the DLV method. User-
defined atomic data types can be derived from Scheduler by using the type-inheritance

facility available in object-oriented languages. In such a way, programmers can define

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 70

atomic data types without implementing the synchronisation and recovery operations
themselves. Second, a small language is provided for programmers to specify the se-
mantics of object operations in a declarative way. Third, a preprocessor is implemented.
A difficulty particular to an implicit approach is how the system can get the information
necessary for synchronisation and recovery, because programmers should not be asked to
provide it. By preprocessing atomic type definitions, the preprocessor adds some code in
object operations so that the information necessary for synchronisation and recovery can
be collected automatically when object operations are invoked by transactions. Fourth,
a transaction mechanism is provided by which user transactions can be constructed by
programmers and controlled by the system. The transaction mechanism starts, commits

or aborts transactions according to the D2PC protocol.

In the rest of this chapter, we first describe the language developed for specifying the
semantics of object operations. Then following an introduction to the concepts of object
orientation, we discuss how type inheritance can be used to construct user-defined atomic
data types. Finally we discuss the design of the transaction mechanism and the method

for constructing transactions through that mechanism.

6.4 Representing the Semantics of Operations

A major aim of atomic data types is to provide great concurrency by making use of the
semantics of object operations. Unfortunately, introducing application semantics may
make the implementation of atomic data types very complicated if an unsuitable method
is used to represent the semantics. This section discusses this issue and introduces the

method used in this thesis for representing the semantics of object operations.

6.4.1 Levels of Semantics

When specifying how object operations may interact, the amount of concurrency that can
be permitted depends in part on how much detailed knowledge is available concerning the
semantics of operations. One can take advantage of increased knowledge about operations
being performed in order to achieve greater concurrency while still providing serialisability.
The semantic knowledge used by concurrency control methods can be classified into five

levels; each level may include more semantics, and hence may permit more concurrency.

1. Read/Write: Only the semantics of read and write is used in this level.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 71

2. Type-Specified: Type-specific operation compatibilities may be specified in this level.
The compatibilities specify the commutativity of object operations which must be

true for all possible parameters and all possible object states.

3. Object Item: In many cases, the particular entities which must be controlled are
discrete and can be determined by the parameters of object operations. At this
level, compatibilities can be defined by taking into account the object item upon

which the operation will be performed.

4, Operation Result: In some cases, distinguishing operations that fail from those that
succeed may permit more concurrency than protocols not making this distinction.

This distinction can be used for specifying compatibilities at this level.

5. Object State: In a state based concurrency control protocol, the object state may be

used for providing greater concurrency.

6.4.2 Two Different Ways

Making use of the semantics of operations to provide great concurrency can be imple-
mented in two ways. One is to combine the synchronisation into the implementation of
object operations, so that operation semantics can be used directly to make synchroni-
sation decisions by operations without needing to be expressed explicitly. In this way,
more information can be used for synchronisation, such as the object state, local vari-
ables, operation’s parameters and operation’s results. Therefore, greater concurrency may
be achieved. The disadvantage of this approach however is obvious. Firstly, it makes the
implementation of object operations become complicated. Secondly, there exist potential
dangers, since careless programming could lead to chaos. Finally, changing the level of
semantics used for synchronisation, or changing the synchronisation and recovery scheme

would require the re-implementation of object operations.

Another way to make use of the semantics is to let programmers express it explicitly in
some convenient way, and for the concurrency controller to use it when performing syn-
chronisation and recovery. In this way, the implementation of object operations will not be
affected by changes to the synchronisation or recovery scheme, nor by changes to the level
of semantics used for synchronisation. However, a suitable form of expressing semantics
must be provided in this case. It should be easy to use and have strong expressibility in

order to represent most of the semantics of object operations.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 72

6.4.3 The Language

The concurrency control protocol used by objects for providing local atomicity in this
thesis is the DLV method. The amount of concurrency a type permits in this case depends
on the conflict relation provided by programmers. The smaller the conflict relation is,
the more concurrency a type will permit. Therefore, the language for specifying conflict
relations should let programmers represent enough semantics so that conflict relations
can be specified concisely. In this thesis, a very small language is developed for the
purpose. The language’s syntax is given in Appendix A. The language can represent the
first four leveis of semantics given in the last subsection. The fifth level of semantics is
not included since the DLV method is a conflict-based protocol which does not use that

kind of information for synchronisation.

When specifying the conflict relation of an atomic data type, an operation is represented
by its name and result. The result of an operation is simply distinguished as either failed
or succeed, since usually only this distinction makes a significance different to conflict
relations, The object item that an operation acts on can also be taken into account if
applicable. The relationship between two object items can be classified into: =, <, >, <,

>, or #. The default comparison is done according to lexicographical order. However,

programmers can provide their own comparison operations.

For example, suppose there are two operations: oper! and oper2 (they are not necessarily
different). If operl invalidates oper2 in all cases, then this conflict can be represented as:
((operl, any); (oper, any); any).
If operl invalidates oper2 only when they act on the same object item, then this conflict
can be represented as:
((operl, any); (oper2, any); =).
If operl invalidates oper2 only when they act on the same object item and both of them
succeed, then this conflict can be represented as:

((oper1, succeed); (oper2, succeed); =).

Sometimes, object operations can be partitioned into classes, and conflict relations can be
specified in terms of these classes, hence specifications become more tidy and clear. To
support this kind of specification, the language permits specifying several invalidations in
one expression. For example, suppose there are two sets of operations, say (oper!!, operi2,
oper13) and (oper21, oper22). If an operation in the first set invalidates all operations
in the second set when they act on the same object item, then this invalidation can be

represented as:

((oper1l1, any)/(operl2, any)/(operld, any); (oper2l, any)/(operl?, any); =).

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 73

6.4.4 An Example

In this subsection we show the expressive power of the language by using an example.
Consider a directory data type that is intended to provide a mapping between text strings

and capabilities for arbitrary objects. The usual operations are provided:

e Insert(str, capa) inserts capa into the directory with key string str and returns ok or

duplication.

e Delete(str) deletes the capability stored with key string str from the directory and

returns ok or unexist,

e LookUp(str) searches for a capability in the directory with key string sir and returns

the capability capa or unexist.

e Dump() returns a vector of <str,capa> pairs with the complete contents of the

directory.

Suppose that one wishes to specify the Directory type so as to permit serialisation of
transactions that perform operations on Directories. If the language for specifying conflict
relations only permits operations to be classified as read and write, then the conflict relation

of the Directory can be described as follows:

(Insert, Insert) (Delete, Insert)
(Insert, Delete) (Delete, Delete)
(Insert, LookUp) (Delete, LookUp)
(Insert, Dump) (Delete, Dump)

The problem with using such limited semantic information is that concurrency is restricted
unnecessarily. For example, a transaction performing a LookUp(“John”) operation will be
forced to abort, if another transaction performs a Delete(“Guang”) operation concurrently
and is validated earlier. The outcome of LookUp(“John”) does not depend in any way on

the eventual outcome of Delete(“Guang”); this abort is unnecessary.

The unnecessary loss of concurrency in this example is caused by the lack of semantic
information in the specification of the conflict relation. By using the language proposed in
the last subsection, this problem can be alleviated. This is because more knowledge about
operations can be taken into account when specifying the conflict relation, for example
the object item an operation acts on and the result of an operation. The conflict relation

of the Directory can be described in the language as follows:

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 74

Delete, succeed);

Insert, succeed); (Insert, succeed); =) ((); (Insert, failed); =)
Delete, failed); =) (()s (
Insert, succeed); (LookUp, failed); =) ((Delete, succeed); (LookUp, succeed); =)
((); (

Insert, succeed); (Dump, any); any)

Delete, succeed); (Delete, succeed); =)

3

((

((Insert, succeed);
((

((Delete, succeed); (Dump, any); any)

By using this conflict relation to validate transactions, a system can permit much more
concurrency than by using the old one. For example, in the old one, an Insert operation
always invalidates another Insert operation; while in the new one, an Insert operation
invalidates another Insert operation only when both of them intend to insert a capa into
the directory with the same key string and both of them succeed. Therefore, several

concurrent transactions that perform Insert operations may all pass their validations.

6.5 Concepts of Object Orientation

Object orientation provides better paradigms and techniques for constructing reusable
software components and easily extensible libraries of software modules. The advantages
of object orientation are mostly provided by three fundamental concepts: abstract data
types, inheritance and object identity. This section provides a brief introduction to these
concepts which will be used within the system to implement the mechanisms for supporting

the implicit approach.

6.5.1 Data Abstraction

Data types describe a set of objects with the same representation. There are a number
of operations associated with each data type. Abstract data types extend the notion of a
data type through “hiding” the implementation of the user-defined operations associated
with the data type. An abstract data type specification describes a set of objects not
by an implementation, but by the list of operations available on the objects, and the
formal properties of these operations. Abstract data types provide a mechanism whereby
a clear separation is made between the interface and implementation of the data type. The
implementation of an abstract data type is hidden. Hence, alternative implementations

could be used for the same abstract data type without changing its interface.

A data type is thus viewed as a set of operations offered to the outside world. Using ab-
stract data type descriptions, users do not care about what a data type is; what matters
is what it has — what it can offer to other software elements, i.e. the implementation is

hidden from users of the data type. This information hiding capability allows the devel-

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 75

opment of reusable and extensible software components. Abstract data type descriptions
preserve each module’s autonomy in an environment of constant change, every component
must mind its own business. It must only access other components’ data structure on the
basis of their advertised properties, not the implementation that may have been chosen at

a certain point of system evolution.

Languages that support abstract data types provide constructs to directly define data
types and the operations used to manipulate instances of the data types. In addition,
all manipulations of instances of the data type are done exclusively through operations
associated with the data type. Class is such a construct most commonly provided in

object-oriented programming languages, e.g. C++ [Str86], Eiffel [Mey92].

6.5.2 Inheritance

Progress in either reusability or extensibility demands that users take advantage of the
strong conceptual relations that hold between classes: a class may be an extension, spec-
ification or combination of other classes. Inheritance provides users the support to record

and use these relations.

Inheritance achieves software reusability and extensibility. Through inheritance users can
build new classes on top of an existing hierarchy of classes. This avoids redesigning and
recording everything from scratch. New classes can inherit both the behaviour and the
representation from existing classes. Inheriting behaviour enables code sharing (and hence
reusability) among classes. Inheriting representation enables structure sharing among
data objects. The combination of these two types of inheritance provides a very powerful
software modelling and development strategy. Inheritance also provides a very natural
mechanism for organising information. It “classifies” objects into well-defined inheritance

hierarchies.

If class B inherits from class A, all the features of A are automatically available in B,
without any need to further define them. B is free to add new features for its own specific
purposes. An extra degree of flexibility is provided by redefinition, which allows B to take
its pick in the implementations offered by A: some may be kept as they are, others may

be overridden by locally more appropriate ones.

The mechanism that allows a class to inherit from more than one immediate parent is
called multiple inheritance. With multiple inheritance, users can combine several existing
classes to produce combination classes that utilise each of their multiple super classes in

a variety of usages and functionalities.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 76

6.5.3 Object Identity

Object identity is a property of an object that distinguishes the object from all other objects
in the application. Using object identity, users can dynamically construct arbitrary graph-

structured composite or complex objects, objects that are constructed from subobjects.

In conventional programming languages, identity is realised through memory addresses.
In databases, identity is realised through identifier keys. User-defined names are used in
both languages and databases to give unique names to objects. Each of these strategies

compromises identity, and corrupts the computational model of the language.

In a completely object-oriented system, each object will be given an identity that will
be permanently associated with the object, immaterial of the object’s structural or state
transitions. Identity is internal to an object. Its purpose is to provide a way to represent
the individuality of an object independently of how it is accessed, what it contains, or
where it resides. With object identity users can referentially share objects. Object identity
provides the most natural modelling primitive, allowing one object to be a sub-object of
multiple parent objects. Without object identity, it would be awkward (if not impossible)

to assign autonomous objects as values to instance variables.

6.5.4 Summary

This section provided a brief introduction to object orientation. Object orientation pro-
vides better paradigms and techniques for constructing reusable software components and
easily extensible libraries of software modules. This enhances the extensibility of programs

developed through object-oriented methodologies.

The advantages of object orientation are mostly provided by three fundamental concepts:
abstract data types, inheritance, and object identity. An abstract data type describes a
collection of objects with the same structure and behaviour. Abstract data types extend
the notion of data types through hiding the implementation of the user-defined operations
associated with the data type. Through inheritance users can build new software modules
on top of an existing hierarchy of modules. Inheriting behaviour enables code sharing (and
hence reusability) among software modules. Inheriting representation enables structure
sharing among data objects. Object identity is that property of an object that distin-
guishes each object from all others. With object identity objects can contain or refer to

other objects.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 77
6.6 Constructing Atomic Objects

Besides specifying object representation and object operations, in order to construct
atomic objects a programmer must implement the functionality of local atomicity. This
is a difficult task. In order to lessen the programmer’s burden, this thesis proposes an
implicit approach for implementing atomic data types. That is, programmers construct
objects assumed in a serial and reliable environment and depend on the system to provide
synchronisation and recovery. A problem of this approach is how to integrate system-
provided synchronisation and recovery into different kinds of atomic objects. That is, how
to ensure type-specific concurrency control is still available within such an approach. This

is the topic of this section.

6.6.1 The Type-Inheritance Method

One of the key concepts of object orientation is type inheritance, which permits new types
to be derived from, and inherit the properties of, old types. By using this concept, a system
can provide an implicit approach for implementing atomic objects while still permitting
objects to support type-specific concurrency. The method is quite straightforward. A
special type is constructed to provide a specific concurrency control protocol. User-defined
types can then inherit this underlying concurrency control facility by use of the type-
inheritance facility available in object-oriented languages. By allowing particular types
to provide their own operation semantics, objects can provide type-specific concurrency
if the concurrency control mechanism can make synchronisation decisions based on these
semantics. It is obvious that not every concurrency control protocol can be used for the
purpose, but only those protocols that can be implemented independently from objects

and that can use the semantics of object operations for providing type-specific concurrency.

In the system designed in this thesis, a special type called Scheduler is constructed. It is an
implementation of the DLV method. To provide local atomicity, user-defined atomic types
inherit this method from the Scheduler by making use of the type-inheritance facility. The
semantics of object operations is specified by users in the form of conflict relations (see
Section 6.4). The logical validation of an object is done according to the conflict relation

of the object, that is, the semantics of the object’s operations.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 78

6.6.2 The Interface of the Scheduler

The interface of the Scheduler is shown in Figure 6.1. It is assumed that there is only
one Scheduler type in a system so that atomic objects would provide compatible local

atomicity, consequently making it possible to ensure global atomicity.

class Scheduler {

public:
Scheduler();
int create(Tid);
int invoke(Tid);
int validate(Tid);
int object_commit(Tid);
int object_abort(Tid);

ks

Figure 6.1: The Interface of the Scheduler

The constructor Scheduler should be invoked to initialise an object whenever it is declared.

Before any operation can be executed on it, an atomic object should be activated. This
can be done in either of the following ways: by calling the invoke operation, if the object
exists; or by calling the create operation, otherwise. After an atomic object is activated,
the calling transaction is registered with the object, so that it can call operations defined

on the object.

The operation validate should be called when the transaction manager intends to ask
participant objects to vote for a transaction. The walidate operation performs logical
validation according to the conflict relation of the object. Conflict relations are specific to

atomic data types.

When the transaction manager has decided to commit a transaction, it should ask every
participant object to commit that transaction locally by invoking the object_commit oper-
ation. This operation applies the transaction’s intention updates on the object state. It
first does a physical validation to check whether the shadow copies created for the trans-
action are still valid. If the validation result is accept, it merges the shadow copies into
the object state. Otherwise, it re-executes the data operations done by the transaction on

the object, and then merges the new created shadow copies into the object state.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 79

The object_abort operation is responsible for aborting a transaction locally, é.e. undoing all
the effects of a transaction on an object. By using the DLV method, aborting a transaction

can be done by simply discarding the shadow copies created for the transaction.

In summary, the validate operation performs the logical validator’s work; the object_commit
and object_abort operations perform the write phase manager’s work; while other opera-

tions perform the cooperation manager’s work (see Section 3.3).

6.6.3 Constructing User-Defined Atomic Data Types

This subsection shows how user-defined atomic data types can be constructed through
a simple example, a bank account. Assume that a bank account has an associated set
of operations: credit money to an account, debit money from an account, and check the

balance of an account. To construct an atomic data type, a programmer needs to define

class Account::Scheduler
{
Money amount;
public:
Account();
int credit(Money);
int debit(Money);
Money check();
conflict relation:
((credit, succeed); (check, succeed); =)
((debit, succeed); (check, succeed); =)
((debit, succeed); (debit, succeed); =)
((credit, succeed); (debit, over); =)

b

Figure 6.2: The Class Account

the object state and object operations in a serial environment as well as the conflict
relation of the type. The functionality required by an account may be represented by the
class account definition (illustrated in Figure 6.2). Here, the amount is used to record the
current balance of the account, followed by the operations provided by the type and then

the conflict relation. Notice that the concurrency control facility need not be defined here

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS

b

int

}

int

b

Account::Account()

amount = 0;

Account::credit(Money money)

amount = amount - money;

return Success;

Account::debit(Money money)

if (amount — money >0)

amount == amount — money;
return Success;
else

return Overdraw;

Money Account::check()

{

}

return amount;

Figure 6.3: The Implementation of Class Account

80

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 81

for it has been inherited from Scheduler.

The conflict relation has four items: a successful credit invalidates a successful check; a suc-
cessful debit invalidates a successful check; a successful debit invalidates another successful
debit; and a successful credit invalidates an attempted overdraft. The implementation of

object operations is illustrated in Figure 6.3

In the account example, it is obvious that little extra work is introduced to implement a

user-defined atomic data type compared with implementing it in a serial environment.

6.6.4 Remarks

The type-inheritance facility of object-oriented languages provides a very powerful means
of constructing objects that inherit properties of higher level objects. This thesis makes
use of this facility to provide local atomicity for user-defined atomic data types. The
approach permits local atomicity to be added to objects in a very simple and flexible
manner. Programmers can change the concurrency level of a type without re-implementing
object operations. Changes in the implementation of the special type Scheduler would not
affect atomic data types which make use of it. The use of type inheritance has also enabled
the design and implementation of a concurrency control scheme that is highly adaptable

and flexible without designing a new language or system.

Like our approach, Arjuna [Par88] and Avalon [DHWS88] also take the type-inheritance
approach for implementing user-defined atomic data types. However, there is a large dif-
ference. We use type inheritance to directly provide a synchronisation mechanism for
user-defined atomic data types. On the contrary, Arjuna and Avalon use type inheritance
to provide facilities by which programmers themselves implement synchronisation mecha-
nism for user-defined atomic data types. Our approach, Avalon and Arjuna are all good
examples illustrating that type inheritance provides an effective way to construct atomic

data types.

6.6.5 Summary

In this section, we described an approach by which atomic data types can be constructed.
Generally speaking, to implement an atomic data type, there are three things that need

to be done: implementing the serial specification, i.e. the object representation and

'In this example, it is supposed that data persistence is supported by the language. The implementation

of this property is discussed in Chapter 8.

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 82

object operations in a serial environment; implementing the atomicity operations, i.e. the

operations used for providing local atomicity; and describing the conflict relation.

To enable user-defined atomic data types to be implemented easily, a special type called
Scheduler is implemented by the system, in which all the atomicity operations are im-
plemented. User-defined atomic data types can inherit these operations from Scheduler
to provide local atomicity, instead of implementing these operations themselves. Taking
such an approaéh, implementing user-defined atomic data types becomes similar to imple-

menting ordinary data types, except that users need to specify the conflict relation of the

type.

Only the interface of the Scheduler is described in this section, its implementation will be
addressed in Chapter 7.

6.7 Constructing Transactions

In the last section, we showed how user-defined atomic data types can be defined and
implemented. In this section, we describe how transactions that access atomic objects can

be constructed.

Transactions in this thesis are implemented as objects. Thus a class, called Transaction,
is constructed, its instances being transactions. Programmers construct a transaction by
declaring an instance of Transaction and encapsulating computations by the primitive

operations provided by Transaction.

6.7.1 The Transaction Model

In this thesis, a transaction is assumed to be a passive entity that controls the outcome of
the operations it encapsulates. Each operation accesses only atomic objects that provide

local atomicity by using the DLV method.

There are three primitive operations which may be used to declare and control a transac-
tion: begin_transaction, commit_transaction and abort_transaction. The begin_transaction
operation starts a transaction that may be terminated by either the commit_transaction or
the abort_transaction operation, A transaction terminated by the abort.transaction opera~
tion will definitely be aborted, its partial results will be removed. A transaction terminated
by the commit_transaction operation is not guaranteed to be committed successfully, but

programmers will be told the outcome of the commitment. During the commitment of

‘

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 83

a transaction, i.e. when performing the commit_transaction operation, transaction man-
agers and participant objects cooperate with each other according to the D2PC protocol
to ensure the transaction’s atomicity over all participant objects. The outcome of the com-
mit_transaction operation is either a success, when the effects of the transaction become

permanent; or a failure, when the effects of the transaction are removed.

6.7.2 The Transaction Class

In this thesis, transactions are declared and managed as objects. A class called Transac-
tion is constructed, which provides the three primitive operations required to declare and

control transactions: begin_transaction, commit_transaction and abort_transaction.

class Transaction

{

private:
Vote prepare();
void commit();
void abort();
public:

Transaction();
Trans_Status begin_transaction();
Trans_Status commit_transaction();

Trans_Status abort_transaction();

b

Figure 6.4: The Transaction Class

Besides the three primitive operations, the class declaration in Figure 6.4 also shows some
private operations (prepare, commit and abort) which are used to make up the first and
the second phase of the D2PC protocol.

6.7.3 Constructing Transactions

To construct a transaction, programmers need to declare an instance of the Transaction

class in a program, and then encapsulate computations by the begin_transaction operation

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 84

Account John, Guang;

Transaction T;

T.begin . transaction();
if (John.debit(1000) == Success)
{
Guang.credit(1000);
T.end _transaction();
}
else

T.abort_transaction();

Figure 6.5: A Transfer Transaction

and the commit_transaction operation. If during the execution of the computation it
becomes necessary to abort the transaction then the abort_transaction operation is invoked.
After a transaction is completed, the instance of Transaction can be reused to construct

new transactions. However, two transactions should not be interleaved.

Figure 6.5 shows a transaction that intends to transfer some amount of money from one
account to another. At first it tries to debit £1000 from account John, and if the debit

succeeds, it credits £1000 to account Guang and commits; otherwise, it aborts.

6.7.4 Remarks

In this thesis, transactions are implemented as objects. There are also other approaches
to constructing transactions. One approach is to produce a programming language that
includes syntactic extensions which correspond to transaction declarations by either defin-
ing a new, or modifying an existing programming language. The resulting transaction
syntax may then be used by the language’s compiler to generate the necessary support for
transactions. Another approach is to modify the underlying operating system to provide
a set of system calls which support transactions. A third approach is a mixture of the pre-
vious two, where a language provides syntactic constructs but relies on support provided

by the underlying operating system.

Each implementation approach has its advantages and disadvantages. For instance, an

approach based on extending a language requires modifications to the compiler which

CHAPTER 6. CONSTRUCTING ATOMIC OBJECTS AND TRANSACTIONS 85

may be non-trivial, yet the resulting transaction syntax is likely to be integrated into the

language and as a result could be the easiest of the approaches to use.

A problem with language or operating system approaches is that they are closely asso-
ciated with a particular concurrency and recovery method, and as a result are difficult
to generalise to other methods. Implementing transactions as objects makes it easy to
modify them to use new concurrency and recovery methods, or to support different imple-
mentations at the same time, since only the Transaction class needs to be re-implemented
without any need to change its interface. Therefore, user programs that use transactions

need not be changed at all.

A disadvantage of this approach is that checking the mismatch between begin_transaction
and either commit_transaction or abort.transaction can only be done at run-time. If a
language approach is employed however the compiler for the language can check the syntax

of the transaction.

6.8 Summary

This chapter has described the approach taken in this thesis to construct atomic data
types and transactions, and showed that in this approach both user-defined atomic data

types and transactions can be easily constructed.

The approach‘is based on the concepts of object orientation. A special type called Sched-
uler, which provides the atomicity operations needed by atomic objects, is defined and
implemented by the system. User-defined atomic data types can inherit these atomicity

operations from it directly.

A small language is developed for the purpose of specifying conflict relations of objects.
The language permits a lot of the semantics of object operations to be represented when

specifying conflict relations, hence great concurrency may be achieved.

Transactions are treated as objects in this thesis. A Transaction class is defined and
implemented by the system; its instances therefore are transactions. To construct a trans-
action, programmers need only to declare a transaction and encapsulate computations by

the primitives provided by the Transaction class.

It is claimed that implementing atomic data types in such an approach is as easy as

implementing them in a serial environment.

Chapter 7

A Prototyping Implementation

This chapter shows how the distributed transaction model and the special type Scheduler
designed in the previous chapters can be implemented in an object-oriented language C++.

The methods to interpret, represent and make use of conflict relations are also described.

A distributed transaction system consists of several virtual sites, connected by a virtual
communication network. Each virtual site contains a distributed transaction manager
(DTM), a local transaction manager (LTM), and some atomic objects. The LTM is re-
sponsible for coordinating local atomic objects, while the DTM is responsible for coordi-
nating LTMs to ensure that the commitment of a transaction is atomic over all participant
objects. The LTM of a site communicates with local atomic objects according to the lo-
cal 2-phase commitment protocol (L2PC). The DTM of a site communicates with LTMs
according to the distributed 2-phase commitment (D2PC) protocol.

For easy understanding, we first describe the implementation in a distributed system in
which an object can invoke operations on remote objects in the same way as on local
objects, and object operations can access objects concurrently without interfering with

each other. Then we describe how these assumptions can be implemented.

7.1 The Scheduler

The approach taken in this thesis to implement user-defined atomic data types is to define
a special type, called Scheduler, in which all atomicity operations needed for providing
local atomicity are implemented. User-defined atomic data types can inherit atomicity
operations directly from Scheduler to provide local atomicity for their objects. The Sched-

uler interface was presented in Chapter 6. We describe its implementation in this section.

86

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 87

7.1.1 The Definition

To provide local atomicity, an object needs to record information about transactions that
share the object. The read phase manager (RPM) of an object maintains for each trans-
action a performed-operation table (POT), and an accessed-object table (AOT) with four
sets: a read set, a write set, a create set and a delete set. The POT is used to record all
operations that have been invoked by a transaction on the object with their parameters
and results. The read set is used to record all physical objects that a transaction has read,
and the write set to record all physical objects that a transaction has written. The create
set is used to record the new created objects, and the delete set to record the deleted
objects. The information recorded in the POT and the information recorded in the AOT
will be used later by the logical validator (LOV) and the physical validator (PHV) respec-
tively to validate transactions. Further, whenever a transaction begins, the RPM needs to
record the timestamp of the latest committed transaction. The information is necessary

for transaction validation.

The Scheduler and some other related types are defined in Figure 7.1 and Figure 7.2. The
POT is represented by the state variable event_table. The AOT is implemented by the
following state variables: read_set, write_set, create_set and delete_set. The state variable

last_committed is used to record the timestamp of the latest committed transaction.

State variables pending_queue and committed_queue play a very important role in the
dual-level validation (DLV) method. Both the LOV and the write phase manager (WPM)
perform their functions based on them. An important property of the DLV method is that
transactions are committed in their timestamp order. This property can be provided easily,
if we require that at every object transactions are validated in their timestamp order, and if
we make the validation phase and the write phase become an atomic operation. However,
this would reduce object concurrency and availability greatly as pointed out in Chapter
5. Therefore, it is desirable, especially in a distributed transaction system, to permit
transactions to be validated in an arbitrary order and to separate the validation phase

from the write phase. We realise this by using the pending.queue and commitied_queue.

The algorithm works in the following way. The LOV validates a transaction: if validation
succeeds, it puts the transaction in the pending_queue with the status valid and begins
to validate another transaction; if validation fails, the transaction is aborted. When

receiving the final decision about a transaction, the cooperation manager (COM) sets the

CHAPTER 7. A PROTOTYPING IMPLEMENTATION

struct Trans_Status {
Status state;
Tid tid;
Timestamp timestamp;

}

class Queue {

public:
Queue(int);
int insert(Tid, Status);
int remove(void);
int change status(Tid, Status);
Tid get_next(int);
Tid get_head(void);
int location(Tid);
protected:
Trans_Status queue[MAXTRANS];
int head;
int tail;
int size;

}s

struct Trans_Idx {

Tid tid;
Oid oid;
int transIndex;

Timestamp committed;

}

struct Event {

void* (*func)(...);
void *argptr;
char *funcname;
char *rslt;

I8

Figure 7.1: Types Used by the Scheduler

88

CHAPTER 7. A PROTOTYPING IMPLEMENTATION

struct Read_Set {

Qid
Path
};

struct Write_Set {

Oid

Path

Oid
J§

class Scheduler {

public:

int

int

long

int

int
protected:

Queue

Queue

Trans Idx

Read_Set

Write_Set

Oid

Oid

Event

Timestamp

void

void

int

b

oid; -
path;

oid;
path;

shadow;

Scheduler(int, int);
trans_regis(Tid);
trans_deregis(Tid);
validate(Tid);
object_commit(Tid);
object_abort(Tid);

pending_queue;

committed _queue;

trans_ idx[MAXTRANS];

read setfMAXTRANS];

write_set{ MAXTRANS];

create_set MAXTRANS];

delete_set MAXTRANS];
event_tablef]MAXTRANS]|[MAXEVENTS];
last_committed;

oper_put(Tid, void* (*)(...), void*, char*, int);
mslt_put(Tid, char¥*, char*);

check(Event[], Event[]);

Figure 7.2: The Definition of the Scheduler

89

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 90

transaction’s status to commit or abort accordingly. Meanwhile, the WPM checks the
pending_queue from time to time to see whether the status of the transaction at the head
of the pending_queue has become abort or commit. If it has, the WPM commits or aborts
it accordingly, then removes it from the pending_queue. If a transaction is committed, it

is put in the committed_queue.

This implementation ensures that transactions are committed in their timestamp order,
although it permits transactions to be validated in an arbitrary order. This is because the
WPM only commits a transaction when it becomes the head of the pending_queue, and

transactions are maintained in the queue in their timestamp order.

Furthermore, this implementation makes validating a transaction, getting the final decision
about a transaction and applying the updates of a transaction into three independent
actions. Assoon as the LOV has finished validating one transaction, it can begin validating
another without needing to wait for the completion of the first. A transaction that has
got its final decision but has not become the head of the pending queue needs to be held
until all transactions in front of it have been completed. It is worth pointing out, however,
that the application program does not need to wait for the completion of a transaction. It

can continue its work immediately after receiving the final decision about the transaction.

7.1.2 Validating a Transaction

To validate a transaction T, the LOV needs to check whether other transactions have
invalidated 7. Two kinds of transactions may invalidate T: transactions that committed
after T began, and transactions that were validated after T began but have not yet com-
mitted and are older than T. The first kind of transactions should have been recorded
in the committed_queue, and the second kind of transactions, in the pending.queve. In
the example shown in Figure 7.3, where transaction t15 is being validated, t3 and t4 are

examples of the first kind of transactions, and t11 and t12 are examples of the second
kind.

On the other hand, the LOV needs to check whether T would invalidate any transaction
that has already passed its validation. Transactions that may be invalidated by T are
those that have passed their validations but have not yet committed and are younger than

T. In the example shown in Figure 7.3, t13 and t14 are such kind of transactions.

Furthermore, the LOV needs also to check whether the latest committed transaction is
younger than T. If it is, the validation fails because transactions must be committed in

their timestamp order. This check can be done by comparing 7’s timestamp with the

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 91

last_committed: 122

the Committed queue: the pending queue:

t1 t2 t3 ta t11 t12 t13 ti4
101 102 111 122 131 142 152 161
commit | commit | commit | commit valid | valid | valid | valid

Transaction being validated: t15 with timestamp 151
The last_committed = 102 when t15 began

check 1: last_committed >151 ?

check 2: does t3 or t4 invalid t157?
does t11 or t12 invalid 157

check 38: does t15 invalid t13 or t147?

If all of the answers to the three checks are NO, then t15 is valid, and the

pending_queue becomes: the pending-queue:

t11 tl2 ti5 t13 t14

131 142 151 152 161

valid | valid | valid | valid | valid

Figure 7.3: Validating a Transaction

last_committed variable. In the example shown in Figure 7.3, last_committed = 122, which

is smaller than the timestamp of transaction t15, and hence t15 passes this check.

To check whether a transaction 7} may invalidate another transaction T3, the LOV needs
simply to check whether any event in the event_table of 1 may invalidate any event in the

event_table of Ty according to the conflict relation of the object.

7.1.3 Recording Events

One responsibility of the RPM is to record the events of a transaction into its event_table.

The information in this table is necessary for validating and re-executing the transaction.

In our implementation, transactions invoke object operations directly and the results of
operations are also returned to transactions directly; hence recording the events of a
transaction must be done by the operations themselves. However, providing concurrency
transparency is an aim of our design; it is inappropriate to ask programmers to write the
code to perform the recording work for every object operation. A preprocessing method

therefore is adopted to solve this problem.

During preprocessing, the preprocessor adds to every object operation some code which

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 92

records the operation’s name, parameters and results into the event_table whenever the
operation is executed. It is easy for the preprocessor to find out the name and parameters
of an operation by analysing its head. However, it is impossible for the preprocessor to
get the results of an operation without the help of programmers. Fortunately, results of
operations need only to be distinguished as succeed or failed. Therefore, if programmers
can tell the preprocessor whether a return point of an operation is a normal one or an
abnormal one, the preprocessor can add appropriate code at the return point to record
the result. Programmers can do the job simply by writing an abnormal return in the form

of “abnormal_return” instead of “return”.

Since recorded events must be associated with their transactions, it is necessary for an
operation to know when it is invoked who the invoker is. Therefore, during preprocessing,
a new parameter is introduced for each operation, which indicates the transaction identifier
(tid) of the invoker. The introduced parameter is transparent to programmers. That is,
programmers still invoke object operations in the usual way, and the extra parameter will
be added automatically by the remote object invocation mechanism (see Section 7.6 for
details).

Under this implementation, whenever it is invoked by a transaction, an operation will
automatically record its name, its parameters and its results into the event_table associated

with that transaction.

7.1.4 Manipulating Physical Objects

The RPM of an object needs to record the physical objects accessed by a transaction in
the read_set and write_set. So far we have not described how the RPM does it. This is the

topic of this subsection.

The state of an atomic object is represented by a physical object. It is a tree structure
with primitive physical objects as its leaves. A path through the structure is used to
identify a particular component. A path is the sequence of selectors required to reach a
nested component at any level within the object structure. Physical objects are supported
by an underlying system, called the persistent object store (POS) service, which provides

manipulation of physical objects. The operations can be classified into four kinds:

create() creates a new object and returns its identity.
delete(oid) deletes the object named by oid.

read(oid, path) reads the component selected by (oid, path).
write(oid, path, val) writes val to the component selected by (oid, path).

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 93

The following operations are also provided for creating and merging shadow copies:

copy(oid, path) creates a new object that is a copy of the component selected by
(oid, path), and returns its identity.
merge(soid, oid, path) overwrites the component (oid, path) by object soid.

Operations provided by the POS service are atomic—that is, the execution of an operation
never appears to overlap (or contain) the execution of any other operation even when
the operations are executed concurrently, and the overall effect of an execution is all-or-

nothing.

Another important feature of the POS service is that physical objects can be accessed and
updated at any granularity. Therefore, when making changes to a component of an object
only that component needs to be rewritten, no other component of the object is affected
at all.

Concurrency control is invisible to users, and object operations are implemented as if the
above operations on physical objects were used directly. However, object operations are
required to use the syntactically identical operations phycreate, phydelete, phyread, and
phywrite. It is these operations which perform the RPM’s work, i.e. recording physical
objects accessed by transactions in corresponding sets. The semantics of the operations

are as follows:

e phyread(oid, path) :

1. if the component (oid, path) is in deleted_set, then signal error and return.
2. if the object o0id is in created.set, then read from it and return.
3. if the component (oid, path) is in write_set,

(a) if the component is not in read_set, then add (oid, path) to the read_set;

(b) read from the shadow copy and return.

4. if the component (oid, path) is in read_set, then read from the original object

and return.
5. if the component(oid, path) is not in any set,
(a) add (oid, path) to the read_set;

(b) read from the original object and return.
e phywrite(oid, path, val) :

1. if the component (oid, path) is in deleted_set, then signal error and return.

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 94

2. if the component (oid, path) is in create_set, then write val to it and return.

3. if the component (oid, path) is in write_set, then write val to the shadow copy

and return.
4, otherwise,

(a) create a shadow copy for the component, get an object identifier soid;
(b) add (soid, oid, path) to the write_set;

(c) write val to the shadow copy and return.
e phycreate() :

1. create an object, get its oid,

2. add the oid to the create_set.
e phydelete(oid) :

1. if the object is in the delete_set, then signal error;

2. add the oid to the delete_set.

7.1.5 Physical Validation and Physical Write

The physical validation and physical write are performed based on the information recorded
in the read_set, write_set, create_set and delete_set. To validate a transaction, an object
simply checks whether the read_set of the transaction intersects with the write_set of any
transaction that was committed after the transaction began. If there is such an inter-
section, then some values read by the transaction have been changed; consequently the
transaction’s results might be invalidated, and hence the operations of the transaction

should be reapplied.

The physical write of a transaction is done by merging all the shadow copies created for
the transaction back into the original subobjects, deleting all the objects in the delete_set

and discarding the shadow copies.

Before merging a shadow copy into the original subobject, an exclusive lock should be set
to prevent any operation from reading inconsistent data. The lock can be released as soon
as the physical write is finished. The physical write of a transaction must be performed
atomically, 4.e., either all or none of the shadow copies created for the transaction are

merged into their original objects.

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 95

7.2 The Persistent Object Store Service

The POS service is designed to support the management of physical objects. To meet the
requirements of the DLV method, it should provide a large, shared, and persistent object
store, directly accessible from programming languages used to build complex applications.
A special requirement on the POS service is that it should support structured object
representation. That is, a highly structured object can be represented directly by the
POS service, and user processes can access objects at any abstraction granularity, from
basic fields such as integer or char to entire objects. Another requirement on the POS

service is that it should support concurrency control at any required granularity.

The POS service required in the implementation of the DLV method has been provided
by the multi-service storage architecture (MSSA) [BMTW91] developed in the Computer
Laboratory, Cambridge. The MSSA is an open hierarchy of services in which both un-
structured and structured data are supported. It has two basic components, a low level
storage service (LLSS) [Wil92] and a high level storage service (HLSS) [Tho90]. The aim
of the MSSA is to support a flexible environment for application development above the
storage service boundary. At this level there is no imposed naming scheme or access

control policy. Below the boundary a capability scheme is employed.

7.2.1 The LLSS

The goal of the LLSS is to provide a high performance storage service by exploiting non-
volatile memory. The LLSS works in terms of storage objects which are byte sequences
(also called files) named and protected by capabilities. The capability scheme of Gong
[Gon89] is used in which a capability is labelled with a principal. Only the principal may
use the capability. If the principal wants to give access rights to another, then it may

cause a capability to be created for that principal.

Groups of files are organised into file systems by clients. Byte sequences can be created
and deleted, and subsequences read and written. The length of a byte sequence can be
read, and a byte sequence can be truncated by writing its length. A byte sequence may
be recreated which means that it is truncated to have 0 length and then written with
the data specified. Associated with each byte sequence is a lifetime, which decreases with
approximately real time. A byte sequence is guaranteed to exist for at least as long as its

lifetime is positive. A byte sequence may be touched to reset its lifetime.

The LLSS offers concurrency control at whole-object granularity. Locking is orthogonal

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 96

to access control and data operations. Two types of lock are provided: shared locks and
exclusive locks. A shared lock may be used for multiple readers, single writer exclusion or

to support concurrent write sharing between externally cooperating clients.

7.2.2 The HLSS

The HLSS is built on top of the LLSS. Unlike conventional file servers, it supports storage
of structured objects by offering a storage type generation scheme to its clients. It provides
two primitive types, byte sequence and SS-id (Storage Service identifier, a capability), and

a number of type generators, sequence, record and union.

An SS-id is an identity-based capability which is used to name and protect an object, and
may be stored as a component of a structured object. In this way a component of an
object can reference another object. The byte sequence primitive type is a fixed-length or
variable-length tuple of bytes. The value of a byte sequence is uninterpreted by the HLSS

and can be used by clients to store any kind of data.

Structured types may be generated by means of the type generators. An object of record
type is an n-tuple of components of different types. It differs from programming language
record types in that the components of a record are selected by natural number rather
than by text-name. Records can be created and deleted, and read and written. An object
of sequence type is a tuple of components of the same type. Sequences may have fixed
or variable length. Sequences can be created and deleted, and subsequences read and
modified. A variable-length sequence can be appended to, truncated and recreated in its
entirety. The current length of a sequence can be read. A union is exactly one of the
components of an n-tuple of components of different types. The components of a union
are selected by natural number in the order in which they appear in the type definition.
A union can be created and deleted and read and written. An operation is provided to

determine the selector of the current variant stored.

The HLSS provides a multiple granularity locking mechanism as described by Gray [GraT79],
which can be used to lock any logical component of an object. The semantics of locks is
independent of the semantics of HLSS operations. For example, the HLSS does not ensure
that a shared lock is held on a read operation and that an exclusive lock is held on a write

operation.

For each type of object, the HLSS provides certain operations to access or manipulate
them. The HLSS ensures the atomicity of these operations, i.e., either the execution of

an operation is complete or not done at all.

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 97

7.3 Conflict Relations

In the last chapter, we described the language for specifying conflict relations of atomic
data types. However, conflict relations need to be converted to their internal form so that

the LOV can use them for validating transactions.

7.3.1 The Internal Form

Internally, the conflict relation of an atomic data type is represented as an array. Each
of the conflict relation’s items is represented as a tuple (eventl, event2,rel), where an
event consists of the name and result of an operation, and the rel stands for the relation
between the object items that the operations act on. The internal form is defined by the

type Conflict_Relation shown in Figure 7.4.

struct conflict{
char operl[NMLEN];
char rslt1[RSLTLEN];
char oper2[NMLEN];
char rslt2[RSLTLEN];

int rel;

I3
typedef Conflict_Relation conflict NUMCONF];

where: rel = 0 means =
rel = 1 means >
rel = 2 means >
rel = 3 means #
rel = —1 means <

rel = —2 means <

Figure 7.4: The Definition of the Conflict_Relation Type

The work of converting a conflict relation from its specification to its internal form is done

by a preprocessor, whose implementation is trivial, and therefore not discussed.

The conflict relation of an atomic data type is stored in the persistent object store in its

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 98

interna) form. Whenever an object becomes active, its conflict relation is read into the

memory so that the LOV can use it for validating transactions.

7.3.2 Checking Transactions

For validating transactions, the LOV needs to check whether a transaction invalidates

another one from time to time by using the conflict relation of the object.

To check whether a transaction 7j invalidates a transaction Tp means to check whether
any event in the event_table of T invalidates an event in the eveni-table of T3. An event
e, invalidates another event ey if and only if (e, eq,rel) belongs to the conflict relation
of the object and the relation rel is held between the two items that are acted on. The

operation check of Scheduler is defined for this purpose.

7.4 The LTM

The responsibility of the LTM of a site is to coordinate local objects according to the L2PC
protocol, and to communicate with the coordinator according to the D2PC protocol. The
latter protocol ensures that objects make the same decision about a transaction’s outcome,

i.e. to commit it or abort it, and that transactions commit atomically over all objects.

class Local_Trans Manager

{

Tid trans_tablMAXTRANS];

Scheduler *objtab[MAXTRANS][NUMOBIJ];
public:

Local _Trans_Manager(void);

int - begin_subtrans(Tid);

int regist_object(Tid, Scheduler*);

int prepare_to_commit(Tid, Timestamp);

int local commit(Tid);

int local_abort(Tid);

h

Figure 7.5: The Definition of the LTM

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 99

The definition of the LTM is shown in Figure 7.5. An LTM records all the transactions in
which it participates in the state variable trans_tab; this is done when a DTM invokes the
begin_subtrans operation on it. The regist_object operation is called whenever an atomic
object is created or invoked by a transaction, and causes the object ID to be recorded in

the state variable obj_tab.

The prepare_to_commit operation is called by a DTM when asking an LTM to prepare to
commit a transaction at the end of its read phase. The operation is implemented in four
steps. First, it requests for votes from every local participant object by calling the validate
operation. Second, it makes the local decision about the transaction based on the replies
from participant objects. Third, it sends the local decision to the DTM. Fourth, if the
local decision is “abort”, it asks participant objects to abort the transaction locally by

calling the object_abort operation. The participant objects can be found in obj_tab.

The local_commit and local_abort operations are used by a DTM to propagate its final
decision about a transaction to all participant LTMs. The local_commit operation makes
local participant objects commit a transaction locally by calling the object_commit oper-
ation on each of them. The local_abort operation makes local participant objects abort a

transaction locally by calling the object_abort operation.

7.5 The DTM

The DTM is not implemented as an independent server, but as a class, called Transaction
(illustrated in Figure 7.6). Whenever it intends to construct a transaction, an applica-
tion declares an instance of Transaction and then constructs transactions by using the

begin_transaction, commit_transaction and abort_transaction operations.

The begin_transaction operation simply applies for a tid for a transaction and records it
in the state variable transid. When an application program intends to abort a transac-
tion, it calls the abort.transaction operation which makes all participant LTMs abort the

transaction locally.

The implementation of the commit_transaction operation is a little more complex. It
is an implementation of the D2PC protocol. First, it applies for a timestamp for the
transaction through the getTimestamp operation and asks all participant LTMs to prepare
to commit by calling the prepare_to_commit operation defined on the Local_Trans_-Manager.
Then it makes the final decision based on the replies from participant LTMs through the

makeDecision operation. Finally, it propagates the final decision to all participant LTMs

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 100

class Transaction

{

public:
Transaction();
Tid begin_transaction();
int commit_transaction();
int abort_transaction();
private:
Tid transid;
Local_Trans_Manager* participantsfMAXPARTICIPANTS];
ValiResult valiresultsfMAXPARTICIPANTS];
long timestamp;
TransDecision decision;
Tid getTid();
Timestamp getTimestamp();
TransDecision makeDecision();

5

Figure 7.6: The Definition of the DTM

by calling either the local_commit operation or the local_abort operation accordingly.

7.6 Remote Object Invocation

In previous sections, it is frequently stated that an object invokes an operation on another
object. However, we have not mentioned how invocations on remote objects are done.

This section addresses the issue.

Programming in a distributed system is fraught with potential difficulties caused, in part,
by the physical distribution of the system itself. The complexity of the communication
protocols required to make use of remote resources is often daunting, hence many re-
searchers have attempted to overcome these burdens by adapting familiar programming
techniques and metaphors to the distributed environment, for example, extending the
procedure call notion to that of remote procedure call (RPC) [BN84]. By making the dis-

tribution of the system transparent it is hoped that the task becomes comparable with

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 101

that of programming a more traditional centralised system.

7.6.1 The Object Model

A powerful paradigm in distributed computing is the client/server model. This model
has been extremely useful in the design, analysis, and growth of distributed systems. The
principal objective of this programming style is to make a collection of distributed services
available on a network of computers or workstations. A serveris an executing instance of
one of these services, and a client is a program that makes use of the service at some time

during its execution.

Our system supports the client/server model. Every resource or abstraction is represented
by an object. A server provides service through a set of objects, and clients make use
of a service by invoking operations defined on the objects. A remote object invocation is
essentially a remote procedure call; the invocation specifies a target object, the name of an
operation on that object, and some parameters. Remote object invocations, like remote

procedure calls, are typically synchronous.

In our system, processes (threads) are coupled with objects, and permanently bound to
the objects in which they execute. That is, an active object model is supported. In such
a model, several server or worker processes (threads) are created for and assigned to each
object to handle its invocation requests. Each process is bound and restricted to the
particular object for which it is created. An operation is not typically accessed directly
by the calling process, as in the case of traditional procedure calls. Instead, when a client
makes an operation invocation, a process in the corresponding server object accepts the

request and performs the operation on the client’s behalf.

7.6.2 The ROI Mechanism

A remote object invocation mechanism is supported by our system to provide users the
illusion that programs are still executing in a centralised environment. To the programmer
it should not matter where in the distributed system the actual objects are located, all
that is required is a means by which operation invocations can be sent to the correct
objects wherever they reside. Thus programming a distributed application should be no
more complex than programming a centralised application, provided that object location

and access can be made transparent.

In order to provide transparency of remote object invocation, for each object resident on

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 102

the server side, called the server object, we provide a corresponding object on the client
side, called the client object, which provides the client interface. Each user runs a copy of
the client objects, and invokes operations on the client objects to ask for service. Object
binding, parameter passing and result returning are handled dynamically by the runtime

system.

A client object has the same interface as its corresponding server object. However, it has
a different implementation. A client object is implemented in such a way that each of
its operations actually is an RPC call to the server side. The call message contains the
target object’s name and the operation’s parameters, among other things. On the server
side, when the call message arrives, the server process extracts the object’s name and the
procedure’s parameters, invokes the corresponding operation on the server object, and

sends a reply message.

Client side Server side

. . stub . o actaul .)
3 c.deblt (10) objects programs -t > programs objects J S.deblt (10)
l Y \
i j ROT ccount_debit("j",10)
account_debit("j",10) sig}g ROT mech - - ROTI mech. b a nt_ (3
l Y Y T
send_message RPC - - RPC rcv_message
("jm, account__debit, 10) stub RPC mech. I o REC mech. stub ("3, account_debit,10)

Figure 7.7: The Model of the ROI Mechanism

The remote object invocation (ROI) mechanism is implemented based on the Sun RPC
[Sun88a, Sun88b] mechanism. It is illustrated in Figure 7.7 with an example. The user
program presents an invocation request debit with a parameter (10) to a client object
jo. The debit operation on the client object j. is implemented as an RPC call to the
account_debit operation. Thus when it is executed, the RPC stub on the client side sends
a call message to the server. When the RPC stub on the server side receives the call
message, it extracts the object’s name and the operation’s parameters. Then it calls the
account_debit operation which in turn invokes the debit operation on object j;. The result

is returned in the reverse way.

Since a client object has the same interface as its corresponding server object, there is no
difference between invoking an operation on client objects and on server objects. That is,

the remote object invocation is transparent to user programs.

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 103

7.6.3 The Stub Generator

A stub generator called stubgen is provided to help users to write ROI applications simply
and directly. Stubgen is a compiler. It accepts class definitions written in C++, and
produces C++ language output for ROI programs. This output includes the definition of
client objects, client/server ROI stub programs, and a remote program interface definition
written in Sun RPC language. The remote program interface then can be used as the input

to rpegen producing client/server RPC stubs which will be used by the RPC mechanism.

Accepting the class definition written in C++ as stubgen’s input naturally enhances the
transparency of the system. Programmers need only produce a single object description as
if the system was not distributed and rely on the stub generator to produce the distributed

version automatically.

The implementation detail of stubgen is extraneous to this thesis, and thus will not be

presented here.

7.6.4 Naming and Binding

The binding between a cﬁent program and a server program in our system is done by the
SUN RPC mechanism. It establishes binding at run-time, when a client program begins
execution. The binding is explicit, i.e., it is programmed by both the application and server
programmers. When a server begins executing, it issues an export call, which registers
the server’s name and address with a network-wide name service. When a client begins
executing, it issues an import call, which checks the name-server database and returns
the appropriate addressing information to the client’s RPC run-time system. The run-
time system on the client side then performs a remote bind call to the server side, which

establishes the connection to be used for the duration of the client/server interaction.

The binding between a client object and its corresponding server object is done by the ROI
mechanism. A special operation invoke is defined on every client object. Before invoking
any operation on a client object, the client program must call the invoke operation on it
specifying the server name and the object name!. The ROI mechanism intercepts this
invocation, makes use of the RPC mechanism to locate the specified server object, issues
an invoke operation on the object (this registers the client program with the object), and
returns the logical address of the object. Then the client object is bound to the server

object, the ROI and RPC mechanism can transfer any invocation on the client object to

!The method for naming objects will be discussed in Chapter 8.

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 104

an appropriate invocation on the server object and possibly return a result.

The advantage of run-time binding is that the client can locate an object at execution time,
which permits flexibility. The advantage of explicit binding is call-time performance. Once
the binding is completed, however, the object must not move. This restriction is not severe;
often the duration of binding between a client object and server object is short (during a

transaction).

7.7 Implementing Concurrency

Another issue that we have not addressed yet is how concurrency inside an object is

implemented. This is the topic of this section.

7.7.1 Threads

The most popular method for supporting concurrent programming is by allowing multiple
lightweight threads within a single address space, used from a single program [Birg89]. A
thread is a straightforward concept: a single sequential flow of control. Within a single
thread, there is at any instant a single point of execution. Having multiple threads in a pro-
gram means that at any instant the program has multiple points of execution, one in each
of its threads. The programmer can mostly view the threads as executing simultaneously,
as if the computer were endowed with as many processors as there are threads. Having
the threads execute within a single address space means that the computer’s addressing
hardware is configured so as to permit the threads to read and write the same memory
locations. In a high-level language, this usually corresponds to the fact that the off-stack
(global) variables are shared among all the threads of the program. In an object-oriented
language such as C++, this also corresponds to the fact that the state variables of an
object are shared among all the threads which share the object. Each thread executes on
a separate call stack with its own local variables. The programmer is responsible for using
the synchronisation mechanisms of the thread facility to ensure that the shared memory

is accessed in a manner that will give the correct answer.

Thread facilities are always advertised as being “lightweight”. This means that thread
creation, existence, destruction and synchronisation primitives are cheap enough that the

programmer will use them for all his concurrency needs.

In general, there are three major facilities supported by a thread package: thread creation,

mutual exclusion, and waiting for events. A thread is created by calling a thread creation

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 105

primitive, say thread_create, giving it a procedure and an argument record. The effect of
thread_create is to create a new thread, and start that thread executing asynchronously
at an invocation of the given procedure with the given arguments. When the procedure

returns, the thread dies.

The simplest way that threads interact is through access to shared memory. In a high-
level language, this is usually expressed as access to global variables. Since threads are
running in parallel, the programmer must explicitly arrange to avoid errors arising when
more than one thread is accessing the shared variables. The simplest tool for doing this
is a primitive that offers mutual exclusion, specifying for a particular region of code that

only one thread can execute there at any time.

More complicated scheduling policies can be expressed by using a mechanism that allows
a thread to block until some event happens; condition variables may be associated with
a particular mutex, and with the data protected by that mutex. A “wait” operation is
provided, which atomically unlocks the mutex and blocks the thread. A “wakeup” oper-
ation is supported, which does nothing unless there is a thread blocked on the condition
variable, in which case it awakens at least one such blocked thread. When a thread is

awakened inside “wait” after blocking, it re-locks the mutex, then returns.

7.7.2 Object Operations as Threads

This thesis uses the multiple threads technique to implement object concurrency. We
use a very simple thread package for C programs, which is available in the Computer

Laboratory, Cambridge.

The package does not schedule threads on time slice, but instead on the task_yield call.
This means, if a thread captures the process, it will not release the process until it finishes
or it invokes task_yield. Threads are scheduled in round robin order. Threads are removed
from the run queue when they die. Semaphores are supported by the package to provide

mutual exclusion so that threads do not interfere each other.

Each operation defined on an atomic object is implemented as a thread: all the threads of
an object share the object state variables. Each state variable is protected by a semaphore.
In this implementation approach for atomic objects, we know that any atomicity operation,
i.e. an operation defined on the Scheduler type, may access object state variables; hence
it needs to protect itself from interference by others. An atomicity operation executes a
P operation on the semaphore associated with a state variable before accessing it, and a

V operation afterwards. An order is defined over state variables. If an operation needs to

CHAPTER 7. A PROTOTYPING IMPLEMENTATION 106

access more than one state variable, it must execute P operations on them in that order,

hence avoiding the dead-lock problem among threads.

Object operations defined by user programmers are only permitted to access the state
variables which represent application information. These object operations are protected
from errors arising when multiple threads access shared state variables by using the atom-
icity operations via the transaction mechanism. No special arrangement needs to be made

explicitly by programmers.

As Scheduler, the LTM is implemented using multiple threads so that it can serve requests
from multiple DTMs. However, the implementation of the DTM does not need to use

multiple threads, for it is not implemented as a server.

The RPC mechanism is responsible for mapping an object operation into a thread. When
a server starts, several threads are created for each object. When the RPC staff on the
server side receives a request from a client, it assigns a free thread to service the request.

After servicing a request, the thread becomes free again.

7.8 Summary

In this chapter, we presented a prototyping implementation of the implicit approach to
implementing user-defined atomic data types. We first described the implementation of the
special type Scheduler, then explained the internal form for representing conflict relations,
and finally presented the implementation of the LTM and the DTM. Implementations
were described at first under the assumption that remote object operations can be invoked
transparently and that objects can be accessed concurrently without interference. Then
the realisation of the assumption was explained by giving a brief introduction to the remote

object invocation mechanism, and the multiple threads concept.

It is clear from the presentation that the implicit approach is not difficult to implement if a
suitable persistent object store service, such as the MSSA, and a remote object invocation

mechanism can be used.

Chapter 8

The Persistent Programming
Language—PC++

The durability of transactions requires that the system state modified by transactions
becomes permanent when they commit. This is done by using an underlying system,
the POS service, in the prototyping implementation described in the last chapter. To
manipulate a physical object, an object operation has to read it from the POS at first,
and then write it back afterwards. There are several problems with this approach to
providing data persistence. Firstly, an object has to be converted from the memory form
to the persistent form that can be accepted by the POS when writing it to the POS, and
vice versa when reading it to memory. Much space and time is taken by code to perform
translations between the persistent form and the memory form. Secondly, programmers
have to understand and manage the mapping which frequently distracts them from their
work. The third major disadvantage is that the data type protection offered by the
programming language on its data is often lost across mapping. In most programming
languages the simplest way to break the type system is to output a value as one type and

input it again as another. Thus the type security is lost over the persistent store.

Another approach to supporting data persistence is by using persistent programming lan-
guages [RC89, ACC81, ABC*83]. When a programming language supports persistence,
an object may be declared that exists beyond the lifetime of the application program in
which the object was created. If persistent objects are used to model the permanent sys-
tem state then the durability of transactions may be provided by ensuring that persistent

objects reflect the updates of transactions.

The motivation behind the concept of persistence is to remove the two views of storage

107

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 108

(volatile and non-volatile) supported by conventional programming systems. Normally,
an object accessed by an application exists in volatile storage and will be deallocated
when that application terminates. In a conventional programming system, if the state
of an object is required to exist beyond the execution of the application, then it must
be converted into a form that can be stored in the non-volatile storage supported by
the system. In a persistent programming system, however, data objects survive between
program runs, and users can manipulate the objects with normal expression syntax, t.e.,

physical I/0 is transparent to users.

In this chapter, we describe the design and implementation of a persistent programming

language—PC++, and show how atomic data types can be implemented in PC4+.

8.1 Issues

Severa) issues arise when implementing programming languages that provide data persis-

tence, and these are described in this section.

Object naming:

In any system that supports persistence, a mechanism is needed to enable users to name
and subsequently to access an existing persistent resource. A file system is a system which
offers one style of persistent resources: the file. In traditional file systems, such as Unix
file system, a file is named by a string at the user level. In addition to the user level
naming scheme, the system requires a uniform method for naming resources. This system
level naming scheme can then be used by the mechanisms that support the persistence
of resources. Clearly, a mapping between the two naming schemes is required, which is
usually done by a directory service. A commonly used naming approach at the system

level is to make use of identifiers that are guaranteed to be unique throughout the system.

Binding and type checking:

An essential property of a language with persistence is that objects in the object store
can be manipulated using the same expression syntax as for volatile objects. In order to
execute such an expression, however, there must first exist a binding between symbols in
the program and objects in the object store. When such bindings are established, how

they are specified, and to which program symbols they apply are all important issues,

Binding may be performed statically or dynamically. Static binding occurs at compile
time. Once established bindings are immutable. On the other hand we may wish to

obtain the latest version of the object and delay binding until we actually access it —

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 109

dynamic bindings.

If a user wishes to bind a subject to an object in persistent store then it must have a
name and a description of the object to which it wishes to bind. The description is usually
provided in the form of a type. Since the subject and object may be constructed separately,

type checking is needed to ensure that the types match by some rule.

Data migration:
Given that persistent objects of a program reside in stable storage, we must decide the
mechanism by which these objects migrate in and out of main memory during a program

run. We must also decide on the granularity of data migration.

To simplify the implementation of this mapping mechanism, stable storage may be organ-
ised as an object store, thus providing a suitable interface for the management of objects
in stable storage. When a programming system supports persistence, the mapping mech-
anism and the automatic movement of objects to and from the object store are provided

for each class of objects.

Object activation:

A persistent object is said to be active while it is binding to some variables in memory,
and is said to be passive when it is not binding to any such variable. Before invoking
operations on an existing persistent object, the object must be active. The activation of
an object could occur any time between the declaration of the object in the application
and the invocation of the first operation on the object. When an object is created the

initialisation operation provided for the class of the object is invoked.

Referential integrity:

In a system which supports persistence, attention should be paid to preserving referential
integrity [MA90]. That is, if an object is pointed at or shared by two or more others,
this sharing should be preserved both in their memory state and in their persistent state,
Usually, a memory object is referred through its memory address. However, a method
should be provided for an object to reference others in object store, and a mechanism is

needed for mapping between these two kinds of references.

8.2 Object Model

A persistent programming language called PC++ is presented in this thesis. Before de-

scribing its implementation, we describe its object model in this section.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 110

PC++ borrows and extends C++’s object definition facility, called the class. A class
defines a type, and its definition includes both the physical representation of any instance

of the class as well as the operations that may be performed on an instance.

8.2.1 Objects

An object consists of some private memory that holds its state and some methods that
encapsulate its behaviour. Methods consist of code that manipulates or returns the state
of an object. Methods are a part of the definition of the object. However, methods, as

well as object state, are not visible to outside of the object.

An object store is a collection of persistent objects, each identified by a unique identifier,
called the object identity. Memory is visualised as consisting of two parts: volatile and
persistent. Volatile objects are allocated in volatile memory and are the same as those
created in ordinary programs. They are allocated on the program stack or heap and
their lifetime is bounded by the life of the program. Persistent objects are allocated
in persistent store and they continue to exist after the program that created them has
terminated. Interaction with these objects is routed through an object manager, but this

is hidden from the programmer.

8.2.2 Object Definitions: Classes

“Similar” objects are grouped together into a class. All objects belonging to the same
class are described by the same data structures (for the state) and the same methods (for
the behaviour). Objects that belong to a class are called instances of that class. A class

describes the form of its instances and the operations applicable to its instances.

In PC4++, a new abstract data type—that is, a class is declared by the class construct.
Class declarations consist of two parts: a specification and a body. The specification
represents the class “user interface”. It contains all the information necessary for the user

of a class. The body consists of the bodies of methods declared in the class specification.

Class specifications have the form:

class <class-name>

{

<private-members>

public:

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 111

<public-members>
protected:

<protected-members>

The construct <class-name> identifies the name of the new class definition. A member
may be either a data item, called data member, or a method, called member function. The
data members of a class describe the object state, and the member functions describe the

operations applicable to the state.

All the data members and member functions of a class are called the properties of the
class. Generally, properties can be classified into public, private or protected according
to their accessibility. The public properties, which represent the class user interface, are
accessible both inside or outside the class definition. The private properties, representing
internal details of the class, can only be accessed within the class definition. The protected
properties behave as public properties to a derived class; they behave as private properties

to the rest of the program.

In PC++, data members can only be defined as either private or protected to enforce
information hiding. This enhances reliability, since if a user can only access an object’s
state through public member functions, it is easier to guarantee that objects are not

accidentally corrupted.

Data Members

The declaration of data members is similar to the variable declarations. Data members can

be of any given primitive type or of a structured type defined by the generators provided.

A set of primitive types and a set of type generators are provided to define data members. A
type generator represents a set of related types. Type generators enable users to generate
structured types defined in terms of constituent types. Constituent types may be of any

type, or a reference to an object.

It is often convenient to introduce objects whose components can refer to other objects;
this is implemented by reference. A reference has an object as its value; two or more

references, typically from different objects, may share the same object as their value,

The primitive types supported consist of the long int, double, char, boolean, string, OID
and SSID. The structured types that may be generated by means of the generators include

the record and sequence. They have a similar meaning to the corresponding generators in

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 112

imperative programming languages such as C and Pascal.

The OID and the SSID Type

In PC4+, a persistent object is an entity that encapsulates some private state information
and a set of associated operations that manipulate the state information. Every persistent
object is named and protected by an oid (object identifier) which is a capability labelled by
a principal. An oid can be used only by that principal to identify an object that is unique
system-wide: this protects against unauthorised access to persistent objects. An oid is
also tagged with the identifier of its type which is used to ensure that it is manipulated
correctly, i.e., through the operations defined on it. The oids are described by the type
OID.

Every object in the MSSA is named and protected by an ssid (storage server identifier)
which is a capability labelled by a principal. An ssid can be used by that principal to
identify an object uniquely within the MSSA. As stated earlier, PC++ uses the MSSA
for providing the POS service, and in general hides it from users to provide persistent
transparency. However, in some applications, users need to create and manipulate some
objects directly through storage services (called storage server’s objects), but at the same
time, still need to manage other objects through PC++ (called PC++’s objects) and
maintain relationships across these two kinds of object. To support these applications,
PC++ provides the SSID type to users and permits persistent class declarations to include
ssids. As a result, application programmers may construct and manipulate objects which

contain references to any items managed within the open architecture of the MSSA.

Member Functions

Member functions of a class provide a set of operations to manipulate objects of the class.
Public member functions of a class provide an interface to access its objects. Private
member functions are usually used by public ones to perform certain tasks. Member
functions have full access privilege to all the public, protected and private properties of

the class.

One set of specialised member functions, manager functions, manage class objects, han-
dling activities such as initialisation, assignment, memory management, and type conver-

sion. Manager functions are usually invoked implicitly by the compiler.

An initialisation member function, called a constructor, is implicitly invoked each time a

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 113

class object is defined or allocated by operator new. A constructor is specified by giving

it the class name.

A special, user-defined member function, referred to as a destructor, is invoked whenever
delete is applied to a class pointer. A member function is designated the class destructor

by giving it the tag name of the class prefixed with a tilde (“~").

8.2.3 Type Inheritance

Type inheritance allows objects to be organised in taxonomies in which the more specialised
objects inherit properties of more generalised objects. Similar objects with a few different
properties can be modelled by specifying a common part, called the base (super) class, for

the common properties and then deriving specialised classes from this base class.

A derived class inherits all the properties of its base classes. The protected and public
properties of a base class are accessible to its derived classes, but its private properties are

hidden to its derived classes.

A base class is either a private or a public base class. The inherited properties of a public
base class maintain their access level within the derived class, i.e. protected properties
remain protected, and public ones public. However, the inherited public and protected

properties of a private derivation become private properties of the derived class.

A derived class can add more specific properties by specifying additional data members or
member functions, and can refine inherited member functions to meet new requirements.
In the latter case, the redefined member functions must be declared as virtual functions

in the base class.

Two kinds of name collision may happen when defining a derived class. One is that an
inherited property’s name is reused in the derived class; the other is that two or more base
classes define an inherited property with the same name. When name collision happens,
all of the properties are still defined on the derived class as if there had been no collision,
but the inherited properties maintain their base class membership. Each can be accessed

using the class scope operator.

The relationship between a base class and its derived class is a kind of type/subtype one.
All the objects of a derived class can be used as if they were objects of its base class. All
operations a client could perform on the objects of the base class could also be performed
on the objects of its derived classes. An object of a derived class can be assigned to any

object of its base class without requiring an explicit cast. However, an attempt to assign

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 114

an object to another object of an unrelated class will result in a type error (compile-time

or run-time).

8.2.4 Object Identity

Object identity is a property of an object that distinguishes the object from all other
objects in the application. Every object of a class has an oid (object identity) to uniquely
identify it system-wide. Whenever a new object is created, it is assigned an oid. Using
an oid, a user can access the corresponding object if it has the right to do so. Another
use of oids is to provide object sharing. Using oids, users can dynamically construct
arbitrary graph-structured composite or complex objects — objects that are constructed

from sub-objects.

8.2.5 Overloading and Dynamic Binding

One of the most powerful and useful concepts of object orientation is operation overloading.
Overloading allows operations with the same name but different semantics and implemen-
tations, to be invoked for objects of different types. How is a particular operation name
bound to a particular implementation? Typically, this is determined dynamically by the
target object of the operation. Dynamic binding means the system binds operations to the
methods that implement them at run time (instead of at compile time). The particular

methods used in binding depend on the recipient object’s class.

The advantages of dynamically binding overloaded operations are:

1. Eztendibility: The same operator applies to instances of many classes without mod-

ifying its code.

2. Development of more compact code: Combining overloaded operators with dynamic
binding allows users to avoid conditional branch constructs that check the object

type and invoke the corresponding operator.

3. Clarity: The generated code is more readable and comprehensible. This enhances

the robustness and efficiency of the development effort.

Performance costs are the main disadvantage of dynamically binding, overloaded opera-
tors. A penalty is paid for the run-time binding and/or type checking that must be done to
guarantee correctness. Dynamic binding performed through a search for each invocation

of each method can be expensive.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 115

PC++ allows overloading of function names and operators. Function names can be over-
loaded to have a varied number of parameters of different types. System-defined operators
such as 4, —, * and others can be overloaded for user-defined classes. PC+4+4- also supports

dynamic binding through virtual functions.

8.2.6 Accessing Persistent Object State

Member functions of persistent classes usually need to access the state of persistent objects.
Given that persistent objects reside on persistent object store, it cannot be accessed in the
same way as objects in the memory. However, in order to provide persistence transparency,
PC++ permits member functions to access persistent data in much the same way as

memory objects, but in a limited form.

PC++ does not permit persistent objects to be updated directly, but permits them to be

assigned to or from memory variables by using “="

operator. This approach is chosen for
two reasons: first, it allows member functions to use the operations on memory data to

manipulate persistent data; second, it makes the implementation much easier.

An object, or any component of it, can be assigned to or from a memory variable. A
component of an object can be referred to by giving its name path in the normal way,
i.e., a component of a record is referred to by its name and a sequence by its index. Type
checking for assignments is done at compile time to ensure that the types of the persistent

object and the memory variable match according to some rule.

8.3 The Current Implementation of PC++4

This section describes how persistent classes have been implemented in the first version
of PC++. It begins by defining the representation of persistent objects both as C++4
objects and POS objects. Next the PC++ preprocessor and the PC4+4 run-time system
architecture are described. Finally there is an explanation of PC++’s solution to some of

the important issues that were raised earlier in this chapter.

When incorporating persistence in PC++, several principles are kept in mind:

e There should be no penalty for user programs which do not deal with persistent

objects.

e There should be no change to the C4++ compiler.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 116

o Persistence should be as transparent as possible to users, ¢.e., users can define and

access persistent objects in much the same way as C++ objects.

e All properties of C++ should be kept, such as strong typing, object encapsulation

and multiple inheritance.

8.3.1 Representation of Persistent Objects

The class mechanism of C++4 and its multiple inheritance feature are useful to complex
applications. PC++ extends C++ by making objects persistent, sharable and distributed.
In order that all of the properties of C++ are preserved and that PC++ can be imple-

mented easily, PC++ is implemented by a preprocessor.

main memory formal object

Active State Passive State

Figure 8.1: Persistent Object Compositions

In PC++, a persistent class is implemented by two parts: a definition for data members
and a definition for member functions. The former is represented by a persistent data
type, called the state type. The latter is represented by a C++ class, called the formal
class. The formal class defines the member functions of the persistent class, while the state
type defines the data members of the persistent class in a very small language accepted
by the HLSS. Under this implementation, a persistent object is composed of two parts: a
formal object that is a C++ object and a value object that is a POS object. The formal
object represents the operation part of a persistent object, and the value object the data
part. Value objects are stored in the POS, thus they are persistent and can be shared
by different users. Formal objects are transient: they are created by and local to a user

program, and are destroyed automatically at the end of a program session.

A user program creates persistent objects by calling the create operation on formal objects
which should be declared in the program. The create operation creates the data part of
the persistent object, the value object. An oid is generated for each created object which

uniquely identifies the object system-wide. After a program session ends, the value objects

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 117

created remain in existence in the POS, however the formal objects are destroyed. Once

it is created a value object can be accessed by any program which has adequate rights.

To access an existing value object, a user program must declare a formal object which is
of the same type, and then call the invoke operation to bind the value object to the formal
object, thus making the persistent dbject active. After activating an object, the program
can manipulate it by calling any operations defined on it. Figure 8.1 shows the object

compositions in different states.

8.3.2 The PC++ Preprocessor

Users define persistent objects by using the persistent class mechanism. As noted, a
persistent class is implemented as a formal class and a persistent data type. The work of
the PC++ preprocessor therefore is to translate a persistent class into a formal class and

a persistent data type.

A class module consists of some related persistent classes, and data types and constants
which are used by those persistent classes. The PC++ preprocessor processes one class
module at a time. It takes the definition of a class module as its input, and produces three
kinds of output: a persistent class definition (PCD) module, a persistent class head (PCH)
file and a persistent class operation (PCO) file.

Processing Specifications

A persistent class definition consists of two parts: a specification and a body. We describe
how the PC++4 preprocessor processes the specification part in this subsection, and the

body part in the next subsection.

When preprocessing a class module, the PC++ preprocessor at first parses its data member
definitions. Since a data member definition may use other data types and constants
to describe an object state, the PC++ preprocessor therefore needs to process those
definitions as well. If there is no error in data member definitions, a PCD module is
produced for the class module. A PCD module is the meta data about a class module,
which includes the appropriate type trees, constant definition tables and class lattice

descriptions.

Based on the PCD module for a class module, the PC++ preprocessor generates for each
class a persistent data type definition which describes the structure of data members. The

persistent data type definition is written in the HLSS’s type definition language, and is

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 118

INPUT: a persistent class specification:
struct string {
char data[16];

};

class student {
string surname;
string forename;
int age;
string address;
string telephone;
public:
void init(string, string, int, string, string);
string get_address();
string get_telephone();

};

OUTPUT: the formal class specification:

class student {
oid obj.oid;

public:
void init(string, string, int, string, string);
string get_address();
string get_telephone();
oid get_oid();
int invoke(oid);
int invoke(string);

oid create(string);

h

OUTPUT: the persistent data type (for HLSS):
REC[BYTESEQ[16],BYTESEQ[16],BYTESEQ[4],BYTESEQ[16],BY TESEQ[16]]

Figure 8.2: Processing a Persistent Class Specification

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 119

treated as a string by C++. The POS uses this definition when a value object is being

created or accessed.

To support object migration to and from main memory, a pair of get and put functions are
generated for each class and each related data type. The get and put functions are used

to read data from or write data to persistent store.

Another thing that needs to be done by the PC++ preprocessor is to produce a formal
class for each persistent class. A formal class, being a C++ class, keeps the same interface
as the persistent class, but does not keep any of its data members. A few data members
however are introduced in a formal class for keeping run-time information, such as object
bindings. Furthermore, several member functions are also introduced in a formal class
which are used to create or invoke objects, or fetch an object’s oid. Since the data part of
an object is totally hidden from users and the interface of the member functions remains
unchanged, user programs are not aware of any change. The formal classes produced for

a class module are put in a PCH file.

In summary, a persistent class is represented by a formal class and a persistent data
definition after being preprocessed. The persistent data definition describes the data
members of the persistent class, while the formal class defines the operations on the data

members. An example is shown in Figure 8.2.

Processing Class Body

Member functions of a persistent class are defined in the body part of the class. A
member function usually includes statements that access persistent data, called persistent
statements. Since persistent data resides in the POS, it cannot be accessed in the same way
as the memory data. In order to provide persistence transparently and at the same time
make the preprocessor simple, PC++ permits user programs to access persistent data in
the same way as memory data (but only in assignment statements). It is the preprocessor’s
responsibility to translate persistent statements to appropriate function calls which read
persistent data from or write persistent data to the POS. Persistent statements are labelled

by a symbol $.

We have seen that during the processing of specifications the PC+4+ preprocessor gener-
ates a pair of migration functions get and put for each type. Therefore, preprocessing a
persistent statement can be done by replacing it with an appropriate get or put function,
i.e. the migration function for the type of the persistent data. The type of the persistent

data can be found out from the PCD module, and hence also the migration function for

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 120

that type. The only problem is that PC++ and the HLSS service have different mecha-
nisms for selecting data components, and hence the name path in the statement cannot

be passed directly to the HLSS. A path name mapping is needed.

Input:
string student::get_address()
{
string addr;
$ addr = #address;
return(addr);

b

Output:
string student::get.address()
{
string addr;

int path[5];
path[0] = 3;
string_get(oid, path, &addr);
return(addr);

h

Figure 8.3: Processing a Persistent Class Body

Persistent data can be accessed at variable granularity in PC++. Member functions can
access any component of an object by giving the name path of that component. The name
path is of the same style as that in C++, i.e. consisting of field names of records or index
numbers of sequences. We call this kind of name path the symbol form. However, the
name path mechanism provided by the HLSS service has another form, called the number
form, for it only consists of numbers. In the HLSS service, all structured objects have
an ordered tree structure in which the nodes represent the components. Components are
selected by sequential natural numbers starting from 0. Therefore, the PC++ preprocessor
must translate the name path of persistent data from the symbol form to the number form.
A little attention needs to be given to the case where the index number is not a number
but an integer variable or constant. The number corresponding to a field name can be
found out from the PCD module.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 121

After preprocessing, all member functions become standard C++ functions and are put
into a PCO file which can be compiled by the C++ compiler. An example is given in
Figure 8.3. Notice that the persistent statement in the fourth line of the input is replaced
by three lines in the output. First, a variable path is declared for representing the name
path of the component address. Then the index number of the address, 3, is assigned to
path. Finally, a migration operation is called to read the component from the POS to the

memory variable addr that has the same type as address.

8.3.3 Implementing Applications

persistent classes l
and related
definitions meta information for
- PC++ e DEY 81 8tENt classes
preprocessor and related types
(PCD Module)

PCO file PCH file

Y

C++ compiler member function lib.
N ——

& archiver AR (MFL; Module)

user application
programs

object code

++ i > i
c compilerxr > o++ link

-
s

runnable code

Figure 8.4: The Process of Implementing Applications

To implement applications in PC++, a user first defines various kinds of objects through
the persistent class mechanism, and then hands the definitions to the PC++ preprocessor.
After getting the preprocessing results, a user compiles the PCO file and forms the object

code into a member function library (MFL) module which is then put into the member

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 122

function library store.

Users write their application programs in the C++ language and can use any class defined
in the PCH file assuming that file is included. That is, data persistence and sharing
are totally transparent to application programs. Before being executed, an application

program needs to be linked with the appropriate MFL modules.

Figure 8.4 shows the whole process of implementing an application in PC++.

8.3.4 Object Naming

In any system that supports persistence, a mechanism is needed to enable users to name
and subsequently access an existing persistent resource. Usually, persistent resources are
named by strings at the user level. In addition to the user level naming scheme, the
system requires a uniform method for naming resources. This system level naming scheme
can then be used by the mechanisms that support the persistence of resources. Clearly, a
mapping between the two naming schemes is required. A commonly used naming approach
at the system level is to make use of identifiers that are guaranteed to be unique throughout

the system.

In PC++, every object has a system level name, an oid, which can be used to identify an
object uniquely system-wide. The oid of an object can be used directly by users. However,
an object can also be given a text name if a user wishes. The user level name of an object
is not made mandatory so as to provide flexibility and good performance. Giving an object
a text name is just for easy of use. However, in object-oriented systems, many objects
are referred to only by other objects (this kind of reference can be done directly through
object oids) rather than by users. Therefore, they need not have user level names at all.
For example, if several objects form an object graph structure, only root objects need
be accessed directly by users. Others can be accessed through the objects which refer to
them. If an object is referred to directly by its oid, the mapping from user level name
to system level name is avoided. Accesses to objects are therefore speeded up. By not
making the user level name mandatory, PC++ also allows different applications to build

their own user level naming scheme according to their requirements.

A simple user level naming scheme is however provided by PC++: applications can there-
fore use it directly if suitable. A persistent object can be given a string name by users. A
mechanism is developed for mapping a text name to an oid. To increase the user name-
space, the text name employed by a user may be further qualified by the context within

which the name is used. Since objects are instances of a class, the class name of an object

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 123

may be used. In addition, since a class is defined in a PCD module, the name of the PCD
module can also be employed. Hence, the fully-qualified name of an object consists of
three parts: PCD module name, class name and instance name. However, users need not
be aware of this fully-qualified name because PC++ can map partially qualified names

supplied by a user to an equivalent fully-qualified name.

8.3.5 Type Checking

As noted, PC++ is a superset of C++. Therefore, type checking of the statements or
expressions in PC++ which do not involve persistent objects is the same as in C++, and is
done by the C++ compiler or run-time system. However, type checking for the statements
or expressions which involve persistent objects cannot be done by C++ alone, for it has

no knowledge of persistent objects.

There are two cases where type checking related to persistent objects needs to be done. One
is when binding a value object in the POS to a formal object in user space, which is called
object invocation. The other is persistent object assignment. In the object invocation case,
it must be guaranteed that value objects are bound to correct formal objects. Otherwise,
data abstraction may be violated because after invoking an object, the user program is
granted permission to access the value object through the formal object. In the assignment
case, where either a component of a persistent object is assigned to a variable in user space
or vice versa, type checking must be done to guarantee that the variable and the component

are of the same type.

A persistent assignment involves persistent data and a C++ variable. Type checking
cannot be done by either the C++4 compiler or the PC++ preprocessor alone, because
each of them has the type information only either for the persistent data or for the C++
variable, but not both. Therefore, this kind of type checking is done in two steps. When
performing preprocessing, the PC++ preprocessor finds out the type of the persistent data
and passes the information to the C++ compiler in some way. When compiling, the C++
compiler then checks whether the C++ variable has the same type as the type passed by
the PC++ preprocessor.

The problem now becomes to find a way in which the PC++ preprocessor can pass the type
information to the C++ compiler. It can be solved by using the put and get functions. It
has been mentioned that when preprocessing member functions, each persistent assignment
is replaced with a put or get function call which is on a per-type basis. The memory

variable, which is required to be of the same type as the persistent data, is used as an

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 124

argument of the function call. Therefore, if the memory variable is not of the same type,

it can be rejected at compile time by the C++ compiler.

Now, let’s look at an example, suppose that the PC++ preprocessor meets an assignment
as below:

$ name = #pname;

where: name is a memory variable,

pname is a persistent data member.

The PC++ preprocessor first finds out the type of pname, say nametype, by searching the
PCD module. Then it replaces the assignment with a get operation in the form:

report= nametype_get(oid, "cls_name”, ..., path, name).

It is important to notice that the last argument in the function call above is the memory
variable to be assigned. The prototype of the function nametype_get should look like this:
int nametype_get(long, char®, ..., int[], nametype).

This requires that the last argument for calling this function be of the type nametype.
Therefore, if the memory variable name in the function call above is not of the type

nametype, the C++ compiler will reject it when the function call is being compiled.

Type checking of object invocations can only be done dynamically, because only at run-
time can the type information of a value object be learnt. In order that dynamic type
checking of object invocations, a tag which records the identifier of its class is included
in the oid of an object. The identifier of a class is assigned by the PC++ preprocessor
and can be used to identify a class uniquely system-wide. When an oid is used to invoke
an object by a program, a check is done to see whether the tag included in the oid is the
same as the class identifier of the formal object to which the value object is going to be
bound. Only if they are the same is the binding done. Otherwise, an exception is raised.
By adding appropriate code to member functions during preprocessing, this check can be

done directly in user space, thus causing little run-time penalty.

8.3.6 Binding and Data Migration

An essential property of a language providing data persistence is that persistent objects
can be manipulated using the same expression syntax as for volatile objects. In order to
execute such an expression, however, there must first exist a binding between symbols in
the program and data in the persistent store. Given that the data resides on persistent

data store, we also need to provide a mechanism for data migration.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 125

In PC4++, a value object stored in the POS is bound to a memory symbol at run-time
by executing a special invocation operation on the symbol. That is, a dynamic binding
method is adopted by PC++. The value object is named either by a text name or an oid.
An object is said to be in the active state, if its value object is bound to a memory symbol;
in the passive state, otherwise. User programs can only operate on active objects. Thus
before accessing an object, user programs have to bind its value object to an appropriate

memory variable.

Data migration does not happen with object binding, but during expression evaluation.
Although the granularity of binding is the object, PC++ allows data to migrate in and
out of user memory space at any granularity. Therefore, users can save memory space
and time by migrating only those components which are really needed to evaluate an
expression. No special buffer pool is created for data migration in PC++, instead, data
is migrated to user space directly. If an operation intends to manipulate a component of
an object, it needs to assign that component to a local variable through the “=" operator
and then operate on that variable. This is a R-value binding [MAS88], i.e., any change
on that variable afterwards has no effect on that component and vice versa. The state of
an object can be changed by assigning a variable to a component of it through the “=”

operator.

8.3.7 Data Abstraction and Protection

Persistent object systems support large collections of data that have often been constructed
incrementally by a community of users. Such data is inherently valuable and requires
protection from deliberate or accidental misuse [MBC+90]. Protection is required to guard
against system malfunctions, to ensure users from misusing the common facilities and to
protect users from other users and even themselves. In PC++ however only the last
kind of protection is involved, i.e. to guarantee that value objects are only accessed by
authorised users through the operations defined on the objects. Two levels of protection
are supported. One is to guarantee data security, 7.e. to make sure that only the authorised
users access value objects. The other is to guarantee data abstraction, i.e. to make sure

that the authorised users access value objects correctly.

Data, security in PC++ is achieved by using a capability mechanism developed by the
MSSA. Traditionally, a capability is a unique and cryptographically-protected name for
an object, as well as being a set of access rights to an object. In the MSSA, a capability
is also identity-based in that only the users to which it is issued can use it [Gon89]. A

special “any” identity is provided which allows any user knowing the capability to use it.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 126

It has already been mentioned that a persistent object is named at the system level by an

oid. In fact, an oid, being a capability, is also used to protect the object.

uesr e *
process

public
stub _ interface
object

secrets

HO QS HT3 B

AN

value objects

Figure 8.5: Access Control Points

All value objects in the persistent store are created by the PC+4- server on behalf of users.
When asked by a user to create a value object, the PC++ server creates an object in the
MSSA on behalf of the user. However, instead of passing the ssid (the capability issued
by the MSSA) of the object to the user, the PC++ server issues the user with another
capability (an oid) which includes the identity of the user, and records the ssid and oid
in a mapping table. Even if a user by chance gets the ssid of an object, access will not
be permitted unless the user is authorised. Hence, value objects in the persistent store
are protected from being accessed directly by a user rather than by the PC+4+4 server.
On requesting the PC++ server to access a value object on its behalf, a user must pass
the oid that it possesses for that object; the PC++ server performs the access only when
authentication and authorisation verification have succeeded. Therefore, by using the
capability mechanism PC++ guarantees that persistent objects can only be accessed by

authorised clients.

C++ can protect a formal object from being accessed by a user through an undefined
operation. Therefore, to ensure data abstraction the PC++ server only needs to guarantee

that a value object is bound to an appropriate formal object, and that a value object is

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 127

accessed only through the formal object bound to it. Binding correctness is guaranteed
by the dynamic type checking discussed in the last subsection. Furthermore, because any
invocation of operations on value objects is generated by the PC++ preprocessor, as long
as the preprocessor is implemented correctly the correctness of access to value objects is

guaranteed.

Figure 8.5 shows the path along which a user can access a value object, and the points

where an intruder might attack.

8.3.8 Referential Integrity

In a system which supports persistence, some attention should be paid to preserving the
referential integrity [MA90]. That is, if an object is pointed at or shared by two or more
others, this sharing should be preserved when they are migrated to the persistent store,

and also when they are activated again.

In PC++, one value object can share another value object as a component by storing
the oid of that object into it, and a formal object can share another formal object by
pointing to it. When an object is activated, its data representation, i.e. the value object,
is bound to a formal object in user space. When an oid is accessed, the PC++ server
activates the object identified by the oid and returns the memory address of the object to
the user process so that the user process can access the shared object through this address.

Figure 8.6 shows how PC++ preserves referential integrity. A persistent object can be

addl add1i oidl oidl
objl objl
a) In Memory b) In the POCS

Figure 8.6: Preserving Referential Integrity in PC++

shared using several other objects by references. Therefore, it is possible that an object
is activated more than once by a user program, which may result in a value object being
bound to several formal objects. PC++ prevents this problem by keeping an active object
list (AOL) for each class in a user process. Object activation is done by first checking
whether the object is already registered in the AOL. If it is, then the memory address

of the object is returned directly. Only when it has not been registered is the activation

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 128

done. The oid of the object and its memory address are then inserted into the AOL.

8.4 Remarks

One of the terms coined by PS-Algol is orthogonal persistence [ABC+83], that is, the
possibility that any object can be made persistent, independent of its type or the way
it is used in the program. Orthogonality is convenient for the programmer, who may
not know in advance which objects will need to persist. It is also convenient for the
implementation of the run-time system, since it allows for a uniform treatment of all
objects. In [ABC+83] the authors argued that in most database systems only objects of
certain types were allowed to persist, and this inhibited the use of database management

in many applications.

In PC++, persistence is not orthogonal to type, as it is in PS-Algol. An object may be
persistent only if it is an instance of a persistent class. PC++ does not provide orthogonal
persistence for two reasons. First, in any application there are many data structures which
are known not to be persistent and which experience a very high frequency of access.
Defining such data structures as persistent objects would unnecessarily degrade the a,c.cess
performance to these objects. This contradicts the first principle of the design of PC++.
Second, we desired to leave the C++ subset of PC++ unaffected so that a C++ program
can be accepted by PC++ without change.

Although PC++ does not provide orthogonal persistence, by taking certain measures it
avoids most of the problems which might arise. First, the movement of data between
long term and short term store has been simplified as an assignment. Second, strong
typing is maintained by performing static and dynamic type checking at object binding
and persistent data assignment. Third, references to persistent objects can be maintained

in long term store using the special ssid type.

PC-++ does not support full persistence transparency as PS-Algol does in oder to make the
implementation simple. Persistent data can only be manipulated after it is assigned to a
memory variable. However, this does not cause as much of a problem as one might expect.
The users of PC++ can be classified into two kinds: the implementor of persistent classes,
and the programmer of applications based on persistent classes. The implementor who
defines the operations of persistent classes must be aware of the data movement between
persistent objects and normal objects. The programmer of applications which access

persistent objects through their operations, however, is not aware of this data movement.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++ 129

8.5 Implementing Atomic Data Types in PC++

Since PC++ is a superset of C++, the implementation of the Scheduler type, the LTM
and the DTM can be accepted by PC++ without change. However, the implementation of
user-defined atomic data types becomes easier in PC++. This is because users can access
physical objects with normal expression syntax in PC++, i.e., physical I/O is transparent

to users.

The Account example introduced in Figure 6.3 is re-implemented in PC++ in Figure 8.7.

8.6 Summary

This chapter has presented the design and implementation of PC++. Some important
issues that arise in the design and implementation of persistent languages were reviewed
and PC++’s solution to them were described.

PC++ extends C++ with persistent classes. A persistent class in PC++ keeps all the
features of class, and its instances, called persistent objects, are allocated in persistent store
and continue to exist after the program that created them has terminated. A persistent
class is implemented by two parts in PC++: a definition for data members and a definition
for member functions. The former is represented by a persistent data type, called a state

type. The latter is represented by a C++ class, called a formal class.

PC++ is implemented by a preprocessor. Users define persistent objects through the
persistent class mechanism, which is almost the same as the class mechanism in C+4+,
except that the persistent class has a confliction relation part. The PC+4 preprocessor
processes persistent class definitions and produces three files: a persistent class definition,

a persistent class head file and a persistent class operation file.

PC++ is integrated with the MSSA and uses the HLSS for storing both data and metadata.
PC++ supports the names (SSIDs) of objects managed within the MSSA as a special
type. Persistent class declarations can include SSIDs, and the application programmer

may therefore construct and manipulate object data structures whose components are
stored within the MSSA.

CHAPTER 8. THE PERSISTENT PROGRAMMING LANGUAGE—PC++

};

int

}s

int

b

Account::Account()

#amount = 0;

Account::credit(Money money)

Money balance;

balance = #amount;
balance = balance + money;
#amount = balance;

return Success;

Account::debit(Money money)

Money balance;
balance = #amount;
if (balance — money geq0)
{
balance = balance — money;
#amount = balance;
return Success;
}
else

return Overdraw;

Money Account::check()

{

$

b

Money balance;
balance = Famount;

return balance;

Figure 8.7: The Implementation of Class Account

130

Chapter 9

An Application—An Active
Badge System

This chapter illustrates the use of PC++ by describing an example implementation of a
naming database for an active badge system. The active badge system is a good example
of a potential PC++ application because it benefits from the support provided for data

persistence, atomic data types and data distribution.

9.1 Introduction

Efficient location and coordination of personnel in any large organisation is a difficult and
recurring problem. A solution to the problem of automatically determining the location
of an individual has been to design a tag in the form of an Active Badge that periodically
emits a unique code [WHT92]. These periodic signals are picked up by a network of
sensors placed around the host building. There is a master station connected with the
network, which polls the sensors for badge “sightings”, processes the data, and then makes

it available to clients that may display it in a useful visual form.

A demonstration system was installed at the Computer Laboratory, Cambridge that was
intended to be an aid for a telephone receptionist. Sensors were mounted in the offices,
common areas and major corridors. The system provides a table of names against a
dynamically updating field containing the nearest telephone and a description of that
location. Each sighting is displayed in the following format:

name phone time location (userid, office-phone)

131

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 132

If the last sighting of a badge is sufficiently recent, the time field contains a percentage
indicating the quality of sighting. As the last sighting ages, the time field contains a
number of minutes since the last sighting, then a time of day, then a day of the week, then

a date.

There are several servers in the system:

e ABNaming: manager of naming database
e ABMaster: manager of sightings database

ABSlave: interface to sensor network

ABImport: importer of sightings from a remote site

ABExport: exporter of sightings to remote sites

To detect badges in transit through a building, a sensor network must provide thorough
coverage through adequate placement and density of sensors. Each active badge network
has an ABSlave instance associated with it. The ABSlave communicates with the badge
network via a telnet connection. An ABSlave timestamps information as soon as it is
received from the badge network. When an ABSlave starts up, it notifies all instances of
type ABMaster that it exists.

An ABMaster initially contacts all instances of type ABSlave from which it is interested
in receiving sighting information. An ABMaster will resolve active badge sightings across

multiple networks, ending up with a database of sightings of the form:

e badge identifier

last-sighted timestamp

local network (ABSlave) where sighted

sensor identifier on network

sighting type (normal/multiclick)

quality of sighting

The sightings can be retrieved through simple enquiries:

e getbadge: get the last sighting for a particular badge

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 133

@ Gbupdat;

ABImport
> ABMaster ABNaming

ABExport
ABSlave ABSlave
S s g
8 s

e e 'y e ° :
n n n n n n
8 8 s s s s
[¢] [e} o ° ° o
r T x T b x

Figure 9.1: The Architecture of the Active Badge System

o getallbadges: get all the sightings from badges last seen at a particular sensor

e getall: get all sightings

The name server (ABNaming) provides descriptions for the badge and sensor identifiers
returned by ABMaster. The name server also keeps a list of ‘away messages’, which are
entered by badge wearers to specify their location when out of range of the badge system
(e.g. when at a conference). The away entries can be automatically activated at a certain

time, and cancelled by the name server when the badge is seen again.

FEach ABNaming server exports a query interface for applications, allowing the applications

to convert sightings from ABMaster into useful data for users.

The ABImport server is responsible for obtaining sightings from other badge sites. Trans-
lations of badge identifiers can be performed. Each site typically has one exporter server,

ABExport, which can send local sightings to many remote importers.
The architecture of the active badge system is shown in Figure 9.1.
There are several display applications of the system for displaying current location infor-
mation:
e abwatch: for watching one/many badges/sensors.

e abwho: for obtaining status information on one/many badges/sensors either as a

snapshot or continuously.

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 134

e zab: an X windows version of abwho with many other features.

e abmap: a two-dimensional map for watching badge movements.

The official active badge system in the Computer Laboratory was developed by the Lab-
oratory and the Olivetti Research Laboratory. The system described in this thesis is a

private version that is used to demonstrate and testify the capability of PC++-.

9.2 The Naming Database Server

An ABNaming server maintains a naming database which contains naming information
about badges, sensor locations, sensor networks, and organisational domains. The infor-
mation will be used by the ABMaster server in the process of obtaining the data from
the current sensors; and used by applications such as abwho for obtaining descriptions of
badge and sensor identifiers to convert sightings from ABMaster to useful information for

users.

The naming information needs to be persistent, because it is used from time to time by
applications; to be shareable, for several users may run application programs simultane-
ously; and to be available to remote programs, for the active badge system is intended to
provide a service to all staff who may login on any machine. PC++ is an ideal language in
which to implement the ABNaming server since it provides data persistence, data sharing

and data distribution transparently.

9.2.1 The Definition

Information is categorised by domain. All badge, sensor and network records refer to one
domain. A domain represents the logical and physical scope of an active badge system.
One domain is designated to be the home domain, and the name server using the database

is assumed to be running in this domain.

A badge record describes the textual name corresponding to a given badge identifier. The
record also contains a userid, and an indication of the usual sensor location of the badge:
(home._net, home_stn). All the badge records of a domain are grouped together and are
maintained by the ABNaming server of that domain. The structure of a badge record is
described by the structure Badge shown in Figure 9.2, and the set of badges of a domain

is described by a class badges shown in Figure 9.3.

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 135

struct Badges {

int length;

Badge data[MBADGE};
}
struct Badge {

Badgeld badge;

int attribute;
char domain[8];
char home_net[16];
int home stn;
char uid[8];

char surname[32];
char forename|[32];
char phone[16];

int ~ mobile;

5

Figure 9.2: The Definition of Badge

The badge attribute is used to specify whether the badge is tagging a regular badge user,
a piece of equipment, or a visitor. The home address is used by applications to allow a
user’s own phone to be specified whenever he/she is sighted at a sensor in the same group
asff the home address. The mobile field determines whether the home phone is a mobile —
if so, the mobile’s number should be displayed as the local phone number for the badge

wherever the badge is sighted.

Besides the badge records, the class badges also keeps a timestamp variable to remember the
current version of the information. The timestamp will be increased whenever any change is
done on the data. There are four query operations defined on the class badges: querybadge
returns the information of the badge identified by a badgeld; querybadges returns the
information of all the badges in the domain; querybadgeuid returns the information of the
badge identified by a userid; and querybadgename returns the information of the badges
named by a user name. The operations: addbadge, deletebadge, and changebadge are used

to update the data contents. The stamp operation returns the current timestamp.

The conflict relation part specifies all the possible invalidations. Invalidations may only be

caused by the three update operations since only these operation may change the object

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 136

class badges {

b

private:

int timestamp;
int num;
Badge data]MBADGE];

public:

int init(void);

int stamp(void);

Badges querybadge(Badgeld);

Badges querybadges(void);

Badges querybadgeuid (char*);

Badges querybadgename(char*);

int addbadge(Badgeld, Badge);
int changebadge(Badgeld, Badge);
int deletebadge(Badgeld, Badge);

conflict relation:

((addbadge, succeed); (querybadge, failed)/(addbadge, succeed); =)
addbadge, succeed); (deletebadge, failed)/(changebadge, failed); =)
addbadge, succeed); (querybadges, succeed)/(querybadgeuid, failed); any)
addbadge, succeed); (querybadgename, failed); any)
changebadge, succeed); (querybadge, succeed)/(changebadge, succeed); =)
changebadge, succeed); (querybadges, succeed); any)

changebadge, succeed); (querybadgename, succeed); any)
deletebadge, succeed); (changebadge, succeed)/(addbadge, failed); =)

deletebadge, succeed

((

((

((

((

((

((changebadge, succeed); (querybadgeuid, succeed); any)
((

((

((; (querybadge, succeed); =)
((;

((

)
deletebadge, succeed); (querybadgename, succeed); any)
)i (

]

deletebadge, succeed); (querybadgeuid, succeed)/(querybadges, succeed); any)

Figure 9.3: The Definition of Class badges

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 137

state.

From the specification of the conflict relation, it is obvious that by taking the operation
semantics into account, the system can permit more concurrency than a traditional system
which classifies operations only into read and write. Granularity is another factor that
affects the degree of concurrency; by taking a badge record as the access granularity,

many invalidations are excluded from the conflict relation which otherwise could not be.

9.2.2 Implementation

The implementation of member functions of a persistent class in PC++ is simple, for
neither concurrency nor remote invocation needs to be considered. On the other hand a
little attention needs to be paid to the fact that only the operator “=" can operate on
object state. Some member functions of the class badges are shown in Figure 9.4; other

ones can be implemented in a similar way.

Besides the badge information, the naming database must also manage the network in-
formation and the sensor information. A network record describes the name of a network
within a domain. Badge sightings from sensors on a network are categorised by the name

of the network. The set of networks within a domain is described by a class networks.

A sensor record gives a text name for the location of a given sensor on a network. It also
describes the telephone number at that location. Sensor regions may overlap, and sensors
may be grouped together to form one logical region. This is denoted by a reference to
another sensor in the group. This reference may be to itself for a single sensor not in a

group. The set of sensors within a domain is described by a class stations.

The classes networks and stations are very similar to the class badges, and so will not be
described further.

9.2.3 Experience

In this section, the definition and implementation of the class badges have been described
to illustrate how user-defined atomic types can be defined and implemented in PC++.
As expected, defining an object is simple because there is no special requirement within
PCH+ for representing an atomic object. Implementing member functions of an atomic
object is very straightforwdrd; no lock needs to be set or released within the functions.
Any member function is implemented as if the object is owned by itself and no others can

access it. The description of the conflict relation is also simple, although it may be a little

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM

Badges* badges::querybadgeuid(char* uid)
{
Badge items|]MBADGE];
Badges abadges;
abadges.length = 0;
$ items = #data;
for (int i = 0; i < MBADGE; i++)
{
if (stremp(items[i].uid, uid) == 0)
abadges.data[abadges.length++] = items]i];
3
return(&abadges);
h
int* badges::addbadge(Badge abadge)
{
int result = FALSE;
int bnum, bstamp;
$ bnum = #num;
if (bnum == MBADGE)
return(&result);
$ #data[bnum] = abadge;
bnum++;

#num = bnum;

L R

bstamp = #timestamp;

bstamp-+-+;
$ #timestamp = bstamp;

result = TRUE;

return(&result);

};

Figure 9.4: Some badges Member Functions

138

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 139

Badges* badges::querybadges()

{
Badges abadges;

$ abadges.length = #num,;
$ abadges.data = #data;
return(&abadges);

}

int* badges::changebadge(Badge abadge)
{

int result = FALSE;

int i, bstamp;

Badge items[MBADGE];

$ items = #data;
for (i = 0; i < MBADGE; i++)
{
if (compare_badge(& (abadge.badge),&(items[i].badge)) == 0)
$ #data[i] = abadge;
I3
if(i >= MBADGE)
return(&result);
$ bstamp = #timestamp;
bstamp-+-+;
$ #timestamp = bstamp;
result = TRUE;

return(&result);

};

Figure 9.4: Some badges Member Functions(continued)

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 140

hard to decide whether a member function invalidates another in some cases.

Arising from the implementation, we find out that the set type generator would be useful
for queries. Supporting sets would save member functions from having to retrieve whole
objects when searching for a particular item. Also, not supporting variable length se-
quences may waste storage space and make member functions a little more difficult to

implement.

More experience needs to be gained with the use of SSID and OID types. The OID type
should be useful for representing object references, and also for object sharing. The SSID
type is introduced for naming MSSA items external to the PC++ system. Neither of these
two types is used by the class badges. Another important feature that is not used by the
ABNaming server to define objects is type inheritance. PC4++ does however make use of

type inheritance to provide synchronisation to atomic objects.

From the implementation of member functions, it is also shown that PC++ does not
support full persistence transparency. The implementor of atomic data types is aware of
some difference between persistent objects and normal objects. This is because before
doing any operation on a persistent object component, the implementor has to assign it
to a memory variable; and then assign it back if updates on the component needs to be
persistent. However, this does not cause much inconvenience to the implementor because

data migration, data coding and decoding are done automatically by the system in PC++-.

It is worth pointing out that data persistence, however, is totally transparent to program-

mers who implement applications based on atomic data types.

9.3 Clients of ABNaming

Each ABNaming server exports a query interface that allow applications to convert sight-
ings from ABMaster into useful data. Examples of such applications are abwho, abwatch,
zab and abmap which display location information to users. The ABMaster server also

uses this interface to fetch sensor and network information from the naming database.

Each ABNaming server also exports an interface for users to query and manipulate the

naming database, consisting of three operations:

1. abupdate: for updating badge, sensor, network and domain information in the nam-

ing database.

2. abaway: for listing/altering away messages stored in the naming database.

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 141

3. abguery: for displaying badge, sensor, network and domain information in the naming

database.

In this section, we describe the implementation of the abwho application and the abupdate

operation to show how the naming database can be used.

9.3.1 The Implementation of abwho

The abwho command provides a simple interface to the information provided by the active
badge system. With no arguments, abwho lists all active badge sightings. FEach sighting
is displayed in the following format:

name phone time location (userid, office-phone)

With arguments domainnm and uid, abwho restricts the scope of the listing to sightings
textually matching the uid within the given domain. A simplified implementation of this

operation is shown in Figure 9.5. The operation consists of five steps:

1. fetching from the naming database all the badges of domain domainnm by calling

the QueryBadges operation;
2. finding out, from the results of the last step, the badge which matches uid, say B;

3. retrieving the sightings of B from the A BMaster server by calling the QueryByBadge

operation;
4. fetching from the naming database the information about the sensors which sight B;

5. displaying sightings to users;

There are two operations which access the naming database: QueryBadges and Query-
Station. They are implemented as two transactions which in turn invoke the corresponding
operations defined on the classes badges and stations. If the BeginTransaction operation
fails, the operations return directly to the caller with an error message; otherwise they will
activate the corresponding object in the ABNaming server and then fetch the information
using the appropriate operations defined on the object. Since PC++ provides remote
invocation transparency, these two operations can invoke and access remote objects as if

the objects are local to them.

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 142

void abwhobyuid(char *domainnm, char *uid)
{

Badges badges;

Station station;

Sightings sightings;

int i, j, k, 1, report;

do {
report = QueryBadges(domainnm, badges);
} while(report != 0);

for (i = 0;1 < badges.length; i++) {
if (stremp(badges.datali].uid, uid) == 0)

{
{sightings} = QueryByBadge(badges.datal[i].badge)
if (sightings.length > 0)
{
do {
report = QueryStation(sightings.data[0].domain,
sightings.data[0].station, &station);
} while(report != 0);
display sighting(badges.datali], station, sightings.data[0]);
}
else
display_sighting(badges.datal[i], null_station, Null_sighting);
}
return;

Figure 9.5: Part of the Implementation of abwho

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 143

DisTransManager _dtm;
Stations _stations;

Badges _badges;

int QueryStation(char* domainnm, int astation, Station* tstation)

{

int report;

report = _dtm.BeginTransaction();
if (report != 0) goto exit2;
report = _stations.invoke(domainnm, &_dtm);
if (report != 0) goto exit;
tstation = _stations.querystation(domain, astation);
exit:
report = _dtm.EndTransaction();
exit2:

return (report);

b

int QueryBadges(char* domainnm, Badges* tbadges)

{

int report;

report = .dtm.BeginTransaction();
if (report != 0) goto exit2;
report = _badges.invoke(domainnm, 100, 99, &_dtm);
if (report != 0) goto exit;
tbadges = _badges.querybadges();
exit:
report = _dtm.EndTransaction();
exit2:

return(report);

};

Figure 9.5: Part of the Implementation of abwho (continued)

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 144

9.3.2 The Implementation of abupdate

The abupdate command provides a method for users to update the contents of the naming
database: adding, deleting, or changing a badge record, a station record, a network record,

or a domain record.

int addbadge(char* domainnm)
{
Badge badge;

int i, j, report;

Sys.Init(host, databasenm, BADGE);
DisTransManager d1 = DisTransManager();

d1.BeginTransaction();
_badges.invoke(domainnm, d1);
_changes.invoke(domainnm, d1);
if (read_badge(badge) != SUCCESS) {
d1.AbortTransaction();
return(—1);
}
else {
_badges.addbadge(badge);
change.action = Add;
change.change = Bdg;
change.data = badge;
_changes.addchange(change);
}
report = d1.EndTransaction();

return (report);

}

Figure 9.6: The Implementation of Operation addbadge

The abupdate command consists of several operations each of which performs one of the
following functions: adding a badge, deleting a badge, changing a sensor, etc. It first

parses the program arguments to decide the user’s intention and then calls the appropriate

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 145

operation to perform the work.

A simplified implementation of the operation addbadge is shown in Figure 9.6. First, the
addbadge operation sets up a connection with the ABNaming server by calling Sys_Init with
the host machine name host, the naming database name databasenm and the ABNaming
server name BADGE. After starting a transaction, it activates the object _badges which
records the badge information, and the object _changes which is used to record the updates
on the naming database. Then, it asks the user to input the badge information. If there is
no input error, it adds the badge record to the database by calling the addbadge operation
defined on the object. Finally, it composes a change record and inserts it into the object

_changes.

Again, the implementation is very simple since it does not need to deal explicitly with
remote object invocation and persistence. Other operations can be implemented in a

similar way, and are hence not shown here.

9.3.3 Experience

In this section, two applications of the ABNaming server have been described to show
how applications can be written using atomic objects. PC++ requires that any operation
on an atomic object must be performed within a transaction. Therefore, an application

consists of transactions within which atomic objects are accessed.

The implementation of applications is simple. Accessing remote objects can be done in
the same way as accessing local objects, since PC++ provides transparency for remote
object invocation. Transactions can be constructed easily by using BeginTransaction,
EndTransaction and AbortTransaction operations. However, an exception handling mech-
anism would be very useful when invoking remote objects. Otherwise, user programs need

to check and handle exceptions every time they access a remote object.

Another experience we gained from the implementation of the active badge system is that
serialisability is sometimes a too strong requirement. For example, to display sightings to
users, abwho needs to fetch the current badge and station information. Even though it is
not strictly necessary for the information obtained to be up to date, PC++- still requires
the fetch operation to be enclosed in a transaction, thus participating in concurrency
control, This would slow down the execution of the operation. To provide more flexibility,

a pseudo-transaction mechanism, called the fast-read-transaction, is introduced in PC++.

Read only operations may be enclosed by a pair of BeginFastRead and EndFastRead op-

CHAPTER 9. AN APPLICATION—AN ACTIVE BADGE SYSTEM 146

erations to form a fast-read-transaction. A fast-read-transaction does not participate in
concurrency control. There is no validation phase and write phase for it, hence it can be
executed much faster than a normal transaction. The result of a fast-read-transaction may
be inaccurate, i.e., it may reflect only part of the effect of committed transactions. It is
the user who is responsible for deciding whether the results are accurate enough to use or
not. Experience gained from the implementation of the active badge system shows that

the fast-read-transaction mechanism is useful.

9.4 Summary

In this chapter, the implementation of a naming database in an active badge system was

described to illustrate how PC++ may be used, and to test its capability and feasibility.

It is clear from the example implementation that implementing user defined atomic data
types in PC++ is not a difficult task. Except for the description of conflict relation,
an atomic data type can be defined as easily as for a normal object, i.e. assuming no
concurrency and no failures, Although the implementor of an atomic data type must be
aware of the special circumstances surrounding data migration, data persistence provided

by PC++ makes it as simple as an assignment.

On the other hand, the implementation also shows that some other mechanisms would be
useful for writing member functions, such as the set type generator, and variable length

sequences. However, they are not directly related to the subject of the research.

The applications of the ABNaming server described in the last section shows that applica-
tions making use of atomic data types can be easily implemented, This is because in PC++
remote objects and local objects can be accessed in a similar way. However, an exception
handling mechanism would be very useful when invoking remote objects. By support-
ing both the transaction and fast-read-transaction mechanisms in PC++, users have the
flexibility to make compromise between strong consistence and performance according to

application requirements.

In summary, the example implementation shows that PC++ provides a good interface
both for implementing and using atomic data types, although there are still some features

need to be improved resulted from the simplified implementation of PC++-.

Chapter 10

Comparison with Related Work

The aim of this thesis is to find a mechanism by which user-defined atomic data types can
be implemented easily, efficiently but still permitting great concurrency. To achieve this
aim, an implicit approach was taken for implementing user-defined atomic data types.
Associated with the approach, this thesis proposed an optimistic concurrency control
method, the dual-level validation method for atomic objects to provide local atomicity;
and a language for users to specify the semantics of object operations. There are a number
of systems which support transactions by utilising atomic objects. In this chapter, we
briefly review these systems and compare each of them with the work presented in this

thesis. Emphasis in the comparison is placed on the following features:

1. The definition approach: Approaches taken for defining atomic data types can be
divided into three classes: implicit approach, explicit approach and hybrid approach,
according to whether the system or programmers are responsible for implementing

the synchronisation and recovery operations.

2. How the application information is represented: In the case where an explicit or
hybrid approach is taken for defining atomic data types, it is possible to represent
application data structures and methods either independent of or related to synchro-
nisation information. Generally speaking, the latter may permit greater concurrency.

On the other hand, however, it might make the coding of the class operations more
difficult.

3. Specifying the semantics: The conflict semantics of object operations may be spec-
ified declaratively, separately from the implementation of the operations. Alterna-
tively, it might be encapsulated in the coding of the methods. The latter approach

not only makes operations harder to implement and to verify, but it also means that

147

CHAPTER 10. COMPARISON WITH RELATED WORK 148

it is more difficult to effect changes.

4. The semantics level: What level of semantics is taken into account when specifying
operation conflict? The more precise the specification, the greater is the potential

concurrency.

5. The concurrency control and recovery method: Different systems support local atom-

icity using different methods for concurrency control and recovery.

6. The persistent model: The persistent model used by a system may affect concurrency

and crash recovery of the system as well as the convenience for the programmer.

10.1 Argus

Argus [LCJS87, Lis88] is a reliable distributed programming language which provides
support for nested transactions. In Argus, a distributed program consists of a collection
of operations on guardians [L.S83] which are stable, crash resistant object managers. Each
guardian provides a set of handlers which constitute the public interface to the objects
it manages. Each handler invocation creates a new process and nested transaction to
manage the call. To support atomicity Argus provides atomic data types, instances of

which, called atomic objects, are serialisable, recoverable and persistent.

Both inter-transaction and inter-operation synchronisation are explicit in Argus. Inter-
operation synchronisation needs to be done by programmers using the built-in type gen-
erator mutex and the seize statement. The goal of inter-operation synchronisation is to
ensure that concurrently invoked operations are executed in mutual exclusion. Locks set on
a mutex are only held for the period that an operation accesses the object state, thus they

do not protect temporary results of transactions from being seen by other transactions.

The goal of inter-transaction synchronisation is to ensure that the effects of transactions
are serialisable. It not only needs to determine whether an operation from a transaction
should be done, but also needs to ensure that the operation, if it could be done, does
not read temporary results. Before accessing any item of an object, an operation must
check the status of that item to determine whether it is usable, i.e to check whether
the transaction which last modified that item has been committed. Inter-transaction
synchronisation in Argus is done by programmers using locks on built-in atomic objects.
Associated with each item of an object, there is a built-in atomic object which is used to
indicate the status of that item: present if the transaction that modified that item has

committed; or absent otherwise. Any operation which modifies an item sets the object

CHAPTER 10. COMPARISON WITH RELATED WORK 149

status as absent at first, once the transaction has committed, the object status becomes

present.

There are two ways to complete a transaction in Argus: in the implicit approach no
user code runs when a transaction completes; however in the explicit approach, it is the

programmer who supplies the code which will run when completing a transaction.

Usually, the state of an atomic object in Argus is represented as a history (log) of previously
executed transitions. The execution of an operation on the atomic object is implemented
as an addition to this collection of transitions. Explicit synchronisation is needed before
the addition to determine whether the current operation can proceed immediately or has
to be retried. The goal of the synchronisation is to decide whether the serialised sequence
generated at this atomic object is still valid after the new transition is added. Information

kept in the history of previously invoked transitions is used to make that decision.

Argus provides a number of built-in atomic data types and constructs which enable user-
defined atomic data types to be implemented. Typically, the representation of an object
state is a combination of atomic and non-atomic objects, with the non-atomic objects
used to hold information that can be accessed by concurrent transactions, and the atomic
objects containing information that allows the non-atomic data to be interpreted properly.
The entire representation is enclosed in a mutex, which is used to provide mutual exclusion

for user processes.

Argus is designed to support implementation of (pessimistic) dynamic atomic data types
based on a generalisation of strict two-phase locking. The built-in atomic data types em-
ploy the multiple reader/single writer policy for locking, whereas user-defined atomic types
can implement type-specific concurrency control to provide increased concurrency. A gen-
eral locking protocol [Wei84] is used by Argus, which permits partial and non-deterministic
operations. That is, operations may not be defined on some states and invoking an oper-
ation on a state may not always have the same result. The other difference between the
general locking protocol and normal locking protocols is that it permits information about
the result of executing an invocation to be used when scheduling invocations. Therefore,
it permits more concurrency than normal locking protocols which restrict invocations to
be total and deterministic. Argus recovers directly from the history object. A transaction
can be aborted simply by deleting its transitions from the history object. No further re-
covery is necessary. Recovery operations must be provided by programmers in the explicit

approach.

A system must record enough information in secondary storage so that an object can be

restored to a consistent state should the node on which it resides fail. In Argus, objects

CHAPTER 10. COMPARISON WITH RELATED WORK 150

are kept in volatile memory while they are used by transactions, and are written to stable
storage when a transaction that modifies them commits. Argus applies the commit log
technique, i.e. recording the relative changes made to the object since some previously
recorded state. The system knows when a built-in atomic object needs to be copied to
stable storage; however, the programmer must tell the system what mutex objects should

be written to the stable storage by using the mutex operation changed.

When a node crashes, all guardians residing at that node become inaccessible. When a
node recovers, its guardians restart, and the information in stable storage is used to restore
the states of the stable objects.

10.2 Arjuna

Arjuna [SDP91, Par88, Dix88] is an object-oriented programming system which provides a
set of tools for constructing fault-tolerant distributed applications. Arjuna supports nested
transactions for structuring programs. Programs invoke operations on atomic objects. In
Arjuna, objects are long lived entities and are the main repositories for holding system

state.

Inter-transaction synchronisation in Arjuna is done explicitly by using locks. Associated
with each object there is a lock variable to indicate the current status (held or retained)
and the current mode (read or write) of the object. Operations are classified as readers
or writers. The locking scheme used by Arjuna is the well known pessimistic method of
single writer/multiple readers. Before accessing an object, an operation must check the
lock variable to see whether the operation could cause conflict. When no conflict arises, the
operation can access that object; otherwise it needs to wait until the lock is released. In
order to ensure that strict two-phase locking is followed, i.e., any lock cannot be released
until the transaction commits or aborts, Arjuna requires that the releaselock operation
is called by the transaction system when a transaction commits or aborts rather than
directly by the programmer. Thus, an implicit approach is taken by Arjuna to complete

a transaction.

Note that no inter-operation synchronisation needs to be done in Arjuna for it does not
support type-specific concurrency. If any transaction holds a read lock on an object, then
no transaction holds a write lock, so all are free to read the object without fear of its being
modified as they read it. Conversely, if one transaction holds a write lock on an object,
no other transaction can hold either type of lock, so it need not fear interference. This

simplicity is achieved by sacrificing potential concurrency.

CHAPTER 10. COMPARISON WITH RELATED WORK 151

Concurrency control in Arjuna is implemented by at first defining a basic concurrency
controller, called LockCC, which is based on the common technique of two-phase locking;
user-defined atomic data types can then make use of it. The type LockCC'is strictly a
manager in that it does not create locks itself but merely ensures that locks created by

the user are set and released in accordance with the rules of two-phase locking.

User-defined atomic objects can be derived from the concurrency controller, thus they are
able to utilise inherited operations to set locks on its instances. User-defined atomic objects
need only to define the representation of application information and the representation

of the lock variable.

The default mechanism for supporting recovery in Arjuna is to take a snapshot of the state
of an object before it is modified for the first time within the scope of a transaction. If the
transaction aborts then the old state can simply replace the new one, thereby achieving

recovery.

The current Arjuna implementation makes use of the Unix file system for long term storage
of objects, with a class ObjectStore providing an object-oriented interface to the file system.
When not in use persistent objects are stored in a passive form in an object store. When
first used they are automatically activated by the system which results in the conversion
of the object into its active form. Deactivation occurs when the transaction commits at
which time the object is again converted back into a passive form. Conversion of objects
between their passive and active form is controlled by the system but uses operations
supplied by the programmer. These operations must be provided otherwise neither the

recovery nor the persistence mechanism will function properly.

10.3 TABS

The TABS (TransAction Based System) prototype [SBD*85] developed at Carnegie-
Mellon University provides support for distributed transactions that operate on atomic
data types that do type-specific synchronisation and recovery. Objects in TABS are in-
stances of atomic data types and are encapsulated in processes called data servers. An
operation on an object is invoked via a request message to the data server. In TABS, the
responsibility for recovery and synchronisation is divided between the system and individ-
ual types in a fashion that contributes to efficient operation and provides for composition
of operations on different objects. The programmer indicates in each operation the kind
of lock that should be set on the object by using the LockObject routine; however, it is the

system that is responsible for ensuring that locks are set and released in accordance with

CHAPTER 10. COMPARISON WITH RELATED WORK 152

the rules of two-phase locking.

In TABS, data servers support synchronisation requirements of transactions by using
locking to synchronise access to the objects they read and modify. To achieve increased
concurrency, data servers can exploit the semantics of operations by using type-specific
locking. Every operation on an object acquires a lock from the set of lock modes associated
with that object. A type-specific lock compatibility relation is used to determine whether
a lock may be acquired by a particular transaction. Locking is explicit in that the data
servers must explicitly call the TABS routine LockObject, supplying an object identifier
and a mode, in order to set a lock. If the lock is not available the server is made to wait.
For reasons of efficiency, data servers may encapsulate many objects and these may be of

more than one type.

Two separate write-ahead log algorithms are implemented in TABS. One is based upon
value logging, in which the undo and redo portions of a log record contain the old and
new values of an object’s representation. Upon transaction abort, the recovery manager
follows the backward chain of log records that were written by the transaction and sends
messages to the servers instructing them to undo their effects. Another is an operation-
based recovery algorithm, in which data servers write log records containing the names of
operations and enough information to undo them. Operations are redone or undone, as

necessary, during recovery processing to restore the correct state of objects.

In TABS, inter-operation synchronisation is also done using exclusive locks. When type-
specific locking is used by an atomic object, in which case different transactions may con-
currently update the same object, the operation-based recovery mechanism must therefore

be used. Otherwise, an aborted transaction cannot be recovered.

TABS supports data persistence by using the underlying facilities provided by the Accent
kernel. Accent provides a kind of memory object called the recoverable segment. Recov-
erable segments are backed by non-volatile storage. The backing storage for a recoverable

segment is permanently assigned, and the paging system updates this storage directly.

To support the write-ahead log algorithms, the kernel sends three kinds of messages to the
Recovery Manager. The first message indicates that an in-memory page of a recoverable
segment has been modified for the first time since it has been paged in. The second message
indicates that the kernel wants to copy a modified page of the recoverable segment to non-
volatile storage. The kernel does not write the page until it receives a message from the
recovery manager indicating that all log records that apply to this page have been written
to non-volatile storage. The third message indicates that a page in a recoverable segment

has been successfully copied to non-volatile storage.

CHAPTER 10. COMPARISON WITH RELATED WORK 1563

10.4 Clouds/Aeolus

The goal of the Clouds [AMS83] project is the implementation of a fault-tolerant distributed
operating system based on the notions of objects and transactions. In Clouds, scheduling
of responses to operation invocations is controlled by objects. Serialisability is defined in
terms of the semantics of operations. Clouds takes an integrated strategy for synchronisa-
tion and recovery which uses relationships between objects to track dependencies between
transactions. The goal of the Aeolus [LW85] language is to make possible access to the
synchronisation and recovery features of Clouds from a powerful programming language

which provides features such as strong typing.

Clouds provides four levels of synchronisation facilities, each of which includes progres-
sively more semantics in the determination of whether a conflict may form. At the first
level, the system automatically provides an acceptable locking scheme at the object level,
in which only two lock modes read and write are provided. At the second level, the pro-
grammer can specify operation compatibilities which must be true for all possible param-
eters and all possible object states. However, the programmer must provide appropriate
recovery at this level, which must be specified for each operation. At the third levél,
Clouds provides programmer-controlled locks which permit any item in the domain of in-
terest to be locked. Multiple lock modes are specified here as well. The programmer must
manipulate locks explicitly and provide appropriate recovery. At the fourth level, Clouds
provides an approach which can achieve greater concurrency for some applications. In this
approach, each object maintains two lists to remember transactions that are ready to run
and that have accessed the object but have not committed. The lists represent a running
history which can be used to determine precisely whether a conflict will be created. Clouds

uses pessimistic concurrency control synchronisation at all levels.

To support recovery there is a one per-machine, write-once log which is directly iﬁtegrated
with the virtual memory system using a write-ahead log protocol. As operations are
performed on an object, the object is responsible for saving sufficient information in the

log to undo the operations unless the first level is used.

Clouds supports resilience through use of stable storage. Various features are provided
which cause the object support system to record sufficient information on stable storage
to allow the state of an object to be recovered after a hardware failure. It is required that
the state of an object must be written to stable storage whenever a transaction which
modified the object commits. To specify what must be written to stable storage, Clouds

allows an entire object or any data item within it to be specified recoverable. If the entire

CHAPTER 10. COMPARISON WITH RELATED WORK 154

object is recoverable, then all of its contained data items are written to stable storage

when a commit occurs.

The language Aeolus provides support for objects, but not inheritance. The programmer
may use the support provided by the Clouds kernel for synchronisation and recovery (at
the first level). In this case, the keyword autosynch is required in the object definition

part along with the keywords modifies and ezamines in the relevant operation declaration.

Alternatively, using the features provided by the language and the Clouds system, the
programmer may take advantage of semantic knowledge about the application to explicitly
code more appropriate recoverability and synchronisation. The lock mechanism may be

used to specify customised synchronisation rules.

10.5 Camelot/Avalon

Camelot [SBD186] is a general purpose system which supports nested transactions ex-
ecuting in a distributed environment. An object-oriented programming environment is
provided by the Avalon [DHW88] project which employs linguistic constructs, in the form
of extensions to languages such as C++, on top of the facilities provided by Camelot to

offer atomic actions for use in an application.

Camelot supports two compatible types of concurrency control: standard two-phase lock-
ing and hybrid atomicity. The concurrency control of each form is explicit with locking
being provided via a call to the routine Camlib_Lock which takes a lock name and mode
as parameters. Support for hybrid atomicity requires that objects explicitly take part in
the process of transaction commit. Camelot implements this by allowing programmers to
declare routines that will be called whenever they become involved in the commit or abort

of a transaction.

Objects are maintained by data servers. Transaction commit information and object mod-

ification records are written to a log which is implemented using stable storage techniques.

In Avalon, support for synchronisation and recovery is provided by a number of classes:
recoverable, atomic and subatomic, so that new classes may be devised which inherit the
basic functionality. The most basic is the recoverable class, which offers persistence to
its derived classes. The restored state of a recoverable object is guaranteed to reflect all

operations performed by transactions that committed before the crash.

The atomic class is a subclass of recoverable, specialised to provide two-phase read/write

CHAPTER 10. COMPARISON WITH RELATED WORK 155

locking and automatic recovery. Locking ensures serialisability, and the recovery mecha-
nism inherited from recoverable ensures transaction consistency. User-defined atomic data
types can be derived from atomic. The atomic class contains long-term locks: read_lock
and write_lock. Long-term locks are used for inter-transaction synchronisation and will be
held by transactions until they commit or abort, User-defined atomic data types should
divide their operations into writers and readers. To ensure serialisability, reader opera-
tions should call read_lock on entry, and writer operations should call write_lock on entry.
Note that, by taking such an approach, no short-term mutual exclusion lock on the object
is necessary to do inter-operation synchronisation. The Avalon run-time system guaran-
tees transaction consistency by performing special abort processing. Thus programmers

of atomic data types need not provide explicit commit or abort operations.

The subatomic class is also a subclass of recoverable. Like atomic, subatomic allows objects
of its derived classes to ensure atomicity. However, subatomic provides more complex prim-
itives to give programmers more detailed control over their objects’ synchronisation and
recovery mechanism. Programmers can use this control to exploit type-specific properties
of objects, permitting higher levels of concurrency and more efficient recovery. Besides
the long-term locks, subatomic also provides the seize, release and pause operations for
inter-operation synchronisation. Each subatomic object contains a short-term lock simi-
lar to a monitor lock or semaphore. Only one transaction can hold the short-term lock
at a time. To implement transaction consistency, subatomic provides commit and abort
operations. However, programmers are allowed to re-implement these operations. Thus,

subatomic allows type-specific commit and abort processing.

10.6 Comparison with PC++

The substantial difference between PC++ and other systems is that PC++ takes an im-
plicit approach for both synchronisation and transaction completion. On the contrary,
the other systems (except for level 1 in Clouds) take an explicit approach for synchroni-
sation, although some systems do take an implicit approach for transaction completion.
In PC+4+, application information and synchronisation information are represented inde-
pendently. The representation of synchronisation information, and the implementation
of the synchronisation and transaction completion operations are done in the base class
Scheduler, User-defined atomic data types can be implemented by inheriting synchronisa-
tion properties directly from Scheduler. Therefore, programmers only need to define the
structure to represent application information, and to implement object operations that

manipulate the information. The representation of application information depends only

CHAPTER 10. COMPARISON WITH RELATED WORK 156

on the application requirements, without concern for how synchronisation and recovery

could be done. Object operations can be implemented as in a serial environment.

Although level 1 of Clouds, like PC++, takes an implicit approach, it provides only two
lock modes read and write. That is, it does not support type-specific concurrency at all,

which is after all a main aim of atomic data types.

Another substantial difference is that PC++ allows users to specify a high degree of the
semantics of object operations declaratively. The others either allow only limited semantics
to be represented (Arjuna, TABS and the first three levels of Clouds), or can express a
high degree of semantics but in an encapsulated way (Argus, Avalon and the fourth level of
Clouds). In PC++, the semantics of object operations is represented through the conflict
relation of an object. A special language is developed for the purpose. The language can
represent the first four levels of semantics stated in Chapter 6, i.e., the parameters and

the results of operations can be used to specify conflict between operations.

Although all the other systems take an explicit approach, there are large differences be-
tween them depending on how the semantics is represented and used. Argus uses a general
locking protocol for concurrency control, which permits partial and non-deterministic oper-
ations. Application information and synchronisation information are represented together
as a history (log) of previously executed transactions. Information kept in the history of
previously invoked transactions is used to make synchronisation decisions. Since synchro-
nisation is embedded in the implementation of object operations, the semantics of object
operations can be used directly when making synchronisation decisions. Avalon takes an
approach similar to Argus for object representation and synchronisation. It is different
from Argus in that it provides the facilities to support user-defined atomic data types by
using type-inheritance, instead of using built-in atomic data types and special statements.
Therefore, it is more flexible than Argus. Level 4 of support in Clouds takes an approach
similar to Argus for synchronisation. Each object maintains a running history which can
be used to determine precisely whether conflict can arise. The drawbacks of this kind
of approach are obvious. The implementation of user-defined atomic data types becomes
difficult by taking such an approach. This is because the programmer must provide syn-
chronisation and recovery, and further, utilising the type semantics is an ad hoc process in
such an approach. Therefore, such an implementation requires considerable sophistication
on behalf of the implementor and it is very likely to include bugs. Secondly, changing the
level of semantics used for synchronisation, or changing the synchronisation or recovery
scheme, would require reimplementation of object operations. Thirdly, each object oper-
ation becomes more complex and needs more execution time, since before accessing an

item, it is necessary to check the status of the item and to deduce the current value of

CHAPTER 10. COMPARISON WITH RELATED WORK 157

the item from the object history (log). To prevent a history from increasing indefinitely,
a clear-up process must be executed periodically. Another problem with this approach is

that it is not suitable for applications which have complicated data structures.

TABS also takes an explicit approach for synchronisation, however, synchronisation in-
formation and application information are represented independently. The semantics of
object operations can be specified in a declarative way in TABS, for example, through a
lock compatibility matrix. It uses an extended two-phase locking protocol for synchroni-
sation, which supports type-specific locks in order to increase concurrency. An operation
must first acquire a lock in the mode defined for its class. A lock can be acquired if no
concurrent activity holds a conflicting lock. Locks are released when activities complete.
If an operation is unable to acquire its lock, it waits until conflicting activities complete.
Recovery must be specified for each operation by programmers. Level 2 of support in
Clouds takes the same approach as TABS. Level 3 in Clouds is similar, but it permits
any item of an object to be locked. Implementing synchronisation is much easier in this
case than in Argus, for it is not implemented in an ad hoc way, but according to a typical
locking pattern. However, this approach provides less concurrency, for only the first two
or three levels of semantics can be represented. Another disadvantage of this approach is
that programmers are responsible for recovery. This is not always an easy task because in

some applications operation-based recovery cannot be used, as discussed in Chapter 2.

Like TABS, Arjuna also takes an explicit approach for synchronisation using the two-phase
locking protocol; however, it only classifies operations as readers or writers. Therefore, it

does not provide type-specific concurrency which is a main aim of atomic data types.

Another difference between PC++ and other systems is that PC++ uses an optimistic
method for synchronisation while others use pessimistic methods. Research has shown
that pessimistic techniques are more robust, while optimistic techniques are cost-effective
under some specialised circumstances [Her87a}, and that optimistic and pessimistic meth-
ods behave differently when integrated with quorum-consensus replication [Her87b]. Pes-
simistic techniques trade concurrency for availability; weakening the constraints on one
may tighten the constraints on the other. Optimistic techniques are different: enhancing
validation to accept more interleaving has no effect on availability. In other words, opti-
mistic methods are more suitable than pessimistic methods in some applications. PC++

provides a chance for such applications to use suitable concurrency control methods.

PC++ is also different from the other systems in providing more inter-operation con-
currency. The other systems use mutez to provide inter-operation synchronisation which

allows only one operation at a time to operate on an object. PC++ uses an optimistic

CHAPTER 10. COMPARISON WITH RELATED WORK 158

method on a multiple granularity basis, which permits more concurrency. Although inter-
operation concurrency is not as critical as inter-transaction concurrency, it is still im-
portant for applications which have complicated data structures such as B-trees, where

execution of the operations takes a long time.

PC++ also uses a different model of persistence from the other systems. In PC++4-,
objects reside on persistent store, even if they are bound with memory variables. Only
the components which are actually accessed by a transaction are migrated into memory.
Therefore, PC++ allows applications to cope with very large objects. This model also
permits more concurrency during execution, since synchronising access to objects may be
done at a fine granularity. Similarly, the amount of data copied to secondary storage when

a transaction commits can be reduced.

Like PC++, Arjuna and Avalon also use type inheritance for implementing user-defined
atomic data types. However, PC++ is very different from both of them. PC++ uses
type inheritance directly to provide a synchronisation mechanism for user-defined atomic
data types. On the contrary, Arjuna and Avalon use type inheritance to provide facilities
with which programmers themselves may implement synchronisation mechanisms for user-
defined atomic data types. PC++, Avalon and Arjuna are all good examples illustrating,

that type inheritance provides an effective way to construct atomic data types.

In summary, the existing systems either permit limited semantics to be represented, and
thus provide less concurrency, or permit a high degree of semantics but in an encapsulated
way, which makes the implementation of atomic data types difficult. On the other hand,
PC++ can take advantage of a high degree of semantics when synchronising transactions,
thus providing great concurrency, and at the same time allow programmers to define

atomic data types in a simple and efficient way.

10.7 Summary

In this chapter, several systems which support atomic data types were described, then
they were compared with PC++. PC++ is different from these systems in the following
aspects. First, PC++ takes an implicit approach for synchronisation, whereas others take
an explicit approach. Second, PC++ lets users to specify a high degree of semantics of
object operations in a declarative way, whereas others either permit limited semantics to
be represented or permit a high degree of semantics but in an encapsulated way. Third,
PC++ uses an optimistic method for concurrency control, whereas others use pessimistic

methods. Fourth, PC4+ provides more inter-operation concurrency than others. Finally,

CHAPTER 10. COMPARISON WITH RELATED WORK 159

PC++ adopts a different persistent model which allows applications to cope with very large
objects, lets operations have more concurrency, and causes less data migration between

memory and secondary storage.

In summary, PC++ provides a mechanism which makes the implementation of user-defined

atomic data types simple, efficient but still permitting great concurrency.

Chapter 11

Conclusion

This chapter concludes the thesis by summarising the work done, and making suggestions

for further work.

11.1 Summary

Existing systems that support atomic data types take explicit approaches for implementing
user-defined atomic data types. They either permit limited semantics of object operations
to be represented thus providing less concurrency, or permit a high level of semantics to be
represented but in an encapsulated way, thus resulting in complicated implementations.
In this thesis, consideration was given to an implicit approach that permits a high level
of semantics to be specified in a declarative way. This makes the implementation of user-
defined atomic data types as simple as in a sequential environment, thus lessening the

programmer’s burden but still permitting great concurrency.

To this end, we first presented a new optimistic concurrency control protocol, called the
dual-level validation (DLV) method, formalised it and verified its correctness. The DLV
method extends existing protocols in two ways: it increases internal concurrency by per-
mitting operations on an object to be executed concurrently; it also simplifies the im-
plementation of object operations and the recovery and commitment procedure by using
suitable object representations. An implicit approach was then proposed for implement-
ing user-defined atomic data types. Synchronisation information as well as the related
operations to synchronise, recover and commit transactions by using that information are
defined in a special type, the Scheduler class. User-defined atomic data types, by using the

type-inheritance mechanism available in object-oriented languages, can then inherit these

160

CHAPTER 11. CONCLUSION 161

properties directly and use them to provide local atomicity for their objects. A language
has been developed for specifying the semantics of object operations, by which a high level

of semantics can be represented in a declarative way.

Various other related issues were also considered, namely the implementation of a transac-
tion mechanism, distributed transaction commitment, remote object invocation and data
persistence. Consideration of these requirements led to the design of PC++. PCH+

supports data persistence, atomic data types and distributed transactions.

A prototype of PC++ has been implemented and has been used to implement a real
application, a naming database for an active badge system. While more work needs to
be done on providing more programming mechanisms such as the set type generator and
variable length sequences, the application implementation shows that applications can be

implemented quite easily in PC++-.

11.2 Further Work

Performance Evaluation: It is clear both from the given examples and from the ap-
plication implementation that user-defined atomic data types can be implemented quite
easily in PC++. However, no performance measurement has yet been carried out due
to shortage of time. Two aspects of performance need to be measured for PC4+4: the
concurrency control method and the persistent model, both of which are different from
existing systems. From analysis, the performance of the DLV method should be better
than the optimistic method proposed by Herlihy [Her90] due to high internal concurrency
and suitable object representation. However, how much performance can be gained from
them needs to be measured in real applications. In contrast, the persistent model used
by PC++ is designed to provide applications with high concurrency and the capability to
cope with very large objects. It seems that its performance could be worse than the model
which uses virtual memory because in the PC++ model access times to secondary storage
are higher. Again how much performance would be lost due to providing the capabilities

needs to be measured.

Pessimistic Methods: It has been shown in this thesis that by using the DLV method to
provide local atomicity, an implicit approach can make the implementation of user-defined
atomic data types simple but still permitting great concurrency. However, it is necessary
to investigate whether it is also possible to implement an implicit approach based on a
pessimistic method. It seems that an implicit approach based on a pessimistic method

can be implemented reasonably easily if only the first three levels of the semantics stated

CHAPTER 11. CONCLUSION 162

in Chapter 6 are used for synchronisation. However, it is not clear how to implement an

implicit approach based on a pessimistic method using a higher level of semantics.

Customised with New Methods: Many researchers have pointed out that serialisabil-
ity is often a far stronger constraint than is really necessary, and that in some special
application situations, temporary inconsistency would be acceptable. Research needs to
be done to propose new validation methods which produce non-serialisable schedules but
still, however, produce results that are appropriate to the application so that more concur-
rency can be achieved. We believe that the combination of type inheritance and function
overloading provides a simple and flexible way to achieve incremental modification of the
properties of the Scheduler class, so that it can be customised with new validation methods

for special applications.

Nested Transactions: Nested transactions [Mos81] are useful for decomposing activ-
ities into smaller units. Nested transactions provide increased failure—tolerance: sub-
transactions of a transaction fail independently of each other and independently of the
containing transaction. In addition, nested transactions can be used to run parts of the
same activity concurrently, while ensuring that their execution is serialisable. Currently
PC++, which was implemented during a short period of time, does not support nested
transaction. However, the DLV method as well as the implicit approach taken by PCH+

should not present any problem to the implementation of nested transactions.

State-Based Validation: The validation method taken by the dual-level synchronisation
is a conflict-based validation, i.e., it uses predefined conflicts between pairs of events
for validation. Although it permits high concurrency by using a high level of semantics
when doing validation, it will nevertheless restart certain transactions unnecessarily. For
example, one debit operation need not be invalidated by another if the balance covers
both debits. However, no conflict-based method can permit concurrent debits simply on
the basis of conflicts between pairs of events. Instead, the accuracylof validation can
be enhanced only by taking objects’ states into account, i.e. by using the fifth level of
semantics. Such state-based validation is more expensive than conflict-based validation,
since it may amount to re-executing part of the transaction [Her90]. Nevertheless, state-
based validation may be cost-effective in special cases where predefined conflicts are too

restrictive, and where validation conditions can be evaluated efficiently.

Multimedia Applications: At the Computer Laboratory, Cambridge we are moving
towards a world in which multimedia displays are managed by editing, browsing and com-
posing tools [Bat93]. The MSSA, based on which PC++ provides its data persistence, has

been designed for such applications. The architecture is open and adopts a layered ap-

CHAPTER 11. CONCLUSION 163

proach. At the bottom level physical servers store byte sequence files: this level supports
quality of service guarantees using sessions and tickets. At higher levels there are services
to manage video and audio, together with the HLSS. PC++ has been developed with
the requirements of multimedia applications in mind; the persistent class declarations can
include storage service ID’s, and the application programmer may therefore construct and
manipulate objects which contain references to any items managed within the open archi-
tecture of MSSA, including video and voice. The optimistic concurrency control method,
we believe, is more suitable for flexible real-time applications than pessimistic methods
such as two-phase locking. However, research should be continued on integrating PC+4
with MSSA, including support for quality of service, for use in developing multimedia
authoring and presentation tools; and on evaluating within such multimedia applications

the use of optimistic concurrency control mechanisms that exploit operation semantics.

11.3 Conclusions

The PC++ prototype has shown that it is possible to provide a mechanism that makes the
implementation of user-defined atomic data types simple, efficient, while still permitting
great concurrency. This has been achieved by taking an implicit approach for implement-
ing atomic objects, which permits a high level of semantics of object operations to be
specified in a declarative way. That is, the system defines a special class for performing
synchronisation and recovery, and provides a language for specifying the semantics of ob-
ject operations; users define atomic data types by inheriting these properties through type
inheritance and specifying the semantics of object operations in the language. The key
point here is that the method used for synchronisation and recovery should not need sup-
port from the representation of object state and the implementation of object operations,
and that the method can use the semantics represented in the language to make synchro-
nisation decisions. The DLV method proposed by this thesis meets this requirement, and
hence can be used in PC++-.

Experience with the active badge application is encouraging. The implementation is
largely straightforward and the system is apparently robust. The application bears out the
potential of the implicit approach to implementing atomic data types, in which methods
can be coded as if in a sequential environment. The optimistic approach provides an ideal
model for the application. There are many questions that require further investigation,

but the general approach has been shown to be feasible.

Bibliography

[ABC*83]

[ACCS1]

[AMS3]

[Bac93]

[Bat93]

[BG81]

[BGS3]

[BHGS7]

[Bir89)]

[BMTW91]

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshot, and R. Mor-
rison. An approach to persistent programming. The Computer Journal,
26(4):360-365, 1983.

M. P. Atkinson, K. J. Chisholm, and W. P. Cockshott. PS-Algol: an Algol
with a persistent heap. ACM SIGPLAN Notices, 17(7):24-31, July 1981.

J. E. Allchin and M. S. McKendry. Synchronization and recovery of actions.
In Proceedings of the 2nd annual ACM Symposium of Principles of Distributed
Computing, pages 31-44, August 1983.

J. Bacon. Concurrent Systems: An Integrated Approach to Operating Systems,
Database and Distributed Systems. Addison—Wesley, 1993.

J. Bates. Support for Real-time Interactive Presentation of Distributed Mul-
timedia. PhD thesis, Cambridge University Computer Laboratory, 1993. In

preparation,

P. N. Bernstein and N. Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys, 13(2):185-221, June 1981.

P. A. Bernstein and N. Goodman. Multiversion concurrency control—theory
and algorithms. ACM Transactions on Database Systems, 8(4):465-483, De-
cember 1983.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

A. D. Birrell. An introduction to programming with threads. Technical Re-
port 35, DEC Systems Research Center, January 1989.

J. Bacon, K. Moody, S. Thomson, and T. D. Wilson. A multi-service storage
architecture. ACM Operating Systems Review, 25(4):47-65, October 1991.

164

BIBLIOGRAPHY 165

[BN84]

[BRGP78]

[CP84]

[Dat86]

[Dav73]

[Dav78]

[DHWSS]

[Dix88]

[DS83]

[EGLT76]

[EM90]

[Gon89]

[Gra79]

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39-59, February 1984.

P. A. Bernstein, J. B. Rothnie, N. Goodman, and C. H. Papadimitriou. The
concurrency control mechanism of SDD-1: A system for distributed databases.
IEEE Transactions on Software Engineering, SE-4(3):154-168, May 1978.

S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.
McGraw-Hill, 1984.

C. J. Date. An Introduction to Database Systems, volume 2. Addison-Wesley,
4th edition, 1986.

C. T. Davies. Recovery semantics for a DB/DC system. In Proceedings of the
1973 ACM National Conference, pages 136-141, August 1973.

C. T. Davies. Data processing spheres of control. IBM System Journal,
17(2):179-198, 1978.

D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchroniza-
tion and recovery properties in Avalon/C++. IEEE Computer, 21(12):57-69,
December 1988.

N. Dixon. Object Management for Persistence and Recoverability. PhD the-
sis, Computing Laboratory, University of Newcastle upon Tyne, July 1988.
Technical Report TR276.

C. Dwork and M. D. Skeen. The inherent cost of nonblocking commitment.
In Proceedings of the 2nd annual Symposium on Principles of Distributed

Computing, pages 1-11, August 1983.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notion of
consistency and predicate locks in a database system. Communications of the
ACM, 19(11):624-633, November 1976.

J. Eliot and B. Moss. Design of the Mneme persistent object store. ACM
Transactions on Information Systems, 8(2):103-139, April 1990.

L. Gong. A secure identity-based capability system. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 56—63, May 1989.

J. Gray. Notes on database operating systems. In R. Bayer et al., editors, Op-
erating Systems— an Advanced Course, pages 391-481. Springer-Verlag, 1979.

BIBLIOGRAPHY 166

[H&4]

[Her87a]

[Her87D]

[Her90]

[HWSS]

[Koh81]

[Kor81]

[KR81]

[Lam78]

[Lam81]

[LCJS87]

[Lis88]

[Low87]

T. Hirder. Observations on optimistic concurrency control schemes. Infor-
mation Systems, 9:111-120, June 1984.

M. Herlihy. Optimistic concurrency control for abstract data types. In Pro-
ceedings of the 5th annual Symposium on Principles of Distributed Computing,
August 1987,

M. P. Herlihy. Availability vs. concurrency: Atomicity mechanisms for repli-
cated data. ACM Transactions on Computer Systems, 4(3):249-274, August
1987.

M. Herlihy. Apologizing versus asking permission: Optimistic concurrency
control for abstract data types. ACM Transactions on Database Systems,
15(1):96-124, March 1990.

M. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data
types. In Proceedings of the Tth ACM-SIGMOD-SIGACT Symposium on
Principles of Database Systems, pages 201-210, March 1988.

W. H. Kohler. A survey of techniques for synchronization and recovery in

decentralized computer systems. ACM Computing Surveys, 13(2), 1981.

H. F. Korth. Locking Protocols: General Lock Classes and Deadlock Freedom.
PhD thesis, Princeton University, 1981.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213-226, June 1981.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

B. Lampson. Atomic transactions. In M. Paul B. W. Lampson and H. J.
Siegert, editors, Distributed Systems: Architecture and Implementation. Lec-

ture Notes in Computer Science 105, pages 246—-265. Springer-Verlag, 1981.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus.
ACM Operating Systems Review, 21(5):111-122, November 1987.

B. Liskov. Distributed programming in Argus. Communications of the ACM,
31(3):300-312, March 1988.

C. Low. A shared, persistent object store. In Research Direction in Object-

Oriented Programming, pages 390-410, 1987.

BIBLIOGRAPHY 167

[LS83]

[LW85]

[MASS]

[MA90]

[MBC+90]

[Mey92]

[Mos81]

[Pap79]

[Par88]

[RCS9)

[Ree78]

[Ree83]

B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for
robust, distributed programs. ACM Transactions on Programming Languages
and Systems, 5(3):381-404, July 1983.

R. J. LeBlanc and C. T. Wilkes. Systems programming with objects and
actions. In Proceedings of the 5th International Conference on Distributed

Computing Systems, pages 132-139, May 1985.

R. Morrison and M. P. Atkinson. Bindings in persistent programming lan-
guages., ACM SIGPLAN Notices, 23(4):27-34, April 1988.

R. Morrison and M. P. Atkinson. Persistent languages and architectures. In
J. Rosenberg and J. L. Keedy, editors, Security and Persistence, pages 9-28.
Springer-Verlag, 1990.

R. Morrison, A. L. Brown, R. C. H. Connor, Q. I. Cutts, G. Kirby, A. Dearle,
J. Rosenberg, and D. Stemple. Protection in persistent object systems. In

Security and Persistence, pages 48-66. Springer-Verlag, 1990.
B. Meyer. Fiffel: The Language. Prentice-Hall, 1992.

J. E. B. Moss. Nested transactions: An approach to reliable distributed
computing. Technical Report MIT/LCS/TR-260, Laboratory for Computer
Science, MIT, April 1981.

C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the Association for Computing Machinery, 26(4):631-653, October
1979.

D. Parrington. Management of Concurrency in a Reliable Object-Oriented
System. PhD thesis, Computing Laboratory, University of Newcastle upon
Tyne, July 1988. Technical Report TR277.

J. E. Richardson and M. J. Carey. Persistence in the E language. Software-
Practice and Experience, 19(12):1115-1150, December 1989.

D. P. Reed. Naming and Synchronization in a Decentralized Computer system.
PhD thesis, Dept. of Computer Science, Massachusetts Institute of Technol-
ogy, 1978. Also available in Tech. Rep. MIT/LCS/TR-205.

D. P. Reed. Implementing atomic actions on decentralized data. ACM Trans-

actions on Computer Systems, 1(1):3-23, February 1983.

BIBLIOGRAPHY 168

[SBD*85]

[SBD*86]

[SDD*85]

[SDPY1]

[STP+87]

[Str86]

[Sun88a)

[Sun88b]

[Tho90]

[Ver78]

[Wei84]

[Wei87]

A. 7. Spector, J. Butcher, D. S. Daniels, D. J. Duchamp, J. L. Eppinger, C. E.
Fineman, A. Hessaya, and P. M. Schwarz. Support for distributed transactions
in the TABS prototype. IEEE Transactions on Software Engineering, SE-
11(6):520-530, June 1985.

A. Z. Spector, J. J. Bloch, D. S. Daniels, R. P. Draves, D. Duchamp, J. L.
Eppinger, S. G. Menees, and D. S. Thompson. The Camelot project. Database
Engineering, 9(4), December 1986.

A. Z. Spector, D. Daniels, D. Duchamp, J. L. Eppinger, and R. Pausch.
Distributed transactions for reliable systems. In Proceedings of the 10th ACM
Symposium on Operating Systems, pages 127-146, December 1985.

S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An overview of the
Arjuna distributed programming system. IEEE Software, January 1991.

A. Z. Spector, D. Thompson, R. F. Pausch, J. F. Eppinger, D. Duchamp,
R. Draves, D. S Daniels, and J. J. Bloch. Camlot: A distributed transaction
facility for Mach and the internet—an interim report. Technical Report CMU-
(CS-87-129, Carnegie Mellon University, 1987.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

Sun Microsystems Inc. External data representation standard protocol spec-

ification. in Network Programming Manual, 1988.

Sun Microsystems Inc. Remote procedure call protocol specification. in Net-

work Programming Manual, 1988.

S. E. Thomson. A Storage Service for Structured Data. PhD thesis, Cambridge
University Computer Laboratory, November 1990.

J. S. M. Verhofstad. Recovery techniques for database systems. ACM Com-
puting Surveys, 10(2):167-195, June 1978.

W. E. Weihl. Specification and Implementation of Atomic Data Types. PhD
thesis, MIT Laboratory for Computer Science, March 1984. Tech. Rep.
MIT/LCS/TR-314.

W. E. Weihl. Distributed version management for read-only actions. IEEE
Transactions on Software Engineering, SE-13(1):55-64, January 1987.

BIBLIOGRAPHY 169

[Weig9]

[Wei90]

[Wei91]

[WH*92]

[Wil92]

[WL85]

W. E. Weihl. Local atomicity properties: Modular concurrency control for
abstract data types. ACM Transactions on Programming Languages and Sys-
tems, 11(2):249-282, April 1989.

W. E. Weihl. Linguistic support for atomic data types. ACM Transactions
on Programming Languages and Systems, 12(2):178-202, April 1990.

G. Weikum. Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems, 16(1):132-180, March
1991.

R. Want, A. Hopper, et al. The active badge location system. ACM Trans-
actions on Information Systems, 10(1):91-102, January 1992.

T. D. Wilson. Increasing Performance of Storage Services. PhD thesis, Cam-

bridge University Computer Laboratory, 1992.

W. E. Weihl and B. Liskov. Implementation of resilient, atomic data types.
ACM Transactions on Programming Languages and Systems, 7(2):244-269,
April 1985.

Appendix A

Conflict Relation Syntax

We use an extended BNF grammar to define the syntax of a conflict relation specification.

A production is written:
nonterminal ::= alternative | alternative | ... | alternative
The following extension is used:

nonterminal ...

nonterminal /...

The first is used to mean a list of one or more nonterminals. The second is used to mean

a list of one or more nonterminals separated by ’/’.
Nonterminals appear in lightface. Terminals are printed in boldface.

A conflict relation specification must have the syntax defined by conf_rel.

conf_rel ::= item ...

item ::= (opers; opers; obj)

opers ::= oper [...

oper ::= (name, rslt)
obju==|<[>[<|2]|#]|any
rslt ::= succeed | failed | any
name ::= string

170

