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TOWARDS A PROOF THEORY OF REWRITING:
THE SIMPLY-TYPED 2-) CALCULUS

BARNABY P. HILKEN

ABSTRACT. This paper describes the simply-typed 2-A-calculus, a language with
three levels: types, terms and rewrites. The types and terms are those of the
simply-typed A-calculus, and the rewrites are expressions denoting sequences of
B-reductions and n-expansions. An equational theory is imposed on the rewrites,
based on 2-categorical justifications, and the word problem for this theory is solved
by finding a canonical expression in each equivalence class.

The canonical form of rewrites allows us to prove several properties of the
calculus, including a strong form of confluence and a classification of the long-3-
n-normal forms in terms of their rewrites. Finally we use these properties as the
basic definitions of a theory of categorical rewriting, and find that the expected
relationships between confluence, strong normalisation and normal forms hold.

1. INTRODUCTION

In the theoretical computer science community recently there has been much in-
terest in proof theory: the study of logics not in terms of their consequence relations,
but in terms of their proofs. The point of interest is not just whether propositions are
provable, but how they are proved, and what mathematical structure can be given
to proofs. This raises the question of which proofs should be considered equivalent,
and which are distinct. Traditional proof theory answers this with the notions of cut
elimination (for sequent calculus) and proof normalisation (for natural deduction),
which identify proofs by certain syntactic rules. Typically, the introduction followed
by immediate elimination of a connective is equated with a trivial proof. This kind
of syntactic rule is really justified by the fact that it works: we are left with the
suspicion that there might be another way to do it.

Categorical logic provides an alternative, more mathematical, approach to the
same problem, at least for intuitionistic logic. Here the propositions and proofs of
a logic are taken to be the objects and arrows of a category respectively, and two
proofs are equal if, and only if, the corresponding arrows are forced to be equal by
the axioms of category theory. In other words, the logic is identified with a free cat-
egory of a certain form, depending on the connectives of the logic. The connectives
are given universal properties: conjunction as product, disjunction as coproduct and
implication as exponential, for example. Since universal properties characterise ob-
jects up to isomorphism, this gives a more convincing reason for identifying proofs.

This work was carried out as part of a SERC-funded project while the author was at the
University of Manchester. The paper was completed while the author was a SERC postdoctoral
fellow at the University of Cambridge.
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Categorical proof theory arises from the observation that the identifications justified
by the category theory are the same as the traditional syntactic ones.

The aim of this work is to develop a proof theory for rewriting. Our analogy
is this: the elements (terms, strings, etc.) of a rewrite system correspond to the
propositions of a logic, and the rewrite relation ¢ —, s (t rewrites in zero or more
steps to s) corresponds to the consequence relation. The analogue of a proof we call
a rewrite, and we write a: t => s when « is a rewrite whose effect is to transform ¢
into s. Just as proofs say how propositions are proved, so the rewrite a says how
t is rewritten to get s. We can think of « as an algorithm—perhaps as simple as a
sequence of instances of rewrite rules—which expresses the necessary computational
information. The questions we wish to study are: what form do such algorithms
take, what mathematical structure do they have, and when are two of them equal?

The reflexivity and transitivity of the relation —, suggest that we push our anal-
ogy further, and try to develop categorical rewriting. We take the elements and
rewrites of a rewrite system to be the objects and arrows of a category respectively.
Composition of arrows is sequential composition of rewrites, corresponding to the
transitivity of —,, and identity arrows are “zero-step” rewrites, corresponding to
reflexivity. We can then look for categorical justification of identifications between
rewrites. In particular, we would hope that Seely’s description of S-reduction and
n-expansion as unit and counit of an adjunction [7] would fit this framework.

In this paper we study one particular rewrite system, the simply-typed A-calculus,
in some detail. We define the types and terms in the usual way, and give a language
for rewrites generated from S-reduction and 7-expansion by sequential and parallel
composition. We then introduce equations between rewrites which are motivated
by categorical considerations similar to those of Seely. These equations lead to a
simple canonical form for rewrites, which solves the word problem, and allows us to
prove several results about our system.

Generalising from this example, we then define categorical rewriting by which
we mean a theory of rewriting which concerns not just the relation —, but the
rewrites themselves. We give a condition on categories which ensures that they act
like rewrite systems, and categorical definitions of confluence, normal forms and
strong normalisation. We prove that our example has the properties of confluence
and strong normalisation, and that the normal forms are precisely Huet’s long Bn-
normal forms [6]. Finally we show that our definitions are linked in the expected
way: strong normalisation implies existence of normal forms, and confluence implies
their uniqueness (up to isomorphism).

9. THE SIMPLY-TYPED 2-A-CALCULUS

The simply-typed 2-A-calculus is a language of three syntactic classes, called
types, terms and rewrites. Each term has a context which gives the types
of free variables which might appear in the term, and a type. Each rewrite has
a source term and a target term, which share a common context and type. The
well-formedness conditions are expressed by two judgements:

e ' ¢: X means that ¢ is a well-formed term of type X in context I'.
e 't 4: ¢ = u: X means that vy is a well-formed rewrite with source ¢ and
target u, where ¢ and u are well-formed terms of type X in context I'.
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The intended interpretation of the language is that the types and terms are those
of the simply-typed A-calculus, and the rewrites are algorithms which describe a
sequence of B-reductions and 7-expansions which can be applied to a term.

2.1. Syntax. Let B be aset of “basic types”, with typical element B. The language
is defined inductively as follows, where (in order to simplify several points) DeBruijn
notation is used for variables.

Types.
Xu=B|X—=X

Since this is a simply-typed calculus, a type is built up from basic types using the
—s (function space) constructor.
A context I is just a list of types X, ..., Xn.

Terms.

Xy, XnbFg: X (1<j<n)
X, I+t Y

'-xt: XY
'rt: X—=Y TI'rtu: X

'tu: Y

A term t is a term of the simply-typed M-calculus, in DeBruijn notation.

Rewrites.

Xy, Xabjii=i X, (1<j<n)
X,Tkyit=tY
FTEM: M= M X =Y
F'Fy:t=t: X—=Y TFoiu=u: X
IEyditu=tu:Y
I'Fy:it=t: X T =1" X
IEydit=1t" X
'Ht: X »Y
Chn:t= A1) X =Y
X,TFHt:Y Thu X
Dk Biu: (M)u=tul: Y

Rewrites are built up from S-reduction and n-expansion by sequential and parallel
composition. By a simple induction, for any term I' b ¢: X there is a rewrite
I+ ¢:t=t: X, which we call an identity rewrite. The notations t! and t[u] are
defined below.

2.2. Substitution. For definiteness, we give our notation for substitution in some
detail. The reader who is unfamiliar with DeBruijn notation should read this in
some detail, noting how variable capture and other problems are dealt with.
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Terms. Firstly, t" is t with all free variables greater than or equal to n incremented
by one:

= j+1 itj>mn,
J otherwise

(tu)® =t"u"

(A)" = At

Next, t[vy, v, ...] is t with u; substituted for j:

Il

j[vlav2>"'] (]
(tu)[v1, vz, ... ] = tlvr,ve, ... Julvr, vg, .. ]
(M) [vr,vg, . .. ] = M[L, 01,05, . .]

I

for brevity we write t[u] for t[u,1,2,...].

Lemma 1. Some basic properties of substitution:

(1) If Xy,...,XpFt:Y,1<n<m+1and X is a type,
then X1,..., Xp-1, X, X0, ..., X H " Y.

(2) fXy,..., Xy Ft: Yand D Fuy: Xiforj=1,...,n, thenT Ft{ug, .. U] Y
(3) t[1,2,...]=t.

(4) t[ul,ug,...][vl,vg,...] :t[’ul['Ul,’Ug,...},Uz[’vl,’l}g,...],...].

(5) *[1] =

(6) (tlug,ug,...))* =t L, ul,ug,...].

Proof. These results are all straightforward structural inductions. [

Rewrites. The operation of incrementing variables extends to rewrites in a straight-
forward way:

.n_{j+1 it >,

J otherwise
(Yo =~"d"
()" =M™
(;8)" =" 0"
M =

ﬁZu - /Bt”'H Jun

There are two forms of substitution: rewrites into terms:

vy ) =1
(ﬁU)[’h,"Yz, . -] = t[y1, 72, - - -]U[’Yl,’Yz, o]
(At)[rYl)rYZ’ B ] = At[LV%)’Y%i v ]
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and terms into rewrites:

Flvt, vay - -]
(75)[’017’”2""]
(A )[’Ubv?)"']:/\7[1’”1’”%'-']
(v 0w, va, -]

nlv1, va, . .. ]

[ .}

5t,u U1, U2, . .

Note that there are three interpretations of t[uq, us,...] as a rewrite: the identity
on t[uy, g, . . . ], the substitution of [u1, ug, ...] into the identity on ¢ and substitution
of identities on [u1,ug,...] into ¢. A simple induction shows that these three are
equal, so there is no ambiguity.

Lemma 2. Basic properties of substitution of rewrites:
(1) Xy,.., XpHt:Yand Ty uy =y X forj=1,...,n,
then I'F ¢[y1, ..., V)t tlur, .. un) = tlug, ..y u] 0 Y.
(2) t[u1’u2’ . '}[71177271' . ] '1: t[u1[71a727 . ']:u2[71772? . ']7 . ]
(3) vy D=2, 7,7, ]

Proof. More straightforward structural inductions. O

Lemma 3. Basic properties of substitution into rewrites:
(1) ¥ Xq,..,XptFyit=>uY, 1<n<m+1and X is a type,
then X1,..., Xno1, X, Xpy .., X E Y " = 0™ Y.
(2) If Xy,..., Xpbyit=>t:Yand ' uy: Xy forj=1,...,n,
then T FAyfug, .. ) tun, . un] = Hug, . U]t Y
(3) 7v[1,2,...] =7
(4) [Ul,u2, . ][01,02,---]:’Y[Ul[vl,vza--~]>U2[U1>U2,—--]>~--]-
(5) *[1] =
(6

) ( [ul,m,---])1 =71, ug, u3, ..
Proof. Again, these are straightforward structural inductions. [J

Lemma 4. And one property which links the two:

t[71)72a e '][UlaUZa . ] = t[vl[vhvb s ']’72[7)1”02) < ']7 s ]

Proof. Another straightforward structural induction. [

3. THE THEORY 2-)\

The theory 2-)\ is an equational theory on the rewrites of the 2-A-calculus. We
write it as a judgement:

e '~y =4§:%t= u: X means that v and § are equivalent in the theory 2-A,
where v and 6 are well-formed rewrites with source ¢ and target u, of type X
in context I'.
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The intention is to axiomatise not when two rewrites have the same effect—after
all, we are only considering equations between rewrites with common source and
target—but when two rewrites might be implemented identically; for example, a
parallel rewrite might be implemented on a sequential machine in either order. This
is an attempt to say when two rewrites represent the same algorithm.

3.1. The axiomatisation of 2-). The first axioms need no explanation, they
merely formalise what might be called a 2-A-theory: an equivalence which respects
the syntactic structure.

(reflexivity)
(symmetry)

(transitivity)

FFyit=t: X
FFy=y:1t=1t: X
Pky=6:t=>t: X
PEéd=y:t=>t: X

F'Fy=6:t=t: X ThHi=et=1: X
PFy=et=1t: X
X,Thy=q1t=2tY
FEM =M X=M X =Y
TFy=v:t=t: X—>Y IFi=0:u=u: X

I'tyd=9d:tu=t'u:Y
ThFy=v:t=t: X Tkéi=0:t=1t":X
FEyd=9,dt=>1 X

The particular axioms which define the theory 2-) are as follows:

(1)
(2)

kyrj=t X
F'Fjy=v:j=>t: X
Phy:t=7:X
Ftyj=yit=75:X

(rewrites 5 act as left and right identities of composition)

(3)

(4)

XTrFyt=>tY X,TH6:t=t"Y
CFEM; A =Ay;0): dt=> A" X =Y
FhFyit=t: X =Y THy: =2t XY
'Féou=u: X THMW=u" X
LE(y8); (7)) = (1) (6;0): tu=t"u" ¥

(abstraction and application distribute over composition)

(5)

Phyit=t: X TR =" X Tret"=t" X

[Eoy; (€)= (v;0);e:t =" X
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(composition is associative)

F'kyit=t: X —>Y

6
(6) TEag AV D) =y t= ANt 1): X - Y
() XThyit=tY IFSu=uw X
T (A) 6; Byw = Brus v[ul; ¥10]: (M) u = #[u']: ¥
(n and 8 commute with rewrites of their subscripts)
(8) X,I'Ht:Y
D A=A M= X X =Y

Pt X—=Y Thu X
Iy fury =tuitu=turY

©)

(n-expansion followed by f-reduction cancels out).

Lemma 5. Basic properties of the theory, relating the equations to substitution:
X, , Xyby=08t=>t:Yand D Fu: X;forj=1,...,n, then
T Afug,. .oy tn] = 8[ug, oy ua]t tug, o ta] = Hlug, oy un] Y
2) ¥ Xy,..., Xy bt Y and ' F vy = §5: uy = uj: X for j =1,...,n, then
T h [y, .y Yn) = o1,y On]: tlun, s un] = tul, . ug]t Y
(3) I Fy:t=u: XthenFty=v:t=u: XandTTFyu=7vy:t=u: X.

(4) If X1,..., Xp b t: Y, TF vt u; = uf: Xj and T & 650 0 = uj: X for j =

1,...,n,thenI‘P—t[fyl;él,...,fyn;cSn]:t[fyl,...,%];t[dl,...,(Sn]: tlug, ... U] =

tluf,. .., ul]: Y.

(B) KXy, ., Xpby:it=>t:Yand 'k §;: uy = uj: X for j=1,...,n, then
T ylug,. . un; 801, 60] = 01, .., Salivful, .o un]: tlug, .o ua] =
tul, ) Y

o Uy,
Proof. Yet more structural inductions. [

3.2. The categorical description of 2-)\. In this paragraph we present the au-
thor’s original motivation for the theory 2-), which justifies the equations 1-9. It is
based on Seely’s description of the A-calculus as a 2-category [7]. This motivation
uses some fairly delicate notions from the theory of 2-categories. The reader who is
unfamiliar with this material can safely skip the rest of this section, as neither the
results nor the methods will be used in the rest of the paper.

The 2-categorical objects which occur here are either strict or laz, but not pseudo.
We will therefore stick to the “Australian” terminology, where everything is pre-
served on the nose unless otherwise qualified, and the word strict is used only for
emphasis.

The theory of 2-categories has several notions of adjunction (see, for example, [5])
of which we shall need the following:

Definition. A 2-natural adjunction consists of the following data:

two 2-categories C' and D,

two (strict) 2-functors F,G: C — D,

two 2-natural transformations o: F' = G and 7: G = F', and
two modifications n: idg — 70 and €: o7 = idg,
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satisfying the triangle laws:

co oon =id,

TEONT = id%
In this case we say that o is naturally left adjoint to 7.

Definition. Let F': C — D be a 2-functor. A lax right adjoint to F' assigns to
each object Y of D the following:

e an object G(Y') of C and
e two 2-natural transformations o(Y): C(-, G(Y)) = D(F(.),Y) and
7(Y): D(F(),Y) = C(- G(Y)),
such that o(Y) is naturally left adjoint to 7(Y).

Definition. Let C be a 2-category with finite products (in the enriched sense). We
say C has lax exponentials if for each object X the 2-functor X x _: C — C has
a lax right adjoint.

Lemma 6. Let C be a 2-category with finite products, and X, X' be objects of C.
If X x _and X’ x _ have lax right adjoints, then so does X x X' x .

Proof. Let X x _ have lax right adjoint GX, 0%, 7% etc. Then
X (v) = GX (GX(Y))
X (V) = X (¥ )™ (GF V)
TN (V) =7 (GH(Y)) 2™ (V) xrxz
defines a lax right adjoint to X x X' x .. O

This 2-category theory is related to the theory 2-A by a 2-categorical version of the
Lambek-Lawvere correspondence. We associate a 2-category A with 2-A as follows:

e The objects are contexts I'.

e The arrows are lists of terms [ty,...,t,): I' = Xi,..., Xy, where ' ¢;: X;.

e The 2-cells are lists of equivalence classes of rewrites
(Viy ooy Yl Tty oo ta] = [ua, .oy un]: T = Xa, oo, X, where T oyt =
u;: X;, under the relation

e two rewrites v and 6: ¢t = u: I' = X are equivalent if Ty =46:1 = u: X.

e Horizontal composition of [ty,...,t,]: A = E and [uy,...,up]: T — Als
[t1[ut, oy Uml, o taltin, oy U] T — B

o Vertical composition of [Y1, ..., a]: [ty s tn] = [U1, ..., up] and [0, ..., 0]
[ula”')un] = [Ul,"':vn] is ['71;51)-'-a7n;5n]: [tla-"atn] = ['Ula"‘avn]'

Proposition 7. A is a 2-category with finite products and lax exponentials.

Proof. That A is a 2-category amounts to checking various axioms, all of which are
either immediate or appear in lemmas 1-95.

Products are defined by concatenation of contexts, projections are variables and
universal arrows are given by concatenations of lists.
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In view of lemma 6, it is enough to give a lax right adjoint to X x _. This is
defined by

GX(Y1,..., V) =X =Y, ., X =Y,
XY, LY ([t tm]) = [ Lt 1]
TV, Y (o tml) = M- M)
7 (Yiy oo Ya)r ([t o tm]) = (s e
(Y1, Yr)r(ft, - t]) = [ﬂt{,b ooy Bez il

Again, all the work has been done in the lemmas. O

Theorem 8. A is the universal (free) 2-category with finite products and lax expo-
nentials on the set B of basic types.

Proof. Let C be a 2-category with finite products and lax exponentials, the lax right
adjoint to X x _ being given by GX, oX, 7%, n* and ¢X. For each B € B let B¢ be
an object of C. We construct a 2- functor F A — C which preserves finite products
and lax exponentials as follows:

F(Xe, .., X)) = F(X1) x - x F(Xy)
F(X =Y)=GTOF )

F(B) = Bg
Flti, .. ta] = (F(t), ..., F(ts))
F() =m;
F(M) = 77N F (V) gy (F () where X, Tt Y
Fltu) = o7 (FY)) ray(F () 0 (F(u),id) where THt: X —»Y
Flray oo osmml = (F(n), -, Fm))
f(] = ]‘ﬂ'j

)
) = 7N FW))raey(F(7)) where X,THvy:t=1t:Y
F(y8) = a7 ENFW)) ey (F (7)) 0 (F(8),1)  where kit =t X =Y
F(v;0) = F(v); F(9)
Fn) =07 ENF))zey(F()) where 't X - Y
F(Brn) = € (F) ry(F () 0 (F(u),1) where T'Ht: X Y
It is straightforward to check that this is well-defined, and clear that it is unique. [

4. TurE CANONICAL FORM OF REWRITES

In this section we solve the word problem for 2-), by finding a set G of rewrites
with the property that 2-) equates every rewrite with a unique element of G.
Let A, £ and G be the smallest sets of rewrites closed under the following:

e Every identity rewrite is in \A.
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eIf I F agity = X: X = YVoand I' b ag: tlu] = tp: Y are in A, then
[ ooy uyBeu;ap: tiu—tp: Yis in A
e Every identity rewrite is in £.
o IfI't ety =t X ——)Y, X,F|“622 1= 1y X andX,Fl—e;;: tltz = {3: Y
are in &, then T F ey A(t eg;€3): 11 = Mg: X = Y isin &,
elflFa:it=j: XisinAand ke j=u: Xisin &€ then I' - a;j;e: t =
u: X isin G.
eIfTFa:it=M: X —=>Yisin A TFe duyy = u: X = Yisin € and
X,Ikyiti=u;:YisinGthen'Fajdyert=u: X =Y ising.
e IflFa:t=tiu:Yisin A ke thup=>u:Yisin&, and ' y: 6 =
to: X =Y and T F6: up = up: X arein G, then I' - a5y d5e: ¢ = w: Y is
in G.
The notation 7i;7s; s is shorthand for (vy1;72);7s. (Of course, the choice of left
rather than right bracketing is arbitrary, as long as we are consistent. )

Lemma 9. The following results are no more than observations; they are recorded
here so that we can use them without further comment.
(1) Every rewrite in G is of the form «;d;¢, where o € A, € € £ and J is either

Jy A7 0T 7172
(2) T F a: t =1t X in Ais not an identity rewrite, then ¢ = t; t for some #y,
ta.
(3) fT'Fe:t=1t": X in £ is not an identity rewrite, then t' = \t; for some ;.
(4) T Fv:1=¢: X isin G then v =1;1;¢ for some I' - e: 1 = ¢: X in €£.

In general, identity rewrites are not members of G. However, for each term ¢ we
can define Z(t) in G as follows:

I(5) = 3;4;J
T(At) = At AZ(t); At
T(tu) =tu; Z(t) I(u);tu
Lemma 10. If '+ ¢: X then
(WTHFZI{):t=t: Xisin G
2)THI{)=t:t=>1t: X.
Proof. Structural induction. [
Substitution of rewrites in G is defined as follows. If I' F 6;: u; = uj: X for

j=1...n, then:

(0.5 €61, - 0] = Qfur, . nly s O €y, - o ]

o'

(@523 )0ty 1 80] = afuny o s AY L, L 6L])s el )
(a;ylfyz;e)[csla"')én]:a[ula"'1“71];/)/1[51)'"7671]’)/2[61""J(sn];eulla"')U’In]
Lemma 11. Let Xq,..., X, Fy:it=t: XandT'F §;: uj = ul: X;forj=1...n

be rewrites in G. Then
(1) T+ 61,y 0a]: tu, .. up) = [u, . ug]: Xisin G
(2) TE (01,0, 0n] = Yua, .oy i 8 [61, -, 6 s Hun, ooy un] = Ful, o up] s X

Proof. Structural induction. [
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The heart of the proof of the canonical form theorem is the definition of sequential
composition of rewrites in G. The composition of rewrites in £ and A is straight-
forward; we use the symbol ;" defined as follows, with the convention that « € A,
ee & and a;d;e €G.

t;; =« where t is an identity

(o) B a2); 5 & = ot B (05 v)

€;;t =€ where t is an identity

65 (e Mt e2y€3)) = (655 €)M A(H €2; €3)

a;; (@ 85¢) = (a;;0); 0 €
(@3 6;€¢);5€ = ;65 (€55 €)
Note that ; ; is associative (in every possible way) and that identities in A and € are
identities of ;;.
For the sequential composition of two (composable) rewrites in G we use the
symbol ‘1’ defined as follows:

o555t €= a575€
Ay M A Az e = as M7 T 72); €
oy Yizy tu t Eus yar Yaos € = ¢ (a1 T 1) (a2 T vee)i€

V1 My M €11; €12) T Abo; Myas €2 =
7183 es; AL €a1; €32)5 5 €2
if £ 1, () (11 en1)s €12 T 72 = 1 1575 (1 15 €a1); €3
Y1 T 35 Ays; €2
if 41 Z(4) (1 1 en)s en T2 = 0315 Bra1; 73

5 Y11 Y125 Bt toz T 21 Bo0; Brog tan V2 =
oy 5 03 t12; Bra g V3[12) T2
if y11 T 013 AZ(ta3); Atz = cuaj Ays; Abas
a1;v3 (Yizs 5 €31[taa]); €32ltan] T 72
if y11 T aa1; AZ(te3); Abas = V33 Mis; A(t3 €31 €32)

Lemma 12. IfT'F ;1 t; = t5: X and I' - y9: 1y = t3: X are in G, then

(1) 1 1 72 is well-defined and T' 1 t 72: t; = t3: X isin G,
@) ThEpntr=mnt =t X

Proof. (1) That the clauses defining t are exhaustive follows from lemma 9. The well-
foundedness of the recursion is slightly more complicated than the simple structural
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inductions considered so far; we define a measure |7y|g on G and |o|4 on A as follows:
|a; ji elg = [olu + 1
lo; Ay; elg = lala+[7lg +1
|oi; 7 85 €lg = |erla + [7lg + 16lg +1

|tla=0
|on u; Bru; a2l = leula + [Z(t)lg + ezla+1
and use the inductive hypothesis on n that:

e 71 1 is well defined for all composable 1,2 € G such that |ya|g < n, and
o if |y2|g < nthen |(t1;Z(2) (1;1; €1); €2) Ty2lg < m for all €, €2 € € which make
the composition defined.

The proof is then straightforward.

(2) This is a fairly straightforward induction, which amounts to justifying the
clauses in the definition of 1 using the rules 1-9. [
Lemma 13. Basic facts relating the various operations on G.

(1) ¥ T Fa:ity =>t: Xisin A, and Tk y:ty = t3: X and ' 6: 83 = 140 X

are in G, then s ; (71 1 72) = (05571) T 72
(2) UThkvy:ty =t XandTFd:ty=>t3: XareinG,and ' e: 63 = 640 X

is in &, then (v1 fy2);;e =1 (7255 6).
(3) T Fy:t=u: XisinGthen Z(t) Ty=v=v1Z(u).
4) If Xq,.., Xnpbyit=>t0 X, Xq,... . Xy byt =t X, T F 6y =
wi: Xy and T 6 uf = uf: X; arein G for j = 1...7, then (YT T
5 8 = b1 Bl £ 00, 0]
Proof. Straightforward inductions, using the complexity measure |y|g. [
The final result we need is the associativity of :

Proposition 14. fTFy:t; = t: X, Tk ypito = t3: Xand T y3: 3 = 440 X
are in G, then (vt 7)) tvs=mn1 (1)

Proof. By induction on |y3|g. There are a total of eight well-formed cases of 1, 72, 73,
with up to four subcases each. Fortunately, six of the main cases are straightforward,
and can be left to the reader. The two remaining cases are as follows:

case 11 1 = au;y11 Y12; tat taz, Yo = lor tag; Yo1 Yoo, ta1 taz and 3 = 03 £39; Biag tas; V31-
There are several subcases, corresponding to the different cases in the definition of

T:
case 1.1: vy tag; AT (ta3); Maz = au; Aya; Mas and yi1fou; AZ(ts); Moz = sy Ays; Alas.
Then (711 t701) T sy AZ(tss); Az = yi1 T o Aya; Alas
= a5} A\Ys; Alag T Atas; Ay Atas
= a3 A(75 T 74)5 Atss
s0 (711 72) T3 = a1 a5 t12; Bug e (95 Tva) 12 T y2e] T a1

= (a1} ; 05 0125 Brag,tias Vo[ Y12) T val722]) T 31
=77 (72 T’Ys)
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case 1.2: yortas; AZ(tss); Alss = Qi Aya; Abas, yiafou; AT (to3); Abas = V55 Nts A(tt €s1; €52)
and 2 1;Z(t1) (1; 15 €51); €52 T 72 = 15 1578 (15 1; €61); €2-

Then (vyi1t721) T as; AZ(ts3); Atas = Y11 T s Ava; Alag
= 5; Muss AtE €515 €52) T Mbog; Ava; Alss
= Y5 T V65 Mo Mt €61; €62)

o (71t 72) T s = a1 (95 T 76) (112 T Y223 5 €61[taal); €v2ltae] T
= a1y iz ts taa T (65 1576 (15 15 €61); €62) [722] T 731
= ;Y5 Y12; ts taa T (65 1, Z(85) (1515 €51); €52 T va) [Y22] T v31
= au; 75 (M12; ; €s1[b22]); €s2ltan] T valvae] T a1
=711 (21 7)

case 1.3: yortas; AZ(tas); Mss = aua; Aya; Atas, yintou; AT (to3); AMas = Vs Nts; MtE es1; €52),
LT (151 es1) €52 T va = i 1; Bro,s v6 and ys T aig; AYe; Atas = v Ayrs Atas.

Then (y11 T 721) T as; AZ(ts3); Mtsg = i1 T Qa; Aya; Atss
= s} Mhs; M85 €51; €52) T Maa; Mva; Msa
=5 T Q; AV6; Alss
= ar; Ayr; Alss

s0 (1 17) Tys = oa;; artag; Bua; Yelviz Tyee) Tyat
= ay; (ar; Myr; Mtas) (12 T ye2); Atss taz T (M1 taa; Biia trzs T(t1a[tiz])) T a1
= a; (5 T e} Mys; Mas) (712 T 722); Mas taz T (Mas taas Brstans T (Tralti2])) Ty
= ;Y5 V12; ts taz T O taz; Big tans Vel 22l T 1
= 0y} Y5 Mi2; s ton T ts taz; Z(ts) (Z(baa); ; €s1[tan]); esaltan] T valvee] T a1
= o V5 (125 ; es1[tea)); €salton] T valv2e] Tva1
=71t

case 1.4: yortag; AT (tss); Atss = s AMya; Atas, Yinto; AL (tas); Maz = 755 Mty A(t4 €515 €52),
tE 1 T(82) (1 1 €51); €s2Tya = o 15 Bro 13 Y and s Tag; AYes Alas = ¥z 1ty Mt} er1; €r2).

Then (yi1 T7y21) T @s; AZ(ts3); Atas = Y11 T 0 Aya; Atss
= Y5 s ; Mtg €513 €52) T Abaz; Aya; Mtsa
= s T aig; Y6} Alas
= 97} Ntrs At €715 €72)
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so (711 %2) Tys = an; 77 (V2 T 7223 €nltsal); €naltaa] T a1

= oug; (V7 Mhy; Mt €715 €72) (Y12 T Y22); Abas taz T (Ms tag; Buus trns Z(t1a[t12])) T 731

= au; (15 T a6} AYe; Atas) (Va2 T722); Atss tan T (At1a taz; Bius 112 L(t13[t12])) T 721
= ;Y5 V12; b5 toa T Q6 t22; Bte tan; Y6 722] T 731
= an; Y5 Vi ts taa T ts taz; Z(ts) (Z(tan);; €s1lton]); €saltan] T yalvoe] T ¥51
= a1;7s (7127 ; €51[taz]); €s2[ton] T valyee] T a1
=71 (vt7)
case 1.5: a1 T gy AZ(t33); Mas = Ya; Teas M4 €415 €42).
Then (11 T 721) T as; AZ(Es3); Atss = Y11 T Va5 Meas At €a1; €a2)
50 (’)’1 T ’)’2) Ty =ay; (’Yu T ’)’4) (’)’12 T Y235 €41 [tsz]); €49 [7532] T a1
=11 (7217)

case 20 Y1 = Vi1 My At €115 €12), Y2 = a1 Myar; Mar and vz = Alar; Aysr; €s.
Again there are several subcases:
case 2.1: t5, LZ(t}) (1; 15 €01); €xatyar = th1 1594 (1515 €a1); €40 and £ 1, Z(tg) (15 15 €a1); €anf
ya1 =ty 195 (1515 €51); €2
Then t1; L;Z(t) (1 1;enn); ena T (vr T9s1) = 111 374 (1 Ly ean)s €a2 ym
= 75}1 LyaZ(1); ti1t t}; Liys (115 €51); €50
=11 15 (v T 75) (13 1; €51); €52

50yt (vtys) =yt (vats)i s Ats €1 €52)
=ty i
case 2.2: t4, L,Z(t1) (115 e01); exatyar = thy 1594 (1 1s ean); €an, £5 1, Z(8y) (15 1; €a1); €ant
va1 = a5 1; Bys.15 75 and g T as; AZ(ts); Ats = s Ave; Als.
Then ¢}, L;Z(t}) (I; L en)iena t (var tys1) = 1 L7 (115 €a) €a2 Ty
= t%l 1,74 Z(1); ti 11 as1; Byt 7s
= a5 1; Bt6,1, %6 T Y5

so Y1t (v2tys) =71t Ayt s); €
=711 T 72 T as; AYs; €3
=(n 1)t
case 2.3: t1, 1; Z(t})) (1; 1; €11); €12fv21r = 1 174 (15 15 €41); €0, B4 1;Z(t) (1;1; €41); €ant
va1 = 5 1; Bis.1; Vs Yo T s AL (ts); Ms = Y65 Tt A4 €615 €62) and t11; %6 (15 1; €61); €62 T
s =ty 1v7 (115 €n1); €na
Then t}; L;Z(t},) (L L en);en t (var tm) =t L7 (L L €an)s eae Ty
=11 L7 Z(1); 51t as 1 Bus1; s
= th; Ye (1;1;€61); €62 T 75
= til Ly (1,15 €m1); €r2
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so Mt (2 T98) = 1 T 75 s A7 €m1; €023 5 €
=y T Z(t11); Mass /\(th 1; th 1)1 )\(th 1); A(th; ¥ (15 1; €61); €62 T V5); €3
= Y11 T V6 Mo A(tg €615 €62) T Abs; Mvs; €3
=711 T 72 T as; AYs; €3
=Mt trs
case 2.4: th L, Z(th) (1; 15 en); exatyar = 1y 1574 (13 1 ean); €z, 8 LLI(E) (115 €a1); €aot
va1 = a5 15 Bg 1375 Ya T sy AL (E5); Mbs = ¥e; e At €61; €62) and 11596 (15 1; €61); €62 T
vs = ar 1; Bey 1577
Then #}; 1;Z(t1;) (1; 1y enn); exo t (var T931) = 11y L7 (1 15 €a) ea2 1y
=t} Ly Z(1);t5 11 s 15 Bre 15 v
= th; Yo (1;1; €61); €62 T V5
= ar 1; By 1577

s0 11T (v2t7s) =7 tarnAvme
= i1 T Z(t1); Mears Mt L413 1) T A 1); Mt %6 (15 15 €61); €o2 T 5); €3
= 711 T 763 Me; AL €615 €62) T Ms; Ay €3
=yt Y4t as; A5 €3
= (v ty) s
case 2.5: t1; 1;Z(t1;) (1; L en)s ena Ty = cu 15 Br 15 7a
Then t1; 1;Z(t];) (1; 15 e1); €12 T (a1 T 981) = @ L Bryi; va T 931
so vt (v2tys) =yt g A(vatys)ies
=mtr)trs
|

With each rewrite I' - v: ¢ = u: X we associate a rewrite I' = F(y): ¢t = u: X
in G as follows:
F (1)
F(y) = M; AF(y); Au where X, I'Fy:it=u: Y
F(y172) =t te; F() F(ye);uiug  where I' - ;0 85 = uy: X
F(n;ve) = Fln) T F(r)
)
)

Fm) = T(8); st m6 At 180 1)
F(Be) = A u; Beus tluls; Z(tu])
Proposition 15. If ' y:t = u: X then ' F(y) =v: t = u: X.

I

Proof. Straightforward induction. The work has already been done in lemmas 10—
12. O

Proposition 16. If 'y =4: ¢t = u: X then F(y) = F(6).
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Proof By induction on the length of the derivation of I' - v = é: ¢ = u: X. The
hard cases have already been done in lemmas 13-14. []

Theorem 17. The set G contains exactly one member of each equivalence class of
the rewrites quotiented by the theory 2-A.

Proof. This follows immediately from the last two results. O

Corollary 18. The theory 2-) is consistent, in the sense that it does not identify
everything possible.

Proof. By the theorem, it suffices to give two distinct elements of G with the same
source and target. We give two different examples:
o If X,I'Ft: Y then ' = M2 1); AF(Biz1); At; mag; A2 1, M2 1) MM 1) =
AMAt21): X — Y isin G, but it is not equal to Z(A(At* 1)). (
e Let I =Al. Then X - T(I1);Z(I) F(fr1);I1: I(I1) = I1: X and X
F(Brr1): I(I1)=-11: X are both in G, but they are not equal.
a

5. THE 2-A-CALCULUS AS A REWRITE SYSTEM

In this section we investigate the 2-)-calculus as a rewrite system, looking in
particular at confluence, normalisation and normal forms. Of course, the underlying
system is just the simply-typed A-calculus, so the results are already known. Our
aim here is to study the relationship between these properties from rewriting theory
and the equations of the theory 2-).

From this point on, we consider rewrites up to equivalence. The formalism of the
first part of the paper has done its job, and we no longer need the notion of syntactic
equality. We can assume that any rewrite is in G even though we will use the rules
of 2-) to reason about them, and write 8, instead of At u; By; t{u); ; Z(t[u]) and ;6
instead of vt 8. The more pedantic reader can insert F at every appropriate point.

5.1. Confluence. The simply typed A-calculus is well known to be confluent/
Church-Rosser/ have the diamond property: that if y;: ¢ = u; and 12: 1 = ug
are two rewrites with a common source then there exist d;: u; = v and d3: ug = v
with common target [1]. We will prove the stronger commuting diamond property:
that 6; and d, can be chosen so that - 1501 = 7y9; dg.

The first lemma we prove says that if two rewrites in A have a common source,
one is a prefix of the other:

Lemma 19. If oy: t = uy and ag: t = uy are in A then either there exists ag: u; =
uy in A such that b aq; a3 = «y or vice versa.

Proof. By induction on the structure of oy and a;.

case 1: oy = t. Then u, = 1, take ag = .

case 2: a9 = t. Then uy = t, take oz = ag.

case 3: a; = a1 to; By, 1y 2 Where & =11, a1t ¢y = AV;.

Apply the inductive hypothesis to oq;,az to get (without loss of generality)
as1: A\v; = A\vy. But any rewrite in A4 with source a A-term is identity, so vi = vg
and aq; = agy. The result then follows by applying the inductive hypothesis to
Qg N [tQ] = U1 and Qg . ’Ug[tg] = Uy, []
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Next we turn our attention to rewrites in £: they commute with any other rewrite:

Lemma 20. If €: ¢t = wu; is in € and v: t = uy then there exist v': u; = v and
€' uy = v in & such that ¢y = v; €.

Proof. By induction on the structure of e.
case 1: e =t. Then u; = t, take v/ =« and € = us.
case 2: € = €1 Mw! €2; €3), Where €1: t = w, €1 1 =z and e3: w'z = y.
Apply the inductive hypothesis to €; and 7y to get €] and 7, then apply it to €3
and i x to get 2 and €;. We then have

& AY2 = €1; s AW €25 €3); M
= €1; Mw) /\(wl €2; €3;72)
= €13 7w MW" €251 3 €3)
= 13723 M MW" &5 €3)
= ;€4 Murs M’ €3; €)
so take v = Ay and € = €);nu; Mw' €g;¢5). O
A final lemma to say how rewrites in £ interact with S-reductions:

Lemma 21. If e: M = u and €': us = v are in £ then there exist w, y: v = w
and 7': t[s] = w such that - es;€';y = B ;7.

Proof. By induction on the structure of e.

case 1: € = At. Then u = Mt; apply lemma 20 to ¢ and f;.

case 2: € = €1; 7z M@ €5 €3), where e1: At = , €1 1 => 7 and €3: z'l = y.

Apply lemma 20 to ¢ and 8, to get v1: v = w; and €' y[s] = wy, then apply
the inductive hypothesis to €; and es[s]; €’ to get y2: w1 = w and ~3: tr[s]] = w.
We then have

€55 €715 72 = €15, 70 5 M@ €27 €3) 53 Bysr €' 72

= 1 5;3 e2[s]; e3[s]; € 72

= Mt ea[s]; 1 7[s]; es[s]; €' 72

= Xt €2[S]; Birs); V3

= Br,s; tleals]]; 3
so take v = y1; 72 and v = t[ez[s]];ys. O

We are now in a position to prove confluence. For this (and another) proof, some

more sophisticated well-foundedness is needed: the usual proof of confluence of the
A-calculus depends upon ‘finiteness of developments’ [1]. Rather than set up all that
machinery here, we use the fact that the simply-typed A-calculus (with n-reduction)

is strongly normalising. We write ||¢|| for the length of the longest S-n-reduction
path starting from ¢.

Proposition 22. If 7;: t = u; and v9: ¢t = uy then there exist v{: u; = v and
v+ ug = v such that b y1;v] = Y257
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Proof. By induction on |[¢||.

Let (vj; 653 €5) = y; for j = 1,2. Then a; and ap have the same domain; by lemma
19 there exists a such that (wlog) ag = a1; as.

case 1: 6, = j. Apply lemma 20 to €; and (as; do; €2).

case 2: 01 = Ay, as = Mt and dy = Myey. Apply the inductive hypothesis to y13
and o1 to get 1z and 7a2; two applications of lemma 20 then give the answer.

case 3: 01 = y11 V12 and ag = t; t5. Similar to case 2.

case 4: 61 = y11 Y12 and as = a1 te; By by P32

Apply the inductive hypothesis to y11: t1 = v1 and azq: t1 = Atz to get y3: vy =
wq and y4: M3 = wy, and lemma 20 to €; and 3 v, to get v5 and €3. The domain
of 74 is a lambda term, so it is of the form (M3; Ayar;€4). Apply lemma 21 to €4 and
€5 to get s and ~7. The inductive hypothesis can now be applied to Y41[Y12); 7 and
(323 09; €3 to get vs and 9. We then have:

Yo; Yo = O Q31 L2} Brg 15 325 O2; €25 Yo
= or1; i1 ta; AYa1 V125 Bra,ve; V75 V8
= oy; 0i31 To; AYa1 Y125 €4 V25 €3; V65 Vs
= 01, Y11 Y125 €15 Y5y Y65 V8
= 715755 V65 V8

so take ¥, = v5;76; s and v = v9. O

5.2. Mellifluence. The 2-)-calculus has another property, related to confluence,
which cannot be formulated sensibly in the A-calculus. This property is essential in
relating confluence, strong normalisation and normal forms, as we show in section
6. In this section we show that every rewrite is mellifluent, where:

Definition. A rewrite v : t = u is mellifluent if whenever é1,d; : u = v satisfy
;61 = ; 8, there exists o/ : v => w such that d1;y' = dg; .

Lemma 23.

(1) Any rewrite in A is mellifluent.
(2) If v and 7, are mellifluent, then ;; v, is mellifluent.
(3) If 41; 72 is mellifluent, then 7, is mellifluent.

Proof. Straightforward. [
Lemma 24. If v: t = v is mellifluent, then Ay: M = Au is mellifluent.

Proof. Let y1,72: Mu = v satisfy My;y1 = My;v2. Then v = (Au; Ayji;€5) so
Ay;v; = (A A(7;v1); €;) which is in canonical form, so €; = €z and ;711 = 7; Va1
But v is mellifluent, so there exists 3 satisfying i1;vs = 721;73. Now by lemma,
20 there exist 4 and ¢; satisfying Ays;es = €374, and yi;74 = 7y2;74 80 Ay is
mellifluent. [

The next lemma describes a property of rewrites in &:

Lemma 25. Ife: A\t = uin € then u = )/ and there exist y1: ¢t => vand y5: v’ = v
such that € Ayy = Ay,
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Proof. By induction on the structure of e.

case 1: € = A\t. Then u' = t; take y; =y, = 1.

case 2: € = €1} Muy; A(uf €95 €3)

Apply the inductive hypothesis to ¢ to get uq = Aug, y3: t = v and y4: ug = v1.
We now have ul ep;€5: ul 1 = u' and B3 1;74: ui 1 = v1; apply confluence to get 75
and 5. We then have:

& M6 = €1 Thur; MUt €25 €3); M
= €1; Mur; AM(Bug 15 74); A5
= €15 A74; A%
= A(73;75)
so take v; = v3;75 and o = y6. [
From this follows that n-expansion is mellifluent:

Lemma 26. The rewrite n;: ¢ = A(t' 1) is mellifluent.

Proof. Let y1,72: AM(t'1) = v satisfy n;;v1 = m; 7. Then v = (At 1); Myji; €5),
where ¢;: Au; = v. By lemma 25, there exist ;2,73 such that €;; Ayjs = Avyjo;
apply confluence to 13 and o3 to get y14 and ya4.

We will take v3 = A(v13; 714) = A(7V23;V24), and prove that y1;v3 = 72; 73

Tf 5 = vj1; Vj2; Vie» then mg; Ayis = ng; yas and 5575 = Yi5. Let vjs = (a5 055 €51)

case 1: a; = ap = t* 1. Then &; = 75 (1; 1; €j2), and 7¢; Avjs = Vje; T AMw! €595 €1)
which is in canonical form. Therefore, 16 = Y26, €12 = €22 and €11 = €21, SO Y15 = Yas-

case 2: oy = oy 1; Bu,1; @z Then g Ayjs = (ej1; AM@jo; 053 €51); Az) which is in
canonical form; matching up as before gives vi15 = ¥gs.

case 3: One of each. This case is impossible, since the two canonical forms cannot
match. O

Finally:
Proposition 27. All the rewrites of the 2--calculus are mellifluent.

Proof. By induction on ||ul|, where v : ¢ = u.

Let v = (a;8;¢). By lemma 23, it is sufficient to prove that ¢: ¢ = u' and
¢: v = u are mellifluent; note that ||[u|| < ||u||. First consider e

case 1: € = t. This is identity, therefore mellifluent.

case 2: € = €1;7y; Mv' €g; €3). Then v' €g;€3: v1 1 = uy where Aug = u s0 |ug|| <
||u|| so by the inductive hypothesis, v* €3; €3: v' 1 = uy is mellifluent, and by lemma
24, M(v' €y;€3) is mellifluent. Also, € : v => v, and |[v|| < [|A(v!0)|] < ||ul| so by
the inductive hypothesis, €; is mellifluent. Finally, 7, is mellifluent by lemma, 26, so
e is mellifluent.

Next we consider §: t' = u';

case 1: 0 = j. This is identity, therefore mellifluent.

case 2: 6 = A\y;. This is mellifluent by the inductive hypothesis and lemma 24.

case 3: § = y1 7. Then t' = t1 and v’ = uyus. Let 73,741 v = v satisfy
§;v3 = 0;v4 and proceed by cases of 3 and 4t

case 3.1: 7y; = (uy up; vj1 Vj2; &) for j = 3,4. Then &;v; = (¢'; (v1;151) (723 752)5 &)
which is in canonical form, so €3 = ¢4 and vg;vsr = Vk; 7ax for k& = 1,2. By the
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inductive hypothesis, there exist vs; satisfying ys; Ysk = Yak; Vs, and by confluence
there exist g, €6 satisfying vs1 vs2; €6 = €;; V6. Then vs; Y6 = Y4; Vs, 50 0 is mellifluent.

case 3.2: ;= (aj Up; Bu, up; V1) for j = 3,4. Then a3 = ay and vz = vy by lemma
19, 50 6;7; = (8 atj s} Buyup); Vir- But &t tig; Buyun 1 = vilug] and |[vs[ug]|] <
|| \v; ual| < ||w]], so by the inductive hypothesis it is mellifluent, and there exists s
satisfying va1;vs = Ya1;¥s- Then 7s;¥s = Y4;Ys, S0 0 is mellifluent.

case 3.3: v3 = (u';v31 V32; €3) and ya = (g U} Bugpug; Y41), OF Vice versa. This case
cannot arise since d;y4 and §;y3 then have different canonical forms. O

5.3. Normal Forms. Since the 2-\-calculus has 7-ezpansion, the relevant normal
forms are Huet’s long-B-n-normal forms [6]. In this section we characterise them
entirely in terms of how they can be rewritten.

In standard rewriting theory, normal forms cannot be rewritten at all. This is not
the case in the 2-)-calculus, as there are usually further irrelevant n-expansions, and
always identity rewrites. However, every rewrite whose source is a long-3-n-normal
form is reversible, where

Definition.

e A rewrite v: t = u is reversible if there exists §: v = t such that ;6 =¢.
e A term t is normal if every rewrite v: ¢t = u is reversible.

and conversely, every normal term is a long-8-n-normal form.
Recall that the definition of long-fAn-normal form is, in our notation,
e t: X — Y is in long-fAn-normal form iff ¢ = A\’ where t': Y is in long-8n-
normal form.
e t: B is in long-An-normal form iff ¢ is in reduced form.
e j is in reduced form.
e {; ty is in reduced form iff #; is in reduced form and t is in long-fn-normal
form.
e At is not in reduced form.

We will prove that the arrows from long-fn-normal forms are reversible. First we
must define the corresponding notion for reduced forms. Let P be the smallest set
of rewrites such that:

e All identity rewrites are in P.
o If vy € P then y;e € P, forallein €.
o If Y15 Y2 € P then 7 ePpP.
Note that we have defined P for each type independently. In particular, for base
types B, the second clause does not apply, and v € P iff v is reversible.
The following lemma, describes a closure property of P which relates rewrites of
different type:

Lemma 28. If v1: ¢ = u1: X — Y € P and tp: X is normal, then for any
Yoty = Uz, 172 € P.

Proof. We prove that this property is preserved by the three clauses defining P.

o If 7 is identity then -, 7, is reversible, so a member of P.
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e If v, has this property then we prove that ;e does by structural induction
on €.
case 1: € =u;. Then y;;e = 1.
case 2: € = eq; My AMul €35 €3). Then (715 €72); Bows = (b1; (715 €1) (72 €2[v]); €3]v])
which, by inductive hypothesis, is a member of P. Therefore v;;¢ € P as
required.

e If v1;v3 € P has this property, then (1 v2); (73 u2) = 71; 73 72 is a member of
P, s0 172 € P as required.

0

We are now ready to prove half our theorem:

Proposition 29.

o If v: t = u and ¢ is in long-fn-normal form, then vy has a left inverse.
e If v: t = wu and ¢ is in reduced form, then vy € P.

Proof. By structural induction on ¢. We proceed by cases:

case 1: t: X — Y is in long-Bn-normal form. Then ¢ = At; where ¢; is in 18nnf,
and v = (& Ay;€). By lemma 25, there exist vo: u; = v and y3: uy = v s.t.
€; Ay3 = Ayp. Then 71;7,: t; = v and by inductive hypothesis, has a left inverse 74.
Now Avs; 74 is a left inverse for +.

case 2: t: B is in long-An-normal form. Then ¢ is in reduced form, and by the
second inductive hypothesis, ¥ € P. As remarked above, this means -y is reversible.

case 3: t = j is in reduced form. Then y = (J; j; €) which is certainly in P.

case 4: t = 11ty is in reduced form. Then v = (¢;71 2; €) by a simple induction.
By inductive hypothesis y; € P, and ty is normal, so y1y2 € P by lemma 28.
Therefore v € P as required. [

The next lemma. tells us more about the rewrites in P:

Lemma 30. Every v € P is of the form (¢; d; €) where ¢ satisfies one of the following:
e =7
e =Xy and vy €P
e § =17 and v; € P, 1y, is reversible.

Proof. We prove that this property is preserved by the three clauses defining P. It
is clear that all identities are of this form, and that it is preserved by composition
with rewrites of the form e. It remains to prove that if v3;, € P is of one of the
three forms above, then so is ;. The proof is by induction on |ys|g.

Let v; = (ay; 05, €5); it is clear from the definition of § that a; = ¢. We proceed
by cases of €, and as:

case 1: €; = ay = u. There are three subcases, depending on the form of d;:

case 1.1: 0; = i. Then v, is of the required form.

case 1.2: d; = Myj1. Then 1599 = (4 A(711;721); €2) and y11;721 € P, 80 71 € P
and y; is of the required form.

case 1.3: 6; = vj1 2. Then yi;72 = (¢ (115 721) (Y125 722); €2) and 7115721 € P,
Y12; Yoz is reversible. Then ;7 € P and <y is reversible, so 7 is of the required
form.

case 2! ay = u, €, # u. Then v1;v2 = (t;61;v); (€1;72) and by inductive hypothe-
sis, (t; d1;v) is of the required form. Therefore ~; is also.
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case 3: € = u, Qg = Qg1 tg; By 1,5 Qoz. Then &1 = y11 712, and we proceed by cases
of y11 T an:

case 3.1: yi1; 01 = (a3; Ays; Atr). Then 1390 = (a3 v; Buyw; ... ), contradicting
the hypothesis that it is of the given form.

case 3.2: y11; 091 = (73; Tw; Mw! €31; €32)). Then

Y1572 = (£ 73 (12; €a1[u]); €32(u]); (az2; 02; €2)

By inductive hypothesis, y3 € P and 712; €31[u] is reversible, so 11 € P and 712 is
reversible, as required. [ ~

We can now prove the other half of the theorem:

Proposition 31. Let ¢ be a term. Then

o If every «y: t = u is reversible, then ¢ is in long-Bn-normal form.
o If every v: t = u is in P, and ¢ is not of the form A¢;, then ¢ is in reduced
form.

Proof. By structural induction on . We proceed by cases:

case 1: t: X — Y and every «: t = u is reversible. Then in particular, n;: ¢ =
A(t'1) is reversible, and its inverse v has the form (A(T"1); Ayi;€). Then ¢ =
M. Let it t = uy. Then Ayi: t = Auy is reversible, with inverse (Aui; Aye; €2),
say. Then Myi; (Aug; Ay2; €2) = (M1; A(71;72); €2) and v is reversible. By inductive
hypothesis, therefore, t; is in long-fn-normal form, and so is ¢.

case 2: t: B and every : t = u is reversible. Then every such v is in P, and since
t cannot be a lambda term, ¢ is in reduced form by the second inductive hypothesis.
Therefore ¢ is in long-fn-normal form.

case 3: t = 7. Then t is in reduced form.

case 4: t = t1to and every y: t = wis in P. If t; = My, then B: t = tii[ta),
contradicting lemma 30.

Let y1: t1 = ug. Then vy to: t = uytp is in P, and by lemma 30 71 is in P. By
inductive hypothesis, therefore, ¢, is in reduced form.

Let vo: ty = up. Then &1 y2: t = t; ugp is in P, and by lemma 30 7, is reversible.
By the first inductive hypothesis, therefore, ¢, is in long-fn-normal form, so ¢ is in
reduced form.

O

Putting these two together, we have proved
Corollary 32. A term is in long-fn-normal form iff it is normal.
We need one more property of reversible arrows, related to mellifluence:

Lemma 33. If yv: t = u and (1, v = v satisfy v; (G = 7v;( where (;,(, are
reversible, then (; = (5.

Proof. Tt is convenient to define a set Q of rewrites whose normal forms are built
up entirely from rewrites in &:
e Ife:j=tisin & then j;j;e € Q
elfe: M=uisin & and (:s=>tisin Q, then As; A\(;eisin Q.
elfe:tity =uisin & and { : 81 = t; and ( : 85 = iy are in Q, then
51 89;C (oy€is in Q.
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By lemma 30, P C Q, so every reversible rewrite is in Q. A straightforward induc-
tion shows that the composition of two rewrites in Q is in Q.

Th proof is by induction on |(;|g. Let (c;d;€) be the canonical form of vy, and
(;0;; €;) that of ¢;. There are three cases of 6; and 6s:

case 1: 6; =0, = i. Then e = ¢ and & =7 s0 v; (; = (e %; ¢;). Matching canonical
forms gives €; = €, 80 {3 = (3 as required.

case 2: 0; = A(j1. Proceed by cases of e

case 2.1: € = u. Then § = My and ;¢ = (e AM(m1;¢n);€5), 50 €1 = € and
v1; i1 = v1; Co1. By inductive hypothesis, (11 = (31 50 (i = (; as required.

case 2.2: € = €3; a3 A% €4; €5). Then (2! 152" €4 €5); (i1 1s in Q, so equals
(! 1; ¢}, €1; €52) for some (o in Q. Therefore v; (; = (c; 6; €3); (Cjo3 My3 Myt €j1;€52); €5)
and by inductive hypothesis, (12 = (o2, €11 = €21, €12 = €22 and €; = €3. Therefore
(z' 1; 2  eq;€5); Ci1 = (21 152! €45 €5); G, and by the inductive hypothesis (11 = (a1,
So (i = (; as required.

case 3: 0; = (;1 (2. Then € = uj ugand & = v 7250 %; ¢ = (o (715 Gin) (V25 Gi2); €)-
Therefore v1; (i1 = v1;Ca1, Y25 Ci2 = 725 Co2 and € = €. By inductive hypothesis,
Ci1 = o1 and (i = (a2, 80 (1 = (o as required.

O

6. GENERAL RESULTS

In this section we use the results we have proved about 2-) as the basic definitions
of a general theory of rewriting. We relate these definitions in such a way as to
suggest strongly that they are the correct generalisations of the notions of rewrite
system, confluence, normal form and strong normalisation. In this way we provide
a framework for the proof theory of rewriting which could be applied to many other
systems.

This theory is based on category theory: we see the elements (terms, strings, or
whatever) of the rewrite system as the objects, and the rewrites as the arrows of a
category. The category theory we use is all elementary (unlike that in section 3.2) so
the non-categorical reader need only look up a few definitions before continuing. We
will write the identity on z as 1., and composition in diagramatic order: if f: z — y
and g: y — z then f;g: z — z, as this seems much more natural than applicative
order when talking about rewrite systems.

Definition. A rewriting category is a category satisfying the following axiom:

oIf f: 2z — y and g,h: y — z are such that f;g = f;h then there exists
k: z — w such that g; k = h; k.

|
This is precisely the property which we called mellifluence in section 5.2. %
Our main example of a rewriting category is that constructed from the 2-A cal- |
culus. The objects are the terms (in context) and the arrows are the rewrites in
G (or equivalently, equivalence classes of rewrites). Identities are given by Z and
composition by t; the category axioms were proved in section 4 and the rewriting
category axiom is proposition 27. The importance of this property is simply that it
is needed in most of the proofs which follow.

Definition.
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e An object z of a rewriting category is normal if every arrow f: z — y is
split monic, i.e. there exists ¢: y — x such that f;g=1,.

e An object y is weakly normalising if there exists f: y — z for some normal
z. In this case we call z a normal form of y.

e A rewriting category is weakly normalising if every object is weakly nor-
malising.

Corollary 32 states that the normal forms of 2-A are precisely the long-fn-normal
forms. Since every term of the simply typed A-calculus has a long-B-n-normal form,
2-) is weakly normalising.

Lemma 34.

(1) Any arrow between normal objects is an isomorphism.

(2) If f: x — y then any normal form of y is a normal form of z.

(3) Let = be a normal object in a rewriting category, and f: z — y. Then the
map ¢g: y — x satisfying f; g = 1, is unique.

Proof. (1) Let z and y be normal objects, and f: x — y. Then because z is normal,
there exists g: y — x such that f;¢g = 1,. Similarly, because y is normal, there
exists h: x — y such that g; h =1,. Now, f = f;(g;h) = (f;9); h = h, so it is iso.
(2) If g: y — z with z normal then f;g: z — 2.
(3) Let g1,92: y — « both satisfy f;g; = 1,. Then by the rewriting category
axiom, there exists h: x — z such that gi; h = go; h. But h must be monic because
z is normal, so g1 = go. O

Definition.

e An object z of a rewriting category is confluent if for all pairs f;: z — y; and
fo: T — yy there exist 2, g1: y1 — z and gq: y2 — 2z such that fi; g1 = f2; g2
e A rewriting category is confluent if every object is confluent.

Proposition 22 states that 2-) is confluent. Note that confluence and the rewriting
category axiom are precisely the conditions for a calculus of fractions [3]. This
means that we can calculate the free groupoid on a confluent rewriting category in a
particularly simple way. This groupoid can be interpreted as the equational theory
generated by the rewrite system.

Lemma 35. Let z be an object in a rewriting category. Then

(1) if z is confluent and f: # — y then y is confluent

(2) if z is normal then  is confluent

(3) if z is confluent and f: z — y then any normal form of z is a normal form
of y

(4) if z is confluent then all its normal forms are isomorphic.

Proof. (1) Let g1: y — 2 and go: y — 22. Then f;g1: 7 — 21 and fig2: ¢ — 2
so by confluence of = there exist hy: 21 — w and hg: 2z — w such that f;g1;h1 =
f: g2; ho. Now by the rewriting category property there exists k: w — v such that
g1; hi; k = ga; hoy k so two arrows which complete the commuting diamond are hy; k
and hy; k.

(2) Let fi: z — y; and fo:  — yo. Since z is normal there exist g;: ¢ — = and
g2: Yo — x such that fi; g1 = 1, = f2; go. But this shows that z is confluent.
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(3) Let g: © — z where z is normal. Since z is confluent there exist hy: y — w
and hg: z — w such that f;hy = g; he. But z is normal, so there exists k: w — z
such that hg; k= 1,. Now hy;k: y — z (and f; hi; k= g).

(4) By part (3), if z has two normal forms, then there is an arrow between them.
But by lemma 34, this arrow is iso. [

Definition.

e Let D be a diagram in a category. We call a cocone pu: D — x over D
separating if for any other cocone v: D — y there is at most one arrow
f:x — ysuch that p; f = v.

e An object z of a rewriting category is strongly normalising if every filtered
diagram containing x has a separating cocone.

e A rewriting category is strongly normalising if every object is strongly
normalising.

Note that if we replace ‘at most one’ with ‘exactly one’ in the definition of sepa-
rating cocone, it becomes the definition of colimiting cocone. The following lemma,
together with lemma 33 shows that 2-) is strongly normalising:

Lemma 36. Let z be an object of a rewriting category.

(1) If z is confluent and weakly normalising, then any filtered diagram containing
it has a cocone whose apex is normal.

(2) If whenever f: z — y, g1,92 : Yy — z are such that f;g; = f; go then g1 = go,
then any cocone over a diagram containing z with vertex y is separating.

Proof. (1) Let D be a filtered diagram containing z, and e:  — v for v normal.
Define p: D — v as follows:
e For each object y € D there exist z,, fy: y — 2, and gy: © — 2, in D (since
D is filtered). By lemma 35, there exists hy: 2z, = v s.t. gy; hy = e. Then

(10) Ly = fys Byt y =

e For each arrow k: y — ¢/ in D there exist w, [: z, = w, "1 2y = ws.t. g5l =
gy; U and fy;l = k; fy; 1, since D is filtered. Then there exists m: w — v s.t.
gy; l;m = e, and by the rewriting category axiom, hy, = I;m and hy = I'sm.
Now

k; oy = ks fys by = k§fy’;ll§m = fyslsm = fy; hy = 1y
SO p is a cocone.
(2) Straightforward. 0O

Lemma 37. Let = be an object in a rewriting category. Then
(1) if x is strongly normalising and f: & — y then y is strongly normalising
(2) if z is normal then z is strongly normalising

Proof. (1) Let D be a filtered diagram containing y. Then there is a diagram D'
formed by adjoining one new object x and one new arrow f:z — y to D. D'is
filtered and contains z, so has a separating cocone, but a separating cocone over D’
restricts to one over D.

(2) Immediate from lemma 36 [J
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Proposition 38. If z is strongly normalising then it is weakly normalising, i.e. it
has a normal form.

Proof. Let < be the partial order on arrows f: z — y induced by (z | C): so
[f] < [f'] iff there exists g: y — ¢’ such that f;g = f'. We will prove that every
chain in this poset has an upper bound.

Let [fj] < [fi+1] be such a chain, and choose g;: f; = fj41 in (z | C). The
resulting diagram in C' is linear, so filtered, so has a separating cocone. The image
of this cocone in the partial order is an upper bound for the chain.

So every chain is bounded and we can apply Zorn’s lemma to find a maximal
element [h], where h: £ — z. Now consider the full subcategory of (z | C) of arrows
in the equivalence class [h]. This category is filtered because of the rewriting category
property and maximality, so its image in C has a separating cocone u: [h] = v. We
will show that v is normal.

Let f = h;pp: ¢ = v. Now if g: v = u then by maximality f;g € [h] so there
exists ¢': u = v st. f;g;¢' = f, and by separation, g;¢' =1. 0O

The combination of lemma 35 and proposition 38 means that if z is confluent
and strongly normalising then it has a normal form, unique up to isomorphism.
However, the proof is unnecessarily complicated and non-constructive, using the
axiom of choice. The next result gives a simple construction of the normal form in
the confluent case.

Lemma 39. Let = be an object in a rewriting category C, and let P: (z | C) — C
be the usual projection functor. Then

(1) z is confluent iff (z | C) is filtered.
(2) If pu: P — y is separating then y is normal.

Proof. (1) The two conditions for filteredness of the slice category are precisely the
rewriting category property and confluence of z.

(2) The map puy,:  — y is an object of (z | C), so pi,, : ¥ = ¥, and by separation
fuy = 1y. If fry — z, then py; f: & = z is an object of (z | C), 50 pyy;5: 2 = ¥.
Then f; s = fhw =1 O

We have proved all the expected relationships between confluence, weak and
strong normalisation, and even found a simple condition for confluence + weak
normalisation to imply strong normalisation. We now give an example to show that
some such condition is necessary.

Let C be the category with three objects x y and z, and eight non-identity arrows:

aEyars)
g

r —>

Y
h ll ‘m lg
z
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with composition defined by

Lf=F fi9=49 fih="h
giki=9g gik2=g gm=nh
hili =g hila=g
ki ki = ky ki3 ko = ky kiym=m
koy k1 = ky ko; ko = ko kayym =m
liyky =1y liky =1y liym=1,
losky =1y las ko = g loym =1,
m;ly = ki m;ly = ko

Then C is a confluent rewriting category and z is normal, but z is not strongly
normalising because none of the three cocones over

is separating.

7. CONCLUSIONS

This treatment of the A-calculus shows that rewriting does, in some cases at
least, have a natural proof theory. We have given a syntactic formulation in terms
of equations between expressions denoting sequences of rewrites, and shown that this
theory has a categorical semantics, characterising (-reduction and 7n-expansion as
the unit and counit of an adjunction, and a tractable word problem. As a corollary
to this we have shed light on a well-known problem: the relationship between 7-
expansion, strong normalisation and long f-n-normal forms.

This technique could usefully be applied to many other systems. The language
of rewrites used here would generalise almost immediately to other A-calculi such
as ‘system F’ [4] and the ‘calculus of constructions’ [2], and since the proofs given
here do not depend on the type structure (except in the definition of long §-n-
normal forms) we expect the same results to hold. Other important calculi arise by
adding other type constructors, such as those of product, coproduct and X types.
Here the need for n-expansion is even greater, as n-contraction leads to the lack of
confluence. We conjecture that with the definitions given here, these systems can
be made confluent and strongly normalising.

Although categorical term rewriting is not as general as conditional term rewrit-
ing, its algebraic character makes it much more tractable for mathematical study.
Many systems which require a conditional approach, from commutativity to fair
nondeterminism, might be described categorically by chosing appropriate equations
between rewrites. This is a fertile field for further work.
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