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Summary

Distributed systems and object-based programming are now beginning to enter the main-
stream of computing practice. These developments have the potential to simplify the dis-
tributed application programmer’s task considerably, but current systems impose unnec-
essary burdens. Distributed operating systems provide palatable message passing between
remote processes but leave the preparation and interpretation of messages to application
code. Remote procedure call systems use familiar language-level concepts to hide distribu-
tion, but the awkwardness of service creation and binding discourages the use of transient
objects. Finally, object-based programming languages which support distribution often
ignore the possibility of failures and do not efficiently accommodate heterogeneity.

This dissertation discusses the design, implementation and evaluation of a practical sys-
tem for network objects which addresses these problems for a representative programming
language (Modula-3) and distributed computing environment (the ANSA testbench). We
propose that language-level objects should explicitly represent bindings to potentially re-
mote service access points (interfaces), which are sufficiently lightweight that they can
be used as transient handles for shared state. Our system uses local objects to stand
for remote services and local method call to cause remote operation invocation. Within
a process, concurrency control is provided by familiar language-level facilities. The lo-
cal programming language’s object type system is made to represent the global service
type system in a natural way. We support dynamic creation of service interfaces and the
transmission of network object references in invocations. We allow the dynamic types of
network object references to propagate between separate programs. Finally, we provide
automatic, fault-tolerant and efficient distributed garbage collection of network objects.
In each case, we discuss the requirements of a useful design and the tradeoffs necessary in
a real implementation. Our implementation runs on stock systems connected by standard
local and wide area networks and internetworking protocols. We believe our approach
would support additional library-level tools for security, stable storage, distributed trans-
actions and transparent service replication, though we have not pursued this.

The dissertation demonstrates that it is practical to retain many important amenities of
modern programming languages when providing support for the construction of applica-
tions in a heterogeneous and evolving distributed system. '
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Chapter 1

Introduction

Distributed systems and object-based programming are now beginning to enter the main-
stream of computing practice. These developments have the potential to simplify the
programmer’s task to the point where widespread construction of distributed applications
(as well as the facilities traditionally associated with operating systems) is economically
feasible.

Established tools for dealing with the problems of distribution in a heterogeneous envi-
ronment have been collected into sophisticated systems which are now becoming widely
available. Many of these systems are based on objects, in one form or another. Likewise,
programming languages which support objects as first class citizens are now in common
use. The topic of this dissertation is how the relationship between objects at these two
levels can best be used to support distributed application programming.

Current systems impose unnecessary burdens on programmers. Distributed operating sys-
tems provide palatable message passing but leave the preparation and interpretation of
messages to application code. Remote procedure call systems use familiar language-level
concepts to hide distribution, but the awkwardness of service creation and binding dis-
courages the use of transient objects. Finally, those object-based programming languages
which support distribution often ignore the possibility of failures and do not efficiently
accommodate heterogeneity.

This dissertation discusses the design, implementation and evaluation of a practical system
for network objects which addresses these problems. We have not designed a universal
distributed programming language integrated with a distributed computing environment.
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Instead, our approach is to take a representative single-system programming language and
investigate how its support for objects may most naturally be used to present the facilities
of a distributed computing environment to the application programmer.

‘We propose that a language-level object in a client should explicitly represent a binding to
a potentially remote service, and that a language-level object in a server should explicitly
represent the interface, or service access point, which is the target of such a binding.
Service creation should be sufficiently lightweight that service interfaces can be used as
handles for transient state shared between clients and servers. To achieve these goals in a
heterogeneous environment, we use a new technique: we automatically generate network
object type declarations in the target language, as well as their associated stubs, from
free-standing interface specifications.

Our system uses local surrogate objects to stand for remote services and uses local method
call to cause remote operation invocation. Within a process, concurrency control is pro-
vided by familiar language-level facilities. The local programming language type system is
made to represent the global service type system in a natural way. To hide RPC binding,
we support the dynamic creation of service interfaces from language-level objects and the
transmission of network object references in invocations. We allow the dynaLmic types of
network object references to propagate between separate programs. Finally, we provide
automatic, fault-tolerant and efficient distributed garbage collection of network objects.

For each of these features, we discuss the requirements of a useful design and the trade-
offs necessary in a real implementation. The representative programming language in our
implementation is Modula-3, and the representative environment for distributed comput-
ing is the ANSA testbench. Our implementation runs on stock systems connected by
standard local and wide area networks and internetworking protocols. As far as we are
aware, it is the first system in which a language other than C has been integrated with the
ANSA testbench. Although our implementation work is based on Modula-3 and ANSA,
we believe that much of our design and experience is applicable in other languages and
environments.

Our distributed garbage collector was designed with the other co-authors of [Birrell 93a)
while the author was a student intern at DEC SRC. Everything else described in this
dissertation is the sole work of the author, who has implemented the collector twice: first
for the SRC Network Objects system, and in a different form in the system presented in
this dissertation.

In this work, we have concentrated on the language-level presentation of the management




of, and communication via, two-party network object bindings. Persistence of service
state, secure communication between authenticated principals and mobility of services are
outside the scope of the dissertation, as are techniques for achieving increased reliability
through transparent replication, automatic fail-over, and atomic transaction protocols.
We believe that it is possible to integrate established solutions to these problems with our
approach.

In summary, the dissertation demonstrates that it is practical to retain many important
amenities of modern programming languages when providing support for the construction
of applications in a heterogeneous and evolving distributed system.

1.1 Outline

The structure of the remainder of the dissertation is as follows:

Chapter 2 introduces the topics of distributed computing and objects. We briefly review
previous work in distributed operating systems, and the evolution of language-level support
for distributed application programming. We then identify the problems we intend to
address and state the goals and non-goals of our system’s design. Finally, we present an
outline of the environment in which our implementation work has been carried out.

In Chapter 3, we introduce the network object concept. We describe how the Modula-3
language can be combined with the ANSA testbench to produce a system which presents
ANSA services to the programmer as language-level network objects. We then describe
in more detail the relationship in our design between ANSA service definitions and the
network object types which are their Modula-3 counterparts. Finally, we present an imple-
mentation of a stub compiler and runtime system to support the design features described
so far.

Conventional programming languages have supported programmers with increasingly so-
phisticated type systems. Their purpose has been to allow mistakes to be detected as early
as possible and to support information hiding. Distributed applications can also benefit
from the use of types to govern binding between separately compiled programs. In Chap-
ter 4, we discuss the uses of types in distributed systems and present the corresponding
features of our system.

With the freedom to create remotely-accessible services shared by reference as simply as




objects within a single program comes the burden of resource management. Chapter 5
explains the problem, and presents a distributed garbage collector which considerably
reduces its impact on application programmers. First we describe the collector’s design in
the abstract, then we explain how we have implemented it in practice.

We have implemented the system presented in the previous chapters in its entirety. Chap-
ter 6 reports experience of distributed application programming with our system, describes
some of the tests we made of it and presents some simple measurements of its performance.

In Chapter 7 we place our system in the context of recent work on distributed ob ject-based
systems and distributed garbage collection.

Finally, in Chapter 8 we present concluding remarks and directions for further research.

You may already know what a blow to the ego it can be to have to

read over anything you wrote 20 years ago, even cancelled checks . ..

It is only fair to warn even the most kindly disposed of readers that

there are some mighty tiresome passages here, juvenile and delinquent too.

— THOMAS PYNCHON, Slow Learner (1984)




Chapter 2

Background

2.1 Distributed Computing

In the Cambridge Distributed Computing System [Needham 82], and others like it, services
which had previously been associated with timesharing operating systems were scattered
among small computers whose main I/O device was the network. This was made possible
by the advent of cheap microcomputers and local area networks with low error rates and
high bandwidths. Developments in internetworking and wide area network technology
have now made distributed computing feasible on a continental scale.

In distributed computing, we have many computers and many networks which we wish to
have work together to some end. Sometimes it is appropriate to move the program to the
data, as is common for databases. Sometimes both should move to the computer—perhaps
it is a PostScript printer. Sometimes logically shared memory fits the problem, and can
be used if appropriate hardware support is available.

However, in an environment in which cooperating processors (or their abstractions, pro-
cesses) can fail independently, and in which communication between processors is signifi-
cantly slower and less reliable than internal communication, acceptable performance can
only be achieved by keeping programs and the fine- grained data they manipulate together.
Current local and wide area networks of conventional computers fit this description. While
the bandwidth and error properties of networks may in the future approach those of tradi-
tional multiprocessor busses, their communication latencies will not: the communicating
parties are physically further apart in a distributed system. In a distributed system, the
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entities which are shared between cooperating parties are not bytes but services: packages
of state and program which can perform computation and storage on behalf of others.

We will see later that service creation need not be a heavyweight operation: service in-
stances can be created on the fly, as long as enough is known about their types (the
specifications of the programs) ahead of time. Also, as in the case of a database, it is often
possible to improve performance and make services more flexible by transmitting addi-
tional programs to them. These programs are written usually in a small special-purpose
interpreted language, but occasionally in a bigger one such as CLU, Scheme or PostScript
[Stamos 90, Bartlett 91, Gosling 86).

In this dissertation, we will be concerned with flexible language-level tools for the use and
management of services in a distributed system. The central bridge between programming
languages and distributed systems is the concept of an object.

2.2 Objects

What is an object? The details of the answer to this question depend on who one is talking
to and which system (or model) one is discussing. We will shortly discuss a number of
systems which support objects in some form, but we should first explain our general view of
the ideas involved. Our terminology, and in particular the distinction between objects and
interfaces, is based on that of the ANSA architecture for distributed systems [ANSA 89].
It is illustrated in figure 2.1.

An object is something which has an identity (in some context) and encapsulates some
state, which it may manipulate on behalf of the outside world in response to invocations
of operations in its interfaces. The number of objects in a system may vary with time.

State is data—%“the bits”. An item of state is associated with exactly one object: objects
cannot overlap or contain other objects. The outside world can only read or write an item
of state indirectly, by making an invocation on the object which contains it. This is the
sense in which objects encapsulate (as well as contain) state.

An interface is a service access point: a collection of operations, on exactly one object,
with its own identity. One object may have (or export) many interfaces, for which it is
said to be the server. The number of interfaces on an object may vary with time. We will
often use the word “service” as a synonym for “interface”.




object——=_,

state

interfaces

interface
reference

client binding server

An object encapsulates
state, which is accessible
only via its interfaces.

An object may hold references
to interfaces on other objects.

The association between an
interface reference and the
interface it denotes is called
a binding.

An interface on an
object is potentially
the target of many
bindings.

An object may be a server of
some interfaces and a client
of others.

Figure 2.1: Terminology for objects and interfaces.




An object may hold a reference to an interface on another object as part of its state. It
is then said to be a client of that interface. Only interfaces may be named by objects in
this way: objects cannot name other objects directly. Interface references held by distinct
objects are regarded as distinct as references. The number of interface references in a
system may vary with time. A collection of objects in some context may be designed such
that it appears to be a single object, in that some of the interfaces on the objects in the
collection cannot ever be referred to outside that collection. Objects are therefore in this
sense the smallest units of encapsulation.

We will call the association between an interface reference and the unique interface it
denotes a client-server binding, or a binding for short. An interface reference is half of
exactly one binding. An interface is potentially the target of many bindings. We will often
abuse this definition by using the word “binding” when referring to information about a
given association held at the client.

An invocation is a dynamic process which starts at a client of an interface. Tt is possession
of an interface reference which allows the holder to invoke operations over a binding. The
invocation proceeds to the object which is the server of the denoted interface, possibly
carrying some data called arguments. At the server, a computation is performed which
may produce some results. The invocation, carrying any results with it, then returns
to the client, where it finishes. The computation performed as a result of an operation
invocation depends on both the operation and the object on which it is invoked. This is
often called “dynamic binding” (of operation names to procedures) in the context of object-
oriented programming languages. However, we will use the phrase slightly differently. By
“dynamic binding”, we mean the creation, as computation proceeds in an active system,
of client-server bindings in the sense given above.

These definitions fall far short of capturing everything of interest in a distributed system,
but will be useful nonetheless. Neither are they absolutely watertight (in how many
interfaces may a given operation appear?). Slightly different terminology is widely used
in discussions of programming languages: objects and interfaces are seldom distinguished,
and the word “interface” often means an interface specification. Through force of habit,
or for consistency with established terminology, we will sometimes use the words “object”
and “interface” in that way. Whenever the reader encounters them, he or she is invited to
consider whether they are being used of concepts at the level of a programming language
or of a distributed system.

With these preliminaries over, we will now briefly review previous work in distributed
operating systems and programming languages.
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2.3 Distributed Operating Systems

Several operating systems have been designed to support distributed computing by re-
garding more-or-less traditional processes as the providers of services. Examples include
CHORUS [Rozier 88], Mach [Jones 86), and Amoeba [Mullender 86]. In each of these sys-
tems, a (theoretically) small and efficient kernel supports a few minimal abstractions of
the hardware, and everything else is built on these.

In these systems, a process is essentially a virtual address space on some machine, protected
by memory management hardware from the activities of other processes on that machine.
A thread is an independent locus of control within a process, with its own program counter
and CPU state. Threads in the same process communicate and synchronise with each
other via shared data. Communication between processes (possibly on different machines
connected by a network) is by message passing. Operating system services such as filing
systems, directory services, process and paged virtual memory management and network
communication itself are all implemented as processes, communicating with clients and
each other by inter-process communication (IPC).

IPC in these systems is based on ports, capabilities and messages. A port is a message
queue protected by the kernel. A capability is a port identifier accompanied by some
access rights and possibly other information. A message is a collection of (possibly typed)
data items, which may include capabilities for ports. A thread enqueues a message at a
port by calling a send primitive with the message and a capability for the port. To service
a request, a thread calls a primitive receive operation on a port bound to its process. If
there are no messages waiting, the thread is blocked. Otherwise, a message is returned
and the thread acts on it. Since many interactions follow a request-response pattern, it
is generally possible to send a reply to a message by supplying another primitive with
an identifier for the message and the response. In this case, the send primitive either
blocks the calling thread until a reply is received or returns a voucher which can be
used in a later call to a synchronising receive-reply primitive. Thus, in the terminology
of section 2.2, processes, ports, capabilities and messages loosely correspond to objects,
interfaces, interface references and invocation arguments or results, respectively.

In Mach, ports bound to processes on remote machines are represented by surrogate ports
held by a local message server process. This communicates via network protocols with the
message server at the target machine, which forwards messages to the appropriate local
ports. The right to receive on a port can be handed off to another process dynamically;
this can be used to short-cut expensive general computation once the existence of a special



case has been established.

Similarly, CHORUS ports can migrate between processes. They can also be placed in
collections called groups which have their own identities and capabilities. It is possible to
choose whether a message sent to a group is enqueued at all or one of the ports it contains.
Process segments in CHORUS are managed by associated mapper processes and can be
cached in physical memory at more than one node. The mappers can implement coherence
protocols between these local caches to provide shared memory between machines.

Capabilities in Amoeba include both a port identifier and an object number; the former
identifies a server process and message queue, while the latter is interpreted by the server
itself. A rights field contains a bit mask denoting which operations the holder of the
capability may invoke on the object to which it refers. To prevent forgery, the rights
field is cryptographically mixed with a random bit string when the capability is created.
Amoeba’s message passing primitives are designed to be used in the request-response style.
A request header identifies the operation to be performed, while a reply header returns
an error code and an optional capability. Parameters or results which will not fit into the
headers are placed in an associated buffer.

These operating systems provide a palatable abstraction of message passing in a dis-
tributed environment. The main benefit they provide is to hide from the programmer the
resolution of port identifiers to network-level addresses which underlies the use of capa-
bilities. They achieve this by use of protocols generally based on broadcast in local area
networks. As a result, dynamic binding of clients to server processes by passing capabilities
is straightforward within a LAN.

However, such systems leave a significant amount of work to the programmer. Little help is
provided to deal with the possibilities of network or process failure and server congestion.
A major burden is that messages must be prepared and interpreted by application code.
Even with the help of library routines to insert and extract values of common types such
as integers and character strings, this is tedious and error prone, since it is not subject to
automatic checking.

2.4 Language-Level Support

Some of the problems mentioned in the previous section are not essential features of
distributed computing. Various attempts have been been made to address these problems
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by mechanisms at the level of the programming languages used by application writers. We
will briefly discuss three approaches: language-level abstractions of shared address spaces,
remote procedure call, and the use of object-based languages.

2.4.1 Linda

Linda [Carriero 86] provides language-level support for an elegant model of distributed
computing based on distributed algorithms [Carriero 89] rather than services. Despite our
emphasis on service-based systems, we will sketch Linda for completeness.

Linda programs operate on distributed data structures in a global content-addressable
tuple space whose elements consist of typed data records called tuples. Linda augments
a standard programming language with three simple operations to manipulate the shared
data. The out() operation adds a tuple to tuple space. The in() operation takes a
combination of literal values and formal parameters which specify a template for tuples.
If there is a matching tuple in tuple space, it is removed and exactly one in() operation
returns, having bound the supplied formals; otherwise in() blocks until a matching tuple
is present. Finally, the read() operation behaves exactly like in() but does not remove
the matching tuple from tuple space. A complete Linda program terminates when all its
constituent processes terminate or block for input.

Binding in Linda is by convention: the first element of every tuple is a character string
name chosen by the programmer. The contents of one tuple may be used to address another
by using the matching mechanism. Concurrency control is provided by the atomic removal
of tuples from tuple space by in(). Linda is designed to be implemented on multiprocessors
with a fast broadcast interconnect, so in practical implementations the contention implicit
in the in() primitive becomes contention on the hardware bus, and is resolved by hardware
arbitration mechanisms. Tuples implicitly contain a unique identifier to make the deletion
from tuple space required by in() an idempotent operation.

The Linda model is suitable for parallel programming applications which are naturally
expressed in terms of a shared data structure. However, because it relies on fast broadcast
communication, the model does not scale to larger distributed systems. Neither does it
address the possibility of failures. For these reasons we will not take our discussion further,
except to note that the Linda primitives use language-level formal and actual parameters
to relieve the programmer of the burden of creating and interpreting messages.
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2.4.2 Remote Procedure Call

Many interactions between clients and servers in a service-based system take the form of
pairs of request and response messages. The idea of remote procedure call [Birrell 84] is
to use the familiar abstraction of calling a procedure which takes arguments and returns
results to cover the distributed situation as well. In both the local and remote cases,
control and data pass from caller to callee and back again. Three features distinguish RPC
from the message passing facilities mentioned above: The creation and interpretation of
messages is hidden behind the procedure call mechanism of the programming language.
Concurrency is generated and controlled exclusively by local threads. Finally, there is an
explicit attempt to make remote calls as reliable as local ones, as far as possible, even in
the face of transient communication problems.

In a classic RPC system, the programmer is relieved of the task of marshalling data to
and from message buffers by stubs generated automatically from the specifications of the
procedures to be invoked. This automation, together with the typechecking provided by
the programming language compiler, eliminates much of the drudgery of remote commu-
nication.

Procedural and message passing systems are essentially equivalent [Lauer 79] from the
point of view of concurrency management, provided threads are sufficiently cheap to create.
Therefore it is unnecessary to confuse the programmer by providing both. RPC systems
choose procedure call as the dominant model because of its familiarity and the presence of
hardware support for the local case. Because a thread which makes an RPC blocks until
the call returns, all asynchrony is (in the absence of failures) apparently local asynchrony
between different threads. Importantly, all synchronisation is between threads in the
same address space, for which hardware support and well developed abstractions such
as semaphores, monitors, critical regions, event counts and sequencers etc. are available
[Bacon 93]. Having said this, the RPC concurrency model is not a licence to ignore the
fact of distribution. It is generally inadvisable for a thread to hold a local mutex on some
data structure while making a remote call, just as it would be a bad idea for a process in
the message passing model to refuse to service new requests while awaiting the reply to a
message it sent as a result of a previous request. In either case, bad performance or even
deadlock can easily result.

In a classic RPC system, if an RPC returns successfully, it is guaranteed that the server
procedure has executed exactly once. If the call returns an error indication, because of
process or communication failure, it is known that the server procedure will execute at
most once. Successful calls made from the same client thread are guaranteed to execute
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in the same order at the server. These requirements are met by use of a specialised
communication protocol implemented by a runtime library.

Early RPC designs tried to hide as many as possible of the differences between local and
remote calls. Later designs placed less emphasis on this goal of transparency. We will
mention three differences which undermine complete transparency: binding requirements,
unreliability and heterogeneity.

In the single-process case, there is no ambiguity about the target of a particular procedure
call. The call site has been bound to the callee by link editing at or before load time. In
the remote case, an explicit mechanism must be made available to allow a client program
to select and locate the service instance it requires. This is an awkward feature of tra-
ditional RPC: usually, each remote procedure is required to take an additional argument
representing a binding to the required remote server. A binding generally denotes a group
of remote procedures called an interface. Bindings contain interface identifiers and the
addresses and port numbers required for the underlying communication protocols. They
can be obtained in various ways. In the usual mechanism, servers register themselves with
some name service with an explicit export operation, and clients obtain bindings from
this service with an import operation. Binding is expected to be a much less frequent
activity than making RPCs and may be correspondingly more expensive. The number of
RPC interfaces on a program instance is fixed when the program is linked. In this respect,
classical RPC interfaces are different from the interfaces of section 2.2.

The Concurrent CLU RPC system [Hamilton 84] retained the convenience of language-
level support but did not attempt to hide the inevitable differences in performance and
failure properties between local and remote calls. CCLU RPC used a distinct syntax for
declaring and calling remote procedures. Calls on remote procedures could provide the
remote binding explicitly in a distinguished clause of the syntax. They did not attempt to
recover from network failures unless told to do so. The motivation for this was that end-to-
end checks required at the application level often make expensive reliable communication
techniques redundant [Saltzer 84]. Rather than using stub procedures for remote calls, the
CCLU compiler itself generated calls to runtime marshalling code. This code interpreted
information maintained by the local garbage collector to linearise entire heap structures
for transmission, preserving pointer loops and sharing as required by the semantics of
values in CLU [Liskov 81]. CCLU also extended CLU with concurrency control primitives
which were implemented on top of the Mayflower kernel.

Finally, a distributed system has the opportunity (and sometimes the requirement) to
accommodate heterogeneity. Different parts of an evolving system may be written in
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different programming languages, or run on distinct hardware architectures or operating
systems. An RPC mechanism can act as the glue which connects and coordinates the
disparate components of a distributed system, but must trade off transparency to do so.
RPC for a single programming language and architecture can be tailored for its partic-
ular type system and its values’ representations on that architecture. A mechanism for
communication between different languages must define an explicit external representa-
tion for values and restrict the transmittable types to those which can be interpreted in
every language. Similarly, interface specifications must be written in an external interface
definition language or IDL. IDL interfaces contain type and procedure specifications; from
these, stubs for each programming language are generated.

Mach and Amoeba (among others) have been extended with IDLs (Matchmaker and AIL,
respectively) to support heterogeneous RPC over their message passing protocols. Stubs
are generated mainly in C, though support for other languages is planned for both. The
Heterogeneous Computer Systems project at the University of Washington took this ap-
proach much further in the HRPC facility [Bershad 87]. HRPC allowed a collection of
existing RPC mechanisms to interwork by defining clean abstractions of the components
of any RPC system. Five components were identified: the stubs, the binding protocol by
which clients locate servers, the data representation on the wire, the transport protocol
which moves bits between hosts, and the control protocol which tracks the state of each

call. Each of the last four components could be selected independently. This was done

dynamically when establishing a binding via the HCS Name Service. The components
communicate with each other via procedure variables in the binding structure passed to
each stub.

2.4.3 Object-Based Languages

RPC tries to present distribution to the programmer in familiar terms, but as we saw in
section 2.4.2, binding to services in remote programs is different from binding to procedures
in the same program. In the terminology of section 2.2, a same-programi procedure name
denotes both an operation and a fized, implicit object: the program instance in which
the procedure is called. In order to allow the same operation to be invoked at varying
remote objects, RPC procedures must be given the extra binding argument. With only
a slight shift of emphasis, from the procedure to the binding, this style becomes that
of object-based programming languages. It is therefore attractive to use a programming
language which supports objects for programming in a distributed system. For the rest
of this section, we will be using the word “object” in the senses defined by the various
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languages under discussion.

One possibility is to start from an existing object-oriented programming language and
attempt to add as much distribution transparency as possible. This was the approach
taken in Distributed Smalltalk [Bennett 87], which allowed object references to be passed
between nodes and provided remote method invocation. Smalltalk objects are not self-
contained. They acquire behaviours from definitions in classes. Classes themselves share
behaviour by reactive inheritance, in which changes to a class definition immediately af-
fect the behaviours of all its dependent objects and classes. Because of these mechanisms,
Distributed Smalltalk faced severe problems in implementing object mobility. Since every-
thing (even an integer) is a full-blown object in Smalltalk, object mobility is a prerequisite
for efficient remote communication. Distributed Smalltalk also suffered from the mismatch
between distribution and the traditional Smalltalk approach to type errors. A programmer
only discovers a type problem when a method call fails with a “message not understood”
error displayed in a debugger window. The problem lies in deciding on which machine to
pop up this debugger.

Another possibility is to design an object-based programming language whose semantics
are intended from the outset to model distributed systems. This is the approach taken
in Emerald [Black 87, Jul 88, Raj 91]. Emerald attempts to provide the programmer of a
distributed system with both the facilities of modern single-system programming languages
and the tools required to deal with distribution, all in a uniform manner. The Emerald
programmer is supported by objects, monitors, a sophisticated type system and object
mobility.

Everything in Emerald (from booleans to compilers and abstract machines) is in theory
an object. Every object has a network-wide identity, some private data in the form of
references to other objects, a set of operations and, optionally, its own background thread.
An object’s data may be accessed only by its own operations. Operation invocation
provides the only means of interaction between objects. Many threads may be active in
an object; concurrency control is provided by monitors. These are strongly coupled to
objects: some of a monitored object’s operations are designated as entry points to its
monitor.

The signatures of an object’s public operations define its abstract type. We will say more
about abstract types in Chapter 4; for now we simply mention that Emerald defines a
type conformance rule, based on the notion of substitutability of instances of abstract
types, which governs binding between objects. Type checking is performed statically
where possible and at bind time otherwise. Among other things, the information hiding
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provided by abstract types allows the Emerald compiler to generate code to implement
the uniform object invocation semantics by varying mechanisms. These trade off efficiency
against generality according to what the compiler can deduce from the program text about
how a particular object will be used. This relieves programmers of the burden of making
these decisions for themselves.

An RPC system hides the work of locating and communicating with a remote server, but
ot the fact of its remote location: stubs must be generated, and bindings obtained. In
contrast, the Emerald programmer need not choose a priori which objects can be remotely
invoked. All communication between objects is notionally via a runtime kernel, which
locates remote objects and implements remote operation invocation. (It is important that
the compiler optimise this where it can.) Emerald allows programmers to ignore or control
the relative location of objects.

Because objects encapsulate both code and data, they are self-sufficient. They can there-
fore be made mobile, provided that the code can be interpreted everywhere. 1t is possible
to move objects from node to node explicitly, and to co-locate one object with another.
This allows decisions about object location to be deferred until run time and to change
dynamically with circumstances, in order to minimise communication costs. For instance,
when objects are passed as parameters to operations on other objects, the programmer
may specify that the parameters themselves should move to the callee. This style of object
mobility contrasts with the value transmission method for abstract data types described
in [Herlihy 82]. In Emerald, code and data are packaged in an object and are (notion-
ally) transmitted together. Herlihy’s scheme allows separate implementations of a given
abstract type to communicate values of that type among themselves by agreeing on a
common external representation.

Like all pure object-based languages, Emerald defines parameter passing with call-by-
sharing semantics, even in the remote case. As usual, it is necessary to provide hints
(possibly implicit in type information) which cause the use of more efficient implementa-
tion mechanisms where appropriate, such as in the case of small immutable objects like
integers. With these semantics, garbage collection becomes a virtual necessity as well as
an important tool; we will discuss Emerald’s distributed garbage collector in section 7.2.3.

Tt is instructive to compare, as is done in [Levy 91], the styles of distributed application
programming encouraged by RPC systems and object-based systems like Emerald. Ap-
plications built with RPC systems tend in practice to follow a pattern in which client
programs bind to an entire server program as a unit. Operations which involve refer-
ring to small parts of the state of the server are implemented by ad hoc mechanisms,
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and callbacks from server to client are rare. Neither problem is an essential property of
RPC. However, the awkwardness of service creation and binding, which in many systems
involves communication with a separate name service, encourages the creation of fewer,
longer-lived server programs. By contrast, applications built in languages like Emerald
create transient objects freely and bind to them dynamically. Though mobile objects must
in theory be located afresh at every invocation, hints are usually cached with bindings.

Emerald’s uniform object model comes at a price. In order to achieve acceptable per-
formance (especially with object mobility), Emerald is implemented in a homogeneous
environment. Every node is of the same hardware architecture and is attached to the
same local area network. Each node is a single address space. To protect objects from
each other, Emerald relies on the compiler’s implementation of the language semantics
rather than hardware memory protection. Because the Emerald approach requires a tight
coupling between language and runtime, it is difficult to integrate with existing systems.
Most importantly, to provide uniform semantics for all objects, Emerald simply ignores
the possibility of non-maskable node or communication failure: the alternative is to force
programmers to deal with the possibility of failure every time their programs read an
integer.

The Emerald approach has the great advantage of conceptual economy: one simple, uni-
form model describes the whole system. Its main disadvantage is that it fails to capture
the essential complexities of a real distributed environment: one simple, uniform model
describes the whole system.

2.5 Design Goals

As we have seen, there are a number of possible granularities at which the object structure
of section 2.2 can be applied in a distributed system, from the processes of the operating
systems mentioned above to small data such as integers in Emerald. In the work presented
in this dissertation, we have attempted to retain the best of both worlds: both the so-
phisticated linguistic features of object systems like Emerald and the support for realistic
distributed environments provided by heterogeneous RPC systems like Matchmaker. Our
goals are as follows:

e Services should be as simple to create and bind to as language-level objects, in order
that they may be used as handles for transient state shared between clients and
servers.
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Services should be as effectively and flexibly typed (both statically and dynamically)
as language-level objects.

e Tools for local concurrency control and distributed garbage collection of transient
services should be available to distributed applications.

Multiple languages and architectures should be supported.

The programmer should have enough information to exercise control over the han-
dling of failures in a manner appropriate to his or her application.

e An efficient implementation should be possible on stock hardware using standard
compilers, operating systems and language runtime environments.

As a result of these goals, we are prepared to make some sacrifices:

Identification of service types a priori is acceptable. We aim to reduce the incidental
drudgery of distribution, not to avoid the need to design applications for distribution
from the start.

Mobility of service instances is not a priority, though the ability to pass service
references freely is. If it is simple enough to create and bind to services dynamically,
applications can implement their own location policies at service creation.

Implementing complete distribution transparency for all objects in the face of partial
failure, communications problems and heterogeneity is prohibitively expensive. System
designers therefore make different tradeoffs between transparency, reliability, linguistic
support, implementation complexity and performance. Many object-based distributed
systems exist [Chin 91]. Ours balances these factors in a manner which we have found
very useful in practice.

Rather than defining a single, completely uniform object model, we have investigated
what happens when we start from a separate distributed computing environment and pro-
gramming language. The environment provides typed, invokable services independently
of particular programming languages, operating systems and hardware. A programming
language provides its own facilities for objects, threads, exceptions and so on. We have
attempted to integrate the two so that language-level object identity and type in a sin-
gle program can stand for identity and type in the distributed environment. We also
investigate how the tools (such as type checking and garbage collection) associated with
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local programming languages can be extended in a language-independent way to realistic
distributed systems.

In order to prepare for the presentation (in Chapters 3, 4 and 5) of our work in pursuit of
these goals, we will now outline the two systems on which we have based our experiments.
Our representative distributed computing environment is the ANSA testbench, and our
representative programming language is Modula-3.

2.6 The ANSA Testbench

The Advanced Networked Systems Architecture [ANSA 89] is an object-based framework
for open distributed processing in a heterogeneous environment. The ANSA testbench
[ANSA 92c] is a particular implementation of the ANSA engineering model, running on
top of UNIX and other operating systems, and is in regular use in the Laboratory.

The features of the ANSA testbench closely follow the definitions in section 2.2: services
are provided by objects at interfaces. Objects are the smallest units of encapsulation,
distribution and failure. Interfaces are the units of binding and service provision. An
object can provide services at many interfaces, and be a client of many interfaces.

Interfaces are typed. An interface’s type is described by an interface specification written
in the testbench’s IDL, a descendant of the Xerox XNS Courier language [Xerox 81] from
which stubs are generated in the usual way. An interface specification consists of a set
of data type and operation declarations. An interface specification can be declared to
be compatible with a set of ancestor interface specifications, whose types and operations
it inherits. IDL’s data types are fairly standard. Although there are no pointer types
(which would support the transmission of graph-structured data), there is a reference
type for interfaces, which we will discuss below. IDL is independent of any particular
programming language: a mapping to and from IDL types must be defined for each. A
standard external representation is defined for IDL data types.

2.6.1 Interface References

Interfaces exported by objects are named by interface references. Unlike the bindings
of standard RPC systems, and more like capabilities in Mach, CHORUS and Amoeba,
interface references may be passed freely across interfaces without the mediation of a log-
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ically central name service. Interface references contain address hints for the underlying
transport services, though these are not visible to the application programmer. IDL has
both a generic INTERFACEREF data type and a type constructor which declares that an
INTERFACEREF is OFTYPE Foo, for some interface type Foo, though such values contain
no type information themselves. Possession of an interface reference allows an object to
invoke an operation in an interface exported by another object. Two alternative invo-
cation styles are distinguished in interface specifications: interrogation operations have
exactly-once semantics and cause the calling thread to block until a reply is received,
while announcement operations have at-most-once semantics and do not block the caller.
Announcement operations do not return results.

2.6.2 The Trader

Offers of service by objects are published in a well-known service called the trader. An
offer consists of an interface reference associated with a collection of name-value proper-
ties. Offers are placed in a hierarchical space of contexts named by path names. A string
property called ‘Type’, whose value is the name of the corresponding interface specifica-
tion, is associated with every offer. The trader can search a requested context and its
descendants for offers which are compatible with a requested service type (according to
a directed acyclic compatibility relation stored as part of the trader’s state) and whose
properties obey a set of requested constraints, returning acceptable interface references
to the client. Separate trader interfaces allow the management of the context and type
spaces. Traders can be foderated to mount a portion of one trader’s context space in
another’s.

2.6.3 DPL

Application programs that wish to use testbench facilities do so through commands written
in a language called DPL, which provides some convenient syntactic sugar for calls to
stub and runtime procedures. DPL statements are embedded in the application source,
and are expanded into appropriate application language code by a preprocessor. A DPL
preprocessor for C is the only one currently available. Since C lacks linguistic features
for concurrency control and invocation of dynamically bound operations, these must be
provided by the testbench runtime.

On the client side, a C identifier can be DECLAREd to hold an interface reference to a service
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of a given type. Once this interface reference has been obtained, via the trader or through
other operations, invocations can be made on it with an object-like syntax:

| DECLARE {ir} : Foo CLIENT

! {results} <- ir$Operation (args)

Service interfaces of a given type can be created by a DPL pseudo-operation which returns
a reference to the new service suitable for transmission to other services like the trader:

| DECLARE {svc} : Foo SERVER
t {svc} :: Foo$Create (concurrency, initialisation args)
! {} <- traderRef$Export (... , svc)

A pointer to per-interface state is handed in an interface attributes argument to the server
routines supplied by the programmer. If the optional initialisation arguments are given to
Create, the programmer must supply a function which initialises this state appropriately.
Qerver functions are passed pointers through which to write their main results, and return
an error code which is interpreted by the server stubs.

2.7 Modula-3

Modula-3 [Nelson 91b] is a recent addition to the long line of programming languages
descended from Algol-60. It was designed for use in large scale systems programming,
and is particularly well adapted for building distributed systems. It is strongly typed,
and provides separately-compiled modules specified by interfaces, type-safe pointers with
garbage collection, exception handling, lightweight threads, objects with inheritance and
the isolation of unsafe code. These features are combined in a sufficiently coherent manner
that the language’s defining report [Cardelli 91] is only fifty pages long.

The next few sections describe in more detail the aspects of Modula-3 that are most
important for distributed systems work.
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2.7.1 Objects

Objects in Modula-3 are quite closely related to those in Simula 67 [Dahl 70], where the
idea originated. An object is a record of data fields paired with a record of procedure
values called methods. Objects are classified into object types; instances of a given type
share the same method suite and data record type, but have distinct data records.

The values in the method suite refer to ordinary top-level procedures. The method call
o.m (arg, .. ) causes the procedure bound tom in the method suite of the object referred
to by o to be invoked with its first argument bound to o and the remaining arguments
bound to the values specified by (arg, . .). The method procedure then has access to 0’s
data record via its first argument in the usual way; there is no reserved “self” identifier
or implicit interpretation of unqualified identifiers as fields of the current object. In C++
terminology, all methods are “yirtual”.

New object types may be defined by extending old ones, specifying extra fields for the
data record or extra method signatures for the method suite. A new object type may also
be defined by specifying a new procedure to be bound to an existing method of an old
object type. For example, if A is an object type with a method m1, the declaration

TYPE
AB = A OBJECT
f: F;
METHODS
m2 () := P2;
OVERRIDES
ml := P1;
END;

introduces a new type AB whose data record has all the fields of A plus a new field f of
type F. Its method suite is a copy of A’s updated so that mi is bound to procedure P1 and
extended with a new method m2 bound to P2. It is possible to introduce methods without
binding procedures to them.

Initial values for fields and overrides for methods may be supplied when an object is
created with the NEW pseudo-procedure. Storage for objects is always heap allocated, and
objects are always assigned by reference. Thus object identity is pointer equality, and
object arguments to procedures are passed in the call-by-sharing style of CLU [Liskov 81].
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2.7.2 Exceptions

Modula-3 provides facilities which allow the programmer to deal separately with nor-
mal and exceptional outcomes of statements. If the execution of a statement RAISEs an
EXCEPTION, the currently active control scopes are left one by one until a handler for the
exception is encountered, when control passes to the handler. Values can be associated
with exceptions and made available to the activated handler.

Handlers are introduced into the control stack by TRY-EXCEPT statements. There may thus
be more than one control scope per procedure activation. Special code can be attached
with a TRY-FINALLY statement to a control scope which is activated as the scope is left.
Such code is generally used to ensure that some invariant is restored irrespective of how
control leaves the protected block.

As an example, if Zero is an exception which has been declared with an integer argument,
then after the statement sequence

j
]
(@]
(3]
n
o
W
i
o

IF i = O THEN RAISE Zero (2) END;

FINALLY
k :=0
END
EXCEPT
Zero (n) => j =1
END

we have 1 = 0, j = 2andk = 0. In this example, k is intended to suggest some state
internal to the abstraction represented by the inner TRY-FINALLY, j some state shared
with its caller (the outer TRY-EXCEPT), and i some property of a lower-level abstraction.

Unlike Mesa [Mitchell 79] (one of its ancestors), Modula-3 does not allow a handler to
resume the control scope which raised its exception. In this and other respects, exceptions
in Modula-3 resemble those of CLU.
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Procedures are abstractions of statement sequences; thus their specifications need to in-
clude information about exceptional outcomes as well as normal ones. A RAISES clause in
a procedure signature can be used to make guarantees about which exceptions may prop-
agate out of a call. These guarantees are enforced by checks generated by the compiler.
One can give either an explicit (possibly empty) set of exception identifiers, or the special
set ANY, which places no restrictions on which exceptions the procedure may raise.

As well as allowing normal-case and abnormal-case code to be separated, exceptions have
an analogous effect on procedure (or block) specifications. A block can raise an exception
to indicate that it is unable to establish its normal postcondition, whether because of
the failure of a lower-level abstraction or because the caller failed to satisfy the block’s
precondition. The latter situation is strictly a programming error in the caller, but the
best response depends on the circumstances. In a single program it would be acceptable
to crash (for instance by raising an exception which is absent from the RAISES clause of
the enclosing procedure), but when a client program in a distributed system fails to meet
the precondition of a server procedure, it is the client, not the server, which should crash.
This can be arranged by having the server raise an exception which is passed back to
the client, though this exception should be distinguished from the others to prevent the
client’s failure from being masked by code which recovers from failures of abstraction.

2.7.3 Threads

A Modula-3 program can contain multiple lightweight processes called threads, which share
the same address space and communicate via shared data. Access to shared data can be
serialized by acquiring and releasing objects of type MUTEX; the language provides some
syntactic sugar for this in the form of the LOCK statement. To implement more complicated
scheduling policies, threads may be blocked on objects called condition variables. These
are associated by convention with a MUTEX which is used to protect the data used to
make the scheduling decision. Signalling a condition variable makes at least one (and
possibly more) of the threads blocked on it runnable, whilst Broadcasting unblocks all
such threads.

These facilities are a practical variant of Hoare’s monitors [Hoare 74], based on experience
with Mesa [Lampson 80] and Modula-2+ [Rovner 85]. They are used in a style best
captured by [Birrell 91a), from which the simple example in figure 2.2 (an unbounded
LIFO buffer) is adapted. The LOCK statements ensure that mu is acquired before the
enclosed statement block is entered, and released no matter how control leaves it. In
fact, each LOCK is simply sugar for an obvious TRY-FINALLY statement, and the RETURN
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VAR

mu = NEW (MUTEX);
nonEmpty := NEW (Thread.Condition);
1: List.T := NIL; (* protected by mu *)

PROCEDURE Consume (): REFANY =
BEGIN
LOCK mu DO
WHILE 1 = NIL DO Thread.Wait (mu, nonEmpty) END;
RETURN List.Pop (1) /
END
END Consume;

PROCEDURE Produce (item: REFANY) =
BEGIN
LOCK mu DO List.Push (1, item) (* now 1 # NIL %) END;
Thread.Signal (nonEmpty)
END Produce;

Figure 2.2: Concurrency control in Modula-3.

in Consume is semantically equivalent to the raising of a special return-exception. Here
mu protects the trivial monitor invariant (1 = NIL) < the buffer is empty. This is true
whenever mu is not held, and hence immediately after mu is acquired.

The call Thread.Wait (mu, nonEmpty) atomically both releases mu and blocks the current
thread on nonEmpty. This atomicity prevents the loss of an intervening signal on nonEmpty,
thus avoiding the “wake-up waiting” race. When the thread is unblocked, Thread.Wait
will reacquire mu then return. Note that the semantics of Thread.Signal require the
condition 1 = NIL to be rechecked on return from the wait in Consume: more threads
might have been unblocked than items placed in 1 by Produce, and in any case, another
thread might enter Consume first. This style, in which spurious wake-ups are benign, also
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makes it safe to place the Thread.Signal in Produce outside the LOCK statement, which
may reduce contention on mu.

It is possible to send an asynchrohous interrupt to a thread by Alerting it. Alerts are used
primarily to abort long-running computations when it is unknown on which condition, if
any, the target thread is waiting. There is no guarantee that an alert will be delivered
unless the target thread is eventually in certain scheduling procedures, when the exception
Thread.Alerted is raised in it.

The threads facilities in Modula-3 are intended to allow formal reasoning about the con-
currency properties of programs using them. Their semantics are formally specified in
[Birrell 91b).

2.7.4 Type System

Modula-3 has a traditional Pascal-like set of scalar types, including programmer-defined
enumerations. The constructed types include fixed and open arrays, sets of ordinals,
procedure types, records and both “traced” and “untraced” references and objects. There
are no unions, discriminated or otherwise: these can be simulated with objects. Storage
for traced references is automatically garbage collected, while that for untraced references
must be reclaimed by the programmer with DISPOSE.

Assignability of an expression to a variable is partly governed by a syntactically determined
subtype relation between types. Runtime checks ensure that the value of the expression
is 2 member of the value set of the type of the variable when this cannot be deduced
statically. If a type T is a subtype of U, written T <: U, then every value of type T is also
a value of type U. The relation <: is reflexive and transitive. It includes the facts that
every traced reference type <: the predefined universal reference type REFANY, and that
every traced object type <: ROOT <: REFANY. An object type <: its unique parent type,
and thus all of its ancestors by transitivity; this is the main way for the programmer to
extend the <: relation.

Procedure types are related quite conservatively: if P4 <: P2, P1 and P2 have the same
number and types of arguments and results, though P2 may allow more exceptions in its
RAISES clause. This contrasts with the contravariant conformance rule of such languages
as Trellis/Owl [Schaffert 86], Emerald or the many polymorphically typed lambda calculi.

As well as supporting conventional static typechecking of program texts, Modula-3 allows
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running programs access to dynamic type information. Every value allocated in the traced
heap (that is, every possible referent of a traced reference) is tagged with an integer code
which describes the allocated type of the value. Values have the same typecode if and only
if they have the same allocated type, though the mapping from typecodes to types may
change between program runs. The built-in function TYPECODE can be used to inspect the
typecodes of types and the referents of traced references. ISTYPE can be used to determine
whether or not a referent is a member of a given type, NARROW changes an expression’s
view of a referent if this is valid, and the TYPECASE statement abbreviates a common idiom
in which the first of a collection of statements guarded by the dynamic type of a referent
is executed.

Figure 2.3 gives some examples in which the object types A and AB are as in section 2.7.1

above. After these declarations, the assignment rab := raba would succeed, rab := ra
would produce a runtime error, and rab := ri would be rejected as an error at compile
time. Notice that Kind (ri) requires a runtime range check: CARDINAL is the non-negative
subrange of INTEGER.

Types can be given identifiers, usable in type expressions, in the usual way. Two type
expressions in Modula-3 denote the same type if they become identical after evaluating
constant expressions and replacing type identifiers by their values—a process which pro-
duces an infinite expansion for recursive types. Thus Modula-3 uses structural rather than
name equivalence for its concrete types. This decision makes it simpler to decide when
two types in different programs are the same, though other factors also influenced the
language designers [Anon 91].

Abstract types are provided by a combination of language features. A type name can be
introduced without revealing its complete structure by means of a partially opaque dec-
laration, such as TYPE T <: Public. This asserts that there exists in the final complete
program a declaration which binds to the identifier T a type which <: the type Public.
More constraints can be placed on T by declarations of the form REVEAL T <: U, pro-
vided these revelations are consistent. Each complete program must contain exactly one
definitive revelation REVEAL T = Tconcrete. Judicious use of the language’s scope rules,
interfaces and modules to control the visibility of these declarations provides a flexible way
to distribute knowledge of a type at different levels of abstraction amongst a program’s
components.

Partially opaque type declarations aren’t quite enough to provide abstract types: abstrac-

tion can be broken by defining a new type structurally equivalent to that in the hid-
den definitive revelation, and assigning the abstract value to a variable of the new type.
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After the declarations:

VAR
r : REFANY; ri := NEW (REF INTEGER) ;
ra : A = NEW (4);
rab : AB = NEW (AB);
raba : A = NEW (AB);

PROCEDURE Kind (rr: REFANY): CARDINAL =

BEGIN
TYPECASE rr OF
| NULL => RETURN 0O
| REF INTEGER (i) => RETURN i (x sic *)
| AB => RETURN 2 (* note order *)
| A => RETURN 3
ELSE RETURN 4
END

END Kind;

BEGIN ri~ := 1; r := ri END;

The following identities hold:

TYPECODE (rab) = TYPECODE (raba) = TYPECODE (AB)

ISTYPE (rab, A) = ISTYPE (raba, AB) = TRUE
ISTYPE (ra, AB) = FALSE

(NARROW (r, REF INTEGER))™ + 1 = 2

Kind (NIL) =0 Kind (ri) =1
Kind (ra) = 3 Kind (rab) = Kind (raba) = 2
Kind (NEW (MUTEX)) = 4 (rab = raba) = FALSE

Figure 2.3: Dynamic types in Modula-3.
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This is avoided by a device which distinguishes otherwise equivalent types, as follows.
Every application of a reference type constructor (REF or OBJECT) contains an optional
BRANDED "text" clause which makes "text" part of the structure of the constructed type,
in much the same way as, for instance, the name of a field. A given "text" can be used
at most once as a brand in a complete program, which prevents the new type above from
being legally declared. If "text" is omitted, it defaults to a value guaranteed distinct
from all other brands, implicit or explicit, in the program. All definitive revelations must
have a branded outermost type constructor.

By these means, knowledge of the concrete structure of a given type can be confined to a
limited scope within a single program. When a data item is to be shared between different
programs, knowledge of its type’s structure, including any explicit brands, confers access
to its representation. This raises the problem of checking that communicating programs
agree on the type of a piece of data; we will address this in Chapter 4.

and once the edges have been put together, the detail pieces put in
place ... and the bulk of the background pieces parcelled out

according to their shade of grey, brown, white or sky blue, then

solving the puzzle consists simply of trying all the plausible combinations
one by one

— GEORGES PEREC (tr. David Bellos), Life A User's Manual (1978)
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Chapter 3

Network Objects over ANSA

This chapter presents the basic features of our system [Evers 92]. These features allow
the services available in the ANSA testbench distributed computing environment to be
presented to the application programmer in terms of language-level network objects in
Modula-3. The features described in this chapter are directed mainly towards those of
our design goals (section 2.5) which are concerned with binding and communication in the
remote operation invocation style. Chapters 4 and 5 will discuss distributed typechecking
and garbage collection in more detail.

Because they have identities and types and support operation invocation, the objects
provided by some programming languages are good candidates to represent services in
a distributed system. As we saw in section 2.4.3, it is possible to take a language like
Smalltalk and extend its notion of object identity beyond a single program instance. A
means to do something similar for Modula-3 was proposed by Greg Nelson in [Nelson 91a).
The way the design of our system presents distribution to the Modula-3 programmer has
been strongly influenced by this proposal. We will therefore begin by sketching it.

Nelson’s proposal does not address heterogeneous systems with multiple programming
languages. The ANSA testbench does, but its embedded-DPL technique (section 2.6.3) is
awkward to apply to languages like Modula-3. We present our solution to the problem of
integrating the two approaches. We then describe in more detail the relationship in our
design between ANSA service definitions and the network object types which are their
Modula-3 counterparts. Finally, we will present an implementation of a stub compiler and
runtime system to support the design features described in this chapter.
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3.1 Network Objects

3.1.1 Remote Objects

The basic intention of Nelson’s proposal is to allow a Modula-3 program to invoke methods
on objects in other Modula-3 programs. We will outline the proposal by discussing an
artificially simple example: a service which echoes text strings.

First, we define an object type to represent the echo service. This service supports a single
operation, “say()”, which just returns its argument.

INTERFACE Echo;
TYPE T = OBJECT METHODS
say (txt: TEXT) : TEXT;
END;
END Echo.

The Echo interface defines what Nelson calls a pure object type Echo.T, which means that
o data fields are declared, and no implementations are provided for its methods. Such
types are often called abstract types clsewhere. It is a design decision to restrict a client’s
view of a potentially remote object to such an abstract type.

A program becomes an echo server by supplying an implementation for the type Echo .T,
and presenting an instance of its implementation to a supporting runtime system:

MODULE Server EXPORTS Main;
IMPORT Echo, NetObj;

PROCEDURE Say (self: Echo.T; txt: TEXT): TEXT =
BEGIN RETURN txt END Say;

BEGIN
NetObj.Export (NEW (Echo.T, say := Say), "echo 1");
LOOP END

END Server.
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In the module Server, the call to NEW creates an instance of a subtype of Echo.T which
provides an implementation override for the say() method. This object is then explicitly
made available to other programs—we imagine for now that NetObj manages a global tex-
tual name space in which the new server object is bound to the string "acho 1". Modula-3
programs terminate when their main bodies complete; this is indefinitely postponed by
the final loop.

A client program obtains a binding to the newly available service by presenting the ap-
propriate name to the runtime:

MODULE Client EXPORTS Main;
IMPORT Echo, NetObj, Text; EXCEPTION FatalError;

VAR e: Echo.T := NetObj.Import ("echo 1,
BEGIN
IF NOT Text.Equal (e.say ("Hello, world"), "Hello, world")
THEN RAISE FatalError END
END Client.

In the module Client, this binding takes the form of the surrogate object e which is
created as result of the call of NetObj.Import. The allocated type of e is a subtype of
Fcho.T. Its implementation of say() performs marshalling and makes an RPC to the
server to which it is bound.

The Modula-3 type system and object invocation have been used here to provide some
distribution transparency. The specifications of local and remote services look the same,
inasmuch as they are both expressed by the type Echo.T. The remote method call mecha-
nism hides the location of the server object and the work of communicating with it. Such
transparency is untenable in the long run: remote calls have different semantics because
they may fail. (Our response to this will be to weaken the specification of Echo.T, by
adding exceptions to its methods’ RAISES clauses, until it can be honoured by an RPC
implementation. )

v

Because the client-side stubs and server-side implementation are embodied in two subtypes
of the object type Echo.T, they can coexist: a single program may be both a client and
a server of the echo service. RPC systems which represent services as module interfaces
have more difficulty achieving this.
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3.1.2 Implicit Export

Network objects’ methods can accept arguments and return results which are themselves
network objects. These are passed by reference.

To illustrate this, consider how the notional global textual name space managed by NetObj
above might be implemented, for the special case of Echo.T objects, by a service of type
EchoRegistry.T. This is intended as an illustrative example, not as a serious design for
a service trading facility!

INTERFACE EchoRegistry;
IMPORT Echo;

TYPE
T = OBJECT METHODS
register (svr: Echo.T; name: TEXT);
lookup (name: TEXT): Echo.T;
END;

END EchoRegistry.

Assuming an echo server has somehow obtained a registry: EchoRegistry.T, it can
publish its server object es with the invocation registry.register (es, "echo i),
A client program using the same registry can then bind to the server object with the
invocation ec: Echo.T := registry.lookup ("echo 1im.

The implementation of an EchoRegistry.T server looks exactly the same as if it were
dealing entirely with local objects. It would probably be a simple wrapper around a table
mapping TEXTs to Echo.Ts. For this to work, the RPC runtime at the EchoRegistry.T
server must, if necessary, create a surrogate for the svr argument of register(). The
svr object must be implicitly exported from the echo server and implicitly imported into
the registry server, without having been explicitly given a name by the programmer. The
result of Lookup () must be dealt with similarly. However, in this case it is likely that the
returned value at the registry server is already a surrogate. The receiving client of the
registry service must then obtain another surrogate, bound to the same echo server as the
surrogate held at the registry.
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One of the strengths of the network object proposal over traditional RPC systems is that
it allows programmers to reconfigure a running distributed system simply by passing what
look like ordinary object references. Underlying mechanisms hide the necessary remote
binding activity from the programmer. With this flexibility of dynamic configuration
comes the responsibility of managing the resources denoted by the references, just as
with pointers in a single address space. Passing references across interfaces within a single
program leads to the use of automatically garbage-collected heaps. Passing network object
references between programs will lead to a requirement for distributed garbage collection.
Chapter 5 will investigate how this can be automated.

3.2 Network Objects over ANSA

The Modula-3 network objects proposal presents remote services to programmers as ordi-
nary language-level objects. The proposal was particularly appealing to the author because
it closely resembled an unimplemented design sketch presented in his Diploma dissertation
[Evers 89]. The transparency of network objects allows the same mechanisms to be used
in both the single-program and distributed cases: object types to define services, objects
for service instances, threads for concurrency, and exceptions to deal with failure. The
proposal can be implemented by a fairly conventional stub generation technique. Code
for surrogates and server stubs would be produced by an automatic stub generator, whose
input would be a network object type declaration in Modula-3. The drawback of the
proposal (apart from the fact that no implementation existed at the time of the work re-
ported here) is that it only allows remote binding and communication between Modula-3
programs, rather than the components of a wider heterogeneous system.

The ANSA testbench, by contrast, is intended to accommodate heterogeneity. It defines
the notions of service and invocation independently of any programming language, oper-
ating system or communication facility. It also provides a sophisticated trading service.
These features supply a rich infrastructure on which to construct heterogeneous distributed
systems.

To shield the clients and the server of an interface from these details of each others’
implementations, the testbench requires that remotely accessible service interfaces are
specified in IDL (section 2.6). IDL’s data types and the defined syntax of their external
representation provide a lingua franca for communication between disparate objects. Stubs
are automatically generated in the appropriate programming language. The input to the
stub generator is a language-independent IDL interface.
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These features are currently implemented only for the C programming language. C does
not support abstract types, concurrency or exceptions. The testbench therefore supplies
these features in a runtime library. It uses embedded DPL (section 2.6.3) to make interface
references first class citizens in the hybrid C/DPL language. Interfaces themselves have
no supporting syntax: as we mentioned in section 2.6.3, the programmer must unpick an
interface attributes pointer in server routines.

Embedding DPL in Modula-3 would be awkward and confusing. There would be two
sorts of “object”: ordinary Modula-3 objects, and testbench interfaces. Each would have
its own invocation syntax and type system. In the light of the network objects proposal,
this distinction seems unnecessary. Therefore our design identifies network objects with
ANSA service interfaces, and surrogates with interface references. This gives us a uniform
invocation syntax, and (by using exceptions) semantics.

What about types? In order to hide heterogeneity, we want to specify remotely accessible
services (network objects) in IDL, not Modula-3. However, we must obtain Modula-3 ab-
stract object type definitions from somewhere; otherwise it will be impossible to provide
the transparency of the network objects proposal. The solution is straightforward: since
we have identified interfaces with network objects, we must also identify interface specifi-
cations (in IDL) with network object specifications (abstract object types in Modula-3).
We must devise a mapping from IDL specifications to Modula-3 type declarations. Once
such a mapping is defined, the actual Modula-3 types can be generated automatically
from the IDL during stub generation. As in Nelson’s proposal, this also produces code to
implement surrogates, server stubs and call-by-reference for remote network objects.

Table 3.1 summarises our basic design. Since, in ANSA, it is only possible to refer to
other objects indirectly (by naming interfaces), we do not need to choose any language-
level structure to correspond to an ANSA object. In our system, the boundaries of an
object in the ANSA sense are up to the programmer to decide.

Before we specify our mapping from IDL to Modula-3 in more detail, we will expand
slightly on the properties of our design from the point of view of a programmer using our
system.
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ANSA

Interface Type
—as defined by some IDL

Interface Instance
—unit of service as provided by some
ANSA object

InterfaceRef -
—a binding as passed to a client

Object

—unit of mobility and encapsulation
of state

No direct analogue in ANSA

Modula-3

Abstract OBJECT type; abstract types
define only method signatures, not
state

Qerver-side concrete instance of ab-
stract type above

Client-side surrogate for concrete
server object above

No direct analogue in Modula-3; a
similar rdle may be played by an ob-
ject instance connected to one or more
of the server objects above, or by a
complete module, or even a program

INTERFACE
—a scoping mechanism for type-safe
separate compilation of modules

Table 3.1: Dictionary of corresponding ANSA and Modula-3 terms.
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3.2.1 Remote Interfaces

We have chosen to regard our network objects as representations at the language level of
ANSA interfaces. Thus an IDL interface specification

Echo: INTERFACE =
BEGIN
say: OPERATION [ txt : STRING 1]
RETURNS [ STRING 1;
END.

defines an abstract network object type Echo.T just like the one in section 3.1.1. Similarly,
Modula-3 servers and clients of this interface work with server and surrogate subtypes of
Echo.T, as before.

This choice restricts Modula-3 programmers. They can only provide or be clients of
services which can be defined in IDL, whose type system is less rich in some respects
than that of Modula-3. We make this choice because we wish to interwork with the
existing ANSA testbench. ANSA relies on a common service specification model to hide
the differences between heterogeneous implementations.

In any RPC system, increasing transparency brings corresponding costs in performance
and implementation complexity. The best tradeoff depends on the weight given to the
benefits of each transparency. Since we give a high weight to the ability to interwork with
a heterogeneous world, we can accept the restrictions of IDL, whose facilities represent
a fair balance of convenience and cost in such an environment. In practice restrictions
such as the lack of recursive types are not too irksome; some could easily be removed
(section 3.3.2), though for compatibility, we have not attempted this.

3.2.2 Binding

In the testbench, references to ANSA service interfaces may be passed to remote programs
(section 2.6.1) in invocations. In our design, concrete server objects are identified with
ANSA interface instances, and are named and located by the same mechanism. The IDL
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interface specification

EchoRegistry: INTERFACE =
NEEDS Echo;
BEGIN
register: OPERATION [ svr: INTERFACEREF OFTYPE Echo;
name: STRING ]
RETURNS [1;

lookup: OPERATION [ name: STRING ]
RETURNS [ INTERFACEREF OFTYPE Echo ]
END.

defines a type almost identical to EchoRegistry.T in section 3.1.2. It can be implemented
with a Modula-3 object type and used just as explained there. The svr argument of
register and the result of lookup are both network objects. Their types are surrogate or
server subtypes of the Echo.T type generated from the Echo IDL interface. On the wire,
network object references are transmitted as IDL interface references.

3.2.3 Trading

We have seen how the network object and ANSA binding models can be made consistent.
We must now deal with the presentation of the testbench trader (section 2.6.2) to the
Modula-3 programmer. The trader exports well-known ANSA interfaces, so it is straight-
forward for every Modula-3 program to contain readily accessible surrogates for these
interfaces. The interfaces themselves can be located by the usual bootstrap mechanisms.

The trader’s offer registration and lookup operations deal in values of the generic interface
reference type, appearing to the Modula-3 programmer as methods essentially of the form

register (serviceTypeName: TEXT; ref: AnsaNetObj.T; .. )
lookup (serviceTypeName: TEXT; .. ): AnsaNet0bj.T;

where AnsaNet0bj.T is defined in the libraries of our system as the common supertype of
all ANSA network objects. It is up to the programmer to ensure that the dynamic types

of the ref argument to register and the result of lookup agree with the static types
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denoted by the serviceTypeName arguments of these operations. We will have more to
say about this in Chapter 4.

To present a slightly simpler interface to the application programmer, and to provide
slightly stronger static type checking, we also associate explicit Import and Export pro-
cedures with the Modula-3 translation of each IDL interface, whose network object ar-
guments and results have the appropriate static type. Using the interface name as the
service type, these procedures supply appropriate (overridable) defaults and invoke the
trader’s lookup and registration operations, respectively.

For example, to export an instance of the IDL Echo service in the context "/m3/test", a
Modula-3 server program uses

EchoSRPC.Export (NEW (Echo.T, say := Say), context := "/m3/test");

and a Modula-3 client program might bind to such an instance with

e := EchoCRPC.Import (context := "/m3/test");

Programmers can also supply a property list on export and constraints on import. They
must still register service types with the trader separately, through the interfaces men-
tioned in section 2.6.2. We will discuss the interaction of the trader’s type management
facilities with our network objects type system in section 4.6.

3.3 Interface Translation

Having decided on the view of network objects presented in the previous section, we now
examine in more detail how an IDL service definition is represented in Modula-3. To
do this, we must specify translations for IDL’s base types, type constructors, operations,
exceptions and interfaces.

To provide an overview of this mapping, figures 3.1 and 3.2 give an example of a complete
IDL interface specification and its Modula-3 translation. This interface is for a much sim-
plified version of the Active Badge [Want 90] service available in the Laboratory. Workers
in the Laboratory can wear small badges which periodically emit an identifying infra-red
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SimpleBadge: INTERFACE =
NEEDS Callback;
BEGIN
BadgeID : TYPE
Sighting : TYPE
Sightings: TYPE

CARDINAL;
RECORD [ loc: STRING, id: BadgelD, glty: CARDINAL 13
SEQUENCE OF Sighting;

il

queryBadge : OPERATION [ id: BadgeID ] RETURNS [ Sightings 1;
trackBadge : OPERATION [ id: BadgeID; cb: CallbackRef 1 RETURNS [1;
END.

Figure 3.1: An IDL interface.

signal which is sensed by a network of detectors around the buildings. Information about
badge sightings (time, location etc.) is collected by an existing testbench service. The
simplified interface we present allows a client to obtain a list of recent sightings for a
given badge, or arrange to be called back on one of its own interfaces whenever a badge
is sighted.

3.3.1 Base Types

Almost all IDL base types have natural exact equivalents in Modula-3. We define these
in a standard Modula-3 INTERFACE called Ansa. Some IDL ordinal types have long and
short forms with different ranges: these can be represented using Modula-3 subranges and
the BITS n FOR construction.

IDL CARDINALs and STRINGs are slightly trickier. IDL CARDINALSs are 32-bit unsigned inte-
gers, but Modula-3’s CARDINAL type is just the non-negative subrange of INTEGER, which
has only 31 significant bits on a typical 32-bit implementation. Fortunately, Modula-3
defines a required Word interface which provides all the usual operations by interpreting
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(% Generated by stubm3 on Tue Jul 27 19:27:28 1993 %)

INTERFACE SimpleBadge;
IMPORT AnsaNetObj, Ansa, Management, BaseTypes;
IMPORT Callback;

TYPE
T = Management.T OBJECT METHODS
queryBadge (id: BadgeID): Sightings RAISES {Ansa.Failure};
trackBadge (id: BadgeID; cb: Callback.T) RAISES {Ansa.Failure};
END;
BadgeID = Ansa.Cardinal;
Sighting = RECORD loc: TEXT; id: BadgelD; qlty: Ansa.Cardinal; END;
Sightings = REF ARRAY OF Sighting;

END SimpleBadge.

Figure 3.2: The Modula-3 translation of figure 3.1.

INTEGERSs as unsigned quantities, so an IDL CARDINAL becomes a Modula-3 Ansa. Cardinal,
which is identified with a Word.T with no loss of information.

IDL has two “character” types: 7-bit CHARs and 8-bit OCTETs. Modula-3’s CHAR type is
an enumeration with at least 2566 elements, and can thus contain both. IDL STRINGs are
sequences of 7-bit characters, but are translated to Modula-3 8-bit TEXTs for convenience.
This requires the programmer to be aware of the possible loss of information when a TEXT
or a CHAR is marshalled. In practice this has caused no trouble; more inconvenient has
been the tendency of some existing IDL interfaces to use fixed-length arrays of characters
with optional NUL terminators instead of STRINGs for text. This sits more easily with C’s
programming style than with Modula-3.
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IDL Modula-3

enum : TYPE = { a , b }; TYPE enum = {a, bl};
arr : TYPE = ARRAY n OF elt; TYPE arr = ARRAY [0..n-1] OF elt;
seq : TYPE = SEQUENCE OF elt; TYPE seq = REF ARRAY OF elt;
rec : TYPE = RECORD [f: ft, ..] TYPE rec = RECORD f: ft; .. END;
iref : INTERFACEREF OFTYPE Fooj; TYPE iref = Foo.T;
chce : TYPE = CHOICE enum OF { TYPE

a => at, chce = BRANDED

b => bt 0BJECT END;

} chce_a = chce BRANDED

OBJECT f: at END;
chce_b = chce BRANDED
OBJECT f: bt END;

Table 3.2: IDL and Modula-3 type constructors.

3.3.2 Constructed Types

IDL’s type constructors all have equivalents in Modula-3, as displayed in Table 3.2. Note
that in Modula-3, sequences and choices are heap allocated. Since Modula-3 lacks the usual
discriminated unions, we use a branded object type to represent a choice. Subtypes of this
basic type represent the union’s summands, and can be discriminated by the Modula-3
TYPECASE statement (section 2.7.4).
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Unlike Modula-3, IDL has neither recursive types, necessary to define lists and trees di-
rectly, nor pointers for directed acyclic and cyclic graphs. However, it does have variable-
length sequences. Programmers must themselves convert tree- or graph-structured data
to and from values of marshallable types. In practice, on the rare occasions when we
have needed to pass such data structures across a network object interface, the corre-
sponding application data structures have contained additional information that should
not be transmitted across the abstraction boundary. Thus, gathering the information to
be transmitted has imposed no extra burden on the application programmer.

Having said this, it should be convenient to construct values of the appropriate marshal-
lable types. In this respect, our representation of IDL sequences as Modula-3 open arrays
is not ideal, primarily because their sizes must be known when they are allocated. Al-
though Modula-3 does not have built-in array types with the ability to grow dynamically
(such as CLU’s), we could have supplied our own. Indexing and iteration over these would
be only slightly more expensive than for standard open arrays. The main reason we did
not introduce dynamic arrays is that their types are awkward to specify in Modula-3: a
generic interface [Nelson 91b, p. 45] would be cumbersome to use since it must be explic-
itly instantiated and given a name for every argument type; dynamic arrays of REFANY
avoid this problem, but require runtime type checks.

If IDL allowed recursive types, one could define a list by using a recursive boolean choice.
The corresponding objects would be reasonably convenient to construct in Modula-3, but
would require careful marshalling to avoid overrunning small thread stacks.

IDL interface reference types like CallbackRef in figure 3.1 become network object types
like Callback.T in figure 3.2. Here, the callback reference is being transmitted in the
expectation that invocations will be made on it by the receiver, as its name suggests. In
cases where all that is required is to pass an identifier for some local data rather than the
data itself, the data can be associated with a network object. Then a reference to this
object may be used as a token for the data—unlike CCLU RPC [Hamilton 84, p. 46], no
special mechanism is required for this. This lightweight service creation and binding is a
key characteristic of the network objects style.

3.3.3 Operations and Exceptions

Operations in an IDL interface Foo map to methods of a network object type Foo.T.

IDL operations may return multiple results, but Modula-3 procedures cannot. However,
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Modula-3 procedures can return structured values, including records. Thus if an IDL
operation returns multiple results, an appropriate record type is automatically generated
for the return type of its Modula-3 translation. This design is a mistake: the corresponding
idiom in Modula-3 is to assign multiple results to VAR (*out*) parameters. This avoids
allocating extra space for a result record from which results will simply be copied to their
eventual destination.

If an operation takes a large argument, such as a fixed-size array or a record, the corre-
sponding Modula-3 argument is given the mode READONLY to avoid a redundant copy.

IDL’s synchronous (interrogation) and asynchronous (announcement) operations cannot
be syntactically distinguished in Modula-3: all local method calls are synchronous. How-
ever, their different semantics in the remote case are implemented in client stubs. To
reflect this, during stub generation we append the comment (* ANNOUNCEMENT #*) to net-
work object method signatures where necessary .

We give each operation method a RAISES {Ansa.Failure} clause in its signature; the
Ansa.Failure exception takes a single argument enumerating possible lower-level fail-
ures, such as RPC timeouts. At some point, it is likely that IDL will allow user-defined
exceptions (or “named terminations” in ANSA terminology) to be declared and raised by
operations. When that happens, the Modula-3 translation should be straightforward.

3.3.4 Interface Dependencies

Under our mapping, a complete IDL interface becomes a complete Modula-3 interface
defining some ordinary types and a network object type. After a NEEDS Bar directive, an
IDL interface has access to types in the interface Bar under the unqualified names bound
to them in Bar. This usage translates to IMPORT Bar in Modula-3, which gives access to
Bar’s types under names qualified by Bar. This is what has happened to the Callback
interface mentioned in figure 3.1.

IDL interfaces can be declared COMPATIBLE WITH others. Since this bears on our later
discussion of subtyping in Chapter 4, we say no more about it here.

44




3.4 Implementation

The previous two sections have described the design of our network objects system from
the programmer’s point of view. The rest of this chapter presents our implementation of
this design.

In outline, the system consists of a stub compiler and a runtime library (figure 3.3). The
stub compiler maps service definitions written in ANSA IDL into Modula-3 network object
interfaces and stub implementations. The runtime library manages network object binding
and provides an ANSA-compatible RPC transport.

In an attempt to reduce implementation effort, we used the existing C ANSA testbench
capsule library over UNIX for much of the transport. With some customisation, this can
simply be linked into a Modula-3 program. This strategy increased our confidence in our
ability to interwork with the installed testbench environment, but as we will discuss in
sections 3.4.6 and 6.3, interference between the Modula-3 and capsule runtimes seriously
compromised performance and maintainability.

3.4.1 Stub Compiler

The stub compiler, stubm3, takes an IDL interface as input. It produces its Modula-3
translation and client-side and server-side stub modules. It is internally organised around
an abstract syntax tree, or AST, representing the input interface.

The front end of the compiler reads the main IDL input and the interfaces on which it
depends. It consists of a yacc parser whose reduce actions are written in Modula-3. The
parser’s action procedures create AST nodes and maintain the symbol tables for interfaces
and types. Because IDL enforces declaration before use and allows no recursive types, it is
simple to use the symbol tables to perform binding during the parse. Because Modula-3’s
copying garbage collector might move AST nodes during the parse, the yacc parser stack
holds integer node identifiers rather than references into the Modula-3 traced heap. In
retrospect, simply inhibiting garbage collection during the parse would almost certainly
have sufficed to avoid this. Later versions of SRC Modula-3 have added means to lock
designated heap nodes in place when it is unacceptable to stop the garbage collector.

The compiler contains a generic tree walker which the subsequent passes share. Given a
closure object and an initial AST node, the tree walker visits its descendants in depth-first
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Figure 3.3: Network objects over ANSA: implementation overview.
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order. As each node is entered and exited, it is passed to a callback method on the closure
object. The callback can prune or terminate the walk by raising appropriate exceptions.

Each output file from the compiler is generated by its own back end. The back ends register
themselves with the top level control module, which interprets command line options and
invokes the required compiler passes. To produce output, a back end passes a closure
object with appropriate methods to the generic tree-walker.

Before any back ends proper are executed, the IDL AST is decorated with information
specific to its Modula-3 translation, such as the additional types which must be invented
for multiple operation results and choice variants. Much of this work could probably be
done on the fly during parsing; it is done in a separate pass in order to preserve the
independence of the front end from the target language.

The back ends which generate the stub modules make heavy use of a shared Modula-3 type
declaration generator for output such as stub procedure signatures, temporary variables
used in marshalling and the target types for enumerations and choices. These back ends
also share a module which generates the appropriate marshalling or unmarshalling code
for an IDL type from the corresponding AST node. Most context-dependent output is
handled by the back ends themselves.

Back ends are able both to contribute public fields and add their own private decorations
(such as unparsing methods) to AST node types without interfering with each other.
This is achieved by using Modula-3’s partially opaque type mechanism and successive
revelations [Jordan 90, as illustrated in figure 3.4. The full structure of each AST node
type and the visibilities of its fields are only fixed at link time. The runtime cost of
accessing a node attribute is comparable to that of a record field access, rather than the
table lookup which would be required by a property list mechanism.

In hindsight, the stub compiler design presented here suffers from an excess of abstraction.
The generic facilities such as the tree walker and the successive revelation of AST node
attributes were motivated by the desire to make it easy to reuse the front end for other
target languages, and to add or remove whole back ends as the need arose. In practice,
however, these facilities serve mainly to obscure the simple underlying structure of the
compiler. The tree walker is no easier to use than straightforward recursive descent pro-
cedures; on occasion, its genericity is actually obstructive. Whilst back ends have been
added, removed and split during the compiler’s evolution, these have largely used their ac-
cess to the AST node types purely to add specific unparsing methods—and these methods
are themselves only a by-product of the genericity of the tree walker!
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INTERFACE AST;
TYPE Node <: NodeP;

NodeP = OBJECT (* public attributes of this node type *) END;

INTERFACE BackEnd;;
IMPORT AST;
REVEAL AST.Node <: Node;
TYPE Node <: NodeP;
NodeP = AST.NodeP 0OBJECT
(% extra public attributes *)
END;

INTERFACE BackEnd;;
IMPORT AST, BackEnd(;_1);
REVEAL AST.Node <: Node;
TYPE Node <:
BackEnd(; 1).Node;

MODULE BackEndj;
IMPORT AST;

REVEAL Node = NodeP
BRANDED OBJECT
(* private attributes *)
END;

MODULE BackEnd;;
IMPORT BackEnd(;_1);
REVEAL
Node = BackEnd;; 1).Node
BRANDED OBJECT
(* private attributes *)
END;

INTERFACE ASTAll; IMPORT AST, BackEndy;
REVEAL AST.Node = BackEndy .Node BRANDED OBJECT END;

Figure 3.4: Successive revelation of AST node attributes in stubm3.




3.4.2 Stubs

The function of the stub modules generated by stubm3 is the traditional one: to act
as local proxies for potentially remote programs. Their implementations also follow the
traditional pattern. The use of network objects for bindings and service implementations
simplifies both the stub modules themselves and the interfaces they present to higher levels
in comparison with systems like Sun RPC or the ANSA testbench which are written in
C. Modula-3's automatic garbage collection and support for threads and exceptions also
contribute significantly to this simplification.

Client- and server-side stubs for the interface Foo are implemented by separate modules
named FooCRPC and FooSRPC. Whilst this means that programs need not be linked with
unnecessary stub code, it is debatable whether the resulting size savings are worth the
additional burden on programmers, who must keep track of exactly which stubs are re-
quired. This task is partially automated by makefile macros. In any case, the linker is in
principle perfectly capable of removing unused code from executables, and the decision to
generate marshalling code inline (see below) had far more impact on executable size.

A client stub module defines a surrogate subtype of its network object type. This overrides
the methods of the abstract service type with stub procedures. When invoked, an opera-
tion’s stub procedure acquires a call control block and a buffer from the runtime in which
to place call data, commencing with the target interface of the current surrogate object
and an identifier for the operation. The underlying runtime has the opportunity to perform
some session setup at this stage. Having marshalled the call arguments into the buffer,
the stub procedure passes it with the control block to the blocking RPC transport or the
asynchronous one-shot mechanism, as appropriate. If this succeeds without itself raising
an exception (such as a timeout), any RPC results can be unmarshalled from the buffer,
commencing with a status code which is converted into the corresponding Ansa.Failure
exception if necessary. The buffer is returned to the free pool by a TRY-FINALLY statement
which protects the whole stub procedure.

On the server side of an invocation, the runtime makes an upcall on a worker thread into an
interface-type-specific dispatch procedure in a server stub module. We will deal with the
registration of dispatchers in section 4.8 below. Having located the target server object, the
dispatcher calls the server stub procedure for the operation in hand. The stub unmarshals
the call arguments, makes the appropriate local method invocation on the target object,
and marshals the results with a status code indicating a successful call. If there were a way
for IDL operations to specify application-defined exceptions, the corresponding Modula-3
exceptions would be caught and marshalled at this point. Generic Ansa.Failures are
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caught and marshalled by a TRY-EXCEPT statement in the dispatcher.

Marshalling (that is, the conversion of Modula-3 values to and from the IDL presentation
syntax) is performed by inline code in the stub procedures generated by stubm3. Attempts
to transmit values without IDL equivalents crash the sending program, if they cannot be
detected by compile time type checks. By contrast, syntax errors in the IDL value stream
at the receiver cause an Ansa.Failure exception.

Marshalling IDL base types is unproblematic, though it may involve some byte-swapping.
IDL presentation syntax defines a canonical byte ordering rather than, for instance, al-
lowing transmission in sender-native order. Enumerations are marshalled as integers;
Modula-3’s VAL and ORD inject and project these to and from the enumeration type, and
a range check is required at the receiver. Network object references are marshalled as the
corresponding interface references; this will be dealt with more fully in section 3.4.3.

The constructed types are similarly straightforward to marshal, IDL’s type constructors
having presumably been gelected with this in mind. The only slightly unusual case is a
choice. At the sender, a TYPECASE discriminates the variants on the basis of their dynamic
types (section 3.3.2). It cannot marshal spurious subtypes of the parent choice object
type, and crashes instead. At the receiver, the branches of an ordinary CASE statement
either allocate an instance of the appropriate subtype or raise an exception. Stubs for
operations with multiple results unmarshal them into a record.

Constructed types are currently marshalled entirely by inline code rather than recursive
descent procedures. This choice is a mistake. It was made mainly in order to avoid having
to generate interfaces and declarations for the marshalling procedures. Inline marshalling
is feasible because true recursive types (such as lists and trees) cannot be defined directly
in IDL. To generate inline code, stubm3 maintains a slave stack in the closure object
used to walk the AST for the type to be marshalled. In retrospect, recursive descent
marshalling procedures would have been slightly simpler to generate, more compact and
probably almost as efficient at runtime. Perhaps more importantly, they would open the
way to extensions of IDL with limited recursive types (section 3.3.2).

If IDL had reference types which allowed arbitrary graph structures to be transmitted,
they could be marshalled from the Modula-3 traced heap by a technique used in the
SRC Modula-3 system, which we now explain:

Because of its copying garbage collector, the SRC Modula-3 runtime has all the informa-
tion required to traverse arbitrary rooted graph structures in the traced heap. Dynamic
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typecode information (section 2.7.4) in a heap node’s header word is used to locate a
compiler-generated map procedure for the node’s type. The map procedure applies a call-
back procedure to each reference field in the heap node. The callback then recursively
calls the descendent nodes’ map procedures. ‘

SRC Modula-3 uses these facilities to implement its pickles facility [Birrell 88], which
defines a byte stream presentation syntax for heap structures and provides procedures to
convert between the two. Loops and sharing are preserved in the usual way by maintaining
a table of visited node identifiers during marshalling; the garbage collector uses forwarding
pointers and mark bits in the node header word for a similar purpose.

Programmers could, if absolutely necessary, use this facility to transmit arbitrary picklable
data between Modula-3 programs by pickling into a sequence of IDL octets. The extra
cost of doing this, including redundant copying, then provides a healthy incentive for the
programmer to reconsider the design of a remote interface that requires the transmission
of such datal

3.4.3 Object Table

Client and server stubs require some runtime support to function as proxies for remote
programs. We first discuss support for the network object binding model, then turn our
attention to issues of transport and concurrency.

The network object binding model discussed in section 3.1.2 is straightforward to imple-
ment once programs can name potentially remote objects unambiguously. Each program
simply maintains a table of object names known to it. For each name, this object table
records whether the corresponding network object is local to this program (its owner),
or is in another address space. The table holds a reference either to the local concrete
object or the unique local surrogate for the remote object, as appropriate. Object tables
will, of course, play a central réle in distributed garbage collection, and this is simplified
if each program holds at most one surrogate for a given concrete object. Most of what
is interesting about the management of the object table is concerned with distributed
garbage collection, and will therefore be discussed in Chapter 5. Here we will just sketch
the mechanism.

How are object names to be implemented? Under the assumption (valid in all the versions
of the ANSA testbench used in our implementations) that an interface reference contains a
unique identifier for its referent, it can be used as the key for the object table. To represent
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the inverse mapping (required when marshalling a network object), we bind an interface
reference to every concrete and surrogate network object as part of some state inherited
from the common supertype AnsaNetObj.T. Modula-3’s partial revelation mechanism is
used to restrict the visibility of this state to the module which maintains the object table.

To unmarshal (implicitly import) an incoming network object reference, the runtime looks
up the transmitted name in its object table. If present, the table entry points to the correct
local object, whether that is concrete or a surrogate. Otherwise, the incoming name refers
to an unknown remote object, and the runtime must create a new surrogate. We will
discuss how the runtime knows which type of surrogate to create in section 4.7.

To marshal (implicitly export) an outgoing network object reference, the runtime first
inspects the local object. If it is a surrogate, the name of the corresponding remote object
is already known. Otherwise, it is a concrete object. Either it has never previously been
exported, in which case a fresh name must be generated and entered in the object table,
or the object has already been assigned a name.

A property of the mechanism described is that when a network object reference is passed
between programs and returns to its owner, its imported translation is a direct reference
to the local concrete object. Invocations on this reference automatically bypass the RPC
transport. The difference in performance between the local and remote mechanisms jus-
tifies varying the implementation of invocation in this way; as in Emerald [Black 87], the
fact that network objects are abstractly typed allows us to do so without concerning the
programiner.

3.4.4 Transport

Given a buffer of call data and the name of the callee network object, the job of the
caller’s RPC transport is to locate its peer at the callee and engage in a request-response
exchange, with the required reliability, over some underlying message passing service. In
order to interwork with the existing ANSA testbench, we must use the ANSA remote
execution protocol REX for this purpose.

REX defines both calls and casts. Based on the standard Birrell-Nelson design [Birrell 84],
calls use timeout-triggered retries, call identifiers, sequence numbers and implicit acknowl-
edgements to achieve exactly-once (or at-most-once) semantics in the absence (or presence)
of total communication failure. Casts are asynchronous, and are neither retransmitted nor
acknowledged. They are, however, sequenced—REX discards casts received out of order.
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The reliability of casts is determined by the underlying message passing service. REX
performs fragmentation and reassembly of call data buffers which are larger than can be
accommodated by the message passing service. Calls and casts are suitable to implement
IDL’s interrogation and announcement operations, respectively.

It would be perfectly possible to implement a REX transport in Modula-3, but we felt
that producing a correct implementation which would interwork with the existing ANSA
testbench would take us too far afield from the main line of our research. Instead, we used
the existing REX implementation in the capsule library, which runs over same-machine
UNIX IPC, unreliable internetworking protocols such as UDP and MSNL [McAuley 90],
and more reliable flow-controlled byte stream protocols such as TCP.

Rather than relying exclusively on some mechanism to resolve interface identifiers (net-
work object names) to transport addresses, the ANSA testbench defines the structure of
interface references to include a collection of addresses, tagged with identifiers for the
transports which can interpret them. We suppress the details of this mechanism for now
because it has changed between major testbench versions; the point is that it suffices for
the client stubs generated by stubm3 to hand a surrogate’s interface reference to the cap-
sule REX implementation, which will then choose an appropriate message passing service
from the addresses contained in the interface reference.

3.4.5 Concurrency

Classical remote procedure call (section 2.4.2) arises from a model of concurrency very
similar to that of Modula-3 (section 2.7.3). A server address space executes multiple
incoming calls concurrently, each on its own worker thread, though the number of these
is usually subject to some load management policy.

The existing UNIX testbench capsule library therefore includes a lightweight threads pack-
age. This schedules potentially concurrent activities called threads onto a possibly smaller
number of virtual processors called tasks which provide the resources necessary for a thread
to make progress: a stack and register save area. Capsule tasks play the role of the pool
of worker threads in a classical RPC implementation.

For performance reasons, the capsule REX implementation is quite tightly coupled to this
package’s scheduler, synchronisation and I/O primitives. This makes it difficult to port the
REX implementation alone. Thus it was necessary to integrate the capsule thread package
with that in the Modula-3 runtime. It is clear that they cannot coexist unmodified: both
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must intercept some UNIX system calls to prevent one thread from blocking its entire
UNIX process, and both wish to receive timer interrupts. Even if these problems could be
solved, we would still wish Modula-3 threads to enter capsule RPC code (and vice versa)
directly, rather than queuing a message requesting action by a capsule thread, with all the
scheduling overhead that implies.

Fortunately, the capsule library has a system-dependent layer which defines a reason-
ably clear interface to the task scheduler. It was possible to implement this interface
with Modula-3 threads. The latter are preemptively scheduled and support the Modula-3
garbage collector and synchronisation primitives.

Unfortunately, the interface between the capsule task scheduler and the rest of the capsule
library contains quite a lot of publicly writable state, both per-task and shared. This state
is unencumbered by procedural abstractions which we could intercept. To maintain it, it

was necessary to modify the SRC Modula-3 thread implementation to provide hooks to .

be called back when creating, destroying, and switching between Modula-3 threads.

3.4.6 Discussion

For historical and practical reasons, the runtime implementation we have described above
is more than a little overweight. There are places where it contains two or three layers
where one would do:

e The testbench capsule library maintains a table which binds interface identifiers to
transport level sockets, dispatch procedures and associated state, while our object
table binds interface identifiers to concrete or surrogate language-level objects.

e The capsule REX implementation provides a reliable, flow controlled transport over
TCP in the UNIX kernel. However, since REX also works over lighter-weight proto-
cols and is necessary for interworking, this cannot really be considered redundant.

o ANSA tasks are implemented (though not multiplexed) over Modula-3 threads,
which are in turn implemented (and multiplexed) over UNIX processes.

It is worth discussing this last point in a little more detail. The interactions between
the ANSA and Modula-3 implementations of pseudo-concurrency were an endless source
of maintenance problems and concurrency bugs, which became acutely noticeable when
testing race conditions in the distributed garbage collector.
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Many of these bugs arose during accesses of the capsule scheduler’s writable state men-
tioned in the previous section. In one version of the testbench, this state was only ever
read or written within the capsule runtime, under a global lock. Thus it sufficed to replace
the procedures to acquire and release this lock with versions which temporarily inhibited
Modula-3 thread preemption and ensured the validity of the global state while the lock
was held. This unpleasant trick meant we could leave the Modula-3 thread scheduler un-
touched. However, a subsequent version of the testbench quite legitimately relaxed the
locking discipline on per-task state, not expecting tasks to be re-scheduled under its feet.
Thus we were eventually forced to add hooks to the Modula-3 scheduler. This involved
some parallél changes to the protection of the ANSA scheduler’s shared state, because the
hooks run in a critical section of the Modula-3 scheduler during which normal locking of
MUTEXes is not available.

The conflicting thread systems affect the performance of our system as well as its structure.
An incoming network request has to traverse far too many scheduling operations before
being acted on by a user thread [Tennenhouse 89]. Section 6.3 will describe the consequent
loss of performance in more detail.

These problems are simple to describe in a few words, but absorbed an inordinate amount
of time and effort. Their root cause was the difficulty of separating the capsule REX
implementation from the underlying task system. If we had simply written our own
Modula-3 REX implementation, using Modula-3 threads, we might have had less trouble.
We would only have needed to track changes in the specification of REX, rather than in
both the Modula-3 scheduler and the capsule REX implementation. However, it seems
likely that producing a correct REX implementation would itself have taken significant
effort.

3.5 Summary

This chapter has shown how a modern systems programming language like Modula-3
can be used for object-based distributed programming in a system such as the ANSA
testbench. Our design uses the familiar and coherent concepts of the language to express
service binding, concurrency, synchronisation, operation invocation and the possibility and
handling of failure. It is possible to do this uniformly in both the local and remote cases,
even in a heterogeneous environment. We have achieved this by representing potentially
remote service interfaces as network objects.
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We presented the design and implementation of a stub compiler which maps language-
independent IDL service specifications into the corresponding Modula-3 network object
type definitions. The compiler also generates client and server stub modules for these
types. We showed how the existing testbench capsule runtime library can be adapted and
augmented so that it may be linked into Modula-3 programs. This provides interworking
via RPC with other testbench capsules.

Thus far we have been concerned with mechanisms which support the use of local objects
to hide remote service location, local method call to hide remote operation invocation, and
the transmission of network object references as operation arguments or results to hide
remote RPC binding. The next chapter will consider the relationship between the local
type system of a Modula-3 program and the global service type system supported by the
ANSA testbench.

The ambassadors from Norway, my good Lord,
are joyfully return’'d

— POLONIUS, Hamlet (Act ll, Sc. 2, line 40)

Speak. | am bound to hear.
— HAMLET (Act |, Sc. 5, line 6)
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Chapter 4
Types

This chapter discusses what it means to ascribe a type to a value in a distributed system
and what such attributions can be used for. We start with abstract service types, and
the relations of subtyping and inheritance between abstract types and their implementa-
tions. We describe one way of using the local object types of a programming language
like Modula-3 to represent a global service type system like that of ANSA, thus extending
the results of the previous chapter which showed how IDI’s concrete types could be rep-
resented. Our design imposes minimal management overhead by using type fingerprints
to name service types. We then show how this design achieves type-safe binding (i.e., the
transmission of references to abstractly typed services) without sacrificing the flexibility
required in an open distributed system. Finally, we briefly describe the implementation
of the design in our network objects system.

4.1 Abstract Types and Subtypes

An abstract type is an interface specification. That is, an abstract type is a collection of
operations, each with a name, a signature defining the number and types of its arguments
and results, and (in theory) a specification of its semantics. The only way to interact
with a value of an abstract type is to invoke one of its operations—“an abstract type is
...defined by the specifications of its operations, instead of by the representation of its
data” [Nelson 91b, p. 5]. This condition is especially attractive in a distributed system
for values which may be held remotely.
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An abstract type AB is a subtype of abstract type A (written “AB <: A”) if and only
if it is safe to use a value of type AB in any context which expects a value of type A.
That is, AB must be a richer type, having at least every operation of A with possibly
weaker preconditions and stronger postconditions. The types of an operation’s arguments
and results can be regarded respectively as conjuncts of the pre- and postconditions of the
operation.

We have been deliberately vague in our definition of an abstract type as to whether
the “types” of operation arguments and results are abstract or not. In some systems,
all values are abstractly typed. In these systems, the natural definition of subtypes is
in terms of a contravariant conformance rule [Cardelli 85, Danforth 88] such as that of
Trellis/Owl [Schaffert 86] or Emerald [Raj 91]. Since an operation in AB must have a
stronger postcondition than its counterpart in 4, its results’ types must be subtypes of their
counterparts in A. Similarly, since an operation in A must have a stronger precondition
than its counterpart in AB, its arguments’ types must be subtypes of their counterparts
in AB. Thus the subtype relation is defined inductively.

Other systems include concretely-typed values; that is, values whose representation struc-
tures are accessible without the mediation of operations. Whilst it is possible to define a
subtype relation on concrete types (see, for example, [Cardelli 89]) this is currently rarely
done. In the absence of such a scheme, concretely-typed arguments and results must
match exactly between operations of abstract subtypes.

A given abstract type admits many implementations, hiding their differences. As well as
supporting the software engineering technique of information hiding [Parnas 72], this is
useful in a distributed system [Black 87] for reasons including the following:

e new implementations of old service types can be introduced without halting the
system or changing existing clients;

o different implementations may be required on different server machines;

o different implementations are appropriate for different patterns of use, such as local
and remote services.

A valid implementation of an abstract type is also a valid implementation of any of its
supertypes. As well as allowing the classification of types (modelling application concepts)
in the object-oriented style, this too is useful in a distributed system:
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e services can be extended to provide new functions whilst remaining usable by existing
clients, and

e common features (such as generic management interfaces) can be given to a set of
gervices in a common supertype.

4.2 Subtypes in IDL and Modula-3

In the absence of formally specified semantics for operations, more conservative definitions
of “subtype” than that of the previous section have to be used in practical programming
languages. We now describe how subtypes are embodied in IDL and Modula-3, and how
one may be used to represent the other.

- As mentioned in section 3.3.4, an IDL interface AB can contain a sequence of declarations
that it IS COMPATIBLE WITH A;. These declarations include all the type and operation
definitions from the A; in the definition of AB, along with any extra definitions from the
body of AB itself. Thus (the type denoted by) AB is a subtype of each of the A;. There
is no way to refine the types of arguments or results of operations from the A;, so to
decide whether two IDL interfaces are subtypes one simply checks whether they are in the
reflexive transitive closure of the is-compatible-with relation.

This differential style is the commonest method of specifying abstract types in current
object-oriented programming languages. One mentions the names of the supertypes (in
some environment), then augments the resulting union. Whilst this simplifies subtype
checking, it does introduce some complications. Composing pre-existing specifications
requires a policy for resolving clashes of operation and type names; existing IDL compilers
(including stubm3) ignore this issue. Indirecting through the supertype names has the
usual effects: changes to a type definition automatically propagate to its subtypes, and
the meaning of an interface depends on the environment in which it is compiled. Often this
behaviour is useful; sometimes it is not: for instance, changes to a supertype can introduce
name clashes into subtype definitions. Having mentioned these caveats, it should be said
that they have never arisen in our practical experience of using IDL.

Modula-3’s object types support a form of subtyping (section 2.7.1). Abstract types can be
defined by object types with no fields, method procedure bindings or overrides. Subtypes
can be defined by extending a single parent type with new methods.

As explained in Chapter 3, our system translates IDL interface specifications into abstract
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Modula-3 object types. IDL supports multiple subtyping, but Modula-3 does not. So what
happens to IDL interfaces with more than one parent type? The answer to this question
is a design choice which affects how faithfully the Modula-3 type system can model that
of IDL. Suppose the translations of two compatible IDL interfaces AB and A; are object
types AB.T and A;.T. Then there are two alternatives: AB.T and A;.T are either related
or unrelated by Modula-3’s <: hierarchy.

If we insist that AB.T <: A;.T, there will be valid IDL interfaces that cannot be translated
to Modula-3. Alternatively, we could flatten AB to generate a definition for AB.T which
includes all the operations of AB, A; and their ancestors. This would allow a valid transla-
tion of all IDL interfaces, but has some drawbacks. A little care would be needed to avoid
duplicating stub code unnecessarily, and it would not be possible to implement AB.T by
inheriting implementations of 4;.T. These are minor problems, and it turns out that the
second also applies to the AB.T <: A;.T case.

More serious is the following difficulty: consider two variables ab: AB.T and a: A;.T in
some Modula-3 program. If AB.T and A;.T are unrelated, neither variable can be assigned
to the other without breaking the static type rules of Modula-3, despite the fact that the
assignment a := ab is statically safe from the IDL perspective. It is no great hardship to
forgo such assignments within a single program, but when the target of the “assignment”
is an argument in the invocation of a network object operation this is a bigger problem:
it prevents the subtype relationship from being used to capture common interfaces (the
second of the two uses of subtyping mentioned in the previous section).

Since we would not wish to abandon the network object binding model, we would be
forced to attribute the common ancestor type AnsaNet0bj.T to network object arguments
in operation signatures. During an invocation, we would perform our own runtime type
checks based on the IDL subtype graph and the dynamic type of the argument on the client
gide. This is unattractive, partly because of the work involved, but mostly because we
lose the static checking of the Modula-3 compiler. This is all the more unpleasant because
the programmer must consult the IDL interface (rather than the Modula-3 type) of the
target operation to discover the correct argument type, thus increasing the possibility of
just the sort of confusion that leads to this kind of static type error in the first place.

All these problems only arise for interfaces whose ancestors cannot be totally ordered
in the is-compatible-with relation. In the ANSA testbench as delivered and used in our
experimental environment, there are no such interfaces. Thus it seems tenable in practice
to adopt the first policy (AB.T <: A.T), and allow stubm3 to reject interfaces it cannot
handle. This is what we have done.
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4.3 Inheritance

An implementation of an abstract type defines a procedure for each of its operations.
These procedures act on shared state in a representation type whose values correspond,
via an abstraction function, to the possible states of values of the abstract type. The
domain of the abstraction function is defined by a representation invariant maintained by
the operation procedures [Liskov 86a).

Sometimes it is convenient to define one implementation by describing how it differs from
another—typically by adding fields to the representation and adding or replacing operation
procedures. The base implementation is then said to be inherited. This process has much
the same advantages and disadvantages as the differential method for specifying abstract
types mentioned above [Liskov 88a).

Given two abstract types AB <: A and an implementation repy of A, a natural way to
produce an implementation of AB is by inheritance: ‘

implements
A ——— TePy

<: T T inherits

implements
AB +————— Te€Pup

Subtyping and inheritance are (in this view) separate concepts: abstract subtypes need
not have implementations related by inheritance, and inheriting implementations need not
represent subtypes. Unfortunately, many programming languages, including the object-
oriented fragment of Modula-3, do not distinguish between the two. Instead, a single
relation based on the differential specification mechanism encompasses both.

This can cause problems; one that arises in the context of our network objects system is as
follows. Suppose two conforming IDL interfaces give rise to two Modula-3 network object
types A and AB. Then according to the previous section, AB <: A. Let Srgty and Svrt be
the types of surrogate and server jmplementations of T respectively. Then these six types
are related by <: thus:
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Srgty — A <— Svry

I

Srgtyg —> AB — Surss

Because a Modula-3 object type can have only a single parent, the client-side surrogate
implementation Srgtyp cannot simply inherit from Srgt,. More seriously, the programmer
cannot implement Surag by inheriting from Svrp.

As generated by stubm3, S7gtsp and Srgt, do in fact share stub procedures for the opera-
tions of A. The procedures are exported from the Srgt, client stub module in the form

PROCEDURE OpStub (self: A; ... ) ..

Notice that the type of the self argument for the surrogate stub method is declared as A,
not Srgt,, as is more natural. This is necessary to allow OpStub to be used to override the
appropriate methods of Srgt g, where the self argument must be a supertype of Srgt .
The trouble we have avoided is that Srgty and Srgtyp are unrelated.

This solution works because the stub procedures need no state beyond what they inherit
from AnsalNetObj.T. The operations of Svry, by contrast, are likely to need access to their
own state. The only way to share this state and associated procedures between Svry and
Svrpp is to hive them off into their own (possibly abstract) type. Though our design
supports the introduction of enhanced service types to existing systems by subtyping, it
seems to discourage unpremeditated inheritance of implementations; this may well not be
a bad thing [Snyder 86, Raj 91], but it does conflict with a common use of inheritance.

It is possible to use Modula-3’s partially opaque types (section 2.7.4) to wedge an imple-
mentation into the abstract type chain between AB and A, so that it can be inherited from
AB. However, the mechanics of this are so baroque in the general case that we use the tech-
nique only to provide system-defined implementations of certain management interfaces
to which all network objects conform.

The reader may be wondering whether the server-side dispatch procedures for A and AB
(section 3.4.2) share operation stubs. They do. No inheritance is involved.
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4.4 Typechecking

If we attribute types from some semantic domain to values, we can use them to avoid type
errors. We distinguish between two kinds of value: concretely typed data and abstractly
typed services. These are associated with different sorts of type error:

e Concretely typed data may be misinterpreted (e.g., an integer as a character, an
array as a record, or a record of one type as a record of another type), which may
cause subsequent computation to be arbitrary.

e An attempt may be made to invoke an operation which is not in the abstract type
of the target service. This may crash the caller, but does not affect the callee.

Typechecking prevents type errors by comparing the expected type of a value with the
type received when the value is transmitted from one part of a system to another (e.g.,
from the right to the left hand side of an assignment, or from a client to a server).

Typechecking can be performed at vyarious stages in the life of a program fragment. Some-
times it is possible to prove from the static program text and assumptions about its
eventual environment that no type errors in some class can occur at runtime. These
proofs may be carried out automatically by the compiler, possibly with help from explicit
assertions by the programmer in the form of type declarations. Wider classes of type error
may be ruled out by later checks when separately compiled modules are linked, when a
client program binds to a service or when a server receives some data or an invocation.

The aim of typechecking is to avoid confusion caused by programmers’ mistakes; it is not
necessarily to eliminate all runtime checks. The point of trying to prove the absence of
some type errors before runtime is to warn the programmer of possible mistakes as early
as possible. The runtime checks needed by a server to detect the remaining errors and to
protect itself from incorrect or malicious clients can generally also catch the sort of errors
eliminated by early typechecking. If this is the case, early typechecking is superfluous for
correctness, but its cost may be repaid in time saved by programmers.

The argument that residual runtime checks may be made more efficient by ruling out
some cases statically depends on how much can be assumed about the communicating
parties. This raises issues of authentication [Lampson 92] which are beyond the scope of
this dissertation. We will describe some experience of what can go wrong later (section 6.1).
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4.5 Type Fingerprints

Tn order to “compare the expected and received types” (section 4.4) of a transmitted value,
we must be able to identify the received type. Thus the value must (at least notionally)
be accompanied by some form of type tag. Such tags should be cheap to transmit and
compare.

If types can be given names by programmers, and if the communicating parties share
the environment in which these names are bound to their referents, a canonical name for
a type may be used as the tag. This sharing is readily arranged within a single linked
program, but may be more costly to achieve between distant parts of a distributed system.
In this approach, two types are equal when two programmers have agreed that they are
by using the same name. This is the mechanism used by the ANSA testbench.

Another approach is to automate the management of the space of type names to some ex-
tent. In languages like CLU and Modula-3 with structural type equivalence (section 2.7.4),
one can maintain a library of bindings between encoded type structures and automatically
allocated names, unique with respect to that library. Again, the library must be shared be-
tween the communicating parties. Hamilton’s CCLU RPC system adopted this technique
[Hamilton 84, p. 61].

A third approach is to use the “encoded type structures” themselves as the type tags. This
is unattractive because such encodings are likely to be bulky and expensive to transmit
and interpret. All that the communicating parties need agree on, however, is the mapping
from type structures to their encodings.

While this third approach may be too expensive as it stands, it can be approximated more
cheaply as follows. A type fingerprint is a compact, fixed-length, probabilistically unique
encoding of a type structure, and thus combines most of the advantages of the previous
two approaches. One way to think about fingerprints is as hash values. Consider how
a compiler might attempt to look up a type structure in the library maintained in the
second approach, in order to discover the corresponding tag (if one exists). To make this
process reasonably efficient, the library might be organised as a hash table whose buckets
contained (name, encoded type) pairs. But suppose the hash function were strong enough
that collisions never occurred, making it unnecessary to compare the type being looked
up with the type in the table entry. Then the hash value itself would be a perfectly good
identifier for the type.

Such a strong hash function would be rather hard to come by, but fortunately, there are
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hash functions that reduce the probability of collisions to a negligible level [Rabin 81].
Strictly, fingerprints are only hints, but distinct types are so likely to have different fin-
gerprints that they can be used as if they were the truth.

The SRC Modula-3 system provides 60-bit fingerprints based on the arithmetic of poly-
nomials over the boolean field, modulo a fixed irreducible polynomial of degree 61. This
can be done with cheap bit operations and some tables. These fingerprints are used for
separate compilation and to ensure the type safety of persistent storage of concrete data
in pickles (section 3.4.2).

We have investigated the use of fingerprints as type tags in our network objects system,
as described in the following sections.

4.6 Static Types and Trading

The ANSA trader (section 2.6.2) maintains a database of service type names and the
compatibility relationships between them. As mentioned above (section 4.5), manual
intervention is required to update this state: new types must be registered before service
offers can be traded.

When a C/DPL program exports a service to the trader, it supplies the name of the service
type:

| DECLARE {svc} : AB SERVER

| {} <- traderRef$Export ("AB", ..., svc)

and a client specifies the required type name (among other constraints) when it imports
the service from the trader:

! DECLARE {ir} : A CLIENT

t {ir} <- traderRef$Import ("A", ... )

The DPL preprocessor checks that the declared types of svc and ir are identical to the
types supplied to the trader’s import and export operations. Since the trader knows that
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the type AB is compatible with A, the svc offer might be supplied to the client if it satisfies
the client’s other constraints. The trader does not check types, but uses them as a means
to support a particular kind of property and constraint specification.

We can improve the type safety of bindings established via the trader. We do this by
using the fingerprints of the abstract types implemented by a server object. Suppose the
fingerprints of the types above are fpy and fpyg. Then when the server exports its AB to
the trader, we automatically include the pair

FPSet {fpa fras}

in the property list for the offer. Similarly, when the client imports the service, we auto-
matically include the conjunct

and ' fp, ' in FPSet

in the constraints.

To what extent is this an improvement on the existing situation? The Modula-3 stubs
for A and AB could supply the correct type names automatically, by providing import and
export procedures with the appropriate signatures (as in section 3.2.3):

INTERFACE ABSRPC; (x server stub for AB.T *)
PROCEDURE Export (ref: AB.T; ... ) ..

The implementation of ABSRPC.Export would supply the string "AB" as an argument in
a call to the trader. Then the Modula-3 typechecking of the ref argument would be
sufficient, with no need for fingerprints. This is essentially equivalent to the situation in
C/DPL, except that a Modula-3 capsule may contain more than one implementation of
AB.

The real benefit of using fingerprints is that, by identifying an abstract type unambigu-
ously, they avoid the cost of managing the shared space of type names within a trading
domain. Note that this is not simply the cost of maintaining the trader’s type graph: there
must also be agreement among programmers on the mapping from type names to service
types, a mapping which is not represented in the trader. The worst case is when an old
type name is reused for an incompatible new type, for instance when a new version of an
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evolving service is installed!. Since, unlike the space of offer contexts, the space of type
names is not hierarchical, its management cannot be delegated except by ad hoc schemes.
It is not clear what happens to type name spaces when formerly disjoint trading domains
are federated (section 2.6.2).

The fingerprint of a service type is (in theory) calculated from its defining IDL interface
after replacing identifiers for both concrete data types and other service interfaces by
their values, similarly expanded. In this scheme fingerprint equality is (probabilistically)
equivalent to structural type equality, which is all that can be checked by receiving stubs:
IDL’s presentation syntax on the wire includes no name tags apart from operation names.
Conveniently, this agrees with Modula-3 typechecking, though it would be simple to define
fingerprints under name equivalence. In practice, the distinction has never mattered.

Fingerprints are not quite as useful for subtype checking as full structures. The fingerprint
set {fpy, foap} for the type AB above records that AB was constructed by extension of A.
An equivalent free-standing type would have the fingerprint set {fpjp}; an attempt to pass
such a server to a client requesting an A would not typecheck, despite being perfectly safe.

Having presented our fingerprint mechanism, we should say that we know of no occasions
when the current ANSA testbench facilities have resulted in type-incorrect bindings. As
mentioned above, such erroneous bindings would probably be detected at invocation time
anyway. We cannot yet claim any experimental evidence for the superiority of fingerprints
over the existing facilities, but we would expect the benefits to increase with the number
of programmers in a trading domain.

4.7 Dynamic Types and Binding

The previous section described how type fingerprints can be used when establishing bind-
ings via the trader. We now turn our attention to bindings established by passing network
object references in arguments and results of invocations.

When a program first receives a network object reference, it must create a surrogate
(section 3.4.3). What should the type of this surrogate be? The possible choices are fixed
by the client stub modules linked into the program, each of which defines a surrogate type
for a particular abstract service type.

17This has in fact happened in the Laboratory’s Active Badge system.
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The signature of the operation in which the network object reference is transmitted will
have attributed an abstract type to the appropriate parameter or result. An obvious
answer is to use the surrogate type for that abstract type. Suppose our program has a
server object with an operation

register (ref: A.T; name: TEXT) ...

Then the server stub for register would call a procedure in A’s client stub module to
obtain a Srgt, for use as the ref argument in its call on the server object. Notice that
some information about the type of ref may have been lost: the invocation at the client
might have been

registry.register (NEW (ABSvr.T), "enhanced server") ...

where ABSvr.T is a server implementation of the abstract type AB <: A. The loss of
information is unlikely to matter to the registry, but it might to another client which later
retrieves the "enhanced server".

This problem is a failure of transparency from the Modula-3 point of view. If registry
were in the same address space as its registering and retrieving clients, the latter could
(implicitly or explicitly) NARROW the returned object reference to the type AB.T, making
use of the dynamic type information in the Modula-3 heap (section 2.7.4).

The fact that, in this scheme, a program which receives a network object reference has no
access to the dynamic type of the referent has other unpleasant consequences. Suppose
the program containing the registry server receives the same ABSvr.T over two different
interfaces: once with static type A.T and later as an AB.T. Then the first surrogate will
be created with type Srgt, and be entered in the object table. When the second refer-
ence arrives, there is already a surrogate for the remote ABSvr.T, but it has the wrong
type. We could simply create a second surrogate, of type Srgtpg, but this complicates
the management of the state of the distributed garbage collector (section 5.3.6). Since all
references to the same remote object are no longer necessarily equal, some transparency
is also lost, but this is rather less serious.

The solution we have adopted, following [Nelson 92], allows dynamic type information to
propagate between address spaces. We arrange that a surrogate is created for the richest
(<:-least) abstract type for which the receiver and the server (which is not necessarily the
sender) both have appropriate stubs.
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Figure 4.1: Choosing the type of a surrogate.
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As in the previous section, the set of abstract types implemented by the server object and
for which the server program has stubs can be represented by a set of fingerprints. This
get is now regarded as ordered by <:. It could either be passed between programs with
the corresponding interface reference, or could be discovered by a call from the receiver to
the server before a surrogate is created. Since our distributed garbage collector needs to
make such a call anyway, we take the second course.

In figure 4.1, when svr is passed to Client1, an old program which expects a reference of
static type A and has client stubs for that type only, the surrogate ref is created with type
Srgt,. When Client; passes ref to Clients, a newer program which has client stubs for
the extended service ABC but only expects an A from its interface with Client;, the new
surrogate is richer. However, it still only gets the type Srgtyp: although the owner of svr
implements a Svrppc subtype of ABC, it has for some reason only been linked with server
stubs for AB. All programs have stubs for AnsaNet0Obj.T.

Notice that this strategy requires the receiver to check that the newly created surrogate is
actually as rich as statically expected. Suppose in figure 4.1 that the server transmits svr
to Clienty as an operation argument “ref” of static type ABC. Then since ref is received
with type Srgtyg, the invocation cannot proceed in Clienty; instead, we raise an exception,
which will propagate back to the caller. Receiving stubs must perform this check in any
case (to protect themselves from being spoofed by rogue transmitters), so we would gain
nothing by performing the check at the sender.

Some existing ANSA services, such as the trader, deal in generic untyped interface ref-
erences. These IDL analogues of Modula-3 REFANYs are given the type AnsaNetObj.T
in Modula-3 signatures by stubm3. Since such services do not support our distributed
garbage collector either, we allow the programmer of a receiving program to convert a
surrogate for one type to a surrogate for a richer type by passing the required typecode
to an explicit Narrow () procedure. No guarantees can be made about the validity of the
type of a fresh surrogate created this way. We will mention how this compatibility wart
interacts with the distributed garbage collector in section 5.3.5.

4.8 Stub Type Registry

The mechanisms of the previous two sections are implemented in our system by a run-
time module called the stub type registry. This module communicates with client and
server stub modules via an interface defined in terms of typecodes, which have a unique
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meaning only in a single running program (section 2.7.4), and fingerprints, which are valid
everywhere.

When the client stub module for the abstract type AB is initialized, it registers its surrogate
type with the call

AnsaStubs.RegisterSrgt (TYPECODE (AB.T), TYPECODE (Srgtyg))

When the AB server stub module is initialized, it registers its dispatch procedure (sec-
tion 3.4.2) similarly:

AnsaStubs.RegisterDispatcher (TYPECODE (AB.T), Dispatchyg)

When svr: Surape in figure 4.1 is first exported, it is given a name and entered in the
object table (section 3.4.3) with the dispatch procedure returned by

AnsaStubs.Dispatcher (TYPECODE (svr))

which is Dispatch g, the one for the <:-least supertype of Svrape for which a dispatcher
has been Registered. The corresponding vector of fingerprints is generated with

AnsaStubs.TcToFpTower (TYPECODE (svr))

The fingerprint vector is only calculated once: subsequent calls to TcToFpTower for the
same typecode or one of its supertypes use an appropriate subarray which is stored with
the dispatch procedure for the typecode in question. Similarly, towers for subtypes are
constructed using all the fingerprints stored so far.

A client receiving a reference to svr for the first time obtains its fingerprint vector (£ps)
as a result of a call to the server. It then uses the stub type registry to discover the

local typecode of the appropriate surrogate type. Finally, it passes this typecode to the
SRC Modula-3 runtime heap allocator to create the surrogate:

RTHeap.Allocate (AnsaStubs.FpTowerToSrgtTc (fps))
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The implementation of FpTowerToSrgtTc converts the fingerprints in £ps into the corre-
sponding local typecodes (if they exist) and returns the surrogate typecode for the first
(<:-least) with a RegisterSrgt entry. The result of this calculation is cached in a table,
indexed by fingerprints, to speed up future queries. Since every program contains stubs
for AnsalNetObj.T, the search is guaranteed to succeed for well-formed £ps. An ill-formed
fps causes an exception to be raised in the caller of the operation which transmitted the
corresponding network object reference.

Maintaining the bindings between abstract service types and client and server stubs in a
runtime registry, rather than relying on static information, incurs some runtime overhead.
However, the resulting flexibility seems worth the cost. References to network objects of
new types can pass through old programs without any loss of information or type safety. In
addition, stubs which marshal and unmarshal network object references are rather simpler,
since they need only call generic import and export routines. Calling routines specialised
for each service type involves a surprisingly large amount of work in the stub generator to
keep track of the dependencies between stub modules.

we here dispatch

You, good Cornelius, and you, Voltemand,

For bearers of this greeting to old Norway,
Giving to you no further personal power

To business with the king, more than the scope
of these delated articles allow.

— CLAUDIUS, Hamlet (Act |, Sc. 2, line 33)
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Chapter 5

Distributed Garbage Collection

5.1 Introduction

Different parts of a computing system often share state or immutable data with each other
by naming its container [Saltzer 79]. Such state sometimes represents other resources. For
instance, different routines or modules in a program may keep pointers to some shared
object allocated from the (finite) system heap; an editor and an incremental compiler
running in separate processes on the same machine might keep handles on nodes in a
shared parse tree; a program running on a cycle server might interact with its user(s) via
windows on other machines; a client program might hold a temporary lock on a file stored
at a remote server, a descriptor containing a cursor at which to read or write the file, a
binding to the file service, and an identifier for the file itself; a file on one file server might
contain a link to a file on another file server.

Whenever such sharing occurs, the problem arises of managing the resources required to
represent the containers themselves. When a container’s contents are no longer of inferest,
usually because they can no longer affect the subsequent computation, the container can
be reused (possibly under a different name, if the names at that level are not themselves
a scarce resource). Reuse is a necessary ovil: resources are rarely unlimited in the long
run. However, when names are passed across the interfaces between different parts of
the system, no one component necessarily has enough knowledge to decide when reuse
is safe, particularly when each container can hold the names of others. Under these
circumstances, the familiar problems of dangling references and resource leaks are difficult
to avoid without careful programming of all the components.
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For any given collection of components sharing some given type of state, it is always
possible to modify the interfaces between them to require the transmission of enough
information to allow containers to be reused safely. Typically, one component will be
deemed to own the containers of some type, and the others must explicitly inform it when
they are no longer interested in a particular container. However, this strategy has some
disadvantages. For each instance of the problem, a separate scheme must be designed,
implemented and established to be correct. Such schemes often significantly increase the
complexity of both the interfaces and the implementations of the components. Both these
problems are multiplied when there are indirect dependencies crossing multiple interfaces.
As a result, programmers in such systems are discouraged from creating transient names
and containers dynamically.

These problems have led to the use of automatic garbage collectors which provide, for
an entire uniform naming structure, a single, correct solution to an abstract version of
the problem in which possession of a container’s name is regarded as the sole indication
of an interest in its contents. The most widely used garbage collectors manage pointers
between heap nodes in a single address space. There are many well-established schemes
[Wilson 92] for this situation, in which a heap node is reusable when it is unreachable via
any chain of pointers from a given set of root objects.

As the examples given above imply, similar resource management problems arise in service-
based distributed systems. In an object-based system such as we are considering in this
work, it is often natural to represent transient, shared, potentially remote resources as
network objects providing some service, even when this service has few public operations—
or indeed none at all, in which case the network object reference is useful simply as a typed
name to be passed to other services with a fuller view (section 3.3.2). As we have mentioned
before, lightweight creation and binding of service interfaces is a primary motivation for
the network objects style.

An automatic distributed garbage collector for network objects and their references is
therefore a valuable tool; collection of garbage objects can then be used in an application-
specific way to trigger recovery of associated resources. However, the requirements and
environment of such a collector are sufficiently different from the single-program case to
make building one a challenging problem. Distributed systems differ from centralised ones
because they must continue to be useful in the face of the independent failure of their
components and the cost and unreliability of communications between them. They must
achieve this despite the fact that no one component has complete knowledge of the global
state. This affects most aspects of the design of such systems, and resource management
is no exception:
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e Our collector must remain safe and live despite communications problems.

e If it is to be used in a long-running server to manage resources associated with
network objects that are shared with clients, it must be possible to reclaim them even
when clients are unavailable: a file server which has handed a reference representing
a file lock to a client which subsequently cannot communicate with the server (either
because it has crashed or because of extended communications problems) would like
to reclaim that lock despite the client’s inability to cooperate.

e The collector should impose low overheads in performance, in restrictions on the
freedom of programmers and in the cooperation it requires from conventional local
collectors. It should run in parallel with normal computation, require no global
synchronisation between processes, allow network object references to be transmitted
freely between them and require minimal modification of their local collectors.

In an ordinary program, the performance cost of a generic garbage collector which can-
not make use of application-specific knowledge may be too high in some critical areas.
Furthermore, even in a centralised system it is not necessarily desirable to use a single col-
lector for all objects regardless of the number of references they can hold or the expected
lifetimes of both references and objects.

Likewise, automatic distributed garbage collection is not appropriate for all resource man-
agement tasks in a distributed system. It is often possible to regard some objects as merely
caching state which can always be rebuilt (at some cost) from information held elsewhere;
such objects can simply be discarded unilaterally, regardless of whether outstanding ref-
erences remain. Client code required to recover from failures of distribution transparency
may also be able to recover from dangling references. End-to-end arguments [Saltzer 84]
are helpful in striking the right balance here.

A strategy which may be appropriate for long-term persistent naming structures is the
librarian’s algorithm: simply migrate old and infrequently-used objects to permanent bulk
storage with unbounded capacity but high retrieval cost (such as tape or optical disc). The
cost of retaining some garbage forever may be outweighed by the cost of determining the
liveness of all data strictly. It may not be easy even to define an appropriate concept of
garbage at this level: the semantics of names may be imprecise [Needham 93] and since
the objects involved (e.g., versions of documents) are of interest mainly to humans, one
should perhaps be wary of attempting full automation.

We should distinguish between the use of garbage collection in a distributed system, such
as in the asynchronous garbage collector of the Cambridge File Server [Garnett 80}, from
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distributed garbage collection, in which references and their referents may be in different
processes. 1t is the latter we have addressed. (The CFS collector did not guarantee to
preserve objects whose only references were held outside the file system: a request to store
such a reference in the file server might be rejected. It did guarantee, even in the face of
crashes and communication problems, that if such a request succeeded, it would produce
a state consistent with the resurrected object having never been garbage.)

The network objects in our system represent services rather than small data items. They
are supported on stock operating systems and hardware connected by well-established
local and wide area networks and internetworking protocols. Their lifetimes range from
the time required to make a few RPCs up to the lifetime of a process in this environment.
It is network objects that we wish to reclaim; we have not tackled automatic garbage
collection of persistent heaps, whether distributed or otherwise. The rest of this chapter
presents the design and implementation of an efficient fault-tolerant distributed garbage
collector which comes close to meeting our requirements.

5.2 The Collector

5.2.1 Basic Algorithm

Our garbage collector is a fault-tolerant distributed algorithm which runs concurrently
in all processes that transfer network object references. It interacts with the processes’
local garbage collectors to achieve two goals: safety (collecting only garbage) and liveness
(collecting all garbage). More precisely, these are

e Safety. If a process P has a surrogate for an object o, then o is in its owner’s object
table and hence protected from its local garbage collector.

e Liveness. If it remains true that no process holds a surrogate for o, then eventually
it remains true that o is not in its owner’s object table.

To meet these conditions, we arrange that the owner of o knows which processes have
surrogates for it, and that o is kept in the owner’s object table whilst this dirty set is
non-empty. Maintaining o.dirtySet rather than just a reference count has advantages for
robustness in the face of transient communication problems and process crashes, as we
shall see.
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Introducing o.dirtySet splits our safety and liveness conditions into two parts. Safety now
requires that if P has a surrogate for o then P € o.dirtySet, and that if o.dirtySet is non-
empty, o is in the object table. Liveness decomposes similarly. Maintaining the invariant
relationship between o.dirtySet and its owner’s object table is simple, since they are in
the same program; maintaining the other conditions is more interesting. The actions of
the collector fall into two classes: those that try to maintain safety by inflating o.dirtySet
(adding processes), and those that try to achieve liveness by deflating o.dirtySet (removing
processes).

The basic outline of the algorithm is as follows. When a client process receives a reference
to o, it adds itself to o.dirtySet by making a dirty call to o’s owner before it creates a
surrogate. After a process detects that it has no reachable surrogate for o, it removes
itself from o.dirtySet by making a clean call. The algorithm can reclaim an object even
if a process crashes while holding a reference to it: when o’s owner detects that a client
process P has crashed, it removes P from o.dirtySet itself.

The details of the algorithm order dirty and clean calls to ensure that o.dirtySet is main-
tained conservatively, without compromising liveness, while requiring only pairwise syn-
chronisation between processes.

The algorithm falls short of the goals above in two ways. It fails to be completely safe in
that o's owner may misinterpret extended but impermanent loss of communication with
a dirty client process P as its death. If P holds the only surrogate for o, then o might be
prematurely removed from its owner’s object table; should communication be restored, P
will discover the problem when it attempts an invocation on its surrogate. The algorithm
fails to collect all garbage: our liveness condition, like those of reference counting schemes,
does not rule out distributed cycles of inaccessible objects; responsibility for avoiding or
breaking cycles rests with the programmers involved as a group.

5.2.2 Object Table

A concrete object o has an associated name 0.id which uniquely identifies it for all time
and is used when transmitting a reference to o. Each process contains an object table,
which maps identifiers to the corresponding local surrogate or concrete object when un-
marshalling a reference or servicing an invocation (section 3.4.3).

At o’s owner, the object table entry for o.id is said to be concrete and contains an ordinary
reference to 0. While present, this reference protects o from the local garbage collector.
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As mentioned in section 3.4.3, we keep at most one reachable surrogate for o at a client
process, and the object table entry for o.id contains a weak reference to it. Weak refs do
not protect their referents from the local collector.

A weak ref for an object is created by presenting the object to a local garbage collector
interface together with a cleanup procedure [Hayes 92). The weak ref returned is a token
which can be mapped to the corresponding ordinary reference until the local collector de-
termines that its referent is unreachable. When this happens, the local collector schedules
a call to the cleanup procedure before reclaiming the referent’s space.

A surrogate’s object table entry can be in one of three states. While a dirty call is in
progress for o and no surrogate has yet been created, the object table entry for 0.1d is
nascent and does not contain a valid weak ref. Once the surrogate has been created, the
entry is alive, and holds a valid weak ref from which the surrogate can be obtained. Once
the local garbage collector determines that the surrogate is unreachable, the entry becomes
dead and subsequent attempts to convert the weak ref fail. Dead entries are eventually
removed by the surrogate cleanup procedure.

To summarise, the object table entry for id at P is alive if and only if there is a unique
reachable surrogate with srgt.id = id at P; the entry is concrete if and only if there is a
unique local concrete object with o0.id = id # nil.

5.2.3 Dirty Set and Timestamps

For each concrete object o, we maintain o.dirtySet at its owner as described above. How
can we keep o.dirtySet up to date with the state of the client P with respect to o? We
could imagine making strictly serialised clean and dirty calls from P such that between each
action, the state of the client agrees with the state of the dirty set. Such an approach (as
in the first collector presented in [Vestal 87]) would be obviously correct, but is expensive
to implement in the presence of process or communication failure and imposes excessive
synchronisation at the client.

Tt turns out that the clean and dirty actions can be broken into separate parts: one to
change the client state and one to call the owner to update the dirty set. The four actions

e put P in o.dirtySet;

e create and enter the surrogate in P’s object table;
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e remove the object table entry and reclaim the surrogate; and

e remove P from o.dirtySet

can be interleaved less strictly as long as the owner can tell in which order the client states
occurred.

To achieve this, we label successive states at P (with respect to 0) with a strictly increasing
timestamp. Each subaction, including the clean and dirty calls, is then associated with
the timestamp of the state to which it refers. We maintain the highest timestamp seen
from P for o with o.dirtySet at the owner. The owner ignores any clean or dirty call with
an earlier timestamp.

With their timestamps, clean and dirty calls become idempotent; this makes dealing with
transient communication failures easier. We will see later that under normal circumstances
the owner need not keep timestamps for processes it believes to be clean, reducing the
amount of per-client state at the owner.

5.2.4 Transmitting a Reference

Suppose a process P transmits a reference for o to process @ in the arguments or results
of some invocation (figure 5.1). If Q already has a reachable surrogate for o, then the
entry for o.id in Q’s object table is alive, the surrogate can be obtained from its weak ref
and no further action is required (Import and CheckPresent; figure 5.3). Similarly, if Q is
o’s owner, its object table contains a concrete entry for o.

Otherwise, we must add Q to o.dirtySet, create a new surrogate and enter it in Q’s object
table. If all the state involved were in a single address space, we would make this an
atomic action under a shared lock. In the distributed case, however, this is impractical.
Instead, we allow transient inconsistency between the states of @ and the owner.

Safety requires that we ensure @ is in o.dirtySet first. The first thread that finds the
object table entry for o.id absent or dead makes it nascent, acquires the next timestamp,
releases its lock on the object table and makes the dirty call (figures 5.4 and 5.5). Other
threads unmarshalling o while this call is outstanding discover the nascent table entry and
block on a condition variable (section 2.7.3) until the outcome is known.

If the dirty call succeeds, the original thread creates the new surrogate, obtains a weak
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P 0 Owner (o)

surrogate exists no surrogate exists Concrete (0)
o.id € objTbl
P € o.dirtySet
Export (srgt, pinList)
Marshaloid oy, olid, ..
Call (g --------------- »  Import (0.id)
CheckPresent ()
srgt € pinList 0bjTbl [o.id] := Nascent @ ts
CreateSurrogate ()
Dirty [o.id, Q, 1s] )
Call Ditty ~ ==m==emmmmm=ens » Diry()
timestamp [0, Q] :=ts
Q € odirtySet

EnterSurrogate ()
objThl [o.id] := Alive

Return Service Call

ReplyFinished (pinList)

Figure 5.1: Overview of reference transmission.

ref for it with the collector’s surrogate cleanup procedure and makes the object table
entry alive, before unblocking any waiting threads (EnterSurrogate; figure 5.3). While the
newly-created surrogate remains reachable, we can be sure that the timestamp recorded
for (0,@Q) at the owner is that of the state when its object table entry became nascent.
We will deal with how to achieve liveness in the face of failed calls in section 5.2.7 below.

Safety also requires some synchronisation between P and Q: we must keep o.dirtySet
non-empty until the receiver’s dirty call is known to have been processed. For suppose
P has the only surrogate for o, and having transmitted it to Q, drops the reference. If
the consequent clean call from P is processed first, it will leave o.dirtySet empty, and the
dirty call from @ will find that o has been removed from its owner’s object table.

If P holds a surrogate, then P will be in o. dirtySet while it remains reachable, as mentioned
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above. Therefore we keep the surrogate reachable by placing a strong reference to it on
a pin list associated with the transmission (Ezport; figure 5.2). On the other hand, if P
is o’s owner, we must do slightly more work, in case a clean call from some process R
makes o.dirtySet empty before @Q’s dirty call arrives. To prevent this, the owner simply
places itself in o.dirtySet while transmissions are in progress; this is inexpensive because
o.dirtySet is stored in the owner’s address space. Since we allow multiple concurrent
transmissions of o from its owner, we must keep track of how many are in progress and only
remove the protective entry in o.dirtySet when this becomes zero. The count, in o.pins, is
maintained by placing o on the transmission’s pin list, just as in the surrogate case. The
details of our implementation in fact require no extra space for o.pins (section 5.3.3).

Once Q’s dirty call is known to have been processed, it is safe (and required for liveness)
to release the protection of the objects in the transmission’s pin list (ReplyFinished; fig-
ure 5.2). How does P know when this happens? If the transmission was of arguments
in a call from P to Q (as in figure 5.1), the fact that that call has returned is sufficient,
since Qs dirty call was nested under it. (This means that surrogate arguments need not
be placed on pin lists: they are protected by the references in the caller’s stack frame.)
However, if the transmission was of results of a call from Q to P, we require an acknowl-
edgement from Q. This does not affect the latency of ()’s original call since it can be sent
asynchronously. The necessary modifications to a standard RPC protocol like REX are
quite simple; we discuss them later with other implementation details (section 5.3.4).

The figures on the next few pages collect all the abstract pseudo-code for our algorithm
in one place. The reader may wish to skip to the next section (p. 87) at this point.
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Ezport (0: Obj; in out ps: PinList) : Id =
lock mu do
if 0.id = nil then { -3 id. objThl [id] = o }
0.id := Newld (); objTbl [o0.id] := Concrete (0)
end
ps = 0 pS$
if Concrete (o) then
inc o.pins; o.dirtySet := o.dirtySet + MyProcessld
end
return o.id
end
end FEzport

ReplyFinished (in out ps: PinList) =
lock mu do
foreach o € ps | Concrete (o) do
dec o.pins
if 0.pins = 0 then UnRef (o, MyProcessId) end
end
ps ;= nil
end
end ReplyFinished

Figure 5.2: Collector transmission actions: Transmitter.
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Import (id: Id) : Obj =
case CheckPresent (id) of
Yes (obj) = return obj
| No (ts) = return EnterSurrogate (id, CreateSurrogate (id, ts))
end
end Import

CheckPresent (id: Id) : Yes (Obj) | No (Timestamp) =
lock mu do
while id € objThl A objTbl [id] # Dead do
case objThl [id] of
Alive V Concrete (obj) = return Yes (obj)
| Nascent = Thread. Wait (mu, srgtReady) (x synch *)
end
end
objThl [id] := Nascent
return No (NextTimestamp())
end
end CheckPresent

EnterSurrogate (id: Id; srgt: Obj) : Obj =
lock mu do { objThl [id] = Nascent }
if srgt # nil then
0bjTbl [id] := Alive (WeakRef (srqt, CleanupSrgt))
else
objTbl.delete (id) { id & objThl }
enqueue CallClean (id, NestTimestamp(), Strong)
end
end
Thread. Broadcast (srgtReady)
return srgt
end FEnterSurrogate

Figure 5.3: Collector transmission actions: Receiver.
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CreateSurrogate (id: Id; ts: Timestamp) : Obj =
(* mu not held *)
call Dirty (id, MyProcessId, ts) at Owner (id)
except RPCFuailure = return nil
return NewSurrogate (id)
end CreateSurrogate

Figure 5.4: Collector transmission actions: Surrogate creation.

Dirty (id: Id; p: Processld; ts: Timestamp) =
lock mu do
if id & objThl then return (x orphan x) end
0 := objTbl [id] { Concrete (0) }
if timestamp [0, p] < ts then
o.dirtySet := o.dirtySet + p; timestamp o, p] = ts
OnProcessDeathDo (p, ProcessTerminated)
else
skip (* orphan )
end
end
end Dirty

Figure 5.5: Collector transmission actions: Owner.
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CleanupSrgt (srgt: Obj) =
{ srgt is unreachable }
lock mu do
if srgt.id € objTbl A objTbl [srgt.id] = Dead then
obj Thl.delete (srgt.id)
enqueue CallClean (srgt.id, NeztTimestamp(), Normal)
end
end
end CleanupSrgt

CallClean (id: Id; ts: Timestamp; kind: Normal | Strong) =
(* mu not held )
repeat
call Clean (id, MyProcessId, ts, kind) at Owner (id)
until call succeeds or Owner (id) believes MyProcessld has crashed
end CallClean

Figure 5.6: Collector cleanup actions: Client.

85




Clean (id: Id; p: Processld; ts: Timestamp; kind: Normal | Strong) =
lock mu do
if id ¢ objThl then return (x orphan or late ¥) end
0 := objThl [id] { Concrete (0) }
if timestamp [0, p] < ts then
UnRef (o, p)
if kind = Strong then keep-[o, p] := true end
if keep [0, p] then
timestamp [o, p] := ts
else
timestamyp [o, p] := —00
end
end
end
end Clean

Process Terminated (p: ProcessId) =
lock mu do
foreach o | p € o.dirtySet do UnRef (o, p) end
end
end ProcessTerminated

UnRef (0: Obj, p: Processld) =
(* mu held %)
o.dirtySet := o.dirtySet — p
if o.dirtySet = {} then
objThl.delete (0.id); o.id := nil
end
end UnRef

Figure 5.7: Collector cleanup actions: Owner.
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Local Collector at P

surrogate unreachable

detected

continue
collection

P Owner (0)

Concrete (0)

o0.id € objTbl

P € odirtySet
objTbl [0.id] = Dead
»  CleanupSrgt (srgt)
objThl.delete (o.id)
enquete CallClean (o.id, ts)
return
a Clean [o.id, P, ts]
CaliClean ==ww=mmm==mm==~ »  Clean ()
UnRef (0, P)
Background
thread timestamp [0, P] = — o0
P & o.dirtySet

Clean done w=smm=mmamum==n

Figure 5.8: Overview of surrogate cleanup.

5.2.5 Cleanup

The previous section was mostly concerned with safety. We now turn our attention to
the collector actions whose main goal is liveness. As mentioned earlier, when the local
garbage collector at P discovers that a surrogate for o is unreachable, it schedules a call to
the surrogate cleanup procedure (figure 5.8). The cleanup executes asynchronously; this

implies an arbitrary scheduling delay.

Again, we need to update both P’s object table and o.dirtySet; again, these subactions can
be decoupled using timestamps. The cleanup procedure first inspects the current state
of the object table (CleanupSrgt; figure 5.6). It must take further action only if there
is a dead entry for the surrogate. In this case, it deletes the table entry, acquires the
timestamp for the new state, and schedules a clean call to the surrogate’s owner. Notice
that the other cases can arise:
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e the table entry may be nascent or alive if a reference for o has arrived after the death
but before the cleanup of the surrogate incarnation (or avatar) in hand; or

e there may be no table entry at all if such an intervening surrogate has already died
and been cleaned up.

In the second of these cases a clean call would be superfluous, though safe. In the first, a
clean call would be unsafe; the fact that none is generated is necessary for the condition
stated in the previous section (on the timestamp for (o, P) recorded at the owner) to hold.
The fact that the local collector has discovered a particular avatar to be dead has only
the force of a hint that P may now be clean.

Although pending dirty calls must lock out clean calls for safety, liveness requires only that
the contents of o.dirtySet should eventually reflect the absence of a reachable surrogate at
P. Clean calls can therefore be made asynchronously in a background thread (CallClean;
figure 5.6), and a pending clean call for o from P does not delay dirty calls caused by
concurrent unmarshalling. Since there is no synchronisation between outstanding clean
and dirty calls from P, the semantics of RPC and the vagaries of scheduling mean they
will execute in an indeterminate order at the owner. However, the overall outcome is
determinate, safe and live: it is that defined by the calls’ timestamps.

When the owner receives a clean call from P with a fresh timestamp (Clean; figure 5.7),
it updates its stored timestamp, removes P from o.dirtySet and if necessary removes its
concrete object table entry for o. The new timestamp need not be retained unless there
have been communication failures between P and the owner; we will be more explicit
about this in section 5.2.7.

5.2.6 Process Failure

When a process P terminates, whether normally or abnormally, it should be removed from
the dirty sets of the objects for which it holds surrogates. We arrange that the collector
at a process is informed when any of its dirty clients terminates (ProcessTerminated;
figure 5.7), and make the appropriate adjustments to the dirty sets of the objects it owns.

How is the owner informed of P’s death? If the underlying operating system has an ap-
propriate mechanism, that can be used: if P and the owner run on the same machine, this
is straightforward; a distributed system may provide a shared death-notification service
(see, for instance, any of [ANSA 92b, Craft 85, Birman 87b, Mullender 86]). Our liveness
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condition will be satisfied as long as P’s death cannot go unreported for ever.

In the absence of other mechanisms, we place the burden of detecting P’s death on the
owners, which periodically ping P. If such attempts continue to fail for some fixed time, P
is declared dead. Of course, this technique cannot distinguish an extended commuuication
failure from process failure. As a result, safety can be violated. If P is deemed dead while
holding the last surrogate for o, then subsequent attempts to invoke o will be reported
failed at P as if there were still communications problems, even if communication has been
restored.

Death detection can also interfere with the synchronisation required during transmission of
a reference. If P holds the last surrogate for o, transmits it to @ and is reported dead at o’s
owner before Q’s dirty call, that call will be reported failed at . Thus the death-detection
timeout should be longer than the expected time for the dirty call to arrive. The value of
this timeout is a parameter of our collector which affects the balance between safety and
liveness. It should probably be set in the light of application-level knowledge. Greater
safety could be bought at the cost of significantly increased overheads if P informed o's
owner before transmitting the reference, turning reference transmission into a three-way
consensus protocol between P, () and the owner (as in [Lermen 86], though that algorithm
can tolerate neither process nor communication failure).

Liveness is not compromised by the death of a receiving process () during transmission.
Any pins at P are always released, either because P’s call to Q is reported failed, or because
Q’s acknowledgement of results from P fails to arrive. As we will see later, the mechanism
in the underlying RPC protocol is similar in both these cases (section 5.3.4). There is a
potential race between the last dirty call from a failed process @ and the detection of its
death at the owner. Should the dirty call be processed second, o.dirtySet will be inflated.
However, since this re-arms death detection for Q (Dirty; figure 5.5), liveness is ensured
in the long run.

5.2.7 Communication Failure

We now consider how the collector reacts when clean or dirty calls from a client P fail
because of communication problems. The semantics of the RPC system we depend on
are such that if a call returns successfully at P, it has executed exactly once so far at the
owner and will never execute there in the future. If the call is reported to have failed at P,
we know only that it has executed at most once so far, and may yet execute as an orphan
at the owner at some future time.
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Suppose a clean call is reported failed at P (CallClean; figure 5.6). The timestamp mech-
anism means that the call is idempotent: it can be repeated safely and any future orphans
will be ignored by the owner. For liveness, a failed clean call must be repeated until it
succeeds or communication with the owner is deemed permanently lost, at which point we
know that the owner has either crashed itself or has decided that P has crashed. Since
the owner ignores out-of-date clean calls, we do not trouble to re-check P’s object table
between retries.

When a dirty call is reported failed at P (Create- and EnterSurrogate; figures 5.4 and 5.3),
we cannot safely create a surrogate; P may not be in o.dirtySet. For liveness we must now
issue a clean call, in case the failed dirty has executed at the owner. The precondition for
any clean call is that o.id is not in P’s object table in the state labelled by the timestamp of
the call. Thus we delete the nascent table entry, acquire the new timestamp and enqueue
the clean.

In order to reduce storage requirements in the common case, a normal clean call for o from
P (caused by the death of a surrogate) causes the owner to forget the stored timestamp
for (o0, P); we represent unstored timestamps by —oo in figure 5.7. This is safe because a
subsequent clean (with a later or earlier timestamp than the forgotten one) would have
no additiona) effect at the owner, and a subsequent dirty with a later timestamp should
succeed. However, if a dirty call with an earlier timestamp than the forgotten one arrives
at the owner, it will erroneously succeed, compromising liveness and creating a storage
leak.

What could have caused such a dirty call? It cannot have returned successfully at P: if
it had, the clean call with the later forgotten timestamp could not even have been issued
at P by the time the dirty arrived at the owner. Therefore it must be an orphan from a
dirty call which was reported failed at P earlier than the forgotten timestamp. So after a
failed dirty call, P must send a strong clean call which causes timestamps for (o, P) to be
retained indefinitely, against the day when any dirty orphan arrives. Dirty orphans need
strong cleans! We now have a storage leak of one timestamp record; this is likely to be
Jess serious than retaining o (potentially indefinitely).

5.2.8 Correctness

The introduction of dirty sets and object tables splits the safety and liveness invariants of
our collector for o into three parts: those at the client only, at the owner only, and shared
between client and owner:
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e Client: P has a reachable surrogate for o if and only if P’s object table entry for
o.id is Alive.

e Owner: o is in its owner’s object table if and only if o.dirtySet is not empty.

e Shared (safety): if the table entry at P for o.id is Alive and the owner does not
believe P has failed, then P € o.dirtySet.

e Shared (liveness): if it eventually remains true that no Alive table entries exist
for 0.id at non-failed processes P then eventually it remains true that o.dirtySet is
empty.

The combination of these conditions implies the invariants we gave in section 5.2.1, except
that as we mentioned there, maintaining liveness after process failure has forced a weaker
safety condition on us.

It is straightforward to prove that the conditions Client and Owner are maintained
by the actions given in the figures above while the respective mutexes mu are not held,
assuming that weak refs meet the specification in section 5.2.2. The Shared invariants
are proved via reasoning about timestamps. We just sketch the key areas of the proof
here; the interested reader will find more details in [Birrell 93a).

The following lemma will be helpful: the synchronisation over the condition variable
srgtReady in CheckPresent and EnterSurrogate (figure 5.3) ensures that there is at most
one thread executing in CreateSurrogate or EnterSurrogate with id = o.id, despite the
fact that mu is not held in CreateSurrogate.

The shared safety condition is initially true. To demonstrate that it is maintained, we
need two facts:

e when we create an Alive entry at P for o.id, we must know either that P € o.dirtySet
or that the owner believes P failed.

e when the owner removes P from o.dirtySet, we must know either that P has no Alive
entry for o.id or that P is believed failed.

To show the first, consider the entry’s transition in EnterSurrogate to Alive from the
Nascent state it was placed in at time ts by CheckPresent. At this point we know the
dirty call in CreateSurrogate was successful, and therefore either ts < timestamp [o, P)
or the owner now believes P has failed. Furthermore, no later clean or dirty call has
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been generated from P. There was no later clean from CleanupSrgt because the guard for
enqueuing one was and is false. By the lemma, Create- and EnterSurrogate have generated
no later dirty or clean either. Therefore timestamp [0, P] = ts and P € o.dirtySet at this
point, unless P is believed failed. The case analysis in CheckPresent ensures that no dirty
call with a timestamp greater than ts will be generated while this entry remains Alive.

To show the second, consider the removal of P from o.dirtySet by UnRef (figure 5.7). If it
was ProcessTerminated that called UnRef, its precondition trivially implies the required
fact. If the call came from ReplyFinished (figure 5.2), its guard implies that the object
table entry is concrete, not Alive. Finally, if Clean called UnRef, the guard in Clean
implies that ts was fresh, and the guard and deletion in CleanupSrgt (figure 5.6) at the
client implies that there was no entry at all at ts. There may now be a dirty with a higher
timestamp on its way, but it cannot yet have made an Alive entry at the client; the entry
is at most Nascent.

This all suffices to show that timestamp [0, P] = ts and P € o.dirtySet while the entry
made Nascent at ts is Alive and P has not been reported failed at the owner. With the
local invariants, the safety of the pinning mechanism now follows.

The shared liveness condition is proved by considering the last transition from Alive to
Dead for an o.id entry at P. We know from the safety proof that the owner’s stored
timestamp for this entry is from its last transition to Nascent. Its final death will eventually
‘cause CleanupSrgt to execute. This will enqueue a CallClean with a fresh timestamp.
Likewise, if the final dirty call from P was reported failed, a fresh clean call was enqueued.
The clean will eventually be repeated until it succeeds, the owner has crashed, or there
is extended loss of communication, when ProcessTerminated will execute at the owner.
In either case, P is removed from o.dirtySet. Late orphaned dirties do not compromise
liveness as we showed in section 5.2.7.

5.3 Implementation

5.3.1 Inter-Process Interfaces

In the description of the collector algorithm above, clean and dirty calls from clients for
0.id were directed to the process “Owner (0.id)”. We must now specify in more detail the
interface between clients and the collectors at owners for our ANSA implementation.
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The collector instance at o’s owner manages o.dirtySet and its interaction with the local
object table. It presents an interface to client collectors consisting of the dirty and clean
operations. This is a network object interface specified in IDL in the usual way. How
can a client obtain a surrogate for o’s collector? If o.id identified the owner process
and o separately, this would be simple: the collector interface at a process would simply
be assigned a well-known object identifier within that process. Making o.id an impure
name [Needham 93] in this way is in fact the technique used in the SRC Network Objects
implementation [Birrell 93b].

In the ANSA testbench, interface identifiers cannot (at least in theory) be interpreted
like this. However, in version 4, every interface is compatible with Management, which
provides operations to return one of a fixed set of management interfaces associated with
the object. It would be straightforward to add a collector interface to this set, but that
would mean another remote call on the receipt of a reference at a clean client, doubling the
overhead. Version 4 interface references can also themselves carry additional references to
certain other interfaces associated with the object. In an ideal world, its owner’s collector
would be one of these, but considerations of compatibility prevent us from doing this
yet. Instead, we simply make “dirty” and “clean” operations on o itself. To this end, we
define an interface type DGC (figure 5.9) with dirty and clean operations, and require every
automatically collected interface to be compatible with it.

This decision has a number of advantages and disadvantages. The two main advantages
are the lower collector overhead and the fact that automatically and manually collected
interfaces can be distinguished. This latter is essential if our system is to interwork with
the existing ANSA testbench, whose servers and clients know nothing of our garbage
collection protocol. Another advantage is that in the implementations of the clean and
dirty operations at the owner, which each object inherits from the collector, the concrete
object in question is immediately to hand in the “self” argument.

The main disadvantages of the DGC-interface approach are that it reveals these operations
to the user (who can break the collector invariants by calling or overriding them) and
that it interacts with the single-parent subtyping of Modula-3 in a less than ideal way:
if we wish to introduce a new type AB.T <: A.T and have AB.T automatically collected
we must already have A.T <: DGC.T. We have worked around the first problem with
partially opaque types in Modula-3, but this would not extend to other languages. The
second problem has not so far arisen in practice.

Various data flow across the DGC interface. Client collectors identify themselves by passing
references to their local Capsule, an ANSA management interface implemented by every
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DGC : INTERFACE =

NEEDS Capsule;

BEGIN
Timestamp: TYPE
Fingerprint: TYPE
FpTower: TYPE

ARRAY 2 OF CARDINAL; -- least ... most significant
ARRAY 2 OF CARDINAL;
SEQUENCE OF Fingerprint;

dirty: OPERATION [ ts: Timestamp; c: CapsuleRef ]
RETURNS [ FpTower ];

clean: OPERATION [ ts: Timestamp; c: CapsuleRef; strong: BOOLEAN ]
RETURNS [1;
END.

Figure 5.9: Collector implementation: DGC interface.

process. Since object tables and ANSA capsules are one-to-one, the CapsuleRefs serve as
ProcessIds. Owners also use calls on client Capsules for death detection. Timestamps for
the collection protocol are 64-bit quantities to ensure for all practical purposes that they
never overflow. As mentioned in section 4.7, the dirty operation returns an ordered set of
type fingerprints.

One other interaction between our collection algorithm and ANSA should be mentioned
here. Our requirements for synchronisation between the transmitter and receiver of a
reference conflict with the semantics of ANSA announcement (asynchronous) operations.
We could maintain the illusion of asynchrony for the programmer who attempts to pass
DGCs in announcement arguments, by using a background thread to make a synchronous
call, but this conceals overheads for no real benefit. Passing an automatically-collected
reference does involve synchronisation, and this should be explicit in interfaces. Attempts
to pass references compatible with DGC in announcements are rejected statically by stubm3.
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5.3.2 vIntra—Process Interfaces

Within every process there are a number of interfaces concerned with the distributed
collector: between stub modules and the runtime, and between the runtime and the local
collector, the death-detector and the underlying REX RPC protocol implementation.

The interface between client and server stubs and the runtime consists of procedures
essentially equivalent to Ezport, Import and ReplyFinished (figures 5.2 and 5.3). The
Ezport procedure has an extra boolean “result” argument which is made false in client
stubs and true in server stubs. If it is false, the client stub must take responsibility for
calling ReplyFinished. Otherwise, the runtime makes arrangements with the server-side
REX implementation to be informed when it is safe to release the pin list associated with
the results’ transmission.

Client stubs for operations with DGC results must warn the REX implementation to use
the modified RPC protocol described below (section 5.3.4) when they initiate their call,
and must subsequently inform REX after they have Imported their results, at which point
it is known that any dirty calls have returned. The client-side interface to REX allows
them to do this.

The local garbage collector in SRC Modula-3 exports a WeakRef interface to support object
cleanup, which contains FromRef and ToRef procedures dealing in WeakRef .Ts. Attempts
to apply ToRef to dead weak refs (whose referents have been detected unreachable) return
NIL. If the cleanup procedure makes a referent reachable again, and a new WeakRef.T is
created for it with FromRef, the new and old WeakRef . Ts are unequal, and ToRef continues
to return NIL for the old one. Our collector implementation never attempts to resurrect
surrogates in this way, and does not in fact depend on the inequality mentioned. It does
depend on the old WeakRef .T staying dead.

The last internal interface we mention here is to the death detection mechanism. An
AnsaPinger.T maintains a set of Capsules on which it periodically makes test calls, and
provides methods for the runtime to add and remove dirty clients from this set. If a test
call continues to fail, the AnsaPinger.T removes the failing capsule from its set and makes
a callback to the runtime. This method of detecting capsule death has the disadvantage
that pings cannot be distinguished at the transport level from ordinary calls, and thus
cannot be given a higher priority but lower overhead to help prevent a congested pingee
being declared dead prematurely.
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5.3.3 Data Structures

How can we represent the state of the collector at a process efficiently? The object table
is implemented as a straightforward hash table using the interface reference bound to
a network object as its key. Table entries contain both strong and weak reference fields
(figure 5.10). There is no need to flag the four possible states of an entry (concrete, nascent,
alive and dead) explicitly: they can be encoded by NIL entries in the reference fields.
Unfortunately, there is no distinguished null WeakRef.T in the current implementation.
Therefore nascent entries are distinguished by a false “ready” bit.

Consider the implementation of ProcessTerminated from figure 5.7. It would be unreason-
able to search every local dirty set for the dead capsule, so it seems sensible to maintain
on each capsule surrogate the set of local objects for which it is dirty. Having made this
choice, we notice that whenever we update o.dirtySet we in fact have both o and cap avail-
able. The same is true for timestamp and keep. So we associate a record ( dirty, keep, ts)
with the pair (o, cap), and can keep these records in a hash table cap.ezports indexed by
o, rather than a table on o indexed by cap. How can the implementation of UnRef (fig-
ure 5.7) tell when o.dirtySet becomes empty? We simply maintain the size of o.dirtySet
in an integer o.refClount.

A surrogate Capsule.T is kept reachable while the client process it represents is not
known to be clean by a strong reference from the AnsaPinger.T monitoring it. This
strong reference can be deleted when cap.ezports becomes empty. It must be retained
even if cap.esports contains only clean entries (with the keep bit set).

These data structures represent those in the collector actions given above as follows:

o.dirtySet = { cap:Capsule.T | o.ir € cap.ezports A cap.ezports|o.ir].dirty }
limestamplo, cap] = { cap. exports|o.ir].ts, if o.ir E cap.exports;
—00 otherwise.

keeplo, cap] = {cap.ewports[o.ir].keep, if 0.ir € cap.exports;
’ false otherwise.

Pin lists are straightforward to represent. There is no need to maintain o.pins and
o.refCount separately: the implementations of Ezport and ReplyFinished (figure 5.2) sim-
ply increment and decrement o.refCount without touching o.dirtySet. We can remove o
from the object table when o.refCount becomes zero. The full invariant is

o.refCount = | o.dirtySet | + | ClientPins(o) | + | ServerPins(o) |
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Figure 5.10: Collector implementation: Data structures.

where ClientPins(o) and ServerPins(o) are the sets of strong references to o from pin
lists at its owner, respectively on client-side thread stacks (result false) or held by the

server-side RPC implementation (result true).

5.3.4 RPC Protocol

Suppose a client makes a call to a server that returns network object results. As described
above, these must be kept pinned at the server until the server knows that the client has
made any dirty calls. We achieve this by a similar mechanism to that used in REX to
ensure that the client has received the results in the first place (figure 5.11). In the standard
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Figure 5.11: Modified REX reply protocol.
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mechanism, the server enters a REPLYING state for a call when its results are available. In
this state, it sends reply messages to the client (waiting in the CALLING state) until either
the reply is acknowledged or some number of retries have gone unacknowledged and the
client is deemed unreachable. Replies are acknowledged either explicitly or implicitly by
a fresh call message from the client.

All we need do is have the server retry replies indefinitely as long as the client’s dirty
calls are unfinished, in just the same way as a CALLING client probes indefinitely while the
server (in state ASKED) continues to send call acknowledgements as it serves the call. As
in that case, the retries need only be single-packet probes rather than full retransmissions,
and the retry interval increases to avoid overloading congested clients.

We introduce a new client state HOLDING analogous to the ASKED state at the server. A
client call enters the HOLDING state when it receives a reply containing object references,
rather than going directly to the IDLE state of the standard protocol. It leaves HOLDING
and becomes IDLE when the client stubs have processed the results and know that any
dirty calls have finished or failed.

If a HOLDING client receives a current reply probe, it sends a reply hold message analogous
to the standard call acknowledgement. When a REPLYING server receives such a message,
it resets the probe count it normally uses to detect unreachable clients. Thus the server
will continue to probe indefinitely as long as the client remains reachable and in the
HOLDING state. When an IDLE client receives a reply probe, it sends an ordinary reply
acknowledgement which will terminate probing in the standard way.

To maintain the sequence numbers and other protocol state necessary to provide the
call semantics of REX interrogations, a client and server share a session object and pass
identifiers for their respective halves in all messages. A server associates a pin list with
its half of a session. When a server session leaves the REPLYING state on receipt of an
acknowledgement or a fresh call, it is safe to free the associated pin list. This is initiated
by an upcall to the collector. Since the thread making the upcall may be serving the next
call from the client, we simply enqueue the pin list for processing by a background thread
rather than touching collector state on the new call’s critical path. The background thread
calls the implementation of ReplyFinished (figure 5.2) as dead pin lists become available.
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5.3.5 Unsafe Features

We now consider how our collector implementation interworks with the existing ANSA
testbench, which does not implement our collection protocol. Programmers dealing with
existing services must fall back on manual methods. These are unsafe in the sense that
defining and maintaining safety and liveness is the responsibility of the programmer rather
than the system. Introducing the DGC interface means that by and large we can keep these
worlds separate.

Let us call processes (capsules) which implement our collector aware, and processes which
do not naive. Then we impose the condition that a process which is a client or server of an
IDL interface which uses DGC (either by compatibility or by transmitting data including
DGCs) must be aware. This condition can be enforced statically. There are now two sides to
the problem: we must decide how aware processes deal with non-DGC surrogate or concrete
objects, and how to deal with DGC references which pass through naive processes.

Aware processes never automatically remove concrete but non-DGC server objects from
their object tables. Non-DGC surrogates are still automatically removed from the tables of
aware clients after they are detected unreachable by the weak ref machinery. By this time,
the programmer has presumably already made arrangements to inform other processes
that the surrogate is no longer needed. No clean or dirty calls are generated for non-DGC
surrogates. ‘

To allow programmers of aware processes to deal with the collection of non-DGC surrogate
and concrete objects, we provide Discard and Withdraw procedures. These respectively
delete surrogate and concrete entries in the local object table. It is a checked runtime error
to make an invocation on a Discarded surrogate. Discarding a DGC surrogate triggers
cleanup, just as if the surrogate had been detected unreachable by the local collector.

A possible strict safety condition is to require that we never automatically remove a DGC
concrete object from its owner’s object table if it has ever been passed to a naive process.
We cannot do this in general without such overheads as requiring an aware transmitter to
tell the owner before sending a DGC reference to a potentially naive receiver. Instead, we
explicitly require the programmer to be aware that references held by naive processes will
not prevent collection of concrete DGC objects; in this respect, such references are like weak
refs. Notice that if this situation arises, the static type of the reference in the interface
over which it is transmitted can only be a strict supertype of DGC—that is, it must be
Management or the generic interface reference type. Otherwise, our awareness condition
has been violated.
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The prime example of a naive process with which an aware process must deal is the trader.
There is little to be gained by posting DGC gervice offers to the trader, but programmers
might do so to avoid reworking their interfaces when and if it becomes aware. To support
this usage, we mark concrete objects which have been exported by their owners to the
trader. Marked objects are not removed from the object table when their dirty sets become
empty.

As described in section 4.7, we provide a Narrow operation to deal with generic non-DGC
references. Because of the dynamic type fingerprint mechanism, it is unnecessary (and
a checked runtime error) to apply Narrow to a DGC, for which the correct “any” type is
DGCRef rather than the generic interface reference type. In the unlikely event of a DGC
passing through a naive process to an aware one, the receiver can Narrow it to a type which
<: DGC.T. A standard dirty call will be made and the new surrogate, which replaces the
narrowee in the object table, will get the richest valid type in the usual way. However,
there is no guarantee that the corresponding concrete object is still alive; neither will
the non-DGC surrogate that was passed to Narrow keep the concrete object alive after the
death of the new DGC surrogate. The cleanup for the non-DGC surrogate does not remove
the corresponding object table entry in the client, whether that is alive or dead.

5.3.6 Interface Identity

As they stand, our algorithm and implementation rely on interface references to identify
interface instances (concrete objects) uniquely and for all time. This allows us to ensure
that there is at most one reachable surrogate for a concrete object per capsule. But from
version 4 of the testbench, interface references are not (in theory) one-to-one with interface
instances [ANSA 92a).

ANSA interface references consist (énter alia) of a collection of transport addresses with
corresponding protocol identifiers and a 20-byte identifier called a nonce. A single interface
instance may be accessible at multiple transport addresses, and multiple distinct references
to it may exist. Nonces are unique for all time relative to all the addresses at which the
interface is ever accessible, but not necessarily globally. The nonces are used in an end-
to-end check to detect reused addresses. The testbench regards bitwise interface reference
comparison at clients as a hint. References containing equal addresses and nonces denote
the same interface instance for all time. References which fail this test may or may not
denote distinct interfaces.

To use interface references to index object tables and cap.ezports, we currently simply hash
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Figure 5.12: Collector data structures without global interface identifiers.

the nonce. This is valid because nonces do in fact currently identify interface instances
uniquely and globally, so that interface equality reduces to nonce equality. However, we
should describe how to modify our algorithm and implementation to remain correct when
interface references have only the properties described above.

Suppose ir; and irg are distinct interface references which both denote the concrete object
o. The problem arises when iry arrives at a capsule cap which already has a surrogate for
ir1. The correctness of our algorithm depends on the fact that the entries in cap.ezxports at
o’s owner are one-to-one with surrogate object table entries at cap, and that these object
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table entries are associated with at most one reachable surrogate for o (section 5.2.2).
9o if we want to make a new surrogate table entry at cap (because of the new interface
reference), we must simply make a new entry in cap.ezports at the owner. We have
effectively made o.dirtySet a multiset.

To carry out this strategy, we must have a means of assigning identifiers to object table
entries at cap. These identifiers are unique relative to cap and are not reused. An identifier
is stored in its table entry. All dirty and clean calls for that entry transmit the entry
identifier as well as the interface reference for o. The object table at the client “cap” is
still indexed by interface references, but we use the new identifiers rather than o to index
cap.exports at the owner. That is, the members of o.dirtySet are now pairs (entry, cap)
rather than capsules alone. The ¢|o.dirtySet |” part of o.refCount is now kept equal to
the total number of dirty ezports entries for o in all caps at the owner.

It is not necessary to store a reference to o in its cap.exports entries to maintain this
invariant, provided the client can be trusted to associate interface references and entry
identifiers consistently: the correct o is already to hand in the dirty or clean call arguments.
Also, notice that the keep bit is no longer needed in cap.ezports entries. The next dirty
call for iry from cap after a strong clean call must create a fresh object table entry at cap,
and hence a distinct entry in cap.ezports. A strong clean call merely clears the dirty bit
in the cap.ezports entry, without deleting it as a normal clean would.

There remains the question of how cap should allocate identifiers for its object table entries.
A given entry for ir is uniquely determined by the transition at its creation from the state
ir & objThl to the state objThl [ir] = Nascent. We could keep a separate counter to label
these transitions, but of course the timestamp counter at cap is perfectly adequate. It
is important to emphasise that when the CheckPresent action of figure 5.3 finds a Dead
entry, the stored entry identifier already present must be used but a fresh timestamp must
be generated for the subsequent dirty call. In other words, the two mutually exclusive
disjuncts of the postcondition of the while in CheckPresent require different actions.
Timestamps now have a dual function: they order the states of surrogate table entries
as before, and additionally label individual entries. This latter function requires a shared
counter for the whole object table. Figure 5.12 summarises the modified data structures.
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| do not set my life at a pin's fee

— HAMLET (Act I, Sc. 4, line 65)

The ears are senseless that should give us hearing
To tell him his commandment is fulfill'd
That Rosencrantz and Guildenstern are dead

— 1st AMBASSADOR, Hamlet (ActV, Sc. 2, line 75)
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Chapter 6

Evaluation and Performance

The author has implemented and tested everything described in Chapters 3, 4 and 5 above,
with the exception of the modifications to the distributed garbage collector mentioned in
section 5.3.6, which have not yet become necessary. This chapter reports on experiences
building applications with our implementation, describes some of the tests we made of it
and presents some simple measurements of its performance.

6.1 Applications

The author and others in the Laboratory have constructed various Modula-3 application
programs which use our network objects system.

The m3coffee program is a client of a pre-existing ANSA service (GFrame, by Paul Jardet-
zky and Quentin Stafford-Fraser) which provides remote access to a video frame grabber
attached to a camera which watches a communal coffee pot. It displays the received images

with Trestle, a Modula-3 window system [Manasse 91]. Although m3coffee was of little.

value in itself, it provided a thorough test of our system and its ability to interwork with
the rest of the ANSA world. The Modula-3 client ran over UNIX on a DECstation and
communicated via an implementation of the MSNL internetworking service [McAuley 90)
with the C/DPL server capsule running over the Wanda operating system [Dixon 92] on a
68020-based VME crate. Since Trestle was originally designed to run on a multiprocessor,
it makes heavy use of Modula-3 threads. The stress this placed on our integration of
ANSA tasks with Modula-3 threads (section 3.4.5) revealed many concurrency bugs.
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Component

Tools
stubm3
dgcmon
DGC logging

total

Size Language
6,209 M3, C, yacc
1,328 M3, IDL, FormsVBT
256 M3, shell
7,793

Runtime Library (not including existing ANSA testbench capsule code)

Network Objects:
interfaces
modules
System-dependent capsule code

total

Tests
Misc. tests
Distributed gc
m3coffee
Timing

total

2,708 M3, IDL
4,579 M3
4,036 M3, C
11,323
1,410 M3, IDL
1,187 M3, IDL
219 M3, IDL
2,042 M3, IDL, C
4,858

Figures are lines of source code reported by we(1).

Table 6.1: Sizes of implementation components.
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Another program combining use of our system, Trestle and existing ANSA services is
tab, Peter Robinson’s Trestle Active Badge monitor. Users of this program select from
menus the names of people whose current whereabouts they wish to see at a glance. For
each such person, tab creates and registers a network object with the ANSA server which
represents the active badge system. Infra-red signals from the badges [Want 90] then
trigger announcement invocations with location data to the callback objects in tab, which
updates its display accordingly.

When tab was written, the code generated by stubm3 to unmarshal enumeration types
(section 3.4.2) performed no range checking, under the (misguided) assumption that static
typechecking of the transmitting program would prevent illegal values from being mar-
shalled in the first place. Part of the sighting information transmitted in the callbacks to
tab from the badge system was an enumeration describing the state of a button on the
badge. It turned out that framing errors in the badge network could occasionally cause
this value to be corrupted without detection. The badge system servers, written in C,
were quite happy to pass these corrupted values on to tab, which would then crash when
trying to inject them into a Modula-3 enumeration type. Our mistake was to assume too
much about the transmitter (section 4.4).

To help test and debug our distributed garbage collector we constructed the dgcmon pro-
gram, whose user interface (which uses the FormsVBT toolkit for Trestle [Brown 92]) is
shown in figure 6.1. The program displays the collector state at selected capsules, and
allows the user to interact with it in various ways. To inspect the state of a given capsule,
the user selects it from a list in dgcmon’s Chooser window. The chooser collates this list
by querying the ANSA trader.

A monitor window for a target capsule has two main areas, labelled Imports/Exports
and Capsules. The first of these contains one line for every object table entry at the
target, showing the entry’s kind (concrete or surrogate), the nonce component of the
corresponding interface reference, the name of the surrogate or concrete object’s Modula-3
type and, for a concrete object, its total reference count. The user can instruct the target
collector to behave as if a surrogate had died by selecting it and clicking on the Kill
Surrogate button. The capsules area displays the nonces of each of the capsules for which
the target has a surrogate. The Kill Cap button can be used to simulate detection by the
target of the selected capsule’s death.

Entries in both areas are annotated with their status with respect to an object or capsule
selected by the user. Capsules are marked with a “¥”, “c” or “o” if they are dirty or clean

for a selected concrete object, or own the referent of a selected surrogate, respectively.
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Figure 6.1: DGCmon: a tool to monitor distributed garbage collector state.
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The timestamps recorded for a selected concrete object owned by the target are displayed
in the form (n,m) at the end of each entry in the capsules area. The object table entries
in the imports/exports area are similarly annotated with respect to the currently selected
capsule.

Monitor windows obtained from the same chooser cooperate to highlight entries with
equal interface references or type fingerprints. The chooser window contains a key for the
various highlight colours. Figure 6.1 shows monitors for a simple client/server pair: the
client holds a single surrogate of type GCEchoCRPC.S for a concrete EchoServer.T in the
server. The user has chosen to highlight all the surrogates for this server object.

To read and update a collector’s state, the dgcmon program depends on the DGCMon net-
work object interface, for which every collector implements a server. If a special command
line argument is present when an aware program starts, it exports its DGCMon interface to
a trader offer context reserved for this purpose, with enough additional properties (such
as host name and process id) to allow the user to identify the program instance from the
list presented in dgcmon’s chooser window. The DGCMon interface provides operations to
support the kill surrogate and kill capsule features and a dump operation whose imple-
mentation makes a marshallable copy of a consistent state of its local collector, obtained
under the collector lock, and returns it to the caller. Notice that this involves redundant
copying of this state: once to create the consistent marshallable value, and once to mar-
shal it into the reply buffer. The extra overhead is not a cause for concern in this case,
because the operation’s performance is not critical and the local garbage collector relieves
the programmer of the chore of freeing all the memory used for the copy. However, it
is certainly possible to imagine situations where for performance reasons data should be
marshalled directly under a user-level lock!; customised stubs are then required.

Our system has been used in a number of final-year undergraduate projects in the Labo-
ratory. These have included

e a multi-party “talk” system whose central server manages a collection of multi-way
conversations between users’ client programs (C. L. Harding);

e a multi-user shared “virtual space” whose users interact via virtual objects in a
central server which manages concurrency control for the space (A. Gibson);

e an automatic diary generator for active badge wearers which detects and logs its
users’ meetings with other badge wearers; users browse their diary with a FormsVBT

11 owe this observation to a remark in another context by Sai-Li Lo.

109




client of their diary-generator service (P. Mdckel);

e an adaptation of stubm3 to generate network object stubs for an implementation of
the lightweight MSRPC [Crosby 93] transport (C. T. Charlton); and

e 2 kernel for a Time Warp distributed simulation system: simulation nodes run in
separate processes and communicate with messages tagged with virtual simulation
times; optimistic concurrency control is used: a central master maintains global
virtual time and sends rollback messages to nodes when conflicts are detected; com-
munication amongst the nodes themselves and between nodes and the master is
layered on top of network objects RPC and makes use of the sequencing this implies
(J. S. Grewal).

It is noticeable that most of these projects have a simple structure with many clients and
a single central server; though some of the others do pass callback references from clients
to servers, only the distributed simulator really makes good use of the ability to configure
a system by passing network object references around.

6.2 Tests

6.2.1 Basic Functions

It was straightforward to test those areas of our system which are not directly concerned
with distributed garbage collection. A client and server of an Echo interface exercise inter-
action with the trader, binding to a service and marshalling of IDL’s base and constructed
types, possibly between machines of different endian-ness. A client and server of a pair
of related interfaces AB <: A exercise the use of type fingerprints as offer properties in
the trader: the server exports an AB, while the client imports first an AB and then an A,
checking the equality of the resulting surrogate references. Modifying A and AB to make
them compatible with DGC makes a similar test of the dynamic typing mechanism possi-
ble: in this case, the client imports the service as an A first, then as an AB before checking
surrogate equality. The other cases in figure 4.1 can be tested by varying which stubs
are linked into the client and server. The Narrow mechanism (section 5.3.5) is exercised
by the dgcmon program described above: the result of searching the trader for registered
instances of the DGCMon service is a collection of generic AnsaNetObj.Ts. The runtime’s
hybrid implementation of pseudo-concurrency has been best tested by the Trestle/Active
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Badge systems mentioned above, some of which have involved servers with lifetimes on
the order of a week. That said, concurrency bugs and storage leaks undoubtedly remain.

6.2.2 Distributed Garbage Collector

Testing the distributed garbage collector was less simple. Our strategy was to create,
pass and drop many references to a small number of DGC instances concurrently between a
single owner program and a number of clients. Each program produces logs of its actions
during a test run, and checks that its final collector state is correct.

When the owner starts, it allocates two DGC objects, the pushee and the pullee. The
pushee will always be passed as an argument of a push call from the owner to a client,
while the pullee will be passed as a result of a pull call from a client to the owner. Once
the specified number of clients have contacted the owner, it makes a call to each to start a
round of testing and itself forks a specified number of worker threads per client to execute
push calls.

When a client starts, it contacts the owner and waits to be triggered. It then forks a number
of threads to execute pull calls; the surrogate references these return are immediately
dropped on the floor, as are those received when serving push calls. Throughout a test, a
background thread in each client periodically forces the local Modula-3 garbage collector
to run in order to provoke weak ref cleanup actions. Alternatively, if an appropriate flag
is set, the clients explicitly Discard (section 5.3.5) surrogate references as they receive
them. This is useful to ensure that a large number of races occur.

Once the owner has been informed that all the push and pull calls have been completed,
it pauses for some time to allow any pending collector actions to execute. It then declares
the round finished; the owner and all the clients inspect their object tables via the local
DGCMon instance and report a failure if they contain entries for the pushee or pullee objects.

Our collector implementation is instrumented to produce logs of its actions if a special
flag is set. The log records indicate the type of event they represent, the time according
to the UNIX time of day clock and any other useful parameters, such as timestamp values
(local or received) and the identities of the objects and capsules involved. By manually
comparing logs from the various parties in a round of testing, it was possible to track down
the sequence of events leading to a problem. We would have liked to merge logs from
different processes automatically, but this was problematic. Ideally we would have used
the timestamp information to recover the true causal partial order of events, but doing this
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correctly is of comparable difficulty to constructing a correct garbage collector! Logs from
processes on the same machine were merged on the basis of their time of day values; this
was useful, but suffered from the fact that several events from different processes could
occur in a single clock grain (3.906 ms on a DECstation 3100). We experimented with
recovery of clock offsets between different machines by exchanging synchronisation calls,
but to no great advantage. Despite these problems, the logs were invaluable debugging
tools: dgcmon was helpful for general monitoring and to test the capsule death detection
machinery, but could give no clue as to the cause of erroneous collector states.

As well as exposing the expected bugs in our threads package, the races between clean
and dirty calls provoked by these tests showed up several flaws in earlier versions of our
collector implementation. The problems were all caused by a failure to keep the asynchrony
of pending clean calls in mind: assertions in our implementations would fail in perfectly
legal states, such as when CleanupSrgt (figure 5.6) finds no dead object table entry, or
when two fresh dirty calls arrive at the owner with no intervening clean call. The collector
tests incidentally revealed a Modula-3 compiler bug and an error in the handling of deleted
entries in a library hash-table implementation.

Our distributed garbage collector relies on capsules’ local collectors to detect that a
surrogate has become unreachable. Conservative local collectors, such as that in the
SRC Modula-3 runtime, can fail to detect all local garbage. The tests described above
demonstrated that this did indeed happen. The local collector’s design is based on the
mostly-copying collector of [Bartlett 88] and has the great advantage that ordinary C
code can be linked into a Modula-3 image, as we have done. However, when this collec-
tor encounters a word on a thread stack which might be a pointer into the traced heap,
it conservatively retains all heap nodes on the entire heap page apparently referenced.
Examination of the stacks and heaps of the participants in the test of the distributed col-
lector showed that the surrogates were allocated on the same pages as other small objects.
Some of these, such as the descriptors for the worker threads themselves, had long-lived
references from stacks, effectively preventing the surrogates on the same page from ever
being collected (unless they were explicitly Discarded while still reachable). This problem
is a result of what [Demers 90] calls “card pollution”. It could be cured by adding to the
existing mostly-copying collector a restricted sweep phase which examines only pages pro-
moted because of direct references from the stack, or circumvented by adding application
hints in the form of heap zones to the current one. In the second case, the idea would be to
allocate surrogates on pages in a special heap zone and to avoid keeping direct references
from stacks into this zone for significant lengths of time. (The techniques of [Demers 90]
and [Boehm 93] for avoiding card pollution apply mainly to non-copying collectors.)
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6.3 Performance

6.3.1 Environment

To assess the performance of our implementation, we ran a number of simple timing
experiments between a single client and server of a Null interface, exercising a different
operation in each experiment. The client and server programs ran in separate machines,
communicating via REX over UDP over a common Ethernet segment. FEach machine
was a DECstation 3100, based on the MIPS R2000/2010 processor and FPU clocked at
16.67 MHz, with 16 MB of physical memory and a local disc for swapping and paging,
running the Ultrix V4.2A operating system.

During the tests, no other programs apart from the Laboratory’s standard daemons were
running. No significant swapping or paging of the server or client programs was ob-
served. In Modula-3 tests, the SRC Modula-3 v2.11 environment was used, with thread
preemption enabled and the standard VM-synchronised incremental generational local
garbage collector running concurrently with the test code. The C code produced by the
SRC Modula-3 compiler is compiled with cc -g. In C/DPL tests, the standard ANSAware
4.1 environment was used. The C programs produced in this environment are compiled
with cc, enabling the default optimisations.

The minimum latencies reported below can only be regarded as accurate up to the grain
of the UNIX gettimeofday(2) clock used for timing, which is 3.906 ms on the machines
used. The mean latencies are derived from accumulated times and are correspondingly
more accurate. They were reproducible to within 5% or better.

6.3.2 Experiments

N

Each experiment we carried out had the same general form. The server program starts,
exporting an offer for the Null service to the trader. The client program then starts, im-
ports this service instance, and iterates some operation a number of times. Each operation
consists of measuring the time taken to perform some action, accumulating this time into
the running statistics, and optionally restoring the client and server to some state.

Table 6.2 reports the latencies observed for invocations of operations with no arguments
or results for a Modula-3 client/server pair with our system, and a C/DPL pair using the
same interface. Both interrogation and announcement (asynchronous) operations were
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Interrogation Announcement

M3 C/DPL M3 C/DPL
minimum 7.8 3.9 — —
mean 12.2 6.6 2.6 1.7
std. deviation 5.0 3.7 2.5 2.3

Latencies of 10,000 successive invocations of null operations as seen at the caller.
Figures are times in milliseconds. For comparison, invocation of a null local
Modula-3 method takes around 1.7 microseconds under the same circumstances.

Table 6.2: Performance of remote operation invocation.

tested. In both cases, the time measured is from the call to the return of the operation
at the client; there is no “restore” action, so any internal caches remain warm. During
null interrogations we observed roughly 33% user, 33% system and 33% idle CPU states
at both client and server. During announcements, there were roughly 50% user and 50%
system states at both. In the Modula-3 case, the local garbage collector went through 3
collection cycles at the server and none at the client.

Table 6.3 reports the latencies of operations with a single argument (push) or result (pull)
of the generic interface reference type which denotes a server with no operations owned by
the transmitter. In our Modula-3 system, this is an object reference of type AnsaNetObj.T.
In C/DPL, it is an INTERFACEREF. In the columns headed “Clean Receiver”, the “restore”
action caused the receiver to discard its reference, removing it from any internal tables.
Both client and server went through 1 local collection cycle during each of the Modula-3
tests.

Table 6.4 reports the latencies of push and pull calls with a single argument or result of
type DGC. T owned by the transmitting Modula-3 program, thus exercising our distributed
garbage collector. As above, in the columns headed “Clean Receiver”, the “restore” action
caused the receiver to discard its reference. In addition, a delay was introduced in the
“pestore” action to ensure that the resulting clean call generated by a background thread
in the receiver was processed by the owner before the next push or pull call was initiated.
Inspection of collector logs allowed us to verify that this happened. In this situation, each
push or pull call finds the reference to be transmitted absent from the object table at
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Clean Receiver

Dirty Receiver

Push Pull Push Pull
M3 C M3 C M3 C M3 C
minimum 156 7.8 156 7.8 156 7.8 156 7.8
mean 20.1 10.1 20.8 10.3 19.5 10.0 20.0 10.2
std. deviation 40 3.1 3.4 4.2 4.8 3.3 3.8 4.8

Round-trip latencies of 1000 transmissions of a Modula-3 AnsaNet0bj . T network
object reference or a C/DPL INTERFACEREF. Figures are times in milliseconds.

Table 6.3: Performance of interface reference transmission mechanisms.

Clean Receiver

Dirty Receiver

Push Pull Push Pull
DGC ANO DGC ANO DGC ANO DGC ANO
minimum 46.9 15.6 50.8 15.6 19.5 15.6 19.5 15.6
mean 67.9 20.1 63.2 20.8 22.1 19.56 22.5 20.0
std. deviation 164 4.0 15.6 3.4 45 4.8 4.2 3.8

Round-trip latencies of 1000 transmissions of a Modula-3 DGC.T or AnsaNet0Obj.T
network object reference from its owner. Figures are times in milliseconds; the
values for AnsaNetObj.Ts come from Table 6.3.

Table 6.4: Overhead of the distributed garbage collector on reference transmission.
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both the owner and the receiver, which must call in dirty. In the columns headed “Dirty
Receiver”, there is no “restore” action and the transmitted reference is already in both
object tables. In all cases, there are 5 ANSA worker threads at each process, more than
sufficient to serve all nested calls. The client and server went through 17 and 10 local
collection cycles respectively while pushing 1000 DGC. T references to a clean receiver.

6.3.3 Discussion

Research into techniques for high performance RPC was not one of our goals: the figures
in Tables 6.2 and 6.3 certainly bear this out! For comparison, [Thekkath 93] reports a null
call time of 170 microseconds for a high-performance RPC system on an ATM network
using DECstation 5000/200 hosts. For null operations and announcements, and when
transmitting ordinary interface references, our system has about half the performance of
the standard testbench. This is probably caused by a combination of the use of C code
as an intermediate language by the Modula-3 compiler, the lack of default optimisations
when compiling that C, and the overhead imposed by our merger of the Modula-3 and
ANSA capsule runtimes (section 3.4.6).

According to pixie, a basic-block profiler, time spent in the Modula-3 scheduler and MUTEX
locking routines (but excluding transfers between threads and management of masks for
select(2), which also occurs in the C/DPL tests using the standard capsule runtime)
accounts for 19.8% of instruction cycles in a run of 10,000 null operation invocations, and
36.0% of cycles in a run of 1000 calls pushing a DGC.T to a clean receiver. The standard
capsule runtime is compiled on the assumption that tasks run to completion; locking calls
are unnecessary and are pre-processed out.

The initial performance of our implementation was even worse: we were spending 64% of
our cycles in a routine which searches the mask returned by select(2) for the next ready
file descriptor. On the machines we used, these masks contained 512 bits, only a few of
which were ever likely to be set. To ensure remote processes are treated fairly each search
starts one bit further along the mask, so on average 256 bits had to be scanned each time.
The reported time spent in this routine was reduced to less than 0.43% simply by adding
code to count off each ready bit, leaving the scan loop when none remain, and maintaining
a high-water mark, at which the scan wraps around.

We would expect transmission of a DGC.T reference to a clean receiver to take slightly
more than twice as long as to a dirty receiver, allowing for the nested dirty call and the
creation of a surrogate of the appropriate type. Table 6.4 shows that the factor is nearer
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3 for 1000 iterations. The distributed garbage collector logs show that the problem is not
delayed clean calls from the “restore” actions overlapping with later transmissions. Neither
is the local garbage collectors’ activity (due to the accumulation of dead surrogates) to
blame: the timings are not significantly affected by switching them off, and pixie profiles
do not show significant numbers of cycles spent there. However, varying the number of
transmissions in ten steps from 50 to 2000 causes the mean time per push call to vary
linearly from 53 ms to 80 ms. The extrapolated time for a single push call is 52 ms, which
is more in line with our expectations.

On further investigation, we discovered that the main source of the increasing delays was
time spent in the ANSA capsule code arming and disarming timers on REX session objects
(section 5.3.4). When a client or server session becomes IDLE, a three-minute decay timer
is armed; if the session subsequently leaves the IDLE state, its decay timer is disarmed. If
a session is still IDLE when its decay timer expires, it is reclaimed; the length of the decay
timeout is sufficient to ensure that no orphan packets for the session will arrive later. In our
DGC.T transmission tests, many such decaying sessions accumulate: each iteration exports
the reference from its owner afresh, and results in the allocation of new sessions at the
owner and receiver for the dirty and clean calls. At worst, there are three minutes’ worth
of outstanding decay timers. This costs time as well as space because of the nature of the
timer queue implementation: a doubly-linked list in order of expiration with insertion by
linear search from the head of the queue. Because of its duration, arming a decay timer
is very likely to scan the whole queue. One would expect disarming a timer (removing
it from the queue) to take constant time in a doubly-linked list implementation, but the
capsule code first checks by linear search that the timer to be removed is actually on the
queue before deleting it. Time spent disarming and arming the decay timer on the session
of the transmitting call itself is on the critical path for our measurements; management
of the other sessions’ timers also affects us because of increased contention for the global
capsule lock.

There are various ways to improve the situation. The length of the decay timeout relative
to others (such as for retries) means that when a timer is armed, it is likely to be inserted
near either the front or the end of the outstanding timer queue; the implementation could
be made more efficient for the second case. When a reference is removed from the object
table at either its owner or a client, its IDLE sessions could be reclaimed immediately,
rather than waiting for them to decay. We do not currently do this because a session is
required at both owner and client for the consequent clean call. Calling in clean on the
reference itself (as in our DGC interface) is probably a mistake: it would be better for dirty
calls to return a separate reference to the owner’s collector, on which all clean calls to
that owner are made. Then IDLE client sessions for a reference could be discarded in the
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action that acquires the timestamp for the following clean call (CleanupSrgt; figure 5.6),
and IDLE owner sessions in UnRef (figure 5.7). This is a question of performance rather
than correctness: sessions will eventually be reclaimed by the decay mechanism in any
case.

Guil: | think we can say we made some headway.
Ros: You think so? ...
Guil: He might have had the edge.
Ros (roused): Twenty-seven—three, and you think he might have
had the edge?! He murdered us. .
Guil: He had six rhetoricals— ... And two repetitions. ...
Ros: Six rhetorical and two repetition, leaving nineteen, of which
we answered fifteen. And what did we get in return? He’s depressed!

— TOM STOPPARD, Rosencrantz and Guildenstern Are Dead (1976)
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Chapter 7

Related Work

This chapter places our system in the context of recent work on distributed object-based
systems and distributed garbage collection.

7.1 Distributed Systems

7.1.1 SRC Network Objects

Our system was designed and developed concurrently with (and, with the exception of
the distributed garbage collector, independently of) the SRC Network Objects system
[Birrell 93b]. The starting point for both systems was the proposal in [Nelson 91a] which
we reviewed in section 3.1. Both systems use language-level Modula-3 objects to represent
service interfaces and their client-side bindings. Both rely on automatically generated
stubs. However, in the SRC system, the input to stub generation is a pure object type
definition in Modula-3. Thus Modula-3 is a privileged language. This allows simple imple-
mentations of some pleasant features: for instance, stream objects suitable for bulk data
transfer can be transmitted between programs, and stubs can call on pickling machinery
(section 3.4.2) to marshal complex data, including graph structures.

By contrast, our system requires the programmer to define services in an external (and

slightly more restrictive) IDL. The benefit we gain from this is the ability to interwork
with the existing ANSA testbench and the possibility of extending the network objects
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approach to other programming languages. Despite the use of IDL, our system presents
the heterogeneous ANSA environment to the Modula-3 programmer very nearly as trans-
parently as the Modula-3-only SRC system. We achieve this by having the stub generator
produce object type declarations as well as stubs in the target language.

Both systems approach the typechecking problem in similar ways. Since the SRC com-
piler uses type fingerprints to achieve type-safe separate compilation for Modula-3, the
extension of fingerprints to the distributed environment is a natural step. The use of
IDL again distinguishes our system from SRC Network Objects: our fingerprints are in
theory calculated from expanded IDL definitions, and can therefore be used for cross-
language typechecking. However, we must admit that our current implementation simply
uses the fingerprints calculated by the SRC Modula-3 compiler from the network object
type declarations which stubm3 generates from IDL specifications.

As we have mentioned, essentially the same distributed garbage collector [Birrell 93a] is
used in both systems. The integration of this collection strategy with the heterogeneous
ANSA world was the topic of the second half of Chapter 5.

Rustan Leino has implemented a version of the Modula-3 language with extensions for
distribution which are based on network objects [Leino 93]. The Modula-3D system runs
on the Caltech Mosaic multicomputer, which currently has 256 processing elements, each
consisting of a custom processor and 64 KB of memory. This environment allows the pos-
sibilities of communication and process failure to be ignored. The NEW pseudo-procedure is
extended so that objects of type <:NETWORK can be created at a designated node, possibly
returning a local surrogate. The node on which object o resides is returned by the runtime
call Processor.0f (o).

7.1.2 Distributed Computing Environments

Chorus/COOL v2 [Lea 92|, the CHORUS object-oriented layer, is made of three slices:

e COOL-base is a veneer over the CHORUS kernel (section 2.3) which provides clus-
ters. A cluster is a distributed (coherent) virtual address space backed by secondary
store and shared by a number of closely-coupled homogeneous nodes. These must
cooperate in the allocation of ranges of virtual addresses to clusters. Such virtual
addresses can be passed in invocations among the processes in which a cluster is
mapped without further indirection.
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e The COOL-generic runtime implements objects in clusters independently of pro-
gramming languages. It manages dynamic linking of code for classes into clusters.
Domain-wide object references name objects uniquely and for all time. They are
converted into language references (virtual addresses) by creation of proxies, anal-
ogous to our surrogates, which perform RPC multiplexed over CHORUS ports and
message passing.

e Language-specific runtime libraries cooperate with the generic runtime via an up-
call mechanism to perform such tasks as pointer swizzling (replacement of object
references with proxies) when mapping a cluster in from secondary store.

COOL v2 thus provides operating system support for distributed object based systems
with multiple persistent heaps. Its approach to concurrency control, failure handling,
stub generation, cross-language typechecking and garbage collection is not discussed in
[Lea 92]. Our approach seems quite feasible in the COOL environment, given kernel
support for synchronisation of access to memory in clusters.

OSF/DCE [OSF 91], the Open Systems Foundation’s Distributed Computing Environ-
ment, provides threads, RPC, a directory service, clock synchronisation, secure and au-
thenticated communication and a distributed file system. It is currently implemented on
the OSF/1 operating system for the C language using the UDP and TCP Internet proto-
cols. RPC interfaces are specified in an IDL. An IDL specification includes a mechanically
generated universal unique identifier or UUID and major and minor version numbers. These
three values uniquely identify the interface specification in time and space. They thus act
as a canonical type name in the sense of section 4.5. The binding between these names and
the interface specifications in which they are embedded must be managed by cooperation
between programmers. Compatibility between interfaces is also managed by programmers:
during binding, interface A is deemed to be compatible with interface B if their UUIDs
and major versions are equal and A’s minor version is greater; the actual contents of the
respective interface definitions are not taken into account.

RPC binding in OSF/DCE is a two stage process. The interface types regularly offered
by a given host are registered in a global directory service, whose contents are expected
to change infrequently. This allows widespread replication of the directory with relatively
weak consistency protocols. Having obtained the identity of a likely host from the di-
rectory, a client contacts a port-mapping daemon process at that host to obtain a full
binding to a currently available service instance. New service instances cannot be created
and bound to without registration at some level in this name service hierarchy. However,
a server can issue a client with context handles: these are special tokens for portions of
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the server state. In order to simplify resource management, such handles can only be used
by the original client: they cannot be passed to third parties. In our system, interface
references (viewed by programmers as language-level objects) subsume this function. Our

network objects are more flexible: they can be passed freely between processes and are '

supported with distributed garbage collection and a dynamic typechecking mechanism.

OMG CORBA [OMG 91], the Object Management Group’s common object request
broker architecture, is a framework for object-based systems similar in approach to ANSA.
However, it places less emphasis on the practicalities of distribution and communication:
these have been abstracted away almost completely. (One has to look quite hard at the
CORBA specification to find an occurrence of the acronym “RPC”.) Objects (analogous
to ANSA interfaces) are named by object references, via which invocations can be made.
CORBA IDL is similar to ANSA IDL, though its syntax resembles C++- rather than Mesa.
Values transmitted in invocations may be object references. The IDL allows exceptions
and RAISES clauses to be declared in a style similar to Modula-3, and has an ANY type
which can transmit any value.

IDL interface specifications (once compiled) are themselves objects which are stored in
the interface repository. Client programs can interpret stored specifications and construct
requests dynamically without requiring client stubs to be generated ahead of time. Server
stubs are still required. Types are described by structured values called TypeCodes. Thus
CORBA uses a combination of the second and third techniques mentioned in section 4.5.
TypeCodes are essential to the interpretation of values of the ANY type.

To create an object reference, a local object identifier and a reference to the interface
specification in the global interface repository is supplied to the runtime. No language-
level sugar is defined for this, though it would be possible for an IDL mapping for a
language like Modula-3 or C++ to adopt a network object approach like ours. The
semantics of type checking are not defined in [OMG 91]. Dynamic typechecking when
passing object references would appear to require interaction with the global interface
repository to obtain the relevant TypeCodes.

The Esprit Comandos project has a scope and approach broadly similar to that of the
OMG CORBA. The Comandos Type Manager (TpM) [Campin 91] is intended to
act as a repository for elaborate type structures which are created and interpreted by
the compilers and runtime libraries of a number of programming languages. Rather than
adopting the “lowest common denominator” approach of most IDLs, the TpM type system
is intended as a universal type calculus. It supports all the features of the most sophis-
ticated polymorphically-typed lambda calculi, up to and including bounded existentially
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and universally quantified recursive dependent types. Type compatibility is defined by
the contravariant conformance rules traditional in such calculi. The TpM is intended to
perform compatibility checking and conversion of values between languages via a canonical
form. This appears to require the cooperation of the logically central TpM service when
marshalling; it is not clear how (or whether) values of abstract types are to be transmitted.

The ANSA distributed programming language, DPL [ANSA 93], is a notation for
programming in accordance with the ANSA Computational Model [Rees 93]. It is not to be
confused with the C/DPL embedded language described in section 2.6.3. DPL is an object-
based language with similar facilities to Emerald, but with support for heterogeneity and
the handling of failures with language-level exceptions called named terminations. DPL,
like our system, supports the dynamic creation of services. However, it achieves this
in a slightly different way. DPL has language-level constructors for interfaces which are
analogous to our concrete objects. These capture state in closures formed according to the
block structure and scope rules of the language. As in our system, interface references may
be freely passed and there is a transparent object-based syntax for invocations, whether
local or remote.

Abstract interface types are defined with a type constructor which subsumes the réle of
the ANSA testbench IDL in hiding heterogeneity. Conformance between these abstract
types is defined by a contravariant rule, as in Emerald. The result of evaluating a type
constructor is itself an interface which supports the operations necessary to decide type
conformance. Conformance is checked at bind time. Thus DPL uses the third approach
mentioned in section 4.5.

DPL is implemented by translation to a target language. The bodies of operation imple-
mentations may optionally be supplied as code in this language. The interface between
such code and the code produced by the DPL translator is specific to each target lan-
guage. In the current implementation, the target language is C. Since C has no facilities
for objects or concurrency, the corresponding DPL features integrate smoothly. However,
in a language like Modula-3 or C++, the overlap of features with DPL could result in
confusion. When objects are available in the target language, it seems simpler to adopt
our approach, which uses them to present potentially remote interfaces to the application
programimer.
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7.1.3 Reliable Systems

Our distributed garbage collector is fault-tolerant, and our underlying RPC mechanism
deals with transient communication problems. However, we provide no other explicit
generic support for reliable distributed applications, preferring not to hide the essential
difficulties of distribution from our clients. This is a matter of the emphasis of the current
work rather than a philosophical position. Various systems have provided programmers
with tools to help their applications manage persistent state (which survives crashes) and
improve reliability by replication and quorum or consensus mechanisms. The integration
of such tools with our system is a topic for further work.

The Argus language and system [Liskov 88b] provides language-level support not
only for object-based remote procedure call but also for nested atomic transactions. Like
Emerald, Argus is a homogeneous system in which language and runtime are closely cou-
pled. Objects in Argus are called guardians and their operations are called handlers.
Guardians are like ANSA objects, not the ANSA interfaces which network objects repre-
sent in our system. Guardians are mobile. They can be created dynamically and the names
of guardians and handlers can be transmitted in handler calls. However, such dynamically
created guardians cannot be nested inside their creators. This prevents guardian names
from being used as lightweight handles to transient shared state.

Guardians encapsulate two kinds of state, whose declarations in Argus programs are syn-
tactically distinguished. Stable data survives crashes, while volatile data does not. After
a crash, volatile state is rebuilt from stable state by recovery code specified by the pro-
grammer. Argus supports synchronisation and recovery through atomic actions. These
are serialisable: the outcome of actions executed concurrently is the same as if the ac-
tions were executed sequentially in some order. They are also total: a given action either
completes successfully or has no effect, even when the state used by an action resides in
more than one guardian. To achieve this, the Argus programmer uses built in atomic data
types such as atomic arrays and records. Fach instance of an atomic data type has its
own readers-and-writers lock. Serialisability is implemented by strict two phase locking:
locks are held until an action commits or aborts. Totality is implemented by a versioning
mechanism for atomic objects and the use of two-phase commit [Gray 79] for top-level
actions.

Despite the language-level support provided by actions and atomic data types, the Argus
programmer must still take care to avoid deadlocks and starvation by choosing the scope
of actions appropriately. The longer an action lasts, and the more locks it must hold, the
greater the potential for poor performance through excessive contention. In our system,
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because of the concurrency mechanisms of Modula-3, programmers have complete control
over the association of locks and data. However, this does require that programmers
make these decisions themselves, implement them correctly, and take responsibility for
the consistency of joint states of more than one program.

The Arjuna system [Shrivastava 89] also supports serialisable nested atomic transac-
tions, within which programs invoke operations on objects by RPC. Both transaction
handles and objects are instances of C++ classes. Lock management and transaction con-
trol, via stable storage, versions and two-phase commit, are provided in high-level C+-+
classes. Application classes are derived from these by inheritance. They supply appropri-
ate overrides for save and restore operations which must marshal object state to and from
buffers. These buffers are used both for transaction undo and for writing and reading state
on stable storage. Arjuna’s approach of library-level support should also be possible in our
system, though we would probably attempt to generate marshalling code for object state
automatically from IDL specifications. As our system currently stands, programmers can
use SRC Modula-3’s pickles facility to save and restore rooted heap structures.

Arjuna has been ported to use ANSAware as the RPC transport. However, stubs are
generated from (slightly restricted) C++ class declarations rather than IDL, and Arjuna
presentation syntax is used in messages. This prevents straightforward interworking be-
tween Arjuna and the rest of the testbench world. In the current implementation, object
references cannot be transmitted in invocations. Bindings are obtained by quoting unique
identifiers to the runtime.

The ISIS; system [Birman 87b, Birman 87a] is based on process groupsf Groups are
named by text strings chosen by programmers: binding is by convention in ISISs. A
process may be a member of more than one group at once. A process communicates with
a group by using a message broadcast primitive. The calling process specifies the number
of replies it requires before the call returns. Programs in ISIS can rely on the property
of virtual synchrony: every process in a group sees events concerning that group (that
is, membership changes and message delivery) in the same order, though not necessarily
at the same time. Furthermore, a process receiving a message addressed to a group
knows that every other process in its current view of that group has also received the
message. It may therefore use knowledge of the algorithms employed by the other group
members to make (logically) coordinated actions without using additional application-
specific consensus protocols.

With these facilities, ISISq supports the use of replication for both reliability and consis-
tent data sharing. Although ISIS; conceals the details of the protocols used to achieve
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consistency from the application programmer, it cannot conceal the extra latency of com-
munication consistency requires. ISIS programmers must choose group sizes and consis-
tency requirements carefully to obtain the desired performance for their application.

Facilities for group communication are currently being implemented within the ANSA
testbench. Groups are presented to clients as ordinary interfaces. To receive invocations
on a group, an ordinary server interface is presented to the group’s management interface.
Clients and servers of an interface group enjoy virtual synchrony properties similar to those
of ISISs. These properties are provided by the interposition of distributors, collators and
member agents between clients and servers. Our system should accommodate the ANSA
group facilities readily. Though stubs might be different, the application programmer
should see little change: the group facilities are all based on standard interfaces specified
in IDL.

7.2 Distributed Garbage Collection

Almost all published distributed collectors distinguish between public objects and those
which are only ever accessible within their own process, leaving the collection of the latter
to a local collector. They vary in the amount of cooperation they require from these
local collectors. They also vary in the requirements they place on their environment with
respect to the reliability of processes and communication, and in the strength of their
safety and liveness guarantees.

The distributed collection schemes fall into two broad classes: those based on reference
counting and those based on tracing. Reference counting schemes, including our collector,
work by tracking local changes in the reference graph as references are transmitted. They
are attractive in a distributed system because they require only limited synchronisation
between processes, and can often be implemented with little or no modification of local
collectors. However, they are unable to collect garbage in cycles spanning more than one
process.

By contrast, tracing schemes propagate reachability information by following references
from the root objects, and can thus collect all garbage. Unfortunately, tracing collectors
require cooperation (and some amount of synchronisation) among many processes, which
is expensive in a distributed system. Almost all distributed tracing schemes are incremen-
tal (unlike their stop-the-world local cousins), imposing an overhead on mutator activity
during tracing comparable to that of the reference counting collectors.
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Because of their complementary properties, many hybrids of tracing and reference counting
have been proposed. Hybrids use reference counting for timely and relatively inexpensive
collection of non-cyclic garbage, and relatively infrequent tracing for completeness. This
technique applies equally to our collector, though we have not yet pursued this. In a
hybrid scheme, it is possible for a cheap, safe reference counting collector with relatively
weak liveness properties in the face of failures to leave garbage it cannot detect to the
tracing collector. We are prepared to pay more for our robust reference counting collector
because we view full tracing collection as prohibitively expensive: in our environment, the
set of processes which must cooperate in complete tracing is potentially large and difficult
to identify.

At the end of their survey of the field, the authors of [Abdullahi 92] note that “about 80%
of the distributed garbage collectors reviewed in this paper have not been implemented.”
We can at least claim not to have added to this set! We will now compare our scheme
with representative existing collectors, beginning with cheap reference counting collectors,
then considering more robust schemes and finishing with tracing collectors.

7.2.1 Reference Counting Collectors

As we saw in section 5.2.4, naive reference counting does not extend to a distributed
environment: increment (dirty) and decrement (clean) messages must be synchronised, as
in our algorithm. There are a number of schemes which can reduce this overhead if it
is known that references are never lost as a result of process crashes or communication
failures. All these collectors avoid the cost of communicating with the owner of an object o
when transmitting an o-reference. They maintain safety by distributing o’s reference count
among the processes through which o-references are propagated. However, because the
owner’s knowledge is incomplete, none can reclaim objects in the face of process failure.

Indirect reference counting [Piquer 91], like our algorithm, keeps at most one o-
reference per client process by indirecting via records analogous to our surrogates. A
list of incoming references protects objects from an independent local collector. Rather
than keeping the total reference count with o, Piquer organises o’s surrogates into a tree,
rooted at o, which records the propagation history of references to o. Each surrogate
contains a pointer to its parent in the tree, and a count of the number of its immediate
children. Before process P transmits an o-reference to Q, the local count at P is incre-
mented, rather than making a dirty call to the owner from Q as in our scheme. If Q
already has a surrogate for o, it atomically clears the surrogate’s deleted flag and replies
with a decrement message to P; otherwise it creates a new o-surrogate with parent P.
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When Q’s local collector detects that the surrogate is unreachable, it is deleted (and a
decrement sent to its parent in P) only if @ is currently on the fringe of the propagation
tree; otherwise, the surrogate and its count must be marked deleted, but retained until its
immediate children are deleted and the count at @ falls to zero. If the surrogate is still
marked deleted at this time, Q sends a decrement to P as before. When the count at o,
the root of the tree, reaches zero, it can be removed from its owner’s incoming reference
list. \

This scheme has been implemented on a network of Transputers. Although it requires a re-
liable message transport, because duplicated decrements or references lost in transit would
compromise safety or liveness, no non-local synchronisation is needed when a reference is
transmitted. Unlike our algorithm, which requires both dirty and clean calls, indirect
reference counting has an overhead of only one extra message per reference. However, it
can retain resources in processes which no longer contain references for o. Further, if a
process P in o's reference propagation tree terminates, the portion of o’s reference count
kept at P will be irrevocably lost, even if P has no non-deleted surrogate at the time.
The o-counts in all P’s ancestors will never become zero, and o will never be collected.
By contrast, our algorithm can reclaim garbage in an environment where processes may
terminate independently.

Generational reference counting [Goldberg 89], though it was invented earlier, can be
understood as a variation of indirect reference counting in which, rather than maintaining
the propagation tree of o-references itself, one merely records in each reference its gener-
ation (its depth from o in the propagation tree). Copy counts are kept in each reference
as before. Then any reference can be discarded by sending its generation and copy count
to the owner, even if the copy count is non-zero. For each o, the owner keeps an array
called a ledger whose entries (initially zero apart from that for the zeroth generation)
record the number of outstanding o-references of each generation. On receiving a discard
message for a reference with generation ¢ and copy count n, o.ledgerli] is decremented
(possibly becoming negative in the process) and o.ledger[i +1] is incremented by n. When
all its ledger entries are zero, o may be collected. In our terminology, the dirty calls for
generation ¢ + 1 references have been deferred and piggy-backed on the clean calls from
generation 1.

The generational scheme also requires reliable messaging, needs no non-local synchronisa-
tion and has an overhead of one extra message per discarded reference. It allows a process
to terminate after sending discard messages for all its references, but cannot reclaim an
object o after a process has terminated while holding a o-reference.
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Weighted reference counting [Bevan 87, Watson 87] has similar communication and
synchronisation requirements to the indirect and generational schemes, and has the same
intolerance to process failure as the latter. In this algorithm, a strictly positive weight
is stored with each o-reference and on o itself such that the sum of the weights of the
o-references is invariantly equal to the count on o, initially a large number. When a new
reference s is created from an old one r, the previous weight of the old reference is split (in
practice equally) between 7 and s. When a reference is deleted, a discard message is sent
to the owner, which decrements o’s reference count by the weight of the deleted reference.
When o’s reference count reaches zero, no references remain. In practice, weights are
always powers of two. They are therefore stored as logarithms, and thus effectively record
the generation of the reference (subtracted from the initial log weight). The relationship
between the generational and weighted schemes is that the latter effectively destroys a
generation i reference and creates two of generation 4 + 1 when copying, while the former
stores (negative) weights in exponent and mantissa (generation and copy count) form.
Both algorithms deal with underflow of weights (overflow of generations, copy counts or
ledgers) when a reference is copied repeatedly by creating fresh indirection objects, but
we will not discuss this further.

7.2.2 Robust Reference Counting

Among existing collectors, ours is most closely related to the fault-tolerant reference count-
ing schemes of Mancini and Shrivastava (MS) [Mancini 91] and Shapiro et al. (SGP)
[Shapiro 90, Shapiro 92]. All three can tolerate lost, duplicated and delayed messages.
The SGP scheme is more expensive than ours, particularly in the face of process failure,
while the MS scheme, though it handles process failure simply, imposes more restrictions
on reference transmission than we do.

The SGP scheme, like ours, distinguishes local from remote references and maintains
various data structures to allow independent local collectors to cooperate in reclaiming
public objects for which no references from remote spaces exist. It tolerates lost, dupli-
cated and delayed messages, but because o’s owner is not informed when transmitting
an o-reference between other spaces, it can only handle process failure by a very expen-
sive mechanism, and potentially imposes a high overhead both for reclamation and when
making an invocation on an object.

A process P holds a reference to a remote object o in the form of a stub for o. A stub in
P refers to a structure called a scion for (o, P) in a remote space; because scions record
the identity of the client process, they can be used to make various changes to the set of
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scions idempotent in much the same way as the entries of the owner’s cap.ezports records
for capsule P in our implementation. Scions at the owner protect concrete objects from
the local collector in the familiar way. Stubs are analogous to our surrogates, except that
P may contain more than one stub for each concrete object 0. However, a stub for o need
not point directly to a scion at o’s owner, as we shall now see.

To transmit an o-reference to @, P first creates a scion for (o, Q) in its own address space
which refers to the local stub in P (thus protecting the stub from P’s local collector),
then sends a reference to this indirection scion to (), which creates a new stub. This
technique, like indirect reference counting, avoids making a dirty call to o’s owner and
builds a propagation tree for o’s stubs. Unlike Piquer’s scheme, @ need take no special
action if it already holds an o-stub: it simply creates another one. An invocation on
the new stub proceeds indirectly via P; this involves a potentially unbounded number of
nested RPCs. When Q’s local collector detects that the new stub has become unreachable,
a removal message is sent to its parent (P) in the propagation tree. Because indirection
scions keep stubs alive, this will only happen when @ is on the fringe of the tree, as before.

To maintain safety in the face of lost, duplicated and delayed messages, the SGP scheme,
like ours, uses strictly increasing counters maintained at each process. Each transmission
of a reference from P is stamped with the current value of P’s counter. The scion at P
for (0, Q) contains P’s timestamp value for its last transmission to Q; this contrasts with
the corresponding cap.ezports record of our algorithm, which would contain a timestamp
from (. Like all processes, () maintains a timestamp vector which records the highest
timestamp of any message received by Q from each other process. When @ sends a
removal message for o to P, it includes both its own current counter value and the value
recorded for F in its timestamp vector. The former is used to update P’s vector. If the
latter is less than that stored in P’s (0, Q) scion, there is an o-reference in transit from
P to Q or lost, and the removal message from @ is ignored. Similarly, if Q receives a
transmission out of order (that is, with an earlier timestamp than the highest seen by @
from P), the transmission is ignored as if it had been lost. Our scheme manages timestamps
rather differently: reference transmissions need not be timestamped because they will be
associated uniquely with any dirty call necessary; clean and dirty calls themselves need
contain only the caller’s current timestamp.

Maintaining liveness after lost or misordered transmissions or removal messages is handled
by a separate mechanism. Periodically, @ sends to P a live message, timestamped like
a removal message with Q’s time value and the highest timestamp it has seen from P.
The live message contains a list of Qs live stubs for scions at P. Q-scions at P which
do not appear in @Q’s live message can be removed if their timestamp indicates that no
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reference is in transit. For this to ensure liveness in the face of lost transmissions from
P, Q's view of P’s timestamp must make progress. This is achieved by assuming that
the periodic live messages in the opposite direction (from P to Q) will eventually be
received. The analogous mechanism in our scheme is the repetition of clean calls from @
until they succeed or communication is deemed permanently lost; because of our pinning
mechanism and the fact that a surrogate cannot be created at @ until its dirty call has
returned successfully, we do not need to send a complete record of the live surrogates at Q.
Notice that the live messages suffice to ensure the liveness of the SGP algorithm: removal
messages are a performance optimisation.

Thus far, the SGP scheme can be viewed as a more robust version of indirect reference
counting. However, it goes further by introducing a background task which eliminates
indirection scions by path compression. When an indirect invocation via P from ) on o
returns, o’s true owner becomes known to Q. @ can now make what is effectively a dirty
call to cause the owner to transmit an o-reference directly to @, thus creating an (o, Q@)
scion at the owner. The new direct stub at Q) can now replace the old one, which is dropped
once any outstanding calls on it have returned. Eventually, the cleanup for the old stub
will cause P to reclaim its (o, Q) scion, possibly unprotecting the stub in P. Where we rely
on pin lists to keep surrogates alive in a transmitter until the receiver’s dirty call is known
to have been processed by the owner, the SGP scheme creates indirection scions which
will eventually be eliminated by path compression and normal cleanup processing. Our
algorithm requires fewer messages when P transmits o to Q as a call argument: because
(s dirty call is nested under this call, the fact that it returns is sufficient acknowledgement
that it is safe to release pins.

Suppose a process P that is an internal node of the propagation tree of o-references crashes
before it is bypassed by path compression. An invocation on a downstream o-stub will
discover this fact, and will be delayed until a global search has been made for o’s owner.
When such a crashed process is detected, every other process must bypass P by using the
exhaustive search. Once it is known that this has been achieved (which implicitly requires
a distributed termination detection algorithm), an empty live message can be faked from
P; since it is not known locally for which spaces P held references when it crashed, this
final clean message must be sent to and acknowledged by every process. It is not clear
how the death of processes on the fringe of the propagation tree is detected. By contrast,
because our scheme informs the owner before every surrogate creation, the owner always
has enough information to maintain liveness in the face of client crashes.

The MS scheme addresses the problem of process failure explicitly, by making use
of an existing orphan detection facility in the underlying RPC system. At the owner,
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the scheme maintains an export list (analogous to the Concrete entries of our object
table) whose elements record the reference count for each public (concrete) object and
protect such objects from the local collector. For each client process, the owner keeps a
structure recording the set of object references (one per transmission) which have ever
been transmitted to the client. By contrast, the cap.ezports table of our implementation
contains one entry per object (section 5.3.3). These transmission lists are related to our pin
lists. Before transmitting an o-reference to process P, o’s owner increments o’s reference
count in the export table (possibly creating an entry) and adds the reference to P’s
transmission list. There may be many distinct o-references at P.

After P’s local collector has deleted an o-reference, it is included in a del (clean) message
to the owner; because the references are distinguishable, the death of each results in its
removal from the owner’s transmission list and the decrementing of o's reference count.
When this reaches zero, the protective export list entry is removed in the usual way. When
the orphan detection mechanism at the owner discovers that P has crashed, either because
of the arrival of a call from P with a later crash count (incarnation) than that recorded
for P, or because P has failed to respond to a periodic request for its crash count, all
the references in the transmission list for P are deleted as before, and the transmission
list itself is discarded to ensure this happens only once. This works because o-references
are only transmitted to P in results of calls from P to the owner: thus, the death of
one incarnation of P will be discovered before any references are transmitted to a later
incarnation.

When an o-reference is transmitted to Q from a process P which is not its owner, the MS
scheme needs an additional mechanism. Rather than make a dirty call from the receiver
(Q) as in our algorithm, it maintains safety by making the call from the transmitter
(P). The owner puts the new reference on its transmission list for @, and increments the
reference count as before. Only once P’s dirty call has returned successfully can it send
the reference to (. However, the owner must check that the new reference is eventually
received at Q: otherwise liveness would be compromised should P or @ crash after the
dirty call but before transmission.

To this end, each reference in the transmission list for Q at the owner contains an initially
true unused flag, which is cleared on receipt of an invocation on that reference. When
the orphan detection mechanism comes to check that @ has not crashed, it includes Q’s
currently unused references in the query. There is a possible race if the query arrives at @
before the transmission from P; this is resolved by having @ regard a reference possibly in
transit as already in its possession. For this to work, @ must already know the identity of
any object for which it is expecting to receive a reference. In the MS scheme, a reference
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is only transmitted to @ as a result of an explicit request from Q. (This implies that Q
must not be able to forge its own o-reference on the basis of o’s identity alone.)

Neither the MS scheme nor ours can distinguish process failure from extended commu-
nication failure, so both may violate safety in this case (section 5.2.6). Where the MS
scheme relies on orphan detection, we rely on death detection and the semantics of our
RPC system to cope with failures. In particular, the fact that a dirty call which has
returned successfully can never execute in the future at the owner is what allows us to
forget timestamps after a clean call if no previous dirty has failed (section 5.2.7). In the
case of transmission from the owner, where the dirty call is local, the MS scheme uses
one less RPC than ours. In the general case, it imposes the same overhead. However, we
support a more general programming model in which client processes need not know in
advance the identities of the objects for which they will hold references, allowing server
objects to be created and collected dynamically.

None of the reference counting schemes we have described can detect garbage lying on
inaccessible multi-process cycles. Various modifications have been proposed to address
this problem without resorting to full tracing. Bishop’s technique [Bishop 77| consists
of migrating a locally inaccessible object to one of the remote processes holding a reference
to it. By ordering processes appropriately, it is possible to arrange that garbage cycles will
eventually end up in a single process, where they will be detected by the local collector. We
cannot use this trick because we do not (yet) support object migration, whose meaning in
our heterogeneous environment would need clarification. Vestal’s technique [Vestal 87)
consists of making a trial deletion of an object suspected of lying on a garbage cycle and
propagating its effect on reference counts. If after this restricted trace the minimal set
of traced objects which would have a zero reference count includes the seed object, the
set is garbage. This technique suffers from the problems of identifying potential seed
objects, and requiring cooperation from remote processes’ local collectors to maintain and
propagate hypothetical reference counts.

7.2.3 Tracing Collectors

Reference counting schemes cannot detect cyclic chains of distributed garbage essentially
because they only consider changes to a small part of the reference graph, while reacha-
bility is a global property. An object o is reachable in a global state (a snapshot at an
instant of external global time) if and only if there is some path of references starting
at a root object or a message in transit and ending at o. The difficulty of distributed
garbage collection arises in part because such global states (and the unique total ordering
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of events they imply) cannot be observed within the system [Lamport 78] (though the
partial order induced by the relation of causality of events is observable). Simply deciding
which processes are to be regarded as containing roots is not completely straightforward,
either.

The distributed garbage collection problem is well defined in these circumstances because
being garbage is a stable property. Once an object has become unreachable (in some global
state), no further references to it can be created and it stays unreachable forever. Stable
properties can be detected by distributed termination detection algorithms [Chandy 85],
but these are expensive in messages and do not scale well with the number of processes
among which consensus must be reached, especially when these processes are subject
to failure. (Conversely, termination detection can be formulated as a garbage collection
problem [Tel 93].)

Nearly all of the tracing collectors are based on mark-and-sweep rather than copying
([Rudalics 86] is an exception). A typical tracing scheme which is claimed to be robust
to process failure is the Emerald collector described in [Juul 92]. It is related, as are
many others [Hudak 82, Augusteijn 87, Vestal 87, Schelvis 89], to the classic on-the-fly
algorithm of [Dijkstra 78].

The Emerald collector proceeds in three phases. In the first, a collection cycle is
initiated by one process and labelled with a cycle number. In the second, which starts when
all processes agree on the current collection cycle number, local tracing collectors gather
reachability information and propagate it amongst themselves in parallel with mutator
activity, which can transmit references between processes. The end of this phase is detected
by a distributed termination detection algorithm. In the final phase, between collections,
unmarked objects can be discarded as they are encountered by local sweeping interleaved
with allocation at each process.

To allow tracing to take place in parallel with mutator activity, the Emerald collector uses
the traditional three-colour marking scheme. Objects which have not yet been considered
by the tracing algorithm and are potentially garbage are white, those which are alive and
whose references are currently being traced are gray, and those which are alive and have
had all their references traced are black. Initially, all objects are white except the roots,
which are gray, and all mutators are halted. The collector makes progress by making
objects darker (converting gray objects to black once all their descendents are at least
gray) under the invariant condition that no black object holds a reference to a white
object. New objects are created black. Mutators can never access a white object. Gray
objects are protected and made black (by shading their descendents, possibly by calls to
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remote processes) on an attempted access by a mutator; since such an access must be
by an invocation, this protection is relatively cheap in Emerald. Thus mutators only see
black objects, and any references they transmit must therefore have at least gray referents.
When no gray objects remain and there are no outstanding non-local shading requests, all
remaining white objects are garbage. The termination of the tracing phase is detected by
a robust two phase commit protocol [Gray 79], which involves communication with every
process in the system.

Black, gray and white markings only have a meaning relative to a particular global col-
lection cycle. The Emerald collector in fact marks objects with collection cycle numbers.
During the tracing phase, the colours black and white are represented by the current and
previous cycle numbers and gray objects are identified by membership in gray sets which
are kept on the side. Objects marked with cycle numbers strictly less than that of a cycle
whose tracing phase is known to have terminated are garbage and can be reclaimed.

Unlike the Emerald collector, which requires global agreement to start a collection cycle,
Hughes’ collector [Hughes 85] allows many collections to run in parallel. A collection
is identified by a timestamp which is propagated through the reference graph by tracing.
Objects are thus marked with the highest timestamp at which they are known to be
accessible. As long as collections continue, the timestamps of live objects will increase.
By use of a distributed termination detection algorithm, a global lower bound on the
timestamps of live objects can be be determined. As this lower bound makes progress,
garbage objects with earlier timestamps can be reclaimed. The algorithm is expensive in
a distributed environment because of the communication required to establish the lower
bound.

Liskov and Ladin’s collector [Liskov 86b, Ladin 92] allows each process to collect its
own heap independently, like ours. Rather than requiring tracing activity to propagate
between processes, like most tracing algorithms, it relies on a logically central highly-
available service to store information about inter-process references.

A process P maintains a structure called the Inlist whose entries point to objects owned
by P for which it has transmitted references in messages, and which may therefore be
accessible from other processes. Like a Concrete entry in our object table, the Inlist entry
for object o protects o from P’s local collector; in addition, the entry records o.id and
the local time of the last transmission of o from P. When P transmits an o-reference to
Q, an entry recording o.id, @ and the local time is added to Trans, a list of references
transmitted since the last local collection.
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At the end of each local collection, P sends to the central service three pieces of information
about its portion of the global reference graph, accompanied by the time at which the
collection took place. The set of remote objects for which P holds references is split into
two parts: Acc and Paths. The Acc list contains the identities of those remote objects
which are accessible from the roots at P ezcluding the public objects recorded in the
Inlist. The Paths list contains the identities of those which are reachable only from the
public objects, and are inaccessible from the other roots. For each such remote object,
the entry in Paths records some public object at P from which it is (directly or indirectly)
accessible. If an object in Paths is globally accessible, it is only by virtue of a root outside
P. The third item sent to the central service is the Trans list. In return P receives a list
of the objects it owns that are known to be globally inaccessible.

The central service maintains data structures recording the complete inter-process refer-
ence graph. Since the processes’ local collectors operate asynchronously with each other,
the information in this graph is never completely accurate. However, with care and some
cooperation from the local collectors in the selection of which public objects to use in
making Paths entries, the central service can use Hughes’ algorithm to propagate times-
tamps and derive a global lower bound on the timestamps of reachable objects. A universal
bound on message delay, implemented by loose synchronisation of strictly increasing clocks
at all processes, allows the central service to maintain liveness even though its information
about references in transit is out of date.

The central service is made highly available in the face of process and communication
failures by replication. Each process need only contact one replica. The replicas exchange
background “gossip” messages to ensure that their views of the global reference graph and
the current global lower bound for live objects’ timestamps make progress.

Though Liskov and Ladin’s collector does not suffer from the common problem of global
synchronisation between ordinary processes, it requires more cooperation from local col-
lection algorithms than ours; in particular, each collector must be modified to calculate
the Paths set. Also, the storage and processing required to maintain global (though out
of date) state in each replica of the central service places a bound on the number of the
processes in a practical system. This can be circumvented by introducing a hierarchy
of reference services at the cost of increasing the complexity of non-local communication
between processes.

Lang, Queinnec and Piquer [Lang 92] propose a collector which explicitly addresses

the problem of defining the roots for a tracing collection without requiring global control.
Their scheme is designed to be used as an adjunct to distributed reference counting in
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order to collect inaccessible cycles lying entirely within process groups. Processes in a
given group perform a conservative distributed tracing collection relative to that group
by regarding objects referenced from outside the group as roots in addition to the local
roots of the processes themselves. Once a group has been formed, and the effective root
set for the collection cycle is established, reachability information relative to the group
is propagated by a tracing algorithm. As usual, this requires cooperation from local
tracing collectors to propagate colours from public concrete objects to surrogates in the
same process, and as usual, a distributed termination detection protocol between group
members discovers when a tracing cycle has stabilised. Unmarked public objects are then
deleted, thus breaking .any garbage cycles, and the group (notionally) disbands.

A process may be a member of more than one group simultaneously: marks for the tracing
algorithm must be maintained separately for each group on concrete and surrogate objects
and propagated between them accordingly. For any given group, the scheme is as expensive
as a standard distributed tracing collector, and requires the same cooperation from local
collectors. It is useful because groups need not include every process in the system, but
may be defined (whether dynamically or statically) according to a local policy based on
knowledge about where cycles are likely to occur in an application.

Stencil listened attentively. The tale proper and the questioning
after took no more than thirty minutes. Yet the next Wednesday
afternoon at Eigenvalue's office, when Stencil retold it, the yarn had
undergone considerable change: had become, as Eigenvalue put it,
Stencilized.

— THOMAS PYNCHON, V (1963)
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Chapter 8

Conclusion

8.1 Summary

In this dissertation, we have presented the design, implementation and evaluation of a
practical network objects system for Modula-3 and the ANSA testbench. Its purpose is
to support programmers of distributed applications with language-level tools previously
available only in centralised or homogeneous systems. To the language-level support for
distributed communication provided by traditional RPC, it adds language-level support for
the dynamic creation, binding, typechecking and garbage collection of remotely accessible
services.

We have had two broad goals. The first was to deal with the heterogeneity and failure
properties of the distributed systems encountered in practice. The second was to min-
imise the burden of distribution on the application programmer by supporting powerful
and familiar language-level tools. The main problem to be overcome was the conflict be-
tween these goals. The key feature of our system which addresses this conflict is that
abstract network object type definitions for a particular target language are generated
automatically from interface specifications in a common interface definition language.

With this bridge in place, we were able to come close to achieving our more detailed design
goals. In our system, service instances are represented by language-level objects, and are
therefore simple to create. They are made remotely accessible by the same mechanism used
in a single program: by being passed by reference as arguments or results of operations.
The resulting client-side bindings are themselves ordinary language-level objects. We
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explicitly map failures of distribution transparency into language-level exceptions.

Services are typed, and their types are propagated with references. Again, the global
type system is presented in the familiar terms of the application programming language.
New service types can be introduced without stopping old programs, and references can
pass through old programs without loss of type information. Our type mechanisms use
fingerprints to reduce the overhead of managing the space of service types.

Concurrency is an unavoidable companion of distribution. We regard concurrency as in-
dependent of object structure. Within a single program, we support well understood
techniques for language-level concurrency control, but our system takes no special mea-
sures in this respect. In particular, we have so far made no attempt to provide distributed
atomic transactions or support for transparent replication.

The network objects style encourages the use of dynamically created objects as handles
for transient shared state. We have succeeded in supporting this usage with fault tolerant
distributed garbage collection. This solves a common core of the distributed resource
management problem in an application-independent way. However, in order to allow an
efficient implementation, our collector must rely on some cooperation from the programmer
if garbage cycles are to be reclaimed.

We do not free the programmer from the burden of deciding in advance which objects are
to be remotely accessible. Furthermore, their specifications must be written in IDL. We
regard this lack of transparency as a positive feature of our system for several reasons:

e The restrictions of IDL are precisely those which allow interface specifications to be
implemented via efficient heterogeneous RPC mechanisms.

e The performance and failure properties of network object invocation in a distributed
system are sufficiently different from the local case that they should be taken into
account early in the design of a distributed application.

e We believe that “choosing the proper boundaries between functions is perhaps the
primary activity of the computer system designer” [Saltzer 84]. Therefore, we wish
to encourage programmers to design their interfaces carefully—both as abstractions
and in the light of the properties of likely implementations.

Perhaps our most significant contribution is that our system is completely implemented.
The tradeoffs we have made are those we have found useful in practice. We have demon-
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strated by example that programmers of applications in heterogeneous distributed com-
puting systems can be supported with many of the tools that are currently common only
in centralised systems.

8.2 Further Work

A number of common problems in distributed computing are not directly addressed in
our system. Persistence of service state, secure communication between authenticated
principals, mobility of service objects, and reliability through replication, consensus pro-
tocols, or automatic fail-over are all left to the programmer. These problems have received
considerable attention in distributed systems research. The extent to which solutions can
be provided in an application-independent manner is still a topic for debate, as is the
best division of responsibility between languages, runtime libraries and operating systems.
Nevertheless, solutions to these problems are available. It would be interesting to inves-
tigate how best these solutions can be presented to the application programmer in the
framework of our system. M. D. Schroeder’s software clerks [Schroeder 92], M. Shapiro’s
proxies [Shapiro 86] and the analogous notion in the ANSA architecture of selective trans-
parencies seem good starting points. Language-level network objects and their agsociated
(possibly annotated) IDL definitions seem good candidates to act as the interface between
application-level code and the implementations of the various transparency mechanisms.

One of the strengths of the network objects style is that the application programmer sees
binding to remote entities as the familiar process of binding to local objects. The targets of
bindings in our system are essentially RPC-like service interfaces, but perhaps extensions
are possible. For instance, some RPC systems allow stream connections of one form or
another to be established as part of an RPC binding. These vary from thinly-disguised
TCP byte streams or UNIX pipes to reliable typed message streams with sophisticated
facilities which control the sequencing of messages and conventional RPC calls sent across
the same interface [Gifford 88].

Our system contains mechanisms which trigger secondary activity (such as dirty calls
for our garbage collector) during the binding process for network object references of a
particular type (<: DGC.T). It seems quite possible that a more general version of this
mechanism could be made available to higher-level software. For instance, binding to a
network object which represents the source of a video stream could trigger connection
setup. The network object itself would provide control operations for this stream. Notice
that it might be possible to relax the requirement that the surrogate object created at the
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receiver has the same abstract type as the concrete object to which it is bound. Arbitrary
translation mechanisms could then be interposed. Operations on the surrogate need not
even make calls on the concrete object. Such a generic mechanism would probably be based
on marshalling specials. These are procedures (or closure objects), registered with the
network object runtime in an extended stub type registry (section 4.8). When a network
object reference is marshalled or unmarshalled, the marshalling special for its type is given
the opportunity to produce or interpret an additional value of some arbitrary IDL type
which is transmitted together with the standard interface reference.

A similar mechanism could also be provided at the level of the stub generator. In our
current system, stubm3 makes certain fixed translations from IDL types (like STRINGs)
to idiomatic Modula-3 types (like TEXTs). Given a way of registering their names and
signatures, custom type translations and marshalling procedures could be supplied for
application-specific types. This would solve problems like the one mentioned in sec-
tion 3.3.1 (in which we would like to translate certain fixed-length IDL character arrays
to and from Modula-3 TEXTs during marshalling).

Other extensions to our system would be more straightforward. User-defined exceptions
for IDL would be both very useful and extremely simple to implement. A lightweight RPC
mechanism with single-shot semantics, in the style of CCLU “maybe” calls, would be a
useful addition for systems in which application-level retry mechanisms are intrinsically
necessary. IDL interfaces should document the “maybe” semantics of calling an operation.
This is no great burden since the operation signatures are themselves likely to have been
designed for application-level retry, for instance by being idempotent.

Finally, we would like to gain more experience with our distributed garbage collector.
In particular, further investigation of the use of garbage collection to trigger associated
application-level resource management mechanisms would be useful. Such investigations
would allow us to evaluate the extent to which our collector’s safety and liveness guarantees
reflect the requirements of practical higher-level applications. They would also give us more
insight into the requirements of a supplementary collector for distributed cyclic garbage.
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Everybody gets told to write about what they know.

The trouble with many of us is that at the earlier stages

of life, we think we know everything—or to put it more usefully,
we are often unaware of the scope and structure of our ignorance.

— THOMAS PYNCHON, Slow Learner (1984)
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