Technical Report VAN

Number 317

Computer Laboratory

Femto-VHDL:
the semantics of a subset of
VHDL and its embedding
in the HOL proof assistant

John Peter Van Tassel

November 1993

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1993 John Peter Van Tassel

This technical report is based on a dissertation submitted July
1993 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Gonville & Caius College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

ABSTRACT

The design of digital devices now resembles traditional computer programming.
Components are specified in a specialised form of programming language known as
a hardware description language. Programs written in such languages are then
executed to simulate the behaviour of the hardware they describe. These
simulations cannot be exhaustive in most situations, so result in high, yet
incomplete, confidence that the proper behaviour has been achieved.

The formal analysis of programming languages provides ways of
mathematically proving properties of programs. These properties apply to
behaviours resulting from all possible inputs rather just than a subset of them. The
prerequisite for such an analysis is a formal understanding of the semantics of the
language.

The Very High Speed Hardware Description Language (VHDL) is currently
used to specify and simulate a wide range of digital devices. The language has no
formal mathematical semantics as part of its definition, hence programs written in it
have not been amenable to formal analysis.

The work presented here defines a structural operational semantics for a subset
of VHDL. The semantics is then embedded in a mechanical proof assistant. This
mechanisation allows one not only to reason about individual programs but also to
express equivalences between programs. Examples which highlight the
methodology used in this reasoning are provided as a series of case studies.

vii

ACKNOWLEDGEMENTS

None of this would have been possible without the financial assistance provided by
Dr. John Hines at Wright-Patterson AFB through the United States Air Force Office
of Scientific Research. John also gave generously of his time whenever help was
needed with anything pertaining to VHDL. Additional financial support in the form
of a bursary from Smith System Engineering was also appfeciated.

The members of the Cambridge Hardware Verification Group have been
instrumental in the successful completion of this work. Particular thanks go to Mike
Gordon for supervising and putting up with me. Mike's ability to listen to the most
silly ideas and slog through my horrible grammar is an argument for his immediate
canonisation. Members of the group that should also be singled out are Juanito
Camilleri for initial instruction in operational semantics and helping in getting to
grips with how it might be applied to VHDL and Tom Melham for providing not
only a sounding board for my strange ideas, but also some of the tools that made
working with this stuff in HOL relatively painless. Thanks also to Juanito Camilleri,
Mike Gordon, David Hemmendinger of Union College, Beth Levy of Aerospace and
Bill Young of CLI who read parts of this opus and provided comments on making it
better.

Last, but by no means least, the highest accolades should go to my parents for
believing in and putting up with me over the years. Their unflagging support has
been a great comfort both during the research and the writing up.

ix

CONTENTS

CHAPTER 1 INTRODUCTION ..cccoevvnsrsusararsasrsrsssasassonss verersssesersasastsaarsnsasasaansaeaes s s sn e e se 1
1.1 MOLIVALION c.vevrvecririritinisiiiii e s s st ees 1

1.2 PRIIOSOPRY ...vcviririitriiiinireeieiisiet sttt sesss s scssesnas s 2

1.3 Language HiStory ... 2

1.4 ApPPLCAtION ATEAS ..cvvveerireerirriisreisn st 3

1.5 Evaluation of VHDL Programs ... 3

1.6 FOrmaliSation ... sssssssenssnens 6

1.7 AULOTNATON covvvveeerecaeere et s st s snsssasssssses 6

1.8 EXAIMPIES....coiiiririinininnretnrsn st nans 7

1.9 AcCOMPLSHMENES....civiviviiniriritieeritre s 7

CHAPTER 2 RELATED WORK ..uccivernssnnerstssnsssnmsmiinsssssssssssssassssnssssnsssssassssassssssssnsssess 9
2.1 Simulation-Time Validation ... 9

2.2 Semantics-Based Verificationccceeeuervnveneiennnineccnnna, e 10

2.2.1 Denotational Work ... 10

2.2.2 Operational WorkK.......ccemnnnnnisninenssisnnsse s, 11

Use of an Oracle......vnniinininnircnnienssessensenns 11

Secure Formalisationscccvevcivncsiinnnsinnnsninincnnninnn 11

2.2.3 Other APProaches ... 12

CHAPTER 3 STATIC SEMANTICS.......cccvuneu. st b bR eb st sr s s e s s s ba e be s 13
3.1 Femto-VHDLcooiviniiniiinriininiesiiensenss s sssssesessenes 13

3.2 Definitional Style......coiiniiiiiii s 16

3.3 Syntactic Well-FOormedness..........ccvvninmirininnnininiinennen: 17

3.3.1 Multiple DIivVers ..., 17

3.3.2 Signal Relationshipscoccecvinviiiiriiniiriniiiiniicnn. 19

Signal EXtraction.......ccoveinncnnnncii e 19

Well-Formedness of Design Signalsccocoovvunrcennnernieninnees 22

xi

xii CONTENTS

3.3.3 Overall Well-Formedness ..., 23
CHAPTER 4 DYNAMIC SEMANTICS....ccocvucrismressssnsassssessssossssssassssssassosssssssssssassscssoses 25
4.1 Operational Semantics ..., 25
4.1.1 Inductive Definitions.......ccccveverriniveninnecnncinnenesenseesseeeseennes 25
4.1.2 Inductive Definitions and Femto-VHDL........ccccvvenecrneersennne. 26

4.2 Information Organisation..........viin, 27
4.2.1 Delay EXtraction......occvvminseienimneneeiniriieens 28
4.2.2 Well-FOrmedness.......cccceuerrenriniererenssssssesiessesesssssessesssesssesessens 29
4.2.3 EQUIVALENCE ... 30

4.3 Rules of the SEMANLICS......cierierierererierierse s sessseeesseresessssraesenes 32
4.3.1 Rules for Boolean EXPressions ..., 32
4.3.2 Rules for Sequential Statements.........ccovurrivivinniiicniiiiinnninns 33
4.3.3 Rules for Concurrent Statements.........coceevereerenrrveererriererseeseennes 38
4.3.4 Rules for INitialiSationceceveeiererernenienienresiniesessnessessesseneenns 41
4.3.5 Rules for the Simulation LoOpccccovurivininninciniiscnienan, 42

4.4 EQUIVALENCE....ciiiiiririritrctrcc i s 46
CHAPTER 5 MECHANISING FEMTO-VHDL..ovcciiiinniminimmmismesssssssnssssssssssssessssnes 49
B.1 HOL ooiierereirereereeenesresnssessessesessssesnesesssssssssesssssessssesessesessessesssssssesssnes 49
BT ML ittt sr e st ae e ste s e sa v b e enaesesb e e e besaans 49
5.1.2 The LOGIC..iiviiiiriritiininiecesssisssssssssssssenes 50
5.1.3 TS ccoiiiriiciiiniinriiiieiissin sttt irse e e sssessesssssssesesessssssasnessvens 50
5.1/4 TREOTIES .cuveeeteriviereriererenreresieiessesssesssnssesessesesseressssesssseressessersessens 51
5.1.5 DefiNitiONS..c.covverrirrirreceirnsesieserernsreessesssioseoeseesesessesssssssssaessnens 52
B5.1.6 PrOO . cuiieiiecirceeciecireneenineseeesssssessesreensensssaessesessssesssssesasssanesees 52
5.1.7 Libraries and TOOIScccccuecenrerrierenrensreriesseseresessesessessseessns 54

5.2 Femto-VHDL in HOL......ccooviiiiiniinenienrinincrinesensssnsesnsnresereesssesnsnensenns 55
5.2.1 EMbedding......cuvvirimeiriniiiiiiissesnnes 55
SYNEAX.coiireererci s 55
SEMANTICS. v iiiirviirrerereenresesrree s st ere e b s e e e seereenes 56

5.2.2 ANIMALION w.civviviiiiiieceiinrcnenese i sressesressssseseesseereesessss sesseesns 58
The Conversion ONCE_AROUND........cccocvivreeveernrieisreneinnnnns 59

The Conversion finish_GAMMAcccccvivivrvrriennsieveeresnieninns 60

CHAPTER 6 CASE STUDIESccoourrnsnsnsnsserussssessssanses tasasanensassnsessesusenssnsnsnenssssssessusens 63

CONTENTS xiii

6.1 A NAND Gate....couvurrirnrirnniiiiniiiiisiises s s 63
6.1.1 Behaviour of the Specification..........ccevveierieninnniieniiinn 65
6.1.2 Behaviour of the Implementation............ecoeveverirnnveveenvereinnen 67
6.1.3 EQUIVAIENCE ...cvovririvirirriiniririiininssss e bsssssssssssssssas 69
6.2 DeMorgan Property ... 69
6.2.1 Negation of a Conjunction vs. a Disjunction of Negations ...70
BehavioUT ... 70
EqQUIVAIENCE....uitriieieerct st 71
6.2.2 Negation of a Disjunction vs. a Conjunction of Negations ...71
BeRavIOUT ...ccvviviiiicrciiii s, 72
Equivalence.........iiienn, 72
6.2.3 Non-equivalence.......uiincnin, 73
6.3 Parity Checker ... 74
6.3.1 SPecificationccvimeviviniiiii 74
Initialisation......cooviinriiiiii 75
General Behaviour ..., 76
6.3.2 Implementation.......i 77
Initialisation. ..o 80
General BERavioUT ... 80
6.3.3 EQUIVAIENCE ...ttt 81
6.4 A Counter Cell.......inninnninini e 83
6.4.1 Specificationcvueiviniiniiin 84
6.4.2 Implementation........ccocenmn 85
6.4.3° EQUIVAIENCE ..ottt 88
CHAPTER 7 CONCLUSIONS ..cccecsunnrnrnnesnsmnsssssssssssssssasssssasssassasssssasssssossasssasasssssssasssssssss 89
7.1 The SemMantiCs ...t 89
7.2 The Methodology ... 90
7.3 The FULUTE ettt s 90
BIBLIOGRAPH Y ccviictitsrnnnnsesssesssesessrssnssssssersressnsnssssssssssssssssssasssssassssssssssssssssessasssssssnsassossssss 93
APPENDIX A HOL PROOFS ..ccvviniisininssnmnreressssssssssssssssssssasssssssssessassssssassesssssssssssssess 97
A.1 Theorem 3.3.2. 1 . ssssssssesess 97

A.2 Theorem 3.3.3.1.ccccueevcerirereenccennene, e s s 98

A3 TREOTEIMN 4.2.3. 1 coeeieteiecrirerrecesiscitseseeeseeesesecsssesesseesssesssessnsesssssesssssneees 98

xiv CONTENTS

A4 TheoreImM 4.2.3.2 ..cuivivierriecreeresreriesiesnessessesenessesssssessssssssessessesssesenssenes 98
A5 Theorem 4.3.3.T ccviviveiirceecienninecnsesreninsresssessessesssessesssssssasssssnssssssns 98
A.6 TREOTEIM 4.3.3.2 ..cveireeereerinnreisesreresse e sresesressssesessessesssssessessssensas 98
A.7 Theorem 4.3.3.3 ..coivriereerreienrenresreenesssesseninesesesseessssssssstessessesssesnses 99
A.8 TREOTEM 4.3.3.4 ...covevviveiiiinreisenrscesss s s esas e sse e sassesaesessesnesaessesnes 99
A9 TREOTEM 4.3.3.5 ..ottt stere s e sbesteesre e e saaesesnessesanenns 99
A T0 Theorem 4.3.3.6 ..ccciiiveneriiniriesinseesissesesievesessssessessesesssssssessessersesessens 99
A 1T Theorem 4.3.5.3 ..covcviieiinnnimisinensrcnnssessssesssmssesssessssesessesseses 100
A12 TREOIEIM 4.4, ..ecneriecreresrecserreerenree s sbe s e e sese e sressesnesssessnesseses 100
APPENDIX B A WORKED EXAMPLE ...cccvcinnncninnnniionsnesssnsesssssssssesnsssesssnsessosseses 107
B.1 Derivation for the Specification...........ccuervisivisnnrinnincrennerinnnn, 107
B.2 Derivation for the Implementation........c.oecveevinnvcrcnnninscnenenenenn 111

B.3 Equivalence Proof...........iinnienn 120

CHAPTER 1

INTRODUCTION

This dissertation is devoted to the definition of a structural operational semantics for
a subset of the Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language (VHDL) and its embedding in the HOL proof assistant. The research is
presented in seven chapters. The current one gives some motivation for the work,
some background on the language and its uses, and acts as a synopsis of the
material that follows in the rest of the document. The second chapter gives an
overview of past and present research that is of a complimentary nature to that
described here. Chapter 3 presents the subset while Chapter 4 defines its
operational semantics. The fifth chapter contains an overview of the proof assistant
being used and a discussion of how the semantics is embedded in it. Chapter 6 is
made up of a series of case studies that show various ways of working with the
embedded semantics. Finally, Chapter 7 finishes the exposition by making some
concluding remarks and posing questions for future research.

1.1 Motivation

The complexity of current real-time systems such as those contained in modern
avionics systems is so great that they cannot be completely tested. In many cases,
there is no direct mechanical link between the pilot and the control surfaces.
Onboard computers must interrupt the inputs being made by the pilot, match them
against the current condition of the aircraft and make the necessary adjustments to
these surfaces — hence the name "fly by wire". While the success of a mission or the
lives of passengers depend on these computers, current testing methods cannot
explicitly show that the equipment will respond correctly to all possible inputs.

The silicon integrated circuits used in inflight controls and most other modern
applications are becoming so complex that exhaustive simulation of their behaviour
before fabrication is a practical impossibility. In the case of aircraft controllers, this
means that the devices are only functionally checked over critical inputs. While

1

2 INTRODUCTION

current design and engineering practices tend to eliminate problems before they
reach the marketplace, bugs do get into systems. It is becoming evident that a more
secure way of creating electronic devices is needed in the future.

When VHDL arrived on the hardware design scene, it was described as the
solution to many existing industry problems. Chief among these was to bring some
order to the collection of languages and tools then in current use. But when VHDL
itself was designed, very little thought was given to its formal semantics, much less
to using such a semantics to reason about individual programs. The result has been
a recent upsurge in research efforts addressing precisely these problems. The rest of
this document is a discussion of research into the semantics of a subset of VHDL and
ways to reason about program texts written in that subset using a mechanical proof
assistant.

1.2 Philosophy

Emphasis has been placed on formalising the meaning of VHDL constructs as
specified in the Language Reference Manual [21]. The relationship between these
constructs and the simulation engine that evaluates them has been investigated.
While taking this approach may seem overly pragmatic, it not only reflects the
actual simulation behaviour of VHDL, but also corresponds intuitively to the way in
which VHDL users think about the language. A different approach to characterising
the semantics might have destroyed this link. For purposes of the current research,
it has been necessary to utilise only a subset of full VHDL. Nevertheless, that subset
is sufficient to demonstrate the most salient features of that model, and to provide
methodological clues as to how such a formalisation might be used in practice.

1.3 Language History

VHDL is a hardware description language (HDL) currently in use by a large segment
of the design community. It is a verbose, event-driven simulation language whose
semantics is defined, at least informally in the Language Reference Manual, by the
way in which the various language constructs are evaluated by the simulation
engine [21].

To better understand VHDL and its place in current design practice, one should
consider the evolution of the language:

INTRODUCTION 3

early-1980's: Chaos

A time period characterised by the existence of many proprietary hardware
description languages and simulators. Furthermore, no one HDL is used
throughout the entire design process. In many cases, ad-hoc mechanisms are
developed to translate between the tools and languages in use at different
stages of the design. This leads to increased confusion and provides a further
avenue for the introduction of bugs. '

mid-1980's: VHSIC programine

The United States Air Force, a large consumer of custom electronics obtained
from a variety of vendors, is faced with the need to rationalise its procurement
process. The primary concern is that all designs submitted as a part of the
bidding process are written in the same non-proprietary HDL, and meet
certain design and documentation standards. VHDL emerges as the language,
and is made a requirement for all Air Force designs.

late-1980's: IEEE VHDL (STD 1076)

As a part of the VHSIC programme, large vendors such as IBM and Texas
Instruments take an interest in VHDL. That interest, coupled with the growing
need for an industry standard HDL, causes VHDL to go through the IEEE
standardisation process and emerge as the language in use today.

1.4 Application Areas

Since its introduction, the use of VHDL has spread to many areas of digital design.
While most of these applications deal directly with design itself, there has also been
recent interest in synthesis directly from VHDL. The language in its current state is
not generally amenable to this task, but it is anticipated that modifications to the
standard (VHDL'92) will overcome many of these problems. A number of
commercial CAD vendors now support the language, and its use has spread from
being a military systems language to one used and supported by a wide variety of
design houses.

1.5 Evaluation of VHDL Programs

Given that a large part of the work to be presented is centred around the
formalisation of the VHDL simulation loop, an informal description of the workings

4 INTRODUCTION

of that loop and its associated parts is in order. It should however be noted that the
discussion of VHDL which follows is rudimentary, and some familiarity with the
language is assumed. The first step is to introduce a few definitions:
Signal: The name given to a communication channel in VHDL. For purposes
of the presentation here, a signal is a wire.
Event: A change in the value of a signal

Transaction: The value that a signal should have at a particular time in the
future. A transaction may (or may not) be converted into an event at that
time.

Point of Computation: The point at which a particular collection of
transactions is processed.

Process: A VHDL concurrent statement equipped with a set of signal names
called a sensitivity list guarding its activation.

Simulation Cycle: The evaluation of all the processes in a VHDL program text
at a particular point of computation.

Simulation Loop: Moving from point of computation to point of computation
executing simulation cycles.

The top-level simulation loop of VHDL may be viewed as a four step sequence,
and is illustrated in Figure 1.1. An iteration of the loop starts by moving forward to
the nearest interesting point of computation (i.e. one where there are transactions to
process), and setting the current simulation time, expressed as a natural number, to
be the physical time unit associated with that point of computation. The state of the
signal values is then modified to reflect those that they are supposed to take on
during the present point of computation. Note that signals must have unique values
in any given state. Those signals for which the update represents a change in value
are then tagged as events, and a simulation cycle is performed making use of the
new information. The loop is repeated until there are no more events or
transactions to process, at which stage the simulation is said to have guiesced.

Move to Nearest —~\
@aresting PgiV Update Current State
Perform a Simulation
Cycle

Figure 1.1: The Simulation Loop

Calculate Events

INTRODUCTION 5

The graphical description just presented may be summarised by the following
pseudo-code description of the simulation loop:

while transactions remain to be processed
1. go to the nearest point of computation with transactions to process
2. update the state from the current transactions
3. determine which updates represent events
4. perform a simulation cycle based on the new state and events
end while

Emphasis should be placed on the use of the phrase "point of computation" in
the above description. While one could often equate a point of computation with a
time slice, it is frequently more than that within the context of the particular
simulation model of VHDL. One could, for instance, say that the points of
computation P through P, represent the time units 1 through n. Alternatively, they
could represent 1 through n 0-length delays between two major time units.

The concept of d-delay is the way in which VHDL deals with these 0-length
delays. They result from 0-delay signal assignments. A static state of the world is
being used during each iteration through the simulation loop, and transactions are
being scheduled to occur at some future point of computation whenever a signal
assignment is encountered. This scheduling applies to any transaction, whether it is
to occur at a delay offset zero units from now, or at some larger one. Each time
around the simulation loop (Figure 1.1) in zero time is called a d-delay. An
individual d step does not, therefore, represent a quantifiable unit of time. Rather it
is simply a simulator artefact that ensures consistency in the ordering of events.

As mentioned earlier, a component of the simulation loop is the performance
of a "simulation cycle". The execution of such a cycle is illustrated in Figure 1.2.
Each cycle begins with the activation of those processes that are sensitive to any of
the current events. All the active processes are then run in parallel, each taking a
copy of the static simulation environment with it. During its execution, each process
may schedule transactions to be processed in the future. When all the processes
have terminated, the futures that have been calculated by the individual processes
are gathered together into an amalgamated view of future behaviour.

. Run Actives in
Activate Processes Parallel Amalgamate Futures

Figure 1.2: Progression of a simulation cycle

6 INTRODUCTION

The above steps are again more concisely stated as:

« determine which processes are active based on current events
« run the active processes in parallel
» merge all processes' scheduled transactions into a collective whole

1.6 Formalisation

The above informal description of the simulation model of VHDL has been
translated into an operational semantics and embedded in a mechanical proof
assistant. Due to the size of the language and a desire to emphasise the workings of
the simulation model of VHDL, a subset has been chosen. In following this course of
action, it has not only been possible to prove theorems about individual program
texts, but also to demonstrate properties of the semantics itself that increase one's
confidence in it. Some of these theorems will be presented in later chapters, and
were developed with the aid of the HOL proof assistant. Because of their mechanical
nature the proofs of these theorems are not readily understandable, and are
therefore not given in the text. Where necessary, a proof sketch will be given to
argue for the correctness of the result. The scripts that were used to prove the
theorems are presented in Appendix A.

Operational semantics, as the name implies, allows for the specification of and
reasoning about dynamic systems. Specifically, it makes it possible for one to define
an abstract representation of an interpreter for a particular language. Given the
interpreter, it is not only possible to reason about individual programs, but also infer
properties for groups of similar programs. In the context of a semantics for VHDL,
an operational framework makes for an easier correspondence between the informal
and formal descriptions of the simulation model of the language.

1.7 Automation

Once defined, the syntax and semantics of the VHDL subset is embedded in the
proof assistant. In order to make use of the embedding a suite of proof tools was
developed to animate the semantics via proof. In essence, this leads to a very slow
simulator for the subset.

This simulator itself is not, however, a typical VHDL simulator. Certainly, one
may use it to execute programs containing concrete values for signals. The
difference lies in the fact that one may also use it to perform simulations with
symbolic values for these same signals. In that case, the execution of the simulation

INTRODUCTION 7

model is providing information on the behaviour of a program over all values. A
discussion of the proof assistant and the embedding appears in Chapter 5.

1.8 Examples

By embedding the semantics in a proof assistant, it has been possible to explore
more fully the relationships between VHDL programs. This exploration has led to a
way of combining symbolic simulation with proof to give stronger assurances than
is usually possible in a pure simulation environment about the equivalence of
designs. While large designs are impractical to analyse at present in the described
manner, the methodology still gives useful insight into the workings of the VHDL
simulation engine.

The examples themselves are presented as a series of case studies in Chapter 6.
They range in complexity from the analysis of a simple NAND gate to a parity-
checking device. In each of the case studies, the following pattern is used:

Specify a high-level (i.e. algorithmic) representation of the device.

Derive, using the semantics, a general behaviour for the specification.
Specify a low-level implementation of the device.

Derive a general behaviour for the implementation in the same fashion as 2.

N

. Prove that the two behaviours are the same.

Why perform several examples of exactly the same form? The answer lies in
the points that each raises about the simulation model and the kind of results one
can expect from it. The issues range from how & -steps are resolved to compromises
that must be made in order to get a meaningful result from the embedded semantics.

1.9 Accomplishments

The work in the chapters that follow represents research in establishing a formal
semantics for a subset of VHDL. The semantics is useful in and of itself as an
unambiguous specification of the language. Furthermore, the semantics has been
embedded in a mechanical proof assistant to provide insight into how it might be
used in reasoning about VHDL designs. This reasoning will be seen as a change
from traditional simulation in that it moves the examination of programs from
validation based on concrete inputs to verification based more general, symbolic
ones.

CHAPTER 2

RELATED WORK

Efforts at applying formal methods to VHDL programming fall into two categories.
The first deals strictly with increased support for simulation-time validation of
programs. The second pertains to the search for and use of a tractable semantics for
a reasonable subset of the language. The rest of this chapter presents a broad
overview of these approaches.

2.1 Simulation-Time Validation

The late 1980's was a period of great activity in research surrounding the
development of simulation-based validation tools. This particular type of system
was meant to provide the designer with additional assurance that a given program
was behaving in the intended way through clever use of the simulator itself.
Because it followed shortly after the introduction of VHDL as a standard in the
United States, the research into these methods was carried out there.

One of these investigations led to the development of the VHDL Annotation
Language (VAL) at Stanford [4,5]. VAL allowed the user to decorate a program with
specifications about its operation. These annotations appeared as comments in the
VHDL program text, and were expanded by a pre-processor before the program was
compiled and simulated. When the program was executed, the annotations
triggered warning messages if the design differed in its execution from the implicit
specification that they provided. This particular methodology was not only a way of
getting more useful information out of a simulation, but also made it easy for clear
specifications of the behaviour of various parts of a design to be embedded in
program texts.

Another early project, conducted by the author, attempted to automatically
generate VHDL assertions characterising the behaviour of programs [36,37]. The
philosophy was much the same as in the VAL effort. The difference was that it was
based on automatically ascertaining the characteristic statement of behaviour for a

10 RELATED WORK

particular program. These assertions could then be embedded in the text of the
program for use during simulation in much the same way as VAL specifications.
The notion was that once the behaviour of the canonical version of a device had
been agreed upon, a statement describing its behaviour could be extracted
automatically and embedded in any other program purporting to be the same
device. Any exception raised during simulation would therefore indicate some
divergence from the accepted norm which needed to be investigated.

Both these projects were based on the respective researcher's interpretation of
the semantics of VHDL. No formal statement about the semantics of the language
was available at the time beyond that given in the Language Reference Manual.
Furthermore, they relied on traditional simulation practice. While this was not a
bad thing in that it brought a degree of rigour to the examination of the simulation
model of VHDL, these research efforts did not result in any definitive mathematical
statement about the semantics of the language.

2.2 Semantics-Based Verification

More recent research has been directed at the verification, rather than validation, of
VHDL programs. To accomplish their goals, all the projects involved in this area
have necessarily had to build up a formal notion of the semantics of VHDL. The
research efforts currently under way vary not only in their approaches to the
particular problem of semantics, but also in their implementation of it. Furthermore,
they are characteristic of emerging international interest in the field. One camp
bases their approach on primarily denotational methods. The other is grounded in a
more dynamic intuition.

2.2.1 Denotational Work

Early work in discerning a semantics for signal attributes emerged from IMAG in
Grenoble [33]. The emphasis was to statically understand the simulation behaviour
associated with the attributes of individual signals. The work eventually led to a
prototype system for reasoning about a subset of VHDL similar to that chosen here.
A drawback was that because of its insistence on a unit-time model, 0-delay signal
assignments could pose problems in the framework.

Promising early work on a full denotational description of the VHDL
simulation kernel is underway at the University of Cincinnati [16]. The research is
again based upon a small subset of VHDL that is not dissimilar to that presented

RELATED WORK 11

here. The work in Cincinnati has lead to the development of valuation functions for
initialisation and state transformation during a simulation. There have, however,
been no proofs of properties of the semantics to emerge from the effort as of yet.

2.2.2 Operational Work

Research closer in flavour to that presented here is underway at several sites. These
projects focus on an operational formalisation of what is specified in the Language
Reference Manual. Even within this unanimity of spirit, the approaches differ in
practice. One type of formalisation is based on extra-logical manipulation of the
semantics which passes the results to a proof assistant for additional manipulation.
The other does all the work in whatever logical system has been chosen.

Use of an Oracle

Research at Siemens [35] is characteristic of the first approach. The simulation
model of VHDL is written in the functional language ML. The results of working
with a program inside this specification of the simulator are then passed to the
LAMBDA system for reasoning. LAMBDA is a proof assistant from Abstract
Hardware, Ltd. that is based on the same logic as the system used here. The
difference is that it has been specially tailored for reasoning about hardware. In
essence, the ML program is being used as an oracle providing a statement of
behaviour for the theorem-prover to use in subsequent proofs. The goal of the
Siemens project has been to provide an industrial-strength tool, and the subset of the
language is therefore very large. The approach chosen, while not strictly formal in
that the semantics of the language is specified by an interpreter written in a
functional language rather than securely inside the logic of LAMBDA, has merits in
that it provides an efficient environment for working with VHDL programs. The
limitation is that one must be convinced of the correctness of the external oracle
before trusting any results that arise from it and the subsequent proof process.

Secure Formalisations

The other approach, namely that of modelling the semantics of VHDL inside the
mechanisation of the particular logical system being used, is much closer in flavour
to the work that follows in later chapters. The important difference between it and
the material summarised here is that the formalisations are expressed in (and are

12 RELATED WORK

therefore perhaps limited by) the particular logic of the given proof environment.
The research presented in this document makes use of a semantics that has been
developed in an accepted semantic formalism without regard as to how it is to be
mechanised. The generality of the target proof environment then allows one to
seamlessly embed the semantics to reason not only about it but VHDL programs as
well.

The most substantial piece of work in this field is the result of research at the

~Aerospace Corporation. The semantics of the simulation kernel have been
implemented in the State Delta Verification System. SDVS is a framework for
describing the execution of individual program steps based on the way that they
affect the overall state in which the program executes [1]. The subset implemented
is also large [17]. The idea is much the same as in the Siemens project (i.e. develop
the meaning of a particular program based on a specification of the simulation
model and then reason about it). Again, the contrast here is that the work is being
carried out without recourse to an external oracle. The problem is not therefore in
trusting both the oracle and the interface between two systems, but in gaining
confidence in the formal specification of the VHDL simulation kernel.

Other similar research is just beginning at Computational Logic, Inc. [39]. The
idea is much the same as in the Aerospace project. The system will be implemented
in the Boyer-Moore logic [11] as realised in the NQTHM theorem-prover [12]. The
Boyer-Moore system differs from both SDVS and the proof development
environment that will be used later in that it is a much more automatic system,
requiring less user intervention.

2.2.3 Other Approaches

Research into verification environments for VHDL is not limited to those
methodologies given in Sections 2.2.1 and 2.2.2. Other projects make use of either
custom-designed or existing formal languages for their implementations. One is
underway at Royal Holloway and Bedford New College where a language called
FUNNEL is being developed [34]. The language is intended as a descriptive medium
for many different hardware description languages, and therefore provide a
framework for reasoning about designs irrespective of the language in which they
were specified. Another approach is being taken at IRISA [7] using the language
SIGNAL to describe the simulation kernel of VHDL and to rationalise its timing
model.

CHAPTER 3

STATIC SEMANTICS

Before embarking on a formal discussion of the way VHDL simulates, the subset of
the language that will be addressed needs to be identified. Furthermore, it will be
necessary to define a way of checking that particular programs written in that subset
are properly constructed. The exposition that follows begins by introducing the
syntax of the subset and informally discussing the kind of restrictions that have been
placed upon it. The chapter concludes with a suite of definitions that formalise the
restrictions about the well-formedness of VHDL programs written in the subset.

3.1 Femto-VHDL

VHDL is a language that can best be thought of as one whose execution is based
upon that of concurrent blocks. The most basic of these is the process statement.
Each block contains sequential statements that describe the algorithm that it is
supposed to be implementing. To a large extent, these sequential statements are
exactly those of sequential Adal. Only one particular class of sequential statements,
signal assignments, is essential for driving the simulation. The emphasis in the
definition of the subset will therefore be to highlight these two important types of
statement (processes and signal assignments), and to provide enough other syntactic
machinery to ensure that the semantics fully exercises them.

The VHDL subset for which a semantics has been defined is therefore rather
small. Its name is derived from the smallest user-addressable unit of time in full
VHDL - the femtosecond. Femto-VHDL does, however, contain enough constructs
of the full language to illustrate the important features of the simulation model. As
just discussed, only one kind of VHDL concurrent statement is supported, namely
process statements. These are further restricted to those equipped with explicit
sensitivity lists of signal names, which can be thought of as guards on their

1Ada is a registered trademark of the U.S. Government — Ada Joint Program Office.
13

14 STATIC SEMANTICS

activation. The sequential statements addressed are the if-then-else conditional,
as well as inertial and transport delay signal assignments. Architectural hierarchies
allow the user to group concurrent statements into large blocks with specific inputs
and outputs. When simulated, these hierarchies will be flattened out into a sea of
concurrent processes. For purposes of the subset, the architectures here are limited
to those without VHDL generic [21] statements. Furthermore, the following
assumptions are made:

« Signals may only be Boolean-valued. This is for simplicity, and does
not materially affect the exposition of the simulation model.

» Resolved (multiply driven) signals are not allowed. The implication is
that constructs such as wired-and's and wired-or's are not permitted.

Why these particular assumptions? The first one is understandable in that
assignment to Boolean-valued signals is the same as assignment to signals of any
other value. The focus here is on the act of assignment, not on the type of the
assigned-to signal. The second assumption is a bit more cryptic. In essence, it
ensures that no signal may be assigned to from more than one process statement.
If this was allowed, two active processes might try to assign to the same signal at the
same time causing a clash over which value that signal should take on. Full VHDL
provides a way of dealing with this eventuality through the use of user-defined
resolution functions [21]. In an effort to keep the discussion of the simulation model
simple, these particular types of actions have been dis-allowed. As will be seen in
Chapter 4, it is possible to add resolved signals to the semantics, but an extension is
required.

Given the above listing of supported statements and assumptions, one can ask
what physically constitutes a Femto-VHDL program. At the outermost level, a
program text again is made up of one or more architectural components. Each
component is comprised of either one or more concurrent statements, or the nesting
of more components. The concurrent statements in turn contain sequential
statements. The following abstract syntax for Boolean expressions, sequential
statements and concurrent statements in Femto-VHDL may be given:

bexp = signal | signal'delayed(n) | signal'event | not bexp |
bexp and bexp | bexp or bexp | bexp nand bexp |
bexp nor bexp | bexp xor bexp | bexp xnor bexp | true | false
Inert 1
sS ci= 85 ; ss | null | bexp => ss | ss |string e (bexp,n) | signal iy (bexp,n)
cs ti=cs || es | sl:oss

sl ti= 0 {8,..,8,)

STATIC SEMANTICS 15

The symbol bexp ranges over Femto-VHDL Boolean expressions. These are made up
of single signal names, attributed signals (‘event and 'delayed), or compound
expressions using the various VHDL Boolean operators. Attributes allow the user to
access properties of signals. The ones in Femto-VHDL are used for ascertaining
whether or not a signal has an event on it now (‘event) and for looking at the value of
a signal delayed by n units of time expressed as a natural number (delayed).
Sequential statements (ss) may be either two statements in sequence (;), a null
statement, a conditional statement guarded by some Boolean expression, an inertial
delay signal assignment statement, or a transport delay signal assignment statement.
Each type of signal assignment statement maps a Boolean value to a signal after
some delay also expressed in terms of the naturals. Concurrent statements (cs) are
either two such statements in parallel, or a single process statement made up of a
sensitivity list and some sequential statements. Sensitivity lists (s/) are simply sets
of signal names.
The overall structure of design hierarchies is expressed as:

1

design : :
decls

arch string, string, ports decls cs | dpar design design
signal {s,...,s,}

i

Local signal declarations may be made (decls), and do not have associated
directions. Ports (ports) are the external interfaces for VHDL architectures. They
have associated directions, and are represented in Femto-VHDL, by a triple of sets.
Signals of direction in (inputs) are in the first part of the triple, out signals
(outputs) are in the second part and inout signals (bi-directionals) are in the final
part. A design is composed of either a stand-alone component or a nested hierarchy
of them. It should be noted that neither || nor dpar have any corresponding
construct in the concrete syntax of VHDL. They are given here simply as a means of
grouping together language constructs.

VHDL components may be specified at different levels of abstraction. To this
end, the concept of design entity and design architecture are available to the designer.
An entity is nothing more than a specification of connections to the outside world
via ports. For purposes of Femto-VHDL, an architecture groups together concurrent
statements that express the behaviour of a particular component (e.g. an ALU). Two
particular architectures may actually represent the same component at different
levels of abstraction. In that case the architectures are really part of the same entity,

as they make use of the same ports to plug into the outside world irrespective of
their internal construction. The two strings string, and string, in the arch part of the

16 STATIC SEMANTICS

definition of design, represent the name of the entity and the name of the
architecture respectively. It is therefore entirely possible for individual components
to have the same entity name, but different architecture names.

The following tables give the relationship between the abstract syntax and the
concrete syntax for various syntactic classes of Femto-VHDL. No mapping will be
shown for Boolean expressions, as the abstract and concrete syntaxes are the same.
For reasons of brevity the abstract syntax will be used in describing the semantics of
Femto-VHDL.

design

arch string, string, ports decls cs entity string, is
port poris;
end String,;
architecture string, of Sstring, is
signal §,...,8,;
begin c¢s end Ssiring,;

CcS

{$1500,8,} 88 ‘ process (S8,...,5,)

begin
AN

end process;

S
inert ; o - .
signal 1= (bexp,n) signal <= bexp after n;
trans : - . .
signal 1= (bexp,n) signal <= transport bexp after n;
null null;
bexp => s§ | s8 if bexp then ss
else s§
end 1f;

3.2 Definitional Style

When defining functions and relations associated with the semantics, recourse will
be made to the following definitional style. The symbol = indicates a definition. The
function name, when first defined, will appear in bold sans serif typeface. Variables
will be shown in math italic. Internal functions and variables will be defined using

let ... (and ...) in constructions. As an example, the function foo may defined as:

STATIC SEMANTICS 17

foox =
leta=x+landb=x~1in
letc=a+bin

(x,¢)

The function takes a natural number as its argument and returns a pair of naturals.
The nesting of let-expressions allows for the calculation of c¢. Scoping is such that a
and b are not visible to one another, but are visible in the second let-expression
when ¢ is formed. If one expanded the first let-expression, the result would be:

foox =
letc=(x+1)+(x=1)in
(x,c)

Use will also be made of the form if x then ... (elseif y then ...) else ... to express
conditionals. Lists will be required in some of the definitions that come later, and
list processing functions such as hd (head), tl (tail) and . (cons) will therefore be
needed as well. Finally, it will be necessary to make use of tuples in some
definitions, and the functions fst and snd will be used to respectively access the first and
second elements of them.

3.3 Syntactic Well-Formedness

What constitutes a syntactically valid Femto-VHDL program? First, output signals
must not have multiple drivers. This means that a signal must not be assigned to
from more than one source. Next, the signals used in the program text must be only
those that happen to be declared as ports or as local signal declarations. Finally,
those signals must also be assigned to in an appropriate manner (i.e. signals of
direction in must not be driven, and signals of direction out must not be read). The
rest of the chapter involves a series of definitions leading up to the function
well_formed_design which encompasses these properties. Readers not interested in
the details of these definitions may safely progress to Chapter 4.

3.3.1 Multiple Drivers

To check the multiple driver condition, it is necessary to determine that a given
signal name appears on the left-hand side of the signal assignments of only one
process in the program text. In other words, if the set of assigned-to signal names
for one process of the design has a non-empty intersection with a similarly derived

18 STATIC SEMANTICS

set for any other process in the design, the program text is not well-formed. At the
lowest level of this check, one needs to extract a set of signal names that are assigned
a value in the statements of a given process. Having done so, the requirement is
then to make sure that these signals are not being assigned to in any other process.

As the first step in the check, one defines the function well_formed_Femto_ss
over the structure of sequential statements:

well_formed_Femto_ss ss=
if (ss=s5"; ss”)v(ss=e=>ss’|ss”) then
(well_formed_ Femto_ss ss’) U (well_formed_Femto_ ss ss”)

elseif (ss —sim (e,dly))v (ss —5im (e, dly)) then {s}
else {}

The function returns, as a set, the signal names that appear on the left-hand side of
any assignment statement. For instance, well_formed_Femto_ss would return the set
{a,b} if given the conditional statement e => a = (x,2) 1D = (»,0).

Use may now be made of well_formed_Femto_ss in gathering together a
collection of assigned-to signals for all the processes in a given architecture. The
function well_formed_Femto_cs, again defined recursively on structure, does just that.
It returns a tuple of sets. The first element of the pair represents the intersection that
is of interest, while the second is the set of all assigned-to signals.

well_formed_Femto_cs cs =
if cs = (51 : s5) then ({1}, well_formed_Femto_ss ss)
else let (cs’”cs”) =csin
let @ = snd(well_formed_Femto__cs cs’)
and b = snd(well_formed_Femto_ cs ¢s”) in
(anb,aub)

trans

If the two processes {x}:a ‘o (%,2)[1{y}: b : = (»,0) were used as an example, the
function would return the pair ({},{a,b}). However, had both signal assignments
been addressing signal a, the resulting pair would have been ({a},{a}).

Having defined the two previous functions, all that remains to be done is
ascertain the emptiness of the first element of the pair returned by
well_formed_Femto_cs. The function wfF_csss is defined as a top-level interface, and
makes the desired comparison:

wfF_csss cs = (fst(well_formed_Femto_cs cs) ={})

STATIC SEMANTICS 19

If the just-used concurrent statements were passed as arguments to wiF_csss, it is
clear from the above results that an invocation on the processes which assign to both
a and b would fulfil the multiple driver restriction, while one where both processes
address the signal a would not.

In order to make use of wfF_csss for larger components, it will be necessary to
flatten out architectural hierarchies into a sea of processes. To this end, the function
dflat has been defined. The function takes one or more Femto-VHDL components,
and returns only the processes associated with each one. In the case of multiple
architectures, the processes of each are glued together in parallel.

dflat design =
if design =arch ent arch ports decls cs then cs

else let (dpar d’ d”) = design in (dflat 2”) || (dflat d*)

For instance, the design dpar (arch e’ a’ p’ d’ cs’) (arch e” a” p” d” cs”) would, when
passed through dffat, be reduced to cs’ || cs”.

3.3.2 Signal Relationships

The other restrictions on the syntactic well-formedness of Femto-VHDL programs
hinge heavily on the interrelationships of the signals as they are found in individual
components. In order to make any statement about those relationships, it will first
be necessary to extract the necessary signals from a program text. Having done so,
it is then possible to go on to make a definition of what is required of those signals in
the overall design.

Signal Extraction

When dealing with Femto-VHDL designs, two kinds of signals are of interest. One
group is the external ports. The other is the locally declared signals. The function
get_sigs_decls accesses the set of locally declared signals in a stand-alone component.

get_sigs_decls (signal sigs) = sigs

For instance, if the function were applied to the declarations of arch e a p (signal d) cs,

it would return the set d. The ports of a design may be extracted with get_ports.
The function is defined recursively over the structure of designs in an analogous
manner to dflat.

20 STATIC SEMANTICS

get_ports design =
if design =arch ent arch ports decls cs then

(st ports) U (tst (snd ports)) U(snd (snd ports))
else let (dpar d’ d”) = design in (get_ports d’) U (get_ports d”)

The whole idea of the function is to remove any reference to directionality, and
return as a set only the names of the ports of a particular design.

The above functions extract the declared signals in a design. However, in
order to make the kind of checks that are necessary, functions that return the signals
that are actually used in the concurrent statements of a design are also required. A
series of functions that extract these signals, paying particular attention to their
intended direction, are now defined.

At the lowest level, the signals will need to be returned from Boolean
expressions. Because these expressions are only capable of holding input signals
(i.e. they are always read, but never written to), all that is required in get_sigs_bool is
to gather together any signal names found in a Boolean expression, and return them
as a set.

get_sigs_bool bexp =
if (bexp = not e) then (get_sigs_ bool ¢)
elseif (bexp = ¢’ and e”) v (bexp = e’ or e”) v (bexp = ¢’ nand e”) v
(bexp = e’ nor e¢”) v (bexp = e’ xor e”) v (bexp = e’ xnor e”) then
(get_sigs_bool e’) U (get_sigs_ bool ¢”)
elseif (bexp = sig) v (bexp = sig' delayed(t)) v (bexp = sig'event) then {sig}
else {}

Sequential statements contain both input and output signals. The only output
signals are those on the left-hand side of signal assignment statements. All other
signals are assumed to be inputs. The function get_sigs_ss returns a pair of sets, the
first of which is the set of input signals (including those found in any Boolean
expressions), while the second is the set of output signals.

get_sigs_ssss = ,
if (ss=s5"; ss”)v(ss =e => 55| s5”) then
let (is’,0s") = get_sigs_ss ss’ and (is”,0s”) = get_sigs_ ss s5”
and bools =if (ss = e => 55’ | s5”) then get_sigs_bool e else {} in
(is” Uis” U bools,o0s’ U 0s”)

elseif (ss =g (e, dly)) v (ss —sim (e, dly)) then (get_sigs_ bool e,{s})
else ({},{})

STATIC SEMANTICS 21

Finally, it is necessary to traverse an entire sea of concurrent processes
gathering the same information. The function get_sigs_cs does this, and returns a
pair of sets of the same form as those created by get_sigs_ss.

get_sigs_cs cs=
if cs =(sl: ss) then get_sigs_ss ss

else let (cs’ I cs”) =cs in
let (is’,0s’) = get_sigs_cs cs’ and (is”,0s”) = get_sigs_cs cs” in
(is’ Vis”, 08" Uos”)

As an example of the behaviour of this suite of functions, take the Femto-VHDL
processes:

trans

inert trans
{x}:a:=(notx,2)|1{y’}: b := (v and y*,0)ll {z}: ¢ : = (2,0)

When get_sigs_cs is run over them, the pair ({a,b,c},{x,y’,y",2}) is returned.

A companion function to get_sigs_cs is get_sigs_design. It extracts all the signal
names from a design without regard for their associated direction by making use of
get_sigs_cs.

get_sigs_design design =
if design =arch ent arch ports decls cs then
let (is,0s) = get_sigs_cs c¢s in isU os
else
let (dpar d’ d”) = design in (get_sigs_design d’)\U(get_sigs_ design d”)

In a similar fashion to the previous example, the architectures

inert)
(arch e’ a’ p’d ({r} tai= (not x,Z))

trans
dpar arche” a” p” d” ({y’} :b:=(y and y”,O))
dpar

trans
arche” a” p"” d” ({z} ccim (2,0))

\ J

would yield the single set {a,b,c,x,y’, y”,z} when put through get_sigs_design.

22 STATIC SEMANTICS

Well-Formedness of Design Signals

In order to ensure the well-formedness of the signals in a Femto-VHDL program, the
various constraints on signals mentioned earlier must be met. To reiterate, they

were:

e Only declared signals may be used in the program text.
» Directionality of assignments must be preserved.

The function well_formed_design_sigs uses the just defined functions to express
these goals for the well-formedness of the signals in a Femto-VHDL design.

well_formed_design_sigs design =
if design = arch ent arch ports decls cs then
let ip = fst ports and op = fst (snd poris) and op = snd (snd poris)
and (isiges, osiges) = get_sigs_cs ¢s and d = get_sigs_ decls decls in
let p = (ip Uop Uiop) and siges = (isiges U osiges) in
let pld =(pnd ={}) and oli = (op Nisiges = {}) and ilo = (ip Nosiges = {}) in
(siges = pud) A pld Aoli Ao
else
let (dpar d’ d”) = design in
let (P,S’) = well_formed__ design_sigs d’
and (P”,5”) = well_formed_ design_sigs d” in
(P’ A P”)

In the case of stand-alone components, ip are the in ports, op are the out ports and
iop are the inout ports. isigs represents the signals that are used as inputs in the
concurrent statements of the component, whilst osigs are those used as outputs. d
are the locally declared signals. The variable p holds all the ports, and sigcs contains
all the signals of the concurrent statements. pld states that the ports and locally
declared signals must be disjoint, o/i says that the output ports must not be used as
inputs, and ilo ensures that input ports are not being used as outputs. Conjoining
these last three with the statement that the ports of the component are the same as
the signals used by the concurrent statements ensures that the all the signals of that
component are well-formed.

A useful consequence of the definition of well_formed_design_sigs when
reasoning about the dynamic semantics of Femto-VHDL in Chapter 4, will be the
knowledge that if the signals in a design display the proper interrelationships, then
the ports of the design are a subset of all the signals in that design.

STATIC SEMANTICS 23

Theorem 3.3.2.1:
v dsgn. (well_formed_ design_sigs dsgn) D (get_ports dsgn < get_sigs_ design dsgn)

The proof was performed in the theorem prover by induction on the structure of
designs. This proof, because of its mechanical nature, is not given here; but the
argument is fairly straightforward. The interested reader is referred to Appendix A
for the actual proof script. The base case follows from an expansion of the definition
of well_formed_design_sigs. Once done, one observes that the ports and declarations
of the component must be the same as the signals of its concurrent statements
(derived by get_sigs_cs). This of course means that the ports are a subset of the total
signals. The induction step is also a based on a straightforward expansion of
definitions. Once those of well_formed_design_sigs, get ports and get_sigs_design
have been applied to composite designs one arrives at an instance of the induction
hypothesis.

3.3.3 Overall Well-Formedness

It is now possible to make an overall definition about the syntactic well-formedness
of any Femto-VHDL design. Simply stated, the signals of the design must exhibit the
appropriate relationships, and the concurrent statements must not contain multiply
driven signals. These requirements are formally defined in the function
well_formed_design:

well_formed_design design =
(well_formed_ design_sigs design) A (wiF _csss (dflat design))

A simple fact arising from the definition of well_formed_design is:

Theorem 3.3.3.1:
Vdesign. well_formed_ design design O well_formed_ design__sigs design

The intuition for the proof is to assume well_formed_design design, expand the
definition and take the first conjunct.

CHAPTER 4

DYNAMIC SEMANTICS

The only official specification of the meaning of VHDL is the Language Reference
Manual. It describes the semantics of the language in an informal manner through
recourse to terms such as "elaboration" and "execution". These are words that
implicitly lead to a formulation of meaning in terms of simulation. The material that
follows is a formalisation of the semantics of Femto-VHDL that reflects this dynamic
intuition. The discussion will begin by presenting a short overview of operational
semantics, and will continue with a presentation of how information will be
structured in the semantics. The definitions concerning the well-formedness and
equivalence of some of those structures will then follow. The chapter will conclude
with the definitions and rules that make up the semantics of the language.

4.1 Operational Semantics

The semantics of Femto-VHDL will be given in an operational manner [32]. As
alluded to earlier, operational semantics it is a formalism that allows for the
specification of and reasoning about dynamic systems. Since VHDL is defined even
in the informal context of [21] by means of the simulation process, the idea of using
this particular semantic approach is intuitively appealing. In order to define the
semantics in an operational way, it will be essential to understand a special form of
definition. An example taken from [20] is perhaps the easiest way of coming to
grips with what is required.

4.1.1 Inductive Definitions

If one rephrases mathematical induction as a more generally applicable form of
induction, the set N of natural numbers satisfies the following conditions (or rules):

25

26 DYNAMIC SEMANTICS

e 0N
e if xENthenx+1€EN

Many other sets also have these properties. Examples are the set of integers
(positive and negative), the set of rational numbers and the set of real numbers.
However, these properties have special significance for N; N is the least set which
has both these properties. This means that if X is any other set with these properties
then N € X. To prove this one uses mathematical induction to show that n € X for
every natural number n. More precisely, mathematical induction is employed to
show the property P(n) is true for every natural number n where P(x) is defined

by:

P(x)iff xe X

The base case, 0 € X, is trivially true because X satisfies the first property. The
fact that X satisfies the second property means that the inductive step is also true:
k€ X implies k+1€ X. One can therefore conclude that n€ X for every natural
number 7n, i.e. NS X. In general many sets, relations, etc. will be defined as the
least ones satisfying a set of conditions or rules. Each such definition gives rise to a
form of induction, called Rule induction, for proving properties of the sets, relations,
etc. For this reason these are called inductive definitions.

4.1.2 Inductive Definitions and Femto-VHDL

The definitions that will be used in the semantics of Femto-VHDL are made up of
sets of rules expressed as conditionals:

if premises then conclusion

Where the premises may take on one of two forms, those associated with the
relation being defined and other truths which must be known. These other truths
are known as side conditions. When writing the rules of the semantics, the following
form will be used:

premises

- side conditions
conclusion

Any rule without premises is known as an axiom.
The form that each of the premises and the conclusion will take on in the rules
is:

DYNAMIC SEMANTICS 27

env F a—225p

which should be read, "a evaluates to b in the environment env using the relation
—=al_sv The environment is the static state of the evaluation (i.e. the current time,
the state of the signals, etc.). The turnstile (}-) separates the environment from the

operation of evaluation from a into b.

4.2 Information Organisation

The information needed to make the semantics work is really very simple. The way
it is presented here was conceived to correspond to the intuition of VHDL users
about the structuring of information in VHDL itself. Much use will be made of set
notation in what follows.

Time will be represented by the natural numbers, values by Booleans, and
signal names by strings. Whenever there is an event on signal x, its name will be
included in a set of events (y). The state of signals () is given as a set of name-
value pairs. Future transactions () is a function from time to o, and will provide
the framework for scheduling. The trace of past behaviour (0), which is necessary
for proper interpretation of attributed signals, is also a function on time, but maps it
to a y-o pair. The environment in which an individual simulation cycle runs (p)
holds the current time, o, v, and 6. The overall simulation environment (L)
augments p with an ordered list of times representing the delays associated with the
signal assignments of the Femto-VHDL program in question.

time =N value = Boolean name = string
v =(name)set o =(name X value)set T=time > o 6O =time— (yxo0)
p = (time X 0 Xy X 0) i = ((time)list X p)

The delays are added to the overall simulation environment to allow the
simulation loop to move forward to the next point of computation. Recall that the
loop should progress to the nearest point of computation where there are
transactions to process. The way that these transactions are created is through the
execution of signal assignment statements. So by gathering together all the delays
associated with the signal assignments of a given program into an ordered list, we
provide a way of knowing the only reachable offsets from the current time.

28 DYNAMIC SEMANTICS

4.2.1 Delay Extraction

Bearing in mind the usefulness of the just mentioned delays, functions are now
defined to extract them from Femto-VHDL programs. Before doing so, two
functions that ensure the ordering of lists of delays are given. The first function is
list recursive, and adds a new delay to the existing list of delays. It guarantees that
any such addition preserves the order of the list.

add_one_delay dly dlys =
it nil dlys then [diy]
elseif dly = (hd dlys) then dlys
elseif dly < (hd dlys) then (dly . dlys)
else (hd dlys . add_one_delay delay (1l dlys))

The next function is also list recursive, and merges together two lists of delays. Use
is made of add_one_delay to preserve the ordering. merge_delays is really doing
nothing more than a sorted appending operation that deletes duplicate elements.

merge_delays dlys’ dlys” =
if nil dlys’ then dlys”
else merge_ delays (tl dlys) (add_one_ delay (hd dlys’) dlys”)

As an example, merge_delays [2,5,1][4,5,8] would yield the list [1,2,4,5,8].

Having defined both add_one_delay and merge_delays, the functions that
actually extract the delays from Femto-VHDL program texts may be defined. It is
assumed that any design hierarchies have been flattened out into a sea of concurrent
processes. The first function extracts delays from sequential statements. As
anticipated, delays are only to be found on signal assignment statements, and are
added to the running list by calls to add_one_delay.

get_delays_ss ss/ =
if (ss=s58"; ss”)v(ss=e=>ss"|ss”) then get_delays_ss ss’ (get_delays_ss ss” [)

inert ans
elseif (ss =s:= (e, dly))v(ss —sim (e, dly)) then add_one_ delay dly I

else [

The second function extracts delays from the collection of parallel processes. Any
delays that are found in individual processes through the use of get_delays_ss, are
merged with those found on any other processes via calls to merge_delays.

DYNAMIC SEMANTICS 29

get_delays_cs cs =
if s =(sl: s5) then get_delays _ss ss5[]

else let (cs’ || cs”) = cs in merge_ delays (get_delays_ cs cs’) (get_delays_cs cs”)

An example of the use of this suite of functions may be had by taking some example
processes used in Chapter 3,

trans

inert trans
{x}:a:=(notx,2) |l {y}:b:= (v and ", 0)l1{z}: ¢ : = (z,0)

and running get_delays_cs over them to return the list [0,2].

4.2.2 Well-Formedness

A well-formed o has two essential parts. The first being that there are no signal-
value pairs that have the same signal name as their first element (i.e. signals have
unique values). The second criterion is that if an architecture simulates with a
particular ¢ in its environment, then all the signals in the architecture must have an
associated value in that o. The definition of well_formed o encapsulates these
properties:

well_formed_o o design =
let sigs =image fst o in
card o = card sigs A
Vsig.(sig € (get_sigs_ design design)) D Jval. (sig,val) € o

The function uses card to calculate the cardinality of a finite set (i.e. card {a,b} =2
and card {} =0), and image to extract the set of signal names from the given ¢ (i.e.
image fst ((x,a),(3,b),(y,¢)) ={x,y}). The first conjunct simply states that the ¢ in
question must have the same number of elements as the set of signal names
associated with that . The second conjunct stipulates that any signal that is in the
set of signal names extracted from the design, must have a value associated with it
ino.

When dealing with the well-formedness of traces of past behaviour (8), two
constraints must be met. Both will apply at any time rather than at specific offsets
associated with a particular program. The reason is twofold. First, it makes little
intuitive sense to have a past which is only applicable at certain time points. Second,
a 'delayed signal attribute may attempt to sample the past at a time offset which is
not one of the signal assignment delays. The semantics, particularly the definition of

30 DYNAMIC SEMANTICS

the top-level simulation loop, will ensure that traces of past behaviour are
constructed to contain intervals rather than time points.

The function well_formed_0 is defined to encapsulate the two requirements on
the proper construction of individual 0. These constraints apply, as in
well_formed_o, with respect to the design that a particular 0 is associated with. The
first of the two constraints is that any signal found as an event in the trace must be
one of the signals of the design in question. The second requires that for any time
point mentioned, the o found there must be well-formed.

well_formed_0 0 design =
\%i sig.(sig € (st (0 t)) D sig € (get_sigs_ design design)) A
(well_formed_c (snd (6 7)) design)

It will be necessary in later reasoning to know about membership in a trace of
past activity based on the well-formedness of that history:

Theorem 4.2.2.1:
V0 dsgn.
well_formed_0 0 dsgn D Vt s.5 € get_sigs_ design dsgn D Jv. (s,v) € snd(0 t)

If one assumes well_formed_0 0 dsgn, expand its definition (as well as that of
well_formed_o), reduce the resulting internal let expressions, and take the second
conjunct, the required result is obtained after discharging the initial assumption and
generalising both 6 and dsgn.

4.2.3 Equivalence

Equivalence for vy, o, T and 0 is not a straight equality. Rather it is predicated on
the user supplying some signals of interest. The reasoning behind this is perhaps
best illustrated by example. Assume that one wished to compare the simulation vy
associated with architecture A with that for architecture B. Both A and B have the
same external ports, but differ in their internally declared signals. Since any
comparison of A with B is only meaningful on externally visible signals, it is
essential that the internal signals be factored out of each y before making the

equality test on the two sets. So, the relation = is defined in the following way:

y’;y”s({s:sey’/\s€sigs}={s:sEy”/\sesigs})

sigs

DYNAMIC SEMANTICS 31

It is an equivalence relation, and obviously exhibits the required properties of
reflexivity, symmetry and transitivity. A similar relationship, may be defined for o:

o’ ; o’ = ({(s,v) s€o0’As€sigst={(s,v):s€0” AsE sigs})

sigs

Both © and 0 are a bit more involved when defining equivalence. This is due
to the fact that they are functions of time. Therefore, the simple approach taken
above must be augmented to check that the sets are the same for all times. For 7,

the relation = may is defined as:

== VL. ({(s,v) :s€ (1) AsE sigs} = {5,v):se(rt)rse sigs})

sigs

[¢]
The definition of a relation on 0 is much the same. Note that the definition of =
takes both the trace of y and the trace of ¢ into account.

6 =0 = V1. ({s cse(fst (0’ 1)) ase sigs} = {s :se(fst(0” 1)) As€ sigs}) A

sigs

({(s,v) cse(snd(0’) ase sigs} = {(s, v):s€(snd(8” 1))ase€ sigs})

Later on in the presentation of the semantics it will become necessary to reason
about membership of signal value pairs in equivalent t's. The following
complementary theorems will aid in that reasoning. They merely state that if two
T's are know to be equivalent on a set of ports, then given any signal named in those
ports which is in one of 1's the same signal-value pair must appear the other one as
well.

Theorem 4.2.3.1:

V1’ 17t sig val ports.

((’c’ = 1:”)/\ (sig € ports) A (sig,val) € (/ t)) D (sig,val) € (1" t)

porits

Theorem 4.2.3.2:

V1’ 1”7 t sig val ports.

((’C' = 'c”) A (sig € ports) A (sig,val) € (t” t)) D (sig,val) € (' t)

ports

32 DYNAMIC SEMANTICS

The definition of = makes it clear that any signal named in ports will have the same
signal-value pair in both v and t” at any chosen time. Fach of the desired
implications is a consequence of this.

4.3 Rules of the Semantics

The rules that define the operational semantics of the Femto-VHDL subset fall under
five broad headings ~ rules for Boolean expressions, rules for sequential statements,
rules for concurrent statements (the simulation cycle), rules for initialisation and
rules for the top-level simulation loop. The presentation of these rules now follows,
beginning with those defining the evaluation of Boolean expressions. Their format
is based on the presentation discussed in Section 4.1.2.

4.3.1 Rules for Boolean Expressions

The rules that define the semantics of Boolean expressions are numerous, but are
conceptually very simple. They are, in essence, describing an evaluator for Boolean
expressions. A key component of that evaluation will be the determination of the
value of actual signals — a task accomplished by the function valcalc:

valcalc sig o = choice {val:(sig,val) € o}

The function calculates the value of a signal sig in a state o, by making use of
the function choice which selects an arbitrary element from a non-empty set. The
use of choice is possible in this context because the set from which the choice is made

will always be a singleton set. This is due to the fact that signals have unique values
in any o as long as they are well-formed. For example, valcalc x {(y,a),(x,b)} = b.

In the rules, the symbol —2%— denotes the evaluation relation for Femto-

VHDL Boolean expressions. The type of —2%— is bexp — Boolean — Boolean, and is
given in the upper left-hand corner of the box displaying the rules. This type
information will be a recurrent pattern in the presentation of the other rule sets.
Axioms are provided for the evaluation of individual signals, the values of the
constants true and false, the calculation of the delayed value of a signal and the
determination of whether or not there is an event occurring on a signal. The other
inference rules define the relationship between Femto-VHDL Boolean operators, and
the logical Boolean expressions that they evaluate to. For instance, rule by states that

if some Femto-VHDL Boolean expression e evaluates to the logical value x, then the

DYNAMIC SEMANTICS 33

not of that expression evaluates to the logical negation of x. The symbols T and L
below stand for "true" and "false" respectively. Furthermore, ® is the exclusive or
operation.

bexp — Boolean — Boolean
{b,

} » 00, H
(now,,v,0) b sig—2%—s valcalc sig o

{bs}

{b,}

p F true—22—T p I false—224— |

{b bool

o] (now,o,v,0) + sig'delayed(r) —=*— valcalc sig (snd(e(now—-t)))

{bs}

(now,o,y,0) F sig'event—2%—s sig€ y

bool

pFe—>x

b
b} p b (not e)—22%— —

bool bool

bool bool p I_ e/ > x p |_ e//)y

pFe—=—=x plke'—>y

b b
B wade) =Gy T o Fore)—E(ivy)
7 bool , ” bool 7 bool . " bool
by} phe X pbl-le —=y by} pFe—>x pbml)-l e —=>=7y
p F (¢’nande”) —2*——=(x A y) p F (e’ nore”)—2——=(xvy)
p I__ e/ bool S x p I‘ e// bool :y p I__ e/ bool 3 x p }_ e// bool :y
{b;} {b;,}

p I (&’ xor e”)—225(x D y) p F (¢’ xnor e”)—22— —(x ® y)

The only non-trivial rule is perhaps b, which defines the calculation of a
delayed value for a particular signal sig. The result arises from looking at the state
of the signal values now —t units ago and extracting the value of the signal in
question via valcale. The state of interest is found by examining the trace of past
history represented by 0 at the desired time, and extracting the second element of
the pair.

4.3.2 Rules for Sequential Statements

The formalisation of the sequential statements of Femto-VHDL is for the most part as
obvious as that for Boolean expressions. The rules, in addition to the other
sequential constructs in the subset, encapsulate the statements which drive the
simulation forward - inertial and transport delay signal assignment. Whenever a
signal assignment statement of either form is encountered, it becomes necessary to
"post”, or schedule, a transaction to take place at some future point of computation

34 DYNAMIC SEMANTICS

to effect that assignment. These transactions are in turn used by the overall
simulation loop to determine where the next point of computation lies.

During signal assignment, it is essential that the pre-emptive scheduling
required by VHDL take place [21]. This type of scheduling is a particular artifact of
the VHDL simulation model that may delete certain previously posted transactions,
and is best illustrated by example. Assume that signal x is scheduled to take on a
value at time ¢ . Also assume that an attempt is made to post another value for the
same signal at time ¢/. If ¢’ is less than or equal to ¢, then the first value scheduled
at time ¢t (along with any other value previously posted at or after time ¢’) is deleted
from the future transactions, and the new transaction for time ¢’ is posted. The
inverse situation (¢’ greater than ¢) is not part of pre-emptive scheduling, but rather
relates to inertial delay assignments in particular.

Transport delay, barring pre-emptive scheduling, is analogous to saying that
whatever value gets assigned to a signal eventually appears. Inertial delay makes
use of exactly the same mechanism as transport delay, but in a constrained way. In
order for a particular transaction to be posted, inertial delay further requires that the
inputs to the assignment be stable during the entirety of the assignment interval,
and thereby removes any "spikes" on the input.

As an example of the difference between the two kinds of delay, consider the
following example. Assume that the signal x has a high value. Furthermore,
assume that the signal is scheduled to take on a low value at time now+1. If one
then attempts to post a high for x at time now+2 using transport delay, the
waveform for x would look like:

X

R
now +1 +2

If, however, the same scheduling were to take place with inertial delay, the
waveform would take on the following form:

DYNAMIC SEMANTICS 35

time | | |
now +1 +2

The difference results from the fact that x is not stable during the long assignment

interval, and is disqualified from assignment at time now +1 because the transaction

scheduled there represents a spike in the interval between times now and now +2.
Transport delay will expressed by the function trans_post:

trans_post sigvaltt =
let stripped ¢’ = (v /) = {(x, y):(x,) € (v ') A (x = sig) A(t' 2 1} in
At’.if (¢ = 1) then ((sig, val) insert (stripped ')

else (stripped ')

The function makes use of insert to insert a new element in to a set (i.e. linsert {3,4}
becomes {1,3,4}). The current transactions (t), the signal for which the assignment
is to be made (sig), the value that the signal is supposed to take on (val) and the time
at which that assignment is to take place (¢) are employed to create a new version of
future transactions by returning a function from time to o. If the time supplied to
this function is the one at which the signal assignment is to take place, a set
consisting of a "stripped" version of the projected o with the given signal-value pair
inserted into it is returned. Otherwise, all that is returned is the stripped version of
the projected state. The stripping process is performed by a function local to
trans_post called stripped, which in fact does the pre-emption part of scheduling a
new transaction. stripped, when given a time ¢/, will return a version of the starting
© in which all pending transactions on signal sig have been removed when ¢’ is
greater than or equal to the time at which the current scheduling is to take place.

Inertial delay signal assignment statements (i.e. those with the kind of set-up
and hold constraints mentioned earlier) make use of a function that is rather
different from trans_post to perform the posting of transactions. The difference lies
in the stability check and its consequences on the act of scheduling. With transport
delay, a transaction will always be posted. With inertial delay, this is not the case as
a non-stable waveform will cause transactions to be unscheduled.

36 DYNAMIC SEMANTICS

The main concern before doing the assignment is therefore to ensure the
stability of the input waveform. To do so, pending transactions during the
assignment interval will have to be examined. At the lowest level, a check will have
to be made on planned o to see that the signal value that has been projected in that
o is the same as the one trying to be scheduled.

check o sig val =
let sigval = {(x,7):(x,y) € o A(x = sig)}in
if (sigval = {}) then T else (sigval = {(sig,val)})

The function also flags as acceptable those o that have no projected value for the
given signal.

The above check will have to be made on a specific range in the future
transactions. Those that are of interest lie between whatever the current simulation
time is and that time plus the delay associated with the assignment statement in
question.

is_stable dly t now sig val =
if(dly=0)then T
else (check (t (now + dly)) sig val) A (is_stable (dly —1) © now sig val)

Signals are assumed to be trivially stable at the current time. For all other times in
the delay, one recurses back check'ing each time point.

If there is an instability, it will be necessary to purge any spikes that are found
in the assignment interval. The function purge, similar to is_stable, accomplishes the
task:

purge dly t now sig val =
if (dly = 0) then ©
else let ©/ = At.if (£ = now + dly) then
(x(now + diy)) = {(x,):(x,y) € W(now + dly) A x = sig A y = val}
else tzin '
purge (dly —1) v/ now sig val

Armed with the definitions of is_stable and purge it is now possible to give the
function which performs the scheduling of inertial delay assignments. Intuitively, as
long as the stability constraint holds, the assignment is nothing more than what was
done for transport delay. If the signal is not stable during the interval, then the
spikes should be purged from the interval before the assignment can take place.

DYNAMIC SEMANTICS 37

inert__post sig val curval © How dly =
if (is_stable dly © now sig curval) then trans _post sig val © (now + dly)

else trans_ post sig val (purge dly t now sig val curval) (now + dly)

The arguments to inert_post should be read as (from left to right) the signal in
question, the value being assigned, the current value of the signal, the projected
transactions, the current time and the delay associated with the assignment.

The rules defining the evaluation of Femto-VHDL sequential statements are
now given. The relation makes use of the one defined for Boolean expressions in
many places. The (x,t) notation is used for grouping together a given statement
with the current transactions (e.g. (null,t)). An axiom defines that a null statement
should do nothing to the transactions, passing them along unchanged. Sequencing
of Femto-VHDL statements and the evaluation of conditionals proceed in the
expected way. It is, however, in defining the evaluation of the two kinds of
assignment statements that the driving force of the simulation engine is addressed.
The result of performing an assignment statement is the modification of future
transactions through inert_post and trans_post.

[ss = transactions — transactions = Boolean|

tesu} p F (null,t)—*4> <

P k- (SS’,T>—L€‘(L-—)T/ p l_ <SS//’,C/> seq i

{SSZ} p I_ (SS/;SS”, 'C) seq 3 ,_c//
(s.] plFe—2sT ph (s, 1) —4>7
’ p F (e=>s5'|ss”,1)—"4> 1/
pre—22sl plh (s, 1)—%1
{ss,}

p F {(e=>ss"|ss”,T)—Es v/

(t,0,7,0) F e—2%>x

{Ss5} inent
(t,0,v,0) k <sig :=(e, dly), 1:>-—s—’?”~—->inert_ post sig x (valcalc sig o) T dly
(5.} (t,0,7,0) F e—%>x
6

trans
(¢t,0,v,0) F <sig :=(e, dly),r>——s—”q-—> trans_post sig x © (¢ + dly)

38 DYNAMIC SEMANTICS

4.3.3 Rules for Concurrent Statements

The rules that define the evaluation of Femto-VHDL concurrent statements are really
those that describe a single iteration of a simulation cycle. As explained in Chapter
1, a simulation cycle is based on the notion of processes running in parallel, and
returning a composite view of future behaviour after they have all finished
executing. To effect this amalgamation, it should only be necessary to perform a
simple set union at all times in two returned t's on the o's found there. It now
becomes evident why the multiple driver restriction has been placed on Femto-
VHDL. If such a union was being done for two particular t's at some time ¢ , and
both o's found there contained a projected value on the same signal, the consistency
constraint of unique values for signals would be violated. In a fuller semantics for
the VHDL simulation engine, it would be necessary to replace the set union with a
more complex function that took into account user-defined resolution functions.

The kind of behaviour required in joining together transactions could be given
by the function Zip with the property that:

vt/ 17 t.
let x = image fst {(x,y):(x,y) e(v t)} and y = image fst {(x,y):(x, y)e(” 1)}in
(disjoint x y) = (v’ Zip v7) = Ar.(v 1) U (17 1))

Zip is different from previous definitions that have been made in that it is partially
specified. The only statement that has been made is what should occur when the
two sets are disjoint. The behaviour is undefined when they are not. One would
expect the simulation of a well-formed Femto-VHDL program to ensure that those
conditions are met. Recall that the multiple driver restriction ensures that only one
process may assign to a particular signal, which should cause the transactions at any
particular time to be disjoint during simulation. It is therefore possible to re-cast the
operation as a more familiar and simple definition:

v zip 17 =M. (v) u(” 1)

In fact, the following obvious theorem about the relationship between Zip and
zip holds:

DYNAMIC SEMANTICS 39

T]:\:/eorem 4.3.3.1: (Equality of Zip and zip)
A

let x =image fst {(x,y):(x,y) e(v t)} and y =image fst {(x,y):(x,y) €(v” t)} in
(disjoint x y) = ((v* Zip v*) = (v’ zip t”))

Armed with the reassurance provided by this fact, use may be made of the simpler
zip in the rules which are to come. This is because the two definitions are
interchangeable as long as the pre-conditions on Zip hold.

Some other useful theorems for manipulating expressions containing zip
include commutativity, associativity and reduction when one of the arguments is a
v that always points to an empty o. As zip is based on set union, they mirror
properties associated with it.

Theorem 4.3.3.2: Vv’ 7. (7' zip) = (" zip)
Theorem 4.3.3.3: V11’ 1. (vzip (v zip 1)) = ((v zip 7) zip 1*)
Theorem 4.3.3.4: (V’C. ((M. {1 zip 1:) = r) A (\71:. (’C zip (At. {})) = ’C)

Given the definition of zip, a first attempt at the rules that define the execution
of a simulation cycle may be attempted. The first rule states that if the sensitivity list
of a particular process does not intersect with the set of current events, the
transactions remain unchanged. The second rule is the inverse of the first. That is to
say that if the intersection of sensitivity list and events is non-empty, then the
resulting transactions arise from the execution of the sequential statements of the
process. The final rule says that if starting from the same set of transactions, two
concurrent statements produce their own version of future transactions, then their
parallel execution results in the zip'ing together of those transactions.

les = transactions = transactions — Boolean|

{cs,} (siny)={}

(1,0,v,0) F (sl:s5,7)—2%>7
t se ’
(bov0) k <SS’T>“J‘,_M (siny)={}

(t,0,v,0) b (sl:s5,7)—2> 1’

pF(cs/, 7)== pt (es”,71)—Ls1”

p <cs’||cs”,’c>———1-—->“ T/ zip T

{cs,}

{cs;}

40 DYNAMIC SEMANTICS

The problem with the above rules is that it is possible for a perfectly well-formed
program to generate conflicting transactions, thereby not allowing Theorem 4.3.3.1
to be used to get back to Zip. Take for instance the simple case of a program made
up of two processes A and B where the starting T contains a transaction scheduled
for signal x. Assume A does not activate, and returns the original transactions
unchanged. Also assume that B does activate, and pre-empts the transaction on x.
The result of zip'ing together the old and new transactions is a conflict on signal x.
According to our intuitive understanding of a simulation cycle, there should not
have been a conflict resulting from the execution of these processes.

The seemingly obvious solution to the problem is to have inactive processes
return empty transactions (Az.{}). While this would take care of most situations, the
- case of a process activating but not scheduling any new transactions (i.e. passing on
the old ones unchanged through null statements) engenders exactly the same
problem. Clearly, some augmentation of zip is required.

Intuitively, any original transactions need to be stripped out of the returned t's
before they are zip'ed together. Furthermore, any signals for which there are
scheduled transactions in the new t's need to have any reference to them removed
from the original transactions. To that end, the function clean_zip is defined as:

clean_ziporigt/ 1" =
let strip__t" = (t’ ¢) — (orig ¢)
andstrip_t” = (<" t)~(orig t) in
let T = strip__t’ zip strip_t”in
let new _orig t = (orig t) — {(x,y):(x € (image fst (< t))) A((x,y) € (orig t))} in
T Zip new_orig

A pair of theorems about clean_zip now follow. The first one deals with the
simple case of the original transactions being empty (Az.{}), and shows that such a

case degenerates to a simple zip of the remaining t's.

Theorem 4.3.3.5:
vt/ 17, (clean_zip (m D r”) = (v’ zip)

The argument is based on the fact that any set s less the empty set is s. Therefore,
strip_t’ and strip_t” in the definition of clean_zip reduce to 7/ and t” respectively.
As a result, T becomes a zip of v and t”. It is also known that the empty set less
any other set is always the empty set. As a consequence, new_orig reduces to

DYNAMIC SEMANTICS 41

(Ar.{}). Since any = zip'ed with empty transactions is that t, the desired conclusion
follows trivially.

The second theorem expresses the commutativity of two t's when the original
transactions remain unchanged.

Theorem 4.3.3.6:
Vorig v’ ©”. clean_ zip orig v/ ©” = clean__zip orig 1" v’

Once one recalls that zip is a commutative operation, the result follows trivially from
the definition of clean_zip.

Armed with the definition of clean_zip, the rules that define a simulation cycle
may be given as:

[cs = transactions — transactions = Boolean|

I M =
{cs,} (¢,0,v,0) F (sl:ss,7)—*—>M.{} (stny)={}
(t,O‘,y,G) |- <SS,’C>—-——‘W—‘L—)T/
l *
(5. (¢,0,v,0) F (sl:s5,7)—2>1 (siny)={}
p (65— p b (o, 1)— =
{cs,}

pF (cs’llcs”,t>—”xc——>r’ clean_zip © t/ v”

Note that inactive processes return empty transactions as in the intermediate
solution above. Also, the call to zip in the rule defining the execution of concurrent
processes has been replaced by a call to clean_zip. These modifications guarantee
that as long as the program is well-formed, there can be no clash of signal names in
the transactions resulting from the parallel execution of two processes.

4.3.4 Rules for Initialisation

Initialisation in VHDL is characterised by a more general version of the simulation
cycle. All processes are activated irrespective of sensitivity lists, and run once [21].
In terms of rules, it is possible to remove the rule about non-active processes from
the rules for concurrent statements, as well as the side condition from the second

init

rule. This gives rise to the much simpler relation —*—.

42 DYNAMIC SEMANTICS

les = transactions = transactions = Boolean|

(2,0,7,0) F {ss,7)—*4> 1
(t,0,7,0) F (sl:s5,7)—"> 7

{init, }

Fes’,t)—"—>1 pF (es”,t)—s 1"
pF <cs’||cs”,"c>—‘l"'~—->ﬂ:’ clean_zip t 1/ t”

{init, }

4.3.5 Rules for the Simulation Loop

A key component of the simulation loop is the ability to move from the current
point of computation to the next interesting one. Recall that the first component of
the simulation environment [l is an ordered list of times that represent the delays in
a given Femto-VHDL program text. So, to determine the next point of computation,
it is necessary to run through the list until the first non-empty set of transactions is
reached. The function next_time is defined recursively over the structure of finite
lists to accomplish this task:

next_time dlys now t =
if (nil dlys) then now

elseif —1((1: (now + (hd dlys))) = {}) then (now + (hd dlys))
else next_time (1l dlys) now <

Another important part of the simulation loop is the determination of whether
or not a particular simulation has quiesced. The job of finding this out is analogous
to discovering the next point of computation. If a non-empty set of transactions is
found while iterating through the list of delays, the simulation has not quiesced.
Furthermore, after exhausting all possible delays it is essential to check the
emptiness of the current set of events. Obviously, a non-empty y also means that
the simulation has not quiesced.

quiesce dlys now 1 =
i (nil dlys) then (y = {})
elseif (('c (now +(nd dlys))) # {}) then L
else quiesce (il dlys) now t

If the simulation has not quiesced, it is necessary to merge the signal changes
dictated by the current transactions into the static state of signal values. This is done
by first extracting the names of the signals for which a transaction has occurred and

DYNAMIC SEMANTICS 43

using them as a filter. A new set of signal-value pairs is then created from the new
transactions and the old state less those pairs which have a signal name in common
with the new pairs.

next co’'c”=
let sigs = image fst 6’ in {(s,v):(s,v) co’v((s,v) €0” A s ¢ sigs)}

For instance, next_o {(a,T)} {(a, L),(b, L)} reduces to {(a,T),(b, L)}.

A similar approach is used to generate a new set of events. The function
next_y creates a set of signal names from those pairs with a common signal name in
the new and old ¢'s whose values differ.

next_yo’oc”=
{signl:3x y. (signl,x) € o’ A(signl,y) € 6" A(x # y)}.

Using the same inputs as the previous example, next_y {(a,T)}{(a,L),(b,1)}
becomes {a}.

The final auxiliary function required by the simulation loop merges a set of
events and a set of signal-value pairs into the running trace of past activity. The
function add_to_0 takes the components to be added, the current 0, the beginning
of the past time interval and the endpoint of the past time interval (i.e. the point of
computation that has just been entered), and returns a new 0. If the beginning time
and the endpoint are the same (meaning that the simulation has quiesced, or a -
step has been made), then the function returned is predicated on the time input to it
being the same as or greater than the beginning time, and allows the just-added
information to be accessed. Otherwise, the function returned creates an interval of
times for which the new trace information may be observed.

add_to_0 o vy O start finish =
At (start = finish) then (if (r 2 start) then (v,0) else (0 7))
else (if (start < t > finish) then (y,0) else (6 7))

There is no cause for concern in the use of > to delineate the upper bound of a time
interval. If the simulation has quiesced, then the final values of the signals should be
expected to hold for any time after the end of the simulation. Conversely, if the
simulation has not quiesced, then the non-decreasing nature of simulation time will
ensure that the right information is accessible as the nested conditional is built. As

44 DYNAMIC SEMANTICS

an example, the conditional if (2 finish) then X else if (start <t 2 finish) then Y else Z
is the same as if (¢ > finish) then X elseif (start < t < finish) thenY else Z

A useful theorem about the reduction of nested calls to add_to_0 with
identical time arguments is:

Theorem 4.3.5.3:
Yo/ v/ o’ y” 1 start finish.
add_to_6 o’ v/ (add_to_0 o” y” t start finish) start finish =
add_to_0 o’ vy’ v start finish

The result follows from the definition of add_to_0. The nested calls create similarly
nested conditionals where the innermost one is hidden by the outermost one.
Obviously, this simplifies down to an identical conditional to that of the stand-alone
invocation of add_to_ 0.

The simulation loop itself is formulated in two rules. The first deals with
quiescence, and ensures that the running 0 is updated by the final o and y before
returning a trace of signal values to the user (i.e. the second component of 0 at any
given time). The second rule states that if the processes in the Femto-VHDL program
produce some transactions based on both the current environment and some
starting transactions from which the current ones have been deleted, and that if the
simulation loop may be performed on these results to give a final behaviour (using
the functions defined above), then the processes yield this same behaviour in the
starting environment.

les — transactions — transactions — Boolear)

sim . uiesce dlystt
telm,} (dlys,t,0,7,0) F {cs,7)—"—At".snd(add_to_0cy0Ortt) a ey
(6,0,1,8) F {cs, 1) —s 1/ 17 =(At.ift’ =t then{ } else (1 "))
’ . t’ =next_time dlyst t’
. (dlys,t’,0”,y",0") k- (cs,v")—"— beh , next_ lme/):S K
{sim,} o’=next_c(t't')o

(dlys,t,0,v,0) F (cs,t)— beh
v'=next_vy(t't')o

0’=add_to_0Ooy0r¢t’

Having specified the top-level simulation loop, it is now possible to make a
definition characterising a complete simulation:

DYNAMIC SEMANTICS 45

simulate design =
(well_formed_ design design) A
let procs = dflat design in

(let o =image (Asig. (sig, L)) (get_sigs_ design design)in
lety={}andt=(Ar.{})
and 0 = (?»t. if (1 = 0) then ({},0) else ({},{})) in
(0,0,v,0) F {procs,t)—— r’) A
(let dlys = get_ delays _ cs procs and now = next_time t’in
let v/ =next_vy (t/ now) y andc’ =next_o (v’ now) o
and 0’ =add_to_0 oy 0 0 now
and t” = (Az.if (£ = 0) then { } else (7’ 7)) in
(dlys,now,c’,v’,0") F (procs,r”)——“"iebeh)

The Language Reference Manual stipulates that all signals must be stable at the
beginning of the initialisation process. To that end, the initial events are an empty
set. The starting transactions are also empty. Since signal values are always defined
in the past [21], the initial trace is set up to ensure that any signal in the program
which makes use of the delayed attribute will access the starting value of the signal.

Strictly speaking, the definition just presented is not quite complete. Ideally,
one needs to have a facility that permits some signals begin the simulation with a
value other than the default of low. The definition of simulate may be changed to
reflect the desired functionality by adding a set of signal-value pairs called uservals
to its parameter list and revising the way in which the original o gets set up.

simulate design uservals =
(well_formed_ design design) A
let procs = dflat design in
(let default _o =image (Asig. (sig, L)) (get_sigs_ design design)in

leto = {(s,v): ((s,v) € default_o A s ¢ (image fst uservals)) v (s,v) € uservals} in

It really does not matter if the user-supplied set of values contains signals other
than those in the program being simulated. They will be added to the initial state,
and will persist throughout the simulation. But, they will not affect its evaluation as
they are never accessed by any of the statements in the program.

46 DYNAMIC SEMANTICS

4.4 Equivalence

One of the most powerful aspects of a formal semantics is its generality. VHDL is
presented as a hardware description language permitting many levels of abstraction
in the design process. Fundamental to this concept is the notion that one component
of a design may be replaced by another equivalent component without affecting the
overall design. In effect, this is an affirmation that the equivalence of two programs
is a congruence.

What does it mean for two components to be equivalent? The simple answer is
that their behaviours are "the same". For purposes of the work presented here, the
simulation of a program must quiesce before it can be reasoned about. Once it has
done so, the behaviour resulting from rule sim, in the definition of —*— may be
analysed. This means that the equivalence of two components is a comparison of
the behaviours generated by each based on the relation =

The property in question needs several assumptions to hold before it can be
proven. For the most part these center around the way in which certain parts of the
simulation environment for the overall design are constructed. For instance, the
starting state of the signals must be a union of the ¢ associated with one of the sub-
components and the starting o for the rest of the program. This overall starting
state of the signals must furthermore be ;-equivalent on all the signals of the
composite program. A like construction with union is also required of the trace of
past behaviour. The behaviours of the two subcomponents used in the replacement
are required to be ;—equivalent on their own ports. Naturally, these sub-programs
must correspond to the same entity and have identical ports. Otherwise, it would be
impossible to replace one by the other.

Well-formedness assumptions need only apply to the rest of the design into
which the sub-components are being inserted. The reasoning behind this is fairly
obvious. The sub-components have already been executed, and have a known
behaviour. The program into which the substitution is being made is however not
known. But, in order for it to simulate properly it must be well-formed both
syntactically and with respect to its trace of past behaviour (which implies that it
was well-formed on any simulation ¢ that was ever used).

DYNAMIC SEMANTICS 47

Theorem 4.4.1:
let A =arch ent arch, ports decls, cs, and B = arch ent archy, ports decls, cs,
ando,,=0,Uc,and o, =0, U0,

and 0, 1 = ((fst (8, 1)) U (fst (6,)),(snd (8, 1)) U(snd (6, 1))

and 0, ¢ = ((tst (6, £) U(tst (6, £)),(snd (6, 1)) U(snd (6,) in

let ports’ = get_ports A and ports” =get_ports C in

let prts = ports’ U ports” in

((dlysA,now,GA,yA,GA) F (dflat A, rA)——ﬂ-abeh.A Aquiesce dlys, now T, v, A

(dlys,,now,c,,v,,0,) F (dflat B,t, >-——”—”’~—>behB Aquiesce dlys, now Tty Y, A
(dlys,c,now,0 40, ¥,0,04c) b (dflat (dpar A C), 1,0)—— el A
(dlysse,now,0 ¢, Y5c,05c) F (dflat (dpar B C), 7,) —2—s behy, A
quiesce dlys,, How T, ¥ 4o AQuiesce dlysy, now Ty, Yo A
well_formed_ design C A well_formed_00, C A

(o o = O) A (beh.A = beli,)) = (beh.AC = beh.BC)

The gist of the proof is to show that for any time ¢ and for any signal sig in the
set pris, the value associated with that signal is the same in both (beh,. t) and

(behy t). In doing so, the following cases arise:

1. sig € ports’ and (sig,val) € (beh,. t), show (sig,val) € (beh,, 1)
2. sig € ports’ and (sig,val) € (beh, t), show (sig,val) € (beh,. 1)
3. sig € ports” and (sig,val) € (beh,, t), show (sig,val) € (beh,, t)
4. sig€ ports” and (sig,val) € (behy, t), show (sig,val) € (beh, t)

Because of the syminetry of ;, this reduces down to only 1 and 3.
Recall that when a simulation quiesces, the resulting behaviour is a function
from time to the state component o of the trace 8 used in the simulation

environment. Each of the 0's here is a composite of the trace associated with the
components of interest (A and B) and the overall design C. So, each of the beh,,

expands to (snd (0, z))u(snd (6 t)) where X is either A or B and the traces have

also been augmented by the final state of the signals.

For those signals in ports’, Theorems 4.2.3.1 and 4.2.3.2 allow one to conclude
the appropriate membership information. For the other signals (those explicitly
associated with C in ports”) the argument devolves to a case analysis based on time.
At time now the property holds because the starting state of the signals have been
assumed to be equivalent. At all other times, the well-formedness of 0, with respect

to C and Theorem 4.2.2.1 lead to the knowledge that any signal mentioned in C has

48 DYNAMIC SEMANTICS

a value at any given time point in snd (0, ¢). The well-formedness of C leads with

Theorems 3.3.3.1 and 3.3.2.1 to the fact that ports” is a subset of all the signals in C.
So any port of C will always have a value in snd (0, ¢). Furthermore, that value is

the same irrespective of whether C is paired with A or with B.

CHAPTER 5

MECHANISING FEMTO-VHDL

The semantics of Femto-VHDL as presented in Chapters 3 and 4 may be embedded
in a mechanical proof assistant to provide ways of reasoning about programs. The
proof environment that will be used is first presented. The discussion will then turn
to how the mechanisation of Femto-VHDL is accomplished in this system.

5.1 HOL

The Cambridge Higher-Order Logic (HOL) system was chosen, because of its
generality, as the mechanical proof development system for the embedding Femto-
VHDL. Much of what follows is a paraphrase of material found in [19] and [18]. The
intention is not to give an in-depth view of the system, but to provide the reader
with sufficient understanding to comprehend the material that is to be presented
later.

5.1.1 ML

The HOL system is built upon an implementation of the language ML, or "Meta
Language". ML is an interactive language. At top-level one can evaluate
expressions and perform declarations. A complete description of the syntax and
semantics of ML is given in [19].

In general to evaluate an expression e one types e followed by a carriage
return; the system then prints e's value and type (the type prefaced by a colon).
The declaration let x = e evaluates e and binds the resulting value to x. To bind
the variables x,...x, simultaneously to the values e, ...e, one can perform either the
declaration letx, =e and...andx,=e, Or letx,...,X, =¢€,...,e,. These two
declarations are equivalent. A declaration d can be made local to the evaluation of
an expression e by evaluating the expression d in e.

49

50 MECHANISING FEMTO-VHDL

5.1.2 The Logic

This section introduces the logic used by the HOL system. The system supports
higher order logic, which is a version of predicate calculus with three main
extensions:

¢ Variables can range over functions and predicates.
¢ The logic is typed.

¢ There is no separate syntactic category of formulae.

Much of the material here is taken from [19] and [18], and is presented in an
informal way. The interested reader is referred to [19] for a formal set-theoretic
semantics of the logic.

It is assumed the reader is familiar with predicate logic. The table below
summarises the notation used.

Kind of term HOL notation Standard notation Description
Truth, Falsity T, F T, L true, false
Negation ~1 -t not ¢t
Disjunction H\/ 1, LV, tort,
Conjunction L /\t, L AL, t, and t,
Implication L ==> 1, Lot t, implies t,
Equality =1 L=l 1, equals t,
V-quantification fx. 1 Vx.t forall x:t
J-quantification X1 dx. ¢ for some x: t
g -term Gx. ¢ gx. an x such that: t
Conditional (t =>1118) (t=1,1,) ift then t, elset,

5.1.3 Terms

Terms of the HOL logic aré represented in ML by a type called term. They are
normally input between quotation marks. As an example, the expression
"x /\ y ==> z" evaluates to a term representing xAyDz. Terms may be
manipulated by various built-in functions to either extract subterms or combine
them into larger terms.

Terms are quite similar to ML expressions and this can at first be confusing.
Indeed, terms of the logic have types similar to ML expressions. For example,
"(1,2)" is an ML expression with ML type term. The HOL type of this term is
num X num. By contrast, the ML expression ("1","2") has type termX term.

MECHANISING FEMTO-VHDL 51

Functions have types of the form o, = ¢,, where o, and o, are the types of the
domain and range of the function, respectively. The types of constants are declared
in theories. An application ¢ ¢, is badly typed if 7, is not a function or if it is a
function, but ¢, is not in its range. Lambda-terms, or A-terms, denote functions. The
symbol '\' is used as an ASCII approximation to A. Thus "\x. t' should be read as
'Ax.t'. For example, "\x. x+1" is a term that denotes the function x> x +1.

The HOL quotation parser also accepts let-terms superficially similar to those
in ML. let-terms are actually abbreviations for ordinary terms which are specially
supported by the parser and pretty printer. The constant LET is defined by the A-
term (\f x. £ x),and is used to encode let-terms in the logic. The system parser
repeatedly applies the transformations:

"let fV, ...V, =1 int," = "LETO\f.1,)(\Vy ... V,.0)"
"let (Vy,...,v,) =t in¢," = "LET(\(Vy,...,V,)50 "
"let v, =¢, and ...and v, =f, inf" — "LET(...(LET(LET(\V,...V,.0)t;)t,...)t,"

5.1.4 Theories

The result of a session with the HOL system is an object called a theory. This object is
closely related to what a logician would call a theory, but there are some differences
arising from the needs of mechanical proof. A HOL theory, like a logician's theory,
contains sets of types, constants, definitions and axioms. In addition, however, a
HOL theory contains an explicit list of theorems that have been proved from the
axioms and definitions. Logicians normally do not need to distinguish theorems that
have actually been proved from those that could be proved, hence they do not
normally consider sets of proven theorems as part of a theory; rather, they take the
theorems of a theory to be the (often infinite) set of all consequences of the axioms
and definitions. Another difference between logicians' theories and HOL theories is
that, for logicians, theories are relatively static objects, but in HOL they can be
thought of as potentially extendible. For example, the HOL system provides tools for
adding to theories and combining theories. A typical interaction with HOL consists
in combining some existing theories, making some definitions, proving some
theorems and then saving the resulting new theory.

The purpose of the HOL system is to provide tools to enable well-formed
theories to be constructed. All the theorems of such theories are logical
consequences of the definitions and axioms of the theory. The HOL system ensures

52 MECHANISING FEMTO-VHDL

that only well-formed theories can be constructed by allowing theorems to be
created by formal proof only.

5.1.5 Definitions

In HOL, definitions are a special kind of axiom that are guaranteed to be consistent.
The commonest (but not only) form of a definition is:

fx..x, =t

where f is declared to be a new constant satisfying this equation (and ¢ is a term
whose free variables are included in the set x; ... x,,). Such definitions cannot be
recursive because, for example:

Fr=()+

would imply 0=1 (subtract f x from both sides) and is therefore inconsistent.

The use of axioms carries considerable danger in general because it is very easy
to assert inconsistent axioms. It is thus safer to use only definitions. At first sight
this might appear impossible, but in fact all of ordinary mathematics can be
developed from logic by definition alone. A theory containing only definitions
is called a definitional theory. Many useful definitional theories are built into the
HOL system, or available as libraries. Examples include theories of numbers (both
natural numbers and integers), sets, bags, finite trees, group theory, properties of
fixed points and more. The semantics of Femto-VHDL as embedded in HOL also
represents a suite of definitional theories.

The theory of numbers built into HOL is a definitional theory that defines
numbers logically. Peano's postulates are proved from the definitions of the type
num and the constants 0 and suc. It follows from Peano's postulates that certain
kinds of recursion equations are equivalent to non-recursive definitions. There is a
built-in theory of primitive recursion that supports this, together with tools for
automatically transforming recursion equations into definitions.

5.1.6 Proof

For a logician, a formal proof is a sequence, each of whose elements is either an
axiom or follows from earlier members of the sequence by a rule of inference. A
theorem is the last element of a proof.

MECHANISING FEMTO-VHDL 53

Theorems are represented in HOL by values of type thm. The only way to
create theorems is by generating a proof. In HOL, this consists in applying ML
functions representing rules of inference to axioms or previously generated theorems.
The sequence of such applications directly corresponds to a logician's proof.

There are five axioms of the HOL logic and eight primitive inference rules. The
axioms are bound to ML names. For example, the Law of Excluded Middle is bound
to the ML name BOOL CASES AX, and lookslike |- Vt. (t = T) v (t = F).

Theorems are printed with a preceding turnstile |- as illustrated above. Rules
of inference are ML functions that return values of type thm. An example of a rule of
inference is specialisation (or V-elimination). In standard 'natural deduction' notation
this is:

I'I-Vx.t
- t/x]

e f[#'/x] denotes the result of substituting ¢’ for free occurrences of x in ¢, with

the restriction that no free variables in ¢ become bound after substitution.

This rule is represented in ML by a function SpEC, which takes as arguments a term
"a" and a theorem |- Vx. ¢t [x] and returns the theorem |- ¢ [a], the result of
substituting a for x in ¢ [x].

A proof using the axiom and inference rule could be constructed as follows:

1.|-Vt.t=Tvet=1 [Axiom BOOL CASES AX]
2.1-(1=2)=Tv(=2)=1 [Specialising line 1 using SPEC to '1=2"]

This session consists of a proof of two steps: using an axiom and applying the rule
SPEC.
The general form of a theorem is ¢,...,¢

n

|-t ,wheret,...,t, are Boolean terms
called the assumptions and ¢ is a Boolean term called the conclusion. Such a theorem
asserts that if its assumptions are true then so is its conclusion. Its truth conditions
are thus the same as those for the single term (f,A...At,) D¢. Theorems with no
assumptions are printed out in the form |- 7.

The five axioms and eight primitive inference rules of the HOL logic are
described in detail [19]. Every value of type thmin the HOL system can be obtained
by repeatedly applying primitive inference rules to axioms. When the HOL system
is built, the eight primitive rules of inference are defined and the five axioms are
bound to their ML names, all other predefined theorems are proved using rules of
inference as the system is made.

54 MECHANISING FEMTO-VHDL

A proof in the HOL system is constructed by repeatedly applying inference
rules to axioms or to previously proved theorems. Since proofs may consist of
millions of steps, it is necessary to provide tools to make proof construction easier
for the user. The kind of proof performed in the earlier example is known as forward
proof, and tends to be used in the development of these tools. The idea of a forward
direction arises from the act of inferring new facts from known ones.

A particular kind of proof tool known as a conversion is a rule that maps a term
to a theorem expressing the equality of that term to some other term. An example is
the rule for B-conversion:

(Ax.t)t, B |=(Ax) 8, =1 [t,/x]

Theorems of this sort are used in HOL in a variety of contexts to justify the
replacement of particular terms by semantically equivalent terms.

The ML type of conversions is conv (or term — thm). For example, BETA CONV
is an ML function of type conv (i.e. a conversion) that expresses (-conversion in
HOL. It produces the appropriate equational theorem on fB-redexes and fails
elsewhere.

The other kind of proof in HOL is known as backward or goal-directed proof.
Here, the user states the fact that needs to be proven as the main goal, and goes
about breaking it up into smaller sub-goals that are easier to prove. The system
keeps track of these sub-goals, and uses the reasoning that proved them to construct
a proof of the original goal using forward proof.

5.1.7 Libraries and Tools

The HOL system provides a variety of libraries that may be combined to make proof
development easier. These libraries are either application-specific proof tools, a
collection of theorems encapsulating a particular mathematical domain, or a
combination of the two. All libraries may be loaded dynamically into a running
copy of the HOL system. For purposes of the material presented in this document,
use has been made of the following libraries:

® arith: Suite of proof procedures for linear arithmetic [8].

¢ ind defs: Tool for making inductive definitions [25].

* string: Logical types for ASCII character codes and strings [27].
* sets: Theory of finite and infinite sets [26].

MECHANISING FEMTO-VHDL 55

The system also provides many tools that make the task of proof easier. Most
of the ones necessary for our purposes have been described above. The only one not
covered has been the type definition tool [28]. The tool allows the user to define
recursive types in the logic. Heavy use will be made of it in expressing the syntax of
Femto-VHDL, as it will allow the BNF grammar that describes it to be directly
embedded in the logic. The result will be that one is able to have Femto-VHDL text
represented as HOL terms. Furthermore, one will also be able to define recursive
functions over their syntax.

5.2 Femto-VHDL in HOL

The mechanisation of Femto-VHDL in HOL was to a large extent a transcription of
the definitions made in Chapters 3 and 4 into the system. Once that task was
accomplished, proof procedures in the form of conversions were written to animate
the semantics. What follows is a general discussion of the way in which the
embedding was realised and the top-level conversions that were devised.

5.2.1 Embedding

The embedding of hardware description languages in HOL has recently been an
active area of research [9, 10, 38]. Throughout it all, two particular ways of
performing this embedding have emerged:

» Represent the abstract syntax of the language in question by terms, then
define within the logic semantic functions that assign meanings to terms.

* Only define semantic operators in the logic and arrange that the user
interface parse input from language syntax directly to semantic structures,
and also print semantic representations in language syntax.

The first style is known as "deep embedding", the second as "shallow embedding".
These labels were first applied to embedded semantics in [9]. A deep embedding
approach has been chosen for Femto-VHDL and mirrors the presentation of static
and dynamic semantics presented in Chapters 3 and 4.

Syntax

In order to make a deep embedding, the syntax of Femto-VHDL first has to be
expressed as a suite of recursive type definitions in the logic [28] leading to a type of

56 MECHANISING FEMTO-VHDL

terms called DESIGN. As an example, the following shows the HOL definition of this

type:

let DESIGN = define type "DESIGN"
("DESIGN = ARCH string string "
*((string) set# (string)set# (string)set) DECLS CS **
| DPAR DESIGN DESIGN')

The definition closely resembles the BNF specification of the syntax of designs that
was made in Chapter 3. The function which defines the type takes two strings as
arguments. The first is the name under which the definition will be stored in the
theory. The second is a grammar giving the structure of the desired type. The
symbol ~ is the ML string concatenation operator, and pairs of * delineate those
strings. The definition makes use of other types constructed in an identical manner.
One of them is for local declarations (DECLS), the other for concurrent statements
(cs).

Semantics

The definitions which make up the semantics of Femto-VHDL are just as
straightforward as those which embed its syntax. Three different functions were
used in this process. The first makes non-recursive definitions, the second makes
recursive ones and the third allows inductive ones to be made. Examples of each are
given below.

The simplest form of definition may be illustrated by using it to set up the

equivalence relation for events (=). Recall its definition from Chapter 4:

y’-—y-y”s({s:sey’/\sesigs}:{s:sEy”/\sEsigs})

sigs

When put into HOL, the following definition is made:

let EQ GAMMA = new definition (EQ GAMMA®,
"EQ GAMMA (gam':events) (gam'':events) sigs =
{x] (x IN gam')/\(x IN sigs)}={x|(x IN gam'')/\(x IN sigs)}

The defining function takes a pair as its argument. The first element is a string
giving the name that the definition will be stored under in the theory. The second is
a term expressing the desired functionality. Free (unbound) variables in the term
will cause new definition to fail. The resulting theorem, which is in the same
form as the term given to new definition, may subsequently be used to rewrite

MECHANISING FEMTO-VHDL 57

instances of the definition into the actions that are required. All the other simple (i.e.
non-recursive or inductive) definitions presented in Chapters 3 and 4 were made in
an identical manner.

Recursive definitions require that the function new recursive definition
be used to express them. An example of its use can be seen with the realisation of
dflat in HOL. The function was given in Chapter 3 as:

dflat design =
if design =arch ent arch ports decls cs then cs

else let (dpar d’ d”) = design in (dflat @”) || (dflat ¢*)

and may be embedded in HOL by:

let DFLAT = new recursive definition false DESIGN "DFLAT"
" (DFLAT (ARCH ent arch ports decls cs) = cs) /\
(DFLAT (DPAR d' d'') = PAR (DFLAT d') (DFLAT d''))"

The arguments to the function are a theorem describing the recursion scheme, a flag
stating if the constant being defined (in this case DFLAT) is prefix or infix, the name
the definition will be stored under in the theory, and a term expressing the desired
function as a conjunction of recursion equations establishing its behaviour. The
recursion theorem is a by-product of defining the type being recursed over [28]. In
this case it is DESIGN, which was just defined as a part of the syntax of Femto-VHDL.
Like new definition, new recursive definition returns as a theorem a
conjunction that looks exactly like the term used in the definition. Each part of the
conjunction may then be used independently to rewrite instances of DFLAT.

The rules for the semantics make use of the inductive definition mechanism
provided in HOL [25]. The rules were transcribed from those of Chapter 4 into the
syntax required by the package. Recall the rules for concurrent statements:

les — transactions — transactions — Boolean|

[=
tes,} (¢,0,v,0) F {sl:ss,7)—=—>At.{} (siny)=1}
(t,0,v,0) F (ss,7)—4> 1’
[#
052 (t,0,v,0) F (sl:s5,7)—2> 7’ (stay)#i}
pF (es/,1)—2>1" pF (cs”,1)—Ls1”
{cs,}

pF <cs’||cs”,1:>-——””——->c|ean___zip Tt v/

58 MECHANISING FEMTO-VHDL

When given to the defining function, they appear as:

let (csrules,csind) =
let CS="—%:cycenv->CS—>trans->trans->bool" in
new inductive definition false ‘——UYL%_DEF‘
("*"CS p Stmnt < T,

[l
g% "(51 N Y_of p P))={}"],

"ACS p (PROCESS sl SS) T (At.{})";

[n—* p 8S T T";

G = U (81 N (Y_of p o p))={N) "],
"ACS p (PROCESS sl SS) T T'";

["CS p SO T T"; "CSp Sl T T

"ACS p (PAR SO S1) T (CLEAN ZIP T 1’ T”)"]

The function Yy of p extracts the y portion of the environment p. The actual
constants used for —2*= and —*%= are simCycle and SeqStmnt respectively. The
arguments to new_inductive definition are much the same as other similar
functions in the HOL system. The first argument is a flag to tell the system whether
or not the constant being defined is infix or prefix. The second argument is the
name associated with the definition in the theory. The third argument is a "pattern’
that supplies information which is needed because the function may be used to
define classes of inductively defined relations, rather than just single instances of
these relations [25]. The final argument is a list of term list-term pairs, each element
of which describes one rule. The term list contains the hypotheses and side
conditions. An empty list is used for axioms. The term is the conclusion of the rule.
In HOL, any text between pairs of % is interpreted as a comment. So, each of the
lines separating hypotheses from conclusion are really nothing more than comments
inserted for readability. The result of making an inductive definition in HOL is a
suite of theorems comprising both rewriting rules for each rule of the semantics and
a rule induction scheme.

5.2.2 Animation

Why bother with the animation of Femto-VHDL inside HOL at all? First, it reinforces
one's confidence that the semantics is actually expressing the intended intuition [13].
The deficiency in understanding which led to the replacement of zip by clean_zip in
the rules for concurrent statements was exposed in just this way. Second, it is the
only robust way of deriving the behaviour of specific programs so that properties of

MECHANISING FEMTO-VHDL 59

those behaviours or their equivalence to other behaviours may be discerned by
proof.

In order to make use of the semantics to derive these behaviours for individual
programs, it becomes necessary to write special-purpose conversions to animate the
definitions. To a large extent, the process is one of transforming one theorem into
another by expanding the definitions that it comprises in an intelligent way. To that
end, almost every definition made in the semantics has had a HOL conversion
written for it. These conversions are often rewriting engines to replace a definition
with its body. Frequently however, it is possible to do some simplification of the
result to get a clearer statement (simplification of arithmetic expressions,
normalisation, etc.). In these cases the conversions must also do context-dependant
reasoning. Most of the time, this leads to faster execution time as it cuts down on
the size of the terms being manipulated.

In the course of working with the semantics of individual Femto-VHDL
programs, two particular conversions will be frequently used. The first is one that
animates one iteration of the simulation loop, and is aptly-enough named
ONCE_AROUND. The other, finish GAMMA, helps trigger an event when there is
insufficient contextual information about signal values. None of the ML code for
either of these conversions will be given. Instead the algorithm and rationale behind
each will be presented. Examples of their use follow in Chapter 6.

The Conversion ONCE_AROUND

Recall the diagram for the top-level simulation loop:

Move to Nearest N\
@resting Poiry Update Current State

Calculate Events

Perform a Simulation
Cycle

The purpose of ONCE_AROUND is to co-ordinate these steps for individual Femto-
VHDL programs by using the rules and definitions of the semantics. Each of the
actions above represents a suite of additional proof procedures which animate the
related definitions.

60 MECHANISING FEMTO-VHDL

The three parts of the cycle, "move to nearest interesting point", "update
current state” and "calculate events", are animated by simp state CONV. The
conversion first traverses the list of delays trying to determine the next point of
computation. Having ascertained that time, the posted transactions for that time are
extracted. These transactions are then compared to the existing signal values to give
a new set of signal-value pairs and a new set of events via NEXT SIGMA CONV and
NEXT GAMMA CONV respectively. Once the new environment has been derived in this
fashion, the final part of the diagram ("perform a simulation cycle") is entered into.
Here RUNCYCLE_CONV is the top level for another set of related conversions which
execute the simulation cycle.

Also recall the steps that make up a simulation cycle:

« determine which processes are active based on current events
« run the active processes in parallel
+ merge all processes' scheduled transactions into a collective whole

RUNCYCLE CONV first traverses the sea of processes to wake up and run any of them
which are sensitive to the just-derived events. This is accomplished by making use
of the rules for the simulation cycle as defined in Chapter 4 and embedded in the
HOL system via new_inductive definition. Once a process has been activated,
the statements inside it are animated by use of RUNSEQ CONV and RUNBOOL CONV,
which are responsible for the execution of the rules for sequential statements and
Boolean expressions respectively. The behaviour resulting from the activation of
any two processes in parallel is resolved from calls to clean_zip to zip by
CLEAN ZIP CONV.

This account of the sequence of conversions hides the fact that simplification of
the results arising from many of the steps is also being carried out. A simple
example is that calls to clean_zip are reduced to the appropriate sequence of zip's.
These calls to zip are also further simplified by the collapsing out of any empty
transactions (Az.{}). Once normalised, the resulting transactions are more concise

and therefore make the work of simp state CONV much easier.

The Conversion finish GAMMA

It is sometimes the case that when NEXT GAMMA CONV is attempting to ascertain the
next set of events, there is not enough information about the state of the signals to
ascertain whether or not a new value for particular a signal represents a change
from the old one. This situation frequently occurs when the user has supplied

MECHANISING FEMTO-VHDL 61

variable values for signals and not expressed their interrelationships. A conditional
split must then be introduced into the behaviour of a program to allow for both
possibilities (i.e. where one branch assumes an event and the other does not). The
user may of course choose at this stage to specialise the variables being used to
ensure either one of these possible behaviours. If not, finish GAMMA introduces the
appropriate split. Examples of the use of finish GAMMA in context are provided in
Chapter 6.

The use of finish GAMMA emphasises one particularly troublesome feature of
the animation of not only Femto-VHDL programs, but also of full VHDL. If care is
not taken in the specification of initial values of signals, it is quite possible to
engender this kind of conditional split for every signal almost every time around the
simulation loop. The result is naturally an explosion in the size of the terms being
examined. It also puts one in the situation of doing exhaustive search over all
possible values for the signals, which is exactly the kind of reasoning that is trying to
be avoided.

From the point of view of automation, the case splits engendered by
finish GAMMA are one of the reasons behind not attempting to construct a
completely automatic tool. Such choice points may be of interest in individual
circumstances where one particular course of action needs to be taken. If, however,
one was not interested in human intervention, it would be simple to write a naive
conversion to repetitively go around the simulation loop simply by composing
ONCE_AROUND and finish GAMMA. The problem is, of course, that the simulation
may not quiesce. In those situations, the new conversion would loop infinitely.

CHAPTER 6

CASE STUDIES

Several case studies that make use of the formalisation that has been developed are
now presented. While the studies do not involve terribly complex programs, they
are sufficient for giving a flavour of the kind of reasoning that may be performed.
The exposition begins with the simple example of a NAND gate, and progresses
through to a more complex device.

As alluded to in Chapter 1, the studies will follow a general pattern:

1. Specify a high-level (i.e. algorithmic) representation of the device.

Derive, using the semantics, a general behaviour for the specification.
Specify a low-level implementation of the device.

Derive a general behaviour for the implementation in the same fashion as 2.

S-S

Prove that the two behaviours are the same.

The framework for each example will be the same, but different features of the
semantics are illustrated by them. The first one concerns itself with demonstrating
0-delay signal assignments. The second deals not only with the equivalence of two
components, but also with their provable difference to similar ones. The third
example shows how one contends with initialisation and quiescence restrictions.
The last one illustrates the use of a state-holding device.

6.1 A NAND Gate

The initial example is not only of use in introducing the way in which one works
with the embedded semantics, but is also a demonstration of how 0-delay signal
assignments are dealt with. In performing this example, the equivalence of two
different versions of a NAND gate will be demonstrated. The first can be considered
a "specification” of the behaviour of the gate, and makes use of the VHDL primitive
Boolean operator nand. The second is an "implementation” that chains together an
AND gate and an inverter. The specification will be used to illustrate the

63

64 CASE STUDIES

methodology of using the embedded semantics. The implementation will then
employ of the same methodology in a similar derivation. The actual HOL session
from which this study is extracted appears as Appendix B.

The two designs in question are of course instances of the same entity. The
Femto-VHDL for them is:

entity nandgte is
port (A,B : in boolean;
C : out boolean);
end nandgte;

architecture spec of nandgte is architecture impl of nandgte is

begin signal TMP : boolean;
process (A,B) begin
begin process (A, B)
c <= A nand B after 1 ns; begin
end process; TMP <= A and B after 1 ns;
end spec; end process;

process (TMP)
begin
C <= not TMP after 0 ns;
end process;
end impl;

Inertial delay is used here and in the other studies as it encompasses both the pre-
emptive scheduling of transport delay as well as the set-up and hold constraints of
inertial delay proper. The architecture for the implementation differs from the
specification in that the monolithic NAND operation has been replaced by two
parallel processes. A local signal has also been introduced. The first process assigns
to this signal, which in turn assigns the result to the output.

In the interests of brevity, the rest of this study as well as those which follow it
will revert to the use of abstract syntax for displaying Femto-VHDL text. The
translations of the two programs just given are:

dflat (arch nandgte spec ({A,B},{c},{}) (signal{}) ({A,B} :C ln?—f (A nand B,l)))

arch nandgte impl ({A,B},{C},{}) (signal {T™MP})

dflat (({A,B} CTMP - (A and B,l)) 1 ({TMP} LCrm (not TMP,O)))

for the specification and implementation respectively. The above pattern of
typefaces will also be followed throughout. Specifically, names of Femto-VHDL

CASE STUDIES 65

entities, architectures and signals will be given in roman font. Constants relating to
the abstract syntax will be given in sans serif. Variables will be shown in math italic.

6.1.1 Behaviour of the Specification

Due to the deep embedding approach, it is possible to set up a term in the HOL
system that characterises the semantics of the specification in the following way:

"let I = dflat (arch nandgte spec ({A,B},{C},{}) (signal {}) ({A,B} Cre (Anand B, 1))) in

1et = (get_delays_cs I, now, {(A, a),(B, 5),(C,) L, {aAL A% ({}.{})) in
Wk (ILAL(})—22s beh™

Those parts of the term in typewriter font represent ML text. Note also the use of
let-expressions in the term. Despite the fact that use is being made of abstract
syntax, the terms of the embedded system can become very large. Term size
management is therefore essential, and let-expressions provide the necessary
organisation by minimising the amount of duplication within any given term.

The process of deriving a behaviour for the above term is accomplished by
animating it with the rules of the semantics. Essentially, this is a symbolic
simulation - "symbolic" in the sense that the values associated with each signal are
logical variables, as in the state component of I above. The conversions described
in Chapter 5 are employed in this simulation, and are used to transform the term
from a statement about the semantics of the simulation of a particular program into
one of its behaviour over time. The result of the process will be a theorem about the
simulation and its semantic equality to the behaviour represented by the variable
beh. The actual derivation of this general behaviour could be a completely
automatic process, but is broken down here into its separate components to aid in
understanding the individual steps.

Conceptually, the derivation is nothing more than the execution of the
program by the simulation engine as it is specified by the rules of the semantics.
The first move therefore is to use ONCE AROUND to perform a simulation cycle to
determine where the next point of computation lies, move to it and figure out what
the new environment there should be. These actions are accomplished by the
following simple call to ONCE_AROUND where tm is bound to the above term:

|let t1 = ONCE AROUND tm

66 CASE STUDIES

The result is that the starting statement is converted into an equality between it
and the simulation behaviour at the next point of computation, now +1. The new
state of the signals is {(A,a),(B,b),(C,—(arb))}. The problem is that
NEXT GAMMA CONV could not ascertain what the new events (if any) should be.
Clearly the values of A and B have not changed. The question is whether or not the
new value of C, —(aAb), is a change from its old one, ¢. There is obviously not
enough contextual information about the relationship between these two values to
make a judgement.

As a result, the conversion finish GAMMA must now be used to clear up the
ambiguity by inserting the appropriate case split into the derived behaviour.
Intuitively, the existence of such an event really should not matter. The signal C is
not hooked up to another device, and cannot cause a ripple-through effect. The
execution of the program should therefore be the same irrespective of the presence
or non-presence of an event on C at time now +1. The following application inserts
the necessary conditional:

|let t2 = RIGHT CONV RULE finish GAMMA t1

Recall the discussion of conversions in Chapter 5, and the fact that they result in a
theorem about the logical equivalence of one term with respect to another.
RIGHT CONV_RULE is a function which applies a conversion to the right hand side of
such an equality. In the context of the current example, it is applying finish GAMMA
to the just-derived simulation behaviour at time now +1.

Knowledge of the simulation loop leads to the understanding that the
introduction of an event on C will eventually filter through the system and not
generate any associated activity. Since the signal values are now represented by
relationships of the initial inputs, finish GAMMA will not be needed in subsequent
iterations of the simulation loop. The job of arriving at a quiescent statement of
behaviour may be done simply by repeated applications of ONCE AROUND.

A quiescent simulation leaves a theorem that is almost in the desired form. It
is a statement of equality between the initial simulation specification and the
behaviour of that simulation. The behaviour does however contain two parts that
need to be dealt with. The first is the conditional branch introduced by
finish GAMMA. The behaviour after time now +1 is the same irrespective of the
value of C. This allows the branch to be simplified down to one€ instance of that
behaviour. The other simplification is to replace calls to add_to_6 which had
accumulated in the simulation 0 and had subsequently become the behaviour of the

CASE STUDIES 67

program at quiescence with the conditionals that they represent. The result of the
simplification is:

|- Vnow a b ¢ beh.
let IT = dflat (arch nandgte spec ({A, B}, {cL{}) ... ({A,B} .Che (AnandB, 1))) in
let U= (get_ delays_ cs IT, now,{(A,),(B,b),(C,c)}, {A},M.({},{})) in

W F (I AL {})—— beh =
beh = At.if (1 = now +1) then {(A,a),(B,b),(C,—(a r b))}

elseif (f 2 now)then {(A, a),(B,b),(C,c)}

else {}

It is important to note that the use of add_to_0 has transformed the discrete
nature of time used by the simulator into continuous ranges more amenable to
human reasoning. Strictly speaking, ¢ > now could be replaced by ¢ =now as there
are no intervening units of time between now and now +1. Additionally, the if-
then construction has replaced the HOL conditional here to aid legibility. The
ellipsis (...) indicates where the local signal declarations should go. There are none,
and they have been omitted for purposes of conciseness.

6.1.2 Behaviour of the Implementation

A similar sequence of steps may be carried out in the derivation of a behaviour for
the implementation of the NAND gate. The first is to again start with a term which
describes the architecture in question, along with its starting environment.

arch nandgte impl ({A,B},{C},{}) (signal {T™MP})

(({A, B} : TMP iy (Aand B,l)) | ({TMP} LCiz (not T™P, 0)))
Let i = (get_delays_cs IT,now, {(A, a),(B,),(C,c),(T™P, imp)}, {A}, Ar.({1.{})) in
Wk (T, A2 {}) —2— beh"

"let IT= dflat

in

As seen earlier, the architecture has become a bit more complex. The interest here is
to see how the d-step introduced by the 0O-delay signal assignment gets treated
during the derivation.

The same steps employed in arriving at a behaviour for the specification are
also used in the case of the implementation. The difference is what happens at time

68 CASE STUDIES

now +1. After the process performing the and has executed, the state of the signals is
{(A,a),(B,b),(C,c),(TMP,aAb)}. The same ambiguity about events seen in the
specification also occurs here. This time, the question is about the value of TMP. The
split intfroduced by finish GAMMA presents the user with two execution paths. The
first gives an event on TMP. The second does not. Clearly, an event is needed so
that the second process may execute to assign a result to the output. Specialising the
variable tmp to —(a A b) ensures that only the event branch is taken.

More iterations of ONCE_AROUND are now required to achieve a quiescent state.
Because the signal relationships have been crystallised, there is no further need to
use finish GAMMA. All of the subsequent iterations of the simulation loop occur in
O-time. Since these steps are treated in an identical fashion to their unit-delay
counterparts, there should be no surprise at the result:

|- Ynow a b ¢ beh.
let IT= dflat (arch nandgte impl ({A,B},{C},{}) (signal {TMP})...) in
let = (get_delays_cs IT,now,{(a,a),(8,b),(C,c),(TMP, ~(a A b))},...) in

L F (I A2 {})—" beh =
beh = \t.if (¢ 2 now +1) then {(A,a),(B,b),(C,—(a A b)),(TMP,(a A b))}

elseif (t> now) then{(A,a),(8,b),(C,c),(TMP,~(a A b))}

else{}

The repeated iterations around the simulation loop at time now +1 left nested
calls to add_to_0 with identical time arguments in the trace of past behaviour.
These were reduced via Theorem 4.3.5.3 when the simulation 6 was transformed
into the behaviour at quiescence through the use of rule sim,. The remaining
instance of add_to_0 at time now +1 resulted in the first branch of the conditional
seen in the derived behaviour. The simulator has therefore provided a way of
abstracting from multiple 8-steps into the world of macro time simply through its
operation.

The signal TMP also has important implications. Recall that the value
associated with the signal in the original term has changed from tmp to —(aAb) as a
result of its specification during the derivation. So, without actually knowing the
initialisation conditions for the signal, the steps in the derivation allowed them to be
determined. This was an instance of human intervention after an application of

CASE STUDIES 69

finish GAMMA, and is a reason why this particular kind of verification can never be
a completely automatic method.

6.1.3 Equivalence

Having arrived at a behaviour for both versions of the NAND device, it is now
possible to determine their equivalence. Recall that the way in which all the
equivalence relations were defined in Chapter 4 imposed an obligation on the user
to nominate signals of interest. In the present circumstances, the interest is in the
behaviour of the device on the ports - in effect abstracting away internally visible
signals. Given the definition of equivalence on transactions ;, it is easy to prove the
following theorem:

|- Vnow a b c beh.
beh = At.if (t 2 now +1) then {(A,a),(B,b),(C,~(a A n)}
elseif (t2now) then {(A,a),(B,),(C,c)}
else{}

T

{ABC}

beh = At.if (t 2 now +1) then {(A,a),(B, b),(C,—n(a A b)),(TMP,(a A b))}
elseif (f 2 now) then {(A,a),(B,b),(C,c),(TMP,—(a A »)}

else{}

Essentially, all the definition of = does is factor out any reference to the signal TMP,
leaving two identical functions. The proof in the HOL system is actually performed
via case analysis on time.

6.2 DeMorgan Property

The next example demonstrates a VHDL version of the DeMorgan property (i.e. that
the negation of the conjunction of two Boolean terms is the same as the disjunction
of the negation of each of the terms, and vice versa). The motivation behind the
example is to not only show that it is possible to prove that different architectures
implement various parts of the property, but also that some of their behaviours
provably differ.

The distinction between specification and implementation is slightly blurred in
this study. In each part of the analysis, a comparison of two uniprocess designs will

70 CASE STUDIES

take place. Each of them may be seen as the specification for the other, and vice
versa. To that end, no hierarchical distinction will be made between the two
programs being examined in each part of the study.

6.2.1 Negation of a Conjunction vs. a Disjunction of Negations

In an identical manner to the previous study, the analysis begins with terms in the
HOL system which specify the simulation of the desired programs. For purposes of
the current analysis, the following two are used:

"let I = dflat (arch dm na ({A,B},{c}L{})... ({A,B} Q= (not (A and B),l))) in

let i = (get__delays_cs H,now,{(A,a),(B,b),(C,c)},{A},M.({},{})) in
uF <H,M.{}>—§iﬁ—>beh"

"1let IT = dflat (arch dm on ({A,B},{c}L{})... ({A,B} :C me—-r-‘ (not A or not B,l))) in

let = (get_delays_cs II,n0w,{(A, a),(B,b),(C,c)},{a}, Ar.({}, {})) in
W (TLAz{})—s beh

The first term represents the simulation of the negation of a conjunction, while the
second deals with a disjunction of negations. As there are no local signals in the
program, their declarations have been omitted for conciseness. Note that as in the
previous study both environments are the same, and that the signals in each
program begin the simulation with arbitrary values.

Behaviour

Each of these terms may be simulated in an identical manner to the specification of
the NAND gate. Afterwards, the following theorems giving the behaviour of each
program are arise:

CASE STUDIES 71

|- Vnow a b c beh.
let I1 = dflat (arch dm on ({A,BL{C},{}) ...)in .-

beh = At.if (t 2 now +1) then {(A,a),(B,b),(C,—av —b)}
elseif (£ = now) then {(A,a),(B,b),(C,c)}

else{}

Equivalence

After simulation, the equivalence of the behaviours for the two programs may be
ascertained. The only signals of interest are again the input and output ports A, B
and C (these also happen to be the only signals in either program). The proof is
trivial, and involves comparing the various branches of the conditional statement in
each behaviour. The only place where there is not an immediately discernible
equality is in the comparison of —(a Ab) and (—av —b) at all times greater than or
equal to now +1. This turns out not surprisingly to be an instance of the DeMorgan
property. The actual theorem proved in the HOL system is the following;:

|- Vnow a b ¢ beh.
beh = At.if (12 now +1) then {(A,a),(B,0),(C,—~(a b))}
elseif (t2now) then {(A,a),(B,b),(C,c)}
else {}

!
beh = At.if (t 2 now +1) then {(A,a),(B,b),(C,mav —b)}

elseif (t2now) then {(A,a),(B,b),(C,c)}
else {}

In fact, since the signals are the same in both programs, and no internal declarations

are being used, one could replace the use of = with a simple equality to make a
stronger statement.

6.2.2 Negation of a Disjunction vs. a Conjunction of Negations

The second half of the property, namely that the negation of a disjunction is the
same as a conjunction of negations follows in an identical manner. The process
again begins with the two HOL terms setting up the simulations:

72 CASE STUDIES

"let IT = dflat (arch dm no ({A,BL{cHL{}) ... ({A,B} :C mi (not (A or B),l))) in
let 1 = (get_delays_cs IT,now,{(a,a),(B,b),(C,c)hL{A} At ({1, {D) in
T <H, M.{})—ﬂ-—)beh"

"let IT = dflat (arch dm an ({A,BL{cHL{})... ({A,B} LCiz (not A and not B,1))) in

Lot = (get_delays_cs IT,now,{(4,a),(B,5),(C,c) L {AL AL ({1, {D) in
Wk (TLAz{})—2— beh

Behaviour

Symbolic simulation of these terms leads to the following two theorems in the HOL
system. The results are much the same as in Section 6.2.1.

|- Vnow a b ¢ beh.
let IT = dflat (arch dm no ({A,B},{C}L{}) ...)in ...-

beh = At.if (t = now +1) then {(A,a),(B,b),(C,=(av b))}
elseif (¢ 2 now) then {(A,a),(B,b),(C,c)}

else{}

|— Ynow a b ¢ beh.
let IT - dfiat (arch dm an ({A,B},{c},{}) ...)in .-

beh = At.if (t = now +1) then {(A, a),(B,b),(C,—a A _1b)}
elseif (t = now) then {(A,a),(B,b),(C,c)}
else {}

The difference between these simulations and the earlier ones is in the value of
signal C for all times greater than or equal to now +1.

Equivalence

T
As in the previous version, the simulations may be shown to be =-equivalent:

CASE STUDIES 73

|- Vnow a b c beh.
beh = At.1if (t = now+1) then {(A,a),(B,b),(C,ﬁ(a v b))}

elseif (f>now) then {(A, a),(B,b),(C,c)}
else {}

T

{ABC)
beh = At.if (t = now +1) then {(A,a),(B,b),(C,—ar—b)}

elseif (¢ 2 now) then {(A,a),(B,b),(C,c)}
else {}

6.2.3 Non-equivalence

It is also possible to show that the behaviours derived in Section 6.2.1 are not
equivalent to those just given in Section 6.2.2. In each case the place where
differences arise is in the value of signal C at times greater than or equal to now +1.
As an example, consider the comparison of the negation of a conjunction and the
conjunction of negations. If the derived behaviours for each are examined, the
following theorem about their non-equivalence may be proved (# should be

understood to mean "not equivalent according to the relation =",

|- Ynow a b ¢ beh,
beh = At.if (t > now +1) then {(A,a),(B,b),(C,—u(a A b))}

elseif (2 now) then {(A,a),(B,b),(C,c)}

else{}

T

+
{A.B,C}

beh = At.if (¢ = now +1) then {(A,a),(B,b),(C,—aA—b)}
elseif (t > now) then {(A,a),(B,b),(C,c)}

else {}

Similar results may be obtained for any permutation of comparisons of the
behaviours in Sections 6.2.1 and 6.2.2. This correspondence to the expected
behaviour of the DeMorgan property further increases one's confidence in the
simulation semantics that Femto-VHDL has been given and the way that it is
implemented in the HOL system.

74 CASE STUDIES

6.3 Parity Checker

The above examples were sufficient to introduce basic concepts and techniques. A
larger example is however required to demonstrate how concrete initialisation and
quiescence restrictions are dealt with, as well as some subtleties of the semantics. A
standard (albeit somewhat overworked) example from the HOL literature is a parity
checker. The device was introduced in [18]. The basic premise is to have a device
with one input and one output which satisfies the following two constraints:

* The output at time 0 is high.

» The output is high when an even number of highs have been received on the
imput. ‘

The first requirement gives rise to a change from the kind of analysis that was
performed in the previous examples. With the introduction of a specific kind of
behaviour at time 0, one is forced to examine not only the general behaviour of the
device, but also what it does when initialised.

6.3.1 Specification

The derivation begins, as in the earlier examples, with a program specifying the
behaviour of the device in terms of a high-level VHDL design. The obvious Femto-
VHDL program would be:

arch parity high ({inp},{ }{outp}) (signal { })
(now =0) => outp I:ne=n(‘true, 0) 1

tnert
{inp} : | inp => outp: =(not outp' delayed(1),0) |
null

In another change from previous examples, the ports include one of VHDL direction
inout. This is because the signal in question, outp, is both read from and written to
as part of a feedback loop. The conditional statement may be read directly from the
informal specification (i.e. make sure the output is high at time zero as well as when
an even number of high inputs have been counted). The inclusion of 1 as the
argument to 'delayed assumes that the input signal being sampled has a period of 1
unit.

CASE STUDIES 75

The above architecture represents an idealised version of what is desired. In
Femto-VHDL, the user is not able to access the global clock (which is possible in full
VHDL). The version that will be used in the case study makes use of the
initialisation sequence of a simulation to accomplish the same task. The monolithic
process above must now become two parallel processes.

arch parity high ({inp},{ },{outp}) (signal {ini})
inert
{ini} : (ini : =(true,0)) Il
(ini’event) => outp ;n:(true, 0)|

{inp,ini} : | (inp and not (ini'event)) => outp I:ne-—?(not outp' delayed(1),0) |
null

Here the signal ini is used as a trigger to assign outp the value true at time 0.
Recall the discussion of the initialisation process in Chapter 4 at the end of Section
4.3.5. Initialisation involves the waking up of all the processes in the program and
running them once before handing control over to the main simulation loop. During
initialisation of the current program, there are by definition no events on any of the
signals, and both inp and ini have a default low value. Therefore, the only way that
ini can have an event is as a result of the initialisation sequence waking up the first
process and causing a high value to be immediately scheduled for it. The
conditional in the second process will then assign a high value to outp one d-step
later once the simulation loop has been entered. The second process does nothing
when initially activated due to the values of the signals all being low and the
absence of any events. After the initialisation sequence is over ini is no longer a
factor, and only the second process can ever execute.

Initialisation

In order to obtain the initialisation behaviour, the above program is given to the
function simulate with an empty set of initial values. In doing so, it becomes
necessary to perform two kinds of simulation. The first is different from previous
examples in that it involves the initialisation sequence. The second is more familiar,
and is about the execution of the simulation loop. The difference is that previous
simulations began with empty future transactions. Here the results of initialisation
will be used as the starting point.

76 CASE STUDIES

The initialisation part is animated by RUNINIT cONV, whose behaviour is
similar to that of RUNCYCLE CONV described in Chapter 5. It merely executes the
rules of the initialisation sequence from Chapter 4, Section 4.3.4. The result of
initialisation is the derived transaction:

inert_post ini 1 (Az.{})00

When used as input to the simulation loop, this transaction filters through the
program in a 3 -step to give the following HOL theorem (IT denotes the program):

|- simulate IT{} = Vbeh. beh = At. i £ (t > 0) then {(outp, T),(inp, L),(ini, T)} e1se {}

which is really:

|- simulate IT { } = Vbeh. beh = At. {(outp, T),(inp, L), (ini, T) }

and shows that the program behaves in the expected way at time 0.

General Behaviour

The process of deriving a general behaviour for the specification is begun in an
analogous manner to the studies in Sections 6.1 and 6.2. The term used in the HOL
system to start the symbolic simulation is:

"1et IT = dflat (arch parity high ({inp},{}, {outp}) (signal {ini})...)
and o = {(inp, inp), (outp, outp), (ini,T)} in
let = (get_delays_cs I1,now,o,{inp},Az.i £ (t < now—1) then ({},0) else{}) in

TS (H,?»t.{}>——s—"”‘~—ébeh"

The ellipsis shows where the concurrent statements in the program should appear.
The simulation environment has been augmented by a trace 0 giving the past values
of the signals. It ensures that the 'delayed signal attribute used in the program works
properly. The events in this 0 have been left empty, but a set of signal-value pairs
has been given and tied to the initial values of the signals. The signal ini has been
given a high value as it is assumed that the simulation behaviour of interest occurs
after the completion of the initialisation phase. The environment L is also related to
the initialisation behaviour. If now was 1, inp was low and outp was high, the

CASE STUDIES 77

starting state of the signals would correspond to the just-derived initialisation
behaviour.

The computation of the general behaviour proceeds in a like manner to the
earlier examples. At the end of the process, the following HOL theorem emerges:

|— Vnow inp outp beh.
let I1 = dflat (arch parity high ({inp},{ },{outp}) (signal {ini}) ...)

and o = {(inp, inp), (outp, outp), (ini, T)} in
let W =...in

k(LA {})——s beh =

beh = At (if (inp A(t 2 now)) then {(inp,inp),(outp,—loutp),(ini,T)}J
' "\ e1se {(inp,inp), (outp, outp), (ini, T)}

The result is again as expected. The output immediately inverts when the input has
a high value. Otherwise, the signal values do not change.

6.3.2 Implementation

The implementation of the device is made up of four components. It includes delay
elements, as well as an external feedback loop. The original design was given in
[18], and has been slightly simplified here for clarity. The schematic for the device
is:

1

11

Inv MUX 13

MUX outp

W

15

inp

true

BUF

The delay through each multiplexor component is zero, while that through both the
buffer and the inverter is 1 unit. The signal 14 is initialised to a high value, and all
other signals start low. This ensures that the device will output a high value
between power-up and the first unit of simulation time, thus meeting the original
specification through the second mux. After time 1, this mux becomes a pass-

78 CASE STUDIES

through, and the work is done by the first mux. When the input inp is high, the
inverted value of the output (delayed by 1 unit) is selected. Otherwise, the output
remains unchanged.

In the translation of these components into VHDL, it must be remembered that
the "D" in VHDL stands for "description”. One is modelling a physical device, not
providing an actualité, and should therefore beware of situations where simulation
may give rise to unexpected behaviour in an apparently obvious situation. The
problem with the parity checker is that unless the first multiplexor is equipped with
an edge-triggered selector, it is possible to leave the input high and create a unit-
delay oscillator. As a result, one must either make sure that the input to the parity
checker finishes with a low value, or build into it the edge-triggered behaviour just
alluded to. This is because an oscillator, of course, never quieseces, and the basis for
reasoning here is constrained to only those devices which quiesce. The realisation of
the above schematic must therefore take this potential for oscillation into account.

The components used in the parity checker are not at all complicated. The
simplest of them is the buffer:

arch simple regstr ({inp},{},{outp}) (signal { }) ({inp} s outp me=n (inp, 1))

Note that the signal names are variables. This is because the component has not
been given an instantiation in a particular design. The functionality is as expected —
the output is assigned the value of the input delayed by one unit. The inverter does
much the same thing, with the exception that the delayed signal is inverted before
the assignment takes place:

arch simple inv ({inp},{ },{outp}) (signal {}) ({inp} : outp iz (not inp,l))

A multiplexor might reasonably be expected to take on the following form:

arch simple mux ({sel ,iny ,in, },{},{outp}) (signal{})

({sel,in1 Jin, }: ((sel) => outp Ine'!—f (inl ,0) | outp i:mi—r-t(in2 ,0)))

This is perfectly suitable for the second mux in the schematic (i.e. the one that
eventually becomes a pass-through device). It is, however, unacceptable if one is
not particularly concerned with the values being used as input to the parity checker.
As mentioned above, it is entirely possible to create an oscillator with this particular

CASE STUDIES 79

form of mux. The version that will be used in the design is actually a form of
clocked register:

inert
)= =1 , 0
arch clkd reg ({sel,inl,in2 },{},{outp}) (signal {})| {sel}: (sel) => outp : = (in,,0)

inert

| outp: =(in2,0)

The component ensures that in; is only chosen when a rising edge is detected on the
selector. This is not a true multiplexor, and could not be used in place of the
previous version as the second mux in the system.

The whole design may be put together in the following fashion. The ellipsis
again indicates where the concurrent statements associated with each architecture
should go.

arch impl parity ({inp},{ },{outp}) (signal { })

arch simple regstr ({14},{ },{15}) (signal{}) ...
sttt | ' arch simple inv ({outp},{},{11}) (signal { })....
i (arch simple mux ({inp, 11, outp},{ },{13}) (signal { }))

arch clkd reg ({15,13,14},{ }, {outp}) (signal {}) ...

If one is not concerned about the oscillation problem. The instantiation of the
components would appear as:

arch impl parity ({inp},{ },{outp}) (signal { })

g arch simple regstr ({14},{},{15}) (signal {}) ...
it | doar 4 arch simple inv ({outp}, {},{11}) (signai {}) ...
P q (arch simple mux ({inp,11,outp},{ },{13}) (signal { }))

arch simple mux ({15,13,14},{}, {outp}) (signal {}) ...

Again, there are two distinct phases of simulation that must be undertaken
with the implementation-level version of the parity checker - initial and general
behaviour. The complimentary correspondence between these two forms of
behaviour that was illustrated when working with the specification must also be
shown here.

80 CASE STUDIES

Initialisation

The initialisation phase of the analysis of the implementation may now proceed.
The procedure is much the same as with the specification of the device. Recall that
the term representing the architecture was passed to the function simulate. The same
is true here, with the exception that a singleton set containing the initial value of the
signal 14 (high) is supplied as the second argument.

Once the initialisation conversion has been executed, the resulting projected
behaviour (t) is as follows. The calls to inert_post seen in the analysis of the
specification have been expanded and simplified for readability:

At.if (¢ =0) then {(outp, T),(13, 1)}
elseif (¢=1)then {(II,T),(IS,T)}
else{}

The rest of the simulation may now be completed in an analogous manner to
that of the specification. The resulting theorem in the HOL system appears as:

|- simulate I {(14,T)} =
Vbeh. beh = At.if (¢t 2 1) then {(inp, L), (outp, T),(11,.L), (13 T),(14,7),(15,7)}

elseif (£=0) then {(inp,L),(outp, T),(11,L),(13,T),(14,T),(15,1)}
else {}

An analysis of this result shows that it meets the behavioural constraints for time 0
set down in the natural language specification. The output at time 0 is high - a
value which is maintained throughout. Furthermore, no reference is made to any
intervening d-steps. One should also note that the value of the selector for the
second multiplexor (15) changes from low to high after 1 unit of time has passed.

General Behaviour

Having derived the initialisation behaviour, one must now come up with an overall
understanding of behaviour for the implementation. This presages a return to an
environment that is replete with variables rather than concrete values. The starting
term in the HOL system appears as:

CASE STUDIES ’ 81

"let IT = dffat (arch impl parity ({inp},{outp},{}) (signal{}))
and o = {(inp, inp), (outp, ourp), (11, —~outp), (13,outp),(14,7),(15,T)} in
let b = (get__delays_cs I1, now,a,{inp},M.({},{})) in

Wk (ILA2{})—2 beh"

Why were these particular initial values for the signals chosen? Clearly there
need to be two independent values of interest — the input signal value and the
output signal value. If this course is chosen, then 11 will be the inverse of whatever
the output is. Since 13 is being directly piped into the output, they both have the
same value. Furthermore, it is assumed that time now occurs after initialisation has
been completed. Both 14 and 15 therefore hold high values. One also notices that if
the concrete value of outp was high and that of inp was low, the starting state of the
signals corresponds to the initialisation behaviour at times greater than or equal to 1.
The trace of past activity has been left empty as there are no instances of the 'delayed
attribute that need to be catered for.

The derivation of the behaviour proceeds in a similar manner to earlier
examples. The result is a bit more complex. The behaviour is however easily
discernible from the nested conditionals.

|~ Vnow inp outp beh.
let...in b b (IL,Az{})— beh =
beh =

At.if inp then
if (t > now+1) then

{(inp, inp), (outp, —ourp), (11, outp), (13, —ourp), (14, T),(15, T)}
elseif (t 2 now) then

{(inp, inp), (outp, moutp), (11, —outp), (13, —outp), (14, T),(15, T)}
else {(inp, inp), (outp, outp), (11, —outp),(13, outp),(14, T),(15, T)}
else {(inp,inp), (outp,outp), (11, —outp),(13,0utp),(14,T),(15,T)}

6.3.3 Equivalence

Two different equivalence checks will have to be made - one for initialisation, the
other for subsequent iterations of the simulation loop. If one takes the initialisation
phase first, it is necessary to recall both the behaviour of the specification:

At. {(inp, L), (outp, T), (ini, T)}

82 CASE STUDIES

as well as that of the implementation:

At.if (¢ 21) then {(inp,L),(outp, T),(11,L),(13,T),(14,T),(15,T)}
elseif (2 0) then {(inp,L),(outp, T),(11,L),(13,7),(14,T),(15, L)}

else{}

at initialisation. The behaviour of the implementation may further be reduced to:

At.if (¢t 21) then {(inp,L),(outp,T),(11,1),(13,7),(14,T),(15,T)}
else {(inp,L),(outp, T),(11,L1),(13,T),(14,T),(15, L)}

for the simple reason that all the possibilities have been covered by the first two
branches of the conditional. The equivalence follows as a HOL theorem from the
definition of = on the signals inp and outp after a case analysis of the behaviour of the
implementation.

|_ M.{(inp,.L),(outp,T)}
{inpfutp}
At.if (£ 21) then {(inp,L),(outp, T),(11,1),(13,T),(14,T),(15,T)}

else {(inp,.L),(outp, T),(11,.L),(13,T),(14,T),(15, 1)}

The second check that needs to be made is for subsequent iterations of the
simulation loop. The behaviour of the specification in this instance is:

At.if (inp A (t 2 now)) then {(inp,inp), (outp, —outp), (ini, T) }
else {(inp,inp),(outp,outp),(ini, T)}

while that derived for the implementation was:

At.if inp then
if (2 now+1) then

{(inp, inp), (outp, ~outp), (11, outp), (13, —ourp), (14, T),(15, T)}
elseif (f > now) then

{(inp, inp), (outp, —outp), (11, —outp), (13, ~outp), (14,T),(15, T)}

else {(inp,inp), (outp, outp), (11, —outp), (13, outp),(14,T),(15,T)}
else {(inp,inp), (outp, outp), (11, —outp),(13,0utp),(14,T),(15,T)}

CASE STUDIES | 83

If one abstracts away the internal signals and re-interprets time intervals, the
following function on time is really what is being dealt with during the equivalence
check:

At.if inp then
if (f > now) then {(inp,inp),(outp,—woutp)}
else {(inp,inp),(outp,outp)}
else {(inp,inp),(outp,outp)}

A frivial case analysis during the proof of the equivalence yields the expected
theorem in the HOL system:

|- Vinp outp now.
At.if (inp A (¢ = now)) then {(inp,inp),(outp, —outp), (ini, T)}
el1se {(inp, inp), (outp, outp), (ini, T)}

T

{inponip}
At.if inp then

if (f 2 now+1) then

{(inp, inp), (outp, —~outp), (11, outp), (13, —outp), (14, T), (15, T)}
elseif (t > now) then

{(inp, inp), (outp, ~outp), (11, —outp), (13, —outp),(14, T), (15, n}
else {(inp,inp),(outp,outp),(11,—10utp),(13,outp),(l4,T),(15,T)}
else {(inp,inp), (outp,outp), (11, —~outp), (13, outp),(14,7),(15,T)}

6.4 A Counter Cell

The parity checker introduced a non-standard state-holding device to ensure
quiescence of the design. The study presented here deals with the more traditional
notion of state that is exemplified by one cell of a binary counter. The following
diagram shows how two such cells may be put together in series make up a two-bit
counter.

84 CASE STUDIES

cell, L cell,
—ci co ci co
outp ———] outp

> clck > clck

Each cell has four signals - a clock input clck, a carry input ci, a carry output co and
an output outp showing the current state of the count. The clock synchronises the
counter cells, and the overall device should be active on the rising edge of the clock.
Furthermore, a cell should only count when its carry input is high. The carry output
is intended to become high when an individual cell counts up to a high value.

6.4.1 Specification

The Femto-VHDL specification for one cell may easily be extracted from the above
natural language description:

arch cell high ({clck,ci},{outp},{co}) (signal { })
{ci,outp}: (co me‘—r't(m and outp, O)) [l

ine
{clek} - ((clck and ci) => outp :n='r-t(not outp,1) | null)

The input ports are made up of the clock cick and the carry input ci, the output of the
device outp is a bi-directional port and the carry output co is a pure output port. The
clocked process inverts the output after 1 unit when the carry input is high and a
rising edge is detected. The carry output is calculated in the first process, and will
only become high when the carry input and the output of the counter are both high.
The derivation of a general behaviour for this specification of the cell begins in
an analogous manner to the previous examples. The term to be used is as expected:

"Let I1 = dflat (arch cell high ({cick,ci}, {outp},{co}) (signal {}) ...)
and o = {(clek, clck), (outp, outp), (ci, ci), (co,co) } in
let U= (get_ delays_cs 11, now,c,{clck},M.({},{})) in

uk <H,M. { }> — s heh"

CASE STUDIES 85

The initial o makes no special assumptions about the interrelationships of the
various signals, and the starting event is on the clock.

The HOL theorem that emerges after the symbolic simulation demonstrates the
expected behaviour for the cell.

|— Vnow clck outp ci co.
let IT = dfiat (arch cell high ({cick, ci}, {outp}, {co}) (signal {}) ...)
and o = {(clck, clck), (outp, outp),(ci, ci),(co,co)} in

leth=...in
Wk (A {})—=— beh =
((i ((¢ 2 now +1) Aclck A ci) then 1)

{(clck,clck),(outp,—wouzp),(ci, ci),(co,(ci A —loutp))}
beh = \t.| elseif (¢ = now) then

{(clck, clck), (outp, outp),(ci, ci),(co, co) }
L (else{} J)

Whenever both the clock and the carry input are high, the output is inverted after
one unit of time. Otherwise, nothing changes.

6.4.2 Implementation

The previous architecture presented an algorithmic view of the behaviour of the cell.
The following diagram shows how it might be realised at the gate level.

outp ci

Co

D L_D
0 new

clek —a—>

The central component is a D-type flip-flop, and it is assumed to have a one unit
transmission time from the input D to the output Q whenever the clock has a rising
edge. The output of the cell is taken directly from the output of the flip-flop. It is

86 CASE STUDIES

then conjoined with the carry input to produce the carry output. The output and
carry input are also passed through an exclusive-or gate to create the next value for
the counter. The next time the clock rises, this is the value that will be transmitted to
the output. The delay through each of the combinational gates is zero.

The Femto-VHDL for the implementation of the cell may be read directly from
the above schematic:

arch cell low ({clck, i}, {outp}, {co}) (signal { new})
{ci,outp}: (co I:m-:-r"(ci and outp,O)) Il {ci,outp} : (new I:mi—r't(ci xor outp,O)) I

{cick}: ((clck) => outp I:ne=n(new, 1) null)

The first two processes are simple variations of the combinational gates used in
previous examples. The third process represents the flip-flop. Whenever the clock
is active and high (a rising edge), the input is conveyed to the output after 1 unit.
The state of the output remains unchanged in all other situations. The input to the
flip-flop is the internal signal new. Its output is the current count result outp.

The term used to begin the symbolic simulation is almost identical to that used
for the specification of the cell.

"let IT = dflat (arch cell low ({clck,ci}, {outp},{co}) (signal {new}))
and 0 = {(clck, clck), (outp, outp),(ci, ci), (co, co),(new, ((ci v outp) A (—ci v —mutp)))} in
let= (get_delays_cs I1, now, 5, {clck }, Ar.({ },{})) in

Wk (TL,Az2{})—— beh"

The only addition is the starting information for the internal signal new. The general
behaviour of the parity checker implementation showed that the initial values of
such signals need to based on those of externally visible ones. Otherwise, there is no
common basis for comparison between two versions of the same device. Here new is
given an initial value in terms of the exclusive-or of the output and carry input of
the cell.

The behaviour of the implementation follows in a similar fashion to the
previous examples:

CASE STUDIES 87

|- Vnow clck outp ci co.
let T =...in W b (ILAz{})—— beh =
beh =At. i£ ((t 2 now +1) A clck Aci) then

{(clck, clck),(outp, ((ci v outp) A(—ci v —wutp))),}

(ci, ci),(co, (ci A —outp)),(new, outp)
elseif (¢ 2 now) then

(clck, clck), (outp, outp),(ci, ci),(co, co),

(new, ((ci v outp) A (—ci v —ourp)))
else{}

Since the behaviour of the device contains longer Boolean expressions than
those of earlier examples, it is not intuitively clear that the right result has been
obtained. One can gain some confidence in the derived behaviour by specialising
the variables which represent the values of the signals. The interesting behaviour
only occurs when the clock is high. So by specialising the variable cick to high, the
conditional is reduced to:

M. if (2 now +1) Aci) then
{(clck T) outp,((ci v outp) A(=ci v —wutp))) }

(ci, ci),(co, (ci A —outp)),(new,outp)
elseif (f = now) then

{(clck ,T), (outp, outp),(ci,ci),(co,co), }

new, ((ci v outp) A(—ci v —wutp)))
else {}

If one further assumes that the carry input is high, the behaviour simplifies to:

At.if (t 2 now+1) then
{(c1ck, T), (outp, —ouzp),(ci, T),(co, moutp), (new, outp) }
elseif (¢ > now) then
{(c1ck, T), (outp, outp), (ci, T), (co, co), (new, —outp) }
else { }

One now observes that the result of the cell counts after 1 unit to the inverse of
whatever the initial output was. Furthermore, new has had its own value inverted to
remember the previous output of the cell. The carry output also becomes the
inverse of the original output.

88

6.4.3 Equivalence

Given the above reassurance that the implementation is apparently behaving in the
right way, the equivalence proof between behaviours for the two versions of the cell
may be completed. The proof in the HOL system devolves into a case analysis on

time, and results in a theorem of the usual form:

|- Vclck outp ci co now.
(i ((¢ 2 now+1) Aclck Aci) then

{(CICk’ Cle)a(Outp,——IOUtp),(Ci, Ci),(CO,(Ci A _IOlep))}
At elseif (¢ = now) then

{(clck, clck), (outp, outp),(ci, ci), (co, co) }
\else {}

T

‘ {clck,o:tp,ci,o}
At if ((t 2 now +1) A clck A ci) then

{(clck, clck),(outp,((ci voutp) A(—ci v —uoutp))),
(ci, ci),(co,(ci A—oup)),(new,outp)

elseif (£ = now) then

(clck, clck),(outp, outp),(ci,ci),(co, co),
(new,((ci voutp) A(—ci v —wuz‘p)))
else {}

\

CASE STUDIES

CHAPTER 7

CONCLUSIONS

In the previous chapters, an exposition of the semantics of Femto-VHDL, a subset of
full VHDL, was presented. The semantics was defined in an operational manner that
closely adheres to the informal description of the simulation model of full VHDL.
Furthermore, it has been embedded in the HOL system in order to automate
reasoning about programs written in the subset.

7.1 The Semantics

In contrast to the approaches highlighted in Chapter 2, the semantics given in
Chapters 3 and 4 was derived independently of the proof assistant in which it has
been embedded. As a result, it is not bound by constraints of the object system, and
the most suitable formalism for describing such a dynamic system as VHDL was able
to be used.

Because of the precision provided by using the operational framework, the
characterisation presented could be used as part of the specification for the design of
simulators. In a full semantics for the language, it would not merely constitute a
part of such a specification, but encompass it entirely. Since the semantics has been
written to take into account the implied concurrency of VHDL processes, it need not
simply specify sequential simulators, but also high-performance, parallel ones.

Since a uniform approach was taken in characterising what is meant by an
individual simulation cycle, there has been no need to treat 0-delay signal
assignments any differently from unit-delay ones. As was seen in the examples of
Chapter 6, the simulation kernel itself provides the abstraction mechanism for
resolving multiple 0-delay steps into an overall view of "instantaneous" assignments.
The key to understanding the way VHDL works with time was to do away with it
entirely. In its stead, the concept of a point of computation was used.

One important property about the semantics has also been proved. Theorem
4.4.1 reinforces one of the most basic tenets of any hardware description language.

89

90 CONCLUSIONS

It shows that, given the appropriate assumptions about quiescence and well-
formedness, sub-components of a larger design may be replaced by equivalent ones.

7.2 The Methodology

The methodology used in working with the embedded semantics in Chapter 6 is
analogous to those used in the projects described in Chapter 2. Specifically, it has
been possible to symbolically simulate Femto-VHDL programs via proof to gain a
general understanding of their behaviour. Once obtained, such behaviours may be
compared, again through formal proof, for equivalence or non-equivalence to other
similarly derived ones.

There are three problems with the methodology. The first is that the user must
carefully specify the initial signal interrelationships in order to keep the analysis
from degenerating into an exhaustive simulation. The second is that there a great
deal of user interaction involved in producing any kind of result. Finally, analysis is
limited to only those Femto-VHDL program which quiesce.

7.3 The Future

Formal analysis of the VHDL simulation model has been a fruitful exercise. The
research presented here has however been constrained to only a subset of the
language and a restricted form of reasoning. Furthermore, analysis of individual
programs, despite automation of the semantics in a proof assistant, is also a very
user-intensive process.

As noted earlier, a formal semantics of full VHDL is a useful object in and of
itself, as it would provide a clear specification of the language for future
implementors. Indeed, it has been used directly in the development of a symbolic
simulator in the HOL system. It also has use as an unambiguous reference for
language practitioners. Since VHDL is used by such a wide cross-section of the CAD
community, such a specification of the full language would be of immediate
relevance and use. Scope for additional research in the development of such a
semantics could be found in crystallising the operation of user-defined the
resolution functions. Recall that these been simplified out of the work presented
here.

The methodology for reasoning about individual Femto-VHDL programs that
has been presented could in theory be extended to cover the full language. The
inherent problems associated with excessive user intervention will, however, persist

CONCLUSIONS 91

unless addressed. Additional questions need to be asked about the division of
labour in the whole effort surrounding formal analysis of VHDL programs. Should,
for instance, the approach taken by Siemens in providing an efficient oracle be
taken? That way the symbolic simulator would be left to do what it does best, and
the proof system is left unencumbered by a task for which it may not be suited.
Certainly given a formal semantics for the language, such a system is not
inconceivable. Further research must also be done into ways in which non-quiescent
programs may be compared.

The way forward in the formal analysis of VHDL needs to stem from a firm
understanding of the semantics of the full language. The work that has been
presented here is a first step towards that goal. Further research, because of the real-
world nature of its implications to the design of complex systems, represents a true
test for the maturity of the formal methods approach. The benefits of verification
over validation have been expressed for quite some time. Furthermore, formal
systems and methodologies abound. A formal semantics and practical associated
tools for full VHDL presents a unique and realisable challenge for the future.

BIBLIOGRAPHY

[1]

[2]

[3]
[4]

[5]

(6]

[7]

[8]

[9]

[10]

The Aerospace Corp., SDVS 11 User’'s Manual, Engineering and Technology
Group, 30 September 1992.

R. Airiau, J-M Bergé, V. Olive and J]. Rouillard, VHDL: du Langage a la
Modeélisation, Presses Polytechniques et Universitaires Romandes (1990).

J. Armstrong, Chip Level Modelling in VHDL, Prentice Hall (1988).

L.M. Augustin, D.C. Luckham, B.A. Gennart and A.C. Stanculescu, Hardware
Design and Simulation in VAL/VHDL, Kluwer Academic Publishers (1991).

L.M. Augustin, B.A. Gennart, Y. Huh, D.C. Luckham and A.C. Stanculescu, 'An
Overview of VAL' Technical Report CSL-TR-88-367, Stanford University,
Stanford, California (October 1988).

H. Barringer, G. Gough and B. Monahan, 'Operational Semantics for Hardware
Description Languages', in proceedings 1992 Wokshop for the ESPRIT BRA
CHARME, (also University of Manchester Department of Computer Science
Technical Report UMCS-91-2-2 (February 1991)).

M. Belhadj, R. McConnell and P. Le Guernic, 'A Synchronous Framework for
VHDL Attributes', IRISA Internal Report (January 1993).

R. Boulton, 'The HOL Arith Library', HOL System Documentation, University of
Cambridge Computer Laboratory (1992).

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert and J. Van Tassel,
‘Experience with Embedding Hardware Description Languages in HOL', in
proceedings: IFIP TC10/WG10.2 International Conference on Theorem Provers in
Circuit Designs: Theory, Practice and Experience, edited by V. Stavridou, T. F.
Melham and R. T. Boute, North-Holland (1992).

R. Boulton, M. Gordon, J. Herbert and J. Van Tassel, 'The HOL Verification of
ELLA Designs', in proceedings: 1991 International Workshop on Formal Methods in
VLSI Design, edited by P.A. Subrahmanyam (also University of Cambridge
Technical Report 199, August 1990), Springer-Verlag (1991).

93

94 BIBLIOGRAPHY

[11] R.S. Boyer and] S. Moore, A Computational Logic, Academic Press (1979).

[12] R. S. Boyer and J S. Moore, A Computational Logic Handbook, Academic Press
(1988)

[13] J. Camilleri, 'Symbolic Compilation and Execution of Programs by Proof: A
Case Study in HOL', University of Cambridge Computer Laboratory Technical
Report 240, Cambridge, England (December 1991).

[14] S. Carlson, Introduction to HDL-Based Design Using VHDL, Symnopsys, Inc., 700
East Middlefield Road, Mountain View, CA 94043.

[15] D. Coelho, The VHDL Handbook, Kluwer Academic Publishers (1989).

[16] K. Davis, 'A Denotational Definition of the VHDL Simulation Kernel', in
proceedings IFIP WG 10.2 Twelfth International Symposium on Computer Hardware
Description Languages and their Applications, (to appear 1993).

[17] LV. Filippenko, 'VHDL Verification in the State Delta Verification System
(SDVS)', in proceedings: 1991 International Workshop on Formal Methods in VLSI
Design, edited by P.A. Subrahmanyam, Springer-Verlag (1991).

[18] MJ.C. Gordon, 'HOL: A Proof Generating System for Higher-Order Logic',
University of Cambridge Computer Laboratory Technical Report 103 (1987),
revised version in VLSI Specification, Verification and Synthesis, edited by G.
Birtwistle and P.A. Subrahmanyam, Kluwer (1987).

[19] M.J.C. Gordon and T.F. Melham (editors), Introduction to HOL: A Theorem-
Proving Environment for Higher Order Logic, Cambridge University Press (1993).

[20] M. Hennessy, The Semantics of Programming Languages: An Elementary
Introduction Using Structured Operational Semantics, John Wiley and Sons (1990).

[21] Institute of Electrical and Electronics Engineers, IEEE Standard VHDL Language
Reference Manual, IEEE Press, New York (1988).

[22]]J.C. Laprie, B. Courtois, M.C. Gaudel and D. Powell, Stireté de Fonctionnement
des Systémes Informatiques, BORDAS, Paris (1989).

[23] R. Lipsett, C. Shaefer and C. Ussery, VHDL: Hardware Description and Design,
Kluwer Academic Publishers (1989).

[24] MM. Mano, Digital Design, Prentice-Hall (1984).

BIBLIOGRAPHY 95

[25] T.F. Melham, 'A Package for Inductive Relation Definitions in HOL', in
proceedings: 1991 International Workshop on the HOL Theorem Proving System and
its Applications, IEEE Computer Society Press (1991).

[26] T.F. Melham, 'The HOL Sets Library', HOL System Documentation, University of
Cambridge Computer Laboratory (1992).

[27] T.F. Melham, 'The HOL String Library', HOL System Documentation, University of
Cambridge Computer Laboratory (1992).

[28] T.F. Melham, 'Automating Recursive Type Definitions in Higher-Order Logic',
in proceedings: Current Trends in Hardware Verification and Automated Deduction,
edited by G. Birtwistle and P.A. Subrahmanyam, Springer-Verlag (1988).

[29] T.F. Melham, 'Abstraction Mechanisms for Hardware Verification', University
of Cambridge Computer Laboratory Technical Report 106, Cambridge, England
(May 1987).

[30] F.G. Pagan, Formal Specification of Programming Languages: A Panoramic Primer,
Prentice-Hall, Inc., (1981).

[31] D.L. Perry, VHDL, McGraw-Hill (1991).

[32] G. Plotkin, 'A Structural Approach to Operational Semantics', Technical Report
DAIMI FN-19, Computer Science Dept., Arhus University (September 1981).

[33] A. Salem and D. Borrione, 'Formal Reasoning About Signal Attributes in
VHDL', in proceedings: VHDL Forum for CAD in Europe, Spring 1991 meeting,.

[34] V. Stavridou, J.A. Goguen, A. Stevens, S.M. Eker, S.N. Aloneftis and K.M.
Hobley, 'FUNNEL and 20BJ: Towards an Integrated Hardware Design
Environment', in proceedings: IFIP TC10/WG10.2 International Conference on

Theorem Provers in Circuit Designs: Theory, Practice and Experience, edited by V.
Stavridou, T. F. Melham and R. T. Boute, North-Holland, (1992).

[35] G. Umbreit, Providing a VHDL Interface for Proof Systems', in proceedings:
European Design Automation Conference (1992).

[36] J.P. Van Tassel, The Semantics of VHDL with VAL and HOL: Towards Practical
Verification Tools, MSc Thesis, Dept. of Computer Science and Engineering,
Wright State University, Dayton, Ohio (1989).

96 BIBLIOGRAPHY

[37] J.P. Van Tassel and D. Hemmendinger, 'Towards Formal Verification of VHDL
Specifications', in proceedings: Applied Formal Methods for Correct VLSI Design,
edited by L. Claesen, Elsevier Science Publishers (1990).

[38] J.P. Van Tassel, 'A Formalisation of the VHDL Simulation Cycle', University of
Cambridge Computer Laboratory Technical Report 249, Cambridge, England
(March 1992).

[39] W. Young, unpublished technical notes, Computational Logic, Inc., 1993.

APPENDIX A

HOL PROOFS

This appendix gives the HOL scripts used to prove the theorems shown in Chapters
3 and 4.

A.1 Theorem 3.3.2.1

let well formed DESIGN sigs lemma =
prove thm(well formed DESIGN sigs_lemma’,
"1D. (FST(well formed DESIGN ~sigs D)) ==>
Isig. (81g IN (get_PORTS D)) ==
(sig IN (get sigs DESIGN D))"
let pair = GEN ALL (SYM (SPEC ALL PAIR)) in
let thl =
let x = INST TYPE [(":(name)set",":*"); (": (name)set",":**")]
- pair
in
SPEC "get_sigs_CS C" x
and (th2,th3) =
let x = INST TYPE [(":bool",":*"); (":(name)set"”, ":**")]
pair
in
(SPEC "well formed DESIGN_ sigs D" x,
SPEC "well formed DESIGN sigs D'" x)
in
INDUCT THEN DESIGN Induct ASSUME TAC THEN
REWRITE _TaC [get PORTS,get _8igs | DESIGN IN UNION;
well formed | DESIGN sigs] THENL
[CONV_TAC (DEPTH | CONV let CONV) THEN REWRITE TAC [] THEN
PURE ONCE REWRITE TAC [thl] THEN
CONV TAC (DEPTH CONV let _CONV) THEN REWRITE _TAC [] THEN
REPEAT GEN TAC THEN STRIP TAC THEN ASM REWRITE __TAC [1 THEN
REWRITE TAC [IN UNION] THEN
REPEAT STRIP_TAC THEN ASM REWRITE TAC []
;PURE_ONCE_REWRITE TAC [th2;th3] THEN
CONV_TAC (ONCE DEPTH CONV let CONV) THEN
REWRITE TAC[] THEN STRIP_TAC THEN RES TAC THEN
REPEAT STRIP_TAC THEN RES TAC THEN ASM REWRITE TAC[]]);;

97

98 HOL PROOFS

A.2 Theorem 3.3.3.1

let lemmada

let thl = ASSUME "well formed DESIGN design" in
let th2 = REWRITE RULE [well formed | DESIGN]} thl in
let th3 = CONJUNCT1 th2 in

GEN ALL (DISCH_ALL th3)

A.3 Theorem 4.2.3.1

let thl = PROVE (
"!A B ports sig val t.
((EQ_TAU A B ports) /\ (sig IN ports) /\ (sig,val) IN (A t)) ==>
(sig,val) IN (B t)",
REPEAT GEN_TAC THEN
REWRITE TAC [definition ‘Femto-config® 'EQ TAU] THEN
CONV_TAC (ONCE DEPTH CONV let CONV) THEN
REWRITE TAC [EXTENSION] THEN
CONV_TAC (ONCE_DEPTH CONV SET SPEC_CONV) THEN
CONV TAC (TOP_] DEPTH CONV LEFT AND FORALL . CONV) THEN
CONV TAC (TOP_| "DEPTH _ CONV LEFT IMP FORALL CONV) THEN
EXISTS TAC "t:time" THEN EXISTS TAC " (sig:name,val:value)" THEN
STRIP TAC THEN
FIRST . " ASSUM
\th. let (a,)=EQ IMP RULE th in
let thl= CONV_ RULE (TOP_DEPTH CONV LEFT IMP EXISTS CONV) a in
let th2=SPECL ["sig: name"'"val value"] thl in
ASSUME TAC (REWRITE RULE [] th2) THEN
RES_TAC THEN ASM REWRITE TAC[]);;

A.4 Theorem 4.2.3.2

let th2 =
let a=ONCE_REWRITE RULE[theorem 'Femto—config®™ "EQ TAU SYM"]Jthl in
let b=SPECL ["B:transactions";"A:transactions"] a in
GENL ["A:transactions";"B:transactions"] b;;

A.5 Theorem 4.3.3.1

let Zip ZIP EQ =
let ZIP = definition ‘cs-rules’ "ZIP°
and Zip definition “cs-rules’ ‘Zip® in
let th = REWRITE_RULE [SYM (SPEC ALL ZIP)] Zip in
CONV_RULE (ONCE DEPTH CONV let _CONV) th;;

I

A.6 Theorem 4.3.3.2

let ZIP_COMM = PROVE(
"I{A B. (A ZIP B) = (B ZIP A)",
REWRITE TAC [ZIP] THEN
CONV_ TAC (ONCE_DEPTH _CONV FUN_EQ CONV) THEN
REPEAT GEN TAC THEN BETA TAC THEN
REWRITE TAC [EXTENSION] THEN GEN_TAC THEN
EQ TAC THEN STRIP _TAC THEN ONCE REWRITE ~ TAC [UNION COMM] THEN
ASM REWRITE TAC[]),,

HOL PROOFS 99

A.7 Theorem 4.3.3.3

let ZIP_ASSOC = PROVE (
"ITau Tau' Tau''.
(Tau ZIP (Tau' ZIP Tau'')) = ((Tau ZIP Tau') ZIP Tau'')",
REPEAT GEN_TAC THEN
REWRITE TAC [definition “cs-rules® "ZIP'] THEN
BETA_TAC THEN
REWRITE TAC[theorem “sets’ 'UNION ASSOC™]);;

A.8 Theorem 4.3.3.4

let ZIP_EMPTY = PROVE (
"(ltau. (\t.{}) ZIP tau = tau) /\ (!tau. tau ZIP (\t.{}) = tau)"
REWRITE TAC [definition “cs-rules’ “ZIP ;UNION EMPTY;ETA AX]);;

A.9 Theorem 4.3.3.5

let CLEAN ZIP_ EMPTY = PROVE (
"{A B. (CLEAN zIP (\t.{}) A B) = (A ZIP B)",
REPEAT GEN TAC THEN REWRITE TAC [CLEAN ZIP;ZIP] THEN
CONV_TAC (DEPTH CONV let CONV) THEN BETA TAC THEN
REWRITE ~TAC [DIFF EMPTY; EMPTY DIFF; UNION EMPTY; ETA AX]);

A.10 Theorem 4.3.3.6

let CLEAN ZIP SYM = PROVE (
"lorig A B. (CLEAN ZIP orig A B) = (CLEAN ZIP orig B A)",
REPEAT GEN TAC THEN REWRITE TAC [CLEAN ZIP ZIP] THEN
CONV_TAC (DEPTH CONV let CONV) THEN
CONV TAC FUN_EQ CONV THEN BETA TAC THEN
REWRITE_TAC [IN_IMAGE DIFF DEF; UNION DEF; EXTENSION] THEN
REPEAT GEN TAC THEN CONV_TAC (DEPTH CONV SET SPEC CONV) THEN
CONV_TAC (TOP DEPTH CONV NOT ' EXISTS CONV) THEN
REWRITE_TAC [DE_MORGAN_ THM] THEN
CONV_TAC (ONCE_DEPTH CONV NOT EXISTS CONV) THEN
REWRITE TAC [DE MORGAN THM] THEN EQ TAC THEN
CONV_TAC (TOP | DEPTH CONV RIGHT ' AND FORALL CONV) THEN
CONV TAC (TOP_] DEPTH CONV RIGHT OR FORALL CONV) THEN
CONV TAC (TOP] "DEPTH _Conv RIGHT IMP FORALL CONV) THEN
REPEAT GEN TAC THEN
CONV_TAC (ONCE DEPTH CONV LEFT OR FORALL CONV) THEN
CONV_TAC (ONCE DEPTH CONV RIGHT OR FORALL CONV) THEN
CONV_TAC (ONCE DEPTH CONV RIGHT AND FORALL CONV) THEN
CONV_TAC (ONCE DEPTH CONV RIGHT OR FORALL CONV) THEN
CONV_TAC RIGHT IMP FORALL CONV THEN GEN TAC THEN
CONV_TAC (TOP DEPTH CONV LEFT IMP FORALL CONV) THEN
EXISTS _TAC "x':name" THEN EXISTS TAC "y value" THEN
EXISTS_TAC "x'': (name#value)" THEN REPEAT STRIP TAC THEN
ASM REWRITE TAC[1);; B

100 HOL PROOFS

A.11 Theorem 4.3.5.3

let ADD TO THETA | SIMP = prove_ thm (" ADD TO_THETA SIMP",
"'s1gma gamma ' 31gma" gamma" Tau now later.
ADD _TO_THETA sigma' gamma'
(ADD_TO THETA sigma'' gamma'' Tau now later)
now later =
ADD_TO_THETA sigma' gamma' Tau now later",
REPEAT GEN_IAC
THEN REWRITE TAC [definition “~sim-rules® "ADD TO THETA®]
THEN CONV_ TAC (ONCE DEPTH CONV FUN EQ CONV) THEN GEN TAC
THEN BETA TAC THEN COND CASES TAC
THEN REWRITE _TAC [1] THEN COND CASES ~TAC THEN REWRITE TAC [1);:;

A.12 Theorem 4.4.1

let lemmal = PROVE (
"lmu Pr tau beh.
(Simulate mu Pr tau beh /\
QUIESCE (Sim ENV_DLYS mu) (Sim ENV_TIME mu)tau
(Slm ENV_ " GAMMA mu)) ==
(beh =
(\t. (SND ((ADD TO THETA
(Slm ENV SIGMA mu)
(Sim ENV_GAMMA mu)
(Sim ENV_THETA mu)
(Sim ENV_TIME mu)
(Sim ENV_TIME mu)) t))))",
REPEAT GEN_ TAC THEN TONCE ~REWRITE TAC [GEN Simulate] THEN
DISCH THEN (ASSUME TAC o \th let [x;y] = CONJUNCTS th in
REWRITE RULE [yl x) THEN
ASM REWRITE TAC[]);;

let fwd th =
let (thl,) = EQ IMP RULE th in

let th2 = CONV_RULE (ONCE_DEPTH CONV LEFT AND EXISTS CONV) thl in
let th3 = CONV_RULE (DEPTH CONV RIGHT AND EXISTS CONV) th2 in
let th4 = CONV_RULE (TOP DEPTH CONV LEFT_IMP EXISTS CONV) th3 in
let th5 = SPECL ["FST (x: (namefvalue))";

"SND (x: (namef#value))"] th4
in

REWRITE RULE [] th5;;

HOL PROOFS 101

let

let

SIMENV_CONV =

let checkl = assert (\c. let tmp = fst (dest const c) in
((tmp="Sim ENV DLYS") or
(tmp="Sim ENV_RHO") or
(tmp=”Sim;ENV_TIME‘) or
(tmp=‘Slm ENV SIGMA') or
(tmp = " Sim | ENV GAMMA") or

(tmp = *Sim ENV THETA')))
and check2 = assert (\l. not (is_var (hd 1))
and SIMENV = map (definition ‘Femto config’)
[Slm ENV DLYS ; Slm ENV RHO ; Slm ENV TIME®;
Slm,ENV SIGMA® Slm ENV GAMMA Slm ENV THETA"]
in

letrec build_conv lst conv =

if null lst then conv

else build conv (tl lst) (conv ORELSEC (REWRITE CONV (hd 1lst)))
in
let conv = (build conv (tl SIMENV) (REWRITE CONV (hd SIMENV)))

THENC DEPTH_CONV (REWRITE CONV FST
ORELSEC REWRITE CONV SND) in
\tm. (let (,) = (checkl # check2) (strip comb tm) in
conv tm) ? failwith *SIMENV _CONV";;

(lemma2a, lemmazb, lemma2c) =
let tac =
REWRITE TAC [EQ TAU] THEN CONV TAC (ONCE DEPTH CONV let CONV) THEN
CONV TAC (ONCE DEPTH CONV LEFT AND FORALL CONV) THEN
CONV TAC LEFT IMP FORALL CONV THEN
EXISTS _TAC "now:time" THEN REWRITE TAC [EXTENSION; IN IMAGE] THEN
CONV_ TAC (ONCE DEPTH CONV SET SPEC CONV) THEN
CONV TAC (ONCE DEPTH | T CONV LEFT AND FORALL CONV) THEN
CONV TAC (LEFT IMP FORALL CONV) THEN
EXISTS_TAC "x: (namefvalue)" THEN
CONV TAC (DEPTH CONV LEFT '_AND FORALL CONV) THEN
CONV TAC (DEPTH CONV RIGHT AND FORALL CONV) THEN
CONV TAC LEFT IMP FORALL CONV THEN
EXISTS _TAC "x: (namefvalue)” THEN
CONV TAC (ONCE DEPTH_CONV RIGET AND FORALL CONV) THEN
CONV TAC LEFT IMP FORALL CONV THEN
EXISTS TAC "x: (name#value)" THEN
STRIP TAC THEN FIRST ' ASSUM (ASSUME TAC o fwd) THEN
UNDISCH TAC -
"(FST x) IN
((FST ports) UNION
((FST(SND ports)) UNION (SND(SND ports)))) /\
x IN (tau' now) ==>
(?sig val',
(x = sig,val') /\
sig IN
((FST ports) UNION :
((FST (SND ports)) UNION (SND(SND ports)))) /\
(sig,val') IN ((tau'':transactions) now))" THEN
ASM REWRITE TAC[IN UNION] THEN STRIP TAC THEN
UNDISCH TAC "x—(51g name,val': :value) " THEN
DISCH THEN (ASSUME TAC o SYM) THEN
UNDISCH TAC "(81g,val’) IN ((tau'':transactions) now)" THEN
FILTER ASM REWRITE_TAC
(\tm.” (rhs tm = "x: (name#value)")?false) [] THEN
FILTER_ASM;REWRITE_TAC
(\tm. (rhs tm = "x IN sigma'’':state")?false)[]
in

102 HOL PROOFS

(GEN_ALL (PROVE (
"EQ TAU tau' tau'' ((FST ports) UNION
- ((FST (SND ports)) UNION (SND(SND ports)))) /\
(tau' now = sigma') /\
(tau'' now = sigma'') /\
(FST x) IN (FST ports) /\
x IN sigma'’' ==
x IN sigma''",tac)),
GEN_ALL (PROVE (
"EQ TAU tau' tau'' ((FST ports) UNION
- ((FST(SND ports)) UNION (SND(SND ports)))) /\
(tau' now = sigma') /\
(tau'' now = sigma'') /\
(FST x) IN (FST (SND ports)) /\
x IN sigma' ==
x IN sigma''",tac)),
GEN_ALL (PROVE (
"EQ TAU tau' tau'' ((FST ports) UNION
- ((FST(SND ports)) UNION (SND(SND ports)))) /\
(tau' now = sigma') /\
(tau'' now = sigma'') /\
(FST x) IN (SND (SND ports)) /\
x IN sigma' ==
x IN sigma''",tac)));;

ONCE REWRITE RULE [EQ TAU SYM] lemma2a
ONCE_REWRITE_RULE [EQ TAU SYM] lemma2b
ONCE_REWRITE RULE [EQ TAU SYM] lemma2c;;

let lemmaza’
and lemmalb'’
and lemmazc'

i

let lemmal3a = GEN ALL (PROVE (
"((EQ SIGMA (sigma' UNION sigma''') (sigma'' UNION sigma''')
(get PORTS X)) /\
((FST x) IN (get_PORTS X)) /\
(x IN sigma')) ==> ((x IN sigma'') \/ (x IN sigma'''))",
REWRITE TAC [EQ SIGMA] THEN CONV_TAC (ONCE DEPTH CONV let CONV) THEN
REWRITE TAC [EXTENSION IN UNION; IN IMAGE] THEN
CONV_ TAC (ONCE DEPTH CONV LEFT ' AND FORALL CONV) THEN
CONV TAC LEFT IMP FORALL CONV THEN EXISTS TAC "x: (name#value)" THEN
CONV_TAC (ONCE_DEPTH CONV SET SPEC_CONV) THEN
STRIP_TAC THEN FIRST ASSUM (ASSUME_TAC o fwd) THEN
UNDISCH TAC
"(x IN sigma' \/ x IN sigma''') /\ (FST x) IN (get PORTS X) ==>
(?x' y'.
(x = x",y") /\
((x',y':value) IN sigma'' \/ (x',y') IN sigma''') /\
x' IN (get_PORTS X))" THEN
ASM;REWRITE_TAC [] THEN STRIP_TAC THEN
FILTER ASM REWRITE_TAC (\tm. (lhs tm = "x:(name#value)")?false) [] THENL
[FILTER ASM REWRITE TAC

(\tm.” (tm = "(x',y') IN sigma'':state")?false) []
;FILTER ASM REWRITE TAC
(\tm.” (tm = "(x' ;Y') IN sigma''':state")?false) [1]1));;

let lemma3a' = ONCE_REWRITE RULE [EQ SIGMA SYM] lemma3a;;

let tacl =
let tacla
and lemma

[

REWRITE TAC [DFLAT;get PORTS] THEN STRIP TAC
GEN | ALL ™ (CONV_RULE (ONCE DEPTH CONV SIMENV ~ CONV)
(SPEC " (dlys, now, sigma, gamma, theta) :sim env"
lemmal)) in -
tacla THEN IMP RES TAC lemma;;

I

HOL PROOFS 103

let lemmada
let thl ASSUME "well formed DESIGN design" in
let th2 REWRITE RULE [well formed DESIGN] thl in
let th3 = CONJUNCT1 th2 in
GEN ALL (DISCH ALL th3)
and lemmadb -

it

]

let thl = ASSUME "well formed theta theta design" in
let th2 = REWRITE RULE [well formed _theta] thl in
let th3 = CONV RULE let CONV th2 in

let th4 = CONJUNCT2 (SPEC ALL th3) in
let th5 = DISCH ALL (GEN ALL th4) in
GEN_ALL th5;;

let tac2 =
let tac = CONV_TAC (ONCE DEPTH CONV LEFT IMP_FORALL CONV) THEN
EXISTS_TAC "t:time" THEN ASM REWRITE __TAC 11 THEN DISCH TAC
in
ONCE_ASM REWRITE TAC([] THEN REWRITE TAC [ADD TO THETA;EQ TAU] THEN
CONV_TAC (DEPTH | CONV let __CONV) THEN BETA TAC THEN GEN TAC THEN
REWRITE _TAC [EXTENSION] THEN
CONV_ TAC (ONCE_DEPTH CONV SET SPEC CONV) THEN
GEN ' TAC THEN REWRITE TAC [IN] UNION; IN IMAGE] THEN
COND CASES TAC THEN REWRITE TAC [IN UNION] THEN
UNDISCH TAC
"behA = (\t. SND (ADD TO THETA sigmaA gammaA thetaA now now t))"
THEN
UNDISCH TAC
"behB = (\t. SND (ADD_TO THETA sigmaB gammaB thetaB now now t))"
THEN
UNDISCH_TAC
"behAC = (\t. SND (ADD TO THETA (sigmaA UNION sigmaC)
(gammaA UNION gammacC)
(\t.
((FST (thetalA t)) UNION
(FST (thetaC t)),
(SND (thetaA t))
(SND (thetaC t))
now now t))" THEN

UNION
))

UNDISCH TAC
"behBC = (\t. SND (ADD_TO_THETA (sigmaB UNION sigmaC)
(gammaB UNION gammacC)
(\t.
((FST (thetaB t)) UNION
(FST (thetaC t)),
(SND (thetaB t)) UNION
(SND (thetaC t))))
now now t))" THEN
REWRITE TAC [ADD TO THETA] THEN
CONV TAC (ONCE DEPTH CONV FUN_EQ CONV) THEN
BETA TAC THEN REPEAT " tac THEN
REWRITE TAC [IN UNION] THEN
EQ TAC THEN STRIP TAC THEN EXISTS _TAC "sig:name" THEN
EXISTS ~TAC "val:value" THEN ASM REWRITE TAC[],,

let lemma2 TAC lemma lst =
let th = SPECL lst lemma in
ASSUME_TAC th THEN UNDISCH TAC (concl th) THEN
ASM REWRITE _TAC[] THEN STRIP_TAC THEN ASM REWRITE TAC[];;

104 HOL PROOEFS

let lemma3 TAC lemma lst =
let th = SPECL lst lemma in
ASSUME TAC th THEN UNDISCH _TAC (concl th) THEN
ASM REWRITE TAC[];;

let tac3a

lemma2 TAC lemmaZa .
["behA:transactions"; "behB:transactions";
"ports: ((name) set# (name) set# (name) set)";
"now:time"; "sigmaA:state”;
"sigmaB:state";" (sig:name,val:value)"]
and tac3b = lemma2 TAC lemmaZb
["behA:transactions"; "behB:transactions";
"ports: ((name) set# (name) set# (name) set)";
"now:time"; "sigmaA:state”;
"sigmaB:state";" (sig:name,val:value)"]
and tac3c = lemmaz TAC lemmazc
["behA:transactions”"; "behB:transactions";
"ports: ((name) set# (name) set# (name) set)";
"now:time"; "sigmaA:state";
"sigmaB:state";" (sig:name,val:value)"]
and tac3d = lemma3 TAC lemma3a
["sigmaA:state";"sigmaC:state";"sigmaB:state";
"C:DESIGN"; "x: (name#value) "]
and tac3e = lemmaZ TAC lemmala'
["behB:transactions"; "behA:transactions";
"ports: ((name) set# (name) set# (name) set)";
"now:time"; "sigmaB:state";
"sigmaA:state";" (sig:name,val:value)"]
and tac3f = lemma2 TAC lemmaZzb'
["behB:transactions"; "behA:transactions";
"ports: ((name) set# (name) set# (name) set)";
"now:time"; "sigmaB:state";
"sigmaA:state";" (sig:name,val:value)"]
and tac3g = lemma2 TAC lemma2c'
["behB:transactions"; "behA:transactions";
"ports: ((name) set# (name) set# (name) set)";
"now:time"; "sigmaB:state";
"sigmaA:state";" (sig:name,val:value)"]
and tac3h = lemma3 TAC lemma3a'’
["sigmaB:state";"sigmaC:state"; "sigmalA:state";
"C:DESIGN"; "x: (name#value)"];;

let tacda = lemma2 TAC lemmaZ2a
["behA:transactions"; "behB:transactions”;
"ports: ((name) set# (name) set# (name) set)";
"t:time";"SND ((thetaA:trace) t)";
"SND ((thetaB:trace))";" (sig:name,val:value)"]
and tacdb = lemma2 TAC lemma2lb
["behA:transactions"; "behB:transactions”;
"ports: ((name) set# (name) set# (name) set)";
"t:time";"SND ((thetaA:trace) t)";
"SND ((thetaB:trace))";" (sig:name,val:value)"]
and tac4c = lemma2 TAC lemmaZc
["behA:transactions”; "behB:transactions”;
"ports: ((name) set# (name) set# (name) set)";
"t:time";"SND ((thetaA:trace) t)";
"SND ((thetaB:trace))";" (sig:name,val:value)"];;

HOL PROOFS 105

let tacdd =
IMP RES TAC lemmad4a THEN
IMP RES TAC well formed DESIGN sigs lemma THEN
IMP RES TAC lemma4b THEN
ASM REWRITE TAC []
and tacd4e = lemma2 TAC lemmaZla'
["behB:transactions"; "behA:transactions”;
"ports: ((name) set# (name) set# (name) set) ";
"t:time";"SND ((thetaB:trace) t)";
"SND ((thetaA:trace))";" (sig:name,val:value)"]

and tac4f = lemma2 TAC lemmaZlb'
["behB:transactions"; "behA:transactions";
"ports: ((name) set# (name) set# (name) set)";
"t:time";"SND ((thetaB:trace) t)'";
"SND ({(thetaA:trace))";" (sig:name,val:value)"]
and tac4g = lemma2 TAC lemmaZzc'

["behB:transactions"”; "behA:transactions";
"ports: ((name) set# (name) set# (name) set) ";
"t:time";"SND ((thetaB:trace) t)"; '

"SND (thetaA:trace))";" (sig:name,val:value)"];;

let QUIET CONG THM = save thm ('QUIET CONG THM',GEN ALL (PROVE (

"let A = ARCH ent archA ports declsA csA

and B = ARCH ent archB ports declsB csB

and dlysAC = ADD DELAYS CS dlysA dlysC

and dlysBC = ADD DELAYS CS dlysB dlysC

and sigmaAC sigmaA UNION sigmaC

and sigmaBC sigmaB UNION sigmaC

and gammaAC gammalA UNION gammaC

and gammaBC gammaB UNION gammaC

[

ct o

and thetaAC = ((FST (thetaA t)) UNION (FST (thetaC t)),
(SND (thetaA t)) UNION (SND (thetaC t)))

and thetaBC t = ((FST (thetaB t)) UNION (FST (thetaC t)),
(SND (thetaB t)) UNION (SND (thetaC t))) in

let ports' = get PORTS A

and ports'' = get PORTS C in

let prts = ports' UNION ports'' in
((Simulate (dlysA,now, sigmal,gammal,thetad) (DFLAT A) tauA behA /\
QUIESCE dlysA now tauA gammad /\
Simulate (dlysB,now,sigmaB,gammaB,thetaB) (DFLAT B) tauB behB /\
QUIESCE dlysB now tauB gammaB /\
Simulate (dlysAC, now, sigmaAC, gammaAC, thetaAC) (DFLAT (DPAR A C))
tauAC behAC /\
QUIESCE dlysAC now tauAC gammaAC /\
Simulate (dlysBC,now, sigmaBC, gammaBC, thetaBC) (DFLAT (DPAR B C))
tauBC behBC /\
QUIESCE dlysBC now tauBC gammaBC /\
well formed DESIGN C /\
well formed theta thetaC C /\
EQ SIGMA sigmaAC sigmaBC ports''/\
EQ TAU behA behB ports') ==
EQ TAU behAC behBC prts)",
CONV_TAC (TOP_DEPTH CONV let CONV) THEN tacl THEN tac2 THENL
[tac3a;tac3b;tac3c;tac3d;tac3e;tac3f; tac3g; tac3h;
tacda;tacédb;tacdc;tacdd; tacde; tacdf;tacdg;tacddl)));;

APPENDIX B

A WORKED EXAMPLE

This appendix presents a HOL session comprising the deriviation of behaviours for a
NAND gate and the proof of their equivalence that was described in Chapter 6.

B.1 Derivation for the Specification

VHDL-HOL System (Version 1.0), built on 24/2/93

flet tm =
"let P = PROCESS {"A", B’}
(INERT SIG ASSGN “C" (VNAND (Sig "A’) (Sig "'B"))1)
and mu = (get delays CS P,now,{('A",a), ("B ,b), ("C*,c)},
{27\t ({},{})) in
Simulate mu P (\t.{}) beh";;
tm =
"let P = PROCESS ('A°,'B")
BEGIN
*CY <= ("A° NAND "B') AFTER 1 NS;
END PROCESS;
in
let mu =
. (get_delays_CS P,now, { ("A",a), ('B",b), ("C*,c)}, {"A }, (\t. ({},{H))
in
mu |[-- <P, (\t. {})> —--Sim-—-> beh"
: term

#let expanded = ((TOP_DEPTH CONV let CONV) THENC

(ONCE_DEPTH CONV get delays CS CONV)) tm;;
expanded
|- let P

]

PROCESS (A", B")
BEGIN

*CY <= (A’ NAND “B') AFTER 1 NS;
END PROCESS;

in
let mu =
. (get_delays_CS P,now, {("A",a), ("B ,b), ("C,c)}, {"A"}, (\t. ({},{})))
in
mu |- <P, (\t. {})> —--Sim~--> beh =

([1l,now, {(CA",a), (B ,b), ("C",o)}, {"A"}, (\t. ({},{D))) [|—
<PROCESS (A, B")
BEGIN
*C' <= ("A" NAND "B') AFTER 1 NS;
END PROCESS;, (\t. {})> ——Sim--> beh

107

108 A WORKED EXAMPLE

#let thl = RIGHT CONV_RULE ONCE AROUND expanded;;
thl =
|- let P = PROCESS (A", 'B")
BEGIN
“C’ <= ("A' NAND "B') AFTER 1 NS;
END PROCESS;
in
let mu =

(get_delays _CS P,now,{ (‘A" ,a), ("B",b), ("C,c)}, {"A"}, (\t. ({},{}1)))
in
mu |-— <P, (\t. {})> —-Sim——> beh =
([l]r (I'IOW + l)/{(\c\r'\'(a /\ b))/ (\A‘,a), (\B\I)}r
{signl | ((signl = *C*) /\ ~(~(a /\ b) = c))},
ADD TO THETA { (A ,a), ('B',b), ("C",c)} { A"}
(\t. ({},{})) now (now + 1)) |——
<PROCESS (‘A*, B")
BEGIN
"C" <= (A" NAND 'B') APTER 1 NS;
END PROCESS;, INERT POST "C° (~(a /\ b)) (\t. {}) now 1> ~-Sim~-> beh

#let th2 = RIGHT CONV_RULE (ONCE DEPTH CONV finish GAMMA) thl;;
th2 =
|- let P = PROCESS ('A‘,'B")
BEGIN
"C' <= ('A' NAND ‘B‘) AFTER 1 NS;
END PROCESS;

in

let mu = -

‘ (get_delays CS P,now, {("A%,a), ("B ,b), ("C*,c)}, {"A "}, (\t. ({},{}1)))
in

mi |-— <P, (\t. {})> --Sim--> beh =
(~(a /\ b) =c¢c) =>
([1], (mow + 1), {(°C",~(a /\ b)), ("A",a), ("B ,b)},{},
ADD TO THETA {('A,a), (‘B',b), ("C,c)} {'A"}
' (\t. ({},{})) now (now + 1)) |-
<PROCESS (A", B")
BEGIN
*C' <= ("A' NAND 'B) AFTER 1 NS;
END PROCESS;, INERT POST "C° (~(a /\ b)
([1], (now + 1),{(°C",~(a /\ b)), (CA",a)
ADD TO THETA {(‘A°,a), ("B’,b), ("C",c)}
(\t. ({},{})) now (now + 1
<PROCESS (*A°, B")
BEGIN
“C* <= ("A® NAND ‘B’) AFTER 1 NS;
END PROCESS;, INERT POST "C° (~(a /\ b)) (\t. {}) now 1> —-Sim--> beh

now 1> —-Sim--> beh |

) (\t. |
’), {°C Yy,

\
"B, b
A

o
,
~

A WORKED EXAMPLE 109

#let th3 = RIGHT CONV_RULE (ONCE DEPTH CONV ONCE_AROUND) th2;;
th3 =
|- let P = PROCESS (‘A', B")
BEGIN
*C’ <= ("A' NAND "B') AFTER 1 NS;
END PROCESS;
in
let mu =
(get_delays_CS P,now, { (A" ,a), ("B ,b), ("C*,)}, {"A"}, (\t. ({},{(H)
in
mu |-— <P, (\t. {})> --Sim--> beh =

(~(a /\ b) = c) =>
(beh = (\t. SND (ADD_TO_THETA {¢Ce,~@ /\)
{} (ADD_TO_THETA {(°A", ,
{"A7) (\t'. ({}, D)
(now + 1) (now + 1) t)) |
([1], (now + l)l{(\C\IN(a /\ b)), (\A\/a)/ (*B",Db
ADD TO THETA {(C',~(a /\ b)), ("A*,a), ("B",b)
{
n

(CA%,a), ("B ,b)}
BY,b), (CC,0)}
now (now + 1))

(ADD_TO_THETA {('A",a), ('B',b), (*C*,c)}
now (now + 1)) (now + 1) (now
<PROCESS ('A°, B")
BEGIN
"C’ <= (A" NAND 'B’) AFTER 1 NS;
END PROCESS;, (\t. {})> —--Sim—--> beh

#let thd = RIGHT CONV_RULE (ONCE DEPTH CONV ONCE AROUND) th3 ;;
thd =
|- let P = PROCESS (A", B’)
BEGIN
"C’ <= (A" NAND "B') AFTER 1 NS;
END PROCESS;
in
let mu =

(get_delays CS P,now, {(TA",a), ("B ,b), ("C*,c)}, {"A"}, (\t. ({},{1)))
in
mu |- <P, (\t. {})> -=-Sim—-> beh =
(~(a /\ b) = c) =>
(beh = (\t. SND (ADD TO THETA {('C',~(a /\ b)), ("A*,a), ("B",b)}
{} (ADD_TO THETA { (A ,a), (‘B ,b), ("C*,c)}
{"A"} (\t'. ({},{})) now (now + 1))
(now + 1) (now + 1) t))) |
(beh = (\t. SND (ADD TO THETA {('C',~(a /\ b)), ("A*,a), ("B",Db)}
{} (ADD_TO THETA {('A‘,a), ("B",b), (‘C",c)}
{"a"} (\t'. ({},{})) now (now + 1))
t)))

(now + 1) (now + 1) S

110 A WORKED EXAMPLE

#let th5 = REWRITE RULE [ADD TO THETA;COND ID] th4 ;;
thb5 =
|- let P = PROCESS (A, 'B")
BEGIN
*C’ <= (TA® NAND 'B’) AFTER 1 NS;
END PROCESS;
in
let mu =
(get_delays CS P,now, {('A",a), ("B ,b), CC ,a)}, {"A7)}, (\t. ({}, {1
in
mu |[-— <P, (\t. {})> ——Sim—-> beh =

(beh = (\t. SND ((\t. (t »= now + 1) =>
({H{¢Cc,~@@a /\ b)), (Ca,a), ("B ,b)}) |
(\t. (now >= now + 1) =>
((t >= now) =>
({"A"},{(CA,a), CB ,b), ("C*,c)}) |
({4
((now <= t /\ t >= now + 1) =>
({"A"},{CAa,a), (B D), ("C™,a))
({r, {H)y) &y vy»

#let th6é = RIGHT CONV_RULE (ONCE DEPTH CONV if arith CONV) th5;;
thé =
|- let P = PROCESS ("A°, B")
BEGIN
"C* <= (A" NAND ‘B") AFTER 1 NS;
END PROCESS;
let mu =
(get_delays_CS P,now, { ("A",a), ("'B",b), ("C*,c)}, {"A"}, (\t. ({},{})))
in
mu |-- <P, (\t. {})> —-Sim——> beh =

(beh = (\t. SND ((\t. (t >= now + 1) =>
({H,{¢cc,~(a /\ b)), (a,a), "B ,b)y}) |
(\t. (now <=t /\ t >= now + 1) =>
({"a*},{(Ca,a), CB,b), ("C ,c)}) |
({3, {H))y on

#let th7 = RIGHT CONV_RULE (DEPTH CONV simp ATT CONV) thé;;
th7 =
|- let P = PROCESS ('A*,'B")
BEGIN
"C’ <= (A’ NAND "B') AFTER 1 NS;
END PROCESS;
let mu =
‘ (get_delays_CS P,now, { ("A",a), ("B*,b), CC*,a)}, {"A"}, (\t. ({},{DH))N
in
mu |-— <P, (\t. {})> ——-Sim—~> beh =
(beh = (\t. SND ((\t. (t >= now + 1) =>

({}y,{Cc,~(a /\ b)), (a,a), ("B",b)}) |

(\t. (t >— now) =>
({"A°},{CAa,a), ("B ,b), ("C*,a)}) |
({},{H)))y &)

A WORKED EXAMPLE . 111

#let NAND BEH = REWRITE RULE [SND SIMP] (BETA RULE th7);;
NAND BEH

[

|- let P = PROCESS ('A', B‘)
BEGIN
"C* <= (A" NAND ‘B‘) AFTER 1 NS;
END PROCESS;
let mu =
(get_delays CS P,now, { (A" ,a), ("B ,b), ("C",c)}, {"A "}, (\t. ({},{H)))
in
mu |-- <P, (\t. {})> --Sim--> beh =
(beh = (\t. (t >= now + 1) =>

{¢CC,~(@ /\ b)), (CAa), "B ,b)} |
((t >= now) => {("A",a),('B',b), ("C,c)} | {})))

B.2 Derivation for the Implementation

#
PAR (PROCESS {*A°, B}

(INERT_SIGMASSGN "TMP® (VAND (Sig “A%) (Sig "B7)) 1))

(PROCESS {“TMP\}(INERT_SIG~ASSGN "CT (VNOT (Sig "TMP')) 0)) in
let mu = (get delays CS P,now, {("A’,a), ("B",b), ("C*,c), (' TMP", tmp) },
{"AT) A\E ()}, {})) in

Simulate mu P (\t.{}) beh";;

tm =
"let P = PROCESS (A", 'B")
BEGIN
"TMP® <= (A" AND "B’) AFTER 1 NS;
END PROCESS;
PROCESS ('TMP")
BEGIN
*C" <= (NOT "TMP') AFTER 0 NS;
END PROCESS;
in
let mu =
(get_delays_CS P,now, { (A% ,a), ("B",b), ("C",c), (TMP",tmp) },
_ A%}, (\t. (L}, {H)))
in

mu |-—- <P, (\t. {})> —-Sim--> beh"
: term

112 A WORKED EXAMPLE

#let expanded = ((TOP_DEPTH CONV let CONV) THENC

(ONCE_DEPTH CONV get delays CS_CONV)) tm;;
expanded
|- let P

[/

PROCESS ('A°, B")
BEGIN

"TMP® <= (A" AND "B') AFTER 1 NS;
END PROCESS;

PROCESS ("TMP)
BEGIN

*C' <= (NOT "TMP') AFTER 0 NS;
END PROCESS;

in
let mu =
(get_delays CS P,now, { (A ,a), ("B",b), ("C",c), ("TMP", tmp) },
{"AY}, (\t. ({},{H))N
in
mu |-— <P, (\t. {})> --Sim--> beh =
([0;1],now, {("A",a), ("B ,b), ("C ,c), CTMP",tmp) }, {"A"},
(\t. ({},{}))) |-— <PROCESS ('A",'B")
BEGIN
“TMP' <= (‘A" AND ‘B') AFTER 1 NS;
END PROCESS;
PROCESS ("TMP')
BEGIN
“C' <= (NOT ‘TMP") AFTER 0 NS;
END PROCESS;, (\t. {})> --Sim~-> beh
#let thl = RIGHT CONV_RULE ONCE_AROUND expanded;;
thl =
[~ let P = PROCESS (‘A', 'B")
BEGIN
“TMP' <= (‘A AND "B") AFTER 1 NS;
END PROCESS;
PROCESS ("TMP")
BEGIN
“CY <= (NOT “TMP') AFTER 0 NS;
END PROCESS;
let mu =
(get_delays_CS P,now, {("A*,a), ("B",b), ("C",c), ("TMP", tmp) },
. {°A%)}, (\t. ({}, (D)
in

ma |-— <P, (\t. {})> —--Sim——> beh =

([0;1], (now + 1), {(CT™P", (a /\ b)), ("A",a), ('B",b), ("C*, o)},

{signl | ((signl = "IMP') /\ ~(a /\ b = TMP))},

ADD_TO THETA {('A‘,a), ('B’,b), ("C*,c), CTMP ,tmp)} { A"}

(\t. ({},{})) now (now + 1)) |--

<PROCESS (*A",'B")

BEGIN
"TMP' <= (A" AND 'B') AFTER 1 NS;

END PROCESS;

PROCESS ("TMP')
BEGIN
"CT <= (NOT “TMP') AFTER 0 NS;
END PROCESS;, INERT POST "IMP" (a /\ b) (\t. {}) now 1> -—Sim--> beh

A WORKED EXAMPLE 113
#let th2 = RIGHT CONV_RULE (ONCE DEPTH CONV finish GAMMA) thil;;
th2 =
[- let P = PROCESS ('A','B")
BEGIN
“TMP' <= (A’ AND ‘B') AFTER 1 NS;
END PROCESS;
PROCESS (" TMP")
BEGIN
‘C' <= (NOT “TMP') AFTER 0 NS;
END PROCESS;
in
let mu =
(get_delays_CS P,now,{('A",a), ("B",b), ("C",c), ("T™MP", tmp) },
A%}, (\t. ({3, D))
in

mu |—— <P, (\t. {})> --Sim--> beh =
(a /\ b = TMP) =>
([0;1], (now + 1), {(CT™MP", (a /\ b)), ("A",a), (B ,b), ("C,a)}, {},
ADD_TO THETA {(‘A*,a), (‘B*,b), ('C',c), ("TMP",tmp)} { A"}

(\t. ({},{})) now (now + 1)) |--
<PROCESS (A, 'B")
BEGIN
“TMP® <= (A" AND 'B') AFTER 1 NS;

END PROCESS;

PROCESS ("TMP")
BEGIN

'C' <= (NOT “TMP') AFTER 0 NS;
END PROCESS;, INERT POST 'TMP' (a /\ b) (\t. {}) now 1> --Sim-—> beh
({0;1], (now + 1), {(CTMP", (a /\ b)), ("A*,a), ('B",b), ("C",c)}, {"T™MP "},
ADD_TO_THETA {('A%,a), ('B’,b), ("C",c), ("TMP",tmp)} { A"}

(\t. ({},{})) now (now + 1)) [--

<PROCESS ('A', 'B")
BEGIN

"TMP® <= (A" AND "B') AFTER 1 NS;
END PROCESS;

PROCESS ("TMP")
BEGIN
"CT <= (NOT "TMP') AFTER 0 NS;
END PROCESS;, INERT POST "IMP' (a /\ b) (\t. {}) now 1> --Sim-—> beh

#let lemma =

#
#

PROVE ("ix:bool. ~(x = ~x)",
GEN TAC THEN BOOL CASES TAC "x:value" THEN REWRITE TACI[]);;

lemma = |- !x. ~(x = ~x)

|

114 A WORKED EXAMPLE
#let th3 = REWRITE RULE [lemma] (SPEC "~ (X/\y)" (GEN "TMP:value" th2));;
th3 =
|- let P = PROCESS (A", 'B")
BEGIN
TMPT <= (A" AND "B') AFTER 1 NS;
END PROCESS;
PROCESS ("TMP')
BEGIN
“CY <= (NOT "TMP') AFTER 0 NS;
END PROCESS;
in
let mu =
(get_delays_CS P,now, {("A",a), ("B",b), (C",c), ("TMP", tmp) },
. {"A%)}, (\t. ({}, (N
in

mu |~— <P, (\t. {})> —-Sim—-> beh =
([0;1], (now + 1), {("TMP", (& /\ b)), CA",a), ("B ,b), (°C",
ADD_TO__THETA {CA,a), ("B ,b), ("C",c), CTMP",~(a /\ D))
(\t. ({},{})) now (now + 1)) |-—
<PROCESS ("A*, B")
BEGIN
“TMP® <= (TA' AND 'B') AFTER 1 NS;
END PROCESS;

PROCESS ("TMP")
BEGIN
"CT <= (NOT "TIMP') AFTER 0 NS;
END PROCESS;, INERT POST "TMP" (a /\ b) (\t. {}) now 1> --Sim--> beh

A WORKED EXAMPLE 115
#let th4 = RIGHT CONV_RULE (ONCE _DEPTH CONV ONCE AROUND) th3;;
thd =
|- let P = PROCESS (‘A', B")
BEGIN
“TMP' <= (A" AND "B') AFTER 1 NS;
END PROCESS;
PROCESS ("TMP)
BEGIN
CY <= (NOT “TMP) AFTER 0 NS;
END PROCESS;
in
let mu =
(get_delays CS P,now, {('A",a), ("B",b), ("C ,c), (" TMP", tmp) },
{2}, (\t. ({},{HOHN
in

ma |-- <P, (\t. {})> —--8im--> beh =

([0;1], (now + 1),{(C,~(a /\ b)), CT™MP", (a /\ b)), ("A",a), ("B",b)},

{signl | ((signl = "C") /\ ~(~(a /\ b) =c¢c))}, .

ADD TO_THETA {('TMP", (a /\ b)), (A’ ,a), ("B ,b), ("C",c)} {"IMP"}
(ADD_TO_THETA {(\A\ra)/ (\B\Ib)/ (\C\rc)r (‘TW~I~(a~ /\ b))}

{"A"} (\t. ({},{})) now (now + 1)) (now + 1) (now + 1)) |-~

<PROCESS ('A°, 'B")

BEGIN
"TMP® <= ("A' AND 'B°) AFTER 1 NS;

END PROCESS;

PROCESS (" TMP")
BEGIN
"C’ <= (NOT “TMP') AFTER 0 NS;
END PROCESS;,
INERT_POST “C* (~(a /\ b)) (\t. {}) (now + 1) 0> --Sim--> beh

116 A WORKED EXAMPLE

#let th5 = RIGHT CONV_RULE (ONCE DEPTH CONV finish GAMMA) th4;;
thb5 =
|- let P = PROCESS (A", 'B")
BEGIN
"TMP® <= ("A° AND "B°') AFTER 1 NS;
END PROCESS;
PROCESS ("TMP')
BEGIN
*CY <= (NOT "TMP') AFTER 0 NS;
END PROCESS;
in
let mu =

(get_delays _CS P,now, {("A",a), ("B ,b), ("C",c), CIMP", tmp)},
{"a’}, (\t. ({HAH))

in
mu |—— <P, (\t. {})> ——S8Sim--> beh =
(~(a /\ b) = ¢) =>
([0;1], (now + 1), {(C ~(a /\ b)), CT™MP", (& /\ b)), (A ,a), OB ,b)},{},
ADD_TO_THETA {(‘TMP™, (a /\ b)), (‘A*,a), "B ,b), ("C’,c)} { TP}
(ADD TO THETA {(A ,a), OB ,b), ("C,c), CTMP ,~(a /\ b))

)}
{"A} (\t. ({},{})) now (now + 1)) (now + 1) (now + 1)) |-—
<PROCESS (*A', B")
BEGIN
ITMP® <= (A" AND ‘B‘') AFTER 1 NS;
END PROCESS;

PROCESS ("TMP")

BEGIN
“C' <= (NOT ‘TMP') AFTER 0 NS;

END PROCESS;,

INERT POST “C° (~(a /\ b)) (\t. {}) (now + 1) 0> —--Sim—-> beh |

([0;1], (mow + 1), {(°C",~(a/\b)), CTMP", (a/\b)), ("A",a), ("B ,b)},{ C},

ADD TO THETA {(*TMP', (a /\ b)), ("A",a), ("'B',b), ("C',c)} {"TMP}
(ADD_TO_THETA {(‘A\Ia)l (\B\Ib)l (\C\Ic)l (\T.MP\,N(a /\ b))}

AT (\t. ({},{})) now (now + 1)) (now + 1) (now + 1) |--

<PROCESS (A", B")

BEGIN :

"TMPT <= (A" AND "B') AFTER 1 NS;

END PROCESS;

PROCESS ("TMP")
BEGIN
"C' <= (NOT "TMP') AFTER (0 NS;
END PROCESS;,
INERT POST "C* (~(a /\ b)) (\t. {}) (now + 1) 0> —--Sim—-> beh

A WORKED EXAMPLE

117

#let thé =
RIGHT CONV_RULE (ONCE_DEPTH_CONV (ONCE_AROUND THENC ONCE_AROUND))
thb;;
thé =
|- let P = PROCESS (A", 'B")

BEGIN

"TMP® <= (A" AND "B’) AFTER 1 NS;
END PROCESS;

PROCESS ("TMP")
BEGIN
"C’ <= (NOT "TMP ') AFTER 0 NS;
END PROCESS;
in
let mu =
(get_delays CS P,now,{('A",a), ("B",b), ("C*,c), CTMP ", tmp) },
A}, A\t AN
in
mu |-- <P, (\t. {})> ——Sim--> beh =
(~(a /\ b) =¢c) =>
(beh = (\t. SND (ADD_TO_THETA
{¢CC,~a /\ b)), CT™MP", (a /\ b)), ("A",a),
("B ,b)} {}
(ADD_TO THETA {('A°,a), (‘B ,b), ("C",c),
("TMP",~(a /\ b))} { A}
(\t'. ({},{})) now (now + 1)) (now + 1)
(now + 1) t))) |
(beh = (\t. SND (ADD TO THETA
{(\C\IN(a /\ b))r(\TMP\/(a /\ b))r(\A\ra)r
("B",b)} {}
(ADD_TO_THETA {('A%,a), ("B",b), ('C",c),
("IMP*,~(a /\ b))} {"A"}
A\t'. ({},{})) now (now + 1)) (now + 1)
(now + 1) t)))

118 A WORKED EXAMPLE
#let th7 = REWRITE RULE [COND ID;ADD TO THETA] th6;;
th7 =
|- let P = PROCESS (A", 'B")
BEGIN
TTMP® <= ("A° AND "B') AFTER 1 NS;
END PROCESS;
PROCESS ('TMP")
BEGIN
‘C' <= (NOT ‘TMP') AFTER 0 NS;
END PROCESS;
in
let mu =
(get_delays CS pP,now,{(A%,a), ("B’ ,b), ("C",¢c), ("IMP", tmp) },
A%}, (\t. ({},{H))
in

mu |- <P, (\t. {})> —=-8im-~-> beh =
(beh = (\t. SND ((\t. (t >= now + 1) =>
({},{CC,~(a /\ b)),
("A*,a), B ,b)})
(\t. (now >= now + 1)
((t >= now) =>
(A}, {(CAa,a), (B ,b), ("C,0),
(CT™MP,~(a /\ bY)}) |
(¥, {H) 1

("T™P, (a /\ b)),

|
=>

((now <=t /\ t >= now + 1) =>
({'a}y, {Ca,a), "B ,b), (°C",c),
(CTMPT,~(a /\ b)) }) |
)

H{H,{1))) &) ©))

A WORKED EXAMPLE 119

#let th8 = BETA RULE (RIGHT CONV_RULE ((ONCE _DEPTH CONV if arith CONV)

THENC
(DEPTH CONV simp ATT CONV)) th7);;
th8 = - -
|- let P PROCESS (A", B")
BEGIN

<= (AND) AFTER 1 NS;
END PROCESS;

PROCESS (" TMP")
BEGIN
<= (NOT) AFTER 0 NS;
END PROCESS; = PROCESS ('A%, 'B")
BEGIN
“TMP® <= (A" AND ‘B‘) AFTER 1 NS;
END PROCESS;

PROCESS ("TMP")
BEGIN

“C' <= (NOT ‘TMP') AFTER 0 NS;
END PROCESS;

in
let mu =
(get_delays CS P,now,{('A",a), ("B ,b), ("C",c), (CTMP", tmp) },
' {"at)}, (\t. (L}, (D)
in

mu |[-- <P, (\t. {})> —--Sim—-> beh =
(beh = (\t. SND ((t >= now + 1) =>
({y,{Cc,~@/\b)), CT™P", (a/\b)), (‘A" ,a), "B ,b)}) |
((t >= now) =>
({"a*},{CAa,a), ("B ,b), ("C",c), CTMP ,~(a /\ b))}) |
(AN N

#let NAND IMP = REWRITE RULE {SND_SIMP] th8;;

NAND IMP =
|- let P = PROCESS (‘A*, B")
BEGIN
“IMP® <= (*A° AND 'B’) AFTER 1 NS;
END PROCESS;
PROCESS (" TMP")
BEGIN
*C’ <= (NOT "TMP') AFTER 0 NS;
END PROCESS;
in
let mu =

(get_delays_CS P,now, {("A",a), ('B",b), ("C",c), ("IMP", tmp) },
CCATH AT D)
in
mu |-- <P, (\t. {})> —--Sim--> beh =
(beh = (\t. (t >= now + 1) =>
{(‘C\,”’(a /\ b)), CTMP", (a /\ b)),(\A‘,a),(‘B‘,b)} |
((t >= now) =>
}}(;Z;;,a),(‘B‘,b),(‘C‘,c),(‘TMP‘,~(a /\ b))} |

120 A WORKED EXAMPLE

B.3 Equivalence Proof

#let theta' = rhs (rhs (concl (SPEC ALL NAND BEH)))
#and theta'' = rhs (rhs (concl (SPEC_ALL NAND _IMP)))
#and conj_to cond = theorem equiv-thms® “conj_to cond’
#and EQ TAU = definition “Femto-config® "EQ ' TAU ;;

theta' =
"\t. (t >= now + 1) =>
{¢CC,~(a /\Db)), (A ,a), ("B ,b)} |
((t >= now) => {(A° a),(B® b),(c,e)r | {n"
. term
theta'' =

"\t. (¢t >= now + 1) =
{(°Cy~(a /\ b))
((t >= now) => {
¢ term
conj _to cond =
|- tsignl A B P. (signl = A) /\ (signl = B) /\ P =
(A = B) => ((signl =A) /\ P) | F

>
, (CIMPY, (@ /\ b)), (CA",a), (B ,b)} |
("a’,a), OB ,b), (CC,c), CIMP ,~(a /\ D))} | {H"

EQ TAU =
|- ltau' tau'' sigs.
EQ TAU tau' tau'' sigs =
(‘t. let sigma' = tau' t
and sigma'' = tau'' t
in ({sig,val | sig IN sigs /\ (sig,val) IN sigma'} =
{sig,val | sig IN sigs /\ (sig,val) IN sigma''}))

#g "EQ_TAU “theta' “theta'' {"A, B, 'C}";;

"EQ TAU (\t. (t >= now + 1) =>
{¢Cc,~(a/\ b)), (A ,a), ("B ,b)} |
((t >=now) => {("A",a), ("B ,b), ("C",c)} | {}))
= now + 1) =>

>=
Cy~(a /\ b)), CIMP", (& /\ b)), ("A",a), ("B ,b)} |
= now) =>
Tya), (BT b),(‘C‘,C),(‘TMP‘,~(a /N b))} |
{*a*,'B*,C}"

(\t. (t
{C
((t
{C
{H

() : void

A WORKED EXAMPLE 121

#e (REWRITE TAC [EQ TAU] THEN
GEN_TAC THEN BETA TAC THEN COND CASES TAC THEN REWRITE TAC [] THEN
CONV_TAC (ONCE DEPTH CONV let CONV) THEN _
REWRITE_TAC [IN__INSERT;NOT_IN__EMPTY;PAIR_EQ])i
OK..
2 subgoals
"{sig,val |
((sig = "A%) \/ (sig = "B") \/ (sig = "C")) /\
(sig,val) IN ((t >= now) => {Ca,a), (B ,b), CC L)} | {N} =
{sig,val |
((sig = "A") \/ (sig = "B") HCAD D IVAN
(sig,val) IN ((t >= now) =>
{(‘?‘,a),(‘B‘,b),(‘C‘,c),(‘TMP‘,~(a /N b))y}t |
{Hi
["~(t >= now + 1)"]

\/ (sig

"{sig,val | ((sig = "A") \/ (sig = 'B") \/ (sig = "C")) /\
((sig = “C") /\ (val = ~(a /\ b)) \/
(sig = "A") /\ (val = a) \/
(sig = "B") /\ (val = Dh))} =
{sig,val | ((sig = "A%) \/ (sig = 'B’) \/ (sig = "C")) /\
((sig = “C*) /\ (val = ~(a /\ b)) \/
(sig = "IMP") /\ (val = a /\ b) \/
(sig = "A") /\ (val = a) \/
(sig = "B") /\ (val = b)) }"
["t >= now + 1"]

() : void

#e (REWRITE TAC [RIGHT AND OVER OR] THEN

4 REWRITE TAC [LEFT _AND OVER OR;conj to cond] THEN
CONV_TAC (ONCE _DEPTH CONV string EQ CONV) THEN

CONV_TAC (ONCE DEPTH CONV COND CONV) THEN

REWRITE TAC[]);;

OK..

goal proved
[- {(Sigrvalz

((sig = “A") \/ (sig = "B) \/ (sig = ‘C%)) /\
((sig = “C*) /\ (val = ~(a /\ b)) \/

(sig = "A") /\ (val = a) \/

(sig = "B") /\ (val = b))} =

{(sig,val) |

((sig = "A") \/ (sig = "B") \/ (sig = "C")) /\
((sig = “C*) /\ (val = ~(a /\ b)) \/

(sig = "TMP") /\ (val = a /\ b) \/

(sig = "A") /\ (val = a) \/

(sig = "B") /\ (val = b))}

Previous subproof:
"{sig,val |
((sig = "A%) \/ (sig = "B") \/ (sig = “C*)) /\
(sig,val) IN ((t >= now) => {("A’,a), ("B’,b), ("C,c)} | (I} =
{sig,val |
((sig = "A") \/ (sig = ‘B") \/ (sig AN D IVAN
(sig,val) IN ((t >= now) =>
g}(;?;ra)l (\B\rb)r (\C\rc>r (\TMP‘,N(a /\ b))t |
["~(t >= now + 1)"]

I

() : void

122 A WORKED EXAMPLE

#e (COND _CASES TAC THEN REWRITE_TAC [IN_INSERT;NOT IN_EMPTy;PAIR EQ] THEN
REWRITE TAC [RIGHT AND OVER_OR] THEN
REWRITE TAC [LEFT_AND OVER OR;conj to_ cond] THEN
CONV_TAC (ONCE DEPTH CONV string EQ CONV) THEN
CONV_TAC (ONCE DEPTH CONV COND_CONV) THEN
REWRITE TACI[]);;
OK..
goal proved
I- {(sig,val) |
((sig = "A*) \/ (sig = "B") \/ (sig = "C™)) /\
(sig,val) IN ((t >= now) => {('A%,a), ("B",b), ("C,e)} | {N} =
{(sig,val) |
((sig = "A%) \/ (sig = "B") \/ (sig = "C")) /\
(sig,val) IN
((t >= now) => {("A",a), ('B",b),("C",c), CTMP",~(a /\ b))} | {}}
|- EQ TAU
(\t.
((t >= now + 1) =>
{¢Cc,~a/\Nb)),(a,a), (B ,b)} |
o ((t > now) => {("A",a), ("B ,b), CCC,e)} | {})))
t.
((t >= now + 1) =>
{¢Cc,~(a /\b)), ™M, (a /\ b)), CA",a), ("B ,b)} |
{ ((t >= nOY) => {("A%,a), ('B",b), ("C,c), CIMP",~(a /\ b))} | {NH))
‘A", "B, C

Previous subproof:
goal proved
() : void

#let NAND THM = GEN_ALL (top thm());;
NAND THM =
|- 'now a b c.
EQ TAU (\t. (£t >= now + 1) =>
{¢CCc,~(a /\ b)), (CA”,a), ("B ,b)} |
({t >=now) => {("A",a), ("B",b), ("C*,c)} | {1
(\t. (t > now + 1) =>
{¢CC,~(@a /\b)), CT™MP",(a /\ b)), CA*,a), ("B ,b)} |
((t >= now) =>
{¢Ca",a), B ,b), ("C,c), CTMP",~(a /\ b))} |
{N) {"Aa,"'B",°C"}

#quit ()

