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Abstract

We describe the formal verification of a simple compiler using the HOL theorem proving
system. The language and microprocessor considered are a subset of the structured
assembly language Vista, and the VIPER microprocessor, respectively. We describe how
our work is directly applicable to a family of languages and compilers and discuss how
the correctness theorem and verified compiler fit into a wider context of ensuring that
object code is correct. We first show how the compiler correctness result can be formally
combined with a proof system for application programs. We then show how our verified
compiler, despite not being written in a traditional programming language, can be used
to produce compiled code. We also discuss how a dependable implementation might be
obtained.
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Chapter 1

Introduction

Software is increasingly being used in safety-critical systems where correctness is of
paramount importance. Traditionally, testing has been the main validation method used
for software. The software is run on a selection of input values and the results obtained
are checked for correctness. Unfortunately, the complexity of even small systems precludes
testing on all input values. Only a small fraction of the possible values can be tested. Thus,
errors can easily go undetected. Formal verification has been advocated as a more reliable
way of checking that systems are correct. In this approach, mathematical techniques are
used to prove that correctness properties hold of the software for all possible input values.
Since errors are more easily made when writing programs in machine-code, higher-level
languages are preferable. Consequently, much effort has been invested in using formal
verification to validate high-level programs. However, high-level programs are compiled
before being executed and it is the object code rather than the source program which must
be correct. Proving that the source program satisfies a specification is not sufficient. We
really wish to know that the object code satisfies the specification. As recent standards
for safety critical software [42] have recognised, this problem must be addressed when high
dependability is required.
Verified object code can be obtained in several ways as Figure 1.1 illustrates.

e The program can be written and validated in the object language. The advantages
of high-level programs are lost. Mistakes are easy to make and hard to find. Formal
verification of low-level code is much harder than of high-level programs.

e The program can be written in a high-level language, but validation performed on
the compiled code. This is the normal procedure when testing is the validation
method used. However, as noted above, it is harder to perform formal verification
on object code than on a high-level program. The situation is made worse here
because the object code is machine-generated. Understanding why it is supposed to
be correct, a prerequisite for formal verification, is much harder. This is especially
so if an optimising compiler is used.

e The source program can be formally shown to be equivalent to the compiled code
in a one-off proof. Validation can then be performed on the source program as the
result is applicable to the object code. This approach has the disadvantage that,
in addition to a correctness proof, an equivalence proof must be performed for each
program. This proof must also be redone if the program is changed.
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Figure 1.1: Alternate ways of Obtaining Validated Object Code




e The compiler can be formally verified. Source programs can be formally verified as
the results apply to the object code. A single proof (that of the compiler) shows that
all object programs produced using the compiler correspond to their source programs.
However, formally verifying a compiler for a high-level language is difficult. Also,
care must be taken that the compiler correctness theorem proved is sufficient to
ensure that the results really do apply to the low-level code.

Much research has been undertaken concerning the verification of both machine code
and microcode. Such systems can be divided into those that perform verification on
mnemonic assembly language programs and those which use a bit-representation of the
code.

The assembly language systems have typically followed Floyd’s approach to program
verification [24] modified to deal with low-level code. They provide a verification
condition generation program which embodies the semantics of the assembly language.
Maurer [38, 39] used this approach to verify IBM 370 code and code for the Litton C4000
airborne computer. Lamb also used it in his Intel 8080 Assembly Language Verifier [37].
More recently it has been embodied in the SPADE verification environment. SPADE has
been used in the verification of assembly code for the Intel 8080 [11], and also of Z8002
code used in the fuel control unit of the RB211-524G jet engine [44].

Verification of bit-level code has typically been based around an operational semantics
of the host machine and the use of formal symbolic simulation techniques. MCS was an
early system which took this approach. It was used to verify production code for the NASA
Standard Spaceborne Computer-2 [9]. A hybrid approach using verification condition
generation techniques to verify bit-level microprograms has also been suggested [16].

Boyer and Yu [4] adopted the approach of writing programs in a high-level language,
but verifying low-level code. They verified compiled C and Ada code for the MC68020
microprocessor. Their methodology was to compile the source code using an industrial
strength compiler and verify the resulting object code. This was done by first writing
a second algorithmic version of the program in the Boyer—Moore logic. The algorithm
was effectively a functional version of the program. This was verified to be equivalent to
the object code. The algorithm was then shown to be correct. Applying formal methods
directly to object code can have advantages in that stronger properties of the program
may be provable than when verifying a high-level program. For example, it is easier to
reason about timing properties at this level.

Shepherd [48, 49] adopted an approach based on doing a one-off proof between a source
program and compiled code. This work concerned the verification of microcode for the
IMS T800 floating point Transputer. The intended methodology was to prove correct a
high-level Occam implementation of a program then use the Occam transformation system
to produce an equivalent microcode version. The microcode version was still an Occam
program but matched the micro-machine functions. The transformation system was based
on the algebraic semantics of Occam. The transformations were chosen by the user, with
the system ensuring they were correctly applied. In practice, for each transformation step
an implementation was proposed and then transformed backwards into the higher level
version.

There has been interest in formally verifying compilers from the early days of
verification technology, the first work being that by McCarthy and Painter [40] in 1966.
Since then many different techniques have been used. However, there are as yet no
formally verified commercially available compilers for real languages. A good overview
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of the compiler verification literature is given by Joyce [33]. Notable work, includes that
of Polak [46] on a compiler for a Pascal-like language, and the Piton and Gypsy compilers
which form part of Computational Logic’s verified stack of system components [43, 53].

The majority of compiler correctness work has been concerned only with the correctness
of code generators. Exceptions to this include Polak’s work [46] and that of Chirica
and Martin [10] where aspects of compiler front ends are also considered. There has
also been isolated work on the formal verification of the front ends of compilers, notably
parsers {14, 12, 25]. The need for a front end can be removed if the abstract syntax used
is in a sufficiently readable form. For example, the LISP-like concrete syntax of Piton
is also its abstract syntax. Programs are both written and accepted by the verified code
generator in this form.

For small projects the cost of verifying a compiler might outweigh the benefits. For
example, if only a few programs are safety critical, it might be better to use one of the
other methods. However, in the long term, the use of formally verified compilers offers
the best solution. This is therefore the approach investigated in this project. We have
formally verified a compiler using the HOL theorem proving system [27]. The language and
microprocessor considered were a subset of the structured assembly language Vista [36],
and the VIPER microprocessor [15], respectively. On the whole, previous work in this area
has been concerned with the verification of “toy” languages or idealised microprocessors,
often designed specifically for the proof of the implementation. VIPER was designed using
formal methods, but was intended as a commercial product. Vista was designed to be used
for writing real applications software.

1.1 Overview

This report is divided into four chapters. In the remainder of this chapter, we describe
the higher-order logic notation we use and overview the compiler correctness problem.
In Chapter 2, we describe the verification of the compiler. First we describe the source
language of the compiler, giving its syntax and formal semantics. We then describe the
formal description of the compiler. Next we discuss the compiler correctness theorem we
have proved. Finally we describe how our work is applicable to a family of languages and
compilers. In Chapter 3 we discuss how the correctness theorem and verified compiler
fit into a wider context of ensuring that object code is correct. We first show how the
compiler correctness result can be formally combined with proof systems for application
programs. We then show how our verified compiler, despite not being written in a
traditional programming language, can be used to produce compiled code. We also discuss
how a dependable implementation might be obtained. Finally in Chapter 4 we summarise
the project, draw conclusions and suggest further research. In the remainder of this section
we overview the main achievements of the project, giving pointers to the sections where
they are discussed.

Previous compiler correctness work has considered simple file based models of I/O if it
has been considered at all. We investigated a more general model of I/O. The semantics
of this model is discussed in Section 2.1.2.

For formal compiler verification to be practical, the results obtained must be repeatable
for different systems with a minimum of effort. We therefore considered the verification
of a generic compiler from a generic version of Vista to a generic flat assembly code. The
correctness results obtained can be quickly targeted to versions of Vista for the VIPER
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microprocessor or for other similar machines. Previous work has considered only single
compilers in isolation. We describe this work in Section 2.4.

We have proven a much simpler compiler correctness theorem than is normal. This is
possible because the languages considered are deterministic. We have illustrated that our
compiler correctness theorem is sufficient. We have thus drastically cut the verification
work required. This is discussed in Sections 2.3 and 3.1.

We have combined our verified compiler with a derived programming logic. Thus
correctness properties of source programs can be proved. From these, corresponding
properties of the compiled code can be automatically derived. This is the first time that
such a formal link has been made. We have also used a novel definition of total correctness
which includes I/O behaviour. We have shown how I/O specifications can be naturally
given. This work is described in Section 3.1.

We verified a compiling algorithm written in a logic, rather than an implementation in
a programming language. We have investigated ways in which such an algorithm can be
securely executed. This work illustrates how the verification task can be reduced further,
since an implementation need not be verified. This is discussed in Section 3.2.

If an implementation is to be verified, a problem is that it must be compiled somehow,
so it appears that a highly assured compiler is needed before a highly assured compiler
can be obtained! We have suggested how this problem can be avoided. This is discussed
in Section 3.3.

1.2 Notation

The work described here has been formalised within the HOL formal verification system.
We thus use a higher-order logic notation. It is an extension of first-order logic in which
functions may take functions as arguments and return them as results. All terms must
have a well-defined type. It may be an atomic type, such as a natural number or a
string. Compound types can also be constructed such as pairs, lists and functions. Type
definitions similar to the data types of programming languages may also be given. The logic
is polymorphic. Type variables may be used for arbitrary types. A basic understanding
of typed first-order logic and a functional programming language such as ML should be
sufficient to follow the main points of this paper. The notation we use is outlined in
Table 1.1.

1.3 Compiler Specifications

A compiler (the code generation part at least) must produce object code whose meaning
corresponds to that of the source program. An abstract compiler specification can be
given in terms of the source and object language semantics. Informally, a compiler will be
correct if the meaning of every source program is related to the meaning of the object code
resulting from compiling it. More formally, a compiler must fulfil an abstract specification
of the form below.

AbstractCompilerSpec compiler =
Vp. Compare (SourceSemantics p)
(ObjectSemantics (compiler p))

~

SourceSemantics gives the semantics of the source language, ObjectSemantics gives the
semantics of the target language and Compare relates semantics of the two forms. The
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Figure 1.2: An Abstract Specification of Compiler Correctness

argument compiler is a compiler from the source language to the target language. This
form of specification is illustrated in Figure 1.2.

Many different object programs will be suitable as an implementation of a given source
program. An algorithmic compiler specification is a function which specifies a particular
object program for each source program. It specifies a compiling algorithm. To take a
simple example, if we assume the target language has conditional branch and unconditional
goto instructions, the algorithm might specify that a source language While command is
translated as follows.

WHILE <test> begin: <test>
DO BRANCH end
<body> — <body>
0D GOTO begin
end:

An algorithmic specification is normally given in a particular logic, such as the Boyer-
Moore logic or higher-order logic. Compiler specification correctness concerns whether
the algorithm is correct with respect to the abstract specification, that is, whether the
semantics of a source program is preserved in the code that the algorithm specifies should
be produced. By far the majority of compiler correctness work described in the literature
is concerned with this form of correctness.

Given the object code that a compiler must produce for a particular source program,
there are many different ways it could be produced. A compiler implementation is a
concrete program which produces the object code. It specifies not only what the object
program should be, but also how it is produced. The implementation is given in a
programming language, that is, an executable language. A compiler implementation can
be verified against either an algorithm or an abstract specification.

Ultimately, we wish to know that an implementation preserves the semantics of the
source language. This suggests we should verify it against the abstract specification.
This was the approach adopted by Polak [46]. However, a simpler alternative is to use
a verified algorithm as a refinement step towards obtaining a verified implementation
(see Figure 1.3). The algorithm is first shown to satisfy the abstract specification. Next
the implementation is shown to satisfy the algorithm. It can then be deduced that the
implementation satisfies the abstract specification. This split of the problem is similar to
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Figure 1.4: Verifying a Compiler Implementation against an Algorithm

that used by Boyer and Yu to verify machine code programs [4]. A similar split has also
been used in the verification of protocols [8].

Proving that an algorithm satisfies an abstract specification is simpler than proving
that the implementation does. This is because the semantics of the implementation
language does not need to be considered in the reasoning. Instead we reason about
the logical constructs of the algorithm. When comparing the implementation with
the algorithm, the semantics of the programming language in which the compiler is
implemented must be considered. However, here the semantics of the source and target
languages of the compiler do not need to be considered. Only their syntax is important.
What is required is that the implementation produces syntactically the same program as
indicated by the specification. This approach was followed by Chirica and Martin [10],
Simpson [50] and Buth et al. [5]. It is illustrated in Figure 1.4.

In this approach, we first prove that the algorithm, CompilerAlgorithm, satisfies the
abstract compiler specification given by AbstractCompilerSpec:
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Figure 1.5: Combining Specification Correctness and Implementation Correctness

F AbstractCompilerSpec CompilerAlgorithm

Of the implementation we prove that for all programs the code it produces, (CompilerImpl
p), is equal to that specified by the algorithm, (CompilerAlgorithm p).

F Vp. CompilerImpl p = CompilerAlgorithm p

Combining these we obtain the required theorem, which states that the implementation
CompilerImpl satisfies the abstract compiler specification.

 AbstractCompilerSpec CompilerImpl

This is illustrated in Figure 1.5.

Splitting the proof into two parts in this way not only simplifies the programming
and verification task, but also allows proofs to be reused. If different implementations
of the same specification are produced, or the verified one is modified, only the compiler
implementation correctness theorem needs to be reproved. The compiler specification
theorem can be reused. Of course, the new compiler will have to generate the same code
as the old one to fulfil the specification. However, the compiler itself can be more efficient,
or contain better error detection. Some flexibility may be left by making the algorithmic
specification non-deterministic. However, leaving such choices open to the programmer
may make the compiler specification proof harder. It also has disadvantages if we wish to
execute some form of the specification as discussed later. It is therefore advisable to use
a deterministic specification when verifying a particular implementation. This does not
preclude verifying the deterministic specification against a more general non-deterministic
one. We would then have three refinement steps as shown in Figure 1.6.




Abstract
Specification

Nondeterministic
Algorithm

Refine

Deterministic
Algorithm

Implementation

Figure 1.6: The Refinement Hierarchy with Non-deterministic Specifications
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Chapter 2

A Verified Vista Compiler

2.1 The Vista Subset

Our work involved the verification of a compiler for Vista. Vista is a structured assembly
language designed at the Defence Research Agency (Malvern). The instructions of Vista
correspond directly to the instructions available on the underlying machine. For example,
the arithmetic instructions are those provided by the ALU. They operate on the registers
of the underlying machine, which are visible to the Vista programmer. In this sense it is
an assembly language. However, the program counter of the target machine is not directly
visible to the Vista programmer. Instead, high-level constructs such as while loops and
procedures are provided. There are also limited data abstraction facilities. For example,
variable and channel names are used in place of addresses. Vista was intended for use
with the VIPER microprocessor. VIPER is a 32-bit computer, designed for safety-critical
applications. Some aspects of it have been formally verified [13].

Vista provides a good case study for investigating the compiler verification problem.
It is a “real” language, rather than a “toy” designed with formal verification in mind. It
thus provides a realistic case study. However, it is relatively simple and its semantics are
largely straightforward. It provides a tractable problem that can be used as the basis for
looking at more complex languages.

2.1.1 Syntax

We have considered a substantial subset of the Vista language. The syntax of this subset is
given in Table 2.1. The A, X and Y general purpose registers may be accessed. Expressions
may be word constants or variables. Conditions may be chosen from the comparison
operations and the test of the B register. Commands may be chosen from skip, stop,
sequencing, the machine functions, variable assignment, input, output, procedure call
and the while loop. Top level variable declarations are provided. Top-level procedure
declaration is also provided. A program consists of a series of variable declarations, a
series of procedure declarations and then the program body.

An example program, written in the subset of Vista, which performs multiplication by
repeated addition is given in Table 2.2.

Rather than use the concrete syntax shown above, we use an abstract syntax. This
abstract syntax is described formally as a type within the HOL system. The HOL system
contains parsing and pretty-printing generation tools which could be used to generate
parsers and pretty-printers to convert between the two forms of syntax. We generated a
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Compop = < | <= | =| /=|> | >=]| LT |GT

Monop = $ | NOT

Aluop = + | — | XOR | AND | NOR | AND NOT
Arithop = ADD | SUB

Variable = string

Register = A | X | Y
Expression = word32 | Variable

Condition = B
Register Compop Expression

Command = SKIP

STOP

Command ; Command

Register := Register Aluop Expression |
Register := Register Arithop Expression
Register := Monop Expression

Variable := Register

Register := INPUT Variable
CALL Variable
OUTPUT Register Variable
WHILE Condition DO Command 0D
Vlist = Variable | Variable , Vlist
Declarations = DATA Vlist | $
Proc = PROC Variable BEGIN Command END
Procedures = Proc | Proc ; Procedures
Program = PROGRAM
Declarations
Procedures

Command
FINISH

Table 2.1: The syntax of the Vista schema, subset
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PROGRAM
DATA argl, arg2, ams, t

PROC multiply

BEGIN

A = 0;

WHILE X/=0 DO
A = A+ t;

X =X -1 0D;
END

X := INPUT argil;
Y := INPUT arg2;
t :=Y;
CALL multiply;
QUTPUT A ans;
STOP

FINISH

Table 2.2: A multiplication program in a subset of Vista

parser for a smaller subset of Vista, though not for the complete subset. This could easily
be done, as could the generation of a pretty-printer. It should be emphasized that this
project has not been concerned with the verification of parsers or pretty-printers. We use
the pretty-printed version of Vista commands here for clarity.

We used a generic version of Vista in which the word sizes, ALU instructions and
comparison instructions are left unspecified. With a minimum of additional work, the
same definitions and proofs can be reused for different machines. This is achieved using
type variables. The variables smonop, *aluop, xarithop and xcompop are used in place of
the syntactic categories Monop, Aluop, Arithop and Compop to represent the monadic ALU
operations, logical ALU operations, arithmetic and comparison operations, respectively.
They can be instantiated with the operations which correspond specifically to the VIPER
microprocessor as in Figure 2.1 or alternatively to those of other machines. The type used
to represent a machine word is also left as a variable — *word32, rather than the concrete
type word32. The name is suggestive of the word size of the VIPER microprocessor, though
it is only a name: it could be instantiated to a word type of any length. We discuss this
in more detail in Section 2.4.

2.1.2 Semantics

To reason formally about the source programs or compiler of a language, we need a formal
semantics. Traditionally, the denotational semantics of a command is a partial function
from an initial state to the state which results from executing the program from that state.
Thus, the semantics of a program p would be given by a function Meaning from an initial
state qi:

Meaning p q1 = the state resulting if p is executed from state q;

The function must be partial because programs which do not terminate do not have final
states. All functions in the version of higher-order logic embodied in the HOL theorem
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prover must be total however. They cannot be used as denotations in this way. In HOL,
partial functions are modelled by relations. Thus, the denotation of a program is given by
a relation between the initial and final states.

T if g2 is the final state when p is executed from state qi

Meaning p q1 92 ={ F otherwise

If a program does not terminate from a particular initial state, there will be no
corresponding final state for which the relation is true. For a non-deterministic program,
multiple final states can be related to a single initial state. This is the form of semantics
used by Gordon [28] and Joyce [32].

The languages considered by Gordon and Joyce did not include I/O constructs, so I/O
was not modelled in the semantics. Many different ways have been suggested to model
I/O in the literature. On the whole the differences are in the mechanism for recording the
events which have occurred or will occur. The details can vary greatly. For example, the
data-structures may store the events that have happened (a trace), predict events that will
happen (an oracle), or give all events; past, present and future (a history). We consider here
just a few examples from the literature. A simple approach used in programming logics is a
file based model [31]. Input and output take the form of reading and writing to files. A file
is a sequential data-structure and is included as part of the state. Input files are initially full
of values and are gradually emptied by the program (an oracle). Output files start empty
and are filled (a trace). Only the ordering of events within individual files is recorded.
There is no ordering between different files, and in particular the causality between input
and output events is not recorded. Both Polak [46] and Stepney et al [51] have used this
model in their compiler correctness work. In the hardware and microprocessor verification
work performed with higher-order logic a model with an explicit notion of time is used.
State variables are represented by history functions from time to data values; the unit
of time depending on the level of abstraction considered [41]. In the system verification
work performed at Computational Logic Inc. [43], an oracle represented by a list of tuples
is used for input. On each cycle of the processor,-a tuple is removed from the oracle. It

represents the values on the asynchronous inputs at that clock cycle.

It should be noted that the top-level formal specification of VIPER side-stepped the
issue of I/O. A single memory structure contained both peripheral and normal locations.
The undefined constants FETCH21 and STORE21 were used to access both parts of the
memory. Since these constants were not defined, properties of the memory could not be
reasoned about. A property that one would expect to hold of these constants with respect
to normal memory is that if a value is stored to some address and a read is later performed
from that address, the original value will be obtained.

FETCH21 a (STORE21 a source ram) = source

However, it is not usually desirable for this to hold if the address is a peripheral address.

For the semantics of Vista, we require a model of I/O which does not include a notion
of time, since Vista does not have a real-time semantics. We do need to determine the
relative ordering of all events, however, since Vista programs can interact with external
devices. This suggests that we should use one data-structure for all events, input or
output and whichever channel they are related to. Vista cannot perform events in parallel,
so simultaneous events are not an issue. We use an oracle model based on a suggestion
by Joyce [35]. The future behaviour of a process is given by a single oracle represented
as a list of events. This gives the relative orderings of all the events which occur whilst
a process is active. The oracle is not part of the state. This has the advantage that the

14



behaviour of the process is given by a single oracle rather than by the difference between
the oracles in the initial and final states. Events contain information such as the data
passed, the channel they are associated with and whether they are input or output events
with respect to the program. The details may vary, depending on the language being
described. For Vista, three kinds of I/O events are possible. Word values may be input to
and from memory mapped channels and a stop light may be set. These are represented
by the type Event.

Event = IN address *word32 | OUT address sword32 | DONE

We have extended the relational semantics model to include oracles. The semantics of
each construct is defined by a relation between the initial and final states and the oracle.
The behaviour of a program which does I/O may depend on the particular values input.
The semantic relation of a program will model this non-determinism by relating a given
initial state with many oracles and final states. The semantics is thus characterised by

the set of all triples for which the relation is true.
A Vista state may be one of three kinds:

VistaState = ERROR | HALT Ms Rs | RUN Ms Rs

An Error state indicates that the program is invalid. A Halt state indicates that the
program has terminated. A Run state is an intermediate state that indicates that the
program is executing normally. The latter two kinds of state contain a memory and a
register store, giving the values of memory and registers, respectively.

For a given command the Vista semantics will relate two states and an oracle if
executing the command from the first state could terminate in the second state whilst
exhibiting the I/O behaviour of the oracle. For example, for a Skip command the initial
and final states must be identical and the oracle must be empty since Skip does not
change the state and performs no I/O. The semantics of the Skip instruction is given by
the relation SemSkip.

SemSkip oracle q; g3 = (q2 = q1) A (oracle = [])

When executing normally the semantics of the Output command is given by the
relation SemOut. It outputs a word value to a given address and leaves the state unchanged.
Thus, the semantics specifies that the initial and final state should be identical, and that
the oracle should consist of a list containing a single output event.

SemOut 1 w oracle qi g2 = (q2 = q1) A (oracle = [0UT 1 w])

The syntax of the Output command refers to channel names and register names rather
than addresses and word values. The full semantics of Qutput must look up the register’s
value in the state and look up the address corresponding to the channel name in the
environment. Either of these actions may cause an error; for example, the channel name
may not have been declared. If an error occurs the final state is an Error state and the
oracle is empty. If the initial state is not a Run state the state is unchanged and the oracle
empty. The full semantics of Output is given by the relation SemOutput defined in terms
of SemQut. We do not give the definition here.

The semantic relations for each command are combined into a single relation,
SemCommand, defined recursively.
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(SemCommand SKIP rep env penv = SemSkip) A
(SemCommand (OUTPUT src chn) rep env penv = ...

SemCommand takes three arguments in addition to the command, states and oracle. The
first, rep, is a representation tuple [34]. We discuss it further in Section 2.4. The second
is the variable environment. It is a function which maps variable names to their memory
locations. The third is a procedure environment. It is a higher-order function which maps

procedure names to the semantic relation corresponding to their body.

Sequencing is defined inductively in terms of the component commands. First
the semantic relations corresponding to each sub-command are determined for the
given representation tuple and environments: (SemCommand ci; rep env penv) and
(SemCommand cy rep env penv). These relations are passed to the higher-order relation,
SemSeq which combines the semantics of the two sub-commands.

SemCommand (cj; c2) rep env penv =
SemSeq (SemCommand c¢; rep env penv) (SemCommand c; rep env penv)

For the relation SemSeq to hold, there must be a suitable intermediate state and point
at which the oracle can be split. That is there must be two oracles which when appended
together give the original oracle. They must be such that the first command results in the
intermediate state exhibiting the I/O behaviour of the first part of the oracle. The second
command must yield the final state from the intermediate state exhibiting the behaviour
of the remainder of the oracle.

SemSeq csem; csemy oracle q; qz =
dq oracle; oracles.
(csem; oracle; q; q) A
(csemy oracley; q q3) A
(oracle = APPEND oracle; oracles)

The use of oracles is easily extended to more complex constructs such as While loops
and procedures.

The semantics of a program is given by SemProgram. First the variable environment
is determined using SemDec applied to the empty initial environment. The Procedure
environment is then determined using SemPDec again with an empty initial environment.
We do not give the semantic definitions for the environments here. The semantics of the
command is determined in these environments.

SemProgram rep (PROGRAM d p c FINISH) =
let env = SemDec d EmptyEnv in
let penv = SemPDec p rep env EmptyPenv
in
SemCommand ¢ rep env penv

2.1.3 The B Register

The VIPER program counter is not visible to the Vista programmer and so does not form
part of the Vista state. The general purpose VIPER registers are always visible to the
Vista programmer and thus are part of the state. Both program counter and general
purpose registers can be treated cleanly in the proof. The B register on the other hand is
visible, but on some occasions its value is not. It can be directly assigned to by the Vista
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programmer and can be directly tested. However, after it is tested as part of a loop or
conditional statement its value becomes “undefined” and is no longer visible to the Vista
programmer. Any given Vista compiler will compile a given program so that the B register
has a particular value which can be tested. However, a different compiler might give it
the opposite value. Thus, a given program could have widely different behaviours when
compiled with different compilers. This seems undesirable for safety-critical applications.
In the formal semantics we introduced an “undefined” value that the Vista B register holds
when not visible. When comparing the Vista state with the VIPER state, an undefined
value was defined to match both true and false values in the VIPER B register. This
complicates the proofs, since the Vista and VIPER register contents are no longer equal.
An alternative would have been to assign an arbitrary and unknown value to the B register
when it was undefined. The B registers of the two levels would then have the same type.
However, they could not be compared by equality as the arbitrarily chosen value at the
Vista level would not necessarily be the same as that chosen by any particular compiler. In
the latter approach the B register can be manipulated without a run-time error occurring,
as would happen with the code produced by a given compiler. The semantics would just
not predict a result of the execution if it depended on the B registers value. With our
semantics it is an explicit dynamic Vista error to manipulate the value in the B register
when undefined. For safety-critical systems this seems more desirable, as it would be an
anomaly in the program if it manipulated the B register when undefined. In retrospect,
it would have perhaps been better to design the Vista language so that the B register was
always visible, or abstracted away from and so never visible as with the program counter.
This would have made the correctness proofs easier and also removed the possibility of a
programmer introducing undesirable anomalies into the code.

2.2 The Compiler

The compiler we have verified is an algorithmic specification of a code generator, written
in higher-order logic. The compiler is split into a series of levels which perform distinct
compiling operations. This simplifies the verification task since it allows the distinct parts
to be verified separately. A small number of concepts need be reasoned about at each
stage. The syntax and semantics of intermediate languages are formally defined for each
level. The Vista compiler we verified is split into two stages. The first stage converts the
structured Vista code into a flat unstructured language, Visa. The store of the machine
is split into separate infinite stores for each distinct use: a constant store, a code store,
a data store, and a link store for procedure link addresses. Of these only the last two
are part of the writable state. At this level, the address spaces are allowed to be infinite.
Variable names are converted into these addresses. The second level of translation compiles
to a VIPER assembly language, Kaa, which has a single finite store. The translator is
concerned mainly with converting addresses to this form. A further simple assembly stage
is required to obtain VIPER machine code. We have neither implemented nor verified such
an assembler, however. Due to its simplicity we forsee no problems in doing so.

At each stage, both the syntax and the semantics of the target language change in a
small way. The change in syntax can be seen by considering an example fragment of code.
If we assume a word size of 4, the Vista command:

WHILE X/=0
A
X

0
+

e g

t;
1

0D
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might be translated in the first phase to:

Address Visa instruction

(‘Code‘,1): VisaCMP /= X (LITERAL #b000)
(‘Code‘,2): VisaJNB (‘Code‘,6)

(‘Code‘,3): VisaALU + A A (CONTENTS T (‘Data‘,3))
(‘Code‘,4): VisaALU - X X (LITERAL #b001)
(‘Code‘,b): VisaJMP (‘Code‘,1)

If data locations are compiled to high addresses and code to low ones, the above code
might then translated in the second phase to:

Address Kaa Instruction

#b0001: KaaCMP /= X (LITERAL #b0000)
#b0010: KaaJNB #b0110

#b0011: KaaALU + A A (CONTENTS T #b1011)
#b0100: KaaALU - X X (LITERAL #b0001)
#b0101: KaaJMP #b0001

Splitting the compiler into levels in this way has an advantage in addition to making
the proof more tractable. Since each level is verified independently, the definitions and
their correctness proofs can be reused in compilers for other source or target languages
without re-verification.

The output of the compiler is either a Compile Error or a list of blocks of code and
constants, with associated base addresses. The main body of the program and each
procedure is compiled to a separate entry in the list. Consider a program with a single
procedure:

PROGRAM declarations procedure command

Suppose that the compiled code of the procedure is code,, that it is compiled to base
address code-base,, that the list of compiled constants for the procedure is constant,
and that it is compiled to the base address constant-base,. Suppose also that those
of the command are similarly code., code-base., constant,, and constant-base.. The
result of compiling this program would have the form:

[CODE(code., constant.), code-base., constant-base.;
CODE(code,, constant,), code-base,, constant-base,]

The subset of Vista considered, is actually compiled to contiguous addresses. The format
used is thus more complex than strictly required. This format was chosen in anticipation
of adding region declarations to the subset. They allow the separate blocks to be compiled
to unrelated addresses. Region declarations were not implemented, however. '

We give a formal definition of the semantics of each level. The top (Vista) level was
described in Section 2.1.2. For each of the lower level languages an interpreter style
description is given of the semantics. That is, a next state function is defined. Given an
initial state and possibly other information such as the I/O behaviour, code store etc. as
applicable, it returns the new state that results when executing the instruction pointed to
by the program counter. The next state function is defined in terms of relations which give
the semantics of each individual instruction. A relation between initial and final states for
multiple execution steps is then defined in terms of this function. The states of a particular
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level consist of a tuple of values with entries for each register and store defined at that
level. The I/O behaviour of the lower levels is specified by an oracle similar to that used for
Vista. The main difference is that the lower level oracles include additional “non-events”
which occur when no other event occurs. This gives a crude model of time with respect
to the number of instructions executed. More detailed timing models could similarly be
used. Since every instruction consumes exactly one event, the single instruction semantics
take an event argument rather than a full oracle.

A Visa state is represented as a tuple, (data, p, (a,x,y), b, stop). It consists of
a data store, a program counter, a register store holding the A, X and Y registers, the B
condition code and a stop flag.

The Visa Stop instruction performs a DONE event, setting the stop flag. All other parts
of the state are left unchanged. Its semantics is defined by VisaSemStp.

VisaSemStp tevent (data, p, r, b, stop) sg =
(tevent = DONE) A (sg = (data, p, r, b, T))

A decoding relation VisaStep chooses the appropriate semantic relation for a given
function:

(VisaStep VisaSTOP rep amap cst tevent s; sp = VisaSemStop tevent s; sg) A

This relation is used to define a fetch-decode-execute relation giving the semantics of a
single execution cycle. Provided the initial state is not erroneous and the processor has
not stopped, the semantics of a single cycle is given by the semantics of the instruction at
the address in the code store pointed to by the program counter. This relation is in turn
used to define the semantics of executing a sequence of instructions given a full oracle.

2.3 Compiler Correctness

We suggested in Section 1.3 that the abstract compiler specification should have the
following form:

AbstractCompilerSpec compiler =
Vp. Compare (SourceSemantics p)
(ObjectSemantics (compiler p))

In its simplest form, the relation Compare will just be equality; the semantics of the source
program should equal the semantics of the compiled program.

AbstractCompilerSpec compiler =
Vp. SourceSemantics p = ObjectSemantics (compiler p)

This could be proved in two parts: firstly that the source semantics implies the semantics
of the compiled code (Soundness), and secondly that the semantics of the compiled code
implies the source semantics ( Completeness).

I SourceSemantics p D ObjectSemantics (compiler p)

I ObjectSemantics (compiler p) D SourceSemantics p
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Unfortunately, equality is too simplistic a relation for real compiler verification
since the states of the two languages are different. Abstraction mechanisms must be
introduced. Traditionally the compiler correctness statement is given as the conjunction
of more complex soundness and completeness properties. However, if the languages
are deterministic then only soundness need be proved. Completeness follows as a
consequence [23, 20]. Ultimately, we require a compiler correctness theorem so that if
we prove correctness properties of source programs, we can deduce that similar results
hold for the compiled code. We have shown that with only the soundness compiler
correctness theorem we can deduce total correctness properties of compiled programs
from total correctness properties of source programs. This is discussed in more detail
in Section 3.1.

The Compare relation we use has the following form, where source is the semantic
relation of a source program or command and target is that for the target code:

Vqi1 q2 oracle s;.
source oracle q; gz A
CompareStates q1 s1 D
dss toracle.
target toracle s; s; A
CompareStates qz s2 A
Compare0racles oracle toracle

This states that if we assume

e the source program takes some initial state q; to final state qg using oracle oracle,
(source oracle qi q2), and

e q; corresponds to initial target state s;, (CompareStates q; s7)

then we can deduce that there is a target state sy and target oracle toracle such that

e the target semantics from an initial state s; will have I/O behaviour as specified by
toracle and end in state sy, (target toracle s; s3)

o the final target state will correspond to the final source state, (CompareStates qo
s9) and

e the source oracle and target oracle will correspond, (CompareOracles oracle
toracle).

The actual relation used is more complex because extra assumptions must be made that
the compiled code and constants are loaded into their respective memory stores, that
the program counter is initially loaded with the start address of the code and that no
static errors are present in the source program, for example. Error states must also be
considered. The actual relation we use relates the semantics of a source program with the
syntaz of a target program rather than with its semantics. The semantic relation for the
target is built in. Our correctness diagram really has the form shown in Figure 2.1. A
compiler correctness statement based on this relation, is sufficient to prove total correctness
properties of compiled code from total correctness properties of a source program.

The compiler is split into stages. The first stage compiles Vista programs into Visa code.
The second stage compiles Visa code to Kaa code. The proof of correctness is similarly
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Vista CompileProgram Visa

Syntax P Syntax

SemProgram ComCorrect

Vista
Meanings

Figure 2.1: The Compiler Correctness Problem Restated

split. Previously, verified compilers have also been split into levels in this way [33, 43].
First we prove a correctness statement of the above form about the Vista to Visa compiler.
We then prove a similar correctness statement about the Visa to Kaa compiler. Finally we
combine these two theorems to give a correctness theorem about the Vista to Kaa compiler.
This is illustrated in Figure 2.2. It splits the correctness proof into tractable parts. Each
is concerned with distinct problems. In the first part we are concerned with flattening
a heirarchically structured program and the conversion of symbolic names to addresses.
We do not need to consider the finite restrictions on adresses, for example. In the second
proof we do consider the finite address restrictions, but now are dealing with flat code and
do not need to consider symbol tables.

The main correctness statement for the Vista to Visa compiler is proved by proving
appropriate correctness statements for each of the Vista syntactic domains: declarations,
commands, etc. These are each proved by structural induction on the syntax concerned.
The correctness statement for declarations states that they preserve an appropriate
correspondence between the symbol table and the environment. The translation of a
program uses an empty initial symbol table and the semantics uses an empty environment.
Since these correspond, we can use the declaration correctness theorem to deduce that the
correspondence holds between the symbol table used when translating commands and
the environment used in their semantics. The correctness statement for commands is
proved by structural induction. For each command, we consider three cases, depending on
whether the initial Vista state is a run, halt or error state. We then compare the results
of executing the Vista command with those for executing the Visa instructions, showing
that they correspond.

The main correctness statement for the Visa to Kaa compiler is proven by induction
on the number of instructions executed. The proof requires a lemma that the execution
of a single Visa instruction is mirrored by the compiled code. This is proven by cases on
the different Visa instructions. Assumptions made about the initial state in this proof,
must also be proved to hold of the final state. Otherwise, we could deduce nothing about
executing sequences of instructions. This proof is mainly concerned with ensuring that all
addresses used are within the bounds of the finite regions. In Vista these bounds are given
in region declaration statements. We did not implement such declarations in our subset,
though this would be straightforward. Instead, the bounds are provided in a separate data
structure to the source program. Various properties of this data structure are assumed,
such as that the regions do not overlap and are less than the maximum address of the
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Figure 2.2: Combining Correctness Statements
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machine.
The correctness theorems of the two levels of the compiler can be combined on the
whole straightforwardly. We essentially have correctness theorems of the following form:

F Vg1 q¢ oracle v;.
(VistaSemantics p) oracle q; gz A
CompareVistaVisaStates q; vi D
Jvy voracle.
VisaSemantics (CompileVistaVisa p) voracle vy vo A
CompareVistaVisaStates q2 va A
CompareVistaVisaOracle oracle voracle

F Vv, vy voracle k;j.
(VisaSemantics c) voracle v; va A
CompareVisaKaaStates vy k; D
Jky koracle.
KaaSemantics (CompileVisaKaa c) koracle k; ko A
CompareVisaKaaStates vo kg A
CompareVisaKaaOracle voracle koracle

The conclusion of the first theorem which gives the Visa semantics can be matched with
the assumption of the second, giving:

F Va1 qz oracle vi k;.

VistaSemantics p oracle q; q2 A

CompareVistaVisaStates q; v; A

CompareVisaKaaStates vi k1 D

Jk, ve koracle voracle.

KaaSemantics (CompileVisaKaa (CompileVistaVisa p) koracle k; ky A
CompareVistaVisaStates qo vs A '
CompareVisaKaaStates vy ky A
CompareVistaVisaOracle oracle voracle A
CompareVisaKaaOracle voracle koracle

Ideally we would like the correctness theorem to have the same form as the correctness
theorems for the individual levels. This is desirable, because each compiler correctness
theorem is intended to serve the same purpose for its particular compiler. We can then
define a single Compare relation, and hence define a single AbstractCompilerSpec relation
which defines “abstract compiler correctness”. These relations would take as arguments,
the various comparison relations, semantic definitions and compiler definition. The above
theorem does not have the required form due to the references to the Visa level. We
therefore make new definitions which hide the Visa references. We define the Vista to Kaa
compiler by

CompileVistaVisa p = CompileVisaKaa (CompileVistaVisa p)

For the relations comparing states and oracles we use existential quantification. For
example, we have separate assumptions which relate Vista and Visa states and which
relate Visa and Kaa states:

CompareVistaVisaStates q; vi A
CompareVisaKaaStates vy ki

We can combine these into a single relation which abstracts away from the Visa state:
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CompareVistaKaaStates q k =
Jv.
CompareVistaVisaStates q v A
CompareVisaKaaStates v k

A Vista state q is related to a Kaa state k if there exists some intermediate Visa state v
which compares with both. We thus obtain a correctness theorem in the desired form:

F Vq; g2 oracle k;.
VistaSemantics p oracle q; gz A
CompareVistaKaaStates q; k; D
dk, koracle.
KaaSemantics (CompileVistaKaa p) koracle k; ks A
CompareVistaKaaStates gz ko A
CompareVistaKaalracle oracle koracle

It is possible to go further than this, and remove all references to Visa concepts, even
those hidden in definitions. For example, a single pass compiler could be defined which
mapped Vista programs directly to Kaa programs. Similarly CompareVistaKaaStates
could be defined by directly relating the elements of the Vista state to elements of the
Kaa state. This is similar to a hardware verification where the first version is a structural
implementation and the second a specification. We did not do this however.

We have simplified things somewhat in the above description. In particular, we must
take account of the loading of the code into the Visa and Kaa stores. There are also
additional assumptions. For example, in the Visa to Kaa compiler proof assumptions
are also made about the form of the Visa program. For instance, it is assumed that all
addresses refer to declared regions, that is, regions for which there is an entry in the data
structure which holds the bounds information. When the correctness therems of the two
levels are combined, such assumptions can be discharged. This involves proving that the
code produced by the Vista to Visa compiler does obey these restrictions. We have also
assumed that the code exactly fills the declared regions, as this simplified the proof.

2.4 Generic Definitions and Proofs

Our work uses a generic version of Vista in which the word sizes, ALU instructions
and comparison instructions are left unspecified. The language schema so defined may
be instantiated for different machines. We have essentially defined a general purpose
structured assembly language. It is not a universal language, however. The target machine
must have a similar architecture to that of VIPER. Our results suggest that much more
could be done in this way to make the results applicable to a wider class of architectures.

The language definitions are made generic using type variables to stand for the
unspecified features of the language. The variables #monop, *aluop, *arithop and
xcompop are used to represent the monadic ALU operations, binary logical ALU
operations, arithmetic operations and comparison operations, respectively. They can be
instantiated with the operations which correspond specifically to the VIPER microprocessor
or alternatively to those of other machines. The ALU operations are split into separate
classes because they take different types of arguments or return different types of results.
The type used to represent a machine word is also left as a variable — *word32. The name
is suggestive of the word size of the VIPER microprocessor, though it is only a name: it
could be instantiated to a word type of any length.
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The syntax for a particular machine is defined by instantiating the type variables with
the syntax of the available operations and words. We have defined syntax for the VIPER1
processor. For example, the type of comparison operators is declared as:

VIPER1_COMPOP = VIPER1_LESS |
VIPER1 NOT_LESS |
VIPER1 EQUAL |
VIPER1 _NOT_EQUAL |
VIPER1._LESS_OR EQUAL |
VIPER1.NOT.LESS_OR_EQUAL |
VIPER1_BORROVW |
VIPER1_NOT_BORROW

This states that the simple comparisons available for a VIPER1 instantiation of Vista are:
less, not less, equal, not equal, less than or equal, not less then or equal, borrow and
not borrow. We instantiate the type variable compop to be this type. The above gives
the abstract syntax of the comparisons rather than the concrete Vista syntax given in
Figure 2.1.

Instantiating the type variables as illustrated above, only defines the syntax of the
language. It does not tell us anything about the intended semantics, even if suggestive
names are used. The semantic information for a given instantiation of the language is
given by a representation tuple. All information specific to a target machine is contained
there.

We use the representation tuple in two ways. The first is to provide information
about the word types used. For example, one field in the tuple gives a function for
converting from natural numbers to the generic data sized words (32-bit words for VIPER1).
A second field gives a function which converts words back again. These functions are
used in the semantics. In the proof certain properties of these function—and implicitly
of the word types involved—are required to hold. For example when a data sized
word is converted to a natural number and back again, the original word must result.
The function NumToW32RepOf accesses the field holding the former function from the
representation tuple, whereas the function W32ToNumRepOf accesses the latter function.
Such properties occur in the theorems which depend on them as explicit assumptions about
the representation tuple. For example, a theorem dependent upon the above property
would contain the assumption:

NumToW32Rep0f rep (W32ToNumRepOf rep w) = w

Using the representation tuple in this way means that the correctness theorems can be
used for machines with any word sizes that do not contravene the explicit assumptions
made.

The second use of the representation tuple is to provide information about the ALU
and comparison operations. This is of use because for a structured assembly language,
the semantics of the high level operations such as addition, less than, etc., are identical to
that on the target machine. This means that in a compiler correctness proof, the actual
details of the semantics are not important. All that is required is that they are the same
at both levels. Making these operations generic has two advantages. The first is that the
theory can be targeted to machines which provide different ALU operations. The second
is that a single proof can be used to prove that all ALU operations of a similar type on one
machine are correct. Thus the work required to produce the compiler correctness theorem
in the first place is reduced as well as the time taken to re-target it to a new machine.
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For example, one field in the tuple contains semantic information for the comparison
operations. The semantics of each Vista comparison needs three arguments: the semantics
of an expression, esem, the semantics of a register, reg, and a state, q. The expression and
register semantics return word values which depend on the state. These are compared by
the comparison returning a boolean value. Thus, for example the semantics of a “less-than”
comparison might be given by: -

LessThanSemantics esem reg q = (esem q) < (reg q)

The semantics of the other comparison operations is obtained by replacing the < operator
with that corresponding to the comparison in question. The field in the representation
tuple which holds the semantic information for comparisons has type

*compop — *word32 — *word32 — bool

That is, given a comparison operation it returns a comparison function—a function which
takes two word values and returns a boolean indicating how they compared. This field
is accessed using CompRepOf. The semantics of all comparisons can therefore be given
by the definition below, which additionally takes representation tuple and comparison
operation arguments. It looks up the semantics of the particular comparison operation in
the representation tuple (CompRep0f rep) applies it to the comparison operation giving
the specific comparison function for that operation (CompRepOf rep compop), and applies
that to the words determined by the expression and register semantics. Note that we use
a prefix notation here rather than the infix notation used above.

VistaSemComp rep compop esem reg q = (CompRepOf rep compop) (esem q) (reg q)

At the lower, Kaa, level the comparisons perform the same operations on word values.
Thus, the result is obtained once more by looking up the comparison function in the
representation tuple. However, the result is used in a different way here to at the Vista
level. Rather than being the final result, it is used to update the B register in the state
tuple.

KaaSemComp rep compop wl w2 (ram, p, r, b, stop) s2 =
s2 = (ram, INC p, r, (CompRepOf rep compop) wi w2, F)

Targeting the theory to a particular machine involves supplying a value for the tuple,
and proving the explicit assumptions made about the tuple. If the type variable *compop is
instantiated to the type VIPER1_COMPOP described earlier and the word type is instantiated
to 32 bit words, the type of the comparison field of the tuple becomes:

VIPER1_COMPOP — word32 — word32 — bool

Thus for VIPER1 we must provide a representation tuple which gives a semantic function
mapping from each of the elements in type VIPER1_COMPOP to an appropriate comparison
function. For example, VIPER1 EQUAL is mapped to the function EQUAL_SEM which
compares two 32-bit words for equality:

EQUAL_SEM (wl:word32) w2 = (w1l = w2)

Our compiler correctness theorem holds for all representation tuples which satisfy the
assumptions made in the proof about the tuple. These assumptions are explicit in the
theorem. Consider the following simplified version of the correctness theorem, which has
a single assumption about the conversion of words.
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NumToW32Rep0f rep (W32ToNumRepOf rep w) = w
F Compare rep (VistaSemantics rep p)
(KaaSemantics rep (CompileProgram rep p))

It states that provided the function of the representation tuple for converting from a
natural number to a 32-bit word is an inverse to the function which converts a word
to a number, then the compiler will be correct. Consider now the representation tuple,
VIPER1rep for the VIPER1 microprocessor. We obtain a correctness theorem for a compiler
for VIPER1, by instantiating the variable rep with VIPER1rep in the above theorem. We
define the semantics of VIPER1 versions of Vista and Kaa with a corresponding compiler
by:

VIPER1VistaSemantics = VistaSemantics VIPER1rep
VIPER1KaaSemantics = KaaSemantics VIPER1rep
VIPER1VistaCompiler = CompileProgram VIPER1rep

That is, the VIPER1 version of the compiler and semantics are obtained by applying the
generic versions to the concrete representation tuple. Programs containing the ALU,
comparison, etc. operation syntax and word sizes specified by the types used in the

representation tuple are compiled and their semantics determined using these definitions.
Once we have made these definitions, we can trivially prove from our generic compiler
correctness theorem a theorem specifically for the VIPER1 microprocessor.

NumToW32Rep0f VIPER1rep (W32ToNumRepOf VIPERirep w) = w
b Compare VIPER1rep (VIPER1VistaSemantics p)
(VIPER1KaaSemantics (VIPER1VistaCompiler p))

This theorem has an explicit assumption stating that the conversion functions given in
the VIPERL1 representation tuple convert a word back to itself.

NumToW32Rep0f VIPER1rep (W32ToNumRepOf VIPERirep w) = w

If this does not hold, then the theorem tells us nothing about the correctness of the
compiler. We must prove it to be true, before we accept the compiler correctness theorem.
This is very easily done. Thus with very little proof effort, we obtain a correctness
theorem for a VIPER1 version of the compiler. We could similarly obtain theorems for
other microprocessors for which a suitable representation tuple was provided. The limited
amount of proof required in this approach contrasts with that needed to verify a compiler
for each new target machine from scratch if generic methods had not been used.
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Chapter 3

Of What Use is a Verified
Compiler Specification?

In the previous chapter we described our verified compiler. In this chapter, we consider
how this work fits into a wider context of producing correct object code. In particular,
we consider how correctness theorems about compiled code can be formally obtained from
correctness theorems about source programs. We then consider ways in which correct
compiled code can actually be obtained.

3.1 Combining a Compiler Correctness Theorem with a
Programming Logic

The reason for verifying a compiler is to increase our confidence that if we compile a correct
source program, the object code will also be correct. How can we be sure that the particular
theorem about the compiler that we have proved tells us this? The answer is to use the
compiler correctness theorem to derive an inference rule which given a correctness theorem
about a source program returns a correctness theorem about the compiled code. We can
then use this inference rule to obtain theorems about compiled application programs. HOL
ensures that faultily programmed derived inference rules cannot produce theorems unless
they are theorems. Thus we can be sure that the correctness theorem we obtain really is
a theorem.

We could reason about the correctness of application programs directly using the
relational semantics. However, it is more convenient to use a programming logic [30].
In this approach, axioms and inference rules are given which allow correctness properties
of programs to be proved. A programming logic gives a new semantics for the language.
To ensure that it is consistent with the relational semantics we derive the former from the
latter [28]. This involves giving a formal definition of the correctness property embodied
in the programming logic in terms of the relational semantics. Theorems are then proved
about this definition. From these theorems we derive inference rules which correspond to
the axioms and rules of the programming logic. The programming logic is thus a toolkit of
derived rules for deducing correctness properties about the semantics of programs. These
rules abstract away from the relational definitions. As the toolkit is just a series of HOL
derived inference rules both the security and full power of HOL are retained in programming
logic proofs.

‘We have demonstrated this approach by combining our verified compiler with a derived
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programming logic embedded in the HOL system for the Vista subset. We can prove
properties of Vista programs using the programming logic. We then use our derived
inference rule to obtain a theorem stating that a corresponding property holds for the
compiled code. No such formal link has previously been made. Gordon’s derived
programming logic [28] was for a simple imperative language similar but not identical
to that used by Joyce in his compiler correctness work [33]. The Gypsy Verification
Environment implements a programming logic for Gypsy which complements Young’s
verified compiler. However, there is no formal link between the semantics used for the
compiler correctness proof and that embodied in the verification environment, so the two
could potentially be inconsistent [53].

The correctness of a program is often split between the properties of partial correctness
and termination. A program is partially correct with respect to a precondition and
postcondition if, whenever the program is executed from a state satisfying the precondition
and from which it terminates, the final state satisfies the postcondition. Termination is
the property that the program does cease execution from a state satisfying the initial
condition. Total correctness is then the combination of partial correctness and termination.
A program is totally correct with respect to a precondition and postcondition, if whenever
the program is executed from a state satisfying the precondition, it terminates and the
final state satisfies the postcondition.

Rather than separating the issues of partial correctness and termination, we give
a single programming logic of total correctness which encompasses both. We show
how partial correctness properties can be derived from statements of the logic. With
traditional definitions this is trivial. However, our definitions of total correctness and
partial correctness are non-standard. They are extended to deal with I/O behaviour. The
full details of the programming logic and its derivation are given elsewhere [19, 21, 22].

When specifying the I/O behaviour of a program, we believe it is natural to give a single
assertion which describes both the inputs and outputs and the way they are intended to
interleave. This is consistent with our use of oracles in the relational semantics. It allows
us to prove that a program obeys a single I/O specification. This specification can in turn
be shown to satisfy more abstract properties. For example we may wish to prove that all
the behaviours it represents are such that an output always immediately follows an input.
The values input are provided by the environment rather than being under the control
of the program. Hence, they must be supplied in the precondition where they can be
represented by auxiliary variables. Furthermore, any restrictions on their values must be
part of the precondition. We therefore include all the I/O specification in the precondition
for our logic. The I/O behaviour of a program is specified by “predicting” the I/O events
which will occur during the program’s execution. A more conventional definition of partial
correctness, in which only the input restrictions appear in the precondition, can be derived
from the total correctness definition.

The assertion language provides some basic assertions about I/O properties, together
with a way of combining them into more complex assertions. The assertion {IN chn
w} specifies that a generic word value w is to be input on channel chn. {0UT chn w}
specifies that the value w is to be output on channel chn. {DONE} indicates that the
stop light will be set (and the program terminate). Conditions may be sequenced using a
temporal conjunction operator (;). Events predicted in the first conjunct must occur prior
to those in the second. For example, {IN arg v; DONE} is an assertion which indicates
that a single Input event will occur after which the stop light will be set. Assertions
specifying repetitive behaviour or behaviour that depends on the values input can similarly
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be defined. The assertion language can be extended by the user as required. This is an
advantage of embedding the programming logic within HOL. The full definitional power of
HOL is available. New definitions can be made as required, either to abbreviate assertions,
give more expressive power or even to alter the style of specification.

We prove, using the compiler correctness theorem, a theorem of the following form and
derive a corresponding inference rule.

F VP p Q rep.
ProgramCompiles rep p A
SourceTOTAL rep P (SemProgram rep p) Q D
TargetTOTAL rep P (CompileProgram rep p) Q

This states that if a source program compiles and if it has been proved to be totally
correct with respect to an I/O specification P and postcondition Q then we can deduce that
the result of compiling it is also totally correct with respect to that specification. Note,
that different definitions of total correctness are used for the source and target languages.
This is because the target definition must take into account the different type of states at
the lower level of abstraction and also make assumptions such as that the code is loaded
into the store. The inference rule must be given a theorem stating that a program of
interest compiles and also a theorem stating its total correctness. It returns a theorem
stating that the compiled version is similarly totally correct.

Suppose we have proved the correctness of the multiplication program given earlier
using the derived programming logic, and have obtained a theorem of the form:

F SourceTOTAL rep
{IN argl v1; IN arg2 v2; OUT ans (vl x v2); DONE}
(SemProgram rep <multiplication program>)
{A = v1 x v2}

In brief, this specifies that the I/O behaviour of the program is to input two values (IN
argl vi; IN arg2 v2), output the result of multiplying them, (OUT ans (vl X v2)),
and then set the stop light and terminate, (DONE). It also states that in the final state
the accumulator will hold the result output, (A = vi x v2). No assumptions about the
initial state are made.

We can deduce a corresponding theorem about the code produced by the compiler,
using the derived inference rule.

F TargetTOTAL rep
{IN argl v1; IN arg2 v2; OUT ans (vl x v2); DONE}
(CompileProgram rep <multiplication program>)
{4 = vi x v2}

We only implemented such a derived inference rule for the Vista to Visa compiler. It would
be simple to extend this to the Vista to Kaa compiler.

We can also obtain a correctness result which includes the text of the compiled code
itself. This can be done automatically using constant folding and rewriting techniques on
the definitions of the compiler. This process is described in more detail in Section 3.2.

F TargetTOTAL rep
{IN argl v1; IN arg2 v2; OUT ans (vl x v2); DONE}
<compiled multiplication program> ’
{4 = v1 x v2}
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The programming logic is a logic for the Vista schema. It can be targeted to
a particular machine by providing a suitable representation tuple. This means that
generic source language proofs can be performed and instantiated for any machine which
provides operations with the properties used in the program. For example, the generic
multiplication program above could be verified. The resulting theorem could then be
re-targeted to machines of any word size and any ALU that had addition, subtraction and
non-equality operations. As with the compiler correctness theorem, any assumptions made
about the operators used would be explicit in the proof. An obligation when targeting
the generic program to a particular machine would be to discharge these assumptions.
For example, for the multiplication program we might have an assumption that the zero
constant used was an identity for the addition operator used:

Va. a+0=a

This property would need to be proved for the particular addition operator provided by
the target machine.

3.2 Executing a Compiler Specification

We have verified a compiler algorithm rather than an implementation in a programming
language. We ultimately require a compiler which can be executed. However, higher-order
logic is not directly executable. An implementation could be developed in any suitable
programming language, with the algorithm being the specification that the programmer
works from. Having a formal specification of a programming problem is good in its own
right. This is an area where formal methods are already proving themselves to be of
use in industry. For example, Z and VDM are widely used. Producing correct formal
specifications is difficult. Specification errors account for most of the bugs in code. Thus,
possessing a verified specification is of great use when implementing a compiler even if
the implementation is not then formally verified. It gives an unambiguous and correct
description of the code that must be produced by the compiler. A verified compiler
specification can help the programmer avoid introducing bugs. If a proof theory is
available for the implementation language, then a standard program correctness proof
can also be performed, using the verified algorithm as the specification. This is a very
secure way of obtaining an implementation. However, implementation verification can
be time-consuming. It may be that time constraints do not permit an implementation
correctness proof to be performed. We therefore consider other approaches. An
algorithm could be executed in several ways, where there is a trade off between the effort
required and the security obtained. We have investigated two ways that relatively secure
implementations of compilers can be obtained from a verified algorithm: execution by
translation to ML and execution by proof. In this section we describe these techniques
but also overview other possible methods of execution.

If the algorithm is given in an executable language, the distinction between an
algorithm and an implementation is blurred. When this is so, the algorithm itself can
be used as a compiler implementation. The work done at Computational Logic Inc. where
the Boyer-Moore logic was used is a case in point [43, 53]. The Boyer-Moore logic is
a first-order, quantifier-free logic resembling pure Lisp and hence is executable. The
Boyer-Moore theorem prover contains an interpreter for the logic which can be used to
execute specifications. Thus, verified compiler specifications can perform compilation.
Due to the extra expressiveness of the HOL system, higher-order logic is not executable
in this way. Instead an interpreter for an executable subset could be written. Algorithms
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specified using the subset could then be executed. A potential source of insecurity in this
approach is that the interpreter or compiler for the logic may not be correct. It may give
a different semantics to the logic. Thus a verified implementation of the logic is ideally
required. No such interpreter currently exists for HOL. We did not pursue this approach
further.

Alternatively, the specification could be rapidly prototyped in a non-executable logic by
translating it into a similar but executable language. In the field of hardware behavioural
specifications, Albert Camilleri showed that specifications in higher-order logic can be
automatically translated into the functional programming language HOL ML and so
simulated [6]. Hall and Windley [29] have adapted this approach to allow microprocessor
specifications to be executed. Researchers at the University of British Columbia use similar
techniques to automatically translate general deterministic higher-order logic specifications
into HOL ML code [47]. In this approach, the potential sources of insecurity are in the
correctness of the translator and the correctness of the implementation of the simulation
language. In conjunction with the UBC researchers we have prototyped an ML version
of the verified Vista compiler using their tool. When this implementation was applied
to a Vista program which had previously been compiled by hand, errors were found in
the hand-produced target code. This appears to be a good way of quickly prototyping a
compiler with fairly high confidence of its correctness. It could also be used to test the
compiler definitions prior to verification. This would remove more obvious mistakes prior
to verification.

If the implementation language has a close syntactic correspondence with the logic,
errors in the translation process can be reduced. Also, there is a greater chance that any
errors that do occur will be detected by a visual comparison of the specification and its
translated form. For example, a specification written in a subset of higher-order logic
can be identified with an implementation in Standard ML. This was the approach taken
by Aagaard and Leeser [1]. They verified a higher-order logic specification of a logic
synthesis tool using Nuprl. It was also implemented in Standard ML using corresponding
definitions. In some cases the definitions required by Nuprl were in a different form to that
required by Standard ML. Theorems corresponding to the Standard ML style definitions
were therefore proved from the Nuprl definitions. The insecurity of this approach is that
the semantics of the logic and language may not be the same, even though their syntax
is. This can impart a false sense of security about the resulting implementations. For
example, as noted by Aagaard, Standard ML and higher-order logic do not match exactly
since the former is an eager language whilst the latter is lazy.

We illustrate the translation approach with a simple example: the definition of a list
APPEND function. Definitions in HOL higher-order logic, Standard ML and HOL ML,
respectively, are given below.

|- ('1. APPEND []1 1 = 1) /\
(111 12 h. APPEND (CONS h 11) 12 = CONS h(APPEND 11 12))

fun APPEND [] 1 =1 |
APPEND (h :: 11) 12 = h :: (APPEND 11 12)

letrec APPEND =

fun [J . (\1. 1) |
(h . 11) . (\12. (h. (APPEND 11 12)))
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The main difference between the higher-order logic and Standard ML definitions is in
the syntax of the CONS constructor which is a prefix operator in HOL and infix in Standard
ML. The HOL ML syntax differs even more. Because the pattern matching mechanism is
not so general, lambda expressions (\) are used for the second argument. This makes it
much harder to visually confirm that it is the same function as the higher-order logic one.

Alternatively, an executable specification language can be semantically embedded in
a non-executable logic. That is, the semantics of an executable language can be defined
within the logic. Language terms then have the same semantics as the logic equivalent.
The compiler can be specified in that language, and so be executable. Since the underlying
logic is still the original logic, the theorem proving tools associated with it can still be
used. Sufficient proof infrastructure, such as derived inference rules would have to be
developed to allow proofs in the embedded language to be naturally performed. Such
semantic embedding has been done for several specification languages in HOL, such as
linear temporal logic [32], and VDM style specifications [28]. Aagaard’s work, described
above, essentially involved embedding Standard ML in Nuprl. Since Standard ML is so
similar to higher-order logic little work was needed to define the semantics. Such semantic
embedding has also been used in the field of hardware verification. Subsets of the languages
ELLA, VHDL and SILAGE, for which simulators are available, have been semantically
embedded in higher-order logic [2]. Also when performing a compiler correctness proof, the
semantics of the source and target languages must be defined: that is they are semantically
embedded in the logic. Semantic embedding removes the insecurity of translating between
the logic and specification language, though the possibility of an incorrect implementation
of the simulation language remains. Of course, if the language which is embedded has a
complex semantics such as a programming language, the advantages of having a separate
algorithmic specification are lost. We have not pursued this approach further.

A more secure approach is to use formal proof to perform the compilation [20]. This is
done by taking the definitions of the compiler, specialising the appropriate variable with
the program to be compiled and performing rewriting until target code is obtained. It can
be done automatically using a mechanized proof assistant such as HOL. This means that
the actual definitions that have been verified are executed. As a side effect a theorem is
obtained stating that applying the algorithm to the source program yields the compiled
code.

F FunctionalCompilerSpec SourceProgram = CompiledCode

The approach can be illustrated again using the definition of APPEND given earlier. In
the following we use the standard bracketed notation for lists. For example, [1; 2] is an
abbreviation for CONS 1 (CONS 2 [1).

Suppose we wish to execute APPEND applied to the lists [1; 2] and [3; 4]. Initially,
the variables 11, 12 and h in the second clause of the definition of APPEND are specialised
with [2], [3;4] and 1, respectively. This gives the theorem:

F APPEND [1; 2] [3; 4] = CONS 1 (APPEND [2] [3; 4])
In a similar way we can also obtain the theorem:

F APPEND [2] [3; 4] = CONS 2 (APPEND [] [3; 4])
We can use this to rewrite the first theorem giving;:
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- APPEND [1; 2] [3; 4] = CONS 1 (CONS 2 (APPEND [] [3; 41))

Next, we specialise the first clause of the definition of APPEND with the list [3;4] to give
the theorem

- APPEND [] [3; 4] = [3;4]

Rewriting the previous theorem with this we obtain the desired theorem:
b APPEND [1; 2] [3; 4] = [1; 2; 3; 4]

This tells us that the result of executing APPEND with these values is the list [1; 2; 3;
4].

We can use the same tool to perform symbolic execution. For example, we can obtain
a theorem containing variables in place of the numbers. The theorem holds for all values
of the variables:

+ APPEND [m; n] [p; ql = [m; n; p; ql

Similar tools can be built for any HOL definition and in particular for those of a
compiler algorithm. The tools used to perform execution of definitions in this way are
conversions [45]. Given a term in the logic they return a theorem expressing an equality
between that term and another. Various tools are available in HOL for creating rewriting
conversions for a particular definition and for combining conversions. Thus tools for
executing compiler definitions are straightforward to build. Further, they can be built
compositionally. If conversions are written to execute definitions that are used in a later
definition, an execution conversion for the later definition can be obtained by combining
the original conversions. For example, a tool to compile programs by proof can be built
from previously written tools to compile declarations and commands by proof. Such tools
are of more use than just executing the verified compiler algorithm. They could be used
to test the definitions prior to verification, though translation to ML would probably be
a more successful approach to do large amounts of testing of this form. They could also
be used to generate theorems which will be of use when verifying the algorithm.

Juanito Camilleri has used this technique very successfully to simulate the definitions
of a compiler for an Occam subset [7]. Valuable feedback was obtained to help ensure
the definitions were correct before verification was attempted. Goossens [26] has also used
execution by proof, though to simulate hardware designs and in combination with semantic
embedding. The hardware description language picoELLA was semantically embedded in
higher-order logic. The LAMBDA theorem prover was then used to execute designs written
in picoELLA.

We have written an execution by proof tool for the top level of our verified compiler.
Given a Vista source program written in the abstract syntax, it returns a theorem giving
the compiled Visa code. The tool could easily be extended to compile to binary code. The
theorem obtained when the tool is applied to the multiplication program instantiated for
the VIPER1 microprocessor given earlier is given in Figure 3.1. A generic version of this
theorem could also be obtained automatically. It could be retargeted to other machines
or to programs which used other values of the constants,

We have identified a series of simple techniques that can be used when writing execution
conversions to speed up the execution. They include:
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X VIPER1.SUB #00000000000000000000000000000001 0OD;

D

INPUT argil;

:= INPUT arg2;
:= VIPER1.ID Y;

L multiply;
PUT A ans;
P

SH) =

E

VisaINPUT X(VisaAT(‘Default‘,0));
VisaINPUT Y(VisaAT(‘Default®,1));
VisaSTORE Y(VisaAT(‘Default‘,3));
VisaCALL(‘Default‘,0);

VisaOUTPUT A(VisaAT(‘Default‘,2));
VisaSTOP], [1),

efault‘,9),

fault‘,0;

E

VisaSLINK( ‘default‘,1);

VisaMONADIC VIPER1_ID A(VisaLITERAL #00000000000000000000) ;
VisaCOMPARE VIPER1_NOT_EQUAL X(VisaLITERAL #00000000000000000000) ;
VisaJMPNOTB(‘Default‘,7);

VisaALU VIPER1_ADD A A(VisaCONTENTS T(‘Default‘,3));
VisaALU VIPER1._SUB X X(VisaLITERAL #00000000000000000001);
VisaJMP(‘Default‘,2);
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Figure 3.1: The Compilation Theorem for the Multiplication program
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e writing the conversions in a modular way so that rewrites are only applied when
they have a chance of being useful;

e pre-proving theorems which embody the expansion of multiple definitions;
¢ avoidance of duplicating expressions before they are rewritten;

¢ assuming that error results will not occur (we can ensure there are no compile-time
errors using an insecure compiler first);

o avoidance of rewriting terms fully until a late point to prevent large terms from being
generated;

e memoisation to ensure that identical terms are only rewritten once

It is safe to make the assumption that error results do not occur; it will not cause incorrect
code to be obtained. If the result should be an error, the appropriate rewrite rules will
not be a present and so the term will just not be fully reduced. The above are all general
purpose techniques: their use is not restricted to the execution of compilers.

Execution of a verified algorithm by proof is very secure. The actual definitions rather
than some translated form are executed. Also the problem, encountered when using a
programming language to execute the definitions, of a mismatch between the semantics of
the logic and that of a programming language is avoided. The only point of insecurity in
this methodology is in the theorem prover itself. A faulty theorem prover could incorrectly
rewrite the compiler definitions, producing incorrect target code. In a system such as HOL,
the execution strategy is the application of primitive inference rules and axioms of the logic.
Type checking ensures that the system only accepts valid theorems as theorems. The tool
programmer cannot make programming mistakes which cause incorrect compilation to
occur. If a theorem of the above form is obtained it must have been produced using
primitive inference rules. It must really be a theorem about the algorithmic specification.
The compiled code can only be wrong if there is a mistake in the few basic primitive
inference rules of the system or in the type-checker. The kernel of such a system which
must be secure is thus small. All proofs using the system are dependent on the correctness
of this kernel. Therefore, if the theorem prover is used widely for formal proof, as is the
HOL system, these mechanisms are widely tested. Furthermore, the theorem prover is
already being used to obtain the compiler correctness theorem. The compiled code can be
trusted to the same degree as the correctness proof itself. If the proof is to be trusted effort
must already be expended in ensuring that the theorem prover is sound. No additional
validation overhead is incurred by compiling programs in this way. Further confidence can
be obtained by performing the compilation using different implementations of the theorem
prover and comparing the results.

In fact, in the process of proving that the algorithm is correct, we also increase
our confidence that this execution strategy is correct. In doing a compiler correctness
proof the same reasoning is used as when “executing” the compiler. To prove that the
compilation of a particular command is correct, the compiler definition is rewritten until
target instructions are obtained. The semantics of the resulting code is then compared
with that of the original code. We can use the same tools as used to execute the code
to do this. Thus if there is an error in the theorem prover that means the wrong code
is produced it is likely that it would also have caused the compiler proof to fail. If not
then it suggests that the “wrong” code has the right semantics. The code is, if not the
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desired code, still correct. Alternatively, it could mean there is a further error in the prdof
which nullifies the original error. Since this means the correctness proof is invalid, code
from a compiler satisfying the specification can not be relied on whatever means were used
to produce it. Thus lemmas used in the correctness proof are also indirectly correctness
results stating that the execution strategy produces correct code. Whilst this increases
our confidence in the code, it is not a firm guarantee, since the lemmas will only be about
fragments of code. They are also symbolic.

For example, to prove that the translation of a simple form of assignment command is
correct, we first obtain a theorem of the form:

F Compile env (a := e) = STORE (TransVar env a) (TransExp env e)

This states that executing an assignment in some environment env yields a STORE
instruction of the value obtained by translating the expression e to the location obtained
by translating the variable a. If the theorem prover is faulty and, for example, instead
generates the “theorem” below, the remainder of the correctness proof should fail. This
“theorem” suggests that the compiled code is a jump. However, the semantics of the jump
do not correspond to that of the assignment.

t Compile env (a :=e) = JMP 0O

The correct theorem above is symbolic. It does not tell us about the execution of
expressions, for example. However, similar theorems are also used to prove the correctness
of expressions, so their execution is also checked. Even so, a problem could arise if the
execution strategy fails due to an interaction between expression and command translation.

Whilst being a relatively secure method of compilation, execution by proof is very slow.
Using it to compile large programs during the development cycle is infeasible. However,
at this stage a secure compiler is not essential. An insecure but fast compiler can be
used for development, with the specification being executed just once to produce the final
production code. Use of an insecure compiler during development has advantages other
than speed. It could include much more complex error detection, reporting and recovery
facilities, for example. The secure compiler is restricted to the safety critical core, thus
simplifying its validation.

An alternate way to view this is that compilation-by-proof is just used to check the code
produced by the insecure compiler, rather than to do the compilation itself. Only once
the application program is considered correct is it worth checking that the compiler has
produced correct code. Indeed, it is simple to write a tool using the compilation-by-proof
conversion to do this checking automatically. Given a source program and object code
produced by an untrusted compiler, the tool would either return a theorem stating that
the latter was correct compiled code for the former, or it would indicate that the untrusted
code was incorrect. This idea of providing a secure tool to check compilation has been
suggested before [3]. However, it was previously suggested that a translated version of the
compiler perform the checking.

A problem with using an insecure compiler for development is that the verified
compiler is only used for producing the final production code. The extra confidence in
the verified compiler which would otherwise be achieved by large use, is lost. However,
if on the production run the compiled code from the verified compiler is found to be
syntactically identical to that produced by the insecure compiler, the extra assurance is
retained (see Figure 3.2). Indeed, if the production compiler is largely trusted due to its
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Figure 3.2: Comparing the Object Code from Different Sources

wide-use, possibly outside safety critical situations, this combined use actually increases
our confidence in the correctness of the final code. A question arises over what to do
if the results are different. Both compiled programs could still be correct—for example,
they could have just identified a variable with different locations. This would almost
certainly arise if the production compiler was taken off the shelf and not developed with
the specification in mind. If, however, the secure compiler was used as the specification of
the insecure one when the latter was developed, the difference is a failure of the compiler
to meet its specification. It is indicative of a bug that needs to be fixed. Note that using
the secure compiler as the formal specification during the development of the insecure
one does not imply that the insecure one has to be formally verified. Validation can also
be targeted at any differences found between the results of the compilers to determine
whether they are critical.

A further problem is that a user could gain confidence in the correctness of an incorrect
program from testing with an incorrect compiler implementation. The production code
produced using a secure compiler would then not have the expected properties. Even if
the application program had been verified this might occur due to the formal specification
of the application program being too weak. This problem can easily be removed if all
the tests performed on the insecure code are rerun on the final production code. This
ensures that the confidence in the insecure code gained from testing is not lost to the
secure version. Comparing the text of the programs obtained with the secure and insecure
compilers would also suffice. If they are identical, then the verification and test resulits
apply to both compilers for that program.

Compilation-by-proof would also be of use if a compiler implementation was to be
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Figure 3.3: Bootstrapping a Secure Compiler using an Insecure One

produced. Even if the implementation was to be formally verified, additional testing would
still be desirable to remove more obvious bugs. However, a problem when testing is of how
to know what the correct outputs for particular inputs should be. Compilation-by-proof
could provide correct test cases. Execution of the specification would give the required
target code for given source programs. These test cases would only need to be executed
once before the compiler implementation was developed. The results could then be used
to help validate any subsequent implementation produced from the verified specification.
This would obviously not overcome the main short-comings of testing, but would at least
ensure that the results of the tests that were carried out could be trusted.

3.3 Bootstrapping a Correct Compiler Implementation

Suppose we have verified a compiler specification, and have written an efficient implemen-
tation of it in a high-level language. Suppose also that we have verified our implementation
against the specification, so we are happy that the implementation is correct. We still have
a problem. To execute the implementation we must compile the high-level program into
a low-level language. It is the low-level version which we will actually execute. We need a
verified compiler before we can obtain our verified compiler implementation in the low-level
language! How do we obtain the first verified compiler to start the process?

The first secure compiler could be obtained using one of the other methods suggested
in Section 1: it could be written and verified in a low-level language; the program could
be compiled into an assembly language for which there is an available proof theory; or
a one-off proof of correctness between the compiler’s source and target code could be
performed. These approaches entail a significant amount of work. A better solution is
available, however. It is possible to bootstrap a secure compiler by implementing it in
the source language it compiles. Buth et al. [5] suggest compiling the compiler using a
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Figure 3.4: Bootstrapping a Secure Compiler using its Specification

possibly insecure compiler that is already available. Even if that compiler has not been
verified, a great degree of confidence can still be obtained in the resulting code using a
bootstrap self-test. The low-level version of the compiler that is produced by the insecure
implementation can be used to recompile the high-level version a second time (see Figure
3.3). The resulting code should be identical to that produced by the insecure compiler.
The probability that they produce the same incorrect code is very small. It would require
that the bug in the host be such that it implants an identical bug in the target code.

An alternative is to use the compiler specification as the first verified compiler. Buth
et al. [5] suggest manually applying the specification definitions to execute the compiler.
As they point out this is intractable due to the large size of the specification and
implementation. However we have already seen in the previous section that we can use a
theorem prover to execute the specification securely. Furthermore, we need only do this
once and then we will have a verified implementation in a low-level language which we
can use for further compilations. It can then be used as the compiler to produce verified
compiler implementations for other languages.

Since the source text is a verified source text this gives greater assurance than just using
an insecure compiler. Only the execution mechanism is insecure. As noted previously the
execution strategy can be trusted at least to the same degree as the proof of correctness of
the compiler. To gain even more confidence in the code the specification can be prototyped
in one or more of the other ways suggested, such as automatically producing a functional
language version. The resulting code can then be compared. The two versions originate
from the same verified source program: that of the compiler specification. However,
they use completely different execution strategies: application of primitive inference rules
and interpretation of a functional language. These execution environments are unlikely
to introduce the same bug. Therefore if they produce the same code for the compiled
compiler, then it is highly likely to be correct.

The above two methods are complementary, since execution by proof can be seen as
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providing just another possibly insecure compiling mechanism (albeit one that is more
secure than other methods). We can apply the compiled code obtained from executing the
specification to the source code to give a second version. Once more the resulting code
should be identical. This approach is illustrated in Figure 3.4.

Buth et al. also note that an interpreter implementation can be bootstrapped in a
similar way. This then gives further tests of equality of different bootstrapped code such
as comparing the code produced by the interpreter and that produced by the low-level
version of the compiler when applied to the compiler.
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Chapter 4

Summary

4.1 The Achievements of the Project

The initial aims of this project were to investigate the application of formal methods to
the validation of an implementation of a real language, Vista, for a real microprocessor,
VIPER. The “implementation” to be verified was actually a compiling algorithm specified
in higher-order logic. An algorithm for compiling a significant subset of Vista to a flat,
mnemonic assembly language for VIPER has been verified. We have thus succeeded in our
initial aim. There have been several other accomplishments of the project.

1. We have shown that if source and target language schemas rather than concrete
languages are defined, the compiling algorithm and associated proofs can be generic.
This means that a single correctness proof can be performed and then reused for
other target machines within the same family with a minimum of additional proof
work. Obtaining a verified implementation of a structured assembly language for a
particular microprocessor consists of filling in the gaps in the syntax and semantics
of the language, and discharging some simple explicit assumptions of the proof. If
formally verified compilers are to become commonplace, techniques such as this are
vital [20].

2. Previous compiler verification work has used file-based models of input and output,
if the problem has been considered at all. In this model input and output consists of
reading and writing to files. The ordering of events to different files is not considered.
We have shown that a more general model of input/output in which all such orderings
are recorded can be incorporated into our framework [17].

3. A reason for formally verifying a compiler is so that correctness properties proven
about source programs apply to the object code. This is important as it is
the object code not the source code which is actually executed. Often compiler
correctness theorems have been considered as ends in themselves. Exceptions to
this have been work to combine compiler correctness theorems with microprocessor
correctness proofs, producing verified system stacks. There has been no previous
work in formally combining compiler correctness theorems with verification systems
for applications programs however. The closest to this has been suggestions that the
raw semantics used in the correctness proofs be used to reason about application
programs. This is not the most suitable framework to do such proofs. A more
suitable framework is a verification system based on a programming logic. We
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have shown that a compiler correctness theorem can be formally linked with a
programming logic [19, 21, 22]. This allows proofs of application programs written in
the source language to be performed and theorems asserting that the same properties
hold of the compiled code to be obtained. No such formal link has previously been
made.

. We have investigated a novel definition of total correctness in which a single

specification gives all the relevent information about the I/O behaviour [19, 21, 22].
Having this information in one place means that it can be verified against more
abstract properties such as “an output follows every input”. This may be required
to prove safety properties of the system for example.

. Previous compiler correctness work has involved proving more than may strictly be

needed. If the target language is deterministic, only half of the normal compiler
correctness result is needed. We have shown that this is so. In particular we have
shown that with the simplified correctness result, correctness properties of object
code can still be obtained from correctness properties of source programs [20, 21, 22].

. We have verified a compiling algorithm specified in a non-executable logic. The ma-

jority of previous work has also only considered the correctness of algorithms. Such
proofs are important as the majority of programming bugs arise in the specification
rather than the implementation. However, ultimately an executable implementation
is needed. We have identified several different ways that implementations can be
obtained with differing degrees of security and time cost. We have suggested that
a secure approach is to execute the compiler algorithm itself by formal proof. If an
insecure compiler implemented from the algorithmic specification is also available
then the development cycle of application programs need not be delayed. Indeed,
this may actually improve the security of the compiled application code [20, 18].
An alternate way of executing higher-order logic specifications is to translate them
to a functional programming language such as ML. In conjunction with researchers
at UBC we have investigated this approach with respect to compiler specifications.
The UBC tool which automatically produces executable ML code from a HOL spec-
ification was used to produce an executable version of the verified Vista compiler.
This provides a way of automatically producing an implementation of the compiler
specification to use for the development of application programs. Hence, compilation
by proof and by translation to ML offer complimentary ways of executing compiler
specifications.

. A highly secure approach to obtaining correct object code is to verify an implemen-

tation with respect to the verified algorithm. However, a verified implementation of
a compiler in a high level language is not sufficient to obtain verified object code.
The compiler must itself be compiled into a low level language before it can be ex-
ecuted. To obtain a secure low-level implementation of a compiler, we apparently
need a verified compiler in advance. We have suggested a secure way in which a
low level implementation of a compiler can be obtained from a verified compiler
specification without already possessing a verified implementation. This approach is
complementary to a method that has been previously suggested. By combining the
approaches, the probability that the resulting compiler is incorrect can be reduced
further [18].
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4.2 A Development Methodology

Our work suggests the following methodology to obtain verified object code, given a
verified compiler algorithm such as ours with associated derived programming logic. The
source program of interest is first compiled using a fast but potentially insecure compiler
prototyped from the verified compiler algorithm. This could be produced by automatic
translation to ML. The compiled version is thoroughly tested using traditional techniques.
Once confidence in its correctness has been achieved, the source program is formally
verified against a formal specification using a derived programming logic for the source
language. This gives a correctness theorem about the source program. A derived inference
rule based on the compiler correctness theorem is then used to give a theorem stating
that the compiled code produced by the verified compiling algorithm also satisfies the
formal specification of the program. Execution by proof is used to give the compiled code
specified by the compiler algorithm. This code is the production version of the program. A
correctness theorem which textually includes this code can be obtained for documentation.
The production code is then compared with that produced by the insecure compiler. This
could be done automatically be the execution-by-proof tool. If the two versions of the
code are textually identical then the confidence in the correctness of the code gained
by traditional methods also applies to the production code. If they are not, this is an
indication that the insecure compiler contains an error. This should be remedied. All the
tests could also be rerun on this code. Since the slow but secure method of producing
compiled code is only used once at the end of the development cycle, the use of a verified
compiler should not slow that cycle. Also the confidence in the correctness of the insecure
compiler gained from its frequent use is not lost.

4.3 Errors Found

During the verification of the compiler and derivation of the programming logic, several
errors were discovered in the initial definitions. Little attempt to validate the definitions
prior to proof was made, so it is unsurprising that errors were found. Many of the
errors would probably have been found by traditional testing on a rapidly prototyped
implementation, though this may not have been so. It is interesting to note that many of
the errors were in the semantic definitions not in the translator. We will briefly consider
each error discovered in turn.

A bug was found in the procedure declarations part of the compiler. If a procedure
was compiled to a given address, it was assumed when compiling the body that it would
start at that address. This was not so, as the body was preceeded by an instruction to
store the link address. The only command to use the base address in the subset considered
was the While command which used it to calculate jump addresses. The error would thus
only have manifested itself in procedures which contained While loops. In this situation
a jump to the start of the loop would actually jump to the instruction just prior to the
start. A jump out of the loop would actually jump to the jump back to the start of the
loop. This bug was corrected and the proof completed.

When adding procedures an accidental change to the definition of the While loop
compiler was also made which introduced an error that had not been present in previously
verified versions. The address used to jump out of the loop was one less than it should have
been, so the loop would never be exited. This bug was corrected and the proof completed.

When implementing the programming logic, two errors were found in the formal

45




semantics of Vista. These errors were found because the expected programming logic
rule could not be derived from the Vista semantics.

The first error was in the semantics of machine instructions. It was specified that I/0
never occured. However, the program could be halted by the command due to an overflow,
for example. In that situation a DONE event should occur. There was also a corresponding
error in the semantics of Visa which meant the compiler correctness proof did not pick up
the mistake. The semantics was changed and the compiler correctness theorem reproved.

The second mistake, concerned the FINISH statement at the end of the program. This
should compile to a Stop command. The semantics of a program should always end in a
Halt state. This was not so. The implementation allowed a program to terminate in a
Run state. This was not corrected. However, the programming logic rule does not allow
programs to be proved correct if they do not end in a Halt state. This must currently be
achieved with an explicit Stop command.

It was noted during the verification that the initial PROGRAM statement should have
been compiled to a Jump to the base address of the body of the program. On reset,
VIPER is initialised with address zero in the program counter, so all programs should start
there. However, the compiler compiles procedures before the main body, thus execution
would start with the first procedure body. As reset was not modelled in the semantics, this
error was not picked up by any of the proofs. An explicit assumption in the proofs was that
execution would start with the program counter holding the start address of the program.
This emphasises one of the weaknesses of formal proofs: the proof is only as good as the
assumptions made and of the models used. However, the error was noticed because of the
explicit assumption in the correctness theorem. This error was not corrected, though the
verification work involved would not have been too great. This also highlights an anomily
in the design of Vista and its informal documentation. There appears to be no mechanism
provided in the informal language definition which ensures that address zero is in a code
region. A user program could, for example, declare it to be part of the data region or not
part of any region. Pressing reset with such a program loaded would result in random
data being executed.

When devising the formal semantics of the Vista subset many ambiguities were also
found in the informal documentation of the semantics.

4.4 Reducing the Work Required to Formally Verify a
Compiler

We have suggested that for verified compilers to become commonplace, the work required
to produce one must be minimised. This minimisation falls into two categories: reducing
the work required to produce an initial verified compiler and reducing the work required
to then produce further verified compilers for other systems. We now briefly overview the
techniques we employed to achieve these aims.

We have made use of several ways to reduce the work needed to initially verify a
compiler. First we noted that the task was made more tractable if split into specification
correctness and implementation correctness. We then noted that specification correctness
alone was sufficient as execution by proof and automatic conversion to ML then provide
secure execution mechanisms. We also noted that for deterministic languages only half
of the proof effort is required. This is because only one of the two theorems normally
considered to represent compiler correctness are actually needed to obtain the result that
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properties proved of source programs also hold of the compiled code. Splitting the compiler
algorithm itself into layers also made the proof more tractable, ensuring that the proof of
each level was concerned with only a few concepts. Finally, by noting that, for example,
the semantics of all the comparison operations have a similar structure, with identical
operations being performed at the lower level, we can do a single proof which applies to
them all. The alternative would be to repeat a similar proof for each separate instruction.

To speed the re-targeting of the compiler theory to other architectures we also employed
several methods. The first was to use generic theories to allow a single theory to apply to
an architecture family for a given source language. The second was to split the compiler
into multiple passes. This technique leaves open the possibility of replacing a level or set
of levels with ones specific to a new machine. Only the verification work involving the
changed levels would be needed to be redone. In our work, the Visa and Kaa languages
abstracted away from the full details of the VIPER microprocessor. Only features needed
to implement Vista were provided. This could be a disadvantage if the lower levels of the
compiler were to be used as the target for other high level languages. Then useful features
of the underlying processor might not be available. It would be of use if the compiler
was to be retargeted to different microprocessors however. Only the very bottom level
proof in which the full description of the processor was used would need to be redone for
machines which had all the features used. Since we did not implement this bottom level,
even without the generic features of our proofs, the proofs would apply to a wide range of
VIPER designs. If this was done in the simplest possible way, new features of the different
designs would not be exploited of course. However, old programs would still run on the
new machines with assurances of their correctness being quickly obtained. Even without
the above techniques, much of the underlying theory and experience gained is likely to be
of use in further compiler proofs. A second proof could be done much more quickly than
the first.

4.5 Philosophical Considerations

The work could not have been completed with any degree of assurance without some form
of mechanisation. We have found the HOL system to be a versatile tool, giving the user
control over the proof whilst also providing some automation of mundane tasks. It is
useful for the user to direct the proof, as a greater understanding of why the program is
correct is obtained. This is one of the advantages of performing formal proofs. It gives
more faith that the theorems proved are useful, and makes it easier to correct mistakes
when theorems cannot be proved.

The only axioms we used were those upon which the HOL system is built. This approach
is very time consuming since all theorems that are not pre-proved in the system have to
be proved. However, it increases our confidence in the correctness of the work. Proving
theorems which are true is often straightforward. The effort is expended in coming up with
the suitable definitions and lemmas in the first place. We spent much time working with
definitions and goals that were later modified when lemmas could not be proved. With
an axiomatic approach, such mistakes could be missed. Using an expressive specification
language such as higher order logic helps avoid mistakes. Whilst perhaps not essential,
it is useful in that ideas can be expressed more naturally than in a first order logic and
so mistakes are less likely to be made. For example, when defining the semantics we
frequently pass semantic relations as arguments. Other techniques such as animation of
definitions prior to formal proof would have helped to avoid some of the problems. Our use
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of generic definitions also saved much proof work. Not only can the work be re-targeted
to different microprocessors, but also, for example, a single correctness proof suffices for
all binary machine instructions.

The fact that a compiler correctness theorem has been proved, whether by hand or by
machine, does not give a guarantee that absolute faith can be placed in the compiler. Hand
proofs often contain mistakes. Theorem provers can contain bugs. Even if the theorem
is valid, it may not describe the real world sufficiently accurately. Correct code produced
by the compiler might be corrupted before it is executed; the wrong version of the code
might be used or the code might be loaded to the wrong location. Problems such as these
correspond to the explicit assumptions in the correctness theorem not being adhered to.
Alternatively, implicit assumptions might be invalid. For example, the semantics of the
target machine used in the proof might not correspond to the actual semantics of the
machine used. Also, the correctness theorem might simply be inadequate. For example,
it might not guarantee that execution of the compiled code terminates when the source
program does. It might merely state that if the compiled code did terminate it would have
the same meaning as the source program.

Some of these problems can be alleviated by proving other theorems. For example, a
loader to be used with the compiler could be verified. Similarly the correctness theorem
could be combined with other theorems about the correctness of the hardware with respect
to the semantics. It could also be proved (as we did) using the compiler correctness theorem
that if the source code is totally correct so is the compiled code. However, at some point
we move from the mathematical world into the real world. It is always possible that the
models we have reasoned about do not correspond to reality to a sufficient extent. The
main advantage of performing verification is that it forces us to thoroughly examine the
system in question and the reasons we believe it to be correct.

4.6 Conclusions

The project has illustrated the feasibility of using the HOL system to verify compilers for
real languages. Whilst we only considered a subset of the language, the proofs required for
many of the additional features would be straightforwardly based on those considered. For
example, the remaining atomic commands such as assignment to the B register are similar
to those considered; other forms of declarations are similar to data declarations; much of
the infra-structure for region declarations is in place; methods of escaping from loops could
be treated analogously to the Stop command; other forms of structured commands such
as case statements are variations on the proof of the While loop; adding preface blocks
would also be a simple extension of the While loop. The principles behind these are
similar to those implemented, so no new insight would have been gained by implementing
them. They could be implemented and verified with minimal effort. Omitted features
that would need more effort include vectors, nested procedures and the ability to change
regions. However, no great difficulty is foreseen with these features.

Verifying a compiler implementation can best be done by splitting the task into
specification correctness and implementation correctness. That is, we first verify an
algorithmic version. We then show that the implementation is correct with respect to the
algorithm. These two proofs can be combined to give the required correctness theorem
about the implementation. In the specification correctness proof the correspondence
between the semantics of the source and target language are considered. This is simplified
because the compiler specification is given in a logic with clean semantics. Implementation
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details do not need to be considered. In the implementation correctness part of the proof,
the implementation is compared with the specification. The details of the semantics of
the programming language in which the compiler is implemented must be considered.
However, the semantics of the source and target languages of the compiler do not need to
be considered. Only their syntax is important.

Implementations are easier to verify if they have a structure close to that of the
algorithm. This also makes it easier to write a correct implementation in the first place.
If the algorithmic specification does not have the structure intended to be used for the
implementation, a second specification should be given with an appropriate structure and
shown correct with respect to the original, since specifications are easier to reason about
than implementations.

It is possible to build a generic compiler correctness theory for a structured assembly
language which is applicable to a family of target machines. This is done using type
variables in place of the unspecified parts of the system and using a representation tuple
to provide the missing semantic information. Targeting the theory to a given machine
involves instantiating the types, providing a value for the tuple and proving some simple
theorems.

The oracle model of I/O behaviour can be incorporated into both a relational semantics
and interpreter semantics. These semantics can be used in a compiler correctness proof.
This use of oracles for I/O in conjunction with a relational style semantics appears to be
very versatile. It could be adapted for other languages.

Application program verification systems can be formally combined with a compiler
correctness statement within HOL. This allows results about the compiled code to be
formally deduced from results proved about source programs. It can also be generic and
so allow generic source programs to be verified with results about generic object code
being obtained. An additional advantage is that deriving the semantics embodied in the
verification system can uncover mistakes in the semantics used for the compiler correctness
proof.

Once a compiler algorithm has been verified, it can be used to produce high assurance
implementations in various ways other than by verifying it against an implementation: the
algorithm may be executable itself; it might be automatically converted to an executable
language; it might be written in an executable language that is semantically embedded in
the logic of the theorem prover; or it might be automatically executed by theorem proving
giving as a side effect a theorem stating that compiling the source code gives the target
code. Translation to ML provides a quick and fairly secure method of executing suitably '
written HOL definitions. Execution by proof is very secure but slow. However, it can be
used in conjunction with a fast but insecure production compiler, perhaps produced by
translation to ML. The development cycle of application programs is then not hindered.
This can also increase our confidence in the correctness of the compiled code. This means
that a verified compiler implementation is not strictly needed. Execution by proof can
be used to produce correct test cases with which to validate an implementation if one is
produced. It can also be used to do generic compilation.

If an implementation of the compiler in the compiler’s source language is verified
against the algorithm, then a secure implementation in a low-level language can be
bootstrapped from it either using an insecure compiler or by executing the specification
in the theorem prover. These two approaches are complementary. Our confidence that
the bootstrapping approaches give correct code relies on intuitive arguments that the
probabilities of particular events are negligible and that different methods are independent
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and so will not introduce the same bug. Such arguments can turn out to be fallacious
such as the once held belief that code written by independent programming teams would
not contain identical errors. In practice it often turns out that they do because their past
experiences are not independent. Even if the probability of errors being missed via one
method is thought to be low, combining complementary methods can not do harm.

4.7 Further Work

The project has highlighted further areas where research is warranted.

Vista is a relatively simple language and VIPER a simple microprocessor. Further work
is required to show that similar results can be obtained for more complex languages and
target microprocessors, and also for more complex compilers such as optimising compilers.

Previous verification work has been concerned with the verification of a single compiler.
For verification to become widespread it must be demonstrated that once a result is
obtained for one compiler, similar results can be quickly obtained for different compilers.
We made a preliminary investigation of one such generic approach. We have shown that a
compiler for a structured assembly language can be verified which is applicable to different
target machines of the same family. This suggests that a verified generic compiler could
be produced which would be applicable to a whole architecture family. Further work is
required to demonstrate this, and also to show that the results scale to more complex
commercial architectures.

In our work, the same details were abstracted from all levels of the compiler description
in the generic theory. This meant that only features common to all levels could be
abstracted out. However, in the multiple-pass approach, there are only limited differences
between the source and target languages of each level. All other details remain unchanged.
This suggests that the generic techniques could be applied on a level basis. Each level
would have its own generic features, thus reducing the work done on that level and allowing
it to be reused for a wider range of source and target machines. Levels could be combined
by instantiating their particular features to give generic theories with only the common
parts abstracted away. This technique could help scale our methods to more complex
source languages. Since we use interpreter semantics for the low-level languages, a generic
interpreter theory such as that suggested by Windley [52] could also be used.

Techniques such as the above will only partially help if the new source languages
or target architectures differ widely from those previously considered. It is, however,
possible that proof scripts can be quickly adapted to new languages if they are written and
structured with this in mind. One possibility worth investigating is to develop a coherent
toolkit of useful lemmas and verified language constructs, which can be incorporated
into proofs. The former would also simplify the proofs of similar constructs within a
single language, in a similar way to the way that using a generic binary machine function
instruction allowed one proof to suffice for all the binary machine functions of the language.

We have suggested that execution by proof can be a useful tool to perform real
compilation. Further work is required to demonstrate this for real application programs.
Execution by proof requires inference rules to be derived which perform the execution
for a particular compiler. An investigation of ways to automate the generation of these
rules would also be of use. Techniques to further optimise the proof process will also need
to be developed. For example, a single pass compiler would be more efficient than the
multiple pass compiler more suited to verification. It may be possible to automatically
convert a multiple pass description to a single pass one automatically using proof. The
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two descriptions would then be assured to be equivalent. This would also give a base from
which to prototype more efficient compiler implementations such as by translation to ML.

We have also suggested how a compiler implementation written in its own source
language could be used to bootstrap a secure low level version of the implementation.
This approach needs to be demonstrated.

The compiler we verified produced symbolic assembly code, rather than machine code.
A further assembly step is required to produce machine code. Such an assembler would
be very simple. Its proof would be similar to the proof of the Visa to Kaa assembly
step. However, the proof would be much simpler, since the semantics of the two levels
would be basically the same. The difference is mainly in the syntax: symbolic instruction
names against boolean valued words. Similarly, combining this correctness theorem with
those of the other levels would be similar to that of combining the other two levels. As a
consequence, little new insight would be gained from verifying such an assembler. However,
it would allow the compiler correctness work presented here to be formally linked to the
proofs of the VIPER microprocessor. More work is required to investigate how compiler
correctness proofs connected to high level proof systems can and should be combined
with microprocessor proofs. It is clear that we require the compiler to ensure that the
object code to possess the properties that we have shown the source code to posses. The
properties we wish to hold at and below the register level of a microprocessor are less
clear.

The formal semantics we have given for Vista can only directly reason about the
properties of terminating programs. All that can be said about non-terminating programs
is that they do not terminate. This is because for a non-terminating program, there would
be no final state corresponding to the initial state, for which the semantic relation would
be true. However, many interesting programs do not terminate. It is their I/O behaviour
which is important rather than a final state. Our semantics could be used to reason about
non-terminating programs indirectly, by specifying the properties of terminating segments
of the program. Such fragments could possibly be generated from an annotated program
using a technique similar to verification condition generation. Alternately, our semantics
could be modified to handle non-terminating programs. Further research is required.

We have assumed that specifications are given in source language terms such as using
variable and channel names rather than addresses. This will be natural if a refinement
methodology is used, so that the specification is a refinement of some higher-level
requirements specification. The compiler is then providing a further automatic refinement
step to a lower level language. However, we may need to know, for example, which
particular address a channel refers to, to ensure that an I/O device is correctly connected.
We thus would need aspects of the specification to be in target language terms. In our
work, the problem is not too great because few data abstraction facilities are provided:
the high-level concepts are not far removed from the target level. However, this would not
be so for more complex languages. This demands further investigation.
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