
A Case Study of Co-induction in Isabelle HOL ∗

Jacob Frost †

Computer Laboratory
University of Cambridge

e-mail:Jacob.Frost@cl.cam.ac.uk

August 1993

Abstract

The consistency of the dynamic and static semantics for a small functional
programming language was informally proved by R.Milner and M.Tofte. The
notions of co-inductive definitions and the associated principle of co-induction
played a pivotal role in the proof. With emphasis on co-induction, the work
presented here deals with the formalisation of this result in the higher-order
logic of the generic theorem prover Isabelle.

1 Introduction

In the paper Co-induction in Relational Semantics [1], R.Milner and M.Tofte prove
the dynamic and static semantics for a small functional programming language con-
sistent. The dynamic semantics associates a value to an expression of the language,
while the static semantics associates a type. A value has a type. Consistency re-
quires that the value of an expression has the type of the expression. Values can
be infinite or non-well-founded because the language contains recursive functions.
Non-well-founded values are handled using co-inductive definitions and the corre-
sponding proof principle of co-induction. The notion of greatest fixed points are
used to deal with co-inductive definitions. The aim of their paper is to direct at-
tention to the principle of co-induction, by giving an example of its application to
computer science.

The purpose of this paper is to investigate how the same consistency result can
be proved formally in the higher-order logic (HOL) of the generic theorem prover
Isabelle. There is little doubt that it is possible to prove the same or at least a very
similar result in Isabelle HOL. A more interesting question is how easy and natural
this can be done, in particular how well Isabelle HOL can handle the notions of

∗Supported by ESPRIT Basic Research Project 6453, Types for Proofs and Programs.
†From October 93: Department of Computer Science, Building 344, The Technical University

of Denmark, DK-2800 Lyngby, Denmark, e-mail:jf@id.dth.dk

1

co-inductive definitions and co-induction. It should be just as easy and natural to
do a formal proof as doing a detailed informal proof, preferably easier. To answer
the above question, and thereby unveiling strong and weak points of the Isabelle
system, is therefore also a purpose of this paper. In order to come up with an
answer, the formal proof in Isabelle HOL will be compared to its more informal
counterpart throughout this paper. Besides the above, doing a formal proof of
consistency in Isabelle HOL is a good opportunity to learn about both Isabelle
HOL and co-induction in general.

This paper is meant to be largely self contained. As a consequence a survey of
the original paper [1] is given first. For the same reason, it is followed by an overview
of the Isabelle system and its implementation of HOL. Finally the formalisation of
consistency in Isabelle HOL is described and discussed.

2 Co-induction in Relation Semantics

The aim of this section, is to give an overview of the parts of the paper [1] that
must be formalised in order to prove the consistency result. For a more thorough
treatment please refer to the original paper [1].

The original paper is concerned with proving the consistency of the dynamic
and static semantics of a small functional programming language. As a consequence
they first define such a language. Then they define the dynamic semantic, which
associates values to expressions and the static semantics which associates types to
expressions. Finally they state and prove consistency.

The first part of this section is concerned with notation. After that the rest of
this section will follow the structure of the original paper.

2.1 Notation

The notation used here is quite similar to that of the original paper. It differs slightly
in order to make the notation of this paper more homogeneous.

Let A and B be two sets. In the following, the disjoint union is written A + B

and the set of finite maps from A to B as A
fin−→ B. A finite map is written on the

form {a1 7→ b1, . . . , an 7→ bn}. For f ∈ A fin−→ B, dom(f) denotes the domain and

rng(f) the range of the map. If f, g ∈ A fin−→ B then f + g means f modified by g.

2.2 The Language

The language of expressions is defined by the BNF shown in figure 1. There are
five different kinds of expressions: constants including constant functions, variables,
abstractions, recursive functions and applications.

A key point here, is the existence of recursive functions. Without those there
would be no need for non-well-founded values and consequently no need for co-
induction in the proof of consistency.

2

c ∈ Const
v ∈ Var
e ∈ Ex ::= Const | Var | fn Var⇒ Ex | fix Var(Var) = Ex | Ex Ex

Figure 1: The Language

2.3 Dynamic Semantics

An expression evaluates to a value in some environment. The purpose of the dynamic
semantics is to relate environments and expressions to values. The first task is
therefore to explain the notions of environments and values. Furthermore it must
be explained how constant functions are applied to constants.

v ∈ Val = Const + Clos (1)

ve ∈ ValEnv = Var
fin−→ Val (2)

cl or 〈x, e, ve〉 ∈ Clos = Var× Ex× ValEnv (3)
Exists unique cl∞ solving: cl∞ = 〈x, e, ve+ {f 7→ cl∞}〉 (4)

apply ∈ Const× Const→ Const (5)

Figure 2: Values, Environments, Closures, ...

Values (1) are either constants or closures. Constant expressions always evalu-
ate to constant values, while abstractions and recursively defined functions always
evaluate to closures. Applications can evaluate to either. Environments (2) maps
variables to values. Closures (3) represent functions and are triples consisting of
the parameter to the function, the function body and the environment in which the
body should be evaluated. Closures can be infinite or non-well-founded due to the
existence of recursive functions. In case of a recursive function, the environment of
the closure will map the name of the function to the closure itself. The requirement
(4) expresses that the three mutual recursive equations (1)- (3) must be solved such
that the set of closures contains the non-well-founded closures. Finally, the function
apply (5) is supposed to capture how constant functions are applied to constants.

The dynamic semantics is a relational semantics often called a natural semantics.
It is formulated as an inference system consisting of six rules. All the rules have
conclusions of the form ve ` e −→ v, read e evaluates to v in ve. The inference
system appears in figure 3.

It is worth noting that the only purpose of (4) is to ensure that the dynamic
semantics always relates a unique value to a recursive function. It is never used
directly in the proof of consistency.

3

ve ` c −→ c

x ∈ dom(ve)
ve ` x −→ ve(x)

ve ` fn x⇒ e −→ 〈x, e, ve〉

cl∞ = 〈x, e, ve+ {f 7→ cl∞}〉
ve ` fix f(x) = e −→ cl∞

ve ` e1 −→ c1 ve ` e2 −→ c2 c = apply(c1, c2)
ve ` e1 e2 −→ c

ve ` e1 −→ 〈x′, e′, ve′〉
ve ` e2 −→ v2

ve′ + {x′ 7→ v2} ` e′ −→ v
ve ` e1 e2 −→ v

Figure 3: Dynamic Semantics

2.4 Static Semantics

An expression elaborates to a type in some type environment. The purpose of the
static semantics is to relate type environments and expressions to types. Before this
can be done, the notion of type and type environments must be explained. It must
also be explained what type a constant has.

τ ∈ Ty ::= {int, bool, . . .} | Ty→ Ty (6)

te ∈ TyEnv = Var
fin−→ Ty (7)

isof ⊆ Const× Ty (8)
If c1 isof τ1 → τ2 and c2 isof τ1 then apply(c1, c2) isof τ2 (9)

Figure 4: Types, Type Environments, ...

Types are primitive types, such as int, bool or function types (6). Type envi-
ronments map variables to types (7). The correspondence relation isof (8) relate
a constant to its type. The idea is that it should relate for example 3 to int and
true to bool. It must be consistent with the function apply (9). The relation isof is
extended pointwise to relate environments and type environments.

The static semantics is again a relational semantics, formulated as an inference
system and consisting of five rules. All the rules have conclusions of the form
te ` e =⇒ τ , read e elaborates to τ in te. The inference system is shown in
figure 5.

4

c isof τ
te ` c =⇒ τ

x ∈ dom(te)
te ` x =⇒ te(x)

te+ {x 7→ τ1} ` e =⇒ τ2

te ` fn x⇒ e =⇒ τ1 → τ2

te+ {f 7→ τ1 → τ2}+ {x 7→ τ1} ` e =⇒ τ2

te ` fix f(x) = e =⇒ τ1 → τ2

te ` e1 =⇒ τ1 → τ2 te ` e2 =⇒ τ1

te ` e1 e2 =⇒ τ2

Figure 5: Static Semantics

2.5 Consistency

The original paper is concerned with proving what is called basic consistency (10).
Basic consistency expresses that in corresponding environments, expressions evalu-
ating to constants must elaborate to the type of the constant. At first it might seem
strange only to consider constant values. The reason is that functions, represented
as closures, only are of interest because they can be applied and in the end yield
some constant value.

Basic consistency cannot be proved directly by induction on the structure of
evaluations. The reason is that an evaluation resulting in a constant might require
evaluations resulting in closures. Attempting to do a proof, it shows up as too weak
induction hypothesises.

Basic Consistency

If ve isof te and ve ` e −→ c and te ` e =⇒ τ then c isof τ (10)

Consistency

If ve : te and ve ` e −→ v and te ` e =⇒ τ then v : τ (11)

Figure 6: Basic Consistency and Consistency

It is necessary to prove a stronger result, called consistency (11). Consistency is
formulated by extending the correspondence relation isof. The extended correspon-
dence relation, :, also expresses what it means for a closure to have a type. It is
defined as the greatest fixed point of the function in figure 7. See [1] for a discussion
of why this particular function was chosen.

The notion of greatest fixed point is defined in figure 8. The corresponding

5

f(s) ≡ { 〈v, τ〉 |
if v = c then c isof τ ;
if v = 〈x, e, ve〉
then there exist a te such that

te ` fn x⇒ e =⇒ τ and
dom(ve) = dom(te) and
〈ve(x), te(x)〉 ∈ s for all x ∈ dom(ve)

}
v : τ ≡ 〈v, τ〉 ∈ gfp(Val× Ty, f)

Figure 7: The Extended Correspondence Relation

principle of co-induction expresses, that in order prove that a set s is included in the
greatest fixed point of some function f , it is enough to prove that it is f -consistent,
i.e. s ⊆ f(s).

Greatest Fixed Points

gfp(u, f) ≡ ⋃{s ⊆ u | s ⊆ f(s)}

Co-induction

s ⊆ f(s)
s ⊆ gfp(u, f)

Figure 8: Greatest Fixed Points and Co-induction

It is interesting to consider what would happen if : was defined using the least
fixed point instead of the greatest. The function does not require non-well-founded
closures to be related to types. As a consequence taking the least fixed point, only
the well-founded closures would be related to types. This would make it impossible
to prove the result because closures might be non-well-founded. On the other hand,
the function does not prevent non-well-founded closure from being related to types.
Therefore taking the greatest fixed point causes non-well-founded closures to be
related as well.

Consistency is proved by induction on the structure of evaluations or as they
expressed in [1], on the depth of the inference. Applying induction, results in six
cases, one for each of the rules of the dynamic semantics. The case for recursive
functions is the most interesting in that it uses co-induction. The reason is that the
non-well-founded closures are introduced by recursive functions.

6

3 Isabelle HOL

Isabelle is a generic theorem prover. It can be instantiated to support reasoning in
an object-logic by extending its meta-logic. All the symbols of the object-logic are
declared using typed lambda calculus, while the rules are expressed as axioms in the
meta-logic.

Having explained the notation used, the typed lambda calculus used by Isabelle
is first described. Then the pure Isabelle system is described and it is explained
how the pure Isabelle system is extended to support reasoning in HOL. Finally an
implementation of set theory in HOL is described. The following can only give an
overview, but there are several papers describing Isabelle and its object-logics in
detail, for example [3, 5, 4].

3.1 Notation

Here and in the rest of the paper, an Isabelle-like notation will be used. The Isabelle
system uses an ASCII-notation. When working in Isabelle it is often necessary to
supply information about the syntax, such as where arguments should be placed
when using mix-fix notation, precedence etc. In order to improve readability most
such information is left out here and a more mathematical notation is adapted,
allowing the use of mathematical symbols etc.

3.2 Typed Lambda Calculus

Isabelle represents syntax using the typed λ-calculus. Lambda abstraction is written
λx.t and application t1(t2), where x is a variable and t, t1, t2 are terms.

Types in Isabelle can be polymorphic, ie. contain type variables such as α in the
type α list. Function types are written σ1 ⇒ σ2, where σ1 and σ2 are types. New
constants are declared by giving their type, for example: succ :: nat⇒ nat.

Isabelle uses a notion of classes to control polymorphism. Each type belong to
a class. A class can be a subset of another class. Isabelle contains the built-in class
logic of logical types. A new class is declared as a subclass of another class, for
example the class term of terms which is included in the class logic. New types
and type constructors can be declared by giving the class of the arguments and the
result, for example list :: (term)term.

Curried abstraction λx1. . . .λxn.t is abbreviated λx1 . . .xn.t, and curried applica-
tion t(t1) . . . (tn) as t(t1, . . . , tn). Similar curried function types σ1 ⇒ (. . .σn ⇒ σ . . .)
are abbreviated [σ1, . . . , σn]⇒ σ.

3.3 Pure Isabelle

Object-logics are implemented by extending pure Isabelle which is described here.
Pure Isabelle consist of the meta-logic and has support for doing proofs in this
meta-logic and its possible extensions.

7

3.3.1 Syntax

Isabelle’s meta-logic is a fragment of intuitionistic higher order logic. The symbols
of the meta-logic is declared exactly the same way as symbols of an object-logic,
by using typed lambda calculus. There is a built-in subclass of logic called prop

of meta-level truth values. The symbols of the meta-logic are the three connec-
tives, shown in figure 9, corresponding to implication, universal quantification and
equality.

Infixes

=⇒ :: [prop, prop]⇒ prop∧
:: (α :: logic⇒ prop)⇒ prop

≡ :: [α :: logic, α]⇒ prop

Figure 9: Meta-level connectives

Nested implication φ1 =⇒ (. . .φn =⇒ φ . . .) may be abbreviated [[φ1; . . . ;φn]] =⇒
φ and outer quantifiers can be dropped. Here ¬b1 = b2 is also written b1 6= b2.

3.3.2 Inferences

The meta-logic is defined by a set of primitive axioms and inference rules. Proofs
are seldom constructed using these rules. Usually a derived rule, the resolution rule,
is used:

[[ψ1; . . . ;ψm]] =⇒ ψ [[φ1; . . . ;φn]] =⇒ φ
([[φ1; . . . ;φi−1;ψ1; . . .ψm;φi+1; . . . ;φn]] =⇒ φ)s

(ψs ≡ φis)

Here 1 ≤ i ≤ n and s is a higher order unifier of ψ and φ. A big machinery
is connected with resolution and higher order unification. This includes schematic
variables, lifting over formulae and variables etc. For the details refer to [3, 5].

3.3.3 Proofs

It is possible to construct proofs both in a forward and backward fashion in Isabelle.
Bigger proofs are however usually constructed backward.

In Isabelle, a backwards proof is done by refining a proof state, until the de-
sired result is proved. A proof state is simply a meta-level theorem of the form
[[φ1; . . . ;φn]] =⇒ φ, where φ1, . . . , φn can be seen as subgoals and φ as the main
goal. Repeatedly refining such a proof state, by resolving it with suitable rules,
corresponds to applying rules to the subgoals until they all are proved.

In order to manage backward proofs, Isabelle has a subgoal module. It keeps
track of the current and previous proof states. This make it possible, for example,
to undo proof steps.

8

Prefixes

¬ :: bool⇒ bool negation
= :: [α :: term, α]⇒ bool equality

Infixes

∧ :: [bool, bool]⇒ bool conjunction
∨ :: [bool, bool]⇒ bool disjunction
→ :: [bool, bool]⇒ bool implication

Binders

∀ :: [α :: term⇒ bool]⇒ bool universal quantification
∃ :: [α :: term⇒ bool]⇒ bool existential quantification

Figure 10: Symbols of Isabelle HOL

3.3.4 Tactics and Tacticals

Tactics perform backward proofs. They are applied to a proof state and may change
several of the subgoals.

Isabelle has many different tactics. There are tactics for proving a subgoal by
assumption, different forms of resolution for applying rules to subgoals etc. These
will work in all logics.

Isabelle also have a number of generic packages, which depend on properties of
the logic in question. To mention two, a classical reasoning package and a simplifier
package. Each contain a number of tactics. To get access to these, the packages
must be successfully instantiated for the actual logic. Then the classical reasoning
package, for example, will provide a suite of tactics for doing proofs, using classical
proof procedures. The tactic fast tac for example will try to solve a subgoal, by
applying the rules in a supplied set of rules in a depth first manner.

Tactics can be combined to new tactics using tacticals. There are tacticals
for doing depth-first, best-first search etc., but also simpler tacticals for sequential
composition, choice, repetition etc.

3.4 HOL

A number of logics have been implemented in Isabelle. They are described in [4].
Among these is HOL. The description of HOL given here will be brief and only cover
parts relevant to the rest of the presentation. For a thorough treatment refer to [4].

There is a subclass of logic, called term of higher order terms and a type
belonging to this, bool of object-level truth values. There is an implicit coercion
to meta-level truth values called Trueprop. The symbols needed for this paper is
declared in figure 10.

The formulation of HOL in Isabelle, identifies meta-level and object-level types.

9

Types

set :: (term)term

Constants

({ }) :: α⇒ α set singleton

Binders

({ . }) :: [α⇒ bool]⇒ α set comprehension

Infixes

∈:: [α, α set]⇒ bool membership
∪ :: [α set, α set]⇒ α set union
∩ :: [α set, α set]⇒ α set intersection

Prefixes⋃
:: ((α set) set)⇒ α set general union⋂
:: ((α set) set)⇒ α set general intersection

Figure 11: Symbols of the Set Theory

This makes it possible to take advantage of Isabelle’s type system. Type checking
is done automatically and most type constraints are implicit.

Using Isabelle HOL one often wants to define new types. Isabelle does not sup-
port type definitions, but they can be mimicked by explicit definition of isomorphism
functions. See [2].

The meaning of the symbols is defined by a number of rules. They are usually
formulated as introduction or elimination rules. Taking ∨ as an example, one of its
introduction rules is P =⇒ P ∨Q and the elimination rule is [[P ∨Q;P =⇒ R;Q =⇒
R]] =⇒ R.

Most of the generic reasoning packages are instantiated to support reasoning in
HOL. This includes the simplifier and the classical reasoning package.

3.5 Set Theory

A formulation of set theory has been given within Isabelle HOL. Again only the
relevant part of the theory is covered here, but a detailed description of the full
theory can be found in [4].

In order to formulate the set theory a new type constructor set is declared.
Then the symbols of the set theory are declared. The symbols necessary for this
presentation are shown in figure 11.

Just as before the meaning of the symbols is defined by a number of rules. The set
theory also contains a large number of derived rules. Most of the generic reasoning
packages are also instantiated to support reasoning in the set theory.

10

The set theory is used to define a number of new types and type constructors,
using the technique described in [2]. Examples include natural numbers nat, disjoint
unions + and products ∗.

4 Formalisation in Isabelle HOL

This section describes how the contents of the original paper has been formalised in
Isabelle HOL.

The formalisation rests on a theory of least and greatest fixed points. This
theory is described first. After that the structure follows that of §2, describing the
formalisation of each of the necessary constructs in turn. Finally, some aspects of
the formalisation are discussed.

4.1 Least and Greatest Fixed Points

A theory of least and greatest fixed points has been developed in Isabelle HOL
[2]. The theory of least fixed points can be used to deal with the formalisation of
inductive definitions in Isabelle HOL. Examples are inductively defined datatypes
and relations, such as the ones found in the original paper, from now on just called
inductive datatypes and relations. Similarly the theory of greatest fixed points can
be used to deal with the formalisation of co-inductive definitions of for example
datatypes and relations. These will be called co-inductive datatypes and relations.
The extended correspondence relation in the original paper can be seen as a co-
inductive relation.

The theory of least and greatest fixed points is based on the Isabelle HOL set
theory. The definitions of least and greatest fixed points, which appear in figure 12
resemble usual set theoretic definitions.

Least Fixed Points Greatest Fixed Points

Constant lfp :: [α set⇒ α set]⇒ α set gfp :: [α set⇒ α set]⇒ α set

Axiom lfp(f) ≡ ⋂{s.f(s) ⊆ s}; gfp(f) ≡ ⋃{s.s ⊆ f(s)};

Figure 12: Least and Greatest Fixed Points

Most of the properties, derived from the definitions, can be characterised as
either introduction or elimination rules. In figure 13, the introduction rules can be
used to conclude that some set is included in the least or greatest fixed point, the
elimination rules that some set contains the least or greatest fixed point.

Induction is elimination. Co-induction is introduction. Both follow directly from
the definitions. Taking the intersection, the least fixed point must be included in all
s such that f(s) ⊆ s. Similar taking the union the greatest fixed point include all s
such that s ⊆ f(s).

11

Least Fixed Points Greatest Fixed Points

Co-induction s ⊆ f(s) =⇒ s ⊆ gfp(f);

Introduction mono(f) =⇒ mono(f) =⇒
f(lfp(f)) ⊆ lfp(f); f(gfp(f)) ⊆ gfp(f);

Induction f(s) ⊆ s =⇒ lfp(f) ⊆ s;

Elimination mono(f) =⇒ mono(f) =⇒
lfp(f) ⊆ f(lfp(f)); gfp(f) ⊆ f(gfp(f));

Fixed Point mono(f) =⇒ mono(f) =⇒
lfp(f) = f(lfp(f)); lfp(f) = f(lfp(f));

Figure 13: Properties of Least and Greatest Fixed Points

In order to derive the introduction rule for least fixed points and the elimination
rule for greatest fixed points it is necessary to assume that the function is monotone.
The intersection or the union of a set of sets satisfying some condition, does not
necessarily satisfy the condition themselves.

Not very surprisingly, least fixed points enjoy an elimination rule corresponding
to the one for greatest fixed points. Similarly greatest fixed points enjoy an intro-
duction rule corresponding to the one for least fixed points. They can be derived
from the induction respectively co-induction rule, by assuming that f is monotone.

Deriving the fixed point property from the introduction and elimination rules is
trivial.

Notice that the definitions and properties are completely symmetric. It is pos-
sible to go from least to greatest fixed points and back, by swapping lfp with gfp,
the arguments of ⊆ and intersections with unions. Doing this, introduction rules
becomes elimination rules and vice versa.

The induction and co-induction rule in figure 13 are the only rules that do not
assume that f is monotone. It is difficult not to ask which rules can be derived,
assuming that f is monotone. In fact a lot of different rules can be derived, but so
far I have found the two rules in figure 14 the most useful. Again the properties are
symmetric.

In practice, introduction rules are used to prove that some element belongs to
a fixed point, elimination rules that some property holds for all elements of a fixed
point. All the rules are therefore put into a form that supports this kind of reasoning.

The only rules shown in figure 15 are the induction and co-induction rules, but
the other rules can of course be reformulated in the same way.

Most of the rules described above come as part of a Isabelle HOL theory of
least and greatest fixed points. It was however necessary to derive the form of the
co-induction rule shown in figure 14 and 15.

12

Least Fixed Points Greatest Fixed Points

Co-induction [[mono(f);
s ⊆ f(s ∪ gfp(f))

]] =⇒
s ⊆ gfp(f);

Induction [[mono(f);
f(s ∩ lfp(f)) ⊆ s

]] =⇒
lfp(f) ⊆ s;

Figure 14: Properties of Least and Greatest Fixed Points

Least Fixed Points Greatest Fixed Points

Co-induction [[mono(f);
x ∈ f({x} ∪ gfp(f))

]] =⇒
x ∈ gfp(f);

Induction [[mono(f);
x ∈ lfp(f);∧
y.
y ∈ f(lfp(f) ∩ {z.p(z)}) =⇒
p(y)

]] =⇒
p(x);

Figure 15: Properties of Least and Greatest Fixed Points

4.2 The Language

Expressions, defined by the BNF in figure 1, can be formally expressed in Isabelle
HOL as an inductive datatype. It can be done using the theory of least fixed points,
but require quite a lot of tedious work. First the set of expressions must be defined
as the least fixed point of a suitable monotone function. Then, in order to make
expressions distinct from members of other types and to take advantage of Isabelle’s
type system, the set of expressions should be related to an abstract meta-level type of
expressions. It can be done by declaring two isomorphism functions, an abstraction
and a representation function. Using these, operations and properties should be
lifted to the abstract level. From then on, all reasoning should take place at the
abstract level. A description of the above method can be found in [2]

The solution adapted here and in the following is to give an axiomatic specifica-

13

tion of inductive datatypes. Of course there is a greater risk of introducing errors,
but given the amount of work otherwise required, that the above method for formal-
ising inductive datatypes has been investigated elsewhere and that axiomatisation
of inductive datatypes is well understood, it seems a sensible choice.

A standard axiomatisation of expressions is shown in figure 16. A type of expres-
sions Ex is declared together with constants corresponding to the constructors of the
datatype. There are rules stating that the constructors are distinct and injective.
Because Ex is an inductive datatype there is also an induction rule. There is no
need for introduction rules, because the constructors have been declared using the
typed lambda calculus. It also simplifies for example the induction rule, because no
type constraints have to appear explicitly.

Neither of the above solutions are very satisfactory. The only reasonable solution
from a practical point of view, would be to give the constructors and their types
to Isabelle and then let Isabelle generate all the necessary definitions and derive all
the necessary properties automatically. Such a package should also set up tactics to
support reasoning about inductive datatypes and relations.

4.3 Dynamic Semantics

Before the dynamic semantics can be formalised it is necessary to formalise the
notion of values, environments and closures. It might seem a relatively hard task
if it had to be done using greatest fixed points. Furthermore only a few obvious
properties are needed in order to prove consistency. All these properties hold for
every solution to the three equations (1)-(3) in figure 2. The requirement (4) that
the set of closures must contain all non-well-founded closures is not directly relevant
to the proof of consistency. In this light, it seems acceptable simply to state the few
obvious properties needed. These appear in figure 17. It must however be considered
a lacking feature of Isabelle that there is no automatic support for mutually recursive
co-inductive datatypes.

The inference system in figure 3 can be seen as an inductive definition of a
relation, in this case relating environments, expressions and values. Although this
is not stated explicitly, it is obviously a correct interpretation because consistency
is proved by induction on the depth of the inference in the original paper.

An inductive relation such as in figure 3 can be represented as a set of triples.
Here a triple consist of an environment, an expression and a value. Because the
relation is defined inductively, the corresponding set can be defined as the least fixed
point of a function derived from the rules of the inference system. The formalisation
in Isabelle HOL is based on this idea and appear in figure 18.

The function eval fun is obtained directly from the rules of the inference system.
For each rule all free variables are existentially quantified. The triple corresponding
to the conclusion is claimed equal to pp. Every occurrence of the relation as a premise
is translated to a corresponding triple and claimed to belong to the argument s of
the function. Every other premise is translated directly into a corresponding Isabelle
HOL formula. Finally all the pieces are combined by conjunctions and disjunctions
and packed into a set comprehension.

14

Types

Const :: term ExVar :: term Ex :: term

Constants

e const :: Const⇒ Ex

e var :: ExVar⇒ Ex

(fn ⇒) :: [ExVar, Ex]⇒ Ex

(fix () =) :: [ExVar, ExVar, Ex]⇒ Ex

(@) :: [Ex, Ex]⇒ Ex

Injectiveness Axioms

e const(c1) = e const(c2) =⇒ c1 = c2;
...

e11@e12 = e21@e22 =⇒ e11 = e21 ∧ e12 = e22;

Distinctness Axioms

e const(c) 6= e var(x); . . . e const(c) 6= e1@e2;
...

fix f(x) = e1 6= e1@e2;

Induction Axiom

[[
∧
x.p(e var(x));∧
c. p(e const(c));∧
x e. p(e) =⇒ p(fn x⇒ e);∧
f x e. p(e) =⇒ p(fix f(x) = e);∧
e1 e2. p(e1) =⇒ p(e2) =⇒ p(e1@e2)

]] =⇒
p(e);

Figure 16: Expressions

15

Types

Val :: term ValEnv :: term Clos :: term

Constants
v const :: Const⇒ Val

v clos :: Clos⇒ Val

ve emp :: ValEnv
(+ { 7→ }) :: [ValEnv, ExVar, Val]⇒ ValEnv

ve dom :: ValEnv⇒ ExVar set

ve app :: [ValEnv, ExVar]⇒ Val

(〈 , , 〉) :: [ExVar, Ex, ValEnv]⇒ Clos

c app :: [Const, Const]⇒ Const

Axioms

v const(c1) = v const(c2) =⇒ c1 = c2;
v clos(〈x1, e1, ve1〉) = v clos(〈x2, e2, ve2〉) =⇒
x1 = x2 ∧ e1 = e2 ∧ ve1 = ve2;
v const(c) 6= v clos(cl);

ve dom(ve+ {x 7→ v}) = ve dom(ve) ∪ {x};
ve app(ve+ {x 7→ v}, x) = v;
x1 6= x2 =⇒ ve app(ve+ {x1 7→ v}, x2) = ve app(ve, x2);

Figure 17: Values, Environments, Closures,...

16

Constants

eval fun :: (ValEnv ∗ Ex ∗ Val) set⇒ (ValEnv ∗ Ex ∗ Val) set
eval rel :: (ValEnv ∗ Ex ∗ Val) set
(` =⇒) :: [ValEnv, Ex, Val]⇒ bool

Axioms

eval fun(s) ≡
{ pp.

(∃ve c.pp = 〈〈ve, e const(c)〉, v const(c)〉)∨
(∃ve x.pp = 〈〈ve, e var(x)〉, ve app(ve, x)〉 ∧ x ∈ ve dom(ve))∨
(∃ve e x.pp = 〈〈ve, fn x⇒ e〉, v clos(〈x, e, ve〉)〉)∨
(∃ve e x f cl.
pp = 〈〈ve, fix f(x) = e〉, v clos(cl∞)〉∧
cl∞ = 〈x, e, ve+ {f 7→ v clos(cl∞)}〉

)∨
(∃ve e1 e2 c1 c2.
pp = 〈〈ve, e1@e2〉, v const(c app(c1, c2))〉∧
〈〈ve, e1〉, v const(c1)〉 ∈ s ∧ 〈〈ve, e2〉, v const(c2)〉 ∈ s

)∨
(∃ve ve′ e1 e2 e

′ x′ v v2.
pp = 〈〈ve, e1@e2〉, v〉∧
〈〈ve, e1〉, v clos(〈x′, e′, ve′〉)〉 ∈ s∧
〈〈ve, e2〉, v2〉 ∈ s∧
〈〈ve′ + x′ 7→ v2, e

′〉, v〉 ∈ s
)
};
eval rel ≡ lfp(eval fun);
ve ` e −→ v ≡ 〈〈ve, e〉, v〉 ∈ eval rel;

Figure 18: Dynamic Semantics

17

The formalisation of the dynamic semantics must be correct. Given the defini-
tions figure 18, introduction rules very similar to the inference system can be derived.
More importantly it is possible to derive an induction rule. Big induction rules are
notoriously difficult to write. The advantage of the approach used here, compared
to an axiomatic approach is that it is possible to derive the correct induction rule.
Some of the introduction rules and the induction rule appear in figure 19.

Although not very difficult, it is time consuming to define relations and derive
properties as described above. Automating the process would save a lot of work.
Isabelle should have inductive definitions.

4.4 Static Semantics

Before formalising the static semantics, it is necessary to formalise the notions of
types, type environments etc. This is done in figure 20.

The type of types is another example of a construct that could be formalised
as an inductive datatype using the theory of least fixed points. But as before, and
for the same reasons, this is not done. Instead it is specified axiomatically. In fact
only the properties needed for this paper are stated. Similar for the notion of type
environments.

Just as it was the case in the original paper, the existence of a correspondence
relation, relating constants to their type is claimed. The requirement that this
should be consistent with application of constants is taken directly from the original
paper.

The actual inference system can again be seen as an inductive definition of a
relation. Again, it is formalised in Isabelle HOL, using the theory of least fixed
points. The formalisation appears in figure 21.

Surprisingly, the fact that the relation is defined as the least fixed point and
therefore enjoys an induction rule is never used in the proof of consistency. It is
only necessary to use ordinary elimination and it would have been possible to use
the greatest fixed point for the definition instead.

The inference system has an interesting and very useful property. In a derivation
of a statement ve ` e =⇒ τ , only one rule can have been used for the last inference.
The reason is that there is exactly one rule for each kind of expression. As a
consequence, knowing that ve ` e =⇒ τ hold it possible to conclude that the
premises of the corresponding rule hold. In other words it is possible to use each
of the rules backward. This kind of reasoning is used in the proof of consistency.
The ordinary elimination rule and derived elimination rules allowing the kind of
reasoning just described, are shown in figure 22.

To derive the last rules it is of course necessary to use properties of expressions.
They are proved in a few lines by invoking a classical reasoning tactic with a proper
set of rules. Similar for the rest of the rules, it cannot be claimed that they are
difficult to derive. It is, however, very time consuming.

18

Introduction

ve ` e const(c) −→ v const(c);
x ∈ ve dom(ve) =⇒ e ` e var(x) −→ ve app(ve, x);

...
[[ve ` e1 −→ v clos(〈x′, e′, ve′〉);
ve ` e2 −→ v2;
ve′ + {x′ 7→ v2} ` e′ −→ v

]] =⇒
ve ` e1@e2 −→ v;

Induction

[[ve ` e −→ v;∧
ve c. p(ve, e const(c), v const(c));∧
x ve. x ∈ ve dom(ve) −→ p(ve, e var(x), ve app(ve, x));∧
x ve e. p(ve, fn x⇒ e, v clos(〈x, e, ve〉));∧
x f ve cl∞ e.
cl∞ = 〈x, e, ve+ {f 7→ v clos(cl∞)}〉 =⇒
p(ve, fix f(x) = e, v clos(cl∞));∧
ve c1 c2 e1 e2.
[[p(ve, e1, v const(c1)); p(ve, e2, v const(c2))]] =⇒
p(ve, e1@e2, v const(c app(c1, c2)));∧
ve ve′ x′ e1 e2 e

′ v v2.
[[p(ve, e1, v clos(〈x′, e′, ve′〉));
p(ve, e2〉, v2〉);
p(ve′ + {x′ 7→ v2}, e′, v)

]] =⇒
p(ve, e1@e2, v)

]] =⇒
p(ve, e, v);

Figure 19: Derived Properties

19

Types

TyConst :: term Ty :: term TyEnv :: term

Constants

t const :: TyConst⇒ Ty

(→) :: [Ty, Ty]⇒ Ty

te emp :: TyEnv
(+ { 7→ }) :: [TyEnv, ExVar, Ty]⇒ TyEnv

te app :: [TyEnv, ExVar]⇒ Ty

te dom :: TyEnv⇒ ExVar set

(isof) :: [Const, Ty]⇒ bool

(isof env) :: [ValEnv, TyEnv]⇒ bool

Axioms

t const(c1) = t const(c2) =⇒ c1 = c2;
τ11 → τ12 = τ21 → τ22 =⇒ τ11 = τ21 ∧ τ12 = τ22;
[[
∧
p. p(t const(p));∧
τ1 τ2. p(τ1) =⇒ p(τ2) =⇒ p(τ1 → τ2)

]] =⇒
p(τ);

te dom(te+ {x 7→ τ}) = te dom(te) ∪ {x};
te app(te+ {x 7→ τ}, x) = τ ;
x1 6= x2 =⇒ te app(te+ {x1 7→ τ}, x2) = te app(te, x2);

ve isof env te ≡
ve dom(ve) = te dom(te)∧
(∀x.
x ∈ ve dom(ve)→
(∃c. ve app(ve, x) = v const(c) ∧ c isof te app(te, x))

);

[[c1 isof τ1 → τ2; c2 isof τ1]] =⇒ c app(c1, c2) isof τ2;

Figure 20: Types, Type Environments,...

20

Constants

elab fun :: (TyEnv ∗ Ex ∗ Ty) set⇒ (TyEnv ∗ Ex ∗ Ty) set
elab rel :: (TyEnv ∗ Ex ∗ Ty) set
(` =⇒) :: [TyEnv, Ex, Ty]⇒ bool

Axioms

elab fun(s) ≡
{ pp.

(∃te c τ.pp = 〈〈te, e const(c)〉, t〉 ∧ c isof τ)∨
(∃te x.pp = 〈〈te, e var(x)〉, te app(te, x)〉 ∧ x ∈ te dom(te))∨
(∃te x e τ1 τ2.pp = 〈〈te, fn x⇒ e〉, τ1 → τ2〉 ∧ 〈〈te+ {x 7→ τ1}, e〉, τ2〉 ∈ s)∨
(∃te f x e τ1 τ2.
pp = 〈〈te, fix f(x) = e〉, τ1 → τ2〉∧
〈〈te+ {f 7→ τ1 → τ2}+ {x 7→ τ1}, e〉, τ2〉 ∈ s

)∨
(∃te e1 e2 τ1 τ2 .
pp = 〈〈te, e1@e2〉, τ2〉 ∧ 〈〈te, e1〉, τ1 → τ2〉 ∈ s ∧ 〈〈te, e2〉, τ1〉 ∈ s

)
};
elab rel ≡ lfp(elab fun);
te ` e =⇒ τ ≡ 〈〈te, e〉, τ〉 ∈ elab rel;

Figure 21: Static Semantics

4.5 Consistency

The formalisation of consistency is divided into two parts. First it is considered how
to state consistency in Isabelle HOL, then how to prove it.

4.5.1 Stating Consistency

Stating consistency proceeds just as in the original paper. The real interest is on
proving basic consistency. In order to do that, is necessary to state and prove the
stronger consistency result. This result is stated using an extended version of the
correspondence relation isof.

The effort is concentrated on defining the extended correspondence relation and
proving some properties about it. In the original paper it is defined as the greatest
fixed point of a function. The formal definition is very similar. The only real
difference is the style used to write the function. Here the style used is the same as
was used to formalise the inference systems. In other words the new correspondence
relation is a co-inductive relation defined by two rules. Making the formalisation
consistent with the previous formalisations of inference systems, allows one to prove
properties in a uniform way. It is for example easy to prove the function monotone
using the same tactic as earlier. Worries that errors might have been introduced in

21

Ordinary Elimination

[[te ` e =⇒ τ ;∧
te c τ. c isof t =⇒ p(te, e const(c), τ);∧
te x. x ∈ te dom(te) =⇒ p(te, e var(x), te app(te, x));∧
te x e τ1 τ2. te+ {x 7→ τ1} ` e =⇒ τ2 =⇒ p(te, fn x⇒ e, τ1 → τ2);∧
te f x e τ1 τ2.
te+ {f 7→ τ1 → τ2}+ {x 7→ τ1} ` e =⇒ τ2 =⇒ p(te, fix f(x) = e, τ1 → τ2);∧
te e1 e2 τ1 τ2.
[[te ` e1 =⇒ τ1 → τ2; te ` e2 =⇒ τ1]] =⇒ p(te, e1@e2, τ2)

]] =⇒
p(te, e, t);

Elimination for Each Expression

te ` e const(c) =⇒ τ =⇒ c isof τ ;
te ` e var(x) =⇒ τ =⇒ τ = te app(te, x) ∧ x ∈ te dom(te);

...
te ` e1@e2 =⇒ τ2 =⇒ (∃τ1. te ` e1 =⇒ τ1 → τ2 ∧ te ` e2 =⇒ τ1);

Figure 22: Elimination Rules

the reformulation is not important as long as basic consistency can be proved. The
only purpose of the extended correspondence relation and consistency is to prove
basic consistency. Basic consistency does not refer to the extended correspondence
relation and does therefore not depend on the formulation of this relation. The
Isabelle HOL formalisation is shown in figure 23.

From these definitions it is straightforward to derive introduction rules and elim-
ination rules as it has been done earlier. More interestingly it is possible to derive
the co-induction rules shown in figure 24.

Because co-induction is introduction there are of course two co-induction rules.
These are based on the strong form of co-induction shown in figure 15. It is different
from the form of co-induction used in [1], which is the weak form shown earlier. It
turns out that the use of the strong form of co-induction shortens the proof, further
backing the claim that this a useful formulation of co-induction.

Formalising the new correspondence relation is similar to formalising the infer-
ence systems and just as time consuming. The conclusion is of course that Isabelle
should have automatic support for co-inductive definitions.

Now it is possible to state consistency in Isabelle HOL. The formulation of con-
sistency given here differs from the original. The reason is that the formulation of
consistency in the original is not suitable for doing a formal proof. For the proof
to proceed smoothly it is necessary to reformulate it slightly as in figure 25. Basic
consistency in figure 25 is translated directly from the original paper.

22

Constants

hasty fun :: (Val ∗ Ty) set⇒ (Val ∗ Ty) set
hasty rel :: ”(Val ∗ Ty) set
(hasty) :: [Val, Ty]⇒ bool

(hasty env) :: [ValEnv, TyEnv]⇒ bool

Axioms

hasty fun(s) ≡
{ p.

(∃c τ. p = 〈v const(c), τ〉 ∧ c isof τ)∨
(∃x e ve τ te.
p = 〈v clos(〈x, e, ve〉), τ〉∧
te ` fn x⇒ e =⇒ τ∧
ve dom(ve) = te dom(te)∧
(∀x1.x1 ∈ ve dom(ve)⇒ 〈ve app(ve, x1), te app(te, x1)〉 ∈ s)

)
};
hasty rel ≡ gfp(hasty fun);
v hasty τ ≡ 〈v, τ〉 ∈ hasty rel;
ve hasty env te ≡
ve dom(ve) = te dom(te)∧
(∀x. x ∈ ve dom(ve)⇒ ve app(ve, x) hasty te app(te, x));

Figure 23: Extended Correspondence Relation

4.5.2 Proving Consistency

It turned out to be surprisingly easy to prove the consistency result. The proof
proceeds more or less as the original proof.

The first step in the original proof was to use induction on the depth of the
inference of evaluations. Here consistency is proved by induction on the structure
of evaluations which is basically the same.

It is in connection with the application of induction that the only real difficulty of
formalising the proof occur. Exactly what should the induction rule be applied to ?
This is not obvious because the induction rule can be applied to almost everything.

The original formulation of consistency suggests to use the induction rule on
te ` e =⇒ τ → v hasty τ . Attempting to prove consistency this way fails, because
the induction hypothesises are too weak. This is the reason why consistency has been
reformulated here. Besides rearranging the premises, τ and te have been explicitly
quantified. Using the new formulation, consistency is proved by using the induction
rule on ∀τ te. ve hasty env te→ te ` e =⇒ τ → v hasty τ .

The above should not be seen as a problem of formalisation, but rather as a
problem of proof. The original paper should state exactly what formula induction

23

c isof τ =⇒ 〈v const(c), τ〉 ∈ hasty rel;

[[te ` fn x⇒ e =⇒ τ ;
ve dom(ve) = te dom(te);
∀x1.
x1 ∈ ve dom(ve)→
〈ve app(ve, x1), te app(te, x1)〉 ∈ {〈v clos(〈x, e, ve〉), τ〉} ∪ hasty rel

]] =⇒
〈v clos(〈x, e, ve〉), τ〉 ∈ hasty rel;

Figure 24: Co-induction Rules

Consistency

ve ` e −→ v =⇒ (∀τ te. ve hasty env te→ te ` e =⇒ τ −→ v hasty τ);

Basic Consistency

[[ve isof env te; ve ` e −→ v const(c); te ` e =⇒ τ]] =⇒ c isof τ ;

Figure 25: Consistency and Basic Consistency

should be applied to.
Having applied induction six cases remain to be proved, one for each of the rules

of the dynamic semantics.
The first two cases, the ones for constants and variables, are claimed to be trivial

in the original paper. Here they both have three lines proofs, of which only two
lines are interesting. Both are proved by first using one of the elimination rules for
elaborations and then an introduction rule for the extended correspondence relation
or a call of a classical reasoning tactic.

In the original paper, they spend a little space on the third case, the one for
abstraction. Here it seems just as trivial to prove as the first two. First an introduc-
tion rule for the extended correspondence relation is used, then a classical reasoning
tactic.

The fourth case, the one for recursive functions, is the most interesting in that
it uses co-induction. In the paper the proof takes up a little more than half a page.
The formal proof is about 25 lines. The proof uses elimination on elaborations, some
set theoretic reasoning, classical reasoning tactics etc. and of course co-induction.
The stronger co-induction rule used here simplifies the proof, backing the claim that
it is a useful formulation of co-induction.

The fifth case, the one for application of constants, is one of those claimed to
be trivial in the original paper. Here it is however more complicated than the
first three cases. It uses elimination on both elaborations and on the extended
correspondence relation, as well as several calls of classical reasoning tactics. It also

24

uses the requirement that the relation isof must be consistent with the function
apply. Still the proof consists of less than 10 lines.

The last case, the one for application of closures, is the case that takes up most
space in the original paper. Here it is shorter than the one for recursive functions.
The proof uses elimination on elaborations and on hasty, classical reasoning tactics
etc.

With the original proof guiding the formal proof, it was straightforward to carry
out in Isabelle HOL. Filling in the necessary details required surprisingly little knowl-
edge of how consistency actually was proved. It was a very positive experience.

4.6 Discussion

4.6.1 Inductive and Co-inductive Definitions

The case study considered in this paper illustrates in no uncertain manner how
useful, especially inductive, but also co-inductive definitions are in computer science.

An estimated 4/5 of the work presented here is related to the formalisation of
inductive and co-inductive definitions of relations and datatypes. In the case of
relations, the Isabelle theory of least and greatest fixed points were used, while the
datatypes were specified axiomatically. Even more work would have been required, if
the formalisation of datatypes, had been based on the fixed point theory of Isabelle.

There is little doubt that it would be possible to mechanize the formalisation of
inductive and co-inductive definitions in Isabelle. From a practical point of view, it
is of course highly unsatisfactory that the bulk of work is concentrated on tedious
and time consuming tasks, that could just as well be done automatically.

It can however be seen as a positive result, in the sense that it is very obvious
how a huge improvement of the Isabelle system can be obtained. It is not every day
one gets a chance to reduce the work load to approximately 1/5 by relatively simple
means.

No matter how inductive and co-inductive definitions is automated it is not suf-
ficient just to get the abstract properties of the inductive or co-inductive definition.
There should also be support for doing proofs about inductively or co-inductively
defined objects. Consider for example the present case study. It would have been
useful if sets of rules for doing simple classical reasoning about inductive datatypes
had been defined automatically.

An package for doing inductive and co-inductive definitions already exists for
another of Isabelle’s object-logics, the Zermelo-Fraenkel set theory. It is based on
a theory of fixed points as above. It is planned to develop a similar package for
Isabelle HOL.

4.6.2 Avoiding Co-induction

Although not really the subject here, it could be argued that there is no need for
using co-induction to prove consistency.

It seems to be perfectly possible to do the consistency proof without using co-
induction. One could work with a finite representation of the non-well-founded

25

closures. At first the notion of co-inductive definitions and proofs might be over-
whelming and this solution therefore seem compelling. Co-inductive definitions and
proofs are however, perfectly natural and mechanically tractable notions. I there-
fore see no practical justification for using finite representations, if the possibility of
using the more abstract notions of co-inductive definitions and proofs are present.

4.6.3 Working with Isabelle HOL

Disregarding the lack of inductive and co-inductive definitions, working with Isabelle
HOL was a positive experience.

As already mentioned, doing the actual proof of consistency turned out to be
surprisingly easy. The original proof could be used as an outline. From there on
it was just a question of filling in a few details, a task which hardly required any
knowledge of what was going on. Difficulties were only encountered when the original
proof was not as clear as one could have wished, for example with respect to exactly
what induction should be applied to. This must however be considered a problem
of proof, not formalisation. Another remarkable fact is that the formal proof only
takes up about the same space as the original proof. This contradicts, what seems
to be the common conception, that formal proofs necessarily are long and much
harder to do than corresponding informal proofs.

A nice feature of Isabelle is its tactics and tacticals. The classical reasoning tac-
tics proved especially useful. The possibility of defining new tactics was only really
exploited once, to write a tactic for proving functions corresponding to inference
systems monotone. Writing good tactics is a difficult and time consuming job and
instead of writing new tactics, one tends to use tactics already available. Their real
potential seems to be when developing new theories which are intended to be used
by others. Such theories should come with tactics for reasoning in the new theory.

5 Conclusion

The main result of the paper [1], consistency, has been proved formally in Isabelle
HOL.

The notions of especially inductive but also co-inductive definitions turned out
to be central in the formal treatment that leads to the consistency result. Inductive
and co-inductive definitions of relations were formalised using a theory of least and
greatest fixed points in Isabelle HOL, while an axiomatic specification was given of
inductively and co-inductively defined datatypes.

An estimated 4/5 of the work was related to the formal treatment of induc-
tive and co-inductive definitions. Even more work would have been required if the
datatypes had been defined using the fixed point theory. From a practical point of
view, it is of course unacceptable that far the most work is concentrated on a task
which could be mechanized. It can however be seen as a positive result in the sense
that it is obvious how a huge improvement of the Isabelle system can be obtained.
Inductive and co-inductive definitions must be automated. It is planned to do so.

26

Doing the actual consistency proof was a very positive experience. It proceeded
more or less as the original proof and hardly required any knowledge of how con-
sistency originally was proved. Difficulties only arose, when the original proof was
not as clear as one could wish. It seems that the hard part is to do the actual
proof, not to formalise it. Furthermore it did only require about the same space
as its more informal counterpart. This contradicts what seems to be the common
conception, that formal proofs necessarily are long and much harder to do than the
corresponding informal ones.

Because of the lack of automatic support for inductive and co-inductive defini-
tions, the formalisation was not as easy and natural as one could wish. On the other
hand, the formalisation of the actual consistency proof clearly demonstrated, that
the Isabelle system has the potential.

Acknowledgements. Søren T. Heilmann and Niels B. Maretti commented on a
draft of this paper. Lawrence C. Paulson suggested the project and commented on
a draft of this paper. Mads Tofte answered questions about his and Robin Milner’s
paper.

References

[1] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87:209–220, 1991.

[2] Lawrence C. Paulson. Co-induction and co-recursion in higher-order logic. Tech-
nical Report 304, University of Cambridge, Computer Laboratory, July 1993.

[3] Lawrence C. Paulson. Introduction to Isabelle. Technical Report 280, University
of Cambridge, Computer Laboratory, January 1993.

[4] Lawrence C. Paulson. Isabelle’s object-logics. Technical Report 286, University
of Cambridge, Computer Laboratory, February 1993.

[5] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283,
University of Cambridge, Computer Laboratory, February 1993.

27

