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Abstract

This research report describes the formal verification of an arithmetic logic unit
of the VIPER microprocessor. VIPER is one of the first processors designed using
formal methods. A formal model in HOL has been created which models the ALU
at two levels: on the higher level, the ALU is specified as a function taking two 32-
bit operands and returning a result; on the lower level, the ALU is implemented
by a number of 4-bit slices which should takes the same operands and returns
the same result. The ALU is capable of performing thirteen different operations.
A formal proof of functional equivalence of these two levels has been completed
successfully. The complete HOL text of the ALU formal model and details of the
proof procedures are included in this report. It has demonstrated that the HOL
system is powerful and efficient enough to perform formal verification of realistic
hardware design.
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1 Introduction

This report describes the verification of the Arithmetic Logic Unit (ALU) of the
VIPER microprocessor. VIPER is one of the first microprocessors which has been
designed using formal methods. The functional behaviour of VIPER, was specified
in three separate levels with increasing details: the high-level specification, the
host machine level and the electronic block level [4] [3]. Formal verification using
the HOL theorem prover was carried out by Cohn who showed the equivalence
between the high-level and the host machine level, and between the high-level and
the electronic block level [1] [2]. Throughout this verification the ALU was treated
as a black box whose functional behaviour was specified as a function in the HOL
logic. However, the ALU was implemented by a number of bit slices in the design.
Since the correctness of the ALU function is crucial to the correct functioning of
VIPER, it is very interesting to see whether the bit slice implementation of the
ALU is functionally correct. A manual proof of this correctness has been carried
out by Pygott in NODEN_HDL. He concluded in [6] that although it was not
a complete formal proof, it shown convincingly that the NODEN_HDL ALU
specification and implementation are functionally equivalent. Nevertheless, it is
still worthwhile to perform a formal proof to confirm the functional equivalence
between the specification and the implementation. This will be of benefit to
anyone who wishes to use the microprocessor in any critical applications as one
will have more confidence in the correct functioning of the device.

This report describes the formal proof of the ALU in the HOL theorem prover.
The functional equivalence between the two levels of the ALU model is confirmed.
This report contains sufficient details for the designers to follow the proof and
for any independent experts to check its validity.

The report begins by describing the ALU informally, and this is followed by a -
description of the ALU formal model. The strategy of the proof is then outlined,
and some typical operations are described in detail. A conclusion is drawn based
on the proof. Some notes on the notations used in the report, listings of original
NODEN_HDL description can be found in the appendices.

2 The ALU models

The ALU has been defined in two levels: the specification and the implementa-
tion. They were written in the hardware specification language NODEN_HDL.
This section begins with an informal description of the ALU, a discussion on how
to represent this model in HOL follows, and then the formal description of the
ALU is presented.
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cin:bool
tregword32 —  bflag:bool
rbar:word32 alucon:alu_op
)
32-bit ALU
32 | 9

aoutbar:word32 conditions:word9

Figure 1: A 32-bit ALU

2.1 An informal description

At the specification level, the ALU is viewed as a black box which is capable
of performing thirteen different operations. It is specified as a function which
takes as its inputs two 32-bit words, namely rbar and treg, as the operands, two
boolean flags cin and b flag, and a value alucon specifying the required operation.
It delivers a 32-bit word aoutbar as the result of the operation and a 9-bit word
conditions indicating various status values. This view of the ALU is shown in
Figure 1.

At the implementation level, the ALU is constructed from eight 4-bit slices.
Each of these slices is capable of performing the same set of operations as the
specification but on smaller operands, namely 4-bit words. Each of these 4-bit
slices is treated as a black-box in this verification. A block diagram of the slice is
shown in Figure 2. It takes two 4-bit words as its operands, namely rabr and treg,
two boolean flag inputs cin and srbar, and a value alucon indicating the required
operation. It outputs the main result of operation as a 4-bit word aoutbar, a carry
pg and six boolean flags (aout4, r4, r3, r1, rm31, zero) indicating various status
values.

Following conventional design found in many ALUs, these eight slices are
organized into a two tier structure: the lower tier consists of groups of four slices,
each group forming a 16-bit unit; the upper tier consists of two 16-bit units.

A schematic block diagram showing the interconnection of the 4-bit slices
within a 16-bit unit can be found in Figure 3. On the input side of a 16-bit
unit, there are two 16-bit words rbar and treg as its operands, two boolean flags
srbar and cin. Then, there are four inputs indicating the required operation
of each of the slices (alucng through alucnz). In theory, each of the slices may
perform a different operation at the same time if the values to the inputs alucn;
are different. In fact, such situations should never happen. As can be seen in
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srbar:bool

tregzwordd - cinbool
rbar:word4 alucon:alu_op
14 14
4-bit ALU
24
pgword2 1 L aoutd:bool
aoutbar:-word4 o | L— . rd:bool
. r3:bool
rl:bool
rm31:bool
zero:bool

Figure 2: A 4-bit ALU

the formal description, the same value is always passed to these four inputs at
the same time. The block labelled ‘LOOK AHEAD’ in the figure implements the
carry lookahead circuitry. It combines the carry output pg from each slice and
the carry input cinbar into this unit and distributes the appropriate carry input
back to each slice. This appears to involve a feedback loop. When translating
literally into HOL, it requires mutually dependent local variables in function
definitions. This is not supported in the HOL system. This problem is solved by
breaking down the ‘LOOK AHEAD’ block into four smaller blocks, one for each
slice. Each smaller block then takes input only from its least significant slice(s),
so the mutual dependence is eliminated.

A schematic block diagram showing the 32-bit ALU implementation con-
structed from two 16-bit units can be found in Figure 4. This implementation
has exactly the same inputs and outputs as the specification. The block labelled
‘INVCIN_SRS’ provides the srbar inputs to the 16-bit units. Like the carry looka-
head block in the 16-bit unit, this also appears to involve a feedback loop. In
fact, this loop is even tighter than the one in the 16-bit unit. From the diagram,
it can be seen the output 7t31 of the more significant 16-bit unit ‘16-bit ALU 1’ is
combined in the ‘INVCIN_SRS’ block with the input cin and bflag, and the out-
put of this block is routed back to the same unit as the srbar input. This input is
only used by the most significant slice, but the output 7¢31 is also generated from
the same slice. Therefore, the loop is actually around the most significant 4-bit
slice. However, when examining the original definition further, it is discovered
that 731 is only the most significant bit of the first operand rbar. Based on this
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alu_and | bitwise AND r and m
alu_rmb | bitwise AND » and NOT m
alu xor | bitwise XOR r and m
alu_nor | bitwise NOR r and m
alu._com | complement m (bitwise NOT)

alum always return m
alur always return r
alu0 always return 0 (zero)

alu_sr | shift » to the right
alu_sl | shift r to the left
aluadd |7+ m+ ¢,
alu_sub | subtract m from r
alu_inc | increment r

Table 1: ALU operations

observation, the loop can be eliminated by connecting the most significant bit of
the first operand directly to the ‘INVCIN_SRS’ block.

The ALU is capable of performing the thirteen different operations which are
listed in Table 1. The left column lists the mnemonic names of the operations and
the right column describes the operations. The variables r and m are the first
and second operand, respectively, and c;, is the carry input. The operations can
be divided into two groups: bitwise and arithmetic operations. The latter groups
contains the addition, subtraction, increment and shift-left operations. These are
more complicated than the bitwise ones. The subtraction is actually specified as
adding the negated second operand to the first, and the increment operation is
specified as adding the carry input bit to the operand.

2.2 Creating the formal model

After the informal description of the ALU in Section 2.1, a discussion of how
to formally represent the ALU in HOL will help the reader to understand the
formal model and the proof described in subsequent sections.

The most important problem in creating the formal model is to preserve the
meaning of the original design or description in whatever language it has been
written. If it has been written in a formal language which has a well-defined and
well-understood semantics, the problem can be solved relatively easily. If the
verification is to be carried out in the same language as the original description
there may even not be a problem. In practice, this will be very rare since almost all
engineering requirements and designs will first be described in natural language.
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These will then be translated or re-written in more formal language(s) such as
programming languages and hardware description languages. How accurate the
translation is largely depends on how precise the source description is and how
well understood.

In the current project, the description of ALU model provided by Defence
Research Agency (Malvern) was written in the hardware description language
NODEN_HDL. This is a well-defined language with very little ambiguity. Since
the verification is to be carried out in a mechanical theorem prover, the HOL
system, which does not support NODEN_HDL, the translation is necessary.

Although NODEN_HDL is a hardware description language whereas HOL
implements simple typed lambda calculus, many features are very similar, that
is there are one-one correspondences between some similar features in these two
languages. Both languages are well typed: all variables must possess a type.
Similar basic built-in types exist in both languages, such as booleans, natural
numbers and tuples. Both languages allow user-defined functions and local vari-
ables in these functions. Taking advantage of this similarity, the basic principle
in translating the ALU description from NODEN_HDL into HOL is to keep the
new description as close to the original as possible using corresponding features in
the two languages. In addition, the same names are chosen for all functions and
variables with only a few exceptions. For example, the function ALU that is the
ALU specification in NODEN_HDL is translated into HOL as a function of the
same name which has the same number of inputs and outputs in the same order.
It is believed that this principle and naming convention will help to ensure that
the translation is faithful to the original model. Any discrepancies between the
two descriptions will be pointed out clearly and reasons given when the formal
model is presented in Section 2.4.

2.3 Representation of words

Words or bit vectors are one of the fundamental data objects one has to deal with
in hardware design, specification and verification. They are ubiquitous. Words
in NODEN_HDL are represented by the type wordn where n is the size, for
example, 8-bit words are of type word8. These types are represented as boolean
vectors of the appropriate length. Every vector has a fixed length at compile
time. There are built-in vector operations which can be applied to vectors of any
length. For example, the bits can be accessed using the indexing operation. Two
words of size m and n can be concatenated to form a new word of size (m + n)
using the vector concatenation operator CONC.

When the original VIPER verification project was carried out, there was no
high level support for modelling words in the HOL system, and there was not even
proper support for defining recursive types. In the original VIPER, verification,
words were modelled by simply introducing into the HOL logic a new type named




ALU VERIFICATION : 11

:wordn for each required word size n together with a number of new constants
which stand for the basic operators of the new type. Axioms describing the basic
properties of words had to be added to the system to allow reasoning about word
operations. This was not very satisfactory and against the common practice of
using only definitional extension to the logic which has since been established in
the HOL user community. ,

One possible approach is to define a type :wordn for every required size of
words and a number of operators of each of the newly defined types. However,
unlike NODEN_HDL, list operators may not be used on these words even if
their underlying representation is list. Considering word concatenation -as an
example, an operator is required for every combination of m and n. This is not
quite satisfactory either.

As part of the work carried out, a new HOL library word has been developed
which takes a more pragmatic approach and provides a generic and flexible in-
frastructure for modelling bit vectors. This is used in the verification of the ALU.
The major features in this library are:

¢ a polymorphic type : (*)word to represent all words;

¢ using restricted quantifiers to simulate dependent types for different word
sizes;

e a number of generic word operators;

e many theorems about the basic properties of bit vectors.

The polymorphic type :(*)word allows the user to create instances which are
better suited to particular applications. In this project, boolean words, i.e., words
of type : (bool)word are used exclusively. This also allows words of different sizes
to have the same basic properties and to share the same operators. For example,

WNOT is the bitwise negation operator which can be applied to a word of any
size.

Restricted universal quantifier is defined by the following equation:
F(Vz:: P.Qz)= (Vz. Pz D Q)

where the double colon (::) indicates that the universal quantified variable z is
restricted by the predicate P. This has the same meaning (by definition) as the
implication on the right hand side. The syntax of restricted quantifiers closely
resembles the syntax of types.

The predicate PWORDLEN 7 is defined in the library to discriminate words
of different sizes. This predicate evaluates to T when applied to a word w if and
only if w is of size n. Using restricted quantifiers with this predicate, one can
express the statement ‘for all words w of size n, ..." as

Yw :: PWORDLENn. ...
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Most of the theorems in the library are restricted quantifications like this.

The user can also define predicates for specific word size in terms of the pre-
defined function PWORDLEN, such as defining word32 by the equation

- word32 = PWORDLEN 32

Then, one can write expressions like Vw :: word32. ... Other useful constants
defined in the library are listed in Table 2. For convenience and readability,
all these constants in the ‘Basic word operations’ group may be used in the
definition of the ALU model, but in the proof, these will be converted into a

smaller canonical set of basic operations. This set includes only the following:
WCAT, SEG and BIT.

2.4 A formal ALU model in HOL

This section describes a formal model of the ALU in HOL. This is based on
the original NODEN_HDL description. The translation from NODEN_HDL
to HOL follows the principle described in Section 2.2 and uses the word library.
This model consists of two levels: the specification and the implementation. After
comparing the HOL description with the original NODEN_HDL description, it
is believed that they are faithful to each other.

The HOL description of the ALU model is organized into a hierarchy of five
theories. Figure 5 shows the ancestry of these theories. Details of the theories will
be described in the following sections!, meanwhile, a brief outline of the theories
is given here:

LOGIC — definitions of several logical connectives;

WORD_WIDTHS — definitions of predicates for required word sizes;
COMMON — definitions of type and functions common to both levels;
ALU — the ALU specification model;

ALUBIT the ALU implementation model.

2.5 Logical connectives—the theory LOGIC

This file contains definitions of a number of basic logical connectives. They are either synonyms
of HOL built-in constants or simple combinations of them. (This was taken from the original
VIPER verification. They were defined to improve readability.)

There are several theorems in this theory which assert the facts that these connectives are
equivalent to the built-in constants.

1Text in these sections are generated from the master file using the utility program mweave.
Appendix A will explain this process briefly.
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COMMON
l ‘ I
ALU ALUBIT

Figure 5: Theory hierarchy of the ALU definitions

2.5.1 XOR — exclusive OR
HOL Definition (XOR_DEF) »
F Vb]_ bz. bl XOR b2 = b]_ A ﬁbz \% bz A "'lbl

2.5.2 NOT
HOL Definition (NOT_DEF)
Fvo.NOTb=-b

2.5.3 OR
HOL Definition (OR_DEF)
b Vby bg. by OR by = by V by

2.5.4 XNOR — exclusiv NOR
HOL Definition (XNOR_DEF)
F by by. 50 XNOR b, = (by =by)

2.5.5 AND
HOL Definition (AND_DEF)
b Vb; b3.b1 AND by = by A b,

2.5.6 Theorems We can now prove some simple theorems to equate the new connectives
to HOL built-in constants so they can be used in the proof to rewrite these new constants.

HOL Theorem (NOT_TEM1)  NOT = $-

HOL Theorem (OR_THM1) + $OR = $v

HOL Theorem (AND_THM1)  $AND = $A

HOL Theorem (XNOR_THM1) - $XNOR = $=

HOL Theorem (X0R_THM1) I 51 XOR 52 = (b1 = 52)
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2.6 Declare required word sizes—the theory WORD_WIDTHS

In this theory, several predicates are defined for discriminating words of different sizes.

2.6.1 Function for declaring word size The ML function declare_word_sizes is de-
fined which takes a list of numbers and defines a HOL constant for each of the elements in the
list. The names of the constants are wordn. It represents a predicate which will be T if its
boolean word argument is of size n. The new constants are defined in terms of PWORDLEN
in the word library. The definition is stored under the name wordn_def.

2.6.2 Declare required word sizes For the ALU proof, predicates of the following word
sizes are needed: [4;16;32]. The ML function defined above is called, and the resulting defini-
tions are listed below:

HOL Definition (word4_def)

+ word4 = PWORDLEN 4

HOL Definition (wordi6_def)

+ word16 = PWORDLEN 16

HOL Definition (wor32_def)

+ word32 = PWORDLEN 32

2.7 Common definitions—the theory COMMON

This theory contains a number of definitions which are common to both the specification and
the implementation of the ALU.

2.7.1 The type :aluop The enumeration type ":alu_op" represents the possible ALU
operations. There are 13 operations defined. The names and their semantics are listed in the
table below where 7 and m are the operands, c;, is the carry input and b is a status flag.

alu_and | bitwise AND r and m
alu_rmb | bitwise AND r and NOT m

alu 0 always return 0 (zero)

alu_m always return m

alu_com | complement m (bitwise NOT)
alu_r always return r

alu_sr shift » to the right
alu_xor bitwise XOR r and m
alu_nor | bitwise NOR r and m
alu_sl shift r to the left
aluadd | r+m+cin

alusub | r+ (NOTm)+cin
aluinc | r+can
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The ML function define_type in the type definition package is used to defint the type
":alu_op". The type specification passed to this function is

‘alu_op = alu_and | alu_rmb | alu 0 | alum | alu_com |
alu_r | alu_sr | alu_xor | alu_mor | alu_sl |
alu_add | alu_sub | alu_inc®

2.7.2 IS_BITOP_DEF The predicate IS_.BITOP is defined to discriminate the ALU op-
- erations. For any operation aluop, it is a bitwise operation if it satisfies this predicate, i.e.,

IS_BITOP aluop =T.

HOL Definition (IS_BITOP_DEF)

F (ISBITOPalu_and = T) A (IS.BITOP alu_rmb = T) A
(IS.BITOPalu0=T) A (IS.-BITOP aluum = T) A
(IS.BITOPalu_com =T) A (IS.BBITOPalur=T) A
(IS.BITOPalu_sr =T) A (IS.BITOP aluxor = T) A
(IS.BITOPalu_nor = T) A (IS.BITOPalu_sl = F) A
(IS.BITOPalu_add = F) A (IS.BITOP alu_sub = F) A
(IS.BITOPalu_inc=F)

2.7.3 GET_RMS31.DEF This function is used in the definition of the ALU. The argument
t31 is the most significant bit of the second operand, i.e., the sign bit if it is interpreted as a 2’s
complement integer. Depending on the operation alucon, it returns t3; or negated t3; or F.

HOL Definition (GET_RM31_DEF)

F Va1 alucon. GET_RM31 ¢3; alucon =
((alucon = alu_sub) = NOT ¢5, |
((alucon = alu_add) = t3; | F))

2.7.4 Projection operatores This section defines a number of projection operators for
extracting bits and fields from the values delivered by the two ALU functions. The ALU
delivers a pair: the first field AOUT is the result of the computation which is a 32-bit word, and
the second field COUT is a 9-bit word indicating various conditions. Two furictions GET_AQUT
and GET_COUT return these two fields, respectively.

HOL Definition (GET_AOUT_DEF)

F Vaout cout. GET_AOUT (aout, cout) = aout

HOL Definition (GET_COUT_DEF)

F Vaout cout. GET_COUT (aout, cout) = cout
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For the condition word returned by GET_COUT, each bit can be accessed using a func-
tion whose name is the name of the required bit prefixed by COND_. The definitions of

these functions are listed below while the meanings of the condition bits will be described in
Section 2.8.5.

HOL Definition (COND_AOUT31_DEF)

F Veond. COND_AQUT31 cond = BIT 8 cond

HOL Definition (COND_RO_DEF)

t Veond. COND.RO cond = BIT 7 cond

HOL Definition (COND_R30_DEF)

F VYcond. COND_R30 cond = BIT 6 cond

HOL Definition (COND_R31_DEF)

F Veond. COND_R31 cond = BIT 5 cond

HOL Definition (COND_RM31_DEF)

+ Veond. COND_RM31 cond = BIT 4 cond

HOL Definition (COND_COUTBAR_DEF)

F Veond. COND_COUTBAR cond = BIT 3 cond

HOL Definition (COND_NZTOP12_DEF)

F Veond. COND_NZTOP12 cond = BIT 2 cond

HOL Definition (COND_ZMID4_DEF)

F Vecond. COND _ZMID4 cond = BIT 1 cond

HOL Definition (COND_NZBOTiS_DEF)

F Veond. COND_NZBOT16 cond = BIT 0 cond
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2.8 Specification of the ALU—the theory ALU

2.8.1 ADD32.DEF The function ADD32 performs the 32-bit word addition operation.
It is specified in terms of the natural number addition ‘+’. The operands are converted to
natural numbers first. If the carry input cin is set, a 1 is added to the sum. The result is then
converted back to a 33-bit word to accommodate the possible carry.

HOL Definition (ADD32_DEF)

F Vrt :: word32. Vein.
ADD32r t.cin =
(cin = NBWORD 33 (BNVALr + BNVAL¢+1) |
NBWORD 33 (BNVAL » + BNVAL )

2.8.2 ADD32BIT_DEF This is the top level 32-bit word addition function. It takes two
32-bit words and a carry input, and returns a pair consisting of to a 32-bit sum and a carry
ouput as the result.

HOL Definition (ADD32BIT_DEF)

F Vrt :: word32. Vein.
ADD32BIT rtcin =
let sumgz = ADD32rtcin in
let adut =SEG 320 sums; in
let carry = MSB sumss in-

(aout, carry)

2.8.3 FIND.SR DEF This function works like a two-input multiplexer. It is called by
BITOP to work out the value to be padded to the MSB of the result of a shift right operation.
731 is the MSB of the operand. If cin is set, FIND_SR returns r3;, the shift right operation
implements an arithmetic shift, ie., the sign bit is copied.

HOL Definition (FIND_SR_DEF)

FVcinbflagrs;:.
FIND_SR (cin,bflag,r31) = (cin = r3; | bflag)

2.8.4 BITOP DEF This is the function specifying the actual operation performed by the
ALU. The first two arguments are the operands. The next three, bflag, r3; and cin are boolean
flags, they are used only in arithmetic and shift operations. The last argument op indicates
what operation is to be performed. It returns a pair whose first field is the operation result and
whose second field is the carry bit if the operation is arithmetic. Otherwise, it should be don’t
care, i.e. the value 7bool in NODEN_HDL. However, there is no such value in the built-in
boolean type ":bool" in HOL, so the value F is returned instead. This changes the meaning
of the specification, but it is compensated for in the final goal (see Section 3).
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HOL Definition (BITOP_DEF)

F Vrt : word32.Vbflagrs; cinop.
BITOPrtbflagrs; cinop =

let cout.z = F in
let tbar = WNOT ¢ in
let rbar = WNOT 7 in
let sr = FIND_SR (cin,bflag,r3 ) in
let r zort =r WXOR t in
let shift_right = FST (SHRF srr) in
((op = alu_and) = »r WAND ¢, cout._z |
((op = alu_rmb) = » WAND tbar, cout_z |
((op = alu_0) = NBWORD 320, cout .z |
((op = alu_m) = ¢, cout.z |
((op = alu_com) = tbar, cout_z |
((op = alu_r) = r, cout_z |
((op = alu_sr) = shift_right,cout_z |
((op = aluxor) = r_zor.t,cout.z |
((op = alu_nor) = WNOT (» WOR t), coutz |
((op = alusl)y = ADD32BIT rrcin |
((op = alu_add) = ADD32BIT 7t cin |
((op = alu_sub) = ADD32BIT r tbar cin |

((op = alu_inc) = ADD32BIT » (NBWORD 320) cin | ARB))))))))))

2.8.5 ALU.DEF This function is the specification of the 32-bit ALU. It takes five inputs:
rbar is the first operand which has been complemented, treg is the second operand, cin is the
carry input, bflag is the status flag, and alucon specifies the required operation. The output is
a pair whose first field is the operation result and whose second field is a 9-bit word indicating
various conditions. The names of these bits and their meanings are described in the table below:

aout31 MSB of the result

r0 LSM of the first operand
r30 30th of the first operand
r31 MSB of the first operand
rm31 MSB of the second operand if addition

negated MSB of the second operand if subtraction
otherwise, this is F

coutbar | negated carry output

nztopl2 | [ if any of the most significant 12 bits are non-zero

zmidé4 T if the middle 4 bits are all zero

nzbot16 | [ if any of the least significant 16 bits are non-zero

HOL Definition (ALU_DEF)

F Vrbar treg :: word32. Vein bflag alucon.
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ALU rbar treg cinbflag alucon =
let r = WNOT rbar in
let t3; = MSB treg in
let rm3; = GET_RM31t3; alucon in
let 7o = LSBr in
let r30 = BIT 307 in
let r3; = MSBrin
let ac = BITOP rtregbflagrs; cinalucon in
let aout = GET_AOUT acin
let aoutbar = WNOT aout in
let coutbar = NOT (GET_COUT a.c) in
let aouts; = MSB aout in
let nzbot;s = NOT (BNVAL (SEG 16 0 aout) = 0) in
let zmid; = (BNVAL (SEG 416 aout) = 0) in
let nztop; = NOT (BNVAL (SEG 1220 aout) = 0) in
let conditions = WORD [aouts;; 7o;730; 731; 7mia1 ; coutbar; nztopo; zmida; nzbotig| in
(aoutbar, conditions)

2.9 ALU bit slices—the theory ALUBIT

This theory defines the ALU implementation constructed from 4-bit slices.

2.9.1 SRSELECT_DEF This is just a multiplexer function with inverting output.

HOL Definition (SRSELECT_DEF)

F Veinbflagrts;.
SRSELECT cinbflagrts; = (cin = NOT rt3; | NOT bflag)

2.9.2 INVCIN_SRS_DEF As mentioned in Section 2.1, the block labelled INVCIN_SRS’
represented by the function of the same name in NODEN_HDL has been broken down, so we
do not need to translate this into HOL.

2.9.3 ZERO_LS16 DEF The arguments to this function are two 4-bit words. They are
the zero condition words returned by the 16-bit ALU units. Each bit indicates whether the
operation result from a 4-bit slice is equal to zero. A T represents a zero result. The function
ZERO_LS16 returns T if and only if the least significant sixteen bits are not all zero.

HOL Definition (ZER0_LS16_DEF)

b Viszerosmszeros.

ZERO_LS161szerosmszeros = NOT (Iszeros = WORD [T; T; T; T))
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2.9.4 ZERO_MID4 The arguments to this function are the same as ZERO_LS16. The
function ZERO_MID4 returns T if and only if the middle four bits, i.e., bit 16 to 19, are all
zero.

HOL Definition (ZERO_MID4_DEF)

I Vlszeros mszeros.

ZERO_M |D4 lszerosmszeros = B[T O mszeros

2.9.5 ZERO_MS12 The arguments to this function are the same as ZERO_LS16. The
function ZERO_MS12 returns T if and only if the most significant twelve bits are not all
zero.

HOL Definition (ZERO_MS12_DEF)

b Viszeros mszeros.

ZERO_MS12iszeros mszeros =
NOT (SEG31mszeros = WORD[T; T; T))

2.9.6 ZERO_GATES_DEF This function combines the previous three functions to pro-
duce a triple of values indicating the zero condition of the operation result. It is used in the
32-bit ALU definition.

HOL Definition (ZERO_GATES_DEF)

I Vlszeros mszeros.

ZERO_GATES iszerosmszeros =
ZERO_LS161szerosmszeros,
ZERO_MID41szeros mszeros,
ZERO_MS121szerosmszeros

2.9.7 Carry lookahead funtions The carry look ahead functions LOOKAHEAD _»n
compute the carry input for the nth slice in a 16-bit ALU unit. Each 4-bit slice produces
a pair of boolean values indicating the carry generation and propagation status. If the gen-
eration bit is set, a carry is generated in this slice. Likewise, if the propagation bit is set, a
carry input to this slice should be propagated to the next more significant slice. In the original
NODEN_HDL description, this carry status is represented as a 2-bit word. In the HOL de-
scription, the type :cla is defined to represent this carry look ahead value to avoid confusion
in bit ordering. This type has two fields: the propagation field and the generation field. Both
are boolean. The type constructor is CLA. Two projection operators CPRO and CGEN are
defined to access these fields, respectively.

HOL Definition (CPRO_DEF)
tVpg. CPRO (CLApg) =p

HOL Definition (CGEN_DEF)
FVpg.CGEN (CLApg) =g
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2.9.8 LOOKAHEAD_ODEF This is the carry lookahead function for slice 0. It simply
negates the carry input. :

HOL Definition (LOOKAHEAD_O_DEF)

F Yegpbar.
LOOKAHEAD_ 0 ¢obar = NOT cobar

2.9.9 LOOKAHEAD_1 DEF This is the carry lookahead function for slice 1. It takes
the carry input to the unit and carry lookahead value from slice 0, and computes the carry
input for slice 1.

HOL Definition (LOOKAHEAD_1_DEF)

F Vcobar pbgy.
LOOKAHEAD _1 ¢ybar pbgy =
let pobar = CPRO pbgy and gy = CGEN pbg, in
g0 OR (NOT pobar AND NOT cybar)

2.9.10 LOOKAHEAD_ 2 DEF This is the carry lookahead function for slice 2. It takes
the carry input to the unit and carry lookahead value from slice 0 and 1, and computes the
carry input for slice 2.

HOL Definition (LOOKAHEAD_2_DEF)

F Veobar pbgo pbyg; .
LOOKAHEAD 2 cybar pbg, pbgr =
let pobar = CPRO pbgy and go = CGEN pbg, in
(lef pibar = CPRO pbg; and g; = CGEN pbg; in
(let c; = go OR (NOT pobar AND NOT cobar) in
g1 OR (NOT pybar AND ¢;)))

2.9.11 LOOKAHEAD_3 DEF This is the carry lookahead function for slice 3. It takes
the carry input to the unit and carry lookahead value from slice 0, 1 and 2, and computes the
carry input for slice 3. '

HOL Definition (LOOKAHEAD_3_DEF)

F Vepbar pbge pbg:r pbgs.
LOOKAHEAD _3 ¢obar pbgy pbg: pbgs =
let pobar = CPRO pbgy and gy = CGEN pbg, in
(let prbar = CPRO pbg; and g; = CGEN pbg; in
(let p2bar = CPRO pbg, and go = CGEN pbgs, in
(let c; = go OR (NOT pobar AND NOT cobar) in
(let c; = g1 OR (NOT pybar AND e1) in
g2 OR (NOT pybar AND ¢)))))
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2.9.12 LOOKAHEAD 4 DEF This is the carry lookahead function for a 61-bit unit. It
takes the carry input to the unit and carry lookahead value from all the slices, and computes
the carry output of the whole unit.

HOL Definition (LOOKAHEAD_4_DEF)

k= Veobar pbgo pbg: pbgs pbys.

LOOKAHEAD _4 cobar pbgy pbg: pbga pbgs =
let pobar = CPRO pbgy and gy = CGEN pbgy in
(let pybar = CPRO pbg; and g; = CGEN pbg; in
(let pobar = CPRO pbg; and g, = CGEN pbg, in
(let psbar = CPROpbg;; and g; = CGEN pbg; in
(let ¢; = go OR (NOT pobar AND NOT cybar) in
(let c; = g1 OR (NOT pybar AND cl.) in
(let c3 = g2 OR (NOT pzbar AND ¢3) in

NOT (gs OR (NOT psbar AND ¢3))))))))

2.9.13 ADDER4. DEF The function ADDER4 performs the 4-bit word addition opera-
tion. It is specified in terms of natural number addition ‘+’. The operands are converted to
natural numbers first. If the carry input cin is set, a 1 is added to the sum. The result is then
converted back to a 4-bit word. Unlike the specification model (see definition of 2.8.1), this
conversion will lose a possible carry bit. However, this does not matter since the carries are
computed by the carry lookahead function PG4.

HOL Definition (ADDER4_DEF)

F Vrm :: word4. Vein.
ADDER4rmecin =
(cin = SEG40(NBWORD5 (BNVAL 7 + BNVALm + 1)) |
SEG40(NBWORDS5 (BNVALr + BNVAL m)))

2.9.14 PG4 DEF The function PG4 calculates the carry look ahead value for a 4-bit slice.

HOL Definition (PG4_DEF)

F Vrm :: word4.
PG4rm =
let p=7r WORm and g = WAND m in
(let pp =BITOpand p; =BIT 1pand p, = BIT2pand ps = BIT3p in
(let go =BITOgand g =BIT1gand g, = BlT2gand gs = BIT3gin
CLA(NOT (po AND (p; AND (p, AND p3))))
(95 OR (ps AND (g, OR (p; AND (g; OR (p; AND g
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2.9.15 ADD4BIT _DEF The function ADD4BIT is the top level. addition function for
4-bit words. It returns a pair: the first field is the sum and the second field is the carry.

HOL Definition (ADD4BIT_DEF)

FVrm: wdrd4. Vein.
ADD4BIT rmcin = ADDER4rmcin,PG4rm

2.9.16 FOURBITOP This is the function specifying the actual operation performed by
the ALU slice. The first two arguments are the operands. The third argument srbar supplies
the bit to be padded onto the most significant bit when a shift-right operation is performed.
This should be the least significant bit shifted out of the next more significant slice. The fourth
argument cen is the carry input. The last one, op, specifies what operation is to be performed.
It returns a pair: the first field is the main operation result and the second field is the carry
output. In cases where the operation is bitwise, the carry output is irrelevant, it was a don’t
care value in NODEN_HDL. Since there is no such value in HOL, the value (CLAFF) is
returned. Because this carry output will not be used in bitwise operation, this change should
not affect the correctness of the model.

HOL Definition (FOURBITOP_DEF)

F Vrm :: word4. Vsrbar cin op.
FOURBITOP rm srbar cinop =
let mbar = WNOT m and rbar = WNOT r in
(let r3 =BIT 37 in
(let shiftright = FST (SHRF (NOT srbar) r) in
(let shiftleft = SND (SHLFrcin) in
((op = alu_and) = r WAND m, CLAFF |
((op = alu_rmb) = » WAND mbar, CLAFF |
((op = alu_0) = NBWORD 40, CLAFF |
((op = alu_m) = m,CLAFF |
((op = alu_com) = mbar, CLAFF |
((op = alu_r) = r,CLAFF |
((op = alu_sr) = shiftright, CLAFF |
((op = aluxor) = r WXOR m,CLAFF |
((op = alu_nor) = WNOT (r WOR m), CLAFF |
((op = alu_sl) = shift left, CLA(NOT (r = WORD[T; T; T; T])) 75 |
((op = alu_add) = ADD4BIT rmcin |
((op = alu_sub) = ADD4BIT r mbar cin |
ADD4BIT » (NBWORD 4 0) cin)))))))))))

2.9.17 ALU_4BIT The funcion ALU_4BIT represents the 4-bit slice. It takes the same
arguments as FOURBITOP and returns an 8-tuple. The fields in the return value are listed
in the following table:
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pg4 :cla . carry lookahead output

aout : (bool)word | the main result (a 4-bit word)

zero :bool T if and only if the result equals zero
t4 :bool MSB of the second operand if addition

negated MSB of the second operand if subtraction
otherwise, this is F

r0 :bool LSM of the first operand
r2 tbool . bit 2 of the first operand
r3 :bool MSB of the first operand
aout31 | :bool MSB of the result

HOL Definition (ALU_4BIT_DEF)

F Vrsbar tareg :: word4. Vsrbar cingbit alucon.

~ ALU_4BIT rybar tsreg srbar cinsbit alucon =
let r = WNOT rsbar in
(let aout_pg = FOURBITOP r t4reg srbar cingbit alucon in
(let aout = FST aout_pg in

SND aout_pg, WNOT aout, (aout = NBWORD 4 0),
GET_RM31 (BIT 3 tsreg) alucon, BIT 07, BIT 27, BIT 3, BIT 3 aout))

2.9.18 ALU_16BIT The function ALU_16BIT represents a 16-bit unit. It specifies how
to assemble four ALU_4BIT’s to form such a unit. It takes eight arguments: the first two are
the 16-bit operands; the third srbar is a bit to be used to pad the most significant bit when
doing shift right; the fourth one is the carry input; and the remaining four specify the required
operation for each slice. It returns a triple: the first field is the operation result which is a
16-bit word; the second is a 4-bit word indicating the zero status of the results from each slice;
and the last is a 6-bit word indicating various conditions. The names and meanings of the
condition word are listed in the following table:

cdbar carry output

rm31 the output bit t4 from the most significant slice
rt0 LSM of the first operand

rt30 bit 14 of the first operand

rt31 MSB of the first operand

aout31 | MSB of the result

Here, we have some difficulty in handling feedback from a single block definition. The
LOOK_AHEAD in the original NODEN_HDL description takes input from the bit slices and drives
the slices as well. To overcome this, we unfold the LOOK_AHEAD block into a separate lookahead
circuit for each individual slice. This is why the LOOK_AHEAD definition is not needed.

HOL Definition (ALU_1SBIT_DEF)

t Vrigbar tigreg :: word16. Vsrbar cinigbar alucng alucny alucn, alucns.
ALU_16BIT rigbar t1greg srbar cinigbar alucng alucny alucns alucns =
let rbgo-03 = SEG 4 0r16bar and rbysg7 = SEG 44 rgbar in
(let rbog—11 = SEG4 8 rigbar and rbyz 15 = SEG4 127 6bar in
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(let mog-03 = SEG40t16reg and mo4o7 = SEG44tisregin
(let mog-11 = SEG4 8t 5reg and mys_15 = SEG412¢14reg in
(let rbargs = BIT 4rigbar and rbares = BIT 8 rygbar in
(let rbar1z = BIT 1276bar in
(let co = LOOKAHEAD 0 cinjgbar in
(et alug = ALU_4BIT rbgo 03 mo0-03 7bares ¢ alucng in
(let pgo = FST aluy and '
aoutbar o = FST (SND alu,) and
zout_g = FST (SND (SND alug)) and
rto = FST (SND (SND (SND (SND alw)))) in
(let ¢; = LOOKAHEAD_1 cinygbar pgo in
(let aluy = ALU_4BIT rby4 o7 mos—o7 mbargs ¢; alucn; in
(let pg1 = FST alu; and
aoutbary = FST (SND alv;) and
zout_y = FST (SND (SND alu;)) in
(let c; = LOOKAHEAD 2 cinjgbar pgo pg; in
(let aluy = ALU_4BIT rbyg_11 mog_11 rbarys co alucny in
(let pgo = FST alu, and
aoutbar, = FST (SND alu,) and
zout_p = FST (SND (SND aluy)) in
(let cs = LOOKAHEAD _3 cinygbar pgo pgy pgs in
(let alug = ALU_4BIT rby315 mi5_15 srbar c3 alucns in
(let pgs = FST aluz and
aoutbar_s = FST (SND alu;) and
zout—3 = FST (SND (SND alu3)) and
rms; = FST (SND (SND (SND alu3))) and
coutbar = FST (SND (SND (SND (SND alu3)))) and
rtso = FST (SND (SND (SND (SND (SND aluz))))) and
rta1 = FST (SND (SND (SND (SND (SND (SND alu3)))))) and
aouts; = SND (SND (SND (SND (SND (SN.D (SND alus)))))) in
(let cabar = LOOKAHEAD _4 cinisbar pgo pgr pgs pgs in
WCAT (WCAT (aoutbar s, aoutbar_z), WCAT (aoutbar y, aoutbary)),
WORD [zout_3 ; 2out_g; zout_y; ZOUt_()] s

WORD [esbar; rmay; rto; rtso; rtas; aouta ]))))))))))))))))))

2.9.19 ALU_32BIT_DEF This is the 32-bit ALU implementation function. It specifies
how to assemble two ALU_16BIT’s to form the 32-bit ALU. It takes exactly the same argu-
ments as the specification ALU and returns the same results. The name of this function in
NODEN_HDL was ALU_C. It has been changed to ALU_32BIT so that it has the same format
as the 4-bit slice ALU_4BIT and 16-bit units ALU_16BIT.

We have the same feedback problem here as in the 16-bit block. It occurs in the INVCIN_SRS
block in the NODEN_HDL description. This block can be unfolded into two simpler blocks:
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SRSELECT and cinbar. Even after unfolding, we still have the feedback in the SRSELECT block
which takes one of the conditional bit output of the higher 16-bit block, namely rt31, and
sends its output back to the same block as the srbar input. After some analysis, we find that
rt31 is equivalent to the negated most significant bit of the first operand rbar. So, we added
the local variable rb31 and equate it to NOT (BIT 31 rbar).

HOL Definition (ALU_32BIT_DEF)

 Vrbartreg :: word32. Veinbflag alucon.
ALU_32BIT rbar treg cinbflag alucon =
let (rbig—s1,7boo-15) = WSPLIT 16 rbar in
(let (mi6-31,moo-15) = WSPLIT 16¢reg in
(let rbaris = BIT 16 rbar in
(let rb3; = NOT (BIT 31rbar) in
(let srbar = SRSELECT cinbflagrbs; in
(let cinbar = NOT ¢in in
(let (aoutbar o, lszeros,cond) =
ALU_16BIT rbgg-15 moo-15 rbarys cinbar alucon alucon alucon alucon in
(let cin-ms = BIT 5 cond_y and rty = BIT 3 cond_ in
(let (aoutbar_;, mszeros,cond_;) =
ALU_16BIT b1g-51 m16-31 srbar cin_ms alucon alucon alucon alucon in
(let coutbar = BIT b cond_, and rm3; = BIT 4 cond_; in
(let rtso = BIT 2cond_; and rt3; = BIT Lcond_; in
(let aouts; = BIT Ocond_; in '
(let (nz.botyg, z-mids,nz_top1z) = LERO_GATES Iszeros mszeros in
WCAT (aoutbar_;, aoutbar_),
WORD [aouts; Tto; Tto; rts1; rmay; coutbar; nz_top;s; z_mida; nz-bot15])))))))))))

3 The goal

The goal of the verification is to prove that the two levels of the ALU formal model
representing by the functions ALU and ALU_32BIT are functionally equivalent,
i.e., both functions should deliver the same result for all possible combinations
of inputs. This may be expressed in HOL as

Vrt :: word32.Ve;, balucon. ALU r t ¢;, b alucon = ALU_32BIT r t ¢;,, b alucon.

However, a goal of this form is unprovable since one of the condition bits has
been arbitrarily assigned a return value of F which should really be don’t care
when the operation is bitwise. What needs to be proved is really that, for all
possible combinations of inputs, if the operation is not bitwise, these functions
return identical results, otherwise, they return two results which are piecewise
identical except for the don’t care bit.
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Based on this analysis, a predicate named IS_ALU_IMP is defined. When
applied to a function f of the same type as ALU, it returns T if and only if f is
an implementation of ALU. Hence, the goal to be proved will be

? —IS_ALU_IMP ALU__32BIT

The definition of this predicate and the details of the proof will be described in
next section.

4 The proof

Since every ALU operation involves different combination of word and/or arith-
metic operations and there are not too many operations, it is possible to carry
out case analysis on the operations. Thus, for each ALU operation, i.e., for every
possible value of the input alucon to the ALU functions, two expressions repre-
senting the operation result can be derived: one for the specification and one for
the implementation. If these two expressions can be reduced to an identical form
minus the field which has the don’t care value, then the goal will be proved by
combining all the cases.

Although every ALU operation is different, the underlying structure of the
resulting expressions should be similar since they are derived from the same
function definitions, namely the function ALU and ALU_32BIT. Therefore, it is
possible to write programs to implement some proof procedures to carry out the
proof mechanically. '

The proof has been performed in three stages:

1. unfolding the definitions to derive two expressions for each ALU operation,
such as

ALUthinbop = Espec
ALU_32BITrtc;, bop Eimp

where the expressions Eyp,.. and E;,,, on the right hand side of the equations
consist of only basic word operations in the canonical set, bitwise word

operations, word-natural number conversion and natural number addition
3 +’.
)

2. manipulating Eyp.. and E;y, to unify them to an identical expression E
in cases of non-bitwise operations, or to derive two expressions By, and
B}, whose corresponding fields are identical except for the conditional bit

coutbar in all bitwise cases;

3. proving the final goal by combining all cases.
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The proof employs both forward and backward (goal-directed) proof techniques.
The program implementing the proof procedure of Stage 1 is common to all
thirteen cases. Details of this program will be described in Section 4.1.

In Stage 2, the ALU operations can be divided into two groups: the bitwise
operations and non-bitwise operations. The latter consists of the following oper-
ations: alu_add, alu_sub, alu_inc and alu_sl. The last operation in this group is
slightly different to the other three, it requires some special facts about the rela-
tion between addition and shift of binary words. In the bitwise group, operations
can be further divided into four subgroups:

binary which consists of alu_and, alu_rmb, alu_nor and alu_xor;
unary which consists of alu_r, alu_m and alu_com;

constant which consists of a single operation alu_0;

shift which also consists of a single operation alu_sr.

As examples, three typical operations alu_and, alu_add and alu_sl will be de-
scribed in detail in the following subsections. The result of this stage is a set of
theories, one for each operation. For non-bitwise operations, there is only a single
theorem stored in their theories. This theorem asserts the equivalence between
the two ALU functions in the following form

ALUrtcy, bop =ALU_32BITrtcy, bop (1)

where op is one of the non-bitwise operations. For bitwise operations, two the-
orems will be derived and stored; one for each ALU function in the following
form:

AlUrtcnbop = B, | (@)
ALU_32BITrtcibop = Ej,, (3)

These theories are then used in the last stage to derive the final theorem. The
final result of the proof is stored in the theory EQUIV which will be described
in Section 4.5. The complete theory hierarchy including the model definitions is
shown in Figure 6.

4.1 The first stage

The task in the first stage is to unfold the ALU definitions to obtain the ex-
pressions Egp.. and E;,,. What needs to be done is to substitute instances of
the lower level functions into the top level ALU functions ALU and ALU_32BIT.
For the specification, the functions BITOP and FIND_SR are instantiated with a
specific ALU operation op, and these are substituted into the ALU specification
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EQUIV



ALU VERIFICATION 31

ALU which is also instantiated with the same operation op. The manipulation is
carried out by the function ALU_CASE_RULE which is listed in Section 4.1.1. The
resulting theorem is bound to the ML identifier ALU_SPEC. The expression Egp..
is in the form

(Wspee, WORD[Bg; Br; Bg; Bs; By; Bs; Ba; Bi; By))

where wgp,. is the operation result and the B;’s are the condition bits. Taking
alu_and as an example,

Egpec(alu_and) = (WNOT (WNOT rbar WAND treg),
WORD [MSB (WNOT rbar WAND treg);

LSB (WNOT rbar);

BIT 30 (WNOT rbar);

MSB (WNOT rbar);

F

T;

—~(BNVAL (SEG 1220 (WNOT rbar WAND ¢reg)) = 0);

BNVAL (SEG 416 (WNOT rbar WAND treg)) = 0;

~(BNVAL (SEG 160 (WNOT rbar WAND treg)) = 0)])

For the implementation, the process of unfolding the definitions is more com-
plicated. This is because there is much more detail. The process is carried
out in three steps by three functions whose names are ALU4BIT_CASES_RULE,
ALU16BIT_CASES_RULE and ALU32BIT_CASES_RULE. The first function produces
an expression representing the output of a 4-bit ALU slice for the given operation
op. This is used in the next step, in which the function ALU16BIT_CASES_RULE
produces an expression representing the output of a 16-1bit unit. This is in turn
used in the final step by the function ALU32BIT_CASES_RULE. The theorem re-
turned by this final step is bound to the ML identifier ALU32BIT_THM. The right
hand side of this theorem is in the following form
(Wirmp, WORDIbs; br; be; bs; by; b; ba; by; b))

which is similar to Ep.. in structure, but it is much more complicated. The main
operation result w;n,, has the following tree-like structure in general:

WCAT(
WCAT(
WCAT ((op 4,28 ta,28), (0P T4 24 T4 04)),
WCAT ((op 4,20 t4,20), (0P 71,16 t4,16))),
WCAT(
WCAT ((op 74,12 t4,12), (0p rag tas)),
WCAT ((opraatas), (0pTa0ta0)))) (4)
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where z;; is an i-bit segment of the word z starting from jth bit and op is a
combination of word operations. Since the ALU is constructed in two tiers, the
operand segments are actually expressed in a nested SEG term, for example, 7429
is SEG 4 4(SEG 16 16 7). It may be prefixed by a word negation operator WNOT.

For the alu_and operation, w;my(alu_and) is the following expression:

WCAT
(WCAT
(WCAT
(WNOT
(WNOT (SEG 412 (SEG 16 16 rbar)) WAND SEG 412 (SEG 16 16 treg)),
WNOT" :
(WNOT (SEG 4 8 (SEG 16 16 rbar)) WAND SEG 4 8 (SEG 16 16 treg))),
WCAT
(WNOT |
(WNOT (SEG 44 (SEG 16 16 7bar)) WAND SEG 4 4 (SEG 16 16 treg)),
WNOT
(WNOT (SEG 40 (SEG 16 16 bar)) WAND SEG 40 (SEG 16 16 treg)))),
WCAT
(WCAT
(WNOT
(WNOT (SEG 4 12 (SEG 16 0 rbar)) WAND SEG 4 12 (SEG 16 0 treg)),
WNOT '
(WNOT (SEG 48 (SEG 16 0 vbar)) WAND SEG 4 8 (SEG 16 0 treg))),
WCAT
(WNOT
(WNOT (SEG 44 (SEG 16 0rbar)) WAND SEG 4 4 (SEG 16 0 treg)),
WNOT
(WNOT (SEG 40 (SEG 16 0rbar)) WAND SEG 40 (SEG 16 0 treg)))))

Similarly, many condition bits b; are also involved with very large expressions.

The ML functions implementing the proof procedures described in this section
are common to all operations, they are stored in the file alu_funs.m. This file
is loaded when the proof of each operation is performed. The subsections below
are the contents of this file.

4.1.1 Function for unfolding the ALU specification The function ALU_CASES_RULE
unfolds the ALU specification for each operation. It takes a list of theorems and a string op as
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its arguments. The string should be the name of one of the ALU operations. The theorems in
the list are used in rewriting. It returns a theorem in the form:

word32 rbar, word32 treg
+ ALU rbar tregcinbflag op = Espec

where Fgpec consists of only basic word operations and possibly the function ADD32 in arith-
metic operations. :
~ let ALU_CASES_RULE =
let get_defs = map (definition ‘COMMON') [ ‘GET_AOUT_DEF‘; ‘GET COUT DEF‘'] in
let defthm = ALU THM1 in
let ALUCON RULE = \opthms th.
(CONV_RULE (DEPTH_CONV COND_CONV)
(PURE_ONCE REWRITE RULE [REFL CLAUSE] (SUBS opthms th))) in
let notths = t1 (CONJUNCTS NOT_CLAUSES) in
let opconst =
let 1st = CONJUNCTS (theorem ‘COMMON' ‘alu op_const _dist‘) in
(map (\t. MATCH MP NOT F t) (lst @ (map NOT EQ SYM lst))) in
\thms op.
(let tm = mk_const (op, ":alu_op") in '
let opthms = filter (\t. ((lhs o lhs) (concl t)) = tm) opconst in

let bthm = ALUCON RULE opthms (SPEC tm BITOP_THM1) in

let rmthm = RIGHT CONV_RULE (TOP_DEPTH CONV COND_CONV)
(PURE_ONCE_REWRITE_RULE [REFL_CLAUSE]

(SUBS opthms (SPECL ["MSB(treg: (bool)word)";tm]
(definition ‘COMMON' ‘GET RM31 DEF‘)))) in
(PURE_REWRITE RULE (rmthm . thms)
(repeatl 8 (RIGHT CONV_RULE let CONV)
(PURE_ONCE_REWRITE RULE get_defs

(RIGHT_CONV_RULE ( (RAND_CONV (REWR_CONV bthm)) THENC let CONV)
(SPEC tm ALU_THM1))))));;

4.1.2 Function for unfolding the 4-bit ALU slice The function ALU4BIT_CASES_RULE
unfolds the 4-bit ALU implementation for each operation. It takes two arguments: the first is

a list of theorems to be used in rewriting, and the second is a string specifying the operation.
let ALU4BIT_CASES_RULE =

let ALUCON RULE = \opthms th.
(CONV_RULE (DEPTH_CONV COND_CONV)
(PURE_ONCE_REWRITE RULE [REFL CLAUSE] (SUBS opthms th))) in

let def thm = (GEN RR RULE (definition ‘ALUBIT' ‘ALU 4BIT DEF‘')) in
let notths = t1 (CONJUNCTS NOT CLAUSES) in
let opconst =

let 1st = CONJUNCTS (theorem ‘COMMON' ‘alu op_const dist‘) in
(map (\t. MATCH MP NOT F t) (lst @ (map NOT_EQ SYM lst))) in
\ths op. (

let tm = mk_const (op, ":alu op") in

let opthms = f£ilter (\t. ((lhs o lhs) (concl t)) = tm) opconst in
let rmth = GEN ALL (ALUCON RULE opthms (SPECL ["t31:bool";tm]
(definition ‘COMMON® ‘GET_RM31 DEF‘))) in

let bthm = ALUCON_RULE opthms (SPEC tm FOURBITOP_THM1) in
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let wthm = GEN_ALL (SYM (AP_THM
(definition ‘WORD WIDTHS' ‘word4 def')"w: (bool)word")) in
let thml = UNDISCH ALL (SPEC "rdbar: (bool)word"

' (PURE_ONCE_REWRITE_RULE [wthm] (RESQ_HALF_SPEC

(SPEC "4" (MATCH_MP (RESQ HALF SPEC PBITOP PWORDLEN) PBITOP_WNOT))))) in

(GEN_ALL (RESQ GEN ALL (PURE_REWRITE RULE (rmth . ths) (LET LAM RULE
(RIGHT _CONV_RULE (RAND CONV (RESQ REWRITE1l CONV [thml] bthm))
(RIGHT_CONV_RULE let CONV )

(SPEC_ALL(RESQ SPEC ALL(SPEC tm def thm)))))))))):;

4.1.3 Function for unfolding the 16-bit ALU definition This function unfolds the
16-bit ALU implementation for each operation. It takes three arguments: the first is a theorem
returned by the function ALU4BIT_CASES_RULE of the same operation; the second is a list of
theorems to be used in rewriting, and the last is a string specifying the operation.
let ALU16BIT_CASES_RULE =
let defthm = GEN_ROR_BLOCK RULE 4 (definition ‘ALUBIT' ‘ALU_16BIT DEF'‘) in
\thd thms op.
(let tm = mk_const (op, ":alu op") in
let thml = (SPECL (replicate tm 4) defthm) in
let thm2 = (repeatl 7 (RIGHT CONV_RULE let CONV)
(SPEC_ALL (RESQ_SPEC_ALL thml))) in
let unfold4 = \k th.
(repeatl 2 (RIGHT_CONV_RULE let CONV)
(PURE_REWRITE RULE [FST;SND] (RIGHT CONV_RULE let CONV
(RIGHT_CONV_RULE (RAND_CONV
(RESQ_REWRITE1_CONV
(map (SEG_PWL_CONV "4" k "16")
["rl6bar: (bool)word"; "tléreg: (bool)word"]) th4)) th)))) in -
GEN_ALL (RESQ_GEN_ALL (PURE_REWRITE RULE thms
(itlist unfoldd ["12"; "8"; "4"; "0"] thm2))));;

4.1.4 Function for unfolding the 32-bit ALU implementation This function unfolds
the 32-bit ALU implementation for each operation. It takes three arguments: the first is a
theorem returned by the function ALU16BIT_CASES_RULE of the same operation; the second is

a list of theorems to be used in rewriting, and the last is a string specifying the operation.
let ALU32BIT CASES RULE =

\thm16 thms op.
let OP = mk const (op, ":alu_op") in
let unfoldlé = \k th. .
(repeatl 2 (RIGHT CONV_RULE let CONV)
(RIGHT_CONV RULE (RAND CONV (RESQ REWRITE1 CONV
(map (SEG_PWL_CONV "16" k "32")

["rbar: {(bool)word"; "treg: (bool)word"]) thmi6)) th)) in
(PURE_REWRITE RULE (thms)
(RIGHT_CONV_RULE (let_CONV THENC (DEPTH_CONV BIT CONV))

(PURE_ONCE_REWRITE RULE zero_thms
(PURE_ONCE_REWRITE RULE[(definition ‘ALUBIT® ‘ZERO_GATES_DEF‘)]
(repeatl 2 (RIGHT CONV_RULE let_CONV)
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(itlist unfoldlé ["16"; "O"] (SPEC OP ALU_32BIT THM1))))))):;

4.2 Stage 2: bitwise operations

This section describes Stage 2 of the the proof for bitwise operations. As a typi-
cal operation of this group, the results of the bitwise AND operation alu_and is
shown as an example. At the end of Stage 1, as described in Section 4.1, two
theorems stating the operation results have been derived. The expression Ejn,
representing the result at the implementation level is very large. The aim of
this stage is to simplify this expression using the properties of word operations
so that each corresponding fields between E;,,, and Ej,.. will be equivalent, i.e.,
Wimp becomes wype. and b; becomes B; for 1 = 0,1,2,4,5,6,7,8. In essence, the
difference between Fp.. and FE;,, is that the bitwise operators are applied to
their 32-bit operands directly in the former expression while the same combina-
tion of operators are applied to a number of 4-bit segments and the results are
concatenated to form a 32-bit word in the latter. The strategy for proving the
equivalence of these two methods of performing the same operations relies on the
basic properties of word operations. The word library provides all the required
theorems which assert these general properties of words and operations on words.

The strategy for unifying these two expressions is common to all bitwise op-
erations. It is implemented as an ML function simp_bitop which will be listed
in Section 4.2.1, but before looking at the details of the function, the strategy is
explained first. This can be divided into five steps:

1. Reduce the nested SEG introduced by the two tier structure of the ALU
implementation using the theorem SEG_SEG.

HOL Theorem (SEG_SEG)

F Vn.Vw :: PWORDLEN n. Vmq k1 mg ks.
k1+m1 S’n/\kz-*-mg Sml )
(SEG meo kz (SEG mq kl ’LU) = SEG mo (kl + kg) w)

2. Move the bitwise operators, such as WNOT, WAND and so on, inside
SEG. This is possible because they all satisfy the predicate PBITOP or

PBITBOP and have the property stated in the theorems PBITOP_SEG and
PBITBOP_SEG.

HOL Theorem (PBITOP_SEG)
F Yop :: PBITOP.
Vn.Vw :: PWORDLEN n. Vk m.
k+m<n D (op(SEGmkw) =SEGmEk (opw))
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HOL Theorem (PBITBOP_SEG)

F Yop :: PBITBOP.
Vn.Vw; w, :: PWORDLEN n. VE m.
k+m <nD (op(SEGmkw) (SEGm kws) = SEGm k (opwy ws))

. Remove WCAT at three nested levels using the theorem WCAT_SEG_SEG.

HOL Theorem (WCAT_SEG_SEG)

F Vn.Vw :: PWORDLEN n.Vk mq ma.
k4+mi+me<nd
(WCAT (SEGmy (k + m1) w, SEGmy k w) = SEG (my + ms) kw)

. The result of the above three steps is that the expression representing the

main operation result w;,,, becomes
SEG3232w

where w involves only bitwise operators and the operands. More specifically,
the expression for alu_and operation is

SEG3232WNOT (WNOT rbar WAND treg).

According to the theorem SEG_WORD_LENGTH, this can be reduced to w
which should be identical to w,pe..

HOL Theorem (SEG_WORD_LENGTH)
F Vn.Vw :: PWORDLENn.SEGnQw = w

As the result of this step, w;im, has been reduced to equal Wepee- At the
same time, the expressions representing the conditional bits b;’s have also
been simplified to certain extent. The remaining steps work only on the
condition bits.

. use the theorem BIT_SEG to simplify the condition bits aout31, r0, r30

and r31. -

HOL Theorem (BIT_SEG)

F Vn.Vw :: PWORDLEN n.Vj km.
E+m<nD({<mD
(BIT j (SEGm kw) = BIT (j + k) w))




ALU VERIFICATION 37

The expression representing aout31 for alu_and before this step is
BIT O(SEG 4 0 wspec(alu_and))
which will be simplified to BIT 0 w,pec(alu_and).

6. The remaining condition bits, namely nztop12, zmid4 and nzbot16, indi-
cates the zero condition of the operation result. On the specification level,
they are expressed in terms of equality test between the value of the ap-

propriate segments of the result and 0(zero). The expressions for alu_and
are:

By = —(BNVAL(SEG160((WNOT rbar) WAND treg)) = 0)

By = BNVAL(SEG416 ((WNOT rbar) WAND treg)) = 0)

B, = -(BNVAL(SEG1220 ((WNOT rbar) WAND treg)) = 0)
Whilst on the implementation level, they are expressed in terms of equality
test between segments of the results and a zero valued word NBWORD 4 0.
The expression for alu_and are:

bp = —(WORD[SEG412w = NBWORD 40;
SEG48w = NBWORD 4 0;
SEG 44w = NBWORD40;
SEG40w = NBWORD 4 0] = WORDIT; T; T; T])

by = SEG416w = NBWORD40 ‘

bp = -(WORD[SEG428w = NBWORD 4 0;
SEG 424w = NBWORD 4 0;
SEG420w = NBWORD 40] = WORD[T; T; T])

where w is the expression ((WNOT rbar) WAND treg). The general theo-

rems required to unify the corresponding bits between the two levels are
ZERO_WORD_VAL and EQ_NBWORDO_SPLIT.

HOL Theorem (ZERO_WORD_VAL)

FVn.Vw :: PWORDLEN 7.
(w = NBWORD n0) = (BNVALw = 0)

HOL Theorem (EQ_NBWORDO_SPLIT)

F Vn.Vw :: PWORDLEN n.
Vm.m<nD
((w = NBWORD n 0) =
(SEG (n — m) mw = NBWORD (n — m) 0) A
(SEGm 0w = NBWORD m 0))
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The first theorem states that an equality test between an n-bit word and a
zero valued word of the same size is equal to a test between the value of the
word and zero. The second theorem states that an equality test between
an n-bit word and a zero valued word of the same size can be split into two
parts. Since the indexes in the expressions b;’s and B;’s are all constants,
three theorems matching these expressions are obtained by instantiating
the general theorems. They are stored in the theory ALU_WORD so they can
be used in all proofs for bitwise operations.

The proof script for the bitwise group is organized into several files. ML func-
tions implementing proof procedures common to all bitwise operations and theo-
rems required for all bitwise operations are stored in the file alu_bitop_funs.m.
There is a separate file, the driver file, for each operation. They are named by
prefixing the operation name to ‘_thm.m’. For instance, the file for the alu_and op-
eration is alu_and_thm.m. These driver files contain function calls and instances
of theorems specific to each operation. The first subsection below shows the func-
tion simp_bitop in the file alu bitop_funs.m. The remaining subsections lists
the file alu_and_thm.m.

4.2.1 The function simp_bitop Thisis the function for simplifying the result of the bitwise
operations. It takes three arguments: the first thml should be the theorem derived from
unfolding the ALU implementation, i.e., ALU_32BIT_THM; the second sthms is a list of theorems
to be substituted into thml to simplify the latter, the last argument ¢m is the expression
representing the main result specified in the ALU_SPEC, i.e., the term wgpe. Which is the target
of the simplification.

let simp binop =
let eqT = GEN ALL (el 2 (CONJ LIST 4 (SPEC_ALL EQ CLAUSES))) in
let condl_lem = GEN_ALL (DISCH ALL (PURE REWRITE RULE[IMP CLAUSES]
(CONV_RULE ( (ONCE DEPTH CONV ADD_CONV) THENC

(LHS_CONV LESS_EQ_ CONV) THENC ((RAND_CONV o LHS_CONV) LESS_CONV))
(GQSPECL ["32"; "w:bool word";"3";"28";"4"] BIT SEG)) )) in

let mk wcat seg seg th ts = MP
(CONV_RULE ( (ONCE_DEPTH CONV ADD_CONV) THENC
(ONCE_DEPTH_CONV ADD CONV) THENC (LHS CONV LESS_EQ CONV))
(SPECL ts th)) TRUTH in '

\thml sthms tm.

let thm3 = PWORDLEN bitop CONV ("PWORDLEN 32 “tm") in

let thm31 = RESQ MATCH MP (SPEC "32" WCAT SEG_SEG) thm3 in

let sub3l = map (mk wcat_seg seg thm31)

[ [||24||; “4"; I|4||]; [II16II; ll4||; II4|I];

["8" ; ||4u; ||4||]; [uon; ||4ll; n4u]] in

let sub32 = map (mk wcat_seg_seg thm31)

[ [||16|I; “8"; ||8"]; [IIOlI; ||8|I; I|8Il]] in

let sub33 = map (mk_wcat_seg seg thm31) [["0"; "16"; "16"]] in

let sub4 = [RESQ MATCH MP (SPEC "32" SEG_WORD LENGTH) thm3] in

let subl = [sub4; sub33;sub32;sub31] @ sthms @ [(seg_seg_r @ seg_seg t)] in

let tm’ = (snd (dest_comb tm)) in

L
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let lem5 = PWORDLEN bitop CONV "PWORDLEN 32 “tm’" in

let condl_lem2 = MP (SPEC tm’ condl_lem) lem5 in

let thmé = PURE_REWRITE RULE[WORD 11;CONS_11;eqT;REFL CLAUSE;AND CLAUSES]
(SUBS (condl lem2 . cond lems2) (itlist SUBS subl thml)) in

itlist PROVE_HYP (lem5 . operands)

(RIGHT_CONV_RULE (EVERY_CONV

(map (\th. RESQ REWRITE1 CONV [] (GSYM (theorem ‘ALU WORD' th))) '
[ ‘COND_NZTOP12'; ‘COND_ZMID4‘; ‘COND_NZBOT16'])) thmé);;

4.2.2 Define the current operation The name of the current operation, as a string, is
bound to the identifier alu_op. It is used in all calls to proof functions.

letref alu op = ‘alu and‘;;

4.2.3 Stage l:specification The function ALU_CASES_RULE is called to unfold the specifi-
cation.

let ALU SPEC =
let rwthms = [NOT_CLAUSES; NOT_THM1] in
ALU CASES RULE rwthms alu op;;

4.2.4 Stage l:implementation The functions for unfolding the implementation are called
here.

let ALU32BIT THM =
let rwthms = (NOT_CLAUSES . LOGIC_THMS) in
let rwthms2 = [FST;SND] in
let ALU4BIT THM =
ALU4BIT CASES RULE rwthms2 alu op in
let ALU16BIT THM =
GEN_ALL(RESQ GEN ALL (PURE REWRITE RULE rwthms2
(RESQ_SPEC_ALL(SPEC_ALL
(ALU16BIT CASES RULE ALU4BIT THM
(LOOKAHEAD 4 THMF . rwthms2) alu op))))) in
ALU32BIT_CASES_RULE ALU16BIT_THM rwthms alu op;;

4.2.5 Simplify the theorems—stage 2 After stage 1, we have obtained two theorems
stating the operation results of the two ALU models: the specification — ALU_SPEC and the
implementation ALU32BIT_THM (See Section 4.1). We can now work on these theorems to reduce
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their right hand sides to the same expression by simplifying the implementation theorem and/or
expanding the specification theorem.

4.2.6 Terms and theorems specific to each operation are bound to some ML identifiers so that
they can be passed to the proof functions. The identifier tm is bound to the term representing
the main result of the operation as given on the specificaation level. This is the target toward
which the implementation is simplified. rands is bound to a list of terms whose elements are
the operands or the negation of the operands depending on the operation. operands is bound
to a list of theorems which asserts that the size of operands ia 32 bits.

let tm = (£st o dest_pair o snd o dest_eq) (concl ALU_SPEC);;
% ["WNOT (rbar: (bool)word)";" (treg: (bool)word)"] %
let rands = (snd o strip comb o snd) (dest_comb tm); ;

let operands =
map (\t. PWORDLEN bitop CONV "PWORDLEN 32 "t") rands;;

4.2.7 The implementation theorem Here, we instantiate some theorems to match spe-
cific operations and pass them to the proof function simp_bitop. The theorem returned by the
function is alu_imp_thm.

HOL Theorem (alu_imp_thm)

PWORDLEN 32 rbar, PWORDLEN 32 treg
+ ALU_32BIT rbar tregcinbflagalu_and =

WNOT (WNOT rbar WAND treg),

WORD [BIT 31 (WNOT rbar WAND treg);
BITO(WNOT rbar);
BIT 30 (WNOT rbar);
BIT 31 (WNOT rbar);
F;
Scin;
~(BNVAL (SEG 1220 (WNOT rbar WAND treg)) = 0);
BNVAL (SEG416 (WNOT rbar WAND treg)) = 0;
—~(BNVAL (SEG 16 0 (WNOT rbar WAND treg)) = 0)]

let alu_imp thm=
let thms2 =
let lem3 = itlist PROVE_HYP operands (RESQ_ SPECL rands SEG_WAND32) in
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mk_SEG_thms lem3 in
let thms3 =

let lem3 = PWORDLEN bitop CONV

(mk_comb (" (PHORDLEN: num->bool word->bool) 32", (snd (dest_comb tm)))) in

mk_SEG_thms (RESQ MATCH MP SEG_WNOT32 lem3) in
let sthms = [thms3; thms2; wnot_seg thms r] in
let alu32bit_thm = itlist PROVE HYP word32 thms ALU32BIT THM in
(simp_binop alu32bit_thm sthms tm);;

4.2.8 The specification theorem Since the result of unfolding the specification of this
operation is already quite simple, what remains to be done is to convert a few basic word
operations to the canonical form.

HOL Theorem (alu_spec_thm)

PWORDLEN 32rbar, PWORDLEN 32treg
+ ALU rbar treg cinbflagalu_and =

WNOT (WNOT rbar WAND treg),

WORD [BIT 31 (WNOT rbar WAND treg);
BITO(WNOT rbar);
BIT 30 (WNOT rbar);
BIT 31 (WNOT rbar);
F;
T;
—~(BNVAL (SEG 1220 (WNOT rbar WAND treg)) = 0);
BNVAL (SEG 416 (WNOT rbar WAND treg)) = 0;
-(BNVAL (SEG16 0 (WNOT rbar WAND treg)) = 0)]

let alu spec_thm =
let alu_spec = itlist PROVE_HYP word32 thms ALU SPEC in
HYP_CONV_RULE PWORDLEN bitop CONV
(CONV_RULE (EVERY_CONV
(map (\th. RESQ REWRITE1 CONV [] (theorem ‘ALU WORD' th))
[ 'COND_RO0‘; ‘COND_AOUT31‘]}) alu_spec);;

4.2.9 Equivalence theorems Unlike for non-bitwise operations, we cannot prove an equiv-
alence theorem for bitwise operations since one of the condition bits is undefined, so we save
the theorems derived above. They can be used in the final equivalence proof.

map save_thm
[(‘alu_spec_thm', alu_spec_thm); (‘alu imp thm‘, alu_imp thm)];;
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4.3 Stage 2: arithmetic operations

The procedures in Stage 2 for the arithmetic operations alu_add, alu_sub and
alu_inc are similar to each other. The operation alu_add is described in detail as
an example. The proof for these operations calls for more facts about words and
addition. Some of the more general facts are supplied as theorems by the word
library. Others are more specific to the ALU. They are proved and stored in the
theory ALU_ARITH.

After unfolding the definition, two expressions representing the main opera-
tion results at the two levels, namely wgpe.(alu_add) and wjmp(alu_add) are ob-
tained. They are unified to an expression W by both expanding w,p..(alu_add)
and simplifying w;mp(alu_add). :

The result at the specification level is

Wepec(alu_add) = WNOT (SEG 320 (ADD32 (WNOT rbar) tregcin))

Using the theorem ADD32_THM, this can be rewritten as
Wypec(alu_add) = WNOT(NBWORD 32 (BNVAL rbar + BNVAL treg + BV cin))

which specifies that the main result of alu_add is obtained by converting the
operands into natural numbers, performing the addition and converting the sum
back to a word. The expression w;mp(alu_add) is very large and complicated.
Nevertheless, it still has the same structure as shown in equation (4) on page 31.
The expression op r; ; t; ; representing the operation performed by each slice has an
extra value c;: the carry input from the next less significant slice. The operation
op is the function ADDER4. For instance, the expression for the second least
significant slice is

O0pT4ataaCs =
WNOT
(ADDER4
(WNOT (SEG 44 (SEG 16 0 rbar)))
(SEG44 (SEG160treg))
(LOOKAHEAD_1 (—cin)
(PG4 (WNOT (SEG 40 (SEG 16 07bar))) (SEG 40 (SEG 16 0treg)))))

The carry input c4 is generated by the carry look ahead function, which is ex-
pressed in terms of the function PG4. In summary, the implementation performs
addition by adding the corresponding segments of the operands and taking care
of the carry propagation.

In essence, the task of unifying the expressions denoting the main results of
the specification and the implementation, wpec(alu_add) and w;my(alu_add) is to
prove the two methods of performing addition give the same result.
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The first two steps are exactly the same as those for bitwise operations de-
scribed in Section 4.2. Step 3 will be to convert the carry inputs ¢; into an
expression in terms of the carry function ICARRY. This function has been de-
fined in the word library.

HOL Definition (ICARRY_DEF)

F (Vw; ws cin.
ICARRY 0wy wq cin = cin) A
(Vnwy ws cin.
ICARRY (SUCn) w; wq cin =
BITnw; ABITnw,V
(BITnw; V BIT nwy) A ICARRY 1wy ws cin)

ICARRY j rtc;, evaluates to the carry input to the j-th bit for any j less than
the size of the operand. The next step, step 4, moves the bitwise NOT operator
WNOT out of the nested WCATs. Step 5 is to unfold with the definition of
ADDERA4. After these steps, the expression opry 444 cs will be simplified to

NBWORD 4 (BNVAL (SEG 44 (WNOT rbar)) + BNVAL (SEG 4 4 treg) +
BV (ICARRY 4 (WNOT rbar) treg cin)).

Instead of simplifying this further, the expression representing the specification
can be expanded towards this. Using the theorem ADD_WORD_SPLIT recursively,
the expression wspe.(alu_add) can be expanded to be the same as the implemen-
tation.

HOL Theorem (ADD_WORD_SPLIT)

k- Vny ng. Vwy ws :: PWORDLEN (ng + ny). Vein.
NBWORD (n; + na) (BNVAL w; + BNVAL w; + BV cin) =

WCAT ‘

(NBWORD n;
(BNVAL (SEG 75 ng wy) + BNVAL (SEG nq mg ws) +
BV (ACARRY ny w; ws cin)),

NBWORD n,
(BNVAL (SEG n5 0 wy) + BNVAL (SEG n 0 wy) + BV cin))

The results of this manipulation are two theorems, namely alu_spec_thm and
alu_imp_thm.

O
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Unlike the bitwise operations, the arithmetic operations do not contain don’t
care value in their results. A theorem equating the two ALU functions in the form
of equation (1) can be derived. Goal-directed proof is used in this derivation. The
following subsections list the contents of the driver file for the addition operation
(alu_add_thm.m).

4.3.1 Define the current operation The name of the current operation, as a string, is
bound to the identifier alu_op. It is used in all calls to proof functions.

letref alu op = "alu_add‘;;

4.3.2 Stage l:specification The function ALU_CASES_RULE is called to unfold the specifi-
cation.

let ALU SPEC =
let rwthms = [NOT_CLAUSES; NOT THM1] in
ALU_CASES_RULE rwthms alu op;;

4.3.3 Stage l:implementation The functions for unfolding the implementation are called
here.

let ALU32BIT THM =
let rwthms = (NOT_CLAUSES . LOGIC_THMS) in
let ALUABIT THM =
ALU4BIT CASES RULE [ADD4BIT DEF;FST; SND] alu op in
let ALU16BIT THM =
GEN ALL(RESQ_GEN ALL (PURE_REWRITE RULE (thm_add bits @ [FST;SND])
(RESQ_SPEC_ALL(SPEC_ALL
(ALU1 6BIT CASES_RULE ALU4BIT THM
[FST; SND; LOOKAHEAD 4 THMF] alu op))))) in
ALU32BIT_CASES_RULE ALU16BIT THM rwthms alu op;;

4.3.4 Simplify the theorems—stage 2 After stage 1, we have obtained two theorems
stating the operation results of the two ALU models: the specification — ALU_SPEC and the
implementation ALU32BIT.THM (See Section 4.1). We can now work on these theorems to reduce
their right hand sides to the same expression by simplifying the implementation theorem and Jor
expanding the specification theorem.
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4.3.5 Terms and theorems specific to each operation are bound to some ML identifiers so
that they can be passed to the proof functions. The identifier operands is bound to a list of
theorems which asserts that the size of operands are 32-bit.

let operands = [pw_wnot_rbar; pw_treg];;

4.3.6 We also need a list of theorems in the following form:

[[PWORDLEN 32 - PWORDLEN 4(SEG 4 kr);
[PWORDLEN 321+ PWORDLEN 4(SEG 4k2)] ;...]

where r and ¢ are the operands which may be prefixed with WNOT and k equals one of
the following indexes 0, 4, 8, 12, 16, 20, 24, 28. This list of theorems is bound to the name
word4_seg_thms.

let mk sthml =
let th = (SPEC "4" (RESQ SPEC_ALL (SPEC "32" SEG_PWORDLEN))) in
(\k. PURE_REWRITE RULE[IMP CLAUSES]
(CONV_RULE ( ((LHS_CONV o LHS CONV) ADD_CONV) THENC
(LHS_CONV LESS_EQ CONV)) (SPEC k th))) ;;

let mk_sthm2 = (\th. map (\th2. RESQ MATCH MP th th2) operands);;

let word4_seg thms = map mk sthm2 (map (RESQ GEN ALL o mk_sthml) indexes);;

4.3.7 Step 3 The theorems icarry_thms are used to simplify the lookahead expressions.

let icarry thms =
let ICARRY_ THMS = map
(\tm. (theorem ‘ALU ARITH' :
(*ICARRY ‘~(string_of int(4 + (int_of termtm)))))) indexes in
(map (GSYM o (rev_itlist (\thil th2. RESQ MATCH MP th2 thl) operands))
ICARRY THMS);;

let LOOKAHEAD 0_THM = REWRITE_RULE LOGIC_THMS
(definition ‘ALUBIT' ‘LOOKAHEAD 0 DEF‘);;

4.3.8 Step 4 This section defines three conversions to be used in step 4 to move the WNOT
out over the nested WCATS.
let convl =
let wcat_wnot CONV1 =
let t1 = (lhs o snd o strip resq_forall) (concl wcat_wnot4) in
let inst_ad = \t. GQSPECL (snd(strip_comb t)) word4 ADDER4 in
\tm.
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let mlist = fst (match tl tm) in
let alist = (rev(map fst mlist)) in
(RESQ SPECL alist wcat_wnotd) in
(RAND CONV o FST_CONV o RAND CONV o pair CONV)
( (RAND_CONV o pair CONV) wcat_wnot_ CONV1);;

let conv2 =
let wcat_wnot_CONV2 =
let t1 = (lhs o snd o strip_resq_forall) (concl wcat_wnot8) in
let inst wcat = \t. PWORDLEN_CONV ["4";"4"]
(mk_comb (" (PWORDLEN : num->bool word -> bool) 8", t)) in
\tm.
let mlist = fst (match tl tm) in
let alist = (rev(map fst mlist)) in
(itlist PROVE HYP (map inst_wcat alist) (RESQ_SPECL alist wcat_wnot8)) in
(RAND CONV o FST_CONV o RAND CONV o pair CONV) wcat_wnot_CONV2;;

let conv3 =
let wcat_wnot_CONV3 = _
let t1 = (lhs o snd o strip resq forall) (concl wcat_wnot16) in
let inst_wecat = \t.
let thl = PWORDLEN CONV ["8";"8"]
(mk_comb (" (PHORDLEN: num->bool word -> bool) 16", t)) in
(itlist PROVE HYP (map (PWORDLEN CONV ["4";"4"]) (hyp thl)) thl) in -
\tm.
let mlist = fst (match tl tm) in
let alist = (rev(map fst mlist)) in
(itlist PROVE_HYP (map inst wcat alist) (RESQ SPECL alist wcat_wnotl6)) in
(RAND_CONV o FST_CONV) wcat_wnot CONV3;;

4.3.9 pw4_adder_thm This theorem is used in step 5 to get rid of ADDERA4.

HOL Theorem (pw4_adder_thm)

Yrm cin.
PWORDLEN4r > (PWORDLEN4m >
(ADDER4rm cin =
NBWORD 4 (BNVAL~ + BNVALm + BV cin)))

let pwd_adder thm =
let pw4_ADDER4 THM = REWRITE RULE [word4_def]
(theorem ‘ALU ARITH' ‘ADDER4 THM') in
CONV_RULE ((TOP_DEPTH CONV RESQ_FORALL_CONV)
THENC (TOP_DEPTH_CONV RIGHT IMP_FORALL CONV)) pwd_ADDER4 THM;;
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4.3.10 Simplify the implementation There are five steps required to simplify the right
hand side of the theorem ALU32BIT_THM. The first two are the same as for the bitwise operations.
The result of these two steps is thm2. Step 3 simplifies the carries, its result is thm3. Step 4 is
performed by the conversions convi to conv3. The last step is performed by the conditional
rewriting conversion.

let alu imp thm=
let thm2 = SUBS wnot_seg_thms (SUBS (seg_seg r @ seg_seg_t)
(RESQ_SPEC_ALL (SUBS[word32_ def] (RESQ GEN ALL ALU32BIT THM)))) in
let thm3 = SUBS icarry thms
(PURE_REWRITE RULE[LOOKAHEAD 0 THM;NOT CLAUSES] thm2) in
(itlist PROVE HYP (flat word4_seg thms)
(RIGHT_CONV_RULE (COND_REWRITE1 CONV [] pw4_adder thm)
(HYP_CONV_RULE pw_ADDER4_CONV
(CONV_RULE (convl THENC conv2 THENC conv3) thm3))));;

4.3.11 ac_thms These theorems are used to replace ACARRY by ICARRY. They are just
instances of the theorem ACARRY_EQ_ICARRY.

let mk_ac_thm opl op2 =
let wnot_thm = hd operands in
let th = (GQSPECL
["32"; opl; op2; "cin:bool"] ACARRY EQ ICARRY) in
\k. itlist PROVE_HYP operands
(GEN "cin:bool" (MP (SPEC k th) (EQT ELIM (LESS EQ CONV "“k <= 32"))));;

let ac_thms = map (mk_ac_thm(mk_comb ("WNOT",rbar)) treg) indexes;;

4.3.12 Expand the specification We expand the expressions representing the sum using
the theorem ADD_WORD_THM which states that the addition of two 32-bit words can be split into
eight 4-bit segments. ADD32_THM is used to eliminate the function ADD32.

let ADD32 THM = (theorem 'ALU_ARITH' ‘ADD32_THM');;

let alu_spec_thm =
let ADD WORD_THM = theorem ‘ALU_ARITH' ‘ADD WORD THM' in
let add32 thm = (GEN ALL o DISCH_ALL) (SPEC ALL (RESQ_SPEC_ALL ADD32_THM)) in
let thml0 =
(RIGHT_CONV_RULE (COND_REWRITE1 CONV [] add32_thm)
(RESQ_SPEC ALL (SUBS[word32_ def] (RESQ GEN_ALL ALU_SPEC)))) in
REWRITE_RULE ac_thms (itlist PROVE HYP operands
(RIGHT_CONV_RULE ((FST_CONV o RAND CONV)
(RESQ_REWRITE1 CONV [] ADD WORD THM)) thm10));;
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4.3.13 The equivalence theorem We can now attempt to prove that the specification
is equal to the implementation for the addition operation. We use goal directed proof here.
The main result of the operation at the right hand sides of the theorems alu_imp_thm and
alu_spec_thm should be identical. There are theorems saved in the theories ALU_WORD and
ALU_ARITH which should match the condition bits. They are fetched to solve the goal. The
resulting theorem is

HOL Theorem (ALU_EQ_THM)

F Vrbar treg :: PWORDLEN 32. Veinbflag.
ALU rbar tregcinbflagalu_add = ALU_32BIT rbar treg cinbflag alu_add

let ALU EQ THM =
let op = mk_const (alu_op, ":alu op") in
prove thm('ALU EQ THM',
"!rbar treg: :PWORDLEN 32. !cin bflag.
ALU rbar treg cin bflag 6p = ALU_32BIT rbar treg cin bflag 6p",
. let cond_thms = map (\(thy, thm). theorem thy thm)
[ ( “ALU_ARITH', ‘COND_AOUT31_ADD‘);
( ‘ALU_WORD', ‘COND RO‘);
( ‘ALU_WORD', ‘COND _R30‘);
( ‘ALU_ARITH', ‘COND_R31_ADD‘);
( ‘ALU_ARITH', ‘COND_R31 ADD‘);
( “ALU_ARITH', ‘COND_COUTBAR ADD‘);
( “ALU_ARITH', ‘COND_NZTOP12_ADD‘);
( ‘ALU_ARITH', ‘COND_ZMID4 ADD‘);
( ‘ALU_ARITH‘, ‘COND_NZBOT16 ADD') ] in
REPEAT RESQ GEN_TAC THEN REPEAT GEN_TAC
THEN SUBST_TAC[alu imp thm;alu spec_ thm]
THEN PURE_ONCE REWRITE TAC[PAIR EQ] THEN CONJ TAC THENL[
REFL_TAC;
MAP_EVERY ASSUME TAC operands THEN PURE_ONCE REWRITE_TAC[WORD 11]
THEN REWRITE TAC[CONS 11] THEN REPEAT CONJ_TAC
THENL (map RESQ REWRITE1 TAC cond thms)
THEN REFL TAC]);;

4.4 Stage 2: shift left operations

The difficulty occurring with the shift left operation alu_sl is due to the fact that
the different approaches taken to perform the operation at the two levels are
very different. The specification model specifies that the result of this operation
should be the sum of adding the operand r to itself plus the carry input c;,. -
whilst the implementation model specifies that the segments of the operand r are
actually shifted to the left one bit and the most significant bit of each segment
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is passed to the next more significant slice as the carry input. This carry input
is padded to the end of that segment.?

In the formal implementation model, shift left is expressed in terms of the
generic shift operator SHL defined as below:

HOL Definition (SHL_DEF)

FVFwb.
SHL fwb =
BIT (PRE (WORDLEN w)) w,
WCAT(SEG (PRE (WORDLEN w)) 0w, (f = SEG 10w | WORD [8]))

Depending on the value of the arguments f and b, SHL can perform either logical
shift, arithmetic shift or rotation. The behaviour required in the implementation
is obtained by setting the first argument f to F, the last argument b to BIT (j—1) w
when performing a shift on the segment SEG4 jw. The theorem SHL_SEG_NF
asserts that this is the desired operation.

HOL Theorem (SHL_SEG_NF)

F Vn.Vw :: PWORDLEN n. Vk m.
E+m<nD>(0<m>D(0<kD
(SHLF (SEGmkw) (BIT (k — 1) w) =
BIT (k + (m — 1)) w,SEGm (k — 1) w)))

For binary words, these different approaches do produce the same results. The
theorem DOUBL_EQ_SHL asserts this fact.

HOL Theorem (DOUBL_EQ_SHL)

FV¥n.0<n D
(Vw :: PWORDLEN . Vb.
NBWORD n (BNVAL w + BNVAL w + BV b) = SND (SHL F w b))

The proof procedures for this operation follow roughly the same approach as in
the addition operation. The following subsections list the contents of the driver
file for the operation (alu_sl_thm.m).

2The reason of this divergence is probably historical (speculated by the author). In éa.rly
versions of the HOL system, there was not shift function for word types.




50 ALU VERIFICATION

4.4.1 Define the current operation The name of the current operation, as a string, is
bound to the identifier alu_op. It is used in all calls to proof functions.

letref alu op = ‘alu sl‘;;

4.4.2 Stage 1:specification The function ALU_CASES_RULE is called to unfold the spec-
ification. After unfolding the specification, we obtain the following expression for the main
result:

WNOT (SEG320(ADD32(WNOT rbar) (WNOT rbar) cin))

let ALU_SPEC =
let rwthms = [NOT_CLAUSES; NOT_THM1] in
ALU CASES RULE rwthms alu op;;

4.4.3 Stage l:implementation The functions for unfolding the implementation are called
here. The expression representing the main result in the theorem ALU32BIT_THM is:

WCAT
(WCAT
(WCAT
(WNOT
(SND (SHL F
(WNOT(SEG 4 12(SEG 16 16 rbar)))
(BIT 3(WNOT(SEG 4 8(SEG 16 16 rbar)))))),
WNOT
(SND (SHL F
(WNOT(SEG 4 8(SEG 16 16 rbar)))
(BIT 3(WNOT(SEG 4 4(SEG 16 16 rbar))))))),
WCAT
(WNOT
(SND (SHL F
(WNOT(SEG 4 4(SEG 16 16 rbar)))
(BIT 3(WNOT(SEG 4 O(SEG 16 16 rbar)))))),
WNOT ,
(SND (SHL F
(WNOT(SEG 4 0(SEG 16 16 rbar)))
(BIT 3(WNOT(SEG 4 12(SEG 16 0 rbar)))))))),
WCAT
(WCAT
(WNOT
(SND (SHL F
(WNOT(SEG 4 12(SEG 16 0 rbar)))
(BIT 3(WNOT(SEG 4 8(SEG 16 0 rbar)))))),
WNOT :
(SND (SHL F
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(WNOT(SEG 4 8(SEG 16 0 rbar)))
(BIT 3(WNOT(SEG 4 4(SEG 16 0 rbar))))))),
WCAT
(WNOT
(SND (SHL F
(WNOT(SEG 4 4(SEG 16 0 rbar)))
(BIT 3(WNOT(SEG 4 0(SEG 16 0 rbar)))))),
WNOT
(SND (SHL F(WNOT(SEG 4 O(SEG 16 0 rbar)))cin)))))

let ALU32BIT THM =

let ADD4BIT DEF = (definition ‘ALUBIT' ‘ADD4BIT DEF‘) in
let rwthms = (NOT_CLAUSES . LOGIC_THMS) in
let ALU4BIT THM =

ALU4BIT CASES RULE [ADD4BIT DEF;FST;SND] alu op in
let ALU16BIT THM = _
GEN_ALL (RESQ GEN ALL(SUBS[sl lal0;sl lall;sl lal2; sl lal3;sl_lal4]

(RESQ_SPEC_ALL(SPEC_ALL

(ALU16BIT_ CASES_RULE ALU4BIT THM
[FST; SND; LOOKRHEAD 4 _THMF] alu op)}))) in

ALU32BIT_CASES RULE ALU16BIT_THM rwthms alu_op;;

4.4.4 Simplify the theorems—stage 2 After stage 1, we have obtained two theorems
stating the operation results of the two ALU models: the specification — ALU_SPEC and the
implementation ALU32BIT_THM (See Section 4.1). We can now work on these theorems to reduce
their right hand sides to the same expression by simplifying the implementation theorem and/or
expanding the specification theorem.

4.4.5 Terms and theorems specific to each operation are bound to some ML identifiers so
that they can be passed to the proof functions. The identifier operands is bound to a list of
theorems which asserts that the size of operands are 32-bit.

let operands = [pw_wnot_rbar];;

4.4.6 We also need a list of theorems in the following form:
[[PWORDLEN 327 - PWORDLEN 4(SEG4%1)];...]

where  is the operands which may be prefixed by WNOT and k = 0, 4, 8, 12, 16, 20, 24, 28.
This list is bound to the name word4_seg_thms.
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let mk sthml =
let th = (SPEC "4" (RESQ_SPEC_ALL(SPEC "32" SEG_PWORDLEN))) in
(\k. PURE_REWRITE RULE[IMP CLAUSES]
(CONV_RULE (((LHS_CONV o LHS_CONV) ADD_CONV) THENC
(LHS_CONV LESS_EQ CONV)) (SPEC k th))) ;;

let mk_sthm2 =
(\th. RESQ MATCH MP th (hd operands));;

let word4_seg thms = map mk_sthm2 (map (RESQ GEN ALL o mk_sthml) indexes);;

4.4.7 Step 3 The theorem bit_seg_thms are used to simplify expressions of the following
form: BIT 3(SEG4;jw). The theorems shl_thms are used to simplify the SHL expressions.
They are in the following form:

SND (SHLF (SEG 44 (WNOT rbar)) (BIT3(WNOT rbar))) =
SEG43 (WNOT rbar)

let bit seg thms =
let lem = GEN_ALL(REWRITE_RULE[LESS_CONV "3 < 4"] (SPECL["3"; "k:num";"4"]
(RESQ_MATCH MP (SPEC "32" BIT_SEG) (hd operands)))) in
map
(\k. let 1m3 = EQT ELIM
(((LHS_CONV ADD_CONV) THENC LESS EQ CONV) " (“k+4)<=32") in
RIGHT_CONV_RULE ((RATOR_CONV o RAND_CONV)ADD_CONV) (MATCH MP lem 1lm3))
indexes;;

let shl thms =
let leml = GEN "k:num" (DISCH ALL(PROVE HYP (EQT ELIM(LESS CONV "0<4"))
(REWRITE RULE[SND] .
(AP_TERM "SND: (bool # (bool)word)-> (bool)word" (UNDISCH ALL
(SPECL["k:num"; "4"]
(RESQ_MATCH MP (SPEC "32" SHL SEG_NF) (hd operands)))))))) in
map
(\k. let Iml = num CONV k in let k' = term of int((int_of termk) -1) in
let 1m2 = SUBS[SYM 1ml] (SPEC k’ LESS_0) in
let 1m3 = EQT ELIM
(((LHS_CONV ADD_CONV) THENC LESS_EQ CONV) " (“k+4)<=32") in
SUBS[SYM 1ml] (REWRITE RULE[SUC SUB1] (SUBS[1m1]
(UNDISCH_ALL(LIST MP [1m2; lm3] (SPEC k leml)))))) (tl indexes);;

4.4.8 Simplify the implementation We substitute the theorems derived above into the

implementation theorem ALU32BIT_THM to simplify the right hand side and obtain the following
theorem:
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PWORDLEN 32 rbar, PWORDLEN 32 treg
|- ALU_32BIT rbar treg cin bflag alu_sl =
WCAT
(WCAT )
(WCAT(WNOT(SEG 4 27 (WNOT rbar)),WNOT(SEG 4 23(WNOT rbar))),
WCAT (WNOT(SEG 4 19(WNOT rbar)),WNOT(SEG 4 1i5(WNOT rbar)))),
WCAT
(WCAT(WNOT(SEG 4 11(WNOT rbar)) ,WNOT(SEG 4 7(WNOT rbar))),
WCAT (WNOT(SEG 4 3(WNOT rbar)),WNOT(SND(SHL F(SEG 4 O(WNOT rbar))cin))))),
WORD
[BIT 3(SEG 4 27(WNOT rbar));BIT 0(SEG 4 O(WNOT rbar));
BIT 2(SEG 4 28(WNOT rbar));BIT 31(WNOT rbar);
F;“BIT 31(WNOT rbar);
~ (WORD
[SEG 4 27(WNOT rbar) = NBWORD 4 O;
SEG 4 23(WNOT rbar) = NBWORD 4 0;
SEG 4 19(WNOT rbar) = NBWORD 4 0]
WORD[T;T;T]);SEG 4 15(WNOT rbar) =
~ (WORD
[SEG 4 11(WNOT rbar) = NBWORD 4 0;
SEG 4 7(WNOT rbar) = NBWORD 4 0;
SEG 4 3(WNOT rbar) = NBWORD 4 0;
SND(SHL F(SEG 4 O(WNOT rbar))cin) = NBWORD 4 0] =
WORD[T;T;T;T1)]

NBWORD 4 0;

let alu imp thm=
itlist SUBS [shl thms; bit_seg_thms; wnot_seg_thms; seg_seg r]
(RESQ_SPEC_ALL (SUBS[word32_def] (RESQ_GEN_ALL ALU32BIT THM)));;

4.4.9 Expand the specification We use the theorem DOUBL_EQ_SHL to rewrite the spec-
ification to eliminate the addition so that every thing is in terms of the shift operation.

let ADD32_THM = theorem ‘ALU_ARITH' ‘ADD32_THM';;

let alu spec_thm =
let dshl = MATCH MP DOUBL EQ SHL
(SUBS[SYM (num_CONV "32")] (SPEC "31" LESS 0)) in

let add32_thm = (GEN_ALL o DISCH_ALL) (SPEC_ALL (RESQ_SPEC_ALL ADD32_THM)) in
let thm10 =

(RIGHT_CONV_RULE (COND_REWRITEL CONV [] add32_thm)
(RESQ_SPEC_ALL (SUBS([word32_def] (RESQ_GEN ALL ALU SPEC)))) in
(itlist PROVE_HYP operands
(RIGHT_CONV_RULE (RESQ REWRITE1 CONV [] dshl) thm10));;
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4.4.10 Equivalence theorem We can now attempt to prove the equivalence between the
specification and the implementation for the alu_sl operation. The proof is lengthy. Basically,
we attempt to prove the corresponding fields of these two levels are equal.

For the main result field, we need to prove that shifting a 32-bit word as a whole to the left
is equivalent to shifting the segments and then concatenating them. This can be proved using
properties of basic word operations.

For the condition bit aout31, we need to show the most significant bit of the result of
shifting the whole 32-bit word is the same as the most significant bit of the result of shifting
the most significant 4-bit segment.

The condition bits r0, r30 and r31 can be proved as in other operations since they are
just specific bits of the operand r. The condition bit rm31 is trivial since both levels return the
constant F. _

The condition bit coutbar in the implementation is the 31st bit of the operand while in
the specification it is the most significant bit of the sum of adding the operand to itself. The
theorem MSB_DOUBLE asserts this fact.

What needs to be proved in the remaining three condition bits is whether some specific
segment of the operand is equal to zero. For instance, the bit zmid4 at the specification level
is the following expression

BNVAL (SEG4 16 (SND (SHLF (WNOT rbar) cin))) = 0
while the corresponding expression in the implementation is

SEG415(WNOT rbar) = NBWORD 4 0.

The former can be simplified using the theorems about SHL and basic word operation SEG.
Then they can be unified using the theorem ZERO_WORD_VAL. The resulting theorem is saved
in the theory alu_sl_thm under the name ALU_EQ_THM.

HOL Theorem (ALU_EQ_THM)

b Vrbar treg :: PWORDLEN 32.Vcinbflag.
ALU rbar tregcinbflagalu_sl = ALU_32BIT rbar tregcinbflagalu_sl

4.5 The final theorem

After the case analysis which results in a set of theorems stating the results of
every ALU operation, it is not too difficult to prove the goal stated in Section 3.
This section lists the contents of the file equiv.m which contains the proof of the
final theorem.

4.5.1 IS_ALU.IMP _DEF First of all, a predicate is defined to state what is meant by an
ALU implementation. A function f is an implementation of the ALU specified by ALU if and
only if it satisfies the predicate IS_ALU_IMP.

HOL Definition (IS_ALU_IMP_DEF)

FVFIS,AALULIMP 7 =
(Vrt :: word32.Vein bflag alucon.
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-IS_BITOP alucon A
(ALUr tcinbflag alucon = frtcinbflagalucon) V
(FST (ALUrtcinbflag alucon) = FST (f rt cinbflag alucon)) A
let cond’' = SND (f r t cinbflag alucon)
and cond = SND (ALU r t cinbflag alucon) in
((COND_AOUT31 cond = COND_AOUT31 cond’) A
(COND_RO cond = COND_RO cond') A
(COND_-R30cond = COND_R30cond’) A
(COND_R31 cond = COND_R31 cond') A
(COND_RM31 cond = COND_RM31 cond') A
(COND_NZTOP cond = COND_NZTOP cond') A
(COND_ZMID cond = COND_ZMID cond') A
(COND_NZBOT cond = COND_NZBOT cond")))

The definition specifies that the function f should return the same value as ALU if the operation
is non-bitwise, otherwise, all fields except COUTBAR of its return value should be equal to the
corresponding field of ALU.

let IS ALU IMP DEF = new_definition(‘IS_ALU IMP DEF‘,
"IS ALU IMP (f:(bool)word->(bool)word->bool->bool->alu op->
(bool) word# (bool)word) =
!r £::word32. !cin bflag alucon.
((" (Is_BITOP alucon) /\
((ALU r t cin bflag alucon) = (f r t cin bflag alucon))) \/
((FST (ALU r t cin bflag alucon) = FST(f r t cin bflag alucon)) /\
(let cond’'= SND(f r t cin bflag alucon) and
cond = SND(ALU r t cin bflag alucon) in
((COND_AQOUT31 cond = COND_AOUT31 cond’) /\

(COND_RO cond = COND_RO cond’) /\
(COND_R30 cond = COND_R30 cond’) /\
(COND_R31 cond = COND R31 cond’) /\

(COND_RM31 cond = COND_RM31 cond’) /\
(COND_N2TOP12 cond = COND_NZTOP12 cond’) /\
(COND_ZMID4 cond = COND_ZMID4 cond’) /\
(COND_NZBOT16 cond = COND_NZBOT16 cond’}))))");;

4.5.2 ALU_EQ_TAC This tactic solves a goal in one of the following two forms:

1. "((ALU r t cin bflag alucon) = (f r t cin bflag alucon)) \/
((FST(ALU r t cin bflag alucon) = FST(f r t cin bflag alucon)) /\
(let cond’= SND(f r t cin bflag alucon) and
cond = SND(ALU r t cin bflag alucon) imn
((COND_AOUT31 cond = COND_AOUT31 cond’) /\

(COND_RO cond COND_RO comnd’) /\

(COND_R30 cond COND_R30 cond’) /\

(COND_R31 cond COND_R31 cond’) /\

(COND_RM31 cond COND_RM31 cond’) /\
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(COND_NZTOP12 cond
(COND_ZMID4 cond
(COND_NZBOT16 cond

COND_NZTOP12 cond’) /\
COND_ZMID4 cond’) /\
.COND_NZBOT16 cond’))))

2. "((FST(ALU r t cin bflag alucon) = FST(f r t cin bflag alucon)) /\
(let cond’= SND(f «r t cin bflag alucon) and
cond = SND(ALU r t+ cin bflag alucon) in
((COND_AOUT31 cond = COND_AOUT31 cond’) /\

(COND_RO cond = COND_RO cond’) /\
(COND_R30 cond = COND_R30 cond’) /\
(COND_R31 cond = COND_R31 cond’) /\
(COND_RM31 cond = COND_RM31 cond’) /\
(COND_NZTOP12 cond = COND_NZTOP12 comnd’) /\
(COND_ZMID4 cond = COND_ZMID4 cond’) /\

(COND_NZBOT16 cond

COND_NZBOT16 cond?))))"

where alucon should be a constant representing a specific ALU operation. It checks the goal
to see what operation is being dealt with. It then opens the appropriate theory to fetch the
required theorem(s). For non-bitwise operation, i.e., the goal is in form 1, the first disjunct will
be proved. The theorem fetched should match it. For bitwise operations, the theorems fetched
are o-converted, and the results are substituted into the goal. The applications of projection
operators COND _X X X are reduced. The terms on either sides of the equation should match
each other.

let ALU EQ TAC =

\(asm,ql).
let op, [tml;tmr] = strip comb gl in
if (Op - ns\/n)

then % arith ops %
(let args = (snd o strip_comb o snd) (dest_eq tml) in
let vars = butlast args and alu op = fst (dest_cohst (last args)) in
let thm = GQSPECL vars (theorem (‘ALU THM ‘dlu op) ‘ALU_EQ THM') in
((DISJ1_TAC THEN ACCEPT TAC thm) (asm, gl)))
else if (op = "§/\") then % bitwise ops %
(let args = (snd o strip_comb o snd o dest_comb o snd) (dest_eq tml) in
let vars = butlast args and alu_op = fst (dest_const (last args)) in
let P = "PWORDLEN 32:bool word -> bool" in
let rbar = "rbar:bool word" and treg = "treg:bool word" in
let thms = map (\s. GQSPECL vars '
(RESQ_GENLI (rbar,P); (treg,P)] (GENL["cin:bool"; "bflag:bool"]
(theorem ('ALU THM ‘alu op) s))))
[‘alu spec thm'; ‘alu imp thm'] in
((SUBST_TAC thms THEN PURE_ONCE REWRITE TAC[FST; SND]
THEN CONJ_TAC THENL [
REFL_TAC;
CONV_TAC let_CONV THEN PURE ONCE_REWRITE_TAC cond bit_thms
THEN REPEAT CONJ_TAC THEN REFL_TAC
1) (asm,qgl)))
else failwith ‘ALU EQ TAC' ;;
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4.5.3 The final theorem We now prove the final theorem using goal-dircted proof tech-
nique. We set up the goal ?- IS_ALU_IMP ALU_32BIT. We first rewrite the goal with the
definition of the predicate and get rid of the quantifiers. We then do a case split on the
ALU operations alucon using the tactic STRUCT_CASES_TAC with the constructor cases theo-
rem alu_op_cases. The resulting subgoals can be simplified according to whether they are
bitwise operation. Using the tactic ALU_EQ_TAC, all subgoals can be solved, the final theorem
is returned.

HOL Theorem (EQUIV_THM)

FIS_ALUIMP ALU_32BIT

let EQUIV_THM = prove thm(‘EQUIV_THM',
"IS ALU IMP ALU 32BIT",
PURE_ONCE_REWRITE_TAC[IS ALU IMP DEF]
THEN PURE_ONCE_REWRITE TAC([word32_def]
THEN REPEAT RESQ GEN_TAC THEN REPEAT GEN_TAC
THEN STRUCT_CASES_TAC (SPEC "alucon:alu op" alu op_ cases)
THEN REWRITE TAC[(definition ‘COMMON' ‘IS BITOP_ DEF‘)]
THEN ALU_EQ TAC);; :

5 Benchmark

As the ALU is a realistic hardware design, it is very interesting to examine the
magnitude of the proof and the time required to complete it. The benchmark data
were obtained by executing the proof on a Sun Sparc Server 10 with 90 Mbytes
of physical memory at a time it was not heavily loaded. The time taken to
create each theory(RUN TIME), the garbage collection time (GC TIME) and
the number of intermediate theorems are listed in Table 3. The total machine
time reported by HOL (Run time + GC time) is 3211.2 seconds which is 53.52
minutes. The real elapsed time reported by the operating system is one hour and
26 minutes (1:26:36).

The total number of intermediate theorems is about twice as many as the
first level VIPER proof, and is one order of magnitude smaller than the second
level VIPER proof. (The figures for these proofs are 230,036 and 7,153,000,
respectively.[1] [2]) Some key factors which keep the magnitude of the proof rea-
sonably small and manageable are:

1. choose a suitable model for the data and structure,
2. use general facts wherever possible,

3. use more specific proof strategies.
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| THEORY | RUN TIME | GC TIME | THEOREMS |
logic 1.0 0.0 91
word_widths 21.0 4.9 441
common 45.3 11.2 8402
alu 24.7 6.4 744
alubit 32.2 9.1 1456
alu_word 39.8 10.6 7819
alu_arith 188.7 70.6 61494
alu_add_thm 151.9 95.8 29122
alu_sub_thm 156.2 99.9 29386
alu_inc_thm . 158.8 88.7 33298
alu_sl_thm 193.7 132.0 49503
alu_O_thm 96.8 49.2 23479
alu_sr_thm 175.1 111.6 47880
alu_m_thm 98.6 50.9 23776
alu_com_thm 105.3 54.5 25782
alu_r_thm 105.2 54.6 25769
alu_and_thm 113.7 61.8 27816
alu_rmb_thm 112.4 60.0 27878
alu_xor_thm 111.1 59.9 27830
alu_nor_thm 117.7 63.8 29857
equiv 46.7 19.8 6937
| Total | 2095.9 | 1115.3 | 488760 |

Table 3: Timing results
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The primary data objects involved in hardware verification is word. The model
used in this project, namely a generic word type and dependent types simulated
using restricted quantifiers for specific word sizes, proved very suitable for the
problem. The word library provides many general facts about words which can
easily be instantiated for specific application. Throughout the proof, more prim-
itive proof procedures, such as instantiation(SPEC) and substitution(SUBST) are
used instead of powerful rewriting tools wherever this is practical. This helps to
reduce the number of intermediate theorems as well as the run time considerably.

It is very difficult to compare the time with the VIPER verification projects
since the machine in which the benchmark is obtained is much more powerful
than those in the old projects. However, the key point is that it is practical to
verify realistic design of similar magnitude providing a proper infrastructure for
reasoning about hardware is developed.

6 Conclusion

This report has shown that a formal machine-assisted proof of the functional
equivalence between two levels of the ALU formal model has been completed
successfully. This confirms the result of the manual proof carried out previously.
Providing that the formal models of the ALU are faithful to the original descrip-
tion in NODEN_HDL, the formal proof verifies that the bit-slice ALU correctly
implements the operations described in the specification. By carefully compar-
ing the HOL description with the original NODEN_HDL description, one can
be very confident that the formal model is a faithful representation of the ALU
design. _

The ALU formal model and the proof are based on an assumption that the
circuitry is purely combinational, and that the outputs will eventually become
stable after the inputs are stable. The models describe only the functional be-
haviour. Therefore, no time variables have been used.

As has been pointed out by many researchers, there is always a problem in
ensuring the accuracy of the formal models in relation to the actual design and
the actual device being fabricated. The physical device will never be verified in a
mathematical sense. Nevertheless, past experience has confirmed that the process
of creating formal models and the subsequent proof of certain properties, such
as functional correctness, does help to discover many errors. Therefore, formal
verification is not a burden but a real benefit to the designers.

In comparison with the original VIPER verification project, the verification
of the ALU is relatively easy. This is because

o the size of the proof is smaller;

e there is now much better support in the HOL system; and
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o lessons have been learnt from previous experience of VIPER and other
hardware verification projects.

As part of the achievement of the project, the word library was created which
provides a better infrastructure for reasoning about words or bit vectors in this
project. Future projects involving words will also benefit.
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A Notes on proof management and document
production

1. All proof script files have been written in a special format which combines
the ML source and documentation in a master file. A couple of utility
programs mtangle and mweave convert the master files into ML files and
IATEX files, respectively. Figure 7 illustrates this process. Although these
utility programs have been developed as part of the project, they will be
very useful to the entire HOL user community at large. This approach is
inspired by the literate programming method developed by D. Knuth[5].

2. All files are managed using the make utility. They are arranged into several
directories:

alu —the proof directory which contains all the proof script master files,
the ML files and the theory files: proof is carried out in this directory.

doc —the document directory which contains all the IATEX files: reports
are produced in this directory.

web —the utility directory which contains the source and executable of the
utility programs mtangle and mweave.

theories —the tagged theory directory which contains files generated us-
ing the latex~hol library. These files contain pretty printed HOL def-
initions and theorems in IATEX format. The IATEX source of all HOL
definitions and theorems in this report was generated automatically
using the latex-hol library with small amounts of manual editing.

The dependency of the files are specified in Makefiles in the directory alu
and doc. The proof is performed by typing the command

make EQUIV.th

in the alu directory while the document in PostScript is produced by typing
the command

make report.ps

in the doc directory.
3. The typographical conventions used in this report are as follows:

o HOL expressions are typeset in math mode with constants set in
sans serif font, variables set in stalic font;

¢ HOL built-in special constants such as A, V and so on, are typeset
with conventional mathematical symbols;
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Figure 7: Processing the proof script master file




ALU VERIFICATION 63

B

e ML text and identifiers, file names and theory names are typeset in
typewriter font;

e some sections of the report are produced by including the proof script
file generated by the utility mweave. Text in these sections are set in
a smaller size.

ALU models in NODEN

This appendix lists the original ALU description in NODEN_HDL. This ap-
peared in the report on the manual proof by Pygott[6]. It is divided into two
parts: the specification and the implementation. They are listed in separate sub-
sections. In fact, the NODEN_HDL specification is based on the ALU function
in HOL in the original VIPER verification (see Appendix C). The notes at the
beginning of the specification can be read in a reverse sense when comparing this
description with the formal models presented in the report.

B.1 ALU specification in NODEN_HDL

The following is a transliteration of the HOL description of the 32-bit ALU (from
Annex A of [6]) into NODEN_HDL. A number of minor changes should be noted.

The ALU operation codes, which in HOL were 7-bit boolean vectors (such as
#0011001) have been replaced by an enumerated type alu_op.

NODEN_HDL doesn’t have built-in operators corresponding to HOL’s NOT32,
AND32 and OR32. So equivalent NODEN_HDL functions are defined at the
start of the description.

HOL’s selector construct (a = b | ¢) is replaced either by NODEN_HDL’s IF
statement IF a THEN b ELSE c FI (as in FIND_SR), or by a CASE construct (as
in BITOP).

The HOL function ADD32 has been incorporated into the NODEN_HDL func-
tion ADD32BIT (in the definition of sum33).

The HOL indexing operation EL is replaced by a NODEN_HDL index, and the
HOL slice operation SEG by a NODEN_HDL slice. Note that the indices in
NODEN_HDL are one greater than those in HOL, as HOL indexes structures
from element 0, whilst NODEN_HDL indexes from 1.

In BITOP, no definition is required for cout.x, as the don’t-care value (?bool)
can be used in its place.

The HOL functions GET_AOUT and GET_COUT are redundant. They are
replaced in NODEN_HDL’s ALU by indexing of a_c.
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e In ALU, NODEN_HDL doesn’t need to construct a list for conditions.

[2,4,5,7,9,16,32,33]

TYPE alu op = NEW word7 ( alu and | alu rmb | alu 0 | alum | alu com |
alu r | alu sr | alu xor | alu nor | alu sl |
alu add | alu_sub | alu_inc

).

\ *%%** The ALU in NODEN *¥*** \

FN NOT 32 = (word32: a ) -> word32: [FOR k = 1 TO 32] NOT af[k].
FN OR 32 = (word32: a b) -> word32: [FOR k =1 TO 32] OR (alk],b[k]).
FN AND 32 = (word32: a b) -> word32: [FOR k = 1 TO 32] AND (a[k],b[k]).

FN FIND SR = (bool: cin bflag r31) -> bool: IF cin THEN r31 ELSE bflag FI.

FN ADD32BIT = (word32: rin tin, bool: cin) -> (word32,bool):
BEGIN LET sum33 = IF cin
THEN WORD33 ( ( (VAL32 rin) + (VAL32 tin)) + 1)
ELSE WORD33 ((VAL32 rin) + (VAL32 tin))
FI,
aout = sum33[1..32],
carry = sum33[33].
OUTPUT (aout, carry)
END.

FN BITOP = (word32: rin tin, bool: bflag r31 cin, alu op: op) -> (word32,bool):
BEGIN LET tbar = NOT_32 tin,
rbar = NOT 32 rin,
sr =FIND SR(cin, bflag, r31),
r_xor t = OR_32 (AND_32(rin, tbar), AND 32 (rbar, tin)),
shift right = (rin[2..32]) CONC sr.
OUTPUT CASE op OF

alu and: (AND_32(rin, tin), ?bool),
alu rmb: (AND 32(rin, tbar), ?bool),
alu 0: ([32]f, ?bool),
alu m: (tin, ?bool),
alu com: (tbar, ?bool),

alu r: (rin, ?bool),
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alu sr: (shift_right, ?bool),
alu xor: (r_xor t, ?bool),
alu nor: (NOT_32(OR_32(rin,tin)), ?bool),
alu sl: ADD32BIT(rin, rin, cin),

alu add: ADD32BIT(rin, tin, cin),

alu sub: ADD32BIT (rin, tbar, cin),
alu_inc: ADD32BIT(rin, [32]f, cin)

ESAC
END.

FN GET_RM31 = (bool: t31, alu op: alucon) -> bool:
CASE alucon OF
alu sub: NOT t31,
alu add: t31
ELSE ?bool
ESAC.

\ Note lower bounds of vectors 1 (not 0) \
FN ALU = (word32: rbar treg, bool: cin bflag, alu op: alucon) -> (word32,word9):
BEGIN LET r = NOT_32 rbar,
t31 = treg[32],
rm31 = GET_RM31(t31, alucon),

r0 =r[1],
r30 = r[31],
r3l = r[32],

a_c = BITOP(r, treg, bflag, r31, cin, alucon),
aout = a _c[1],
aoutbar = NOT_32 aout,
coutbar = NOT(a_c[2]),
aout31l = aout [32],
nzbotl6 = NOT ((aout[ 1..16]) == ([16]£)),
zmidd =  ((aout[17..20]) == ([ 4]f)),
nztopl2 = NOT((aout [21..32]) == ([12]f)),
conditions = (aout31, r0, r30, r31, rm31, coutbar,
| nztopl2, zmid4, nzbotl6).

OUTPUT (aoutbar, conditions)
END. '
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B.2 ALU implementation

This is the description of the ALU as constructed from 4-bit slices used in the ‘lower
levels’ of verification.

[2,4,5,7,9,16,32]
TYPE alu_op = NEW word7 ( alu_and | alu rmb | alu 0 | alum | alu com |
alu r | alu sr | alu_xor | alu nor | alu sl |

alu add | alu sub | alu inc

).

\ **%* The ALU in NODEN ¥¥* \

FN NOT 4 = (word4: a ) -> word4: [FOR k = 1 TO 4] NOT alk].
FN OR 4 = (word4: a b) -> word4: [FOR k =1 TO 4] OR (a[k],b[k]).
FN AND 4 = (word4: a b) -> word4: [FOR k = 1 TO 4] AND (a[k],b[k]).

\ **%* BUFFER function *%%+* \

FN BUFFER_AC = (alu op: alucon) -> [8]alu op: \generates 8 buffered copies\
(alucon, alucon, alucon, alucon, alucon, alucon, alucon, alucon).

\ hkkx INV_CIN and SRSELECT, combined as a single function INVCIN_ SRS **** \

FN SRSELECT = (bool: cin bflag rt31) -> bool: \srbar\

IF cin THEN NOT rt31 ELSE NOT bflag FI.

FN INVCIN SRS = (bool: cin bflag rt31) -> [2]bool:
(NOT cin, SRSELECT (cin, bflag, rt31)).
\ **k* ZERO GATING, combined as ZERO_GATES *¥** \

FN ZERO_LS16 = (word4: lszeros mszeros) -> bool: \nz_bot16\
(NOT (lszeros == (t,t,t,t))).

FN ZERO_MID4 = (word4: lszeros mszeros) -> bool: \ z_mid4\
mszeros[l].
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FN ZERO_MS12 = (word4: lszeros mszeros) -> bool: \nz_top12\
(NOT (mszeros[2..4] == (t,t,t))).

FN ZERO_GATES = (word4: lszeros mszeros) -> [3]bool:
(ZERO_LSlG(lszeros, mszeros), ZERO_MID4 (1szeros, mszeros),
ZERO_MS12(lszeros, mszeros)).

\ *%** LOOK_AHEAD = combined LOOKAHEAD n functions *¥¥* \

FN LOOKAHEAD 0 = (bool: cObar) -> bool:
(NOT cObar).

FN LOOKAHEAD 1 = (bool: cObar, [2]bool: pbg0) -> bool:
BEGIN LET pObar = pbg0[1], g0 = pbg0[2], pO = NOT pObar.
LET c0 = NOT cObar.
OUTPUT (g0 OR (p0 AND c0))
END.

FN LOOKAHEAD 2 = (bool: cObar, [Z]boblz pbg0 pbgl) -> bool:
BEGIN LET pObar = pbgO[1], g0 = pbg0[2], p0 = NOT pObar.
LET plbar = pbgl[l], gl = pbgl[2], pl = NOT plbar.
LET c0 = NOT cObar, cl =g0 OR (pO AND c0).
QUTPUT (gl OR (pl AND cl))
END.

FN LOOKAHEAD 3 = (bool: cObar, [2]bool: pbg0 pbgl pbg2) ~> bool:

BEGIN LET pObar = pbg0[1], g0 = pbg0[2], p0 = NOT pObar.
LET plbar = pbgl[1], gl = pbgl[2], pl-= NOT plbar.
LET p2bar = pbg2[1], g2 = pbg2[2], p2 = NOT p2bar.
LET c0 = NOT cObar, cl =g0 OR (p0 AND c0).
LET c¢2 = g1 OR (pl AND cl).
OUTPUT (g2 OR (p2 AND c2))
END.

\c0\

\c1\

\c2\

\e3\

FN LOOKAHEAD 4 = (bool: cObar, [2]bool: pbg0 pbgl pbg2 pbg3) -> bool: \NOT c4\

BEGIN LET pObar = pbg0[1], g0 = pbg0[2], p0 = NOT pObar.
LET plbar = pbgl[1], gl = pbgl[2], pl = NOT plbar.
LET p2bar = pbg2[1], g2 = pbg2[2], p2 = NOT p2bar.
LET p3bar = pbg3[1], g3 = pbg3[2], p3 = NOT p3bar.
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LET c0 = NOT cObar, cl = g0 OR (p0 AND c0).
LET ¢2 = gl OR (pl AND cl).
LET ¢3 = g2 OR (p2 AND c2).
QUTPUT (NOT (g3 OR (p3 AND c3) ))
END.

FN LOOK_AHEAD = (bool: cObar, [2]bool: pbg0 pbgl pbg2 pbg3) -> [5]bool:
(LOOKAHEAD 0(cObar),
LOOKAHEAD 1 (cObar, pbg0),
LOOKAHEAD 2 (cObar, pbg0, pbgl),
LOOKAHEAD 3 (cObar, pbg0, pbgl, pbg2),
LOOKAHEAD 4 (cObar, pbg0, pbgl, pbg2, pbg3)
).

\ *%%* A 4-bit slice of the ALU *¥¥* \

FN ADDER4 = (word4: r m, bool: cin) -> wordd:
IF cin
THEN ( WORD5( (VAL4 r) + (VAL4 m) + 1) )[1..4]
ELSE ( WORD5( (VAL4 r) + (VAL4 m) ) )I[1..4]
FI.

FN PG4 = (wordd: rm) -> (bool,bool): \PBAR and G\
BEGIN LET p = OR 4 (r, m).
LET g = AND 4(r, m).
LET p0 = p[1], pl=p[2], p2 =p[3], p3 =pl[4].
LET g0 = g[1], g1 =g[2], g2 =g[3], g3 =g[4].
OUTPUT (NOT (pO AND pl AND p2 AND p3),
(g3 OR (p3 AND (g2 OR (p2 AND (gl OR (p1 AND g0))))))

)
END.:

FN ADD4BIT = (word4: rm, bool: cin) -> (word4, (bool,bool)):
(ADDER4 (r, m, cin), PG4(r, m)).

FN FOURBITOP = (wordd4: r m, bool: srbar cin, alu op: op) -> (word4, (bool,bool)):
BEGIN LET mbar = NOT 4 m, rbar =NOT 4 r.
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LET 10 =rfl], rl = r[2].
LET r2 =rl[3], r3 = r[4].

LET r_xor_ m=OR 4( AND 4(r, mbar), AND 4 (rbar, m)).
LET shift_right = (r[2..4]) CONC (NOT srbar).

LET shift_left = (cin, r0, rl, r2).

OUTPUT CASE op OF

alu and: (AND 4(r, m), word2), \r AND m\

alu rmb: (AND 4(z, mbar), word2), \r AND NOT m\

alu 0: (WORD4 0, word2), \zero\

alu m: (m, word2), \m\

alu com: (mbar, word2), \NOT m\

alur: (r, word2), \r\

alu sr: ( shift right, word2), \r SR 1\

alu xor: ( r_xor m, word2), \r XOR m\

alu nor: (NOT 4(OR_4(r, m)),word2), \r NOR m\

alu sl: ( shift_left, (NOT(r == (t,t,t,t)), r3)),\SL\

alu add: ADD4BIT(r, m, cin), \r +m\

alu_sub: ADD4BIT(r, mbar, cin), \r - m\

alu inc: ADD4BIT(r, (WORD4 0), cin) \r + 1\
ESAC

END.

FN GET_RM31 = (bool: m31, alu op: op) -> bool:
CASE op OF
alu sub: NOT m31,
alu_add: m31
ELSE ?bool
ESAC.

FN ALU 4BIT = (word4: rdbar t4reg, bool: srbar cindbit, alu op: alucon) —>
(word2, word4, bool, bool, bool, bool, bool, bool): .
BEGIN LET r = NOT_4 r4bar.

LET aout_pg = FOURBITOP (r, t4reg, srbar, cindbit, alucon).

LET aout = aout pg[l].

OUTPUT (aout_pg[2],
NOT_4 aout,
(aout == (£,£,£,£f)),
GET_RM31 (t4reg[4], alucon),
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r{1],
r[3],
r[4],
aout [4]

END.

\ **** Assembly of four ALU 4BIT’s to form an ALU_16BIT *¥¥* \

FN ALU 16BIT = (wordl6: rlébar tléreg, bool: srbar cinlébar,
alu op: alucn0 alucnl aluen2 alucn3) ->
(wordl6,word4,bool,bool,bool,bool,bool,bool) :
\delivers aoutbar, zout, cléoutbar, rm31, rt0, rt30, rt31, aout31l\
BEGIN LET rb00_03 = rlébar[ 1.. 4], rb04 07 = rlébar[ 5.. 8].
LET rb08_11 = rl6bar[ 9..12], rbl2 15 = rlébar[13..16].
LET m00_03 = tléreg[ 1.. 4], m04 07 = tl6reg[ 5.. 8].
LET m08 11 = tléreg[ 9..12], ml2_15 = tl6reg[13..16].
LET rbar04 = rlébar[5], rbar08 = rlebar[9].
LET rbarl2 = rlébar[l3].

MAKE LOOK AHEAD: lookahead.
LET 0 = lookahead[1l], cl = lookahead[2].
LET c2 = lookahead[3], ¢3 = lookahead[4].
LET c4bar = lookahead[5].

MAKE ALU 4BIT: alud4_00_03.
LET pg0 = alud_00 03[1], aoutbar 0= alud 00 03[2].
LET zout 0 =alu4 00 03[3], rt0 = alud_00 03[5].

MAKE ALU 4BIT: alud_04_07.
LET pgl = alud4 04_07[1], aoutbar_1=alud 04 07[2].
LET zout 1 =alud 04 07[3].

MARE ALU 4BIT: alud4 08 11.
LET pg2 = alud_08 11[1] aoutbar 2 = alu4 08 11[2].
LET zout_2 = alu4 08 11[3].

MAKE ALU 4BIT: alud 12 15;
LET pg3 = alud_12_15[1], aoutbar 3 = alud 12 15[2].
LET zout 3 = alud_12 15[3], rm3l = alud_12 15[4].
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LET rt30 = alu4_12 15[6], rt3l = alud 12 15[7].
LET aout3l =alud 12 15[8].

JOIN (cinlébar, pg0, pgl, pg2, pg3) ~> lookahead,
(rb00_03, m00_03, rbar04, c0, alucn0) -> alu4_00_03,
(rb04_07, m04_07, rbar08, cl, aluenl) -> alud_04_07,
{rb08_11, m08_11, rbarl2z, c2, alucn2) -> alud 08 11,
(rbl2_15, ml2_15, srbar, c3, alucn3) -> alud_12 15.

OUTPUT (((aoutbar_ 0 CONC aoutbar 1) CONC (aoutbar 2 CONC aoutbar_3)),
(zout_0, zout_1, zout 2, zout_3),
cdbar, rm31, rt0, rt30, rt31, aout3l

)
END.

\ **¥* Assembly of two ALU 16BIT’s to form the ALU *¥** \

\ Note order of conditions reversed to agree with spec \
FN ALU C = (word32: rbar treg, bool: cin bflag, alu op: alucon)
-> (word32,word9):
\aoutbar, nz_bot16, z_mid4, nz_topl2, coutbar, rm31, rt31, rt30, rt0, aout31\
BEGIN LET rb00_15 = rbar[ 1..16], rbl6_31 = rbar[17..32].
LET rbarlé = rbar[17].

LET m00_15 = treg[ 1..16], ml6_31 = treg[17..32].

MAKE ALU 16BIT: alu00_15 alulé_31.
LET aoutbar_0 = alu00_15[1], cin ms =alu00_15[3].
LET lszeros = aluC0_15[2], rt0 = alu00_15[5].

LET aoutbar_1 = alulé_31[1], coutbar = alulé 31[3].
LET mszeros = alul6 31[2], rm3l = alulé 31[4].
LET rt30 = alulé_31[6], rt31 = alulé 31[7].
LET aout3l = alulé 31[8].

MAKE INVCIN SRS: cin_sr.
LET srbar = cin sr[2], ' cinbar = cin_sr[l].

MAKE BUFFER_AC: ac_n.
LET ac_0 = ac_n[1], ac_l=ac_n[2], ac 2= ac_n[3].
LET ac_3 = ac_n[4], ac_4 =ac_n[5], ac_5 =ac n[6].
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LET ac_6 = ac_n[7], ac_7 =ac n[8].

MAKE ZERO_GATES: zero g.
LET nz botl6 = zero_g[l], z_mid4 = zero_g[2].
LET nz_topl2 = zero_g[3].

JOIN (rb00_15, m00_15, rbarl6, cinbar, ac_0, ac_1, ac_2, ac_3)
-> alu00_15,
(rb16_31, m16 31, srbar, cin ms, ac_4, ac_5, ac_6, ac_7)
-> alulé_31,
(cin, bflag, rt3l) -> cin sr,
alucon -> ac_n,
(lszeros, mszeros) -> zero_g.

LET aoutbar = (aoutbar 0 CONC aoutbar 1).

OUTPUT (aoutbar, (aout3l, rt0, rt30, rt3l, rm31, coutbar,
nz_topl2, z mid4, nz_botlé
)

END.

C ALU specification in the VIPER project

Listed in this appendix are the HOL definitions of the ALU used at the electronic
block level in the VIPER verification project (see [2]).

new_definition (‘ADD32_DEF‘,
" (ADD32 :word32#word32#bool->word33) (r,t,cin) =
(cin => WORD33((VAL32 r) + (VAL32 t) + 1) |
WORD33 ((VAL32 r) + (VAL32 t)))");;

new_definition (‘ADD32BIT DEF‘,
" (ADD32BIT:word32#word32#bool->word324bool) (r,t,cin) =
let sum33 = ADD32(r,t,cin) in
let aout = WORD32 (V(SEG (0,31) (BITS33 sum33))) in
let carry = EL 32 (BITS33 sum33) in (aout,carry)");;

new_definition(‘FIND SR DEF‘,
" (FIND_SR:bool¥bool#bool->bool) (cin,bflag,r3l) =
(cin => r31 | bflag)");;

new_definition (‘BITOP_DEF',
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" (BITOP : word32#word32#bool#bool#booliiword7->word32#bool)
(r,t,bflag,x31,cin,op) =
let cout_x =F in
let tbar = NOT32 t in
let rbar = NOT32 r in
let sr = FIND_SR(cin,bflag,r31) in
let r xor t = (r AND32 tbar) OR32 (rbar AND32 t) in
let shift right = WORD32 (V(CONS sr(SEG(1,31) (BITS32 r)))) in
((op = #1101001) => ((r AND32 t),cout_x) |
(op = #1111001) => ((r AND32 tbar),cout_x) |
(op = #1100000) => (WORD32 0,cout_x) |
-{op = #1101000) => (t,cout_x) | '
(op = #1111000) => (tbar,cout x) |
{(op = #1110001) => (r,cout_x) |
(op = #1110010) => (shift_right,cout_x) |
(op = #0111001) => (r_xor_t,cout x) |
(op = #0111100) => (NOT32 (r OR32 t),cout_x) |
(op = #0000101) => ADD32BIT(r,r,cin) |
{op = #0001001) => ADD32BIT (r,t,cin) |
(op = #0011001) => ADD32BIT(r,tbar,cin) |
(op = #0000001) => ADD32BIT (r,HORD32 0,cin) | ARB)");;

new_definition(‘GET_RM31 DEF‘,
" (GET_RM31:bool#word7->bool) (£31,alucon) =
{(alucon = #0011001) => NOT t31 |
(alucon = #0001001) => t31 | F)");;

new_definition(‘GET_AOUT DEF‘,
" (GET_AOUT:word32#bool->word32) (aout,cout) = aout");;

new_definition(‘GET_COUT DEF‘,
" (GET_COUT:word32#bool->bool) (aout, cout) = cout™);;

new_definition(‘ALU DEF‘,

" (ALU:word32#word32#boolfbool#word7->word32iword9)
(rbar,treg,cin,bflag,alucon) =

(let r = NOT32 rbar in

let t31 = EL 31 (BITS32 treg) in

let rm31 = GET RM31(t31,alucon) in

let r0 = EL 0(BITS32 r) in '

let r30 = EL 30(BITS32 r) in

let r31 = EL 31 (BITS32 r) in
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let a_c = BITOP (r, treg,bflag, r31,cin,alucon) in

let aout = GET AOUT a_c in

let aoutbar = NOT32 aout in

let coutbar = NOT(GET COUT a_c) in

let aout3l = EL 31(BITS32 aout) in

let nzbot16 = NOT ((V(SEG(0,15) (BITS32 aout))) = 0) in

let zmid4 = V(SEG(0,15) (BITS32 aout)) = 0 in

let nztopl2 = NOT ((V(SEG(20,31) (BITS32 aout))) = 0) in

let conditions = WORD9Y (V(CONS aout31 (CONS r0 (CONS r30(
CONS r31 (CONS rm31 (CONS coutbar (CONS nztopl2 (
CONS zmid4 (CONS nzbotl6 [1}))))))))) in

(aoutbar,conditions))");;
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