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Chapter 1

Introduction

1.1 Categorical Abstract Machines

Formal relations between the syntax of a programming language, its semantics and
an appropriate logic enable mathematical methods to be used for reasoning about
programs and for designing programming languages. An example of the former
application of this relation is program verification according to Floyd-Hoare [Hoa69]
[Hoa70], where the meaning of a program is expressed in terms of first-order logic,
and an example of the latter is the design of ML, where the intended semantics of
the language determines the type system [MHSS].

The propositions-as-types analogy [How80] provides a very important means for
formally specifying links between type theory, its semantics and certain intuition-
istic logics (in the sequel, “logic” will always mean “intuitionistic logic”). It says
that types of a type theory, objects of a certain category and propositions in an
appropriate logic correspond to each other as well as terms, morphisms and proofs:

Type theory | Category theory | Logic
Type Object Proposition
Term Morphism Proof

The relation of category theory to logic was established by Lawvere’s idea of using
certain adjunctions for representing logical concepts [Law69] [Law70]. The link be-
tween a type theory and an appropriate category is given by a categorical semantics,
l.e. an interpretation of the type theory in the category. As an example, this analogy
establishes the following correspondence between simply typed A-calculus, cartesian
closed categories and propositional logic [LS85]:

Typed A-calculus | Cartesian Closed Categories Propositional Logic
Product types Products Conjunction
Function spaces | Exponentiation Implication

This analogy has found applications in several areas in computer science. Firstly,
it is used to show properties of type theories. An example is the proof that the poly-
morphic A-calculus (PLC) has no nontrivial model in classical set theory [RPar], but
does have one in intuitionistic set theory [Pit87]. Secondly, the analogy supports

1



2 CHAPTER 1. INTRODUCTION

the design of programming languages. For example, second-order existential quan-
tification can be used for designing a module concept in the PLC [MP88]. The
restrictions of the quantification are exactly the normal side conditions for the exis-
tential quantification in the logic. Another example is the construction of a category
of modules for a programming language as Grothendieck’s construction of the cate-
gory corresponding to the programming language [Mog89)].

A third application, which is the topic of this dissertation, is concerned with
categorical abstract machines modelling the reduction of expressions of a typed \-
calculus. The derivation of such machines starts with the choice of an appropriate
categorical structure. This structure must have an equational presentation, the
so-called categorical combinators. These yield a variable-free presentation of the
calculus together with an explicit substitution mechanism. Next, one chooses an
inference system for the reduction of combinators corresponding to closures. Such
a system finally yields an abstract machine in a natural way. This approach leads
to simple and conceptually clean combinators that in turn give rise to a simple
and conceptually clean instruction set together with an easy correctness proof. The
explicit substitution operation makes it possible to postpone substitutions during
reduction. This considerably improves the efficiency of the machines. Furthermore,
the machines have a modular structure, i.e. an extension of the language corresponds
to an addition of categorical concepts and machine instructions.

The earliest categorical abstract machine is the CAM, constructed by Curien,
Cousineau and Mauny [CCM87]. It handles reduction of closed terms of the untyped
A-calculus to weak head normal form according to an eager strategy. The relation
of the CAM to cartesian closed categories is somewhat problematic because several

concepts that are important for the design of abstract machines are not properly
modelled in CCC’s;

¢ Environments and terms are both represented by morphisms although they
are conceptually different.

¢ Composition has two roles, namely substitution in a term with respect to
environments and application of a function to an argument.

e Product types and contexts are both modelled by products in the CCC, so
again two separate issues are merged into one construction.

Jacobs [Jac92] describes a way of turning a CCC into an indexed category that
solves the last of these problems. In that approach however, the representation of
environments is still unsatisfactory for the design of abstract machines. The reason
is that the products in the base category, which model the environments, impose a
tree structure on environments although a list structure is sufficient. The Ap-calculus
[Cur91] adds an explicit notion of environment to the simply typed A-calculus to
overcome the above three problems. A generalization, the Ao-calculus [ACCL90],
uses explicit substitutions to derive first an extension of Krivine’s machine describ-
ing reduction to normal form for the untyped A-calculus and second a type checker
for the typed and the second-order A-calculus. For the case of the simply typed
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A-calculus, the handling of environments in this version of the Ao-calculus turns
out to be quite close to the one described in the approach below. Crégut [Cré90]
uses the variant given in [Cur91], which is linked to multicategories, to construct an
abstract machine with a different handling of global variables. Asperti [Asp92] uses
the retraction between A and A! in a CCC to give a categorical description of an
extension of Krivine’s machine for reduction to normal form and of a variant of the
CAM implementing a A-calculus with call-by-value and call-by-name as parameter
passing modes. We propose split D-categories [Ehr88a], which are particular indexed
categories, as an appropriate categorical framework for abstract machines, not just
for the simply typed A-calculus, but also for higher-order typed A-calculi. In this the-
sis we will concentrate on the Calculus of Constructions. Split D-categories achieve
the separation of terms and environments in a very natural way because terms cor-
respond to morphisms in the fibres and environments to morphisms in the base
category. This automatically leads to different combinators for substitution (which
is modelled by the reindexing functor) and function application (which corresponds
to composition in the fibre). The D-categories also model cartesian products and
contexts differently: the former are handled by left adjoints to weakening and the
latter by a right adjoint to the terminal object functor.

There are two groups of abstract machines based on these D-categories. The first
uses eager environments, i.e. environments that contain only canonical combinators,
whereas in the second an environment may contain arbitrary expressions. Further
design decisions yield machines that, if restricted to the combinators corresponding
to the simply typed A-calculus, can be transformed directly into the CAM (eager
case) or Krivine’s machine (lazy case); see chapter 4 for details. These abstract
machines have a modular structure, i.e. those for the Calculus of Constructions
contain those for the typed A-calculus as submachines. It is also possible to mix
eager and lazy constructions, for example one can construct an eager machine with
lazy products. This is another advantage of separating products from environments.

The strong normalization of the reduction rules for the combinators is an open
problem, even in the case of combinators for the simply typed A-calculus. The
explicit substitution destroys the reducibility approach because there seems to
be no way of showing that every reduction path of the combinator correspond-
ing to ((Az: A.t)s)[y\t'] contains a contractum of the combinator corresponding to
t[z\s][y\#]. There are only combinatorial arguments showing that the reductions for
substitutions alone are strongly normalizing [HL86] [CHR92]. We will demonstrate
here that only finite reduction sequences can arise from any reduction strategy that
reduces a combinator first to one corresponding to a weak head-normal form and
only then pushes substitution under M-abstraction to reach a normal form. This
restriction excludes all reduction paths that violate the above property for the com-
binator ((Az: A.t)s)[y\t]; therefore the reducibility method produces a proof that
all those sequences are finite. Because all strategies that are commonly used for the
derivation of abstract machines satisfy this limitation it does not play any role in
the relation between the combinators and the abstract machines.

The original version of the Calculus of Constructions (CC) adds a special type
Prop of propositions, a type of proofs of a proposition and an impredicative universal
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quantification over propositions to the simply typed A-calculus. This requires the
use of dependent types, so a function space becomes a special case of a dependent
product. Coquand and Huet [CH88] invented this calculus with the propositions-
as-types analogy in mind as a language for formalizing mathematical proofs where
a proposition is valid iff the type of its proofs is inhabited. Luo [Luo90] adds strong
sums to model a program together with its specification. The presence of dependent
types in the Calculus of Constructions implies that type checking of CC-expressions
may include a reduction of terms. As an example, let p be any proposition and take
a proof of a proposition Vz: A.p, i.e. a term ¢ of type Proof(Vz: A.p). If it is claimed
that the term ta, where a is of type A, is a proof of a proposition ¢, then it must
be checked whether the two types p[z < a] and q are convertible. This is done by
reducing them to a suitable normal form. It turns out that such a convertibility
test is only necessary when a dependent base type results or when an abstraction
or a projection is type-checked. This yields a type checking algorithm that can be
turned directly into an abstract machine. Local bindings cause a problem during
type checking because only the result of the substitution given by a binding may be
well-formed. This is the reason why in the Ao-calculus the typing of a substitution is
abandoned in favour of noting only the number of terms in an environment. On the
other hand the typing of environments is well suited for dependent types. Therefore
the above algorithm retains the notion of a type of a context morphism and mimics
the substitutions necessary for handling local bindings.

The earliest implementation by Coquand and Huet [CHS85] of the Calculus of
Constructions represents the syntax of the calculus as a tree with bound variables
coded by their de Bruijn-index and defines a parser, a pretty-printer and a type
checker based on this representation. The theorem prover Cog [DFH*91] is based
on the so-called constructive engine by Huet [Hue89]. This engine implements the
operations on proofs as manipulations of the corresponding A-expressions. One of
1ts basic instructions is the type-checking of a given term. Coq uses a normal-order
strategy for the reduction during type checking. The LEGO theorem prover written
by Pollack [Tay89] uses Luo’s version of the Calculus of Constructions. Harper and
Pollack [HP91] give an algorithm for this, which is the basis for type checking in
LEGO. De Bruijn-indices are used, and expansion of definitions is delayed as much
as possible during type checking. The reduction of A-expressions is done according
to a normal-order strategy, as in Coq. In addition, LEGO implements a sharing
mechanism between the substituted term and the original pattern, which uses the
exceptions of SML. In this way the re-evaluation of an argument is avoided.

1.2  Summary of the Thesis

Chapter 2

We review the Calculus of Constructions and present a formulation using de Bruijn-
numbers instead of variables. This version makes it easier to establish a direct
correspondence between the calculus and Ehrhard’s D-categories and the categor-
ical combinators derived from them. Furthermore we justify why this categorical
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structure is the only sensible choice for the derivation of combinators.

Chapter 3

This chapter discusses reduction rules and reduction strategies for the categorical
combinators. We present a strongly normalizing and confluent notion of reduction
that reduces a combinator first to one corresponding to a weak head-normal form
in the calculus and only then pushes substitution under binding operations like
A and II to reach the normal form. The confluence makes type information in
the combinators for an application redundant, so we can simplify the combinators
accordingly. Finally we discuss reduction strategies corresponding to eager and lazy
reduction in the calculus.

Chapter 4

We demonstrate how the eager and lazy reduction strategies lead directly to ab-
stract machines that generalize the CAM and Krivine’s machine respectively. The
correctness proof of the machine is an induction over the definition of the reduc-
tion strategies. All the hard work in establishing the properties of the reduction
strategies has already been done in the previous chapter.

Chapter 5

We explain why type checking of combinators involves reduction and present an
algorithm for it. The ideas presented in the previous chapter are applied to turn
this algorithm into an abstract machine for type checking that uses the reduction
machines described earlier.

Chapter 6

We describe an implementation of the abstract machines in ML and compare it with
LEGO and Coq.

Chapter 7

We summarize what has been achieved and mention directions for further work.
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Chapter 2

Categorical Combinators

This chapter presents categorical combinators for the Calculus of Constructions. It
starts with the definition of the syntax, first with variables and then with de Bruijn
numbers. The latter version is more suitable for establishing the correspondence
between the syntax and the category theory. Next, we describe the categorical
structure used for the derivation of the combinators. This is done in several stages
corresponding to the steps leading from the simply typed A-calculus to a calculus
with dependent types and finally to the Calculus of Constructions. Afterwards
we derive categorical combinators and establish the correspondence between the

calculus and the categorical structure. Finally we compare them to the combinators
Ehrhard gives in his thesis [Ehr88b)].

2.1 The Calculus of Constructions

There are several versions of the Calculus of Constructions in the literature. We
choose here a version with explicitly typed application and equations defined with
respect to contexts, similar to [HP89] [Str89]. This has the advantage that a cat-
egorical semantics of the calculus can be given directly by an induction over the
structure of the derivation. The definition of such a semantics for a version with
equality defined on raw expressions and with untyped application [Luo90] [CHS8S] is
only possible if the reduction of a term does not change its type and if the missing
type information in an application can be deduced uniquely. The proof of these
properties relies on the confluence of such a version. It can be surprisingly difficult
to prove the latter, for example the confluence for the version with p-reduction has
been shown only recently [Geu92]. Because these properties imply the equivalence
of the two versions, the second one may be regarded as a convenient abbreviation
for the first with respect to the categorical semantics.

2.1.1 The Syntax of the Calculus

We present first the definition of the calculus with variables. There are three kinds
of raw expressions, which are defined as follows:

7



8 CHAPTER 2. CATEGORICAL COMBINATORS

Definition 2.1 (Raw expressions) The set of raw types E, of raw terms t and
of raw contexts ' are defined by the following BNF-ezpressions, where z denotes an
element of an infinite set of variables:

I' == [] | (T,2: E)
E == Ila:E.E | Xa: E.E | Prop | Proof(t) |
t u= z | Az:Et | App(z.E,E,t,t) | Vo E.t |

| Pair(z.E, E,t,t) | mi(t) | ma(2)

We identify terms which are equivalent under a-conversion (the binding operations
being IT, A, V¥, App and Pair). Moreover, it is assumed that the variable = in (T,z: E)
is distinct from all the variables occurring in T. The length |T'| of a context T' is
defined inductively as follows:

[l =0
|(Tyz: E)] = |T|+1

The substitution of a term ¢ for a variable z in a raw expression e is denoted by
e[z\?] and is defined in the usual way. The term e[z;\t;] denotes the result of the
simultaneous substitution of ¢; for z; in e.

The following kinds of judgements are used in the type theory:

F T ctxt T is a valid context

'=r I’ and I' are equal contexts

I' - Atype Ais a well-formed type in context I'
'FA=B A and B are equal types in context T
I'Ft:A t has type A in context T’
't=s:A tand s are equal terms in context I'

The rules for valid judgements must be defined in one huge inductive definition
because the mutual dependencies between types, terms and context do not allow to
define well-formed contexts, types and terms separately. However, one can split the
definition into several parts, namely the parts dealing with contexts, general rules
concerning judgements, rules concerning the dependent product and the rules for
propositions.

The first part of the rules is concerned with the formation of contexts and vari-
ables:

Empty

F[]ctxt
' A type
Cont — Intro F (T, A) obct (z & FV(T))
) N ctx
Var F (T, z: A, TV) ctxt

Tz A TYFa: A

The next part lists the usual rules for equality:
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C F([,z:A,I")ctxt THA=B
edu T,z A, 1) = (T, 2: B,IV)

Flctxt TI'F Atype F'Ft A
r=r 'FA=A T'+i=¢tA

S =1 I'+tA=B I't=s:A
ymm T TFB=A TFs—tA4

=" I"'=I"Y THFA=B TFB=C

Refl

Trans

P=1" 'FA=C
F'Ft=tA THFt=t"A
F't=t"A
C 'MA=B TFt:tA TFA=B Ttt=sA
onv '+¢B I't=s:B

The third part defines the rules for the dependent product:

(T',z: A) + B type

I —form I' - 1Iz: A.B type
'FA=A" ([,2:A)F-B=pB
1 - Equ [Flz:AB=Tz:A.B
_ (L,z: A)Ft: B
H-Intro g At) e A
¢ —rul (,z:A)Ft=t:B TFA=A
Tule F'FAz:At=Az: A'tTIz: A.B
I — elim PF#llz:AB T'tFs:tA  (T,z2:A) b Btype
I' - App(z.A, B,t,s): B[z\s]
I — elimequl 'FA=A" ([T,2:A)+-B=PF
1 L't App(z: A, B,t,s) = App(z.A", B',t,5): B'[z\s]
I — elimequ? I'Ft=¢"llz:AB TFs=4:4
e L't App(z.A, B,t,s) = App(z: 4, B, ', s"): Blz\s]
8 — rule (L,z:A)F#:B Tks:A  (T,z:A) F B type
I't App(z.A, B, Az: A.t,s) = t[z\s]: Blz\s]
_ P'F#:llz: A.B (T,z: A) + B type .
n —rule 'k Az: A.App(z.A, B,t,z) = t:Ilz: A.B ( not free in 2)

The fourth part defines the rules for the dependent sums:

(T,z: A) + B type

% —form I'F Xz: A.B type
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'-A=A @,z:A)+rB=D
'kXYz:AB=Xz:A".B

PF#:A  (T,z:A)F Btype T'F ty: Blz\ty]
I' & Pair(z.A, B, t1,t3): Xz: A.B
''-rA=4A ((a:AFB=5B

I'+ Pair(z.A, B, t,s) = Pair(z.A", B',t,5): Sz: A.B
FFt=t"A TFs=s"B[z\f]

I' F Pair(z.A, B,t,s) = Pair(z. A", B, t',s"): Xz: A.B

Y — Equ

Y — Intro

3} — Introequl

3} — Introequ2

. I'+t:Xz: A.B
Y, — Elim1 TFm(): A
) I'Ft:Yz:A.B
Y — Elim?2 TF 7r2(t); B[a:\ﬂ'l(t)]
. Ikt =t AB
Y — Elimequl  — m(t) = T(tz): A
% — Elimequ2 o=l e A B

I'F mo(t1) = ma(t2): Blz\m1(t1)]

(o0) I' - Pair(z.A, B,t,s): Xz: A.B
! I' b 7y (Pair(z.A, B,t,8)) =t: A

I' - Pair(z.A, B,t,s): Zz: A.B

(o2) TF mo(Pair(z.4, B,,5)) = 5 Blo\{]
(surj) I'Ft:Xx2:A.B
J T'F Pair(z.4, B, 11(t), m3(1)) = ¢
The last part gives the rules for propositions:
Pro F T ctxt
rop I’ - Prop type
I'F p: Prop
Proof I' b Proof(p) type
I'p=p':Prop
Prop — equ I' - Proof(p) = Proof(p)
_ (T',z: A)  p: Prop
V—Intro I' - Vz: A.p: Prop
_ (I,z:A)Fp=p':Prop TFA=A
V—equ I'FVz:Ap=Va: A .p": Prop
V — elim (T, z: A) b p: Prop

I' + Proof (Vz: A.p) = IIz: A.Proof(p)

This completes the definition of the Calculus of Constructions.
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Remark The properties of weakening and substitution are given by the following
judgements, in which T' = J is an abbreviation for either - I' c¢txt, T = I, T +
Atype, TFA=B,TFt:AorT Ft=s.

I, Iy=J T Atype

e T,z AT =J (z € FV(T) UFV())

(T,2:A,T)=J TrFtA .

Sub T, T\ F J[z\{] (z free for ¢ in I")
=t . ’

Sub— Equ Lt is (e Al) = (z free for ¢ in T)

(T, Me\e]) F Jla\t] = J[2\2]

The judgements can be derived from the other ones by an induction over the deriva-
tions which is omitted here.

2.1.2 de Bruijn Numbers

As in the case of the simply typed A-calculus [Cur86] and in the second-order A-
calculus [CE87] the relation between the syntax and the categorical combinators
is easier to establish if variables are replaced by de Bruijn numbers. This applies
also to the Calculus of Constructions, as section 2.3 shows. At the beginning of
this subsection we define the raw expressions of the Calculus of Constructions in de
Bruijn form and give a translation of the raw expressions of the ordinary calculus
into the latter. Afterwards we give an adapted version of the rules concerning well-
formedness.
The raw expressions are as follows:

Definition 2.2 (Raw types and terms, raw contexts) The set of raw types E,
the set of raw terms t and the set of raw contexts T' of the Calculus of Constructions
in de Bruijn form are defined by the following BNF-expressions:

I u= []](T,E)
E u= IIE.E | Zz: E.E | Prop | Proof(t)
t u= n | AEt | App(E, E,t,t) | VE.t | Pait(E, E,t,t) | mi(t) | ma(2)

Furthermore, the length |T'| of a context T' is defined inductively as follows:

[ = o0
(T, E)| = [I]+1

The translation of raw expressions of the calculus with variables into the calculus
with de Bruijn numbers is given next. It is only possible if raw expressions in
raw contexts are considered, because a variable z is translated to the number %
indicating the position of the variable in the context T = (Tn-1: An_1,...,z0: Ao).
The definition is as follows:
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Definition 2.3 The translation db(T', €) of a raw expression with variables to a raw
ezpression in de Bruijn form with respect to a contert T' = (zp_1: Ap—1, .. ., Zo: Ao)
is defined by induction over the structure of the raw expression e as follows:

(1) on conteats:

db([]) = []
db((F’mE)) = (db(F),db(F,E))
(ii) on types:
db(T,II: A.B) = IIdb(T, A).db((T, z: A), B))
db(T,Sz: A.B) = Sdb(T, A).db((T,e: A), B))
db(T, Prop) = Prop
db(T', Proof(t)) = Proof(db(T,?))
(iii) on terms
db(T, zx) E(0<k<n-1)

db(T, Az: A.t)
db(T, App(z.4, B, 5, 1))

Adb(T, A).db((T, z: A),t)
App(db(ra A)’ db((ra T: A)a B), db(ra S)’ db(ra t))

db(T,Vz: At) = Vdb((T, A).db((T,z: A), 1)

db(T, Pair(z.4, B,t,5)) = Pair(db(T, A),db((T,: A), B),db(T, ), db(T, s))
db(T,m1(t)) = my(db(T,t))
db(T,ma(t)) = ma(db(T,1))

The operations of weakening and substitution in de Bruijn form, which are to be
defined next, are more complex than those in the previous case and will therefore
be given explicitly. The intended meaning of the weakening operation U™ is that if
for types A and Ay, ..., Am_1 and contexts I' and I with |IV| = 3

(T,T) + Atype
(T, Am—1,...,4j51) F Ajtype(0<j<m—1)

are valid judgements, then the judgement
(T, Am-1,..., 40, U(I")) F U(A)
is valid. A similar claim applies for a term ¢ instead of a type A.

Definition 2.4 (Weakening) The weakening of pure types, terms and contexts is
given by the operation U, which is defined as follows:
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(i) On contexts:

url) = 1]
Ur((T, B)) = (UZy(I),UP(E)) (i>0)
Ur() = T (i = 0)
(ii) On types:
Ur(ITA.B) = TUM(A).U%,(B)
Ur(XA.B) = ZUP(A).U7,(B)
U7 (Prop) = Prop
U7*(Proof(t)) = Proof(UT(¢))
(ili) On terms:
U = {65
Ur(AE.L) = AUP(E).UR,(t)
Ur(App(4, B,1,s)) = App(UP(A4),U%,(B), U (t), UP(s))
C U UR(vYAY = YUR(E).UT ()
UF(Pair(4, B,t,s)) = Pair(UP(A), UT,(B), UP(2), UP(s))
Ur(m(2)) = m(UP(2))
Ur(me(d)) = ma(UP(2))

In the sequel we will abbreviate Uj(e) by (e) 1.

The second definition concerns the substitution of a term s for the nth variable
in an expression e, which is denoted by e[n\s]. The precise definition is as follows:

Definition 2.5 (Substitution)

(i) In contexts

[1n\s] = []
(T, E)ln\s] = (Tn —1\s], E[n\s]) (n>0)
Fln\s] = T (n=0)

(i1) In types

(IIA.B)[n\s] = IIA[n\s].B[n+1\s]

(ZA.B)[n\s] = XA[n\s].B[n+ 1\s]
Prop[r\s] = Prop

Proof(t)[n\s] = Proof(t[n\s])
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(i) In terms

k k<n
kln\s] = { Ug(s) k=n
k—1 k>n
(AAt)n\s] = XA[n\s].t[n+1\s]
App(4, B, 51, 52)[n\s] App(A[n\s], B[n + 1\s], s1[n\s], s2[n\s])
(VAt)[n\s] = VA[r\s].t[n+1\s]
Pair(A, B, t1,¢;)[n\s] = Pair(A[n\s], B[n + 1\s],#1[n\s], ts[n\s])
n(@\s] = miln\)
B\ = i\

The adaptation of the rules describing well-formedness is given here only for
the rules involving weakening and substitution, because all other rules are merely
rewritten. However, the complete set of rules can be found in the appendix. The
adapted rules look as follows:

1. Variable rule
F (T, A, TV) ctxt

Var AT F D U (A

3. Rules for dependent product

(rA)F#:B TFstA (T,A)F Btype
't App(4, B,t,s) = t[0\s]: B[0\s]

I'-#:IIA.B) (T,A)F Btype
' AA.App((A) T,UN(B),(®) T,0) =t:1IA.B

B — rule

n — rule

The rules for weakening and substitution are as follows:

(I,T"Y=J TF Atype

Thin T, A, Uy (T) = Ura (9)
Sub (T,AT)=J TrtA
(T, TN F I\
Sub — Equ (T,AT)=J Trt=t'A

(T TN F I = JIT\E]

2.2 The CC-Category

As already mentioned in the introduction, we propose split D-categories as an appro-
priate categorical framework for abstract machines. Curien and Ehrhard describe
those categories in [Cur89] as an extension of Cartmell’s categories with attributes
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[Car86]. Ehrhard considers in his thesis D-categories, which are based on fibrations
rather than on indexed categories. He shows that an extra condition, the so-called
fullness condition, is necessary to show the equivalence between the category of
display maps [Tay86] [HP89] and D-categories. This condition ensures that the
morphisms in the fibres are uniquely determined by their global sections. It is ap-
plied here to establish the correspondence between the categorical combinators and
the calculus. As mentioned in Jacob’s thesis [Jac91], it is also necessary to describe
strong sums as left adjoints to weakening.

We define the higher-order full split D-categories, which we will call CC-cate-
gories for short, in three steps. First, we explain those parts that correspond to
the simply typed A-calculus over a set of ground types, then we add the properties
required for modelling dependent types, and finally we extend this framework to the
Calculus of Constructions.

2.2.1 Definition and Connection to the Syntax

The simply typed A-calculus

We assume familiarity with basic concepts of category theory, especially with in-
dexed categories and fibrations. An introduction into these topics can be found in
[Mac71] [BW90]. The so-called Grothendieck construction plays an important role
in the definition of a D-category below. It takes an indexed category E:B°?—Cat
and produces a fibration, which is denoted by Gr(E) £+ B. The objects of Gr(E)
are pairs (I', A), where T is an object of B and A4 is an object of E(T'). A morphism
from (T, A) to (A, B) is a pair (f,¢) of morphisms with f a morphism from I' to A
in B and ¢ a morphism from A to E(f)(B) in E(T). The functor p is the projec-
tion to the first component, which maps an object (', A) in Gr(E) to I' and every
morphism (f,¢) to f.

The part of the categorical structure, the so-called constant split D-category, that
models the simply typed A-calculus with a set of ground types G is described first.
The framework is given by a certain indexed category:

o A category B with a terminal object [ ]. The morphism from any object T to
[] is denoted by ().

® An indexed category E:B°—Cat. For any morphism f in B we will write

f*(=) for E(f)(-).

e For every object I in B the fibre E(I') has a terminal object 1 that is preserved

on the nose by every functor f*, e.g. these terminal objects are chosen in such
a way that f*(1) = 1.

e For every object I in B the category E(I') has the same set 7~ of objects with
f*(A) = A for every morphism f in B and element A of 7.

The connection to the syntax is as follows:
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Category Syntax
Object I' of the base category B Context I’
Terminal object [ ] in the base Empty context
Morphism in the base Environment, i.e. list of terms
Object A in the fibre over T’ Type A
Morphism t:1—A € E(T) Term of type A in context T
“Pulling back” of a morphism ¢ in E(T") | Substitution of f in ¢ (see below)
along f:T—1I", ie. f*(¢)

Note that the morphisms in the base category have no counterpart in the calculus.
They correspond to an environment, i.e. a list of terms, and show how to interpret it
as a function sending one context to another. These morphisms are therefore called
context morphisms.

The formation of new contexts is captured by the following adjunction:

o The functor I: B—Gr(E), given by

Ir) = (1)
I(f) = (f,1d)

has a right adjoint G: Gr(E)—B. The object G((T, A)) is abbreviated T' - A
in the sequel. Furthermore (Fst,Snd): (T' - A,1)—(T, A) denotes the counit of

this adjunction. The natural isomorphism between Homg, &) ((—, 1), (—, 4))
and Homp(—, — - A) is denoted by (—, —).

The functor G models the formation of new contexts from old ones, i.e. I' - A cor-
responds to the context (T, A). This adjunction is also used for the modelling of
substitution. If ¢ is a term of type A in context I' and u is a term of type B in
context (I', A), then the morphism (ld,¢)*u: 1— B in E(T) corresponds to the sub-
stitution of the variable with de Bruijn-number 0 in the term u by ¢. The weakening
operation, which is also necessary for the definition of substitution (cf. section 2.1),
is also modelled by the adjunction I 4 G. More precisely, it corresponds to the
functor Fst)y: E(I')—E(T - A). We will abbreviate G((f,1)) to f - ¢.

As already mentioned, we need the so-called fullness condition:

e For every pair of morphisms g: T'- A—A - B and f:T'—A such that the diagram

r-a—J .A.B

Fst Fst

r 7 A

commutes, there exists a unique morphism ¢: A—B in E (T') such that g = f-¢.

The intuition behind this condition becomes clear if we reformulate it. Because ev-

ery morphism (f,1): (T', A)—(A, B) in Gr(E) is equal to (Id,2); (f,1d), it is enough
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to require fullness only in the special case f = Id. In this case it means that any mor-
phism ¢: A—B in E(T) corresponds uniquely to the morphism ¢’ = Snd; Fst*¢: 1—B
in E(T - A). It therefore shows how to translate any morphism #: A—B in E(T') in
a unique way to a term of type B in context (T, A).

Function types and abstraction are modelled by the right adjoint II4 to the
weakening functor Fst}; plus Beck-Chevalley condition, i.e. the requirement that

f*(Cura(t)) = Cura((f-1d)*(2))

holds for every f: A—T, A € E(T'), B € E(I'-A). In these equations, Cur denotes the
natural isomorphism between Homgr.4)(B, C') and Hompg(ry(B,I14(C)). See next
subsection for the reasons why the strict version of the Beck-Chevalley-condition is
used. This modelling of abstraction and functions by a right adjoint to weakening is
common in categorical logic. It is also used in cartesian closed categories [LS85], and
works also for generalizations like the universal quantification in the polymorphic
A-calculus[See87].
Products in the A-calculus are modelled as a special case of a dependent sum:

e For every object A € E(T') and B € E(T - A) there exists an object £(4, B)
in E(T') such that I'- A- B and T' - £(A, B) are naturally isomorphic.

If this condition is unravelled, it yields the existence of morphisms Pair: 1—-3(A, B)
in E(T-A-B), m:1-Ain E(T'- %(A, B)) and 73:1—B in E(T'- (A, B)) such that

(Fst, Pair); (Fst,my,m) = Id

(Fst, my,m2); (Fst, Pair) Id
(f-1d-1d)*Pair = Pair

(f . ld)*ﬂ'l = m

(f . Id)*ﬂ'g = T3

The morphisms ((ld, t), s)*Pair, {ld, ¢)*r; and (Id,)*r; correspond to the product of
the terms ¢ and s and the first and second projection of ¢ respectively.

Dependent Types

The categorical structure described for the simply typed A-calculus can be gener-

alized to interpret a A-calculus with dependent types if the following changes are
made:

 The condition that there exists a fixed set 7T of objects for all categories E(I")
is removed.

e The requirement f*A = A is dropped as well.

This categorical structure is called a split D-category. In this setting the exponents
become dependent products, and the products turn into strong sums, so we obtain
a Martin-Lof theory without equality.
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The Calculus of Constructions

The Calculus of Constructions is a special kind of Martin-L5f theory with a type Prop
of propositions, a type of all proofs of a proposition and an impredicative universal
quantification. The corresponding categorical structure, a so-called CC-category, is
therefore a generalization of the split D-categories. First we require that

o there exist an object Q in E([]) and T in E([]- Q).

modelling the first two additions respectively. The object T' corresponds to the type
Proof(0), so that for any proposition p in context I' the type Proof(p) is represented
by the object ((),p)*T in E(T'). A dependent product over proofs of propositions
is already defined, so in order to model the universal quantification we only have
to ensure that for every proposition p, i.e. a morphism p: 1), there is a propo-
sition corresponding to any object II(A,p) and that this correspondence respects
substitution. This leads to the following two conditions:

o For every morphism #: 1—()*(2) in E(T'- A) there exists a morphism V(A4, t):1
—+()*Q in E(T') and the naturality condition

R*V(A,t) = V(h*A, (h - 1d)*t)
holds for every h:IV—T.

o For every object A in E(T') and any morphism ¢: 1—+Q in E(T'- A), the following
coherence condition holds:

(0 (A4, 0)(T) = TH{A, ((), 1)"(T))

If we put all parts of the definition together, we obtain the following definition
of a CC-category:

Definition 2.6 Let B be a category with a terminal object [ ], let () be the morphism
from any object ' of B to [ ] and let E: B"—Cat be an indezed category over B.
We will write f* for E(f). E is a CC-category if it satisfies

(i) For every object T' of B there exists a terminal object 1 in the category
E(T), which is preserved on the nose by every functor f*, i.e. the terminal
objects are chosen in such a way that f*(1) =1.

(i) There exists a right adjoint G to the functor I: B=Gr(E), where I is
defined by '

I(T) = (I,1) (T € Obj(B))

I(f) = (f,ld) (f € Hom(T,I")),
and Gr(E) is the category obtained by applying the Grothendieck construction
to E. We abbreviate G((I', A)) to T' - A and G((f,t)) to f-t. Furthermore
(Fst,Snd): (I'- A,1)—(T, A) denotes the counit of this adjunction. The natural

isomorphism between Homg,(g)((—,1), (—, A)) and Homg(—, — - A) is denoted
by <_’ _)'
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(i) For every pair of morphisms g:T - A>A - B and f:T—A such that the

diagram
r-A—y—A.B
Fst \ Fst
r A
f
commutes, there exists a unique morphism t:1—Fst*B in E(T - A) such that
g=1f-t.

(iv)  For every object T' of B and A of E(T"), the functor
Fsty: E(T)—E(T - A)

has a right adjoint
4: E(T - A)—E(T).

We will write Cur for the natural isomorphism between Homgr.4)(Fst (B), C)
and HOInE(r-)(B, HA(C))

(v)  The Beck-Chevalley-condition for the adjunctions Fst’y b T4 is satisfied
in the strict sense, i.e. the equations

f(a(B)) = Hsa((f-1d)*(B))
F*(Cura(t)) = Curgeqay((£-1d)*(2))
hold for every f: A—T, A€ E(T'), B € E(T - A).

(vi) For every object A € E(T') and B € E(T - A) there exists an object
%(4, B) in E(T) such thatT- A- B and T - £(A, B) are naturally isomorphic.

(vii)  There exists an object Q in the category E([]) and an object T in the
category E([]- Q).

(viii) For every object T in B, every object A in E(T') and every morphism
t: 128 in E(T' - A) there exists a morphism V(A,t):1-Q in E(T) such that
the equations
R*(V(A,1)) = V(h*A,(h-1d)*())
(L V(AN(T) = M., )*(T))

are satisfied.

The formulation of the combinators relies on some isomorphisms involving the
terminal object in the fibre. These are given in the following lemma:
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Lemma 2.7 Let E : B?—Cat be any CC-category. For any object I of B and
objects A of E(T') and B of E(T' - 1) we have with (Id,1d): T—T - 1 the following
tsomorphisms:

i) r-i1zr

(i) II(1,B) = (ld,ld)*B and I(A4,1) =1

(i) 2(1,B) & (Id,1d)*B and $(A4,1) = A

Proof
(i) We have
Fst; (Id, Id) = (Fst,Id) = (Fst,Snd) = Id: - 1—T - 1

and
(d,Id); Fst = Id: T—T

(ii) There are natural bijections

Fst'*C — B in E(T'- 1)
C — (Id,ld)*B in E(T)

and
Fst'C — 1 in E(T - A)
C — 1in E(T)

so the claim follows from the uniqueness up to isomorphism of II(1, B) and

II(A,1).
(iii) By (i), we have
T-%(1,B)=T-1-B=T.(d,Id)*B

and
' 2A1)=2Tr-A-1=T-A

O

Remark The fullness is necessary to show that a natural isomorphism between
I'-A- B and T - X(A, B) yields a left adjoint to weakening. With fullness we get a
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natural isomorphism between Homgr. (B, Fst*C') and Hom em)(Z(A, B),C), which
characterizes such an adjunction:

B — Fst*C in E(T"- A)
(Fullness)
1 — (Fst;Fst)*C in E(T'-A- B)
(Nat. Iso)
1 — Fst*C in E(T' - (A, B))
(Fullness)
L(A,B) —» C in E(I")

As an example of a category with a natural isomorphism between I'- £(A4, B) and
I'- A- B, but no left adjoint to weakening, take as base category B the category with
two objects and one non-identity morphism

r &

and define an indexed category E: B°?—Cat by

and let E(I') be the category with one object 1 and the identity morphism together
with

OA=1, (= (=7 =1d
It is easy to verify that E is an indexed category with a terminal object in each
fibre. If we define

(-1 = ]
[]-A4 < T
r-1¥rp

we obtain an adjunction I 4 G. The adjunction Fst 4 II is already given: define
II(A4,1) = II(1,1) = 1. If we let furthermore £(4,1) be A and %(1,1) be 1 then the
identities between [[-1-A=Tand []-A=Tand []-1-1 = [Jand []-1 =]
yield obviously natural isomorphisms. So we have a, split D-category, but it is not
full because there are two morphisms, namely ¢ and t3, that correspond to the

morphism 1 M1 =Fst*Adin E([ ]+ A). There is also no left adjoint to weakening
because the sets Homp()(%(A,1) = A, A) and Hompg((}.4)(1,Fst*A = 1) are not
isomorphic.

2.2.2 Objectives of the Definition of a CC-Category

The CC-category is used in the next section for the derivation of categorical combi-
nators. This yields two principles for the definition of a CC-category:
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o Turn all canonical isomorphisms into identities whenever possible
e Use those constructions that give rise to the simplest relation to the syntax

The application of the first principle makes extra combinators and equations for the
canonical isomorphisms superfluous.

A D-category is defined using fibrations, whereas the definition of a CC-category
uses indexed categories and the Grothendieck construction instead. This has several
advantages:

o All canonical isomorphisms that are involved in the definition of fibrations
become identities.

® The Grothendieck construction has an intuitive meaning ((T', A) denotes the
type A in context I'), which is hidden in the fibration.

e No pullbacks are necessary for the definition of a CC-category. They are
implicitly part of the definition of a fibration (cf. [Ehr88a, Prop. 2]).

Also the strict version of the Beck-Chevalley-condition is adopted because this elim-
inates further canonical isomorphisms. All these advantages lead to a much simpler
system of combinators.

Other approaches [HP89][Pit89] use so-called display maps. They consider a
category B with finite products, where the fibre over an object I' of B is given by
a collection of distinguished objects in B/T, the display maps. For every object '
in B the full subcategory B/T of display maps is denoted by E(T'). They are not
used here for two reasons. Firstly, the pullbacks involved yield quite complicated
combinators and secondly I do not know how to capture the role of display maps as
distinguished morphisms in the base category. Streicher’s extension of contextual
categories [Str89] imposes a tree structure on the objects to capture the notion of
type-in-context. This leads to complex categorical combinators, whereas in the CC-
category terms-in-contexts are modelled by an adjunction that allows the derivation
of simple combinators in a standard way.

Jacobs describes in his thesis [Jac91] a categorical semantics for the Calculus of
Constructions using so-called full comprehension categories with units. These are

given by a full and faithful functor P: £—B~, where B~ is the arrow category of B,
such that

(i) codoP:E—B is a fibration, and

(i) f cartesian in £ implies Pf is a pullback in B. We will write it as

-4 F-d A4

Fst Fst

r A
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(ili) Every fibre has a terminal object, which is stable under reindexing.

Their equational presentation is feasible only by using their equivalence with D-
categories because all other formulations involve either pullbacks or yield condi-
tional equations. The latter also happens if condition (1) is replaced by the require-
ment that for every morphism f:I'—A in £ the operation ¢ sending any morphism
h:T—T' - f*A in & such that h;Fst = Id to a morphism ¢:['—A - Ain & satisfying
g; Fst = f, namely ¢(h) = h; (f - Id), is invertible.

2.3 The Combinators

In this section we define categorical combinators for the Calculus of Constructions
and show how the calculus can be translated into the combinators. We also show
the soundness of this translation and the equivalence of the calculus and the equa-

tional theory of categorical combinators. Finally we compare these combinators
with Ehrhard’s [Ehr88b].

2.3.1 The Equational Presentation

The equational theory of categorical combinators is a generalized algebraic theory in
the sense of Cartmell [Car86]. The generalization concerns the sorts of the theory.
Whereas in a normal multi-sorted algebraic theory the sorts are constants and may
be interpreted as sets, in a generalized algebraic theory the sorts depend on a variable
of a certain sort. Before giving the equational theory of a CC-category in detail, we
describe its structure. There are two kinds of statements in the theory. The first is

T sort
and indicates that T is a well-formed sort. The second kind of statement
feT

where T is a well-formed sort, indicates that f is a well-formed term. The theory
also contains equations between well-formed terms of the same sort. The sort of the
terms and the conditions under which it can be deduced are omitted if they can be
derived from the terms.

We have in the first instance the following rules concerning sorts:

(0b3) Obj sort

I, T € Obj
(Hom) Hom(T',T") sort
(Fib) I' € Ob;

Fib(I') sort

T'cObj A,A € Fib(D)
(Fun) Funr(A, A)) sort
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Elements I, A - - - of type Obj and f,g- - of sort Hom(T', IV) correspond to objects
and morphisms of the base category B respectively, whereas elements A, B - - - of sort
Fib(T') and ¢, s - - - of sort Funr(A, B) denote objects and morphisms in the category
E(T') respectively.

However, the terminal object in the fibre cannot be treated simply as a combi-
nator of sort Fib(I'). The equation ¢ =!, where ! is the combinator for the unique
morphism from A to 1, is only true if ¢ is a morphism from A to 1. When we
later turn the equations into reduction rules, this means that the reduction ¢ ~» !
is subject to a typing constraint. The abstract machines, which are based on these
reduction rules, would then have to maintain type information during the reduction,
which causes substantial overhead.

This can be avoided if the isomorphisms of Lemma 2.7 are treated as identities
because in this case the only combinators with domain A and codomain 1 are the
combinators ¢;! if A # 1 and Id and ¢;! if A = 1. Furthermore this identification
streamlines the correspondence between the Calculus of Constructions and the cat-
egorical combinators significantly. The reason is that the calculus has no terminal
type and therefore has no counterpart for the objects I'-1 in the base and 1, II(4, 1),
II(1, A), ©(A,1) and (1, A) in the fibre. The price we pay are additional sorts for
the terminal object and for the morphisms having it as a domain or codomain:

I' € Obj

(Termt) Termt(T') sort

(Fun) [€Obj AcFib(Il) T eObj AeFib() I' € Obj
Funr(1, A) sort Funr(A,1) sort Funr(1,1) sort

We will use D, D’--- as an abbreviation for either an element of Fib(T) or the
combinator 1. The following notations are used:

I'> f:I" = fé€Hom(T,I)
'>A = AeFib(D)
'>1 = 1€ Termt(T)
'>t:D—D" = teFunr(D,D')

The signature of the equational theory is given by the following BNF-expressions:

u= []|]T-A _

n= () [ | £ ] Fst | (f,A])

n= fxA|II(A,A) | 2(4,4) Q| T

n= A1 :

DIl [ ¢¢ | f+t ] Snd | Cur(A,t) | App(4, A) | V(A4,1)
| Pair(A,A) | my | mp | tf

SO o [ SN

We have the usual axioms for equality, saying that equality is an equivalence relation
and that one can substitute equals for equals in every expression. They are as follows:
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(Reff T'=T f=f A=A t=t
=1 =f A=A t=t
(Symm)  p—, }c’=f A=4 T=1
=1 DM=1" — fI 1 fu
(Trans) =" ! ff = ]J:u !
A:AI AI=AII t=t, tlztll
A= A" t=1"
_ Ir=I" A=A
( ) 1" . A —_ I‘I . AI
f=f A=A f=f t=t
(*) f*A=F+A fxt=F+t
I A=A B=PB t=t A=A
(ID) II(A,B) = (A, B") Cur(4,?) = Cur(4, ¢
A=A B=5
App(A, B) = App(A4, B')
5 A=A B=B5B A=A" B=B§
(%) (4, B) =S, 5) Par(A,B) = Par(A. B
() f=r g=g t=1t u=u
’ Fi9=1r59 tu=thu
(- Ll =t Asd
’ (£,tA]) = (F,¥[A])
A=A t=¢
) V(A7) = V(A7)
i=s
_f
) =
(conw) LPSiA A=A T=T" I't:A~B A=A B=§
conv > f: A T>tA >B

Next we give the rules and equations for the indexed category E:B°°—Cat.
Firstly, we say that B is a category with a terminal object:

) Teosr

© T T
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(2d — base) __—II:S I(jb%,

(; —base) Le fI:\I; f;;‘:r%, g: 1"
() () = ld:[]=[]
) 0 = 0

(¢dL) fild = f

(idR) Id; f = f
(;—assoc) (f;9)ih = f;(g;h)

Secondly, we express that for every object I in the base category B there is a category
E(D):
. . I'sD
(id=fib) +519D5D

'>t¢:D—-D T'b>s:D—D"

G —fib) I'> t;s: D—D"
(2dL) tild = ¢
(idR) Id; ¢ t

(; —assoc) (u;t);s u; (¢; 3)

Thirdly, we have the following rules and equations concerning the functor (—)*,
which is represented by the operator * in the equational theory:

I'> f:I' "' A

(x = obj) To [ * A
(* — morph) '> f:I'Y I'bt:A-A" T fiIY DVpt:l-A
P T> frt:frAsfr A Th frt:lofxA
I'>fI' I'btAd-l T f:IY IVpélol
P> fxt: f+x Aol ' fxt:1-1
ldxA = A
d«t = ¢
f+xld = Id
F*ts) = (F+1);(fxs)
(fig)xA = fx(g+A)
(fig)*t = fx(gxt)

After the equational theory of indexed categories we give the rules and equations

for the terminal object 1 in each category E (T'), which is preserved on the nose by
every functor E(f):

1) 571

0 ' A
) I'>l:A—1



2.3. THE COMBINATORS 27

I = Id:1-1
;o= !
Remark The equation
fxl =l
can be derived using the other rules and was therefore omitted above:
fxl= fxlld = fxl; ! =!

The next part of the equational theory of CC-categories is concerned with the
adjunction I 4 G. The presentation is obtained using a well-known characterization
of an adjunction given in [Mac71, Theorem IV.2] that is applied also in [CE8T]:

Lemma 2.8 Given the following data:
* two small categories C and D and a functor F:C—D,

® a function G sending every object of D to an object of C,

® a function A assigning each morphism f: FA—U in C a morphism A(f):
A—GU in D, and

o for every object U of D a morphism (U): FGU—U
then if the equations

(B) eU)oF(A(S)) = f
(nat) A(f)og = A(foF(g))
(n) Ae(U)) = Wdgu

hold for all objects U of D and all morphisms f: FA-U, g: B—A, the function G
can be extended to a functor G: D—C, being a right adjoint to F. Furthermore, the
bijection between the hom-sets of the adjunction is given by the function A, and € is
the counit of the adjunction.

Proof Define the effect of G on a morphism ¢: U—V by
G(g) := A(g o ¢(U))
and the inverse of A by
A7Y(h) := e(U) o F(h) (h: A—GQU)

An easy calculation shows that G is a functor and that A and A=! are inverse to
each other and that the bijection between the hom-sets

[t FA-U
A(f): A-GU

is natural in both A and U. Therefore F' 4 G, and ¢ is the counit of this adjunction.
0O
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This lemma is now applied to the adjunction I 4 G of definition 2.6 to get its
equational presentation. We do not introduce a separate notation for the category
Gr(E), but we use instead the corresponding expressions in terms of the indexed
category E. This yields the following presentation:

) 's A
(G—obj) ¢ Obj
' f:I'Y TI'b A TotlafxA
() I (AT A
I's> A
(Fst) I'"Ap Fst:T
'>A
(Snd) I' A Snd:1-Fstx A
(Fst) (f,t[A]);Fst = f
(Snd)  (£,t{A]) *Snd = ¢
(nat) Fi{g:t[A]) = (f;g,f *t[A])
(() =m)  (Fst,Snd[A"]) = Id

Remark The correspondence between the rules and equations given above and the
general setting as described in Lemma 2.8 is as follows:

e G((T, A)) corresponds to T - A.

e The bijection A of the hom-sets corresponds to the operator (). We need the
extra type information in the combinator (f,t[A]) to make its type unique.

The reason is that it is in general impossible to derive the type A from a type
B equal to f * A.

® The counit €, which is a morphism (T'-4, 1)—(T', A), is the morphism (Fst,Snd).

¢ The equation (8) corresponds to the equations Fst and Snd, because the equa-
tion () looks in this situation as follows:

(Fst,Snd) o ({£,),1d) = (£,2)

which is equivalent to
(Fsto (£,t),(f,t)*(Snd)) = (f,¢)

* The equations (nat) and (n) correspond to the same equations in lemma 2.8.

We use later on the abbreviation f -#[A’] also for the term (Fst; f, Snd; Fst t[A"]) of
the equational theory.

The equational presentation of the fullness condition cannot be derived directly
from the definition because this leads to a conditional equation. Instead we use the
fact that it is equivalent with the statement
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e For every morphism ¢:1—Fst*B in E(T' - A) there exists a unique morphism
t/: A-B in E(T) such that Snd; Fst*t/ = ¢.

This is captured by the following rules and equations:

(_f) ' Ap t:1—-Fstx B
I'>th:A->B

(—f —red)  Snd;Fst*tf t
(—F —equ) (Snd;Fst«t)f t

The next part of the equational theory concerns the adjunctions Fsty <4 II4 of
Definition 2.6. Lemma 2.8 yields the following equations and rules:

I'sA T-Ap B

(Im) T>TI(4, B)

(Cur) '>A T-Ap t:Fst«xC—B
ur T & Cur(4,%): C—II(4, B)

(Coy DA T-AprisB

I' > Cur(A,t): 1-1I(A, B)

A I'sA T-Ap B
(App) 75 App(4, B):Fst=11(A, B)—B

(8)  (FstxCur(A,t));App(4,B) = ¢
(nat) s;Cur(A,t) = Cur(A, (Fst * s);t)
(n) Cur(4,App(4,B)) = Id

The Beck-Chevalley condition yields directly the following equations:

(Cur) f+Cur(A,t) = Cur(f=A,(f-d[A4]) xt)
(I)  f+1(A,B) = II(f*A,(f-1d[A])  B)

We will need the following equation, which is a consequence of the Beck-Chevalley
condition and the p-rule:

(App —nat) f*App(A,B) = (Id,f*Snd[f;Fstx* A]) x App(f;Fstx A,
(Fst; f; Fst,Snd[f; Fst x A]) * B)

Remark The combinator Cur(A,t) is needed only for morphisms I'- A > ¢:1-B
as the following calculation shows for any I' - A > #: Fst * C—B:

Cur(A,t) = (Snd;Fstx Cur(A,t))
= (Snd; Cur(Fst x A, (Fst; Fst, Snd[A])))*
= (Cur(Fst * A, Fst * Snd; (Fst; Fst, Snd[A]) * ¢))

Using the (App — nat)-equation we can reformulate the (7)-equation to
Cur(A,Fstx¢t; App(A, B)) =t

In the sequel we will use only the modified version.
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The natural isomorphism between I'- A- B and I' - % (A, B) gives rise in the first
instance to three combinators Pair, 7} and 75 corresponding to the three morphisms
Pair, m; and 7. We do not use the combinators 71 and 75 for the derivation of
the abstract machines but equivalent ones obtained by the fullness condition. The
reason is that the morphism (Id, t) 7, which corresponds to the term 74 (t), is equal
to the morphism ¢; W{ . If we define the combinator 7, to correspond to the morphism
7{, the abstract machines can handle the combinator ¢; 7y for the first projection in
the same way as the combinator ¢; (Id, s[A])*App(4, B) for application because both
are translated into a composition in the fibre. In the case of the combinator 5, We
obtain only that the morphism (Id, t) 7, is equal to the morphism t; (Fst; (Id, ¢) *m )-
Because the morphisms ty; (Fst; (Id, ¢) * J ) and to; (Fst; (Id, ) % 7 ) are equal for any
t1,¢2:12%(A, B) in E(I'), we can define the combinator ¢; 75 as an abbreviation for
the morphism ¢; (Fst; (Id, ) * 7§). This leads to the following rules and equations:

'>A T-Ap> B

(%) IS4, B)
(Pair) I-A> B
I'-A- B> Pair(A, B):1-Fst; Fst + £(4, B)
I'"Ap B

N S(4, B)—A

) I'>t:1-%(A,B)
(72 I'> t;7: 1—=(ld, ¢; m[A]) * B

(01) (id,t[A], s[B]) * Pair(A, B);m, = t
(02) (Id,t[A], s[B]) * Pair(A, B);my = s
(surj) (Fst,Snd; Fst* m1[A],Snd; 75[B]) * Pair(A,B) = Snd

(nat — Pair) (f,#[A],s[B])* Pair(4,B) = (ld, f *¢[f * Al, f-1d[A] * s[f - Id
[A] * B]) * Pair(f x A, f - 1d[A] * B)
(nat — m) fxm 7
(nat — m,) f*(t;72) f*t;my
Finally, the clauses (vii) and (viii) of definition 2.6 lead directly to the following
additional rules and equations:

@ o

" Ap t:1-() % Q
) T >V(A,t):1—<>() 0

D) 1T

(V — fun) hxV(A,1) = Y(h*A,(h-Id[A])*t)
(Coh) (L, V(4,DQ) «T = T4, ((),¢[Q]) * T)

This completes the equational theory of a CC-category.
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2.3.2 The Translation of the Calculus of Constructions

Now we define an interpretation of the type theory of section 2.1 in the equational
presentation outlined in the previous section. This interpretation is given by a trans-
lation of raw types, terms and contexts of the type theory into the corresponding
categorical combinators.

Definition 2.9 (Translation into combinators) The translation of raw types,
terms and contexts into categorical combinators is given by the following function
[, where Fst™ is an abbreviation for Fst;Fst;- - - ; Fst:

~
n—times

(i) on contexts

[ =1
[T, A1 = [T]-[A]

(ii) on types

[IA.B] = II([A], [B])
[EA.B] = X([A],[BI)
[Prop] = ()*Q

[Proof()] = ((), ][+ T

(iil) on terms

[n] = Fst™«Snd
[AA2] = Cur([A], [])
[App(4, B,,s)] [1; (1d, [sTITAT]) * App([Al, [.B])
[VA.7] V(AL [D)
[Pair(A, B,t, )] Id, [eDTAT], [sDILBT)) * Pair([A], [B])
[m(2)] [¢1; m
[r2(8)] = [th;7e

Remarks

1. The translation shows how neat the correspondence between the Calculus of
Constructions and the categorical combinators is. The raw terms of the cal-
culus can be translated directly into raw combinators. In order to establish
the soundness of the translation it is therefore enough to show that every
judgement in the calculus can be made also using the combinators obtained
by translating the terms. If the categorical semantics of the calculus is given
directly by a translation of raw terms and types into morphisms and objects
of a CC-category, the definition is more complex [Str89]. A partial translation
has to be defined, and it has to be proved that this translation is defined on
well-formed terms and types and respects the judgements.
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2. The translation explains also why de Bruijn-variables are used in the definition
of the Calculus of Constructions (cf. section 2.1). The reason is the clause
concerning variables. The categorical combinator corresponding to a variable
is the projection from the context, in which the variable is declared, to its
type. This is exactly captured by the de Bruijn-number and therefore it is not
necessary to introduce a translation of terms-in-contexts, as would be the case
if normal variables were used.

3. The translations shows how the syntactical distinctions in this version of the
Calculus of Constructions are motivated by corresponding distinctions in the
combinators: a proposition corresponds to a morphism I' > #: 1-1Q, and the
type of its proofs to an object in the fibre.

2.3.3 Soundness

The soundness of the above translation can now be stated and proved in a fairly
standard way.

Theorem 2.10 (Soundness) For every judgement in the calculus there ezists a

corresponding judgement in the equational theory of combinators, more precisely:
(Contexts) BT ctxt implies [I'] € Obj

(Types) I' A type implies [I] > [A]

(Terms) I' - t: A implies [I'] > [¢]: 1=]A]
(Eg-Contexts) T =T' implies [T] = [I] € Obj

(Eq-Types) '+ A = B implies [I] > [A] = [B]
(Eg-Terms) L'kt =s: A implies [T] > [¢] = [s]: 1-[A]

Proof The proof of the theorem proceeds by induction over the derivation of the
judgements in the type theory and depends crucially on the fact that weakening
and substitution, which are meta-operations in the type theory, are translated into
certain categorical combinators in the equational theory. This is expressed in the
following two lemmata. Their proofs are routine inductions over the derivation of
the judgements and are therefore omitted.

Lemma 2.11 Weakening of an expression e well-formed in context (T,I") withT" =

Bi_1 - -+ Bo with respect to types Am_1,..., Ao corresponds to the application of
the combinator

More precisely, if we define ST'(T') as an abbreviation for

s = 1]
SP(I-A) = Sz, (T)-SP(4) (i>0)
() = T (1=0),
then for a given conteat - (T',I') ctxt with I = Bj_y - +- -+ By, [(T,I")] € Obj and
types Am—1,...,Ag satisfying

(F,Am_l, ey Aj+1) '_ AJ type H(F, Am—-h PR ,Aj+1)]] > [[A]]] (m —_ ]_ 2 ] 2 0)
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we have with A = (T, Ap_y, ..., Ag, UP(I))
i)  [Al=[r]-[Am-a]----- [Ao] - S7*(IT'T)

(3) (T',T") - A type and [(T,I")] > [[A] implies
[AD > S« [A] = [UP(A)]

(iif) (0,I") F¢: A and [(T,I")] & [t]: 1=[A] implies
[A] > S7 + [t] = [Ur()]: 1-[UP(A)]

(iv) F(T,I') = E and [(T,I")] = [E] implies
Y 1Al =sp(eD)

(I,I") F A= B and [(I',I')] > [A] = [B] implies
() [A]% 57« [A] = 57 « [B]

(vi) (I T) b s =t A and [(T,T")] > [¢] = [s]: 1—[A] implies
N LR O

The next lemma is concerned with substitution, which is also modelled by an
operator in the equational theory.

Lemma 2.12 Substitution of a term s of type A in an ezpression e well-formed in
a context (I',I"), where I = Bp_q----- Bo, for the de Bruijn- variable n corresponds
to the application of the combinator

Sun([s])) := (1d, [s](LAT)) 1d[Bps] - --- - ld[Bo]

—_—
n—times

More precisely, if we define Sun([s])(T) as an abbreviation for

Sun([sI] = []
Sun([s)(T- E) = Sup_y(T)-Su([s])* E (n > 0)
Sun([s])(T) = T (n=0)
then for a given context + (T, A,T') ctxt with IY = By_y - --- - By, [(T,A,T)] €

Obj and a term s satisfying T b s: A and [I] > [s]:1—[A], we have with A: =
(T, T'[n\s])

(i) [ADl =TT Sua([sD)(IT'])

(ii) (I', A,T') F B type and [(T, A,T)] & [B] implies
[A] &> Sun([s]) * [B] = [Bln\s]]

Gy (AT)F B and [(T,A,1)] > [¢]: 1 B] implies
[A] > Sun(fs]) * [¢] = [t[n\s]]: 1=[B[n\s]]

(i) F (T, A,T') = E and [(T,I')] = [E] implies
[AD = Sua([sI)([ED)
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v) (T, A,I) F B = C and [(T, 4,I")] > [B] = [C] implies
[ATF Sun(fs]) * [B] = Sua([s]) * [C]

(vi) (I, A,T') F t = u: B and [(T, A,I")] > [t] = [u]: 1=[B] implies
[A] > Sun([s]) * [t] = Sua([s]) * [u]

The key parts of the proof of the theorem are the steps concerning 3, n and
the coherence rule. These parts are considered below, whereas all other parts are
omitted here for brevity. The rules in braces like {} are rules of the equational
theory, whereas rules of the type theory are denoted by braces like 0.

(B — rule) The induction hypothesis yields:

[r1-[Al o [t]:1-[B]
[Tl > [s]:1—[A]
Rule {Cur} yields:

[T > Cur([AD, 1) : 1-II(IAL, [])
Using rules {App}, {()}, one obtains

[T > Cur([AL, [D); (1d, [sDITATD) * App([AL, [B])) : 1—(Id, [sITAL]) * [B]
Using rule {8} and letting

u := [App(4, B, AA.t, s)] = Cur([[A], [t]); (Id, [sI[[AT]) * App([A], [ B]))

one gets

[T > w = (Id, [s][TAI) * [£]: 1~(Id, [s][[AT}) * [B]

Lemma 2.12 yields now the claim.

(n — rule) The induction hypothesis yields:

[T] > [e-1-1I([A]L [B])
[r1- 1Al > [B]

Lemma 2.11 and rule {App} and {Cur} then imply:

[T] > Cur([A], Fst* [2]; (d, Snd[Fst * [A]])=*
App(Fst * [T, (Fst; Fst, Snd[[[A]]) + [ B])): 1-TI([A], [ B])
Applying the rule {App — nat} and letting

def
u =

= [AA.App(U5(A4), Ui(B), Ui(t),0)]
= Cur([A], Fst  [z]; (Id, Snd[Fst * [AJ])*
App(Fst * [A]], (Fst; Fst, Snd[[A]]) = [B]))

one obtains

[T] > w = Cur([A], Fst+ [t]; App([ A, [ BI)): 1=I1([A], [ B])
and after an application of the {n}-rule

[T] > w = [¢]: 1-II([A], [B])
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(02) By the induction hypothesis we have

[T > [Pair(4, B, , 5)] = (Id, [t]I[ALL, [s]([BI]) * Pair([ A, [BI)

Rule {02} implies then that
[T1 > [w2(Pair(A, B, ¢, 5))] = (Id, [£][[AL], [s]([B])) * Pair([ AL, [BI); x> = [s]
(V — elim) The induction hypothesis yields:

ITT - [A] > [p]: 1—() + Q
Rule {V} yields then

ITT > V(IAL [pD): 1—() * Q@
Rule {coh} shows the claim.

]

2.3.4 Equivalence between the Calculus and the Combina-
tors

The equivalence between categorical combinators and the Calculus of Construc-
tions is based on a translation from the combinators to CC-expressions, or to lists
{tm—1,...,t0} of CC-expressions in case of context morphisms. However, it is im-
possible to give a translation that respects the judgements and is the inverse of the
translation of CC-expressions into combinators. The reason is that for any CC-term
¢ the combinator [[¢] is a morphism with domain 1. But if we restrict ourselves to
those morphisms, then such an inverse translation can be given. The fullness con-
dition ensures that it can be uniquely extended to a translation of all combinators
such that if s is the translation of any combinator ¢ with ' > ¢: A—B and A # 1,
the combinator [s]/ is equal to t.

The translation of the combinators Fst and Id poses another problem. The length
of the list of CC-terms corresponding to these combinators depends on the length
of the context in which their well-formedness is derived. This implies that the
translation cannot be defined on raw expressions alone but it needs a parameter
indicating the length of that context.

Definition 2.13 (Inverse translation) The translation function ()¢ is defined by
induction over the structure of those raw combinators that may appear in ¢ morphism
t:1—=B as follows, where n denotes a natural number:

1. On contexts

(L]) (n,[])° =[]
() (r+LI-4)F = ((n,D),(n,A))
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2. On contezt morphisms

(W) (n, () = {}

(Id) (n,ld)* = {n—-1,...,0}
(Fst) (n,Fst)* = {n—1,...,1}
(’) (n,f)°={tm_1,.._,t0}

(n, f59)° = (m, 9)°[1\t:]
(<—’ _)) ('I’L, (fat[AD)c = {(na f)ca (nat)c}

3. On types
(*) (n, f)c = {tm-—l’ <o 7t.0}
(n’ f * A)c = (ma A)c[""\ti]
(I) (n,1I(4,B))° = I(n,A).(n+1,B)°
(%) (n,X(4,B)) E(n,A)°.(n+ 1, B)°

I | I

() (n, Q)" Prop
(T) (n,T)° Proof(0)
4. On morphisms:
6 (n,t; f;8)° = (n,s)°
(n,t;158)° = (m,s)°
(n, fxl;s)° = (m,s)°
(n,158)° = (n,s)°
(Id) (n, fxld;s)° = (n,s)°
(n,ld;5)¢ = (m,s)°
(m s F I = (mt)e
(n,t;1d) = (m,t)°
() (n,t;(s5u))° = (m,(t;5);0)°
(8 f*(s3u))° = (n,(t; f*s); f*u)°
(*) (n7 f)c = {tm—l, S tO}
(n, f +8)° = (m, )Ti\t;]
(Snd) (n,Snd)* = 0
(Cur) (n,Cur(4,2))° = A(n,A).(n+1,t)°
(App) (n,t; f*App(A,B))° = App((n, f;Fst* A),(n + 1, f; Fst.
d[A] * B)*, (n, 1)°, (n, f * Snd)°)
(n,t;App(A4, B))® = (n,t;1d* App(A, B))°
(V) (n,Y(4,1))° = VY(n,A)r.(n+1,1)°
(Pair)  (n+2,Pair(A,B))° = Pair((n, A), (n +1, B)°,1,0)
() (6 fom)e = mi(m )
) (n,t;87)° = (n+1,5)°[0\(n, )]

(n, £)° = {tm-1,... yto}
(n,t; f % s7) = (m + 1,5)f + 1\&;, 0\{]
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Although the definition of the translation ()° is more complex than that of [—],
the usual technique of showing the preservation of judgements by ()¢ applies here as
well, namely induction over the derivation using appropriate lemmata for weakening
and substitution. All operations on lists of CC-terms are applied componentwise.

Theorem 2.14 The inverse translation respects the judgements. More precisely for
any context I' with |T'| = n we have:

(Contexts) T’ € Obj implies F (n,T')° ctxt

(Context Morphisms) P> f:A =[] Bn-1-- By implies
(n, T) F (n, )° = {tm-1,...,t0} and
(n,T)° F (n, ;)"
(m -7 — 1, B;)“[m -2 - i\tm_l, ey 0\t,’+1]

(Types) T > A implies (n,I')° F (n, A)® type

(Terms) I' > &:1—-A implies (n,T')° F (n,t)%: (n, A)°
(Eg-Contexts) I =T implies (n,I')* = (n,I')°

(Eq-Context Morphisms) T 1> f = f": A implies (n, T)° = (m, f)° = (n, f)°
(Eq-Types) I'> A= A" implies (n,I')° F (n, A)° = (n, A)°
(Eq-Terms) I'>t=1t:1-A implies

(n,T)¢ F (n,8)° = (n, )% (n, A)°

Proof The theorem is shown by an induction over the derivation of judgements.
As in the case of the translation [—]|, we need two lemmata concerning weakening

and substitution. Their proofs are omitted because they are a routine induction
over the structure of the derivation.

Lemma 2.15 (Weakening) The translation ()° respects weakening, i.e. for every
object T' - I € Obj satisfying - (| - I'|,T - I¥)° ctxt and types Am-1,...,A4p s.t.
L-Amyeo o Ajn > Ay and (T Ay v+ Aja ) F (T Ay -+ - - Ajy1, A;)° type, the
following equations hold with i = |IV|, k = IT-T'| and A=T-Ap—q--+-Ag-SPT for
any combinator f, A andt that is well-formed in contezt I'-T" and whose translation
under (—)° is well-formed:

1. on contexts
(R +m, A)* = ((IT], 1), (IT], Am)° - ., (IT] + m, Ao), UP((IT| + m, T*)°))
2. on context morphisms
(k4 m,A)F (k+m,ST % f)e =Ur((%, £)°)
3. on types
(k+m,A)YF (k+m,SP A) = Ur((k, A)°)
4. on terms

(k+m, A F (k4 m,S" * t)° = UP((k,1)°)

Lemma 2.16 (Substitution) The translation (—)° respects substitution, i.e. given
an object I' - A-T" € Obj such that withn = |['| and k = |- A - I'| we have
F (&, T - A-T")° ctxt, and given a morphism t such that ' > ¢: 1—A satisfying

(IT,T)° B (I}, 2)° (IT1, A)°
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we have the following judgements with A = T - Su,(t)(I"), s = (|T|,¢)° for every
combinator f, A and t well-formed in context ' - A - IV such that the translation
under (—)° is also well-formed: '

(1) F(k—1,A)° = ((IT], )5, (IT],T")°[n\s])

() (k—1,A)F (k—1,5ua(8); £)° = (k, £)In\s]
(i) (k—1,A)F (k—1,Sua(t) * B) = (k, B)[n\g]
(v)  (k—1,A)°F (k—1,Sun(t) *u)° = (k,u)n\s]

We show only the more difficult cases of the proof of the theorem here.

(B — rule) The premise for this rule is
'Ao t:1-B
Therefore, the induction hypothesis and the weakening lemma 2.15 yield
(n+1,T- A)°F (n+1,Fst* Cur(4,1))° = (A\(n, A)°.(n + 1,t)°) 1
The definition of ()¢ yields

(n+1,I'- A)° F (n+1,Fst*Cur(A,1); App(4, B))® =

App(((n, 4)°) T, U3((n + 1, B)®), (A(n, A)°.(n + 1,)°) 1,0)
App(((n, 4)°) T, UH((n + 1, B)*), A(((n, A)°) T .

Ui((n + 1,£)%)),0)

= (n+1,8)

—
N—

(n — rule) The induction hypothesis and the weakening lemma 2.15 imply

(n,I)° F (n,Cur(A,Fstxt; App(A, B)))°
= A(n, A)%, App(((n, A)°) 1, U%((n +1,B)%),((n,1)%) 1,0)
(n)
= (n’t)c

(t;72) The induction hypothesis yields
(n,I)° F (n,1)% E(n, A)°.(n + 1, B)°
This implies
(n, T)*F (n, 5 m2)° = my((n,£)°): (n + 1, B)[0\m1((n, 2)°)]

An application of the induction hypothesis for ¢; 7; and of Lemma 2.12 regard-
ing substitution proves the claim.



2.3. THE COMBINATORS 39

(coh — rule) The induction hypothesis applied to the premises establishes:
(n+1,T-A)°F (n+1,t)% Prop
Therefore, (n, ((),V(A,t)[Q]) * T') is defined. This implies

(n, 1)+ (n, (), V(A )[Q]) * T)° =

= Proof(0)[0\V(n, A)°.(n + 1,%)°]
Proof (Y(n, A)°, (n + 1,)°)
II(n, A)°.Proof((n + 1,%)°)
(IL(A, (), £ * T))*

(¢; f * s7) Let us assume that T' > &:1—f * A, fiT'-A and A- A > s:1—Fst+ B.
Then the induction hypothesis yields

(IAl+1,A-A)F (JAl+1,5)° = ((|A], B)) 1
and
(n, ) (n,t)% (n, f * A)°
The substitution lemma 2.16 implies then that
(n, D) (JA] + 1, 8)[s + 1\, 0\¢]: (JA|, B)i\ti]
where (7, £)° = {tm-1,.--,%0}.

O

Finally we can prove that the translations ()° and [[] are inverse to each other in the
sense discussed above.

Theorem 2.17 The translations ()° and [[] are inverse to each other, where n de-
notes the length of the context T':

(1)  (I=1)¢ is the identity:
1. on contexts: - (n,[T])* =T if - T ctxt
2. on types: T'F (n,[A])°= A if T+ A type
3. on terms: ' (n,[t])°=t: A ifTFt: A
The map [(—)°] is the identity:

on contezts: [(n,T)] =T if T' € Obj

on context morphisms: T' > ((), [tm—1][Bm-1,- -, [to][Bo)) = f if
' f.P—+A = [] 'Bm—l B() and (n,f)° = {tm_l,...,to}

3. ontypes: T > [(n,A)=AifT> A
4. on terms: I' > [(n,t) =¢:1-B if T > t: 1-B

s@,r‘\}
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Proof The proof proceeds by induction over the derivation of judgements.

(i) The verification of most cases involves only routine calculations and is
therefore omitted. The more interesting cases are now verified:

(Var) The weakening lemmata for both the calculus and the combinators yield
the claim:

(ITT + 1+ 1], [(T, A, T)])° F Ug™(0) = |
(II — Elim) The soundness theorem 2.10 yields
[TT > [App(4,B,t,s)] =

= [¢T; (1d, [sI(TATD) * App([ALL [B)

Now letting u be the right-hand side of this equation, we obtain by ap-
plying the induction hypothesis:

(n, [TT)° + (n,u)® = App(4, B, t, (n, (Id, [s][[A]]) * Snd)°)
femme 218 App(A4, B,t,0[n —1\n —1,...,1\1,0\s])
= App(A, B, t,s)

(ii) . Similarly we verify only the cases Cur(A, ), t; f * App(A, B) and t; f * s7.

(Cur(A,t)) The definition of (—)° and the induction hypothesis yields T'- A >
t:1—-B and

[(n+1,8)] =t
Hence we get
L' > [(n,Cur(A,1))7 = [(n, Cur(A, 1))

LH. [A(n, A)°.(n + 1,2)°]

T2 Cur(4,1)
(App) The calculation is as follows:

r > [(n,t; f * App(A, B))°]
= [App((n, f; Fst x A)°, (n 4 1, (Fst; f; Fst,Snd[A]) * B)°,

(n,1)°, (n, f * Snd)°)]
t; (Id, f * Snd[f; Fst « A]) « App(f; Fst x A, (Fst; f; Fst,
Snd[A]) x B)
ARz 4 £ App(4, B)

lig

(t; f * sT) Let (n, f)° = {tm_1,...,%} and T' > t:1—A. Then the induction
hypothesis and the substitution lemmata imply
Lo [t fs))T = [(m,s)i + 1\ts, 0\(n, )] = (£, t[A]) # s
= (f,t[A) * (Snd;Fstxs) =¢; f x s*
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|

The translation (—)° can be extended to a translation from all combinators to CC-
expressions by defining (n,t)° to be (n + 1,Snd; Fst * t)° for any combinator ¢ such
that I' > ¢: A—B with A # 1. Theorem 2.14 implies with n = || that

(n+1L,T-A)FF (n+1,5nd; Fst )% ((n, B)°) 1

and Theorem 2.17 yields
I'>t=[(n,t)]):A>B

Furthermore, any extension of (—)° that satisfies the last equation has-to be defined
in this way:

L' > t=[(nt] =

I'A > Snd;Fst+t=Snd;Fst«[(n,t)] = [(n,t)] =
(n+1,T-A)° F (n+1,5nd;Fst+t)° = (n +1, [(n,8)°])° ¥ (n, 2)e
The combinators are constructed in such a way that the initial CC-category (i.e.

the initial object in the category CCcat of CC-categories and structure-preserving
functors) can be easily described in terms of them:

Theorem 2.18 Let C be the indezed category E: B?—Cat defined as follows:

o Objects of the base category B are equivalence classes of combinators T satis-
fying T' € Obj modulo the derivable equality.

o Morphisms from T to A in B are equivalence classes of combinators fstTp>
J:A is a valid judgement in the equational theory modulo derivable equality.

o The identity is the identity combinator, and composition in B is given by the
composition operator on the combinators.

o Objects of the fibre E(T') are equivalence classes of combinators satisfying " >
D modulo derivable equality.

o Morphisms from D to D’ in E(T') are equivalence classes of combinators sat-
isfying T' > t: D— D' modulo derivable equality .

o Identities and composition in the fibres are given by the corresponding combi-
nators.

o The functor E(f), with f:T—A a morphism in B is given by the operation on
the combinators, i.e.
E(f)(A) = fxA
E(f)(1) =1
E(f)t) = fxt
Then C is the initial CC-category.

Proof The lemmata 2.7 and 2.8 are the key to showing that C is a CC-category.
The initiality is obvious. O
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2.3.5 Comparison with Ehrhard’s Combinators

Ehrhard defines combinators for the Calculus of Constructions in the appendix of his
thesis [Ehr88b]. They are an intermediate step between the calculus in de Bruijn-
form and the categorical combinators presented here. He takes that calculus and
replaces the de Bruijn-numbers by combinators for explicit substitution. These are
derived with the split D-categories in mind although he only presents the equations
and does not discuss their relation to the categorical structure. This implies that
he has only the judgement I' > ¢: A and not T > ¢: A—B, as in our approach.

The important difference for the design of abstract machines is that Ehrhard has
no basic combinator that corresponds to an environment (f,t). He uses instead a
combinator («— ¢); f~, where («— ¢) corresponds to (Id,¢) and f~ to (Fst; f,Snd) in
this setting. His representation seems to lead to a more complicated treatment of
environments in the machine; see chapter 4.




Chapter 3

Reduction Strategies

Until now we have considered only an equational theory. We turn in this chapter
to the definition of suitable reduction rules and examine possible strategies for per-
forming the reductions. The next chapter shows how these strategies lead directly
to abstract machines.

3.1 Reduction Rules

Before we can define reduction rules, we have to streamline the equational theory
slightly.

Many applications of the Calculus of Constructions for theorem proving and
theory abstraction do not need the -rule or the surjective dependent sums [Tay89]
[Luo90]. The combinatorial counterparts of these rules cannot be reformulated in
such a way that an inspection of the structure of a combinator suffices to check their
applicability. The n—rule requires a test whether a combinator ¢ is equal to Fst * ¢/
for some ¢/, and the n-rule for dependent sums needs an equality test. This would
make the reduction machine a lot more complicated. Therefore we restrict ourselves
to a Calculus of Constructions without 7-reductions or surjective dependent sums.
As a consequence we omit the corresponding equations Cur(Fst * t; App(A, B)) = ¢
and

(Fst, Snd; Fst % 71[A], Snd; m5[B]) * Pair(A, B) = Snd

in the equational theory of categorical combinators. It is however possible to extend
the machine to compute long #y-normal forms, as needed for example in [Pfe91].
We make two further changes to the equational theory. The (—)7-combinator
and the morphism !:1—1 were introduced in the previous chapter to turn the com-
binators into a full D-category. However, they are not necessary for the construction
of abstract machines: they are not used in the translation of CC-expressions into
combinators, and the correspondence theorems 2.10, 2.14 and 2.17 remain valid if
we drop the combinators (—)f and ! from the equational theory. We will therefore
consider in the sequel this theory, whose derivability relation is denoted by >, 1.

>, stands for explicitly typed application; we will later consider a combinator App without
any typing information.

43
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3.1.1 Towards a Convergent Reduction

We aim for a notion of reduction ~s, for the combinators with the following prop-
erties:

e It is confluent and strongly normalizing.

e Its normal forms for types and morphisms are the translations of the normal
forms of CC-expressions via B-reduction, which will be denoted by ~+, as well.

e The equivalence relation generated by it is the equality of combinators dis-
cussed in the previous chapter.

¢ It is defined in such a way that only the structure of a well-formed combinator
determines whether a reduction rule applies or not.

Such a notion ensures that any reduction strategy leads on one hand to a unique
normal form and on the other hand can be used to decide the equality of combina-
tors. Furthermore the last property implies that it is not necessary to handle any
information about the type of a combinator during reduction, which simplifies the
machines considerably.

The normalization and the last property are the hardest to achieve. The former
causes a problem because the extension of the reducibility proof to the combinators
fails. Instead we will describe a strongly normalizing restriction of the reduction
relation that reduces a combinator first to one corresponding to a closure and then
to the normal form. The problem with the last property rests with the typed
application. It occurs also in the Calculus of Constructions, where a well-formed
term of the form App(A, B,AA.t,s) may be not a B-redex because (T,A) F t: B’
and I' F IIA".B" = IIA.B is true but not I' + A = A’ and (T,A) + B = B". So
the definition of the reduction ~» in the calculus uses the derivable equality in the
way that t[0\s] is a contractum of App(A, B, A".t,s) only if T+ A= A", T I s: A,
(I'A) B ¢: B’ and (T, A) b B = B'. Hence a separate proof is required that the
smallest equivalence relation is indeed the derivable equality.

Only the confluence makes it possible to eliminate this check because it implies
that whenever I' - IIA.B = IIA"B’ then also ' + A = A’ and (TA) - B =
B'. As a consequence we can omit the typing information in the application and
replace the term App(A4, B,t,s) by ts. This approach works also in the case of
the combinators if we replace the combinator App(A, B) by App. In contrast to
the strong normalization, we can derive the confluence for combinators from the
confluence of the calculus. We will define a reduction relation with the first three
properties in this subsection and discuss the last property in the following one.

The obvious first approach to obtain such a reduction relation ~», is to orient the
equations. In most cases there is only one sensible way of doing this. For example
if we orient the equation (f,%[A]) * Snd = ¢ from right to left, the reduction will
certainly not be strongly normalizing. The exceptions are the n-like equations as
(Fst,Snd[A]) = Id and () = Id: [ ]=[]. If they are treated as rules for simplification
of expressions, we have to add some more rules to achieve confluence [CD91]. As
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already stated, the latter rules are difficult to implement, and so we will follow the
approach of Jay [Jay92] on checking the equality of combinators. He regards these
rules as expansion rules, applied after reduction to S-normal form.

Remark In general, we will use the following terminology for reduction according

to [Klo90]:
¢ The one-step reduction is denoted by t ~» #/, pronounced “¢ reduces to .

o The equivalence relation —* generated by ~» is called convertibility, and we
say “t is convertible to ¢ for t —* ¢'.

e t =t/ denotes the syntactical identity of raw combinators.

On checking that the relation ~». satisfies the properties we want, we see that
the ~+.-normal forms are not the intended ones. For example, the combinator

[App(A, B, AA.t,s)] = Cur([Al, [£]); {14, [sT[[A) * App([A], [B])

can only reduce to Cur(A4’,t'); " * App(A”, B") with [A] ~* A’, [t] ~* # and
(Id, [sT{IATI) * App([A], [BI) ~. ¢’ * App(A”, B"), i.e. there is no reduction cor-
responding to the B-reduction App(A, B,AA.t,s) ~», t[0\s] in the calculus. The
remedy is to replace the too restrictive rule Fst * Cur(A4,); App(A, B) ~. t by the
rule 2

(B) fCur(A,); g% App(As, By) ~v (f, 9 * Snd[A]) ¢

This rule has side conditions analogous to that of the S-rule in the calculus:
e I'>, f1A,
e ArAD . t:1-B,
o f*xA=g;Fstx A; and
o (Fst; f,Snd[A]) x B = (Fst; g; Fst, Snd[A]) * B,
They arise when we derive the equality between redex and contractum:

f#Cur(A,t); 9% App(A1,B1) = Cur(fx A, f-Id[A] *t);

(g; Fst, g * Snd[A4]) * App(A1, By)

= Cur(f=* A, f-Id[A] % ¢); (Id, g * Snd][g; Fst
*A1]) * App(g; Fst * Ay, (g; Fst) - Id[A;] * By)

= (ld, g * Snd[g; Fst * A;]) * (Fst * Cur(f * A, f
-1d[A] * 1); App(g; Fst * As, (g; Fst) - 1d[A4] * By))
(Id, g * Snd[g; Fst * A;]) * (f - [d[A] * 2)
(f,g*Snd[A]) x ¢

2This rule includes cases like Cur(A,1); 9+ App(A1, B1) ~». (Id, g * Snd[A]) % ¢, in which there is
no combinator f or g. If this happens we will simply take f=Id or g = Id as appropriate. Such
modifications are done in the sequel without being mentioned explicitly.
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The equation Fst+ Cur(A’, s); App(A’, B') = s holds only if both sides have the same
type, which implies I' - A’ > s:1—B". If we apply this condition to the combinator
Fst* Cur(f * A, f - 1d[A] * t), we get the conditions listed above.

The remaining equations do not create any problems when turned into reduction
rules. Table 3.1 contains the definition of the reduction relation ~»,. The relation e
holds between well-formed combinators of the same type, much like the equations.
Again, the typing conditions are omitted if they can be derived from the context.

Now we try to check that ~», has the properties mentioned at the beginning. It
is easy to see that the equivalence relation generated by ~», is indeed the equality
of combinators:

Lemma 3.1 For any two combinators e and €' well-formed in context I’
Pbee=€ if T>cete

Proof
From left to right, an induction over the derivation of I' >, e = €' shows the

claim, and from right to left an induction over the derivation of I' >, e &€ is
used. 0O

The explicit substitution causes a serious problem when we try to prove strong
normalization of the reduction ~s.. The problem arises from the rules like f*
Cur(A,t) ~. Cur(f = A, (Fst; f,Snd[A]) * t), which intuitively correspond in the
calculus to pushing substitution inside binding operations like A and V. They cause
the usual reducibility approach to fail because in all its variants the final induction
showing that for every reducible combinator f also f * is reducible requires for the
case t = Cur(A,t') a lemma similar to

Conjecture 3.2 Ifs, A, B and f* A are strongly normalizing and g+t is strongly
normalizing for any strongly normalizing g, then

u:= f* Cur(A,t); (Id, s[f = A]) * App(f * A, B)
is also strongly normalizing.

To see where the problem lies, consider the following reduction sequence:

u ~re Cur(f* A, (Fst; f,Snd[A]) * ); (Id, s[f * A]) x App(f * A, B)
~+e (ld, s[f * A]); (Fst; f,Snd[A]) * ¢

There seems to be no way of deducing from the hypotheses of the lemma that
the context morphism (ld, s[f * A]); (Fst; f,Snd[A]) is strongly normalizing, so the
proof of the conjecture breaks down. On the other hand I have not found any non-
terminating reduction sequence. This problem already occurs if we restrict ourselves
to categorical combinators for the simply typed A-calculus, and even in this case
there is no proof of strong normalization as yet. It is only known that the reduction
corresponding to substitution alone is strongly normalizing [HL86] [CHR92].
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The reduction relation ~+, is the smallest relation that is compatible with the
combinators (i.e. it satisfies for example A ~», A’ implies Cur(A, t) ~», Cur(A’,1)).

There is one exception: the rule A ~s, A’ implies f % A ~» f x A’ applies only if
A#T.

1. Indexed Category

() ~e ld:[]=[] FiQ) ~e ()

fild ~ f Id)f ~e f

fi(gih) ~o (f;9)ih dx A ~, A

ldsxt ~r ¢ Frld ~, Id
F*(t;8) ~e (f1);(f*s) Fr(g*xA) ~. (f;9)%A

Fr(gxt) ~e (fig)*t tld ~e
Id;t ~, u; (t;8) ~e (ujt);s

2. Adjunction I 4 G

(f t[A]); Fst ~ f (£,t[A) *Snd ~s, ¢
Fi{gtA]) ~e (fi9, f % t[A]) (fiFst, f+Snd[A]) ~. f

(Fst,Snd[A"]) ~. Id

3. Dependent Products
It
o I'D>. fi A,
e A-AD . t:1B,
o f+xA=g;Fstx Ay and
e (Fst; f,Snd[A]) * B = (Fst; g; Fst,Snd[A,]) * B;
then
f % Cur(A,t); g * App(Ay, By) ~»¢ (f, g * Snd[A]) * ¢
Furthermore we have
f*Cur(A,t) ~s. Cur(f A, (Fst; f,Snd[A]) * t)
F*I(A,B) ~. II(f*A,(Fst; f,Snd[A]) * B)

F*App(A,B) ~. (Id, f +Snd[f;Fstx A]) * App(f; Fst * A,
(Fst; f; Fst,Snd[f; Fst * A]) * B)

Table 3.1: Reduction of Combinators with Explicit Typing
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4. Dependent Sums

(f,t[A], s[B]) % Pair(A", B");m; ~». t
(f,t[A], s[B]) * Pair(A’, B');my ~s s
(£, 1A}, LB} * Pair(A, BY) ~y (Id, fx4[f * A, f - 1d[A7 % s[f - 4[4
*B']) « Pair(f « A', f - Id[A’] x B")
f* Ty ~He 1
fr(tme) ~e frtym

5. Universal Quantification

h+V(A4, t) ~e V(h * A, (k- d[A]) « t)
(VA + T~ TI(A, (), [Q]) * T)
Fst* « T ~s. ((),Fst® % Snd[Q]) » T
ld*«T ~e ((),Snd[Q]) *T
T ~e ((),Snd[Q))*T

[\

4]

Table 3.1 (continued): Reduction of Combinators with Explicit Typing

The solution proposed here is to restrict the reduction in such a way that a combi-
nator is reduced to a form which has no outer B-redexes before the reductions that
correspond to pushing the substitution inside the binding operations are applied.
Then Conjecture 3.2 becomes true because the problematic reduction sequence is
no longer permitted; we have only

u ~ (f,s[A])*t

and the latter is strongly normalizing by assumption.

A similar problem occurs in connection with the reduction rule g*App(A, B) ~
(Id, g * Snd[g; Fst * A]) * App(g; Fst * A, (Fst; g; Fst,Snd[A]) * B). We have to show
that f - Id[g; Fst * A]; (g;1d) - Id[A] is strongly normalizing given that f;g;Fst * A is
strongly normalizing, as the following reduction sequence demonstrates:

f;9%App(A,B) ~. f;(ld, g Snd[g; Fst * A]) * App(g; Fst * A,

(g; Fst) - Id[A] * B)

¢ (ff39Snd(g; Fst + A]) * App(g; Fst x A,

(g; Fst) - Id[A] * B)

(Id, f; g * Snd[g; Fst x A]) x App(f; g; Fst * A,

f - Id[g; Fst « A]; (g; Fst) - Id[A] * B)

As a remedy, we postpone the reduction inside the App-combinator until we reach
a combinator #; (Id, s[A’]) « App(A, B), and introduce a special rule

(£,t[A"]) = App(A, (Fst; g,Snd[A']) * B) ~». (Id,t[f * A]) * App(f * A,
(Fst; f;9,Snd[A]) * B)

~>

o *



3.1. REDUCTION RULES 49

to avoid the combinator f - Id[g; Fst * A]; (g;1d) - Id[A] as a contractum.

These intuitions are captured by two reductions <> and 2%. The first describes
the reduction to a combinator without any outer B-redex or any reduction inside
an App-combinator, and the latter the reduction of those combinators to normal
form. The precme deﬁmtxons are given in Tables 3.2 and 3.3. The crucial part in
the definition of &> is to choose the right conditions for the compatibility of EA w1th
the combinators; these conditions are therefore explicitly stated. Note also that o
is contained in 5.

It is easy to see that any reduction via &, is also a reduction via ~+¢. Before
we can examine the relation between % and ~+ more closely, we need the strong
normalization of .

Theorem 3.3 The reduction > is strongly normalizing.

Proof An adaptation of the reducibility method shows the claim; see appendix A
for details. a

Now we turn to the relation between reduction in the calculus and reduction of
combinators. First, a reduction in the latter corresponds to several reductions of
the former and vice versa. More precisely, we have the following theorems:

Theorem 8.4 The translation from the calculus into combinators respects reduc-
tion, more precisely:

(Red-Types) T F A~s. B implies [T'] >, [A] ~* [B]
(Red-Terms) T Ft~ses: A implies [T] e [t] ~* [s]: 1=[A]

Theorem 8.5 The inverse translation respects reduction, more precisely for any
context I' with |I'| = n we have:

(Red-Context Morphisms) T e f -~ f: A implies (n, F) F (n, f)°~% (n, f')°
(Red- Types) I'>e A~re A implies (n,T)° F (n, A)° ~? (n,A’)°
(Red-Terms) I'D>et~et': 1A implies

(n, L) (m,8)° ~* (n,t')°: (n, A)°

Proof Both theorems are shown by an induction over the definition of e ~s, ¢’
similar to the proof of theorems 2.10, 2.14 and 2.17. a

Second, not only the reduction steps but also the normal forms via ~» and ~¢ and
those in the calculus correspond to each other:

Lemma 3.6 Both ~», and < have the same normal forms of types and morphisms
I' >, t:1=A, namely the translation of the normal forms of types and terms of the
Calculus of Constructions. Furthermore, any type A and any morphism T’ > t: 1— B
in ~¢-normal form satisfies [(n, A)] = A and [(n,t)] =t respectively.
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The relation % satisfies the same compatibility condition as ~+, except that no
reduction takes place inside the combinator App. Furthermore in the rules (Appy)
and (App,) we have f # f';1d.

Context Morphisms

f ;f 5 F o figh)
() (HHAFst S f o fi(g,t[A])

Types

(f;9);h
(f; 9, f = t[A])

fild
V)

{= s
IERE

f*Q

dx A

((), hxV(A,)[B))*T
(f,tB))*T

Fst* « T

IdxT

Q
A
h+11(A, ((),t[B]) * T)
(L, t{B])*T
(), Fst* x Snd[Q]) * T
(),Snd[Q]) x T

T (),Snd[Q]) x T
f*(gxA) (fig)* A

Morphisms

(
(
(
(

(SIS {s s {5 s

fxid & 1d ¢1d
Fr(t;s) 5 fxt;fxs fx(gwt)
J*Cur(A,t); g * App(Ai, By)

(f,t[A"]) = App(A, (Fst; g, Snd[A']) * B)

¢ Id; ¢ ¢ -
(fi9)*t & (s;u) (t;8);u
(f,9+Snd[A]) x ¢ (B)
(I, ¢[f * A]) * App(f A,

(Fst; f;9,5nd[A"]) * B) (App,)
(Id, ¢[f « A]) * App(f * A,

(Fst; f,Snd[A]) * B) (App,)
(

(

¢

¢

{3 {=

$% ¢S {3 (3

{=

(f,t[A"]) = App(4, B)

Id, Fst* * Snd[A]) * App(Fst**! x A,
Fst*™*1,Snd[A]) * B)

{=

Fst* + App(4, B)

(f,t[A]) * Snd
(f, t1[A1], t2[As]) * Pair(A, B); m;
f*m
[+ (t;m2)
The B-rule applies only if
o ' > (Fst; f,Snd[A]) xt:1—-B

(B
f*tm,

¢S (= {s =

e I'>g;Fstx4; &F fxA
o I'- fx A B % (Fst; g; Fst, Snd[A4]) * B,

Table 3.2: Reduction to Weak Head-Normal Form
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In general, e X ¢ implies e L e,
Contexts
rdr AD A
r-ASIM-A T-AST-A

Context Morphisms

& p t v
(FtlAD) ~ (2[4 (£,4AD) D (f,¢]A])
AL A £ f
(£ A~ (F,2[A7)  fiFst D f';Fst
Types
AL A BA p
II(A,B) % I(A,B) T1I(A,B) % I(4, B)
AL A BY B

©(A,B) 5 £(A',B) %(A,B)% (4, B

f*TI(A, B) 5 TI(f * A, (Fst; f, Snd[A]) * B)

£ * (A, B) 5 (f * A, (Fst; f,Snd[A]) * B)

£ 5
FTS fraT
Morphisms
AL A t &y
Cur(4,t) S Cur(A',t) Cur(A4, 1) > Cur(A4,¢)
AL A t Sy
V(A,1) 5 V(A1) V(A,1) % v(4,1)
f E\A f u
f *Snd 2 f"*Snd Fst* % Snd; ; u; s D FstF # Snd;t;u'ys

F* Cur(A,t) 5 Cur(f * A, (Fst; £, Snd[A]) * t)

F* V(A1) 5 V(f * A, (Fst; f,Snd[A]) * t)

Table 3.3: Reduction to Normal Form
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F*App(A,B) & (Id, f + Snd[f; Fst x A]) * App(f; Fst * A,

(

(Fst; f; Fst,Snd[f; Fst * A]) * B)

(Id, g; Fst + Snd[g; Fst; Fst x A], g * Snd[(g; Fst; Fst, Snd
[A]) * B])  Pair(g; Fst; Fst x A, (g; Fst; Fst, Snd[A]) * B)

g *Pair(4,B) &

t Ay
(Id,[A], s[B]) * Pair(Ay, By) ~» (Id, #[A], s[B]) * Pair(Ay, B;)
t
(1d,[C]) * App(A, B) ~> (Id, [C]) + App(4, B)

3

4

Table 3.3 (continued): Reduction to Normal Form

3Similar inference rules apply for the reduction of A, s, B, A1 and B; via 5.

“4Similar inference rules apply for the reduction of C, A and B via &,

Proof An induction over the structure of types and morphisms shows that the

set A of ~».- and - normal forms of types and morphisms is given inductively as
follows:

Types
tEN t#£f+V(AY) AeN BeN AecN BeN
NeN ((),t[Q) eN II(A,B) e N Y(A,B)eN
Morphisms

AEN teN AeN teN
Cur(A, ) e NV V(A,t)eN
teN tZ£Cur(B,¥) seN AA,BeN
i (IdaS[A,]) *App(A,B) e N

t,se N A A BB ecN te N t# fx*Pair
Fst*«Snd € N/ (Id,[AT], s[B"]) * Pair(A, B) € N tmeN

This shows the claim except for the cases ¢; (Id, s[A"]) * App(4, B) and (Id,t[A],
s[B']) * Pair(A, B). In both cases it remains to show that A and A’ as well as B
and B’ are identical. But the conditions for well-formed combinators imply that
' A=A"and T+ A>, B = B'. So by induction hypothesis (n, A)° and (n, A’)°
as well as (n + 1, B)° and (n + 1, B")¢ are equal normal forms in the Calculus of
Constructions, hence identical because of the confluence of the calculus. So by
induction hypothesis again,

A={(n, AP =[(n,A)] = A
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and
B=[n+1,B)]=[(r+1,B)]=B
O

The last property of L and ~¢ to be checked is the confluence. As we will see in
a moment, it holds for types and morphisms but fails for context morphisms because
not all 7-like rules for the latter are included in ~+, and 2. But we can give an easy
criterion when two context morphisms are equal. The confluence of the calculus is
crucial in showing the following theorem:

Theorem 3.7 ()  The reductions~, and > are confluent on types and mor-
phisms.

(1) Two context morphisms f:T—A and f':T—A are equal iff for any &
normal form g of f and g’ of f' at least one of the following alternatives holds:

e |Al=0.
¢ g =Fst” and ¢’ = (¢",Fst* 1 « Snd[Ax_1],...,Snd[Ag]) with ¢" = Fst* or

g" = (), or vice versa.

g =1d and ¢’ = (g",Fst* 1 % Snd[Ak-1],...,Snd[Ao]) with g" = Fst* or
g" = (), or vice versa. '

9 = (91, t[A1]) and g’ = (g2, t:[As]) where gy and gy satisfy the same
conditions as g and ¢’ and t, = t, as well as A; = A,.

Proof

(i) Given A~ A; and A ~* A, with ' >, A and IT| = n. Let Az and A4
be normal forms of A; and A, via % respectively. Theorem 3.5 implies that

(m, A)° ~% (7, A1)° ~ (1, As)° and (m, A)° ~7 (m, Az)° ~o7 (m, Ag)°

By Lemma 3.6, the types (n, A3) and (n, A4)° are normal forms in the Calculus
of Constructions, hence identical because of the confluence. Therefore

Az = [(n, 4s)] = [(n, Ad)°] = A4
The same argument applies for morphisms.

(ii) If one of the above alternatives holds, then f and f' are certainly equal.
To show the other direction, let I' >, f: A, and let f and f’ be equal. We can

assume without loss of generality that f and f’ are in Z-normal form. Those
& -normal forms of context morphisms are

()

o Fst
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o Id
o (g,t[A]) with g, t and A normal forms.

Now observe that f = f iff f;Fst® % Snd = f’; Fst* * Snd for all % such that
0 <k < |A|. This leaves only the cases cited in the theorem.

3.1.2 Combinators with Implicitly Typed Application

Now we look at the problem of eliminating the equality check in the reduction
J* Cur(A,1); g x App(A1, B1) ~e (f,g * Snd[A]) # t. As already mentioned at the
beginning of the last section, this problem is solved in the calculus by using the
confluence and replacing the typed application App(A’, B',\A.t,s) by an untyped
one (AA.t)s. The same idea applies to the combinators: we simplify the combinator
App(A, B) to App. For clarity, we will refer to the combinators discussed until now as
“combinators with explicit typing” and to the combinators introduced in this section
as “combinators with implicit typing”. The reduction relation ~»; corresponds to
the relation ~», for combinators with explicit typing. However, this change alone
does not remove the need for the abstract machines to store the context A during

a reduction of a combinator g x App with I' t>; g: A. This is demonstrated by the
reduction rule

g * App(4, B) ~+. (Id, g * Snd[g; Fst x A]) x App(g; Fst * A, (Fst; g; Fst, Snd[A]) * B)

which corresponds to pushing substitution inside the term App(4, B,t,s). It be-
comes g * App ~»; (Id, g * Snd[g; Fst * A]) * App in the implicit combinators. So if
g = Fst* this reduction can only be executed in the machine if the type A is stored
in some register. But because A is unique up to derivable equality, we can simply
omit it and introduce a combinator (lId,t) * App together with the reduction rule

g * App ~; (Id, g * Snd) x App

We carry out one further step in eliminating superfluous type information. Con-
sider the combinator

[Pair(4, B,t, )] = (id, [¢]I[ATl, [s1([BI)) * Pair([A], [B])

The types [A] and [[B] appear twice, and so the type checking algorithm in chapter 5
performs a superfluous check whether the types [A] and [[A] as well [B] and [B] are
equal. We avoid this by replacing the combinator Pair(A, B) by Pair. As in the case

of the App-combinator, the reduction rule corresponding to pushing substitution
inside the term Pair(4, B, t, s)

g * Pair ~»; (ld, g; Fst * Snd[g; Fst; Fst x A], g * Snd[(g; Fst; Fst, Snd
[A]) * B]) * Pair



3.1. REDUCTION RULES 55

makes it necessary to store the context A in the machine if a combinator I >ig: A
is reduced. In contrast to the reduction rule for g * App it is not possible to remove
the types in the contractum completely because the combinator B is not uniquely
derivable from g. The solution in this case is to restrict ourselves to combinators
(f,t[A], s[B]) # Pair in the implicit system. The price we pay is a more complicated
function str, which assigns to every combinator in the explicit system one in the
implicit one. If f # g; (f’,[A], s|B]), we cannot simply define str(f * Pair(A, B)) =
stx(f) * Pair but we have to use the equalities
h = (h; Fst; Fst, h; Fst + Snd[A], h * Snd[B])
ifT'>; hA-A- B and
(h,t[B]) = (h; Fst, h x Snd[A], t[B])

if ' >; h: A - A to find a combinator g; (f',¢[A], s[B]) equal to f. This leads to the
following definition:

Definition 8.8 The combinators with implicit typing are given as follows:
(i) The raw combinators with implicit typing are given as follows:
[JIT-4
(0 LW ff ] Fst | (f,¢[A])
fxA|II(AA) | Z(4,4) Q| T
u=Id | ;¢ | f+t | Snd | Cur(A,t) | App | (Id,2) * App | V(A,t)
| ((f,t[A]), s[B]) = Pair | 7y | ms

o~ > S
i

(i) The equational theory t>; of combinators with implicit typing is defined
by replacing in the system 1>, the rules involving App(A, B) and Pair(A, B) by

A I'>; A I'Ao; B
(APP) A, AppiFet+ TI(A, B)S B

A F';t:1-A T-A>; B
(App) % (1d, 2 * App: II(A, B) (14, {[A) = B
(Pair) T > (f,t1[A],&,[B]): A- A’ - B!

T &; {f, u[A], [ B]) * Pair: 1>% (A, B)

(ili) The reduction rules are those for ~+,, with the exceptions of the rules

involving App(A, B) or Pair(A, B), which are replaced by

f*Cur(A,t); 9% App ~»; (f,g+Snd[A])*t ' 1>; g*Snd:1—A; and
T >; Al = f * A
g*App ~+; (Id,g+Snd) * App
and
(f,t1[A], 2[B]) * Pair;m; ~»;
(£,t[A], s[B]) % Pair ~s; (ld,2[f * A], s[(Fst; f,Snd[A]) * B]) * Pair
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(iv) The map str takes a combinator with explicit typing and replaces
o App(4, B) by App

o g;(f,t[A"],s[B]) = Pair(4, B) by str(g); (str(f),str(t)[str(A)], str(s)
[str(B)]) * Pair

o g;(f,t[A']) * Pair(A, B) by stx(g); (str(f); Fst, str(f); Fst * Snd[str(A)],
str(t)[str(B)]) * Pair

o Fst* + Pair(4, B) by (Fst**2 Fst x Snd[stz(A)], Snd[stx(B)]) * Pair
o Pair(A, B) by (Fst; Fst, Fst * Snd[str(A)], Snd[str(B)]) * Pair

The confluence for the explicit combinators is essential in showing that the im-

plicit combinators are merely a convenient shortcut for the explicit ones. One di-
rection is easy:

Lemma 3.9 For all judgements T' >, e in the theory of ezplicit combinators, we
have

str(T) >; str(e)
Proof Induction over the derivation of the judgement I' >, e. O

The more important direction is given by the following theorem:

Theorem 38.10 (i) Every context T', A, context morphism f, type A and
morphism t in the implicit system can be uniquely extended to the explicit
system in the sense that there exist a context I'* and A®, a context morphism
f¢, a type A® and a morphism t¢ such that

1. T’ € Obj implies T'® € Obj.

['>; f: A implies T° >, fe: A,

['>; A implies I'® >, A®.

['>;t:1-A implies I'® >, t°: 1— Be.

str(l®) =T, str(A®) = A, str(f) = f, str(4) = A, and str(t) =t °

I, A®, f°, A and t° are unique up to convertibility in the explicit system.

S S, e

(i) IfT >; e = € then e and € can be uniquely extended to the explicit
system, and for any extension e® of e and €’ of €', we have ['® >, e = ¢,

(iii) If e is a well-formed combinator in the implicit system and reduces
as a raw combinator to €, then €' is well-formed as well. Furthermore for
any combinator e¢ with str(e®) = e, there exists a combinator ' such that
str(e’) = ¢ and e® ~7} e,

Spossibly replacing (Id, t[A]) * App by (Id, t) * App
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Proof Parts (i) and (ii) have to be shown by a simultaneous induction over the
derivation of I' I>; e. We consider only the more difficult cases here.

t;g * App By induction hypothesis, I &; t:1—+C, T’ ; g: A - A; and there exists a
type B; such that A - A; >; By and T’ >; g; Fst * (A1, B;) = II(4, B), and
moreover I'* >, g°xFstxII(AS, Bf) = II(A°, B¢). The confluence of the explicit
system also yields I'* 1>, g% Fst* Af = A® and T'® >, (Fst; ¢°; Fst, Snd[A$]) = B,
and so t°%g° * App(AS, BY) is well-formed. Therefore we can define (t; g *
App)© def 1% g°*App(A$, Bf). Now let us assume that ' >, % g°*App(AS, Bg)
is another extension of I' >; t; g * App. Therefore I'® >, g% Fst x TI(A3, BS) =
II(A®, B?), and so

I'® B¢ g° % App(A3, B5) = (Id, g° * Snd[A°]) * App(A°, B®) = ¢g° « App(AS, BY)

With respect to the equations, we demonstrate only two cases.

L. f=Cur(A,t) = Cur(f * A, (Fst; f,Snd[A])  1):
By induction hypothesis we know that

I'*>. f:A% A° D>, A° and A°- A° >, t°: 1— B¢
Therefore
I'* > f°* Cur(A®,t°) = Cur(f®* A°, (Fst; f¢,5nd[A%]) = t°)
The uniqueness condition for redex and contractum is obvious.

2. Fst* Cur(A,t); App = t:
The induction hypothesis yields I'® - A¢ >, ¢¢; 1— B®. Therefore

Fst + Cur(A°,¢°); App(A°®, B®) = t°

and a similar argument as in the case t; g * App shows that the combinator
Fst « Cur(A,t); App can be uniquely extended to the explicit system.

Finally, consider part (iii). The critical case is again the B-rule
f* Cur(A,t); g% App ~; (Id, g+ Snd[f * A]) * ¢

By part 4, I'* >, f¢*Cur(A4°,t%):1-C*® with T'® >, ¢ = fe*1I(A¢, B%), and now an
argument similar to the existence proof of (¢; g+ App)® shows that the P-rule applies.
a

The restriction of ~+, that leads to the reductions % and % applies similarly
to the reduction t>; and yields reductions &% and % for combinators with implicit
typing. Theorem 3.10 implies that Theorems 3.3 and 3.7 hold for the implicit system

as well and that the normal forms in the implicit system expand to the normal forms
in the explicit system.
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3.2 Possible Strategies

Abstract machines require not only a notion of reduction but also a strategy for
choosing which reduction to execute next. The intuition behind the strategies given
below is to describe how a combinator of the form ((),%,[Ay],. . ., to[Ao]) * ¢ that
corresponds to the substitution of the environment {(2,)°,..., (t,)°} in the term (t)°
can be reduced to a normal form. More precisely, a combinator is reduced according
to them first to a so-called canonical one, which is a combinator corresponding to
a substitution of an environment in a translation of a CC-expression in weak head-
normal form. The second step, namely the reduction of a canonical combinator to its
normal form, proceeds by pushing the substitution inside the binding operation and

applying the first step again. Because L is strongly normalizing, these procedures
always terminate with a normal from. Therefore it is enough to describe strategies
for reduction to canonical combinators.

Three factors play a key role in the selection of a reduction strategy:

e Evaluating the combinators f and ¢ inside (f,#[A]) or not. The first choice
corresponds to an eager strategy, where every canonical context morphism
{()stalAx], ..., t0[Ao]) always contains canonical morphisms #;, and the second
to a lazy one with possibly unevaluated expressions t;.

¢ Evaluating the environment f independently of the morphism ¢ in an expres-
sion f *t or not. The first choice is appropriate for an eager strategy and the
second for a lazy one because in the lazy case ¢ determines if an evaluation of
a component of f to a value is necessary or not.

e Evaluating ¢; or ¢, first in an expression t1; ta.

The third factor is independent of the other two, and a choice may lead to some
optimizations, but not to principal differences. If the first choice is adopted for
an eager strategy, we get a strategy =g, which yields an abstract machine that
generalizes the CAM. The other choice together with a lazy strategy leads to a
strategy =-1 that is the basis for another abstract machine generalizing Krivine’s
machine.

The difference between the reduction strategies becomes apparent when we look
at the way the access to an environment and the application are handled. The
strategy =g can directly return the appropriate component of the environment in
the first case whereas the lazy strategy has to schedule a reduction of the component
as well. In the case of a combinator ¢t = f * (t1;(1d, t5) * App), the eager strategy
reduces f*t; to a combinator s and the combinator f*t, to s5. If s # h+Cur(A, s;),
then the result is (h  s); (Id, s2) * App, otherwise the combinator (h,s2[A]) * 51 is
reduced to produce the result. The lazy strategy reduces only f *¢; to determine if
a combinator A * Cur(A, s;) results and if it does reduces the combinator (hyta) * s1.
For a precise definition of the canonical combinators in the lazy case see Table 3.4,
and for the eager case see Table 3.5. All inference rules are listed in Tables 3.6
and 3.7. All four tables specify inference rules for raw combinators with implicit
typing.
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Let 7() be any composition of 7, and m,.

Context Morphisms

(el Fst®; (f,t[A)eC 1deC

fi{g,tlA]) e C
Fst® €C fi{g,t{A]); (h,s[B]) € C

Types
fec fec
F+U(A,B)€C f+5(A4,B)eC
tec (OﬁéﬁfTec (t # f*V(A,1))
Morphisms
fec fec

F*Cur(A,t)eC  fxV(At)eC

Fst® + Snd; 7(; (Id, t,) * App; 7@ - {Id, 1,,) * App; 7™ € C

, Jec
Fst"xSnd €C  fxPaireC Fst*xSnd;7® e C

Table 3.4: Canonical Combinators for the Lazy Reduction
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Let 7(®) be any composition of 7; and 5.

Context Morphisms

fec tec
(YeC Fsth;(f,t[A)eC 1deC Fst"eC
Types
fec fec
f+I(A,B)eC f*x(A,B)eC
t e C 1 g4
nec ((HAl=Tec (FIVAY)

Morphisms

fec fec

F+Cur(A,t)eC  fxV(A, ) el

11 € C,...,tn eC
Fst® + Snd; #; (Id, ;) * App; 7D - - - ; (ld,t,) * App;7{™ € C

fec
Fst"*Snd € C  f*PaireC Fst*«Snd;7® e

Table 3.5: Canonical Combinators for Eager Reduction
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morphism.

Context Morphisms

fig=r f fih=p

Fi(g;h) =L P 0=t FfHd=LF
J'5(9,t[A) €C fi9=Lh
fiFst = h ;9 =9 fig=1 fig
Types

f*((h;g)*A) =1 B '
fr(hx(gxA)) =L B fx(gxV) = Q [f+0=2,0

fig=1h hxA=.B f*Snd =1, hxV(A,t)
f*(gxA)=>L B f*T=>Lh*H(A,<<),t[Q])*T)
f*Snd = ¢
F*T = ((),tQ) +T fxA=p fxA
Morphisms
J*((ts);u) =t/ f*(h;g)*t=p s
f*(t(s5u)) =0t fr(hx(g*t)) =L s
f*xt=rs f*t=rs
fr(tgxld)=ps f*(g*ld;t) =1 s
fi(g,tA) €C frt=rs
fi(9,t[A]} *Snd = s Id * Snd = Snd

fxt'=p (d,sY*App  frt=p hxCur(A,¢") (h,s'[A])xt" =L s

A later rule applies only if all prior rules fail. f always denotes a canoncial context

f+Gt) =L s

frt'=pm  fxt=p (b, t:[A],82[B]) x Pair  f' ;=1 s
= (t;t/) =T S;

f*(g*App) =1, (Id, f * (g * Snd)) * App f*(g*m)=>rm
fr(hxt;hxt')=p s fig=rLh hxt=ps
fr(hx (1)) =L s f*(g*t)=>rs
frt=ps  f*t'=p 4 fec
F*(tt) = 856 frxt=p f*t

Table 3.6: Inference Rules for Lazy Reduction




62 CHAPTER 3. REDUCTION STRATEGIES

A later rule applies only if all prior rules fail. f always denotes a canonical context
morphism.

Context Morphisms

0= fild=gf TId;Fst=p Fst
(,tlA]) eC (Id,t[A]) e C
) tA]);Fst =g () Fst®; (Id,¢[A]); Fst =5 Fst*1

(f,s[4]) eC
Fst®; Fst =5 FstF¥T Fst”; (f, s[A]); Fst =5 Fst*; F

fi9=h f+t=gs fi9=f fih=>pf"
[ {9, t[A]) =& (h, s[A]) fi(g; k) =& f"

(
Fst®; ({

Types
f'ec
F*Q=pQ  Fst®(f, f«V(A,1)B)* T =5 Fst'; [« 1I(A, ((),{[B]) * T)

fi9=gh hxB=>pA f*Snd =gt
f*x(g«B)=>g A F*T =g ((,t[Q)*T f+«A=pf+*A

Morphisms
f*xt=>ps fxg=gh f*t=>ps fxg=gph
f*(tg*xld)=Es fr(g*ldit)=Es

(f,s[A) eC
(Fst®; (£, s[A])) * Snd =g Fst* x 5 Id * Snd =g Snd

fxt =g h*Cur(A1,s1) f;9%Snd =z s, (h,82[A1]) x 81 =g s
f*(t;9%App) =g s

f*¥t=>ps1 fi9g*Snd =g s,
I *(t; 9% App) = s1; (Id, s5) * App

[+t =5 f5{((h,t1[A]),t,[B]) * Pair  f;g =5 K f*t=>ps fig=Erh

F*Eg*m) =5 [ *t; f*(tg*m) =>Es;m
fig=eh hxt=ps fx({t;s);u) =gt
fr(g*t)=>Es f*((s5u) =gt fxt=g f=*t

Table 3.7: Inference Rules for Eager Reduction
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Now we show that both strategies describe a reduction to a canonical form.

Theorem 8.11 For both strategies =1, and =g, for every canonical context mor-
phism f and every well-formed combinator g, B and t with T >; t:1—C such that

I59, f* B and f *t are well-formed, there exist unique canonical combinators h, B
and s such that

() fig=nh
(i) f+B=A
(i) fxt=s

Proof We first consider the proof for the lazy strategy =>;. By an induction over
the structure of e we show that the theorem is true if it holds for any ¢’ and f’

such that v(f' * ¢') < v(f * e), where v(d) is the length of the longest %>-reduction
sequence of d.

(()) We have f;() = ().

(Fst) If f = fi;(9,t[A]), then »(f1;9) < v(f;Fst), and so by induction hypothesis
J1;9 =1 h, and therefore f;Fst =1, h. Otherwise f = Fst*, and so we have
Fst*; Fst =, Fst*1,

((g,t[A])) f;{g,t[A]) is canonical.

(Id) f;ld = f.

(g;h) By induction hypothesis, f;g =1 f’ and f';h =>1, k', so f;(g; h) =1, I'.
(f*Q) FxQ=Q

(T) We start with f = f’;(g,t[A]). Because f’ is canonical, the induction hy-
pothesis yields f'*xt = #, hence f*Snd = ¢'. If /! = h * V(A,t"), then
F*T =g b+ II(A,((),t")[Q] % T), else f T =, ((),#[Q)) *T. If f = Fst”,
then Fst” + T =, ((), Fst™ x Snd[Q]) * T.

(IL(A, B)) f*II(A, B) is already canonical.
(3(A,B)) f*X(A,B) is canonical.
(¢ * A) By induction hypothesis, f’;g =7 h and h* A = B.

(¢ * Id;t) The induction hypothesis yields f *¢ =, s, and so f*(g*Id) = s. The
other cases involving the combinator Id follow similarly.

(¢ *t) By induction hypothesis, f;g =>7 h and h *t = s.

(; (s;u)) The reduction ¢;(s;u) ~» (t;5);u shows that v(f * (t;(s;u))) > v(f *
((¢;8);u)). The induction hypothesis yields therefore f * ((t;8);u) = ¥,
hence f * (¢; (s;u)) =1 ¢'.
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(Snd) We have Id * Snd =, Snd, and Fst® * Snd is canonical if n > 0. If f=
f';(g,[A]), then by induction hypothesis f' *¢ = ', and so f * Snd = #'.

(Cur(A,t)) f=Cur(A,t) is already canonical.
(V(A,t)) f*V(A,t)is canonical.

(t;9 * App) By induction hypothesis, f ¢ =>1, s with s canonical. First consider the
case where s = h* Cur(A,t'). Because (h, g*Snd[A]) is canonical and v((h, g *
Snd[A]) *t') < v(f * (¢; g+ App)), the induction hypothesis yields the claim. If
s # h+Cur(A, ), we get immediately fx(¢; g+ App) =1, s; (Id, f;9%Snd) *App.

(Pair) f * Pair is canonical.

(t;9 * m;) By induction hypothesis, f ¢ =1, s with s canonical. If s = f; (h,t1[A],
t3[B]) * Pair, then again by induction hypothesis, f'*¢; =1, s;, and so f * (t; 9%
7;) =1 s;. Otherwise, s;; is canonical, and f % (t; 9% m) =1 s;m;.

The proof for the eager case is similar. Therefore we give only the details for the
cases (g,t[A]) and t; (Id,¢') * App, where the differences to the lazy case occur.

({9,t[A])) The induction hypothesis implies f; g =g h, f *t =g s, and so

fi (g,t[A]) =E (haS[AD

(t; 9 * App) The induction hypothesis implies f * ¢ =5 s and f39*5nd =g s for
canonical s and s'. If s # & * Cur(A, ') then the combinator s; (Id, s} * App is
canonical. Otherwise we have v((h,s'[A]) *t') < v(t;g * App), and therefore
the induction hypothesis yields (k, s’} * A =g s” with s’ canonical.

a

Remark The proof of the eager case explains why we have to use the strong

. . . N . .
normalization for the relation <+ and cannot on rely on the strong normalization
of the calculus. If we use v((e)) instead of v(e) the above proof breaks down.
Consider the case f *t;(ld,s) * App and suppose the induction hypothesis yields
f*t =g f'*xCur(A,g*t') and f*s =g s'. Then it is in general false that

v((f'; g; Fst® x Snd)®) < v(f * (¢; (Id, s) * App))

because the variable £ may not occur in (#/)°.



Chapter 4

The Construction of Abstract
Machines

This chapter shows how the inference rules for reduction to canonical form give rise
to abstract machines. We first explain the general pattern, and then describe the
lazy and eager machine in detail. The extension of these machines for reduction
to normal form is discussed next. The chapter finishes with a comparison to other
abstract machines, notably the CAM and Krivine’s machine.

4.1 Structure of the Machines

As already mentioned in the previous chapter, the inference rules describe how
a combinator f % e with f canonical is reduced to a canonical one, say €. This
suggest three registers for the abstract machines: the first contains the code for
the environment f, the second contains the code for e, and the third assembles the
canonical combinator e’ as the computation proceeds if ¢’ is a type or a morphism.
A fourth register, which operates as a stack, is necessary in the eager case to store
the code for f temporarily. The code is a tree whose nodes are machine instructions.
They roughly correspond to simple combinators like Fst, Snd and App together with
one instruction that denotes sequential execution. Sharing can be implemented
by generalizing the tree to a graph. The code will be written in a linearized way
to increase readability, and the sequential execution of the code for C; and C, is
denoted by C;C,. A state of the machines is written as

Environment | Code | Canonical Form | Stack

f c N 1S

and a transition from such a state to another one, which is activated according to
the first instruction of C, is written as

65
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Environment | Code | Canonical Form | Stack
f C N S
J
f’ | C/ I N! I S’

The translation from combinators into machine code is denoted by [—Tm-
The idea behind the transitions for the machines is that every inference rule

fl*elie’l-”fn*en#e;
fre=¢

gives rise to machine transitions describing in an elementary way how e’ can be
constructed from the canonical combinators €] to e/. It is possible to divide the
inference rules into several groups according to their form.

1. Every rule
ffxe=d
f*xe=>d

is captured by a transition

Environment | Code | Canonical Form | Stack
/1 [e]lm N S
4
[fTm | [eTm | N | S

2. Any inference rule

frxe=¢

with e a type or a morphism gives rise to a transition

Environment | Code | Canonical Form | Stack
[f]m [elnC N S
|
[fl. | ¢ | Nl | S

and any inference rule

fi9=h
leads to a transition
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Environment | Code | Canonical Form | Stack
[f]m l9l~C N S
3
[’l. | ¢ | N | S

3. The case
ffxe=d
f*xe=d

which occurs only if e = T, is covered by the introduction of a special instruc-
tion T¢ transforming d’ into d. This yields the two transitions

Environment Code Canonical Form | Stack
[T~ TC N S
U
[l |[1-TeCc] N | s

and

Environment | Code | Canonical Form | Stack
4
E | C] N[ | §

4. The identity morphisms in the fibres and in the base are represented by the
empty code, which is denoted by —. This code acts like an empty word, i.e.
its concatenation with any other code sequence C is identical to C.

5. Composition in the base category is modelled by sequential execution of the
machine instructions. Therefore the inference rule

Lig=f  fih=>H
fi(gh) =N

is not modelled by a special machine transition but by the fact that the code
corresponding to g is executed before the code for A.
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4.2 The Lazy Machine

The differences between the lazy and the eager machine become apparent when we
consider the inference rules for composition in the fibres, the *-operation, - and
o-reduction and access to the environment.

The composition in the fibres poses a problem that does not arise for composition
in the base. We must make sure that the environment f is still available when the
second argument of a composition in the fibre is processed. This can be achieved
without an extra stack register if [[¢1; ] = [t2lm[t1]m. The execution sequence of
the machine for a combinator ¢;;¢, with ¢;:1—A and to: A— B shows how:

o The machine starts by executing the code for ¢, which does not change the
environment register.

e Then it performs the reduction of the code for t1, which may change this
register.

The second property of the lazy reduction strategy mentioned in section 3.2 on
page 58 states that the reduction of the context morphism g in a combinator g*t may
depend on the structure of ¢. As a consequence we cannot translate the combinator
g*t simply into [[gm[t]m- Instead we have to keep the operation symbol * as part of
the machine representation of a combinator, so the translation of g*tis [t]m * [g]m.

Now we turn to the implementation of the S—rule

frt'=p (d,s)*App  frt=p hxCur(4,1") (h,s[A])*t" =1 s
fx;t) =1 s

It uses the fact that any derivation tree of f*t' = hx* Cur(A,t") has a branch with
a leaf

h x Cur(A,t") =1 h* Cur(A,1t")

Hence any transition sequence for the code for ¢ passes through a state

Environment Code Canonical Form

TA]m Cur([Allm, [t"]m) C N

Therefore it suffices to introduce the transition

Environment Code Canonical Form
f Cur(A,t) C | NApp* (—,t")
Uz
(f,t)7(A) I tC | N

where [(f,¢[A)]m = ([fIm, [Tm)?([A]m). A similar argument yields also the

transition for the o-rule:
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Environment Code | Canonical Form
f; ((ga tl)?(A)ytZ)?(B) Pair C Nﬂ'z-
I
f | t.C | N

The inference rules for access to environments are treated by two transitions,
which schedule the evaluation of the component that is selected by these inference
rules:

Environment | Code | Canonical Form
fig,t)7(A) |Fst C N
Iz
f lgc| N

and

Environment | Code | Canonical Form
f(g,t)7(A) |Snd C N
%3
f_ |tc | N

The access to the environment admits an important optimization. Consider
the combinator f % Cur(A,Snd); (Id,¢) * App. According to the strategy =, its
reduction amounts to reducing the combinator (f, t[A]) * Snd, which in turn leads to
the reduction of the combinator Id * (f * ¢). Because f is canonical, the derivation
tree for the latter combinator contains the judgement f ¢ = s. So we obtain an
admissible inference rule ‘

fe€C Fsthfxt=ps
Fst®; (g, f *t[A]) * Snd =1 s

In the same way we get another admissible inference rule

fec
Fst®; (f,t[A]); Fst =, Fst®; f

The implementation of these inference rules depends on recognizing that certain
context morphisms are canonical. This is easily achieved by introducing a flag that
indicates whether in a combinator Fst*; (f,#[A]) and f *t respectively f is canonical
or not.




70 CHAPTER 4. THE CONSTRUCTION OF ABSTRACT MACHINES

Context Morphisms

[0Tm < () [id]. % —
[f;90m < [flmlglm [Fst], % Fst
[(f, AN = ([fDms [E]m) 2 ([ADm)
Types

[, * o 7] < T
5 Aln % [Alux (/e [0 B ¥ (AL [8])

=

[3(A, B)]m E([A]m, [Blm)
Morphisms
[[t§t']]m o IIt']]m[[t]]m ! [[Id]]m o
[Snd]. % Snd IF*thm % [t * [F]m
[Appl % App [Cur(4,)]m ¥ Cur([Allm, []m)
[Pair]),. “ii Pair V(A )] ¥ Y([Alm, [£]m)
Hwi]]m d'é 3

Table 4.1: Translation of Combinators into Lazy Machine Code

Now we formalize the previous discussion. The machine instructions are given
by the following BNF-expressions:

frou= Q1 = | Fst](f,t) | 2(A)
A u= Axf | Q| I(A,A4) | 5(A4,A4) | T | T
t u= txf | Snd | Cur(A,¢t) | App | Pair | m | mp | V(A,¢)

Table 4.1 contains the translation of the combinators into machine code, and Ta-
ble 4.2 contains the transitions of the machine itself. A final state is a state for
which no transition rule applies. The symbol ? denotes an arbitrary code sequence.

Theorem 4.1 For every canonical context morphism f and all combinators g, A
and t such that there exist combinators h, B and s satisfying fig=rh, fxA=L B
and f *t =1 s respectively, the machine performs the following actions:

Environment | Code | Canonical Form

[7Tn  |[6ln C N
v
[blm | C | N
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Environment

A later rule applies only if all earlier ones fail. If we write e C for the content of
the code register, we always assume that e is not a sequence of instructions. The
rules marked with (+) apply only if the flag for ¢ * & and (h,t)?(A) respectively
indicate that A is the code for a canonical combinator.

Code

Canonical Form

Q) f
Q

(0 C
C

(+)Fst | Fst®( h, t)?(A)

Fst®h

Fst C

Fst

f(g,t)?(A)

fig

Axg

| 22220222z 2(z 2z 2z 2=

Te

Tc C
C

V(A t) % h

Tc

Tc C
C

(A, T * ((),t)?(Q)) * h
t

T * ((:)1()

~

AC
C

N
* 2

f

(txg)xh C
tx(hg)C

—%xgC
C

~
I S LS| D R e b e sy (V) A :xx

(+)Snd
Fst*h

C
tC

Snd f9:4)1(4)

Snd C
tC

Snd —

Snd C
C

Table 4.2: Transitions of the Lazy Machine

T e A e

=
wn
b=

o




72 CHAPTER 4. THE CONSTRUCTION OF ABSTRACT MACHINES

Context Code Canonical Form
(:6) f CUY(A, t) C NAPP * (_7'5>
(f>s)1(A)! t N
App f App * (—,t) C N
f C NApp * (—,t % f)*
App f Appxg C N
f C NApp * (—, (Snd * g)  f)*
Pair F{{g,t1)?(A),t2)7(B) Pair C Nr;
f t; C N
h*(tt) f (tt)xh C N
f txht'xhC N
5 f mixgC N
f C Nﬂ‘i
txh I txhC N
I ht C N
Table 4.2 (continued): Transitions of the Lazy Reduction Machine
1The flag indicating that f is canonical is set as well.

Environment | Code [ Canonical Form
[fm [Alm C N
Iz
1 | € |  [Blx
Environment | Code | Canonical Form
[f]m [t]m C -
V1
? | ¢ | [5]m

If C is the empty code sequence, then the resulting states are final.

Proof As already mentioned, the inference rules for the f- and o-reduction make
it necessary to consider not only the transitions to a final state but also to previous
ones if the code for a morphism is executed. Therefore we modify the statement of
the theorem for morphisms as follows:

Theorem 4.1 (modified) If f+t = s, then we have the following cases, according
to the structure of s:
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1. s =70;(Id, s;) * App; 7D, (Id, s2) * App; - - -, where ®) is any combination of

m and m,, and

73

Environment | Code | Canonical Form
[f]n [t~ C N
1
[fl= | € |  Nsla
2. s=d+*ujvy;---v, and
Environment | Code | Canonical Form
[f1m ] C N
1
[n | [uln C | N[va]m - - [0:1]m

3. s =Snd;vy;-- v, and

Code | Canonical Form

[tln C N
57
— | Snd C | N[wp]m - - - [01]m

Environment

Lf1m

To simplify the notation, we write all three cases as

Environment | Code | Canonical Form
[f]m [l C N
1
& |wc| N

The original version of the theorem follows from this by an easy analysis of the
canonical combinator w'. Theorem 3.11 implies that it is enough to show that the
theorem holds for the conclusion of any inference rule for the strategy =, if it holds
for all of its premises. Hence we consider all inference rules in turn. The symbol
L.H. denotes an application of the induction hypothesis.

We start with context morphisms.

f;(g; h) =1, &' The transition sequence is
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ILH.

1L.H.
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Environment Code Canonical Form
[f]m [glm[P]m C N
7
[fTm (Al C N
57
Fln | € | N

f3() =1 () This corresponds directly to the transition rule

Environment | Code | Canonical Form
[f]m 0C N
%3
() | ¢ | N

The rules f;1d =1 f, Id;g =1, g and f;g =1, f; g are similar.

f; Fst =1, h The machine sequence is

Environment Code | Canonical Form
(71w {[g]m, [¢1m) ?([Allm) | Fst C N
1157
[f]m lg]- C N
LH. 7
[l | ¢ | N
Next we consider the types.
f * (g * (h* A)) The transition sequence
Environment Code Canonical Form
[fTm (([ADw * [gllm) * [~]lm) C N
Iz
[fm [Alm * ([~]mlg]m) C N
IL.H. 7
] ¢ | [Bl.
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shows the claim.

f*(g*Q) =L Q This is covered by the transition

Environment Code Canonical Form
Hf Im 0 * Hg]]m C N
I
fl. | ¢ | Q

The case f x Q =1, Q is similar.

f*(g* A) =1, B The transition sequence is

Environment Code Canonical Form
[f]m [A]lm * [g]m C N
5
[fIm [9lm[A]lm C N
ILH. 47
v | ¢ |  [Bla

f*T = hxII(A,((),t[Q]) * T) Consider the following sequence:

Environment Code | Canonical Form
1f T TC N
dr
[T SdTo C | -
B
B
[A]m ‘ V([Alm; [t]m) To C | -
YL
[7]m ' Tc C } V([ Allm; [£]m) * [A]m
Y
[A]m | c | (AT, T # (0 [£1m) 2(R2)) * [A]m

The case f * T =1 ((),t[Q]) * T is similar.
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f*A=r f*A Obvious.

Finally we show the theorem for the morphisms.
(@ (su) =t [t (s;u)]m = [(¢); ullm.
f#(h*(g*t)) = s Consider the sequence
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LH.

Environment Code Canonical Form
[fTm ([thm * [gDlm) * [2]lm C N
UL
[f]m [t]m * ([Allm [9]m) C N
57
d I u' C | N

f*(t;9%1d) =1 s We have the following sequence

ILH.

Envifonment Code Canonical Form
[fTm — * [9]n[t]m C N
57
[/Tm [t} C N
U1
¢ | we | N

f*(g*Id;t) = s Similar to the previous case.

[3(g,t[A]) * Snd =1, s The transition sequence is

LH.

Environment Code | Canonical Form
[T ([9Tm, [e]m) 2 ([ATm) | Snd C N
U
[f]m [t]. C N
Iz
d | wC | No'

Fst®; (g, f * t[A]) * Snd =1, s Similar to the previous case.
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Id * Snd =1, Snd Obvious.

B-rule The machine sequence is

ILH.

I.H.

I.H.

Environment Code Canonical Form
[f]m (¢l [2]m C N
Uz
[f]m [t]m NApp * (=, [sTm)
U
[A]lm Cur([Alm, [¢"Im) C' | NApp * (=, [s'm)
52
(R, Snd * [fIm[g]m) [l C N
5
d' I u C Nv'

The rule for Pair is treated similarly.

f* (g *App) = (ld, f * (g * Snd)) * App The sequence is

Environment Code Canonical Form
[f]m App * [g]lm C N
| b
[flm | C | NApp * (Id, (Snd * [g]m) * [ 1))

The corresponding rule for ; is similar.

f*(g+*t) =1 s The sequence is

Environment Code Canonical Form
[T [e]m * (9l C N
Ui
[FTm [9]m [£]m C N
ILH. 1
[Allm [tlm C N
ILH. I3
& | w'C | Nv'

77
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J #h*(t1;t2) =1, s The machine sequence is

Environment Code Canonical Form
[f]m ([telm[t1]m) * [A]m C N
Ui
[f]m [tllm * [Allm[Ei]m * [A]m C N
IL.H. I
d | u' C I Nv'

f*(t;¥) =L s;8' The morphism ¢# is either g+ App or g * ;. In both cases we have

Environment Code Canonical Form
[fIm [¢Tm[E]m C N
52
[fTm [t]m C N[sTm
ILH. (53
d | u'C | N[sTmv'

4.3 The Eager Machine

The main difference between the eager and the lazy machine is that the former needs
a stack for the execution of the code for a combinator ¢;; ;. Asan example, consider
the reduction of a combinator f*(g; * Cur(A, t); go* App), which requires a reduction
of both f*g; and f* g,. So we store the content of the environment register on the
stack before we execute the code for g; * Cur(A,t) and restore it afterwards. It does’
not matter for this argument whether the code for g; or for g, is executed first. The
order chosen here will make it easy to recognize the CAM as a special case of the
eager machine. The stack is also used when the code for a combinator f; (9,t[A]) is
reduced because the canonical combinator f is needed for the code of both g and t.
The other inference rules that characterize the difference between the eager and lazy
reduction cause no special problems when the corresponding transitions are defined:

1. Because the combinator g * ¢ is reduced to a canonical form by first reducing
g, there is no need to retain a special operation * in the machine, as in the
lazy case. We can simply translate g * t as [g]m[t]m, in accordance with the
inference rule

fig=>8h hxt=gs
f*x(g*t)=>Es
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2. Because the combinators f and ¢ in a canonical combinator (£, {[{A]) are already
canonical, the inference rules for the access to an environment have the form

frxe=>¢€

The transition rules follow therefore from the discussion at the beginning of
this chapter.

3. The B-reduction is captured as follows: according to the strategy for composi-
tion, we have to execute first the code for the combinator ¢ and then the code
for ¢' if we consider a combinator ¢; (Id,#) * App. Finally we can schedule the
reduction of the contractum of the B-rule. If the machine handled the code
for the combinator (Id,t') in the way the code for the combinator (g, t[A]) is
executed, we would waste effort in storing the environment on the stack and
throwing it away after the computation of the canonical form of . The re-
duction f;(ld,t) * App ~»; (ld, f *t) * App suggests the introduction of an extra
machine instruction (- with the transition rule

Environment | Code | Canonical Form | Stack
f (-C N S
g
.f I c l — I S ’ (—7 N

and add a special rule for )

Environment | Code | Canonical Form | Stack
7 yC i SN
J
@ |c| N | s

The transition for the B-rule is then

Environment | Code | Canonical Form | Stack
(- s) App | N f Cur(A,t)) S
Ug
(frsla)) | ¢ | N | S

The o-reduction is captured similarly.




80 CHAPTER 4. THE CONSTRUCTION OF ABSTRACT MACHINES

Context Morphisms

() :=: () 1f,¢[A]ln :=§ ([T [e] ) 2([A]m)
T

Types
0. % a (A, B)lm < T([Alm, [Bln)
[T]. & T [Z(A,B)lm < Z([Alm, [Blm)
[F*Alm € [flnlAln
Morphisms
[Snd].. % Snd [t1;t2]m & ([t1]mpopt2]m
[ld]. % — [Appln % App
[f#tlm < [flnltle [Cur(A,8)]m % Cur([A]m, []m)
[Pait]n < Pair V(A £ Y([Alm, [t]m)
[7]m & m

Table 4.3: Translation of Combinators into Eager Machine Code
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A later rule applies only if all earlier ones fail.
Context Code Canonical Form Stack
() f OC N S
() C N S
Fst Fst*(() ,t)?(A) Fst C N S
() C N S
Fst Fst*(— ,t)?7(A) Fst C N S
Fst+? C N S
Fst Fst®(f ,t)?(A) Fst C N S
Fst® f C N S
Fst f Fst C N S
fFst o N S
< 7 (C N S
f c N S, f
(- f (_C N S
f C N S, (-, N
, g , C N S, f
f C _ Sa g, N
) 7 )C : S,(_N
(-1) C N S
) f ) C t S,9,N
(g, 1) ¢ N S
? f 7(A) C N S
f?(A) o N S
Q f QC N S
f c Q S
T |Fst™( f, RY(AR)YI(B) TC N S
Fst*( f, AV(A1))(B)  C  Fst*hIl(A{ O,)(B)T) S
T Fst*(f,t)7(A) TC N S
Fst®(f,t)7(A) o Fstk((),t)?(Q)T S
T Fst® TC N S
Fst* C ((),Fst*Snd)?2(Q)T S
A f AC N S
f C fA S
Snd Fst®(f,t)?7(A) Snd C — S
Fst*(f,t)7(A) C FstFt S
Table 4.4: Transitions of the Eager Machine
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Context Code Canonical Form Stack
Snd - Snd C - S
— o Snd S
App | (f,9)7(B)  AppC gCur(4,1) 15
(g,s)?(A) tC — S
App Fst* App C gCur(A,1) S
(g,Fst*Snd)?(4) ¢C — S
App |  (f8)1(B)  AppC N S
(f,8)7(B) ¢ N(_s)App S
App Fst”* App C N S
Fst® C N{_Fst*Snd)App S

pop g pop C N S, f

f 9 N S
; f ™ C  f((9,£1)7(A),t2)?(B)Pair S
f C t; S
T f m; C N S
f C Nﬂ'z' S
t f tC N S
f C ft S

Table 4.4 (continued): Transitions of the Eager Machine
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The grammar for the machine instructions is as follows:

fro= Q= 1 Fst [ CLGT, 1)1 2(A)
A = Q| II(AA) | Z(A,A) | T | Te
t == Snd | Cur(A4,t) | pop | App | Pair | m | my

The definition of the translation into machine code and the definition of the eager
machine can be found in Tables 4.3 and 4.4. The correctness theorem follows exactly
the same line as the corresponding theorem in the lazy case:

Theorem 4.2 For every canonical context morphism f and all combinators g, A
and t such that there exist combinators h, B and s satisfying f;g = h, fxA =1 B
and f *t =1, s respectively, the machine performs the following actions:

Environment | Code Canonical Form | Stack
[[f ]]m [[g]]m C N S
VE
Pl | C | N | §
Environment | Code | Canonical Form [ Stack
[f]m (Al C N S
Uz
? C | [B]m | S
Environment | Code | Canonical Form [ Stack
[£]m [t~ C — S
VE
[[f Hm I c ] [IS]]m l S

Proof By Theorem 3.11, it is enough to show that the theorem holds for the
conclusion of any inference rule for the strategy = if it holds for all of its premises.

fi () =& () The sequence is

Environment | Code | Canonical Form | Stack
[f]m (OC N S
UE

0 |c] N |s
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The rules for f;1d, Id; Fst, Fst*; (g, ¢[A]); Fst and Fst*; Fst are also directly trans-
lated into machine transitions.

f3{9,t[A]) =E (h,s[A]) The transition sequence is as follows:

Environment Code Canonical Form | Stack
[f]m ([glm, [t1m)? ([A]lm) C N S
Ug
[Flm | [glm, [£]m)?([ADw) C N S, [f1m
I.H. U5
[Allm > [t1m)?([Alm) C N S, []m
e
[f1m [t]m)?([Alm) C - S, [Allm, N
IH. I5
? Y1([Al=) C [s]m S [Allm, N
U
([P]m, [s]m) 1([Alm) C N S
Ug
([~]m, [31m) ?([A]m) | ¢ | N S

f;(g;h) =E f' Construction.

Types
All cases for types but one correspond directly to machine transitions. The
exception is the inference rule with the conclusion f*T =5 ((),¢[Q])* T. The
typing rules imply that either f = Fst* or f = Fst¥; (f,[A]). Hence the last
two transition rules for T' are enough to capture this inference rule.

f *(t;g*Id) The transition sequence is

Environment Code Canonical Form | Stack
[71= | ([tlmpoplglm — C - S
Ug
[f]m [t]mpoplgllm — C - S, [fTm
L.H. Ug
? pop[gln — C [s]m S, [flm
57
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JE
[f]m ' [9]lm — C | [s]m | S

LH. I
(2] | -C [s]m ’ S

5>
[im] C  |[sIm|S

The cases f x (t; g *1d) and f * (g * |d;t) are similar.
Snd Similar to Fst.

p-rule Because of typing constraints, we have either f;g =g Fst; (f',t[A]) or.
f;9 =& Fst*. We deal here only with the first case, the second is analogous.

Environment Code Canonical Form Stack
[flm ( [tImpop [glmApp C - S
Ve
[f]m [¢1mpopglnApp C - S, [f]m
LH. UL
? PoP[gllmApPp C | [AlmCur([Almls1]m) | S, [fIm
Ve
[f]= [gl=App C [PlmCur([Alm[s1]m) | S
Ue
Fst®; ([g'Tm, [t]m)?(A) App C [2]mCur([Aln[s:]m) | S
U
([A]m, Fst¥[t]m)? (A) [s1]m C N S
LH. i
? | C | [s]m S

The remaining cases are similar to the B-rule.
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4.4 Machines for Reduction to Normal Form

As the relation 2> is defined on top of the relation f\vY), the two machines for reduc-
tion to normal form are constructed on top of the two machines for reduction to
canonical combinators. The former machines accept therefore the code for a canon-
ical combinator as input and produce the code for the normal form as output by
pushing the substitution inside the binding operations like Cur and V and calling
recursively the machines for reduction to canonical combinators and normal form.

We will write
Input Output

Le [ ¢ |
for the behaviour of these machines, or NF(e) = e’ whenever this is appropriate.
The details are given in Tables 4.5 and 4.6. These tables use the abbreviation
CF(f,d) = &', which means that the abstract machines for =7, and =g respectively
stop with the code d’ in the canonical-form or environment register when started
with the code f in the environment register and d in the code register.
The strong normalization of the reduction < yields the correctness theorem:

Theorem 4.3 If f, A and t are canonical combinators and f', A’ and t' are their
s -normal forms, then both machines perform the following action:

Input Output

[l | [T
[Alm | [ATm
[t | [¢]m

Proof An induction over v(f), v(A) and v(t) respectively does not suffice because
in some cases we have to reduce the code for Id * A and Id % f to determine the
normal form of A and f. Instead we use an operation rem(—) in the definition of
the well-ordering for the induction. The combinator rem(e) is the result of replacing
all subcombinators Id; f, f;1d, Id * A and |d * ¢ in the combinator e by f, f,Aand ¢
respectively. The crucial property of this operation is that e = ¢’ implies rem(e) wr
rem(e’). An induction over the pair (deg(e),compl(e)) ordered lexicographically,
where deg(e) & v(rem(e)) and compl(e) denotes the complexity of rem(e), will prove
the claim. We elaborate only on the cases Id *II(A, B) and f+II(A, B) of the machine

for lazy combinators because all other cases are similar.
Id + II(A, B): Let II(4’, B') be the normal form of II(A, B). By definition,
deg(ld * A) = deg(A) < deg(II(A, B)) = deg(ld * I[I(4, B))

If ld«* A =1 A”, then rem(A) w* rem(A”), and so deg(A”) < deg(A). So
deg(A") = deg(A) implies rem(A) = rem(A”). Hence
(deg(A"), compl(A”)) < (deg(A), compl(A))
< (deg(I1(4, B)), compl(II(A, B)))
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Input

Output
() ()
{g,1)7(A) (NE(CF(-,g)), NF(CF(—, £)))?(NF(CF(=, A)))
f(9,t)?(4) (NF(CF(f,9)), NF(CF(£,1)))?(NF(CF(-, 4)))
F;:" ) Fst™
II(A, B) * — I(NF(CF(—, A4)), NF(CF(-, B)))
II(A, B) = f I(NF(CF(f, A)), NF(CF({Fstf,Snd)?(A), B)))

Y(A, B) * — %(NF(CF(-, 4)), NF(CF(—, B)))

Y(A,B)« f S(NF(CF(f, A)), NF(CF((Fstf, Snd)?(4), B)))
Q Q
T = ((),4)?(4) T * {(), NF(£))7(2)

Cur(A,t) * — Cur(NF(CF(—, A)), NF(CF(—,1)))

Cur(A, )+ F Cur(NF(CF(J, A)), NF(CF({Fstf, Snd) 7 (A), 1))
V(A, t) * = V(NF(CF('—3 A))) NF(CF(—a t)))
V(A,t)* f V(NF(CF(f, A)), NF(CE((Fstf, Snd)?(A), )))
Snd * Fst* Snd * Fst

. , Pair + ({—, NF(CF(—, £)))/(NF(CF(—, A # §))).NF
Pai+ (924, 028) | Gr o B (P S o)
Pair * ({—, NF(GF (7, 1)))2(NF(CF
Pair + f((g,1)7(A),t)?(B) (£, A*g))), NF(CF(f,)))?(NF(CF
((Fstfg,Snd)?(A), B)))
TEIENEY) App+ [, NF(CE(£,))
L NF(t;) NF(Z,)

Table 4.5: Machine for Reduction of Lazy Canonical Combinators to Normal
Form
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Input Output
Q ()
Fst®(f,1)?(A) (NF(Fst® f), NF(Fst*t))?(NF(CF(—, A)))
o ot
_H(A, B) H(NF(CF(—aA))aNF(CF(_)B)))
fTI(4, B) H(NF(CF(f, A)), NF(CF({Fstf, Snd)?(A), B)))
—%(4, B) L(NF(CF(f, 4)), NF(CF(~, B)))
fX(A, B) S(NF(CF(f, A)), NF(CF((Fstf, Snd)?(A), B)))
Q Q
((),)7(A)T (0, NF(£)? ()T
—Cur(A4,1t) Cur(NF(CF(—, A)), NF(CF(—,?)))
fCur(A,t) Cur(NF(CF(f, A)), NF(CF({Fstf, Snd)?(A), 1)))
—V(4,1) V(NF(CF(—, A)), NF(CF(-, 1)))
JY(4,1) V(NF(CF(f, A)), NF(CF((Fstf, Snd)?(A), )))
Fst*Snd Fst*Snd

((—5t)?(A),t")?(B)Pair

(=, NF(¢))?(NF(CF(—, A))),NF(t))
Y(NF(CF(-, B)))

Fstk((g,t)?(A),t’)?(B)Pair

((—NF(Fst*t))?(NF(CF(Fst'g, A))),NF(Fst't'))
?(NF(CF({Fst**1¢,Snd)?(A), B)))

(-£)App (NF(2))App
tzr ;2 NF(tl)Wi\IF(tz)

Form

Table 4.6: Machine for Reduction of Eager Canonical Combinators to Normal
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Therefore the induction hypothesis yields NF(CF(—, [A]m)) = [A]m, and in
the same way NF(CF(—, [B]n)) = [B]m. So we obtain

NF([ld + II(A, B)]m) = [II(4, B)]n

f*II(A, B): Let again be II(A’, B) be the normal form of f * II(A, B). Because
f is canonical and f # Id, we have also rem(f) # Id. So rem(f x A) =
rem(f) * rem(A), and

rem((Fst; f,Snd[A]) * B) = (Fst; rem(f), Snd[rem(A)]) * rem(B)
Hence deg(f * A) < deg(f *II(A, B)) and
deg((Fst; £, Snd[Al) * B) < deg(f + TI(4, B))
Therefore the induction hypothesis implies that

NF(CF([f * Allm)) = [Alm

and
NF(CF([Fst; f,Snd[A]]n * B)) = [Bm

and now the claim follows directly.

a

One aspect of the definition of the canonical combinators improves the efficiency
of the machines considerably, namely that if f is canonical, then (Fst; £, Snd[A])
is canonical as well. To see why, consider a canonical combinator f * Cur(A,t):
the execution of the code for the canonical form of (Fst; f,Snd[A]) * ¢ starts with
[{Fst; f,Snd[A])]m in the environment register rather than with the computation
of the canonical combinator for it. Asperti [Asp92] also noticed the importance of
postponing weakening during the reduction inside a binding operation.

4.5 Comparison with Other Abstract Machines

This section shows that the lazy and eager machines of section 4.2 and 4.3 are
generalizations of the version of Krivine’s machine and the CAM for the simply
typed A-calculus respectively. The only difference between the latter two machines
and those for the untyped A-calculus is that the term M is replaced by AA.t and the
combinator Cur(t) by Cur(A,t) respectively.

4.5.1 The Lazy Machine

Krivine [Kri85] describes an abstract machine for the reduction of untyped \-terms
to weak head-normal form. A more easily available account of this machine is given
also in [Cré90] [Cur91]. We will review the version for the simply typed A-calculus
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Environment Code Stack
f (C1Cs) S
f Ci  5(f,C9)
; X 5,(h,C)
fu(h,C) t S
fu(h,C) 0 S
h C S
f=(hC) n+1 S
f n S
Table 4.7: Krivine’s machine

here briefly. It has three registers, called environment, code and stack. The first
contains a list of closures (f,t), where f is an environment and ¢ a term, and the
elements of the stack are closures (f,¢). An environment is in turn a list of closures,
so we obtain a mutually recursive definition. The base case of this definition is the
empty environment, which is the empty list. The transitions are given in Table 4.7.
The machine starts with an empty stack, an empty environment register and with
the term ¢ in the code register and stops in a state

Environment | Code Stack
- n (h]_, tl) see (tn, tn)

or

Environment | Code | Stack
f AA.L —

corresponding to the weak head-normal form nt}---# and the closure (J, AA.L)
respectively, where the ¢] are the result of the substitutiton of the environment h;
iIl ti.

The aim is to recognize this machine as a special case of the lazy machine in-
troduced in section 4.2. Because we consider only the simply typed A-calculus, we
can restrict the raw combinators to those corresponding to constant D- categorles,
namely

' == []|T-A

fou= Q[ W] fif|Fst|(f¢)

A u= T |II(4,A)

t u= Id |t | f+t | Snd | Cur(A,t) | App

together with the combinator 1 The combinator I denotes an arbitrary base type.
The reduction relations < and %% can be adapted easily by removing the combinators
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Environment Code Canonical Form
(g,t*h) Snd C N
h tC N
(g,1) Snd x Fst"™ C N
g Snd * Fst™ C N
f Cur(A,t) C NApp * (Id, s)
(£, ) tC N
i App * (Id,s) C N
f C NApp * (ld, s * f)
Id Snd C N
Id C NSnd
f tC N
f ¢ Ntxf
Table 4.8: Restricted Lazy Machine

that do not occur in the above rules and replacing the combinators (f, t[A]) by (f,)
and f*A by A. Because there are no dependent types in the simply-typed A-calculus,
the adaptation removes all reduction rules on types. So there are no transition rules
for types in the machine either.

To obtain Krivine’s machine, we restrict the combinators even further. During
the reduction of combinators that are translations of A-expressions only the code for
the combinators

fou= 01 {fHt)
u = Fst*%Snd | Cur(A,u) | (Id,u) *App | u;u
t u= u | fxu| u;(ld, f*u)*App

occurs in the environment register, the code register and in the canonical-form reg-
ister respectively. If we consider only the transitions of the lazy machine concerning
the restricted combinators, we obtain the machine given in Table 4.8. The mark-
ing of the code of certain context morphisms as canonical is not necessary because
the restricted machine handles only code for canonical context morphisms anyway.
Krivine’s machine and this machine become identical if

¢ we translate every term ¢ into the code [[[¢t]]m, and replace every closure (f,t)
by f'#[[¢]]m and every environment ((f1,%1),. - . (fa,ta)) by (2 * [[t1]]m, - - -,
Jo * [[2a]]w), where f', fi,..., fi are the combinators corresponding to the
environments f, f1,..., fa,

e we remove the last two transitions of the latter machine, so that the final states
correspond to each other, and
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e we replace every stack (h1,%1),...,(hn,ts) of closures by the code App * (—,
([0l * B1) - - - App * (—, [[tal]m * &%) in the canonical-form register, where
hi,...,k;, are the combinators corresponding to A, ..., hy,.

The Ao-calculus has been used to derive extensions of Krivine’s machine for
reduction to normal form [ACCL90] [Cré90]. The calculus adds explicit substitution
on top of the A-calculus. In our notation, the typed version has the raw expressions

I u=[]|T-A

frou= Q1MW ]| fif]Fst](f2)
A == I |II(A4,A)

t Snd | MAt | &t | fxt

An expression f is usually called a substitution. The typing rules of the raw ex-
pressions are those of simply-typed A-calculus with the following rules for the extra
expressions:

'Ff:A TFtA

INCEVH 'FId:T 't {(f,t):A-A
' f:IY" Ik g:T"
I'AF Fst:T L'k f;g:T"

This calculus becomes a subsystem of the combinators for constant D-categories if
we replace ts by ¢; (Id, s) * App and the judgement ' - ¢: A by T 1> ¢: 1— A. Therefore
the D-categories are an appropriate categorical framework for the Ag-calculus.

An extension of Krivine’s machine to a machine for the reduction of a term f*t
to a normal form is given in [ACCL90] as well. It does not use the notion of a
canonical environment f and hence does not reduce environments to a canonical
form but lists all possible cases for the reduction of f*(g*t), where the code for f is
stored in the environment register and the code for ¢ * ¢ in the code register. Hence
the access to an environment (Fst; f, t) is more complicated than in the machine
presented here.

Crégut’s machine [Cré90] is based on the variant of the Ao-calculus given in
[Cur91] in connection with multicategories. This variant replaces the substitutions
Fst and Id by the lists (n—1,...,1) and (n—1,...,0), where n is the number of free
variables of the expression to which this substitution is applied. Hence all expres-
sions have to be decorated with the number of free variables in order to formulate the
reduction rule corresponding to f * Cur(4,1) X Cu r(A, (Fst; f,Snd[A]) ). Further-
more the substitution cannot be stored directly in the environment register because
otherwise the transformation from the substitution corresponding to a combinator
f to that corresponding to the combinator (Fst; f,Snd) becomes prohibitively ex-
pensive. Crégut’s machine avoids such a complicated manipulation by handling the
free variables that occur during the reduction inside a A-abstraction differently from
the other variables. For this purpose the machine maintains an index that is in-
creased every time we start a reduction inside a A\-abstraction. The value of this
index is stored as the value of such a free variable. This is a kind of reverse de
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Term Code Stack
(f,9) FstC S
f C S
(frg)  SndC S
g o S
(fCur(t),s) AppC S
(fs)  tC S
f (¢ §
f ¢ Sf
f ¢ Sk
h C S, f
g9 ) c S, f
(f,9) c S
f tC S
ft C S
Table 4.9: The CAM

Bruijn-numbering, where the origin is the root of the term. The translation from
this reverse index to the normal de Bruijn-index is done whenever the value of such
a variable is computed. The special role of these free variables has no counterpart
in the Ao-calculus, and so the correspondence between the calculus and the machine
is based on a translation of the reverse indexing into standard de Bruijn-numbers.

4.5.2 The Eager Machine

The CAM [CCMB8T7] reduces combinators for the untyped A-calculus according to
an eager strategy to combinators corresponding to weak head-normal forms. The
combinators, which are based on cartesian closed categories, are given by the BNF

fou= (I Fst|Snd | fif 1 App | (f,f) | Cur(t)

The machine has three registers, called Term, Code and Stack. The first contains
the environment or the value, and the second the code that is to be executed. The
transitions are given in Table 4.9. The CAM starts with a combinator (fr5--05 fo),
where fi,..., f, are combinators corresponding to weak head-normal forms, in the
term register, an empty stack and the code for the term # that is to be reduced in
the code register. It stops with the code for the weak head-normal form of t{z;\t:],
where ; is the term corresponding to the combinator fi, in the term register and an
empty stack and code register.

In the same way as in the lazy case the connection between the CAM and the
eager machine is based on a restriction of the combinators to those arizing during the
reduction of translations of A-expressions. We consider the eager machine limited
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to the transitions dealing with the code for the combinators
Foa= 01 e
w = Fst*+Snd | Cur(A,u) | (Id,u) *App | w;u
t o= u | f*Cur(A,u)

in the environment, code and canonical-form register respectively. This yields the
machine

Environment Code Canonical Form Stack
(f,t) Fst C N S
f C N S
(f,t) Snd C N S
(f,1) c ¢ S
f (-C N S
f C — S,N, (-
7 TC : SN
(- 1) C N S
(-s App C fCur(A4,t) S
(f,s) t - S
f (C N S
f C N S,N
f pop C N S, h
h C N S
f tC N S
f C N ft S

It is no surprise that this machine and the CAM are not the same because the
CAM is based on a different categorical structure, namely cartesian closed categories.
However, the identification of environments and morphisms that leads from constant
D-categories to cartesian closed categories turns also this machine into the CAM. If
we merge the environment and the canonical-form register, the first three transitions
become identical with their counterparts in the CAM. The correspondence between
the combinator ;(Id, s) * App for D-categories and the combinator (t,s); App for
cartesian closed categories transforms the transition

Environment | Code | Canonical Form | Stack

(Id, s) App C fCur(A4,1) S
4
(f,s) | tC | N | S

into

Canonical Form | Code | Stack

(fCur(A,t),s) [AppC| S
U
(f,s) | tC | S
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and the transition ), which occurs only in the code for a combinator (Id, ) *App, into
the transition ) of the CAM. The (_-transition occurs always after a pop-transition,
and so both are amalgamated to one transition

Canonical Form | Code | Stack
f ,C | S,h

/3
h I C | S, f

Finally, the last transition rule of the restricted eager machine and the CAM are
identified. Hence we obtain the CAM.



96

CHAPTER 4. THE CONSTRUCTION OF ABSTRACT MACHINES




Chapter 5

The Inference System

Because of the dependent types the task of checking if a term ¢ has a given type
A in a given context ' may involve reductions. This task can be reduced to that
of calculating a type A’ such that T' I ¢: A/, the so-called type synthesis, because
if Ay and A; are two types such that T'  ¢: A; and T F ¢: A, then A; and A, are
convertible, which is decidable. We will present in this chapter an algorithm for
type synthesis based on the reduction machines of the previous chapter. Afterwards
we show how to treat local variables in this framework.

5.1 An Abstract Machine for Type Synthesis

The inference rules for well-typed expressions do not specify an algorithm for type
synthesis because they are not syntax-directed. The reason is the conversion rule

I'Ft:tA Ae*B TR Btype
I'¢:B

which may be applied at any stage during the derivation of the well-formedness.
Harper and Pollack [HP91] solve this problem by observing that the conversion
rule is only necessary at certain stages during type checking and moreover can be
replaced by two tests. The first determines if a type A is a dependent product or a
dependent sum by a reduction of A to its weak head normal form (WHNF), which
yields directly the outermost constructor, and the second is a test for convertibility.

This line of thought applies also to the type checking of combinators. It can
likewise be reduced to type synthesis, and the conversion rule for well-typed combi-
nators raises exactly the same problem. A solution consists as above of restricting
the application of the conversion rule and replacing it with the above tests. Because
the combinators have an explicit substitution operation it is not necessary to reduce
combinators until the translation of a WHNTF is reached, but we can stop at a com-
binator f * B if we know that the outermost constructor of f * B is that of B. The
canonical combinators are defined in such a way that on one hand f is as general as
possible and on the other hand the above property of f* B still holds. As we will see
in a moment, the postponement of substitution captured by this definition is crucial
for the efficiency of type synthesis. So both reduction machines described in the

97
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previous chapter basically implement the first test. The convertibility test is based
on a modification of the machine for the reduction to normal form: A; and A, are
convertible if their canonical forms B; and B, have the same outermost constructor
and the components of By and B; are convertible, otherwise not.

The combinators pose one additional problem, however. Consider the combinator
t;9 * App. Suppose we have I' > ¢:1—II(A,B) and T > ¢g: A - A’. To make the
combinator ¢; g * App well-formed, we need a type B such that (Fst; g; Fst,Snd[A]) »
B' «++* B. But such a B’ cannot be derived from T, ¢ and g in general. This problem
occurs because we have omitted the type information in the application but have
essentially retained the rather restrictive typing rules for the application when we
defined the implicit combinators. The solution is therefore to use the reduction
g * App ~ (ld, g * Snd) * App, and typecheck the latter combinator, which is the
translation of the application in the Calculus of Constructions. In this case we have
(Fst; g; Fst,Snd[A']) * B’ «* B, and so we can choose B’ to be B. The combinators
g*ld and g*m; cause similar problems. Therefore, we define a map rm, which assigns
to every combinator e the combinator e’ obtained by replacing all subcombinators
t; fx(g*s), t; f*(s1;52), g% App, g*Id and gxm; by xm(%; (f; g) *s), Tm(t; f*s1; f*s2),
(Id,rm(g) * Snd) = App, Id and 7; respectively.

So the modified inference system kg, specified in Table 5.1, will use judgements
like f => g, where => can be either =g or =1, and the above test for convertibility.
It specifies an algorithm for type synthesis because it is completely syntax-directed:
for every combinator ¢ there is at most one possible derivation I' Frg ¢: A, T Frs ¢
or I' Frs ¢: 1— A respectively, which is completely determined by the structure of c.

Theorem 5.1 For every contest I' and implicit combinator f, A and t:

(@) I'trs f: A implies rm(I') > rm(f): rm(A)
(42) Ptrs A implies rm(T) > rm(A)
(¢31) Thast:15A implies rm(T) > rm(2): 1—-rm(A)

Proof Induction over the definition of Frs. We consider only the cases (f,t[A])
and t; g * App.

(f,t[A]): The induction hypothesis yields rm(T') &> rm(f):rn(A), rn(T) > rm(A)
and rn(T') > m(t): 1-rm(A’). Because rm(f * A) «* rm(A’), we have also
rn(T) > rm((f,¢[A])): tm(A) - rm( A).

t;9 * App: The induction hypothesis implies that

rm(I) > rm(t): 1-rm(C) with tm(C) «* f * [I(A;, B)

and tm(I') > rm(g * Snd): 1—rm(A4,) with rm(A;) «* f * A;, and therefore
f*I(A1, B) &* II(rm(Ay), (Fst; £, Snd[A4], B)). Hence

rm(T') > rm(t); rm(g) * App: 1—rm((f, g * Snd[4;]) * B)
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Context Morphisms

IFhys fiTY TV bpg g: T
I'krs ():[] Thpsld:T Clrs f;9:T7 I'  Abqg Fst: T

F I_TS f: A A I_TS A P }—TS t: 1—)AI rm(f * A) —* rm(A’)
Ibrs (f,t[A]): A A

Types
I‘l‘Tsf:A AFTsA Pl‘TsA I‘°A|‘TsB
Pl‘Tsf*A PI‘TS H(A,B)
FI—TsA I‘Al‘TsB rm(C)#Q
I' brs X(A, B) FtesQ []'Cles T
Morphisms
r I_TS t: 1—-)A

Trrst;g*xld:1—A I'  Abps Snd:1—5Fst+ A

r }—TS f: A A I_TS t:1-A r l_TS A I'. A i_TS t:1-B
r *_TS f * 1: 1—)f * A r '_TS CUI’(A, t): 1-—)H(A, B)

[ t1st:1-C tm(C) = f *I(Ay, B) T ks g#Snd: 1A, f* A, o rn(Ay)

I' Frs ¢; 9% App: 1=(f, g * Snd[A4]) * B

r *_TS <f,t[A], S[B]) A-A-B

I' Frs (f, t[A], s[B]) * Pair: 1= f « $(4, B)

Phrst:1=C  mm(C) = f*X(A,B)

Prostigsmi:l—=f*x A
IFrst:1-C  m(C) = f*%(A, B)
I Frs t59 * ma: 1= (f, t; m[A]) * B
I'bps A I'. A I_TS t:1—B rm(B) =0
I'brs V(A,1): 10

Chogt; fxs; f*xs:1oA I'Frst;(fi;9) *s: 1A
[ brst; f*(s1382): 1A I'brstrs ¢ (f * (g * 5)):1-A

Table 5.1: Type Synthesis for Combinators for the Calculus of Constructions
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The completeness theorem is as expected:
Theorem 5.2 For every implicit combinator f, A, t and context T':

(i) T > f:A implies for any well-formed context T' —* T the ezistence of a
context A' —* A such that IV Fpg f: A’

(i) T > A implies that any well-formed context T' «* T satisfies IV ps A

(ili) T > t:1—A implies that for any well-formed context T' «<* T there exists
a type A" &* A such that I brg t: 1—A’.

Proof Induction over the derivation of I' t> e: A. Again, we consider only the cases

(f,t[A]) and t; g * App.
(f,t[A]): By induction hypothesis there exists a context A’ such that
I"Frs f1 A, Albpst:1-A", fx A o* A
Because f* A’ &* A” implies rm(f * A’) «* rm(A”), we get

T Fos (F,t[A7): A - A’

t;9 * App: The confluence on types shows that there exist combinators A’ , B and
A such that A" &* A4;, ' > t:1-11(A', B’) and T > ¢ * Snd: 1—A;. So the
induction hypothesis yields for any context I «+* I' the existence of types C
and D convertible to II(A, B) and A; respectively such that I Frs #: 1—C
and I Frs g # Snd:1—D. The confluence implies that rm(C) = f * II(A, B)
with f x A < rm(A’). Hence I Frs t; g * App: 1—(f, g * Snd[A]) * B.

O

An abstract machine for type synthesis, which succeeds with result A, A or B for
a context morphism f, a type A and morphism ¢ such that T Frg f: A, T Frs A and
I’ brs t:1— B respectively and returns an error otherwise, can be developed along
the same lines as the reduction machines. It has the same architecture except that
the context register now contains the machine code of the context I on the left side
of the turnstyle Fts. Some transitions can only be activated if the side conditions
corresponding to the clauses rm(A4) = f * B or rm(4;) «* rm(A;) are fulfilled. In
these cases the appropriate reduction machines can be directly activated as outlined
above because they will perform the rm-function during reduction. The machine
is given-in Table 5.2. The symbol «* denotes the convertibility test based on the
reduction machines of the previous chapter.

An induction over the definition of Frs and the structure of raw combinators

shows that the machine computes the types of well-formed combinators and rejects
all others.

Theorem 5.3 For any well-formed context T and any raw combinator f, A and t
we have
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Context Code Type Stack Condition
() I () C D S
[] C D S —
Id r ld C D S
r C D S —
(=] T (£,1) C D s
r fitC D S, f,T -
, r , C D S, A
A C 1 S, T -
? r 7(A) C B S, A
A Al C B S,A,B -
?c r 2. C A S, f,A,B
A-A C A S f*xAo*B
* r f*AC D S
r fA*c C D S, f -
*c r ¥ C A S,f
r C fxA S —
II T II(A,B) C D S
I AexcBligz C D S,T —
exc T exc C A S, A
A-A C 1 S, A -
II¢ r IIe C B S, A
r C II(A, B) S —
) r Y(A,B) C D S
_ r AexcBYc C D S,T —
Yo r Yc C B S, A
r C (A, B) S -
Q r QcC D S
r C Q S —
T []-A TC D S
[]-A C T S A=Q
Id r idC A S
r C A S —
Id r gxld C A S
r C A S —
Snd| T-A4A Snd C 1 S
r-A C Fstx A S —

Table 5.2: Abstract Machine for Type Synthesis




102

CHAPTER 5. THE INFERENCE SYSTEM

Context, Code Type Stack
Cur r Cur(A4,t) C 1 S
r Aexct Curc C 1 S,T
Curc T Curc C B S, A
r o II(A, B) S
App; r g * App D S
r g *SndApp C 1 S,T, D', g * Snd?
App, r (-s) * App D S
I sApp C 1 S, T, D', st
App, r App C A S,A, D', s
A o (f,8)?(A)* B S?
v r V(A,t) C 1 S
r AexctVe C 1 S,T
Ve r Yo C B S, A
r o Q S3
Pairy r ((f,t)7(A), s)?(B) * Pair 1 - S
r ({f,t)?(A), s)?(B)Pairc 1 S,T, f
Pair, r-A-B Pairc C 1 S, A, f
A C f*X(A, B) S
1 T m C f*X(A,B) S
r C f*A S
1 r gxm C f*%(A,B) S
r C f*A S
t; o T t;my C 1 S
r t7l‘2 C 1 S,t
t; o r t;gxme C 1 S
r t’ﬂ'g C 1 S,t
T r o C f*X(A,B) S,t
T C (f,t;m)?(A) * B S
JEY r f=t 1 S
T ft*c 1 S
f*(t;s) r f*(ts) 1 S
r f*xtfx*xs 1 S
fig*s r f*(g*s) 1 S
r (fg) *s 1 S
Table 5.2 (continued): Abstract Machine for Type Synthesis
This rule applies only if D = D' = f II(4, B)
?This rule applies only if A’ <+* f+ A and D' = f % II(A, B)
3This rule applies only if B = Q
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Context Code Type Stack Condition

[l [fl=. D S -

U*
[A]x C D’ S —
2. T Fgs A implies
Context Code Type Stack Condition
1}*
A! C [Al. S —
3. T brg t: 1— A implies
Context Code Type Stack Condition
[l [tJnC 1 S —
.le*
A’ o Al S —
(i) 1. Whenever
Context Code Type Stack Condition
U*

A’ C D’ S —
then there exists a well-formed context A such that T' b f:A and
[All. = A"

2. Whenever
Context Code Type Stack Condition
U*
I C A’ S —

then ' Frs A and [A], = A'.

3. Whenever
Context Code Type Stack Condition
[lm [xC 1 S —
U*
rr o A’ S —~

then there exists a type A such that ' brs t:1—A and [A]l. = A’
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Proof We consider only the case (f,#[A]), all other cases are similar.

(i) The transition sequence is

Context Code Type Stack
[Tl ([T, [[t]]m)?(ﬂA]]nﬁ) ¢ D S
[T [f]m, [[t]]m?([[A]]m&*C D S, [fTms [T]m
[A]m s [E0m? ([A]m) CL D S, [fIm, [T]m
[Tl [¢1m?([Al) (11 . 1 S, [flm, [Allm
I ([All=) C ' [Alm S, [ [Allm
[A]lm [Alm? C " [ATm S, [fTms [Allm, [Allm
A 7 C [ATm S, [flm, [Allm, [Alm
[Allm - [Alm 4% ) [ATm S

By assumption the condition [f]m * [A]ln «* [A]nm is satisfied. The other
direction is similar.

O

There are two important aspects of this algorithm for type synthesis. Firstly,
it demonstrates the efficiency gains obtained by postponing substitution. Take as
an example the combinator Snd corresponding to the variable zo. It has the type
Fst* A, and so if the weakening was not postponed, it would occur at every access to
a variable. The machine avoids such unwanted weakening reductions by just keeping
the weakening combinator Fst as part of the context and letting the rule for variable
access Fst®; (f, t)*Snd = Fst**t push the weakening inside subterms. Secondly, the
inference rules for I' Frg f: A explain why in general the type A is included in the
context morphism (f,¢[A]). The reason is that it is in general impossible to derive
the type A from a type B convertible to f * A. In the special case f = Id, obviously
A = f* A, and so there is no need to indicate the type A.

5.2 Local Variables

Local definitions, i.e. bindings of terms ¢; to identifiers «; require extra considera-
tions. The first approach would be to represent a term ¢ in this context just by dx[[t],
where d = ((), [tx],- . ., [to]]). This approach has one drawback, namely dx [[t] is not
necessarily a well-formed combinator. The reason is that only the insertion of a def-
inition z = s in ¢ may make ¢ well-formed, e.g. the term \e: Prop.)y: Proof(z).yaa
is well-formed in the context of the binding © = Va:Prop.VB: Prop.# but not
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in the context of the binding # = Va:Prop.c. Moreover, the typing rules for
context morphisms cannot be applied to d. To see why, consider a combinator
d* Cur(A,t) and assume that only d* A but not A is well-formed. Then the reduc-
tion dx Cur(A,t) ~. Cur(d* A, (Fst; d, Snd[A]) *t) leads to an ill-formed combinator.
This problem occurs also in the calculus of explicit substitutions [ACCL90] and leads
the authors to abandon the notion of a type of a substitution, which corresponds to
a context morphisms in this thesis. Because the typing of the context morphisms
captures precisely what is necessary for the type checking of a dependent type and
moreover can be justified categorically, it is incorporated into the type checking
algorithm and the handling of bindings is added on top of that.

Therefore we add to the equational theory ~+, a new raw context morphism (f,t)
together with the judgement

T, f: (An,. .., Ao)

where (An,...,A) is a list of types. This theory is called the theory of let-
combinators, and the derivation relation is written as t>;. The intuition is that
[ is a list of terms such that T' > f; Fst* *Snd: 1—A;. The additional inference rules
state when a combinator (f,t) * e is well-formed. They are the rules for (7, t[A]) e
with the combinator A removed and the precondition I' &>, (f, t[A]): A - A replaced
by I' > (f,t):(An, ..., Ao). Furthermore these rules implicitly push substitution
inside binding operations, e.g.

P> fi(Ap,...,A)) T fxA I'- f+ Ap (Fst; f,Snd) xt: 1> B
'y f * Cur(A,t): 1-II(f * A, B)

All additional rules for well-formed judgements are given in Table 5.3. The
equations-in-context involving (f,t) are those of the theory >, with (f,t[A]) re-
placed by (f,t). The function sub(), which intuitively performs the substitution of

a combinator I' > (tm,...,%)): (Am,-..,Ao), is the key to formalize the relation
between >, and .

Definition 5.4 Let f be a context morphism Fstk;(tm,...,to). The function
(f,e) > sub(f,e), where e is any let-combinator, is defined as follows:

1. On context morphisms

sub(f,()) = ()
sub(f, |d) f
sub(f, (g,%)) = (sub(f,g),sub(f,t))
sub(Fst; (f,t), Fst) Fst®; (tmy - .., 1)
sub(f, g; h) sub(sub(f, g), h)
sub(f, (9,t[A])) = (sub(f,g),sub(f,t)[A])

2. On types
sub(f,Q) = Q




106 ' CHAPTER 5. THE INFERENCE SYSTEM

sub(f,T) = ((),sub(f,Snd)[Q]) * T
sub(f,II(A, B)) [I(sub(f, A), sub({Fst; f, Snd), B))
sub(f,g* A) = sub(sub(f,g),A)
sub(f,%(A,B)) = I(sub(f, A), sub({Fst; f,Snd), B))

il

3. On morphisms

sub(f,ld) = Id
sub(f,; s) sub(f,t); sub(f;s)
sub(f,g*t) = sub(sub(f,g),t)
sub(Fst®; (f,1),Snd) = Fst* %t
sub( f, Cur(A4,1)) Cur(sub(f, A), sub((Fst; f,Snd), t))
sub( f,V(A4,1)) V(sub(f, A), sub((Fst; f, Snd), t))
sub(f,App(A4,B)) = (ld,sub(f,Snd)) * App(sub(f, Fstx A),
sub((Fst; f; Fst,Snd), B))
sub(f, Pair(4, B)) = (Id,sub(f,Fst* Snd)[sub(f, A)], sub(f, Snd)[sub(
[ +1d, B)]) * Pair(sub(f, A), sub(f - Id, B))
sub(f, 7)) = =

Il

An induction over the derivation of " t>; e: A shows

Theorem 5.5 For any context morphism fsuch thatT t>; f: (Am,..., Ap) and T >,
sub(f, Fst® + Snd): 1 — Az and for any context morphism g, type A and morphism
t, we have

(i) T i f;9:A implies T 1>, sub(f, g): A’ for some A et AL
(ii) T > f* A implies T >, sub(f, A)

(iii) T oy f*t:A—>B implies T >, sub(f,t): A'—B' with A ot A’ and
B «* B,

Before the reduction machines and the type checking algorithm can be extended
to the let-combinators, we have to show that they too satisfy confluence and strong
normalization, which were established in Chapter 3 for the explicit combinators.
We only sketch this here because otherwise large parts of Chapter 3 and of the
appendix would have to be repeated. The crucial observation for the normalization
proof is that the distinction between a morphism I t>; h: A and a context morphism
I f:(Am,...,Ao) is maintained: the former are used for candidate assignments in
connection with the application, and the latter has to satisfy only that f; FstFSnd is
always an element of a suitable reducibility candidate. The correspondence theorems
3.4 and 3.5 between the Calculus of Constructions and the combinators remain valid
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for f are made.

Context Morphisms

't:1—A
L' (f,t):(Am,..., A0, A) T F/0:[] T fild: (A, ..., Ag)

Py fi[] - An---40 Ti>it:1—A
Doy (f,8): (fi Fst™ " % Ap, ..., f; Fst* Ao, A)

' figA A A T fstilofigxA
L'y fi{g,t[A]):A- A

L fi9:(Am,...,A)) TI'Df*t:1-A4

We assume throughout that I’ t>; f:(An,..., Ao) except where other hypotheses

L'y f5(g,t): (Am,-.., Ao, A) [ >y fiFst: (Ap,...,4)
' fi1A Apig:(An,...,A) L > (f;9);h: (Bm,...,Bo)
> f59:(Am,. .., Ao) I'>; f;(g;h): (Bm, ..., Bo)
Types
' fxA T f+Ap; (Fst; f,Snd) « B I' >; f: ()
I'>; f+II(A, B) P fxQ T f*T
'y fxA T-fxAp,;(Fst;f,Snd) B ' (f;9)xA
' f+X(A,B) I'>; f+(gxA)
Morphisms
', fxA
P fxld: fxA—=fx A >y f*Snd: 1= A4,

' fxA F-f*Al>1<FSt;f,Snd)*t:1—)B
I'>; f*Cur(A,t): 1-II(f * A, B)

P> fxA T fx A (Fst; f,Snd) xt: 150
[y fxV(A,1):1-0
P>y f#Snd:1=f;Fstx A T f;Fst+ A > (Fst; f; Fst,Snd) * B
T > f*App(A, B):1— f; Fst * II(A, B)

Py fxA T fxAp;(Fst;f,Snd) « B
I' > f x Pair(A, B):1— f + (A, B)

I' >; f+3(A, B) I'>; fxt:1-%(A, B)
Poym:f+x3(A,B)—f*xA 'y f*(t;m2):1>(ld, t;m1) x B
'y f*xt;fxs: A=B ') figxt: A—B
['>; fx(¢s): A—B ') f*(gxt): A>B

Table 5.3: Additional Inference Rules for Let-Combinators
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for the let-combinators. Therefore Lemma, 3.6, which states that the reductions ~»,

and &% have the same normal forms, and Theorem 3.7 about the confluence hold
as well for the reduction ~3;. Because the translation from explicit to implicit
combinators in Chapter 3 depends only on the confluence of the explicit calculus,
the addition of the combinator (f,t) to the implicit combinators yields implicit
combinators for t>;. The combinator (Id,¢) in (Id,¢) * App, already introduced in
Chapter 3, becomes then a special case of the let-combinator (f,¢).

This makes it possible to generalize reduction machines at once to the >
combinators: add for every transition with (f,[A]) one involving only (f,t) (except
the transition for Pair). The additional rules concerning the combinator (f,t) give
rise in the same way as those for >; to clauses for the type synthesis algorithm;
they are listed in Table 5.4 except the clauses that arise when >; is replaced by
Frs. The extension of the map rm to the combinator (f,) is the trivial one, i.e.
rm((f,t)) = (xrm(f), rm(t)). The theorems 5.1 and 5.2 are adapted as follows:

Theorem 5.6 For every context I' and implicit let-combinator f, A and t:

(i) Thtrs f:(Am,...,Ao) implies rm(T) > rm(f): (xm(Am), ..., Tn(Ao))

(i) I'Fos f: A implies  rm(T") >; rm(f): zm(A)
(iii) Ftrs A implies rm(T) >; rm(A)
(iv) I'brst:1-A  implies rm(T") t>; rm(¢): 1—rm(A)

Theorem 5.7 For every implicit let-combinator f, A, t and context T':

(i) T o1 f:(Am,y...,Ao) implies for any well-formed context T’ 7 T the
existence of types A;,, ..., Aj such that T Frg f: (AL, ..., AL) and A; 7 Al

(i) T >y f:A implies for any well-formed context I' o7 I' the existence of a
contert A' &7 A such that T' brg f: A

(iii) T ;A implies that any well-formed context T o7 T satisfies TV brg A.
(iv) T Dy t:1>A implies that for any well-formed context I' <7 T there
exists a type A’ &F A such that TV bpg t: 1A',

Finally we extend the machine for type synthesis to let-combinators. The inference

rule for f  Cur(A,1)

L' f:(Am,...,A) TI'b>;fxA - f* A (Fst; £,Snd) * t: 1B
Iy fxCur(A,t):1-I0(f * A, B)

shows that the machine cannot process the combinator f * Cur(A,1) in two steps,
namely first checking f and obtaining (Aym,..., Ao) and then examining Cur(A4,1).
It needs the combinator f for the extension from (A4, ..., Ao) to (Am, ..., Ao, fxA)
when it starts testing ¢. Therefore the context register contains not only contexts like
I'- By, -+ Bo but also tuples f :: (Am,...,Ao), where f is a context morphism and
An, ..., Ap are types. With this change in mind, we can easily derive the additional
transitions corresponding to the inference rules for let-combinators; see Table 5.5.
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We assume throughout that I' Frs f: (Am,. .., Ao)
Context Morphisms

r }—TS f: A A I_TS A T l_TS t: 1—)AI f * A (—)’I" A’
T I—TS (f,t[A]): A A

Types

T'hgs f:(C) C=Q
I‘}"Tsf*T

Morphisms

Phrs f*A T-fxAbgg (Fstif,Snd) xt:1-C C =0
I' brg f*V(A,t):l—)Q

Pbps f8:15C C= g*II(Ay,B) T'trs f;h+Snd: 154, g* Ay 7 Ay
T Fqs f* (t;h* App): 1—(g, f; h * Snd) * B

Phos f*t:12C C = g+1I(A1,B) Thrs f;h*Snd:1—A4; g% Ay oF Ay
T Frs f* (t;h+ App): 1—(g, f; h * Snd[A1]) * B

s fxt:1-C  C = g*X(A, B)
Phrs f*(t;m):l—ogx A
s fxt:1-C C=g*x%(A,B),
Ibrs fx(t;me):1-(f;9,t;m) * B

[ltgs fxt:1-C C=gx3(A,B) ;
I Frs fx (8 m2): 1=(f; 9,t; m[A]) * B

If
o T Frs (Id, f#1t, f % 8): (Am,.. ., Ao, A', B') and
o T kg f;9% 5(A, B) and
» X(A', B') 7 f;9+ (4, B),

then
[ Fys f*(g,t[A], s[B]) * Pair: 1— f; g * Y(A, B)

Table 5.4: Additional Type Synthesis Rules for Let-Combinators

19 = Fst¥; (s, . .., 50)
59 2 Fot!; (5m, .-, 0)
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Let throughout this table G be an abbreviation for (A, ..., Ao), and X be either a context
[ or f::G. Furthermore let List([]- By - Bo) = (Fst"™ % B,,,...,Fst % By).

Context Code Type Stack Condition
() f=G () C D S
[] o D S -
Fst fuG Fst C D S
fiFsti(Anm,. .., A1) o D S —
(_) r <gat> C D S
r g,t) C D S, (g,t),T
(=) fuG (9,2} C D S
f::G gat)o D S,f(g>t>,f::G
? X Y7(A) B S, X'
X' AC B S,X',B
) X ) C A S, g, fuG
9::(G, A) C A S
) X ) C A S,9,T
g::(List(T), A) o A S
[ X 7. C A S,9,fuG,B
g::(G, f* A) o A S f¥xAer B
7c X 7. C A S,g,I',B
' A o A S g;Fstx A &7 B
* fuG gxAC D S
f=:G gAC D S, -
*o fuG *xc C A S, g
G C g*xA S —
II f=G II(A,B) C D S
G AexcBllo C D S, fuG —
exc JisHed exc C A S, f=G
(Fst; £,5nd)::(G, f * A) C 1 S, A —
IIc - fuG IIc C B S, A
f=G C II(A, B) S -
)Y G Y(A,B)C D S
=G AexcBYq C D S, f:G —
Ec f::G 20 C B S,A
=G C (A, B) S -
0 =G QcC D S
fuG C Q S -
T (4) TC D S
(4) c T S A=Q

Table 5.5: Extensions for the Type Synthesis Machine
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Context Code Type Stack
Snd fuG Snd C 1 S
f=G o Ao S
Cur =G Cur(A,t) C 1 S
fuG Aexct Curg C 1 S, f=G
Curg =G Curc C B ,A
=G C II(A, B) S
App, =G h * App D S
f:G h * SndApp C 1 S, f=:G, D', h * Snd®
App, f=G (-s) = App D S
f=G sApp C 1 S, fu:G, D', s®
App, G App C A’ S, =G, g+ 1I(A, B)
f'=G' C (9,8)?(A)*x B S7
App, =G App C A’ S, f'=:G', g x11(A, B)
fuG C (g,s) * B S8
4 =G V(A,t) C 1 S
f:G AexctVe C 1 S, fuG
Yo =G VYo C B S, A
faG C Q 59
Pair; X ((g,t)7(A), s)?(B) * Pair 1 S
X ({g,t)?(A)exp?(B)Pairg 1 S, X, g
Pairy | f::(G, A, B) Pairg C 1 S, X, g
X C (A, B) S
exp r exp C A S, X
X C 1 S,T
exp | g:(G' hx A) exp C A S, fuG
=G o 1 S, (Fst; h,Snd)::(G', b * A)
™ G m C g*%(A, B) S
f=G C gxA S
™ f=G hxm C g*X(A, B) S
fuG C g*x A S
t; mo faG t;my C 1 S
f:G tmy C 1 S,t
t; o fuG t;hxmy C 1 S
=G twy C 1 S,t
o fuG 7 C g*X(A, B) S,t
f=G o (g,tm) * B S
gx*t f:G g*t 1 S
=G gt 1 S

Table 5.5 (continued): Extensions for the Type Synthesis Machine

%This rule applies only if D = D’ = g * II(A4, B)
"This rule applies only if A’ «* g * A and g # Fst®; (sp, .. ., 50)
8This rule applies only if A’ —* g A
9This rule applies only if B =
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Chapter 6

Implementation Issues

This chapter describes an implementation of the abstract machines and of the type-
checker in ML and compares them with the implementations used in the theorem
provers LEGO and Coq, also written in ML. Because the only potentially time-
consuming part of the type checking algorithm is the reduction to weak head-normal
form, we only examine the efficiency of the reduction machines. The description is
rather brief because the main thrust of this work has been to establish the theoret-
ical underpinning of the abstract machines. Much remains to be done at the level
of practical implementations. If efficiency is really critical an implementation in a
language that is more closely related to the machine architecture like C should be
used.

As the translation of a combinator into machine code replaces only some nodes
in the graph by a list of nodes and does not change the structure of the graph, the
implementation uses an ML-datatype that directly corresponds to the combinators.
The transitions corresponding to the list of nodes are executed whenever the con-
structor corresponding to the combinator is encountered during reduction. This is
easier than the introduction of a separate type of machine instructions and transla-
tion functions from them into combinators and vice versa. Efficiency considerations
suggest one important difference between the combinators and the ML-datatype,
however. The combinators Fst* and Fst* * Snd occur throughout the transition ta-
bles for the abstract machines, and hence we introduce special constructors fstn and
sndn , which take an integer parameter. The datatype for combinators is actually a
sum of four datatypes, one for contexts, context morphisms, types and morphisms.
In this way the typechecking algorithm of ML detects any confusion of sorts. The
signature for the combinators in the eager case is

signature COMBT =

sig
datatype cm = ecm | (x <> *)
env of cm * morphism | (* <f, t> *)

fstn of int | (* fst"k *)

comp_cm of cm * cm ' (* £;g *)

and ctype = emptyt | (x 1 %)
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mult_t of cm * ctype | (¢ £* A *)
produ of ctype * ctype | (* ' Pi (A, B) *)
sum of ctype * ctype | (* 81 (A, B) %)
prop | (* Omega *)
proof (* T %)
and morphism = id_m | (* id *)
mult_m of cm * morphism | ( £ *x t %)
comp_m of morphism * morphism] (* t;8 *)
sndn of int | (¥ fst™n * snd *)
cur of ctype * morphisml| (* Cur (A, t *)
app | (* app *)
forall of ctype*morphism | (* forall (A, t *)
check of morphism * ctype | (x [A] %)
pair | (* pair *)
pil | (* pil *)
pi2 ; (* pi2 *)

datatype context = emptyc | pairc of context * ctype

datatype comb = convl of context | conv2 of cm |
conv3 of ctype | convd of morphism

end;

The signature for the lazy case replaces the datatype env of cm * morphism
by env of cm ref * morphism ref and adds a freeze-constructor. This change
captures sharing: the access to an environment env (£, t) yields s if t is a reference
to an ML-expression freeze s and otherwise assigns the value freeze u to t if the
code that t references evaluates to u.

A state of the eager machine is represented by a tuple of type

cm * comb * NF

where NF is a product of ctype * cmorphism, used as a sum type. In the lazy case
the type cm ref replaces the type cm so that an environment can be updated after
the evaluation of one of its components. The pattern matching makes it easy to
formulate the machine tables in ML: every transition is captured by an alternative
in a case-statement. :

The theorem prover Coq represents an expression of the Calculus of Construc-
tions directly as a datatype and uses a call-by-name strategy for their reduction
to weak head-normal form or normal form. The operations for variable bindings
that capture the notion of contexts are not used for the B-reduction; instead for an
application (Az: A.t)s the substitution of the argument s for z in ¢ is done as part
of the f-reduction. LEGO also has a normal-order strategy for the S-reduction but
implements sharing of the argument s based on the exceptions of ML during the
substitution of s for z in t.
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User | Garbage collection
Eager Machine 4.20s 0.07s
Lazy Machine 2.85s 4.77s
LEGO 1102.62s 1118.13s
Coq 25.65s 66.57s

Table 6.1: Execution Times for Reduction of test to Normal Form

The Church-numerals provide a good example for testing the efficiency of these
machines because they enable the easy construction of small terms with large nor-

mal forms. Consider the following CC-terms, where & — « is an abbreviation for
Vz: Proof(a).a:

nattype = Voa:Prop.(a—a)—a—a«
mult ¥ Ap: Proof (nattype).Ag: Proof(nattype).Aa: Prop.)f: Proof (a — a).
Az: Proof (a).qa(paf)z

two = Aa:Prop.)Af:Proof(a — a).Az: Proof(a). f(fz)
one = Aa:Prop.Af:Proof(a — a).Az: Proof(a). fo
twelve = Aa:Prop.Af:Proof(a — a).Az: Proof(a).

FEGESESEEEEEINNNN)

' twelve nattype (mult two) one

powern
Note that the normal form of powern is the Church-numeral for 4096, i.e.
bignum ¥ A Prop.Af: Proof(ar — &).\z: Proof(a). f4%%¢

The normalization command in LEGO and Coq applies only to propositiens and

their proofs. Hence for measuring the execution times we use a proof of the propo-
ope def

sition truep = Va: Prop.a — «, namely the term

test & powern truep(Az: Proof (truep).z)(Aa: Prop.Ap: Proof (a).p)

which has the normal form
Ao Prop.Az: Proof (a).x

The results are given in Table 6.1. They are quite encouraging and show that these
machines are an efficient alternative to previous ones.

The postponement of weakening is not only necessary for the normalization proof
but also improves the efficiency of the machines significantly. As an example, con-
sider the combinator

largecomb & ((), [test])) * [Azzse: Prop. - - - .Az;: Prop.zo] -
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If weakening happens at the beginning of every reduction inside a binding operation
in the lazy machine, the reduction of largecomb requires 256 weakening operations
applied to the large combinator [test]. The execution times for the lazy machine
are as follows:

User | Garbage collection
with weakening postponed 2.13s 4.97s
with weakening not postponed || 21.17s 29.87s




Chapter 7

Conclusions

The thesis has described categorical abstract machines for the Calculus of Construc-
tions. Ehrhard’s split D-categories are the only categorical structure that is suitable
for the derivation of an equational theory, i.e. of categorical combinators. All other
approaches yield either conditional equations or no equations at all. Furthermore,
these categories separate environments from terms, whereas cartesian closed cate-
gories (CCCs) identify these two concepts. So the relation between the categorical
abstract machine and the category is better behaved than that between the CAM
and CCCs.

These equations can be turned easily into reductions, but there is no proof of
strong normalization for this notion of reduction as yet. However, an application of
the reducibility method shows that the reduction relation that reduces a combinator
first to its weak head-normal form and then to its normal form is strongly normal-
izing. We must also ensure that the reduction can be defined on raw combinators
without violating important properties like subject reduction. This is non-trivial
because of the dependent types and is shown via the confluence of the Calculus of
Constructions.

We then defined an eager and a lazy reduction strategy for the reduction of
combinators and derived abstract machines for these strategies. These machines
are generalizations of Krivine’s machine and the CAM. Because of the separation of
environments and terms, the correctness proof of the machine is a simple induction
over the definition of the reduction strategies. Type checking is a very important -
application of these reduction machines. It is an essential part of theorem provers
based on the Calculus of Constructions because the propositions-as-type analogy
implies it is equivalent to testing whether a given term is a proof of a proposition
or not. This task can be specified entirely in terms of the combinators. We con-
structed an abstract machine for computing the type of a given combinator. The
dependent types entail that this process involves reduction, and so the reduction
machines become part of the type checker. The latter can be extended to handle
let-constructions, which satisfy different typing rules than an application. Finally,
preliminary tests with an implementation of these machines in ML suggest that their
efficiency is as good or even better than that of the reduction machines in LEGO or
Coq.
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There are at least two directions for further theoretical research. First, the stan-
dard categorical semantics of linear logic via symmetric monoidal closed categories
identifies contexts and tensor products in the same way as the categorical semantics
for the typed A-calculus does. As already mentioned in the introduction, multicat-
egories provide a way of separating these two issues. Contexts are modelled as lists
of objects, whereas tensor products are captured by a universal construction that
transforms an object that is a list (A, B) into the tensor object A ® B. Hence this
structure represents the term calculus for linear logic better than the symmetric
monoidal closed categories, e.g. the latter category models the term of type A ® B
in the context (z: A,y: B) by the identity morphism on A ® B, whereas the former
category uses a morphism arising from the universal construction defining the object
A ® B. It is therefore interesting to see if multicategories can be used as a basis for
categorical abstract machines for linear logic.

The second area of further research is the normalization proof. A categorical
understanding of the normalization proof might be based on a suitable application
of the glueing construction similar to those in [CP90] [MR92]. Given two categories
C and D and a functor H:C—D, the glueing category GI(C, H) has as objects pairs
(I'y X — H(T)), where I is an object of C and X — H(T') is a morphism in D,
and as morphisms from (I', X — H(T)) to (A,Y — H(A)) those pairs (¢, f)
such that ¢ is a morphism from I' to A and f is a morphism from X to Y and the
diagram

X —— H(I)
f H(4)

Y —— H(A)

commutes. The important point is that often mild properties of D and H are enough
to show that GI(C, H) has the same categorical structure as C [Laf88].

Reynolds and Ma show how logical relations for models of the simply typed A-
calculus can be understood in this framework. They take C to be a cartesian closed
category, D to be Set and H = Hom(1,—), and consider as objects of GI(C, H)
the monomorphims X < Hom(1,T), i.e. subsets of global sections. The conditions
imposed on a relation to be logical are exactly the conditions that are needed to
turn the glueing category into a cartesian closed category. An initiality argument
proves that every logical relation is satisfied for every A-expression. But these cat-
egories identify redex and contractum, so they are not adequate to capture the
normalization proofs. In the same way the logical relations for models do not per-
mit a formulation of the normalization proof either. Statman [Sta85] introduces
an additional condition to handle logical relations for applicative structures that
are not models. This so-called admissibility condition ensures that logical relations
are closed under M-abstraction. Mitchell [Mit86] [Mit90] improves this condition
to apply logical relations to the normalization proof for the M-calculus. A similar
modification of the definition of a cartesian closed category yields the corresponding
categorical structure. We drop the equation corresponding to S-and -reduction and
retain only the naturality equation for the adjunction characterizing the exponen-
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tials. The requirement that the glueing category is such a category yields directly a
categorical version of the admissibility condition.

Even these so-called combinatorial categories are not suitable for formalizing the
normalization proof for the categorical combinators for the simply typed A-calculus.
They still suffer from the same defect as the original glueing categories: they identify
redex and contractum of the rules for substitution. If these identities are removed
as well, one obtains a category that has the objects and morphisms of a cartesian
closed category but not the equalities between them. It is on one hand possible to
formalize in this category the final induction in the normalization proof that proves
every combinator to be reducible. Moreover, the conditions for the glueing category
to be a combinatorial category are those familiar from the above induction proof
in the calculus. On the other hand the closure properties of the sets of reducible
combinators that are crucial to show that these conditions are fulfilled have no
counterpart in.this categorical framework. So the categorical treatment of the proof
of strong normalization is still in an unsatisfactory state.
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Appendix A

Normalization Proof for the
Combinators

This appendix gives the details of the proof of strong normalization for the reduction

&, defined in chapter 3. The proof consists of four parts. First, we give a complex-
ity measure on types. It is used in the second part to define reducibility candidates
of type e, which are sets of strongly normalizing morphisms ¢: 1—e with suitable
closure properties if e is a proposition or a type, which are functions if e is a mor-
phism ¢: 1—II(A, B), or which are pairs of reducibility candidates if e is a morphism
t:1—%(A, B). Next, we define an interpretation function [—] that maps every type
to a reducibility candidate. This function is parametrized by a context morphism
A > h:T and an assignment of a reducibility candidate of type h; Fst'  Snd. Fi-
nally, we show that the closure properties of the reducibility candidates imply that
every combinator is an element of a reducibility candidate and is therefore strongly
normalizing.

The following proof does not work directly for the reduction <. The last part
succeeds only if we do not consider reduction on raw combinators but on raw com-

binators modulo the equations for associativity of composition in the base and in
the fibres together with the equations

fi9¥A = fx(g%xA)
fig*xt = fx(g=t)
fx(tis) = fxt;fxs

Only the last equation causes some complications during the proof, namely when-
ever a combinator ¢; g * App(A, B) is considered. But it is clear that the strong
normalization of & on raw combinators holds if it is satisfied for raw combinators
modulo these equations.

The proof presented here is an adaptation of Coquand’s and Gallier’s proof of
strong normalization of the Calculus of Constructions [CG90]. They replace infinite
contexts, as used in other proofs [Luo90] [Coq85] by the notion of a candidate
assignment p, which is a list of terms that corresponds in the terminology used here
to a context morphism together with an assignment of reducibility candidates. It
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is therefore no surprise that their framework is well-suited for the combinators, for
it contains the notion of context morphism as part of the definition. Furthermore
the proof is more uniform in the sense that the compatibility of the candidates
with substitution, which has to be stated as a separate lemma in the calculus, is
incorporated into the definition of the interpretation. The proof of this lemma then
becomes part of the proof that the interpretation is well-defined.

The main difference between Coquand and Gallier’s proof and that presented
here is that the latter does not rely on any properties of the combinators that require
confluence for their proofs. The reason is that several important properties like
subject reduction or unicity of typing are immediate consequences of the definitions
if equality judgements and explicitly typed application are used (as here). Coquand
and Gallier need confluence to establish these properties as they consider a Calculus
of Constructions with reduction defined on raw terms.

There are essentially two versions of the reducibility proof for the polymorphic
A-calculus and the Calculus of Constructions. One, based on Tait [Tai75] defines
so-called saturated sets. They satisfy all the closure properties needed for the fi-
nal induction that shows that every term is an element of a reducibility candidate.
Girard [Gir71] [GTL89], who introduces the other version, identifies a common prin-
ciple behind these properties: they all follow from the condition that any so-called
neutral term %, which is a term that is not a M-abstraction, is an element of a
reducibility candidate C' if whenever ¢ reduces to #, ¢ is an element of C. This
idea is especially useful for the combinators. Because there are quite a few closure
properties required during the final induction (cf. Lemma A.13), the definition of
reducibility candidates becomes much shorter and technically simpler if the second
version is used. We define a combinator to be neutral if it is not identical to any
of the combinators f;(g,¢[A]), f * Cur(A,t) or f * Pair(A, B). These are the mor-
phisms with codomain T - A, II(A, B) and (A, B) respectively that arise from the
adjunctions introducing these objects.

A.1 A Complexity Measure on Types

We start with a syntactic distinction between small and large types. Large types
are given by

L:=Q | I(AL) | 2(A,L) | B(L,A) | f+L
and small types by

Su=1|T | (AS) | 5(5,8) | f+5

where A is an arbitrary type. It is easy to see that large types are convertible only
to large types, and small types only to small ones. Furthermore if L, is a large
type, II{(A1, L) and II(A,, Ly) are convertible iff A; and Az as well as L; and L,

are convertible. Therefore we can define a complexity measure ¢ for types by

o(S) = 0 c(I(A,L) = maz(c(A)+c(L))+1 c(f+xA) = c(A)
Q) = 1 ¢(2(4,B)) = c¢(A)+¢(B)+1

where S is any small type. This measure is invariant under convertibility.
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Remark If we add an impredicative existential quantification I': A >, 3(A4, p): 1-Q
for every I' - A >, p: 1= together with the coherence rule

(0,34, p)[O]) * T = B(4, (), plQ) * T)

the measure c is no longer invariant under conversion. Therefore, any attempt at
proving strong normalization for this system in a way similar to that described below
breaks down. In fact, this system is not even normalizing because it is inconsistent

[Coq86].

A.2 The Reducibility Candidates

We will use the following notation. A morphism ¢ such I' >, ¢:1—L, where L is a
large type, is called a propositional family. Furthermore we will abbreviate "strongly
normalizing“ to SN. If A is a context, A’ denotes a context such that A’ 1>, Fst*: A
for some k. A neutral context morphism is any morphism not identical to f; (g,t[A])
or to (g,t[A]). A neutral morphism is any morphism not identical to f * Cu r(A,t),
Cur(A,t), f * Pair(A, B) or Pair(4, B).

Definition A.1 The family C of sets of reducibility candidates Cen with A a well-

formed context and e a type or a family of propositions well-formed in context A, is
given by

(1) Ctype,A d__e_f {Ctype,A} with
Cuspes & {A| A >, A, Fst* x A is SN}
We call every element of Cyype.n a canonical type.

(i) Ifeisatype A, Can is the set of sets C such that each C is a nonempty
set of morphisms A’ 1>, t: 1—Fst™ x A with the following properties:

(CR1) Ift is an element of C, then Fst* xt is SN.

(CR2) IfFst* «t & ¢, then t' is an element of C.
(CR3) Ift is neutral, Fst* x¢ is SN and any reduction sequence of Fst® x ¢ via

X, leads to one in C after finitely many neutral morphisms, then t is also

in C.
(CR4) Ift is an element of C, then also Fst* *t is an element of C.

(ili) If e is a proposition p, then Cp,a 15 the set Cy plaps,A-

(iv) If e is a propositional family t: 1-II(A, L), Cya is the set of functions
with the following properties:

1. If A is a large type, then f € Cia is a function with domain

{(5,C,k) | A" >, s:Fsth x 4,C ¢ Conr}
such that
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o f(s,Cik) € chtk*t;(Fstk,s[A])*App(A,L) and
o f(s1,C1, k) = f(s2,C2, k) whenever s; «* 55, Cy = Ch.
2. If A is a small type, then f € Caa is a function with domain
{(s,k) | A’ >, s: Fst* * A}
such that
¢ f(S, k) € CFStk*t;(FStk,s[A])*App(A,L) and
o f(s1,k) = f(s2,k) whenever s; «<* s,.

(v) Ifeis a morphismt such that A >, t: 155(A, B), then Cea is the set of
pairs (C1,Co) such that Cy € Ceymy a if A is a large type and C, € Ceimy,a if B
is a large type and Cy and Cy are arbitrary reducibility candidates otherwise.

An induction over the complexity c¢(D) of the type D of the morphism ¢: 1—D shows
that this definition is proper: in clause (iv), c((Fst*, s[A]) * L) < ¢(TI(A, L)) because
L is a large type and in clause (v), ¢(4) < ¢(Z(A, B)) as well as c({Id, e; m1[A])*B) <
c(E(A, B)) if £(A, B) is a large type.

We need two properties of the reducibility candidates for later sections. The

first states that every set C. a is nonempty. This is shown via the construction of
suitable canonical elements.

Theorem A.2 All reducibility candidates Coa are nonempty sets.

Proof Define the canonical elements as follows:
(i) CaTitype,A o Ctype,a
(ii) Ifeisa type A, then canga &f {t | A’ >, t:1—Fst* % A Fst™ x ¢ is SN}.
(i) If e is a proposition ¢, then canyg A 1s equal to CAN(() 4[QN)*T,\ A

(iv) If e is a morphism T 1>, t:1-TI(A, L) with L a large type, then cang A
is the set containing the function f that satisfies

f(S, C’ k) = canFstk*t,(Fstk,s[A])*APP(A,L)

if A is a large type. If A is a small type, then cang a consists of the function

f with
f(s, k) = CONEstht;(Fst” s[A])+App(A,L)
(v) If e is a morphism ' >, #:1—-%(A, B), define can;a to be the pair

(C1,Cs), where C; = cangr,a if A is a large type and Cy = canin, A if B
is a large type and C1 = Cp = caniypea otherwise.

Because the morphism Snd with A - A >, Snd: 1—Fst * A is an element of cangp,

these sets are nonempty. The verification that the canonical elements are indeed
reducibility candidates is easy and is therefore omitted. O
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Second, we need a way of constructing a reducibility candidate C’ of type Fst* x e
in context A’ from a candidate C of type e in context A. This is done as follows:

(1)
' Ciypea N{A | A" >, A, Fst™: A" A’ for some m}
(ii) 1If eis a type A, we have

o' Canan {t | A" >, t: 1—Fst™*™ % A Fst™: A" A’ for some m}

(iii) Ifeis a proposition p, then C” is the restriction of ¢ regarded as a reducibility
candidate of type ((), p[Q2]) * T'.

(iv) If e is a propositional family A >, t: 1—TII(A, L), then C’ is the set of func-
tions such that f(s,Ci,m) = g(s,C1,k +m) with g € C if A4 is a large type
and the set of functions f such that

f(s,m) = g(s,k+ m)
with g € C'if A is a small type.

(v) 1If eis a morphism I' >, t:1—X(A, B) and Cta = (C1,Cq), the reducibility
candidate Cp . . ,, is the pair (Cf, CY).

It is easy to verify that C’ is also a reducibility candidate.

A.3 The Interpretation

The next step consists in the definition of an interpretation [—] that maps every type
and propositional family in context I' = []- A,---- A to a reducibility candidate.
The dependent types require the interpretation to be parametrized by an assignment
of a morphism of type A; for every i. The impredicative quantification adds another
parameter, namely an assignment of a reducibility candidate for every large type
A;. These two assignments are combined into a so-called candidate assignment .

Definition A.3 Let h,: A—T = []-An--- Ao be a context morphism and D be a
list of reducibility candidates (D;)i=0..n with D; € Can, puicng a for every i such
that A; is a large type.

(i) The candidate assignment h: A—T is the pair (hems (D, . .., Dyg)).
(ii) The candidate assignment h;Fst is the pair (hem; Fst, (D, ..., D1))

(i) If D; denotes the restriction of D; to the context A’ , the candidate as-
signment Fst*; h is the pair (Fst*;n, (D!, ..., Dy)).
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(iv) Two candidate assignments h and g are called convertible if the corre-

sponding context morphisms are convertible and the corresponding reducibility
candidates are equal.

The interpretation is a priori a partial function because some clauses in the definition
only make sense if it yields a candidate assignment for certain morphisms. We will
show afterwards that this function is in fact total. In the following definition of the
interpretation, S denotes a small and L a large type.

Definition A.4 Let A >, h:T be a candidate assignment b = (hems(Dhnsy - - -, D)),
which we sometimes abbreviate to h = (hem, D). We define the interpretation
[T >. e]hA, where e is a type or a propositional family well-formed in context
', by induction over the structure of e as follows:

(i) On contexts

[ meA Lef {f: A—=[]| Vm : Fst™; f is SN}
[T AJRA ¥ {f: A=T- A| f;Fst € [T]h; FstA and
f*5nd € [T >, A]Jh; FstA}

(ii) On context morphisms

[T > (JhA € by )
[T >e FstlhA < (hom; Fst, (Dy, ..., Dy))
[T > IdJrA ¥ 3
[T >e (f,t[ADIRA = (ks (£,t[A]),Ch, ..., Co, [T >, t]RA)
with [T >, fJRA = (h; f, Ch,. .., Co)
[T > f;9]IhA = [I' . g]([T e FIAA)A
if T >, f: 1V

(iii) On types

[T >, 1]2A % canya
[T > QJRA % cang A
The set [I' >, II(L, B)]RA is defined to be the set of all morphisms T' >,
t:1—h xII(L, B) such that
e for all k the morphism Fst* « ¢ is SN,
® for all m and g such that g * Snd € [T >, L]Fst™; hA! and
o for all C € Cp5n4 o and

o for all L' such that g;Fst* L' «<+* Fst™; h* L and g; Fst * L' is canonical
and
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e for all B' such that (Fst; g; Fst,Snd[L']) ¥ B’ «* (Fst™t!; h,Snd[L]) * B,
and the type (Fst**1: g; Fst, Snd[L']) x B’ is canonical for any k > 0,

we have

Fst™ x ;9 App(L, B') € [T - L >, B]J({Fst™; k, g * Snd[L])(D', C))A’

The set [T >, II(S, B)]AA is the set of all morphisms T > ¢: 1—I1(S, B) such
that

o for all k the morphism Fst® x ¢ is SN,
e for all g such that g+ Snd € [I" >, S]Fst™; hA’ and

o for all 5" such that g;Fst x S’ «+* Fst™; h* S and g;Fst* S is canonical
and

o for all B' such that (Fst; g; Fst,Snd[S']) * B’ &* (Fst™*'; h, g Snd[S]) x B
and the type (Fst**; g; Fst,Snd[$")) * B' is canonical for any k >0,

we have

Fst™ 45 g+ App(S’, B') € [T+ S >, B]J((Fst™; h, g * Snd[S])(D’, cang, as)) A’

[T > 2(A, B)]hA ¥ {t:1-h* 5(A, B) | t;m € [T >, AJhA,YC € Cimyoa -
t;me € [I'- A >, B]((h,t; m[A])(D,C))A}
[T > fxAJRA € [ >, AJ([T >e fJRA)A
[T]hA ¥ D,
(iv)  On morphisms:

For any t which is not a propositional family we define [I' >, tjrA & cangA.
Otherwise we have the following inductive cases:

[T-Ao.Snd[hA & D,
[T > Cur(L,)]RA = XkAsAC.[T - L &>, t]((Fstt; b, s[L]), (D', C)) A’
where A’ >, s:1=Fst*; b+ L,C € Cy pr
[T > Cur(S,)JRA = AkAs.[T - S >, t]((Fst*; k, s[S]), (D', cang ar)) A’
where A’ >, s: 1—Fst®; b * §
[T >e V(A )[RA < [T &, (A, (), t[0]) * T)]2A
[T > t; f* App(L, B)]hA ¥ (((IT >, t]RA)0)F * Snd)[T ¢ f * Snd]AA
[T >ct; £+ App(S, B)JRA = (((IT . £]4A)0) f * Snd)
[T-A- B>, Pair(4, B) kA < (Dy,Dy)
[T > t; fxmlhA & Dy if [T >, t]hA = (Dy, Do)
[T > & f * mhA ¥ Dy if [T >, ]RA = (Dy, Do)
[[>e f+t]hA = [ >, )([F > fIAA)A if f:T—T
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The invariance of the interpretation under conversion of combinators is the crucial
point in establishing that the interpretation is a total function.

Lemma A.5 If the candidate assignments h and h' are convertible, then [T >,
e]hA and [T >, e]|h'A are convertible if e is a context morphism and equal if e is a
type or a morphism.

Proof Induction over the definition of the interpretation. a

Lemma A.6 IfT' and I' are convertible, then [’ >, e]hA and [I" .>e e]A are
convertible if e is a context morphism and equal if e is a type or a morphism.

Proof Induction over the definition of the interpretation. ]

Lemma A.7 If e and €' are convertible, then [T >, e]hA and [T >, e'JhA are
convertible if e is a context morphism and equal if e is a type or a morphism.

Proof Induction over the definition of T' 1>, e = €' O
Lemma A.8 IfT and I" are convertible, then [T]RA and [I']hA are equal.
Proof Direct consequence of Lemma A.7. 0O

Now we can show the promised theorem.

Theorem A.9 For every contert morphism f, [T >. flRA is a candidate assign-
ment, and for every object in the fibre or propositional family e, the set

C = [JIT > e]Fst*; rA’

k>0

is a reducibility candidate of type h*e, i.e. C € Chse,A -

Proof Induction over the definition of [I' >, €]. We will only consider the most
difficult cases II(L, B) and (A, B); the proof of the other cases follows a similar
pattern.

The case II(A, B) requires three lemmata to ensure that if g *Snd is an element
of some reducibility candidate C' and g;Fst * A and (Fst*; g; Fst,Snd[A]) * B are

canonical and g * App(4, B) i g" + App(A’, B'), then ¢" + Snd is an element of C as
well. First we analyze all possible X,-contracta of the combinator g * App(A, B).

Lemma A.10 If g * App(A, B) wr g" = App(A’, B') then either g X g" or g" =
9’5 (f,t[A"]) and there exist combinators f' and A, such that

o If f # Id, we have two possible cases: either f = f%Id and ¢ wr
g LA or g B gt (Fs £ EAL).

o Iff=1d then g &~ s (F, [ Ad]).
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with g;Fst + A ' g3 f" * A" or g;Fst x A LA g f = A" respectively and
(Fst; g; Fst,Snd[A]) * B X" B’ as well as g+5Snd & g *t.

Proof Induction over the number of reduction steps. O

Next we show that the combinator g * App(4, B) is strongly normalizing.

Lemma A.11 For any context morphism g and types A and B and any reducibility
candidate C such that gxSnd € C and g; Fstx A as well as (FstF+1. g. Fst,Snd[A])* B
are canonical, the combinator g * App(A, B) is strongly normalizing.

Proof Consider any infinite reduction sequence of g % App(A, B). Either it consists
only of X, -reductions or it looks like

9% App(A, B) 57 (1d,1[A") « App(A', B & ...

with ¢, A”, A" and B’ as in the previous lemima. In the latter case the hypotheses

imply the claim. If the infinite sequence consists only of «W)-reductions, the previous
lemma shows that

g% App(A, B) S ¢ (f,1[A"]) * App(4', B')

The restrictions in the L-rules App; and App, imply that we can assume without
*
loss of generality ¢ 1A g5 (f; f',t'[A1]). Now an induction over the tuple

(v(g'5 f), (g * t'), compl(g”), compl(£), v(g'; f  A”)

ordered lexicographically, shows that this sequence is actually finite. The number

v(e) stands for the length of the longest ¥, reduction sequence of any strongly
normalizing combinator e, and compl(e) denotes the structural complexity of e.
O

Finally we strengthen this lemma to show that whenever g * App(A, B) reduces to
g" * App(A’, B'), the morphism ¢” * Snd is an element of C.

Lemma A.12 Letg, A, B and C as in the previous lemma. Then g*App(A, B) wr
g" * App(A’, B") implies ¢" + Snd € C.

Proof By condition (CR3) for C, we have to show that Fst*; ¢”  Snd is strongly

normalizing and that Fst®;¢” * Snd reduces via <> only to neutral morphisms or
elements of C'. We can restrict ourselves to the case £ = 0 because with g, A and
B also Fst*;g, A and B satisfy the hypotheses of the previous lemma. Because

¢" admits no infinite *-reduction sequence by the previous lemma, any reduction
sequence of g” * Snd is a prefix of

"% Snd &7 by (b s[AL]) + Snd B hxs D ...

with ¢” < k; (h',5[A1]). The previous lemma implies that ¢” * Snd 25 £ « 5,80 h*s
is also in C. a
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Now we can start proving the theorem. According to definition A.1, we have to
verify that C satisfies the conditions (C'R1) to (CR4) and is nonempty.

(CR1) Follows directly from the definition.

(CR2) Fix a morphism ¢ € [I' >, II(L, B)]Fst’; hA’ for some ! and a morphism ¢/
with Fst* ¢ % ¢/, For all n, Fst™ xt' is SN because Fst**™ ¢ is. The morphism
s X Fegmtk t;9 * App(L', B') with m, g, L', B’ and C; as in the definition
of [I' > (L, B)]Fst’; AA’ is an element of [T - L >, B]({Fst"™+k: b g %
Snd[L])(D", C1))A”. Because s reduces via < to Fst™ *t'; gx App(L’, B'), con-
dition (CR2) for U;»o[T - L > B](Fst’; (Fst™™**; b, g % Snd[L])(D™, C;))A™
implies that ¢’ is an element of [I' - II(L, B)[|Fst’; h; A’ as well.

(CR3) Consider any ¢ satisfying the hypotheses of (CR3). It is enough to show that
s ¥ Fst™xt; gxApp(L', B') is an element of By & [T-L >, B](Fst% (Fst™: b,
g * Snd[L])(D",C))A”. Because s is neutral, by condition (CR3) for Upso Ex
it is enough to show that Fst® % s is SN and that every reduction of Fst* % s

via < leads after finitely many neutral morphisms to one in Ej;. The latter is
done by an induction over the degree of Fst* x s, which is the tuple

(k, v(Fst**™ % t) + y(Fst*; g x App(L’, B')))

ordered lexicographically. If v(Fst® * 8) = 0 and reduces via > to o , then
s' = t,g * App(L”, B") with k = 0, Fst™ x ¢t & ¢ and g * App(L’, B") &
g’ *App(L”, B"). Because Fst™ ¢ and g*App(L', B') are both SN, Fst’xs = s

is SN as well. Therefore s is in Eq in this case. If Fst* x s %5 ¢ for some s’ ,
then consider any

u = f* (t1;01 * App(L’, B'))
such that f*t; = Fst**™ x¢ and f; 91 = Fst®; 9. Then u can reduce to
o ' (t}; 91 * App(L", B")) with f x ¢, %% f' %1, t] neutral and f;g; *

App(L', B") 1A [’ 91%App(L”, B"). This eventually reduces to a morphism
in Ej by the induction hypothesis and Lemma A.12.

o f'*(t;91 * App(L', B')) with t; & ¢; and %] not neutral. Then fI * ¢/
is an element of [I' >, II(L, B)]Fst*™**: RA” so this combinator is an
element of Fj.

Any infinite reduction sequence of Fst* % s has the form
s '+ (t' ¢« App(L’, B')) SV
where ' is not neutral and Fst*+™ % ¢ X~ J'#t', Fst®; g  App(L, B) w I

g'*App(L', B'). Hence f'«t'is in [T 1>, II(L, B)[Fst*"t™+ hA”, so the above
sequence is finite.



A.3. THE INTERPRETATION 131

(CR4) This follows directly from the definition.

The proof that the combinator A - h x II(4, B) >, Snd: 1—Fst; h * II(A, B) is an
element of C s similar to the proof of the condition (C R3) and is therefore omitted.
In the case of [I' > X(A4, B)|RA, the argument goes as follows:

(CR1) Fst* x t; 7, strongly normalizing implies Fst® * ¢ strongly normalizing.

(CR2) For any l and any t € [T >, Z(A, B)[Fsth hA' ¥ E Fstb w¢ 5 ¢ implies
Fstf % t; m; X t';my and Fst* x¢; 1, t'; w2, so by condition (CR2) for UysofI -
AJFst™*; hA" and for Urksol - A >, B](Fst®; (Fst'; b, ¢; m[A])(D",C))A”, the
morphism #' is an element of [T >, % (A, B)]Fst'**; hbA”.

(CR3) Consider any I and any ¢ € [I' >, %(A,B)]Fst; kA’ that satisfies the
hypotheses of (CR3). We have to show that s; = t;7; is an element of
[T >. A] Fst'; A’ and that 89 = t; Ty is an element of

Eo = [T - A, B](Fst% (Fst'; b, t; m [A]) (D', C))A!

We demonstrate this only for sy; the proof for s; is similar. Any infinite
reduction sequence of Fst* * t; o looks like

52 57 (f, taA), ta[ B'])  Pair(A”, B"); 1y % 5 s - - -

Because Fst® « ¢ is SN, ¢, is SN as well, and so this sequence is finite. Fur-
thermore, a reduction Fst® % ¢;, B ouis only possible if u = #';7,, where

Fst «t & . So Fst® « sz reduces to neutral morphisms and eventually to a
morphism in Ej. Condition (CR3) for Urso Ei implies that Eq contains s,.

(CR4) Consider any ¢t € [I'- £(A, B)]Fst’;hA’. Condition (CR4) for Uj»oll -
AJJFst*'; RA” implies that Fst* « t;m € [I > AJFst™!; hA”. Similarly, con-
dition (CR4) for

UIT - A >, B](Fst*; (Fst'; h, t; m [A])(D”, C))A"

k>0
implies that Fst® % ¢; 7, is an element of

UIT - A >, B](Fst®; (Fst'; b, t; m[A])(D", C))A"

k>0

An argument similar to that given for the condition (CR3) shows that the com-
binator Snd with A - & * 3(A, B) >, Snd: 1—Fst; b * Y(A, B) is an element of C.
a

In the next section we will show by an initiality argument that every combinator
is an element of some reducibility candidate. The proof requires additional properties
of the interpretation, which are given in the following lemma:
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Lemma A.138 For any candidate assignment h: A—T, such that h € [C]hA and
for all context morphisms A 1>, g:T € [T]RA the Jollowing conditions are satisfied:

1.
2.
3.

10.

11.

IfT =], then g;() is an element of [[]]h; A.
The morphism g;1d is an element of [ClrA.

For any T >, f:TV, t and A such that ¢; f € ['I(IT >e fIRA)A, T >,
t:1>f +« A with g+t € [T >, f* AJRA and A canonical, the morphism
9; ([, t[A]) is an element of [T - AJ([(f,t[A])JRA)A.

. If b is an element of [I'ThA, A is an element of CaNtype T and t is a morphism

satisfying A >, t:1—hx A andt € [T >, AJRA, then the morphism (h,t[A]) is
an element of [I'- A]((h,t[A])(D, C))A for any reducibility candidate C € Cia-

For any morphism T'- A 1>, t: 1— B, for any context morphism g, types Ay and
By and reducibility candidates C € CyeSnd,ar Such that

e g+5nd € [I' >, A]Fst™; RA!

o Fst™;hA and g; Fstx Ay as well as (Fst™*'; h,Snd[A])* B and (Fst; g; Fst,
Snd[A4]) * B; are convertible

o A, g;Fstx A; and (Fst**; g; Fst,Snd[A;]) * By are canonical

o For any candidate assignment A’ >, h':T - A such that b’ € [T - AJA'A,
k't e [I'-A>. B]WA'

then

Fst™; hxCur(A,¢); gxApp(A1, B1) € [T A >, B]((Fst™; h, g*Snd[A])(D', C))A’

For any morphism t:1—h x A € [T+ AJhA, the morphism t; h*! is an element
of [T >, 1]RA as well.

For any morphism t:1—hx A € [T'- AJhA, the morphism t; h*ld is an element
of [T > AJRA as well.

For any type A in context T, the morphism Snd is an element of [AJFst; RA -
hxA. .

For any context T' and candidate assignment T’ >, Id: T, the identity morphism
is an element of [[']IdI.

For all context morphisms g € [T]hA, the type g + Q is canonical, and for all
g € [[]-QIRA, the object ¢' * T is canonical as well.

Let h be a candidate assignment A >, h:T-A-B and g; Fst?x A and (Fstk+1;g;
Fst?,Snd[A]) * B are canonical.

(i) The morphism g * Pair(A, B); my is in [[Fst; Fst AJRA if g;Fst xSnd €
[Fst; Fst x AJAA.
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(ii) Similarly, g * Pair(A, B);m; € [T - A >, B](h; Fst, (Dny ..., Dy, CYHA if
g*Snd € [I'- A >, B](h;Fst,(Dn,..., Dz, C)A.

Proof All these properties are in one way or another consequences of the condition
(CR3) in the definition of the reducibility candidates. Before we can go into the
details, we have to show that {J;5o[[']JFst’; A’ satisfies the properties (CR1) to
(CRA4) as well. The proof of (CR3) is the only nontrivial one; all others will be
omitted. Consider any set [I"- A]Fst’; hA’ and any f: A’—T - A. Assume [ satisfies
the hypotheses of condition (C'R3). Then we must show that f;Fst and f*5nd are
elements of [T'Fst'; h; FstA’ and Cp & [T >, A]JFst™; h; FstA’ respectively. We
prove only the latter, by applying condition (CR3) for Uk>o Ck; the proof for the
former is analogous. First, s = Fst®; f x Snd is SN because Fst®; f is. Any reduction
of s leads to a combinator f’* Snd, where Fst*; Fst ~» f'. Therefore any reduction
sequence of s that is large enough must look like

Fst*; f % Snd ~s fi %Snd ~» -+ ~» . % Snd

where fi,..., f,_; are neutral and f, is an element of [T - AJFst"*; AA”. Hence
fr. #Snd is an element of C}, and all the hypotheses of the conditions (CR3) for
Ukso Ci are satisfied for f * Snd.

Now we check each of the properties stated in the lemma in turn.

1. Fst*; g: () is SN if Fst¥; g is, because the former reduces either to g'; (), where
Fst*; g ~ ¢', or to ().

2. FstF; g; Id can either reduce to ¢';1d, where Fst*; g ~» ¢/, or to g- So Fst¥; g; Id is
SN, and an induction over v(Fst*; g) shows that any reduction sequence yields
one in [T]Fst*; AA’ after finitely many neutral morphisms.

3. Fst*; g; (f, t[A]); Fst reduces either to
o g';(f,t'[A);Fst with g~ ¢/, f~ f',t~ t' and A ~s A"

e Fst*; g; f, which is an element of ¢ % [I'I(IT >. f]Fst*; AANA’ by
assumption.

® 15 (92; f, g2 * t[A]); Fst with g; go = Fst*; g.

In all cases the combinator Fst*;g; (f,¢[A]); Fst reduces to a neutral context
morphism or to an element of C, and an induction over

(v(Fst*; g), u(Fst*; g; f) + v(Fst*; g ) + v(A))

shows that any reduction eventually leads to a context morphism in C. The
argument for the morphism Fst*; g; (f,t[A]) * Snd is similar.

4. Similar to the previous condition.

5. Any combinator u = hy * (hg * Cur(A4,t); g1 * App(Ay, By)) such that hy; hy =
Fst**™. b and hy; g1 = Fst* % g reduces to
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® hy;(hg, g1 * Snd[A]) * £, which is an element of
E < [T+ A >, B]((Fst**™; b, Fst!; g x Snd[A])(D", C")) A"

by assumption and condition 3.

o hy x (hy * Cur(A',t'); ¢’ * Ap'p(AQ,B{)) with hy; by o hi; kY and hy; g *
App(A1, B1) 5 ¢ * App(A}, B.), as well as A5 A’, and t %% ¢.

These morphisms are either neutral or elements of E, and an induction over
(v(Fst™™; k), v(A) + v(t) + v(Fst*; g * App(As, By)))

shows that any reduction will yield a morphism in E. Because any infinite

reduction path of s starts with a -reduction as above and thus leads to
an element of E, s is SN. Therefore the morphism Fst™; h * Cur(A,t);g =
App(A;, By) is an element of

[T'- A >¢ BJ((Fst™; h, g * Snd[A])(D’, C))A'

Analogous to the proof of condition 2.
Similar to the proof of condition 2.

Follows directly from condition (CR3).
Consequence of the previous condition.

If the combinator Fst*;g is strongly normalizing, then also the combinators
Fst®; g % Q and Fst®; g % T

The combinator s % Fst* ;g * Pair(A, B); 7 can be reduced to

o ¢’ *Pair(A’, B"); m; with Fst*; g~ ¢/, A~ A’ and B~ B'.
o (Id, Fst*; g; Fst x Snd[Fst*; g; Fst; Fst * A], Fst; g % Snd[(Fst**'; g; Fst; Fst,
Snd[A]) * B]) * Pair(Fst*; g; Fst; Fst x A, (Fst**!; g; Fst; Fst, Snd[A]) * B); 7

° Fstk;g; Fst * Snd, which is an element of £ & [T-A-B >, Fst;Fst %

A]Fst®; A’ by assumption.

So, again Fst¥; g % Pair(A, B); 71 reduces either to a neutral morphism or to an
element in F, and an induction over

v(Fst*; g) + v(Fst¥; g; Fst; Fst x A) + v({Fst**1; g; Fst; Fst, Snd[A]) * B))

proves that eventually the latter case is reached. So s is SN and therefore
g*Pair(A, B); 7 is an element of [I'- A- B 1>, Fst; Fst* AJAA. The combinator
g * Pair(A, B); 75 is an element of [ - 4 >, B]|(k;Fst,(Dy,...,Dy,C))A for

similar reasons.
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a

Remark The proof of condition 5 uses the restriction imposed on the reduction ~»
in an essential way. Without it, a possible reduction sequence of % * Cu r(A,t); g *
App(Ai1, By) is:

h+ Cur(A,); g App(A1, B1) ~ Cur(h = A, (Fst; h, Snd[A]) * t); g * App(A1, By)
~> (Id, g * Snd[h * A]); (Fst; b, Snd[A]) * ¢
This means that we have to strengthen condition 5 to require that the morphism
(Id, Fst¥; g * Snd[Fst**+™; b « A]); (Fst* ™1 b, Snd[A]) * ¢
is an element of
[T - A >, B]((Fst**™; h, Fst*; g + Snd[A])(D", C)) A"

But when we later on apply the condition, there seems to be no way of concluding
that this is indeed the case (cf. page 137). This shows that condition 5 is the
formulation of Lemma 3.2 in this context.

A.4 The Final Induction

The last step in the normalization proof is to show that every type is canonical and
that every context morphism I' &>, f: A and morphism T >, #: 1—A is an element
of a suitable interpretation of A and A respectively. This amounts to applying the
appropriate closure condition of Lemma A.13.

Theorem A.14 For any candidate assignment A >, h:T such that b € [T]RA and
for any context morphism T 1>, f: TV, type T >, A and morphism ' >, t: A—B:

() IfT=[]-An--- Ao, then h;Fst' x A; € CaNtype A -
(ii) h; f € ['I([fIRA)A.
(iii) h+* A€ canigpen-

(iv) For all s € [T >, AJRA, the morphism s; h xt is an element of [T >,
BJhA.

Proof The properties stated in Lemma A.13 are used throughout this proof. They
are referenced only by their number.

We use induction over the structure of the combinators.
(1) On contexts:

([]) Nothing to be shown. |
(T'- A) Follows directly from the definition of [T - AJrA.
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(ii) On context morphisms

(()) Condition 1.

(Ild) Condition 2.

(Fst) Definition of [I'- AJRA.
((f,t[A])) Condition 3.

(9;f) Let T' >, ¢:T and I >, f:T". By induction hypothesis, h;g €
[T'1([g]2A)A = [T']&; gA, and therefore by induction hypothesis again,
h; g; f € [T'I([f17; 9A)A.

(iii) On types

(1) Obvious.

(f x A) By induction hypothesis, h; f € [I"]([f]hA)A = [I']k; fA. Another
application of the induction hypothesis yields therefore h * (f*xA) =
hy f % A € cangypen.

(II(A, B)) Conditions 8 and 4 together with (C'R4) imply that (Fst; , Snd[A])
is an element of [[I'- A]J((Fst; kem, Snd[A])(Dy, . . ., Dy, C))A- hx A, where
h = (hems Dy ..., D1) and C € Cgng p.pea- Therefore (Fst; h,Snd[A]) x B
is canonical, and because h * II(A, B) reduces either to A’ * II(4’, B')
with b5 1, A5 A", BX B or to T(h + A, (Fst; h, Snd[A]) * B), the
type h* II(A, B) is SN. Because Fst*; A is an element of [IFst*; kA’ by
condition (CR4), the type h * II(A, B) is canonical.

(X(A, B)) Similar to II(A, B).
(2,T) Condition 10.

(iv) On morphisms

(!) Condition 6.
(Id) Condition 7.

(t1;t2) Let T >, t1: A—B and T' >, t5: B—»C . The induction hypothesis
yields s; h#t; € [I' >, B]JAA, and therefore s; h* (t1;15) = s; hty; hxty €
[T > CJRA.

(g *t) Same as f * A.

(Snd) By definition of [I'JAA, h*Snd € [I'- A >, Fst* AJhA = [T- AJh; FstA.
(V) Similar to II(A, B).

(Cur(A,%)) As shown in the case II(A, B), the morphism (Fst; h,Snd[A]) is an

element of [I'- A]((Fst**"; b, Snd[A])(Dn, ..., Dy, C))A-Fst’; h A for any
C e CSnd,A-Fst";h*A‘ Therefore, (Fst**!; h, Snd[A]) x ¢ is an element of the

set [T'- A >¢ BJ((Fst***; h, Snd[A])(Da,. .., Dy, C))A - Fst¥; h+ A as well,
so Fst®; b « Cur(A,t) is SN. Conditions 5 and 3 show now the claim.
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(App(A, B)) Let t:1—h; Fst * II(A, B) be any morphism in [T-A >, Fst*
II(A, B)]hA. By definition, the combinator s*Snd is an element of [T >,
A]h; FstA and &; Fst is an element of [I]A; FstA. A similar argument like
that above yields

(Fst; h; Fst, Snd[A]) € [T A]|((Fst; ; Fst, Snd[A])(Dn, . . . , Do))A-b; Fstx A

hence (Fst; ; Fst, Snd[A])* B is canonical. Therefore the definition of -1
implies that

¢ hx App(A, B) € [T - A >, B]J({h;Fst, h* Snd[A])(D,,..., D, Do)A
which is equivalent with
t;h+ App(A,B) € [T'- A, BJhA

(Pair(A, B)) Let us assume that & = (Aom,(Dh,. .., Do)). Then we must show
that A * Pair(A, B);m € [I'- A+ B >, Fst; Fst + AJRA and

hxPair(A,B);m, € [I'-A-B-Fst?* A, (Fst?,Snd[A]) * B]
((h, b * Pair(A, B); m1[A]}( D, . . ., Do, C))A
< h*Pair(A, B);m; € [I'- A, B]({h;Fst;Fst, A * Fst * Snd[A])
(Dn, tee >D27 C))A
for any C € ChaPair(4,B);m,a+ By an argument similar to the case II(A, B),

the combinators h; Fst; Fst x A and (Fst; h; Fst; Fst, Snd[A]) * B are canon-
ical, so condition 11 yields the claim.

(m:) Givent € [I' >, X(A, B)]hA, the definition of [—] implies that ¢; h*m; =
t;my is an element of [T' >, AJJRA. Furthermore
hxtimy € [I'- Ae Bl(h,h*t;m[A])(D, [t; m]AA)A
= [ >¢ (d,t;7[A]) * B]hA

a

Remark The proof of the case Cur(A4,t) fails if we strengthen condition 5 as in
page 135 because there seems to be no way of deducing that (ld, g * Snd[g; Fst *
A1]); (Fst; h, Snd[A]) is an element of [T - A]|(k, g * Snd[A](D, C))A. This motivates
the restriction imposed on the reduction relation ~».

Because any element of any reducibility candidate is SN, we get the result we want:
Corollary A.15 All combinators e are SN,
Proof Apply the previous theorem for the candidate assignment (ld, D), where D

is the list of the canonical reducibility candidates of the appropriate type. Therefore
Id * e is strongly normalizing, and hence e. o
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Appendix B

The Rules in de Bruijn form

This appendix contains the complete set of the rules for well-formed types, terms
and contexts of the Calculus of Constructions in de Bruijn-form.

1. Formation of contexts and variables:

Empty

F[] ctxt
I' - A type
Cont — Intro F (T, A) cixt |
/
Var (T, A, T') ctxt

(F, Aa IV) l_ Irll: U!J["H-l (A)

2. Rules for Equality:

(AT ctxt T+A=B

Cequ T,A,T) =T, B,1)
Refl FTlctxt T'F Atype F'Ft:A
. I'=I TFA=A TF{=t4
Somm L=I" Ttt=ssA T+HA=B
y I'=I TFs=tA TFE—=A4
Teans L=0" I'=I” TFA=B TFB=C
ran T=1" TFA=C
THFt=t":A TFt=#t"A
TFi={"4
Copy LTFA=B TF#:A TFA=B Ttrt=s:4
I'#+RB I't=3s:RB

3. Rules for the dependent product:
139
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(T, A) + B type

11 — form T'F 1IA.B type
I'FA=A' @@, A+B=5B
11— Equ TFIAB=1A.B
B (T,A)Ft:B
I-Ttro P A TAB
¢ —rul (T,A)bFt=t"B TFA=A
rue TF ML= A1-1A.B
. PF¢IIAB TFs:A (T,A)F Btype
I — elim T+ App(4, B, 7,5): B0\s]
1 — elimeaul I'FA=A' @[,AFB=58
© 4 '+ App(A, B,t,s) = App(A', B, t, s): B'0\s]
0 — el 9 I'Ft=¢.TIAB Ttrs=34"4
— eI TTERpp(4, B, 1, 5) = App(4, B, 7, 5'): BO\a]
8 — rul (LA F&B TtFs:A (T,A)F Btype
ruse T F App(4, B, AA.t,s) = t[0\s]: B[0\s]
n — rule '-#:1IA.B (T, A) F B type

' AA.App((A4) T,U1i(B),(?) 1,0) = :TTA.B

4. Rules for dependent sum:

(T, A) F B type

¥~ form TF SA.B type
I'A=A" (T,A)+FB=5
» ~ Haqu TFSAB=SAE
3 — Intro TFh#4:A (TI,A)F Btype T Fiy:B[0\t]

I'+ Pair(A, B, t1,t2): XA.B
'FA=A" [{,AFB=F
I't- Pair(A, B,t,s) = Pair(A’, B, t,s): A.B
'Ft=t:A TFs=g:B[0\{]
I't Pair(A, B,t,s) = Pair(4, B,t,s'): LA.B

3} — Introequl

3 — Introequ?2

) I'F#:XA.B
¥ — Elim1 TFm():A
] I'Ht:YA.B
¥ — Elim?2 T F my: B0\, (2)]
S _ Blimequl 'ty =t:3A.B

TF m(t) = m(ts): A
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Tk tl = tz: EAB

¥ = Elimequl 5 Y BV a]
(02) T F Pair(A, B,t,s): SA.B
o1 T'F m(Pair(A4, B, L, 5)) = : A
(02) I b Pair(4, B,t,s): SA.B
72 T'F my(Pair(4, B, t, ) = s: B[O\{]
(surj) 'F¢:XA.B
J T F Pait(A, B, m (), () = ¢

5. Rules for propositions:

Propl F T ctxt
P I’ - Prop type
I' - p: Prop
Proof I' F Proof(p) type
I'-p=p'"Prop
Prop — equ I' F Proof(p) = Proof(p’)
_ (T, A) F p: Prop
V—Inbro i Bron
_ (T,A) bp=yp':Prop THA=A
V—equ T VAp=VAyp:Prop
V — elim (T, A) F p: Prop

It Proof(VA.p) = I1A.Proof(p)
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