Technical Report A

Number 294

Computer Laboratory

OPERA

Storage, programming and
display of multimedia objects

Ken Moody, Jean Bacon, Noha Adly,
Mohamad Afshar, John Bates, Huang Feng,
Richard Hayton, Sai Lai Lo,

Scarlet Schwiderski, Robert Sultana,
Zhixue Wu

April 1993

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1993 Ken Moody, Jean Bacon, Noha Adly,
Mohamad Afshar, John Bates, Huang Feng, Richard Hayton,
Sai Lai Lo, Scarlet Schwiderski, Robert Sultana, Zhixue Wu

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

OPERA
Storage, Programming and Display of Multimedia Objects

Ken Moody, Jean Bacon, Noha Adly, Mohammed Afshar, John Bates,
Huang Feng, Richard Hayton, Sai Lai Lo, Scarlet Schwiderski,
Robert Sultana, ZhixueWu.

University of Cambridge Computer Laboratory

Abstract

This project aims to support the interactive display of synchronised
multiple media types in workstation windows. This style of application
needs high speed ATM networks and suitable protocols and operating
systems; an infrastructure which exists at the University of Cambridge
Computer Laboratory. Above this infrastructure we have designed and
are building storage services (MSSA), a platform to support the creation
and display of multimedia presentations (IMP) and a persistent
programming language (PC+ +), for reliable and convenient programming
of multimedia applications. This paper gives an overview of the work of
the OPERA project in these three areas.

1. Introduction

We are building a display platform for multimedia applications above a multi-service
storage architecture (MSSA). This style of application needs high speed ATM
networks and suitable protocols and operating systems. Our work has built on such
an infrastructure, see [Bacon 93, Chapter 22], to provide storage and presentation
support for multimedia applications,

Current storage services are unable to meet the requirements of emerging
application areas. There are both architectural and engineering reasons for this. A
computing environment which supports multimedia (such as real-time video and
audio) requires very large amounts of storage, the ability to express complex
relationships between stored objects and synchronised delivery of media streams at
guaranteed rates. A multi-service storage architecture (MSSA) has been designed
for these, as well as traditional, applications [Bacon et al., 91].

An open storage architecture gives flexibility and extensibility. Conventional files,
audio, video and structured objects are supported within a common architectural
framework in MSSA and composite objects, such as a display representation, may
have components of any of these storage types. The two-level hierarchy of servers in
MSSA provides storage media and a byte segment abstraction at the low level and a
variety of abstractions at the high level. Quality of service guarantees, which are
essential for continuous media file types, are supported by sessions and tickets. These
are arranged via the high level servers and used directly with the low level servers,
thus avoiding the inefficiency that might be caused by the layered structure.

A platform for the creation and interactive display of multimedia presentations
(IMP) is being developed. A scriptlanguage allows a multimedia presentation to be
specified in terms of objects, the relationships between them and the (composite).
events that drive it. Presentation data is stored on a structured data service within
MSSA (see Section 2) and component objects are stored on appropriate servers, and
accepted and retrieved at guaranteed rates using session and ticket mechanisms. A
presentation associated with a multimedia application is achieved by applying a
script to the data representing the presentation to create a display.

We have developed a persistent programming language PC++, an extension to C++,
for multimedia application programming [Wu et al, 93]. PC++ uses the MSSA for
persistent storage and programmers may manipulate data structures stored across
the special purpose serversin the distributed environment of MSSA. In PC+ + it is
possible to express complex relationships between objects and to make related
changes to objects within a transaction. Transactions also give an abstraction for
handling the independent failure modes of the components of distributed multimedia
objects. PC++ uses an optimistic method of concurrency control which is appropriate
for a multimedia environment in which conflict is rare, real time (quality of service)
requirements must be met and continued working after failure is desirable.

This paper gives an overview of the OPERA project. Storage is discussed in Section
2, presentation support in Section 3 and programming in Section 4. Section 5
outlines the current prototype implementations and Section 6 gives interim
conclusions arising from this ongoing research. Related technical reports describe
storage and presentation (TR 295) and PC+ + (TR 296) in more detail.

2. Storage

Our storage architecture comprises an open, two-level hierarchy of servers. Details
are given in [Bacon et al. 91, Lo 93].

® Theservers at the low level, the byte segment custodes (BSCs), manage storage
media of any type, support a common byte segment abstraction and provide
quality of service guarantees for acceptance and delivery of data. The
architecture is such that the special purpose servers at the high level, for
example, those for video, audio, structured objects or conventional files, all
employ the low level BSCs for storage.

® The servers at the high level provide storage abstractions for various types of
stored object; for example, we have a byte stream file custode (BSFC) for
conventional files, a structured file custode (SFC) and a continuous media file
custode (CMFC). There may be multiple instances of each type of custode.

® A server at the low level (a BSC) can be involved directly with data transfers
from or to a client (a workstation window, for example). Such transfers take
place within a session which is organised through one of the high level custodes.
The client acquires a number of tickets for use with the appropriate BSCs to
achieve delivery of the files needed in a display.

Figure 1 shows an example of an MSSA configuration of servers.

CMFC CMFC BSFC SFC :
(audio) (video) hls%?vlg:sd
BSC BSC
BSC BSC BSC tuned tuned
tuned tuned | |tuned for for BSC low level
for for for trad. trad servers
audio video video files ﬁles.
device device | |device device device archive
device
..................................... storage media of various types ...
high level servers low level servers
BSFC = byte stream file custode BSC = byte segment custode

SFC = structured file custode
CMFC = continuous medium file custode

Figure 1l An example of an MSSA configuration.

Every object in the MSSA is named and protected by a storage service identifier
(SSID) which is a capability labelled with a principal [Gong 89]. An SSID can be
used to identify an object uniquely system-wide, and only the principal may use the
SSID to access the object.

Location of objects in the distributed system is managed through container
abstractions at two levels. A given logical container is managed by a specific file
custode. A given physical container is managed by a specific byte segment custode.

2.1 The byte segment custodes (BSCs)

BSCs manage a variety of storage media which might range from non-volatile RAM
to a terabyte optical jukebox. They present a common byte segment abstraction to
the higher level custodes which may be used in any way that is appropriate. This
also gives extensibility in that new media may be added within the architecture. An
example of how the low level might be used is that a video file may be striped across a
number of devices as a number of byte segments in a number of containers managed
by different BSCs. A traditional, byte sequence file is likely to map onto a single byte
segment. The fact that the low level imposes no specific structure means that
arbitrary standard structures, such as MPEG for video or interleaved video and
audio, can be supported at the high level.

We use extent-based storage allocation within a byte segment. A storage-block size
may be associated with a byte segment, as a hint to the BSC, so that different media
may be treated appropriately. We use NVRAM to store data and metadata in the
implementation of the BSCs. This allows a fast acknowledgement that a secure
write has taken place without the need for synchronous disk access. It also provides
a convenient basis for implementing atomic write operations within the storage
service and supporting application-level transactions.

2.2 Quality of service for media storage

If an object of a continuous medium type such as video is to be shown as partof a
display then a certain rate of delivery must be guaranteed (at some probability)
between the custode containing the stored object and the workstation. The
mechanism we use to support this is the session which is controlled by a ticket which
guarantees a certain rate of delivery for a specified time. A server can ensure that it -
does not issue more tickets than it can honour.

We take the view that the storage service should take care only of storage and its
responsibility ends when the data reaches the client-end. The purpose of having
sessions and tickets is to ensure that continuous media data are delivered in a way
predictable by the client. For instance, we have to take account of the fact that data
may be variable instead of fixed rate and might be lost in transmission [Lo 931.

2.3 Structured objects

We represent structured objects on structured file custodes (SFCs) [Thomson 90]. An
SFC is lightweight compared with a full typed-object manager. It supports only byte
sequences and storage service identifiers (SSIDs) as primitive storage types but the
constructors sequence, record and union are used to create tree structures of
arbitrary depth. Since the SFC can locate SSIDs within structured objects it can
provide an existence control service by traversing them. The representation of
structure means that locks can be associated with components of stored objects.

This simple data object store has been used to represent complex, multi-object
presentations. An active multimedia database has been created on the SFC to
support event driven display, see below.

2.4 Continuous media objects

Clients will use the continuous media file abstraction to store all data that is
continuous in nature, whether it is audio, video or interleaved audio and video and
whether it is encoded in MPEG, H.121 or any proprietary format. We may have
multiple instances of the continuous media file custode (CMFC) running at the same
time,

We can claim that the CMFC supports multiple formats because it enforces none. It
is up to the client at the receiving end to decide how to handle a given stream. The
stub at the client end is a "translator". It interprets the byte stream, identifies frame
boundaries and extracts timing information. It then sends the data to other
processing elements down the pipeline from server to user. For example, in the
MPEG standard, the role of this translator is the "Medium Specific Decoder" (which
is not part of the standard). Its role is to translate from the digital storage format to
an ISO-11172 stream which is fed into an MPEG codec. Different data with different
encoding schemes will have different translators.

3. Composition and display of multimedia presentations

The Pandora project [Hopper 90] gave us insight into the requirements of
multimedia applications and created some prototype applications, such as video
mail, which are in everyday use at the Laboratory. Additional support is needed if
users are to create and interact with multimedia applications as opposed to just using
those provided. Our development platform will allow multimedia applications to
achieve their presentation requirements without the cumbersome, ad hoc
engineering of the lower levels which is necessary in current systems.

® A user must be able to compose a multimedia presentation, as part of an
application, and express requirements and policies for its dynamic, interactive
display.

The IMP (Interactive Multimedia Presentation) system [Bates 93] provides a
general and flexible interface for use by individuals and groups. Two aspects are
involved: the creation of structured presentation data and the expression of a
script to drive a presentation.

® To support the creation of presentation data and meet the requirements expressed
in the script we use the MSSA to provide storage of presentation structures and
their components of various media types and delivery of these components at the
right rate and at the right time (triggered by possibly composite events). In
addition, we require synchronisation between components.

Figure 2 gives an overview of the components of the IMP system which are involved
in creating presentation data and achieving a display. [Bacon et al. 93] gives details
of how presentation objects are created and how a dynamic, interactive display is
achieved.

We have built a presentation object store on the SFC (see Section 2.3). All objects
which may be presented are registered here. An application may set up a number of
presentation objects of registered media classes and tailor them to its own
requirements by adding attributes and named events. A presentation object includes
the SSID of the corresponding media object which is stored on the appropriate MSSA
server. The various presentation objects are composed into a structured object which
represents an entire presentation (the presentation context object), see Figure 2. The
SSIDs of the component objects of various media types are therefore contained in this
object and the events which drive an interactive presentation are named and marked
in it.

The figure shows the IMP script through which the presentation is controlled
dynamically. A script, written in the IMP language, comprises an imperative
framework for a display together with declarative rules which indicate the actions to
be taken when certain event expressions become true, see [Bacon et al. 93]. The
events of interest to a given presentation, which are expressed in its script, are
registered with a “presentation and monitoring service” and their occurrence during
the presentation is notified to this sevice. When an event occurs (or an event
expression becomes true) this service interacts with the presentation object store,
which we have implemented as an active database. Objects may thus be retrieved
from storage and delivered to the workstation, triggered by the firing of the
corresponding events,

Finally, we use a network-based synchronisation service [Sreenan 92], which is
independent both of the MSSA and the presentation world, to perform functions such
as jitter removal, monitoring for frame events and achieving, for example, lip

synchronisation between voice and video

camera

event monitoring and
presentation control

I /
example of a presentation context object

!
1
1
1
i
1
1
I
]

|

synchronisation
server
« > »
,/ “-‘ “‘ ...
// :
/
{
[
/
[
1
1 " mom - &
1
!
]
!
' presentatwn objects and their attributes
: “' e e
CMFC CMFC R N
(video) (video) BSFC SFC high level
storage servers
BSC BSC BSC| |BSC BSC BSC low level
device | device | |device || device | | device | | device dev1ce i%?:ﬁigiy?es

Figure 2 A multimedia presentation driven from storage by a script

4. Programming in PC++

We have developed a persistent programming language PC++, an extension to C++,
for multimedia application programming [Wu 93], [Wu et al. 93]. A persistent class
in PC++ keeps all the features of class in C, and provides additional features which
are important for multimedia databases. It is integrated with the MSSA and uses
the SFC (see Section 2.3) for storing both data and metadata, thus integrating the
persistent programming language environment with the storage architecture.

PC++ supports the names (SSIDs) of objects managed within the open architecture of
MSSA as a special type. Persistent class declarations can include SSIDs, and the
application programmer may therefore construct and manipulate object data
structures (for example, to represent a multimedia presentation) whose components
are stored across many special purpose servers within the MSSA.

The use of the SFC for data storage has proved very convenient. Since SFC objects
are tree-structured data migration and shadow versions may be managed at
subobject level, which allows applications to work with very large objects. Also,
PC++ stores the metadata table that maps its own persistent object identifiers
(OIDs) to storage service identifiers (SSIDs) as a structured object on the SFC. This
ensures that the existence control mechanism provided by the SFC applies even
when there are multiple shadow versions of a (sub)object associated with current
transactions.

Persistent objects can be located anywhere in the distributed system, and they are
accessed as if they were local to the application. The use of remote procedure calls
(RPCs) is hidden by a remote object invocation (ROI) mechanism provided by the
system, The ROl mechanism also masks many of the failures that may occur in a
distributed environment.

PC++ supports transactions (so that related changes may be made reliably to one or
more objects) and uses an optimistic method of concurrency control (OCC). The
concepts of object and transaction form an ideal basis for reasoning about the
behaviour of distributed applications [Bacon and Moody 93], [Bacon 93, Part III]. An
object model allows the semantics of an application to be used to specify the required
concurrency behaviour of each object. A transaction model covers multi-component
computations where the components are distributed and therefore subject to
concurrent execution and partial failure. PC++ persistent objects have the
properties of atomic data objects. A lower (physical) level guarantees the atomicity
of method invocation. A higher (semantic) level enforces a serialisable execution
that takes advantage of operation semantics.

OCC is appropriate for a multimedia environment in which concurrent write sharing
is relatively rare. It is non-blocking; objects are not locked either during
transactions or for lengthy atomic commitment procedures. OCC therefore does not
interfere with guarantees of real-time access to objects. OCC also provides a model
for continued working in the presence of server or communication failure and for
planned detached working. The commit procedure for OCC used together with object
semantics gives a coherent model for merging the results of a detached transaction
with persistent system state.

5. Implementation

The storage service architecture MSSA is designed and implementations of the byte
segment custode (BSC) and the structured file custode (SFC) are in everyday use.
The presentation object store and active database mechanisms have been built above
the SFC. The continuous medium file custode (CMFC) and the ticket mechanism are
at the stage (March 93) of experimental testing.

A multimedia workstation, a Pandora box, is being used to test our ideas on
representation of and support for multimedia presentations. Prototype versions of
IMP and the active database are in use. A network-based synchronisation server has
been built but has yet to be integrated with the storage and display systems.

To illustrate its functionality, PC++ has been used to reengineer a simple distributed
application, namely to maintain the database for an active badge sytem that is used
within the Laboratory. This is a low bandwidth application in which updates to the
database are obtained from distributed collection points. The database can be
interrogated from any terminal within the Laboratory.

6. Summary, further work and conclusions

The open storage architecture has given us flexibility and extensibility. Arbitrary
file types at the high level are built on a common low level. Quality of service is
supported in the form of guaranteed rates of acceptance and delivery of data which
take compression into account. A two level architecture could be inefficient but this
is avoided by the session and ticket mechanisms which allow the low level to be used
directly but securely.

Our experience to date is that the object data model we use is supported well by the
minimal structured data service, the SFC. We believe that the concept of an active
database is appropriate for multimedia applications and we will evaluate this when
we have more experience. We achieve a dynamic interactive display by applying an
IMP script to a presentation context which is stored in a lightweight active database.

A persistent, object oriented programming language, with transaction support based
on optimistic concurrency control, provides an ideal basis for programming reliable
distributed multimedia applications. It also provides a good model for planned and
unplanned detached working.

In summary, we have all the levels of a quality of service architecture to support
multimedia applications designed and implemented, albeit in early prototype form.
We will proceed to exploit, develop and evaluate its various components.

Acknowledgements

To Sue Thomson and Tim Wilson who wrote the first storage servers, To Heather
Brown for many helpful discussions. To SERC for grant GR/H 13666 which supports
the storage service aspects of the work. To Olivetti Research Laboratories,
Cambridge, for network support and use of a Pandora box. To John Wilkes of HP
Research Laboratories Palo Alto, CA, for support and continued interest.

References

[Bacon et al, 91]
Bacon J M, Moody K, Thomson SE and Wilson TD, “A Multi Service Storage
Architecture” ACM Operating Systems Review 25(4): 47-65, October 1991

[Bacon 93]
Bacon J M “Concurrent Systems” Addison Wesley 1993

[Bacon and Moody 93]
Bacon J M and Moody K, “Objects and Transactions for Modelling Distributed

Applications: Concurrency Control and Commitment” Computer Laboratory TR
293, 1993

[Bacon et al. 93]
BaconJ M, BatesJ O, Lo SL, Moody K, “OPERA: Storage and Presentation
Support for Multimedia Applications in a Distributed, ATM Network
Environment” submitted to ACM SOSP14, 1993 and Computer Laboratory TR 295

[Bates 93]
Batesd O, “Support for Real-time Interactive Presentation of Distributed
Multimedia” Computer Laboratory PhD thesis in preparation 1993

[Gong 89]
L. Gong, “A Secure Identity-Based Capability System”, Proceedings of the IEEE
Symposium on Security and Privacy, 56--63, May 1989

[Hopper 90]
Hopper A, “Pandora, an experimental system for multimedia applications”
ACM Operating Systems Review 24(2): 19-34, April 1990

[Lo 93]
Lo S L, “Multi-service Storage Architecture” Computer Laboratory PhD thesisin
preparation 1993

[Sreenan 92]
Sreenan CJ “Synchronisation Services for Digital Continuous Media” Computer
Laboratory PhD thesis 1992

[Thomson 90]
Thomson S E, “A Storage Service for Structured Data” Computer Laboratory PhD
thesis 1990

[Wu 93]
WuZ, “A New Approach to Implementing Atomic Data Types” Computer
Laboratory PhD thesis in preparation 1993

[Wu et al. 93]
Wu Z, Moody K M and Bacon J M “A Persistent Programming Language for
Multimedia Databases” submitted to the Fourth Workshop on Database
Programming Languages, New York, Aug-Sept 93,
and Computer Laboratory TR 296

