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Abstract

Program verification is normally performed on source code. However, it is the object
code which is executed and so which ultimately must be correct. The compiler used
to produce the object code must not introduce bugs. The majority of the compiler
correctness literature is concerned with the verification of compiler specifications
rather than executable implementations. We discuss different ways that verified
specifications can be used to obtain implementations with varying degrees of security.
In particular, we describe how a specification can be executed by proof. We discuss
how this method can be used in conjunction with an insecure production compiler so
as to retain security without slowing the development cycle of application programs.
A verified implementation of a compiler in a high-level language is not sufficient to
obtain correct object code. The compiler must itself be compiled into a low-level
language before it can be executed. At first sight it appears we need an already
verified compiler to obtain a secure low-level implementation of a compiler. We
describe how a low-level implementation of a compiler can be securely obtained
from a verified compiler specification.

1 Introduction

Traditionally, testing has been used to ensure that software is reliable. However, it is
normally infeasible to test all possible combinations of inputs to a program so testing
can easily miss errors. Formal verification has been advocated as a complementary
approach. Here mathematical techniques are used to prove that the program has the
desired properties whatever the inputs. The program semantics and the required
specification are modelled using a logic. By manipulating these descriptions in a
formal system it can be deduced whether or not the program meets the specification.

Program verification is normally performed on source code. However, it is the
object code which is executed and so which ultimately must be correct. The compiler
used to produce the object code must thus be correct. Otherwise, it could introduce
bugs into the object code which are not present in the source program. The object
code then would not meet the specification even though the source code does. To
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overcome this, formal methods can be applied to the compiler. Informally, the
abstract specification for the compiler is that it generates correct object code—i.e.,
code which has the same semantics as the source program from which it was derived.
The majority of the formal compiler verification literature is concerned with the
verification of algorithmic compiler specifications written in a logic. It is proved
that an algorithm generates correct code. To obtain correct object code, we must
execute the verified compiler, however. It therefore seems we really wish to verify
an implementation written in a programming language.

We argue that this need not be so. We discuss ways that implementations
can be obtained from verified algorithmic specifications with varying degrees of
security. In particular, we describe a way in which the specification itself can
be executed by formal proof. This involves proving a theorem which states that
applying the compiling algorithm to a program of interest gives particular object
code. Using a mechanized proof assistant such as HOL [19], a theorem like this
can be obtained automatically with a high degree of security. Furthermore, the
object code in question can be automatically derived as part of the formal proof.
Previously this technique has been used to test definitions before using them in
a formal proof. We suggest that it can also be used to perform high-integrity
compilation to produce secure production code. By using compilation by proof
in conjunction with an unverified production compiler constructed from the same
specification, high security is achieved without hindering the development cycle.

Whilst compilation by proof provides a relatively secure method of compilation,
in the long term it may still be advantageous to verify compiler implementations.
However, a formally verified implementation of a compiler in a high-level language
is not sufficient to obtain verified object code. The compiler must itself be compiled
into a low-level language before it can be executed. To obtain a secure low-level
implementation of a compiler, we apparently need an already verified compiler. We
suggest that execution by proof provides a secure way of circumventing this problem.
It can be used to obtain a low-level implementation of a compiler from a verified
compiler specification. This approach is complementary to a method that has been
suggested elsewhere [4]. By combining the approaches, the probability that the
resulting compiler is incorrect can be reduced further.

The remainder of this paper is structured as follows. In Section 2 we discuss
various ways that correct object code can be obtained, and suggest that verified
compilers offer the most attractive solution in the long term. In Section 3 we
discuss how the compiler correctness problem can be split into compiler specification
correctness and compiler implementation correctness. In Section 4 we discuss various
ways in which a correct compiler implementation can be obtained from a correct
specification. In particular we describe how an algorithmic compiler specification
can be executed securely using a theorem proving system such as HOL. We also
discuss how this slow but secure compilation method can be used in conjunction with
fast but insecure production compilers so as not to slow the application program
development cycle. If the production compiler is used widely this can also increase
our confidence in the final code. In Section 5 we discuss a method which has
been previously suggested for bootstrapping a correct compiler implemented in a
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Figure 1: Alternate ways of Obtaining Validated Object Code

low-level language, without already possessing one. We then describe how executing
a verified compiler specification using a theorem prover gives an alternative, though
complementary way of achieving the same end. Finally, in Section 6, we summarise
the work and draw conclusions.

2 Why Compiler Verification is Important

Formally verified object code can be obtained in several ways (see Figure 1).

o The program can be written and verified in the object language.

o The program can be written in a high-level language, but verification

performed on the compiled code.

e The program can then be written and verified in a high-level language and
then formally shown to be equivalent to the compiled code in a one-off proof.

If the program is written in a low-level language the advantages of high-level
Mistakes are easy to make and hard to find. Formal
verification of low-level code is much harder than for high-level programs. Much
research has been undertaken concerning the verification of both machine code and
microcode. Such systems can be divided into those that perform verification on
mnemonic assembly language programs and those which use a bit-representation of

programming are lost.

the code.

The compiler can be verified. The program can then be written and verified
in a high-level language.




The assembly language systems have typically followed Floyd’s approach to
program verification [16] modified to deal with low-level code. They provide a
verification condition generation program which embodies the semantics of the
assembly language. Maurer [25, 26] used this approach to verify IBM 370 code and
code for the Litton C4000 airborne computer. Lamb also used it in his Intel 8080
Assembly Language Verifier [24]. More recently it has been embodied in the SPADE
verification environment. SPADE has been used in the verification of assembly code
for the Intel 8080 [10], and also of Z8002 code used in the fuel control unit of the
RB211-524G jet engine [29].

Verification of bit-level code has typically been based around an operational
semantics of the host machine and the use of formal symbolic simulation techniques.
MCS was an early system which took this approach. It was used to verify production
code for the NASA Standard Spaceborne Computer-2 [8]. A hybrid approach using
verification condition generation techniques to verify bit-level microprograms has
also been suggested [13].

To retain the advantages of high-level programming, but ensure that the object
code itself is validated, the program can be written in a high-level language, and
validation of the resulting compiled code performed. This is the normal procedure
when testing is the validation method used. An advantage is that industrial
strength compilers can be used, so the efficiency of the object code does not
need to be compromised for the sake of correctness. However, as noted above,
it is harder to perform formal verification on object code than on a high-level
program. The situation is made worse because the object code is machine generated.
Understanding why it is expected to be correct, a prerequisite for formal verification,
is much harder especially if an optimising compiler is used. This approach was
adopted by Boyer and Yu [3]. They verified compiled C and Ada code for the
MC68020 microprocessor. Their methodology was to compile the source code using
an industrial strength compiler and verify the resulting object code. This was done
by first writing a second algorithmic version of the program in the Boyer—-Moore
logic. The algorithm was effectively a functional version of the program. This was
verified to be equivalent to the object code. The algorithm was then shown to be
correct. Applying formal methods directly to object code can have advantages in
that stronger properties of the program may be provable than when verifying a
high-level program. For example, it is easier to reason about timing properties at
this level.

If the problems of verifying low-level code are to be avoided, a method of
converting correctness theorems about source programs to correctness theorems
about object code must be devised. One way this may be done is by formally
proving that the source program of interest is equivalent to the compiled code in
a one-off proof. Validation can then be performed on the source program and the
result will be applicable to the object code. This approach has the disadvantage
that, in addition to a correctness proof, an equivalence proof must be performed
for each program. Also such equivalence proofs are not necessarily straightforward.
Knowledge of how the object code implements the source program is again needed.
This problem is similar to that encountered in the approach of Boyer and Yu of
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showing that object code is equivalent to an algorithm. However, here it is more
difficult as the semantics of the source language are unlikely to be as clean as the
pure logic used to describe the algorithm. Shepherd [35, 36] adopted an approach
similar to this to verify microcode for the IMS T800 floating point Transputer.
The intended methodology was to prove correct a high-level Occam implementation
of a program then use the Occam transformation system to produce an equivalent
microcode version. The microcode version was still an Occam program but matched
the micro-machine functions. The transformation system was based on the algebraic
semantics of Occam. The transformations were chosen by the user, with the system
ensuring they were correctly applied. In practice, for each transformation step an
implementation was proposed and then transformed backwards into the higher level
version.

Repeated equivalence proofs such as the above can be avoided by formally
verifying the compiler itself. Source programs can be formally verified and these
results apply to object code produced by the verified compiler. A single proof (that
of the compiler) is sufficient to show that all object programs produced using the
compiler correspond to their source programs. However, formally verifying a real
compiler for a high-level language is difficult. Also, care must be taken that the
compiler correctness theorem proved is sufficient to ensure that the results really do
apply to the low-level code.

For small projects the cost of verifying a compiler might outweigh the benefits.
For example, if only a few programs are safety critical, it might be better to use
one of the other methods. However, in the long term, the use of formally verified
compilers will be of more use.

There has been interest in formally verifying compilers from the early days of
verification technology, the first work being that by McCarthy and Painter [27] in
1966. Since then many different techniques have been used. However, there are
as yet no formally verified commercially available compilers for real languages. A
good overview of the compiler verification literature is given by Joyce [23]. Notable
work, includes that of Polak [31] on a compiler for a Pascal-like language, and the
Piton and Gypsy compilers which form part of Computational Logic’s verified stack
of system components [28, 38].

The majority of compiler correctness work has been concerned only with the
correctness of code generators. Exceptions to this include Polak’s work [31] and that
of Chirica and Martin [9] where aspects of compiler front ends are also considered.
There has also been isolated work on the formal verification of the front ends of
compilers, notably parsers [12, 11, 17]. The need for a front end can be removed
if the abstract syntax used is in a sufficiently readable form. For example, the
LISP-like concrete syntax of Piton is also its abstract syntax. Programs are both
written and accepted by the verified code generator in this form. We will only be
considering code generation correctness in the remainder of this paper.
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Figure 2: An Abstract Specification of Compiler Correctness

3 Compiler Specifications

A compiler (the code generation part at least) must produce object code whose
meaning corresponds to that of the source program. An abstract compiler
specification can be given in terms of the source and object language semantics.
Informally, a compiler will be correct if the meaning of every source program is
related to the meaning of the object code resulting from compiling it. More formally,
a compiler must fulfil an abstract specification of the form below.

AbstractCompilerSpec compiler =
Vp. Compare (SourceSemantics p)
(ObjectSemantics (compiler p))

SourceSemantics gives the semantics of the source language, ObjectSemantics
gives the semantics of the target language and Compare relates semantics of the two
forms. The argument compiler is a compiler from the source language to the target
language. This form of specification is illustrated in Figure 2.

Many different object programs will be suitable as an implementation of a given
source program. An algorithmic compiler specification is a function which specifies
a particular object program for each source program. It specifies a compiling
algorithm. To take a simple example, if we assume the target language has
conditional branch and unconditional goto instructions, the algorithm might specify
that a source language While command is translated as follows.

WHILE <test> begin: <test>
DO BRANCH end
<beody> — <body>
oD GOTO begin
end:

An algorithmic specification is normally given in a particular logic, such as the
Boyer-Moore logic or higher-order logic. An algorithm can be shown correct with
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respect to the abstract specification. That is, it can be proved that the semantics
of source programs is preserved in the code that the algorithm specifies should
be produced. By far the majority of compiler correctness work described in the
literature is concerned with this form of correctness, termed compiler specification
correctness.

Given the object code that a compiler must produce for a particular source
program, there are many different ways it could be produced. A compiler
implementation is a concrete program which produces the object code. It specifies
not only what the object program should be, but also how it is produced. The
implementation is given in a programming language, that is, an executable language.
A compiler implementation can be verified against either an algorithm or an abstract
specification.

Ultimately, we wish to know that an implementation preserves the semantics
of the source language. This suggests we should verify it against the abstract
specification. This was the approach adopted by Polak [31]. However, a simpler
alternative is to use a verified algorithm as a refinement step towards obtaining a
verified implementation (see Figure 3). The algorithm is first shown to satisfy the
abstract specification. Next the implementation is shown to satisfy the algorithm.
It can then be deduced that the implementation satisfies the abstract specification.
This split of the problem is similar to that used by Boyer and Yu to verify
machine code programs [3]. A similar split has also been used in the verification of
protocols [7].

Proving that an algorithm satisfies an abstract specification is simpler than
proving that the implementation does. This is because the semantics of the
implementation language does not need to be considered in the reasoning. Instead
we reason about the logical constructs of the algorithm. When comparing the
implementation with the algorithm, the semantics of the programming language in

7




Object

Syntax
Compiler
Implementation
Equal
Compiler
Algorithm .
Source 8 Object
Syntax Syntax
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which the compiler is implemented must be considered. However, here the semantics
of the source and target languages of the compiler do not need to be considered. Only
their syntax is important. What is required is that the implementation produces
syntactically the same program as indicated by the specification. This approach was
followed by Chirica and Martin [9], Simpson [37] and Buth et al. [4]. It is illustrated
in Figure 4.

We thus prove the following about the algorithm:

F AbstractCompilerSpec CompilerAlgorithm

and about the implementation

F Vp. CompilerImpl p = CompilerAlgorithm p

Combining these we obtain the required theorem as illustrated in Figure 5:

F AbstractCompilerSpec CompilerImpl

Splitting the proof into two parts in this way not only simplifies the programming
and verification task, but also allows proofs to be reused. If different implemen-
tations of the same specification are produced, only the compiler implementation
correctness theorem needs to be reproved. The compiler specification theorem can
be reused. Of course, the new compiler will have to generate the same code as the
old one to fulfil the specification. However, the compiler itself can be more efficient,
or contain better error detection. Some flexibility may be left by making the algo-
rithmic specification non-deterministic. However, leaving such choices open to the
programmer may make the compiler specification proof harder. It also has disad-
vantages if we wish to execute some form of the specification as discussed later. It
is therefore advisable to use a deterministic specification when verifying a particu-
lar implementation. This does not preclude verifying the deterministic specification
against a more general non-deterministic one. We would then have three refinement
steps as shown in Figure 6.
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4 Implementations from Specifications

In this section we discuss different ways that relatively secure implementations of
compilers can be obtained from a verified algorithm. In particular we suggest that
execution by proof provides a convenient and secure method of obtaining compiled
code.

The implementation can be informally developed in any suitable programming
language, with the algorithm being the specification that the programmer works
from. Having a formal specification of a programming problem is good in its own
right. This is an area where formal methods are already proving themselves to be of
use in industry. For example, Z and VDM are widely used. Producing correct formal
specifications is difficult. Specification errors account for most of the bugs in code.
Thus, possessing a verified specification is of great use when implementing a compiler
even if the implementation is not then formally verified. It gives an unambiguous
and correct description of the code that must be produced by the compiler. A
verified compiler specification can help the programmer avoid introducing bugs.

If a proof theory is available for the implementation language, then a standard
program correctness proof can be performed, using the verified algorithm as the
specification. This is a very secure way of obtaining an implementation. However,
implementation verification can be time-consuming. It may be that time constraints
do not permit an implementation correctness proof to be performed. We therefore
consider other approaches.

If the algorithm is given in an executable language, the distinction between an
algorithm and an implementation is blurred. When this is so, the algorithm itself can
be used as a concrete compiler. The work done at Computational Logic Inc. where
the Boyer-Moore logic was used is a case in point[28, 38]. The Boyer-Moore logic
is a first-order, quantifier-free logic resembling pure Lisp and hence is executable.
The Boyer-Moore theorem prover contains an interpreter for the logic which can be
used to execute specifications. Thus, verified compiler specifications can be used to
do compilation. For more expressive logics which are not executable, it may still be
possible to write an interpreter for an executable subset. Algorithms specified using
the subset can then be executed. A potential source of insecurity in this approach
is that the interpreter or compiler for the logic may not be correct. It may give a
different semantics to the logic. Thus a verified implementation of the logic is ideally
required.

Alternatively, it might be possible to rapidly prototype a specification in a
non-executable logic by translating it into a similar but executable language.
In the field of hardware behavioural specifications, Albert Camilleri showed
that specifications in higher-order logic can be automatically translated into the
functional programming language HOL ML and so simulated [5]. Hall and Windley
[21] have adapted this approach to allow microprocessor specifications to be
executed. Rajan also uses similar techniques to automatically translate general
deterministic higher-order logic specifications into HOL ML code [33]. A verified
compiling algorithm for a subset of Vista [14] is being used as a case study to test this
tool [34]. In this approach, the potential sources of insecurity are in the correctness of
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the translator and the correctness of the implementation of the simulation language.

If the implementation language has a close syntactic correspondence with the
logic, errors in the translation process can be reduced. Also, there is a greater
chance that any errors that do occur will be detected by a visual comparison of
the specification and its translated form. For example, a specification written in a
subset of higher-order logic can be identified with an implementation in Standard
ML. This was the approach taken by Aagaard and Leeser [1]. They verified a
higher-order logic specification of a logic synthesis tool using Nuprl. It was also
implemented in Standard ML using corresponding definitions. In some cases the
definitions required by Nuprl were in a different form to that required by Standard
ML. Theorems corresponding to the Standard ML style definitions were therefore
proved from the Nuprl definitions. The insecurity of this approach is that the
semantics of the logic and language may not be the same, even though their syntax
is. This can impart a false sense of security about the resulting implementations.
For example, as noted by Aagaard, Standard ML and higher-order logic do not
match exactly since the former is an eager language whilst the latter is lazy.

We illustrate the translation approach with a simple example: the definition of
a list APPEND function. Definitions in HOL higher-order logic, Standard ML and
HOL ML, respectively, are given below.

|- ('1. APPEND [] 1 = 1) /\
('11 12 h. APPEND (CONS h 11) 12 = CONS h(APPEND 11 12))

fun APPEND [] 1 =1 |
APPEND (h :: 11) 12 = h :: (APPEND 11 12)

letrec APPEND =

fun [1 . (\1. 1) |
(h . 11) . (\12. (h. (APPEND 11 12)))

The main difference between the higher-order logic and Standard ML definitions
is in the syntax of the CONS constructor which is a prefix operator in HOL and
infix in Standard ML. The HOL ML syntax differs even more. Because the pattern
matching mechanism is not so general, lambda expressions (\) are used for the
second argument. This makes it much harder to visually confirm that it is the same
function as the higher-order logic one.

Alternatively, an executable specification language can be semantically embed-
ded in a non-executable logic. That is, the semantics of an executable language can
be defined within the logic. Language terms then have the same semantics as the
logic equivalent. The compiler can then be specified in that language, and so be
executable. Since the underlying logic is still the original logic, the theorem proving
tools associated with it can still be used. Sufficient proof infrastructure, such as
derived inference rules would have to be developed to allow proofs in the embedded
language to be naturally performed. Such semantic embedding has been done for
several specification languages in HOL, such as linear temporal logic [22], and VDM
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style specifications [20]. Aagaard’s work, described above, essentially involved em-
bedding Standard ML in Nuprl. Since Standard ML is so similar to higher-order
logic little work was needed to define the semantics. Such semantic embedding has
also been used in the field of hardware verification. Subsets of the languages ELLA,
VHDL and SILAGE, for which simulators are available, have been semantically em-
bedded in higher-order logic [2]. Also when performing a compiler correctness proof,
the semantics of the source and target languages must be defined: that is they are
semantically embedded in the logic. Semantic embedding removes the insecurity
of translating between the logic and specification language, though the possibility
of an incorrect implementation of the simulation language remains. Of course, if
the language which is embedded has a complex semantics such as a programming
language, the advantages of having a separate algorithmic specification are lost.

A more secure approach is to use formal proof to perform the compilation [15].
This is done by taking the definitions of the compiler, specialising the appropriate
variable with the program to be compiled and performing rewriting until target code
is obtained. It can be done automatically using a mechanized proof assistant such
as HOL. This means that the actual definitions that have been verified are executed.
As a side effect a theorem is obtained stating that applying the algorithm to the
source program yields the compiled code.

F FunctionalCompilerSpec SourceProgram = CompiledCode

The approach can be illustrated again using the definition of APPEND given earlier.
In the following we use the standard bracketed notation for lists. For example, [1;
2] is an abbreviation for CONS 1 (CONS 2 []).

Suppose we wish to execute APPEND applied to the lists [1; 2] and [3; 4].
Initially, the variables 11, 12 and h in the second clause of the definition of APPEND
are specialised with [2], [3;4] and 1, respectively. This gives the theorem:

F APPEND [1; 2] [3; 4] = CONS 1 (APPEND [2] [3; 41)

In a similar way we can also obtain the theorem:

F APPEND [2] [3; 4] = CONS 2 (APPEND [] [3; 41)

We can use this to rewrite the first theorem giving:

F APPEND [1; 2] [3; 4] = CONS 1 (CONS 2 (APPEND [] [3; 41))

Next, we specialise the first clause of the definition of APPEND with the list [3;4] to
give the theorem

t APPEND [1 [3; 4] = [3;4]
Rewriting the previous theorem with this we obtain the desired theorem:
F APPEND [1; 2] [3; 41 = [1; 2; 3; 4]
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This tells us that the result of executing APPEND with these values is the list [1; 2;
3; 4].

We can use the same tool to perform symbolic execution. For example, we can
obtain a theorem containing variables in place of the numbers. The theorem holds
for all values of the variables:

F APPEND [m; n] [p; ql = [m; n; p; ql

Similar tools can be built for any HOL definition and in particular for those
of a compiler algorithm. The tools used to perform execution of definitions in
this way are conversions [30]. Given a term in the logic they return a theorem
expressing an equality between that term and another. Various tools are available in
HOL for creating rewriting conversions for a particular definition and for combining
conversions. Thus tools for executing compiler definitions are straightforward to
build. Further, they can be built compositionally. If conversions are written to
execute definitions that are used in a later definition, an execution conversion for
the later definition can be obtained by combining the original conversions. For
example, a tool to compile programs by proof can be built from previously written
tools to compile declarations and commands by proof. Such tools are of more use
than just executing the verified compiler algorithm. They can also be used to test
the definitions prior to verification and to generate theorems which will be of use
when verifying the algorithm.

Juanito Camilleri has used this technique very successfully to simulate the
definitions of a compiler for an Occam subset [6]. Valuable feedback was obtained to
help ensure the definitions were correct before verification was attempted. Goossens
[18] has also used execution by proof, though to simulate hardware designs and
in combination with semantic embedding. The hardware description language
picoELLA was semantically embedded in higher-order logic. The LAMBDA theorem
prover was then used to execute designs written in picoELLA.

Execution of a verified algorithm by proof is very secure. The actual definitions
rather than some translated form are executed. Also the problem, encountered when
using a programming language to execute the definitions, of a mismatch between the
semantics of the logic and that of a programming language is avoided. The only point
of insecurity in this methodology is in the theorem prover itself. A faulty theorem
prover could incorrectly rewrite the compiler definitions, producing incorrect target
code. In a system such as HOL, the execution strategy is the application of primitive
inference rules and axioms of the logic. Type checking ensures that the system
only accepts valid theorems as theorems. The tool programmer cannot make
programming mistakes which cause incorrect compilation to occur. If a theorem
of the above form is obtained it must have been produced using primitive inference
rules. It must really be a theorem about the algorithmic specification. The compiled
code can only be wrong if there is a mistake in the few basic primitive inference rules
of the system or in the type-checker. The kernel of such a system which must be
secure is thus small. All proofs using the system are dependent on the correctness of
this kernel. Therefore, if the theorem prover is used widely for formal proof, as is the
HOL system, these mechanisms are widely tested. Furthermore, the theorem prover
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is already being used to obtain the compiler correctness theorem. The compiled
code can be trusted to the same degree as the correctness proof itself. If the proof is
to be trusted effort must already be expended in ensuring that the theorem prover
is sound. No additional validation overhead is incurred by compiling programs in
this way. Further confidence can be obtained by performing the compilation using
different implementations of the theorem prover and comparing the results.

In fact, in the process of proving that the algorithm is correct, we also increase
our confidence that this execution strategy is correct. In doing a compiler correctness
proof the same reasoning is used as when “executing” the compiler. To prove that the
compilation of a particular command is correct, the compiler definition is rewritten
until target instructions are obtained. The semantics of the resulting code is then
compared with that of the original code. We can use the same tools as used to
execute the code to do this. Thus if there is an error in the theorem prover that
means the wrong code is produced it is likely that it would also have caused the
compiler proof to fail. If not then it suggests that the “wrong” code has the right
semantics. The code is, if not the desired code, still correct. Alternatively, it
could mean there is a further error in the proof which nullifies the original error.
Since this means the correctness proof is invalid, code from a compiler satisfying
the specification can not be relied on whatever means were used to produce it.
Thus lemmas used in the correctness proof are also indirectly correctness results
stating that the execution strategy produces correct code. Whilst this increases our
confidence in the code, it is not a firm guarantee, since the lemmas will only be
about fragments of code. They are also symbolic.

For example, to prove that the translation of a simple form of assignment
command is correct, we first obtain a theorem of the form:

t Compile env (a := e) = STORE (TransVar env a) (TransExp env e)

This states that executing an assignment in some environment env yields a STORE
instruction of the value obtained by translating the expression e to the location
obtained by translating the variable a. If the theorem prover is faulty and, for
example, instead generates the “theorem” below, the remainder of the correctness
proof should fail. This “theorem” suggests that the compiled code is a jump.
However, the semantics of the jump do not correspond to that of the assignment.

F Compile env (a := e) = JMP 0

The correct theorem above is symbolic. It does not tell us about the execution
of expressions, for example. However, similar theorems are also used to prove the
correctness of expressions, so their execution is also checked. Even so, a problem
could arise if the execution strategy fails due to an interaction between expression
and command translation.

Whilst being a relatively secure method of compilation, execution by proof is
very slow. Using it to compile large programs during the development cycle is
infeasible. However, at this stage a secure compiler is not essential. An insecure but
fast compiler can be used for development, with the specification being executed
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just once to produce the final production code. Use of an insecure compiler during
development has advantages other than speed. It could include much more complex
error detection, reporting and recovery facilities, for example. The secure compiler
is restricted to the safety critical core, thus simplifying its validation.

A problem with using an insecure compiler for development is that the verified
compiler is only used for producing the final production code. The extra confidence
in the verified compiler which would otherwise be achieved by large use, is lost.
However, if on the production run the compiled code from the verified compiler is
found to be syntactically identical to that produced by the insecure compiler, the
extra assurance is retained (see Figure 7). Indeed, if the production compiler is
largely trusted due to its wide-use, possibly outside safety critical situations, this
combined use actually increases our confidence in the correctness of the final code. A
question arises over what to do if the results are different. Both compiled programs
could still be correct—for example, they could have just identified a variable with
different locations. This would almost certainly arise if the production compiler was
taken off the shelf and not developed with the specification in mind. If, however,
the secure compiler was used as the specification of the insecure one when the latter
was developed, the difference is a failure of the compiler to meet its specification. It
is indicative of a bug that needs to be fixed. Note that using the secure compiler as
the formal specification during the development of the insecure one does not imply
that the insecure one has to be formally verified. Validation can also be targeted
at any differences found between the results of the compilers to determine whether
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they are critical.

Comparing the code output from different compilers can also be used as a check
on the security of implementations produced in the other ways suggested above. For
example the code produced by a compiler rapidly prototyped from the specification,
is a source of correct results with which to test a production compiler.

A further problem is that a user could gain confidence in the correctness of
an incorrect program from testing with an incorrect compiler implementation. The
production code produced using a secure compiler would then not have the expected
properties. Even if the application program had been verified this might occur due
to the formal specification of the application program being too weak. This problem
can easily be removed if all the tests performed on the insecure code are rerun on
the final production code. This ensures that the confidence in the insecure code
gained from testing is not lost to the secure version. Comparing the text of the
programs obtained with the secure and insecure compilers would also suffice. If
they are identical, then the verification and test results apply to both compilers for
that program.

5 Bootstrapping a Correct Implementation

Suppose we have verified a compiler specification, and have written an efficient
implementation of it in a high-level language. Suppose also that we have verified our
implementation against the specification, so we are happy that the implementation
is correct. We still have a problem. To execute the implementation we must compile
the high-level program into a low-level language. It is the low-level version which
we will actually execute. We need a verified compiler before we can obtain our
verified compiler implementation in the low-level language! How do we obtain the
first verified compiler to start the process?

The first secure compiler could be obtained using one of the other methods
suggested in Section 2: it could be written and verified in a low-level language; the
program could be compiled into an assembly language for which there is an available
proof theory; or a one-off proof of correctness between the compiler’s source and
target code could be performed. These approaches entail a significant amount of
work. A better solution is available, however. It is possible to bootstrap a secure
compiler by implementing it in the source language it compiles. Buth et al. [4]
suggest compiling the compiler using a possibly insecure compiler that is already
available. Even if that compiler has not been verified, a great degree of confidence
can still be obtained in the resulting code using a bootstrap self-test. The low-level
version of the compiler that is produced by the insecure implementation can be used
to recompile the high-level version a second time (see Figure 8). The resulting code
should be identical to that produced by the insecure compiler. The probability that
they produce the same incorrect code is very small. It would require that the bug
in the host be such that it implants an identical bug in the target code.

An alternative is to use the compiler specification as the first verified compiler.
Buth et al. [4] suggest manually applying the specification definitions to execute
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the compiler. As they point out this is intractable due to the large size of
the specification and implementation. However we have already seen in the
previous section that we can use a theorem prover to execute the specification
securely. Furthermore, we need only do this once and then we will have a verified
implementation in a low-level language which we can use for further compilations.
It can then be used as the compiler to produce verified compiler implementations
for other languages.

Since the source text is a verified source text this gives greater assurance than
just using an insecure compiler. Only the execution mechanism is insecure. As noted
previously the execution strategy can be trusted at least to the same degree as the
proof of correctness of the compiler. To gain even more confidence in the code the
specification can be prototyped in one or more of the other ways suggested, such as
automatically producing a functional language version. The resulting code can then
be compared. The two versions originate from the same verified source program:
that of the compiler specification. However, they use completely different execution
strategies: application of primitive inference rules and interpretation of a functional
language. These execution environments are unlikely to introduce the same bug.
Therefore if they produce the same code for the compiled compiler, then it is highly
likely to be correct.

The above two methods are complementary, since execution by proof can be seen
as providing just another possibly insecure compiling mechanism (albeit one that is
more secure than other methods). We can apply the compiled code obtained from
executing the specification to the source code to give a second version. Once more
the resulting code should be identical. This approach is illustrated in Figure 9.

Buth et al. also note that an interpreter implementation can be bootstrapped
in a similar way. This then gives further tests of equality of different bootstrapped
code such as comparing the code produced by the interpreter and that produced by
the low-level version of the compiler when applied to the compiler.

6 Conclusions

Verifying a compiler implementation can best be done by splitting the task into
specification correctness and implementation correctness. That is, we first verify
an algorithmic version. We then show that the implementation is correct with
respect to the algorithm. These two proofs can be combined to give the required
correctness theorem about the implementation. In the specification correctness proof
the correspondence between the semantics of the source and target language are
considered. This is simplified because the compiler specification is given in a logic
with clean semantics. Implementation details do not need to be considered. In
the implementation correctness part of the proof, the implementation is compared
with the specification. The details of the semantics of the programming language in
which the compiler is implemented must be considered. However, the semantics of
the source and target languages of the compiler do not need to be considered. Only
their syntax is important.
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Implementations are easier to verify if they have a structure close to that of the
algorithm. This also makes it easier to write a correct implementation in the first
place. If the algorithmic specification does not have the structure intended to be used
for the implementation, a second specification should be given with an appropriate
structure and shown correct with respect to the original, since specifications are
easier to reason about than implementations.

If two different compilers are produced to meet the same specification, whatever
the method, a useful check on their security can be made by running both on the
program in question and comparing the results.

Once a compiler algorithm has been verified, it can be used to produce high
assurance implementations in various ways other than by verifying it against an
implementation: the algorithm may be executable itself; it might be automatically
converted to an executable language; it might be written in an executable language
that is semantically embedded in the logic of the theorem prover; or it might be
automatically executed by theorem proving giving as a side effect a theorem stating
that compiling the source code gives the target code. The latter method is secure
but slow. However, it can be used in conjunction with a fast but insecure production
compiler so the development cycle is not hindered. This can also increase our
confidence in the correctness of the compiled code.

If an implementation of the compiler in the compiler’s source language is verified
against the algorithm, then a secure implementation in a low-level language can
be bootstrapped from it either using an insecure compiler or by executing the
specification in the theorem prover. These two approaches are complementary.

Unfortunately, “million-to-one chances crop up nine times out of ten” [32]. Our
confidence that the bootstrapping approaches give correct code relies on intuitive
arguments that the probabilities of particular events are negligible and that different
methods are independent and so will not introduce the same bug. Such arguments
can turn out to be fallacious such as the once held belief that code written by
independent programming teams would not contain identical errors. In practice it
often turns out that they do because their past experiences are not independent.
Even if the probability of errors being missed via one method is thought to be low,
combining complementary methods can only help.

The fact that a compiler correctness theorem has been proved, whether by hand
or by machine, does not give a guarantee that absolute faith can be placed in the
compiler. Hand proofs often contain mistakes. Theorem provers can contain bugs.
Even if the theorem is valid, it may not describe the real world sufficiently accurately.
Correct code produced by the compiler might be corrupted before it is executed;
the wrong version of the code might be used or the code might be loaded to the
wrong location. Problems such as these correspond to the explicit assumptions in
the correctness theorem not being adhered to. Alternatively, implicit assumptions
might be invalid. For example, the semantics of the target machine used in the
proof might not correspond to the actual semantics of the machine used. Also,
the correctness theorem might simply be inadequate. For example, it might not
guarantee that execution of the compiled code terminates when the source program
does. It might merely state that if the compiled code did terminate it would have
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the same meaning as the source program.

Some of these problems can be alleviated by proving other theorems. For
example, a loader to be used with the compiler could be verified. Similarly the
correctness theorem could be combined with other theorems about the correctness
of the hardware with respect to the semantics. It could also be proved using the
compiler correctness theorem that if the source code is totally correct so is the
compiled code. However, at some point we move from the mathematical world into
the real world. It is always possible that the models we have reasoned about do
not correspond to reality to a sufficient extent. The main advantage of performing
verification is that it forces us to thoroughly examine the system in question and
the reasons we believe it to be correct.
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