
Set Theory as a Computational Logic:
I. From Foundations to Functions∗

Lawrence C. Paulson
Computer Laboratory

University of Cambridge

4 November 1992

Abstract

Zermelo-Fraenkel (ZF) set theory is widely regarded as unsuitable for au-
tomated reasoning. But a computational logic has been formally derived from
the ZF axioms using Isabelle. The library of theorems and derived rules, with
Isabelle’s proof tools, support a natural style of proof. The paper describes
the derivation of rules for descriptions, relations and functions, and discusses
interactive proofs of Cantor’s Theorem, the Composition of Homomorphisms
challenge [3], and Ramsey’s Theorem [2].

Copyright c© 1992 by Lawrence C. Paulson

∗Research funded by SERC grant GR/G53279 and by the ESPRIT Basic Research Action 3245
‘Logical Frameworks’. Isabelle has enjoyed long-standing support from the British SERC, dating
from the Alvey Programme (grant GR/E0355.7).

Contents

1 Introduction 1

2 Isabelle 1

3 Set theory 3
3.1 Which axiom system? . 4
3.2 The Zermelo-Fraenkel axioms in Isabelle 4
3.3 Natural deduction rules for set theory 5
3.4 A simplified form of Replacement . 6
3.5 Functional Replacement . 6
3.6 Separation . 7

4 Deriving a theory of functions 7
4.1 Finite sets and the boolean operators 7
4.2 Descriptions . 8
4.3 Ordered pairs . 8
4.4 Cartesian products . 9
4.5 Relations and functions . 10

5 Examples of set-theoretic reasoning 12
5.1 Injectivity of ordered pairing . 12
5.2 Cantor’s Theorem . 14
5.3 Composition of homomorphisms . 15

6 Ramsey’s Theorem in ZF 18
6.1 The natural numbers in Isabelle’s set theory 18
6.2 The definitions in ZF . 19
6.3 Cliques and independent sets . 20
6.4 Cardinality . 20
6.5 Ramsey’s Theorem: the inductive argument 21
6.6 Discussion and comparison . 21

7 Previous work using Isabelle 24
7.1 Definitions and natural deduction . 24
7.2 Descriptions . 25
7.3 Tool development . 25

8 Conclusions 26

1 INTRODUCTION 1

1 Introduction

A great many formalisms have been proposed for reasoning about computer systems:
Hoare logics, modal/temporal logics, constructive logics, etc. Some are designed to
handle the needs of a specialized problem domain. Others are designed for ease of
implementation; consider the highly successful Boyer/Moore logic [4], which consists
of a quantifier-free first-order logic augmented with carefully chosen principles of
recursion.

Specialized logics often have limited expressive power. Since there is no clear
dividing line between computational reasoning and arbitrary mathematics, perhaps
we should adopt a fully general mathematical formalism — one that has no difficulty
with concepts such as infinite objects, equivalence classes or sets of functions. A
general formalism may seem impossible to implement effectively, the more so if it
must compete with other logics in their specialized domains. But M. J. C. Gordon’s
work demonstrates that higher-order logic, which is a general formalism, can be
applied successfully to specialized domains such as hardware verification [6, 7].

Axiomatic set theory is older and more general than higher-order logic. Can
it be used for verification? Set theory is commonly regarded as unworkable. Yet
Noël [10], Quaife [18] and Saaltink [20], in their different ways, show that complex
set theory proofs are possible. Such work seems to require great care and effort; the
next step is to make the proof process easy.

The drawbacks of set theory are well known. It is extremely low-level, with
strange definitions like 〈a, b〉 ≡ {{a}, {a, b}} and 3 ≡ {0, 1, 2}; and since it has no
form of information hiding, it admits strange theorems like {a} ∈ 〈a, b〉 and 2 ∈ 3.
But to compensate, set theory has tremendous expressive power. Its basic concepts
are few and are widely understood.

Finally, set theory has no type checking — every object is a set — while higher-
order logic has infinitely many types. This is the clearest difference between the two
formalisms. Whether type checking is bad or good is perhaps a matter of taste, just
as it is with programming languages.

The paper proceeds as follows. The next two sections introduce Isabelle and
axiomatic set theory. Further sections sketch the Isabelle development of basic
concepts such as relations and functions. Next come interactive proofs of three
small examples: ordered pairing, Cantor’s Theorem, and the Composition of Homo-
morphisms challenge [3]. Ramsey’s Theorem, a more realistic example, permits a
comparison between Isabelle and other theorem provers [2]. The remaining sections
discuss related work and draw conclusions.

2 Isabelle

The formalization and proofs discussed below have been done with the help of Isa-
belle, an interactive theorem prover [14]. Isabelle is generic: it supports a range
of formalisms, including modal, first-order, higher-order, and intuitionistic logics.
Isabelle’s generic capabilities are vital for using set theory, whose axioms are far too

2 ISABELLE 2

low-level for most proofs. Isabelle’s version of set theory includes derived theories of
relations, functions and type constructions, which can be regarded as logics in their
own right. These theories exploit Isabelle’s treatment of syntax, variable-binding
operators, and derived rules.

Isabelle works directly with schematic inference rules of the form

[[φ1; . . . ;φn]] =⇒ φ.

Rules are combined by a generalization of Horn clause resolution. Theorems are
proved not by refutation, but in the affirmative. Joining rules by resolution con-
structs a proof tree, whose root is the conclusion.

Such rules are theorems of Isabelle’s meta-logic, which is a fragment of higher-
order logic. The symbol =⇒ is meta-implication; the notation [[φ1; . . . ;φn]] =⇒ φ
abbreviates

φ1 =⇒ (· · · =⇒ (φn =⇒ φ) · · ·).
The symbol

∧
is another meta-connective, a universal quantifier, for expressing

generality in rules. The symbol ≡, which is meta-equality, expresses definitions.
Elsewhere [12] I discuss how to formalize object-logics in the meta-logic, and how
to prove that the formalization is correct.

Expressions in the meta-logic are typed λ-terms, and λ-abstraction handles an
object-logic’s quantifiers and other variable-binding operators. The presence of λ-
terms means that Isabelle cannot use ordinary unification. Higher-order unifica-
tion is undecidable in the general case but works well in practice — particularly for
enforcing quantifier rule provisos of the form ‘x not free in . . . ’ [12].

For backward proof, a rule of the form [[φ1; . . . ;φn]] =⇒ φ can represent a proof
state; the ultimate goal is φ and the subgoals still unsolved are φ1, . . . , φn. An
initial proof state has the form φ =⇒ φ, with one subgoal, and a final proof state
has the form φ, with no subgoals. The final proof state is itself the desired theorem.

Tactics are functions that transform proof states. A backward proof proceeds
by applying tactics in succession to the initial state, reaching a final state. The
tactic resolve_tac performs Isabelle’s form of Horn clause resolution; it attempts
to unify the conclusion of some inference rule with a subgoal, replacing it by the
rule’s instantiated premises. This is proof checking.

Isabelle also supports automated reasoning. Each tactic maps a proof state to a
lazy list of possible next states. Backtracking is therefore possible and tactics can
implement search strategies such as depth-first, best-first and iterative deepening.
Tacticals are operators for combining tactics. They typically express control struc-
tures, ranging from basic sequencing to search strategies. Isabelle provides several
powerful, generic tools:

• The classical reasoner applies naive heuristics to prove theorems in the
style of the sequent calculus. Despite its naiveity, it can prove many nontrivial
theorems, including nearly all of Pelletier’s graded problems short of Schubert’s
Steamroller [17]. As an interactive tool it is valuable. It is not restricted to
first-order logic, but exploits any natural deduction rules. It can prove several
key lemmas for Ramsey’s Theorem [2].

3 SET THEORY 3

• The simplifier applies rewrite rules to a goal, then attempts to prove the
rewritten goal using a user-supplied tactic. A conditional rewrite rule is ap-
plied only if recursive simplification proves the instantiated condition. Con-
textual information is also used, rewriting x = t → ψ(x) to x = t → ψ(t).
Rewriting works not just for equality, but for any reflexive/transitive rela-
tion enjoying congruence laws. Used with the classical reasoner, it can prove
Boyer et al.’s challenge problem, that the composition of homomorphisms is a
homomorphism [3].

Isabelle does not find proofs automatically. Proofs require a skilled user, who must
decide which lemmas to prove and which tools to apply. Each tool must be given
a set of appropriate lemmas. For instance, the proof about composition of homo-
morphisms requires lemmas about the composition of functions. Sometimes no tool
is appropriate and we must use proof checking; even these proofs can be concise if
they exploit derived rules and tacticals.

3 Set theory

Axiomatic set theory was developed in response to paradoxes such as Russell’s. Sets
could not be arbitrary collections of the form {x . φ(x)}, pulled out of a hat. They
had to be constructed, starting from a few given sets. Operations for constructing
new sets included union, powerset and replacement.

Replacement is the most powerful set constructor. If A is a set, and the binary
predicate φ(x, y) is single-valued for all x in A, then replacement yields the image
of A under the predicate φ. Formally, if

∀x∈A . ∀y z . φ(x, y) ∧ φ(x, z)→ y = z

then there exists a set R(A, φ) such that

b ∈ R(A, φ)↔ (∃x∈A . φ(x, b)).

Replacement entails the principle of Separation. Let A be a set and ψ(x) a unary
predicate. Separation yields a set, written {x ∈ A . ψ(x)}, consisting of those
elements of A that satisfy ψ:

a ∈ {x ∈ A . ψ(x)} ↔ a ∈ A ∧ ψ(a)

A class is an arbitrary collection of sets. Elements of the class {x . ψ(x)} are not
restricted to elements of some other set. Every set B is a class, namely {x . x ∈ B}.
Many classes are too big to be sets, such as the universal class, V ≡ {x . x = x}.
If V were a set then we could obtain Russell’s Paradox via Separation: define the
set R ≡ {x ∈ V . x 6∈ x}, then R ∈ R ↔ R 6∈ R. We could define R as a class,
namely R ≡ {x . x 6∈ x}, but this yields no paradox because a proper class cannot
be a member of another class: R ∈ R is false.

3 SET THEORY 4

3.1 Which axiom system?

The two main axiom systems for set theory, Zermelo-Fraenkel (ZF) and von
Neumann-Bernays-Gödel (NBG), differ in their treatment of classes. In ZF, vari-
ables range over sets; classes do not exist at all, but we may regard unary predicates
as classes if we like. In NBG, variables range over classes, and A ∈ V expresses that
the class A is actually a set. The two axiom systems are similar in strength. Most
set theorists prefer ZF because they are interested in sets, not classes. Moreover,
NBG is tiresome to use — it frequently requires showing that certain classes are
sets. Even a ∈ {a} holds only if a ∈ V ; see Lemma 9 of Boyer et al. [3].

ZF has one serious drawback: Replacement is expressed by an axiom scheme,
parametrized by the predicate φ. A textbook application of the Compactness Theo-
rem demonstrates that ZF can have no finite axiom system in first-order logic. Thus,
it is unsuitable for first-order resolution theorem provers. Boyer et al. [3] advocate
NBG because it is finite. Quaife [18] has simplified their clauses for NBG and proved
several hundred results, using the resolution prover Otter.

Isabelle can express axiom schemes, since its meta-logic is higher-order. In the
axiom of Replacement, the binary predicate φ is a variable of type [i, i]⇒ o, which
is the type of functions that map two individuals to a truth value. Separation can
be derived in its schematic form, where the unary predicate ψ is a variable of type
i⇒ o.

Schemes can nonetheless cause problems with search. The goal

t ∈ ?A,

could be refined, instantiating the unknown ?A (a ‘logical variable’), to the subgoal

t ∈ {x ∈ ?B . ?ψ(x)}.
This can be refined, by the principle of Separation, to the two subgoals

t ∈ ?B and ?ψ(t).

The subgoal t ∈ ?B can be refined exactly like t ∈ ?A, making the search loop; the
subgoal ?ψ(t) is totally unconstrained, since it consists of a formula unknown. Had
we proved t ∈ ?A by instantiating ?A to {t}, we might have invalidated other goals
involving ?A. Such a situation arises in the proof of Cantor’s Theorem (see §5.2).
Automatic tools seldom cope; the user can help by explicitly instantiating unknowns
such as ?A.

3.2 The Zermelo-Fraenkel axioms in Isabelle

The ZF axioms from Suppes [22, page 238] are expressed using Isabelle’s formulation
of classical first-order logic. For clarity, the exposition uses standard mathematical
notation rather than Isabelle’s ASCII substitutes [16]. We begin by defining the
bounded quantifiers:

∀x∈A . P (x) ≡ ∀x . x ∈ A→ P (x)

∃x∈A . P (x) ≡ ∃x . x ∈ A ∧ P (x)

3 SET THEORY 5

Taking membership (∈) as a primitive binary relation, we define the subset relation:

A ⊆ B ≡ ∀x∈A . x ∈ B

The following axioms are standard:

A = B ↔ A ⊆ B ∧B ⊆ A (Extensionality)

A ∈
⋃

(C) ↔ (∃B∈C . A ∈ B) (Union)

A ∈ ℘(B) ↔ A ⊆ B (Powerset)

A = ∅ ∨ (∃x∈A . ∀y∈x . y 6∈ A) (Foundation)

Replacement is expressed by a rule whose premise asserts that φ is single-valued:

∀x∈A . ∀y z . φ(x, y) ∧ φ(x, z)→ y = z

b ∈ R(A, φ)↔ (∃x∈A . φ(x, b)) (Replacement)

These are all the axioms apart from Infinity, which is not discussed in this paper,
and Choice, which I have not used at all.

3.3 Natural deduction rules for set theory

The theory above is largely in the form of logical equivalences; perhaps we could
develop a transformational calculus. But for general purposes, I prefer to derive
natural deduction rules. Here are some examples.

From the definition A ⊆ B ≡ ∀x∈A.x ∈ B we obtain introduction and elimination
rules for ⊆:

[x ∈ A]x....
x ∈ B
A ⊆ B

(⊆I)
A ⊆ B c ∈ A

c ∈ B (⊆E)

Rule (⊆I) discharges the assumption x ∈ A; it holds provided x is not free in the
conclusion or other assumptions. Here and below, premises indicate such provisos
by subscripting the affected variable.

From the Union axiom, we may derive introduction and elimination rules for
⋃

:

B ∈ C A ∈ B
A ∈ ⋃(C)

(
⋃
I)

A ∈ ⋃(C)

[A ∈ X X ∈ C]X....
θ

θ
(
⋃
E)

Rule (
⋃
E) discharges two assumptions, and has another ‘not free’ proviso on X.

Natural deduction rules break down formulae one level at a time. They are
more readable than sequent rules because they leave the context implicit: each rule
mentions only the assumptions it discharges. Forward and backward reasoning can
be intermixed. Isabelle can use natural deduction rules to support purely back-
ward reasoning, in the style of the sequent calculus. The resulting automated proof
procedures resemble those based on semantic tableaux.

3 SET THEORY 6

3.4 A simplified form of Replacement

The Axiom of Replacement, as traditionally expressed, is awkward for natural de-
duction. The introduction and elimination rules for b ∈ R(A, φ) both require an
additional premise stating that φ is single-valued. Defining a new form of Replace-
ment reduces this proof burden. If φ(x, y) is a binary predicate, then let

φ′(x, y) ≡ (∃!z . φ(x, z)) ∧ φ(x, y).

Since ∃!z . φ(x, z) means there exists a unique z such that φ(x, z), the definition
ensures that φ′(x, y) is single-valued.1 Moreover, if φ(x, y) is already single-valued
then the two predicates are equivalent. We define the new form of Replacement
(with a nice notation) by

{y . x ∈ A, φ(x, y)} ≡ R(A, φ′)

and easily obtain the equivalence

b ∈ {y . x ∈ A, φ(x, y)} ↔ (∃x∈A . φ(x, b) ∧ (∀y . φ(x, y)→ y = b)).

This equivalence is unconditional. It never asks whether φ(x, y) is single-valued for
all x in A, only for some value of x such that φ(x, b).

Using the new definition, we derive natural deduction rules. The introduction
rule includes a simplified premise about the single-valued property. The elimination
rule requires no such premise; on the contrary, it discharges an assumption involving
this property. (The assumption, omitted below for clarity, is ∀y . φ(x, y)→ y = b.)

a ∈ A φ(a, b)

[φ(a, y)]y....
y = b

b ∈ {y . x ∈ A, φ(x, y)} (RI)
b ∈ {y . x ∈ A, φ(x, y)}

[x ∈ A φ(x, b)]x....
θ

θ
(RE)

3.5 Functional Replacement

Suppose that f is a unary operator on sets — not a set-theoretic function, which
is a set of pairs, but a meta-level function such as ℘ or

⋃
. Since the predicate

φ(x, y) ≡ (y = f(x)) is obviously single-valued, define

{f(x) . x ∈ A} ≡ {y . x ∈ A, y = f(x)}.

This form of Replacement illustrates why single-valued predicates are sometimes
called class functions. Isabelle can express meta-level functions by abstraction in
its typed λ-calculus.

Functional replacement, with the basic
⋃

operator, expresses a more familiar
form of union: ⋃

x∈A
B(x) ≡

⋃
({B(x) . x ∈ A})

1Isabelle expresses φ′ in terms of φ using meta-level λ-abstraction.

4 DERIVING A THEORY OF FUNCTIONS 7

The corresponding natural deduction rules are

a ∈ A b ∈ B(a)

b ∈ (
⋃
x∈A .B(x))

(
⋃RI)

b ∈ (
⋃
x∈A .B(x))

[x ∈ A b ∈ B(x)]x....
θ

θ
(
⋃RE)

3.6 Separation

Given a set A and a unary predicate ψ, Separation yields a set consisting of those
elements of A that satisfy ψ. Separation is easily defined in terms of Replacement:

{x ∈ A . ψ(x)} ≡ {y . x ∈ A, x = y ∧ ψ(x)}

The natural deduction rules have simple derivations:

a ∈ A ψ(a)

a ∈ {x ∈ A . ψ(x)}
a ∈ {x ∈ A . ψ(x)}

a ∈ A
a ∈ {x ∈ A . ψ(x)}

ψ(a)

Using Separation, we can define general intersection:⋂
(C) ≡ {x ∈

⋃
(C) . ∀Y ∈C . x ∈ Y }

The empty intersection,
⋂

(∅), causes difficulties. It would like to contain everything,
but there is no universal set;

⋂
(∅) should be undefined. But Isabelle’s set theory does

not formalize the notion of definedness; all terms are defined. Because
⋃

(∅) = ∅, we
obtain the perverse (but harmless) result

⋂
(∅) = ∅.

4 Deriving a theory of functions

The next developments are tightly linked. We define unordered pairs, then binary
unions and intersections, and obtain finite sets of arbitrary size. Then we can define
descriptions and ordered pairs. Finally, we can define Cartesian products, binary
relations and functions. The resulting theory includes a sort of λ-calculus with Π
and Σ types. All the proofs have been done in Isabelle.

4.1 Finite sets and the boolean operators

Unordered pairing is frequently taken as primitive, but it can be defined in terms of
Replacement [22, page 237]. Observe that ℘(℘(∅)) contains two distinct elements, ∅
and ℘(∅).

Upair(a, b) ≡ {y . x ∈ ℘(℘(∅)), (x = ∅ ∧ y = a) ∨ (x = ℘(∅) ∧ y = b)}

Tedious but elementary reasoning yields the key property:

c ∈ Upair(a, b)↔ (c = a ∨ c = b).

4 DERIVING A THEORY OF FUNCTIONS 8

Now we can define binary union, intersection and (while we are at it) set difference:

A ∪B ≡
⋃

(Upair(A,B))

A ∩B ≡
⋂

(Upair(A,B))

A−B ≡ {x ∈ A . x 6∈ B}

Finite sets are traditionally obtained as binary unions of unordered pairs. Isabelle’s
treatment is inspired by Lisp. Define

cons(a,B) ≡ Upair(a, a) ∪B.

Thus cons(a,B) augments B with the element a; we obtain

c ∈ cons(a,B)↔ (c = a ∨ c ∈ B).

In Isabelle, the notation {a1, . . . , an} expands to cons(a1, . . . , cons(an, ∅) . . .).

4.2 Descriptions

Compared with Suppes [22], Isabelle’s axioms take one liberty. They do not merely
assert the existence of powersets, unions and replacements, but give them names:
℘(A),

⋃
(A) andR(A, φ). There is nothing wrong with assigning notation to objects,

provided they are unique, and Suppes does so informally.
By introducing these names, we gain the power to define a general description

operator:

ιx . ψ(x) ≡
⋃
{y . x ∈ {∅}, ψ(y)}

Observe the peculiar usage of Replacement. The formula ψ(y) is single-valued in x
and y simply because x is restricted to a singleton set. If there exists a unique a
satisfying ψ(a), then ιx . ψ(x) equals a. (If not then it equals ∅, although this fact
matters little.)

Because it demands uniqueness, ιx . ψ(x) is much weaker than Hilbert’s descrip-
tion εx . ψ(x), which embodies a strong version of the Axiom of Choice. Unique
descriptions are still useful, as we shall see; their properties are summed up by two
derived rules:

ψ(a)

[ψ(x)]x....
x = a

(ιx . ψ(x)) = a
(ι=)

∃!x . ψ(x)

ψ(ιx . ψ(x))
(ιI)

4.3 Ordered pairs

The definition 〈a, b〉 ≡ {{a}, {a, b}} is perhaps the most famous (or notorious) fact
about set theory. Isabelle defines

〈a, b〉 ≡ {{a, a}, {a, b}},

4 DERIVING A THEORY OF FUNCTIONS 9

which is equivalent but consists entirely of doubletons. This simplifies the proof —
which we shall examine later — of the key property

〈a, b〉 = 〈c, d〉 ↔ a = c ∧ b = d.

The next step is to define the projections, fst and snd. Descriptions are extremely
useful here. We could put

fst(p) ≡ ιx . ∃y . p = 〈x, y〉
snd(p) ≡ ιy . ∃x . p = 〈x, y〉

To show fst(〈a, b〉) = a by the rule (ι=), we must exhibit a unique x such that
∃y . p = 〈x, y〉 holds. Clearly x = a (with y = b) by uniqueness of pairing. The
treatment of snd is similar. Descriptions are suitable for defining many other kinds
of destructors, such as case analysis operators for disjoint unions, natural numbers
and lists. Isabelle’s classical reasoner can prove the resulting equations.

Isabelle’s ZF actually defines fst and snd indirectly. Following Martin-
Löf’s Constructive Type Theory [11], it defines the variable-binding projection
split(p, f), and proves the equation

split(〈a, b〉, f) = f(a, b).

Frequently split is more convenient than the usual projections, which we can define
concisely:2

fst(p) ≡ split(p, x y . x)

snd(p) ≡ split(p, x y . y)

Like other destructors, split is defined using a description:

split(p, f) ≡ ιz . ∃x y . p = 〈x, y〉 ∧ z = f(x, y).

4.4 Cartesian products

The set A × B consists of all pairs 〈a, b〉 such that a ∈ A and b ∈ B. Many
authors [8, 22] define the Cartesian product in a cumbersome manner. If a ∈ A and
b ∈ B then {{a}, {a, b}} ∈ ℘(℘(A ∪B)), so they define A×B using Separation:

A×B ≡ {z ∈ ℘(℘(A ∪B)) . ∃x∈A . ∃y∈B . z = 〈x, y〉}

There is a historical and pedagogical case for this definition, which postpones the
introduction of Replacement. But Replacement is built into our notation, so we
might as well take advantage of it:

A×B ≡
⋃
x∈A

⋃
y∈B
{〈x, y〉}

2Here x y . x and x y . y stand for meta-level λ-abstractions, which would appear as %x y.x and
%x y.y in an Isabelle source file.

4 DERIVING A THEORY OF FUNCTIONS 10

This definition is self-evident, independent of the underlying representation of pairs,
and easy to reason about.

Again, Isabelle actually defines A × B indirectly, following Martin-Löf’s Type
Theory. The disjoint union of a family of sets,

∑
x∈A .B(x), is a useful generalization

of A×B. To generalize the definition above, we merely replace B by B(x):∑
x∈A

B(x) ≡
⋃
x∈A

⋃
y∈B(x)

{〈x, y〉}

Natural deduction rules neatly summarize its properties:

a ∈ A b ∈ B(a)

〈a, b〉 ∈ (
∑
x∈A .B(x))

(
∑
I)

c ∈ (
∑
x∈A .B(x))

[x ∈ A y ∈ B(x) c = 〈x, y〉]x,y....
θ

θ
(
∑
E)

By (
∑
E), if 〈a, b〉 ∈ (

∑
x∈A .B(x)) then a ∈ A and b ∈ B(a).

Now A × B is nothing but an abbreviation for
∑
x∈A .B(x) when B involves no

dependence upon x. Isabelle’s parser and pretty printer handle these conventions.

4.5 Relations and functions

A binary relation is a set of ordered pairs. Isabelle’s set theory defines the basic
operations upon relations. These operations have the usual properties and require
little discussion. Observe the usage of Replacement:

converse(r) ≡ {z . w ∈ r, ∃x y . w = 〈x, y〉 ∧ z = 〈y, x〉}
domain(r) ≡ {x . w ∈ r, ∃y . w = 〈x, y〉}
range(r) ≡ domain(converse(r))

field(r) ≡ domain(r) ∪ range(r)

Image and inverse image are infix operators:

r “ A ≡ {y ∈ range(r) . ∃x∈A . 〈x, y〉 ∈ r}
r −“ A ≡ converse(r)“A

Functions are represented by their graphs, which are single-valued binary relations.
The set of all functions from A to B is written A→ B. Just as we generalized A×B
to
∑
x∈A .B(x), we generalize A→ B to

∏
x∈A .B(x), the product of a family of sets.

This concept predates Martin-Löf’s Type Theory; it has a long history. We define∏
x∈A

B(x) ≡ {f ∈ ℘(Σx∈A . B(x)) . ∀x∈A . ∃!y . 〈x, y〉 ∈ f}.

4 DERIVING A THEORY OF FUNCTIONS 11

Here A → B abbreviates
∏
x∈A .B(x) when B involves no dependence upon x. In

particular, we have

(f ∈ A→ B)↔ f ⊆ A×B ∧ (∀x∈A . ∃!y . 〈x, y〉 ∈ f).

We further define application and λ-abstraction. An explicit application operator
is necessary; f ‘a operates on the sets f and a. Observe how easily a description
expresses the application operator:

f ‘a ≡ ιy . 〈a, y〉 ∈ f
λx∈A . b(x) ≡ {〈x, b(x)〉 . x ∈ A}

Regarding functions as binary relations is tiresome. Only with difficulty can we
derive high-level rules for functions, in the style of the λ-calculus.

[x ∈ A]x....
b(x) ∈ B(x)

(λx∈A . b(x)) ∈ (
∏
x∈A .B(x))

(λΠI)
f ∈ (

∏
x∈A .B(x)) a ∈ A
f ‘a ∈ B(a)

(λΠE)

a ∈ A
(λx∈A . b(x))‘a = b(a)

(β)
f ∈ (

∏
x∈A .B(x))

(λx∈A . f ‘x) = f
(η)

Injections, surjections and bijections are subsets of the total function space A→ B.
Isabelle’s set theory also defines composition of relations (including functions):

inj(A,B) ≡ {f ∈ A→ B . ∀w∈A . ∀x∈A . f ‘w = f ‘x→ w = x}
surj(A,B) ≡ {f ∈ A→ B . ∀y∈B . ∃x∈A . f ‘x = y}
bij(A,B) ≡ inj(A,B) ∩ surj(A,B)

r ◦ s ≡ {w ∈ domain(s)× range(r) . ∃x y z .
w = 〈x, z〉 ∧ 〈x, y〉 ∈ s ∧ 〈y, z〉 ∈ r}

The numerous derived rules include

f ∈ bij(A,B)

converse(f) ∈ bij(B,A)

f ∈ inj(A,B) a ∈ A
converse(f)‘(f ‘a) = a

s ⊆ A×B r ⊆ B × C
(r ◦ s) ⊆ A× C

g ∈ A→ B f ∈ B → C

(f ◦ g) ∈ A→ C

(r ◦ s) ◦ t = r ◦ (s ◦ t)
Thus, relations and functions are closed under composition. A similar property is
proved for injections, surjections and bijections.

5 EXAMPLES OF SET-THEORETIC REASONING 12

5 Examples of set-theoretic reasoning

To give some idea of the level of reasoning possible in Isabelle, we shall examine
three simple examples: ordered pairing, Cantor’s Theorem, and the Composition
of Homomorphisms challenge [3]. The sessions given below are based on polished
proofs from Isabelle’s set theory. I have simplified the commands to make the proofs
slightly longer and easier to follow.

This section, which is intended for casual reading, describes the effect of each
command in general terms. For details of the many Isabelle primitives that appear,
please consult the documentation [15].

5.1 Injectivity of ordered pairing

Proving that 〈a, b〉 ≡ {{a, a}, {a, b}} is a valid definition of ordered pairing is tire-
some — see Halmos [8, page 23], for example. Here is a short machine proof using
Isabelle’s tools. We do not see all the details of a full proof (that happens internally)
but we do see the key lemma. We now state this lemma, which concerns doubletons,
to Isabelle:

goal ZF_Rule.thy "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)";
Level 0

{a,b} = {c,d} <-> a = c & b = d | a = d & b = c

1. {a,b} = {c,d} <-> a = c & b = d | a = d & b = c

This is the initial state of a backward proof. It has one subgoal, which is the same
as the main or ultimate goal. Our first inference will apply the derived rule

P ↔ Q Q↔ R
P ↔ R

to let us replace {a, b} = {c, d} by any equivalent formula:

by (resolve_tac [iff_trans] 1);
Level 1

{a,b} = {c,d} <-> a = c & b = d | a = d & b = c

1. {a,b} = {c,d} <-> ?Q

2. ?Q <-> a = c & b = d | a = d & b = c

The one subgoal has become two, and the unknown intermediate formula appears
as ?Q. The first occurrence of = in the main goal is one of the rare cases when
the Axiom of Extensionality is directly useful. We replace {a, b} = {c, d} by the
inclusions {a, b} ⊆ {c, d} and {c, d} ⊆ {a, b}, updating ?Q.

by (resolve_tac [extension] 1);
Level 2

{a,b} = {c,d} <-> a = c & b = d | a = d & b = c

1. {a,b} <= {c,d} & {c,d} <= {a,b} <-> a = c & b = d | a = d & b = c

5 EXAMPLES OF SET-THEORETIC REASONING 13

Subgoal 1 has vanished; subgoal 2 has taken its place; ?Q has become the conjunction
of inclusions. The remaining subgoal requires a massive but essentially trivial case
analysis. If {a, b} ⊆ {c, d} then the rule (⊆E) states that if x ∈ {a, b} then x ∈
{c, d}; putting x = a we obtain a = c ∨ a = d, and so forth. (Halmos’s proof makes
a much smaller case analysis.) The classical tactic fast_tac proves the subgoal. It
takes the collection of natural deduction rules proved so far, packaged as upair_cs.

by (fast_tac upair_cs 1);
Level 3

{a,b} = {c,d} <-> a = c & b = d | a = d & b = c

No subgoals!

This automatic step takes about nine seconds.3 Finally, we declare the resulting
theorem as the ML identifier doubleton_iff:

val doubleton_iff = result();

Now we prove the main theorem, that ordered pairing is injective. While stating
the goal, we make Isabelle expand the definition Pair_def:

goalw ZF_Rule.thy [Pair_def] "<a,b> = <c,d> <-> a=c & b=d";
Level 0

<a,b> = <c,d> <-> a = c & b = d

1. {{a,a},{a,b}} = {{c,c},{c,d}} <-> a = c & b = d

The expanded subgoal 1 is full of doubletons. We rewrite it using our lemma (FOL_ss
is a collection of standard rewrite rules for first-order logic):

by (SIMP_TAC (FOL_ss addrews [doubleton_iff]) 1);
Level 1

<a,b> = <c,d> <-> a = c & b = d

1. a = c & (b = d | c = d & b = d) |

(a = c & c = d | a = d & d = c) & a = c & b = c <->

a = c & b = d

The easiest way to prove the resulting subgoal involves further case analysis. This
time, fast_tac requires only the rules of first-order logic, although supplying addi-
tional rules would do no harm.

by (fast_tac FOL_cs 1);
Level 2

<a,b> = <c,d> <-> a = c & b = d

No subgoals!

Given the lemma, the total time to prove this theorem is about three seconds.

3All Isabelle timings are on a Sun SPARCstation ELC.

5 EXAMPLES OF SET-THEORETIC REASONING 14

5.2 Cantor’s Theorem

Cantor’s Theorem is one of the few major results in mathematics that can be proved
automatically [1]. It is easily expressed and its proof, although deep, is short.

goal ZF_Rule.thy "ALL f: A->Pow(A). EX S: Pow(A). ALL x:A. ~ f‘x=S";
Level 0

ALL f:A -> Pow(A). EX S:Pow(A). ALL x:A. ~ f ‘ x = S

1. ALL f:A -> Pow(A). EX S:Pow(A). ALL x:A. ~ f ‘ x = S

We begin by routine rule applications, using the introduction rules for the bounded
quantifiers:

by (resolve_tac [ballI] 1);
Level 1

ALL f:A -> Pow(A). EX S:Pow(A). ALL x:A. ~ f ‘ x = S

1. !!f. f : A -> Pow(A) ==> EX S:Pow(A). ALL x:A. ~ f ‘ x = S

Subgoal 1 requires showing ∃S∈℘(A) . ∀x∈A . f ‘x 6= S under the assumption f ∈ A→
℘(A), where f is arbitrary.

by (resolve_tac [bexI] 1);
Level 2

ALL f:A -> Pow(A). EX S:Pow(A). ALL x:A. ~ f ‘ x = S

1. !!f. f : A -> Pow(A) ==> ALL x:A. ~ f ‘ x = ?S1(f)

2. !!f. f : A -> Pow(A) ==> ?S1(f) : Pow(A)

Under the same assumption, we now have two subgoals. The first, crucial goal
involves the term ?S1(f), which is a placeholder for something that may depend
upon f . Proving the subgoal instantiates this term with Cantor’s diagonal set.

We can prove it automatically with best_tac, a classical reasoning tactic that
employs best-first search. The search space is large and undirected. We must supply
best_tac with a minimal collection of rules — though some readers might regard
this as cheating.

val cantor_cs = FOL_cs
addSIs [ballI, CollectI, PowI, subsetI] addIs [bexI]
addSEs [CollectE, equalityCE];

Starting with FOL_cs — the rules for first-order logic — we add rules for the bounded
quantifiers, powersets, the subset relation, Separation and extensional equality.

by (best_tac cantor_cs 1);
Level 3

ALL f:A -> Pow(A). EX S:Pow(A). ALL x:A. ~ f ‘ x = S

1. !!f. f : A -> Pow(A) ==> {x: A . ~ x : f ‘ x} : Pow(A)

After six seconds, we have obtained the diagonal set, which is {x ∈ A.x 6∈ f ‘x}. The
remaining subgoal is to show that the diagonal set belongs to ℘(A). This is trivial;
we may employ depth-first search (via fast_tac) and supply a large collection of

5 EXAMPLES OF SET-THEORETIC REASONING 15

rules (ZF_cs):

by (fast_tac ZF_cs 1);
Level 4

ALL f:A -> Pow(A). EX S:Pow(A). ALL x:A. ~ f ‘ x = S

No subgoals!

Quaife [18, page 114] remarks that Otter could not construct the diagonal set; we
have just seen Isabelle do so. Indeed, we could have proved Cantor’s Theorem by a
single call to best_tac. However, the classical reasoner is not designed to cope with
such undirected searches. Equivalent forms of Cantor’s Theorem cause the search
to founder, even using the minimal collection of rules cantor_cs.

5.3 Composition of homomorphisms

Boyer et al. [3] posed this as a challenge problem, and supplied a hand proof involving
twenty-seven lemmas. Proving the theorem from the axioms alone might indeed be
a challenge, but I found it easy in Isabelle’s set theory. The proof effort took about
half an hour, much of which was spent keying in and correcting the conjecture.
Most of the twenty-seven lemmas were already proved in Isabelle’s set theory. Five
of them concerned proving that some class is a set, which is never necessary in ZF.
Others were perhaps proved on-the-fly by Isabelle’s simplifier. My proof required
no explicit lemmas.

Their definition of homomorphism can be put into a more conventional notation
(making the problem slightly harder!) by making hom(A, f,B, g) denote the set of
all homomorphisms from A to B:

hom(A, f,B, g) ≡ {H ∈ A→ B . (f ∈ A× A→ A) ∧ (g ∈ B ×B → B) ∧
(∀x∈A . ∀y∈A . H‘(f ‘〈x, y〉) = g‘〈H‘x,H‘y〉)}

The contrast between the previous example and this one is clear. Cantor’s Theorem
is fundamental; its proof is short, but difficult to find. The fact that homomorphisms
are closed under composition is straightforward, but has a long proof. The proof is
mainly by rewriting, with some propositional reasoning to break up the conjunctions.
We can set up SIMP_TAC such that it calls fast_tac to prove its rewritten formulae,
even when trying conditional rewrite rules; a single invocation of SIMP_TAC proves
the theorem in about thirty-three seconds. But the proof is easier to follow if we
perform it several steps.

First we state the goal, binding the definition of homomorphism to the ML

5 EXAMPLES OF SET-THEORETIC REASONING 16

identifier hom_def:

val [hom_def] = goal Perm.thy
"(!! A f B g. hom(A,f,B,g) == \

\ {H: A->B. f:A*A->A & g:B*B->B & \
\ (ALL x:A. ALL y:A. H‘(f‘<x,y>) = g‘<H‘x,H‘y>)}) ==> \
\ J : hom(A,f,B,g) & K : hom(B,g,C,h) --> \
\ (K O J) : hom(A,f,C,h)";

Level 0

J : hom(A,f,B,g) & K : hom(B,g,C,h) --> K O J : hom(A,f,C,h)

1. J : hom(A,f,B,g) & K : hom(B,g,C,h) --> K O J : hom(A,f,C,h)

Next, we expand hom_def in the subgoal:

by (rewtac hom_def);
Level 1

J : hom(A,f,B,g) & K : hom(B,g,C,h) --> K O J : hom(A,f,C,h)

1. J :

{H: A -> B .

f : A * A -> A &

g : B * B -> B &

(ALL x:A. ALL y:A. H ‘ (f ‘ <x,y>) = g ‘ <H ‘ x,H ‘ y>)} &

K :

{H: B -> C .

g : B * B -> B &

h : C * C -> C &

(ALL x:B. ALL y:B. H ‘ (g ‘ <x,y>) = h ‘ <H ‘ x,H ‘ y>)} -->

K O J :

{H: A -> C .

f : A * A -> A &

h : C * C -> C &

(ALL x:A. ALL y:A. H ‘ (f ‘ <x,y>) = h ‘ <H ‘ x,H ‘ y>)}

Next we invoke a simple tactic from the classical reasoner, in order to break up

5 EXAMPLES OF SET-THEORETIC REASONING 17

conjunctions and remove the instances of Separation:

by (safe_tac ZF_cs);
Level 2

J : hom(A,f,B,g) & K : hom(B,g,C,h) --> K O J : hom(A,f,C,h)

1. [| J : A -> B; K : B -> C; f : A * A -> A; g : B * B -> B;

g : B * B -> B;

ALL x:A. ALL y:A. J ‘ (f ‘ <x,y>) = g ‘ <J ‘ x,J ‘ y>;

h : C * C -> C;

ALL x:B. ALL y:B. K ‘ (g ‘ <x,y>) = h ‘ <K ‘ x,K ‘ y> |] ==>

K O J : A -> C

2. !!x y.

[| J : A -> B; K : B -> C; f : A * A -> A; g : B * B -> B;

g : B * B -> B;

ALL x:A. ALL y:A. J ‘ (f ‘ <x,y>) = g ‘ <J ‘ x,J ‘ y>;

h : C * C -> C;

ALL x:B. ALL y:B. K ‘ (g ‘ <x,y>) = h ‘ <K ‘ x,K ‘ y>; x : A;

y : A |] ==>

(K O J) ‘ (f ‘ <x,y>) = h ‘ <(K O J) ‘ x,(K O J) ‘ y>

Next, we collect some rewrites to supply to the simplifier. The collection need not
be minimal, so we begin with ZF_ss (a standard collection of rewrite rules) and add
four relevant lemmas:

val hom_ss =
ZF_ss addrews [comp_func,comp_func_apply,SigmaI,apply_type]

addcongs (mk_congs Perm.thy ["op O"]);

Subgoal 1 is one of the lemmas, namely that functions are closed under composition.
Because simplification must employ the assumptions, in particular J ∈ A→ B and
K ∈ B → C, the correct tactic here is ASM_SIMP_TAC:

by (ASM_SIMP_TAC hom_ss 1);
Level 3

J : hom(A,f,B,g) & K : hom(B,g,C,h) --> K O J : hom(A,f,C,h)

1. !!x y.

[| J : A -> B; K : B -> C; f : A * A -> A; g : B * B -> B;

g : B * B -> B;

ALL x:A. ALL y:A. J ‘ (f ‘ <x,y>) = g ‘ <J ‘ x,J ‘ y>;

h : C * C -> C;

ALL x:B. ALL y:B. K ‘ (g ‘ <x,y>) = h ‘ <K ‘ x,K ‘ y>; x : A;

y : A |] ==>

(K O J) ‘ (f ‘ <x,y>) = h ‘ <(K O J) ‘ x,(K O J) ‘ y>

Finally, we must show that K ◦ J maps applications of f to applications of h. The
simplifier applies the rewrite

g ∈ A→ B f ∈ B → C a ∈ A
(f ◦ g)‘a = f ‘(g‘a)

6 RAMSEY’S THEOREM IN ZF 18

and uses the quantified assumptions about J and K as further rewrites. These
rewrites are all conditional. The simplifier verifies the conditions using lemmas and
the assumptions; this is essentially type checking.

by (ASM_SIMP_TAC hom_ss 1);
Level 4

J : hom(A,f,B,g) & K : hom(B,g,C,h) --> K O J : hom(A,f,C,h)

No subgoals!

The total time for this simple proof is under sixteen seconds.

6 Ramsey’s Theorem in ZF

Ramsey’s Theorem is a profound generalization of the pigeon-hole principle. A
special case of it, the finite exponent 2 version, has become something of a benchmark
for theorem provers. Basin and Kaufman [2] compare proofs of this result using the
Boyer/Moore Theorem Prover (called NQTHM) and Nuprl. The theorem is an
informative example because its proof is both deep and long, involving graphs, sets
and natural numbers. It covers a broad spectrum of reasoning issues. It is no toy
example, but a major theorem with serious applications.

NQTHM and Nuprl are utterly different; they hardly admit a meaningful com-
parison. Isabelle with ZF set theory is much closer to Nuprl: both support inter-
active, goal-directed proof using tactics and tacticals; both employ full predicate
logic and some form of set theory. But Nuprl implements Martin-Löf’s Constructive
Type Theory rather than classical set theory.

The NQTHM and Nuprl proofs both represent finite sets by lists without repeti-
tions. This representation has many disadvantages: it does not handle infinite sets;
union and intersection do not satisfy many of the usual equations; in a constructive
or computational setting, it requires an equality test for the elements. The Isabelle
proof represents sets by sets.

6.1 The natural numbers in Isabelle’s set theory

In set theory, the natural number n is the n-element set {0, . . . , n − 1}. The com-
panion paper will describe the construction of the set of natural numbers, and the
derivation of recursion and induction. Isabelle’s set theory proves many facts in ele-
mentary arithmetic. Here is a summary of the things needed for Ramsey’s Theorem.
The addition and subtraction operators are ⊕ and ª because + and − stand for
disjoint union and set difference, respectively.

nat set of natural numbers
0 zero (identical to ∅, the empty set)
m⊕ n sum of the natural numbers m and n
mª n difference of the natural numbers m and n
succ(m) the successor of m, namely m⊕ 1

6 RAMSEY’S THEOREM IN ZF 19

6.2 The definitions in ZF

Rather than attempt to improve Basin and Kaufmann’s description of Ramsey’s
Theorem, I briefly discuss the corresponding definitions. I have used these largely
as abbreviations, rather than as abstract notions; in most of the Isabelle proofs, the
definitions are expanded.

Basin and Kaufmann’s version of the theorem requires the notion of undirected
graph, whose edge set E is a symmetric binary relation. Sets of unordered pairs,
instead of symmetric relations, would be more in harmony with the general finite
version of Ramsey’s Theorem [19].

Symmetric(E) ≡ ∀x y . 〈x, y〉 ∈ E → 〈y, x〉 ∈ E
Let V be a set of vertices and E a symmetric edge relation. Then C is a clique if
C ⊆ V and every pair of distinct nodes in C is joined by an edge in E. Dually, I is
an independent set (or anticlique) if I ⊆ V and no pair of distinct nodes in I is
joined by an edge in E.

Clique(C, V,E) ≡ C ⊆ V ∧ (∀x∈C . ∀y∈C . x 6= y → 〈x, y〉 ∈ E)

Indept(I, V, E) ≡ I ⊆ V ∧ (∀x∈I . ∀y∈I . x 6= y → 〈x, y〉 6∈ E)

Most of my efforts went to proving results that properly belong to a theory of
cardinality. Representing sets by lists without repetitions would have an advantage
here: their cardinality is simply their length and many facts can be proved by
routine inductions. At present, Isabelle’s set theory does not define cardinality.
Fortunately, the Ramsey proof requires only the notion ‘S has at least n elements.’
This is equivalent to ‘there is an injection from n to S’ because the natural number n
has n elements:

Atleast(n, S) ≡ ∃f . f ∈ inj(n, S)

Finally, we define an abbreviation for Ramsey’s Theorem:

Ramsey(n, i, j) ≡ ∀V E . Symmetric(E) ∧ Atleast(n, V)→
(∃C . Clique(C, V,E) ∧ Atleast(i, C)) ∨
(∃I . Indept(I, V, E) ∧ Atleast(j, I))

Now Ramsey’s Theorem is easily stated:

i ∈ nat j ∈ nat

∃n∈nat Ramsey(n, i, j)

Originally I defined

Graph(V,E) ≡ (E ⊆ V × V) ∧ Symmetric(E)

and put Graph(V,E) instead of Symmetric(E) in the definition of Ramsey, but this
was a needless complication. Since E is universally quantified, the assertion holds
for all E, including those such that E ⊆ V × V .

All the lemmas proved for Ramsey’s Theorem — except five that have been
moved to the general library — are discussed below. Many are proved automatically.

6 RAMSEY’S THEOREM IN ZF 20

6.3 Cliques and independent sets

The classical reasoner (fast_tac) proves these four facts automatically, taking just
over one second in total.

Clique(∅, V, E) Indept(∅, V, E)

Clique(C, V ′, E) V ′ ⊆ V

Clique(C, V,E)

Indept(I, V ′, E) V ′ ⊆ V

Indept(I, V, E)

6.4 Cardinality

The classical reasoner automatically proves (in under two seconds) that every set
has at least zero elements:

Atleast(0, A)

A useful rule for induction steps is derived by six explicit rule applications:

Atleast(succ(m), A)

∃x∈A . Atleast(m,A− {x})

A property of subsets has a short proof, using a related fact about injections:

Atleast(n,A) A ⊆ B

Atleast(n,B)

This rule for adding an element to a set (cons) is proved by five rule applications:

Atleast(m,B) b 6∈ B
Atleast(succ(m), cons(b, B))

Using fast_tac and the previous two results quickly yields

Atleast(m,B − {x}) x ∈ B
Atleast(succ(m), B)

The following theorem is the pigeon-hole principle for two pigeon-holes. Proving
it took up most of the time I devoted to Ramsey’s Theorem. The proof involves
induction on m and n with several case analyses; it consists of a complex mixture
of proof checking with the tools fast_tac and ASM_SIMP_TAC.

m ∈ nat n ∈ nat Atleast(m⊕ n,A ∪B)

Atleast(m,A) ∨ Atleast(n,B)

6 RAMSEY’S THEOREM IN ZF 21

6.5 Ramsey’s Theorem: the inductive argument

Ramsey’s Theorem requires a double induction. Using previous lemmas, fast_tac
proves the two base cases automatically (taking under three seconds in total):

Ramsey(0, 0, j) Ramsey(0, i, 0)

Before we can tackle the induction step, we must prove three lemmas. The first is
an instance of the pigeon-hole principle:

Atleast(m⊕ n,A) m ∈ nat n ∈ nat

Atleast(m, {x ∈ A . ¬P (x)}) ∨ Atleast(n, {x ∈ A . P (x)})

The next two lemmas contain the key idea of Ramsey’s Theorem. One gives a
method of extending a certain independent set of size j to one of size succ(j);
the other gives a similar method for cliques. Using the definitions of Symmetric,
Indept, and Clique, the standard rules (ZF_cs), and a lemma above concerning
Atleast, fast_tac proves both theorems automatically! Each proof takes roughly
one minute, accounting for two-thirds of the CPU time in the entire proof.

Symmetric(E) Indept(I, {z ∈ V − {a} . 〈a, z〉 6∈ E}, E) a ∈ V Atleast(j, I)

Indept(cons(a, I), V, E) ∧ Atleast(succ(j), cons(a, I))

Symmetric(E) Clique(C, {z ∈ V − {a} . 〈a, z〉 ∈ E}, E) a ∈ V Atleast(j, C)

Clique(cons(a, C), V, E) ∧ Atleast(succ(j), cons(a, C))

The induction step of Ramsey’s Theorem is tedious, even with all the lemmas. The
proof involves a four-way case split, with many explicit rule applications as well as
invocations of the classical reasoner:

Ramsey(m, succ(i), j) Ramsey(n, i, succ(j)) m ∈ nat n ∈ nat

Ramsey(succ(m⊕ n), succ(i), succ(j))

Finally, we prove the Theorem itself. This involves performing the double induction,
invoking lemmas for the base cases and induction step:

i ∈ nat j ∈ nat

∃n∈nat Ramsey(n, i, j)

6.6 Discussion and comparison

The induction step and base cases constitute a Prolog program for Ramsey(n, i, j),
which we may express in a functional style:

r(0, j) = 0

r(i, 0) = 0

r(i+ 1, j + 1) = r(i+ 1, j) + r(i, j + 1) + 1

6 RAMSEY’S THEOREM IN ZF 22

Since r(i, j) computes a number n satisfying Ramsey(n, i, j), it is called the wit-
nessing function for Ramsey’s Theorem. Basin and Kaufman [2] obtain slightly
different Ramsey numbers; the definitions reflect details of the proofs.

Nuprl expresses Ramsey’s Theorem using quantifiers, as here. Since its logic
is constructive, Nuprl can extract a witnessing function from the proof. NQTHM
lacks quantifiers; it expresses Ramsey’s Theorem in terms of a witnessing function,
obtained from a hand proof. Both the Nuprl and NQTHM proofs involve additional
witnessing functions, which map a graph of sufficient size to a clique or independent
set. The Isabelle proof follows the same reasoning as Basin and Kaufman’s proofs; it
does not make essential use of classical logic. Because it is conducted in classical ZF
set theory, there is no way of extracting such witnessing functions from the proof.

The table compares the NQTHM, Nuprl and Isabelle/ZF proofs:

NQTHM Nuprl Isabelle
Tokens 933 972 975
Definitions 10 24 5
Lemmas 26 25 17
Replay Time 3.7 minutes 57 minutes 3.2 minutes

(Sun 3/60) (Symbolics 3670) (SPARC ELC)

The figures for Isabelle include all the definitions and lemmas given above, and their
proofs. The Isabelle proof has the fewest definitions and lemmas. But NQTHM has
by far the shortest replay time, since a Sun SPARCstation ELC is three or four times
faster than a Sun 3/60. Kaufman took seven hours to find the NQTHM proof; Basin
required twenty hours, plus a further sixty for library development [2]. I took about
nine hours to develop the Isabelle proof, including all lemmas.

Tokens were counted, after removal of comments, by the Unix command

sed -e "s/[^A-Za-z0-9’_]/ /g" ramsey.ML | wc

This counts identifiers but not symbols such as : and =, and is therefore an un-
derestimate. It counts seven tokens in EX x:A. Atleast(m, A-{x}). Basin and
Kaufman each used different methods for counting tokens in their proofs. Figure 1
gives a more pessimistic impression of the token density of Isabelle proofs. One
theorem is proved automatically. Another, which is the main induction step, has
the second longest proof of the entire effort. The third is Ramsey’s Theorem itself,
with its inductions on i and j.

Comparisons are difficult. There are discrepancies in the hardware, token count-
ing methods, etc. Furthermore, each author of a proof was an expert with his
system. We can hardly predict how the systems would compare if tested by novices.
The proof requires familiarity with both the system and its library of theorems.

Given these reservations, what conclusions can we draw? Isabelle stands up well
against two extensively developed systems, despite its lack of arithmetic decision
procedures and small size (about 9000 lines of Standard ML, excluding object-logic
definitions). More importantly, the ZF proof demolishes the myth that axiomatic
set theory is too cumbersome to use. Its formal language can be made clear and

6 RAMSEY’S THEOREM IN ZF 23

val prems = goalw Ramsey.thy [Symmetric_def,Clique_def]
"[| Symmetric(E); Clique(C, {z: V-{a}. <a,z>:E}, E); a: V; \

\ Atleast(j,C) |] ==> \
\ Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))";
by (cut_facts_tac prems 1);
by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1);
val Clique_succ = result();

val ram1::ram2::prems = goalw Ramsey.thy [Ramsey_def]
"[| Ramsey(m,succ(i),j); Ramsey(n,i,succ(j)); m:nat; n:nat |] ==> \

\ Ramsey(succ(m#+n), succ(i), succ(j))";
by (safe_tac ZF_cs);
by (etac (Atleast_succD RS bexE) 1);
by (eres_inst_tac [("P1","%z.<x,z>:E")] (Atleast_partition RS disjE) 1);
by (REPEAT (resolve_tac prems 1));
(*case m*)
by (rtac (ram1 RS spec RS spec RS mp RS disjE) 1);
by (fast_tac ZF_cs 1);
by (fast_tac (ZF_cs addEs [Clique_superset]) 1); (*we have a Clique*)
by (safe_tac ZF_cs);
by (eresolve_tac (swapify [exI]) 1);
by (REPEAT (ares_tac [Indept_succ] 1)); (*make a bigger Indept*)
(*case n*)
by (rtac (ram2 RS spec RS spec RS mp RS disjE) 1);
by (fast_tac ZF_cs 1);
by (safe_tac ZF_cs);
by (rtac exI 1);
by (REPEAT (ares_tac [Clique_succ] 1)); (*make a bigger Clique*)
by (fast_tac (ZF_cs addEs [Indept_superset]) 1); (*we have an Indept*)
val Ramsey_step_lemma = result();

val prems = goal Ramsey.thy
"i: nat ==> ALL j: nat. EX n:nat. Ramsey(n,i,j)";

by (nat_ind_tac "i" prems 1);
by (fast_tac (ZF_cs addSIs [nat_0_I,Ramsey00j]) 1);
by (rtac ballI 1);
by (nat_ind_tac "j" [] 1);
by (fast_tac (ZF_cs addSIs [nat_0_I,Ramsey0i0]) 1);
by (dres_inst_tac [("x","succ(j1)")] bspec 1);
by (REPEAT (eresolve_tac [nat_succ_I,bexE] 1));
by (rtac bexI 1);
by (rtac Ramsey_step_lemma 1);
by (REPEAT (ares_tac [nat_succ_I,add_type] 1));
val ramsey = result();

Figure 1: Part of the Isabelle proof of Ramsey’s Theorem

7 PREVIOUS WORK USING ISABELLE 24

natural, and Isabelle’s tools — though far from perfect — allow proofs to proceed
in large steps.

7 Previous work using Isabelle

Isabelle has supported some form of ZF set theory since its early days. My original
version consisted of idiosyncratic axioms over the classical sequent calculus LK, with
derived sequent rules for the set constructors [13, page 382].

When Philippe Nöel started working in set theory, he found both the axioms
and the sequent calculus uncongenial. He adopted Suppes’s axioms and natural
deduction (then newly available). Isabelle’s set theory was developed only up to
ordered pairs. Nöel went on to prove a large body of results: theorems about
relations, functions, orderings, fixed points, recursion, and more [10].

His priority was to develop as much mathematics as possible, not to create short
and elegant proofs. Many of his proofs comprised ten, fifty or even 100 tactic steps.
Tactical proofs are a form of software; the simpler they are, the easier they are to
understand and maintain. Martin Coen adopted some of Nöel’s proofs for his own
use [5]. He polished them a bit, but much more remained to be done.

The present work is an attempt to make set theory easy. Simple facts should
have simple proofs: a few rule applications or tool invocations. This has largely been
accomplished; proofs are easily an order of magnitude simpler than before. Here are
some techniques for taming set theory.

7.1 Definitions and natural deduction

Many authors expand definitions heavily, though the resulting formula is likely to
be unreadable, if not enormous. Recall that binary intersection is defined by

A ∩B ≡
⋂

(Upair(A,B)).

This may seem simple enough, but
⋂

is defined in terms of
⋃

and Separation; Sepa-
ration and Upair are both defined in terms of Replacement, and so forth. Expanding
definitions reduces a set-theoretic assertion to one in first-order logic, but at the cost
of destroying all intuition.

The alternative to expanding definitions is deriving additional lemmas or rules.
Natural deduction is a style in which each rule describes how to introduce or elimi-
nate some constant. Ideally, each rule should mention only one constant. Repeatedly
applying such rules analyses a formula, breaking it down to atomic subformulae; this
can be automated.

The natural deduction style constrains the form of each rule, and provides a
naming convention. Thus, it is a powerful tool for organizing what might otherwise
become a haphazard collection of lemmas. We are practically forced to derive the
following natural deduction rules for intersection:

c ∈ A c ∈ B
c ∈ A ∩B (∩I) c ∈ A ∩B

c ∈ A (∩E1) c ∈ A ∩B
c ∈ B (∩E2)

7 PREVIOUS WORK USING ISABELLE 25

Intersection could instead be defined by

A ∩B ≡ {x ∈ A . x ∈ B}.

Adopting this definition would affect the derivations of the rules (∩I), (∩E1), and
(∩E2), but other proofs would be unaffected. For instance, A ∩ B = B ∩ A has a
simple proof using the natural deduction rules. Schmidt [21] also argues the case
for natural deduction in set theory.

7.2 Descriptions

The description ιx . ψ(x) is perfectly innocuous, being nothing but a name for the
unique object a satisfying ψ(a), if such exists. Descriptions are seldom mentioned
in the literature, yet they are much more convenient than direct calculatons. We
can define the first projection by

fst(p) ≡ ιx . ∃y . p = 〈x, y〉

instead of Noël’s

fst(p) ≡
⋃

(
⋂

(p)).

The former definition is independent of the representation of ordered pairing; to
show fst(〈a, b〉) = a, we simply appeal to a previous theorem about the injectivity of
〈a, b〉. The latter definition requires proving

⋃
(
⋂

({{a, a}, {a, b}})) = a. The second
projection (snd) can be defined easily using ι, but otherwise requires a complex
expression.

As a general remark, improving the primitive operations pays handsomely. Re-
placement became easy to use after I derived a version with a simpler single-valued
condition (§3.4). The new form of Replacement afforded improvements to existing
definitions. For instance, Nöel defined the domain of a relation using Separation:

domain(r) ≡ {x ∈
⋃

(
⋃

(r)) . ∃y . 〈x, y〉 ∈ r}

When Replacement became easy to use, I adopted

domain(r) ≡ {x . w ∈ r, ∃y . w = 〈x, y〉}.

This is more concise, and is independent of the representation of ordered pair.4

7.3 Tool development

When Nöel started his work, Isabelle provided little automation. There was a crude
simplifier and the classical reasoner was difficult to invoke. Nöel developed a tactic
that could prove many of his simpler theorems automatically [10]. It worked by
expanding definitions.

4Unless r is known to be a binary relation, {fst(w) . w ∈ r} is not equivalent to domain(r).

8 CONCLUSIONS 26

Much later, I modified Isabelle’s classical reasoner to be generic, and suitable
for set theory. To help prevent subgoals of the form t ∈ ?A from causing runaway
instantiations (see §3.1), I reordered the premises of some rules. (Premises create
subgoals, which are normally processed from left to right, like in Prolog.) Finally, I
extended Isabelle with ways of preventing the instantiation of unknowns in subgoals.

Also during this period, Tobias Nipkow installed his simplifier [9].
Specialized rewriters and theorem provers may be much faster, but Isabelle’s

tools offer satisfactory performance: they normally return in a few seconds. Because
my proof style minimizes the expanding of definitions, defining new concepts does
not make proofs slower.

Tools obviously improve user productivity; moreover, the resulting proofs are
resilient. Proof checking causes brittleness: proofs ‘break’ (fail to replay) after the
slightest change to a definition or axiom. Tools generally adapt to changes. For a
striking example of resilience, recall the pigeon-hole principle:

m ∈ nat n ∈ nat Atleast(m⊕ n,A ∪B)

Atleast(m,A) ∨ Atleast(n,B)

The lemma can be strengthened: replace m⊕ n by m⊕ nª 1, where 1 ≡ succ(0).
When I did this, the previous proof (consisting of twenty-eight commands!) replayed
perfectly. The nested inductions went precisely as before; the case analyses were
identical. The · · · ª succ(0) caused no difficulties because all subgoals containing
it were submitted to the simplifier, using a general collection of arithmetic rewrites.
This was partly luck, but the new version of the pigeon-hole principle required only
slight changes to the rest of Ramsey’s Theorem.

8 Conclusions

Isabelle’s version of ZF set theory, with its definitions, derived rules and tools, has
reached an advanced sate of development. Problems can be stated in a reasonably
familiar notation and approached using high-level steps.

Quaife [18] and Saaltink [20] have also performed extensive proofs in axiomatic
set theory. Quaife uses NBG set theory. He has obtained a degree of automation
from the resolution theorem prover Otter; this requires proving a suitable series of
lemmas, sometimes stated in a technical form, and carefully assigning weights and
other settings of Otter. Saaltink uses the Eves theorem prover, which has the ZF
axioms built in. His proofs consist of commands to the Eves reducer, which can
expand definitions and perform various simplifications.

I would not attempt an objective comparison with Quaife’s work — the culture
gap between Isabelle and Otter is too great. But ZF is much more to my taste
than NBG. Quaife forgoes the notations {x ∈ A . ψ(x)} and ιx . ψ(x), which seem
essential for clarity. Saaltink’s work uses ZF and its interactive proof style resembles
Isabelle’s.

Boyer et al. [3] and Quaife mention the possibility of theorem provers settling
famous open questions such as Goldbach’s Conjecture. This seems unlikely in the

REFERENCES 27

near future, especially since some of these open questions may be independent of
the axioms of set theory. A more immediate goal is to produce a reasoning tool to
assist mathematicians, just as symbolic algebra packages assist engineers. Even this
modest goal requires more research. Set theory by itself does not support mathe-
matical abstraction — the set-theoretic definition of group leads to a horrendous
syntax for group theory. This is an area where we can make progress.

Isabelle’s set theory records nearly 700 theorems. We have discussed the formal
development, starting from the ZF axioms, of a calculus of sets, pairs, relations and
functions. This is the starting point for a computational logic. The next devel-
opments concern general principles for defining recursive data types, including the
natural numbers — using, for the first time, the Axiom of Infinity! The companion
paper will discuss recursion in all its forms.

Acknowledgements. Philippe Nöel’s version of set theory, modified by Martin
Coen, was the starting point of the present theory. Tobias Nipkow made great
contributions to Isabelle, including the simplifier. David Basin, Matt Kaufman,
Brian Monahan and Philippe Noël commented usefully on this work.

References

[1] Peter B. Andrews, Dale A. Miller, Eve L. Cohen, and Frank Pfenning. Au-
tomating higher-order logic. In W. W. Bledsoe and D. W. Loveland, editors,
Automated Theorem Proving: After 25 Years, pages 169–192. American Math-
ematical Society, 1984.

[2] David Basin and Matt Kaufmann. The Boyer-Moore prover and Nuprl: An
experimental comparison. In Gérard Huet and Gordon Plotkin, editors, Logical
Frameworks, pages 89–119. Cambridge University Press, 1991.

[3] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel,
and Lawrence Wos. Set theory in first-order logic: Clauses for Gödel’s axioms.
Journal of Automated Reasoning, 2:287–327, 1986.

[4] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

[5] Martin Coen. Interactive Program Derivation. PhD thesis, University of Cam-
bridge, 1992.

[6] Michael J. C. Gordon. Why higher-order logic is a good formalism for specifying
and verifying hardware. In G. Milne and P. A. Subrahmanyam, editors, Formal
Aspects of VLSI Design, pages 153–177. North-Holland, 1986.

[7] Michael J. C. Gordon. HOL: A proof generating system for higher-order logic.
In Graham Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 73–128. Kluwer Academic Publishers, 1988.

REFERENCES 28

[8] Paul R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[9] Tobias Nipkow. Constructive rewriting. Computer Journal, 34:34–41, 1991.

[10] Philippe Noël. Experimenting with Isabelle in ZF set theory. Journal of Auto-
mated Reasoning. In press.

[11] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-
Löf’s Type Theory. An Introduction. Oxford, 1990.

[12] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5:363–397, 1989.

[13] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press, 1990.

[14] Lawrence C. Paulson. Introduction to Isabelle. Technical report, University of
Cambridge Computer Laboratory, 1992.

[15] Lawrence C. Paulson. The Isabelle reference manual. Technical report, Univer-
sity of Cambridge Computer Laboratory, 1992.

[16] Lawrence C. Paulson. Isabelle’s object-logics. Technical report, University of
Cambridge Computer Laboratory, 1992.

[17] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191–216, 1986. Errata, JAR 4 (1988), 235–
236.

[18] Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set theory.
Journal of Automated Reasoning, 8(1):91–147, 1992.

[19] Herbert John Ryser. Combinatorial Mathematics. Mathematical Association
of America, 1963.

[20] Mark Saaltink. The EVES library models. Technical Report TR-91-5449-04,
ORA Canada, 265 Carling Avanue, Suite 506, Ottawa, Ontario, 1992.

[21] David Schmidt. Natural deduction theorem proving in set theory. Technical Re-
port CSR-142-83, Department of Computer Science, University of Edinburgh,
1983.

[22] Patrick Suppes. Axiomatic Set Theory. Dover, 1972.

