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Summary

Modern computer operating systems allow the creation of protection
domains; these enable subsystems to cooperate whilst being protected from
each other. This creates a number of problems in the handling of exceptions
such as the expiry of time limits or the receipt of console 'quit' signals.
Particular problems arisé when parts of +the operating system are
implemented as protection domains which cannot easily be distinguished from

user programs by the underlying protection system.

The dissertation surveys some traditional methods of dealing with such
problems, and explains why they are inadequate in a domain based system. In
addition, work done on related topics in the operating system for the

Cambridge CAP computer is described.

The major part of the research described is concerned with a class of
exception not usually recognized by operating system designers. This arises
from the observation that protection domains which implement subsystems can
retain internal state iﬁfomation between invocations, and care needs to be
taken to ensure that domains are given an opportunity to keep their private
data structures in a consistent state. In particular, domains which fall
into disuse need to be notified of the fact so that they can tidy up the
data structures they manage before they are destroyed. An intuitively
gimple solution to the problem is discussed, and its limitations and
implementation difficulties are noted. Refinements of the mechanism are
proposed which provide an improved treatment of the problem; and it is
suggested that the moderate run time overhead which these revisions impose
can be minimized by providing hardware or microprogram support for the

mechanism.
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1. Introduction

1.1 Motivation

Recent work on protection in operating systems has enabled systems to be
built which adhere closely to the principle of minimum privilege. This
requires that each part of a computation should have access only to those
resources necessary for it to do its Jjob. The work described in this
dissertation assumes the éxistenoe of such a protection system, and uses it
as the basis for the discussion of a wider class of issues. These include
tiie proper handling of exceptional conditions, and the mechanisms which are
needed to ensure that programs can maintain the integrity of the resources

they manage, regardless of the behaviour of other programs.

There are a number of motivations for studying these issues. Firstly,
proper treatment of such topics can make the task of writing the operating
system itself much easier. Well protected operating systems frequently do
not display a sharp distinction between system programs and user programs.
Instead, a set of basic mechanisms is provided to support both. By creating

gseparate protection domains, programs can be protected from each other, and

each can be given access to the resources and facilities it requires. In
such systems, the integrity of the operating systeu may depend on the
proper internal functioning of a protection domain regardless ‘of the

actions of domains with which it communicates.

Secondly, there is considerable interest in making computer systems
highly reliable. To do this requires a combination of many techniques in
both hardware and software. One of these techniques is to provide good

mechanisms for detecting that a computation is in an erroneous state, and




correcting or circumventing the fault which caused it (e.g. the failure of
some program to adhere to its specificafion). No operating system can be
expected to put right an incorrect program, but it can attempt to limit the

effects that such a program can have on other programs.

Thirdly, many of these issues are handled badly or not at all in existing
operating systems. For example, multi-user operating systems frequently
provide protection for themselves from their users, and protect the users
from each other, but do not allow proper exception handling within a user's
computation. In such systems, attempts to construct robust subsystems may

be difficult or impossible.

Finally, many computations are nowadays handled by distributed operating
systems. These are frequently much more complex than single machine
systems, since genuine jco,ncurrency is present as opposed 1o
multiprogramming., The possibility of independent failure of the compbnents
of a distributed syst.em adds to the complexity, but also allows one to
consider recovery from events which would lead to a catastrophic failure in
a simpler system. If this possibility is to be realized, it is important to

have clean recovery mechanisms which programs can invoke.

1.2 Requirements and limitations

There are a number of conflicting requirements of the mechanisms %o be
provided. It may be necessary, for example, for one program to be able to
cause forcible termination of another if the latter is believed to be
engaged in unproductive work, for example, in an infinite loop. This action
is based on the implicit assumption that it is the former program which is
correct, and the latter which is wrong. This behaviour characterizes the
operation of many conventional operating systems; the 'system program' is
assumed to be correct, and the 'user program' to be wrong. Whilst this may

often be a reasonable assumption, it tends to lead to a system in which it is



difficult or impossible to write subsystems which behave in a well defined

manner under all circumstances.

This thesis puts forward the view that one should try to avoid building
into operating systems the assumption that certain programs have
unrestricted control over others. As far as possible, all programs which
run within and under an operating system should do so in an environment in
which they can handle cxceptional events on equal terms. The operating
system designer should be prepared to define what this enviromment is, and
to identify the constraints within which a program must remain if it is to
react properly to exceptions. Only if the program viclatles these well
defined constraints is it reasonable for the operating system to take
action to correct the error in a manner which may override the original
intentions of the programmer. In other words, it is the job of the
operating system writer to provide an environment in which proper exception
handling can be done; actually doing so is the job of the applications

programmer, no doubt aided by well designed language systems.

All exception handling mechanisms will have their limitations. It is
unrealistic to suppose that all possible faults can be handled in a uniform
manner. PFovr example, it will not generally be possible to cope with complete
failure of the hardware on which the fault handling mechanisms are
implemented. An attempt should be made, however, to do as much as possible
in a well defined manner, and to be aware of the limitations of what hag been
done. Specifications of exception handling are frequently written in
positive terms such as ‘... the fault routine will be entered if event x
occurs'. (learly there may be circumstances in which it is impossible to
meet this specification. What is really meant is '... if event x occurs, then
event y will not occur before the fault routine has been entered'. ('Event
y' may, for example, be the termination of the program). This point of view
emphasizes that no attempt is being made to achieve the impossible. Failure
of both hardware and software can and will happen. Under such
circumstances, specifications become suspect, and it is often difficult to

predict precisely what will happen after such a failure. One can, however,




make assertions about what should not happen, and attempt to take

corrective action if these constraints are broken.

This dissertation does not attempt to address all of these topics., It is
concerned with what can be done within an operating system to ensure that
sensible fault and exception handling is done. The possibility of failure of
the hardware or software implementing the exception handling is admitted;
- the recovery from such events is beyond the scope of this work. It is
intended, though, that by keeping the underlying mechanisms small and simple,
the probability of their failure can at least be reduced.

1.3 Overview

Chapter 2 is a general description of the area in which this work falls.
It is an informal introduction to the subject, and is deliberately couched
in rather vague terms. A more formal description, including assumptions

made about underlying protection systems, follows in chapter 3.

Chapter 4 describes work done by others. Partly it is a review of the
relevant areas in other operating systems (whose designers were not
necessarily attempting to solve the problems addressed in this work). It
goes on to describe some work which has been done in prograrﬁming languages
to address the issues concerned. TFinally, it discusses more formal

proposals made by other researchers.

In chapter 5 some practical implementation done by the author is
described. This work was done on the operating system for the Cambridge
CAP computer, a system which was developed primarily for research into
capability based memory protection. This work left a number of problems
unsolved, and provided the stimulus for the more formal treatment in the

remainder of the dissertation.

Chapter 6 presents a conceptually simple solution to the problems raised

in chapters 2 and 3, and explains how it might be implemented. Chapter 7



exposes the weaknesses of this solution, and proposes two refinements. It
is suggested that these refinements are easier to implement than the simple
solution is, and have properties closer to those required. Chapters 5, 6 and

7 constitute the main body of the research described.

Finally, in chapter 8, the work done is summarized. Possible applications
are discussed, together with their limitations. Suggestions are given about

areas in which there is more work to be done.




2. Exception handling

2.1 A user's view

A user of an interactive operating system experiences its exception
handling very early on. Beginners frequently make mistakes which cause
programs to execute infinite loops, or to produce copious incorrect output.
Some of these mistakes will be detected for the user by the operating
system, and will generate simple error messages, such as 'CPU TIME
LIMIT EXCEEDED'. Other errors, such as the production of incorrect output,
are detected by the user himself. When this happens, the user is frequently
directed towards a key on his console labelled BREAK or ATTN, and told that
if he presses this, the output will stop and he will be able to correct his

program and start again.

From the user's point of view, this is a very simple action, with a very
simple result. When the appropriate key is pressed, the current output
stops, and a prompt is given for further interactive input. If the user is
using a good debugging system, it will probably present him with a brief
summary of what the program was doing at the time it was interrupted, and
may even present him with an opportunity to interrogate its state
interactively. When the program stops, the user should observe that any
files that the program may have been using are properly closed, and that any
other actions necessary to restore his environment to a standard state

have been taken.

The actions necessary in the operating system to achieve these effects
are unlikely to be so simple. It is unlikely, for example, that the program

interacting with the terminal user will be allowed to read the BREAK key as



a character. This might be possible in a single user system, or in an
environment in which only a few, trusted, subsystems could be run. But in a
general purpose operating system, the fact that the user has pressed BREAK
must be interpreted within the operating system, so that it can enforce the

intended effect.

Assuming that this is done, action must be taken in the operating system
to terminate the user program. BEven an abrupt termination may not be easy.
There should be little difficulty if the user process is executing the
user's own code at the time of interruption, but it is quite likely that it is
in fact executing some operating system routine. A typical example would be
a supervisor call which performs input and output on the user's behalf.
Such routines are frequently written on the assumption that they will not
be interrupted - e.g. an output routine may initiate some action on s
peripheral device and then set a flag in a system control block to indicate
that it has done so. If the operating system data structures are to be
in‘pernally coﬁsistent, then it is required that both of the actions are done
or neither of them is. This creates a requirement that the supervisor
routine is not stopped at an arbitrary point, or that the part of the
operating system which arranges interruption of the user program is aware

of such consistency constraints.

In practice it is often inappropriéte to terminate the user program
abruptly. If a user breaks his program out of an infinite loop, it ought at
the very least to be possible to find out where in the program the loop was.
It is, however, of little use to the FORTRAN programmer to be told by the
operating system that his program was executing at address 156345 when he
interrupted it - he needs a statement number or execution backtrace. This
creates a requirement for the program to be able to discover that the user

has interrupted it, so that it can present information in useful terms.

This is not the only case in which a subsystem requires knowledge of the
use of a BREAK function. For example, when editing his program, the user may

well issue a command instructing the editor to type out 1000 lines. If he




decides that he did not mean this, he will expect the BREAK key to stop the
output and let him carry on with his editing. He will not expect the editor
itself to be aborted, possibly losing the work he has already done. On the
other hand, the programmer working on the development of editor itself does
‘want to be able to abort execution of the editor if he introduces a bug

which puts it into an infinite loop.

2.2 Conventional systems

Within conventional operating systems, termination of programs is dealt
with in a variety of ways. Some specific exampleé are given in section 4.1.
'Many of the solutions are, however, based on the assumption  that the
operating system is monolithic, in the sense that it is always possible to
distinguish 'system program' from 'user program'. If this is so, and the
operating system designer is prepared to pro'vide the user program with only
limited BREAK handling facilities, then there are few conceptual difficulties
in handling such events. The use of the BREAK key can be trapped by the
process responsible for dealing with terminal input and output, and action
can be taken within the operating system to cause the user process ﬁo stop
its’ current activity. The problem of knowing exactly what to stop can be
solved by asking the user at the terminal to specify what he wants to have
happen. The operating system has knowledge of all its internal data
stfuctures and the consistency constraints on them. Programming the
-actions nece‘ssary to maintain those data structures is likely to require
considerable care, but should not be inherently difficult. In a monolithic
system, it is therefore relatively easy to provide the facilities required in

such a way that the terminal user sees a clean interface.

Even in this simple case though, care must be taken to provide reasonable
treatment of BREAK within the user process. Operating systems frequently
provide good mechanisms for the trapping of faults such as division by zero,
but have more difficulty in coping with asynchronous events such as BREAK.

It is convenient for +the applications programmer if the same basic



exception handling mechanism can be used for all faults. There are two main
difficulties with this. The first is that it is much more difficult to deal
with truly asynchronous events than those which are directly provoked by
the program; this is particularly so if an attempt is made to provide a high
level language interface. rthe second problem is that different exceptions
provide different potential for recovery. The example given above of
division by zero is easy to recover from; at its crudest, recovery can
consist of ignoring the error and continuing regardless. At the other
extreme, the expiry of some externally imposed CPU time limit may provide
little scope for recovery; thefe would be little point in having a fault such

as this if it were possible to ignore it.

2.3 Non-monolithic systems

Modern operating systems are rarely monolithic as assumed above., This
creates a number of awkward problems in the handling of events such as
BREAK. It not always possible in non-monolithic systems to define exactly
what is part of the operating system and what is not - the system may
consist of many modules with wvarying privileges. Particularly in an
operating system with good internal protection mechanisms, one module may
have little or no knowledge of the workings of another. Interfaces between
modules are, or ought to be, narrow and well defined. Such operating system
structures present additional problems for the implementor of break
handling. No longer can a single program be in charge of the termination of
user programs, doing all the work itself, without violating the principles by
which the system is Dbuilt. Since an event such as BREAK occurs
asynchronously, the module which happens to be executing when it occurs is
unlikely to be the only one which needs to be involved in handling it.
Instead, each module must be able to tidy up the data structures which it
manages. Organizing such activity can be a difficult task, since there is no

Ll

single program in charge.




In section 2.1, a routine to perform input and output on a user's behalf
was given as an example of part of an operating system with consistency
constraints on its private data structures. In a non-monolithic system, a
routine to do this would probably be a separate module. The part of the
gystem which handled BREAK would have no knowledge of the consistency

constraints on the status information maintained by that module.

2.4 Non-hierarchic systems

If the operating system allows a flow of control more complicated than
gimple procedural call and return then even more problems arise. A
particular case, which will be discussed in more depth later, is that of a
system structure based on coroutines rather than subroutines. The
essential difference here is that coroutines can remember state internally
between activations. If they do +this, the processing of an exception
becomes much more complicated, since the set of modules which may need to be
informed of the occurrence of the exception is not limited to the modules
currently on a call stack. Instead there may be many modules active aé
coroutines, with no easy way of determining any hierarchical relationship

between them.
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Figure 1: Example of non-hierarchic domains

Figure 1 shows an example of this. A user program communicates with an
output package. Data is transferred across the protection boundary
between them by coroutine calls; the output package maintains private
buffers and sends blocks of data to a physical device when necessary. In
such a system, any BREAK signal which causes the user program to stop ought
to be communicated to the output package even if control happens to be in
the user program at the time, so that the output package can arrange to

flush its buffers, release device interlocks etc.

The treatment of this problem, and variants of it, occupies the bulk of
chapters 6 and 7. In fact, problems arise even in the absence of events
such as BREAK signals, and the discussion of the problem is therefore more

general than the remarks above would imply.

"




3. Protection domains and the problems they introduce

3.1 Basic assumptions

The protection structure in which these problems will be considered is
based on capabilities. The model has much in common with some 'real
capability systems, but is not intended necessarily to correspond exactly
with any of them. Properties of real systems will be considered later, when

implementation problems are dealt with.

The fundamental notions in this protection scheme are the capability and
the object. A capability identifies (or names) some object, and possession
of the capability allows some access to the object. The degree of access
may be encoded in some manner within the capability. In general, objects
contain capabilities (for more objects) and 'data'. The latter normally
consists of bit patterns which can be manipulated with relative freedom
(e.g. arithmetic may be performed on them). The operations which may be
performed on capabilities are restricted in such a manner that they cannot

be forged, although they may be copied (access controls permitting).

Objects have a pfoperty known as their type, and it is assumed that a
capability contains (or points to) an indication of the type of the object
it represents. Whether there are a fixed number of primitive types or an
indefinite number of types is a property of a particular implementation.
One type which is assumed always to be available is the 'data segment' - an
object which contains data but no capabilities. Further variations may be
found in particular systems, such as capabilities which do not name a
particular object, but allow some action to b;a performed (such as allowing

access to the internal representation of an object).
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In any protected operating system, there is a need to protect programs

from one another (the term mutually suspicious subsystems has been coined

in this connection [Schroeder 72a, Graham 72]). A central notion of this
thesis is that a programmer may write a subsystem to perform some function,
and present his users with a single capability which represents that
subsystem. This may be done quite easily by providing an object which
contains (at least) the code of the subsystem (or a capability for it), and
giving the user a capability for this object. The operating system must
provide some means by which the code bound within this object can be

executed; the object is then said to represent a protection domain. For

simplicity, it is assumed that a protection domain consists entirely of
capabilities, at least one of which is a capability for a segment containing

code.

At any particular moment, the capabilities addressable by a program will
be restricted to those available in some current protection domain. Some
special instruction or system call will be made available to transfer
control between protection domains in a well defined manner [1 ] Capability
based protection schemes can be made powerful enough to enable a completely
disjoint set of capabilities to be made available on a change of protection
domain. In practice, such an extreme change is rare; some capabilities may
be globally available, and it is frequently necessary to pass capabilities

between protection domains as parameters.

[1] Not only must the capabilities.available be changed, but the protection
system must ensure that the new domain begins executing code at a valid
entry point.

13




3.2 Shai‘ed data structures

In general, a protection domain will contain capabilities other than
those for its executable code. For example, most programs require
workspace, and this will normally consist of one or more private data
segnents. It is important to note that although a protection domain can be
isolated from all other domains, it need not be, and in the typical case it is
not. For instance, it is highly likely that it will have capabilities allowing
transfer to - other protection domains (even if only to those providing

'supervisor services').

From the point of view of this dissertation the possible existence of
capabilities for private shared data structures is more important. By
'shared’ is meant that other protection domains, accessed via different
capabilities, may have capabilities for the same object. For example, a mail
handling subsystem will have a capability for a data structure containing
messages and other information; this structure may be shared with other
instances of the subsystem existing in different places or at different
times. There may also be sharing with different subsystems which may
require ‘different accegs rights to the object. For example, a program to
provide statistics about the mail system could run in a protection domain
which shared the data structure with the main subsystem, but had only read

access to it.

A number of observations may be made about this sharing. It is important
that the protection system should provide the subsystem writer with
sufficient facilities to enable him to share access to objects in such a
manner that he can maintain their integrity. If the protection system
permits more than one instance of the subsystem to run at the same time (in
different processes or on different processors) then some means of

interlocking accesses to the shared object will almost always be needed.

Another factor to be considered is the relative permanence of the data

structure being shared. Some objects may contain information relevant only

14



to the current invocation of the subsystem, and will cease to exist if, for
example, the hardware on which the system runs breaks down. Other shared
data structures may be more permanent, and may be expected to be preserved
across all but the most disastrous failures. If a subsystem has very
stringent integrity requirements, then sophisticated techniques will be
needed to enable it to recover from total failures. This does not, though,
render useless those mechanismg which are provided for the handling of
simpler failures, since the full recovery may be very time consuming. For
example, failure to handle some minor exceptional condition in a database
gystem might cause a semaphore not to be released, which could in turn lead
to a deadlock, Although it would be possible to recover from this deadlock
by restarting the system using the mechanisms provided for handling serious
failures, this would probably be an expensive operation, which could have
been avoided if the original exception had been handled properly. This is an
application of the general principle that any error should be handled as

soon as possible in order that its effects should not propagate too far.

3.% Maintaining the integrity of protection domains

It should be evident that with a system as general as that described,
very complex control structures are possible. When protection domains
interact in a complex manner, care must be taken to ensure that each can

maintain the integrity of its own private data structures.

The principle being aimed for can be stated in very simple terms. It is
that 4if a protection domain initiates some action which involves
intermediate, non-standard states, then nothing should prevent that domain
from returning to a standard state. The definition of 'standard state' is

not necessarily a global property of the protection system, but may be a

15




property of each protection domain [2] An example of a typical 'standard
state' for a domain might be: 'interlock on shared data segment is not
claimed'. This is a very simple example; a more complex one might make
assertions about the contents of the shared segment. It follows from this
that restoration of a domain's standard state generally requires execution

of code within that domain.

Although the above remarks have been put forward as an ideal, even this
would only be satisfactory in an environment in which protection domains can
be trusted not to make unreasonable demands of the mechanisms provided to
enable them to maintain their integrity. Within the components of an
operating system, such cooperation of domains may reasonably be assumed,
but the same would not necessarily be true of a user supplied subsystem.
Any routines provided by the subsystem writer to tidy up his private data
structures are just as likely to be wrongly programmed as any other part of

a subsystem, and this must be taken into account.

3.4 Restrictions imposed by the protection system

Another point which needs to be made is that the difficulty of solving
the problems depends very much on what the programmer is ‘allowed to do
while in a non-standard state without compromising his ability to recover.
To take an extreme example, if the domain is not allowed to be in a non-
standard state except during the execution of a machine instruction, and
the hardware being used guarantees indivisibility of instructions, then the
operating system need provide no facilities to enable the programmer to
restore a standard state at all. Any de facto inconsistency in the domain's

data structures between instructions would be, by definition, a programming

[2] A term sometimes used for this is that the domain maintains an Anvariant: a
cordition which will be made true at certain well defined times. The term
is not used here because of the implication that an invariant must be true
whenever control is outside the domain. As will be seen later, this is not
necessarily so for the 'standard states' described here.

16



mistake. The ease with which the problems have been thus removed from the
operating system is clearly at the expense of presenti.ng the programmer
with a very restrictive set of programming rules. This may make it difficult
or impossible for the programmer to provide a subsystem with the properties

he desires.

In order %o provide the programmer with a more conveniently used
enviromment, it is desirable to relax the constraints on him as much as
possible. For example, it would seem reasonable that a programmer should be
able to accept and recover from faults such as memory protection violations
while in a non-standard state. As will be seen in chapter 4, many existing

operating systems allow this to be done.

One of the main issues addressed in this dissertation is that of allowing
a protection domain to relinguish control whilst in a non-standard state.
If this is to be allowed, then the operating system must be prepared to
guarantee to return control to the domain at some later time, regardless of

whether or not it is explicitly called.

There are two main ways in which a domain can relinquish control. It may,
for example, call another domain as a subroutine, expecting control to
return to it when the subroutine returns. The second way in which a domain

can relinquish control is simply by returning fto its caller.

if a domain relinquishes control while in a non-standard state, then
presumably it does so with the expectation of being called again at some
later time. When a subroutine call is made, this is implicit: the domain will

receive control again when the called domain returns.

If the domain simply returns, however, there is in general no implied
indication of the non-standard state existing. It is not immediately
obvious that returning in a non-standard state is a reasonable thing for a
domain to do. The main application for it comes when a domain provides a
user with some service which requires several transfers of control between

it and the user. A protection domain providing the user with an interface
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to an interactive terminal is an example. The non-standard state would be
that an interlock on the terminal is claimed - this state would (and ought
to) persist when control is (temporarily) returned to the user's domain.
Nevertheless, the eventual release of the interlock should not depend on

the correctness of the program in the user's protection domain.

3.5 The problem to be solved

It is the aim of this dissertation to describe a mechanism which allows
domains both to call others and to return to their callers, without losing
the ability to recover their standard states later. As will be seen in
chapter 4, techniques to deal with the former case are already known, and
the research described in chapters 6 and 7 has therefore concentrated on

the latter.

18



4, Related work

This chapter is a review of previous work which has been done in this
field. It falls into three parts: section 4.1 is a discussion of what has
been done in operating systems in the past, section 4.2 discusses linguistic
approaches to the problem, and section 4.3 reviews more formally proposed

solutions.

4.1 Other operating systems

Many operating system designers have attempted to address at least some
of the issues set out in chapter 3. No attempt will be made to give a
complete survey - instead a number of examples will be chosen to illustrate
important features of previous work. The particular case of the operating

system for the Cambridge CAP computer is discussed in Chapter 5.

4.1.1 HULTICS

The first system to be considered is MULTICS (Multiplexed Information
and Computing Service). This is an example of a protected operating system
based on rings of protection. At any particular moment a process is running
in one particular ring; it has complete control of material in its own and
higher numbered rings, but has restricted or no access to anything in lower
numbered rings, other than by way of gates providing entry points into a

more privileged ring [Schroeder 72b].
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4.1.1.1 Conditions

MULTICS provides mechanisms to enable a program to nominate handlers for
a variety of exceptions. These mechanisms are described in terms of the
facilities provided in a particular programming language, PL/I
[Honeywell 72]. Exceptions in MULTICS are known as conditions and are given

condition names. An example of a condition is division by zero, and its

condition name is zerodivide.

It is possible to nominate an exception handler for a given condition by
means of a PL/I ON statement. When a condition occurs, it is sald to be
signalled, and the corresponding handler ~ the body of the OR unit - is
called. The ON unit may either take corrective action and return, or it may
divert the program by means of a GOTO statement. (An example may be found

in section 4.2.2.)

The PL/I mechanism uses a number of underlying primitives: [MPM 73,
Organick 72} condition , reversion , signal and find condition info .
These system subroutines may also be called directly, independently of the
PL/I ON statement, and are thus available to other languages. The
condition primitive sets up a handler for a named condition (or replaces an
existing handler in the same block activation). The reversion call will
remove the most recent handler for a condition. The signal_; subroutine is
used to cause the most recent handler for a condition to be executed; it
takes various parameters describing the environment in which the exception
occurred. The parameters of +the signal call, together with other
information about the exception, are made available to the handler by

calling the find condition info subroutine.

A handler can perform any action necessary to deal with the occurrence
of a condition. If it can correct the circumstances which caused the
exception, it may cause the program to be resumed at the point of
interruption. It does this simply by returning to its caller, signal . It is

a programming convention that if a call of signal returns, the operation
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which provoked the exception should be retried [MPM 73). If the problem
cannot be rectified by the handler, it may perform a non-local jump to some
location in the interrupted program or to one of its callers. Only the most

recent handler for a given condition will be activated.

A special condition name is provided for handling all conditions. This is
the any other condition. The any other condition handler will be executed
if there is no specific handler for the condition raised. For each
procedure activation, starting from the most recent, a search is made for a
handler for the condition raised, or, failing that, a handler for the
any other condition. The first suitable handler found is the one activated.
If no suitable user supplied handler is found, a default handler is

activated: this usually prints a message and terminates the user's program.

During the search for a handler, protection boundaries may be crossed.
If no handler can be found in the procedure activations within a given ring,
the‘n that ring is abandoned, and the condition is signalled in the calling
ring. When nothing remains, the process is terminated.v A more detailed
treatment of the interaction of protection rings and the signalling of

conditions may be found in [Organick ’72].

4.1.1.2 Termination of programs

Most conditions detect programming errors and are logically very similar,

but some are of special interest:

- The finish condition is signalled when the user's process is to be
terminated by voluntary or involuntary logout. A small time interval is

allowed for the handler to run before the process is actually stopped.
- The program interrupt condition is signalled by a specific user command.

- The quit condition is signalled when the user presses a particular key on

his terminal.
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The last two of these are used to implement attention handling. Both of
them can be handled by the user program, but the MULTICS Programmers'
Manual [MPM 73] recommends that the user should not attempt to handle the
quit condition (and that an any other handler should merely pass it on).
The intention is that the default handler should be used; this causes a new
activation of the command program to be established, without disturbing the
user program's stack. From this new command level, the user at the terminal
can use the program interrupt command to return to the interrupted
program, signalling the program interrupt condition, which ~the programmer
can handle as he chooses. This two stage process has the merit of giving
the terminal user control over what is don.e after a program is

interrupted [1], but relies on the cooperation of all programmers [2]

4.1.1.3 Cleanup procedures

A further feature of the MULTICS system is of interest. Both ordinary
programs and exception handlers may perform non-local transfers (sometimes
known as ‘'longjumps'). This may cause procedure activations to be
destroyed. If a procedure has work to do which it must complete before

being terminated, it can establish a cleanup procedure. A subroutine

establish cleanup proc_ is provided to do this, and revert cleanup proc
will remove the record of the cleanup procedure if it is no longer required.
Reversion of cleanup procedures on ordinary procedure return is automatic.
A cleanup procedure will be invoked if +the block activation which

established it is being aborted because of a non-local transfer. Cleanup

[1] In particular, an interactive debugger may be invoked.

[2] The MULTICS Programmers' Manual points out that a program with a bug in its
quit handler might be impossible to interrupt. This is in contradiction to
the "Begimnners' guide to the use of MULTICS", which states that the 'quit’
button on a terminal will always enable the terminal user to take control
of a 'runaway or incorrect program' [MPM 73 (Chapter 3)]. In fact, it would
seem from the more detailed documentation that some programs can be
terminated only by forcing a logout (which can be done by disconnecting the
terminal); this will signal the finish condition.
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procedures differ from exception handlers in that a single event can cause

more than one to be invoked.

4.1.2 IBM 0S/360

In contrast to an operating system designed and developed in a research
environment, it is interesting to consider what is provided in a typical
manufacturer's operating system. The system to be considered is IBM's
03/360 system for the System 360 and %70 series machines. (The specific
system dealt with is 0S/MVT release 21, but most of the remarks made apply
equally to other 0S releases, as well as more recent VS systems). Of
particular interest is the fact that some of its facilities have been found
to be quite inadequate in a computing service context, and examples will be
given of modifications which have heen made to this system to support

better exception handling.

The main characteristic of exception handling in 0S/3%60 is a lack of
uniformity. A variety of ad hoc mechanisms are provided for various
exceptions. The exception handling functions are provided by means of the

supervisor call instruction (SVC) [IBM 1], and are described in terms of

Assembler language macro instructions which generate calling sequences for
SVCs. The descriptions are all at a low level (machine registers, system
control block pointers etc.) and are intended for the Assembler language

programmer.

4.1.2.1 Program interruptions

The first category of exceptions which can be handled by the programmer
are those detected by +the hardware. These are called program

interruptions, and include such errors as use of an invalid instruction,

storage protection violation and division by zero. When these errors occur,
the hardware passes control to an interrupt routine, which examines various
system control blocks to determine what should be done in the user task. If

a user program wishes to trap such events, it sets up an exit routine using
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the SPIE macro (Specify Program Interruption Exit) [IBM 2]. The operands
to the macro specify which interruptions the programmer wishes to trap. If
an interruption occurs, the control program will call the exit routine with
various parameters indicating the nature of the interruption and where it
happened (except that instruction pipelining and memory caching can have
the effect that certain program interruptions cannot be localized to a
particular instruction). The exit routine can arrange to alter
(arbitrarily) the registers and program counter of the main program and

therefore resume execution at any point.

A task may have only one program interruption exit routine set up at any
one time. When a programmef issues a SPI];: macro instruction, the control
program returns the address of a control block describing any previously
set up exit routine. It is the programmer's responsibility to save this
address so that the previous exit routine can be restored when the curren;:
one is no longer required. Since there is no check that this is done

correctly, it is not safe for a module to trust +that its program

interruption exit is still set up after calling another module.

4.1.2.2 ABENDs

If there is no program interruption exit routine set up, the control
program takes a default action which causes termination of the task. This
termination is called an ABEND (abnormal end), and can occur for many other
(software detected) reasons. Most ABENDs can themselves be trapped by the
programmer, using the STAE macro (Specify Task Abnormal Exit) or the STAI
(Subtask ABEND Intercept) [IBM 2] operand of the ATTACH macro, which is
used for creating new tasks [3] An exit routine is provided in the same
way as for program interruptions, but the environment within it and what it
can do are different. Information is provided giving the nature of the

ABEND and where it occurred. The exit routine can examine this information

[3] STAE is used by a task to trap its own ABENDs; STAI is used by a task to
trap the ABENDs of the created subtask.
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and decide whether termination processing should continue or whether a
'STAE retry routine' [IBM 3] should be scheduled to cause resumption of the

user program. In common with program interruption exits, there may be only

L onsSTAR exit: active at once, but the control program does provide for

automatic restoration of a previous STAE exit when a program returns to its

caller.

The STAE mechanism would appear at first sight to provide a general
means of handling exceptions, albeit somewhat awkwardly. However there are
4 number of conditions under which abnormal termination of a task can occur
‘without the STAER exit routine bveing entered. A few examples of these

conditions are:

Operator cancellation of a job, or time limit expiry
- ABEND recursion

normal -termination of a task which has active subtasks

1

ABEND of a parent task

It will be clear from this that sub-system writers have severe difficulty
in handling even fairly commonplace exceptibns. For example, high level
language implementations may wish to intercept expiry of the job's CPU time
1imit in order that they can give a sensible diagnostic when a program is in
an infinite loop. The ABEND which occurs when the job time expires cannot
be trapped. It is therefore necessary for subsystems'to do their own
timing, and attempt to anticipate the expiry of the system timer. This is
possible, although it is fraught with difficulties which will not be
described here. Other, rather similar, exceptions (such as producing too

nuch printer output) cannot be handled at all.

A further, somewhat notorious, problem is that ABENDs can occur while
input and output operations are in progress. The operating system attempts
to deal with this, but frequently does so in such a manner that it is
dangerous to attempt to do further input and output after recovery from

the ABEND; to do so risks ABENDing again. This reduces the power of the
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mechanism considerably, since the programmer cannot be assured of a clean

environment after error recovery.

4.1 2.3 Console attentions

The handling of 'console attention' under TSO (time sharing option) is
another area in which 0S/%60 lacks pro'per exception handling facilities.
Superficially the handling of attentions. is similar to the other exceptions;
the programmer writes a STAX (Specify Time Sharing Attention Exit) macro
[IBM 4] to set up an exit routine to be called when an attention occurs. It
can also specify a line of data to be written to the terminal, and request
that a line is read from the terminal before the attention exit routine is
entered. The exit routine cannot divert the main program, except by forcing
an ABEND, and in most programs its actions are limited to setting a flgg
which is polled elsewhere. This is, of course, a dangerous programming
technique; if a programming error causes the program to execute an infinite

loop in an unexpected place, the flag may not be inspected.

The main problem with 0S attention routines occurs when more than one is
set up at one time. A TSO session, like any other job, may be running
several tasks - a typical example being a command program which runs user
programs as subtasks. If there is more than one attention exit set up, the
one entered is the one which was set up most recently. Since tasks may set
up attention exit routines asynchronously, it is not necessarily predictable
which exit routine this will be. Moreover, this rule has the effect that an
exit routine which a command program sets up to provide a means by which
the terminal user can abort a command will be overridden by an exit routine
which the command sets up for itself. This is often what is wanted, but it

can make it difficult to abort the command when that is what is wanted.

The above description is slightly over-simplified. There is the
additional rule that an attention which occurs before processing of the
previous one 1is complete will cause the current attention exit to be

abandoned entirely and the next most recent to be called instead. It can
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therefore be possible for two (or more) attentions in quick succession to
have different effects - depending on their exact timing. A commonly
observed problem is that programs which set up attention exit routines can
be very difficult to break out of, except when the system is overloaded and
running slowly, in which case two attentions in quick succession will work.
It is clearly undesirable that the ability to escape from a program should

depend on the system loading.

4.1.3 IBM 0S modifications

Exception handling in 0S/%60 can be seen to leave much to be desired. To
some extent it is possible to improve on what has been provided in the
standard operating system. This section describes some improvements which
have been made to 0S by the staff of the University of Cambridge Computing

Service [Larmouth 76, Harrison 79].

4.1.%.1 ABEND handling

The first category of change has been the provision of an 'early warning'
of most of the common exceptions which cannot be trapped by the STAE
mechanism. For example, half a second before the CPU time limit for a job or
command is due to expire, an ABEND with a locally defined code number is
issued. This ABEND can be handled using the normal STAE mechanism, and a
retry routine can be scheduled to perform tidying up operations in the
remaining half second. If the time limit expires again, then the untrappable
ABEND will be given as before. The practical effegt of this is that language
systems can give useful diagnostics (such as subroutine tracebacks) when
programs exceed their time limit without the contortions required in
standard 0S. Similar trappable ABENDs have been added for most other
errors caused by excessive use of resources, although there remains no
corresponding facility for such cases as cancellation of a job when the

system is being closed down.
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4.,1.3.2 Console attentions

The second area in which changes have been made is in the attention
handling. A minor improvement is that multiple exit routines entered as a
result of multiple attentions are properly nested - thaE is, the first
‘attention routine is resumed when the second is completed instead of being
abandoned. The main change, however, is that it is possible for the user at
the terminal to direct the attention to a particular exit ro,‘utine (and
hence, by implication, to a particular program). As part of the handling of
the pressing of the terminal break key, the user is prompted for a keyword.
An attention exit routine can have a list of keywords associated with it,
and the available exit routines are searched until one is found which
nominates the key typed by the user. This exit routine is then entered in
the normal manner. For example, the key 'Q' is taken by the command program
to request termination of any program which is running under it, and
'LOGOFF' is trapped by the terminal monitor program to request termination
of the command program. Various utilities can set up their own keys for
their own purposes without affecting these. Since the IBM provided
strategy of entering the most recent exit routine is often what is in fact

wanted, this can be requested by typing a null key.

A curious property of the revised mechanism is that there is no check
that duplﬂicate keys are not set up. A user program can, therefore, set up
the key 'LOGOFF', and trap attentions that the user intended to terminate
the session, since the normal search order for keys is that the most
recently set up keys are checked first. If, after doing any local tidying,
it were possible to propagate the attention on to the next exit routine with
the same key, this would be a useful facility. As it stands, this is not
possible, and the effect merely causes confusion. The default search rule
enables a program to be written which traps all of the system keys. In

order that it should still be possible to escape from such a program, a

28



special syntax is available [4] which requests that the search for exit
routines is made in the opposite direction, i.e. starting with the earliest

set up.

Although the modified attention handling does much to improve the online
system as seen by the user at the terminal, it does little to help the
programmer who needs to tidy up after an attention. An exit routine' in a
command program can cause the user's task to be terminated immediately, and
there is nothing that the user can do about it - this is a general property

of 0S rather than a particular failing of the attention mechanism.

4.1.4 The Titan supervisor

An operating system which was considerably more helpful to the
programmer in its fault and break handling was the supervisor for the Titan
computer, a prototype of the ICT Atlas 2. A general description of the
Titan supervisor may be found in [Wﬂson 71 ] The facilities available to
the programmer are described, in low level terms, in the machine code

programming manual [UML 69 ].

4.1.4.1 Faults

Communication between the programmer and the Titan supervisor was by
means of extracodes - orders in the format of machine instructions but in
fact interpreted by the supervisor rather than by the hardware. A large
number of possible exceptions (called, on Titan, __f;agjg) could be detected
by the hardware and supervisor, énd were divided into three categories:

direct faults, delayed faults and special faults.

Direct faults were those provoked by some specific program action which

could be detected and reported immediately, such as 'negative argument for

square root'. A delayed fault was one which could occur at an unpredictable




time, such as the failure of a magnetic tape transfer which was proceeding

asynchronously. A special fault was a more serious condition, which

required termination of the program, such as 'execution time limit expired’'.

Al direct and delayed faults could be trapped, using the 1150 extracode.
This specified the fault number to be trapped, and a trap address. When the
particular fault occurred, the +trap routine was entered, and some
information was provided (in machine registers and via other extracodes) to
enable the programmer o determine the cause of the fault and recover. A
further aid to the programmer was that delayed faults, being asynchronous
anyway, were queued by the supervisor so that the trap routine did not have

to handle more than one at once.

Special faults could not be trapped, but normally caused entry to the

system monitor routine, which printed out standard diagnostic information.

However a facility was provided to enable a user routine to be called
instead of (or as well as) the system monitor. This routine was called a

private monitor, and was set up by calling the 1112 extracode. The private

monitor could handle all faults reported by the supervisor. As its name
implies, it was intended to enable the programmer to print out diagnostic
information in a format of his own choice, but could also be used to enable a
program to tidy up before termination. An example given by Needham
[Needham 71] is that of the QUEUEJOB command, which manipulated a sensitive
file containing other users' passwords. Its private monitor routine had the
job of closing the file properly and ensuring that embarrassing information

was not left available to the user after it had terminated.

There were, of course, restrictions on what the private monitor could do.
Firstly, entry to the private monitor was not allowed to happen more than
once in any one program invocation; any further fault would cause the
system monitor to be entered and the program to be terminated. The
supervisor did, however, attempt to reduce the probability of a second fault
by doing such things as waiting for peripheral transfers to complete before

entering the private monitor. In addition, the CPU and execution time limits
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for the private monitor routine were set to fixed values (five seconds and
three minutes respectively), thus allowing the program a limited time to

tidy up.

4.1.4.2 Console attentions

Console 'quit' signals were implemented simply by mapping them onto
faults. The user could choose three different signals: @1 ('console signal')
caused a delayed fault, and @Q and @M ('console quit')‘ caused special faults.
The only distinction between th_e latter two was that @M caused the printing

of diagnostic information by the system monitor, whereas @Q did not.

A1l of these faults could be handled by the private monitor; in addition
@I could be trapped and used as a signal to the running program. Within the
limitations of a rigid two level structure, the Titan supyervisor was thus
close to ideal in allowing user programs reasonable opportunity to tidy up.
The main infelicity in the system was that a 'console quit' when in the
private monitor counted as a second fault, and it was thus possible for two
'quit' signals in quick succession to cause embarrassment, by terminating

the private monitor routine.

4.1.5 CTL E4 executive

Another manufacturer's system which has features of interest is the E4
executive of the MODUS operating system for the CTL Modular One and the
Series 8000. There is no publicly available reference work describing this
system; the information in this section is derived from experience with the

use of this system to implement a student teaching system [Walker 81 ].

In E4, the unit of protection is called a sphere, which comprises one or

more activities [5], together with other resources such as segments of

[5] ‘'Activity' is the term used in E4 for 'process’.
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memory and semaphores. Activities may create and delete resources within

the sphere.

In some respects, E4 behaves as a conventional monolithic operating
system as described in section 2.2. A gphere is deleted on termination of
its last activity, at which point the sphere may still own resources of
other kinds. The executivé undertakes to‘delete these resources itself, and
to perform any necessary fidying up actions, such as the cancellation of

outstanding peripheral transfers.

There is a hierarchic ownership relationship between spheres [6], and
the owner of a sphere may terminate it. This is done to implement console
attention, CPU time ]irﬁits etc. Typically, a user program executes in a
’sphere created and owned by a command interpreter sphere; the command
interpreter can terminate, sué.pend or résume the user program sphere at any
time. When this happens, the; activities in the user sphere are given no

opportunity to tidy up.

E4 does not cause interrupts or traps within activities; synchronization
is done by polling for messages. Since this prevents activities from
handling their own faults, E4 allows one activity in a sphere to be an error-
collector. This activity is informed (by executive message) of faults in
other activities in the sphere. The error-collector is normally assumed to
do nothing other than khandle faults in ot‘her activities, and a fault within
it will terminate the sphere. The error-collector may read and write the
regisﬁers of the failing activity by means of the READCONTEXT and
WRITECONTEXT. executi\}e functions. While this is going on, the failing
activity is held suspended, and can be resumed or terminated by the error-

collector.

A great deal of care is taken to ensure that the registers of other

activities (as seen via READCONTEXT and WRITECONTEXT) always reflect the

[6] This does not imply a hierarchic protection} relationship.
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state of the user program registers, even if the activity concerned is

executing in an executive routine. In addition, eny actions on other
activities (such as suspension or termination) are pended, if necessary,
until the activity is back in user code. This is done in order to ensure
that executive routines can run to completion without interference, and

these routines are programmed on that assumption.

There is one particular aspect of E4 in which it does not behave as a
monolithic system. Suitably trusted user level programs may add facilities

to the executive by providing User operations (UOPs). Functions provided

by UOPs may be called like any other executive function. UOPs can be used,
for example, to enhance the input and output facilities of the executive by

providing a disc filing system and a spooling system.

A UOP runs in a protected environment like any other user program, so a
call to a UOP is in some respects a change of protection domain. Since the
executive has no knowledge of what UOPs are doing, it cannot arrange to tidy
up their data structures when a sphere is terminated. Instead, a UOP can
nominate a second entry point, at which it will be called just before
termination of each sphere. Each UOP can thus tidy up its own data
structures (for example, the filing system can write directories to disc).
Only when this has been done are the resources of the sphere actually

deleted.

This means that UOPs can relinquish control safely after doing work on
behalf of a sphere, knowing that the sphere will not be deleted before they
have had a chance to restore a standard internal state. The mechanism is

analogous to those which a general ‘system must have to satisfy the
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requirements expressed in section %.5. It is not itself a complete solution

for two main reasons:

- All UOPs are called on all ‘sphere terminations regardless of whether they
have done any work for the sphere concerned. This is acceptable only if

there is a small number of them.

- Only specially trusted programs can make use of the facility.

4.1.6 URIX

UNIX [7} is a popular operating system developed at Bell Telephone
Laboratories, New Jersey [Ritchie 74]. It is a multi-user system, and allows

each user to create multiple processes in a single session.

Exception handling faoﬂities ’are provided as part of the operating
system [UNIX’ 79] In UNIX, onébpro’cess can send a signal to another. There
is a fixed number of possible signals [8} The default action of all signals
is to stop the process; Examples of such signals are SIGINT and SIGQUIT,
which .are sent to the process running a command when particular keys are
typed on th‘e‘ terminal. The SIGIRT signal is the normal means of breaking

out of a command.

A program can specify different treatment of signals by using the signal
procedure. For each signal it can specify either that the signal should be
totaliy ignored, or that a handler routine provided in the program should be
called. If a program ignores the SIGINT signal, then the ordinary‘ console
attention mechanism will not work for that program; if a handler routine is
specified, it can have arbitrarily chosen effects. There are no limits on
the number of times a signal may be ignored or handled, and no execution

time limits on the process after a signal has been received.

[7] UNIX is a trademark of Bell Telephone Laboratories.

[8] The number of possible signals is about 15, but varies in different versions
of UNIX.
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In order that it should be possible to kill a process which ignores
signals, a signal SIGKILL is provided which can be neither ignored nor
handled. This signal can be sent using the KILL command. This signal will

terminate a process immediately, giving it no opportunity to tidy up at all.

The system primitive underlying the KILL command, kill, requires two
arguments: the number of the signal and the number of the target process.
Process numbers are simple integers allocated in sequence as the system
runs. To prevent a user from arbitrarily killing processes belonging to a
different user, kill requires the user identifiers associated with the

soyrce and the target processes to be the same.

An unfortunate flaw in this scheme is that it has an unfavourable
interaction with the 'set-userid' feature. The UNIX filing system records
the user identifier of the creator of each file, and the creator of a
program can specify that when an object module is executed, the user
identifier of the process should be set to that of the creator of the file
rather than that of the person invoking it. The intended use of this
feature is to enable programs to access files which are not normally
available to the person running the program, and is therefore in some sense
a change of protection domain. This temporary change of user identifier
also means that the pérson who started execution of such a program may be
totally unable to stop it, since attempts to use the KE[LL command or the
underlying system primitive will be rejected. On the other hand, the person
who created the program can kill it arbitrarily if he can discover (or

guess) the process number [9].

The exception handling in UNIX can thus be seen to fulfil neither of the
main requirements of a satisfactory system: it is not possible to trap all
exceptions, and it is not possible for an ordinary user to force eventual

termination of all programs.

——— " T " T . 0 o

[9] Such programs could also be stopped by the 'super-user'. This privilege
would nomally be available only to a restricted group of system
programmers.
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4.2 Linguistic models

Some researchers have attempted to solve the problems of exceptional
condltlon handling by defining linguistic models, some o; which have been
wholly or partially implemented in programming languages. Much attention
has recently been given to the design of programming languages suited to
the writing of operating systems and of large, complex applications
programs. Since all programs are written in some language, it is important
to consider how exception handling facilities are to be mapped onto language
primitives; on the other hand it is equally important to be aware of the

limitations of a purely linguistic approach. This section surveys some

~actual and proposed linguistic models of exception handling.

4.2.1 History

Barly programming languages had no facilities explicitly provided for the
handling of exceptions. Yet exceptions in some wide sense have always been
something programmers have had to deal with, even if they did not use that

_terminology.

Consider, for example, a free store package, providing functions for
claiming blocks of store and releasing them again. The subroutine for
getting a block of store will return a store address as a result. But it
must do something if the required store cannot be obtained, and a typical
solution has been to return some special, otherwise invalid, value such as

zero. The caller is expected to test the result and react appropriately.

A similar technique is to modify the flow of control in some way. A
practice particularly common in assembly language programming is to provide
more than one possible return point from a subroutine. In higher level
languages, subroutines may simply execute non-local jumps when some
exceptional event occurs. In the example given above, the 'get store'

routine may just. Jjump out to a particular label if the call fails.
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Programming techniques such as these are so widespread that it is rare for

them to be regarded as exceptional condition handling mechanisms at a]_'L.‘

More powerful techniques emerged later. Some languages allow procedure
variables which can be updated to refer to routines of the user's choice.
For example, in BCPL [Richards 79] the global procedure ABORT [10] is called
on most serious errors. A program may assign its own routine to the global
variable ABORT, and this routine will then be called ihstead of the one
provided by default. It can be noted here that when changing the procedure
variable, it is possible to remember the previous value. After the local
exception handling is complete, it is therefore possible to call the preyiog_s
exception handler, but there is no way that doing this can be enforced. A
further example of the use of procedure variables for exception handling
may be found in the description of attention handling in the CAP operating

system (see section 5.3.4).

4.2.2 PL/T

Some programming languages have explicit support for exception handling.
An early example is PL/I [IBM 5], which has already been mentioned in
connection with the MULTICS system (see section 4.1.1). The ON statement
allows a handler (the body of the ON unit) to be associated with a named
exception. Exceptions such as division by zero are railsed by the runtime
system when they occur; it is also possible to raise exceptions explicitly
using the SIGNAL statement. ' The latter facility allows programmers to
specify their own exceptions, which are not explicitly known to the language

gystem.

[10] Strictly speaking, this is a property of the implementation dependent
runtime system, since the language specification says little about the
runtime system. However, ABRT is sufficiently standard to be regarded for
practical purposes as part of the language.
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The following skeleton program shows examples of these constructions:

/* a, p, r and x are assumed to
p
be declared at this point.

*/

declare usererror condition; /% declares a programmer defined
condition name

*/

on zerodivide begin; /% ON unit to handle division by zero %/
if a = 0 then signal usererror;
else goto failg |
end;

x := p/r; /% system will signal zerodivide if r is zero %/

fail: /% ON unit can jump here %/

The exception handling mechanism of PL/I is, however, rather restrictive,
since the only communication between the signaller and the handler is by
means of global variables. ON units can exit by using the GOTO statement to
perform a non-local jump. If the ON unit returns, control returns to just
after the’SIGNAL statement; for exceptions raised by the runtime system,
some default action (specified separately for each condition) is then taken.
A critical evaluation of the exceptidn handling facilities in PL/I may be

found in [MacLaren 77].

4.2.3 HESA

A number of later languages have attempted to improve on this. A good
example of exception handling may be found in the language MESA
[Geschke 77, Mitchell 79]. MESA uses the term signal to refer to an
exception, and the term catch phrase to denote an exception handler.
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" Signals are declared in the same way as procedures, by means of a type
constructor. This specifies the parameters to be passed from the signaller

to the catch phrase, and any results to be returned, e.g. [11]

BadParameter: SIGNAL [reason:CARDINAL]
RETURNS [fatal:BOOLEAN];

Generating a signal looks like a procedure call except that the word
SIGHAL or ERROR [12] is present. There is also a construct known as the

gpecial error, consisting of the single word ERROR. This allows generation

of an unspecified error signal; it merely asserts that something has gone

wrong. BExamples of these are:

DontContinue <- SIGNAL BadParameter[n];

ERROR ;

A program which needs to handle an exception must provide a catch
phrase. Catch phrases may be attached to a number of constructs, the main
examples béing procedure calls and BEGIN ... ERD blocks. The catch phrase
must name the particular signals it is to intercept, or it may have the label
ANY, which, as its name implies, will catch any signal, including a special

error. An example of a catch phrase on a procedure call is:

Procedure[argument ! BadParameter =>
BEGIN
-- the body of the catch phrase
IF reason < O THEN RESUME[FALSE] -- returns a result
-- to be interpreted
-~ in the procedure
ELSE ERROR; -- a recursive signal
END |:

[11] In the examples, words entirely in upper case are MESA reserved words; words

in lower or mixed case are identifiers. '--"' introduces a comment.

[12] The difference is explained later.
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When a signal is generated, the MESA runtime system searches for enabled
catch phrases, beginning at the most recently activated procedure, going
dovn the call hierarchy. Any catch phrase which matches the signal name
will be called, with the arguments which were passed to the signal being
available to it. It can also refer to any variables it can access by virtue
of its textual position in accordance with the normal scope rules of the
language. Tt is important to note that even though the first catch phrase
which is called may be several levels down the call hierarchy, the
environment of the signaller and all the intermediate levels still exists.
This enables the catch phrase to cause the signaller to be resumed if it can
correct the condition which provoked the signal or if it returns information
to the signaller, In the example, the procedure 'Procedure' is assumed to
. signal the 'BadParameter' signal if the argument to the procedure is wrong.
The catch phrase may resume the signaller, passing back information about
whether it is sensible to continue or not. If the procedure generating the
signal cannot sensibly be resumed, then it can indicate this by using ERROR
instead of SIGNAL. The MESA system will then fault any attempt to resume
the signaller; as might be guessed, it does this by means of a recursive

signal.

Another possibility is that the catch phrase will reject the signal,
which will cause a search for another suitable catch phrase. Rejection is

indicated by falling out of the code associated with the catch phrase.

A catch phrase can also cause the statement which provoked the signal to
be retried by using the RETRY statement, and can cause continuation at the

statement after the one which provoked the signal by using CONTINUE.

A final possibility is that the catch phrase will exit by means of a non-
local Jump. If this is done, the jump does not occur immediately; instead
the runtime system passes the signal UNWIND to any intermediate procedure
activations which are about to be destroyed. Procedures which need to tidy
up before being destroyed must include a catch phrase for UNWIND, which is a
pre-declared ERROR.
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MESA allows catch phrases to generate signals, so that the whole
mechanism may be invoked recursively. However, special care is taken in the
case of a catch phrase signalling the same signal as an earlier one. When
handling the second signal, any procedure activations which have already had
a chance to handle the first signal are missed out of the search for a catch

phrase, thus avoiding recursive loops.

MESA provides explicit support for parallel processes and monitors. A
limitation of the signalling mechanism is that a signal cannot be propagated
from a process to the process which created it; any signal not caught within
a process will be passed to the debugger. Care must also be taken within
monitors which can provoke signals. The monitor lock is not released when a
signal is generated from within a monitor (since the invariant being
maintained by the monitor might not be satisfied at the time of the signal).
Since a catch phrase can jump out of an entry procedure of a monitor, the
programmer must provide an UNWIND catch phrase. This catch phrase can
restore the monitor invariant, and even if this is otherwise a null

operation, it will have the side effect of releasing the monitor lock.

4.2.4 A BCPL exception mechanism

In order to demonstrate that special language support is not essential
to provide reasonablg exception handling, a mechanism invented for the
language BCPL [Richards 79] can be considered. It is implemented not by
changing the language definition, but by providing a set of library routines.
The mechanism is the work of the Rainbow Group in the University of
Cambridge Computer Laboratory, and is described fully in local documentation

[Wilkes 80, Singer 80 ].
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Since the mechanism is provided as a library package rather than as part
of the language, it is necessary to initialize the system explicitly, by a

call of the form: [13]

EX.init()

Once this has been done, handlers may be agssociated with an exception by

a call of the form:

EX.on(@exception, handler.function, argil, arg?)

and the call
EX.off(@exception)
removes the most recent handler for an exception.

An exception is represented by a BCPL word, and is identified by its

address (the BCPL @ operator gives the address of a word).

To signal an exception, the call is:

EX.signal(@exception, type, arg3, argd)

The handler is called with parameters 'arg!' and 'arg2' from the point of
handler -set up, and ‘'arg3' and ‘'arg4' from the signaller. The 'type'
parameter indicates whether the signaller is prepared to receive control

back after the exception has been handled.

An exception handler exits by calling:

EX.exit(how, resultl, result?2)

The 'how' parameter indicates what should be done next, e.g. call the next

handler, return to the signaller etc.

[13] Some of the argument lists in these examples have been slightly simplified
in the interests of clarity.
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If no handler for an exception can be found, then the EX.default
exception is raised, and a default handler, which prints out an error
message and terminates the pfogram, is provided for this exception. In
addition, the .exception EX.finish is signalled when the program is about to
stop because of a call of the BCPL function STOP(); this allows packages to

tidy up before termination.

This exception handling mechanism has much of the power of more
complicated mechanisms built into languages, and is simple to implement as a
library package without altering the compiler. The current implementation
is about 300 lines of BCPL. It does, of course, require discipline in its
use. It provides no support at all for mutually suspicious packages, and
care must be taken to avoid breaking scope rules (as it always must be when

addresses are handled in BCPL).

An unfortunate limitation in the current scheme is the lack of an
EX.unwind exception to indicate that a stack frame is about to be abolished
(perhaps because another exception handler has terminated by requesting a
non-local jump). There is no fundamental reason for not providing this; the
author has s:uggested that the facility should be provided, and it is

possible that it will be implemented in the next version of the package.

4.2.5 Levin's proposal

Levin has proposed a somewhat more general mechanism than those already
described [Levin 77). One of the most important properties of his proposal
is that it addresses a situation that other mechanisms do not, namely that
the best place to handle an exception may not be on the current call stack.
The terminology Levin employs for this is that existing exception handling
mechanisms look for exception handlers by following a 'calls' relation,
vwhereas they ought to be following a 'uses' relation; the distinction is

often forgotten because the two relationships coincide in simple systems. A
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context 'uses' another context if it can invoke the functions it provides.
In the presence of shared abstractions, the 'calls' hierarchy and the 'uses'

hierarchy do not necessarily coincide.

~Levin distinguishes clearly between exceptions which are raised on
structure conditions and those that are raised on flow conditions. The
difference is that structure conditions are raised relative to the data
hidden behind an abstraction, whereas flow conditions are rais‘ed on the call
of a particular function provided by the abstraction [14]. The practical
effect of this is to assist in determining which handlers can be called when
a condition is raised. Such handlers are sald to be eligible [15]. For; a
flow condition, eligible handlers may be found in only one context (the
caller). For structure conditions, handlers may be found in many contexts -
i.es in all of the places where the relevant instance of the abstraction can
be used. KBarlier exception handling mechanisms did not make this

distinc tion.

‘ One of the problems that arises when more than one exception handler is
eligible to handle a condition is that of deciding which to invoke (and if
more than one is to be invoked, in what order). The algorithm for
determining which of the eligible handlers to invoke is termed a selection
policy. Levin describes a number of possible selection policies, and assumes
that an implementation would provide a few fixed policies, a particular

policy being applied (statically) to each condition.

Unlike most exception handling mechanisms, Levin's does not permit an

exception handler to asbort the signalling routine. It is therefore safe for

[14] The example given is that of manager of a particular format of file. The

' exception file inconsistent is a structure condition raised on a particular
instance of the file; the exception file read only is a flow condition
raised on a call of the function file write. The formmer is of concern to
all users of the file; the latter matters only to the programmer attempting
to performm a write operation.

[15] The definition of 'eligible' also includes rules for restricting the scope
of handlers by lexical nesting. For full details, see [Levin 77] section
4.6‘1'
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a module to raise an exception while its private data structures are in an
inconsistent state. Provided that the handler does not enter an infinite
loop, control is guaranteed to return to the signaller. A handler can,
however, specify a local transfer of control which is to occur when the

context of the exception handler is later resumed.

4.2.6 Limitations of the linguistic approach

Although the author considers the linguistic approach to be a useful
contribution to the handling of exceptions, it is not seen as providing a
full solution. Good language mechanisms (in general) enable programmers to
write programs which are clear and comprehensible, and possibly provable.
Languages provide a set of abstractions which enable a programmer to think
in high level terms. But it must not be forgotten that the low level
implementation, although largely hidden from +the programmer, is still
present and is the source of many of the exceptional conditions that the

language system is to handle.

High level Ilanguages are now used for the implementation of many
operating systems, as well as for the production of applications programs.
However it is rare for the whole of an operating system, together with the
applications programs which run under it, to be written within a single
language system. When considering the interactions between separate
programs, possibly written in different languages, the description of those
interactions have fto be expressed in low level terms. Once the operating
system has informed a program of some exceptional condition, a high level
language system can help the programmer to deal with it cleanly. But the
operating system writer still has to make the decisions about when to raise
exceptions, and must provide the basic facilities which allow programs to

handle them.

An obvious remark which is nevertheless worth making is that the
exception handling mechanisms of a language can only help if they are used.

Morris has pointed out [Morris 78] that the use of MESA signals can be very
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dangerous. Any call on another procedure can raise a signal, and is
therefore a potential exit from the current procedure. Although it is
possible (in MESA) to provide catch phrases to avoid losing control, it is
rare for programmers to be disciplined enough to do so. Bugs caused by
errors of this nature are likely not to be noticed for some considerable

time.

A further limitation of the linguistic approach is that it provides little
scope for the enforcement of constraints additional to the basic exception
handling, such as the imposition of real time limits on the handling of
certain exceptions. Such constraints are essential in real operating

systems; language designs rarely allow this topic to be addressed.

A final danger with providing a purely linguistic basis of exception
handling is that one is relying on the compiler and runtime system of the
language to implement correctly the abstractions it claims to implement. By
pr'obviding lower level mechanisms, and regarding the language system as
simply a tool, it is possible to design an operating system whose exception
handling will continue to work even if the language system used for user

programs is incorrectly implemented.

4.3 Proposals made in previous research

The need for mechanisms to enable domains to protect their integrity has
been recognized for many years. An early paper by Lampson [Lampson 69]
considers the problem of handling traps and interrupts in a capability based
protection system. A simple exception handling scheme is proposed, which
allows domains to handle their own exceptions, propagating the exception to
the caller if there is no suitable handler. Time limits and attention
signals are dealt with by converting them into traps. The need for a domain
to perform indivisible action is catered for by allowing processes to become

non-interruptible for a short time.
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The more stringent requirements placed on operating systems by complex
program structures are expressed in a paper by Needham [Needham A ] One
of the main points made in this paper is that it should be possible for all
faults to be handled within the user's program; it is not sufficient for the
operating system to force conventional error handling on the user. The
Titan supervisor 'private monitor' (see section 4.1.4) is quoted as an
example of the approach required. A more general mechanism is also proposed
to cope with there being more than one program on the call stack, each of

which needs to do its own fault handling.

These requirements have also been pointed out by Parnas and Wﬁrges
[Parnas 75]. This paper considers the treatment of exceptions (called
'indesired events') in a hierarchically structured system, and offers
general techniques for the handling of exceptions and their propagation
across levels of abstyaction. The relevance of exception handling
technmiques to the more general area of software reliability has been

pointed out by Melliar-Smith and Randell [Melliar—Smith 77].

A paper by Goodenough [Goodenough 75] presents a survey of exception
handling, but is predominantly a discussion at the programming language
level rather than the system level. The work of Levin in this area

[Levin 77] has already been discussed (see section 4.2.5).

A detailed exposition of techniques for handling exceptions may be found
in [Lindsay 77]. Lindsay explicitly defines an exception as 'the reported
failure of an operation invocation to produce the specified effects of the
operation'. Mechanisms are provided, at the system level rather than the

language level, to report exceptions across subsystem boundaries.

An interesting feature of the scheme proposed is that it attempts to
treat all exceptions uniformly. In many systems, low level exceptions such
as virtual memory faults are dealt with specially. Ilindsay sees such things
as exceptions reported by the 'basic processor', and suggests that they

should be handled using the same mechanisms as any other exception. In
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order to do this there must be restrictions on the setting up of handlers
for certain exceptions; in particular it must be possible for handlers for
some exceptions to be impose . This ensures that the user cannot trai) the
exception before the operatiﬂg system has had a chance to handle it. This
uniform treatment of excep’ior~ has been taken as far as to allow the

exception processor to deal with »xceptions which occur within itself.

The limitations of Lindsay's approac’h come from the assumptions made.
Calls of subsystems are seen as isolated events which either succeed or
signal an exception. The possibility that subsystems might retain state
information between invocations has not been considered. The treatment of
asynchronous events, particularly in systems which support a non-

hierarchical organization of subsystems, is left for future research.

The problems of resource management and maintaining the integrity of
protection domains have been considered by Taylor [Taylor '78]. He views
execution time (whether measured by instruction cycles or by real time) as
a resource, for which a domain may have a capability. ZEnforcing CPU time
limits, console attention etc. is done by revoking the CPJ time resource. He
congiders the problem of allowing protection domains to maintain their
integrity in the face of such revocation, by arranging to alloew the domain
certain time guarantees. The time guaranteed is not assumed to be a fixed
amount, but may be varied (within limits) by negotiation with the operating
system. A domain is expected to ensure that the time guaranteed to it is
sufficient to allow a standard state to be restored. Taylor's scheme allows
for the possibility that domains may have to call others in order to restore
>their standard state, but does not consider the possibility that a domain

may need to return in a non-standard state.
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The problem of allowing protection domains to relinquish control while in
a non-standard state has been largely neglected in previous work. As will
be seen in chapter 6, part of the problem is concerned with the loss of
access to objects by the destruction of capabilities. Some work has been
done in this area, notably in the Hydra system [Cohen 75 ] The problem is
dealt with in this system by allowing type managers to retrieve capabilities
for objects of the appropriate type which have become unreferenced. This

subject will be returned to briefly in section 7.5.
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5. The CAP operating system

5.1 Background

The practical work done by the author has been in the operating system
for the CAP computer, a machine built in the University of Cambridge
Computer Laboratory for research into capability based memory protection.
The hardware is fully described in [CAP 1], the microprogram in
[CAP 2, Walker 74], and the operating system in [CAP 3, Slinn 77]. In
addition, an account of the whole of the CAP project, with bibliography, may
be found in [W'ilkes 79]. Since considerable reference material is readily
available, only a brief summary of the relevant parts of the CAP system will

be given.

5e.1.1 Addressing and protection

The machine itself is a 32-bit word addressed computer with (at the time
the work described was being done) 192K words of core store. It is
controlled by a microprogram, which resides in 4K 16-bit words of fast,
volatile memory. The microprogram provides the user with a fairly
conventional instruction set, together with the support of a capability

based addressing and protection scheme.

5.1.1.1 Addressing

The addressing is worth discussing in more detail, since it lays the
foundation for the support of the protection domains which are so important

in the operating system.
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The format of a virtual address is shown in figure 2.

31 28 23 18 15 o

Figure 2: CAP virtual address format

I is a 4 bit number which specifies one of 16 capability segments which may

be accessible at any moment.

J is an 8 bit index into that capability segment, and is used to select a
particular capability.

K is a 16 bit word offset into the segment specified by the capability.

The more significant part of the address, (I, J), is called the segment

specifier.

Capabilities do not themselves contain the absolute addresses of the
store segments they represent, but instead contain a pointer to an entry in

a resource list. The capability segments are also specified by eniries in

the resource list. Figure 3 illustrates the relationship between the

resource list and the capability segments.
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Figure 3: CAP resource list and capability segments
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5.1.1.2 Process structure and process resource lists

In order to describe what the resource lists contain, the process
structure must be considered. The CAP microprogram supports a hierarchy of
processes; any process can set up sub-processes and coordinate them. When
the microprogram is loaded, a single process is created; this is called the
Master Coordinator. Part of the bootstrapping operation specifies the
absolute location of its resource list, which is called the Master Resource
List, or MRL. The identities of the current capability segments of a
process (as resource list offsets) are stored in its process base. The
process base of the master coordinator is identified to the microprogram as
an MRL offset during initial loading. MRL entries all contain the absolute
addresses of the segments they represent. Both the capability for an
object and its MRL entry contain size and access information, the capability

acting as a refinement of the MRL entry.

A sub-process is created by executing the enter-subprocess instruction
(ESP), quoting two arguments: a capability for a segment which is to become
the resource list of the sub-process, and a number which specifies which
entry in this new resource list is td be the process base segment. This new
regource list is called a Process Resource List, or PRL. From the point of
view of the coordinator, the process base and PRL of a sub-process are just
data segments. When a sub-process is executiné, its process base and PRL
are not usually made available as data segments within its own virtual

address space, and are thus highly protected data structures.

The PRL contains entries for the segments available to the process; each
entry gives the virtual address of that segment in the virtual address
space of the coordinator of the process. Hence to find the absolute
address of a segment, a chain of capabilities and resource list entries must
be followed; this chain ié represented by the upward pointing arrows in
figure 4. BEvery capability or resource list entry can provide size and

access refinement.
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Although not strictly relevant for the purposes of this dissertation, it
should be pointed out that the chain of capabilities and resource list
entries is not followed every time a virtual address has to be translated
into an absolute address to put onto the store bus. CAP has a set of 64
capability registers, which acts as a cache for frequently used
capabilities. If a capability is in the cache, the address translation is
done entirely by the CAP hardware. If it is not, the microprogram performs
the full address translation computation and loads the result into the
cache. This microprogram operation is called the reset cycle: its operation
will not be further described. It is sufficient for the present purposes to
note that apart from the increase in speed that it offers, it is transparent

to the programmer.,

5.1.1.3 Changing protection domains

Up to now, it has been assumed that there is only a single address space
in each process, which would imply a hierarchic protection structure
corresponding to the process structure. This is not in fact true; it is
possible to change protection domains within a process. A protection domain
is represented by a capability called an ENTER capability. (This is not
recognized by the hardware, only the microprogram.) The PRL entry for an
ERNTER capability contains three numbers, which are PRL offsets of capability
segments. When a new protection domain is entered (using the ENTER
instruction), the process base entries specifying the PRL offsets of
capability segments 4, 5 and 6 are saved on a stack, and new ones are loaded
from the ENTER capability. The stack is called the C-stack [1 ], and is quite
separate from any stack a language system uses. Thus the meaning of all
virtual addresses with I =4, 5 or 6 (see fig. 2) is changed. The old
program counter is also saved on the stack, and the domain is forced to

start executing at a fixed virtual address in one of the new segments. The

(1 ] C-stack stands for capability stack.
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RETURN instruction undoes all of this, causing the calling domain to resume

execution from where it left off.

In addition, a mechanism is provided to allow capability arguments to be
passgd between protection domains. (Numeric arguments are simply passed in
the machine registers.) The microprogram provides an instruction to creats
a nevw capability segment, number 3, (on the C-stack), and capabilities can be
moved into it. After an ENTER, these capabilities appear in capability
segment number 2 m the new address space. If capability results are to be
returned, they are moved into capability segment number 2 before the RETURN
is executed, and will then become available to the caller in capability

segment number 3.

These domains, hidden behind ENTER capabilities, are called protected
procedures, and are extensively used in the CAP operating system, to provide
both protection and modularity. It can be seen that the interface between
protectea procedures consists of a (usually) small, well defined set of
numbers and capabilities. This narrow interface (compared, say, with the
typical procedure interface in a programming language) encourages careful

definition of the interfaces between the modules of the operating system.

An ENTER instruction causes three capability segmer;ts to change their
identities (rather than just one) to enable controlléd sharing of
capabilities between protected procedures. The three capability segments
concerned, 4, 5 and 6, are called the P, I and R [2] segments. As an example
of controlled sharing, two ENTER capabilities may refer to the same P
capability segment, but different I capability segments. The former can
contain capabilities for objects to be shared between thé domains (such as
code segments); the latter can contain capabilities for unshared objects
(such as workspace segments). This has allowed the implementation of a

rudimentary form of protected object - the representation of the object,

[2] P, I and R stand for procedure, interface and resource respectively.
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together with the code to manipulate it, being hidden within the protection

domain.

5.1.2 Operating system structure

In order to set the scene for the remaining sections, an overview of the
relevant parts of the operating system structure will be given. Much more
detail may be found in [Wilkes 79]. The operating system employs just two
levels of the process hierarchy: the master coordinator schedules a number
(about 20) of sub-processes. Some of these are system processes; others
form a pool of processes in which user programs are run. The master
coordinator is a single protection domain; each sub-process consists of

several different domains.

Each protection domain of the operating system is a separate program -
most are written in A1g91680 [Bourne 75] - and is independently compiled.
The data structures described in the previous sections are constructed
when the various program binaries are bound together to form a system

image.

The operating: system manipulates +the capability structure ‘ (in
appropriately privileged protection domains) to implement a virtual memory
system and filing system. Dynamic linking of new prote'ction domains from
the filing system is supported. This requires the creation of new entries
in process resource lists, and the construction of capabilities to refer to

them.

Much of this dissertation is concerned with what happens when
capabilities for protection domains are deleted. In the CAP system,
capabilities can be deleted simply by overwriting them with a capability for
something else. This is purely a microprogram function; it does not involve
any operating system action at all. The effect of this is that entries in

the process resource list become unreferenced. In order that the PRL
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should not become unreasonably large [3], it is necessary to garbage

collect it from time to time.

The PRL garbage collector was written by the author, and is a protected
procedure which is called whenever a new PRL entry is wanted but none is
immediately available. It is necessarily a highly privileged domain, since it
nust be able to scan all the capabilities which can be used by any domain in
the process, and compute a map of the PRL entries which are referenced.
When it has done this, those entries in the PRL that can never be accessed
again will have been identified. Before the entry can be reused, certain
housekeeping operations may have to be performed (e.g. the entry may have
referred to an object on disc which can now be deleted). The PRL garbage
collector makes use of other modules in the operating system to do this, and
then makes the freed PRL entries available for reuse. The garbage
collection of the PRL occurs as a side effect of a system call (such as
requesting the creation of a new segment) and its operation is transparent

to the user.

5.1.3 The use of protected procedures

A few words are appropriate about the way in which protected procedures
are used in practice in the CAP operating system, since the style of use
provided much of the motivation for the work described in this dissertation.
As described above, protected procedures appear as subroutines; when they
are called, they begin executing at a fixed virtual address, and the

microprogram retains no state information about the domain when it returns.

For many operating system procedures, a subroutine style of use is not
particularly appropriate. Many have initialization work to do (such as
setting up of communication channels) and it is important for efficiency
reasons that such initialization is done only once. It was observed,

however, that a protection domain can retain state information between

[3] There are, in fact, implementation limits on its size anyway.
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calls in its private data segments. Although each entry to the domain
initially goes to the same place (offset zero in the main code segment), the
program may examine data structures left by the previous call and make
further decisions on the basis of what it finds. If a test for whether the
domain is already initialized can be devised, it is easy to avoid repeating

the initialization on subsequent calls.

In fact, programs on the CAP do not rely on ad hoc tests to organize
this. Instead, a convenient mechanism has been incorporated into the
Algolé8C [4] runtime system to enable such decisions to be made easily. The
language libraries provide a procedure enter which is used to transfer
control to a domain. The first time a domain is entered, it begins executing
at the beginning of its main program - each protected procedure is mapped
onto a complete program, rather than a language procedure. If the program
terminates in the normal way (by control reaching the end of the main
program), the protection domain returns, using the RETURN order. A somewhat
different effect can be achieved by using the library procedure return.
When return is called (in the Algol68C sense) the runtime system sets a
special marker on the Algol68C stack, which is a pr"ivate data segment of the
protected procedure. It then returns to the calling protection domain
using the RETURN order. When the domain is ERTERed again, the marker on the
stack is noted, and the Algol68C environment is restored to the state it was
in just before the RETURN order. The called program will then resume from
immediately after the call of the return procedure. Returning to the caller
thus appears as a subroutine call. The relationship between the two domains

is thus very similar to a coroutine structure.

[4] and also BCPL [Richards 79], though this is not used in the operating system




The gross structure of many programs in the CAP operating systenm is:

BEGIN
«eo initialization code ...
bo
CASE first argument
IN
«e. services provided ...

ESAC;

return (results ...)
0D

END

It can thus be seen that the CAP protection system, and the manner in

which it is used, closely resembles the formal model presented in chapter 3.

5.2 The inter-process communication systen

This section describes some work done in the CAP operating system which
illustrates some of the integrity problems which arise in a domain based
system and how they are typically solved. The CAP operating system has an
inter-process communication mechanism which is accessed by means of
capabilities. A protected procedure, available to anybody, exists for
setting up message channels. This procedure performs two functions -
checking software capabilities [5] for message channels, and establishing
the communications path between processes. The result of a successful call

to this procedure is one or more capabilities giving access to the more

[5] A software capability is a protected bit pattern which will be accepted by
a piece of software as evidence that its caller is allowed to invoke some

function. Software capabilities are sometimes called permission
capabilities. '
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primitive message passing facilities (e.g. send data message). The
- construction of capabilities for a message channel involves the allocation
of workspace. The messages themselves are held in dynamically allocated
buffers, but some additional space is required to hold data describing the
state of particular communication channels. This workspace must be in an
address space accessible from all processes, and is in fact taken from the
master coordinator's workspace (in Algol68C terms, a HEAP generator is
used). The workspace is referred to from the sub-process by means of PRL

entries and capabilities which are created as part of the setup operation.

5.2.1 A practical problem: reclaiming store

In early versions of the operating system, there was little attempt to
manage this workspace - it was assumed that message channels would be set
up between sgystem proc'esses at system initialigation time and that there
would be little need for sﬁch operations once the system was running.
However, it was later found extremely convenient to enable programs which
were dynamically linked from the filing system to engage in communicafion
with system processes. The particular case which caused most embarrassment
was that of setting up a channel to enable a linked program to send a
message to a system process and receive a reply. A data structure about 5
words long has to be made for each channel to handle the replies to
messages. Although this data structure is not large, it is clear that if the
space obtained when a channel is created is not recovered, the coordinator
will quickly run out of workspace entirely (it typicaliy has only 2K words
available).

A problem arises here because the master coordinator is not truly the
master of its own resources. Much of the message system code is part of a
protected procedure called ECPROC which runs within a sub-process. This
part of the message system interacts intimately with the coordinator. The
coordinator cannot manage its storage without considering references to
that storage from other programs - hence a simple garbage collector will

not do (nor would it be desirable for other, essentially independent,
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reasons). If coordinator space is to be recovered, one must rely on it

being explicitly returned by sub-processes.

If all programs which set up message channels could be relied upon to
perform a 'release channel' operation when a channel was no longer required,
then this space could be recovered. This is not really satisfactory for
several reasons. TFirstly, it is not always possible to guarantee that a
program can regain control before it is abolished (this is precisely the
problem to be addressed in chapters 6 and 7). Secondly, it would restrict
the availability of the message system to those programs which could be
guaranteed to do the necessary tidying up operations. It is reasonable to
expect programs to look after their own resources, but not those belonging .
to other protection domains. Thirdly, it would give no protection against a
program which appears to perform correctly (and under normal circumstances
actually does), but which has a bug in it which causes it not to tidy up
correctly under certain error conditions. This would give a very slow drain

on system resources, probably causing it to crash after a very long run.

5.2.2 The solution

The decision was therefore taken that the operating system should
arrange to recover the coordinator heap space whenever it found that a
message channel had fallen into disuse. The problem divides itself into two
parts - discovering what can be deleted, and arranging for the recovery of

the space.

The latter operation is straightforward. The data structure on the
Master Coordinator's heap is called a channel. Since the Algol68C system
does not allow objects to be returned to the heap, the coordinator was
changed to keep a chain of free channels. When a new channel is required, it
tries to obtain one from the free chain, and only if this is empty does it
obtain one from the heap. A new function was added, called delete message

channel, to put an existing channel on the free chain.
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The work of deciding which channels ought to be deleted is done from
within the sub-processes. Capabilities for message channels are of three
types - send, receive and reply. Send and receive capabilities refer to PRL
entries in the usual manner; a reply capability is a temporary repository
for information associated with messages which require replies, and will
refer to a PRL entry if a reply is outstanding. Disused message

capabilities are detected in the PRL garbage collector.

The PRL garbage collector had some knowledge of message capabilities
from the outset, since it must be aware of all references to PRL entries.
It was modified so that it attempted to delete the message channels which
belonged to those PRL entries it had found to be unreferenced. This is not
as simple an operation as might appear - since the meséage channel has
presumably been used to send messages, there may still be messages in
transit. If a program sends a message which requires a reply, and dies
before receiving the reply, then the message will still be in the system when
the message channel capabilities are garbage collected. It is therefore
necessary to clear out any pending messages, otherwise the system will be
liable to run out of message blocks. As ECPROC is the only program which
touches message blocks, the PRL garbage‘colleotor passes all unreferenced
message channels to ECPROC. This program decides whether or not the
channel can in fact be disposed of (there are some casés in which ECPROC
may detect that asynchronous activity associated with the channel may be
going on in other processes). If it can, it deletes any pending messages,
calls the Master Coordinator to recover the channel space, and informs the
PRL garbage collector that the PRL entry can now be reused. If the channel
cannot be deleted yet, the garbage collector simply refrains from reusing
the PRL entry. It will be detected as garbage again next time the PRL
becomes full, and the deletion tried again. Since the asynchronous activity

is likely to have completed by this time, this retry will usually succeed.
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5.2.3 Evaluation

In practice, this garbage collection technique works well. The garbage
collection is being done anyway, to recover PRL entries, and it is very easy
to perform extra operations on entries of particular types before they are
reused. A number of similar problems are also dealt with by taking action
when their capabilities are deleted. It is interesting to note, however,
that this is a typical example of an operating system providing an ad hoc
wechanism for its own benefit. The structure of the system has been .
disturbed because the PRL garbage collector needs to contain code which is -
logically part of the inter-process communication system. It would have
been preferable to implement message channels as protection domains or
protected objects, and provide the more general techniques to be presented

in chapters 6 and 7 to deal with channels which became disused.

5.3 Attention handling

One problem which has to be considered in any multi-user operating
system is that of arranging some means of terminating computations which
are no longer desirable. This usually takes the form of a 'console quit' or
'break' key for online work, and a CPU time or real time limit for offline
work. Facilities are usually provided to enable operators to cancel
sessions and jobs. In this section, the term 'attention' is used to cover

all of these.

It is also desirable to allow programs to be able to handle attentions.
In the author's opinion, it should be possible for a program to be able to do
at least a small amount of computation after any attention, even if the aim
of the attention is to stop the program. On the other hand, it should not
be possible for the program to ignore such an event entirely, since that

would defeat the purpose of the mechanism.
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It nust also be noted that attentions are used for a variety of distinct
purposes, which should not be confused.  For example, an attention may be
used to give asynchronous communication with a program such as a text
editor, or it may be sent to a program in order to make it stop. The fact
that a program may be handling attentions itself must not interfere with

the latter use.

The remainder of this section describes how the author dealt with these
issues in the CAP operating system. No claim is made that all of the
problems have been solved; in particular, for reasons which will be given
later, the implementation has not been carried out in its entirety.
Nevertheless, sufficient is present to show that the general ideas do work

in a real operating system.

5.5.1 Requirements of the attention mechanism

During the author's first year of work on the CAP operating system, most
of the major internal components of the operating system were completed,
and it became possible to run 'user programs'. At that time, it was
considered quite important to get a usable user level gystem wofking fairly
quickly, in order that the CAP system could be developed under itself, and

the temporary operating environment, 036, could be abandoned [Slinn 77 ].

Almost from the outset the CAP operating system was a multi-user one,
and it soon became apparent that the casual attitude taken 1o the
termination of undesirable computations on 0S6 (i.e. restart the system)
could not continue. Accordingly the author undertook to provide an .

attention handling mechanism.
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A variety of mechanisms were considered, each with its advantages and
disadvantages. The essential issues were recognized early on; the following
quotation from an internally circulated document [Birrell 76] summarizes

the initial aims:

"We require that the mechanism can achieve the following:

1. It must be capable of forcing return(s) from the offending

procedures, albeit after a considerable delay.

2. It must be such that procedures managing resources and data

structures are allowed to tidy up.

3. For efficiency, both in code and time, it should be such that
the various system procedures need not take any special

ac tion.

4. There must be a limit to the enforcement of the event (e.g.
‘break' need only take the process back to its command
program, not to STARTOP [6]), but this limit must be flexible
(to allow multi—procedure user written command programs),
and protected (only STARTOP should be able to cancel 'CPU

exhausted')."

Point 3 above perhaps requires some further explanation. The CAP
architecture allows separate protection domains to exist within one
process; control may pass between them using the ENTER and 'RETURN orders.
Except to the extent that capabilities are explicitly shared or passed as
arguments, the domains are fully protected from eéch other. This makes it
much more natural for the operating system designer to provide operating
system functions within user processes than it is in many other systems.
Thus there are many parts of the CAP operating system which execute as part
of an ordinary user process; these parts of the system often update system
data structures and ought not to be terminated at arbitrary points. It is a

feature of the CAP system that such parts of the operating system are not

[6] STARTOP is the initial protection domain of a user process, responsible for
setting up the command program's envirorment and handling any faults which
it might return.
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marked in any way which would make them easily distinguishable from ordinary
user programs - the only differences are that they have capabilities which

are not made available to the general public.

At the time the attention handling was introduced, the many user and
system programs in existence took no explicit measures to deal with
attentions, since no means of doing so had been defined. It was considered
important that some default attention handling should be provided for both
system programs and user programs, despite the fact that their requirements
are different and the operating system cannot distinguish between them.

The means used to achieve the desired effect is described in section 534,

5.3.2 Implementation issues

In the early days of the ‘project, it had been tentatively assumed that
the existing fault handling‘ mechanisms would be suitable for dealing with
asynchronous events as ’welly as with errors like protection violations or
invalid parameters being passed to system procedures. A fault caused a
Jump to a particular location in the user's virtual address space, with
sufficient information being provided to enable diagnosis and possible
correction of the fault. This correction was termed clearing the fault, and
a software capability was required to do it. Every fault had a number, and a
'fault capability' contained the largest fault number it could be used to
clear; this was done so that the clearing of certain faults could be made

privileged.

For a variety of reasons, this idea was abandoned. To start with, it
seemed wrong to require that all faults should have to be arranged in some
order of severity, especially as the number of fault codes used by the

operating system is of the order of hundreds rather than tens.

Secondly, there is a fundamental difference between faults and
attentions. Faults are almost always caused by something that the program

has done; it is impossible to get a 'limit violation' fault without attempting

67




to access a segment. On the other hand, attentions are genuinely
asynchronous - since they originate from outside the target process. The
fault handling mechanism imposed the restriction that a program could have
only one fault outstanding at once; making attentions into faults would mean
that a program would not be able to deal with an attention if it happened to

be dealing with a fault, which would have been an unreasonable constraint.

Finally, a fault is regarded as being a property of a particular
protection domain. Even though faults which have not been dealt with are
passed back to the calling domain, the fault 'limit violation' is distinct
from 'called domain suffered a limit violation and took no corrective
action'. Attentions, on the other hand, are the property of a process: at
the time the attention is issued it is not necessarily known which
protection domain the target process is in. Since an attention is
asynchronous anyway, the distinction between an attention which occurred
while a particular domain was executing and an attention which was passed

back from another domain is not so important.

For +these reasons, it was decided to treat faults. and attentions
separately. Given a separate attention mechanism for enforcing external
events, the reason for the existence of 'fault capabilities' would go away,

and in fact, the ability to clear faulis was subsequently made unprivileged.

The notification of an attention to a process was considered next. An
attention usually originates in a terminal process, as a consequence of the
user having pressed a 'break' key, possibly followed by some further
interaction (the nature of which is not of immediate concern). Attentions
may arise from other sources, such as an 'operator cancel' program, but in
all cases, the attention originates in a different process from the target
process. In principle, the attention could be communicated to the target
process using the ordinary inter-process communication system p‘rovided in
the operating system (the message system is discussed in a different

context in section 5.2).
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Unfortunately the message system does not have the right properties to
enable it to be used for this purpose. Of the means available for notifying
a process of an attention, the simplest is for the process to poll for them,
and the message system would provide just this. However, although polling
may be convenient for those programs which want to accept attentions at
certain well defined times, most programs are not of this nature. Great
emphasis is given to the fact that programs must be able to trap attentions,
but it must be admitted that the vast majority of programs in ordinary use
do not need to do so, and in these cases an attention should terminate the
program as soon as possible. The programmer should not to have to make any

effort to ensure that this happens.

The only case in which the use of the message system would have been
appropriate is for the notification of non-enforced attentions, such as may
be given to a text editor. Effectively this would have been entirely
separate from the general'attention handling, and was not ‘done on the

grounds of economy of mechanism.

The next simplest means of notifying an attention to a program ié the
enforced jump, and this is in fact the way attentions are notified in the
CAP system. In these days of high 1level languageé and 'structured
programming this may seem rather unpleasant, but as will .be seen later, the
machine level details of the Jjump can be effectively hidden from the

programmer.

It was initially proposed that the programmer should be able to choose
whether or not the program was to be notified of attentions. If he chose to
have them notified, then he would be guaranteed a certain tidy up time after
such notification; otherwise the time limit would be liable to expire and his
program be terminated without ceremony. The reasoning behind this proposal
was to ensure that the system procedures mentioned earlier would not have
to be changed in any way; it was assumed that their actions were always of
short duration and that they could always ignore attentions. It also meant

that a program could avoid suffering an attention while it was still
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initializing itself (when, for éxample, a high level language runtime system

might not have a stack available).

The main drawback of such a scheme is that it has the wrong effect for
user programs. If they take no action to have attentions notified to them,
they will terminate, but only a::i:‘ter an unnecessary delay. Although default
action can be taken by 1al1guage systems, it seemed wrong as a matter of
principle that system programs§ should have to take genuinely no action but
user programs should have to maéke a special request to the operating system
in order to ensure that sensiblé default action occurred.

|

5.%.3 Implementation decisions

The author therefore decideid that at the machine code level at least, it
would not be possible to ignorfe attentions, and that the program must be
prepared for control to bhe forcjibly diverted at all times. In practice, this
is no great hardship. When an%; attention occurs, the Jjump is always‘ to a
fixed virtual address [7] At;”the machine code level, very little of the
programmer's enviromment is diisturbed by an attention; all the registers
except the program counter if?self are unchanged. The old value of the
program counter is available :Lna small segment which is accessible to the

domain at another fixed virtualiaddress.

In this way, it is thus possible to deal straightforwardly with the simple
cases of attention handling. If a program has no interest in handling an
attentions at all, and simply: wants to stop as soon as possible, the
attention jump location need éontain only a single order - RETURN. The .
attention will then be passed back to the calling domain, which is notified
of it in precisely the same manner. Alternatively, if a short lived system

program wishes to ignore attentions entirely, two orders are sufficient to

i
1
____________________ i
l

[7] PO,2 - offset 2 in the protected procedure's initial code segment. Offset O
is the initial entry point dnd offset 1 is the address to which control is
diverted to notify a fault. |

i
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reload the program counter register from the resume address in store and

effect an immediate continuation of the program as if nothing had happened.

In practice, neither of these simple solutions is used much; largely
because CAP programmers do not usually write in machine code. Analogous
techniques are, however, used within the high level language interface to be

described later.

Signalling an attention to a process is simple, since it consists almost
entirely of alterations to the process base of that process. These can be
done in the master coordinator. When an attention has been signalled to a

process, it is said to be in attention state. Some complications arise from

the fact that changes of protection domain while a process is in attention
state must be treated specially, in order to ensure that the attention is
notified to each domain. The microprogram provides a facility to enable a
system routine to take control on domain changes [8] The remainder of the
work is done in the same protectidn domain as fault handling (because the
same capabilities are needed to do the two jobs). The system function which

signals an attention is protected by means of a software capability.

The operating system guarantees that while control remains within the
current protection domain, further uses of the signal attention function
will not cause a second enforced jump. This avoids ‘the need for the
operating system to maintain a stack of resume addresses, and means that
the user's attention handling routines do not have to be designed in such a
way that they can be called recursively. The attention routine may do one
of two things: it may tidy up the current domain and RETURN to the calling

domain, or it may attempt to 'clear' the attention.

[8] Specifically, the facility is that a coordinator entry may be forced
whenever the current demain RETURNs - this entry is called a RETURN trace.
Tracing of ENTERs is not provided; this deficiency will be considered
further later.
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The former case is straightforward, and may often be achieved by jumping
to the resume address, thus effectively ignoring the attention.
Alternatively, the program may jump to a routine specially provided to tidy
up and RETURN. The +tidying up operation may involve ENTERing other
protection domains, which will be in attention state as soon as they are
ENTERed. Domains must therefore be prepared to handle attentions before
they have executed a single order. In the current implementation, ENTERing
a domain is not in fact trapped, and this case does not arise. A full
implementation would require this to be done, and minor changes to the CAP

microcode would make this easy.

Clearing an attention resets attention state, which makes the current
protection domain liable fo receive another attention. The operating system
does not provide a specific mechanism to enable the program to resume from
" where it left off, since this can be achieved easily wusing ordinary
instructions. It follows from remarks made earlier that clearing an
attention cannot be an entirely unprivileged operation. Attentions are of
differing degrees of severity, and different capabilities are required to

clear them.

When an attention is signalled, it is given a level, which is simply an
integer. A clear attentiom software capability contains a number indicating
the maximum level of attention it is able to clear. Note that this is similar
to the original mechanism proposed and later rejected for the clearing of
faults. This use of a simple hierarchy is acceptable in the case of
attention levels since there are orders of magnitude fewer of them, and it

is very easy to arrange them into order.

There is a simple optimization in the scheme as implemented: the lowest
level of attention, zero, can always be cleared without quoting a clear
attention capability. This effectively makes a level zero clear attention
capability globally available. It is the level zero attention which is

conmonly used for giving ‘'interrupt' signals to unprivileged utility
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programs, and it is convenient for such programs to be able to call clear

attention without needing to quote any particular permission capability.

A call of clear attention may succeed or fail, depending on the level of
the attention and the capability quoted; success or failure is indicated by
a return code. In fact, the only way a program can infer the level of an
attention is to attempt to clear it, and observe the result. This feature is
partly a matter of principle (there is no need to know the level of an
attention), and partly to enable multiple attentions to be handled
correctly. Although an attention in attention state does not cause a
forced jump, it may cause the level of the attention to be increased. If
the program could discover the level of an attention without attempting to
clear it, it could make a decision which would later become invalid if the

attention level were to be increased.

If a call of clear attention succeeds, the program can continue, but if
it fails, it should return to its caller as soon as possible [9] This
continues until a protection domain is reached which can clear the
attention. In the CAP operating system, the protection domain STARTOP, the
initial domain in every user process, has a capability which enables it to
clear any attention. An attention which gets this far has the effect of
terminating the user's session or job. The program which is made available
to the system operator for cancelling user sessions simply signals an

attention which only STARTOP can clear to the appropriate process.

A capability for clearing intermediate levels of attention is given to
the command program, thus providing users with the ability to break out of

commands.

[9] Eventual return should be enforced - see section 5.3.5.
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5.3.4 High level language interface

The attention scheme described has been mapped fairly cleanly onto high
level languages - Algol68C and BCPL in particular. The general techniques
used on CAP to provide access to system functio.ns from an ordinary high
level language are fully described elsewhere [Birrell '77]. A briéf
description of the facilities available to the Mgol68C programmer is given

here for completeness.

The language has not heen changed in any way; all of the facilities
provided by the operating system are accessed via the runtime libraries.-
These libraries are shared segments of code which form part of complete

Algol68C programs. The programmer may decide whether attentions should
interrupt his program or be ignored. The procedures allow attentiop and
ignore attention switch between these two modes. Ignoring attenﬁbr@ is
implemented by jumping back to the resume address in the manner described
earlier, except that the Algol68C system notes the occurrence of an
attention by setting a flag which can be read using the procedure attention
happened. Thus programs which ignore attentions for most of tfle time can

still poll for them periodically. If attentions are not being ignored, then .

the variable procedure attention routine will be called. A default routine -

is provided which tries to clear the attention, gives a backtrace if it
succeeds and terminates the program if it does not. A programmer who
wisheé to have more complicated attention handling simply assigns a
procedure of his own to the procedure variable. (This may involve a
technical violation of the scope rules of the language; in practice this is
harmless). A simple procedure, clear attentiom, is also provided as an

interface to the clear attention function.

Most programs use the default attention handling. System programs are
usually compiled in a simpler environment which has a different default -
attentions are 'ignored'. When attention handling was introduced, most
programs did not have to be changed - they were simply recompiled to use

the new libraries. Note also that the ignore attention and allow attention
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routines may be used to bracket short critical sections during which an
interruption would be inconvenient. The allow attention procedure will call
attention routine if attention happened is set, so that an attention which

occurs during a critical section is not lost.

5.3.5 Time limits

ILittle has yet been said about the provision of time limits in attention
state. This is because the high level language intefface to the attention
mechanism has been so successful in providing sensible defaults that time
limits have not been implemented. Other practical reasons have discouraged
the implementation of timeouts, not least of which is the fact that the CAP
processor itself does not have a real time clock, and only a low resolution
clock is available as a peripheral device. Nevertheless, many of the details
of timeouts have been worked out on paper, and there do not appear to be

any fundamental problems.

The primary requirement to be met is that a program should be allowed a
certain time interval in which to deal with the attention, after which it is
legitimate for the operating system to terminate its execution abruptly. In
practice, the user's computation consists of a number of protection domains,
and it is important to ensure that the attention handling of one domain
cannot adversely affect that of another. The author considers this to be
just as important as ensuring that the domains cannot overwrite each

other's memory.

At first sight there would appear to be no problem here, since a separate
timer could be maintained for each active domain. This scheme would work if
the only domain changes which were allowed during attention handling were
RETURNs. Rach domain would perform some computation, return to its caller
(either voluntarily, or forcibly when its timer expired), and the timer would
be reset for the benefit of the new domain., If the maximum time allowed in
attention state is t, then the total time until the attention reaches a

system domain which is guaranteed to handle it will be nt, where n is the
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number of active user domains. It is worth noting that in the CAP system,
the value of mn is limited to some fairly reasonable value (less than ten) by
. the size of the protected procedure activation stack (C—stack). This
observation is important because the system should provide a good response
to the user who wants his program stopped, as well as allowing the program

to maintain its integrity.

However, it would not be reasonable to restrict domain changes during
lattention handling to RETURNs. A typical attention handling routine may
quite reasonably need to ENTER other domains as part of the tidying up
operation. For example, in the CAP system, an input or output stream is
represented as a protection domain which has bound into it the
representation of the stream. Closing the stream is done by ENTERing that
protected procedure, which may in turn ENTER others to release resources
and interlocks etc. Similarly, the user program may need to call some system
domain which it has not previously needed to use at all. An example of this
might be a call of the store manager to ensure that a segment containing

some permanent data structure is up to date on disc.

Suppose that the attention routines timer expires during some such
system call. It would be legitimate to terminate the calling domain, since
the work is being done on its behalf, and the programmer cannot expect to do
an indefinite amount of work. On the other hand, it is not legitimate to
terminate the newly entered domain, since its programmer might have been
working on the reasonable assumption that he would always have a warning of

termination of at least time +.

It is, therefore, necessary to arrange that newly entered domains are
warned of the attention and are timed. With the current CAP microprogram,
this is almost impossible, since the operating system cannot easily trap the
execution of an ENTER order. It would not be difficult, however, to arrange
system tracing of ENTERs in a similar way to the existing tracing of

RETURNs. If this were done, the execution of an ENTER could be made to
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notify the new domain of the attention immediately on entry, and set up a

timer on it in the normal manner.

At this point it is worth noting a property of the CAP protection scheme
which had a considerable influence on this work, and which different
protection structures may be able to improve upon. From the point of view
of the protection system, each call of a protection domain is a separate
event. It is not possible for the microprogram or the operating system to
discover whether or not the calls made on a domain really are independent,
or whether the domain is in fact retaining internal state information. This
implies that each call of another domain must be treated independently for
the purposes of attention handling, and must be given the full time limit in

attention state.

The original proposal for attention handling suggested that each domain
would be +timed separately; each ENTER is seen as creating a new domain
independent of all others. This scheme does eventually force return from
the domain which received an attention. This is because the total time
which can be spent in attention state is bounded by the finite size of the
C-stack. For practical purposes, however, this algorithm is unsatisfactory,
because the upper bound of the time is large. The time which may be spent
in attention state is of the order of tnk, where t is the tidy up time as
before, n is the number of ENTERs which can be done in time &, and k is the
number of C-stack frames available (i.e. the depth to which further domain
calls may be nested). Since k is likely to be about 8, and n could not
reasonably be made less than 10, it is clear that it is easy to write a
program which will remain in attention state for longer than the life of the

hardware.

It seems that the principle of independence of the protection domains
has been taken too far. The essential cause of the problem is that the ftime
spent in new domains is not recorded against the caller's time allocation.
Provided that the new domain is itself immune from premature termination,

there seems to be no reason not to count the time spent in it as time spent
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in the caller as well. The algorithms necessary to implement this policy are
straightforward, and it has reasonably sensible practical effects. Whenever
a domain was notified of an attention, the standard time interval t would be
guaranteed to be available to it. That time may be used as the programmer
gsees fit; part of it may be spent in other procedures such as the store
manager. But if such a procedure is called very close to the expiry time of
the caller, this should not adversely affect the new domain. The new domain
will be allowed to run to completion (or until its time limit expires), but

the caller will be terminated as soon as the called domain returns to it.

With this policy, the maximum time that may be spent in attention state
is of the order of 2kt [10]. Again, it is bounded only because the C-stack
is finite, but the bound is now a much more reasonable one. It is believed
that such a policy would be satisfactory in practice, and that one could
afford to make the interval t reasonabiy large without causing undue delays
to ‘the user. It would also be fairly easy to implement (provided that a
suitable clock could be made available). Some microprogram changes are
needed to enable system intervention on ENTER in a similar way to that
already provided for RETURN. It is also necessary to allocate extra space

in the C-stack frame to save timing information.

5.3.6 Bvaluation

The attention handling scheme described has been in use on CAP for some
time, and has ©proved to be satisfactory. Ml though the lack of
implementation of time limits in attention state means that it is possible
for a user to write a program which cannot be broken out of, this almost

never happens.

[10] This is a worst case figure. It assumes that the attention is signalled
when the current procedure is at depth k on the C-stack. FEach procedure can
spend a time just less than t before returning, giving a time of about kt.
It is then possible to do k further ENTERs, and spend a further time t in
each newly called domain, giving a further time of kt.
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One deficiency has come to light: this is a problem in the language
libraries rather than the basic mechanism. Programmers would frequently
Like to poll for attentions which they can clear, but do not object to being
terminated without warning on attentions which they cannot clear. This
would be easy if +the language libraries allowed an attention handling
routine to return and let the main program resume from where it left off,
but they do not allow this. The easiest way to solve this would be for the
language libraries to attempt to clear the attention on the user's behalf.
If the attempt succeeded, a pollable flag would be set; if the attempt

failed, the attention routine would be called.
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6. The basis of the proposed solution

6.1 Background

Chapter 3 presented a model in which it is assumed that a compﬁtation
consists of a number of protection domains, which may contain capabilities
for other protection domains. The computation achieves its effect by
performing actions upon objects in its enviromment. As it does so, it goes
through many different states, some of which may be erroneous. What is

required is a method of detecting and correcting an erroneous state.

It must be made clear that the classification of a state as erroneous
depends on the context in which that state is to be interpreted. If some
component of a subsystem fails, then that computation may enter a state in
which it ca/nnot continue to operate correctly unless some excepﬁional
condition handling is invoked. Yet from the point of view of the operating
system, the state of the program may appear to be quite normal. An
operating system can detect violation of the constraints it puts upon the
programs which run under it - it cannot detect violations of +the
constraints a program puts upon itself. It can, however, provide sufficient
mechanisms to ensure that no protection domain is denied the opportunity to
maintain its own integrity because of the actions or inactions of some other

domain.
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6.2 Simple exceptions

It is fairly easy for a domain to protect itself from the actions of the
domains which it calls, provided that the underlying operating system allows
it to handle any exception which may be raised by the domain called. For
example, a domain may encounter some abnormal condition when it calls

another domain to claim an interlock.

Figure 5: A simple domain call

Figure 5 shows this simple case. Domain A calls domajn I, which is
assumed to be some domain responsible for managing interlocks. If I fails,
then provided that this failure is passed back to A in a clean manner, A can
keep its internal state consistent by undoing any actions which were done
on the assumption that the interlock would be made available. Although A
might have been temporarily in an inconsistent state when it called I, the
operating system was prepared to guarantee that control would return to it

in due course.
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6.5 The 'unfinished business' problenm

The case of inaction of another domain is much less straightforward. To
continue the above example, suppose that the interlock has been
successfully claimed, and the fact of the claim has been noted in A's private
data structures. A may at this point need to return to its caller, C, with

the expectation of being called again later in order that the interlock may

be released.

C — A — I

private
data

Figure 6: Three interacting domains

Figure 6 illustrates this case. Suppose, however, that the domain C does
not, in. fact, call A again before it terminates and returns to its own
caller [1 ] So long as a capability for the domain A exists as part of the
computation, the operating system cannot detect that the call will not be
made and it cannot reasonably intervene. As soon as the capability is

overwritten, however, it is known that no further call can be made upon it,

[1] The reason for its failure to do so is irrelevant. A likely cause is that
it has stopped as a result of some console 'quit' signal, as discussed in
section 2.4. It could equally well be a simple programming error.
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and what was previously a valid state becomes an erroneous one [2] The
domain A may at this point need to be warned that it is about to be
abolished, so that it can correct any erroneous state which would affect

other domains.

The purpose of doing this is to ensure that the remainder of the
computation can continue in a self-consistent state. If the operating
system did not call the domain with the interlock, but merely forced the
interlock to be released, the requirements of the operating system to
maintain its own integrity might be fully met, but the computation running
under it might find that it could not continue to function. It is inadequate
to rely on the domains remaining in the computation detecting the
inconsistency. Until the final capability for the domain with the interlock
is overwritten there is nothing wrong. BEven if the other domains could
detect the overwriting of capabﬂifiés, there is still, in general, nothing
they can do to correct the state of the computation. The information
necessary to do this was locked within the domain which has been lost; only
it could know what was needed to restore a valid state. It must be
emphasized that the operating system cannot be held responsible for
ensuring that the correct actions are taken even if the module is warmned
that it is about to be deleted, any more than it can ensure the correctness
of programs in general. It is sufficient to allow the module an opportunity
to restore its enviromment in the way that its author sees fit. If this is
done, it will be possible for correctly programmed components of subsystems

to behave correctly even if other components do not.

There are two interrelated aspects to the handling of domains which are
to be deleted: detecting that a domain is in fact inaccessible, and then
arranging that it can be disposed of in a controlled manner. The situation

is complicated by the fact that a domain which can no longer be called from

[2] The erroneous state is in this case to be interpreted in the context of the
user computation rather than the operating system (see section 6.1). The
fact that the operating system cannot detect that the state is erroneous is
a problem to be considered in chapter 7.
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the main body of the computation is not necessarily isolated from that
computation (indeed, if it was, there would be no point in letting it tidy up
its state, since such action would have no effect on the computation as a
whole). An inaccessible domain will generally possess capabﬂities for other
domains, which may or may not be accessible from elsewhere. It may also
possess capabilities for other shared resources, such as segments of store.
If the aid provided by an operating system to enable domains to maintain
self-consistent states is to be useful, the system designer must be
prepared to define how the overwriting of capabilities is to be handled, and

what each protection domain may assume about its environment.

6.4 A provisional model of ideal behaviour

It is useful to consider how the handling of inaccessible domains might
be expected to happen in an ideal world, and then consider whether this
behaviour can be implemented in a real system. Later it will be
demonstrated that there are circumstances in which this behaviour has the

wrong practical effect, and some modified proposals will be made.

The computation is modelled as a directed graph; the nodes are
protection domains, and the arcs are the capabilities one domain has for
another. Whether +the domains are separate processes or different
protection environments within a single process is not of immediate concern.
As the computation proceeds, control passes between domains by some
mechanism such as a procedure call or a message passing system. It is
~assumed that domains can and do retain internal state information between
calls -~ this state may be entirely private to the domain or it may be
partially shared with others. New domains may be created and passed as
arguments from one domain to another, and references to domains may be

overwritten. Thus the graph of links between domains may be constantly

changing.
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Sometimes, as a consequence of the destruction of an arc of the graph,
one or more nodes may become inaccessible from the remainder. The nodes
which have become detached from the remainder correspond to protection
domains which can never be called again. At this point, an exception should
be reported to those domains, in order that they may perform any final
tidying up operations before the representation of the domain is finally
dismantled and the operating system resources they occupy are recovered.
The term 'finish call' or 'finish exception' will be used to denote this call.
The reporting of the fimish exception should ideally be done as soon as it
is logically possible to do so. This implies that the finmish call should
happen as a side effect of overwriting the last capability for the domain

concerned. There are a number of good reasons for this.

First, if the deleted domain does have any tidying up work to do, this
will usually consist of the release of interlock's and other resources. As a
matter of good general programming practice, such actions should be done ds
early as possible, in order that the remainder of the computation may
continue unimpeded. Furthermore, the operating system resources occupied
by the domain cannot be released until it has finished its work, and it is

usually advantageous to get this done as soon as possible.

Secondly, reporting the exception as early as possible has the advantage
that the order in which events occur can be made well defined. Overwriting
a single capability might make a number of domains inaccessible at the same
instant, and it is not immediately obvious how the operating system should
decide on the order in which to deal with them. Suppose, however, that the
decision is made to report the exception immediately to the domain whose
capability was actually overwritten. As it processes the exception, it can
be regarded as a separate computation, with its own graph of domain
references. If, as it computes, capabilities are overwritten which make
other domains inaccessible from both it and the main computation, the same
algorithm may be applied recursively to’ report the exception to them. Any
capabilities which remain in the domain's address space after it has deemed

its work to be complete will be deleted by the protection system as part of
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the work of deleting the domain. As this is done, further domains may
become inaccessible, and these will be dealt with in precisely the same way.
Finally, control will return to the main computation. Apart from possible
real time effects and side effects of the exception handling, the main
computation has simply deleted a capability, which it sees as an indivisible

action.

. As far as the programmer is concerned, there are only two differences
between programming in this environment and in a more conventional one in
which deletion of capabilities is not treated specially. The first is that
the o'peration of deleting a capability for another protection domain is
‘liable to cause an implicit call of that domain. The second is that the
programmer can write on the assumption the domain will not be deleted until
the fact of its inaccessibility has been reported to it. It is therefore
.safe for the domain to retain internal state information about resources,
interlocks etc. between calls, because one can guarantee, subject to the
.assumption that the entire operating system does not fail, that the domain

will get an opportunity to tidy up its environment before it is deleted.

The method by which the protection system makes the termination call to
a4 domain will be system dependent. At its simplest, it need consist only of
an ordinary call with some conventional parameter indicating the reason for
the call. Such a parameter is frequently present anyway, to distinguish -
which of several services provided by a domain is required. Such a scheme
would have the property that a finish call would not absolutely guarantee
that the domain would never be called again, since the ability to make a
finish call would not be protected. This would merely require a little extra
care in programming to ensure that the domain was not confused by such a

call,

It would probably be better, however, to report the event to the domain
in a manner different from that used for an ordinary call, by raising an
exception. Any domain which had neéessary work to do before its termination

would supply a handler for the exception, and it would be this code which
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would be called before the domain's deletion. If no exception handler were
provided, the protection system could assume that the domain could be
deleted immediately, without calling it again. If the system being used
already provides comprehensive exception handling techniques, then
programmers concerned about integrity of their protection domains are
likely to find that providing an exception handler is the natural way of
dealing with domain deletion. This technique is also applicable to high level

languages which provide exception handling facilities.

Despite its conceptual simplicity, the technique described above is
plagued with practical problems. The main difficulty is liable to Dbe
arranging that the inaccessibility of a protection domain can be detected
as soon as it happens. In a capability based system, it is usually possible
to copy capabilities, move them around freely, and pass them as arguments
between domains. It is unusual for such a protection system to perform any
management activity when a capability is copied or moved; the capability is
simply a protected bit pattern. Although the entire graph of dJdomain
references is in principle available for inspection, it would require a
gignificant computation to discover that the deletion of a particular arc
had isolated one or more nodes. This is a standard problem, common to all

systems which can be modelled as directed graphs.

6.5 Domain management

If the situations described above are to be handled correctly by the
protection system, it will be necessary to have some overall system
management of capabilities. TIdeally, one would prefer operations on
capabilities to involve no more high level work than loading and storing
numbers in main memory. This ideal is, however, unrealistic, even if one
ignores the problems discussed in this dissertation. Capabilities usually
represent some real resource, such as a segment of memory or space on disc,
w'hich it is the job of the operating system to manage. This implies that the

operating system must be prepared to keep track of capabilities in order
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that it can administer real resources. It is therefore not unreasonable to
accept a modest amount of extra management activity to detect unreferenced

protection domains.

A characteristic of many capability based architectures is that the
oapabili’ties do not refer directly to the objects they represent, but
instead indirect through some other data structure, such as an object map, 1

If this is the case, then the problem of detecting loss of access to a

domain is somewhat simplified, since it is much easier to deal with a sirigie, S

centralized data structure than one which is distributed. A central table e

provides a convenient means of remembering information which refers to all

instances of a capability, without restricting the freedom to‘c’opykbr‘“'""

capabilities.
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6.5.1 Use counts

Assuming the existence of such a table, one could, for example, consider
keeping a use count for all capabilities. Bach entry in the central table

would simply record the number of references to it, as in figure T:

use: O

use: 1

A

use: 2

use: O

use: O

object map

capabilities

Figure 7: An object map structure with use counts

Maintaining these use counts would be a fairly simple operation. Copying
a capability would cause its use count to be incremented, and deleting a
capability would decrement its use count. Such a scheme is easy to
implement in, say, a microprogrammed protection kernel. Whenever a use
count was decremented to the value zero, indicating that the last capability
for an object had been overwritten, it would be possible to signal some low
level exception %o the protection system to inform it that the object
represented by the object map entry concerned could no longer be

referenced.

89




For objects such as segments of memory or backing store, the operating
system would use this information simply as an indication that the relevant
resource could now be released for reuse. If the lost capability is for an
entire protection domain, the situation is more interesting. . The first point
to note is that a protection domain is a capability containing objecf, and
that action must be taken to ensure that the use counts for the
capabilities it contains are decremented. This may be a job for either the
low level protection system or the higher level software. If the protection
system is not concerned with enabling domains to maintain the integrity of

their private data structures, then its actions will be confined to this.

The detection of loss of access to a domain does, however, give the
protection system the opportunity to refrain from deleting the contents of
the domain until it has been given a chance to tidy its internal state. It
can do this simply by calling th‘e domain, raising some exception to indicate

that the call is a final warning that the domain is about to be deleted.

This simple description glosses over one important point. If the last
capability for an object has been deleted, how can it possibly be da]led
again? By definition, no program has the capability to do so. This problem
is by no means insurmountable. Since the loss of access is detected at a
low level by the protection system (Eg_fﬁogg any information about the domain
has been discarded) it should be easy to arrange that some suitable
capability can be constructed and handed over to the part of the protection
system responsible for dealing with inaccessible domains. Arrangements must
be made to ensure that this capability can be deleted without provoking the
recovery mechanism into action a second time. The means by which this is .
achieved will depend on the particular protectionksystem concerned. It is
sufficient to note here that some mechanism must be provided, and that

there is no logical difficulty in doing so.

Care must also be taken to consider the possibility that the tidying up
operations within the domain may themselves overwrite capabilities and can

therefore cause more use counts to fall to =zero. Whether recursive
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invocation of the mechanism can be tolerated will depend on the particular
implementation, but at the very least the system must be prepared to handle

a queue of objects awaiting deletion.

6.5.2 Iimitations of use counts

The limitations of use count techniques when dealing with directed graph
structures are well known: they do not detect inaccessible cyclic
structures. If capabilities can be passed freely between domains as
parameters, it is clear that it is possible to create cyclic structures of
protection domains. All that is required is for two domains to be passed

capabilities for each other.

A
cap. for cap., for
B1 B2
B1 ' B2
private private
data data

Figure 8: Creation of a detached cyclic structure (1)

Figure 8 denotes a domain A with capabilities for two other domains Bi
and B2, If A passes Bl its capability for B2, and B2 its capability for Bi,
then the structure shown in figure 9 is obtained. If A then deletes its
capabilities for both domains, then the detached cyclic structure shown in

figure 10 will result.
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cep, for cap. for
B1 B2
cap. for B2
Bi1 - B2
B cap. for B1
private private
data data

Figure 9: Creation of a detached cyclic structure (2)

A
cap. for B2 N
B1 B2
b cap. for B1
private private
data data

Figure 10: Creation of a detached cyclic structure (3)
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Note that in the normal course of affairs Bi and B2 can never actually
call each other, since there is no way that control can reach either of

them. Either or both of them may, however, be expecting to be called again.

One way round this problem is to restrict the movement of capabilities
for protection domains in such a way as to prevent cyclic structures from
being created. For example, if capabilities can be moved but not copied, the
graph of possible protection domain calls degenerates into a tree, and
cyclic structures cannot occur [3] In such a scheme, the use count of the
capa )]J;b merl a protection domain could never rise above one. Such a

capa a PP vere v

rebtlrrljctgo(gl woul?i{ hpwever, cons1derably reduce the power of the capability

Lo would, nowoverl, congiderobly veduce the power of the capabiiiiy

m”echanlsmv Jit would, for example, disallow the following useful structure:
e wonld, o i s on bhe Following useful structure:

Bi B2

[
w3

Jfigure 11: A non-hierarchic domain structure

['5] This assumes that the only way of passing domain capabilities between
damains is by passing them as parameters of a'domain call.

93




S is a domain which manages some abstraction. It is shared by domains Bi
and B2, each of which can be called by A, which is assumed to be some
controlling program. The ability to set up general non-hierarchical
structures of the type shown in figure 11 is a valuable property of
capability based protection mechanisms, and it would be unfortunate to lose

it.
6.5.3 Garbage collection

In circumstances where use counts fail, garbage collection technigues
can be applied. Provided that some root node for the graph of domain
references can be identified, the graph of references can be scanned
(presumably by a highly privileged program). The entries in the object map
can thus be divided into those that can be accessed and those that can not.
The objects that can never be referenced again can thus be made subject to
a similar kind of cleanup operation to that suggested in the previous

sec tion.

6.5.3.1 The order of fimish calls

There is though, an important difference between the detection of
unreferenced domains by use counts and garbage collection. In the latter
case, when the unreferenced domains have been isolated, there is no easy way
for the protection system to determine the best order to report
inaccessibility to the various domains. Going back to figure 6 on page 82,
suppose that the domains A and I have both been isolated from the remainder

of the computation. Which should be informed of the fact first?

When use counts were used, it was natural for A to be called first, and it
was assumed that A made use of I in its tldymg up operatlons (to release an
interlock). If a ge‘lrbagve ’c:(‘)‘]’lector makes a random choice, and I happens to
be called first, it may decide to release the interlock unilaterally, on the
grounds that A has failed to do so. Having done this, I is in a consistent

state, and is prepared to be deleted. All is not well, ‘however, for the
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domain A, Its private data structures may no longer be consistent, since
its interlock has been taken away from it but it has not been able to record
the fact. Presumably it will discover that something is wrong when it is
called to tidy up and attempts to release the interlock. By this time,
however, damage may already have .been done: the forcible release of the
interlock may have allowed another instance of A in a different process to
proceed. This second instance may then erroneously assume that A has been

left in a consistent state.

6.5.3.2 An example

At this point, it is worth giving a concrete example of this problem,
Suppose that the domain A in figure 6 (p. 82) is a protection domain which
provides an interface tao a visual display unit. One of its jobs is to
present a 'virtual terminal' interface for full screen working; domain C
could, for example, be a screen editor. In order to use the terminal for
this activity, it has to be set up in a special way, and A takes the
responsibility for doing this. To prevent more than one simultaneous use of
the terminal in this manner, A makes use of interlocks, provided by I. A may
need to perform various actions before releasing the interlock, such as
setting the terminal back to a standard state with the cursor in a sensgible
place. Under normal circumstances, the editor, C, will make a final call to A
Just before it terminates. A will do its final work, release the interlock,
and all is well. In a well designed system, the editor should be able to do
this even if it runs out of allocated CPU time, or the user breaks out of it,
or some other disastrous error occurs. But one cannot compel the author of
C to handle such things properly, and unless one is prepared to make the
(administrative) rule that only certified programs may be given a capability

for A, then it is clear that A must look after itself.

The use count scheme solves this example quite well. As soon as the
capability for A is overwritten, A is called to tidy up. It resets the
terminal to the standard state, releases the interlock and exits. When the

capability for I is overwritten, I is called, and finds nothing wrong - at
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least as far as A is concerned. On the other hand, using a garbage
collector may lead to the interlock manager being invited to tidy up before
the terminal handler. In this case the terminal interlock will be released
before the terminal handler has had a chance to restore the standard state.
In particular, some other program may start using the terminal before it has

been properly reset, possibly causing incorrect output to be produced.

This example has deliberately been chosen as one in which the
consequences of failure of the mechanism are not disastrous, but merely
annoying. Techniques for maintaining the integrity of abstractions managed
by programs are known, and are widely used in database systems. Such
techniques can be justified when the consequences of failure would be
serious, or if the abstraction is required to survive such things as
hardware failures of the equipment on which the system runs. But for
relatively simple jobs such as the above example, the expense of using
database techniques can hardly be justified; the cost of such mechanisms is
out of proportion to the effect achieved. What is required is a much

cheaper way of solving a restricted class of problems.

6.5.3.3 When to garbage collect

There is a further problem with the garbage collection approach. This is
the difficulty of knowing when to do it. It was stated earlier that there
should be an attempt to detect the loss of access to a domain as early as
possible. This implies that a garbage collection should be done whenever a
capability is overwritten, so that the inaccessibility is detected as a side
effect of its immediate cause. This would almost certainly be rejected on
efficiency grounds; garbage collectors are usually expensive in terms of CPU
time, and their cost depends more on the amount of useful material they scan
than on the amount of garbage they succeed in collecting. If garbage
collection were done as a side effect of every deletion, many of the
collection attempts would be futile, and it is unlikely that such an overhead

would be tolerated.

96



In systems which rely on garbage collection, collections are usually done
only when necessary. In the model considered earlier, the object map would
probably be garbage collected when it became full or nearly full. If
garbage collection were relied on to detect unreferenced protection
domains, there is a danger that the delay before the unreferenced domain is
notified will be intolerably long. In particular, in the example of the
terminal handler, the process could easily deadlock if it needs to claim the
interlock but is unable to do so because both A and I are waiting to be

informed of their inaccessibility before they can release it.

Other possibilities spring to mind. The garbage collection could be done
on a regular basis regardless of logical necessity. A continuously running
asynchronous garbage collector could be used. Both of these would have the
effect that the inaccessible idomains would be discovered eventuaily, and one
could even put an upper bound on the time which could elapse before such
discovery. Nevertheless, this solution remains somewhat unsatisfactory.
The main objection is the scope for non-deterministic effects which depend
on the exact timing of the garbage collection. The domains being disposed
of may share data structures with domains which are still part of ‘th;e main
computation, and the side effects of the garbage collection may therefore
be detectable. One would prefer that from the point of view of the main

computation, the effects of the tidying up operations were deterministic.

6.5.4 Use counts and garbage collection

One possibility which is always open when choosing between use count
techniques and garbage collection techniq{les is to have a combination of
both. Use counts detect most of the common cases of inaccessibility, and
garbage collection need only be used to detect the unreferenced cyclic

structures.

This would give the right effect for the terminal handler ‘example, and
probably for most others, since cyclic structures are unlikely to be very

common. Moreover, it is known that anything discovered by garbage collector
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is a detached cyclic structure, and the problem of knowing which domain to
call first is less acute. Referring back to figure 9 on page 92, the
relationship between B! and B2 is symmetrical, and there is no way that a
system which knows nothing of their internal workings can decide which
should be called first. It is a reasonable specification in this case, to
assert that B! and B2 will be notified in an undefined order; the two

domains are expected to be able to cope with being called in either order.

On the other hand, in the structure shown in figure 12 the three domains
are not symmetrical; a human observer would probably assert that C should

be notified last.

vV

B1 B2

 \

Figure 12: A more complex cyclic structure

A further disadvantage of combining use counts and garbage collection is
that that it makes the problems associated with sole use of garbage
collection worse. A garbage collector called when essential will be called

less often (since much of the unreferenced material will be detected by the
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use count mechanism), and a garbage collector called at other times will be

seen as more of an overhead (since it will only rarely do anything useful).

6.6 Summary of the basic solution

This chapter has presented what might be termed a 'basic' solution to the
problems raised in chapter 3. The solution appears at first sight to be
~adequate, but difficult to implement in a sensible and efficient way. The
next chapter considers the limitations of the basic solution, and goes on to

suggest refinements.
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7. Refinements of the basic solution

7.1 A different approach

Up to now, it has been tacitly assumed that the facilities for allowing
domains to tidy up after they have been abandoned are to be added to an
existing protection structure as an afterthought. It is for this reason
that the gross condition of complete loss of access to a domain was
stipulated as being the sole condition for informing the domain that it
should tidy up. A protection system usually has no information about the
future behaviour of a computation which would enable it to choose any
better condition. The aim of this section is +to explore a different
approach, which necessarily requires a slightly different view of the way

programs interact.

T.1.1 An example in which the idealized model fails

In order to show that implementing the strategy given in section 6.4 is
not the whole story, an example will be given of a circumstance in which it
has the wrong effect. An example wads given in section 6.5.3.2 of an
applications program, C, making use of the services of A, a ’cermiﬁal
interface. This in turn made use of the services of I, an interlock manager
(fig. 13). Both A and I need to maintain private data structures, and both

therefore need to be informed of their impending deletion.
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C > A —_—— I

private private
data data

Figure 13:; Example of interacting domains

Now assume that the domain A contains a bug: its termination routine does
not call I to release the interlock, simply because the programmer has
forgotten about it. Naturally one cannot hope that the interface provided
by A will work properly under such circumstances, but the fact that I can
get an opportunity to tidy up its own data structures (the interlocks)

would suggest that it ought to be possible to avoid total 'deadlock.

When C has finished with the services of A, it makes its final finish call
to A. A does whatever is necessary to the terminal, tidies its internal data
structures, neglects to call I and returns to C. At this moment the state
of the computation becomes erroneous. A believes its work to be complete,
and has no intention of calling I again, but it still holds a capability (by

assumption, the only capability) for I, whose work is not complete.
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If C deletes its capability for A, the domain A will be notified that it is
about to be deleted [1 ] This call will probably have no effect; there is no
reason to suppose that the 'tidy up' code in A will be any more correct than
the main line code. Eventually the representation of A will be destroyed by
the operating system, and I will become unreferenced. It in turn will be
given an opportunity to tidy up, and will find work to do -~ i.e. release the
interlock which was claimed by A. The erroneous state has thus been

corrected.

There are two things wrong with this way of doing the tidying. First,
although the correct thing was done, it was not done at the right time. The
inconsistent state which came into existence when A returned to C could not
be detected and corrected until (at the earliest) C had overwritten the
capability for A. Bxperience has shown [Cook 78] that programmers are
often lazy about overwriting capabilities they no longer need. It may even
be the case that A is a serially reusable program, and C is keeping the
capability in case it needs it again. In either case, the overwriting of the

capability for A is likely to be considerably delayed.

Secondly, although the right tiling is eventually done, there is no way
that the fact that A has acted incorrectly can be reported to A itself,
since its representation has already been destroyed at the time the error
is discovered. It would be preferable if the action of A which created the
erroneous state (i.e._ its return to €) could be made to raise some exception
within A as soon as it happens. This would make it far more likely that the
programmer responsible for A would be made aware of the existence of the

bug in his progran.

[1] Optimizations to remove this apparently futile call will be considered
later; they do not affect the logic of the argument.
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7.1.2 Changes proposed

If this is to be done better, it seems clear that the protection system
will need to have more information about the internal state of protection
domains. The difficulty raised in the previous section came about because

the protection system was unaware that:

1. Domain I's work was incomplete
and 2. Domain A (the only one capable of calling I) has already done its

cleanup work (incorrectly).

It would appear from this that it would be useful if the protection
system could be made aware of these facts. Unfortunately there is little a
protection system can do to determine them from the behaviour of the
programs: they are maintaining abstractions which the system knows nothing
about. One must, therefore, be prepared to rely on information provided by
domains about their own state. There is no way to ensure that such
information is accurate; but it is sufficient to ensure that a domain which
provides incorrect information about its state can harm only itself. If, in
addition, the provision of this information enables the computation as a
whole to proceed more smoothly, or if it enables programming errors to be

detected earlier, then it is probably worth while.

The fundamental piece of information that the protection system requires
from a domain is an assertion about whether the internél data structures of
the domain are deemed to be in a consistent state. Asserting that they are
consistent is equivalent to asserting that the domain need not be called
again to tidy up (this does not, of course, imply that the domain must not be
called again). The converse assertion is equivalent to saying that the
domain must be called again before its representation is destroyed [2] The

obvious way that the domain can indicate its state is by passing some

[2] One can consider making more detailed assertions, such as how much CPU time
is required for the cleanup operation. For the time being, only a simple
binary value will be considered.

103




parameter to whatever operation it uses to relinquish control, though some
protection systems may require a special system call to be made Jjust before
the return. The operation of noting the state can be made very simple,
since the protection system does not need to do anything with the
information except note it for future reference. A domain which
relinquishes control with an indication that it needs to be entered again
must provide some code to deal with a call made to enable it to tidy up; this
may be formally regarded as setting up a handler for an exception which can

be raised later by the protection system.

Note that whether a domain needs to be called again is a property of
each return; it is not a fixed 'global property of the domain. One can
imagine a program which sometimes returns with tidying up work to do and
sometimes does not. The terminal handler described in section 6.5.3.2 is an
example of such a program. It can be written as a serially reusable
program; whether or not it must be called again before destruction depends

on what it has done to the terminal and whether it holds an interlock.

In the paragraphs which follow, a domain which returns indicating that it
does not need to be called again will be said to have returned finished, and
a domain which does need to be called again will be said to have returned
unfinished. A domain which has never been called is treated as having
returned fimished. A final call which is made to a domain to enable it to

tidy up will be called the finish call.

The first advantage of recording information about whether a domain
needs to be called again is a practical one. Many programs will have no
requirement to be informed of their impending deletion, and for such
programs it would be preferable to avoid the overhead of making an extra
call before they are deleted. If the protection system records whether or
not a domain needs to be called again, it becomes easy to implement this

optimization.
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The main reason for the change is that it makes it possible for the
protection system to detect erroneous states earlier. Returning to the
example, if I returns unfinished to A, it can be asserted that it would be
inconsistent for A to return finished to C. It must either call I again to
release the interlock (so +that I returns finished), or it must return
unfinished to €. If it does attempt to return finished, then the protection
system will raise some exception within A. At first sight this would appear
to deal with the example much better than the original proposal did. I}
does, though, pose a number of questions, which the following sections

attempt to answer.

I

What does a caller do if a domain always returns unfinished and refuses

to do otherwise? (see section 7.1.3)

- What happens if a domain repeatedly attempts to return finished when it

holds capabilities which have returned unfinished? (see section 7.1.4)

- How exactly does the protection system detect that an inconsistent
state has arisen? The example given was a particularly easy case; what
happens when there is more than one capability for a domain? (see

section 7.1.5)

- How is overwriting of capabilities dealt with in this scheme? (see

section 7.1.6)

- Can capabilities for domains which have returned unfinished be passed

between domains as parameters? (see section 7.1.7)

- What limitations are imposed on what a program can do if called to tidy
up? (see section 7.1.8)
7.1.3 Domains which refuse to return finished

If a domain refuses to return finished, then the caller can be
inconvenienced, since it in turn will not be allowed to return finished.

There are two ways of coping with this. The first is for the caller to
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overwrite the capability for the domain, and thus throw the burden of
dealing with the problem onto the protection system. A second solution is
for the protection system to provide a mechanism which allows any domain to
call another domain for which it has a capability in the particular way which
indicates a finish call. A domain would not be allowed to return unfinished
from such a call; if it attempted to do so, the protection system could
either raise an exception within the domain or override the attempt to
return unfinished and return finished instead. In either case, the action

is conceptually the same; the domain is given a final chance to tidy up.

7-1.4 Domains which invalidly return finished

If a domain attempts to return finished when it holds capabilities for
domains which have returned unfinished, the protection gystem can raise an
exception within the domain. The handler for that exception may be
programmed in such a manner that it (erroneously) deems the exception to
have been handled and passes control back to the domain's main program.
This may then attempt to return finished again, thus leading to a loop. It
ought not to be necessary to prevent this loop entirely, since it is no
worse than an infinite loop in an ordinary program, which it must be possible
to break by imposing CPU time limits or by using attention mechanisms.
Provided, therefore, that the default exception handlers behave in a

reasonable manner, this is unlikely to be a problem.

The default exception handler would typically report the error to the
programmer in whatever manner is appropriate for the language system being
used. It would then need to tidy up the domain's capabilities before

returning finished.

In order to make it easier for language implementors to write this
default handler, it would be useful if the protection system provided an
extra facility which is not logically necessary. Its action would be to
identify any capabilities which would prevent the current domain from

returning finished, and make the finish call %o them. After using this
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facility, it would be guaranteed that the current domain could validly
return finished. A similar effect (but with rather more drastic side
effects) could be achieved by providing a facility to overwrite all
capabilities in the current domain for domains which have returned
unfinished, or even all available domain capabilities. The treatment of
overwriting of capabilities (to be discussed in section 7.1.6) will then deal
with any unfinished domain which would prevent the current domain from

returning finished,

It would be possible for the protection system to invoke action similar
to that described in the previous paragraph whenever a domain erroneously
attempted to return finished, rather than relying on the language system to
provide a default action. Tt is not proposed that this should be done. An
erroneous attempt to return fimished would almost certainly be caused by a
programmer failing to understand the specifications of the domains whose
services he uses. Such errors should be reported rather than being covered

up by the protection system.

7.1.5 Detecting inconsistent states

In principle, the protection system can tell when an erroneous state (in
the sense described in section 7.1.2) is about to arise. The following
definition can be given: it is invalid for a domain D to return finished if

there exists a domain U such that:-

1. U has returned unfinished
and 2. D has a capability for U
and 3. there does not exist a domain E (different from D and U) such
that:-
a. E has returned unfinished or is on the current call stack

and b. E has a capability for U.

Parts 1 and 2 of this definition describe the conditions expressed

loosely in section 7.1.2, and are sufficient to deal with the example given.
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The third condition is required to cope with more complicated cases.
Consider again the non-hierarchical structure shown in figure 11 on page 93.
It may be that the domain Bi1 is responsible for the initialization and
termination of a sequence of actions using S, and B2 makes intermediate
calls to simple functions provided by S. While S is in use it will return
unfinished, and Bf will have returned unfinished to A (it is forced to do so
by parts 1 and 2 of the above definition). Later, A calls B2, which uses S.
Assuming that B2 retains no internal state, and does not need to be called
again, should it be forced to return unfinished to A? So long as the vath A
to Bl to S exists, there is no good reason for forcing B2 to return

unfinished, and part 3 of the definition expresses this.

Imposing the rules suggested makes it somewhat easier for the protection
gystem to decide whether it should intervene to allow a domain to tidy up.
When a domain returns unfinished, then provided that the last call was not a
finish call, all that is necessary is to record the fact for future
reference. When a domain attempts to return finished, the protection
system is required to check that such a return is valid. The computation
required to determine this fact is not trivial, but is fairly modest. The
capabilities available in the domain must be examined [3] Capabilities for
domains which have returned finished may be ignored, since it is impossible,
under the conditions givén, for the only access route to a domain which has
returned unfinished to be via such a capability. If one or more capabilities
for domains which have returned unfinished are found, then parts 1 and 2 of
the definition are satisfied and it is necessary to test part 3. Condition
3a restricts the number of domains which need to be examined, to see
whether they satisfy condition 3b. Note that when examining a domain, the
algorithm need only consider the capabilities directly available; the
constraints imposed ensure that a capability for an unfinished domain can

never be 'lost' inside a finished domain.

[3] This section describes the logic of the algorithm. Optimizations should be
possible in a practical implementation.
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T.1.6 Overwriting of capabilities

The need to handle capabilities which are overwritten remains. It is
possible to deal with them using the same techniques described in sections
6.5.1, 6.5,3 and 6.5.4, the only difference being that unreferenced domains

which have returned finished need not be called again.

The proposed constraints allow a different algorithm to be employed,
which allows intervention at the moment of deletion of the reference to the
object, albeit with some overhead. Whenever a capability for a protection
domain, D, is deleted, the protection system can check whether it last
returned finished or umfinished. If it returned finished, there is no need
to consider it further; whether or not it is unreferenced is of no immediate
concern., If, on the other hand, D returned unfinished, thél_i it is a
potential candidate for being called to tidy up. The conditions under which
this ought to be done are essentially the same as part 3 of the definition
in section 7.1.5. The finish call should not be made to D if a domain E

(different from D) can be found such that:-

a. B has returned unfinished or is on the current call stack

and b. B has a capability for D,

The search must start from each of the domains on' the current call
stack, and follow all the access paths from them which lead to domains which
have returned unfinished. If no such domain can be found, then the
protection system should make the finish call to D. Note that in this case D
may in fact still be referenced from a domain which has returned finished;
the programmer must therefore take into account the fact that the domain

night be called again even after the finish call.
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T-1.7 Passing domain capabilities as parameters

Since protection domains are represented by capabilities, it is possible
to pass them between domains as paramete‘rs and return them as results.
Capabilities for domains which have returned finished are not treated
specially in the proposed scheme, so there is no difficulty about these. The
only case which might cause difficulty is that a domain may need to return
finished, passing as result a capability for a domain which has returned

unfinished.

R < < <
returned

as result

Figure 14: Returning a domain capability as a result

An example of this is shown in figure 14. Domain A requires a capability
for domain D 'It may be that it can only obtain this via some intermediate
domain S, which obtains the required capability and calls D to perform some
initialization. Assume that D returns unfinished from this initialization
call. S then returns to A, passing over the capability for D. In order to
indicate that A is being given full responsibility for D, 8'will return

finished.
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Care needs to be taken to ensure that this is possible. When considering
whether the finished return is permissible, any capabilities being returned
as results must be added to the set of capabilities accessible to A. If this
is done, the return will be valid, because part 3 of the condition in section

T7.1.5 will not be satisfied.

7.1.8 Limitations placed on the finish routine

The main constraint placed on the finish call is that it must return
finished. If it attempts to do otherwise, the protection system may take
drastic action. Whatever that action is, the net effect will be that the
domain will be deemed to have returned finished regardless of what it
actually did - the domain has had its opportunity to tidy up, and can thus
be abanaoned. Care must be taken, though, to take account of any
capabilities it may have for other domains which have returned unfinished.
If any domain capabilities are found which satisfy all three parts of the
condition in section 7.1.5, then the protection system must make a finish

call to those domains in turn.

It is also necessary to consider what resources are to be made available
to complete the fimish call. It must be possible to prevent a finish routine
from taking an indefinite amount of time. One solution to this is to impose
a time limit on all fimish calls. This time limit would need to be docurﬁented
so that the programmer can know how much work he can expect to be able fo
do when tidying up. Another possibility is not to impose limits on a finish
call as such, but to rely on attention handling mechanisms. The programmer
would normally have an indefinite amount of time to tidy up, unless the user
decided to terminate the computation, in which case a time limit would be

imposed.

Whichever method is chosen, each domain must be permitfed a reasonable
time in which to tidy up; no single domain should be able to take all of the

available resources. The algorithms necessary to do this, whilst preserving
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the ability to stop a computation within a modest t%ime interval, are

discussed in section 5.%.5.

A further discussion may be found in [Taylor 78]. In Taylor's scheme
(see section 4.3), time is regarded as a resource for which a domain may
have a capability. It would probably be useful in this case for domains to
make more detailed assertions about their state when they return. 1In
particular, they could specify how much time they require to perform their

tidy up operations.

7.1.9 Degenerate cases

In order to demonstrate the effects of discriminating between returning
finished and unfinished, it is instructive to consider the degenerate cases

of the algorithm proposed.

If domains invariably return finished, then the algorithm degenerates
into the original behaviour of the system in which nothing at all was done
to enable domains to tidy up. It can never be invalid for a domain to return
finished, because it cannot possess a capability for an unfinished domain,
and therefore part 1 of the condition for an invalid return can never be
satisfied. Overwriting capabilities for domains which have returned

finished need not be treated specially (see section 7.1.6).

The other degenerate case is one in which domains always return
unfinished from calls other than finish calls. Returning unfinished under
these circumstances is never, by definition, invalid. The condition for
making the finish call when overwriting a capability degenerates into a test
for the accessibility of the domain. This is essentially the model discussed
in section 6.5. On efficiency grounds, this is clearly a case to avoid. In
addition, as one would expect, it exhibits the disadvantages expressed in

section 7.1.1.
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7.1.10 Summary of this approach

The effect of the proposal has been to identify a sub-graph of the graph
of all possible domain references. This sub-graph consists only of those
arcs which point to domains which have returned unfinished. There are two
motivations for introducing this concept. The first is that it enables
certain cases of inconsistent behaviour to be discovered earlier than would
otherwise be possible. The second is that the sub-graph is smaller than the
entire graph of domain references, and it should therefore be quicker for

the protection system to scan when it is necessary to do so.

The handling of the degenerate cases shows up another property of the
approach: the mechanism imposes only a small overhead in simple cases, and is
particularly cheap if it turns out not to be necessary to use it at all. The
overhead increases as the mechanism is used more, but if the mechanism is
invoked only in circumstances in whiéh it is needed, the cost should be

modest.

7.2 An alternative approach

? ‘
It may be the case that even the limited amount of work required to keep

track of capabilities for domains which have returned unfinished .is
excessive. The cost of the mechanism is a consequence of the idea that the
responsibility of one protection domain for causing the proper termination
of another is expressed implicitly by the possession of capabilities. This
means that whenever the graph of domain references changes, work may need
to be done to find out whether a domain has been abandoned, and if it has,
to intervene. A further problem which might arise is that the programmer
cannot discover the status of a particular capability - i.e. whether he is

expected to make the finish call or not [4] There is an implicit assumption

[4] It would in principle be possible to provide a system call to make this
information available, however.
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that whether a domain will return finished or unfinished in any particular
case will be docwnenfed as part of its specification, and the mechanisms
provided in the protection system to force the call of the finish routine
will be invoked only if those specifications are disregarded in such a

manner that an inconsistent state arises.

If this turns out to be inconvenient, an alternative approach can be
considered. This is based on the notion that the responsibility of one
domain for the proper termination of another domain should be made explicit

rather than being implicit.

7.2.1 The basis of the mechanism

The original proposal discussed in section 6.5 treated all domain
references as equivalent. The refinement described in section 71
identified some domain references (those referring to domains which have
returned unfinished) as different. This third scheme goes one step further
in the same direction by suggesting explicit marking of certain domain

references.

Consider figure 11 on page 93. In section 7.1.5 it was suggested that
this could represent a system in which one domain, B1, is responsible for
initialization and termination of the use of S, whereas B2 simply makes use

of functions provided by S.

Suppose that for every domain, it is defined that there is precisely one
other domain which is deemed to be responsible for it. This fact would be
recorded as some attribute of a particular capability. In the example, one
would expect B1 to be nominated as responsible for S, and A as responsible
for Bi. This is shown in figure 15 on the next page, the specially marked

references being shown as bold arrows.
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Bi B2

Figure 15: The responsibility tree and shared domains

The algorithm is based on the assumption +that if a domain D is
- responsible for another domain E, and D destroys its capability for E, then
the protection system will at that point intervene to allow E to tidy up.
(At the same time, any domains for which E is in turn responsible will also
be dealt with in the same way.) Since other references to E might still
exist, it is important that it should not be called again in such a manner

that it would return unfinished.

There are essentially two ways to achieve this effect. The first is for
the protection system to invalidate all other references to the domain -

i.e. to revoke access to it [5] The other method is for the protection

[5] Whether this is possible will depend on the particular capability system.
If there is a central object map, as described in section 6.5.1, revoking
access to the object should be straightforward.
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system to raise an exception within the domain to indicate to it that the
specially marked capability has been destroyed. This must be done
regardless of whether the domain last returned unfinished or finished,
though in the latter case, reporting the exception may be delayed until the
domain is next called. . After this exception has been raised, it would be up
fo the author of the domain concerned to refrain from returning unfinished

again [6 ]

Whichever method is chosen, the protection system must also check
whether the domain whose marked capability was destroyed was in turn
responsible for any other domains. If, in the example in figure 15, A
overwrites its capability for B1, then it would be necessary to raise

exceptions in both B1 and S.

In this scheme, the operation of moving capabilities becomes a little
more complicated. The protection system must ensure that there is never
more than one marked capability for a domain. In addition, it must be
possible to transfer the marked capability from one domain to another;
proper treatment of the example of returning a capability as result in
section 7.1.7 (figure 14) requires this. This operation is separate from
passing a capability for the use of a domain without transferring

responsibility for it.

It must also be pointed out that the proposal loses much of its value if
the sub-graph of marked references is allowed to loop., The mechanism would
have little value if two domains could be marked as being responsible for
each other. It is therefore required that the sub-graph of marked entries
is a tree [7], called the responsibility tree. A straightforward way to

enforce this is to make the rule that responsibility for a domain may only

[6] In particular, it may be part of the domain's specification that it will
refuse to do any further work for its callers if this happens.

[7] To be strictly accurate, it can be a forest of trees, which each root being
a protection domain on the current call stack.
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be passed from domain A to domain B as a parameter of a domain call, if Ais

responsible for B; for a domain return, there are no restrictions.

T.2.2 Detecting inconsistent states

The rule for detecting inconsistent states can now be rephrased. It is
invalid for a domain D to return finished if there exists a domain U such

that:-

1. U has returned unfinished

and 2. D is responsible for U

The need for the third condition, which required a potentially large
search, has gone away, because any references to U which are not part of

the responsibility tree do not count.

1.2.3 Overwriting of capabilities

The action to be taken when a capability is overwritteri:depends on
whether the capability is a specially marked one or not. If it is not, then
nothing special need be done. If it is, then it indicates that a domain is
overwriting a capability for another domain for which it is resﬁonsible.
This means +that one or more domains are being removed from the

responsibility tree.

The protection system must make the finish call to any of these domains

which last returned unfinished. In addition, precautions must be taken to
H

ensure that none of them will return unfinished again, as discussed in

section 7.2.1.

T.2.4 Summary of this approach

By ddentifying an even smaller sub-graph of the graph of domain
references, the responsibility tree, this approach reduces even further the

amount of work which needs to be done to detect inconsistent states. It
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does so at the cost of restricting the movement of domain capabilities to
enforce a hierarchy of responsibility of one domain for another (though the

freedom of ordinary calls between domains remains unrestricted).

A further feature of the system is that it requires more help from the
programmers, who are forced to specify the responsibility relationship
between the protection domains. There are arguments both for and against
the desirability of this. It requires the programmer to do a little more
work, but by requiring the programmer to supply more information about his
intentions, it increases the likelihood of an error being detected by the

protection system.
t

1.5 A comparison of the proposed solutions

The revised proposal of section 7.2 was presented as a more efficient
refinement of +the proposal of section 7.1. Ignoring efficiency

considerations, which of the two techniques would be preferable?

This is a rather difficult question to answer without the experience of
using implementations of both. If the mechanism were to be added to an
existing protection system, then the original proposal would probably be the
easier of the two to use. Only one new user level facility would need to be
added to the high level language‘ gystems [8] - the ability to specify
whether a return is to be finished or unfinished [9 ] The revised proposal
requires more to be done: facilities must be provided to enable the
responsibility tree to be manipulated. Also, programs which do not need to
use the mechanisms provided may be affected by them, in so far as they need

to take account of the responsibility relationship between domains.

[8] This assumes that ordinary exception handling facilities are already
present. The new exceptions raised by the finish call and the erroneous
attempt to return finished should map cleanly onto language level
exceptions which are raised during the operation which returns to a calling
domain.

[9] The default return would presumably be finished.
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In the first proposal, 'responsibility' for a domain is implicit. One can
envisage circumstances in which a domain suddenly, through no action of its
ovm, becomes responsible for the termination of a domain ‘of which it has
hitherto been simply one undistinguished user. The worst consequence this
can provoke is that an exception will be raised if the domain attempts to
return finished; unfortunately this is exactly what the program which has no
special requirements of its own will do. Whether this would really be a
problem is not known, but as mentioned earlier, suitable default exception
handlers provided in language systems should enable the simplicity to be
regained. In the revised proposal, this problem cannot occur at all, since

all transfers of responsibility are explicit.

7.4 Implementation techniques

The detailed implementation of the proposals will not be considered here,
since it will depend so much on the basic protection system. A number of

general points are nevertheless worth making.

The computations necessary to implement the mechanism are by no means
trivial. Moreover, some of the actions to be taken are associated with
frequent events such as protection domain changes. 1t is important that
the ordinary throughput of the system is not seriously impeded by the added
mechanism. This implies that much of the mechanism should be implemented at
the same level as the basic protection system; if domain changes are
performed in microcode, then support for the proposed mechanisms should be

put into the microcode too.

Implementing the entire mechanism in microcode is 1likely to be
impractical. What is really required is a means of ensuring that the
operations which do not require any special action to be taken are fast. A
greater overhead on more unusual events can be tolerated. Consider, for
example, the implementation of the definition of invalid finished returns in

section 7.1.5 (p. 107). Parts 1 and 2 of the definition are good candidates
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for implementation in microcode. Recording the fact that a domain returned
unfinished should be straightforward, and only a limited search is necessary
to find out whether a domain possesses a capability for such a domain. Part
3 of the definition need be done only if at least one such capability is

found, and could be implemented, if necessary, at a higher level.

Even if it is not feasible to do domain searching in microcode, it may
nevertheless be possible to slave the results of a search done by higher
level software. Provided that care is taken to invalidate the slaved
information at the appropriate time, much repetitive searching may be

avoided.

7.5 A note concerning protected objects

This chapter has been mainly concerned with the handling of complete
protection domains, which were defined to consist of a set of capabilities
for code, workspace and other resources. Some capability systems [10]

allow the creation of protected objects, and allow capabilities for them to

be manipulated. A capability for a protected object does not give direct
access to the representation of the object; it must instead be passed to a

type manager which has a capability which allows it to make use of the

representation.

Many of the problems addressed in this chapter apply also to protected
objects. A type manager may need to relinquish control while the
representation of an object is in a non-standard state, so that it must be
called again later. Note that there are now two cases to consider: either
the capability for the object may become disused, or the capability for the
type manager may be lost. In the former case the object should be passed

to the type manager before it is finally destroyed; in the latter case the

[‘IO] An example is the Hydra system [Cohen 75 ]
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type manager would need to be given an opportunity to deal with all the
objects it managed. Analogous techniques to those proposed for protection

domains should enable this to be done.
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8. Conclusions

This dissertation has explored a number of problems faced by the
designers of protected operating systems. The emphasis has been on
providing mechanisms which will enable the competent programmer to handle
exceptional conditions in such a way that he can maintain the integrity of
his protection domains regardless of the bLehaviour of other domains with

which he may be cooperating.

In particular, a new class of exception has been recognized, which may be
loosely expressed as the failure of one domain to call another when it
should. The very nature of this exception, consisting as it does of a non-
event, presents particular difficulties when attempting to provide a
sensible algorithm to deal with it. Chapters 6 and 7 presented a solution to
gsome of these difficulties and demonstrated that far more could be done

about them in operating systems than typically is.

8.1 Evaluation

The problem was recognized largely as a result of observing some
unsatisfactory properties of the operating system being built for the CAP
computer. The provision of the mechanisms described in chapters 6 and 7

would improye matters considerably.
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In particular, those mechanisms would enable the following improvements

to be made to the CAP system:

- Input and output streams could be closed down properly, and device

interlocks released, even if the user failed to close them explicitly.

- Resources associated with connections over a local communications

network could be released at the proper time.

- It would be possible to provide user semaphores and other interlocks

more easily.

-~ Ad hoc mechanisms would not be needed in the inter-process communication

system (see gection 5.2.3).

This raises the question of whether the mechanisms are of general
applicability, or whether they are simply necessary to correct mistakes
which were made in the design of one particular system. The author believes
that the mechanisms are of more general value, whilst acknowledging that

they have some limitations.

The ability of protection domains to retain internal state is not
restricted to the CAP system. On the contrary, the use of CAP protected
procedure calls in a coroutine like fashion is a little cortrived, since it is
a mechanism provided by language libraries rather than an inherent feature
of the CAP architecture. Systems which implement protection domains as
processes which communicate by message passing support the concept more

naturally.

The main limitation of the proposed mechanism comes from the assumption
that no attempt is to be made to handle failure of the mechanism itself [1 ]
There are applications, particularly those involving databases, for which

this assumption is unreasonable; such applications maintain the integrity of

[1] This includes, for example, hardware failure of the computer on which the
system is implemented.




something which has a longer lifetime than that of a single run of the
operating system [2] For many applications, however, such as those
involving management of operating system resources, this assumption is
reasonable; if the operating system crashes, some resources cease to exist
and no longer need to be managed. For these applications, the provision of
the proposed mechanisms should greatly simplify the job of enabling both

the operating system and user subsystems to maintain their integrity.

8.2 Suggestions for further work

The main test for a mechanism such as the one proposed is whether it
works in practice. An implementation would be valuable; deficiencies in the
mechanism would come to light and possible improvements might become
apparent. In a number of respects, the existing CAP operating system is
ill-suited to this work; other systems may provide a better environment for
experimentation. In particular, a new operating system for the CAP machine
is under development [Herbert 78, Herbert 79}. The architecture of this
aystem is rather different from that of the original system; it has a global
object map and microprogram maintenance of use counts. It is also an
example of a system based on message passing as the means of communicating
between domains. It may prove to be possible to incorporate at least some

of the ideas of chapters 6 and 7 into this systen.

A further area in which more work may be valuable is in the treatment of
system failure. When an operating system is restarted after a crash, it
frequently 'needs to perform such activities as checking out its filing

system and correcting inconsistencies. A non-monolithic operating system

[2] One frequently finds that database systems are taken as examples of the use

‘ of exception handling techniques to maintain permanent data structures in a
consistent state. The possibility of total system failure is often
neglected in such examples.
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perhaps ought to enable user supported subsystems to do analogous things.
Providing such facilities would remove the main limitation of the mechanism

mentioned in section 8.1.

Finally, it would seem natural to extend +the work to deal with
distributed systems. A distributed system has much in common with a domain
based protection system for a single machine: the components are protected
from each other and the interfaces between them can be narrow and well
defined. Distributed systems have the property that it is relatively common
for one component of the system to suffer catastrophic failure whilst the
remainder continues to function. The problems created by this possibility -
tend to be dealt with in a rather ad hoc fashion, relying almost totally on
self-defence by the individual components. It would be useful to have a

more unified approach to the problem.
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