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Optimising compilation
Part I: classical imperative languages
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Abstract: This tutorial considers the design of modern machine-independent optimising com-
pilers for classical (C-like) languages. We draw from two sources (1) the literature and lectures
by the authors at Cambridge and (2) the ‘Norcroft’ compiler suite! jointly constructed by the
authors.

Keywords: Optimising compilers, C, dataflow analysis, live variables, register allocation by
colouring, available expressions, common sub-expression elimination, machine-parameterised
and machine-independent optimisation.

1 Introduction

The classical imperative languages, from Fortran through to C and C++, all use a fundamental
model of computation in which individual values are stored in variables, operated on and moved
from place to place. The major differences between these languages are the syntactic constructs
provided to allow users to structure code and the style and extent of compile-time type-checking.
However, it is characteristic that type checking or inference determines a size in bytes for each
variable and expression result (its ‘machine type’) together with a resolution of system- and user-
defined operators into machine instructions or run-time library calls. In particular operators like
“1» are mapped into their integer or floating-point versions or possibly a reference to a user-
defined function. From now on we will assume the parse-tree has been so converted into a form
which includes explicit typing of all expression nodes by machine types and of operators by
machine-oriented operations.

Before going further it is perhaps worth briefly considering whether taking this approach
is liable to limit the scope for optimisation in any important ways, or indeed if it will make a
compiler harder to write or less efficient in operation. Provided the parse tree generated is an
honest reflection of the user’s code all that type-checking has done is to add information to it;
this clearly cannot harm optimisation.? It is often sensible to arrange that a front-end simpli-
fies certain expressions. Indeed the language often requires this, e.g. C array sizes. Moreover,
we consider it desirable that semantically overlapping constructs (e.g. “++” and assignment
in C) and constructs which exist in system-provided and user-defined forms (such as a built-in
“complex” type in Fortran and a similar definition as a C++ class) should be normalised by

1Gommercial interests are referred to Codemist Ltd., “Alta”, Horsecombe Vale, Combe Down, Bath BA2 5QG,
England (fax +44 225 837430)

2Note however that dumping the parse tree for languages such as Fortran and C+4+ in terms of C for input to
a C compiler may well forestall optimisations as the original language may well provide restrictions which C does
not. For example, two array formal parameters of a Fortran procedure cannot be written to if they overlap (and
hence may be treated as non-overlapping) whereas this does not hold for C.




mapping into abstract parse-trees whose constructs are reasonably orthogonal. This simplifies
the work of the optimiser by exploiting source-to-source equivalences and encourages optimisa-
tion of general forms instead of special cases. In general later phases of the compiler will also
need to be able to perform simplifications (e.g. further evaluating expressions after constant
propagation) or even partially reverse the abve simplification to exploit hardware idioms. We
believe it important that an intermediate language can express structured and non-structured
constructs identically wherever possible — thus loops constructed from while and goto should
produce the same code, as should C forms like a = *p++; and a = *p; p = p+1;. This is
particularly important for the increasing use of C as a target language for higher-level language
compilers.

Optimisations can normally be classified into several kinds. One is tree-oriented optimisation,
in which parse-tree manipulations take place. This includes things like constant reduction and
algebraic rearrangement. It cannot easily express certain types of optimisations because the
dynamic behaviour of the code does not always follow the tree-structure — indeed code parts
distant in the tree can often become adjacent in the generated code bringing forth additional
optimisation possibilities. A second form is referred to as ‘local’ optimisation in which knowledge
for optimisation is valid approximately within basic blocks (see later, but here meaning up to
the next conditional jump or label). For example, if an expression calculated in a register is
stored in a variable allocated to memory, then the value in the register may be sometimes re-
used in subsequent code instead of re-loading the variable. Peephole optimisations are generally
of this form. These types of optimisations do not seem able to encompass facts such as that
two variables in the same scope, possibly with different types, can be allocated to the same
machine register because they are never simultaneously live. For this we turn to so-called ‘global’
optimisation. This misnomer usually refers to optimisation within a single procedure. It consists
of calculating details of dynamic execution (control and data flow) throughout a procedure —
for example whether some expression is available at a given point because all control flow paths
to it necessarily involve its previous calculation. Calculating global dataflow analysis details and
exploiting them is the subject of this paper. Finally, there are ‘inter-procedural’ optimisations
which consist of optimising one procedure on the (possibly recursive) basis of optimisations in
another. Examples are choosing register allocations in one procedure to be disjoint from another
to reduce register save/restore code and exploiting the fact that a particular procedure does not
affect some global variable.

Given a parse-tree the approach we describe involves a sequence of transformations. First
we generate intermediate code from the parse-tree. Arithmetic operations are mapped into
3-address intermediate instructions such as

ADD.int32 ri, r2, r3 % i.e. rl
LOAD.float64 r4, rb, 8 % i.e. 14

r2 + r3
*(r5+1)

in which each operand is used as source or destination, but not both. This form has the advantage
that all intermediate values are explicitly visible; hence analysis and especially transformation
are much simpler than a beginner’s treatment of compiling via a stack-oriented (0-address)
intermediate code. Comparisons, data movement and unary operations map to degenerate forms
having only two operands; special instructions handle procedure call and other less regular special
needs. In principle, we translate the parse tree into a flowgraph — a directed graph in which the
nodes hold such instructions and the arcs joining nodes represent (conditional) jumps. Dataflow
information (such as liveness information) can later be attached to each node. However, since
this dataflow information can be quite large, it is convenient and standard to partition this
graph to form a flowgraph in which the nodes represent basic blocks of sequential instructions
which do not contain entries (except at the top) nor jumps (except at the bottom). A block has
one successor block for each branch destination — two for conditional jumps, many for switch
statements and none for blocks ended by return.




The flowgraph format of basic blocks of 3-address code is a convenient one to use for perform-
ing various forms of global analysis and transformation on the code. Common sub-expressions
and loop-invariants can be detected and processed, code may easily be moved (in contrast to
stack-oriented code), code that is unreachable or that has no effect can be deleted and control-
flow oddities (e.g. jumps to jumps) vanish.

Part of the analysis performed on the basic block representation will find the ranges over
which variables or temporaries used in the program are live. On the basis of this information
an attempt can be made to decide which values can reside in machine registers (modern RISC
machines typically have enough registers that this will turn out to include almost all heavily
used variables) and which have to be stored on a stack.

Because the problem of generating intermediate code and simultaneously allocating registers
is hard, it is productive to generate intermediate code in which the machine is assumed to
have an infinite number of virtual registers (tagged as to their use as integer or floating point)
and to use one for each temporary or local user-variable. A second phase is then used to map
these virtual registers into real or physical registers of the target architecture. This breaks a
complicated single-pass problem into a manageable two-pass problem.

The directed graph of basic blocks is next flattened into a single linear stream of abstract
machine operations. The order in which blocks are placed can influence the sense that must
be given to conditional branches and the span of branch instructions generally. In the Norcroft
compilers we provide for two levels of peephole optimisation to be performed at this stage. One
is machine-independent but allows for the restrictive simplicity of the 3-address code by recon-
structing some commonly occurring slightly higher level operations such as replacing procedure-
call/return sequences with a tail-call branch. The second is target-specific and uses detailed
knowledge about the target instruction set to rearrange code to take better advantage of if.

In a number of places the steps outlined above need to know something about the target
machine — for instance register allocation is only possible when it is known how many registers
will be available. However the information needed can almost all be expressed in terms of
a modest number of characterising features that can be set up in a table before compilation
starts, and it is reasonable to think of the entire process thus far as machine-independent but
machine-parameterised. Its output is alinear stream of 3-address instructions which use registers
in a way that will be compatible with the target machine.

The final stages of compilation involve mapping these abstract instructions into the bit-
patterns or mnemonics needed for the real machine. As well as instructions it is necessary to
emit data definitions, relocation records and debugging tables, It is also often useful to have
yet further optimisation of the code to exploit delayed branches on machines where these are
relevant and to schedule instructions to avoid unnecessary pipeline clashes.

In the Norcroft compiler this 3-address to machine code conversion constructs binary object
files directly; if the user wants to see textual assembly code we disassemble the binary, making
use of the tables of internal label names etc. to help generate tidy output. Our decision to work
in this way was motivated by the expectation that generating object code would be the common
case and hence the one that should take the most direct path through the compiler.

A couple of pictures summarise the compiler structure using ANSI C for concreteness. These
show the data representations used in ovals, and the names of parts of the compiler as names (in
boxes) attached to arrows that indicate transformations performed. The first picture shows that
parsing will often be split into a preprocessing phase (i.e. macro expansion and the treatment of
conditional compilation) [pp], followed by lexical analysis [lex] to convert from a character stream
representation into a token stream one. The final step is to parse and type-check, converting
the token stream into a parse tree: ‘




: y : arse
character character token P
stream stream stream tree

After parsing there are the parts of the compiler discussed here: 3-address code creation [cg],
common sub-expression elimination [cse], register allocation [regalloc] and the creation of target
machine code [gen]:

virtual physical

register register
3-addr code 3-addr code

==

cse

Note only ‘gen’ is essentially machine-dependent.
The remainder of this paper describes some of these components above in more detail and
we conclude with a discussion of C constructs which facilitate or inhibit optimisation.

2 Intermediate code generation

Here it will be convenient to suppose that compilation and optimisation is performed one pro-
cedure at a time. Thus the fragment of parse tree presented for optimisation will represent the
definition of a single function; hence we discuss so-called ‘global’ optimisation but not ‘inter-
procedural’ optimisation.

The introduction explained the use of virtual registers which are used to generate basic
blocks of 3-address code by a simple tree-walk; we use a fresh virtual register for every separate
value that is computed. The set of virtual registers can be divided into three sub-classes. The
first of these stand directly for real machine registers and will be used when code conventions
(e.g. the location of the result handed back by a procedure) mean that register use is known
very early on. The second class of virtual registers are used in contexts where later stages of
the compiler must be able to allocate a real register — for instance all operands in arithmetic
instructions are of this sort. Finally there are virtual registers that stand for user variables and
for temporary values that have more than a very short life-time. These are referred to as spillable
virtual registers and for each one a (separate) location on the stack is provisionally allocated.
Final allocation of location is only done after register allocation to avoid wasting stack locations.
The 3-address code is generated in such a way that spillable virtual registers only occur in very
simple data movement instructions so that if they do in fact degrade to being kept on the stack
it is still possible to generate code to access them. The 3-address code is constructed on the
supposition that spillable virtual registers retain their values across procedure calls.

Naturally this leads to a large number of virtual registers, with many of them used over only
very short sections of the complete program and with many apparently redundant movements
of data between them. ‘




As discussed in the introduction, 3-address instruction opcodes are provided for the usual
complement of loads, stores, integer and floating point operations and housekeeping. The ex-
act set of operations provided does not seem to be especially important, although support for
additional source languages and target machines can sometimes make it useful to add extra op-
codes to express some especially important idiom — for example, we find it convenient to have
a MOVC opcode which represents C structure assignment (of known size and alignment) rather
than generate a procedure call or synthesise a loop.

By having a fairly basic intermediate code this stage of the compiler becomes simple —
but the code involved is still bulky since every syntactic construction potentially present in the
parse tree has to be covered. Part of the simplicity of the intermediate code is that an unlimited
supply of virtual registers are available. There are two ways in which this idealisation cannot
be completely maintained throughout the construction of intermediate code. The first involves
function calls on machines where the standard calling convention passes at least some arguments
in registers. As indicated before this is coped with by allowing codes that stand for the real
machine registers to occur in the place of the name of a virtual register, and thus arguments can
be loaded directly into the registers that they are needed in and results can be retrieved from
the physical registers they are returned in. Because the real registers used in such contexts are
potentially a scarce resource it is useful to compile code that prepares all arguments in virtual
registers and then copies values into physical registers at the last moment just before the CALL
instruction. Similarly returned values are best transferred into a virtual register for later use.

The second complication relates to spillable and non-spillable virtual registers. It is essential
that the number of non-spillable virtual registers live at any stage is kept smaller than the
number of real registers in the target machine. Extremely complicated expressions can require
extra copying of some non-spillable temporary values into spillable registers — thus an addition
of two sub-expressions P and @ where () may need to use many registers might turn into:

{code to load P into ri>

STORE rl, -, r2 % r2 is spillable
<code to load Q into r3>

LOAD r4, -, 12 % recover first operand
ADD r5, r4, r3 Y do the arithmetic.

However if Q is a very simple expression or if the above addition occurred in a small procedure
where registers were not under strain it would be unnecessary to introduce r2.

The introduction of spillable virtual registers as sketched above is not the only way of allowing
for limited register availability at the end. The main alternative is to start by generating 3-
address code without any spillable virtual registers and then re-start the analysis after having
introduced spill code if later register allocation fails. Our approach increases the bulk of 3-
address code that has to be scanned, and raises the challenge that instructions such as

MOVE ri, -, r2

should be annulled wherever possible by allocating both virtual registers r1 and r2 to the
same real register. However, this enables the analysis to be completed in one pass and has
the additional benefit that the register allocator can also exploit such copy information for
user-variables (see section 4.3).

3 Common sub-expressions

At any point in a body of code the available expressions are just those values that are certain
to have been evaluated on any path leading up to the specified point. Code that re-calculates
an expression that is already available is redundant and can be replaced by a reference to the




previously computed value. Let avail(p) be the set of expressions available at (actually just
before) a given program point, p, and po be the entry point of the procedure. Then the avail(p)
satisfy the dataflow equations

avail(pg) = {}
avail(p) = () (awail(q) — kili(g) U gen(q)) if p # po
g€pred(p)

where gen(p) is the set of expressions computed by p (typically just its right-hand-side) and
kill(p) the set of expressions killed by p (for example an assignment to x kills all expressions
containing x). Because the set of expressions available at a given instruction node p depends on
the expressions which are available at its predecessor nodes pred(p) this is said to be a forward
dataflow analysis.

Computing available expressions from these implicit equations is done by establishing names
for all results ever calculated, and initially flagging all of them as being available, except at
po. A forward scan through the code can then reveal both when calculations make some value
available and when assignments render the value out of date. For example in the sequence

= a + b;
a + b;
=a+ 1;
= a + b;

o P A0
[

the expression a+b becomes available at the first line, and can be re-used on the second, but
the assignment to the variable a must invalidate it so the the calculation of e must be started
from scratch. Availability information must be propagated across the boundaries between basic
blocks, and loops in the source code mean that in general the analysis proceeds by iteration.
Scanning must be repeated until the information stabilises. This is guaranteed by a lattice-
theoretic monotonicity arguinent,

For some languages with tightly constrained formats of loop structure it is possible to decide
how many scans will be needed based on the depth of nesting of loops, but we prefer to have a
single robust optimiser capable of interfacing to parsers for a variety of source languages and so
just iterate until we have found a fixed-point.

Available expression tabulation can reveal constant calculations that did not correspond to
obvious opportunities for constant folding in the front-end of the compiler — so even if the
parser did not evaluate such expressions they can be reduced here.

In general we follow the above scheme and use new . (spillable) virtual registers to hold
the values of common sub-expressions. Similarly the available expression information makes it
possible to identify loop invariants. A fresh basic block can be created at the head of the loop3
and code to evaluate the invariant can be installed there. References within the loop then get
replaced by the regular common sub-expression mechanism. Some common sub-expressions,
however, are so simple to calculate that although it would be nice to re-use the previous value
if it was available in a register it would not be worth saving it onto the stack but would be
better to recompute. In such cases we combine a reference to the available virtual register with
the instruction to recompute the value — and select which part of the code to use after register
allocation.

Note that choosing appropriate common sub-expressions depends on the target machine
parameterisation table. Consider code like

int £(int i, int *v, int *w) { return v[il+w[i]l; }

3Tn Norcroft compilers this is done by placing the code at a ‘dominator’ block which allows loops created by
goto to be treated identically to those created by more structured techniques.




and suppose int to be 4-bytes wide on a typical byte-addressed target. Hence i has to be
left-shifted by two as part of the indexing process. If the target has scaled addressing (the
ability or requirement to shift an index during address calculation) then the two implicit t =
1<<2; instructions should not be lifted out as a common sub-expression whereas if it lacks scaled
addressing the common sub-expression should be exploited.

4 Register allocation

Following CSE and loop optimisation the 3-address code needs to be analysed to see how virtual
registers can be mapped onto real ones.

In principle this proceeds in the following manner. First the live ranges for all virtual registers
are determined. This process is analogous to that which identified available expressions. Instead:
it has backwards dataflow equations — the set of live variables at (just before) a node p depends
on the liveness information of its successor nodes succ(p). The live(p) satisfy

live(p) = | tive(q) | — kill(g) U gen(q)
g€suce(p)

where gen(p) is now the the set of variables referenced by p (for example by occuring in the
right-hand-side of an assignment) and kill(p) the set of expressions defined by p (for example
the left-hand-side of an assignment). Computation of live sets for each instruction starts with
the supposition that no registers are live until the contrary is proved, and works backwards from
the exit points of blocks. A live register is taken to be one whose value is going to be used, so
at blocks terminated by a return instruction the only live registers are those holding values to
be returned to the caller. On scanning backwards past an instruction such as

ADD rl, r2, r3

register r1 can be removed from the list of those that are live (before the ADD instruction r1
is not needed), while r2 and r3 are added to the list. Again the analysis must iterate until it
stabilises. Live variable analysis can reveal code that computes values that are not then used
and variables that are used but not initialised (‘dataflow anomalies’). Sometimes this may be
a consequence of transformations made by earlier stages of the optimiser and the redundant
code can be removed without comment, while sometimes it will indicate oddities that should be
reported back to the programmer — for example a user-variable which is live at a point where
it is undefined (by scope entry) represents a warning that “variable ‘x’ may be referenced before
definition”.

Now live ranges are inspected, and any pair of virtual registers whose live ranges overlap
are said to clash. Two clashing virtual registers may not be assigned to the same real register,
but any number of non-clashing virtual registers may. If in the real machine registers a1 to an
(say) are corrupted by a procedure call, while v, through v, are preserved across calls we can
arrange that a; to a, are marked as clashing with each virtual register that is live across a call.
Similar treatment can allow for other cases where there are constraints on which real registers
are available in some context.

Clash information can be interpreted as defining an undirected graph where virtual registers
are the nodes and clashes are edges. If the target machine has k real registers and this graph
can be vertex-coloured in k or fewer colours (with no directly connected vertices painted the
same colour) then the colouring immediately shows how to map virtual onto real registers.

The result, in principle, is that the 3-address code is now transformed to use physical registers
instead of virtual registers and can be turned into target machine instructions, e.g. by simple
macro-expansion.

Of course, in practice things are not so simple.




o First we need to assume that the target’s register and instruction sets are sufficiently
orthogonal that any register suffices for almost? any instruction (or at least with a negligible
performance penalty). This is true for many modern machines, especially RISC with
on-chip register files containing 16 or 32 registers,‘such as the MIPS processors, Sun
SPARC, Motorola 88000, Intel 860, IBM rs/6000 and a good approximation on the Intel
80386,/80486 in 32-bit mode. The Motorola 680x0 range is a fair approximation (we found
that we needed additional code to prefer an ‘A’ or ‘D’ register based on the uses of a
variable) whereas the 8086/80286 and INMOS transputer mismatch fairly comprehensively.

e Secondly, we have not explained either how to k-colour graphs, or how to cope when the
graph chromaticity, i.e. minimum number of colours which suffice to colour it exceeds the
number of physical registers. In this case we must arrange to spill variables from registers
to main memory for all or part of their range. Choosing effective spills is really the hardest
part of register allocation. Norcroft compilers keep the number of live non-spillable virtual
registers smaller than the number of physical registers so this colouring is always possible
by sufficient spilling.

o Thirdly, there are places where the suggestion that registers clash if they have overlapping
live ranges is over-pessimistic and can lead to inefficiency. The main case we encounter of
this is after a simple move instruction where two registers in fact contain the same value.
Consider the fragment of C code

rl = r2; /% r1 and r2 contain the same value */
<some big calculation>
r3 = ri + r2; /* rl, r2 not used after this */

where r1 and r2 are both live across the big calculation, and so would need to clash by
our definition. However since they always contain the same value forcing this value to be
kept in two separate real registers is unnecessary. Code of the above style can often arise
as a consequence of the work of the common sub-expression removal code. The Norcroft
compilers use the idea of one register being a ‘read-only copy’ of another to remove the
worst of these.

e Tinally, we have two forms of efficiency considerations. The graph colouring problem is
NP-complete (just the process of colouring with the minimal number of colours, even
assuming we knew it in advance) and hence we must use heuristic solutions. Moreover,
certain routines generate large numbers of virtual registers, for example compiling the
Edinburgh ML interpreter generates around 2000 and compiling Sun’s NeWS more than
6000 (both by fairly aggressive use of macros). In the latter case the clash-graph risks being
36Mbits big which is bad enough for space reasons but searching for clashes in the colouring
process can take a great deal of time too. (It can be fun to try your favourite optimising
compiler on such examples with such optimisations enabled.) The problem is that the
clash graph is globally sparse and locally dense. A small fraction of registers represent
global (to a routine) variables which clash with most temporaries, but most temporaries
only clash with a few other registers, so the design of a suitable data-structure is critical
for performance.

The test of this section considers various aspects of this problem in more detail.

4 A limited number of exceptions can be coped with gracefully, such as dedicated registers for multiply /divide
are in principle no worse than the (procedure-calling-standard-dedicated) register holding the result of a function
call.




4.1 Graph colouring

Given that k-colouring a graph is an NP-complete problem it is unreasonable to seek an algorithm
~ that guarantees efficient solutions to it. A good heuristic method which often allocates all
registers in small procedures works by gradual reduction of the size of the graph to be considered.
Observe that if any vertex in the graph has [ < k neighbours then if that vertex is left to last
there will always be at least k — [ colours available to assign to it. Thus any such vertex can
be removed from the graph and placed in a (LIFO) queue for subsequent colouring. Of course
removing a vertex from a graph will reduce the valencies of all the remaining vertices that it
had been connected to — this may make some of them candidates for removal. If iterating this
process leads eventually to an empty graph then the queue built up will give an order in which
colouring can proceed with a guarantee of success. If this pruning stops then at least it will have
reduced the size of the graph to which any more elaborate methods have to be applied.

If the residual graph is sufficiently small some more or less exhaustive search may be feasible
— however failure of the simple method is more usually an indication that some virtual registers
will need to be mapped onto stack locations rather than onto real registers (e.g. a (k+1)-clique).
In the Norcroft compiler we first push the remaining registers onto the allocation queue with
the ones with fewest clashes to be processed last and then start an attempt to colour registers in
the order so produced. For each virtual register we assign the smallest numbered® real register
that is consistent with clashes with registers already allocated. If the pruning phase of register
allocation was successful this is guaranteed to succeed, and in many other cases it will too. If a
register is found that cannot be coloured in this way we map some virtual register to the stack
and restart the colouring process.

4.2 Spilling

If colouring fails it is possible to extract from the failure the set of simultaneously live virtual
registers that caused the trouble. Spilling involves the selection of one of these, and good
optimisation demands that this choice be made rationally. Thus earlier, while scanning the
basic blocks, we count the number of uses made of each spillable virtual register, and give
extra weight to uses within loops. If the user has given C register declarations we add that
information into the use-statistics associated with each virtual register. Then if spilling is needed
we can discard the register that seems to have lightest use. An effect of this strategy is that
user-provided register declarations are not needed and have no effect in procedures small enough
that all values live in registers anyway, and in larger procedures they can be used to guide, but
not totally override, the optimiser’s analysis.

At the end of the complete colouring process as described above we re-visit those virtual
registers that were marked as spilt, and see if they can after all now be assigned to real registers.
In large procedures it is quite common to find that several of them can.

Note that we have described a form of register allocation in which a variable is either allocated
to one register throughout its scope (even though other non-clashing variables may also be
allocated to it) or spilt into memory. Some compilers allow each live range to be allocated
separately to a register or memory. This can give better performance but can significantly
increase space (and hence time) pressure on the clash-map.

4.3 Copy avoidance

The allocation strategy described above still has some flexibility left in it — if some register
clashes with significantly less than k others then there will be choices available when it is

5 Actually we have a preference order for the use of real registers which does not necessarily correspond to their
natural numbers.




eventually coloured. This can be exploited by keeping a preference or copy graph which records
when code would be improved by mapping a given register onto the same physical register as
another. An arc (r1,r2) is placed in the preference graph when a MOVE ri,-,r2 instruction
occurs or when the target machine has 2-address operations and a 3-address instruction such as
SUB ri,r2,r3 occurs. The copy graph can be implemented in the same manner as the clash
graph. Note that copy avoidance means that the spillability code introduced in section 2 can
evaporate gracefully when it is not required.

4,4 Data structures

The main data structure needed in register allocation is the clash graph. Two obvious possible
representations for this would be a square array of bits and a linked structure capable of exploit-
ing sparsity. For the compilation of small procedures it hardly matters which is used, but for the
optimisation of large blocks neither of these formats is entirely satisfactory. This is because to
a large extent virtual registers fall into two classes. One class will be used for short spans, and
will thus tend to clash with only a modest number of others. The other class consists of registers
live across significant stretches of code, and these can clash with almost everything else. If the
virtual registers were re-numbered so that the ones with most clashes were given small numbers,
then a picture of the matrix representation of the clash graph would show symmetry about the
leading diagonal, dense blocks of entries in the top rows and left columns and sparseness towards
the bottom right. With this in mind it is easy to invent a mixed representation that uses linked
chains of small bitmaps, so that the bitmaps can cover dense parts of the relation efficiently
while the linked lists allow for sparseness where that is important. It is clearly sensible to keep
just the part of the matrix that lies above the diagonal. Although in early experimental versions
of our compilers the register allocation phase took more time and space than the rest of the
compilation process (at least for medium to large procedures) with the mixed sparse/bitmap
data structures we now find the cost of optimisation reasonable — often comparable with that
of preprocessing and lexical analysis!

5 Conversion to linear code

At the end of register allocation the code is still represented as a directed graph of basic blocks,
but it is known which virtual registers in 3-address instructions have to map onto stack references
and which can use real registers. This will mean that many stack locations provisionally reserved
in case some virtual register needed spilling will be found to be unwanted. By keeping stack
references as logical names rather than absolute offsets until after register allocation we can
ensure that this does not result in waste.

The order in which basic blocks are placed to create linear code can be guided first by the
numbers of arcs joining them. For instance if some block only has one entry then it should be
placed immediately after its predecessor, in effect merging the two. A natural side-effect of the
process of linearising the code is that jumps to jumps get removed and blocks of code that are
never referenced get discarded. For target machines where jump instructions have short forms
with limited span it can be useful to produce estimates for the bulk of real code that each block
will expand into and to try to arrange blocks so as to maximise the number of jumps that will
be short.

While converting the 3-address code to linear form it is useful to apply a number of local
conversions based on characteristics of the target machine but still conducted at a fairly machine-
independent level.

o Some constructs, held as abstract higher level operations throughout CSE optimisation
and register allocation, may be expanded at this stage. For instance for the benefit of
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some targets which do not have direct support for halfword memory access the relevant
combination of shifts and masks may be generated. Since it is now known how many
machine registers are free for use as temporary workspace suitably unrolled versions of
memory-to-memory copy loops can be synthesised. Of course there is often some tension
about how early these conversions should be performed — a reasonable choice is to defer
to this stage those things where different expansions might be suitable according to the
number of real registers available.

o In the opposite direction sometimes it is useful to have a richer collection of 3-address code
to pass on to the final code generator than are used throughout the machine-independent
optimisation phases. This can simplify CSE optimisation and register allocation. While
linearising it is thus appropriate to detect either common idioms or ones especially directly
supported by the target machine and re-instate them. Again it is a matter of judgement
which higher-level constructs should be carried intact through the complete compiler and
which should be expanded into elementary components when the 3-address code is created
and reconstructed when it is converted to linear form. Other things being equal we prefer
expansion followed by reconstruction, since the reconstruction process will work whether
the operation was manifestly visible in the original source code or not. Two examples
from our compiler spring to mind — while flattening the flow-graph we can recreate scaled
indexed address modes, and can turn C calculations such as

unsigned int a, b; /* assume 32-bit machine */
a=(b<<n) | (b> (32-n));

into a rotate operation. Another example is that we typically maintain accesses to global
variable as ‘load address’ followed by ‘indirect access’ since this is more efficient if a given
variable (or set of variables in a known storage relationship) must be repeatedly accessed.
On the other hand, if we find such a pair of instructions in which the register holding
the address becomes dead at the indirect access then we can contract this to a ‘load from
absolute memory’ instruction on machines possessing same.

o Fully effective detection of idioms for reconstruction means that it must be possible to
rearrange the order of instructions within basic blocks. A fair amount of flexibility in this
can be maintained provided full register use information is passed on from the register
allocator. Sometimes it is useful to try to rearrange code in a way that will allow for the
generation of specialised machine instructions or addressing modes. For instance migrating
increment instructions to a memory reference provides the opportunity to exploit ‘auto-
increment’ addressing. On several machines we have come across it is useful if the two
load instructions implicit in

f(struct foo *x) { ... x->a ... x->b ... }
can be brought into adjacent positions, for then it can be possible to combine them into

a load-double instruction that picks up both words at once. C, of course, prescribes the
offsets of fields a and b.

6 Machine dependent optimisation

To the greatest extent possible it is desirable to keep optimisation as generic as possible. The
earlier stages of a compiler can very properly be made conditional on features present or lacking
in the eventual target machine (register windows, memory-to-memory move instruction, number
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of real registers, presence of scaled addressing etc.). However eventually a stage is reached where
real machine instructions have to be generated and when optimisations depend on the precise
form and layout of these.

Two classes of code improvement seem to be relevant. The first is concerned with the
selection of suitable machine instructions for the 3-address code, especially taking advantage of
operations that the abstract 3-address code makes explicit but that real machine instructions can
achieve as a partial consequence of some other operation. An example of this could arise where
byte-wide machine operations could provide a simple way of implementing an operation such as
a=b "~ (c & Oxff) avoiding need for an explicit mask with Oxff. Typically each individual
such optimisation makes only a small difference to the performance of real optimised code, but
regardless of performance implications it is socially vital to include a broad range of such peep-
hole optimisations, since otherwise people who inspect the code generated by the supposedly
optimising compiler will comment on their lack. We have found it important to provide at least
one way in which each given machine idiom may be generated from C, in that certain uses
(e.g. graphics applications) require the ability to code in C (for maintainability) but with quite
specific assembler output expectations.

The second class of machine-specific optimisation is important when the target is one of the
current generation of processors where consequences of the pipelined implementation of the com-
puter show through at the machine code level. They include the exploitation of delayed branches
and the rearrangement of code so that instructions that reference a register are separated from
preceding ones that load it. As before it is useful to keep information about register use and
basic blocks at least partially available. Register liveness spans constrain how instructions may
be permuted. The optimiser can also leave indications of when spare registers are available and
code may be altered by renumbering® registers so as to make more aggressive code movement
valid. The remainder of the basic block information (now distilled into tables that will turn into
linker directives to relocate symbol-references) can help show when instructions at the head of
one block may be migrated to a delay slot at the end of a predecessor. Even though the detailed
optimisations to be performed depend on very fine details of the target machine to a large extent
the code that implements them can be factored into a generic part together with small routines
and tables that assess a cost function that is to be minimised.

7 The optimisation phase problem

One of the most frustrating problems in designing and constructing a practical optimising com-
piler is that of deciding on the order in which various transformations should be performed.
For instance if common sub-expressions are commoned up and loop invariants lifted from their
loops to a maximal extent then this can sometimes place a very great extra burden on the
register allocator, and small CSE’s and invariants may end up less well treated than if they had
been left in their original places. Thus perhaps register allocation and CSE analysis should be
performed simultaneously. Similarly it can be unclear when to map out some composite opera-
tions into sequences of smaller ones — block moves of memory (as in C structure assignments)
would sometimes benefit if expanded early (when the expanded code would be subject to the
full strength of the rest of the optimiser), but again the most appropriate code may depend on
the results of register allocation. One solution would be to iterate the entire optimisation pro-
cess, so that second and subsequent passes have the benefit of all information gathered before.
In constructing the Norcroft compilers we believed that the potential gains from this were not
worth the costs, and we use heuristics to guide us as to (for instance) the size and number of
common expressions it will be worth trying to eliminate.

60f course, it would be nice to get this right at register allocation time, but at that time we do not know which
virtual registers will map onto storage references — this is the optimisation phase problem discussed below.
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8 Language specification, the optimiser and the user

The fine print of language specifications can often be of great importance to the designers of
optimising compilers, For both Fortran and C, for instance, there are sections of the relevant
standard that can look most curious to the naive user (the 1966 Fortran concept of definition
at the second level is an example) but which provide compiler builders with license to apply
particular code generation techniques and optimisations. Other parts of language definitions
may at first seem to be nothing more than simple description of how code should behave, but
in fact imply strong constraints on the compiler. Together with the formal description of what
results must be produced when programs are run there are two more issues that the compiler
builder needs to consider — the user’s expectations about what style of source code will lead
to fast and compact object code, and the way in which programs that stray beyond the strict
language standard are treated. These last two points may well weigh heavily when potential
users judge the quality of a compiler.

One problem is that optimisation is not uniform — certain pieces of code optimise well as
we have seen, even reducing to zero the cost of a copy or cast where two variable can share
a register. However, certain other ‘assumptions’ based on elementary compiler technology can
inhibit optimisation over a whole procedure. We will illustrate these issues with reference to
ANSI C where confusions like “address-taking is free” or “setjmp is only a procedure call” are
dispelled. Another problem is that users are poor readers of language specifications — many an
optimiser has been claimed to be ‘broken’ because it exhibited a bug in a voluble user’s code.
Therefore the ‘best’ optimising compiler may not be the one which exploits each dark corner of
the standard, but one which treats dubious constructs gently.

8.1 Aliases

A general bane for optimisers is the possibility that there may be two or more access paths
referring to the same quantity, but that the compiler’s analysis may not be able to detect this.
Wherever there is a possibility of conflict of this sort (and where the language specification
demands that behaviour be defined) a compiler needs to generate conservative code. In C
potential aliases arise through the use of pointers. The most cautious view a C compiler could
take is that at any time where an indirect assignment might be made (including any time a
procedure is called) any variable whose address has been taken might have its value changed,
and arbitrary fields of data-structures in heap (malloc) memory might get altered. This clearly
affects available expression analysis and thus common sub-expression optimisation, but it also
affects live variable analysis.

A case where this can have performance consequences that a user may not expect is when
(at least in intent) the address of some variable is only used for a short while — e.g.

r = scanf("%d", &n);

where the address of n is not used elsewhere. A pessimistic (i.e. correct) C compiler might see
that the address of n is passed to an external procedure, which could potentially save it or make
it generally available. The compiler would then conclude that safe code would keep n in memory
at all times. A user aware of this problem might write

{ int tempn; r = scanf("%d", &tempn); n = tempn; }
p p p

so that the more widely used variable n was not blighted. A cleverer compiler could only really
improve things if the standard header containing the declaration of scanf had also provided (in
some system-specific way) a promise that scanf would not retain the pointer it was passed, and
that it does not do any indirect assignments other than those through the explicit addresses
provided to it. This itself carries a further message to users — not only should all functions be
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properly declared with the correct types before they are called, but the declarations in standard
headers may provide the compiler with yet further information about side effects that library
functions may have, and that information may be important to the optimiser.

8.2 setjmp and longjmp

On computers such as the VAX and with simple compilers such as the original pcc (Portable C
Compiler) setjmp could work by just saving a stack pointer and a return address in the jmp_buf
and longjmp could achieve all it needed by loading a couple of machine registers and unwinding
the run-time stack using information stored there not strictly necessary for the non-longjmp
execution.

However, setjmp requires complicated analysis in an optimiser: when building a flowgraph of
a body of code that contains an instance of setjmp, every procedure call which might (indirectly)
invoke longjmp must be treated as a conditional branch to the logical label immediately following
any preceding (dominating) call of setjmp. This immediatly inhibits tail-recursion optimisation.
The C standard permits some variables to be left in an indeterminate state after longjmp, but
demands that others are preserved. The effect is that the presence of a setjmp has a global effect
on the graph used to analyse the code, and will in general lead to many more values having to
be kept in memory rather than in registers. Given this it is just as well that ANSI C demands
that the standard header declaring setjmp be included if this facility is to be used, and that it
does not permit the function setjmp to be stored or passed around as a procedural argument —
these arrangements make it possible for a conforming compiler unambiguously to identify uses
of setjmp.

Hence setjmp can be expensive for two reasons on modern architectures. Firstly, stack frame
optimisations can leave insufficient information for longjmp to restore the old context from the
stack and hence setjmp must save many registers (e.g. 32 integer and 32 floating). Moveover,
its mere presence in a routine can require seriously reduced optimisation (e.g. a factor of two
or more in the speed of an interpreter). The moral is to use setjmp in a veneer procedure
which calls another procedure to do any significant work and to make sure it is not executed
unnecessarily often.

8.3 Register declarations

From early days C compilers have made it possible to keep especially heavily used values in
registers, via an explicit declaration. The proper status of this declaration on compilers for
machines with large numbers of registers and compilers that allocate these using advanced tech-
niques has become obscure. It seems that if optimising compilers treat user register declarations
as firm instructions about how to treat certain variables and the user has provided too many
such declarations the effects can be fairly bad, with most other quantities spilt to the stack.
In the majority of cases the variables that need special attention will be looked after well by
automatic register allocation anyway. We consider that the realistic choice available to compiler
builders is between ignoring register declarations totally and using them to give (slight) weight
in choices when spilling is needed. We favour the latter.

8.4 Sequence points

There are a number of ways in which (especially) optimising compilers can follow a language
specification accurately but end up surprising programmers who have not read the standards
documents carefully enough. In these cases the compiler designer needs to decide whether it is
possible to detect the relevant cases and issue a compile-time warning; and whether performance
or support for plausible but faulty code is more important. Consider, for instance, the expression

14




£ (xx++, *x++) supposing that the function £ calculates some symmetric function of its two
arguments. Then C standard says that the behaviour of this code is undefined, which certainly
permits a compiler to turn the above example into a call to a library function that deletes all the
user’s files. The possible ways in which the individual parts of the two *x++ operations (loading
%, incrementing the value, storing it back and doing an indirect fetch based on the original value
of x) can interleave during optimisation mean that the code may compile so as to give several
different effects — and the behaviour may be depend on the surrounding code context (even
without making full use of the standard’s license to treat it as undefined). Our view about
such problems is that it behoves aggressively optimising compilers to include as comprehensive
Qint’-like checking as they can and, in the case of code that may behave other than as the user
expected, either to generate an explicit warning or to back off and degrade optimisation. Current
Norcroft compilers do not exploit the full power offered by the standard and behave as if only
whole sub-expressions are re-ordered but never interleaved — this gives good optimisation with
greatly reduced chance of upsetting users.

8.5 ch'ar and short variables

In C it is possible to declare variables of type char and short. When arithmetic is performed,
C requires that such short types are widened to (possibly unsigned) int.” The effect of this is
that variables of type char and short (and to a lesser extent float) have a rather anomalous
character which can complicate the job of optimising compilers. To cope with this problem
our compiler keeps such (non-address taken) variables in memory or registers widened to the
natural size of an integer. We initially generate pessimistic 3-address code that widens values
to int before storing them,® but the optimiser is then very often able to remove these extra
instructions. An example showing why the masking may sometimes be needed is

int f(char *x, char y) { *x = y+1; }

where the value returned must have been reduced to the range of character values. The extra
zero- or sign-extension code that char and short variables sometimes call for can make them
lead to slower code than if just int were used — this does not always match user expectations.
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1 Functional Languages

The term “functional’ as applied to programming languages has been used to apply to a number
of related but different models of computation, As used here it will refer to purely functional
languages, characterised by a complete lack of side-effects and a very direct relationship with
the A-calculus. This rules out languages such as ML and Lisp which, although emphasising
the status of functions in the construction of programming and containing well-understood pure
subsets, include forms of assignment operator. An ultimately pure functional language would not
need anything beyond the ability to describe functions and function application, but practical
languages all model the applied A-calculus and include a collection of constant data objects and
functions.

While pure functional languages may not have assignment statements or traditional con-
trol structures such as “while” loops, their A-calculus inheritance leads to an expectation that
functions should be first class objects, capable of being passed as arguments and returned as
values. The result is that such languages naturally support higher-order functions. In many
cases the designers of functional programming languages have introduced pattern matching as a
way of reducing the need for explicit conditional statements, with functions defined by gathering
together a collection of partial definitions, as in

factorial 0 = 1
factorial n = n * factorial(n-1), n > 0
factorial n = error, n<o

but here we will suppose that such features have already been expanded out in terms of standard
conditional operators. There is of course some opportunity for optimising the generation of
good sequences of tests to detect which of a collection of patterns matches a particular function
application, especially when richly structured datatypes are present, but those challenges will
not be discussed here. Section 6 discusses the possible interpretations of error above.

Research described here was supported by the authors’ (UK) SERC grant GR/H14465 on “Strictness analysis,
types and reduction machines”.




2 Lazy Evaluation

One motivation for the study of pure functional programming languages is that the order of
evaluation of parts of a complete program cannot lead to the program terminating with different
results. However it is possible to have programs such that one evaluation strategy leads to a
result while another does not terminate, consider

never_stop(x) = never_stop(x+1)
£(x, y) = x
g(x) = £(x, never_stop(x))

then one might reason that f ignores its second argument, and hence manage to evaluate g(0) to
0. Equally if one followed an evaluation strategy where all arguments to a function get processed
before the function is called then the calculation of g(0) would loop in never_stop. The basic
result from A-calculus in this area is that there is available an evaluation process, normal-order
evaluation that guarantees termination wherever possible. Normal-order evaluation works by
selecting, as the next function application to expand, the leftmost outermost one available. In
practical computing terms the direct implementation of normal-order evaluation can lead to
gross inefficiency, because in expanding an outer function application an argument-expression
can be duplicated, and may then have to be evaluated many times. A variant known as lazy
evaluation avoids this problem and has become commonplace in computer languages. With lazy
evaluation function applications are performed in the way that normal-order would suggest, save
that whenever it would appear that some expression needs replication (because an argument is
used several times in the body of a function) a shared data structure is used. Furthermore when
the shared expression has to be evaluated its value updates this shared structure, and subsequent
uses can just retrieve the value directly without need for further computation. Applicative-order
evaluation follows that of more classical languages and reduces the argument(s) of an application
before evaluating the body of the function.

Applicative, normal and lazy evaluation can be characterised by the observation that with
applicative-order evaluation every argument expression gets evaluated exactly once. With
normal-order arguments may not be evaluated at all, or they may be evaluated once, twice
or any larger number of times. Lazy evaluation arranges that argument expressions are not
evaluated unless their value is needed, and then they are evaluated at most once. It does, of
course, depend on the fact that with a pure functional language if the same expression were to
be evaluated over and over again the result would be identical each time.

Lazy evaluation seems to combine the pleasant theoretical idea of giving meaning to as many
expressions as possible and the pragmatically attractive idea of only evaluating code when it
can be determined that it is necessary. However, various implementations showed that the costs
of suspending computations and later resuming them produced drastic loss of speed compared
with applicative-order evaluation.

Inspection of realistic fragments of functional code shows that much of it does not really need
the luxury of lazy evaluation. For instance any use of the factorial function shown earlier could
perfectly happily and safely use applicative-order evaluation. In such circumstances a compiler
for the functional language could produce object code very similar in quality to that which one
would expect from a compiler for a simple language such as C. The key to detecting where
applicative-order of evaluation can be used is known as strictness analysis. This literally means
the process of analysing a function or program to determine its strictness. Although Myecroft [12]
first considered such issues, the epithet ‘strictness analysis’ was added later. The next sections
(in turn) define strictness, show how to calculate safe approximations to it and illustrate how
to exploit it. The effect is that strictness optimisations can be seen to work by moving the
‘suspend’ and ‘resume’ operations on closures together where they can be peephole-optimised
away completely. '




3 Strictness and neededness

In this section attention will be restricted to programs without higher-order functions and where
all data is restricted to being atomic. Thus list and tree data-structures will not be considered—
it will be convenient to think in terms of programs where all data is purely numeric, such as
that required by a type system with two levels such as

t ::= int | bool pu=t X Xtp—ot (kelN).

In this case applicative-order evaluation corresponds to the familiar call-by-value, normal-order
evaluation to call-by-name and lazy evaluation to call-by-need. Again call-by-need is a seman-
tically equivalent, but more efficient, implementation of call-by-name.

Given a particular operational semantics, such as normal-order evaluation specified above, we
say that a program function £ needsits i*" argument if evaluating £ (e1, . . ., er) always causes the
evaluation of e;. Barendregt et al. [2] discuss neededness for the A-calculus. Singh [13] introduces
a denotational analogue of neededness by likening strictiess to differentiation. Obviously a
function which needs its it® argument can safely have that argument evaluated before the call
thereby transforming call-by-need to call-by-value. However, neededness is not an easily inferable
property of programs. Consider a contrived function (but typical in form):

plus(x,y) = if x=0 then y else plus(x+l,y-1).

Clearly plus always evaluates the first argument of any call. Unfortunately, the hypothesis that
it needs (always evaluates) its second argument requires induction for positive x and fails to hold
for negative x—the function loops. However, given a call plus (e, e;) observe that no harm can
result from pre-evaluating e, before the call; if e; is negative (and hence the computation fails
to terminate anyway) then it is harmless to perform the (possibly) non-terminating evaluation
of ey first as there is no observable way to determine where a program loops.! The key point to
observe is that if plus(e;,ez) terminates then e; must have been evaluated.

This motivates a definition that a program function £ is strictin its ith argument if, whenever
£(eq,...,ex) returns, then e; will have been evaluated. Le., in other words, if non-termination
of e; implies non-termination of £(es,...,ex).2 Thus £(x) = £(x) is strict in x but does not
need x. This operational definition can be hard to reason about, especially at higher-order types
or on lazy data structures, and strictness is normally expressed denotationally (see below).

Functional programming languages can be given a particularly natural denotational seman-
tics. In a typed functional programming language each type ¢ is associated with a domain, Dt
For simple types this is just the corresponding set of values augmented with a least element L
internalising non-termination; thus int is associated with Z . The function typet; X Xt — ¢
is associated with Dt x -+ XD — Dt its least element being A(e1,...,2x).L. (Here X repre-
sents cartesian product and — the domain of (continuous) functions. Henceforth we drop the
underlining.) For untyped languages we use a universal domain, such as one satisfying

U=Z+ U xU)+ (U - U).

Recall that a mathematical function f : D — E between domains is said to be strict if
fL1 = L. This is easily extended to say that f: Dy X -++ X D — E is strict in its 7t argument

if (Y, zk) f@1, 00 @imty Ly iga, oy Tk) = L

LOf course, the presence of a debugger would require optimisations to be either suppressed or their details
communicated—just as in classical imperative languages.

2T am grateful for Nick Benton for the observation that classical logic implication in ‘argument non-termination
implies application non-termination’ corresponds to strictness and that causative or relevant implication corre-
sponds to neededness.




Given this, we can now define that a program function £ is strict in its ith argument if its
denotation is.

One might imagine that being able to calculate such elementary strictness properties suffices
for optimisation purposes. However, it turns out that more information is needed internally—
consider

f1(x,y,z) = if x=0 then y else z
£2(x,y,2) = if x=0 then y else y+1
gl(x,y) = £1(x,y,-y)

g2(x,y) = £2(x,y,-y).

Even though 1 and £2 have the same strictness in terms of properties so far described (both
are strict in x only) we see that g1 is strict in x and y whereas g2 is just strict in x. The key
observation is that £1 is jointly strictin y and z, i.e. its semantics f satisfies (Vz) f(z, L, 1)y=1,
whereas £2 is not.

Hence we are led to introduce a more complicated set of strictness properties in order that
we can determine compositionally the elementary strictness properties above. Given a function
f of k arguments and a subset S € {1,...k}, we have a property that f is strict on S (S-jointly
strict) if

(Ver,. .. 25) (Vi € Sy = L) = f(21,...,28) = L.
Note that f is strict on § C T, then f is strict on 7. The effect of this is that the possible
strictness properties of such a function are in 1-1 correspondence with the monotone boolean
functions 2% — 2 where 2 = {0, 1} ordered by <. (Each of the possible 2* sets for S yields a
value in 2.)

3.1 Ideal-based strictness and types

This section can be skipped at first reading. Recall that a Scott-closed subset of a domain is
one which is downwards closed and inherits limits., Types are often given meaning as ideals
(non-empty Scott domains), see MacQueen, Plotkin and Sethi [11].

Note that, given f: D1 X Dy — Do, the strictness property

(Ve1,. .. 2k) [(@1,. 00 Bicty Ly @ig1, ey 88) = L

can be re-phrased as f(Dy X D;j—1 X {1} X Diy1 X D) € {1} and note that Dy X -+ X D; 1 X
{1} X Diy1 % ++-X Dy, is an ideal of Dy X -+ X Dy and {L} an ideal of Do. Given a mathematical
function f : D — E we can thus generalise the idea of strictness property to be any property
of the form f(I) C J where I and J are respectively ideals of D and E respectively. Note that
these can naturally be seen as ‘threshold properties’ generalising strictness presented above—if
the input to a function is no more defined than §, then the output is no more defined that e.

For example, given a set of ideals we can re-express strictness as a collection of such ideal
properties. In the above case, if we use the uniform ideals of [8] involving any of the 2% mixtures
of {1} and the D; above as arguments and either {1} or Do as results, then sets of properties
f(I) C J exactly correspond to strictness functions in 2k — 2 above.

Kuo and Mishra [10] investigate further the connection between type inference and strictness
after observing that ideals behave like sub-types. For example, writing A as a type whose
semantics is {1} we can determine that

+: intxA—=A cond: bool X AXA— A
+: Axint— A cond; A XintXint— A

or, using an intersection type (interestingly normally used to express overloading), we can write

+: (int X A = A)Yn(A xint — A)
cond : (bool X A X A — A)N (A X int X int — A).




4 Calculating strictness—abstract interpretation

It is well known that no systematic analysis can guarantee to tell when a fragment of program
is going to loop, hence we seek safe approximations. For instance, if p(x) is a tautologous
predicate (such predicates cannot be uniformly determined) the code

f(x,y) = if p(x) then y else 42

is strict in y but this cannot be determined by the compiler. An inference algorithm for strictness
is sound if, whenever the algorithm foretells strictness, the code is indeed strict.

A scheme that can provide good information about strictness (subject to the above lim-
itation) is abstract interpretation [6]. In this we logically execute programs on non-standard
data domains—these correspond to statements about strictness. Hence the understanding is
of a standard and a non-standard interpretation of a given program. However, our presenta-
tion de-emphasises the abstract interpretation basis (just as a treatment of available expressions
might).

Recalling the lattice 2 = {0,1} from section 3 and the need for safe approximation, the non-
standard values used are the values 0 (indicating guaranteed non-termination) and 1 (indicating
possible termination). Allow @ to range over 2 and d over the standard domain of values, D,
write d 1> & “d satisfies strictness property @” for = 0 => d = L from the above intuition and
extend it componentwise to tuples d > #. Bach built-in function symbol £ of k£ arguments is
associated with a function f! : 28 — 2 (section 3 justified such functions as strictness properties).
These are induced from the standard meaning, f, by

r,..,z) = 0 itd>d = f(dy,...,di) =1
= 1 otherwise.

Hence, we find that, for example, cond*(z,y,2) =z A(yV z) and +i(2,y) = v Ay with (non-1)
constants having value 1 € 2.
Now, recalling the definition of plus above,

plus(x,y) = cond(x=0,y,plus(x+1i,y-1)),

and substituting we obtain a recursive definition which then simplifies with boolean algebra:

cond!(=! (2, 1), y, plus'(+¥(2, 1), =(y, 1)))
= aA(yV plusi(z,y)).

Il

plusu(w, )

This equation has two solutions viz plus(z,y) = x Ay and plush(z,y) = z, but we seek the
least solution (the former) corresponding to the least fixpoint corresponding to recursion in
the standard semantics. Note the close similarity with ‘dataflow equations’ such as those for
live variable analysis in imperative language compilers. The least solution can similarly be
found by iteration starting with plust = A(z,9).0 and iterating to convergence (equality of
monotone boolean functions can easily be tested if they are represented in a suitable normal
form, e.g., CNF). An implementation can speed up convergence by analysing strongly connected
components in dependency order. Figure 1 shows the lattice 2 X 2 — 2.
Now the question is what this solution tells us about plus. It turns out that the property

(V&) (Vd > &) (o1, 25) = 0 = f(dy,...,di) = L),

which holds for built-in functions by definition, is preserved by composition and (least) fixpoint-
taking and hence holds for user-defined functions. (By definition of ft for built-in functions the
— is invertible to <=>, but this is not preserved by composition.)

The particular case we finally wish to exploit is that fia,...,1,0,1,...,1) = 0 is a safe test
for the corresponding program function f being strict its ith argument.
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Figure 1: 2x 2 — 2

5 Strictness based optimisation

For the context of the above framework, or even its generalisation to the A-calculus but not
including lazy data structures, the only optimisation we have at our disposal is to alter call-by-
need into call-by-name. As discussed above, it is possible to do this if (and only if) the function
is strict in the corresponding argument. So, we optimise a user-defined function f to take its
*h argument by value (saving this fact so that all callers can be compiled to pass it by value)
whenever f4(1,...,1,0,1,...,1) = 0 (where the 0 appears as the i*h argument).

On a parallel machine more optimisations are possible: In general, given that parallel ma-
chines have a significantly bounded number of processors, we only wish to spawn processes for
sub-expressions which contribute towards the answer. This is a problem in that lazy evaluation
is inherently sequential (at each point just one application is reducible). Now, if we know that
£ is strict in both of its arguments, a call £(ey, e;) can have e; and e; non-wastefully evaluated
in parallel (or even have the body of £ evaluated in parallel with these—although this requires
more complex process synchronisation).

Note that strictness analysis and optimisation should be categorised as interprocedural in
the classical imperative language classification—the strictness of a function depends on the
strictness of functions it references. However, strictness optimisations presented in this section
are forward in some sense in that we optimise a caller in terms of information of the callee
(the called function). We can imagine more general optimisations such as optimising a function
based on the calls which are made to it. This is important (but not sufficiently discussed) at
higher types, for example, given £(g,x) = g(x), we can optimise x to use call-by-value only if
we know that every call of £ will have a strict function for its first argument.

In general only such forwards optimisations are consistent with the idea of ‘separately com-
piled module’—we compile a module into code and auxiliary information telling dependent
modules how calls to functions in the former are to be made.

Burn [4] considers optimisations of lazy data structures based on a generalisation of strictness
analysis to these.




6 Treatment of errors

Typed functional languages have little scope for run-time errors—really only calling a function
defined by cases at a missing case (division by zero can be considered an archetype). Untyped
languages generally have such erroneous cases for almost every built-in function; it is tiresome,
for example, to check each first argument to cond is a boolean. If such errors are treated as
fatal, i.e. uncatchable, then the worst possibility is that strictness optimisation alters order
of evaluation so that a program which previously produced an error instead loops. We must,
however, be very careful of introducing a constant, error say, which can be used in a comparison
to test for error values. For example, in such circumstances, if we define

cond(true,y,z) =y
cond(false,y,z) = 2
cond(x,y,z) = error % otherwise

then cond is no longer jointly strict in y and z.

The moral is that treating errors as L, even if an implementation happens to be able to
report them rather than looping, results in more functions being strictness-optimisable than
treating errors as a non- L value which can therefore legally be tested.

7 Projection- and PER-based strictness

Although the above ideal-based strictness is probably the best-known, Wadler and Hughes [14]
introduce another form of strictness called projection-based strictness. Recently Hunt’s thesis [9]
showed how both forms could be embedded in a framework based on partial equivalence relations
(PERs). We give a brief treatment of this work.

Suppose D is a domain. A projection, a, on D is a mapping in D — D which is idempotent
(a0 a = ) and less that identity (o« € 1p—p). Given projections « and [ respectively on
domains D and E, we say that a mathematical function f : D — E is a-strict in a f-strict
context if

Bofoa=fof

or, in words, if destroying an & amount of information in the argument does not affect the result
of f seen after a 3 information-destroying filter.

Projection-based strictness captures some properties which cannot be defined as ideal-based
properties, for example the equation

(Az.z)o fo(le.l)=(Az.x)of

is equivalent to (V& € D)f(z) = f(L), é.e. that f is constant. However, it is debatable whether
constancy should be classified as a ‘strictness’ property.

Projection-based analysis was restricted to first-order functions and moreover required a
rather clumsy ‘lifting’ operation to encompass ideal-based striciness.

PER-based analysis subsumes both projection-based strictness (extending it to higher-order)
and also ideal-based strictness (without lifting). Given a domain D a PER p over D is a relation
over D which is symmetric and transitive. Equivalently, writing |p| for {d € D | (d, d) € p}, such
a PER may be thought of as a subset |p| C D together with an equivalence relation pN (|p| X |p)
on |p|. Given a function f : D — E, we have a PER on D given by {(d,d') | f(d) = fldh}.
If D = E and [ is a projection then this process is injective. Similarly, an ideal (or even a
set) I C D can be uniquely encoded either by the square PER I X I or by the diagonal PER
{(d,d)| d € I}. See Hunt’s thesis for more details.
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