Technical Report A

Number 260

Computer Laboratory

Local computation of
alternating fixed-points

Henrik Reif Anderson

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

(© Henrik Reif Anderson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Local Computation of Alternating Fixed-Points*

Henrik Reif Andersen

Computer Laboratory?
University of Cambridge
New Museums Site
Pembroke Street
Cambridge CB2 3QG
England

Abstract

In this paper we consider the problem of computing alternating fixed-points of
monotone functions on finite boolean lattices. We describe a local (demand-driven,
lazy) algorithm for computing a boolean expression with two alternating fixed-
points, i.e. with a minimal and a maximal fixed-point intertwined. Such expressions
arise naturally in the modal pi-calculus and is the main source to its expressive power
— and its difficult model checking problem. By a translation of the model checking
problem of the modal p-calculus into a problem of finding fixed-points on boolean
lattices, we get a local model checker for two alternating fixed-points which runs
in time O(JA|(|T|?*)1og(]A||T])), where |A| is the size of the assertion and |T'| the
size of the model, a labelled transition system. This extends earlier results by the
author and improves on earlier published local algorithms. We also sketch how the
algorithm can be extended to arbitrary alternations.

Due to the generality of the algorithm it can be applied to other (alternating or
non-alternating) fixed-point problems.

*This work is supported by the Danish Natural Science Research Council and the Danish Research
Academy.

tInternet: Henrik.Andersen@cl.cam.ac.uk, hrandersen@daimi.aau.dk

1 Introduction

The work reported in this paper arose from trying to find efficient methods for doing
model checking in the modal p-calculus, but it might turn out to have applications in
other fixed-point finding problems. Model checking is the problem of deciding whether a
given structure constitutes a valid model for a logical assertion. Viewing the structure as
describing a system of interacting processes and the logical assertion as a specification,
model checking can be viewed as the process of verifying that a system meets a speci-
fication. Taking as models labelled transition systems (essentially equivalent to labelled
Kripke models) the modal y-calculus as presented by Kozen [10] is an example of such
an assertional language. It is very expressive (see e.g. Kozen [10], Emerson and Lei [9],
and Dam [8]) allowing a wide range of properties to be expressed, including what is often
called liveness, safety, and fairness properties. Examples of such expressible properties are
‘eventually an a-action will happen’, ‘it is always possible to do a b-action’, and ‘infinitely
often a c-action can happen’.

The expressive power of the modal y-calculus is essentially due to the presence of min-
imal and maximal fixed-point operators, which can be viewed as introducing restricted
forms of infinite disjunctions and conjunctions. Unfortunately, the presence of these oper-
ators, especially when minimal and maximal fixed-points are nested, complicates the task
of performing model checking. In [2] it was described how a modular approach might be
useful in finding efficient algorithms. The model checking problem for one fixed-point was
viewed, through a translation, as a special case of a more general problem of computing
fixed-points for monotone functions on boolean lattices. Two algorithms were presented
for the more general problem, a global algorithm (called ‘Chasing 1’s’) computing the
‘complete fixed-point’, and a local algorithm (called ‘Avoiding 1’s’) computing only a
‘part of the fixed-point’. The term ‘local’ has been introduced by Stirling and Walker
[14] with the interpretation that fixed-points are computed in a demand-driven or lazy
fashion, such that only certain ‘necessary parts’ of the underlying transition system will
be investigated.

Chasing 1’s and Avoiding 1’s provided efficient model checking algorithms for the
modal pg-calculus when restricted to one type of fixed-points, and for the global case
an extension to the full modal p-calculus was described running in time O((]A4||T])*%),
improving on the algorithm of Emerson and Lei [9], which runs in time O((JA||T])*¢+!)
(see their paper for a definition of ad, the alternation depth).! The local algorithm
runs in time O(|A||T|log(]A||T"|)) for one fixed-point and so does the extension to full
alternation depth one. For the local algorithm, however, no extension to alternating
fixed-points was given. In this paper we will describe the local algorithm in a slightly
different way, allowing an extension to the case of two nested fixed-points, thereby giving
an O(|A|(|T*) log(]A||T"])) algorithm for a non-trivial part of the modal p-calculus of
alternation depth two, improving on the local algorithms described by Larsen [11], Stirling
and Walker [14], Cleaveland [4], and Winskel [16].

1The O notation means ‘asymptotically bounded by’.

2 The modal p-calculus

We will consider a version of the modal p-calculus with simultaneous fixed-points. The
expressive power will be equivalent to the modal p-calculus with just unary fixed-points, in
the sense that every assertion in our calculus has a logical equivalent containing only unary
fixed-points. The simultaneous fixed-points will, however, be central to the development
of efficient model checking algorithms as they allow for sharing of subexpressions.

The syntax of the calculus is given by the following grammar:

Au=F|T| AV Ay | Ao A Ay | (VA | [a]A| X | (uX.A); | (vX.A);

The assertion variable X ranges over a set of variables Var. The usual notions of free
variables and open and closed assertions will be used. The notation X is shorthand
for (Xy,...,X,) and A for (As,...,An), where n should be clear from context. The
assertion (p}: A) will denote the z"th component of the simultaneous minimal fixed-
pomt ﬂX A. Dually (I/X 121’)z denotes the ¢’th component of the maximal fixed-point
vX.A. The usual unary fixed-point pX.A corresponds to the case where n = 1, and for
notational convenience we simply write uX. A instead of (uX.A)1.

As models we take labelled transition systems T = (S,L,—), where S is a set of
states, L a set of labels, and -C S x L x S a transition relation. Given a transition
system T', an assertion A will denote a subset of the states S of T'. Recall that the set of
subsets ordered by inclusion (P(S), C) forms a complete lattice which by taking pointwise
ordering extends to a complete lattice (P(S)", C") on the n-ary product of P(S). Let

; + P(S)™ — P(S) denote the projection onto the i’th component.

Now, due to the possibility of {ree variables the interpretation of assertions will be
given on assertions in context, A (A) where X = (X1,...,Xk) is a tuple of different
variables including all free variables of A. To each assertion in context we will associate
a mapping

[A ()] : P(SY — P(S).

Hence for a closed assertion we can use the empty context and get a mapping P(5)° — P(S),
i.e. essentially an element of P(S). We extend [] to tuples

[(As,...,A) (X)]: PGS — P(S)

by L. L. L.
[(A1,..., A) (XOIU = ([A (X)]U, ..., [A (X)]U).

Joining of tuples will be denoted by juxtapositioning. If X is an n- tuple of different
variables and Y is a k-tuple of different variables, then XV Wlll be an (n+ k)-tuple, where
any name clashes are resolved by replacing variables in X with new variables different
from all other variables in XV

—

The definition of [A (X)] proceeds by structural induction on A as follows:

[F (10 = 0
[T (X0 = S
[0V A ()]0 = [Ao (X)]T U [41 (X)]T
[Ao A Ay (]T = [Ao (XU N [Ay (X)JT
(A (X0 = {seS|3'eS. s5s & c[A(X)]0}
[A (X)]T = {seS|Vs'e S sSs = s¢c[Ad(X)]V}
RN = U I
[(wY.A) (XU = m(uV € P(S).[A (XY))(UV))
where Y = (Y4, e
[(@Y.A) ()T = m(vV e P(S).[A (XV)]
where Y = (Y4,...,¥

L
L
L

For the fixed-points we notice that the map % : V - [A (X¥)](TV) on P(S)' is mono-
tonic. According to Tarski’s theorem [15] then 1 will have a minimal prefixed point given
by

M{V € P(S) | (V) <" V),

which we denote xV .h(V). Similarly ¥ will have a maximal postfixed point vV (V)
given by .
ULV € P(S)' | V <" (7))}

For a closed assertion A, we let [A] = [A ()], where () is the empty context, and *
is the single element of P(5)°. Given a transition system T' = (S, L, —) we will say that
a state s € S satisfies the closed assertion A, if s € [A], and use the notation s = A.
Deciding s = A is what is known as model checking.

Model checking of the modal p-calculus depends on the alternation of minimal and
maximal fixed-points. The definition of the depth of alternation is a bit tricky (see
Emerson and Lei [9]). For our purpose it suffices to notice that for two fixed-points
pX.AlvY.B] to be alternating (hence have alternation depth 2) it is required that X
appears free in B. If this is not the case, the fixed-points are not alternating; vY.B
appears as a constant in yX.A[vY.B] and the model checking problem is no harder than
for one fixed-point (see [2] for elaboration).

Given a finite transition system, we will now describe how to translate any assertion A
with free variables among X = (Xi,...,Xy) into a boolean function (0")¥ — 0", where
n = |S| and 0 = {0,1} is the lattice With ordering 0 < 1 known as Sierpinski space. In
order to state this formally, we will use a change of variables o which take each X € Var
to an n-tuple o(X) = & = (@1,...,2,) of boolean variables, such that all variables in
the image of o are different. G1ven such a change of variables, o, we associate to each
assertion in context A (X) a function || A (X); o |: (0™)% — O™ as follows

1A (X);0 = 22.(4/3)
where & = (0(X41),...,0(Xk)), §=(s1,...,5a),
Al8=(Als1,...,Als),

4

and

Fls; = F
T/s; = T
(AoV A1)/s; = (Ao/s;)V (A1/s;)
(Ao A A1)/s; = (Aofs;) A(A1]s;)
Xi/sj = o(Xi);
(Afs; =\ Als
{slsjSs'}
[Afs; = N\ Als
{s]s;>s"}

(Y, Y0)(By,. ., Bi))ifs; = mi(mi(u(@s - -, 50).(B1/3,..., Bif§)))
where g5 = o(Y4), 1<h§l

(v(Ya,..., Y0)(By,..., Bi))i/s; = mi(mi(v(ih,...,51).(B1/3,..., Bi/3)))
where 7, = 0(¥3), 1 <h <1

Thus the function || A (X');o || is constructed from finite conjunctions, finite disjunctions,
boolean variables, and fixed-points of such. We can now prove the following theorem.

Theorem 1 ([2]) Assume T = (S,L,—) is a finite transition system with |S| = n and
with a numbering of the states such that S = {s1,...,8,}. Let ¢ : P(S§) 5 0" be the
isomorphism «(U) = (21,...,2n), where x; = 1 iff s; € U. Then for any assertion in
context A ()_(‘), X = (X1,...,X), and change of variables o,

co[A (D =14 (Kol
where Xk : P(S)* — (O")F is the obvious extension ¢ X ... X ¢ of ¢ to P(S)F — (om)*.

For a closed assertion we can use the empty context, and define || A;o ||=|| A ();0] *.
Moreover, for a closed A it follows from the theorem that

s;iEA & s;€[A]
& m([A]) =1
& 7l Aol =

So to determine whether the j’th state satisfies an assertion, it suffices to check whether
the j’th coordinate of || A;o]| is 1. A fact which will be exploited when we later give an
algorithm for solving the model checking problem.

With the translation given above, the boolean fixed-point expression given by || || can
actually have exponential size in the size of the original assertion, because of problems
with the modalities and the fixed-points: subexpressions can be duplicated. By first
transforming the assertion A into a simple form and then computing || A (X);o || we can
avoid the part of the e}:ponentlal explosion, which comes from the modahtles

We will say that uX A is simple if each of the components A; of A contains at most
one operator, i.e. A; is on one of the forms

ET, X5,V Xj, Xjo N Xy, (a < >)‘J y [Xy Xy (/LY'B‘)ZH (V?B‘)z

where ,u?.é and vY.B are simple. It is not hard to show that any fixed-point can be
transformed into an equivalent simple fixed-point by adding new variables, but without
increasing the size (except from the added variables, the number of which is bounded by
the size of the original assertion). For one fixed-point it is now easy to see that in the
translation the number of boolean variables needed is O(|A||S|) and the overall size of
the boolean expression is O(|A||T|).

The remaining problem with exponential blow-up is easily solved. It occurs when
various coordinates of the same fixed-point occur in the translated expression, for example
when (/L}—}é)l /s;, and (uf”]@")1 /s, give raise to the two expressions

T (mi((F, -5 9)-(B1/3- .., Bi[§)))

and
To(mi(p(fis .. 31).(B1/3, ..., Bif5))).

Hence, the one fixed-point (/L?.E); gives raise to two identical fixed-points in the trans-
lation. The way out of this is of course to avoid the duplication by some kind of sharing
construction, like ‘let_in_’ from Standard ML or by ‘abstracting out the fixed-point.’
However, we will not introduce a notation for this sharing because later when we consider
boolean graphs the problem will vanish, but we note that by taking proper care of the
sharing the resulting boolean expression will have size O(|]A||T'|). (Again [2] should be
consulted for details.)

3 Boolean Graphs

The problem we are going to solve can be formulated as follows. Suppose D and E are
two finite lattices, and ¢ : D x E — D,h : D x E — E two monotonic functions. What
is the value of the expression

pe.g(z, vy.h(z,y)), (1)
where 4 and v denotes minimal and maximal fixed-points? (Well-definedness of this

expression follows from Tarski’s fixed-point theorem and some simple facts about mono-
tonicity as in the previous section.) Expressions like this arise naturally in the modal
p-calculus. An example is A = pX.[a]X V (vY. X A (B)Y).

We will consider the special case where D and E are the boolean lattices 0% and o™,
Let 0 = (0,...,0), and 1=(1,...,1). Now, fixed-points of a monotonic function f can
be computed by a well-known ¢terative method as follows (see e.g. Aczel [1]). Let

fle) = =
f i) = f(f'(2)).
Then the minimal fixed-point uf of f is given by

pf =\ 0
ielN
and the maximal fixed-point v f of f is given by

vf= /\ f’(f)

€N

6

Hence (1) can be found as

pe.g(z, vy.h(z,y)) = \/(Az.g(z, vy.h(z,y)))'(0)

1

where

vy h(z,y) = AQw.h(z,)) (D).

?

In order to compute the minimal fixed-point we compute the increasing approximants
0, f(6), 72(0),. .. iteratively until Fi(0) = fi-1 (6) which is then the minimal fixed-point.
In the worst-case this will not happen until 7 equals the height of the lattice, hence f
might have to be recomputed that many times. For (1) this method can result in &
computations of g and nk computations of 2. The global method, Chasing 1’s, of [2]
essentially removes all the iterations in the case of one fixed-point, moreover in the case
of two fixed-points, it can be used to improve on the iterative method, using the iterative
method for the outermost fixed-point and the efficient global algorithm for the innermost
fixed-point, requiring at the most & computations of g and k computations of h. The local
method we describe here will be even better. Not only will it potentially only compute
a part of the needed fixed-point, but it will also behave better in the worst-case: one
computation of ¢ and at most k computations of & will be needed. Considering that in
the case of the modal y-calculus with k£ depending on the size of the transition system,
any decrease in the number of needed recomputations is important.

These efficient methods require, however, the functions ¢ and & to be represented
as what we call monotone, boolean graphs. To motivate the monotone boolean graphs,
suppose that f : 0" x O — O™ is a monotonic function and consider the expression

pe.f(z,y), (2)

with the free variable(s) y = (y1,...,y%), the bound variable(s) « = (zy,...,2,) and
f = (fi,...,fn). Now, another way to think of (2) is as the minimal solution to the
equational system

1 = fl(way)

o = ful,y)
We will assume that all the f;’s are simple, i.e. they are either finite conjunctions or
disjunctions of variables. This will be the case if f has arisen from the translation from
the modal p-calculus.

Now, a simple equational system can be viewed as a directed graph in the following
way: The variables are nodes labelled with the operation corresponding to the right hand
side of that variable, and there will be an edge from z; to @; if @; appears as an argument
in the right hand side of x;. The free variables will be represented as input nodes with

no operations attached. This is what we call a monotone, boolean graph. For an n € IN
we let n = {1,2,...,n}.

Definition 2 A monotone, boolean graph (m.b.g.) is a tuple

G = (V, Vin, E,in, out, L),

where
Vin NV = 0a
EC(VuUV)xV,
n k> Vi,
out :n — V,

L:V - {V,A}.

The set V of nodes (or gates), the set V;,, of input nodes (or input gates), and the set F
of directed edges are all assumed to be finite. The bijection in is a numbering of the %
input nodes, and out picks out some of the internal nodes as output nodes. Often we will
refer to G as a (k,n)-m.b.g. to stress the input-output behaviour.OI

Figure 1 shows an example of a monotone boolean graph. Edges are intended to indicate

in(3) ' (V) out(2)

Figure 1: A (3,2)-monotone boolean graph.

the direction of flow of values.? We will use S(v) to denote the set of ‘sons’ of v, i.e. the set
{w|(w,v) € E}, and P(v) to denote the set of ‘parents’ of v, i.e. the set {w|(v,w) € E}.
Notice, that G in general contains cycles.

With a m.b.g. G we can associate a marking M € 0V which assigns a value to each
node of the graph. Often we will consider M as consisting of an internal marking m € oV
assigning values to the internal nodes, and an input marking m;, € 0%» assigning values
to the input nodes, i.e. M = m;, - m where

Min(v) if v € dom(myy,
Min - m(v) =< m(v) if v e dom(m)
undefined otherwise

n) = Vi
=V

Notation is summarised in appendix A. In terms of the equation system, M is an as-
signment of values to all variables, m;, to the free variables of the system, and m to the
bounded variables. Now, the set of markings is, with pointwise ordering and operations,
a complete lattice and G essentially defines a monotonic function G : 0= x 0V — 0OV as
follows:

1 of L(v) =V & Jw € S(v).my - m(w) =1
G(min, m)(v) = or L(v) = A & Yw € S(v).mjp - m(w) = 1
0 otherwise

?Observe that this is the opposite of what was used in [2]. This interpretation, however, seems more
appropriate for the present discussion.

The numbering of output nodes out induces a map moy: : OV — O by Tout(m); =
m(out(z)), and in induces an isomorphism @;, : OF — OV so through 7oy and @i,
we can view the marking of input and output nodes as vectors of boolean values.

4 A Mu-Component

Suppose that we are really interested in computing only one component of the fixed-point,
i.e. in the value 7;(moui(pz.G(y, z))) for some j and given y. Then it seems wasteful to
compute the complete fixed-point if less will do. This is the task of a local method
— it will compute only what is ‘necessary’ to find the value. For this purpose we will
describe a data-structure I called a Mu-Component which will compute the fixed-point
in a local fashion and it will even suppose that y is only being supplied on demand.
The data-structure K will represent a m.b.g. with a marking M and have the property
that performing initialisation and any sequence of operations apart from initialisation, will
imply that the total (amortised) cost will be proportional to the subset of the graph that has
been visited plus the number of operations performed (multiplied with a logarithmic factor
due to searches). Moreover, whenever the component is ‘stable’, all the defined output
values will be correct. Stability can be reached by repeatingly, and at most |G| times,
performing an operation called ‘update’. It immediately follows that reaching stability
will in the worst-case have a cost of |G|log |G|, where |G| is the size of the graph.

4.1 Description
A Mu-Component I will besides initialisation (init) have the following operations:

find(j) Searches for the value of output number j; returns e if successful (K is stable),
otherwise returns r € k, if input r is needed.

update() Continues the search; returns e if successful (K is stable), otherwise returns
r € k, if input r is needed.

valy, () Returns the value of input j.
vabyt () Returns the value of output j.

set(j,b) Set input j to value b € {0,1}. It is not allowed to decrease an input from 1 to
0, hence valy, (j) < b prior to applying set(j,b).

Tentatively the behaviour of a Mu-Component will be as follows: The operation ‘find’
start with the node of interest, @ = in(y), assume that its marking is zero, and try to
verify whether this is correct. This involves inspecting the sons each in turn, finding their
minimal fixed-points markings, until, in the case of a conjunctive node, a zero is found, or
in the case of a disjunctive node, a one is found, or all sons have been inspected. For this
purpose we assume that the sons of each node v have been numbered from 0 to |S(v)| -1,
ie. S(v) = {S()o,...,5(v)|s(w)-1}- A partial function p : V — IV is used in order to
keep track of which son p(v) of v is currently being examined, or must be examined next.

A node that at one point is found to be marked with zero, can later be changed
into being marked with one, hence all nodes that were assigned a marking based on this

9

particular node being zero might have to be changed as well. In order to be able to
perform this updating efficiently, we keep for each node v a list of nodes d(v) that should
be informed in case the marking of v will change from zero to one. Thus d: V — P(V)
will for each node v denote a subset of its parents P(v), and this set will grow as the
algorithm proceeds.

A set A C V contains nodes v that have changed marking from zero to one, and
for which this information has not yet been spread to the nodes in d(v). Another set
susp C V contains disjunctive nodes, the evaluation of which is suspended because a
value of one of the sons had to be computed first.

The input nodes will not be assumed to be present a priori, hence the searching process
is complicated by the fact that the value of an undefined input node might be needed.
In this situation the search will stop with a number, telling which input node is needed;
the input can be supplied and the evaluation proceed with ‘update’. At any point of
the computation, only a subset of the nodes will have assigned a marking, hence we will
represent the current marking of the graph as a partial map M : V;, UV — 0.

4.2 Correctness

The full description of the Mu-Component can be found in appendix B. The data-
structure is constructed around an invariant I, which expresses relationships between
the variables of the component and holds invariantly. That is, I holds after a call to
‘init’, and if it holds before any call to the other operations it will also hold afterwards.
Let Q(w, A, M) be the assertion that states that M is defined on w and only equals one
if w belongs to A:

Qw, A, M) &4 M(w) =0 or (M(w)=14& w e A)
Take I; to be the assertion:

Vee A M(z)=1%&
YoeV. Liv)=V & Mw)=0 =
Yw € {S(v)o, .-, S(U)P(v)—l}'Q(w, A, M) & v € d(w)
& (p(v) = [S(v)] or (v € susp & v € d(S(v)p(w))))
& Liv)=V&Mw)=1 = JweSw).Mw)=1
& Lw)=A& Mv)=0 =
Yoo € {S(Wl, .-, S(0)pte1}-M(w) = 1
& p(v) <[S(v)]
& Q(S(v)p(v),A,]\f) &ove d(S(’U)p(U))
& Liv)=AN&M)=1 = Ywe S(v)Mw)=1
& Lv)=A = (ved(z) & z=S50)pw)

Although I, appears complicated, it essentially only expresses that p,d, A, and susp are
fulfilling the role explained above. Write the partial function denoting the marking M as

the union of an input marking m;, and an internal marking m, i.e. M = my, - m and take
I, to be defined by

I ©u V9° D minm < p2.G1°, @) domm)y (3)

10

where y° 3 mq, means that dom(mi,) C dom(y®) = Vip and y°luom(m) = Min, in other
words: y° extends m;,. We use superscript 0 to indicate total functions, like y° € OVir,
(See appendix A for a summary of notation.) Hence, I, states that m is smaller than the
fixed-point wherever defined, independent of what is supplied for the remaining undefined
inputs.

Finally, the overall invariant I is: I &g I & Io.

We say that K is stable if A = 0 and susp = . Now, if K is stable then it follows
from Iy, by substituting §) for A and susp, that for all v € V:

M@v)=0 = L(v

L(v
Mwv)=1 = L(v
L(v

=V & Yw € S(v).M(w)
=A& Jw e S(v).M(w)
(v). M (w)

)-M(w)

I

=V & Jw e S).M(w
= A& Yw e S(v).M(w

0
0,
1
1

[l

This implies that, whenever K is stable, no matter what values are supplied for the un-
defined elements of M, the defined elements of M will stay the same under evaluation of
G, because M already contains enough information to determine the value of all these
nodes. Hence, for all ° € 6%» y® D my,,2° € 0¥, 2% I m,

m = G(J y)ldom(m) (4)

The properties (3) and (4) will ensure that our Mu-Component is correct. To show this,
we malke use of the following lemma.

Lemma 38 Let D and E be complete lattices, f : D — D a monotonic function, and
p: D — E a monotonic, surjective function s.t. for all y € E the preimage p~'(y) of y is
a complete sublattice of E. Assume that y is an element of F s.t.

Ve € p7(y).y = p(f(2)) (5)
and
y < p(pa.f(2)) (6)
then
= p(pz.f()).

Proof: From (5) it follows that for all @ € p~'(y), f(z) € p~!(y), hence f restricts to a
monotonic function fl,-1(y) : p™'(y) = p~'(y). Let a* = pa.fl-1¢) € p7*(y). Then

f(¥) = f|p”1(y)(m*) = a7,

hence z* is a fixed-point of f and therefore yz.f(z) < 2*. By monotonicity of p we get

p(uz.f(z)) < p(2”) = y.
As by assumption (6) y < p(pa.f()) the result follows. O
We have by (3) and (4), that for all 2° 3 m,y° 3 my,
m = G(y°, 2°)|aom(m) and m < ;Lm.G(yO,m)ldom(m),

11

hence by lemma 3 with p : 0V — 0%™(™) chosen to be the projection p(z) = |um(m),
and f(z') = G(y°, "), we get

Vy® d min. m = p2.GY°, ©)|aom(m)-
We are now able to prove the correctness of K.

Theorem 4 (Correctness of K) If I{ is stable with marking M = my, - m, then
Vy° O my. m = uz.G(y°,)| dom(m) -

On K any sequence of operations different from initialisation can be performed with amor-
tised cost O((|G| + N)log|G|), where N is the number of operations performed. Stability
can always be reached with fewer than |G| operations.

Proof: (Sketch) It is straightforward, but very tedious, to show that I is indeed an
invariant, and from the discussion above we know that when K is stable then Vy° I
Min. M = px.G(Y°, &)|dom(m).

For the complexity, we assume that the partial maps are implemented as balanced
search trees, yielding the logarithmic factor for searches and insertions, and we observe
that no edge is visited more than twice, from which the result follows by amortised anal-
ysis (see for example Cormen et al. [7]). O

As an immediate consequence we have a local algorithm for computing one fixed-
point: If there are no input nodes, K computes the minimal fixed-point pz.G(z) in time

|Glog |G

5 Connecting Two Components

It is straightforward to get a Nu-Component computing maximal fixed-points, by dual-
ising everything of the Mu-Component: zeroes are replaced with ones, disjunctions with
conjunctions etc.

Now, assume that K is a Mu-Component as described in the previous section, and that
L is a Nu-Component, s.t. K represents a (k,n)-m.b.g. G and L represents a (n, k)-m.b.g.
H. Define g: 02 x 0V — 0k, and h: OV x OVt — Q'L by

g(y,.’l}) = G(SOin,KOWout,L(y),m)a and
hz,y) = H(in 0 Tou,ix(z),y).

The map @in i © Tout,r, expresses how I and L are connected by mapping output nodes of
L to input nodes of K (we use subscripts K and L to indicate the component in question)
and vice versa for ¢, 1, 0 Tous, . We will show how one might connect these components
such that

pe.g(vy.h(z,y),)

can be computed. Figure 2 shows the situation for two (2,2)-m.b.g.’s.

12

outy (1) ing (1) out, (1) >
O -O— O—

O'Ut[((2) inL(2) OUtL(z)
O O
I?L K (u) é L (v)

Figure 2: Connecting a Mu- and a Nu-component.

First lemma 3 will be used to make an useful observation. Assume that K and L are
stable. By the properties of Mu- and Nu-components expressed in theorem 4 we know
that for all 2° € @Vinx, 40 € @VinL

2 Imip, = mp= uy.H(mO,y)ldom(mL), (7)
yO = Min, K = MK = Nm'G(yoﬁm)ldom(mK)a (8)

Now, suppose that for all u € dom(min), v € dom(min,L),

Mink(¥) = (Pin,i © Tout,.(my))(u), (9)
Min,n(v) = (Pin,L © Tour,k(MiK))(v), (10)

i.e. the input marking of node w in I when defined, agrees with the output marking of
node u in L, and vice versa for v, then

' Amrg = PinL © Tour,k(21) T Pin L © Tous i (M)

= Qin,L O Tout,x(2') I Min 1,
by (10)

= mp = vy H(pinL © Toutic(2),¥)|dom(mz) = vy (2", ¥)|aom(mz)
by (7)

= Gini 0 Tout, L(ML) = Pin ¢ © Tout, (VY 2(2",Y)|dom(myz)) D Min,i
- by (9)

= mr = u&.G(Pin,i © Tout, (vy-2(2",¥), ©))ldom(m)
by (8)

= mi = ,u:v.g(uy.h(n;l,y),m)|dom(mK).

Moreover, assume that the two-components algorithm is constructed such that

mr < ,Lm;'g(maVy-h(w»y))|dom(m1() (11)
= Nfb’,-#&'-g(m,V?/-h(m,a?/))ldom(mx)v

where the last equality follows from basic fixed-point theory. In other words: my is
always ‘kept too small’, then by lemma 3 taking j : V% — 0%™(mx) to be the restriction

13

(—)ldom(mI()’ and f(CL,) = pm.g(vy.h(m’,y), :L) we conclude:
mg = ,Ulwl.ﬂm.g(w’I/y.h(m’,y))|dom(m1()
= pz.g(e,vy.h(c, y))|dom(m1f)'

Le. my agrees with the alternating fixed-point wherever defined, which is precisely what
we want. With this observation in mind the two components algorithm will be constructed

K.init()
r = K.find(j)
if r = o then R := () else R := {r}
while R # § do)
L.init()
R:=0 S:=0
while R # 0 do
select anr € R R:= R\ r R := R U {r}
s 1= L.find(r)
while s # e do
S = SU{s}
if K.val,u(s) # L then L.set(s, K.valu:(s)) else L.set(s,0)
s := L.update()
K.set(r, L.valy(r))
r = K.update()
if r # ¢ then R := RU {r}
if 3s € S. L.valn(s) # K.val,u(s) then R := R

Figure 3: The two-components algorithm.

such that (11) is valid and tentatively it should work as follows: Start searching in K for
the value of output j. If input number r is needed, start searching for this in L (which is
output number r of L). If in turn L now needs input number s from K, see if this is present,
otherwise just assume that it has value 0, and continue searching in L until stability is
reached, where-after searching is continued in K until stability is reached (which might
involve new searches in L). When both I and L are stable, check whether any of the s’s
needed by L and found to be 0 has changed into 1, if so, L must be reinitialised and all
r’s recomputed. Repeat recomputing as above until K and L are stable, and none of the
s’s changed. This algorithm is presented in figure 3. We use o to denote ‘no input-value
needed’. On figure 2 the nodes which might be contained in R and S are indicated.

The choice of assuming that undefined outputs from I have value 0 is crucial to the
validity of (11) expressing that my is always smaller than the needed result, because it
ensures that mr, when stable, is smaller than its final value. Taking the value 1 could
result in this property being violated. Now, alternatively one might ask: Why, when an
output s from K is needed, do we not just start searching for it in K? The reason for the
failure of this approach is intricate: When L is not stable, my, might be bigger than the
true result for this component. (Recall that L is a Nu-Component, and approaches the
maximal fixed-point from above.) Hence again (11) will be broken.

Figure 4 shows a simple example illustrating the point. Assume we are interested in
determining the value of outx(2). As we are in a Mu-Component we assume that outy(2)

14

Ny

<)i L @l e D
! @ I |
|
|

ing(2) : outy(2) inL(2)
-O— ® O out(2)
T K@ L)

Figure 4: An intricate example. What is the correct value of outy(2)?

has value 0, and investigate the son ing(2) to try to verify this. Now, ing(2) is connected
to outr,(2) whose value is assumed to be 1, and we find the value of outy(1), which is also
assumed to be 1 and depends on ing(1) which in turn is connected to outr(1). Contrary
to the algorithm which at this point assumes that outr (1) has value 0 and continues with
L, we will proceed the search in I, trying to verify that the assumption of 0 is correct.
Now, ing (1) — connected to outy(1) — is investigated. But outr (1) is already defined, with
value 1, so ing (1) gets the value 1, hence outg (1) changes value to 1, thereby confirming
that outr,(1) and out(2) are indeed 1, and also outx(2) must be changed to 1.
This is wrong! The fixed-point we are computing is really the very trivial one

ﬂ(wb 312)-(7/(111, y2)~($1, yl))a

which is easily seen to be (0,0) by computing approximants. The problem is the cycle
ing (1)—~outy (1)—ing(1)—outr (1), which in this case is very obvious and perhaps could be
handled properly, but in general can be much more involved.

It is, however, possible that by being careful, some searching in K is safe — if it does
not involve inspecting output from L, which is too big. This, however, requires a new
invariant and a new algorithm, and will not be further investigated here.

Theorem 5 The algorithm in figure 8 correctly computes the value of pz.g(z, vy.h(z,y))
at j, more precisely when the algorithm terminates,

mrg = ,um.g(a:, Vy'h(ma y))ldom(mx),

and j € dom(my). In the worst-case this takes time nN log N, where N = |G|+ |H| and
n s the number of inputs of L from K.

Proof: (Sketch) Correctness is shown straightforwardly using Hoare logic by taking (11)
as an invariant for the outermost while-loop, and applying the results of the previous
discussion.

For the complexity, we note by theorem 4 that it is enough to count the number of
initialisations. Clearly K is initialised only once, and L for each iteration of the outermost
while-loop (marked with (), which is bounded by the number of times output nodes
from K can change. This yields an immediate bound of n. Hence, in the worst-case the
algorithm takes time

|G| log |G| + n|H|log|H| < nN log N,

15

where N = |G| + |H|. O

For the modal p-calculus the translation in section 2 yields N < |A}|T| and n < || <
|T| (S being the set of states of T') for two unary fixed-points. So the model checker will
run in worst-case time O(|A|(|T'|?) log(|A||T'|)) which is a significant improvement over
exponential time algorithms.

6 Extensions

Extension of the algorithm to the full alternation depth two case, should not cause any
problems and could be done along the lines of [2] where the local algorithm is generalised
to full alternation depth one. For higher alternations we have situations like sketched in
figure 5 (in general the picture will not be linear but more tree like). The generalisation

—— U i
Ko 4 b m == - v
1 2 3 n

Figure 5: Higher alternation depth.

of the algorithm from the previous section could be done along the following lines:

Partition the input nodes Vin,; of each Mu- or Nu-Component i into two: let V& ; be the
set of input nodes connected to components to the left of 7, and let V,—f,i be the set of input
nodes connected to components to the right of . Hence V;}; = 0 and V;f; = Vin1. Now,
each component must have attached two sets of input nodes R; C V;-f,i and S; C sz;ﬂ The
algorithm will start searching for the value of an output node of component 1, and when an
input is needed start searching in the corresponding component. For the ¢’th component,
whenever an input @ in V£, is needed, the value of which is undefined, computation is
suspended in 7 and computation of the value of z is initiated. Whenever an input y in
Vif;ﬂ' is needed, and the value of y is undefined, it is assumed to have the value 0 if y
is an output node from a Mu-Component, and assumed to have the value 1 if it is a
Nu-Component, and computation can proceed. The two sets R; and S; are used to collect
these input nodes, and if output nodes of a component disagree with the connected input
nodes (because of the ‘assume 0/assume 1’ strategy) components must be reinitialised,
and values recomputed. Whenever a component is reinitialised all components to the
right must be reinitialised too. As this brief explanation shows the details are subtle, and
it seems hard to get a short description precise enough to actually prove the algorithm
correct.

Nevertheless, we conjecture that this sketch can be formalised to a correct algorithm,
and that properly implemented, for the modal p-calculus it will run in worst-case time
O((JAlT])* log(]A||T])), thus have worst-case behaviour which is only a logarithmic fac-

tor worse than the best known global algorithm from [2].

16

7 Conclusion and Related Work

A central idea used in [2] and here, is to represent the monotone functions as monotone,
boolean circuits, a special kind of directed graphs, which allows sharing of values and
makes dependencies explicit. A similar idea was used, independently, by Cleaveland and
Steffen [5, 6] to give another global O(|A||T'|) model checker for alternation depth one.
Larsen and Xinxin [13] describes a translation from the model checking problem to the
problem of finding solutions to modality free equations, similar to the one described here,
but without utilising the possible benefits for a model checker. The translation can also
be seen as a special case of the reduction for products in [3].

Other local algorithms are described by Larsen [11], Stirling and Walker [14], Cleave-
land [4], and Winskel [16]. They all have bad worst-case complexities: exponential, even
for alternation depth one. The local algorithm in [2] for alternation depth one runs in
time O(JA||T]log(|A[IT).

The general problem of finding fixed-points of monotone functions on boolean lattices,
might turn out to be useful in other contexts. For instance when finding fixed-points
in program analysis. Moreover, the ideas of sharing and chasing dependencies are not
inherently connected to boolean lattices. One might consider a generalised notion of
circuits over a given basis of operations and values B. With the value domain bigger than
0, nodes might have to be recomputed more than once — still this approach will avoid a
lot of computations compared to the iterative method.

References

[1] P. Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook
of Mathematical Logic. North-Holland, 1983.

[2] Henrik Reif Andersen. Model checking and boolean graphs. In B. Krieg-Briickner,
editor, Proceedings of 4’th European Symposium on Programming, ESOP’92, Rennes,
France, volume 582 of LNCS. Springer-Verlag, 1992.

[3] Henrik Reif Andersen and Glynn Winskel. Compositional checking of satisfaction.
Formal Methods In System Design, 1992. To appear. Extended abstract in [12].

[4] Rance Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Acta Informatica, 27:725-747, 1990.

[5] Rance Cleaveland and Bernhard Steffen. Computing behavioural relations, logically.
In J. Leach Albert, B. Monien, and M. Rodriguez Artalejo, editors, Proceedings of
ICALP, volume 510 of LNCS, pages 127-138. Springer-Verlag, July 1991.

[6] Rance Cleaveland and Bernhard Steffen. A linear-time model-checking algorithm for
the alternation-free modal mu-calculus. In Larsen and Skou [12].

[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill, 1990.

17

[8] Mads Dam. Translating CTL* into the modal p-calculus. Technical Report ECS-
LFCS-90-123, Laboratory for Foundations of Computer Science, University of Edin-
burgh, November 1990.

[9] E. Allen Emerson and Chin-Luang Lei. Efficient model checking in fragments of the

propositional mu-calculus. In Symposium on Logic in Computer Science, Proceedings,
pages 267-278. IEEE, 1986.

[10] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27, 1983.

[11] Kim G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In Proceed-
ings of CAAP, 1988.

(12] Kim G. Larsen and Arne Skou, editors. Proceedings of the 3rd Workshop on Computer
Aided Verification, July 1991, Aalborg, volume 575 of LNCS. Springer-Verlag, 1992.

[13] Kim G. Larsen and Liu Xinxin. Compositionality through an operational semantics
of contexts. In M.S. Paterson, editor, Proceedings of ICALP, volume 443 of LNCS,
pages 526-539. Springer-Verlag, 1990.

(14] Colin Stirling and David Walker. Local model checking in the modal mu-calculus.
In Proceedings of TAPSOFT, 1989.

[15] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5, 1955.

[16] Glynn Winskel. A note on model checking the modal v-calculus. In Ausiello, Dezani-
Ciancaglini, and Rocca, editors, Proceedings of ICALP, volume 372 of LNCS, 1989.

18

A Appendix. Summary of Notation

We use A — B to denote the set of partial functions from A to B. This set can be viewed as
the set of total functions A — By = (B.)*, where L is assumed to be an element not in B
denoting undefinedness and B; = BU{Ll}. Form : A — B we let dom(m) be the domain
of definition of m. Then m can also be viewed as an element of dom(m) — B = Bm(m)
through the restriction m|gom(m). For partial maps m,m': A — B we define m T m’ ‘m
extends to m'” by

mEm' &g dom(m) C dom(m') & Yz € dom(m).m(z) = m'(z).

Often we will view the map m as being at the same time an element of A — B, Bdom(m),
and (B;)%. We will also use L to denote the partial map with empty domain.

If m € AB,m’ € A® are total maps with BN C = () then m - m' € ABYC is defined as
(m - m/)(z) = m(z) for z € B and (m - m')(z) = m'(z) for € C. (Note, that with the
abovementioned conventions this construction also works for partial maps.) If m € A®
and a € A then m[a/b] € AP} is defined by m[a/b](z) = z for @ # b, m[a/b](b) = a.

For k € IN, we let k = {1,2,...,k}. The function m; : Dy X ... x D, — D; is the

usual projection onto the 7’th component.

B Appendix. The Mu-Component

In this appendix we describe the Mu-Component in a syntax which should be self-
explanatory.

Data-structure: Mu-component

Variables: G = (V,Vin,tn,out, E, L) : (k,n)-m.b.g.
AC VUV
susp CV
M=m;u m:V,, UV —0
p:V—-IN
d: Vi, UV — P(V)
Invariant: I
Operations: init() — ()
find(§) — r jen,rekU{e}
update() — r rekU{e}
sel(j,b) - () jembe (0,1)
if M(j) =1 then only b =1 is allowed
valin(j) — b j€ekbe {L,0,1}
valpyt(§) — b jen,be {L,0,1}
(visit(z) — r) z € V,r € kU {e}, only used internally

init() = () : A,susp:=0 M,p,d:= L

19

find(j) — r:

if M(out(j)) # L then r := update()

ff M(out(j)) = L then
M := M[0/out(3)] p := p[0/out(j)] d := d[B/out(})]
r 1= visit(out(s))
if » = o then r := update()

update() — r

ri=e

while susp # 0 or A # { do
while A # § do

select an ¢ € A

while d(z) # 0 do

select a y € d(2) d(z) :=d(z)\y
ifL(y):V&J\/I(y):Othen
M(y):=1 A:= AU{y} susp:=susp\y

ff L(y) = A then
p(y) == p(y) +1
r = visil(y)
if r # o then exit update
= A\
if susp # () then
select an ¢ € susp susp := susp \ ©
if M(z) =0 then
r 1= visil(x)
if » # o then exit update

set(4,0) — ()

if M(in(j)) =1 & b =0 then error

ff M(in(j)) = L & b= 0 then M(in(j)) :=0 d(in(j)) := 0

ff M(in(7)) =0 & b=1then M(in(j)):=1 A:= AU {in(j)}
ff M(in(j)) = L & b=1then M := M[1/in(5)] d:= d[0/in(5)]

valin(§) — b: b= M(in(j))
valow(s) = b: b := M(out(s))

visit(z) — 7 :
loop

if L(z) = V then
if p(z) = |S()| then

r:= o exitloop
ff p(z) < |S(x)| then
w 1= S(2)p(a)

if M(w) =1 & w € Vj, then

20

M =]VI[O/w] d:=d[{z}/w] susp:= suspU {z}
r = 1in(w) exit loop
ff M(w) = _L & w ¢ Vi, then
M := M[0/w] p:=p[0/z] d:=d[{z}/w]
susp = suspU {a} z:i=w
ff M(w) =0 then
d(w) := d(w) U {z} p(z) :=p(z)+1
ff M(w) =1 then
M(z):=1 A:= AU {a} r:= o exitloop
ff L(z) = A then
if p(z) = |S(z)| then
M(z):=1 A:= AU {a} r:= e exitloop
ff p(z) < |S(z)| then
w = S(2)y
if]\J(w) _L & w eV, then
M = M[0/w] d:= d[{z}/w]
T m(w) exit loop
ff M(w)=1 & w ¢ Vi, then
M i= = M[0/w] p:=p[0/a] d:= d[{z}/w]
Ti=w
(w) =0 then
d(w) :=d(w)U {2} r:= e exitloop
ff M(w) =1 then
p(z) := p(z) +1

21

