Technical Report AN

Number 257

Computer Laboratory

Cut-free sequent and tableau systems
for propositional normal modal logics

Rajeev Prakhakar Gore

May 1992

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1992 Rajeev Prakhakar Gore

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

We present a unified treatment of tableau, sequent and axiomatic formulations for many
propositional normal modal logics, thus unifying and extending the work of Hanson,
Segerberg, Zeman, Mints, Fitting, Rautenberg and Shvarts. The primary emphasis is
on tableau systems as the completeness proofs are easier in this setting. Fach tableau
system has a natural sequent analogue defining a finitary provability relation F;, for each
axiomatically formulated logic L. Consequently, any tableau proof can be converted into
a sequent proof which can be read downwards to obtain an axiomatic proof. In particular,
we present cut-free sequent systems for the logics $4.8, S4.8.1 and S4.14. These three
logics have important temporal interpretations and the sequent systems appear to be
new.

All systems are sound and (weakly) complete with respect to their known finite frame
- Kripke semantics. By concentrating almost exclusively on finite tree frames we obtain
finer characterisation results, particularly for the logics with natural temporal interpre-
tations. In particular, all proofs of tableau completeness are constructive and yield the
finite model property and decidability for each logic.

Most of these systems are cut-free giving a Gentzen cut-elimination theorem for the
logic in question. But even when the cut rule is required, all uses of it remain analytic.
Some systems do not possess the subformula property. But in all such cases, the class
of “superformulae” remains bounded, giving an analytic superformula property. Thus,
all systems remain totally amenable to computer implementation and immediately serve
as nondeterministic decision procedures for the logics they formulate. Furthermore, the
constructive completeness proofs yield deterministic decision procedures for all the logics
concerned,

In obtaining these systems, we demonstrate that the subformula property can be broken
in a systematic and analytic way while still retaining decidability. This should not be
surprising since it is known that modal logic is a form of second order logic and that the
subformula property does not hold for higher order logics.

Contents

1 Introduction

L1 Formulating Logics
111~ Axiomatic (Hilbert) Systems
1.1.2° Gentzen Sequent Systems
113 Kripke Semantics
1.1.4 Relating Syntactic and Semantic Formulations

1.2 Sequent and Tableau Systems
1.2.1 Sequent Systems As Decision Procedures
1.2.2 Sequent and Tableau Systems As Refutation Procedures

1.2.3 Analytic Sequent Systems, Subformula Property and Cut
1.3 Consistency, Deducibility, Weak Completeness and Strong Completeness

1.4 Proving Soundness and Completeness
141 Tableau and Sequent Completeness
1.4.2 Axiomatic Completeness
1.4.3 Abstract Consistency Properties
1.4.4 Deducibility Relations

L5 Decidability

1.6 Syntactic Cut Elimination

L7 Summary ... oo

1.8 Contributions

1.9 Dissertation Outline

Propositional Normal Modal Logics

2.1 Syntax: Propositions, Formulae and Subformulae
2.2 Normal Modal Logic: An Axiomatic View
2.2.1 Axiom Names and Logics
2.3 Kripke Semantics for Modal Logics
2.3.1 Possible Worlds, Accessibility, Models and Frames
2.3.2 Truth, Satisfiability and Validity
2.3.3 Restrictionson R
2.3.4 Properties Of R Not Corresponding To Any Axioms
2.3.5 First Order Definability
24 Soundness and Completeness.
2.4.1 Finite Models, Finite Frames and Decidability
2.4.2 Different Types Of Frames
2.4.3 L-frames, L-models and L-satisfiability
2.5 Known Miscellaneous Results of Interest

iil

O~ ~T T OO o

3 Sequent Systems for Modal Logics

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

5.6
5.7

Syntax of Sequents

The Rules Explained
Subformulae Property, Analycity, Invertibility
Structural Rules

Soundness and Completeness.
3.10 Primitive Notation

4 Tableau Systems for Modal Logics
4.1 Syntax of Tableau Systems
4.2 Soundness and Completeness of Modal Tableau Systems
4.3 Soundness and Completeness of C'S4
43.1 Soundnessof C'S4.
4.3.2 Completenessof CS4
4.4 Decision Procedures for S84
4.4.1 A Nondeterministic Decision Procedure for S4
4.4.2 A Deterministic Decision Procedure for S4
4.5 Eliminating Thinning
4.6 Relating Sequents Systems and Tableau Systems.
4.6.1 Smullyan’s Tableau Formulation
47 Discussion o 0
4.8 Deducibility Relations,
5 Various Tableau (and Sequent) Systems
5.1 Rautenberg’s Tableau Systems
51.1 Soundness of CL
5.1.2 Completenessof CL
9.2 Fitbing’s Systems
5.2.1 Fitting’s Systemfor D,
5.2.2 Fitting’s Systems for 85
52.3 An Embedding of S5into S4
5.3 Shvarts’ Systems for K45, K45D and S5
5.3.1 Shvarts’ Systems for K45 and K45D
5.3.2 An Alternative Tableau System for K45D
5.3.3 An Embedding of S5into K45
5.3.4 Connections Between S5 and K45D
04 Hanson’s Rulesfor S4 and S5
5.5 Alternatives for Various Systems.
5.5.1 A Tableau System for S5 With the Subformula, Property

5.5.2 Tableau Systems For K45 and K45D Containing Analytic Cut

Symmetry, Subformula Property and Analytic Cut
Eliminating Thinning

iv

................

.8 Bibliographic Remarks
6 The Temporal Systems
6.1 A Cut-free Tableau System for S4.3.
6.1.1 Tableau Rulesfor CS4.3
6.1.2 Soundnessof CS4.3.
6.1.3 Completenessof CS4.3
6.1.4 Peculiaritiesof CS4.3.
6.2 A Cut-free Tableau System for S4.3.1
6.2.1 Tableau Rules for CS4.3.1
6.2.2 Soundness of CS4.3.1.
6.2.3 Completenessof CS4.3.1
6.2.4 Peculiaritiesof CS4.3.1.
6.3 A Cut-free Tableau System for S4.14
6.3.1 Tableau Rules for CS4.14
6.3.2 Soundmessof CS4.14
6.3.3 Completeness of CS4.14
634 ANoteonS4.14
6.4 Equivalence of Graz, KTGrz, S4Grz and S4MDum
6.5 Systems For Logics Of Linear Finite Time Intervals
6.6 Systems For Logics Of Branching Finite Time Intervals
7 Related Work
7.1 Tableau Systems
7.1.1 Constrained Tableau Systems,
1.1.2 Tree Constructions
7.2 Sequent Systems
7.3 Discussion

8 Further Work

8.1 Tableau Systems For Other Propositional Modal Logics
8.1.1 Logics of Convergent Frames
8.1.2 Logics of Strict Linear Frames
8.1.3 TLogics Closeto S5
8.1.4 Logics of Finite Linear Sequences
8.1.5 Propositional Linear Temporal Logics
8.1.6 Propositional Temporal Logics
8.1.7 First Order Normal Modal Logics
8.1.8 First Order Linear Temporal Logics
8.2 Syntactic Cut Elimination,
8.3 Normal Forming Techniques
8.4 Filtration Proofs of Completeness
8.5 Interpolation and Compactness

9 Conclusions

Bibliography

95

95

96

98

99
101
103
104
107
108
112
112
113
114
116
119
121
122
123

124
124
125
127
133
134

136
136
136
137
137
138
138
140
140
141
141
141
142
142

144

146

Index 155

vi

Erratum to Cambridge Computer Laboratory technical report number 257: Cut-free
sequent and tableau systems for propositional normal modal logics by Rajeev Goré.

In this technical report I claim that Fitting’s and Rautenberg’s systems are incomplete
because they omit contraction. The claim is wrong because contraction is implicit in their

set notation.
The systems of Fitting and Rautenberg are complete because they allow contraction
on any formula whereas the systems in this technical report explicitly build contraction

into certain rules.
Please accept my apologies for any confusion this causes you.

(o<

RATEEY Goré
23/7/92

Chapter 1

Introduction

Logic: The art of thinking and reasoning in strict accordance with the limita-
tions and incapacities of human misunderstanding.

Ambrose Bierce: The Devil’s Dictionary.

Automating deduction in classical first-order logic has been the prime aim of the au-
tomatic theorem proving community for the past 25 years [AMCP84]. Although proof
procedures for classical logic had been known for many years, the advent of the resolution
principle and particularly of the unification procedure in 1963 gave a “machine-oriented
logic” which was easy to automate using computers [DP60, Gil60, Pra60, PHV60, Rob65,
Rob79]. The most glaring disadvantage of the resolution method is that the initial for-
mula under investigation has to be put into a clausal normal form — a procedure that
destroys the structure of this formula and often causes an exponential blowup in the size
of the resulting formula. As a response, “non-clausal” theorem proving methods have
been developed that require no normal forming and have been claimed to be superior to
resolution methods [And81, Bib81]. The results of Eder [Ede84, Ede88] and D’Agostino
[D’A90] indicate that the issue is not settled, but the fact remains that automated de-
duction in classical logic is now well understood and the sights are set on higher-order
and non-classical logics [AMCP84] [TMMS8].

At almost the same time as the advent of the resolution principle, the advent of the
possible-world semantics of Kripke [Kri59, Kri63a, Kri63b, Kri65] and Hintikka [Hin63]
was revolutionising the field of modal logic. Modal logic had been suggested as an im-
provement of classical logic because of philosophical dissatisfaction with the classical
interpretation of the conditional statement “if A then B”. The classical truth functional
interpretation of this conditional as “A is false or B is true” corresponds to the (ma-
terial) implication A = B, making the implication true when A is false. According to
Diodorus of lasus [Den81], and more recently to Lewis [Lew20], there is an element of
impossibility involved in the statement “if A then B” so that its correct meaning should
be something like “it is impossible for A to be true and B to be false” [ZemT73, page 77].
Lewis used < to denote possibility and his interpretation becomes —~<O(A A —B). Later
authors used O to denote necessity, the dual of possibility, and it has become customary

1

to use O as a primitive and define & as =0-. Under this convention, Lewis’ “strict
implication” =$(A A —~B) becomes O(A = B) using the equivalences between (AN-B)
and =(A = B). Strict implication is also often written as A—<B and L and M are also
used instead of O and < respectively.

A vast amount of subsequent research had been done on these modal notions of necessity
and possibility, but until 1959, the traditional (axiomatic) formulations of modal logic had
lacked an intuitive semantics, although algebraic semantics were known [BS84]. Kripke
semantics provided an intuitive way to think about modal logics and led to the blossoming
of the field as we know it today. The term “modal”, incidentally, originates from the
fact that in mediaeval times, necessity (O), possibility (=0O-), contingency (—-0) and
impossibility (O-) were thought of as the modes in which a proposition could be true or
false [HC68, page 23].

This is not the place to justify the use of modal logics. Indeed, many eminent mathemati-
cians and philosophers have vilified modal logic as a waste of time [Qui61, Qui76]. Never-
theless, modal logics have proved useful in artificial intelligence research because certain
modal logics can be used in a very natural way to model epistemic notions like belief and
knowledge. To model belief, OA is read as “A is believed”, and to model knowledge as
“A is known” [HM85, McAS88]. By interpreting OA as “A is always true”, propositional
modal logics have also proved useful in modelling the behaviour of programs and of dig-
ital circuits where time is an important concept, leading to a plethora of dynamic logics
[Pra79, Gol87] and temporal logics [Pnu77, Wol87, Gol87]. Recently, modal logics have
been used as “non-monotonic logics” — logics where conclusions can be drawn tentatively,
and then retracted in the light of further (damning) evidence [McD82, Moo85, Shv90].
As a consequence, automated deduction in modal logics has now become an important
and even fashionable research area in computer science.

The most obvious way to proceed is to extend resolution to handle modal logics, and
various authors do exactly this using different modal clausal normal forms [Far85] [Ven85]
[Cha86, Cha87] [CF86, EF89] [GKS6] [FHS88] [Orc89] [Min90a, Min90b]. In parallel,
non-clausal methods for modal deduction have been investigated [Fit83, Fit88, Walg7]
[Wol83, Gou84, EH86] [AM90] [Fit90], along with various methods where modal logics
are translated into classical first order logic to utilise the wealth of experience in theorem
proving in classical first order logic [Mor76] [JRS7, JR88] [AES9] [Oh190] [Biir90, FS91]
[Gen91].

But in most of these methods there is a limit to the generality of the solution. Of the
resolution methods, Chan’s recursive resolution method and the resolution method of
Farinas Del Cerro and colleagues have been applied to only a few logics. Of the non-
clausal methods, the method of Abadi and Manna is not mechanisable due to its inherent
redundancy [AM90] while Wolper’s tableau method is unlikely to generalise to handle first
order modal logics [AM90]. Even the very recent work of Wallen is limited to those logics
that have the subformula property [Wal87, Wal89]. The equational method of Auffray and
Enjalbert is not extendible to handle certain modal logics with temporal interpretations
[AES9, page 444]. And by translating into first order logic, the translational methods
immediately surrender the decidability of the propositional modal logic they translate.

As we shall see, the axiomatic and semantic properties of modal logics are very well
understood and a uniform treatment of them is not only simple but is also very elegant
[Seg71, Gol87]. In the light of this uniformity, the methods mentioned above seem ad
hoc since there is no uniform way to obtain similar theorem proving methods for the vast
number of modal logics that exist.

On the other hand, sequent systems and tableau systems for propositional modal logics
have been studied in the philosophy literature for almost 50 years because they pro-
vide deep insights into important aspects of the metamathematics of these logics via
theorems on interpolation, cut-elimination and compactness [Han66b, OM57b, Kan57,
Fit83, Rau83]. Except for the work of Abadi and Manna, the non-clausal methods listed
above all trace their origins to the tableau methods of Kripke [Kri63b, Kri59] and Beth
[Bet55, Bet53], or to the sequent methods of Kanger [Kan57] and Gentzen [Gen35, Sza69],
or to the natural deduction methods of Fitch [Fit66]. Recently, Mints has shown a close
relationship between modal resolution, Maslov’s inverse method and Gentzen’s sequent
systems [Min90a, Min90b, Lif89]. Fitting has also shown close links between tableau
methods, the Davis-Putnam procedure and modal resolution [Fit90, DP60]. Thus, it ap-
pears as if sequent and tableau systems are not only fundamental to the study of modal
logics per se, but are also fundamental to the resolution and non-clausal methods used
for automated deduction in modal logics.

We present a uniform semantic treatment of tableau and sequent systems for a large
number of propositional normal modal logics, building upon, unifying, and extending the
work of Hanson [Han66a], Segerberg [Seg71], Fitting [Fit83], Rautenberg [Rau83] and
Shvarts [Shv89]. In most cases, the tableau and sequent systems are cut-free, but even
when the cut rule is not eliminable, all uses of it can be made analytic in a tractable
and predictable way so that all our tableau and sequent systems give nondeterministic
decision procedures for the logics they formulate. Furthermore, all our proofs of tableau
completeness are constructive, immediately yielding deterministic decision procedures for
each logic.

The crucial step is to abandon the subformula property which has been a tenet of se-
quent and tableau systems because it guarantees that the system is analytic. This loss is
already apparent in certain axiomatic completeness proofs that require using filtrations
through a set of “superformulae” [Gol87]. Thus it should not be surprising that a similar
tradeoff emerges in tableau and sequent completeness proofs. Fortunately though, the
“superformulae” involved are always analytic, thus preserving decidability, and further-
more, they can be obtained in a systematic way. Propositional modal logics appear to
slot into that middle ground between classical logic and higher order logic where the loss
of the subformula property does not lead to disaster.

1.1 Formulating Logics

This dissertation is rife with mathematical terminology but I have tried to define every
term I use and keep the dissertation self contained. In this and the following few sec-

tions I have tried to describe what this dissertation is about without using jargon. The
description is necessarily inexact and in some places simplistic, so the expert reader is
asked to bear with me until the later, more rigorous, chapters.

When dealing with logics we first chosen some (usually countably infinite) alphabet of
symbols and deem certain sequences of these symbols to be (well formed) formulae. A
logic LL is then simply some (usually infinite) subset of the set of all formulae. Theorem
proving or automated deduction in its most basic form is the task of determining whether
some given arbitrary formula is or is not a member of a particular logic L. The easiest
way to formalise a logic L is to simply associate the logic with the list of its member
formulae, but this is clearly unsatisfactory. What we seek instead is a finite collection of
rules that formalise how to deduce the members of L.

There are many different ways to formalise (modal) logics but we concentrate on only
three. The first, and oldest, is the axiomatic method dating from Aristotle and its im-
portance stems from this long tradition. The second is the sequent method invented
by Gerhard Gentzen in 1935 and its importance stems from its applicability in meta-
mathematics and in theorem proving. The third is the semantic method for modal logics,
essentially due to Kripke and Hintikka, and its importance stems from its intuitive appeal.
The first two methods are syntactic since deduction involves the manipulation of formulae
alone, and because of this, they are potential candidates for automation on computers.
The third method involves intuitions about objects other than formulae and provides a
sense of meaning to the modal operators O and <. When these three formalisms coincide,
our intuitions about modal deductions correspond to the purely syntactic manipulations
performed by a computer.

1.1.1 Axiomatic (Hilbert) Systems

In axiomatic or Hilbert systems, a (usually finite) set of formulae are taken as axioms
in that they are included in the logic by definition. These axioms are supplemented
with transformation or inference rules that are purely syntactic conditional statements
allowing us to add other formulae to the logic when the syntactic conditions are met.
The axioms provide a basis from which to start this incremental process and different
axioms and different inference rules typically, but not always, give different logics.

In axiomatic systems, a formula is a theorem if it can be obtained by a finite sequence of
applications of the inference rules, starting with the axioms. Such a sequence is called a
proof and the logic L formulated by an axiomatic system consists of the set of theorems
of the axiomatic system. Thus, axiomatic systems are “forward” or “bottom up” systems
in that deductions always take the form “from the fact that Ay, Ay, -+, A, are theorems,
infer that B is a theorem”. The biggest disadvantage with “forward” systems is that
they give no insight on how to prove that some arbitrary B is, or is not, a theorem since
there is no way to direct us to B. Deduction in axiomatic systems requires experience,
although the final proofs can be relatively short.

1.1.2 Gentzen Sequent Systems

In sequent or Gentzen systems, there is only one axiom, but many inference rules. The
inference rules are again conditional statements just as in axiomatic systems, but the
axiom, with no conditions, is accepted as an unquestionable member of every logic. In
sequent systems, a formula is a theorem if we can reduce it to an instance of this basic
axiom using a finite number of sequent inference rules in a backward manner, That is,
sequent systems are “backward” or “goal directed” systems in that deductions always
take the form “B is a theorem if A, A,, - - y A, are theorems”. The inference rules then
give a recipe for reducing a goal B into its subgoals Ay, A, - -+, A, and each subgoal to its
own subgoals, and so on until each subgoal is reduced to an instance of the basic axiom,
Such a reduction sequence usually forms a tree and is called a proof. Again, the logic L
formulated by a sequent system consists of the set of all formulae that are theorems of
the sequent system.

1.1.3 Kripke Semantics

The third and most recent way to formulate (modal) logics is the semantic method. As
the name suggests, semantics are a way of assigning a (hopefully intuitive) meaning to
the formulated logic. The usual semantics for classical propositional logic, for example,
assigns a truth value of “true” or “false” to each formula by assigning “true” or “false”
to each of its primitive components. There are usually many different ways of assigning
coherent truth values and a formula is a tautology if and only if it evaluates to “true”
under all truth assignments. As we shall see, Kripke semantics are a generalisation of this
concept using a network of nodes called possible worlds, with each node having its own
truth assignment. Such a network is called a Kripke model and different conditions on
the allowed interconnections give different classes of Kripke models. The modal analogue
of tautology is validity and a formula is said to be valid in a particular model if and only
if it evaluates to true in every possible world of that model, The logic L formulated by a
particular possible world formulation consists of all formulae that are valid in all models
in that particular class of models.

The interpretations of & as possibility and O as necessity are obtained as follows. There
is one world (node) which is deemed to be the real world and all the worlds connected to
this world are “possible” alternative worlds. The arcs between worlds are directed and
if there is an arc from w; to w, then wg is accessible from or reachable from w;. If W
assigns “true” to A and w, is reachable from wy then wy assigns “true” to GCA (possibly
A) since there is a possible alternative world to w, which makes A true.

Similarly, if A is assigned “true” by every world reachable from w; then wq assigns
“true” to DA (necessarily A) since A is true in all the possible alternatives to w; and
must therefore be necessary. Different conditions about reachability give different logics.
For example, if there is an arc from wy to wy and one from w, to ws then should we
consider ws to be reachable from w; ? If so then accessibility is said to be transitive.

1.1.4 Relating Syntactic and Semantic Formulations

The axiomatic and sequent syntactic formulations give no intuitions about the logic they
formulate since they involve purely syntactic manipulations of formulae without recourse
to the meanings of the formulae. On the other hand, a semantically formulated logic
immediately possesses some intuitive appeal since we can visualise the network of nodes
and truth assignments associated with our intuitions about the meanings of possibility,
necessity, belief, knowledge or time. The desired connections between the syntactic and
semantic formulations are achieved via the notions of soundness and completeness.

We say that a syntactic (axiomatic or sequent) formulation is sound with respect to a
semantic formulation if every theorem of the syntactic formulation is valid in the seman-
tic formulation. We say that a syntactic (axiomatic or sequent) formulation is complete
with respect to a semantic formulation if every valid formula of the semantic formu-
lation is a theorem of the syntactic formulation. Soundness guarantees that if we can
prove A syntactically, then A is valid semantically. Completeness guarantees that if A4 is
valid semantically, then there is a syntactic proof of A. We thus establish that validity
corresponds to theoremhood, giving an intuitive meaning to the syntactic concept of the-
oremhood. But note that the correspondence is either between an axiomatic formulation
and the semantic formulation or between a sequent formulation and the semantic for-
mulation. It is only when each syntactic formulation corresponds to the same sernantics
independently that we have a correspondence between the two syntactic formulations.

Axiomatic modal formulations have been studied extensively in the literature on modal
logic. There are many results relating axiomatic systems and Kripke semantics and we
make extensive use of these known results. That is, we show that our sequent systems
are sound and complete with respect to Kripke semantics. We then refer to the known
results showing that certain axiomatic systems are also sound and complete with respect
to the same semantics. We thus obtain the correspondence between these axiomatic and
sequent formulations using Kripke semantics as a bridge.

1.2 Sequent and Tableau Systems

Sequent systems were developed by Gentzen [Gen35] as a syntactic formulation of classical
logic. Tableau systems were first developed by Beth [Bet53, Bet55]. Kripke semantics
are equally applicable to both as the two are really notational variants of each other.
There are various properties of sequent (and hence tableau) systems that are of vital
importance in automated theorem proving and in the study of logical systems. These
play a central role in this dissertation.

1.2.1 Sequent Systems As Decision Procedures

An extremely important property for automated deduction is whether a syntactically
formulated logic is decidable or undecidable. That is, are there effective procedures to
decide whether an arbitrary formula is or is not a theorem. The beauty of propositional
sequent systems is that if they formulate a decidable propositional logic L, they implicitly
give a procedure to determine whether an arbitrary formula A is or is not a theorem of
L when used in a backward manner. Of course, the procedure is not always an efficient
one, but it can often be made so by using various engineering techniques [Bib81, And81,
Wal87]. These comments apply equally to tableau systems.

1.2.2 Sequent and Tableau Systems As Refutation Procedures

When used in a backward manner, sequent and tableau systems are disproof or refutation
procedures. Refutation procedures begin by assuming that the formula A which we
wish to test for theoremhood is not a theorem. Then a sequence of steps (backward
sequent rules in this case) are applied to verify this assumption. If all such steps lead
to contradictions then the disproof procedure has failed — and hence A is actually a
theorem.

Sequent systems are important because if no such sequence leads to a contradiction, then
we usually have enough information to construct a network of possible worlds where one
of the possible worlds falsifies A — thus demonstrating that A is not valid. That is,
even though sequent systems are purely syntactic in nature, they can be related to the
semantic concept of validity. Furthermore, if the axiomatic and sequent formulations
correspond to the same semantics then a failed attempt to disprove A actually gives an
aztomatic proof of A as a by-product. That is, the sequent system is a semantic disproof
procedure as well as an axiomatic proof procedure in this case.

1.2.3 Analytic Sequent Systems, Subformula Property and Cut

Sequent rules are conditional inference rules consisting of a premiss (or condition) and a,
conclusion. Given a formula A, a given sequent system induces a search space consisting
of many different attempted disproofs because more than one rule is usually applicable at
any given stage of the disproof procedure. The disproof procedure may even cycle when
a particular state reappears. But a decision procedure must terminate with an answer
in a finite number of steps for any finite formula A. For sequent systems this means two
things: first, that in any particular disproof attempt, each sequence of rule applications
must terminate; and second, that the number of disproofs (in the search space) must be
finite.

The (inference) rules of the sequent system for propositional classical logic all have a
particularly simple form in that at least one formula in the premiss is always strictly
simpler than some formulae in the conclusion. That is, each sequence of backward rule

applications for classical propositional logic terminates because each (backward) rule
application strictly simplifies the job at hand. Hence, cycles cannot arise, and eventually
we are left with only atomic components of the initial formula A, to which no rules are
applicable. Furthermore, there are only a finite number of disproofs because the formulae
that may appear in a disproof are all subformulae of A, and this set is finite.

This “subformula property” is not the main reason why sequent systems give decision
procedures. The critical point is that it is practical to use a sequent rule in a backwards
manner only when the formulae in the premiss are syntactically obtainable from the for-
mulae in the conclusion in some predetermined or analytic way. The subformula property
immediately guarantees this, but it is possible to give up the subformula property and
still retain this analytic notion, and hence retain a bounded search space.

What we find is that for many modal logics, we can use certain “superformulae” and still
retain decidability. Of course we may get cycles but we can monitor these by keeping
track of all previous states. But if a formula A’ in the premiss is obtained from a formula
A in the conclusion by building up A, rather than by breaking it down, then A’ must
be forbidden from spawning an A” in a similar building up process. For otherwise, we
would get an infinite chain of formulae, each built up from the previous one. That
is, for any particular formulae, the building up procedure must be “once off” so that
any particular sequence of rule applications either terminates via a cycle, or terminates
because no further rules are applicable. If this restriction is met then we can start a
disproof procedure for some fixed formula A and know that the formulae involved will
always come from some finite set X, depending only on A itself and the (predetermined
and fixed) building up rules we allow. We can then determine X 4 before embarking on
the disproof procedure for A, putting a bound on the formulae that can appear in such
disproofs, and hence guarantee that there are only a finite number of disproofs that we
need to check.

A very powerful (inference) rule of Gentzen’s original sequent system, called the cut rule,
does not obey this analytic principle since its premiss contains a formula that is totally
arbitrary — a guess as it were — having no relation to the formulae in the conclusion,
Gentzen’s seminal result that the cut rule is redundant in his system is at the heart of
this dissertation. That is, we seek sequent systems for modal logics that are also cut-free
since then we have a handle on the formula that the disproof procedure must consider,
once we are given the formula A we wish to disprove. As we shall see, not all of our
systems obey the subformula principle. But even when they do not, the superformulae
that need to be considered are always analytic. In fact, we will even find that some of
our systems require cut! But fortunately the uses of the cut rule can be made analytic,
and this is the important aspect.

1.3 Consistency, Deducibility, Weak Completeness
and Strong Completeness

In most applications, we require that the underlying logic be free from contradictions,
although note the recent work on para-consistent logics [dA81, Sub89]. For our purposes,
a syntactically formulated logic L is consistent if there is no formula A such that both
A and —A are theorems of L. In dealing with logics, the term “complete” is used in
different ways and the terms “strongly complete” and “weakly complete” are often used
to disambiguate these meanings [Fit83].

A syntactic formulation is “weakly complete” if every valid formula is syntactically deriv-
able as a theorem (either backwards or forwards depending on which syntactic formulation
we work with). Weak completeness guarantees that validity in a semantic formulation
corresponds to theoremhood in a syntactic formulation.

A syntactic formulation is sometimes said to be “strongly complete” or Post-complete if
it is consistent but adding any non-theorem A to it as an axiom makes it inconsistent
[HC68, HC84]. Most of the modal logics we consider are not strongly complete in this
sense, so this meaning is not the one of most importance [HC68, page 20]. In any case,
this notion of “strong completeness” involves no semantics.

There is a stronger semantic notion than validity called logical consequence. In classi-
cal propositional logic we say that A is a logical consequence of a set X if any truth
assignment that assigns “true” to every formula in X also assigns “true” to A. Corre-
spondingly, there is a stronger syntactic notion than theoremhood called deducibility.
In propositional classical logic, we say that A is deducible from a set X if taking the
members of X as hypothetical theorems allows us to obtain a syntactic proof of A. These
stronger notions can also be made to correspond to each other via the notions of “strong
soundness” and “strong completeness”. That is, we say that a syntactic classical system
is “strongly sound” and “strongly complete” with respect to the semantics if deducibility
corresponds to logical consequence.

In a modal semantic setting, the concept of “logical consequence” becomes more compli-
cated for there are two extreme ways to interpret the statement “A is a logical consequence
of X”. One is that if some particular world of a network assigns “true” to all members
of X then it must assign “true” to A. The other is that if all worlds of a network each
assign “true” to X, then they must each assign “true” to A. One is like “local logical
consequence” while the other is like “global logical consequence”. F itting [Fit83] actually
explores both extremes, and even mixtures of the two notions, and extends his tableau
systems by assuming some formulae to be “global” assumptions and others to be “local”
assumptions with respect to the semantic network of possible worlds. He therefore defines
a compound modal notion of “strong completeness”.

There are two reasons why we ignore these stronger notions. First, most of the known
axiomatic completeness results for modal logics are weak completeness results and we use
these to obtain the desired correspondence between axiomatic and sequent systems. Sec-
ond, the strong completeness notion is easier to handle in tableau systems and axiomatic

systems than in sequent systems. We prefer to avoid the complications this causes when
trying to relate sequent, axiomatic and semantic systems to these tableau systems. Be-
cause of these different nuances and complications with “strong completeness” we deal
only with “weak completeness” where our only goal is to show that validity corresponds
to theoremhood. So from now on, completeness means weak completeness.

1.4 Proving Soundness and Completeness

As the last two sections have shown, the crux of the matter is proving the correspondences
between the two syntactic formulations and the semantic formulation via the soundness
and (weak) completeness results. For axiomatic systems, soundness and completeness are
usually easy although for some logics the proofs can get involved [Gol87]. For sequent
systems, soundness is usually not a problem, but for most sequent systems, proving com-
pleteness without resorting to the cut rule can be quite hard, and sometimes, impossible.
As Dana Scott observes “Gentzen’s Elimination Theorem holds only for very special rela-
tions” [Fit83]. And we have already seen that cut is an unacceptable rule for automated
deduction.

Our tasks neatly split into two parts. We have to prove the completeness of axiomatic
systems with respect to Kripke semantics and for this the method of Henkin is the most
common [Hen49]. We also have to prove the completeness of sequent systems with respect
to Kripke semantics and for this the method of Hintikka is the most common [Hinb5]. We
begin with classical propositional logic and introduce the modal complications afterwards.

10

1.4.1 Tableau and Sequent Completeness

A set X is said to be downward saturated if it meets the following conditions [Hin55,
BS84]:

—

. if =A € X then A ¢ X;

2.if ANB€ X then A€ X and B € X;

if AVBée X then Ae X or B € X;

if A= B € X then A€ X or B € X;

if -~A € X then 4 € X;

if «(AAB) € X then ~A € X or =B € X;
if 2(AV B) € X then -A € X and =B € X;

N > &~ W

if (A= B) € X then A€ X and -B € X.

If we start with a finite set Y then we can form a downward saturated set V* by first
including ¥ in Y™* and then repeatedly adding to ¥* the formulae necessary to ensure
that it satisfies conditions 2 to 8. If, for example, A A B € Y* then we must ensure that
both A and B are in Y*, adding them if they are not. But note that the first condition
must also be satisfied for a set to be downward saturated and it is the only condition that
requires that some formula is not in the set. It is a consistency condition. That is, these
conditions give a recipe for checking the consistency of a finite set because the downward
saturation process will terminate if the initial set Y is finite, the consistency condition (1)
can be checked easily since Y* then contains only a finite number of formula, and most
importantly, the downward saturation procedure preserves consistency [BS84]. This is
essentially the soundness of these rules with respect to classical truth valuations.

Recall that a classical propositional truth assignment assigns truth values to each formula
of our language. The beauty of downward saturated sets is that if ¥* is a downward
saturation of a finite set ¥ then the truth assignment:

Ais “rue” if A€ Y™ and A is “false” if A ¢ Y*

is guaranteed to be a coherent and consistent one. That is, a purely syntactic procedure,
as embodied by conditions 1-8, can be used to obtain a semantic truth assignment for a
consistent set Y. (Actually we only need to assign truth values to the atomic components.)

Now suppose we take a finite set ¥ U {~A} and attempt this downward saturation
procedure. If we succeed then we know that there is at least one truth assignment that
makes all the members of ¥ “true” and makes A “false”. Thus, A is not a logical
consequence of Y. On the other hand, if all attempts to obtain a (consistent) downward
saturation of Y U {=A} fail, because they all break condition 1, then we know that any
truth assignment that tries to assign “true” to all the members of ¥ must assign “true”

11

to A. That is, A is a logical consequence of Y, In general, if we want to know whether A is
a logical consequence of Y then we have to test Y U {—A} for consistency and we do this
by attempting to form a downward saturation of Y U {—A}, highlighting that downward
saturation is a refutation procedure. We obtain the weaker notion of tautology simply
by taking Y to be the empty set and testing the singleton {—A} for consistency when we
want to test whether A is a classical tautology.

This is essentially the strong and weak completeness of the tableau and sequent systems
for classical propositional logic because the tableau and sequent systems are essentially
nothing but downward saturation procedures. That is, a formula A is a theorem of a
tableau formulated logic if {-A} is inconsistent. Hence, if {—A} is consistent, then the
above truth assignment gives a valuation that falsifies A, proving that A is not “true” in
all truth assignments and hence is not a tautology.

Notice that the definition of downward saturation obeys a subformula principle since
the conclusions of the conditions 2-8 involve formulae that are strictly simpler than the
formula in the antecedent, and furthermore, they are always obtained from the formulae
in the condition in some fixed analytic way. Condition 6, for example, instructs us to
add one of =A or =B to X and both =A and B are strictly simpler than —~(A A B).

Now for modal logics, we have to handle formulae like OA and GA. Recall that Kripke
semantics involve a network of nodes called possible worlds, each with its own truth
assignment. We therefore work with a network of saturated sets instead of just one
saturated set and a possible world assigns “true” to all the formulae in the set associated
with it. We can then use the associated set as a name for the possible world. Hintikka
[Hin63] shows that the new rules to handle modal formulae take the following forms:

if OA €Y then A € Z for all nodes Z reachable from Y

it A € Y then A € Z for some node Z reachable from Y.

Notice that these conditions also have the property that the formula A in the conclusion
is strictly simpler than the formulae (DA or OA) in the condition, and are obtained from
the condition in some fixed analytic way.

By using these extra modal conditions (and others) we are able to check the modal
consistency of a given set X. If X happens to be consistent then this method yields a
network of saturated sets, one of which makes all the formulae in X “true”. Again, the
modal tableau methods we use are nothing but a systematised way of performing this
task and hence the completeness result follows.

For some of our modal systems we find conditions like:
if CA € X then 0CA € X

where the conclusion involves a superformula (OCA) of the condition (CA). Now if
there were another saturation condition that allowed us to build up 0OA into GOA then
we would be in trouble. For then these pair of rules would add formulae to X indefinitely

(given that OA € X) via the chain CA,O00A4,000A4,0000A4, -+ This is what was

12

meant before by the restriction that all building up rules must be “once off”. And we
find that, fortunately, for a large number of modal logics, we are able to use “building
up” rules that are “once off” or analytic, in this way. Another example of a bad rule

would be:
if A€ X then -DA € X

since this rule feeds upon itself to give an infinite chain of additions A,-0OA, -0-0A4,
—U=-0-04, ... given that 4 € X.

The crux of this dissertation is to show that we can find analytic “once off” rules for
many modal logics although some of these rules are quite bizarre. The modal tableau
method we use is based on networks of finite saturated sets following Hintikka [Hin55] and
Rautenberg [Rau83] and yields decision procedures for our logics in the process precisely
because all our rules are analytic. Due to the intimate relationship between tableau
and sequent systems it is easy to obtain an analogous sequent system from each tableau
system. Then we can use these sequent systems to determine (syntactic) theoremhood.
But notice that our systems are effective only if we deal with finite sets since the tableau
procedures are guaranteed to terminate only for finite sets. This is clearly a reasonable
restriction for automated theorem proving,.

1.4.2 Axiomatic Completeness

We say that a set X is upward saturated if it satisfies the converses of conditions 1-8
where the converse of “if A then B” is “if B then A”. Note that the converse of condition
1 allows us to add —A to X if A ¢ X. This means that the upward saturation procedure
is not effective, in that it runs for ever, since there will be an infinite number of formulae
outside X, for any X.

We say that a set X is maximal consistent if it is saturated both upwards and down-
wards. Maximal means that for any formula B, we have B € X or =B € X. Consistent
means that B € X iff =B ¢ X. Thus, X is maximal consistent if for every formula B,
either B € X or =B € X but not both. Hence, maximal consistent sets are infinite.

"To prove axiomatic completeness we again associate sets with worlds. But this time we
associate maximal consistent sets instead of downward saturated sets. We already know
that for any formula B, either B or =B is in any maximal consistent set. The relevant

truth assignment is:
Ais “true” if and only if A € X.

The usual method to prove semantic completeness of axiomatic systems is via the method
of canonical models and filtrations, using maximal consistent sets [LS77, HC84]. But since
we make no use of canonical models or filtrations, we omit the details. Many axiomatic
completeness results have been obtained using canonical models and filtrations [SegT1]
but unfortunately, this method does not yield a decision procedure for the logic (when the
logic is decidable). Hughes and Cresswell [HC84] give an introduction to these concepts.

13

1.4.3 Abstract Consistency Properties

Fitting [Fit83] tries to get the best of both methods by using the “maximal consistent” set
method to prove the strong completeness (in his sense) of his modal tableau systems. His
definition of “maximal consistent”, however, is slightly different although his technique of
abstract consistency properties is more general. In fact, our methods seem extremely low
level and technical in comparison. But we can obtain finer grained proofs of completeness
and decidability specifically because our methods are so low level, The essential ideas,
once worked out, can be lifted to give abstract consistency properties if desired.

1.4.4 Deducibility Relations

Actually, it is possible to prove the correspondence between the three formulations si-
multaneously using deducibility relations [Rau83]. However, this requires us to prove
soundness in a purely syntactic way rather than in a semantic way. For the better known
logics like S4 and S5 this is not a problem. But for the more unusual logics like G and
Grz and especially for S4.3, S4.8.1 and S4.14 these proofs are not at all trivial (c.f.
Zeman'’s proof for S4.8 [Zem73, page 236]). Consequently, we use semantic proofs of
tableau (and hence sequent) soundness and completeness, and use the known axiomatic
completeness results of Segerberg [Seg71] to finalise our correspondence between the ax-
iomatic and sequent formulations.

1.5 Decidability

Soundness and completeness results are all well and good, but for automated deduction,
the prime issue is to find a decision procedure allowing us to determine theoremhood.
Our tableau and sequent systems provide nondeterministic decision procedures for the
logics they formulate because the completeness proofs yield an essential property of a
logic called the finite model property. The finite model property means that if A is not
a theorem of the logic, then there exists a finite network of possible worlds that contains
a world falsifying A. We have already seen that the tableau procedure is an attempt to
construct a network of possible worlds where some world falsifies A. When such a network
is demonstrably finite, for any A, we immediately obtain the finite model property.

Another advantage of our method is that all our completeness proofs are constructive.
Hence each proof gives a deterministic decision procedure for the logic in question. That
is, instead of using the tableau systems as nondeterministic decision procedures, we can
use the steps employed in the completeness proofs to obtain a deterministic decision
procedure,

Nevertheless, the nondeterministic sequent systems may be applicable as efficient deci-
sion procedures directly using a parallel model of computation of Clocksin where non-
determinism is “a good thing” [Clo87, K1e90].

14

1.6 Syntactic Cut Elimination

Note that the “proper” way to prove cut-elimination is to use direct syntactic arguments
as was originally done by Gentzen, but this is usually quite difficult [Gen35, Sza69,
Val83]. We therefore use the bridge between sequent systems and axiomatic systems
provided by Kripke semantics and “eliminate” cut simply by leaving it out from the
start (where possible). The semantic completeness proofs then give us semantic cut-
elimination theorems for the logics with cut-free sequent systems and pave the way for
syntactic cut-elimination proofs since we know that the syntactic proofs exist!

1.7 Summary

The three well known formulations of modal logic we deal with are the axiomatic formu-
lation, the sequent formulation and the Kripke formulation. The first two are syntactic
while the third is semantic. The important syntactic concepts are theoremhood and de-
ducibility. The important semantic concepts are validity and logical consequence. Weak
soundness and completeness results allow us to equate validity and theoremhood. Strong
soundness and completeness allow us to equate logical consequence and deducibility. We
prefer to deal with the weaker issues because of various complications involved in using
the stronger notions in modal sequent formulations.

Axiomatic completeness with respect to Kripke semantics and sequent completeness with
respect to (the same) Kripke semantics must be proved separately in order to obtain a
correspondence between the axiomatic and sequent formulations. Fortunately, half of
this work has been done for us since axiomatic soundness and completeness results are
known for most of the logics we deal with, so we have to worry only about the sequent
soundness and completeness results.

Tableau systems are direct analogues of sequent systems but are more amenable to com-
pleteness proofs using downward saturated sets. We therefore base our proofs on tableau
systems,

The sequent formulation is amenable to automation on computers because of a crucial
property of analycity which usually manifests itself via the subformula property and the
eliminability of the cut rule. For some of our modal logics we find that we have to give
up the subformula property. Fortunately though, the superformulae we introduce obey
an analytic principle. Some of our tableau systems even require cut, but the applications
of the cut rule can always be made analytic. The constructive completeness proofs yield
two types of decision procedures for our logics via the finite model property. One is
the tableau system itself and is highly nondeterministic. The other is obtained from the
completeness proof and is deterministic.

15

1.8 Contributions

We present a uniform treatment of sequent and tableau systems for modal logics, showing
(the well known fact) that the two are essentially the same. The methods we use are orig-
inally due to Hintikka [Hin55) and Beth [Bet55] but are lifted from Rautenberg [Rau83].
This work is in no way original but is included to make the dissertation self contained and
also to pinpoint a slight omission of several authors in omitting a structural rule known as
contraction. Recent work of Girard [Gir87] has shown the importance of such structural
rules. As a result, we unify and extend the work of Hanson [Han66a], Segerberg [Seg71],
Mints [Min70], Fitting [Fit83], Rautenberg [Rau83] and Shvarts [Shv89], obtaining sound
and complete sequent and tableau systems for the propositional normal modal logics K,
T, D, K4, D4, S4, K45, K45D, B, S5, G, Grz, and obtaining several different tableau
systems for some of these logics. In the process, we present a new and shorter semantic
proof of an embedding of S5 into S4, and also give an embedding of S5 into K45 due
to Shvarts.

Most of these systems are cut-free but even those that are not require only an analytic
form of the cut rule which remains totally amenable for computer implementation.

We then give sound, complete and cut-free sequent and tableau systems for the propo-
sitional modal logics S4.3, S4.3.1 and S4.14. These logics are of particular importance
when the modality O is given a temporal interpretation because they respectively model
time as a linear but dense sequence of points, a linear but discrete sequence of points and
as a branching but discrete tree of points.

I had thought that all this work was original until I found that my system for S4.3 was
discovered by Zeman [Zem73] almost 20 years ago in tableau form. Zeman, however, is
unable to give the corresponding cut-free sequent system. I know of no other cut-free
sequent or tableau systems for the logics $4.8.1 and S4.14 although Bull [Bul85] erro-
neously credits Zeman [Zem73] with the discovery of a tableau system for S4.3.1 (which
Bull, following Prior, calls D). Once I found Rautenberg’s paper [Rau83], however, it
was obvious to me that my formulations were but mere extensions of his method. In fact,
Rautenberg [Rau83, page 414] clearly states that his method can be extended to handle
other well known modal logics with the finite model property. He even refers to “a simple
tableau” system for S4.8 but does not give details since his main interest is in proving
interpolation, and S4.3 lacks interpolation. In subsequent personal communications I
have been unable to ascertain the S4.8 system to which Rautenberg refers [Rau90].

In the further work sections we sketch incomplete work and suggest further work of direct

relevance to automated deduction in modal logics.

(a) we present incomplete work aimed at obtaining tableau systems for the following
logics: KB, S4Dum, K4DLZ, KGL, K4L, G,, S4M, S4.4, S4Zem, KLGrz;

(b) we briefly mention incomplete work on extending the tableau method to proposi-
tional tense logics, to propositional discrete linear temporal logic DX, to proposi-
tional discrete branching temporal logic CTL, and to first order modal logics;

16

(c) we suggest how to obtain syntactic cut-elimination proofs for the modal logics we
consider.

1.9 Dissertation Outline

Chapter 2 is a brief introduction to propositional normal modal logics. We cover the
syntax, axiomatic formulations and Kripke semantics for these logics and borrow heavily
from the lecture notes of Goldblatt [Gol87] and the excellent introductory text by Hughes
and Cresswell [HC84]. We sketch how to relate the axiomatic formulations with Kripke
semantics via soundness and completeness theorems but do not present detailed proofs.
Instead, we catalogue many well known characterisation results, usually due to Segerberg
[Seg71], and give pointers to the literature where proofs can be found.

Chapter 3 is an introduction to sequent systems for modal logics. We begin with the
syntax of sequent systems, discuss the structural rules and highlight the importance of
the contraction rule in modal sequent systems. We introduce Kripke semantics for modal
sequent systems, define soundness and completeness, but do not prove specific results.

Chapter 4 is an introduction to tableau systems for modal logics. We show the correspon-
dence between sequent and tableau systems via the Kripke semantics for sequent systems
introduced in Chapter 3. We prove soundness and completeness results for the modal
tableau system for S4 as a generic example of the method of Hintikka [Hin55, Hin63] and
Rautenberg [Rau83].

Chapter 5 is a uniform treatment of known tableau systems for the propositional normal
modal logics K, T, D, K4, D4, S4, K45, K45D, B, S5, G and Grz. Alternative
systems for D, S4, K45, K45D and S5 are also given there. Most of these systems are
cut-free but even when cut is required, it is always an analytic cut rule which remains
amenable for computer implementations.

Chapter 6 is a detailed description of cut-free tableau systems for the propositional normal
modal logics S4.3, S4.3.1, S4.14 and brief descriptions of various extensions of S4 having
intuitive temporal interpretations.

Chapter 7 is a brief (historical) review of related work in sequent and tableau systems for
modal logics, supplementing the specific bibliographic remarks made at various points in
the dissertation.

Chapter 8 is a brief description of further work and incomplete work. Some of this work
is not related to the main theme of the dissertation, but (hopefully) is of independent
interest,.

Chapter 9 contains the conclusions.

17

Chapter 2

Propositional Normal Modal Logics

The first part of this chapter is an introduction to the syntax, axiomatic bases and
Kripke semantics for various propositional normal modal logics. The syntactic or proof-
theoretic notions of axiom, axiomatic basis, theorem and proof are all defined, as are
the semantic or model-theoretic notions of frames, models, satisfiability and validity.
These syntactic and semantic concepts are then related via the notions of soundness and
completeness. This material is based on the excellent introductory texts by Hughes and
Cresswell [HC84, van86] and Goldblatt [Gol87].

The latter parts of this chapter are devoted to various properties of propositional nor-
mal modal logics which are of primary importance for automated deduction in these
logics. The concepts of decidability, semi-decidability, finite axiomatisation, finite model
property and finite frame property are all defined. It is known that these concepts are
intimately related for propositional normal modal logics, so the relationships are stated
formally but not proved.

The most common method to prove axiomatic completeness results is to use a technique
from classical logic due to Henkin [Hen49] involving infinite maximal consistent sets of
formulae [Gol87, HC84]. But to establish decidability, one must work with finite models
and the most common way to obtain finite models from these infinite, maximal consistent
sets is the filtration method [LS77, Seg71]. However, as we make no use of filtrations, or
of maximal consistent sets, we omit the necessary definitions.

Instead, the chapter ends with a catalogue of known characterisation results for many ax-
iomatically formulated propositional normal modal logics, concentrating on finite frames.
These results, which are taken from various sources, were invariably obtained by using
maximal consistent sets and filtrations. But we require the results only as our main
interest is to show that our sequent and tableau systems characterise these same logics.

The brevity is justified as we are primarily interested in proof procedures for proving

that a formula either is or is not a theorem of some modal logic and as we have seen,
axiomatic systems are not good proof procedures.

18

2.1 Syntax: Propositions, Formulae and Subformu-
lae

The sentences of modal logics are built from

(i) a denumerable non-empty set of primitive propositions P = {py, ps,- - };
(ii) the classical binary connective A and the classical unary connective —;
(iii) the unary modal connective O;
(iv) the punctuation marks) and (.
A well-formed formula, hereafter simply called a formula, is any sequence of symbols
q
obtained from the following rules:

v) any p; € P is a formula and is usually called an atomic formula;
p

(vi) if A and B are formulae, so are —A, =B, AN B, 0A and OB.
Then the other usual connectives are defined as abbreviations

(AV B) = (~(~AA-B));
(A= B) = (~(AA=B))
(OA) = (~D0-4)

where the = sign is merely a meta-linguistic notation.

Lower case letters like p and ¢ denote members of P. Upper case letters from the be-
ginning of the alphabet like A and B together with P and @ (all possibly annotated)
denote formulae. Upper case letters from the end of the alphabet like X, Y, Z (possibly
annotated) denote finite (possibly empty) sets of formulae. The set of all formulae is
denoted by Fml.

The symbols =, A,V and = respectively stand for logical negation, logical conjunction,
logical disjunction and logical (material) implication. The connectives —, 0,$ are of
equal binding strength but bind tighter than A which binds tighter than V which binds
tighter than = . So AV B A C = D should be read as (mA)V (BAC)) = D. The
symbols O and < can take various meanings but traditionally stand for “necessity” and
“possibility”. In the context of temporal logic, they stand for “always” and “eventually”
so that DA is read as “A is always true” and OA is read as “A is eventually true”.

There are many ways of defining the syntax of modal logics depending on what one
takes as primitives and what as abbreviations. Fitting [Fit83], for example, prefers to

19

take both O and < as primitives whilst Goldblatt [Gol87] takes O and = as primitives
and introduces a special symbol L, denoting a constant false proposition, to then define
negation. In most cases, the particular choice is not important although note that the
lattice of logics that each choice induces can be different [MakT73].

The set of all subformulae of a formula, or of a set of formulae, is used extensively, For
a formula A, the finite set of all subformulae Sf (A) is defined inductively as [Gol87]:

Sf (p) = {p} where p € P is an atomic formula;
Sf (mA) = {~A} U Sf (A);
Sf(ANB) = {AAB}USf(A)USf(B);
Sf (OA) = {OA} U SF (4).
For a finite set of formulae X, the set of all subformulae Sf (X) consists of all subformulac
of all members of X; that is, Sf (X) = Usex Sf (A). Note that under this definition, a

formula must be in primitive notation to obtain its subformulae; for example, AV B must
be written as ~(=A4 A =B) to obtain its subformulae.

The set of strict subformulae of A is Sf (4) \ {A}.

2.2 Normal Modal Logic: An Axiomatic View

The traditional way to formulate a logic is the axiomatic method described below. Be-
cause of the long tradition of axiomatic systems, we assume that all our logics are ax-
iomatically formulated.

An axiomatic system is a finite set of formulae called axioms, together with a finite
set of rules called inference rules. Each axiomatic system gives rise to a set of formulae
L as we describe below and the axiomatic system is said to be a system for L.

Suppose p is an atomic formula and that p appears (possibly more than once) in a
formula A. If we uniformly replace every occurrence of p in A by another formula B
giving a formula A’ then A’ is said to be a substitutional instance of A.

An axiomatically formulated logic L is simply some subset of Fml that obeys (is closed
under) certain (inference) rules governing membership of L. In an axiomatic normal
modal setting, the usual rules are known as the rule of uniform substitution US, the rule
of detachment or modus ponens MP, and the rule of necessitation RN , as shown below:

US: if A € L then A’ € L, where A’ is any substitutional instance of A;

MP: if A€ L and (A= B) € L then B € L;

20

RN: if A € L then OA € L.

These inference rules are all conditional statements and so we require some initial base to
which we can apply the inference rules to obtain L. The axiomatic basis or axioma-
tisation of a logic L is the (usually finite) set of formulae that are deemed to be in L by
definition. The members of such a basis are called the axioms of L. Different axiomatic
bases can give the same logic and so we are usually interested in a minimal set of axioms
to form our axiomatic bases.

By the rule of uniform substitution, any axiom of L automatically brings all its substitu-
tional instances into L. But for historical reasons, where the rule of uniform substitution
is sometimes omitted, it has become customary to use formulae like 04 = A as axiom
schemas instead of formulae like Op = p. By substituting any formula for A, we obtain
an instance of the axiom schema 0A = A.

An axiomatic derivation is a finite sequence of formulae where each formula is either
an instance of an axiom, or results from formulae earlier in the sequence by an application
of one of the inference rules. If the last formula in an axiomatic derivation is A, then the
derivation is an (axiomatic) proof of A. So each instance of an axiom constitutes a one
line proof of itself, by definition. A formula A is a theorem if and only if there is a proof
of A and it should be clear that a logic L is exactly the set of theorems derivable from
its axiomatisation via the rules of inference. We write Fy, A to mean “A is a theorem of

logic L”. Formally,
F1 A if and only if A € L.

Although different normal modal logics have different axiomatisations, propositional nor-
mal modal logics are all extensions of propositional classical logic PC, so a minimum
requirement is that propositional classical logic be included. The easiest way to do so
is to define each logic to contain PC since PC is just a subset of Fml [Gol87]. The
alternative, which we take, is to include some minimal set of axioms from which PC can
be obtained by the three rules of inference. Thus we take the following axiomatisation
of PC from Goldblatt [Gol87, page 17] and assume that all our axiomatic bases contain
these formulae as axioms:

A= (B= A)
(A:¢»(B=>C))=>((A=>B):,»(A=>O));
-—A = A

The final step is to introduce the axiom of “normality”, named K, in honour of Saul
Kripke. The modal logic K has the following lone axiom

K :0(A= B)= (0DA= 0OB)

in its axiomatic basis (as well as the PC-axioms of course). That is, K is the smallest
subset of Fml that includes PC, includes K and is closed under the rules RN, US

21

and MP. The logic K is known as the minimal normal modal logic and any logic
obtained by extending this set of axioms, and retaining the three rules of inference, is
said to be a normal modal logic. Note that the choice of inference rules is crucial in
modal logics as the omission of RN can lead to non-normal (or quasi-normal) extensions
of K [Seg7l, page 171]. In this dissertation, only normal modal logics are treated; see
Segerberg [Seg71], Fitting [Fit83] or Chellas [Che80] for non-normal logics.

2.2.1 Axiom Names and Logics

The logics we study and the axioms defining them have been extensively studied in the
literature and have acquired weird and wonderful names. The most sensible naming
convention is due to Lemmon and Scott [LS77] where each axiom is given a name, and
the name of a logic is formed by concatenating the names of its axioms to the prefix K
to highlight the fact that the logic is normal. Thus, if Ay, Ay, .-+, Ay are the axioms in
the axiomatic basis for a logic, then the name of the logic is KA1 A; -+ Ay. Figure 2.1
(page 23) is a catalogue of our names for the axioms we require and their common names
in the literature. Figure 2.2 (page 24) is a catalogue of well known logics with axiomatic
bases drawn from this set of axioms. Note that some logics have more than one axiomatic
basis; S5, for example, can also be axiomatised as any one of KT4B, KT45, KDB4,
KDB5 [Gol87, page 26] [LS77] [HC84].

Our naming convention is a mixture of tradition and common sense in that we use the
traditional names for the most well known logics but use the Lemmon notation for the
more obscure logics. Most traditional names are harmless as they do not conflict with the
Lemmon notation. However, the traditional names K4.3, D4.3, K4.3W which appear
In various texts (last column of Figure 2.2) are downright misleading in the light of the
Lemmon notation since these logics are respectively axiomatised as K4L, K4DL, K4GL
and L and 3 are different in the absence of 7. Similarly, the logic named S4.1 is actually
axiomatised as KT4M. We therefore avoid these misleading traditional names and use
the stated Lemmon names instead.

2.3 Kripke Semantics for Modal Logics

2.3.1 Possible Worlds, Accessibility, Models and Frames

The well known semantics for classical propositional logic is based on interpretations that
assign true or false to each formula by assigning true or false to each atomic formula and
simultaneously respecting the semantics of the classical connectives. The corresponding
notion in modal logic is to imagine a set of “possible worlds” interconnected in some
way; imagine a graph of nodes (worlds) with arcs denoting the interconnections. Each
world is like a classical propositional interpretation, assigning true or false to each non-
modal formula, but the truth values of modal formulae are determined by higher level
conditions involving the interconnectivity of the graph of possible worlds. This is the

22

Axiom Defining Alternative
Name Formula Names
K D(A= B) = (04 = 0OB)
T OA= A M [Rau83]
D OA= OA
4 0A = O0OA
B A= 00CA
5 CA= 0OCA E [SegTl
M O0CA = OOA G [SegT1]
L D((AADA) = B)VO((BA OB) = A) | H [Che80], Lemnq [SegT1]
3 D(0A = B)vO(OB = A) H [BS84], Hy [LS77],Lem [SegTl]
2 OOA = OOCA G [BS84], G [LS7T]
G O(0A= A) = 0OA W [SegT1]
Grz |D(0(A=>04)= A)= A J1 [HC84, page 111]
Go |O(0(A=0A)= A)= 04 Grzy [SegTl]
Z O(0A = A) = (COA = OA)
Dum | O(0(A = 0A) = A) = (OOA = OA) | Dum, [Seg71],M1 [HC68], M 14 [Zem'73]
Zbr | O(O(4 = 04) = A) = (0COA = 0A)
Zem | OCOA = (A = DA)
B | O0A = (A= 0OA4)

Figure 2.1: Axiom names and alternative names.

basis of possible world semantics as proposed by Saul Kripke [Kri59, Kri63b, Kri65];

but see Bull and Segerberg [BS84], Lemmon and Scott [LS77]

and Zeman [Zem?73] for a

historical account of the development of possible world semantics for modal logics.

A frame is an ordered pair (W, R) where W is a denumerable non-empty set (of possible
worlds) and R is a binary relation over W. That is, R is simply a set of ordered binary

tuples like (w, w') where w € W and w' € W. If (w,w")

€ R, we write wRw' and say that

w' is accessible to or reachable from w. We also write wiw' to mean that (w,w’) € R.

A model is an ordered triple (W, R,V) where (W, R)
which assigns a subset V(p)

of W to each atomic formula p € P, Informally,

is a frame and V is a mapping
V(p) is the

set of worlds at which p is true. Formally, V' : P+ 2% where 2% is the set of all subsets

of W.

We often use annotated names like wy and w, to denote possible worlds. Unless stated
explicitly, there is no reason why w; and w, cannot name the same world.

23

Name of Lemmon Name | Alternative Names
Logic (Axiomatic Basis) | and Known Equivalences
K K
T KT M [Rau83]
D KD Deontic T [BS84]
K4 K4
D4 KD4 Deontic S4 [BS84]
S4 KT4
K45 K45
K45D K45D Deontic S5
B KTB
S5 KT5
G KG KW [Gol87], GL [Val83]
Grz KGrz
S4.3 KT43 KT4L [Gol87]
S4.3.1 KT43Dum D [HC68], [Pri57], [ZemT3]
S4.14 KT4Zbr
S4Grz KT4Grz known to be
S4MDum KT4MDum the logic Grz
Go K4Go
Grz.3 KGrz3 same
S4Grz.3 KT4Grz.3 logic
S4M KT4M S4.1 [MT48] [BS84]
S4Dum KT4Dum
S4Zem KT4Zem
K4L KA4L K4.3 [SegTl]
K4DL K4DL D4.3 [SegT1]
K4DLZ K4DLZ K4.37 [SegT1]
K4G K4G equal to G [Rau83]
KGL KGL G.3 [Rau83], GLyy [Val86]
same logic
K4GL K4GL K4.3W [Seg71]

Figure 2.2: Traditional names of logics, axiomatic bases, alternative names and known
equivalences. We give explicit tableau systems for all logics above the break in the table

and discuss tableau rules for most of the others.

24

2.3.2 Truth, Satisfiability and Validity

The classical semantic notions of satisflability and validity have modal analogues in
Kripke semantics. A possible world w is said to satisfy an atomic formula p if and
only if w € V(p), indicating that p is true in world w. We write this as w = p and write
w f£ p to mean “not w = p”. We should really write something like w |y p to show
that the satisfaction relation |= depends on V, but usually V is clear by context. The
semantics of the other connectives and modal operators then follow naturally according
to the following where p is an atomic formula and A and B are formulae:

w = piff w e V(p);

w = —A i w A
wEAABiffwl Aand w = B;
wEAVBiffwE Aorwf B;
wEA=>Bitwl Aorwl B;

w |= O0A iff Vu' € W, wRw' implies w' = A;

w = OA f 3w’ € W such that wRw' and w' | A.

In any model (W, R, V), a formula A is said to be true in a world w € W if w = A.

A formula A is said to be valid in a model M = (W,R,V), written as M = A, if it is
true in all worlds in that model; that is, if Vw € W, w = A

A frame naturally generalises the notion of a model since augmenting any frame with a
valuation V' gives a model. A formula A is said to be valid in a frame F = (W, R),
written as F |= A, if A is valid in all models based on F; that is, if VV, (W, R, V) = A.

Suppose C is a class of models, or of frames. A formula A is said to be valid in a class
C, written as C |= A, if it is valid in every member of C,

An axiom is said to be valid in a model (valid in a frame) if all instances of that axiom
have that property. If we have a set of formulae X C Fml then M EX (F EX)
denotes that all members of X are valid in M (F).

25

Axiom Property Property of
Name Name R
T Reflexive Vw € W, (wRw)
B Symmetric Vw,w' € W, (wRw' = w'Rw)
D Serial Yw € W3uw' € W such that (wRw')
4 Transitive Vs,t,u € W, (sRt A tRu = sRu)
5 Euclidean Vs,t,u € W, ((sRt A sRu) = tRu)
L Weakly-connected | Vs, t,u € W, (sREAsRu = (tRuVt=uV uRt))

Figure 2.3: Names of axioms corresponding to conditions on R.

2.3.3 Restrictions on R

Kripke [Kri59, Kri63b, Kri65] showed that three well known normal modal logics could
be given an intuitive semantics based on such models where each axiom of the modal
logic corresponded directly to a certain restriction on the form of R. That is,

1. if an axiom A is valid in a frame (W, R) then R has a certain property; and

2. if the reachability relation R of a frame (W, R) has that property then the axiom
A is guaranteed to be valid in (W, R).

Thus the axiom A characterises frames with a certain property. The logic K is known as
the minimal normal modal logic because the axiom K puts no restriction on R whatsoever.

There are many formulae that correspond to restrictions on the reachability relation R.
Most restrictions have names and Figure 2.3, which is based on similar tables from Gold-
blatt [Gol87], shows the correspondences between certain axioms and certain restrictions
on R. Theorems 1 and 2 below formalise these correspondences.

Theorem 1 Let F = (W, R) be a frame. Then, for each of the properties listed in
Figure 2.8, if R satisfies the property, then the corresponding axiom is valid in the frame

F [Gol87], [LS77].

Proof for reflexivity and 7: We have to show that if we have a frame F = (W, R)
where R is reflexive, then F |= 04 = A.

Suppose R is reflexive and that M is any model based on F. Consider any world w, € W.
We have to show that wo = OA = A. Suppose to the contrary that wy K- 0OA = A. This
means that wy = 0A4 and wy = ~A. By definition of = we know that the former means:
Vw € W, woRw implies w |= A. Since R is reflexive, woRwy, hence we must have wq E A
But this contradicts our second requirement that wy = A, hence wy = 04 = A.
As wy was an arbitrary world from W this must be true for all worlds in W. That is,
M |= OA = A. Since M was an arbitrary model based on F we must have F DA = A

®

26

Theorem 2 If a frame (W, R) validates any one of the azioms in Figure 2.8, then R
satisfies the corresponding property [Gol87], [LS77].

Proof for reflexivity and 7: We have to show that if OA = A is valid in a frame
(W, R), then R is reflexive.

Let 7 = (W, R) be a frame and suppose that F = OA = A. We have to show that R
is reflexive. Suppose to the contrary that R is not reflexive; that is, —(Vw € W, (wRw)).
Since W is non-empty, this means that there is some wo € W such that wy Bwy. Define
a valuation V on this frame as:

V(p) = {w € WhioRuw)
giving a model M = (W, R, V).

Now wo ¢ V(p) for any p € P since we know wq Rwo. Thus wo f& p. Also, wp = Op for any
p € P by definition of V; that is, Vw € W, woRw implies w |= p. But then wy & Op = p
which is an instance of DA = A4, contradicting our assumption that F = OA = A. Thus
R must be reflexive. e

Note that Theorems 1 and 2 relate validity of one axiom with a property of R. When
combining these properties, some of the axioms can be replaced by simpler ones. For
example, if T' is an axiom then axiom L can be replaced by axiom 3 without affecting
the set of theorems.

Also, note that “R is not reflexive” is not the same as “R is irreflexive” since there can
be a middle ground where R is neither reflexive nor irreflexive. Similar warnings apply
for transitivity and symmetry.

2.3.4 Properties Of R Not Corresponding To Any Axioms

As Goldblatt [Gol87, page 13] states, Theorems 1 and 2 explain why Kripke semantics
have been so successful for characterising modal logics. There are, however, some desir-
able properties of R that do not correspond to the validity of any modal axiom. There
are, for example, no propositional modal axioms whose validity guarantees that R is:

irreflexive: Yw € W, (whw); [Gol87, p. 14] [HC84, p. 47);
antisymmetric: Vs,t € W, ((sRt AtRs) = s = t) [Gol87, p. 14] [HC84, p. 50] ;
asymmetric: Vs,t € W, (sRt = (sltt)) [Gol87, p. 14] [HC84, p. 50] ;
intransitive: Vs,t,u € W, ((sRt AtRu) = (sRu)) [HC84, p. 50] ;
connected: Vs,t € W,(sRtVi=sVtRs) [Gol87, p. 29] .

27

2.3.5 First Order Definability

Each of the axioms from Figure 2.3 corresponds directly to some property of R that can
be written as a formula of classical first order logic in terms of R and variables like w.
Goldblatt [Gol87] shows that there exist properties of R which are characterised by an
axiom but which cannot be written as first order formulae. The investigation of this
notion of “first-order definability” led to the discovery that propositional modal logic is
a form of second order logic [Gol87].

2.4 Soundness and Completeness

Up till now, the syntactic notion of proof and the semantic notion of validity have been
kept separate. The ideal is to show that our semantic intuitions about models for a
particular logic correspond to the syntactic notion of proof in that logic (but note that
this is not always péssible). Syntactically, we manipulate formulae, while semantically,
we speak in terms of models. The two notions can be related by associating a set of
formulae with each world, with the understanding that the formulae in the set are the
only formulae that are “true” in that world. These concepts are formalised below.

Let C be either a collection of models, or of frames. Then logic LL is sound with respect
to C if every theorem of L is valid in each member of C. Formally, L is sound with respect
to C if for every formula A we have that by, A implies C = A [Gol87).

Logic L is complete with respect to C if every formula that is valid in each member of
C is a theorem of L. Formally, logic L is complete with respect to C if for every formula

A we have that C |= A implies kg, A [Gol87].

A logic L is determined or characterised by a class C if it is both sound and complete
with respect to C; that is, when C = A iff g, A.

Lemma 1 If Ly and Ly are logics determined by the same class of frames C, then Ly =
L,.

Proof: Let Ly and Ly be logics determined by some class of frames C. Suppose to the
contrary that Ly # L.

Since Ly and Ly are just sets of formulae this means that there is some formula A such
that A € Ly and A ¢ Lj or such that A € L, and A & Ly. We consider only the first
case since the second can be proved in a similar way. That is, we have Fy, A and l/y, A.

Since A is not a theorem of Ly, and Ly is determined by C, there is some frame F = (¥, R)
with F € C and F [~ A. That is, there is some model M = (W, R, V) based on F with
wo € W and wp }= A.

28

On the other hand, A is a theorem of L, and Ly is determined by C. Hence any frame
in C must validate A. In particular, F |= A. But this means that for all w € W in the
model M chosen above we must have w = A. In particular, wo |= A. Contradiction,
hence 1, A implies Fr, A. The other direction is proved similarly giving Ly = L. e

We shall use this lemma in Section 4.6 to show that the logics defined by our sequent
and tableau systems are indeed the axiomatically formulated logics we claim them to be.
That is, we shall show that in each case, the axiomatic logic L; and the sequent /tableau
logic L are determined by the same class of frames, and hence, Ly = L.

Hughes and Cresswell [HC84, page 55] point out that a logic can be proved sound with
respect to a certain class of frames by showing that every frame in that class validates
each of the axioms of the logic. The reason is that validity in frames, unlike validity in
a model, is preserved by each of the three inference rules US, MPand RN.

A logic is said to be complete iff it is characterised by some class of frames [HC84, page
55]. Note that there exist non-trivial normal modal logics that are incomplete in that
they are not characterised by any class of frames [Gol87, page 45].

2.4.1 Finite Models, Finite Frames and Decidability

IfLisa normal modal logic, then L has the finite model property if and only if for
every formula A which is not a theorem of L, there is a model (W,R,V) in which W is
finite and

(a) there is some w € W such that w j£ A;

(b) if B is a theorem of L, then for all w € W, w =B [HC84, p.136].

Part (a) simply says that if A is not a theorem of L then there is some world that falsifies
A in some model (W, R, V). Part (b) says that this model (W,R,V) must validate all
theorems of L.

If L is a normal modal logic, then L has the finite frame property if and only if for
every formula A which is not a theorem of L, there is a frame (W, R) in which W is finite
and

(c) there is some valuation V such that (W,R,V) £ A
(d) if B is a theorem of L, then for all valuations V,(W,R,V) =B [HC84, p.150].

Part (c) says that if A is not a theorem of I, then there must exist a model (W, R, V)
and a world w € W such that w £ A. Part (d) says that the frame (W, R) must validate
all theorems of L.

29

Theorem 38 A normal modal logic has the finite Jrame property iff it has the finite model
property [Seg71, page 38], [HC84, page 152], [Gol87, page 34).

A logic LL is decidable iff there is an effective procedure to determine, in a finite number
of steps, whether any given formula A is or is not a theorem of L [HC84]. Note that
for decidability we must be able to distinguish A as either a theorem or a non-theorem
so that we must be able to detect both theoremhood and non-theoremhood. Usually,
it is the latter that poses problems. A logic is semi-decidable if there is an effective
procedure to determine, in a finite number of steps, whether any given formula A is a
theorem. So for a semi-decidable logic, the effective procedure is permitted to run forever
when A happens to be a non-theorem, but must return an afirmative answer in a finite
number of steps when A happens to be a theorem.

A logic L is finitely axiomatisable iff there is a finite set of axioms which together with
US, MP and RN yield exactly L [HC84].

The finite model property, and hence the finite frame property, are important because of
the following theorem.

Theorem 4 IfL is a finitely aziomatisable normal modal logic which has the finite model
property, then L is decidable [HC8{, page 153].

Hence, by proving the finite model property for a finitely axiomatisable logic L, we
immediately obtain a proof of decidability. We shall see in later chapters that if the
finite “axiomatisation” is via a set of tableau or sequent rules, we also obtain a decision
procedure for L.

Hughes and Cresswell [HC84, page 154] note the following facts as a warning about what
Theorem 4 does not say. There exist normal modal logics with the finite model property
that are undecidable [Urq81]. There are finitely axiomatisable and decidable normal
logics that lack the finite model property [van80]. And finally, there are decidable normal
logics with the finite model property that are not finitely axiomatisable [Cre79].

2.4.2 Different Types Of Frames

In the rest of this dissertation we shall work almost exclusively with frames that are
finite trees or finite linear sequences. We do not give a formal definition of a tree but
stipulate that a tree has a unique root node, that all the other nodes of a tree (if any)
are descendants of this root with no converging arcs, and that each node except the root
has a unique parent node. The successor relation of the tree need not be transitive, nor
reflexive. The nodes of a tree may either be worlds or collections of worlds called clusters,
a term we define below. The notion of clusters makes sense only for transitive frames.
So from now on, if a frame involves clusters, then it must be transitive.

30

Suppose that (W, R) is a transitive frame. Following Goldblatt [Gol87, page 52] define
an equivalence relation ~ over W as: ‘

wy & wy iff wy = wy or (wy Rw, and wy Rw,).
Then the R-cluster of a world w € W is:
Cuw = {v'|w =~ w'}.

Putting
O'w1 ﬂ OU,2 iff ’LU1R’LU2

gives a well-defined, transitive and antisymmetric relation between clusters. Putting

Cuy < Cy, iff C, < Cu, and Cy, # C,,
iff wiRw, and wyfw,

defines <1 to be transitive and irreflexive, and therefore asymmetric; that is, Cy, <1 C,,
implies Cy, A4 Cy,. Thus it makes intuitive sense to speak of “before” and “after” with
reference to clusters as well as worlds in a transitive frame. The following definitions
formalise these notions and are from Segerberg [Seg71, pages 72-73].

A world w precedes, or occurs before another world w' if wRw' and w'Rw. A world
p) 3
w succeeds, or occurs after, another world w' if w'Rw and wRw'.

A cluster C' precedes, or occurs before, another cluster C’ if C <1 C'. A cluster
succeeds, or occurs after, another cluster ' if ¢! < (.

An obvious notion of immediate successor and immediate predecessor also holds when
the clusters can be mapped onto the natural numbers, ‘

A cluster C' is an initial cluster if no cluster occurs before it; that is, if =(3C": C' < O).
A cluster C' is a final cluster if no cluster occurs after it; that is, if =(3C": C' <«).
A cluster C is a first cluster if it precedes all other clusters; that is, if VO': C' < C".
A cluster C is a last cluster if it succeeds all other clusters; that is, if VC': ¢’ « C.

A first or last cluster must be unique but there may be more than one initial cluster and
more than one final cluster. For example, a branching (transitive) finite tree of clusters
has a final cluster on each branch but has a unique first cluster at the root.

A cluster is simple iff it consists of just one reflexive world. A cluster is proper iff it
consists of at least two worlds, If C is a proper cluster then Yw,w’ € C we have wRw'
and w'Rw, and R is said to be universal over C. Thus, in a proper cluster, R must
be reflexive, transitivity and symmetric. A cluster is degenerate iff it consists of just
one irreflexive world. Hence a nondegenerate cluster must be either simple or proper.
Thus, if all clusters in a frame are degenerate, then R is irreflexive (and transitive). And
if all clusters in a frame are nondegenerate, then R is reflexive (and transitive).

31

A (transitive) frame is called a, sharp tack if it is either a lone cluster Ch, or a degenerate
cluster C; and a nondegenerate cluster Cy with C; <« C,. A (transitive) frame is called
a blunt tack if it is either a lone nondegenerate cluster Cy, or a degenerate cluster Cy
and a nondegenerate cluster C, with Ci < C,. The intuition is that Oy is the sharp
(degenerate) or blunt (simple) point and C, is the (simple or proper) head of an upside
down tack.!

A frame is connected if it satisfies Vs, t(sRtVs = tVtRs) but as we have seen, there is no
single axiom that characterises connected frames (although we know that L characterises
weakly-connected frames) [Gol87, page 29]. A frame is a weak linear order or a
sequence of nondegenerate clusters if it is reflexive, transitive and connected. A
frame is a strict linear order or a sequence of degenerate clusters if it is irreflexive,
transitive and connected (and hence asymmetric). A frame is a linear order or a
sequence of simple clusters if it is reflexive, transitive, connected and antisymmetric,

2.4.3 L-frames, L-models and L-satisfiability

Hughes and Cresswell refer to a model M as a “model for L” iff every theorem of L is
valid on M [HC84, page 49], and refer to a frame F as a “frame for L” iff every theorem
of L is valid on every model based on F [HC84, page 54]. They point out that care
is needed when using this terminology because a “model for T” does not have to be
reflexive [HC84, page 90]. Hence one cannot say “suppose M = (W, R, V') is a model for
T, then R is reflexive”. But by Theorem 2 (page 27) we can say that every “frame for
T” is reflexive since any “frame for T” must validate T.

Unfortunately we require the term “model for X” in a different sense to be explained
shortly. Also, we are not interested in proving characterisation results per se since these
are well known for the logics we study. We therefore follow F itting [Fit83] and define
certain types of frames as L-frames; one for each logic L. We then base L-models on
L-frames. For example, we define all T-frames to be reflexive. We can do so because of
known characterisation results that relate each axiomatically formulated logic L to the
particular frames we choose as L-frames.

A frame (W, R) is an L-frame if it satisfies the conditions in Figure 2.4 according to the
value of L.

A model M = (W,R,V) is an L-model if (W, R) is an L-frame. Also, M is an L-
model for (a finite set of formulae) X if there exists w € W such that w = X. Recall
that w = X means that w = A for all 4 € X.

A formula A is L-valid iff A is valid in all L-models, and hence in all L-frames.

A finite set X is L-satisfiable iff there exists an L-model for X. So, X is L-unsatisfiable
iff there are no L-models for X.

T now realise that this terminology is bad as the only difference between the two tacks is in the form
of the lone cluster ;.

32

L | L-frame
K finite, irreflexive, intransitive tree of worlds
T finite, reflexive, intransitive tree of worlds
D finite, intransitive tree with irreflexive non-final worlds and
reflexive final worlds
K4 finite, (transitive) tree of clusters
D4 finite, (transitive) tree of clusters with nondegenerate final clusters
S4 finite, (transitive) tree of nondegenerate clusters
B finite, reflexive, symmetric tree of worlds
K45 finite, (transitive) sharp tack
K45D | finite, (transitive,) blunt tack
S5 finite, reflexive, transitive, symmetric maximally connected graph of worlds
G finite, (irreflexive, transitive) tree of degenerate clusters
K4G
Grz
S4Grz | finite, (reflexive, transitive) tree of simple clusters
S4MDum
S4.3 finite, (reflexive, transitive) sequence of nondegenerate clusters
S4.3.1 | finite, (reflexive, transitive) sequence of nondegenerate clusters with
no proper non-final clusters
S4.14 | finite, (reflexive, transitive) tree of nondegenerate clusters with
no proper non-final clusters
Go finite, (transitive) tree with degenerate non-final clusters and simple final clusters
S4M finite, (reflexive, transitive) tree of nondegenerate clusters with
simple final clusters
S4Dum | ?
KA4L finite, (transitive) sequence of clusters
K4DL | finite, (transitive) sequence of clusters with a nondegenerate last cluster
K4DLZ | finite, (transitive) sequence of degenerate clusters with a final simple cluster
K4GL | finite, (irreflexive, transitive) sequence of degenerate clusters
KGL
KB ?
KB4 a finite (transitive) cluster
S4R if wi # wy and wy Rw, then wy Rwg implies w, Rws [SegTl, page 160]
S4.4
S4.8Zem | (that is, a blunt tack except that if Cy <1 C, then €} must be simple)
S4Zem | finite, reflexive (transitive) frames of rank < 2 such that
initial cluster is simple [Seg71, page 153]
S4.3Grz
KLGrz | finite, (reflexive, transitive) sequence of simple clusters
KGrz.3
S4.3Go

Figure 2.4: Definition of L-frames. The break in the table is the boundary between
completed and uncompleted work as far as tableau systems are concerned.

33

Theorem 5 In Figure 2.4, each logic L is characterised by the corresponding L-frames.
(Note that the word finite is used in an absolute sense so that every cluster is itself finite.)

Proof for K, T, D: [Rau83, Rau79];

Proof for K4, D4, S4: Segerberg [SegT1, page 77] proves that these logics are respec-
tively characterised by finite transitive frames; finite, transitive frames where no final
cluster is degenerate; and finite transitive frames where no cluster is degenerate. But this
Is not in terms of trees. Rautenberg [Rau83, Rau79] provides the characterisation results
in terms of trees.

Proof for B: [Rau83, Rau79];
Proof for K45, K45D, S5 : Segerberg [SegT1, page 77-78].

Proof for G: Proved indirectly as follows. Segerberg [Seg71, page 88] proves that K4G,
which he calls K4W, is characterised by the class of finite, irreflexive, transitive trees;
our G-frames. Goldblatt [Gol87, pages 46 and 56] states that G = K4G, although he
calls them KW and K4W, citing Boolos [BooT79, pages 30 and 82], where it is shown
that 4 is a theorem of G.

Proof for Grz: The result is obtained indirectly as follows. Segerberg [SegTl, page
103] proves that S4Grz is characterised by the class of finite, reflexive, transitive trees
of simple clusters; the class we call Grz-frames. Hughes and Cresswell [HC84, page 111]
state that S4Grz = Grz since van Benthem and Blok [vB78] prove that 4 and T are
theorems of Grz. Segerberg [Seg71, page 107] also proves that S4MDum = S4Grz; a
result mentioned in Bull and Segerberg [BS84, page 50].

Proof for S4.3: Segerberg [Seg71, page 77) and Hughes and Cresswell [HC84, page 149].
Proof for S4.3.1: Segerberg [Seg71, page 106], Goldblatt [Gol87, page 59].

Proof for S4.14: Zeman [Zem?73, page 249] gives an intuitive argument but (apparently)
does not realise that finiteness is essential.

Proof for Go: Rautenberg [Rau83] mentions a characterisation result in terms of no
infinite ascending chains of pairwise distinct points but we conjecture that Go is charac-
terised by the class of finite transitive trees with degenerate (irreflexive) non-final clusters
and simple (reflexive) final clusters. This class differs from G-frames since G-frames must
be irreflexive. It also differs from S4.14-frames since S4.14-frames must be reflexive.

Proof for S4M: Bull and Segerberg [BS84, page 49].

Proof for S4Dum: Segerberg and Bull [BS84, page 51] claim that the logic S4Dum is
characterised by our S4.14-frames, but as we shall see later, this is incorrect. Segerberg
[Seg71, page 106] gives a characterisation result in terms of reflexive kites and all finite
reflexive trees but I don’t understand his definition of kite on (his) page 89. Further work
is to characterise S4Dum in terms of finite trees.

34

Proof for K4L: Note that K4L is often called K4.3 even though T is missing [SegTl,
page 50]. Segerberg [Seg71, page 77] proves that K4L is characterised by the class of
finite frames of clusters where of every two distinct clusters, one precedes the other. That
is, frames that are finite, (transitive) sequence of clusters. Further work is to obtain the
obvious tableau system. Goldblatt [Gol87, page 26] claims that K4L is characterised by
transitive weakly-connected frames where finiteness is not stipulated.

Proof for K4DL: Note that K4DL is often called D4.8 even though T'is missing [SegT71,
page 50]. Segerberg [Seg71, page 77] proves that K4DL is characterised by the class of
finite transitive frames where of every two distinct clusters, one precedes the other, and
the last cluster of the frame is nondegenerate; the frames we call K4DL-frames. Further
work is to obtain the obvious tableau system.

Proof for K4DLZ: Goldblatt [Gol87, page 55].

Proof for K4GL: Note that K4GL is called K4.3W in the literature even though T is
missing [Seg71, page 89]. Segerberg [Seg71, page 89] proves that K4GL is characterised
by the class of strict linear orderings; our K4GL-frames. Hughes and Cresswell [HC84,
page 107] point out that K4GL = KGL using the result of Boolos that 4 is a theorem
of KGL [Gol87, page 26], [BooT79, page 30].

Proof for KB: I have been unable to find a characterisation result for this logic in terms
of finite frames.

Proof for KB4: Segerberg [Seg71, page 161] proves that KB4 is characterised by the
finite transitive frames containing only one cluster. Further work is to obtain the not so
obvious tableau system. But it is known that KB4 = KB5 [Gol87, page 26].

Proof for S4.4: Zeman [Zem73, page 256] gives an intuitive argument for this char-
acterisation result and Segerberg [Seg7l, page 160] gives a proof although he calls this
logic S4R.. Segerberg [Seg71, page 161] also proves that S4.4 = S4R = S4.3Zem. Using
S4.3-frames as a starting point, it is not hard to see that Zem forces there to be at most
two nondegenerate clusters and also forces the first cluster to be simple when there are
exactly two nondegenerate clusters.

Proof for S4Zem: Segerberg [SegT1, page 153] where it is noted that S4Zem is also
known as S4.04.

Proof for KGrz.3: Again proved indirectly. Segerberg [Seg71, page 103] proves that
S4.3Grz is characterised by the class of all finite linear orderings; our KGrz.3-frames.
Then the arguments mentioned in the proof for Grz apply. Segerberg [SegT1, page 107]
also proves that Grz and Go are equivalent when added to S4 giving S4.3Go = S$4.3Grz.
Thus we also have KLGrz = K4Grz.3 = KGrz.3 o

35

2.5 Known Miscellaneous Results of Interest
Some other interesting results which we refer to in later sections are:

$4.8 is characterised by the single frame (I, <) where I is R or Q, the set of real
and rational numbers respectively [Gol87, page 57];

54.3.1 is characterised by the single frame (w, <) [Gol87, page 57);
K4DLZ is characterised by the single frame (w, <) [Gol87, page 54];

K4DLX is characterised by the single frame (I, <) where X is the axiom of
density OO A = OA [Gol87, page 57];

K4GL is characterised by the single frame (w, >) [SegT1, page 89].

Another bewildering aspect of the literature is that the same name is often given to
slightly different axioms. The axiom Dum, named after Michael Dummett, appears as:

Source Axiom Name
[Gol87] O(O(P = OP) = P)= (OOP = OpP) Dum
[SegTl] 0(O(P = 0OP) = P)= (0OP = P) Dum
[HC84] O(O(P = DP) = P)= (OOP = P) N1
[HC68] D(O(P = OP)= P)= (OOP = opP) M1

[Zem73] 0O{O(0(P = OP) = P) = (GOP = P)} M13
[Zem73] 0{O(O(P = OP) = OP) = (OOP = OP)} Mi4
[BS84] O(O(P = 0OP)= P)= (OOP = OpP) Dum

Segerberg [Seg71, page 107] shows that

0(Q(P = OP) = P) = (COP = P)
O(D(P = OP) = P) = (COP = OP)
D(O(P = OP) = OP) = (OOP = P)
D(O(P = OP) = OP) = (©OP = OP)

are all equivalent if K, T' and 4 are also present, settling the issue.

A syntactic proof that S4 + M13 equals S4 + M14 is given in Zeman [Zem73, pages
246-248] and is attributed to Kit Fine.

Segerberg [Seg71, page 89] also considers the logics K4Z, D4Z and K4LZ, and shows
that the axiom OOT = O L puts an end to time since it is determined by the class of
all strict linear orderings that have a last element.

36

Chapter 3

Sequent Systems for Modal Logics

As was mentioned in the introduction, the major disadvantage of axiomatic systems is
that it is difficult to find proofs using them since there is no systematic method for
doing so. In 1935, Gerhard Gentzen [Gen35, Sza69] introduced a system of deduction for
classical first order logic using many rules of inference and few axioms, instead of many
axioms and few rules of inference as in axiomatic systems. Gentzen calculi, or sequent
systems, as they are called, are significant in automated deduction because they can be
used in a goal directed or “backward” manner. That is, an attempt to prove a particular
formula can start with the formula itself and proceed by a sequence of operations that
reduce the formula into other formulae. Furthermore, this backward process can be
applied systematically so that if a proof exists, it will eventually be found. This is in
marked contrast to axiomatic systems where a proof often starts with some apparently
arbitrary instance of an axiom whose importance only becomes clear at some later point,.
Although sequent systems are purely syntactic proof procedures, for many logics, if a
systematic attempt to find a proof for A fails, then we have enough information to
construct a finite (semantic) counter-model for A. So for many logics, sequent systems
give decision procedures for testing theoremhood.

There is one sequent rule, called the cut rule, that destroys the nice properties mentioned
above. The crux of Gentzen’s paper is the Hauptsatz, or cut-elimination theorem, which
states that the cut rule is redundant for classical first order logic. That is, if there is a
sequent proof containing uses of the cut rule then there is a, sequent proof devoid of uses
of the cut rule. '

Over the years, sequent systems have been found for many nonclassical logics since se-
quent systems closely mimic the semantics of the logic in question. But for many sequent
systems the cut rule is indispensable because some theorems of the associated logic are
not provable in a system devoid of the cut rule.

In this chapter, we introduce sequent systems for propositional modal logics.

37

3.1 Syntax of Sequents

In what follows, capital Latin letters like A and B stand for formulae and capital Greek
letters like I' and A stand for finite (possibly empty) sets of formulae. Formally, a’
sequent is an ordered pair (I, A) and an intuitive semantic reading of it for classical
propositional logic is “if all the formulae in T' are true then some formula in A is true”.
Sequents are usually written as I' — A using a new meta-logical symbol, —, to
highlight this intuition. Note that the sequent arrow, —, is not material implication,
=>, although it is closely related. Consequently, I' — A is not a formula of any of our
logics.

The set of formula on the left hand side of the sequent arrow constitute the antecedent
(of the sequent) whilst the set of formula on the right hand side constitute the succedent
(of the sequent). To draw attention to particular formulae A and B in the antecedent or
succedent, we write I', A — A, B for the sequent (I' U {A}, AU {B}) where A ¢ T and
B ¢ A. As usual, we write — A instead of) — A and I' — instead of I' — () where
0 is the empty set. Intuitively, a comma in the antecedent acts like A, and a comma in
the succedent acts like V. In particular, — A intuitively states that “A is true” and
A — states that “A is false”.

3.2 Sequent Rules, Derivations and Proofs

As we said, sequent systems have many inference rules and few axioms. A sequent rule
is just like an axiomatic inference rule except that the basic components of the rule are
sequents instead of formulae and that sequent rules are written in a vertical fashion with
the “if” part above a horizontal line and the “then” part below the line. A sequent rule
has one sequent below the horizontal line and a (possibly empty) list of sequents above
the horizontal line. The sequent below the line is called the conclusion (of the sequent
rule) and the sequents above the line are called the premisses (of the sequent rule). The
particular formulae shown explicitly in the conclusion are called the principal formulae
(of the sequent rule). The particular formulae shown explicitly in the premisses are called
the side formulae (of the sequent rule). All other formulae are called parametric
formulae.

Each sequent rule has a unique name which is either a simple alpha-numeric string or is
constructed from the connective of its single principal formula and a small arrow. The
arrow precedes the connective if the principal formula appears in the antecedent of the
conclusion and follows the connective if the principal formula appears in the succedent
of the conclusion.

38

For example,

'rA—A T',B— A
'AvB-—A

(V—)

is a sequent rule. The sequent I';AV B — A is the conclusion and the sequents
I'yA— A and I',B — A are the premisses. The formula A V B in the conclusion is
the principal formula whilst the formulae A and B in the premisses are the side formulae.
The formulae in I" and A are the parametric formulae and the name of this rule is (V—).

A sequent calculus or sequent system S is a collection of sequent (inference) rules. We
use these terms interchangeably and identify S with the set of its rule names. A sequent
system SPC = {(Aziom), (5—),(==),(A =),(= A),(V =), (= V), (= —),(— =)}
for propositional logic PC is shown in Figure 3.1 (page 40).

In axiomatic systems, the notion of proof is explicitly tied to the modus ponens rule since
it is the main rule of inference. In sequent systems, the only axiomatic rule is (some
variation of) the sequent I'A — A, A since it has no premisses. It is provable by
definition since it intuitively states that “if all formulae in I' U {A} are true then some
formula in A U {A} is true”; namely A. All other sequent rules can be read downwards
as “if all the premisses are provable then so is the conclusion”. Thus sequent rules are
really meta-level statements about provability.

This downward reading is synonymous with “the conclusion is provable if all the premisses
are provable” giving an upward (usually referred to as backward) reading of a sequent
rule as a recipe for reducing a conclusion to a list of premisses. If we start with some
sequent I' — A and repeat this process for each premiss, a branching (right way up)
tree structure results. If all the leaves of this structure are instances of the basic sequent
then the tree represents an axiomatic proof of T —s A when read downwards from the
leaves to the root. This is formalised as follows.

A branch is a finite list of sequents, one above the other, separated by horizontal lines.
A derivation is a finite (right way up) tree of branches where each sequent except the
root is obtained from the one below it by an application of one of the sequent rules,
That is, in every branch of a derivation, the sequent below the line is an instance of the
conclusion of a sequent rule and the sequent above the line is an appropriate instance of
a premiss of the same sequent rule. When constructing a branch of a derivation (tree),
a sequent is a leaf (with no successors) if it is a basic sequent, or if no sequent rule is
applicable to it, or if it appears in the branch previously. A branch is closed if its leaf is
an instance of the basic sequent. A derivation is a proof if all its branches are closed.

The root sequent of a derivation is called the endsequent and a proof with endsequent
I' — A'is a proof of I' — A. A sequent is S-provable if there is a proof of it using
only rules from S. A formula A is an S-theorem if the sequent — A is S-provable.

Under these definitions, we need to keep track of previous sequents of a branch to de-
tect cycles. Sequent systems are often formulated without the finiteness restriction omn
branches and derivations so that a cycle leads to an infinite branch rather than a finite
branch [Fit83, Wal87]. We prefer our definitions as they allow us to dispense with Konig’s

39

INA— AJA (Aziom)

I' — A,A T,B—A I''A— B,A

T AsB—a &) F A= BA)
I'A,B— A A r— AA I‘——)B,A(A)
FANE A N7) T — AAB,A ~
NAa—A I''B— A v ' — A B,A (= V)

FAVE A (V™) T S AVB,A '

' — A A nA— A ()
I‘,—:A—»A(_'H) I —-4,A -

Figure 3.1: Sequent system SPC.

Lemma in our completeness proofs and lead to constructive proofs of completeness (where
“constructive” has no intuitionistic connotation).

Example 1 The following is a proof of the endsequent A A (A = B) — B in the
sequent system SPC. At each (backward) step the name of the rule that is used to
reduce the conclusion to the premisses is annotated to the right of the horizontal line
separating them:

A— A B A B-— B
AAisB—B &)
AN(A=B)— B

(A=)

3.3 The Rules Explained

The rules of sequent systems fall into three categories: basic sequent(s), logical rules and
structural rules.

The basic sequent is I',A — A, A. As stated previously, it is the only rule that is
axiomatic in any sense,

The logical rules are the next four pairs of rules, where each conclusion contains a connec-
tive in its principal formula. There is one pair for each connective, depending on whether
the principal formula appears in the antecedent or the succedent. Each logical rule
shown in Figure 3.1 (page 40) reduces the principal formula into its constituent formulae
although this is not always the case for some of the modal logics we shall encounter.

40

Traditionally, the logical rules are said to “introduce” the connective of their principal
formula into their conclusion in accordance with their downward reading from premisses
to conclusion. For example, the (A —) rule introduces the connective A into its conclu-
sion. Since we prefer to view sequent rules as reductions from their conclusion to their
premisses, we avoid this terminology.

There are no structural rules in SPC.

3.4 Subformulae Property, Analycity, Invertibility

The logical rules of SPC specify how to reduce some particular formula, A A B for
example. If a sequent contains A A B and C A D we have a choice of which to reduce
first giving a nondeterministic choice in applying this particular rule. If the sequent also
contains C'V D then there is a nondeterministic choice of which rule to apply first. Thus,
for a given endsequent, there are many different derivations corresponding to the different
choices. What is the best way to proceed ?

A sequent rule has the subformula property if the side formulae are subformulae of
the principal formula. A sequent system has the subformula property if each rule has
it. A sequent rule has the strict subformula property if the side formulae are strict
subformulae of the principal formula. A sequent system has the strict subformula
property if each rule has it.

SPC has the strict subformula property (and hence the subformula property). That is,
not only are the side formula of each rule built out of subformulae of the principal formula,
but these side formulae are strictly simpler than the principal formula. Consequently, any
sequence of rule applications is guaranteed to terminate with no chance of a repeated
sequent and we can blindly apply the rules without worrying about cycles. Note that
the strict subformula property guarantees termination only because our sequents cannot
contain duplicate formulae. If it were permitted for a formula to appear more than once
in the antecedent or the succedent, we would lose the termination property. We return
to this issue later.

A sequent rule is invertible if whenever the conclusion is provable, so are each of the
premisses. Contrapositively, if any of the premisses of an invertible rule are not provable,
then neither is the conclusion. This is very different from the top down or bottom up
reading of sequents as mentioned above because a sequent rule is invertible exactly when
we lose no information in reducing its conclusion to its premisses [D’A90]. For an informal
example, the (A —) rule premiss retains all the information contained in its conclusion
since the premiss also intuitively states that both A and B are true. Kleene [Kle52]
formally proves that each rule in SPC is invertible.

So suppose we have some derivation of an endsequent. If all the branches are closed then
we have a proof and the endsequent is SPC-provable. But what if some branch is not
closed 7 Since SPC derivations contain no cycles, this sequent cannot be a duplicate.
That is, it is a leaf because no SPC ruleis applicable to it, and so it is not SPC-provable.

41

I'B,A— A I'— B,AA
T AE SA (Interchange —) T ABA (— Interchange)
NA,A— A) I — A A A .

T ASA (Contraction —) T S AA (— Contraction)

r—A W eakeni A— A T — AA
T, 6 — w,4 (Weakening) T A

(Cut)

Figure 3.2: Common structural rules.

But each rule of SPC is invertible so the conclusion instance of this rule application is
also not SPC-provable. We can apply this reasoning all the way to the endsequent and
conclude that the endsequent is not S PC-provable.

The importance of invertibility is that it allows us to conclude that a sequent I' — A
is not SPC-provable as soon as we find any derivation of ' — A that cannot be
extended to a proof. The strict subformula property guarantees that any sequence of
rule applications eventually terminates. So together they imply that the order of rule
applications is immaterial in SPC and that each formula need only be reduced once.
This is a very desirable feature of a sequent system but unfortunately it does not appear
to hold for the modal logics we consider.

3.5 Structural Rules

Gentzen’s original sequent systems were (and many modern versions still are) formu-
lated in terms of sequences or lists of formulae rather than sets. Under Gentzen’s read-
ing, the sequent T'y A, B — A is different from the sequent I', B, A — A. Similarly,
I'A, A — A is different from I', A — A. Thus certain “structural rules” were required
to manipulate the order of formulae in a sequence, to handle duplication of formulae in
a sequence and to remove unnecessary formulae altogether. These structural rules are
shown in Figure 3.2 (page 42) along with another common structural rule called cut.

Rules of Interchange: The rules of interchange allow us to change the order of the
formulae in a sequent, but the order of the formulae has no bearing on the intuitive
reading of a sequent. So, even when formulated in terms of lists or sequences, most
modern sequent systems omit the rules of interchange and replace them by the proviso
that two sequents differing only in their ordering of formulae are equivalent [Zem73]. In
our setting, where sequents are built from sets, the rules of interchange are not necessary
since the order of the formulae in a set is irrelevant.

42

Rules of Weakening: The weakening (or thinning) rule allows us to throw away for-
mulae in reducing a conclusion to a premiss. It is necessary in any sequent system using
A — A as the basic sequent. If instead, the sequent I', A — A, A is accepted as a
basic sequent then weakening is also eliminable, as in SPC; see [Wal87, Gal87].

The weakening rule does not have the strict subformula property but it does have the
subformula property, so it cannot introduce cycles (as long as we malke the reasonable
assumption that ® U ¥ is non-empty). However, it is not invertible since we lose the
information content of ® and ¥, and this is the main reason for excluding it from SPC
and replacing it with our more general basic sequent.

The weakening (or thinning) rule provides us with yet another nondeterministic aspect
since it allows us to discard any subset ® of the antecedent and any subset U of the
succedent from the conclusion — the choice is left to us. We retain weakening because
this property proves useful for some of the modal logics we consider. Ways of dispensing
with weakening are discussed in Section 4.5.

Example 2 The following is also a proof of A A (A = B) — B (see Example 1 page
40) but the basic sequent is assumed to be A —s A instead of I'yA — A, A. Notice
how this small change in the basic sequent forces us to introduce the weakening rule:

Hﬁ (Weakening) ;1%.—:—% (Weakening) -
A,A= B —B
(A=)

AAN(A= B)— B

Cut Rule: The cut rule is unique in that a formula A in its premisses does not appear
in its conclusion; not even as a subformula. A reduction from the conclusion to the
premiss thus involves a formula A that is unknown, and hence, the cut rule does not give
us a recipe for reducing the conclusion to the premisses as we have to guess the correct
A. The cut rule corresponds to a generalisation of modus pomens in axiomatic systems
since putting I' = § and A = B effectively gives an instance of modus ponens when read

downwards:
A— B — A

— B

It is well known that a sequent system S without the cut rule can be exponentially worse
at proving certain sequents than a sequent system S’ containing the cut rule [D’A90,
Boo84]. This is the price we have to pay for avoiding (the nondeterminism of) guesswork.

Contraction: Finally, there is the rule of contraction. The contraction rule allows us to
reduce any formula more than once. That is, since A A A is the same as A for the logics
we consider, we simply duplicate A whenever we need it by “reducing” the conclusion
I'y A — A to the premiss ', A, A — A. The contraction rule makes sense only when we
use sequences of formulae rather than sets of formulae, hence this form of the contraction
rule does not make sense in our setting.

43

Contraction is clearly a form of duplication but note that the (V =), (A=) and (=)
rules have a form of duplication inherent in them since copies of the parametric formulae
I' and A appear in both premisses. We do not consider this sort of duplication to be
contraction although both Girard and Wallen do [Gir87, Wal87]. For us, contraction
means the reuse of the principal formulae on the same branch.

The contraction rule does not have the strict subformula property although it has the
subformula property. That is, the side formulae still consist of subformulae of the prin-
cipal formula, but not strict subformulae. Our formulation of sequents as sets does not
permit the contraction rule as it stands in Figure 3.2 because a formula may not appear
more than once in our antecedents (or succedents). It is possible to build the effect of
the contraction rule into each rule by explicitly adding a copy of the principal formula to
each premiss. For example, the (A —) rule would become:

' AANB,A,B — A
I'NAAB — A

(A=)

As an immediate consequence we admit the possibility of cycles since we can apply this
rule repeatedly. There is little point in doing so, however, as we have already seen that
all forms of contraction are redundant in SPC.

An alternate method to obtain the effect of contraction is to abuse the fact that our
sequents are made up of sets. We mention it only because it has caused some confusion
in the literature due to the fact that in this method, contraction is hidden. In this
“method”, all the rules of Figure 3.1 remain the same and contraction comes for free
because I', A, A — A is the same sequent as I, A — A since ['U {A}U{A} =Tu{4}.
But note that this is forbidden by the definitions of proof since a proof of ', 4 — A
must have endsequent I', A — A. In particular, ', 4, A — A will not suffice. It could
be argued that a proof of ', A, A — A isa proof of I', A — A but strictly this is not so.
Note that the sequent systems of Fitting [Fit83] and Rautenberg [Rau83] are incomplete
precisely because they omit contraction. The error is corrected in Fitting [Fit88] where
a strict tableau system is introduced. ‘

When contraction is necessary, we follow the first method and build contraction into
our sequent rules explicitly since it forces us to identify the types of formulae that may
require duplication.

Smullyan [Smu68b] discusses systems for classical first order logic where contraction is
built into the rules, giving a system with no structural rules at all.

3.6 Modal Sequent Systems

Up till now, we have ignored rules to handle modalities like O and <. In general, there
are two rules for each modality, one where the principal formula containing that modality
appears in the antecedent of the conclusion and one where it appears in the succedent of
the conclusion. Since all our modal logics are extensions of classical propositional logic,
SPC should be a subset of all the modal sequent systems we encounter.

44

A— A (Az)
I' — A A I‘,B——)A() I'A— B,A (o=>)
T, A= B—A T A= B.A
I''A,B— A ' — A A I‘——)B,A(__)A)
T ANE A& M) T — AAB,A
I'A— A I‘,B—-—>A(v) I — A B,A V)
T,AVB — A - I S AVB,A
' — A A T,A— A ()
F-A—a ™) T — —AA
OT, A — OA I' — A,0A A
O, 64 — oA (0 99 TS oA A (05
T,A,04 — A ar — A, OA
FoA—a (B89 OF — 04, oA (P59

I'—A .
F—,'m (Weakemng)

Figure 3.3: Sequent system S54.

For modal logics the interchange rules are redundant for the same reasons as for SPC.
But for most modal logics we will encounter, the contraction rule is not always eliminable
since some formulae have to be used more than once on the same branch to obtain a
proof. For one of the modal logics we shall consider, we find that weakening is also useful
although it is eliminable at a cost. To explain these complications we introduce a very
common cut-free sequent system for S4.

Figure 3.3 shows a very common sequent system 894 for modal logic S4. At the moment
we do not have the machinery to prove this claim but a proof is given in Section 4.3.
In Figure 3.3, OT' denotes the set {0A | 4 ¢ I'} and similarly, OA denotes the set
{GA | A € A}. Note that the basic sequent is now A —s A instead of I'A — AA.
But weakening is also present to make this change feasible (and in doing so, deprive §54
of invertibility). Thus SPC is included in S$S4 in an indirect way.

45

The (& — S4) rule conclusion has principal formula GA. But the parametric formulae
OI' in the antecedent must have O as their outermost connective and the parametric
formulae OGA in the succecedent must have < as their outermost connective. If an
arbitrary sequent I';,CA — A; does not meet these restrictions, (& — 54) is not
directly applicable to it. We must first partition T into OT U ® and partition A; into
OCA UV giving a conclusion OT, &, OA — ¥, GA. Then weakening allows us to discard
® and VU giving a premiss OI', A — OA where in the extreme case, both OI' and CA
may be empty. Now (& — S4) is applicable. Similar restrictions apply to the (— O854)
rule and this is the reason for including weakening. It is possible to achieve the same
effect by building weakening into the (¢ — S4) and (— 0.54) rules; see Fitting [Fit83]
and Wallen [Wal87].

The (& — S4) and (— 0OS54) rules are invertible, but since this invertible formulation
requires weakening, the system as a whole loses invertibility. Thus we are already doomed
to search all derivations of a given endsequent in order to conclude that it is not SS4-
provable. Either way, for most modal logics, we find that we must throw away information
in reducing a conclusion to a premiss in the (& — $4) and (— DS4) rules, a property
that Fitting terms “destructive” [Fit90].

The (O — S4) and (— 0S4) rules have the strict subformula, property and they contain
no form of contraction. So there is a chance that derivations in S.54 may be cycle free
and hence the termination property may hold. Alas, the (O — S4) and (— <©S4) rules
obey only the subformula principle since the principal formula OA or OA appears in the
respective premisses. Thus (0 — 54) and (— &.54) have a form of contraction built into
them and cycles are possible in constructing $54 derivations. Therefore, we must keep
track of previous sequents and this is why we have formulated our sequent systems in
terms of finite trees with possibly cyclic branches. The form of the contraction, however,
is very limited since we are permitted to duplicate a formula in (O — S4) only if its
outermost connective is O and we are permitted to duplicate a formula in (— <©S54) only
if its outermost connective is .

A syntactic study of this system is carried out by Zeman [Zem73]. Zeman starts by
augmenting Gentzen’s original system for PC, which includes cut, contraction and weak-
ening, along with the rules:

ILA— A Oor — A4, CA
2 = (O)
F oA A B~ OF — oA oA (— B5%)

and their duals for ©. He then proves syntactic cut-elimination and syntactic contraction-
elimination using arguments similar to those of Gentzen [Gen35, Sza69]. But in order to
carry through the proof of the latter he is forced to alter the (O —) rule to (O — S4)
[Zem73, pages 126-128]. Such limited contraction is necessary in §54 since an antecedent
formulae with outermost connective O, or a succedent formula with outermost connective
<>, may have to be used more than once on the same branch, as illustrated by the following
example.

46

Example 8 The formula ODO(GA = OOGA) is a theorem of S4, see [Fit83, page 223].
But a sequent proof requires that this formula appear twice in the proof as shown below.

OA — OA,00A, OO(CA = OGA) (Axiom) (o

)
— OA,0A = O0A, OO(CA = OOA)

(— 0O54)

— CA,D(CA = OCA), 00(CA = OO A) (= ©854)

— OA,O0(CA = DOA) (= 084
OCA — OCA, CO(CA = OCA) ()

— OA = 004, O0(CA = OOA) (o 054)

— O(CA = 0CA), 00(CA = OOA) (= ©854)

— OO(CA = 0OA)

3.7 Cut-elimination

Note the importance of the subformula property and hence of cut-elimination. Given
some (finite) endsequent, each sequent in the derivation is finite, hence there are only
a finite number of sequents that can be built out of the subformulae of the endsequent.
Hence there are a finite number of derivations of the endsequent using the rules of a
given sequent system S. If we search through all of them and find that all of them are
not proofs then we can declare that the endsequent is not S-provable, and hence, not an
S-theorem.

For most modal logics, invertibility is lost due to the (& — L) rule and the strict
subformula property is lost due to the presence of a limited form of contraction. However,
554 is still cut free. How can we be sure that cut is redundant ?

Cut-elimination can be proved in two ways:

(a) one can give syntactic transformations to eliminate all uses of the cut rule, as was
done by Gentzen; or

(b) one can start with a calculus omitting the cut rule and show that the calculus is
nevertheless sound and complete with respect to the intended semantics.

Syntactic cut-elimination is usually very difficult, so we follow the much easier semantic
cut-elimination route via a method which traces its origins to the work of Beth and
-Hintikka [Bet53, Bet55, Hin55]. We therefore require a semantics for modal sequent
systems.

47

3.8 Semantics for Sequent Systems

Up till now we have mentioned “intuitions” of sequents and sequent systems informally.
In this section, these “intuitions” are formalised so that theorems about sequent systems,
rather than theorems using sequent systems, can be proved. Since our sequent systems are
for modal logics, we simply extend the satisfaction relation = to handle sequents instead
of formulae and also extend the corresponding semantic notions of validity, satisfiability
and unsatisfiability.

If M= (W,R,V)is an L-model and w € W then
wEL— A iff wf~ Aforsome A€cT or wk B for some B € A.

Note that w | — Aiff w = A. Also, w E A — iff w }£ A.
A sequent I' — A is true in an L-model M = (W,R,V)ifforallw e W,w T — A.

A sequent I' — A is L-valid if it is true in all L-models. A sequent I' — A is
L-satisfiable if there is some L-model M = (W, R, V) with some w € W such that
w =T — A. A sequent I' —s A is L-unsatisfiable if it is not L-satisfable.

3.9 Soundness and Completeness

The sequent calculus 8§54 is a purely syntactic proof procedure, but what is the logic it
defines 7 Recall that logics are simply subsets of the set of all formulae Fml. Thus if we

define
LS = {A€ Fml: — A is SL-provable}

then LS is the logic defined by the sequent system SL.

In general we use, SL for the sequent system and LS for the logic defined by this system.
These definitions are cyclic because at the moment we have no way to show that SL is
actually the sequent system for axiomatic logic L. For this we require the notions of
soundness and completeness.

The semantics of Section 2.3 (page 22) are still appropriate and so our first task is to
show that SL-provability coincides with L-validity. This is done in two steps.

Soundness: If A is an S-theorem then A is L-valid. That is, if — A is S-provable then
A is L-valid.

Completeness: If A is L-valid then A is an SIL-theorem. That is, if A is L-valid then
~— A is S L-provable.

Finite Model Property (fmp): If A is not an SL-theorem then there is a finite L-model
M which satisfies =A. That is, M = (W, R, V) is an L-model, but for some w € W,
w A

48

A— A (Az)

IA,B — A A r — AA F—+B,A(“—)A)
FANE A N7) T — AAB,A

I — A A T,A— A
I‘)_'A—_)A(_‘_-)) P—-—)—'!A,A (—-)_‘)

IA,ODA — A or— A4

T oA A (0759 or a4 (754

'—A

m—A (VVeakemng)

Figure 3.4: Sequent system S$S4 in primitive notation.

3.10 Primitive Notation

Since the only primitive connectives are -, A and O, I should really show that the rules for
=, V and < are obtainable from the rules for these primitive connectives. For example,
the (=—) rule can be derived by rewriting A = B into its equivalent primitive notation
form —(A A -B) viz:

I'B— A
I — A,A ———_I‘—>—-B,A
' — AAN-B,A
I'~(AA=-B) — A
N'A=B-—A

(=)

(= A)
(= =)

(rewriting)

Figure 3.4 shows the rules of $54 in primitive notation. All occurrences of GA are
assumed to have been translated into ~0-A4 and moved to the appropriate side to remove
the outermost — sign. All the rules of the old $54 system can be derived in a manner
similar to the derivation of the (=>—) rule shown above.

3.11 From Sequent Systems To Tableau Systems

Sequent systems are essentially refutation procedures. That is, a derivation for I' —s A
corresponds to a search for a model that satisfies all formulae in I' and falsifies all formulae
in A. If no such model can be found then I' — A is valid.

49

P;-P

(0)

X;PAQ X;~(PAQ)
N xPo V) %P %20
X;—==P
) =7
XY

(0) =5

Figure 3.5: Tableau rules for CPC

The associated set of a sequent I' — A is the set I' U =A = T' U {—B: B € A}.
Note that different sequents may have the same associated set; for example, the sequents
"A — B and — A, B both have associated set {=A,-B}. The importance of this
transformation from sequents to sets is that

Proposition 1 A sequentI' — A is L-valid iff the associated set TU=A is L-unsatisfiable.

Proof (=): Suppose I' — A is L-valid and M = (W,R,V) is an arbitrary L-model.
Then for every w € W we have w = I' — A. That is, w [Afor some A €T orw = B
for some B € A. In either case, w £ I' U —A. Since w was an arbitrary world in M we
know that M is not an L-model for T' U =A. But M was an arbitrary L-model, hence
there are no L-models for I' U =A. That is, I' U =A is L-unsatisfiable.

Proof («): Suppose I'U —A is L-unsatisfiable and M’ = (W', R', V') is an arbitrary
L-model. Then for any w’ € W' we have w' £ I' U —~A. That is, w' = A for some A €T
or w’ [=B for some =B € -A. In other words, w' ~ A for some A € T or w' |= B
for some B € A. Hence w' =T' — A. But w' was an arbitrary world in an arbitrary
L-model, hence I' — A is L-valid. o

This means that each of the sequent rules can be viewed in terms of sets rather than
sequents. Since our completeness proof involves the semantic notion of models made up
of sets of formulae, it is much easier to work with sets rather than with sequents per se.

The rules of Figure 3.5 are the nonmodal sequent rules of Figure 3.4 written in a different
form, using sets. The rules of Figure 3.5 are upside down counterparts of the sequent
rules so that the associated set of the conclusion of each sequent rule appears above the
line as the numerator of the corresponding set rule. The associated sets of the premisses
of each sequent rule appear below the line as the denominators of the corresponding set

50

rule and furthermore, are separated by vertical bars. There is no analogue of the (-—)
rule because the premiss and conclusion are associated with the same set T' U-AU{-A4}.

Such rules are usually called tableau rules.

51

Chapter 4

Tableau Systems for Modal Logics

In the last chapter we showed that sequents could be viewed in terms of their associ-
ated sets. Tableau systems which originate from the work of Beth [Bet53, Bet55] and
Hintikka [Hin55] are the analogues of sequent systems when formula sets are used in-
stead of sequents. Smullyan [Smu68a] uses a different formulation and Fitting [Fit83]
uses Smullyan-tableaux rather than Beth-tableaux. We use Beth-tableaux because the
direct correspondence between sequent systems and tableau systems is easier to see using
Beth’s formulation. Smullyan-tableaux are discussed later.

Since our tableau systems work with finite sets of formulae, we use the following notational
conventions:

P, ¢ denote primitive (atomic) propositions from P;

P, @, Q; and P; denote (well formed) formulae;

X,Y,Z denote finite sets of (well formed) formulae;

X;Y stands for X UY and X; P stands for X U {P};

0OX stands for {OP | P € X},

—0X stands for {-0OP | P € X}.
The following measures on formulae and formulae sets are also useful for later arguments.
For a formula P, the degree deg(P) is the number of nested connectives in P according
to:

deg(p) = 0 when p € P is atomic;

deg(=P) = 1 + deg(P);

deg(P A Q) = 1 + max(deg(P), deg(Q));

deg(OP) =1 + deg(P).

52

For a formula P, the modal degree mdeg(P) is the number of nested O connectives in P
according to:

mdeg(p) = 0 when p € P is atomic;
mdeg(~P) = mdeg(P);

mdeg(P A Q) = max(mdeg(P), mdeg(Q));
mdeg(OF) = 1 + mdeg(P).

For a finite set X,

deg(X) = Z‘{deg(l’);

mdeg(X) = Y mdeg(P); and
PeX

mdegmaz(X) = maz{mdeg(P) | P € X}.

As usual, the cardinality card(X) of X is the number of elements in X,

To minimise the number of rules, we work with primitive notation. Each of our tableau
rules has a dual rule which can be easily obtained by using the definition of < as —0O-,

4.1 Syntax of Tableau Systems

Tableau systems consist of a collection of tableau (inference) rules. A tableau rule consists
of a numerator above the line and a list of denominators (below the line). The
denominators are separated by vertical bars. The numerator is a finite set of formulae
and so is each denominator. We use the terms numerator and denominator rather than
premiss and conclusion to avoid confusion with the sequent terminology.

Figure 4.1 (page 54) shows a common tableau system for S4.

Note that the tableau rules given in Figure 4.1 correspond directly to the sequent rules
given in Figure 3.4 (page 49) when sequents are replaced by their associated sets and
the whole rule is turned upside down. Each tableau rule is read downwards as “if the
numerator is L-satisfiable, then so is one of the denominators”. A tableau calculus CL is a
finite collection of tableau rules identified with the set of its rule names. Thus the tableau

caleuli €54 = {(0), (=), (9), (1), (V), (T), (S4)} and CPC = {(0),(-), (9), (A), (V)}.

53

P;-P

(0) =
oy X229) X2p T xoda
T) % arep (50 Trap

) X&Y

Figure 4.1: Tableau rules for C.54

Following Rautenberg [Rau83], a CL-tableau for X is a finite tree 7 with root X whose
nodes carry finite formula sets stepwise constructed by the rules of CL according to:

- if a rule with n denominators is applied to a node then that node has n successors
with the proviso that

- if a node E carries a set Y and Y has already appeared on the branch from the
root to I then F is an end node of 7,

A tableau is closed if all its end nodes carry {0}. A set X is CL-consistent if no closed
CL-tableau for X exists. We write CL(X) if X is CL-consistent and LL(X) otherwise.
Note that both consistency as defined on page 9 and CL-consistency are purely syntactic
concepts. The aim is to show that they coincide.

The subformula property for tableau systems in primitive notation is slightly different
than that for sequent systems. In a sequent I' — A, the left side and right side of the
sequent arrow respectively act as signs representing “true” and “false”. In fact, Fitting
makes these signs explicit in his signed tableau [Fit83]. In our tableau systems, the
formulae from the right side of the sequent arrow appear with an extra negation sign in
the tableau node carrying I' U =A. Hence the “subformulae” we need to consider in our
tableaux must contain the negated versions of the sequent subformulae. The following
definitions cater for this change.

o4

For any finite set X :

let Sf(X) denote the set of all subformulae of all formulae in X , see page 20;
let =Sf(X) denote {-P | P € Sf(X)};
- let X denote the set Sf (X) U —Sf (X) U {0}

let X%, = X.

Thus, a tableau system CL has the subformula property if X3 = X. As we shall see,
some of our tableau systems do not have the subformula property. But in all of them,
the set X} is always bounded, so that the “superformulae” that may appear in a tableau
node are bounded. We call this an analytical superformula property and formalise
this with the following lemma.

Lemma 2 If there is a closed CS4 tableau for X then there is a closed CS4 tableau for
X with all nodes in the finite set X3%,.

Proof: Obvious from the fact that all rules for C.S4 operate with subsets of X34 only. e

A set X is closed with respect to a tableau rule if, whenever (an instantiation of)
the numerator of the rule is in X, so is (a corresponding instantiation of) at least one of
the denominators of the rule. If C is a finite collection of tableau rules then a set X is
closed with respect to C if it is closed with respect to each rule in C.

In general, for each tableau calculus CI, we shall define some ¢ C CL with {(0), (),
(A), (V)} € C and say that a set X is CL-saturated if it is CL-consistent and closed with
respect to C. For instance, a set X is CS4-saturated if it is C.S4-consistent and closed
with respect to C = {(0), (=), (A), (V), (T)}.

Let C = {p1, p2,* -+, pr} be a collection of tableau rules and let Xo be some finite set of
formulae. The set X; is a C-reduction of X if X1 results from a single application of
some p € C to X and X; # X, . Note that the principal formula of p must be in X, but
it is possible that this principal formula is not in X;1. This is the main difference between
strict-saturation and the usual definition of saturation [Fit83, Rau83]. The set X,, is a
strict-C-saturation of X, if there is a finite chain Xo, X1,+++,X, of finite sets such
that each X;i; is a C-reduction of X; and no rule from C is applicable to X,,. That is,
either X,, consists of atomic formulae and negated atomic formulae only, or all attempted
C-reductions of X, give X,, back.

Lemma 3 For each CS4-consistent X there is an effective procedure to construct some
finite CS4-saturated X* with X* C X%,.

Proof: By definition, since X is CS4-consistent, no CS4-tableau for X closes. By defi-
nition, a set is CS4-saturated if it is closed with respect to C = {(0),(7), (N), (v), (T)}.

85

Hence we can apply any number of C-reductions knowing that at each rule application,
at least one denominator is CS4-consistent. This would give a sequence of CS4-consistent
sets X = Xo, Xy, . If this procedure terminates with X,, then X,, is CS4-consistent as
well and putting X* = Xo U X; UX, U+ .U X,, would ensure that X* is CS4-saturated.
For example, if X; = ¥;; (P A Q), we first decide whether CS4(Y;; =P) or CS4(Y;; Q)
and then add =P or =@ to Y; correspondingly to obtain X;.;. That is, we saturate X
step by step. Thus the important aspect is to show that this procedure terminates with
some X, where n is finite. Since the tableau rules carry a subset of X%, to another subset
of Xg,, there are only a finite number of possible values for the X; so the only way this
sequence may not terminate is if it goes into a cycle.

So suppose that X = Xo, X1, Xo, -+, Xi, Xig1, - y Xn—1, Xn, X; 18 a cyclic sequence of
C-reductions and consider card(X;). First of all, since each member of the sequence is
CS4-consistent, the (0) rule could not have been used in obtaining this cycle. Second, the
rules (A) and (T') each increase the cardinality in a C-reduction and none of the rules in C
decreases the cardinality, so neither of these two rules could have been used in obtaining
this cycle. That leaves only (V) and (=), but note that each of these decreases the degree
and so neither of these could have been used to obtain this cycle. Thus, it is not possible
to obtain a cycle by repeated C-reductions for C = {(0), (=), (A), (V), (T)} and so the
procedure must terminate.

Also, since each rule carries subsets of X%, to subsets of X%, and we start with X € X &4
we have X C X* C X%,. ®

Such CS4-saturated sets (and in general CL-saturated sets) are important because they
provide a direct connection between the syntactic and semantic aspects of tableau sys-
tems. This is the subject of the next section.

4.2 Soundness and Completeness of Modal Tableau
Systems

We want to show that the purely syntactic (and proof theoretic) notion of CL-consistency
corresponds to the purely semantic notion of L-satisfiability. That is, we want to show
that: X is L-satisfiable if and only if X is CL-consistent. The following definitions are

central for this aim.

Soundness of CL : if X is L-satisfiable then X is CL-consistent. Contrapositively, if
X is CL-inconsistent then X is L-unsatisfiable, which in symbols is, if £L(X) then X is
L-unsatisfiable. In words, if there is a closed CL-tableau for X then X has no L-models
(i.e. no L-model is a model for X).

Proof Outline: To prove this claim we assume that we have a closed CL-tableau for X:
that is, £L(X). Then we use induction on the structure of this tableau to show that X
is L-unsatisfiable.

36

The base case is when the tableau consists of just one application of the (0) rule. In this
case, the set X must contain some P and also =P and is clearly L-unsatisfiable.

Now suppose that the (closed) CL-tableau is some finite but arbitrary tree. We know that
all leaves of this tableau end in {0}. So all we have to show is that for each CL-tableau
rule: if all the denominators are L-unsatisfiable, then the numerator is L-unsatisfiable.
This would allow us to conclude that the root X is L-unsatisfiable since we know that
the leaves are L-unsatisfiable. Instead we show the contrapositive; that is, for each
CL-tableau rule we show that if the numerator is L-satisfiable then at least one of the
denominators is L-satisfiable. °

Completeness of CL : if X is CL-consistent then X is L-satisfiable. In words, if there
is no closed CL-tableau for X then X has an L-model (i.e. there is an L-model which is
an L-model for X).

Proof Outline: To prove this claim we assume that no C L-tableau for X closes. Then we
construct an L-model M for X from a particular sequence of C L-tableau rule applications,
knowing that at each rule application, this sequence does not produce a closed C L-tableau.
The basic idea is due to Hintikka [Hin55].]

Finite Model Property: In the above procedure, if M can be chosen finite (for finite
X) then the logic LC = {P | £L(=P)} defined by CL has the finite model property

(fmp).

The following definition from Rautenberg [Rau83] is central for the model construction
mentioned above. Note the similarities with the informal modal rules of Hintikka men-
tioned on page 12. A model graph for some finite fixed set of formulae X is a finite
L-frame (Wp, R) such that all w € W, are CL-saturated sets with w C X} and

(i) X C wp for some wy € Wy;
(ii) if ~OP € w then there exists some w' € Wo with wRw' and =P € w';

(iii) if wRw' and OP € w then P € w'.

Lemma 4 If (W, R) is a model graph for X then there exists an L-model (Wo, R,9) for
X. [Rau83].

Proof: An implicit assumption is that CL-saturated sets are closed with respect to each
of (0), (=), (A), and (V) but we have already mentioned that CPC is a subset of all our
tableau systems. Take the valuation 9 from atomic propositions to subsets of Wo, where
Y:p— {w e Wy | p € w}. Using simultaneous induction on the degree of P € wy we
show that

(a) P € w implies w = P and
(b) =P € w implies w £ P.

57

Base case: Suppose p € w where p € P, By definition of J, w € J(p) and so by definition

of =, w = p.

Base case: Suppose —p € w where p € P. Since w is CL-consistent, p ¢ w. Hence
w & J(p) and so w = p. By definition of =, w E —p.

Induction Hypothesis: Assume for all P with deg(P) < k, and all w € W, that P € w
implies w = P and that =P € w implies w [£ P, where k is some fixed k > 1.

Induction Step: Suppose @ € w with deg(®) = k + 1 and consider the structure of Q.
We have to show that w |= @) and that if Q = =P then w b P.

(m) :if @ = =P then since w is CL-consistent we have P ¢ w and deg(P) = k. Since
—P € w, the induction hypothesis gives w £ P. By definition of =, w = =P which means
that w |= Q and we are done.

(A) :if @ = Py A P, then since w is CL-saturated we have P, € wand P, € w by (A) and
also that deg(P1) < k and deg(P;) < k. By the induction hypothesis this implies that
w = Py and w |= P,. By definition of =, w = P, A P;. That is, w = Q.

(V) +if @ = (P A P,) then since w is CL-saturated we have - P € wor =P, € wby
(V) and also that deg(-P;) < k and deg(—P;) < k. By the induction hypothesis this
implies that w = =P, or w |= =P, and hence that w ¥ Py or w £ P,. By definition of

'=,'U)bé(P1/\P2) l.e. wI=Q

(0) :if @ = OP then deg(P) = k. Suppose w’ € W, and wRw', then by (iii), P € w' and
then by the induction hypothesis, w’ |= P. But w’ was any arbitrary world with wRw' so
for all w' € Wy, wRw' implies w’ = P. By definition of E,wkEOPie w = Q.

(=0) : if @ = —OP then by (ii) there exists w’ € Wy such that wRw' and —P € w'. But
deg(P) = k — 1 and hence deg(—~P) = k. By the induction hypothesis, w' | =P and
w' [= P. By definition of =, w = =OP.

By (a), wo |= X hence (Wp, R,¥) is an L-model for X. °

This model graph construction is similar in spirit to the subordinate frames construction
of Hughes and Cresswell [H(84] except that Hughes and Cresswell use maximal consistent
sets and do not consider cycles, giving infinite models rather than finite models.

4.3 Soundness and Completeness of CS4

4.3.1 Soundness of CS4

Theorem 6 The CS4 rules are sound with respect to S4-frames.

For each rule in CS4 = {(0), (=), (A), (V), (), (T), (54)} we have to show that if the

58

numerator of the rule is S4-satisfiable then so is at least one of the denominators.

Proof for (0): The numerator P;—P is never S4-satisfiable and neither is the denomi-
nator 0.

Proof for (6): We have to show that if X;Y is S4-satisfiable, then so is X. Suppose
M = (W,R,V) is an S4-model and wy € W is such that wq E X;Y. Since X;Y is just
X UY, wo =X and wo =Y and we are done.

Proof for (=): We have to show that if X; =— P is S4-satisfiable, then so is X; P. Suppose
M = (W,R,V) is an S4-model and wy € W is such that w, = X; ——P. By definition of
|5, wo & =P meaning that wy = X; P.

Proof for (A): We have to show that if X; P A @ is S4-satisfiable, then so is X; P; Q.
Suppose M = (W, R,V) is an S4-model and wo € W is such that wg E X;P AQ. By
definition of |= this means that wo |= P and wo = Q so wy = X; P; Q.

Proof for (V): We have to show that if X; —(P A Q) is S4-satisfiable, then so is at least
one of X;—P and X;-Q. Suppose M = (W, R,V) is an S4-model and wy € W is such
that wo [= X; (P A Q). By definition, wo & P A Q, that is, not wy E P A Q. Thus not
wo |= P or not wy = Q which means that wo f& P or wp K= @ which means that wo = P
or wg = =Q. Hence wo = X; =P or wy = X; Q.

Proof for (T'): We have to show that if X; OP is S4-satisfiable, so is X;0P; P. Suppose
M = (W,R,V) is an S4-model and wy € W is such that wy = X;0P. Since M is an
S4-model, R is reflexive, hence woRwp. Then by definition of =, wo = OP implies that
wo |= P, hence w = X;OP; P.

Proof for (54): Since there is only one denominator, we have to show that if O0X ;mapP
is S4-satisfiable, then OX; =P is S4-satisfiable. Finiteness of the model is not essential.
Assume that OX;-0OP is S4-satisfiable. That is, there is an S4-model M = (W,R,V)
with wo € W such that wo = 0X;-0P. Then by the definition of k= there exists w € W
such that woRw and w |= ~P. By the transitivity of R, wq = OX implies w = OX. By
the reflexivity of R, w |= OX implies w = X. We have just shown that w E X;0X,;-P
which means that M satisfies X; 0X; - P. o

Semantic Intuitions: In summary, the soundness of the (S4) and (T) rules follows
from the semantics for =0 P as “eventually there is a world where P is false”; from the
guaranteed seriality of R for S4-models by the reflexivity of R; and from the transitivity
of R for S4-models. The (S4) rule can be seen as a “jump” to the world where —P
eventually becomes true [Fit83]. That is, we can identify the numerator with wy and the
denominator with w.

59

4.3.2 Completeness of CS4

Theorem 7 If X is a finite set of formulae and X is CS4-consistent then there is an
S4-model for X on a finite frame (Wo, R) which is a finite (reflexive and transitive) tree
of nondegenerate clusters (and hence is an S4-frame) [Rau83].

Proof : The construction of the model graph is due to Rautenberg [Rau83] where <
denotes the immediate successor relation. By Lemma 3 (page 55) we can construct
some CS4-saturated X* = wg with X C wo C X%,. If no =0OP occurs in wq then
({wo}, {(wo, wo)}) is the desired model graph since it is an S4-frame and (1)-(iii) are
satisfied. Otherwise, let Q1,Qs, - Qm be all the formulae such that —0Q); € we and

"TQ,' g Wo.
For any set Y, let Y™ = {P|OP €Y} and let OY = {OP|P € Y}.

Put w' = w(',j. Since Ow' C wo, Ow' U {~0Q;} is CS4-consistent by (6); hence so is each
Xi=0w' U {-Q;}, i=1,---,m by (54).

Clearly for each X; we can find some C.S4-saturated v; D X;, with v; € X%,. Put wo < v;,
¢ =1,---,m and call v; the Q;-successor of wy. These are the immediate successors of
wo. Now repeat the construction with each v; thus obtaining the nodes of level 2 and so
on.

In general, the above construction of (Wo, <) runs ad infinitum. However, since w € W,
implies w C X*, a sequence wy < wy; < ++- in (Wo, <) either terminates, or a node
repeats. If in the latter case n > m are minimal with w, = w,, we stop the construction
and identify w, and w,, in (Wp, <) thus obtaining a circle instead of an infinite path.
One readily confirms that (Wp, R) is a model graph for X where R is the reflexive and
transitive closure of <. It is obvious that clusters in (Wy, R) form a tree.

By Lemma 4 (page 57), (Wo, R) is an S4-model graph for X where 9 : p—{we W |
p € w} and hence (Wo, R, ¥) is an S4-model for X. o

4.4 Decision Procedures for S4

The tableau systems give nondeterministic and deterministic decision procedures as de-
scribed below,

4.4.1 A Nondeterministic Decision Procedure for S4

The S4-model we constructed in the completeness proof is finite, hence S4 has the finite
model property; see page 57. We already know that S4 is finitely axiomatisable as K'T4
therefore S4 is decidable by Theorem 4, page 30. We now show that C.S4 is a decision
procedure for S4.

60

The soundness of C.54 guarantees that if there is a closed C.S4-tableau for X then X has
no S4-models. In particular, if we put X = {—~A} then this means that if there is a closed
CS4-tableau for {-~A} then {-A} has no S4-models.

The completeness of CS4 guarantees that if there is no closed CS4-tableau for X then X
has an S4-model. In particular, if we put X = {~A} then this means that if there is no
closed CS4-tableau for {~A} then {=A} has an S4-model.

To test whether a formula A is S4-valid, we simply have to run a C.S4-tableau construction
for X = {-A}. Since X}, is finite, there are only a finite number of such CS4-tableaux.
If one of them is closed then, by soundness, {—A} has no S4-models, and hence A is
S4-valid. If none of these CS4-tableaux closes then, by completeness, we can construct
a finite model graph (Wy, R) which satisfies =A, hence A is not S4-valid.

We already know that the axiomatically formulated logic S4 is characterised by S4-
frames. That is, we know that a formula A is S4-valid iff it is an S4-theorem. Therefore,
CS54 is a highly nondeterministic decision procedure for S4.

4.4.2 A Deterministic Decision Procedure for S4

There is, however, a completely different deterministic decision procedure for S4 in the
CS4 completeness proof.

The €54 completeness proof is a satisfiability test; that is, it is a (deterministic) procedure
which uses CS4-saturated sets to construct a finite S4-model for some finite set X. To
construct a CS4-saturated set from some given X we can use the procedure given by the
proof of Lemma 3 (page 55). Therefore we can attempt to construct an S4-model for
X by attempting to form a tree of clusters of CS4-saturated sets according to the recipe
given by the completeness proof for C54.

In the completeness proof we know that each (Q-successor we create is C.S4-consistent
because our initial assumption is that X has no closed CS4-tableau and hence that X
is CS4-consistent. We can no longer make this assumption since this is exactly what
we have to determine. Instead, we attempt to create a CS4-saturated X* from X. If
successful, we attempt to create all the CS4-saturated Q;-successors of X*. If we find
that any one of them is inconsistent because it contains some P and - P, then we know
that X is S4-unsatisfiable. If all of these Q;-successors of level 1 are consistent then we
attempt to construct the nodes of level 2 and so on. We know that this procedure must
terminate since there are only a finite number of nodes in X3%,. If at any time we find
that a ()s-successor duplicates a previous node then we simply form a cycle as in the
completeness proof.

If this procedure terminates with all nodes being consistent then the resulting (W, R)
is an S4-model for X and hence X is S4-satisfiable. On the other hand, if this proce-
dure terminates having found some inconsistent node, then X is not S4-satisfiable. In
particular putting X = {=A} allows us to determine whether {—A} is S4-satisfiable or
S4-unsatisfiable. But if {-A} is S4-satisfiable then A is not S4-valid, and if {—A} is

61

S4-unsatisfiable then A is S4-valid. That is, this allows us to test whether or not A is
S4-valid and hence whether or not A is an S4-theorem.

The deterministic decision procedure described above is the basis of most decision proce-
dures for temporal logics as exemplified by those of Wolper [Wol83]. In fact, the “tableau”
methods of Kripke and the semantic diagrams of Hughes and Cresswell [HC68], which
we shall discuss in Chapter 7, are just such decision procedures.

There is a duality between these deterministic decision procedures and the tableau sys-
tems we present. That is, it is possible to obtain each from the other. But as we shall
see, there is a systematic way to obtain tableau rules for modal logics and the resulting
completeness proofs (if constructive) then give the deterministic decision procedures we
seek. In the process, we can usually also show that cut is eliminable. But this duality is
only possible when the tableau completeness proofs are constructive. That is, we must
actually give a recipe for constructing a model graph (W, R) rather than just show that
some such model graph must exist,.

Obtaining tableau systems from the deterministic decision procedures is usually not ob-
vious. For example, Hughes and Cresswell [HC68] mention a deterministic decision pro-
cedure for $4.3, but it is not obvious how to obtain a tableau system for S4.3 from this
method.

4.5 Eliminating Thinning

In all of our modal tableau systems, the only structural rule is (). As stated on page 43,
the thinning (or weakening) rule introduces a form of nondeterminism where we have to
guess which formula to throw away. That is, we have to guess which formulae are really
essential to the proof.

The () rule can be eliminated by building the effects of (0) into the transitional rule
(54) by changing it from

DX;ﬁDP Y;—|DP
59 Tx=F to Yi-P

where Y’ = {0Q | 0Q € Y} and simultaneously changing the basic axiomatic tableau
rule from (0) to (0') as shown below

P;-P X; P;—P
0 =) ==

This technique is used by Fitting [Fit83].

62

4.6 Relating Sequents Systems and Tableau Systems

The tableau calculus presented in the last section is a standard method of testing a set
of formulae for L-satisfiability. As there is an obvious translation between the tableau
and sequent rules, any closed CL-tableau for some set I' U =A can be used to derive an
SL-proof of I' — A. As long as CL is sound and complete with respect to L-frames we
can formalise this translation via the following proposition.

Proposition 2
(a) I' — A is L-valid iff
(b) T'U-A is L-unsatisfiable iff
(¢) T'U=A is CL-inconsistent iff
(@) LLTU-A) if
(e) I' U=A has a closed CL-tableau iff
(f) T — A is SL-provable.

Proof: By Proposition 1 (page 50) (a) iff (b). By the soundness and completeness of CL
with respect to L-frames, (b) iff (c). By definition, (c) iff (d) and (d) iff (e). Each tableau
rule corresponds to a sequent rule by the fact that I' —» A has associated set T' U —A.
Thus the closed CL-tableau can be turned into an S L-proof of I' —» A. The proof of (e)
iff (f) proceeds by induction on the length of the closed CL-tableau; see Fitting [Fit83].

In particular, for a single formula, we can test for theoremhood via the following propo-
sition.

Proposition 3 IfCL is sound and complete with respect to L-frames then A is a theorem
of aziomatic logic L iff —— A is SL-provable iff LL{-A}.

Proposition 4 IfCL is sound and complete with respect to L-frames then LC= LS= L.

Proof: If CL is sound and complete with respect to L-frames then LC is determined
by the class of L-frames. We know that A € LC iff LL{~A} which by Proposition 2
occurs iff — A is SL-provable iff A € LS. Hence LC= LS. But we have deliberately
defined L-frames to be the class of (finite) frames known to characterise the axiomatically
formulated logic L (Theorem 5 page 34). Hence LC= LS= L. °

So the two calculi SL and CL are essentially the same. Both provide a decision procedure
for L because X7 is finite for finite X so that there are only a finite number of C L-tableaux
for X. If we try all such CL tableaux and find that none is closed then we can declare
that X is CL-consistent, and hence, L-satisfiable. If at any time in this procedure we find
that one of the CL-tableaux closes then we can declare X is CL-inconsistent and hence
L-unsatisfiable.

63

4.6.1 Smullyan’s Tableau Formulation

Tableau calculi originated in the work of Beth [Bet53, Bet55] and since then they have
been refined by various authors into the form we have presented them. One of the
most popular alternative formulations of tableau is that of Smullyan [Smu68a] and the
subsequent extensions of it to modal logics by Fitting [Fit83].

In Smullyan-tableaux, the underlying construction is also a tree. But each node carries
only one formula instead of a set of formulae. If we wish to construct a Smullyan-tableau
for a set Y U {—~A} then we write each member of ¥ in a separate node, one beneath the
other. Then we add one more node containing —A to give a linear tree. Each tableau rule
allows us to add its denominators to the end of a branch if the branch already contains
its numerator. For example, a disjunctive formula like AV B leads to a fork or branching
node in the tree. That is, if AV B is on the path to some leaf then that leaf is allowed
to have two children, one containing A and the other containing B. Smullyan-tableaux
implicitly allow contraction since a formula is not deleted from a branch once it is used as
a numerator of a rule application. Fitting [Fit88] introduces strict tableau by marking a
formula as used once a rule is applied to it and restricting a rule application to unmarked
formulae.

Smullyan-tableaux were designed for their ease of use with pencil and paper. The idea is
to save the duplication of formulae that are common to the numerator and the denomina-
tor of our Beth-tableau rules. Thus each branch of a Smullyan-tableau corresponds to one
of the sets carried by one of the nodes of our Beth-tableau. For modal Smullyan-tableaux,
however, some sort of thinning rule is required since some rules involve a “jlump” to an-
other world. Fitting [Fit83] handles this by simply crossing out the formulae that do not
survive the “jump”. But then he faces a problem, for although one branch may involve a
“jump”, its sister branch might not. The formulae above their point of departure, which
are common to them both, must not be deleted from the branch that does not involve a
“jump”. Fitting adds a “repetition rule” to copy these formulae down onto the branch
that requires them [Fit83, page 37-38]. Consequently, much crossing out and copying
of formulae is needed, and the efficacy of minimising the duplication of formulae in the
numerator and denominator as in Beth-tableau is lost.

4.7 Discussion

Much is made of the subformula property for a logic. As we saw in SPC the strict
subformula property guaranteed that SPC was deterministic since we did not have to
worry about cycles. But it was invertibility that won the day, since it meant any non-proof
gave a counter-model.

For most modal logics we lose the strict subformula property due to the need for con-
traction (either explicit contraction as a rule or built in as in the (S4) rule). Thus we
are already doomed to worry about cycles. Furthermore, in most cases, there is a rule
like (54) or () that loses information and so we lose invertibility as well. Thus we are

64

doomed to search the whole search space in order to declare a formula a non-theorem.
This is the basic reason why the decision problem for most propositional modal logics is
PSPACE-complete whereas the decision problem for PC is (only!) NP-complete [SC85].

The point of this discussion then is that the subformula property is not essential for de-
cidability and is not as crucial as it has been made out to be from a theoretical aspect. Of
course, structure sharing techniques like those of Wallen [Wal87] require the subformula
property — so it is important from a practical aspect.

For most modal logics we require some form of nondeterminism, for example in choosing
the principal formula of the (S4) rule when the numerator contains more than one formula
of the form ~OP. One way of handling nondeterminism is to use parallel implementations
of our decision procedures. And one of the simplest ways to do so is to use the replication
of computation over a distributed network of processors working in paralle] [Clo87, Kle90],
rather than structure sharing. Thus rather than striving for special tricks or embeddings
to regain the subformula property, it may be better to accept both nondeterminism and
the analytical superformula property, and to attack these with parallelism.

4.8 Deducibility Relations

We require known characterisation results in order to be sure that LC= L (and hence
that LS= L). That is, we need to rely on proofs that L is indeed characterised by
the frames we call L-frames. This is because our soundness and completeness proofs are
totally semantic. One way around this is to work with deducibility relations as is done by
Rautenberg [Rau83). Instead of defining a logic to be the set of theorems of an axiomatic
system, Rautenberg defines a finitary deducibility relation - between finite formula sets.
The deducibility relation I is normal if it is closed under:

XEP

(D) m (normality rule) .

The deducibility relation is complete for PC if
(kA) {P,Q}F PAQF {P,Q}
(k=) XA-PFO iff XFP
(k0) OF P.

The latter imply the usual deduction theorem
(D) {X,P}FQifand onlyif X F P = Q.

The familiar normality conditions for I derive easily from (O) and (Dt). Rautenberg
writes - for F since L uniquely determines t, by (Dt). The symbol FX P stands for
O - P (i.e. P€L). Aset X is said to be L-consistent, if X {/¥ 0. By (k=), L-consistency

involves a characterisation of the consequence relation F%, in particular,

65

FE P if and only if {-P} FF 0.

Bull and Segerberg [BS84] consider infinitary deducibility relations and show that if F
is compact then - and the usual axiomatic formulations define the same logic. We have
not defined the compactness property of a logic but Rautenberg’s deducibility relation is
compact since it deals only with finite sets.

When working with deducibility relations, soundness has to be proved syntactically, that
is formally, by showing that for every rule of the deducibility relation, the denominator is
provable whenever the numerator is provable. As stated previously, such syntactic proofs
of soundness are easy for logics like S4 but not at all obvious for others. On the other
hand, most of the soundness proofs of the next chapter are based on semantic insights
and are not too difficult.

66

Chapter 5

Various Tableau (and Sequent)
Systems

In this chapter we present a unified treatment of tableau systems for many propositional
normal modal logics based on the work of Rautenberg [Rau83], Fitting [Fit83], Shvarts
[Shv89] and Hanson [Han66a]. Most of the systems are cut-free but even those that are
not use only an analytical cut rule. Each tableau system immediately gives an analogous
(cut-free) sequent system. The presentation is based on the basis laid down in the last
chapter and is therefore rather repetitive. The procedure for each tableau system CL is:

1. define the tableau rules for CL ;
2. define X7 for a given fixed X and given L ;

3. define CL-saturation ;

4. prove that each CL-consistent X can be extended (effectively) to a CL-saturated
X* with X C X* C X} ;

9. prove that the CL rules are sound with respect to L-frames;

6. prove that the CL rules are complete with respect to L-frames by giving a procedure
to construct a finite L-model for any finite CL-consistent X and hence prove that
L has the finite model property, that L is decidable and that CI, is a decision
procedure for L.

The first section contains my own soundness proofs but contains (corrected and ex-
panded) completeness proofs surveyed by Rautenberg [Rau83]. Corrected because some
of Rautenberg’s rules contain a minor technical flaw that renders some of his tableau
systems incomplete. Rautenberg proves soundness directly with respect to a finitary ax-
lomatic consequence relation as mentioned in the last section, and since I do not use that
approach, I have had to prove soundness semantically.

67

The second section relates the work of Fitting to Rautenberg’s work, demonstrating a
tradeoff between rules that require superformulae and rules that carry more semantic
information.

The third section relates the work of Shvarts to that of Fitting and Rautenberg,.

The forth section highlights the utility of the analytic cut rules (sfc) and (sfcT') via the
work of Hanson.

The fifth section presents various alternative tableau systems to those of Rautenberg,
Fitting, Shvarts and Hanson. This work is mildly original.

5.1 Rautenberg’s Tableau Systems

All the tableau calculi contain the rules of CPC and one or more logical rules from
Figure 5.1 on page 70. The sequent analogues of the tableau rules are shown in Figure 5.2
on page 7l. The tableau systems are shown in Figure 5.3 on page 72 and the only
structural rule is (). The logical rules are categorised into two sorts, static rules or
transitional rules, as follows:

Static Rules Transitional Rules
(1), (D), (B), (5), (sfc), (sfeT) (K), (K4), (54), (G), (Grz)

We have seen that the tableau method is a search for a counter model. The intuition be-
hind this sorting is that in the static rules, the numerator and denominator represent the
same world, whereas in the transitional rules, the numerator and denominator represent
different worlds.

The semantic and sometimes axiomatic intuitions behind these rules are as follows.

Intuitions for (K) : if the numerator represents a world w where OX and ~OP are
true, then there must be a world w’ representing the denominator with wRw' such that
w’ makes P false and makes all the formulae in X true;

Intuitions for (T) : if the numerator represents a world w where X and OP are true,
then by reflexivity of R the world w itself must also make P true.

Intuitions for (D) : if the numerator represents a world w where X and OP are true,
then by seriality of R there must exist some w’ such that wRw' and P must be true at
w'. Hence =0~ P, that is OP, must be true at w.

Intuitions for (K4) : if the numerator represents a world w where OX and =OP are
true, then by transitivity of R there must be a world w’ representing the denominator,
with wRw’, such that w’ makes X and OX true and makes P false.

68

Intuitions for (54) : if the numerator represents a world w where OX and —OP are
true, then by transitivity of R there must be a world w’ representing the denominator,
with wRw’, such that w’ makes OX true and makes P false.

Intuitions for (B) : if the numerator represents a world w where X and =OP are true,
we know that this world either makes P true or makes P false. If w makes P true then
we have the left denominator. If w makes P false, then we have the right denominator
which also contains O-0OP since A = OOA is a theorem of B.

Intuitions for (5) : Suppose the numerator represents a world w where X and —OP are
true. Then we immediately have that w also makes O=0OP true since =OA = O-0A is
just another way of writing the S5 axiom 5.

Intuitions for (sfc) : if the numerator represents a world w where (P A Q) is true,
then we know that w either makes both P and Q) false; or makes P false and @ true; or
makes P true and) false. The other cases use similar intuitions.

Intuitions for (sfcT') : as for the (sfc) rule except that by reflexivity we cannot have
both OP and =P true at w so one of the cases cannot occur.

Intuitions for (G) : The axiom G is
O(0A = A) = DA.

The contrapositive is
—0A = —(0(0A = A))

which is the same as

—0A = O(O0A A -A).

Thus, if the numerator represents a world where —OP is true, then there exists another
world where OP is true and P is false. The denominator represents this world.

Intuitions for (Grz) : The axiom Grz is
D(D(A = 0A4) = 4) = A.

It is known that 4 and T are theorems of Grz [HC84, page 111], hence S4 C Grz.
Segerberg [Seg71, page 107] shows that in the field of S4, the axiom Grz is equivalent to
the axiom

D(0(A= 04)= A) = DA

which gives the following as theorems of Grz:

“0A = -0(0(A= DA) = A)
~0A4 = O(0(A= 04)A-A).

Thus, if =0OP is true at the numerator, then there exists some world where O(pP =
OP) A =P eventually becomes true. The denominator of (G'rz) represents this world.

69

DX;—tDP
") —<=p

X;,0OpP
() X;0P; P

DX, —:DP
(K4 v 5x,-p
X;-0OP

(B) X,-—-nDP;_P IX,—|DP, ﬁP;D—lDP

X;0opP

(D)

DX; —|[:|P

(5% Bx-p

) X;-0P
X’ —|DP; D_ID_P

X;=(PAQ)

X;=P=Q | X;-P;Q | X;P;-Q

(sfe) ooF
¢ X;-0P; P | X;~0OP; P
X;,0P
X;0P;P| X;0P;-P
<= O
A,ﬁP,'ﬁQ,X,—!P,Q I X,P;-WQ A;""DP;PIX;"IDP;_\P
0X;-0P Ox;-0p

(@) X;0X;-p;0P

(Grz) X;0X;-P;0(P = 0OP)

Figure 5.1: Rautenberg’s Tableau Rules

70

' — A

-—————-—DF_)DA(———)D:K)
I'A,OA — A ' I[OA,OA — A _
roda Sa (D) rodA—Sa (D)
ror-—a4A4a or — A '
o o4 (— O: K4) —————DP_—)DA(—)D.SZL)
T,A— OAA T — OOA,A,04,A . I — OOA,04, A .
T — 04,A (=0 B) r—oga (70
' —A,B,A T,B— A/A T,A— B,A
I'— AAB,A
I''A— OAA T — A,04,A
S OARA (—:sfc)
I'N'A, DA — A T,04 — A A
I''DA — A
I — A,B,A T,B— AA T,A— B,A
I' — AAB,A
T,A— OA,A T — A,04,A
S OAA (—: sfc)
I'OT, 04 — A OT, O O
o —aa (7010 e e e

ar — oA

Figure 5.2: Rautenberg’s Sequent Rules

71

CL Static Rules

Transitional Rules

Structural Rules

CPC (O)a (_')) (A)’ (V) - (0)
CK (0),(=),(A), (V) (K£) (9)
CT (0),(=),(A),(V), (T) (K) (9)
CD (0),(=),(A),(V), (D) () (9)
CK4 (0),(),(A), (V) (#4) (9)
CD4 (0),(—), (A);(V), (D) (K4) (9)
CS54 (0)> (*')7 (/\), (V), (T) (54) (0)
CB (0),(=),(A),(V), (T) (K) (9)
CS55 (O)a (_1)> (/\)a (V), (T) 5) (SfCT) (54) (0)
CG (0),(=), (A), (V) (@) (9)
CGrz (0),(=), (A),(V), (T) (Grz) (9)

Figure 5.3: Rautenberg’s Tableau Calculi

A set X is CL-saturated if it is C L-consistent and closed with respect to the static rules
of CL. For example, a set X is CS5-saturated if it is C.95-consistent and saturated with
respect to the rules (0), (), (A), (V), (T),(5) and (sfcT).

Let X5 = X5 = Xjy = Xt = X = X = SF=Sf X; 0.
Let X} = X = X%, = Sf —Sf OX.

Let X3,, = §f O(X = OX) where O(X = 0X) is {O(P = OP) | P € X}.

Lemma 5 If there is a closed CL-tableau for X then there is a closed CL-tableau for X
with all nodes in the finite set X}.

Proof: Obvious from the fact that all rules for CL operate with subsets of X7 only. e

Lemma 6 For each CL-consistent X there is an effective procedure to construct some
finite CL-saturated X* with X C X* C X}, where L € {K, T, D, K4, D4, S4, B, S5,
G, Grz }.

Proof Outline: Since X is CL-consistent, no CL-tableau for X closes. Thus we can
obtain a sequence of finite sets X = Xy, X;, - where each X; is obtained from X;_,
by an application of one of the static rules of CL. Each X; is CL-consistent and if this
sequence terminates with some X,, then we can form X* = XoUX;U-.-U X,.. Thus the
crux of the proof is to show that this sequence terminates. Since the tableau rules carry
a subset of X7 to another subset of X}, there are only a finite number of possible values
for the X; so the only way this sequence may not terminate is if it goes into a cycle. As
for CS4 we prove that the static rules of CL cannot lead to a cycle. Recall that the proof
of this for C.S4 used the fact that each rule either increases the number of formulae or

72

reduces the maximum degree and that (0) cannot be used at any time since each X; is
CL-consistent by supposition.

Proof for CK: The argument is as for CS4 but omitting the argument for (7).

Proof for CT: The (T') rule cannot lead to a cycle since it increases the number of
formula and no static rule of CT decreases the number of formulae.

Proof for CD: The (D) rule cannot lead to a cycle since it increases the number of
formula and no static rule of CD decreases the number of formulae.

Proof for CK4: The static rules for CK4 are identical to those for CK so the proof for
CK suffices.

Proof for CD4: The static rules for CD4 are identical to those for CD so the proof for
CD suffices.

Proof for CS4: See page 55.

Proof for CB: The (B) and (sfcT) rules cannot lead to a cycle since they increase the
number of formulae and no static rule in CB decreases the number of formulae.

Proof for CS5: The (5) and (sfcT') rules cannot lead to a cycle since they increase the
number of formulae and no static rule in CS5 decreases the number of formulae,

Proof for CG: As for CS4, except omit the argument for (7).

Proof for CGrz: As for C94. ®

5.1.1 Soundness of CL

Theorem 8 The CL rules are sound with respect to L-frames.

Proof Outline : For each rule in CL we have to show that if the numerator of the rule
is L-satisfiable then so is at least one of the denominators.

The proofs for (0), (=), (0), (A) and (V) are as for CS4 since the proofs do not involve R.
The proofs for the rules (sfc) and (sfcT') are similar to those for (V) by the fact that a
world in any model either satisfies P or satisfies =P for any formula P.

Some of the proofs below use general properties of the respective L-frames like reflexivity
or transitivity. Others rely on the structural aspects of the respective L-frames like lack
of proper clusters or finiteness. Most of the proofs are really just technical versions of
the intuitions given on page 68 but for some proofs, finiteness is essential.

73

We often use annotated names like w; and w' to denote possible worlds. Unless stated
explicitly, there is no reason why w; and w' cannot name the same world.

Proof for (K): We show that (K) is sound with respect to all our L-frames. Suppose
M = (W,R,V) is an L-model, wo € W and wp = OX;-0OP. This implies that there
exists a w; € W with woRw; and w; = —P. Since wp = OX and wo Rwy, the definition
of |= implies that w; = X, hence w;, |= X;—P. That is, the (K) rule is sound in all of

our systems even though it is not necessary for some of them.

Proof for (T'): In each CL that contains the (T') rule, the corresponding L-frames are
reflexive. Thus if M = (W, R, V) is an L-model where R is reflexive and wo € W and
wo |= OX; 0P, then wo |= OX;0P; P by definition of = and the reflexivity of R.

Proof for (D): In each CL that contains the (D) rule, the corresponding L-frames are
serial. So suppose M = (W, R,V) is an L-model where R is serial. That is, Yw €
W,3w' € W : wRw'. Suppose wy € W and wq = X;0P. We show that wy = —=O-P.
Assume to the contrary that wq & —0=P, then wo = O-P. By seriality there exists some
wy € W with woRw;. But wy = OP and wy = O-P which together imply that w; =P
and wy | =P giving a contradiction, so wy |= ~O~P. Hence wy E X;0P;-0-P and
we are done,

Proof for (K4): In each CL that contains the (K 4) rule, the corresponding L-frames
are transitive. So suppose M = (W, R, V) is an L-model where R is transitive. Suppose
wo € W and wy |= OX;-0P. Thus there exists w; € W with woRw; and w; | ~P.
Since R is transitive the definition of k= gives wy = X;0X;-P and we are done.

Proof for (54): See page 58.

Proof for (B): Suppose M = (W,R,V) is a B-model, wo € W and wy | OX;-0OP.
We show that wg = P or wy = —P;0-0P. If wy = P then wyp E OX;-0P; P and
we are done. Otherwise wy = ~P. In this latter case, suppose wo & O-0OP. Then
we = —O-0P, that is wy = COP, so there exists some w; € W with woRw; and w; |=
OP. Since R is symmetric, woRw, implies wy Rwy which together with w, = OP gives
wo |= P. But this contradicts the supposition that wq = —P. Hence wo = OX;-~0OP; P
or wo = 0X;=0P;-P;0-0P and we are done.

Proof for (5): Suppose M = (W, R, V) is an S5-model, then R is reflexive, transitive
and symmetric. Suppose wo € W and wq = X; -0P. We have to show that wq = O0-0P.
Assume for a contradiction that wy & O-0P. Then wy = ~0-0P and hence wo = OOP.
Thus there exists some w; € W with woRw; and wy = OP. But R is symmetric, so
wo Rwy implies w; Rwp. Since R is also transitive, we must have wy = OP contradicting
the supposition that wy = ~OP. Hence wy = DX;-0P; 0-0P and we are done.

74

Proof for (G): Suppose M = (W, R,V) is a G-model, wy € W and wy E OX;-0P
Thus there exists some wy; € W with woRw; and w; = X;0X;-P by the transitivity
of R. Since R is irreflexive, wy # wy. Suppose w; ¥~ OP. Then wy; = —OP and there
exists some wy € W with wiRw, and w, = X;0X;-P by transitivity of R. Since R
is irreflexive, w; # w,. Since R is transitive, wo = wq would give wy RwoRw; implying
wy Rw; and contradicting the irreflexivity of R, hence wy # ws. Suppose wy £ OP then
... Continuing in this way, it is possible to obtain an infinite path of distinct worlds in
M contradicting the finiteness of M. Thus there must exist some w; € W with weRw;
and w; = X;0X;-P;0P and we are done.

Proof for (Grz) : Suppose M = (W, R,V) is a Grz-model, then R is reflexive and
transitive. Suppose wo € W is such that we = OX;-~OP. We have to show that there
exists some w,, € W with woRw, and w, = X;0X;-P; O(P = OP). Since R is reflexive
and transitive, wo = OX means that Vw € W, woRw implies w = X;0X. Thus our task
is reduced to showing that there exists some w, € W such that woRw, and w, }=
—P;0(P = OP). Suppose for a contradiction that no such world exists in W. That is,

(a) VYw € W,woRw implies w [£ -~ P;0(P = op).

Since wo = —OP, there exists some wy € W with woRw; and w, = —P. By (a), w; }£
O(P = OP) and hence wy = —0O(P = OP). Thus there exists some wy, € W with w; Rw,
and wy |= =(P = OP), that is, wy = P A =OP. Since w; = =P, wy # w, and since
Grz-models cannot contain proper clusters, wq # ws. Since wy |= —OP there exists some
w3 € W with ws |5 =P. By (a), ... Continuing in this way, we obtain an infinite path,
contradicting the finiteness of M, or a cycle, contradicting the absence of proper clusters
in Grz-frames. Hence (a) cannot hold and Jw € W, weRw and w | —P; O(P = OP).
That is, the desired w,, exists. °

5.1.2 Completeness of CL

Some of the completeness proofs make extensive use of the following property. A set X
is subformula-complete if P € Sf (X) implies either P € X or =P € X.

Lemma 7 If X is closed with respect to (0), (-), (A), (V) and (sfc) then X is subformula-
complete,

Proof: Obvious. ®

The (sfcT') rule is just a special case of (sfc) and always appears with (T'). Thus, the
lemma also holds if we have both (sfcT") and (T') instead of (sfc).

75

Theorem 9 If X is a finite set of formulae and X is CL-consistent then there is an
L-model for X on a finite L-frame where L € {K,T,D,K4,D4,54,B,S5,G, Grz}
[Rau83].

Proof Outline: For each CL we give a way to construct a finite model graph (Ws, R) for
X. Recall that a model graph for some finite fixed set of formulae X is a finite L-frame
(Wo, R) such that all w € Wy are CL-saturated sets with w C X} and

(i) X C wo for some wy € Wo;
(i) if 0P € w then there exists some w' € Wy with wRw' and —P € w';

(iii) if wRw' and OP € w then P € w'.

By Lemma 4 (page 57), wo |= X under the truth valuation 9 : p — {w € W, | p€wl

The first step is to create a CL-saturated wo with X € wy € X7. This is possible via
Lemma 6 (page 72). So wo, and in general w (possibly annotated) stands for a finite CL-
saturated set of formulae (that corresponds to a world of Wo). Since X is CL-consistent,
we know that no CL-tableau for X closes. We use this fact to construct a graph of CL-
saturated worlds, always bearing in mind that the resulting model graph must be based
on an L-frame. We use a successor relation < while building this graph and then form
R from <.

A formula ~OP is called an eventuality since it entails that eventually =P must hold. A
set w is said to fulfill an eventuality ~OP when =P € w. A sequence wy < wy < -+ < Wy,
of sets is said to fulfill an eventuality ~OP when —P € w; for some w; in the sequence.

Proof for L = K: If no ~0OP occurs in wo then ({wo},d) is the desired model graph
since this is a K-frame and (i)-(iii) are satisfied. Otherwise, let Q1,Q2, Q. be all the
formulae such that =0Q; € wy. Since wy is CK -consistent, so are each of wH U —(Q); for
¢ =1,-+-,m by (0) and (K). Create a CK-saturated v; C X} from each wg U ~Q; for
¢ = 1,---m, giving the nodes of level 1. Continue to create the nodes of further levels
using (0) and (K). Note that the CK-saturation process does not increase the maximum
modal degree. Hence a path wy < wy < wy -+ - must terminate (without cycles) because
the Q;-successor created by (K) has a maximum modal degree strictly lower than that of
the parent node. Let R be < and let W, consist of all the nodes created in this process,
then (Wo, R) is a finite, irreflexive and intransitive tree and a model graph for X. Hence
there is a K-model for X at wy.

Proof for L = T: If no ~OP occurs in wo then ({wo}, {(wo, wo)}) is the desired model
graph since (i)-(iii) are satisfied. Otherwise, let Q1,Qs, - Q,, be all the formulae such
that =0Q; € wy and —Q); & wo. Proceed as for L = K, except for this minor change of
ignoring —0@) € w if =Q € w, and let R be the reflexive closure of < .

76

Proof for L = D: If no =OP occurs in wp then ({wp}, {(wo, wo)}) is the desired model
graph since (i)-(iii) are satisfied. Otherwise, proceed as for I = K and let Wena be the
nodes of Wy which have no successors. For each w,w’ € Wy, put wRw' if w < w' and
put whRw if w € Wenq. We have to show that (i)-(iii) are satisfied by this R. The only
interesting case is to show that DP € w implies P € w for w € W,,4. This is true since
w € Wepg implies that w contains no OP, as otherwise, w would contain —~0O-P by (D)
and hence would have a successor node by (K), contradicting that w € W,,,.

Proof for L = G: If no =OP occurs in wp then {{wo}, B) is the desired model graph as
(i)-(iii) are satisfied. Otherwise, let Qy,Q,, - - Qm be all the formulae such that -0Q; €
wo. Create a CG-saturated @Q;-successor for each Q; using (6) and (G) giving the nodes
v; of level one, and so on for other levels. Consider any sequence w; < Wiyq < Wipg - -
Since w; has a successor, there is some —0Q € w; and OQ € w;y; for all j > 1 by (G).
Thus w; # wyy; for any 5 > 1 and each such sequence must terminate since X is finite.
Let R be the transitive closure of < to obtain a model graph (Wy, R) for X which is also
a G-frame.

Proof for L = Grz: If no -OP occurs in wy then ({wo}, {(wo,wo)}) is the desired
model graph as (i)-(iii) are satisfied. Otherwise, let Qy, Qg - - @ be all the formulae
such that =0Q; € wp and —Q); ¢ wp. Create a CGrz-saturated (i-successor for each Q;
using (0) and (Grz) giving the nodes v; of level one, and so on for other levels. Consider
any sequence w; < Wity < Wiz -+ +. Since w; has a successor, there is some -0Q € w;,
—Q & w;, and by (Grz), O(Q = 0Q) € wit; for all §j > 1. Suppose w;y; = w;, then
D(Q = 0Q) € w; and hence @ = OQ € w; by (T). Since @ = OQ is just abbreviation
for =(Q A -0OQ), we know that =Q € w; or —=0Q € w;. We created a successor w;,; for
w; precisely because Q) ¢ w; and so the first case is impossible. And if ==0Q € w; then
DQ € w; by (=), contradicting the Grz-consistency of w; since —~0@) € w; by supposition.
Thus each such sequence must terminate (without cycles). Let R be the reflexive and
transitive closure of < to obtain a model graph (Wo, R) for X which is also a Grz-frame.

Proof for L. = K4: If no -0OP occurs in wy then {({wo},0) is the desired model graph.
Otherwise proceed as for C.S4 except create a successor for every eventuality —OP € w
and use (K4) to create successors instead of (S4). That is, let @1, -+, Q@ be all the
formulae such that -0Q; € w. In CS4, we do not count =0OP if =P € w. Let R be the
transitive closure of < only (instead of the reflexive and transitive closure of <).

Proof for L = D4: If no =OP occurs in wg then ({wo}, {(wo,wo)}) is the desired model
graph. Otherwise, proceed as for L = K4. A sequence either terminates or cycles since
X5y is finite. Put w < w for all w € Weng and let R be the transitive closure of <.
Property (iii) is satisfied by w € W, just as in the proof for L = D.

Proof for L = S4: See page 60.

Proof for L = B: If no =OP occurs in wg then ({wo}, {(wo, wo)}) is the desired model
graph as (i)-(iii) are satisfied. Otherwise, let Q1,Q2, "+ - Qm be all the formulae such that
—0Q; € wo and —Q; ¢ wo. Since wy is CB-saturated, wy is subformula-complete, hence
Qi € wo for each @);. Create a Q;-successor for each Q; using () and (K) giving the
nodes of level one. Repeat this procedure to give the nodes of level two and so on. For

7

any node w in this construction let s(w) be the number of formulae with P € w and
—0P € w. Let {(w) = s(w) + mdegmaz(w). To quote Rautenberg “It is easily seen that
w < v = t(v) < t(w), so that Wy is finite.”, but as we shall see this is not quite correct.
We accept Rautenberg’s claim for the moment and return to this issue at the end of this
section.

By construction, (Wy, R) is a B-frame. We have to show that (1)-(iii) hold. The only
difficulty is to show symmetry: that is, OP € wiyy and w; < wjy; implies P € w;. So
suppose that w; < w;yq and OP € w;,,. We have to show that P € w;. There are two
cases: OP € Sf (w;) or OP & Sf (w;).

Case 1: If OP € Sf (w;), then OP € w; or =OP € w; since w; is subformula-complete.
It OP € w; then P € w; by (T) and we are done. Otherwise, if 0P € w; and P ¢ w;
then =P € w; since w; is subformula-complete. But =P € w; and —OP ¢ w; implies
O0-0P € w; by (B) and so -OP ¢ wi1 contradicting the consistency of w;yy since
OP € w4y by supposition. Hence ~OP € w; also implies that P € w;.

Case 2: If OP ¢ Sf (w;) then OP = 0-0Q) for some ~0Q € wit1 and —Q) € w;yy. Hence
—0Q € Sf (w;) and so OQ € w; or =0Q € w;. If 0Q € w;, then @ € w;4y contradicting
the CB-consistency of w;yy since Q) € wiy. Hence =0Q € w;. But then P € w; since
P is =0Q and we are done.

Proof for L = S5: If no =0OP occurs in wg then ({wo}, {(wo,wo)}) is the desired model
graph as (i)-(iii) are satisfied. Otherwise, let Qy, Qs, - -+ Q, be all the formulae such that
~0Q: € wo. Since wy is CS5-saturated, O-0Q; € wy for each @: by (5). Create a Q-
successor for each @); using (#) and (S4) giving the nodes v; of level one, put wy < v;, for
each 1 = 1,2,--- m and stop! Let R be the reflexive, transitive and symmetric closure
of <. By construction, (Wo, R) is an S5-frame. We have to show that (1)-(iii) hold.

For any k, with 1 < k < m, and wg < vk, we show that :
(a) ~OP € v implies =OP € w,

and

(b) OP € vy, implies OP € w,

from which (i)-(iii) follow.

(a) Suppose wy < v, -OP € v and -OP ¢ wo. Since ~OP € Sf (wo), and wy is
subformula-complete, we have OP € wy. But then, by (54), OP € v, contradicting the
CS5-consistency of vg. Hence ~OP € wy,.

(b) Suppose wo < v and OP € vy, then OP € Sf (wo) or OP & Sf (wy).

(b1) If OP ¢ Sf (wo) and OP & wy, then ~OP € wy since wy is subformula-complete.
Then O-0P € wo by (5) and ~OP € v, by (54), contradicting the C.S5-consistency of
vg. Hence, if OP € v and OP € Sf (wp) then OP € wy.

78

(b2) If OP & Sf (wo) then OP = 0-0Q for some 0@ € vy since this is the only way
that formulae from outside Sf (wo) can appear in vy. By (a), ~0Q € vy, implies -0Q € wy
which by (5) implies O-0Q € w,. Since O0-0¢ is OP, we have OP € wy. But this is
absurd since it implies that OP € §f (wo) and our supposition was that OP & Sf (wo).
Hence the subcase (b2) cannot occur. J

Aside on Rautenberg’s proof for B: Rautenberg’s completeness proof for CB requires
that a sequence wg < w; < -+ in the model graph construction must terminate. That
is, we seek a tree of worlds where each world is reflexive and each arc is symmetric.
Rautenberg [Rau83, page 413] claims the following:

Let s(w) be the number of formulas P,-0OP e w, t(w) = s(w) + deg w. It is
casily seen that w < v = 1(v) < t(w), so that W, is finite.

Rautenberg’s definition of deg w is our definition of maximal modal degree mdegmaz(w) =
maz{mdeg(P) | P € w}. But the claim is not correct as the following counter-example
shows that his metrics do not guarantee that t(v) < t(w) whenever w < v.

Let

w = {p,~8p, =g, 8¢, 0-0¢,0(p V g), p V ¢, O0=0-p, =O-p, =p};

v ={-p,~0q,pV ¢,¢,-0-p}
where v is a p-successor to w by (K). Then the set w is CB-consistent as v gives two
children containing {-=-p, p} and {—4q}, respectively, to give a B-model for w. But we
now have

s(w) = 1 since {p, ~0Op} C w;

mdegmaz(w) = 2 ;

t(w) = s(w) + mdegmaz(w) = 3 ;

s(v) = 2 since {~p, ~O-p, ¢, ~Oq} C v;

mdegmaz(v) =1 ;

t(v) = s(v) + mdegmaz(v) = 3 ;

Hence t(w) = t(v) and the metric ¢ is not sufficient.

I have been unable to find a suitable metric but I feel that the result still holds because
Hughes and Cresswell [HC84, page 122] note that “B is characterised by the class of the
reflexive symmetrical extensions of all tree frames”. Their definition of a tree (frame) is
the same as ours [HC84, page 118].

79

5.2 Fitting’s Systems

Fitting’s tableau systems for K,T, K4, and S4 are identical to those presented by Raut-
enberg since these systems are well known. Rautenberg’s system for G is due to Fitting
[Fit73]. The differences between the two authors’ work become apparent in the way they
treat D and S5.

5.2.1 Fitting’s System for D

An alternative cut-free sequent system for D is possible using a transitional rule to encode
the seriality of D-frames as is done by Shvarts [Shv89] and originally by Fitting [Fit83].
Let CD' be the tableau calculus CD minus the static (D) rule but plus the additional

transitional rule:
ox

(D)
That is,
CD' = {(O)a (_')’ (A)a (V)} U {(I()> (D/)} U {(0)}
where the three sets respectively represent the static, transitional and structural rules of
CD'. The (D') rule is just really the (K) rule where the eventuality =0 P is absent. But

by seriality of R we know that a formula like OP entails the existence of a world where
P become true. That is, OP cannot be true vacuously in a serial R.

Let X%, = X. Thus CD’ has the subformula property whereas CD does not.

A finite set X is CD'-saturated if it is CD'-consistent and saturated with respect to (0),
(A); (V) and (=) as these are the static rules for CD’. That is, as (D') is a transitional
rule, it does not contribute to CD'-saturatedness. It is easy to show that (D') is sound
with respect to D-frames using the seriality of R in D-frames and the fact that OP = OGP
is an axiom of D.

For completeness, suppose X is CD'-consistent. Since the static rules of CD are those of
CPC, it is possible to create a CD'-saturated wo with X C wo C X},. Do so and proceed
as follows to obtain a finite intransitive tree with irreflexive non-leaf nodes and reflexive
leaf nodes.

If no -0OQ occurs in wy and no OP occurs in wo then ({wo}, {(wo,wo)}) is the desired
model graph. Otherwise, let @y, Q@,,- - -, (Qm be all the formulae such that -00); € wy
and let Y = {P, P, , P} be all the formulae such that OP; € wo. Since wq is CD'-
consistent each —Q;;Y is CD'-consistent, for ; = 1,2,--+,m by (0) and (K). Also, Y
itself is C.D'-consistent by (8) and (D'). If m # 0 then create a Qi-successor v; using (K)
containing —Q;; Y for each Q;. But if m = 0 then create a single P-successor y using
(D') containing Y. Put wy < v; for each 7 = 1.+ m or wy < y as the case may be,
giving the node(s) of level one. Continuing in this way obtain the node(s) of level two
etc. A sequence wy < w; < w; - - - must terminate since both (K) and (D') reduce the
maximum modal degree and CD'-saturation does not increase it. As in the first proof for

80

CD put wRw if w € W,ug and put wRw' if w < w'. Property (iii) holds for w € W,,q
as end nodes do not contain any OP, as otherwise, w would have a successor by (D",
contradicting that w € W,,,. ®

The advantage of CD' is that this tableau system and the corresponding sequent system is
not only cut-free, but it also has the subformula property. As usual, we lose invertibility
so that we must keep track of cycles. The task of the static (D) rule in CD is to ensure
seriality by adding an eventuality &P for every formula of the form OP. The transitional
(K) rule then fulfills that eventuality. In C.D’ seriality is guaranteed by the transitional
(D') rule.

Instead of adding an explicit rule like (D'), we could make do with a version of (K)
called (K D'), say, where the numerator of (KD') need not contain =OP, and when this
happens, the denominator of (K .D') does not contain —P.

5.2.2 Fitting’s Systems for S5

Fitting [Fit83] presents a system for S5 which requires a “semi-analytic” cut rule for
- completeness. The system is essentially CS4 + (S 5) + (cut) where the (S5) rule is:

DX; —|DY; —||:]P

0xX;-0vy;-P

(55)

and the (cut) rule is only allowed to cut on subformulae and superformulae of formulae
that are in the numerator. Since the superformulae are not bounded, as they are in
Rautenberg’s systems, the semi-analytic (cut) rule cannot give a decision procedure. We
therefore defer discussing this system in detail until Chapter 7.

Fitting [FFit83, page 226] replaces the semi-analytic (cut) rule with a building up rule of
the form
X; P

() X;OP; P
and proves that his system CS5r = CS4 + (85) + (r) is sound and weakly complete
with respect to S5-frames. But notice that the (7) rule is not “once off” since it can
lead to an infinite chain A € w,OA € w, OCA € w,+ -+ so this system cannot give a
decision procedure for S5 either. That is, we have merely traded one non-analytic rule
for another,

Fitting then proves the curious fact that a formula A is an S5-theorem if and only if a
CSbm-tableau for {-A} closes, and furthermore, that the (7) rule needs to be used only
once at the beginning of the C.957-tableau [Fit83, page 229]. That is, the system CS5r
without the (7) rule is (weakly) complete for S5 in the sense that A is an S5-theorem if
and only if a CS5n-tableau for {~0OA} closes. We shall return to this point later when
discussing Shvarts’ embedding of S5 into K45.

81

5.2.3 An Embedding of S5 into S4

Fitting [Fit83, pages 223-225] presents a proof of an embedding of S5 into S4 originally
proved by Matsumoto [Mat55). Here we use the characterisation results with respect to
Jfinite frames to obtain a simplified semantic proof of the same result. A syntactic proof
of the following theorem is given by Zeman [Zem73, page 254].

Theorem 10 A formula A is an S5-theorem if and only if the formula COA is an S4-
theorem. '

Proof Outline: The result follows from the observation that each leaf of an S4-frame
is a nondegenerate cluster, and hence an S5-frame in its own right. Thus, if O0A is an
S4-theorem then OA will be valid over each leaf of each S4-frame. That is, over each
S5-frame.

Proof: We make use of the following points:

1. S5 is characterised by finite, reflexive, transitive and symmetric graphs;
2. S4 is characterised by finite, reflexive and transitive trees of nondegenerate clusters;
3. S4 C Sb5; that is, every S4-theorem is an S5-theorem;

4. we write 1, A to mean that A is an L-theorem and write /1, A to mean that A is
not an L-theorem.

Proof «: We have to show that g, ©GOA implies Fg5 A. Suppose Fgy OOA. Then
Fss OOA by point 3 above. We already know that Fg; OOA = OA since this is just
the contrapositive of axiom 5. We also know that Fss OA = A, hence kg5 A by modus
ponens.

Proof =: We have to show that g5 A implies kg4 GOA. Suppose to the contrary that
'_,5'5 A but |7/S4 ODA

This means that there is some finite S4-model M = (W, R,V) such that F = (W, R) is
a finite, reflexive, transitive tree of nondegenerate clusters and that there exists w € W
with w ey OOA. That is, w =y OO A.

Consider the subtree of w in F (there may be none since w may be a leaf). Consider any
leaf cluster C' of this subtree (C' = w in the case that w is a leaf). The leaf C is either a
simple cluster or a proper cluster.

Case 1: If C is a simple cluster then C' = w’ and we know that w’ v O-A. By reflexivity
and the fact that w' is a leaf we have w’ =y —A. But M’ = ({w'}, {(w', w")}, Vi) where
Vi is the restriction of V to w is then an S5-model falsifying A, contradicting our
supposition that Fg5 A. Hence C cannot be a simple cluster.

82

Case 2: If C' is a proper cluster then C = ¢; Re, R - - + Re, Rey where each ¢; is a reflexive
world and each ¢; =y O-A. Since C is a leaf, one of these worlds c; must fulfill this
eventuality; that is, there exists a ¢; such that ¢; Ev —A. But M" = (We, Re, Vo),
where Wy, Ro and Vg are the restrictions of W, R and V to C, is then an S5-model
falsifying A, again contradicting our supposition that Fss A. Hence C' cannot be a proper
cluster either.

But this is impossible since one of these cases has to hold. Hence the theorem follows. e

5.3 Shvarts’ Systems for K45, K45D and S5

The cut-free tableau system CK45 for K45 and CK45D for K45D presented below are
essentially the tableau versions of Shvarts’ sequent systems for K45 and K45D [Shv89].
Shvarts considers the first order versions of these logics but does not consider other modal
logics.

5.3.1 Shvarts’ Systems for K45 and K45D

The logic K45 is often used as a basis for logics of belief where the formula OA is read
as “A is believed” and the reflexivity axiom, OA = A, is deliberately omitted on the
grounds that believing A should not imply that A is true. The logic K45D is another
candidate for such logics of belief because its extra axiom, OA = OA, which can be
written as OA = —O-A, encodes the intuition that “if A is believed then —A is not
believed”.

The logic K45 is characterised by finite transitive frames which we call sharp tacks [Seg71,
pages 77-78], where a sharp tack is either:

L. a single cluster (degenerate or nondegenerate); or

2. a degenerate cluster followed by a nondegenerate cluster.

The logic K45D is characterised by finite transitive frames which we call blunt tacks
[Seg71, pages 77-78], where a blunt tack is either:

3. a single nondegenerate cluster; or

4. a degenerate cluster followed by a nondegenerate cluster.

The difference from K45-frames is that a single degenerate point is no longer allowed
and the intuition behind both names is that frames of type 2 and type 4 look like an
inverted tack if the second nondegenerate cluster is visualised as the head of the tack.

83

Let
CIK45 = {(0), (A), (V), (=)} U {(45)} u {(6)}

where (45) is:

DX; ""’IDY; —|DP
X, DX;—J:,Y;—IDP; -1P
and the three sets are the static, transitional and structural rules of CK45. Note that
instead of (5) we build in the effect of (5) by carrying ~OP and =OY from the numerator
into the denominator.

(45)

As for D and D4 we can extend CK45 to CK45D in two ways. The first is given below
as it is the form used by Shvarts. The second is given at the end of this section.

The first way to extend the system for K45 to handle K45D is to use an obvious
transitive version of Fitting’s (D') rule called (45D) :
X; DX;ﬁDY;ﬂDP;*IP

(45D)

where —0Y; -0OP in the numerator may be empty, and when

this happens, =0Y; =0OP; =P in the denominator is also empty.

Let
CE45D = {(0), (A), (V), (=)} U {(45D)} U {(6)}

where the three sets are the static, transitional and structural rules of CK45D.

A set is CK45-saturated and CK45D-saturated if it is closed with respect to (0), (A), (V)
and (-).

a1 — %* . v
Let Xy = Xiasp = X.

It is easy to show that we can obtain a CK45-saturated X* for a given X with X C X* C
X5 since the static rules of CK45 are just the CPC rules. The same proof shows that
we can obtain a CK45D-saturated X* for a given X with X C X* C Xfeasp-

Theorem 11 The CK45 and CKA5D rules are sound with respect to K45-frames and
K45D-frames respectively.

Proof : It is easy to show that the rules (0), (), (A), (), and (V) are sound with
respect to K45-frames and K45D-frames.

Proof for (45) for K45-frames: Let M = (W, R, V) be a K45-model and suppose
that we € W and wyq E O0X;-0Y;-0P. We have to show that there exists a 1w’ e W
such that w' = X; 0X;~0Y;-0P; P,

Clearly, the X; OX part will follow from the transitivity of R so we need only prove that
there exists a w’ € W such that w' | =0Y; ~0OP;-P.

84

If (W, R) is of type 1 then it cannot be a single degenerate cluster since wq = -OP
But it may be a single, proper or simple, (nondegenerate) cluster. So if (W, R) is of
type 1 then there must be some w' € W such that woRw’' and w' E —P. Also, w'
must be reflexive since (W, R) is a nondegenerate cluster, hence w' = —-OP;-P. In a
nondegenerate (reflexive, transitive) cluster, R must be symmetric as well, so w'Rwy.
But in a reflexive, transitive and symmetric cluster, wy |= —0OY implies wy = O-0Y,
hence w' | =OP;-P;-0Y and we are done.

If (W, R) is of type 2 then, regardless of whether wq is in the first or last cluster, there
must be some w’ in the last nondegenerate cluster such that w’ = —P since wp |= ~0OP,
Similarly,if Y = {Q1,Q2, -+, Qm}, then there must exist (not necessarily distinct) worlds
W1, W3, "+, Wy, in the last nondegenerate cluster such that w; E —Q; for each Q; € Y.
Since R is reflexive, transitive and symmetric over a nondegenerate cluster, this means

that ' | - P;—-0P;-0Y,

Proof for (45D) for K45D-frames: Let M = (W, R,V) be a K45D-model and
suppose that wo € W and wy = 0X;-0Y; ~0P. We have to show that there exists a w' €
W such that v’ |5 X;0X;-0Y;~0P; =P allowing for the case where the -0Y;-0P
part is missing. Every K45D-frame is a K45-frame hence the proof above applies when
the =0OY'; =OP part is present. If there are no eventualities in wo then the seriality and
transitivity of R guarantees that there is some world w’ with wRw' such that w' EX;0X
and we are done. e

Theorem 12 (Shvarts) If X is a finite set of formulae and X is CL-consistent then
there is an L-model for X on a finite L-frame where L € {K45,K45D} [Shv89].

Proof for L = K45: Suppose X is CK45-consistent and create a CK45-saturated
superset wo & Xfy5 of X as usual. If no =0OP occurs in wo then ({wo},#) is the desired
model graph since (i)-(iii) are satisfied.

Otherwise let Q;, Q2, -+, Q be all the formulae such that —=0Q; € wo and create a Q;-
successor for each @); using the (45) rule. Continue construction of one such sequence
S =wo < wy < always choosing the successor that fulfills an eventuality not fulfilled
by the current sequence. Since X} is finite, we must sooner or later come to a node W,
such that the sequence § = wg < wy < +++ < Wy, already contains all the successors of w,,.
That is, it is not possible to choose a new successor. Choose the successor w, of w,, that
appears earliest in S and put w,, < w, giving S =wp < wy < -+ < Wy < -+ < Wy, < Wy
There are two cases to consider depending on whether w, = wq or w, # wo.

Case 1: If w, = wo, put R as the reflexive, transitive and symmetric closure of < over

Wo = {wo, w1, -, wy}. This gives a frame (Wo, R) which is a nondegenerate cluster of
type 1.
Case 2: If w, # wog, put Wy = {wo, e, Wet1,+++ Wi}, discarding wy,ws, -+, wy_1, and

let R’ be the reflexive, transitive and symmetric closure of < over W, \ {wo}. That is,
R = {(wi, w;)|w; € Wo,w; € Wy,s > x,j > a}. Now put R” = R'U {(wo,w;)} and let R
be the transitive closure of R”. The frame (Wo, R) is now of type 2.

85

Property (i) is satisfied by (Ws, R) by construction. We show that (ii) and (iii) are
satisfied as follows.

Proof of (ii): The (45) rule also carries all eventualities from the numerator to the
denominator, including the one it fulfills. Therefore, for all w; € Wy we have

—0P € w; implies ~OP € w,,.

But we stopped the construction at w,, because no new ®i-successors for w,, could be
found. Hence there is a @;-successor for each eventuality of w,,. Since we have a cycle,
and eventualities cannot disappear, these are all the eventualities that appear in the cycle.
Furthermore, we chose w, to be the successor of w,, that was earliest in the sequence S.
Hence all of the eventualities of w,, are fulfilled by the sequence w,R -+ Rw,,. All the
eventualities of wy are also in wy,, hence (ii) holds.

Proof of (iii): The (45) rule carries all formulae of the form OP from its numerator to
its denominator. Hence OP € w and w < v implies that P € v and OP € v. But we
know that w, < +++ < w,, < w, forms a cycle, hence (iii) holds as well.

Proof for I = K45D: Based on the previous proof, If the (45D) rule is ever used with
no eventualities present then this can only happen when wy contains no eventualities.
For if wo contained an eventuality then so would all successors.

So if wo contains no eventualities and no formulae of the form O.P then {({wo}, {(wo, wo)})
is the desired model graph. This gives a frame of type 3.

Otherwise, let @y, -+, Qy be all the formulae such that —0Q; € wo and let Py, -, P, be
all the formulae such that OP; € wp. Create a successor w; for wy using (45D) for some
Qi or P; and continue creating successors using (45D), always choosing a successor new
to the sequence until no new successors are possible. Choose w, as the successor nearest
to wp giving a cycle wy < +++ < wy < -+ < Wm < we and discard wy,w,, - wy_q as in
the previous proof.

As in the previous proof, w, = wq gives a frame of type 3 and w, # wo gives a frame of
type 4.

Properties (i)-(iii) can be proved in a similar manner °

Note that the requirement to continually choose a new successor is tantamount to fol-
lowing an infinite path in Shvarts’ formulation. That is, the inevitable cycle that we
encounter constitutes an infinite branch if it is unfolded out.

86

5.3.2 An Alternative Tableau System for K45D

Let
CK45D' = CK45 + (D) = {(0), (A), (V), (=), (D)} U {(45)} U {(6)}

where the three sets are the static, transitional and structural rules of CK 45D .
Let X} sp = Sf ~Sf OX,
A set is CK45D"-saturated if it is closed with respect to (0), (A),(V), (=) and (D).

It is easy to show that we can obtain a CK45D'-saturated X* for a given X with X C
X* C Xiyspre

The (D) rule is also sound with respect to K45D-frames since R is serial in these frames.

The completeness of CK45D' can be shown using an argument like that for CK45 with
the knowledge that the (D) rule adds an eventuality ~O—P for every formula OP. We
omit details.

5.3.3 An Embedding of S5 into K45

A syntactic proof of the following theorem is given by Shvarts [Shv89].
Theorem 13 A formula A is an S5-theorem if and only if DA is a K45-theorem.

Proof (=): Suppose 04 is a K45-theorem. Then by the fact that K45 is characterised
by the class of finite sharp tacks (type 1 and 2) we have that A is valid on all frames of
type 1 and type 2. But type 2 frames have a finite nondegenerate cluster as their second
cluster. Thus A is valid on all finite nondegenerate clusters, that is, on all S5-frames.
Since S5 is characterised by S5-frames, A is an S5-theorem.

Proof («): We have to show that if A is an S5-theorem then OA is a K45-theorem.
Contrapositively, we have to show that if OA is not a K45-theorem then A is not an
S5-theorem. Suppose OA is not a K45-theorem. Thus, there is some K45-model M =
(W, R, V) with wy € W and wy [£ OA.

Case 1: Suppose M is of type 1. Then (W, R) cannot be a degenerate cluster since
wo = O-A; that is, there must be a some w’ € W, such that woRw'. Thus (W, R) is
either a simple or proper cluster with some w’ € W such that w’ [= ~A. But then (W, R)
is an 85-frame and M is also an S5-model falsifying A.

Case 2: If M is of type 2 then either wyg is in the first degenerate cluster C; or in the last
nondegenerate cluster C,. Regardless of where wq appears, there is a w’ in the second
cluster such that w' |= =A because wy £ OA. Take M’ = (W',R', V') where M’ is M
restricted to W' = W'\ Cy. The model M’ is an S5-model falsifying A.)

87

5.3.4 Connections Between S5 and K45D

If all atomic components of a formula A are within the scope of a [0 connective then A
is called a modalised formula [Min70, Shv89).

Theorem 14 (Shvarts) A modalised formula A is an S5-theorem iff it is @ K45D-
theorem [Shv89].

Thus, S5 and K45D have the same modalised formulae as theorems and CK45D allows
us to test whether a modalised formula A is a theorem of S5.

5.4 Hanson’s Rules for S4 and S5

Hanson [Han66a] gives Kripke-like tableau systems for S4 and S5 using a form of (sfcT")
as early as 1966. The tableau systems presented below are not exactly Hanson’s systems
but the ideas are his. See page 129 for details of Hanson’s rules.

Let
CS4' = CSA+ (sfeT) = {(0), (A, (V), (), (s£eT), (T)} U {(S8)} U {(9)}.

Let X§4/ = Y.

A set is CS4'-saturated if it is CS4'-consistent and closed with respect to (0), (=), (A), (V),
(T') and (sfcT).

The saturation termination lemma goes through since (sfcT') increases the number of
formulae in a reduction and no static rule of ¢S4’ decreases the number of formulae.
Hence every C.S4'-consistent X can be extended to give a CS4'-saturated X* such that
X € X* € X3y Tt is easy to see that (sfcT") is sound with respect to S4-frames.

For completeness, suppose that X is C.S4'-consistent. We have to give a model graph for
X which is based on an S4-frame.

Let wo be some CS4’-saturation of X so that X C wo € X%,. Create a tree of C54'-
consistent and CS4'-saturated subsets of X%, as follows.

If no ~OP occurs in wo then ({wo}, {(wo, wo)}) is the desired model graph. Otherwise,
let Q1,@2, -+, Qs be all the formulae such that —0Q; € wp and —Q; ¢ wy. Create a
(i-successor v; of level 1 for each (: using the (0) and (S4) rules and continue in this
way to obtain the nodes of level 2 and so on with the following termination condition:

(MY ifwo <wy <+ < w;_y < w; is a path in this construction and 7 > 1 is the least
index such that OP € w; implies OP € w;_y, then put w; < w;-1 giving a cycle on this
path and stop!

88

First of all, this termination condition is satisfactory since (54) ensures that OP € w;
implies OP € wjy1 so that O-formulae accumulate and we eventually run out of new
O-formulae since X%,, is finite.

Let R be the reflexive and transitive closure of < . It is obvious that clusters of R form
a tree. To prove that (W, R) is a model graph for X we have to prove (1)-(iii).

Clearly (i) holds so we have to prove that (ii) and (iii) hold.

(ii) Suppose =OP € w; where w; is some arbitrary world of W,. If the termination
condition was not applied to w;, then either =P € w; or w; has a P-successor fulfilling
—~BP by (54) and so (ii) is satisfied. That is (ii) holds for any world to which the

termination condition was not applied.

If the termination condition was applied to wj, then it could not have been applied to
w;—1. Hence (ii) holds for w;_;. So all we have to show is that ~0O0P ¢ w;—1 because, in
this case, (ii) would then hold for w; from the fact that w; Rw;_q.

Suppose to the contrary that =0OP ¢ w;_y. Then OP € wj—1 by (sfcl’), and OP € w;
by (S54) contradicting the C.S4'-consistency of w; since ~OP € wj;. Hence (ii) also holds.

(iii) Suppose OP € w;. If (*) was not applied to w; then (iii) holds as for C.S4 by (T')
since (54) preserves O-formulae. If (*) was applied to w; then (iii) would follow from
DP € wj-y by (54) and (T). But this is exactly what (*) guarantees. Hence (iii) holds
as well. ¢

The advantage of adding (sfcT) is that the termination condition is much easier to check
than the one for C.S4 where we have to look through all predecessors of w;. That is, if
we obtain a decision procedure from the completeness proofs, then the one from CS4/
is easier to implement than the one from CS4 because the CS4’ version requires us to
compare the current node with its parent only. For the CS4 version, we have to compare
it with all previous nodes. Furthermore, for the .94’ version, we only have to check that
the formulae of the form OP are common to both nodes whereas for the C.S4 version we
have to check that all formulae in the nodes are the same. And all we have done is to
add one rule.

To see this advantage suppose wg < wy < +++ < W < Whp1 < o0 < Wy, < Wi IS a
cycle obtained in the CS4 completeness proof. Since all successors are due to (S4) only,
Wm < wy implies that all nodes from w; onwards have the same O-formulae. Thus the
CS4' procedure would have stopped at W41 GIVING Wo < Wy <+ + < Wy < Wey1 < W

So in general, the C.S4' procedure gives smaller counter models than the CS4 procedure.
This is due to the fact that (sfcT’) packs more information into each node by forcing
each node to be subformula-complete. That is, a value of true or false is forced onto
each subformula of the formulae in the nodes of a CS4’ model construction, whereas the
absence of (sfcT') in CS4 allows some subformulae to be “undefined” in the C.S4 model
construction. This packing of more information will of course take more time per node,
so although we save space, we may not save much time. But the time to compare nodes
is the most significant cost and this is reduced in the C.S4' version since we compare with

89

the immediate ancestor and only compare formula of the form CIP.

Hanson also suggests a tableau system for S5 along these lines, but in it he uses a rule
which explicitly adds a formula to the parent node to obtain symmetry. This is forbidden
for our tableau since we cannot return to previous nodes. The details are discussed in
Chapter 7 (page 129).

5.5 Alternatives for Various Systems

5.5.1 A Tableau System for S5 With the Subformula Property

The tableau calculus CS5 does not possess the subformula property because it contains
(5). Here we present a tableau system for S5 that possesses the subformula property. It is
an obvious amalgamation of ideas from Hanson [Han66a), Fitting [Fit83] and Rautenberg
[Rau83].

Let
€55 = {(0), (A), (V), (=), (1), (sfeT)} U {(S5)} U {(6)}

where (55) is:
0X;-0Y;-0P

DX, —|DY; *IP

and the three sets correspond to the static, transitional and structural rules of CSy'.

(55)

Let X%, = X.

It is easy to show that (S5) is sound with respect to S5-frames using the facts that
such frames are reflexive, transitive and symmetric. And a set is CS5'-saturated if it is
CS5'-consistent and closed with respect to (0); (A), (V), (=), (T") and (sfeT). It is easy to
show that we can obtain a CS5-saturated X* for a given X with X C X* C Xz,

For completeness suppose X is C.S5'-consistent and create a CS%-saturated superset wy
with X C we C X%, as usual.

If no ~0P occurs in wq then ({wo}, {(wo,wo)}) is the desired model graph. Otherwise,
let Q1,Q2, - +,Qm be all the formulae such that —0Q; € wy and —Q; & wy. Create a
Qi-successor v; of level 1 for each Q; using the (S5) rule and stop!

Let Wo = {wo,v1,v2,++, v, }. Consider any two nodes v; and v; of level 1 so that wy < v;
and wo < v; with ¢ # j. We claim that:

(a) OP € v; implies OP € wy implies OP € v;; and

(b) =OP € v; implies -OP ¢ wo implies there exists a w € W, with =P € w.

90

Putting R equal to the reflexive, symmetric and transitive closure of < gives an S5-model
graph since (i)-(iii) follow from (a) and (b).

Proof of (a): Suppose OP € v;, then P € v; by (T'). Also, OP € Sf (wp) as there are
no building up rules, hence OP € wy or ~OP € w, by (sfel'). If ~OP € wq then either
—~P € v; or mOP € v; by (S5). The first contradicts the CS%'-consistency of v; since
P € v; and so does the second since OP ¢ v;. Hence OP € wy. And then OP € v; by
(S5) and P € v; by (T).

Proof of (b): Suppose -OP € v;. Then as there are no building up rules, -OP €
Sf (wo). Hence OP € wg or =OP € wyq since wp is subformula-complete. If OP € wy then
OP € v; by (55), contradicting the C.S5’ -consistency of v; since =0P € v; by supposition.
Hence —-OP € wy. And then either =P € wo, or there is some vy such that =P € vy by
(55). That is, the w we seek is either wy itself, or one of the nodes of level 1. °

The system CS5’ is effectively Fitting’s system for S5 with the (sfcT') rule replacing his
semi-analytic cut rule. But note that it is trivial to implement CS5’ and CS5 whereas this
is not so of Fitting’s systems as the semi-analytic rule does not bound the superformula
in the cut-class.

5.5.2 Tableau Systems For K45 and K45D Containing Analytic
Cut

Another way to obtain a tableau calculus for K45 is to add analytic cut by adding (s fc)
to CK45. Note that we add (sfc), not (sfcT') since K45-frames are not reflexive. The
advantage is that the completeness proof, and hence the deterministic decision procedure
based upon it, is much simpler.

Let
CI45" = {(0), (=), (M), (V), (sfe)} U {(45)} U {(8)}.

Let X%, = X.

A set is CK45'-saturated if it is CK 45 -consistent and closed with respect to (0), (=), (A),
(V) and (sfc). It is easy to show that (sfc) is sound with respect to K45-frames since it
is essentially a classical propositional (static) rule.

For completeness suppose X is CK45'-consistent and create a CIK 45'-saturated superset
wo with X C wy C X}, as usual. If no =0OP occurs in wo then ({wo},) is the desired
model graph since (i)-(iii) are satisfied.

Otherwise, let Q;,Q2, -+, Qm be all the formulae such that -0Q; € wp and create a
(s-successor v; for each @; using the (45) rule. This gives all the nodes of level 1, so put
wo < v;, for each 1 =1---m, and stop!

91

Consider any two nodes v; and v; with i # j. Using the facts that each node is subformula-
complete and there are no building up rules, we show that

(a) OP € v; implies OP € wy implies P € v; and OP € v;;

(b) —~OP € v; implies =OP € w, implies there exists a vy such that =P € vy,

Proof of (a): Suppose OP € v;. Then OP € Sf (wo) and so OP € wy or =OP € wy
since wyp is subformula-complete. If =0OP € w, then =OP € v; by (45), contradicting the
CK45'-consistency of v;. Hence OP € wy. Note that this holds only because the (45) rule
carries ~0OP into its denominator along with ~OY,

Proof of (b): As for (a) except uniformly replace =0OP by OP and vice-versa. The crux
of the proof is that (45) preserves all formulae of the form OP and —OP., o

Hence we can put v; Rv;Rv; for all v; and v; giving a reflexive, transitive and symmetric
nondegenerate cluster. If we also put woRv; for all 4 = 1- .- m, then we obtain a K45-
frame of type 2. If some v = wo then we obtain a nondegenerate K45-frame of type 1.

In either case, (i)-(iii) are satisfied giving a model graph and hence a K45-model for X.
[]

Note the difference from CS5 where we could guarantee that OP € v; implies P € v;
by (T'). The (45) rule carries =0 P into the denominator specifically to make up for the
absence of (T") and allow the proof of (a) to go through.

For K45D let

CE45D" = {(0), (=), (A), (V), (s£)} U {(45D)} U {(6)}.

Let X}‘(45D” = :Xr.

We omit details of soundness and completeness.

5.6 Symmetry, Subformula Property and Analytic
Cut

For the logics with a symmetric R we seem to need analytic cut, either as (sfc) or
as (sfeT). The subformula property can be regained for some logics by changing the
transitional rules to carry more information from the numerator to the denominator.
But note that a building up rule seems essential for CB, so not all the systems are
amenable to this trick.

Notice that the effects of (s f cT") on wo when R is to be transitive and there are no building
up rules like (5) is to flush out all the eventualities that could possibly appear in any

92

successor. That is, if =OP is going to appear in a successor, it must be in Sf (wo). But
then it must be in wp since otherwise by (sfeT'), we would have OP € wy contradicting
the appearance of =0OP in any consistent successor. Hence the number of eventualities
never increases as all the eventualities that will ever appear are already in wy.

The idea behind (sfc) and (sfcT) is to put extra information into a node before leaving
it for good. That is, once we leave a node in our tableau procedure, we can never return
to it. Also, the transitional rules usually lose information in the transition from the
numerator to the denominator. The (sfc) and (sfcT') rules are used to make up for this
“destructive” aspect of our transitional rules.

5.7 Eliminating Thinning

Thinning is eliminable from all the systems of this chapter just as it was in C.54 (page 62).
For example, the effects of () can be built into the (I(4) rule by changing it from

DX, -0OP Y’ =0OpP
(K % 5%, -p o Y7, DY’ P

where Y’ = {Q | OQ €Y} and simultaneously changing the basic axiomatic rule from
(0) to (0').

5.8 Bibliographic Remarks

The proofs and rules presented in this section are all from Rautenberg [Rau83] except
for CD', CD4, CS4', CK45, CKA5D, CK45', CK45D', CK45D" and CS5'. The system
CD4 is an obvious extension of Rautenberg’s system CD, and CD' is lifted straight from
Fitting [Fit83]. The CS4’ system is based on ideas of Hanson [Han66a]. The tableau
systems CK45, CK45D, CK45D' are based on the work of Shvarts [Shv89]. The tableau
systems C.55', CK45', and CK45D" are an amalgamation of ideas of Rautenberg, Fitting
and Shvarts.

There is one minor flaw in Rautenberg’s paper [Rau83] because he does not distinguish
between transitional and static modal rules. Hence his rules for (1), (D), (B), (sfec) and
(sfeT) do not carry all the numerator formulae into their denominators. For example,
Rautenberg’s (T') rule is

X;0pP

X, P

whereas ours is

X;0pP
(T) X;0P; P

Thus there is no proviso for contraction in his systems and as we saw in Example 3
(page 47), contraction is necessary for some modal systems. Consequently, Rautenberg’s

93

systems are not complete as claimed. For example, his system for CS5 is unable to
prove the S5-theorem GOP = P because the proof requires the (s feT) rule to carry its
principal formula into its denominator, and his (sfcT') rule does not do so.

The flaw in Rautenberg’s tableau rules is fundamental since we cannot just add a rule of
contraction like:
X, P

X;P;P
because then we no longer work with sets but with multisets. Using multisets, the notion
of beginning a tableau for X with X makes no sense. Also, termination depends on
the fact that we start with only one copy of each element in X. If we allow more than
one copy then we cannot be sure that adding just one more copy will not give a closed
tableau.

Rautenberg’s rules are complete for Smullyan-tableau where contraction on any formula
is implicit, but Rautenberg does not work with Smullyan-tableau since he explicitly
associates sets with the denominator and numerators of each rule.

In order to fix the flaw, we have explicitly carried all numerator formulae into the denom-
inators for the static modal rules. Then, a complication arises when saturating a set as we
are allowed to use any rule only once on any formula. The notion of strict-CL-saturation
becomes necessary and we have to take the union of the intermediate one-step saturation
sets to obtain a CL-saturated set.

Fitting’s [Fit83, page 81] sequent systems suffer from an identical flaw since there is no
sequent equivalent of his “repetition rule” [Fit83, page 37-38] and this is the rule that
allows contraction.

As we note later on page 132, the embedding of S5 into K45 explicitly proved by Shvarts
is implicit in the CS57 tableau system of Fitting.

94

Chapter 6

The Temporal Systems

In this chapter we first present cut-free tableau systems for the logics S4.3, S4.3.1 and
S4.14. These logics are important when the modalities O and < are given the temporal
interpretation “always” and “eventuality”. This work was done before I found Rauten-
berg’s paper and seems to be new since I have been unable to find any similar work for
the last two logics; see Chapter 7. Zeman [ZemT3] gives a cut-free tableau system for
S54.3, but is unable to extract the analogous cut-free sequent system. With hindsight
though, these tableau systems are clearly just extensions of Rautenberg’s method and
are presented in this light,.

We then discuss cut-free tableau systems for various extensions of S4. Although these
extensions are not usually associated with temporal interpretations, the finite frames
that characterise these logics have interesting temporal interpretations. We also show
that some well-known axiomatic logics are different axiomatisations of the same logic
since they are all characterised by the same class of (finite) frames. This work is not
particularly original but it unifies disparate notes made by various authors into a coherent
form.

The methods for proving soundness and completeness are as in the last chapter except
that we treat each logic individually. The main reason is that the tableau rules are
somewhat bizarre and the corresponding soundness and completeness proofs are more
intricate.

6.1 A Cut-free Tableau System for S4.3

The logic S4.8 is characterised by the class of (frames which are) finite linear sequences
of nondegenerate clusters; see page 33. It can be shown that S4.3 is also characterised
by either of the single frames (Q, <) or (R, <) where R is the set of real numbers and
Q is the set of rational numbers [Gol87, page 57]. Goldblatt [Gol87, page 57] shows that
any S4.3-frame is a p-morphic image of (Z, <), where T is either R or Q, so that

(Z,2) E Aiff Fgys A

95

Consequently, between any two worlds there is always a third and S4.3-frames are said
to be dense. So, although we always work with finite sequences of clusters, S4.3 is the
logic where time is modelled as the positive real or positive rational number line. That
is, there is an initial point corresponding to “now” and then a continuum of points to the
right of “now” corresponding to the real or rational number line, Since S4.3-frames are
finite sequences of nondegenerate clusters, this may seem odd. The linear continuum can
be obtained by “bulldozing” the proper clusters of an S4.3-frame into an infinite linear
sequence [SegT1, page 80] [HC84, page 82-88]. That is, proper clusters, when bulldozed,
give rise to a continuum.

6.1.1 Tableau Rules for CS4.3

The following notation is used in this section:

—0{P,- -, B} stands for {~0OP;,—~0P,,..., ~OP};
Y ={P, -, B} then Y] stands for Y \ {P;}.

The tableau system CS4.3 is:
€54.3 = {(0), (=), (A), (V), (T)} U {(S4.3)} U {(6)}
where (54.3) is:

DX;—'ID{Pl,-“,Pk}
0X;-0Yy; =P | ... | OX;-0Y; P,

(54.3)

where Y = {P;,---, B} and Y; = Y \ {P}

and the three sets are respectively the static, transitional and structural rules of C.S4.3.

Semantic Intuitions: The (54.3) rule is based on a consequence of the characteristic
S54.3 axiom 3. Adding 3 to S4 gives a weakly-connected R for S4.3 so that each of the
following is a theorem of $4.8 [Zem73, page 232-233]:

OEPVQ)ADEQVP) = OPVOQ
~(BPVBQ) = ~(D(OPVQ)AD(EQV P))
~OPA-DQ = -0O(0PVQ)V-0(0OQV P)
SHPA-DQ = O(-0PA-Q)VO(=0Q A-P).

So when there are only two eventualities, say =OP and —0¢Q), the (54.3) rule can be seen
as a disjunctive choice between the two possible orderings of these eventualities together
with an appropriate “jump” to the corresponding worlds. The soundness of the (54.3)

96

rule follows from a generalised version of this last S4.3-theorem containing k£ formulae of
the form ~0OP, - .. ~0OPF; [Zem73, pages 236-238)].

The sequent analogue of the (54.3) rule is:

5’1 5'2 Sk
OF — 04y, ---, 04,

(— 0:54.3)
wherefor 1<:<k
Y = {As, 0, A}
Y=Y\ {4}

Si=0I — A;, OY;

Let X%, ,=X.

Lemma 8 If there is a closed CS4.3 tableau for X then there is a closed C.S4.3 tableau
for X with all nodes in the finite set X%, .

Proof: Obvious from the fact that all rules for C.54.3 operate with subsets of X%, 5 only.

A set X is CS4.3-saturated if it is C.54.3-consistent and closed with respect to the static
rules of C54.3.

Lemma 9 For each finite CS4.3-consistent X there is an effective procedure to construct
some finite C54.3-saturated X* with X C X* C X%, .

Proof: As for CS4 since the static rules for CS4.3 and CS4 are identical. °

97

6.1.2 Soundness of CS4.3

Theorem 15 The tableau system CS4.3 is sound with respect to S4.3-frames.

The static and structural rules of C.54.3 are those of C.S4 and S4.3-frames are also reflexive
and transitive. Thus all the proofs of soundness for these rules are as for C.S4 since they
depend only on the reflexivity and transitivity of R. The soundness of the remaining rule
is proved below.

Proof for (54.3) : We have to show that if the numerator of the (54.3) rule is S4.3-
satisfiable, then so is at least one of the denominators. That is, we have to show that
if
DX;—‘D{PlaP%"',Pk}
is 54.3-satisfiable, with Y = {P,, P, -+, P} and finite £ > 0, then there is some ¢ with
1 <12 <k such that
0X;-P;-0Y;

is S4.3-satisfiable. Finiteness is not essential for soundness.

As before assume that OX;—0{P,, P, -+, P} is S4.3-satisfiable. That is, there is an
S4.3-model M = (W, R, V) with wy € W such that w, = 0X; —0O{Py, Ps,--+, P }.

Then, by the definition of |= there exist wy,ws, - - -, wy, not necessarily distinct worlds in
W such that woRw; and w; = -P;, for 1 < j < k.

Now, we know that an S$4.3-model is a (finite) linear sequence of nondegenerate clusters
and that wo € W. If M is just one nondegenerate (proper or simple) cluster then R is
reflexive, transitive and symmetric, and we immediately have that some world satisfies
DX =P;;-0Y; since w; = —~P; implies w; = —0OP; implies w; = O-0P; in such a
cluster. Thus the only interesting case is when M is not a single cluster. The < ordering
defined previously on page 31 is then appropriate. Label the cluster containing wy as Cy.

Let Cy be the first cluster equal to or after Cy that contains a world wy that fulfills
any of the eventualities in £ = {-=0P,,-~0OP,,. - ,=0P}. That is, wy € Cy such that
ws = =P, for some 1 < m < k. The world w; may satisfy other eventualities from
E and it is even possible that C; is Cp, but we do not care. Our aim is to prove that
wy |= =0Y, where Y, = {P, Py, -+, P} \ {P..}.

Suppose to the contrary that w; & —0Y,,. Then wy = 0P, for some 1 <1 #m < k. If
wy € Co then wyRwo implying that wo |= OF;, but we already know that wq = -0OP, by
supposition. Hence, wy € Co and Cy <1 Cy. But we also know that there must be some
world wy; € W such that woRw, and w, = —P,. Label the cluster containing w, as Cj.
Since wy = OF,, all worlds w, with w;Rw, are such that w, = P. Hence wylw,, that
is, Cy <1 Cy. But this contradicts the choice of Cy as the first cluster with respect to Cj
that fulfills any of the eventualities in E. So it must be that w t E -0Y,,. Remember we
have already disposed of the case where M is a single cluster.

Since woRw; and wyRwy and wo = OX, we have wy | OX; P, by transitivity of R.
Hence wy = OX;-P,,; -0Y,, and we are done.)

98

6.1.3 Completeness of C54.3

Theorem 16 If X is a finite set of formulae and X is CS4.3-consistent then there is
an S4.3-model for X on a finite frame (Wy, R) which is a finite, reflexive and transitive
sequence of nondegenerate clusters (and hence an S4.3-frame).

Proof sketch: The completeness proof of C.S4.3 is similar to the completeness proof for
CS4. The differences are that only one branch is constructed, and that in doing so, the
(54.3) rule is used instead of the (54) rule. The basic idea is to follow one branch until
it cycles and then to use thinning to sprout a continuation of the branch, thus escaping
out of the cycle. The cycles give rise to clusters in the resulting S4.3-model. Thinning
seems essential.

Proof: Let wo 2 X be CS4.3-saturated, wo C X%45. If no =0OP occurs in wgy then
({wo}, {(wo,wo)}) is the desired model graph since (i)-(iii) are satisfied. Otherwise do
Step 1 below.

Stepl: Let Y = {@Q |-0Q € wo and —Q ¢ wo} so that =OY contains all the eventualities
In wo that are unfulfilled by wo. If Y is empty, all eventualities are fulfilled, so go to
Step 4. Otherwise =0Y = =0{Qy, -+ Q. }, with m > 1. Put w' = wOD. Now Ow' C wy,
so Ow' U —~0Y is CS4.3-consistent by (6); hence so is at least one of

)(‘7 —_ D'LUIU{_‘QJ}U_‘D—Y_}) fOl‘j -]_,"',m
by (54.3).

Choose one! such CS4.3-consistent set X; and create a S4.3-saturated @;-successor w;
from it as usual, and put wy < w;. There may be a choice of @;-successor since more
than one of the X; may be C.54.3-consistent but the choice is not important at this stage.
Repeating this step for w; will give a €.54.3-consistent set w, and so on giving a sequence
wo < wy < wy -+ that will either terminate or will sooner or later repeat some set w,,
since X3, 5 is finite. If the sequence terminates, with no cycles, then we are done since
all the eventualities in wy are fulfilled, so go to Step 4. Otherwise, in the cyclic case, this
will give S = wo < w; < wy < +++ < 1w, < W1 <+ + < Wp_1 < W, containing a cycle
C=wn < Wpp1 <+ < Wp_q < W, which we write pictorially as

S=wo<wy < wy <+ < W, < Wingr - =< Wy 1.

The cycle C fulfills at least one of the eventualities in Wy1, namely the =0(Q) that gave
the duplicated @-successor w,, of w,_1. But C may not fulfill all the eventualities in
wWy—1. To check this, do Step 2.

Step 2: Let Y = {P [-0OP € w,—y and “P ¢ w;, m < j < n — 1}, so that —=0OY is the
set of eventualities in w,_y that remain unfulfilled by C. Y is empty, then go to Step 4
since S is now almost an S4.3-frame, otherwise go on with Step 3 below.

!Note that we choose only one successor, not all successors as in the proof for CS4. This is because,
for C54.3, we want to construct a linear sequence, not a tree. Also, we can guarantee only that at least
one of the X is C54.3-consistent whereas for CS4 each successor was independently CS4-consistent,

99

Step 3: So -OY = —~O{Py,++, P}, where k > 1. Put v’ = wH . Since Dw' U ~OY C
Wp_1 and wy_; is C54.3-consistent so is at least one of

Xj:Dw'U{—'Pj}U_'D?j, forj:l,--',k

by (6) and (54.3). As before, choose one such C.54.3-consistent X; and create one S4.3-
saturated P;-successor for w,_y. This successor is either new to S or not new to S.

(3a): If the P;-successor is new to S then put w,_1 < w, giving

S:w0<w1<w2<---<wm<wm+1---wn~1-<wn

where w, is this new P;-successor and the overlining indicates the link w,_1 < w,, marking
the extent of C'. Now proceed to Step 1 using w, instead of wy to extend the sequence S.

(3b): Otherwise, the P;-successor must duplicate some member w, of S with ~P; € wyy.
By the definition of Y, this successor w,, cannot be in C, otherwise C' would fulfill the
eventuality ~OF;. So w,, must precede w,, in the sequence. Replace the link w,_; < w,,
by wp_1 < Wy, thus extending C towards wg so that

S=wo < W =Wy < = Wy R Wrgt <+ = Wy < Wt < S Wy

Now go to Step 2 using the new C to calculate Y. That is, put Y = {P | —=OP ¢
Wp—1 and =P g w;, m' < j<n-—1}.

Step 3 either extends the cycle C to include sets earlier in the sequence S by finding
smaller values of m’ etc.; or leaves C intact and extends the sequence S itself to include
a new set w, after wy,_;. In the first case, the extended ¢ fulfills an extra eventuality in
Wn-1, thus reducing the size of Y, but w,_; remains the last set in S. In the latter case,
the new set w, fulfills an eventuality of w,_; that C does not fulfill, and w,, becomes the
last set in S. Attention turns to the fulfillment of the eventualities of w, but note that
the eventualities in w,_; that are unfulfilled by C and w,, are now in w, by virtue of the
fact that ~0Y; = -0Y \ {=0OP;} is a subset of w,.

A loop involving Steps 2 and 3 extends C towards we. On the other hand, Step 1 applied
to wy extends S further or creates another cycle ¢’ in S originating from w,.

This process must terminate because X%, 5 is finite. That is, eventually, in Step 3, only
the second alternative (3b) will remain open because no new successors will be possible.
The resulting loop involving Steps 2 and 3 will extend the corresponding C" towards wy
until C” fulfills all the eventualities in the last set of .

Either way, the resulting sequence S either contains no proper clusters, or is a finite
sequence of finite, possibly overlapping, proper clusters (allowing S to be a single cluster).
The overlapping clusters merge in Step 4 below.

Step 4: Let R be the reflexive and transitive closure of < so that the overlapping clusters
of < become maximal disjoint clusters of R. Then (Wo, R) is a finite sequence of nonde-
generate clusters that satisfies properties (i)-(iii) and hence is an S4.3-model graph for
X. o

100

Step 3(b'): Instead of Step 3(b), sometimes an alternative argument also works. Sup-
pose wy is the last set in S. Choose a CS4.3-saturated P;-successor for each unfulfilled
eventuality =0OF; of w; since each Dwj U {~OP} is S4.3-consistent, as always, where
wy = w,D. If each of these Pi-successors already appears in S, simply choose the Pi-
successor w, that appears earliest in S and put w; < w,, creating a cycle C” which must
fulfill all the eventualities in w; by the choice of w,,.

6.1.4 Peculiarities of CS54.3

For convenience we repeat the (54.3) rule:

OX;-0{P, -, B}
DX;—»DY’;—;—]Pl l e | DX;"'D?[@;_'P]@

(54.3)

where Y = {P;,--+, P} and ¥; = Y \ {P}}

The (54.3) rule together with (0) can simulate the (S4) rule by thinning the current
formula set to match a numerator where k& = 1 and thereby making Y a singleton. Hence
CS54.3 is able to prove all S4-theorems which is just as well since S4 C S4.3.

The (S4.3) rule is the only rule we have encountered where more than one eventuality
plays an active role in any one rule application. That is, if =07 = {-0OP,...,-0P,}
are all the eventualities in the current tableau proof node, then by appropriate uses of
(0) we may choose Y to be any non-empty subset of Z. Consequently, (54.3) has no dual
rule. In all the previous tableau systems we have seen, (0) is used to leave only a single
eventuality in the numerator so that the appropriate transitional rule is applicable. This
is a direct consequence of the fact that, up till now, we have dealt with frames which are
trees. For S4.3, this is no longer possible since we require a linear frame.

The (54.3) rule can be seen as a collection of rules, one for each value of & = 1,2,--+ As
a consequence, there is no easy way to deal with infinite sets in C.S4.3. In fact, S4.3 is
not compact, and the natural generalisation of the (54.3) rule is the (w) rule which has
an infinite number of denominators. See Sundholm [Sun77] for a description of the (w)
rule.

It appears that () is essential for completeness of CS4.3 since Step 2 requires us to ignore
the eventualities of w,—_; that are fulfilled by the cycle C. And this is only possible if
we know that a CS54.3-tableau has been tried where these eventualities are ignored, and
that it has failed to close. That is, in Step 2, we must be able to throw away some of the
eventualities in w,—; using (#) and this means that (6) is now an essential rule of C.54.3.

In Section 4.5 (page 62) and Section 5.7 (page 93) we saw that (0) could be eliminated by
building the effects of () into the transitional rules and by changing the basic axiomatic
tableau rule from (0) to (0). It may be possible to eliminate thinning by explicitly taking
subsets as explained below.

101

There is another way to handle weak-connected frames as espoused by the cut-free sequent
system for KGL due to Valentini [Val86] (although he uses the name GLyy, for KGI
and uses the name GL for G). The following (54.3') rule can be obtained as an analogue
of Valentini’s rule.

DX; '—|DY

S54.3/
() DX;—J/I;ﬂDI/l’ I co l DX;ﬁYm;ﬂDY;;

where

Y={P, B}

kE>1

Yi,--+,Y, is an enumeration of the non-empty subsets of Y
m=2*_—1 and

Y/ =Y -V

)

This rule makes the use of all subsets explicit, whereas we achieve the same effect via
(0). Rautenberg also mentions a similar rule but not in the context of S4.3. It would be
interesting to analyze the relative complexities of these two rules as this is the form of the
linearity rule that is required when reflexivity is missing. That is, when L is an axiom
but 3 is not. It seems reasonable to conjecture that a rule similar to this one is the one
required to give cut-free tableau and sequent systems for the logic KADLZ characterised
by finite linear sequences of degenerate clusters [Gol87]. I simply have not had time to
formalise these systems and their soundness and completeness proofs.

Incidentally, the fact that S4.3 is a subset of discrete linear temporal logics may ex-
plain why Wolper’s [Wol83] method also requires an explicit check to ensure that all
eventualities are fulfilled.

102

6.2 A Cut-free Tableau System for S4.3.1

The logic S4.3.1 is characterised by the class of (frames which are) finite linear sequences
of nondegenerate clusters with no proper non-final clusters; see page 33. It can be shown
that S4.8.1 is also characterised by the single frame (w, <) where w is the set of natural
numbers [Gol87, page 59]. Goldblatt [Gol87] shows that every S4.3.1-frame is a p-

morphic image of (w, <) so that
(W, <) = AIff Fguzq A

Hence, between any two worlds there is always a finite number (possibly none) of other
worlds and S4.3.1-frames are said to be discrete. So, although we always work with finite
sequences of clusters, S4.8.1 is the logic where time is modelled as the natural number
line.

The history of S4.8.1 goes back via Dummett and Lemmon [DL59] to Prior [Prib7]; see
[HC68]. Prior had sought to model time as a linear sequence and conjectured that S4 was
this logic although it was soon proved that this was incorrect. Bull [Bul65] proved the
completeness result for S4.3 with respect to dense rather than discrete linear frames and
also proved the completeness result for $4.8.1 with respect to discrete frames although
he calls this logic “D” for “the Diodorian logic”. This use of “D” has nothing to do with
the logic KD which we refer to as D.

The logic S4.3.1 is also known as S4.3Dum, in honour of Michael Dummett [SegT1],
but the credit for axiomatising it appears to be Kripke’s [Bul65]. In fact, Bull [Bul65]
claims that Kripke used semantic tableau for $4.8.1, in 1963, but he gives no reference
and subsequent texts that use semantic tableau do not mention this work [Zem'3]. Pre-
sumably, Kripke used semantic tableau based on cyclic graphs like his tableau systems
for S5 rather than tree tableau as we do; see Chapter 7.

Bull [Bul85] states that

Zeman’s Modal Logic (XLII 581), gives tableau systems for S4.3 and D in
its Chapter 15, ...

The D mentioned by Bull is S4.3.1 but Zeman [Zem73, page 245] merely shows that his
tableau procedure for $4.8 goes into unavoidable cycles when attempting to prove Dum.
Zeman does not investigate remedies and consequently does not give a tableau system
for S4.3.1 as claimed by Bull.

103

6.2.1 Tableau Rules for ¢S4.3.1

The tableau system C.54.3.1 is :
€54.3.1 = {(0), (=), (A), (V), (T)} U {(54.3), (S4.3.1)} U {(0)}

where (54.3.1) is

U; DX) _'D{Qla U)Qk}

54.3.1 ‘
B0 S T8 T T 5 18l e T T 5
where

Yz{Qla"'an};

Y, =Y\ {Q;};

§j = U; BX;-0Y;;0-0Q;
Skyi = OX;=Q;;0(Q; = 0Q;); ~0Y;

for1<j<k

and the three sets represent the static, transitional and structural rules of C54.3.1.

Note that the denominators Sy, - - -, .S, are the same as the numerator except that -0Q);
has been lifted to 0-0Q); similar to the (5) rule in CS5. The denominators Sgpy,- - -, Sz,
however, do not carry U since they involve a “jump” to the first world that fulfills -00Q);.

Semantic Intuitions: Since Dum, that is,
0O(Q(P = OP) = P) = (OOP = OP)
is an $4.3.1 theorem, so are each of:

O(0(P = 0OP)= P)ACOP = OP
~H0P = -0(0(P = 0P)= P)Vv-COP
“HP = O(O(P=0P)A-P)vO-0OP

104

Suppose w satisfies the two formulae 0P and =0 and consider the instance of (54.3.1)
where Y contains only two formulae P and Q:
U;0X;-0P;-0Q
Sl | S2 l 52+1 ' S4

where

Sy = U;0X;0-0P;-0Q

S U;0X;-0P;0-0Q
Sa41 0X;-0Q;0(P = OP);~P
Sa42 = 0X;-0P;0(Q = 0Q); —Q.

Il

There are four ways of pairing the disjuncts of the two implications
—0P = O(O(P = OP)A-P) v O-0OP
and
—0Q = O(0(Q = 0Q) A-Q) v 0-0Q

namely;

(a) O(O(P = 0OP)A-P)AO-0OQ

(b) S(O(P = OP) A=P)AO(O(Q = DQ) A =Q)
(¢) B-O0P AO(D(Q = 0Q) A -Q)

(d) O-0P A O-0Q.

The children Sy and S; of the corresponding (54.3.1) rule handle the three separate cases
where at least one of O-0P or O-0(Q are involved; that is, cases (a), (c) and (d). These
cases involve no “jump”.

The children S541 and S,,, handle the final case (b) involving both O(P = OP) A =P
and 0(Q = 0Q) A =Q. These events may happen in any order, so the two children S5,
and Sig cater to these two orderings in the same way as the (54.3) rule.

The fact that Spy; and Sypq are not couched in terms of both O(P = OP)A~P and
0(Q = 0Q) A =Q can be explained by an argument based on which of them occurs first
since this notion is well-defined for $4.3.1. That is, if O(P = OP) A —P happens first
then we know that —=0Q is true at the world where this happens. If 0(Q = 0Q) A -Q
happens first then we know that ~0OP is true at the world where this happens. If they
happen simultaneously then we are still safe because =@ implies =0@ and =P implies
—OP due to reflexivity so that both Sa41 and Sy suffice.

105

The (54.3.1) rule has a sequent analogue as shown below:

Si S o Sk Skpr Skpz oo Sak
¥, OF — OAy,---,04;, A

(—0O:54.3.1)
where for 1<:<k

Y ={As, -, Ax}

Y=Y\ {A}

S; =%, O0I' — 04, OV, A

Sk = OT, O(A; = 04;) — A;, O]

For a finite set X let X3, 5, = SfO(X = 0OX) where O(X = 0X) = {O(P = OP) |
Pe X}

Lemma 10 If there is a closed CS4.3.1 tableau for X then there is a closed C.S4.3.1
tableau for X with all nodes in the finite set X431

Proof: Obvious from the fact that all rules for C.54.3.1 operate with subsets of X431
only. °
A set X is CS4.3.1-saturated if it is CS4.3.1-consistent and closed with respect to the
static rules of C54.3.1.

Lemma 11 For each CS4.3.1-consistent X there is an effective procedure to construct
some finite CS4.3.1-saturated X* with X C X* C X3, 4.

Proof: As for CS4 since the static rules for C.$4.3.1 and CS54 are identical.)

106

6.2.2 Soundness of (S4.3.1

Theorem 17 The tableau system CS4.3.1 is sound with respect to the class of finite
sequences of nondegenerate clusters with no proper non-final clusters, that @8, with respect
to S4.3.1-frames.

The static and structural rules of CS4.3.1 are those of C.S4 and S4.3.1-frames are also
reflexive and transitive. Thus all the proofs of soundness for these rules are as for C.S4
- since they depend only on the reflexivity and transitivity of R. Every S4.3.1-frame is

an S4.3-frame, hence the (54.3) rule is also sound with respect to S4.8.1-frames. The
soundness of the remaining rule is proved below.

Proof for (54.3.1): We have to show that if the numerator of the (54.3.1) rule is S4.3.1-
satisfiable, then so is at least one of the denominators. That is, we have to show that

if

U;0X;-0{Q1,- -+, Qu}
is 54.3.1-satisfiable and ¥ = {Qy, -+, @i} for finite & > 0, then there is at least one ¢
with 1 <4 < k such that

U;0X;0-0Q;-0Y; or OX;-0Y;-Q;0(Qs = 0Q;)

is S4.3.1-satisfiable. Although finiteness is used in the proof it is not essential as the
proofs can also be carried through without assuming finiteness.

As before assume that U; OX; —~0{Q,---,Q:} is S4.3.1-satisfiable. That is, there is an
S4.3.1-model M = (W, R, V) with wy € W such that

wo = U;0X;-0{Q1, -, Q).

We know that M is a finite linear sequence of simple clusters with one final, possibly
proper, cluster. Let Cp denote the cluster containing wo. We can write M as

- ACaCL <10,

There are two cases depending on whether Cj is a final cluster or not.

Case 1: Cy is the final cluster, that is, n = 0. We know wo € G, and wq = U;0X;-0{Q;,
+<+,Qr}. Therefore, there exist wy,ws, - -+, wy not necessarily distinct worlds in W such
that for each world w; we have woRw; and w; = —Q;. Since Cy is the final cluster,
these worlds are all in Cy and are mutually accessible by R which is reflexive, transitive
and symmetric over Co. That is, we have w; |= —Q;; ~0Y;. But since R is reflexive,
w; | —Q; implies w; = =0Q; and in a (proper or simple) final cluster, w; = —0Q;
implies w; |= 0-0Q);. In a nondegenerate cluster, we also have both woRw; and w; Rwg
giving wo = U; 0X;-0Y;; 0-~0Q, and we are done.

107

Case 2: (is not the final cluster, hence it is simple. Suppose further that
(#x) foralli,1 <i<k,wp £ U;0X;0-00Q;; -0Y;;
as otherwise, we would be done.

Since R is reflexive and wo = U; 0X;-0{Qy,-,Qx} and we are assuming that ()
holds, it must be that wp £ O-0Q; for all 1 < i < k. But then wo | —~O-0Q;, that
is, wo |= OOQ; for all 1 < ¢ < k. Thus there exist wi, -+, wy not necessarily distinct
worlds in W such that woRw; and w; |= DQ; for 1 < i < k. Since wo = -0{Q1, -, Qx}
we must have wy <1 w; so that the w; occur strictly after wo (which is fine since wyg is a
member of a non-final cluster).

Let w; be the first of these worlds that fulfills any of the eventualities £ = {C0Q,
+++,00Q%}. That is, w; | 0Q,, for some 1 < m < k. If wy € C, then consider c,_q,
the unique and simple immediate predecessor of C,. By definition of wy as “first”, ¢, 1
cannot fulfill any of the eventualities in E hence ¢,_; = -0Y,,. Tt also cannot satisfy
@m as then c,_q would be “first” instead. Hence, ¢,—1 = =0V, =Q; 0(Qm = 0Qn)
and we are done. If w; ¢ C,, then w; is a simple non-final cluster and has a unique
immediate predecessor wy_; such that w;_; = OX;-0Y,,; Qm; O(Qn, = 0Qy) and
again we are done. Note that we are guaranteed that w;_; exists because we know that
the w; occur strictly after wy. ! °

6.2.3 Completeness of C54.3.1

Theorem 18 If X is a finite set of formulae and X is CS4.3.1-consistent then there is
an S4.3.1-model for X on a finite frame (Wy, R) which is a finite (reflexive and transi-
tive) sequence of nondegenerate clusters with no non-final proper clusters (and hence an
S4.3.1-frame).

Proof Outline: The completeness proof of CS4.3.1 is similar to the completeness proof
for C54.3 and CS4. The difference from CS4 is that only one branch is constructed, and
that in doing so, the (94.3) rule is used instead of the (S4) rule. But in CS4.3 we are
allowed to have cycles, whereas in C.S4.3.1 we are allowed only one final cycle (if any).
The basic idea is again to follow one branch until it cycles and then to use thinning
to sprout a continuation of the branch, thus escaping out of the cycle. But this time
we use the (54.3.1) rule to avoid the cycle. At all times, we ignore the eventualities
that are invariant; that is, we ignore =0OP if O=0OP is also present since the (54.3) and
(54.3.1) rules will carry such eventualities into the successor they spawn. In this way,
invariants accumulate until the final, possibly proper, cluster. We then fulfill them in this
final cluster. The complications arise because although we have categorised (54.3.1) as
a transitional rule, only the Siy; branches involve a “jump”. The S branches are really
static since all they do is to lift the ~OP to O-0OP as in the (5) rule. Thinning seems
essential.

108

Proof: Let wo 2 X be CS4.3.1-saturated, wo € X%, 4. If no =OP occurs in wy then
{({wo}, {(wo,wo)}) is the desired model graph since (i)-(iii) are satisfied. Otherwise do
Step 1 below.

Step 1: Let ¥ = {@ |-0Q € wo and =Q ¢ wo and O-0Q ¢ wo}.
IfY = 0 go to Step 3.

Otherwise, =0O0Y = =0{Q1,Q2, -+, Qm},m > 1. Put v’ = w(l,]. Now Ow’ U -0OY C wy,
so Dw' U —0Y is C54.3.1-consistent by (0); hence so is at least one of

X = 00 U {~Q5} U0, for j = 1,-+-,m
by (54.3).

Choose one such CS54.3.1-consistent set X; and create a C.S4.3.1-consistent ():-successor
wp from it as usual, and put wy < w; as long as w; is new to the sequence. We may
have a choice of ();-successor since more than one of the X; may be CS4.3.1-consistent
but the choice is not important as long as the chosen successor is new to the sequence.
If possible, always choose the @;-successor that is new to S.

Repeating this step for wy will give a CS4.3.1-consistent set w, and so on giving a sequence
S = wo < wy < wy--- which will either terminate or will sooner or later repeat some
set since X3, 5, is finite. Continue extending S with new sets until this is no longer
possible either because all choices of (Q;-successor would lead to a cycle in S or because
the corresponding ¥ becomes empty.

If'Y =0 go to Step 3, otherwise go to Step 2.
Step 2: Thus, in general,
S=w0<w1<w2<~-<wn_1

where all potential (54.3) (yes (S4.3)) @-successors of w,_; are not new to the sequence
and

Y ={Q |-0Q € wp_y and ~Q ¢ w,_; and O-0Q ¢ Wo1} = {Q1, -, Qx}
is not empty.

(2a) Now at this point it is possible that the alternate argument of the S4.8 proof will
work. That is, put w/,_, = w>, and note that Ow;,_; U {~0OP} is CS4.3.1-consistent by
(0) where =OP is any unfulfilled eventuality of w,_;. Hence so is each Ow!,_, U{-P} by
(54.3) (not (54.3.1)). So we can create a P-successor for each of these sets and if each
of these successors already appears in S then simply chose the one closest to wp in the
< ordering, thus creating a final cycle C' that fulfills all the eventualities of Wp-1, and go
to End. Otherwise do Step (2b).

(2b) Note that ~0Q € -0Y implies (Vw; € S,0-0Q ¢ w;). To see this let w) = wS

and note that by construction Ow) C Ow), C Dw), C .-+ C Ow;,_, € Ow!_, and
0-0Q ¢ Ow!,_, by definition of Y.

109

Since =0O0Y U Ow!,_; C wy_; and w,_q is CS4.3.1-consistent, so is one of
X; ={0-0Q;} Uwn1 \ {-0Q;}
or one of .
Z; ={0(Q; = 0Q;),~Q;} U Ow),_, U~0Y;
where ¢ < j < k by (0) and (S4.3.1).

If some Z; is C.54.3.1-consistent then create a Qs-successor w, from Z;. Now if w, dupli-
cates some member of S, where

S=wo < wy < Wy <+ < Wy_g < Wp_q

then w,_; contains O(Q; = 0OQ;) and by (T') also contains @); = 0OQ;. Therefore,
~(Qi A =0Qi) € wy-y since (Qi = 0Q;) = =(Q; A =~0Q;). By (V), ~Q; € w,_y or
—=0¢); € wy—1. By definition of Y, ~Q; & w,_; hence ~—~0Q; € w,_,. But then Wp_1
contains both =-=0@); and —~0Q); contradicting its CS54.3.1-consistency. Hence, w, must
be new to the sequence S, so put w,_y < w, giving

S=wy<w <wy <+ < Wyeq < Wy
Now go to Step 1 using w, instead of wg to calculate Y.

Else, some X; must be C.54.3.1-consistent, so construct the corresponding C54.3.1-saturated
(i-successor v,_; and replace the link w,_y < w,_; with Wp—2 < Vp_1, thus discarding
wy_1 altogether and giving

S=w0<w1<w2—<~--<wn_2—<vn_1.

Condition (2b) guarantees that v,_; does not duplicate any set in S since 0-0Q); € v,_1
for the —=0Q); € —~0OY that gives rise to v,_;. Also note that by (T), 0-0Q; € v,y
implies ~0Q; € vn—1 so that w,_y C v,_; and hence all the eventualities in Wp_q1 are
also in v,_;. That is, all we have done in replacing wy_y with v,_y is to lift some —0Q
to O=0¢). Now go to Step 1 using v,_; instead of wy to calculate V.

Step 3: Y = {Q |-0Q € wp_y and =Q € w,_; and O-0Q; & wy—1} is empty, then
for each —=0Q € wy_4

(3a) ~Q € wy_q or

(3b) [:l—:l:lQ € Wpo1.

If (3a) is true for all eventualities in w,_; or if Wp_1 contains no eventualities then w,,_;
fulfills all its eventualities; so go to End.

Otherwise (3b) alone must hold for at least one eventuality in w,_y. Let
Z ={P |-0P € w,—y and =P ¢ w,_; and O-0OP ¢ Wp—1}

and suppose ~0Z = —~0{P,,---, P,}. These are all the unfulfilled eventualities of Wy—1
since Y above is empty. We know that m > 1 since Z is non-empty. Put w’ = wTE]_ 1

110

Since {—~OF;} U Ow’ C wyy for each 1 < i < m and w,_q is CS54.3.1-consistent, so is
each of

Xi={-PluDuw' fori=1,---,m
by (0) and (S54.3), (not (S4.3.1)) as always.2 Furthermore, by (T), the P-successor
obtained from X; contains all the other unfulfilled eventualities =027 since O—0Z C
Ow’ C X;.

If every Pi-successor, ¢ = 1---m, already occurs in S then choose the P-successor w,
that appears earliest in the sequence S and put w,_; < w, giving a final lone cycle
C'=wy < Wpyy <+ < Wpoq < W, in

S=wo<wy <wy < W, < Wayg <+ < Wp_q.
By the choice of w;, the cycle C' fulfills all the eventualities of w,_.

Otherwise, it is possible to choose a P;-successor w, that is new to S, so do so, giving
S =wy < w < wy <+ < wyq < w, and go to Step 1 using w, instead of wq
to calculate Y. Note that all the unfulfilled eventualities of w,_; appear in w, because
—0Z C wy, but one of them, namely ~0OP;, does not appear in the =0OY calculated from
wy, in Step 1 because w, fulfills it; that is, ~P; € w,,.

The general control flow of the method is to repeat Step 1 until a cycle is imminent.
Then do either Step 2 or Step 3, both of which avoid the cycle, when necessary, and
return to Step 1. In both Step 2 and Step 3 there is a check to see if a lone final cycle
suffices. If so then both steps terminate the process. Otherwise, each step, in its own
way, generates a set w, that is new to S and which fulfills an eventuality of w,_; giving
S=wp < wy R wy <+ < Wy_q < Wy, Sometimes, though, Step 2 does not lead to a
new successor, and we are forced to assume that some eventuality ~0OP is actually an
invariant by lifting it to O=0P via v,_,. But the subsequent ~0Y will now exclude =0P
because O-0OP € v,_;.

Since X35, is finite, this process must terminate since there are a finite number of
different successors, there are a finite number of eventualities in each node and no rule
introduces new eventualities.

End: Let R be the reflexive and transitive closure of <.

By construction, (Ws, R) is an S4.3.1-frame and properties (1)-(iii) hold. Hence, it is a
model graph for X, °

Note on CS54.3.1 proof: It may seem as if the (54.3) rule may be eliminable from the
C54.3.1, however this is not the case. The (.54.3) rule is needed to handle the case where
—0OP € w,_y implies 0~0P € wy,_;. This case is immune to the ($4.3.1) rule since one
of the S; denominators of the (54.3.1) rule is already satisfied by wp—1. Thus, in this
case, the (54.3.1) rule achieves nothing.

2By this I mean that this is also the case in Steps 1 and 2, but it cannot be used there since the resulting
Pi-successor is not guaranteed to contain all the other unfulfilled eventualities of Wp—1. Furthermore,
blind use of this fine-grained approach leads to branching in S which is unwanted.

111

6.2.4 Peculiarities of CS4.3.1

Since S4.83 C S4.8.1 it makes sense that C54.3 is a subset of C.54.3.1.

The proof of soundness of the (54.3.1) rule relies on the cut-like property that for any
given eventuality 0P and any given world w, either w = O-0OP or w = -O0-0P. The
former says that the eventuality ~OP is an invariant of the sequence of worlds in this
model since it reappears incessantly. The latter is the same as w = ©OP and says that
eventually there is a point where the value of P settles to “true” forever. Thus, there are
two eventualities that play a role in the (54.3.1) rule. One is =OP and is explicit since
it appears in the numerator. The other is ~O-0OP and is implicit.

But note that in the completeness proof, we never actually attempt to fulfill this second
eventuality as our only requirement is to fulfill the explicit eventuality —0OP. That is,
the S; denominators “assume” that O-0OP is true by lifting some -0OP to O-0OP,. The
Sk+i denominators make the opposite assumption that O-0OP is false; that is that OOP
is true. But we cannot simply “lift” =OP to ~0O-0OP for then the (54.3.1) rule would no
longer be “once off” as the eventuality =OP would spawn the eventuality =0-0P which
could then spawn another eventuality “O0-0-0P and so on. That is, (54.3.1) would no
longer be analytic because the set of superformulae would fall outside X5431. The Sy
denominators therefore “jump” to the world immediately preceding the world where OP
become true. At this world, we know that =P holds, and we know that O(P = OP) also
holds.

Since (54.3) is a part of CS4.3.1, the peculiarities of CS4.3 are also present in C54.3.1
and thinning seems essential.

Finally, note that the completeness proof depends critically on determining whether some
complex formula is already in a set w. That is, if ~0P € w then we have to determine
whether 0-0OP € w, and this is only possible because we use primitive notation. So the
deterministic decision procedure based on the completeness proof may require that all
formulae be in negated normal form.

6.3 A Cut-free Tableau System for S4.14

In the last two sections we have seen the temporal logics corresponding to linear dense
and linear discrete frames. The bulldozing technique of Segerberg [Seg71] [HC84] can
be used to show that S4 is the logic of branching dense frames. So what is the logic of
branching discrete frames ?

The axiomatic system S4.14 (axiomatised as KT4Zbr) is proposed by Zeman [Zem?T3,
page 249] as the temporal logic for branching integer time. That is, imagine the points
of time to have a tree structure starting from some root node corresponding to “now”
and branching out into the “future”. There is no past “before” the root and each branch
is a linear sequence of points isomorphic to the natural numbers 1, 2,3, -+ - This means

112

that the logic S4.14 is characterised by the class of (frames which are) finite trees where
every branch is a finite linear sequence of nondegenerate clusters with no proper non-final
clusters although Zeman does not seem to realise that finiteness is essential; see page 33.
S4.14-frames are also discrete and by bulldozing the final cluster each branch gives rise
to an infinite sequence of points analogous to the natural number line. The name S4.14
is due to Zeman.

6.3.1 Tableau Rules for CS4.14

The tableau system CS4.14 is:
C54.14 = {(0), (=), (A), (V), (T)} U {(54), (S4.14)} U {(0)}
where (54.14) is:

OX;0-0P | OX;-P;0(P = OP)

(54.14)

and the three sets are respectively the static, transitional and structural rules for C.S4.14.

Semantic Intuitions: The intuitions behind the (54.14) rule are based on the axiom
Zbr as follows. Since Zbr, that is,

DO(0(A = 04) = A) = (000A = OA)
is a theorem, so are:

O(0(A=04)=> A)ADOOA = D04
~04 = -0(0(A=04)= A)v-0004
“0A4 = O(0(A=04)A-A) v OO-0A.

The left fork of the (54.14) rule is a jump to the world where O—0A eventually becomes
true and the right fork is a jump to the world where 0(A = OA)A-A eventually becomes
true.

The (.54.14) rule has a sequent analogue as shown below:

or — <ODA4 Or, O(A=04) — A
Oor — 04

(— O:.54.14)

For a finite set X let O(X = 0OX) denote the set {O(P = OP) | P € X} and let
(S414 = SfO(X = OX).

113

Lemma 12 Ifthere is a closed C54.14 tableau for X then there is a closed C.S4.14 tableau
Jor X with all nodes in the finite set X%, ,,.

Proof: Obvious from the fact that all rules for C.54.14 operate with subsets of X414
only. o

A set X is CS4.14-saturated if it is C.54.14-consistent and closed with respect to the
static rules of C54.14.

Lemma 13 For each CS4.14-consistent X there is an effective procedure to construct
some finite CS4.14-saturated X* with X C X* C XG414r

Proof: As for CS4 since the static rules for CS4.14 and CS4 are identical. °

6.3.2 Soundness of (S4.14

Theorem 19 The system C54.14 is sound with respect to S4.14-frames.

The rules of CS4.14 are those of CS4 plus (S4.14) and S4.14-frames are also reflexive
and transitive. Thus all the proofs of soundness for the CS4 rules are as for C.S4 since
they depend only on the reflexivity and transitivity of R. The soundness of the remaining
rule, (54.14), is proved below.

Proof for (54.14): We have to show that if the numerator of the (54.14) rule is S4.14-
satisfiable, then so is at least one of the denominators. That is, we have to show that
if 0OX;-0P is S4.14-satisfiable then one of DX;0-0P and 0X;0(P = OP);~P is
S4.14-satisfiable.

As before assume that 0X;-0OP is S4.14-satisfiable. That is, there is an S4.14-model
M = (W, R, V) with wo € W such that w, = OX;-0P. Also, W is finite and this is

essential,

Suppose that there is some world w € W such that weRw and w = O-0P, Then we are
done since transitivity of R implies that w = OX giving w = O0X;0-0P,

Otherwise, suppose that there is no such world w € W. That is, suppose that
(*) Yw e W, woRw implies w p O-0OP.

This is just the same as: Vw € W, woRw implies w = GOP, which by definition of =
implies that
Wo '= DODP.

114

We know that an S4.14-model is a finite tree of nondegenerate clusters with no non-final
proper clusters, and that wo € W. So any particular branch is a linear sequence of simple
(nondegenerate) clusters except for the final, possibly proper, cluster. Label the cluster
containing wo as Co. There are two cases depending on whether or not Cj is a final cluster.

Case 1: Suppose Cj is a final (and hence possibly proper) cluster and wo € Cp. Since
wo = OX;-0P, there exists a world w; € Cp such that woRw, and w; = —P. Since
wollwy we know w; | OX as well. But in a (proper or simple reflexive, transitive
and symmetric) final cluster, wy = ~P implies w; = ~OP implies w; = O-0OP. This
contradicts (*) and so Case 1 cannot occur.

Case 2: Then wo € Cp and Cj is a non-final, and hence simple, cluster. Also, wo = OOOP
by (*). So choose any branch emanating from wo and let C; be the first cluster on this
branch that is after Cp and that contains a world wy such that w; = OP. Since wy |= ~OP,
we know that Cy # Co, hence the “after” is justified. Consider the (unique) parent cluster
Cy-1 of Cy where Cy_y may be Cp itself. Since C;_; is non-final, it is simple and is just
one reflexive world ¢y_;.

Since woRcy_1, we know that ¢y |= X; 0X; OOP; OCOP by reflexivity and transitivity
of R. By choice of C; as “first to satisfy DP” we know that cs—1 = ~OP. We do not
know whether ¢y |= P or ¢y = —P but this is not important yet. There are two
subcases depending on whether ¢;_; has other children (apart from Cj).

Case 2(a): If ¢;—1 has no other children (apart from Cy) then ¢;_; = O(P = OP). In
this subcase, by choice of C; as “first to satisfy OP”, we also know that ¢f—1 = —P. But
then ¢;_; = 0X;0(P = OP);~P and we are done.

Case 2(b): If ¢;—1 does have other children (apart from C}) then we can choose any other
branch emanating from c;_; and let C% be the first cluster on this branch that is after
¢s-1 and that contains a world w/ such that w} |= OP. Since ¢;_; |= ~0OP, we know that
C% # cy-1, hence the “after” is justified. Consider the (unique and simple) parent cluster
C%_, of O} where C%_; may be c;_; itself. Since C%_; is non-final, it is simple, and so is
just one reflexive world ¢}_;. But we have seen this situation before and by repeating the
argument in the previous two paragraphs, we either end up at a cluster satisfying Case
2(a) or we go on for ever,

The infinite process either gives an infinite branch or gives a world with an infinite number
of immediate children, both of which are impossible since W is finite. Hence sooner or
later Case 2(a) must hold. °

115

6.3.3 Completeness of CS4.14

Theorem 20 If X is a finite set of formulae and X is CS4.14-consistent then there is
an S4.14-model for X on a finite S4.14-frame, where an S4.14-frame is a finite tree of
nondegenerate clusters with no non-final proper clusters.

Recall that a formula -OP is called an eventuality since it entails that eventually —P
must hold. A set w is said to fulfill an eventuality -0OP when =P € w. A sequence
wy < wg < -+ < wy, of sets is said to fulfill an eventuality 0P when —P € w; for some
w; in the sequence.

Proof sketch: For S4.14 which is the basic discrete branching time logic, the model
construction has two stages. In the first stage, a finite branching tree of nondegenerate
clusters is created along the lines of the C.S4 model construction. In the second phase,
each non-final proper cluster is flattened into an arbitrary sequence of its constituent
worlds. Note that this has nothing to do with the bulldozing technique of Segerberg
which is also used to flatten out proper clusters [SegTl, pages 80-81], [HC84, pages 82-
88]. It may be an analogue of the “virtually last” argument of Segerberg [SegT1, pages
96] but I am not sure of this at the moment because an arbitrary sequence suffices for
S4.14, so that no particular world has to be shown to be “virtually last”.

Proof: Let wy 2 X be CS4.14-saturated, wo C X%4.14- Construct a model graph from wq
using the method for C54 except for one additional step. In general, when a);-successor
is created for —~0Q; € w based on the (54) rule, where w' = wd, the additional rule
(54.14) means that

(a) Ow' U {0-0Q;} is CS4.14-consistent or
(b) Dw'U{0(Q; = 0Q;),-Q;} is CS4.14-consistent.

So each node can have a Q;-successor due to (54) and at least one Q;-successor due to
(54.14). Note that the (S4.14) rule denominators are not mutually exclusive so they can
both be S4.14-consistent at the same time.

The construction still gives a preorder over < as for CS4 and each branch either termi-
nates, or gives a cycle due to the finiteness of X%,,, by choosing the minimum 7 and j
such that w; = wj, ¢ < j and putting Wi_q < W;.

As for CS4 let R be the reflexive and transitive closure of < giving a finite model graph
F = (Wo, R) whose clusters form a tree. The graph may not be an S4.14-frame because
S4.14-frames must not contain non-final proper clusters and this is not guaranteed of

the graph (W, R).

We claim that all non-final proper clusters can be eliminated from F whilst still preserving
properties (i)-(iii) giving a model graph F'.

116

(a) Original cluster C = ¢;ResR - - - Rey Rey.

R R R R
e d@ B QL B QA Q .. SHT(cx)
Cq Cy Cl—1 Ck

(b) One view of result of removing c; Rcg—1.
R R R R

o d@ B QB P QR Q g i)
(5] Co

Ch—1 Ck

(c) Different view of result of removing ¢y Reg_q.

R R R R
.<]Q<R>O<R> -.-<R>O<] Q<] SbT(Ck)
cy Ca Ck—1 Ck

Figure 6.1: Flattening non-final clusters in S4.14.

To see this first note that F is a finite tree where each branch is a sequence of nonde-
generate clusters of R. Figure 6.1(a) shows some non-final proper cluster, deliberately
expanded horizontally to show its constituent worlds €1,C2,+++,ck. The double-headed
arrows represent the fact that ¢;Rc;yy and ciy1Bce; so that any ¢; and ¢; are mutually
accessible via R. That is, these worlds form a nondegenerate proper cluster whose extent
is delimited by <1 . We claim that the link ¢, Rey_q (the arrow c; «— ci_; in the fig-
ure) can be broken without disturbing properties (i)-(iii), giving Figure 6.1(b) and hence
Figure 6.1(c).

Suppose C' = ¢; Reg R« - - ¢y Rey is some non-final cluster in F where each ¢; is also reflexive
and where F is constructed as above. The parts of the tree immediately below ¢ (to the
right of ¢; in the figures) are the clusters C, that satisfy C' < Cy. Call this part of the
tree the subtree of cluster C' and denote it as SHT(C). Note that S bI'(C) is non-empty
since C' is a non-final cluster by supposition. This is represented in Figure 6.1(a).

The tree structure of F would be left undisturbed if the arc ¢pRep_1 were eliminated
since no world is eliminated by this step; see Figure 6.1(b). In fact, the only property
that may be disturbed is that ¢, Re; would no longer hold for each ¢;, 1 < ¢ < k — 1.
Thus the only property that may be altered is property (ii); that is, ¢; may contain some
eventuality =0OP which is fulfilled by at least one of ¢y, ,Ck—1 because =P € ¢; but
which is not fulfilled by any other worlds reachable from ¢y Eliminating the said arc may
destroy property (ii) since ¢, Rc; would no longer hold.

117

‘We show that either:

(A) ¢ itself fulfills =OP; that is, =P € ¢; or
(B) there exists a w € ST(C) that fulfills ~0OP; that is, P € w € SvT(C).

Since ¢ has at least one successor, it must contain at least one eventuality ~OP as this is
the only way that successors can arise (even when R is the reflexive transitive closure of
<). Since cy, is S4.14-consistent it must have a successor d due to ~OP and (54.14) such
that ¢y Rd. Let ¢, = ¢ = {Q|OQ € ct}. Depending on which denominator of (54.14)
gives rise to d :

(a) O¢, U{O-0OP} Cd or

(b) Oc, U {O(P = OP),~P} C d.

Suppose there is some w € SbT(C) such that =P € w. Then we are done since (B) holds.
Otherwise, we have that (B) does not hold, implying that

(B1) Ywe SWT(C),-0OP & w

because w € SbT(C) and -OP € w would imply the existence of some w’ with wRw' and
—P € w'. This w’ would have to be in SbT'(C) which would contradict our supposition
that (B) does not hold.

Given that (B) does not hold and that (B1) does hold, consider the cases (a) and (b).

Case (a): We have 0-0P € d. By (T), -OP € d. But then d ¢ SbT(C) by (B1). If d
is one of the ¢; including c itself then O-OP € d gives ~0O0P € w for all w € ST (C),
which again contradicts (B1). And we know that bT'(C) is non-empty since C' was a
non-final cluster. Hence when (B) does not hold, (a) cannot hold and (b) must hold.

Case (b): This means that there exists a d, ¢, Rd such that {8(P = OP),-P} C d.
Since =P € d, our assumption that (B) does not hold implies d & SbT'(C). Therefore,
d = ¢ forsomel <¢ < k. If i =k then we have shown that ¢ fulfills =P and we are
done since (A) then holds. If ¢ < k then O(P = OP) € ¢; = d, and then dRc; implies
(P = OP) € ¢ by (iii). Since (P = OP) is just abbreviation for —=(PA—-OP) this means
that O-(P A -OP) € d and =(P A =OP) € ¢;. Then by (V), =P € ¢ or -=OP € ¢,
But we already know that —=0OP € ¢; and that ¢ is CS54.14-consistent, so =—=0OP € ¢, is
impossible and it must be that =P € ¢;. We have just shown that (A) holds whenever
(B) does not hold.

Thus we can liberate ¢; from the cluster C' and still maintain properties (i)-(iii). The
cluster C' can be replaced by two clusters Cy and ¢; with C; = C \ {ek}, C1 < ¢, crRey,
and ¢ <1 SbT'(C) as shown in Figure 6.1(c). Repeating this process gives the linear order
e <decg ezt e < giving Fy where each cluster ¢; is reflexive and F; is still a
model graph. As C was any non-final proper cluster, this can be done for all non-final

118

proper clusters giving some final ' = (Wp, R') that is also a model graph where R is the
altered reachability relation. But F’ is now an S4.14-frame since it contains no non-final
proper clusters.

Property (i) still holds because we have not removed any elements of Wy hence X C wg C
Wao. Property (iii) holds because we have not added any extra tuples to R, only removed
some. So if it held before the pruning process, it must hold after it. And property (ii)
holds because of the argument above. Since properties (1)-(iii) still hold, F' is also a
model graph and hence an S4.14-model for X.

Note that the proof does not stipulate any particular ordering for C = ¢, R--- Ry,
That is, C' can be flattened into an arbitrary sequence of its constituent worlds and
consequently, the proof is constructive. °

6.3.4 A Note on S4.14

In the following passage from a chapter on modal logic by Segerberg and Bull [BS84, page
51], Bull refers to S4M as S4.1, refers to S4MDum as S4.1Dum and cites Segerberg’s
PhD. thesis [Seg71]:

With what natural axiom can S4.1 be extended to S4Grz? Clearly we need a
formula A such that S4A is characterised by the finite reflexive-and-transitive
frames in which all but the final clusters are simple. Segerberg [1971], chapter
II, section 3, shows that

Dum. <$OP= (O(B(P = OP)= P) = p)

(i.e., ©OP = Grz) has this property, so that S4Grz is S4.1Dum.

Bull’s Dum is not identical to our Dum but see page 36 where we noted that the
differences are immaterial in the field of S4.

There are two claims in the above passage. One is that “S4Grz is S4.1Dum” which
we do not dispute. The other is that the logic S4Dum “is characterised by the finite
reflexive-and-transitive frames in which all but the final clusters are simple”. We show
that this second claim is not correct by giving a finite reflexive-and-transitive model in
which all but the final clusters are simple, but in which neither Dum nor Dum is valid.
The model is pictured in Figure 6.2.

119

{-r}

R R
{p} w (}5
R R ws {p}
{-p}

Dum can be written as: O(-p = O(p A O=p)) A OOp = Op;
wo = COp because ws = Op;

wo = —p = O(p A O—p) because of wy and wo;

wo = 0O(=p = O(p A Op))

but wo & p and hence wo [~ Op

Figure 6.2: A finite reflexive-and-transitive model in which all but the final clusters are
simple in which Dum and Dum are false at w.

The explanation rests on the fact that
0(O(P = OP) = P)
can be written as
O(=P = O(P AO-P)).

Thus Dum can be written as:

O(=P = O(P A O=P)) AOOP = OP,

This is just as well because we have just shown that S4.14 characterises this class and
Dum and Zbr are different. But note that the extra O modality in Zbr is exactly what
is needed since, in the counter-example of Figure 6.2, wy K O0OOp. That is, the counter-
example does not falsify Zbr because the extra modality handles the branching inherent
in S4.14-models which is absent in S4.8.1-models.

Segerberg [SegT1, page 106] shows that “S4Dum is determined by the class of all reflexive
kites and all finite reflexive trees”. The correct reading of this statement is “S4Dum is
determined by the class that consists of all reflexive kites and all finite reflexive trees”.

120

6.4 Equivalence of Grz, KTGrz, S4Grz and S4MDum

An axiom that Segerberg [Seg7l, page 169] attributes to Sobocihski [Sob64] but which
he names G'rz after Grzegorczyk [Grz67] is:

Grz:0(0O(P = 0OP)= P)= P.

It actually comes in three other flavours:

Grz: O(O(P = 0OP)= P)= 0OP;

Grz: 0O(O(P = 0OP)= 0OP)= P;

Grzg: O(0(P = 0OP)= 0OP)= 0OP;

but Segerberg [Seg71, page 107] shows that in the field of S4 these three are all equivalent.
Note that Grz is just G,.

In [Seg7l, page 103] it is stated that S4Grz is determined by the class of all finite
reflexive (transitive) trees. But we now know (page 33) that the logic KGrz, which we
call Grz, is characterised by this same class of frames. That is Grz = KGrz = S4Grz.
It is known that KGrz = KTGrz [HC84]. Segerberg [Seg71, page 107] also shows that
S54Grz = S4MDum. Hence Grz = KGrz = KTGrz = S4Grz = S4MDum.

That is, CGrz is a decision procedure for S4MDum = S4Grz = KTGrz = KGrz =
Grz.

The above equivalences imply the following implications:

(a) Grz = 4;

(b) Grz = Dum,;

(c) Grz=T;

(d) Grz= M.
Property (a) was proved by van Benthem and Blok [vBT78]. Property (b) is obvious since
axiom Dum (page 23) is a specialisation of axiom Grz; that is, the proof is an instance
of: if A= C then A = (B = C), where B = OOP. Property (c) has been proved by

van Benthem and Blok [vB78]. Property (d) has been proved by Sobociriski [Sob64]; see
[BS84, page 32].

121

6.5 Systems For Logics Of Linear Finite Time Inter-
vals

Consider the logic $4.3MDum axiomatised as KT43MDum where M is OOP = GOP,
Zeman notes that OGP = GOP guarantees the existence of end points; see [ZemT73, page
270] where the observation is attributed to Prior.

The final cluster in an S4.8.1-frame is allowed to be a proper cluster precisely because
that is the only place in an S4.3.1-frame where formulae like OGP and OO—P can be
fulfilled infinitely often without falling into inconsistency. But the addition of M now
forbids OGP and OO=P from co-existing in harmony. That is, M forces the value of P
to eventually settle to a fixed value forever.

We already know that S4MDum = Grz. Therefore it seems reasonable to conjecture
that S4.8MDum = Grz.3 and that Grz.3 is characterised by the class of all finite
sequences of simple clusters, This would then make Grz.3 an appropriate logic for finite
(reflexive and transitive) discrete linear time intervals.

It seems reasonable to believe that a cut-free tableau system for Grz.3 is possible using
our knowledge about the effects of 3 in obtaining C.54.3.

Alternatively, since Dum is a theorem of S4.3MDum, so are the following:

-0P = =0(0(P = 0OP)= P)V-{OP
~0OP = O(O(P = 0OP)A-P)VOO-P,

But M gives OGP = OO-P, hence in $4.3MDum we have
-0P = &(O(P = OP)A-P)V OO-P
as a theorem.

This latter intuition gives a rule like (.54.3.1) except that the left denominator would also
involve a “jump” to the world where O-P eventually becomes true. Recall that in the
(54.3.1) the left denominator merely “lifts” the eventuality -OP to O-~0OP,

We therefore seem to have two alternative ways to attack Grz.3 which we leave as further
work.

122

6.6 Systems For Logics Of Branching Finite Time
Intervals

The logic Grz is characterised by finite trees of simple clusters, hence it is the logic for
a branching model where each branch is a finite time interval.

The axiom G, is a variant of Grz; see page 23. Rautenberg [Rau83, page 414] notes
that G, is characterised by transitive frames with no infinite ascending chain of pairwise
distinct points. We conjecture that it is also characterised by the class of finite transitive
trees with (irreflexive) degenerate non-final clusters and (reflexive) simple final clusters.

The semantic intuitions of the (Grz) rule involved the fact that G, is a theorem of Grz,
hence CG, is just CGrz minus the rule (T'). But in the completeness proof for CGrz, we
relied on the fact that we created a successor for =OP € w only when =P ¢ w, and this
was crucial to show that a sequence of successors terminates. We cannot use this fact
for CG, since reflexivity is missing and the completeness proof must allow cycles. It may
be possible to flatten non-final clusters as in the completeness proof for C54.14 but this
requires further work.

123

Chapter 7

Related Work

Tableau and sequent systems for modal logics have been the focus of research in philoso-
phy, mathematics and lately, in computer science. The main aim in philosophy has been
to obtain completeness results with respect to classes of frames, and for this, tableaux
have been used more than sequent systems [BS84]. The main aim in mathematics has
been to obtain syntactic cut-elimination proofs and thereby relate modal logics to log-
ics of provability and consistency of Peano arithmetic [Boo79, SV80]. The main aim in
computer science has been to obtain decision procedures for theorem proving in modal
logics [Fit88]. The three broadest classifications are tableau systems, sequent systems
and normal forming methods, although modal resolution methods are also of importance
in computer science.

7.1 Tableau Systems

There are two basic tableau methods for modal logics and as both are refutation pro-
cedures, both methods use sets of formulae to represent different possible worlds. The
differences lie in the way that the reachability relation is modelled. In the first method,
the desired semantic reachability relation is imposed onto the tableau construction ex-
plicitly as a set of external constraints, above and beyond the tableau rules. In the other,
the effect of the reachability relation is achieved (implicitly) by the tableau rules them-
selves, using the basic successor relation S of trees. The methods are not equivalent and
to distinguish the two, we refer to the former as constrained tableau systems and the
latter as tree tableau systems.

In older work, each possible world is called a tableau and tableaux are interconnected
by an auxiliary relation representing the semantic reachability relation. We retain this
terminology for this chapter only and refer to each world as a tableau and say that one
tableau is auxiliary to another if the latter is reachable from the former. It should be
clear whether we mean tableau as worlds or tableau systems. Also note that we use R to
mean the tableau auxiliary relation and not the semantic reachability relation as we have
done previously. Since the auxiliary relation R always mimics the semantic reachability

124

relation, this is not a problem.

In constrained tableau systems, the semantics of the logic are explicitly forced onto the
auxiliary relation by stipulating that it be reflexive, transitive or whatever. In tree
tableau systems, a tree construction is used giving a successor relation relating parent
tableau to their immediate offspring. But this relation is neither reflexive nor transitive
nor symmetric and the “effect” of these properties is obtained via the the tableau rules
themselves. Thus constrained tableau systems work on a global level; we can work on
any node of the construction at will. On the other hand, tree tableau work at a local
level; we can work on the current node, or on its immediate children, or we can create a
new node.

Apart from this there is one distinction between older tableau systems and their newer
counterparts. In the older works on tableau systems, the non-determinism inherent in the
various rules is made explicit by exploring “alternative” sets of tableau where necessary.
The idea is that only one of these alternative sets need close to obtain a proof. That
is, the whole search space of attempted tableau proofs is maintained explicitly, and a
notion of “alternative” sets of tableaux becomes necessary. In newer tableau methods
this non-determinism is implicit and only one tableau construction is kept at any point
of the procedure. We ignore this aspect of the older work as it is not central to the
understanding of the methods, and may have even contributed to some confusion [Kap66].

7.1.1 Constrained Tableau Systems

The most celebrated work is of course that of Kripke [Kri59] where possible worlds related
by an accessibility relation are first proposed as a semantics for modal logics. Bull and
Segerberg [BS84] give an account of the genesis of the possible worlds approach and
suggest that credit is also due to Hintikka and Kanger. Zeman [Zem73| even credits C.
S. Pierce with the idea of “a book of possible worlds” as far back as 1911!

Kripke follows Beth [Bet55] and divides each tableau into a left hand side and a right
hand side where the left side is for formulae that must be assigned “true” and the right
side is for formula that must be assigned “false”. Thus it is clear that this is a refutation
procedure and we are attempting to obtain a falsifying model of possible worlds for the
given formula. To handle the added complexities of modal formulae like DA and -0A,
Kripke uses auxiliary tableau, where a new tableau is used for each possible world and
these auxiliary tableaux are interrelated by an auxiliary reachability relation R. Auxiliary
tableaux may have tableaux auxiliary to them and so on, obtaining a complex web of
tableaux.

125

Kripke uses two basic rules to handle modal formulae: one to handle 0A on the left of a
tableau and one to handle OA on the right of a tableau. They are,

YI: If DA appears on the left of a tableau ¢, then for every tableau ¢/ such that ¢tRt' ,
put A on the left of ¢

Yr: If DA appears on the right of a tableau ¢, then start out a new tableau ¢/, with A
on the right, and such that tR#.

Different constraints on this auxiliary relation give different tableau systems. That is,
the definition of the auxiliary relation R changes with each logic, so that the auxiliary
relation directly mimics the required accessibility relation. For example, the auxiliary
relation R for S4 is defined to be reflexive and transitive, so for any tableau t we have
tRt by definition. These constraints form an extra theory about R that must be taken
into account at each rule application.

Note also that the application of the Yl rule can have delayed consequences. For example,
if a new auxiliary tableau t” is created and it happens to be auxiliary to the tableau # in
which the Y1 rule has already been applied, then we have to keep track of this previous
application of Yl and add A to the left of ¢, Thus, the meaning of “every tableau ¢ such
that tRt” includes tableaux that may come into existence via the Yr rule at any later
point of the construction. The rules are therefore like constraints that may be activated
at a later time and this is why we call these systems “constrained tableaux”.

This is essentially a way to keep track of all worlds in the counter model being sought.
When a new world comes into existence, it is immediately linked into this counter-model
according to the constraints on R. That is, Kripke’s method is a refutation procedure
where extra modal information is kept in the auxiliary relation between tableau. The
construction is on a global level in that we can return to previous nodes of the tableau
construction at will. In our tableau systems CL we cannot return to nodes higher up in
the tree.

The semantic diagrams of Hughes and Cresswell [{C68] and the tableau systems of Zeman
[ZemT73] use essentially the same ideas except that Hughes and Cresswell use annotations
of ones and zeros instead of using a left and right side. Slaght [Sla77] goes one step
further than usual and adds rules for quantifiers and also incorporates a form of negated
normal form by translating =0OP into OGP, =GP into O-P, =3z(- - +) into Va-(---) and
—-0gz(.) into Jz—(-+).

Kanger’s spotted formulae [Kan57], which precede Kripke’s work, are slightly more so-
phisticated versions of these ideas where the extra information is kept via prefixes of
strings annotating each formula. Fitting’s prefixed tableaux are direct applications of
Kanger’s idea to handle many different modal logics [Fit83, chapter 8]. In this method,
each formula is prefixed with a string to retain its modal context and an extra level of
reasoning about these prefixes is built into the rules of the prefixed tableau as restric-
tions on their applicability. Refinements of this idea have been investigated by Morgan
[Mor76], Wallen [Wal87], Ohlbach [Ohl90], Auffray and Enjalbert [AE89] and Frisch and

126

Scherl [FFS91]. In fact, these methods have become known in the computer science lit-
erature as “translational methods” because they either explicitly or implicitly translate
the modal logic into some extension of classical first order logic. The most recent and
comprehensive treatment of this idea to my knowledge is the work of Gent [Gen91] who
seems to have identified the limits of this method.

Gent works with what he calls “logics of restricted quantification”. Gent uses a standard
first order classical logic except that its quantifiers carry restrictions from a separate
“meta-theory”. A typical restricted quantifier is one like Vw,c where C' is some condition
from the meta-theory. Gent’s “theory tableaux” work with two theories, where the re-
strictions from the meta-theory appear as side conditions of the tableau rules. The object
theory is quite general but the meta-theory has certain syntactic restrictions. The meta-
theory effectively acts as a constraint theory determining when an object level derivation
is a proof in the overall theory of restricted quantification. To capture modal logics, Gent
pushes the modal aspects into the meta-theory by making it a theory involving explicit
constraints about R (where R is now the semantic reachability relation). That is, the
modality O becomes a restricted universal quantifier Vz.,p, of the object theory and
<& becomes a restricted existential quantifier 3z, of the object theory with different
meta-theoretic restrictions corresponding to different modal logics.

In all these translational methods, the modal logics K, T, K4, S4 and S5 are easily
handled and Gent has also obtained systems for B and S4.3. The most striking feature
of Gent’s work is that he is unable to give a system for $4.3.1 and this is essentially due
to the fact that the reachability relation R for S4.3.1-frames is not first order definable.
It is known that a formula of second order logic is required to express the reachability
relation for S4.8.1 [vB83]. This deficiency of translational methods is also mentioned by
Auffray and Enjalbert [AE89]. Frisch and Scherl [FS91] find that K45 and K45D also

prove problematic for exactly the same reasons.

In all fairness, it must be mentioned that the translational methods seem to be much
better for automated deduction in first order modal logics where various domain restric-
tions can complicate matters for the first order versions of our tableau systems CL; see
[Oh190]. At the first order level, all modal logics are only semi-decidable since they all
include classical first order logic. Then, decidability is no longer an important issue.

7.1.2 Tree Constructions

As we have noted, the constrained tableau method is really a way to use external con-
straints to mimic the desired reachability relation. Kripke tries to avoid this by using
tree tableau. In tree tableau, a single tree of tableau nodes is kept where a parent tableau
¢t and a child ¢’ are related by the successor relation S of the tree, giving tSt'. Kripke
[Kri63b, page 80] shows that T, B, S4 and S5 are also complete in terms of trees of pos-
sible worlds. Instead of using an explicit auxiliary relation R to mimic the reachability
relation, Kripke shows that the basic successor relation S of a tree suffices. This idea is
the basis of the completeness proofs of Chapter 5 where we use < instead of S. That is,
the tree tableau described below are essentially the deterministic decision procedures we

127

can extract from our completeness proofs for CL. Thus it should be possible to extract
our tableau systems from the procedures described below. However, it is much easier to
go from CL to these procedures than vice-versa.

A tableau t' is auxiliary to a tableau ¢ if tS', that is, if ¢’ is an immediate child of ¢. New
tableau are created by the rule Yr which remains the same, except that we use S instead
of R. A priori, the relation § is not reflexive, not transitive and not symmetric but these
properties are obtained by changing the tableau updating rules to instill the effect of the
desired property.

For example, reflexivity is obtained by replacing R by S and changing the Y1 rule for
handling DA on the left to:

Y1: Let OA appear on the left of ¢;. Then put A on the left of #; and of any tableaux
ty such that ¢;.5%,.

Thus the responsibility of putting A on the left of ¢ is part of the rule Y1 itself rather
than a consequence of the explicit constraint #; Rt; as in the first version of the Y1 rule.

Kripke [Kri63b, page 81] notes that this basic relation S is not automatically transitive
but that “the effect of transitivity” and reflexivity can be obtained by changing the above
rule to:

Y1: if OA appears on the left of a tableau 1, put A on the left of ¢; and put OA on the
left of any tableau t; such that ¢;St,.

Now if a further tableau ¢3 appears such that t,5ts, we do not have to remember that
S is supposed to be transitive from #, to t3 and put A on the left of ¢5. That is, the Y1
rule, when eventually applied to the OA in ¢, will give us “the effect of transitivity” by
putting A on the left of ¢, and putting OA on the left of .

In this way, each of the rules Y1 and Yr become local rules, each ensuring that enough
information is included in the tableau nodes to achieve the effect of reflexivity and tran-
sitivity. But notice that this requires us to apply Yr before Y1 so that rule order becomes
significant. The usual assumption is that all possible rules are applied to a tableau before
moving onto its children. That is, each tableau is saturated before moving onto its chil-
dren as in the deterministic decision procedures we can extract from our completeness
proofs.

For reflexivity and symmetry together, Kripke [Kri63b, page 81] changes Y1 to:

Yl: Let OA appear on the left of ¢;. Then: (1) put A on the left of t1; (2) put A on
the left of every tableau ¢, such that ¢,5t; ; (3) put A on the left of the (unique)
tableau t3 such that ¢35, if such a tableau exists.

Here is the major difference between our completeness proofs and Kripke’s tree tableau.
For now, the Y1 rule is explicitly allowed to add information to a parent node. That is,

128

symmetry is imposed explicitly rather than achieved as an “effect”. In our completeness
proofs, the effect of symmetry was achieved by the tableau rules (sfeT),(5),(B) and
(85) depending on the logic in question.

Kripke [Kri63b, page 81, footnote 1] then asks whether a similar local trick can be used
to get the effect of symmetry, and notes a trick due to Hintikka viz: if OA appears on
the right of ¢ and ¢St’, then put OA on the right of #/. But Kripke notes that this trick is
not enough as the S5-theorem A = OGA has no proof in this modified system. Kripke
conjectures that this incompleteness is evidence for the non-existence of a cut-free tableau
system for S5 and relates this to the inability to prove the Gentzen Hauptsatz in various
sequent systems for 85, This trick is used again in the preservation of eventualities as
in Fitting’s system for S5 and in Shvarts’ systems for K45 and K45D; see Section 5.3

(page 67).

The crucial trick that Kripke seeks is, of course, the combined effects of (sfeT’), and
(5). What Rautenberg realises is that under certain cases, the effect of symmetry of §
can be built into the rules via (T'), (sfcT') and (5) answering Kripke’s question in the
affirmative for S5 and B. In Section 5.5.1 (page 90) we showed that for S5, the (sfcT)
rule alone is sufficient as long as we use Hintikka’s trick in the (S5) rule. That is, we
can replace the building up rule (5) by (S5) and regain the subformula property. But
note that Rautenberg’s method works only because of the support of other rules like (T)
and (sfcT') which are both present in CS5 and CB. Rautenberg does not give a tableau
system for KB and this is what Kripke is really asking about.

We have already noted that (sfc) is really just Smullyan’s “analytic cut” in disguise.
But the utility of (sfcT') (alone) appears to have been first noted by Hanson [Han66a] in
1966. In both constrained tableau systems and tree tableau systems, we must keep track
of all previous nodes of a tableau construction to detect termination. This is analogous
to the cycles we sought in the completeness proofs of Chapter 5.

Hanson shows that the test for termination via cycles can be greatly simplified by adding
(sfcl") to Kripke’s tree tableau. Specifically Hanson proposes to replace the rules for
A A B on the right and OA on the right by:

Ar*: if AN B appears on the right of a tableau t, then there are three alternatives:
1. put A on the left and B on the right of t;

2. put B on the left and A on the right of t;
3. put both A and B on the right of t.

At the neat stage of the construction the ordered set of tableaux of which t is a
member is replaced by three alternative sets, each of which embodies a different one
of the three alternatives.

129

Yr*: If DA appears on the right of a tableau t, then there are two alternatives:

1. put A on the right of t;

2. put A on the left of t, start a new tableau t' such that tSt', and put A on the
right of t'.

At the neat stage of the construction the ordered set of tableauz of which t is a
member is replaced by two alternative sets, each of which embodies a different one
of the two alternatives.

Hanson defines the level L(¢) of a tableau ¢ as:

L(t) =0 if t is the main tableay;
If there is a tableau t' such that ¢'St, and L(¢') = k then L(t) = k + 1.

His termination rules are:

S5 : In an S5-construction apply no rule to any wff in a tableau t if L(t) > 1;

S4: In an S4-construction apply no rule to any wff in a tableau t if L(t) > 1 and each
wff of the form OC that appears on the left of t' also appears on the left of t", where
t' and t" are tableaux such that t'St' and ¢'St.

In the S4 case, if the S4 condition is satisfied then we can construct a (counter) model
by discarding ¢, putting ¢'St" and taking the reflexive and transitive closure of S. This
gives a cycle in S as in CS4'. Thus Hanson’s rules are the deterministic analogues of
CS4'; see page 88.

In the S5 case, the (counter) model is contained in the tableaux of levels 0 and 1 since
discarding all tableau of level greater than two and forcing symmetry and transitivity
on S gives a tree of depth two. But note that Hanson’s rules for S5 are not the exact
analogues of CS5' for he uses the symmetric Yl rule described on page 128 that explicitly
puts A into the left side of the parent node. In CS5 we use Hintikka’s trick to achieve
this effect by forcing =OY into its denominator thus allowing the proof of property (a)
to go through on page 91.

Zeman'’s [Zem73] tableau system for T is identical to Kripke’s constrained tableau system
for T'. But for S4, Zeman uses tree tableau to achieve the effect of transitivity and further
stipulates that the auxiliary relation be transitive; the latter appears to be unnecessary.
So at first Zeman does not appear to distinguish between constrained tableau and tree
tableau. But Zeman then considers two tableau systems for S5. One is called M.$5 and
is the same as Kripke’s since the Y1 rule is allowed to explicitly place formulae into the
parent node. The other, called M S5, is an attempt to achieve the effect of symmetry
and Zeman finds that M S5’ is not complete unless a tableau cut rule is added, confirming
Kripke’s comments about the Gentzen Hauptsatz. Zeman uses M S5’ to show that each

130

M S5 tableau proof corresponds directly to a sequent system proof for S5 where his
sequent system LS5 is allowed to contain cut. He does not analyze the type of the cut
rule and so does not narrow it down to either analytical or semi-analytical cut.

As we stated previously, Zeman [Zem73] appears to be the first to give a tableau system
for S4.3 but he uses alternative tableau, which as we have seen, are unnecessary. The
explicit use of alternative tableau appears to have blinded people to the strong semantic
links between tableau systems and sequent systems. For example, Zeman is unable to
translate his cut-free tableau system for S4.3 into an analogous cut-free sequent system
for S4.8 [Zem?T3, page 232] although he does offer a sequent system for S4.3 requiring
cut. This deficiency with alternative tableau is noted in David Kaplan’s review of Kripke

[Kap66].

Zeman [ZemT73, page 235) also appears to realise that thinning is essential for S4.8 because
his tableau rule for $4.3 in our notation has the form “when OP;,0P,,---,0P, are
present on the right of an S4.3 tableau then ... % That is, Zeman does not stipulate
that these are all the eventualities, only that they are some (finite subset) of all the

eventualities of a S4.3 tableau node.

The book by Fitting [Fit83] is probably the most comprehensive treatment of proof
methods for modal logics. As stated previously, Fitting systematises Kanger’s use of
prefixes to obtain cut-free constrained tableau systems for many normal, non-normal and
even first order modal logics. But he also gives tree tableau systems for K, T, D, K4,
D4, S4, KB, DB, B, S5 and G.

Fitting divides his tree tableau systems into the analytical ones like K, T, D, K4,
D4, and S4 that have the subformula property and are cut-free, and non-analytical
ones like KB, DB, B, S5 and G that either require some form of cut rule or that do
not possess the subformula property. Fitting’s analytical (tree) tableau systems and our
systems CK, CT', CD, CK4, CD4, CS4 are almost identical; the only difference is that
Fitting builds in an explicit contraction rule since he uses Smullyan-tableau. We have
already noted that Fitting’s sequent systems [Fit83, pages 81 onwards] for these logics
are incomplete for exactly the same reasons as are Rautenberg’s; see page 93.

For the non-analytic logics KB, DB, B and S5, Fitting uses a “semi-analytic” cut rule
proposed by Osanu Sonobe based on Smullyan’s idea of “analytic cut” for classical first
order logic [Smu68a]. The “analytic cut” idea in terms of Beth-tableau is to use the cut
rule:

XA
X;A; P | X; A;—P
on any subformula P of any formula that has appeared previously on the current branch.
In this way, the uses of the cut rule are kept “analytic” since this set of subformulae is
finite for any given initial set of formulae. But analytical cut is not enough for modal
tableau involving symmetry alone and so Fitting uses a “semi-analytical” cut rule where
“the cut rule is restricted to subformulas of formulas already on the branch, and to formu-
las built up from them by prefizing modal operators” [Fit83, page 193]. And later, on the
same page, Fitting comments that semi-analytic cut cannot be used for proving decid-
ability because “it can introduce formulas of arbitrary high degree into a proof”. That is,

(cut) where P € Sf (A)

131

the “cut-class” of superformulae is not bounded, so that semi-analytic cut still involves
guessing the right cut formula. But note that Fitting obtains “strong completeness”
rather than weak completeness.

(Rautenberg shows that for B and S5 this cut-class of superformulae can be bounded
since this cut-class is exactly X}, and that analytic cut, that is (sfe) or (sfeT), is
sufficient as long as some extra building up rules like (5) and (B) are present that add
selected superformulae from this cut-class to the tableau. For S5 we have shown that
analytic cut and the subformula property are sufficient; see C.S5/ (page 90). This however,
only gives us weak completeness).

Fitting [Fit83, page 225] also gives another tree tableau system for proving single formulae
of S5 which is cut-free and weakly complete as long as an extra building up rule is added.
The Beth-tableau counterpart for this rule is:

() X; P
4 X; P;—-0-P

The rule is certainly sound since by reflexivity we have P = OP as a theorem in S5.
As a refinement, Fitting shows that this extra rule need be applied only once at the very
beginning of the tableau construction [Fit83, page 229]. This is effectively the result of
Shvarts [Shv89] that A is a theorem of S5 iff DA is a theorem of K45. That is, to test
A for theoremhood in S5, we would construct a CS5r-tableau for {=A}. If the (w) rule
is applied only once right at the start then we are really constructing a C.S5r-tableau for
{—~0--A4}, which is the same as testing DA for theoremhood. Shvarts, however, does
not mention Fitting’s work and Fitting does not seem to realise that his system, minus
the () rule, is complete for K45.

The only other non-analytic system that Fitting considers is for G, and his system is the
Smullyan-tableau system analogous to CG where there is no cut rule, but where the rule
(G) breaks the subformula property. Boolos [Boo79] also gives a semantic cut-elimination
proof for G. Since then, syntactic cut-elimination has been proved by Bellin [Bel85a] and
an improved proof has been given by Valentini [Val83]. Boman gives a recent survey of
provability interpretations of G [Bom90].

Fitting suspects that the loss of the subformula property could be a general principle
to obtain cut-elimination for other modal logics. For example, Fitting [Fit83, page 226]
states “Second, the effects of dropping cut but adding explicit “building up” rules to the
logics KB, DB and B, is not known” and goes on to ask whether adding the following
building up rules and their duals would give strongly complete (in his sense) tableau
calculi for these systems: build A A B from A, B; build AV B from A; build A V B from
Bj; and build OA from A.

The answer for B is given by Rautenberg [Rau83] and, ironically, his paper was published
in the same year as Fitting’s book [Fit83]. Rautenberg appears to be the first to realise
that symmetry can be handled using an analytic cut rule provided the subformula prop-
erty is forsaken, but his work is one of the least cited work I have encountered, possibly
due to its publication in a philosophical journal rather than in a logic journal. T know of
only one reference to Rautenberg’s work! Although an erratum was published for Raut-

132

enberg’s paper [Rau85], this erratum does not correct the incompleteness of his systems
due to the absence of any form of contraction.

Wallen [Wal87] bases his connection matrix methods on the work of Andrews [And81],
Bibel [Bib81] and Fitting [Fit83] although Binkley and Clark [BC67] appear to have given
a “connection method” for classical first order logic as early as 1967. The connection ma-
trix method utilises an explicit form of the contraction rule in the multiplicities associated
with each formula. Thus, the fine grained form of contraction present in our (S4) rule,
for example, is lost. As a consequence, Wallen is forced to abandon decidability even
at the propositional level. In any case, Gent shows that his “theory tableaux” systems
generalise Wallen’s method and we have already mentioned the limits of Gents’ method.

7.2 Sequent Systems

As Bull and Segerberg [BS84] note, sequent systems for modal logics are rare. Most of
the work is in tableau systems following the seminal semantic completeness results of
Kripke [Kri63b]. According to Kripke [Kri63b], Ohnishi and Matsumoto [OM57b] and
Kanger [Kan57], the earliest work appears to be that of Curry [Cur52, Cur50] where a
cut-free sequent system with the subformula property is given for S4.

Ohnishi and Matsumoto [OM57b, OM57a, OM59] give cut-free sequent systems with the
subformula property for K, T and S4 but are unable to eliminate cut from their sequent
system for S5. They retain the contraction rule and the rules are essentially (inverted)
sequent versions of the tableau rules of CK, CT' and CS4 except that their rules do not
duplicate the numerator in the denominator (since contraction is freely available). Kripke
[Kri63b, page 91, footnote 1] points out a slight omission from the work of Ohnishi and
Matsumoto in that the K-theorem =0-4 = OA is not provable in their systems since
they do not cater for the obvious inter-definability of O and & via OP = ~O-P, Kripke
gives an obvious fix.

Kanger [Kan57] also gives cut-free sequent systems with the subformula property for
T and S4 but is able to give a (prefixed) cut-free sequent system with the subformula
property for S5 as well where additional information is kept via spotted formulae. This
additional information is precisely the information required to keep modal contexts as in
the prefixed tableaux of Fitting and the translational methods in general.

Shvarts [Shv89] gives cut-free sequent systems with the subformula property for K45 and
K45D as shown in Section 5.3 (page 83) and gives embeddings of S5 into each so that
his sequent systems for K45 and K45D individually suffice for S5 as well. As stated
previously, Fitting precedes Shvarts in this aspect although Fitting does not point out
the relationship to K45 and K45D of his result.

Mints [Min70, Min] (sometimes referred to as Minc) appears to have been the first to
realise that a cut-free sequent system for S5 is possible without using prefixes if the
subformula property is forsaken. However Mints does not use the concept to obtain
sequent systems for other modal logics although he does give a sequent system for an

133

intuitionistic version of S5.

Zeman [ZemT3] not only gives cut-free tableau systems for many modal logics but also
gives sequent systems for most of them. Zeman’s cut-elimination proofs for his sequent
systems are all syntactic, making them quite complicated. The most curious aspect of
Zeman’s work is that he is unable to give cut-free sequent systems for some logics despite
giving cut-free tableau systems for the same logics. A striking example is the sequent
system for $4.3.

Instead of extracting a sequent rule for S4.8 from his tableau system for S4.3, Zeman
adds an extra axiomatic sequent rule (with no premisses):

OP,0Q — O(P A OQ), (Q A OP)

and then shows that this rule together with the cut rule can simulate the S4.3 tableau
rule. Zeman concludes that “we are unable to prove cut elimination for this system”
[ZemT73, page 232]. But it should be clear that we can extract a sound, complete and
cut-free sequent system for $4.3 from our tableau system CS4.3 using the relationship
between sequents and associated sets from Section 3.11 on page 49.

Wallen [Wal87] is probably the most recent work on sequent systems for modal logics but
the actual systems are taken directly from the prefixed tablean calculi of Fitting [Fit83]
as Wallen’s interest is not in the sequent systems themselves but with techniques to allow
efficient implementation of the connection matrix method for modal logics.

Syntactic cut-elimination proofs for various logics with provability interpretations have
been given by Bellin [Bel85a], Sambin and Valentini [SVS0, SV82], Valentini [Val86],
Valentini and Solitro [VS83], Borga [Bor83], Borga and Genitlini [BG86] and Avron
[Avr84].

Borga [BG86] gives a syntactic proof of cut-elimination for Grz and credits Avron [Avr84]
with the semantic proof. Rautenberg’s work predates this work of Avron. Bellin [Bel85a],
Borga [Bor83] and Valentini [Val83] give syntactic proofs of cut-elimination for G al-
though they call this logic GL. Boman [Bom90] gives a recent survey of provability
interpretation of G. Valentini [Val86] gives a syntactic proof of cut-elimination for KGL
although he calls this logic GLyp.

7.3 Discussion

As we have seen, tableau and sequent systems for modal logics have been an active area
of research for over twenty five years. The early tableau constructions tended to become
confused due to the use of alternative sets of tableaux to explicitly maintain the search
space. The early methods were also global methods where we can return to previous
tableau nodes at will. In this respect they are essentially the deterministic decision
procedures we obtain from our completeness proofs. The modern tableau methods, as
espoused by Rautenberg [Rau83], are highly nondeterministic and only manipulate one
tableau construction, using backtracking to explore the search space. Consequently, we

134

cannot return to previous nodes at will and have to build the information required by
descendants into a node at the time it is processed. For some logics, this requires building
up rules.

Rautenberg shows two things. First, that analytic cut is enough as long as we allow
some sort of building up rule. But he also shows that for many logics, the building up
rule can remain analytic and hence give decidability. We have independently discovered
this property for the logics S4.3.1 and S4.14 but clearly our work is not as general as
Rautenberg’s.

135

Chapter 8

Further Work

In this chapter we present incomplete work and suggest avenues for further work.

8.1 Tableau Systems For Other Propositional Modal
Logics

In the following sections we consider ways to extend the tableau method to other propo-
sitional normal modal logics, to propositional tense logics and to propositional temporal
logics. We refer to a logic as a tense logic if it involves both future and past tense modal-
ities. We refer to a logic as a temporal logic if it involves only future (or only past)
modalities. This nomenclature is purely for convenience.

8.1.1 Logics of Convergent Frames

One of the most glaring omissions in this dissertation is the absence of logics involving
the axiom 2:

COA = OOA.

It is well known [Gol87] that this axiom characterises weakly-directed frames where a
frame is weakly-directed if it satisfies:

Vs,t,u(sRt A sRu = Ju(tRv A uRv)).

Such frames are also called convergent frames and the most famous such logic is the logic
S54.2, axiomatised as KT42. Rautenberg [Rau83] gives a cut-free system for S4.2 but
we have avoided discussing it because the rule is not strictly “once off”. Further work is
required to understand the nuances of S4.2 and related logics of convergent frames.

136

8.1.2 Logics of Strict Linear Frames

The axiom that imposes linearity on a frame is
L:0((AADA)= B)VO((BADOB) = A)
since any frame that validates L must be weakly-connected by Theorem 2 (page 27).

We know that S4.3-frames and S4.3.1-frames are linear, but the clusters are always
nondegenerate. Using tableau rules analogous to those used by Valentini [Val86] for
KGL (see page 102) we believe that it is possible to obtain cut-free tableau and sequent
systems for the logics K4L, K4DL and K4DLZ. These logics are all characterised
by frames involving degenerate clusters rather than nondegenerate clusters because the.
reflexivity axiom 7' is missing; see page 33.

8.1.3 Logics Close to S5

We believe that the logic S4.4 axiomatised as KT4R (see page 24) is also amenable to
our tableau methods. The characteristic axiom R is [Zem73):

OOA = (A = OA).

This means that the following are also theorems of S4.4:

COAANA = DA
-04 = —-OCOAV-A
-0A4 = —-O0-04V-A
-0A4A = 0O-0A4V-A

which suggests the tableau rule:

X;-ap

(S4R)

We believe that a cut-free tableau system for S4.4 is possible using this rule as a basis.
The logic S4.4 is characterised by finite frames that consist of a sequence of at most two
nondegenerate clusters. Zeman [Zem73] gives a tableau system for S4.4 but we have not
made detailed comparisons.

137

8.1.4 Logics of Finite Linear Sequences

The logic Grz.3 is axiomatised as KGrz.3 and is equal to S4.8Grz. We conjecture
that it is characterised by finite linear sequences of simple clusters. Borga and Gentilini
[BG86] give a syntactic cut-elimination proof for Grz. Using our experience from S4.3
we would like to obtain cut-free tableau systems for this logic as well; see Section 6.5
(page 122).

8.1.5 Propositional Linear Temporal Logics

The logic S4.8.1 is characterised by the single frame {w, <) and there is a natural notion
of immediate successor in S4.3.1, although the modalities O and < cannot be used to
express this notion of “next” [Kam68]. One of the most frequently used linear temporal
logics is based on $4.3.1 by adding an extra modal operator O to represent this notion
of “next”.

The logic DX is the most basic such logic and it can be axiomatised in various ways

[GPSS80, Wol83, Gol87]. The following axiomatisation is taken from Goldblatt [Gol87]:

K O(A= B)= (0A= 0OB),

K, O(A= B) = (0A = OB);

Fun O-A < -QA;

Mz DA = AAOA;

Ind O(A = OA) = (A= DA).

The semantics of DX is based on finite frames of the form (W, o) where W is a finite (non-
empty) set of worlds and o : W +— w is a mapping from W onto the natural numbers
[Gol87]. That is, we can imagine W to be an ordered infinite set W = {wo, wy, -}

and put w;Row;41 for all natural numbers 7 where R, is an intransitive and irreflexive
reachability relation. The semantics of QA is given by:

Wy F: OA iff Wi1 ,= A.

Since O and < are also present in DX, we have to work with R, and use the reflexive
and transitive closure R} of R, to obtain these modalities [Gol87]. The semantics of O
and < become:

wi =04 if Vy>i,w; = A

w; =CA M 5 >4,w; = A

138

Using the experience gained from our systems for $4.3.1, it seems that the DX axiom
Ind which can be written as

—0A = -0A= QA4)V-4A

would give a tableau rule like

I
(nd) ox; P;,-QPF I U,DX,—IP,'—IDP

The left branch is an arbitrary “jump” into the future to the world immediately preceding
the world that satisfies =P. The right branch is a static assumption that =P is fulfilled
in the same world as the numerator. Bellin [Bel85b] uses a similar rule in sequent form,
shown below,

ar — QP
pOr' — arp

and shows that his sequent system for DX is not complete unless the cut rule is added.

There are three problems with both these rules. The first is that they ignore eventualities
of the form QA. The second is that the jump is arbitrary. To create a DX-model, we
have to build the model one state at a time, always jumping only one state forward
using R, [GPSS80, Gol87]. The arbitrary jump involved in the (Ind) rule means that
we cannot be sure that all eventualities are fulfilled by the model we construct. Wolper
handles this with a two stage procedure that explicitly checks that all eventualities are
fulfilled [Wol83]. The third is that =P is also an eventuality so that one eventuality has
spawned another. There is no guarantee that this process will not continue ad infinitum.

Another rule we have explored can be derived as follows. Since Ind is an axiom, the

formula
O(P = OP) = (OP = OOP)

is a theorem of DX. Then so are each of

OP = (B(P=0OPF)= 0O0OP)
OP = -0O(P= OP)VQOOP
OP = <O(PA-QP)VOOP
OP = O(PAO-P)vVOOP
giving a rule: i
(DX) U,0X;0P

U;0X;00P | OX;P;0O-P

But again, this rule ignores other eventualities, the transition involved is an arbitrary
one and the eventuality QP spawns two eventualities OOP and O-P.

Goldblatt [Gol87, page 73] shows that both Dum and L are theorems of DX, which is not
surprising since they together with 7' and 4 characterise discrete linear frames. Goldblatt

139

then gives an axiomatic completeness proof for DX using filtrations through a superset
of Sf (A) where A is any non-theorem of DX. His proofs make critical use of the fact
that both Dum and L are theorems of DX.

We have already seen the effects of Dum and L and therefore believe that the tableau
system, CDX for DX will require some version of the (S4.3) and (S4.3.1) rules. That
is, any cut-free tableau system for DX must involve rules like (Ind) and (DX), but they
must cater for the interaction of eventualities as in the (S4.3) and (54.3.1) rules. These
considerations would remove objections one and two mentioned above. But I have no
idea how to ensure that one eventuality does not spawn another one. A possible solution
is that the (Ind) rule causes an eventuality of the form —OP to spawn an eventuality
—OP. Aslong as ~OP does not in turn spawn an eventuality of the form —0¢) then we
are safe. That is, this amounts to a gradual reduction in the number of eventualities and
may remain analytic.

On the other hand, it may turn out that the explicit induction axiom destroys cut-
elimination for DX. That is, we either have to resort to an (w) rule or to a cut rule. The
(w) rule could be made semi-analytic since we know that for a finite set, we only need a
finite model. That is, we could guess the width of the (w) rule. On the other hand, we
have seen that the cut rule often remains analytic in the guise of (sfc) and (sfcT). We
intend to pursue these matters as further work.

8.1.6 Propositional Temporal Logics

Just as S4.8.1 is the modal basis for DX, the logic S4.14 is the modal basis for the
branching temporal logics of the CTL family [EH85]. The insights obtained via the work
on DX may shed light on the cut-elimination theorem for CTL. Tableau-like decision
procedures for CTL have been given by Emerson and Halpern [EH85] but they do not
give analogous sequent systems.

8.1.7 First Order Normal Modal Logics

Fitting [Fit83] and Rautenberg [Rau83] show that Kénig’s lemma can be used to obtain
soundness and completeness results for certain first order normal modal logics by simply
adding the two rules:

X;VaP(z)
()X; VaP(z); P(a)

where a is any constant

and
X; Ve P(z)

) X; P(c)

as long as we work with increasing domains only. That is, if wRw' then D(w) € D(w').

where ¢ is any new constant

Fitting notes a result of Fine [Fin79] regarding the interpolation theorem and Beth’s
definability lemma for first order S5 which indicates that “there can be no “reasonable”

140

cut-free tableau systems for such logics ...” [Fit83, page 383]. But it seems plausible that
a reasonable system may be possible where all uses of the cut rule are analytic. That is,
it may be possible to make some headway using our knowledge about the utility of (s fe)

and (sfcT).

8.1.8 First Order Linear Temporal Logics

Recent results of Szalas [Sza86, Sza87) show that the first order linear temporal logic
based on DX with function symbols and equality cannot have a complete finitary ax-
iomatisation. Thus there is likely to be no cut-free and complete tableau system for this
logic. Valentini [Val83] refers to the fact that the first order version of G also cannot have
a cut-free and complete sequent system [Avr84]. Dosen [Do385] also shows that cut is
not eliminable from certain systems between S4 and S5. Thus it seems possible to prove
that a logic can have no cut-free sequent system. Is it possible to apply these methods
to propositional DX ?

There is a surprising jump in complexity associated with the O operator. This is the
price we have to pay for the extra expressiveness it brings, but in general, the O operator
seems to be too expressive. However, the O operator is indispensable for certain aspects
of timing in hardware verification.

8.2 Syntactic Cut Elimination

As stated previously, syntactic cut-elimination is much harder than semantic cut-elimination.
Now that we have cut-elimination for $4.3, S4.3.1 and S4.14, we intend to seek syn-
tactic cut-elimination proofs of these results. We believe that the essential idea is to
introduce a third parameter, called the width, in addition to the rank and weight of a cut

as is already done by Valentini [Val86]. The name is in itself suggestive of the branching
inherent in the (54.3) rule.

8.3 Normal Forming Techniques

Kit Fine [Fin75] proves the finite model property for T and K4 using normal forms.
Hughes and Cresswell [HC84, page 162] claim that Fine’s normal forming methods may
be applied to all the systems in that section of their book. Hence it may be possible
to obtain decision procedures for some of our logics by generalising the work of Fine
although a reduction to a normal form is essential for this to work.

141

8.4 Filtration Proofs of Completeness

The standard method for proving axiomatic completeness and the finite model property
is to use canonical models and filtrations [Gol87]. Given some formula A which is not an
L-theorem, a filtration through the set Sf (A) is usually sufficient because of the direct
correspondence between characteristic axioms and properties of R. For some logics, like
S4.3.1, a finite superset of Sf (A) is required and the filtration proofs are not so simple
[Gol87, pages 58-59]. Thus, superformulae also appear in the filtration proofs.

Is there a connection between the filtration set for L and X} ? If so, then it may be
possible to obtain simpler filtration proofs using a filtration through X} rather than a
filtration through Sf (A).

8.5 Interpolation and Compactness

The logic $4.3 and S4.3.1 are the only logics where there is any interaction between
eventualities and this is clearly because R is connected in these logics. However there
may be a deeper reason.

The interpolation theorem for a logic L says that if A = C is L-valid, then there exists
a formula B such that both A = B and B = C are L-valid, and such that all the
propositional variables of B appear in A and also appear in C. We write vars(B) =
vars(A) Nvars(C) to indicate the condition on propositional variables.

It is known that the interpolation theorem fails to hold for S4.3. That is, there is at
least one formula A = C such that A = C is S4.3-valid, but for which there is no B
such that both A = B and B = (' are S4.3-valid and vars(B) = vars(A) N vars(C).

This could explain why the tableau rules for S4.3 are so different from those for other
systems. In fact, it may be that linearity is responsible for the failure of the interpolation
theorem. For example, it is also known that KGL [Rau83] fails to have interpolation,
although G itself has interpolation.

Rautenberg [Rau83] gives a very general class of tableau rules from which he proves
interpolation for most of the logics we have dealt with. A detailed analysis of why
interpolation fails for S4.3 may explain the bizarre nature of the (S54.3) rule.

The one term I have used without explanation until now is the notion of compactness
and for this we need the notion of L-consistent sets.

A formula A is L-consistent iff its negation —A is not an L-theorem [HC84, page 17].
That is, A is L-consistent iff there is no closed CL-tableau for {A}, and hence iff A is
L-satisfiable. When X is a finite set, X is L-consistent iff X is L-satisfiable, that is,
iff there is no closed CL-tableau for X. But when X is an infinite set, we must use a
different notion. A (possibly infinite) set X is L-consistent iff all finite subsets of X are

142

L-satisfiable [HC84, page 17]. Now it can happen that an infinite set X is L-consistent
but it is not L-satisfiable. That is, although every finite subset of X is L-satisfiable, X
itself may not be L-satisfiable.

A logic L is said to be compact if every L-consistent set is L-satisfiable.

It is known that S4.3.1 is not compact [HC84, page 109]. The non-compactness follows
directly from the fact that in S4.3.1, the infinite set

{OOP, P, O=P,O(PAC=P), O(=PAO(P A O=P)), O(PAO(—PAS(P AO-P))), -}
is not S4.3.1-satisfiable, and yet any finite subset of it is.

There appears to be some connection between compactness, interpolation and the fact
that (0) is not eliminable from €.54.3 and C54.3.1.

143

Chapter 9

Conclusions

We have presented a unified treatment of tableau, sequent and axiomatic formulations
for many propositional normal modal logics by concentrating on finite frame character-
isation results, thereby unifying the work of Hanson, Segerberg, Zeman, Mints, Fitting,
Rautenberg and Shvarts.

Independently, we have found cut-free tableau systems for S4.3, S4.3.1 and S4.14, of
which the last two appear to be new, and shown that Gentzen’s cut-elimination theorem
holds for these logics. We have also made some progress towards a cut-free tableau
system for DX, the extension of $4.3.1 with an explicit next-time operator. Our tableau
systems are clearly just extensions of Rautenberg’s method and have been presented in
this light.

All our tableau systems are sound and weakly complete with respect to their known
Kripke semantics and each tableau and sequent system serves as a nondeterministic
decision procedure for the logic it formulates. The sequent analogues of our tableau
systems give a finitary syntactic deducibility relation Fy, so that any sequent proof can
be read downwards to give an axiomatic proof of the endsequent. Furthermore, the proofs
of tableau completeness are all constructive and yield deterministic decision procedures
for each logic.

All our tableau rules are based on some sort of semantic insight into the consequences of
0P being true at the numerator. The characteristic axioms of the logic seem to contain
all the essential information for obtaining these tableau rules although complications arise
when linearity or symmetry are present.

Two of the strongest tenets of classical logic are the subformula property and cut-
elimination. We have seen that there is a systematic way to break the subformula property
and replace it with an analytic superformula property so that the resulting tableau sys-
tems remain tractable for computer implementation. The tableau systems CS4.3.1 and
C.54.14 also involve a form of implicit cut on the superformula O-0OP , although its dual
—H-0P never appears in any tableau node (for then it would be an explicit cut). Thus
we see a gradual introduction of some sort of cut rule as we traverse the series of logics
between S4 and S5.

144

An explicit cut rule appears to be essential for modal tableau and sequent systems for
logics with a symmetric reachability relation although for some logics, it can be replaced
by an analytic cut rule. For some logics, like B, we require both the analytic cut rule
and the analytic superformula property although we have shown that the subformula
property can be regained for S5. Pure symmetry, that is KB, has still proved elusive.
Induction, that is DX, also poses problems although we have made some progress in this
regard.

Adding the analytic cut rule to tableau systems where it is not essential also helps us
as shown by the systems of Hanson and the alternatives for K45 and K45D based on
them.

We therefore have the following theorems.

Theorem 21 Each L € { K, T, D, K4, D4, S4, K45, K45D, B, S5, G, Grz, S4.3,
54.3.1, S4.14 } is decidable and each CL is a decision procedure for L.

Proof: By the soundness and completeness theorems CL characterises the logic L. If Ais
not an L-theorem then the completeness proof yields a finite L-model for —A proving that
each L has the finite model property. Since each L is finitely axiomatisable, Theorem 4,
page 30, implies that L must be decidable. o

Theorem 22 Gentzen’s cut-elimination theorem holds for each L € {K, T, D, K4,
D4, S4, K45, K45D, G, Grz, S4.3, $4.3.1,54.14).

For some of our tableau systems, thinning seems essential. We believe that this is related
to the failure of the interpolation theorem. What does it mean for a logic not to have
interpolation ?

145

Bibliography

[AE89] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational view-
point. In 11th International Joint Conference on Artificial Intelligence, pages
441-445, 1989,

[AM90] M. Abadi and Z. Manna. Nonclausal deduction in first-order temporal logic.
JACM, 37(2):279-317, 1990.

[AMCP84] P. B. Andrews, D. A. Miller, E. Cohen, and F. Pfenning. Automating higher
order logic. In W. W, Bledsoe and D. E. Loveland, editors, 25 Years of The-
orem Proving,. American Mathematical Society, Contemporary Mathematics
Series, Vol. 29, 1984.

[And81] P. B. Andrews. Theorem proving via general matings. JA CM, 28(2):193-214,
1981.

[Avr84] Arnon Avron. On modal systems having arithmetical interpretations. Journal

of Symbolic Logic, 49:935-942, 1984.

[BC67] Robert Binkley and Romane Clark. A cancellation algorithm for elementary
logic. Theoria, 33:79-97, 1967.

[Bel85a] G. Bellin. A system of natural deduction for GL. Theoria, 51:89-114, 1985.

[Bel85b] G. Bellin. Unpublished notes on sequent systems for temporal logics, March
1985.

[Bet53] E. W. Beth. On Padoa’s method in the theory of definition. Indag. Math.,
15:330-339, 1953.

[Bet55] E. W. Beth. Semantic entailment and formal derivability. Mededelingen der
Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde,
18:309-342, 1955.

[BG86] M. Borga and P. Gentilini. On the proof theory of the modal logic Grz. ZML,
32:145-148, 1986.

[Bib81] W. Bibel. On matrices with connections. JACHM, 28(4):633-645, 1981.

[Bom90] Magnus Boman. A survey of provability logic and a note on its relevance to
nonmonotonic federated information systems. Technical report, The Royal
Institute of Technology and Stockholm University, Sweden, 1990.

146

[Boo79]

[Boo84]

[Bor83]

[BS84]

[Bul65]

[Bul85]

[Biir90]

[CF86]

[Chag6]

[Cha87]

[Che80)

[Clo87]

[CreT9]

[Cur50]

[Curb2)

[dA81]

G. Boolos. The Unprovability of Consistency. Cambridge University Press,
1979.

George Boolos. Don’t eliminate cut. Journal of Philosophical Logic, 13:373—
378, 1984,

M. Borga. On some proof theoretical properties of the modal logic GL. Studia
Logica, 42:453-459, 1983.

R. A. Bull and K. Segerberg. Basic modal logic. In D. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic, Volume II: Fuxtensions of
Classical Logic, pages 1-88. D. Reidel, 1984.

R. A. Bull. An algebraic study of Diodorean modal systems. Journal of
Symbolic Logic, 30(1):58-64, 1965.

R. A. Bull. Review of ‘Melvin Fitting, Proof Methods for Modal and Intu-
itionistic Logics, Synthese Library, Vol. 169, Reidel, 1983’. JSL, 50:855-856,
1985.

H-J. Biirckert. A resolution principle for clauses with constraints. In Proc.
10th International Conference on Automated Deduction, LNCS 449, pages
178-192. Springer-Verlag, 1990.

Marta Cialdea and Luis Farifias Del Cerro. A modal Herbrand’s property.
ZML, 32:523-530, 1986.

Man-Chung Chan. Reasoning in a logic of linear time using the recursive
resolution priciple. Technical Report 2/86, La Trobe University, Melbourne,
Australia, 1986.

Man-Chung Chan. The recursive resolution method for modal logic. New
Generation Computing, 5:155-183, 1987.

B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press,
1980.

W. F. Clocksin. Principles of the DelPhi parallel inference machine. The
Computer Journal, 30(5):386-392, 1987.

M. J. Cresswell. BSeg has the finite model property. Bulletin of the section
of logic, Polish Academy of Sciences, 8:154-160, 1979.

H. B. Curry. A theory of formal deducibility. Technical Report Number 6,
University of Notre Dame, USA, 1950.

H. B. Curry. The elimination theorem when modality is present. Journal of
Symbolic Logic, 17:249-265, 1952.

Newton C. A. da Costa and E. H. Alves. Relations between paraconsistent
logic and many-valued logic. Bulletin of the Section on Logic, Polish Academy
of Sciences, 10:185-191, 1981.

147

[D’A90] Marcello D’Agostino. Investigations into the complexity of some propositional
calculi. PhD thesis, Oxford University Computing Laboratory, 1990.

[Den81] N. Denyer. Time and modality in Diodorus Cronus. Theoria, 47:31-53, 1981.

[DL59] M. Dummett and E. J. Lemmon. Modal logics between S4 and S5. ZML,
5:250-264, 1959,

[Dos85] Kosta Dogen. Sequent-systems for modal logic. Journal of Symbolic Logic,
50(1):149-169, 1985.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. JACM, 7:201-215, 1960.

[Ede84] Elmar Eder. An implementation of a theorem prover based on the connection
method. In Proc. Artifical Intelligence, Methodology, Systems and Applica-
tions (AIMSA’84), Bulgaria, 1984, pages 121-128. North-Holland, 1984.

[Ede88] Elmar Eder. A comparison of the resolution calculus and the connection
method, and a new calculus generalizing both methods. In Proc. 2nd Work-
shop on Computer Science Logics, LNCS 385, pages 80-98. Springer-Verlag,
1988.

[EF89] P. Enjalbert and L. Farifias Del Cerro. Modal resolution in clausal form.
Theoretical Computer Science, 65:1-33, 1989.

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. Journal of Computer and System
Sciences, 30:1-24, 1985.

[EH86] E. A. Emerson and J. Halpern. ‘sometime’ and ‘not never’ revisted: On
branching versus linear time temporal logic. JACM, pages 151-178, 1986.

[Far85] L. Farifias Del Cerro. Resolution modal logics. In K. R. Apt, editor, Logics
and Models of Concurrent Systems, NATO ASI Series, Vol. F13, pages 123—
144. 1985.

[FH88] L. Farifias Del Cerro and A. Hertzig. Linear modal deductions. In E. Lusk
and R. Overbeek, editors, Proceedings, Conference on Automated Deduction.
Springer-Verlag, 1988. LNCS 310.

[Fin75] Kit Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic,
16(2):229-237, 1975.

[Fin79] K. Fine. Failures of the interpolation lemma in quantified modal logic. Journal
of Symbolic Logic, 44(2):201-206, June 1979.

[Fit66] F. B. Fitch. Natural deduction rules for obligation. American Philosophical
Quarterly, 3:27-38, 1966.

[Fit73] Melvin Fitting. Model existance theorems for modal and intuitionistic logics.
Journal of Symbolic Logic, 38:613-627, 1973.

148

[Fit83]

[Fit88]

[Fit90]

[FS91]

[Gal87]

[Gen35]

[Gen91]

[Gil60]

[Gir87]

[GK86]

[Gol87]

[Gou84]

[GPSSS0]

[Grz67]

[Han66a)

M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of
Synthese Library. D. Reidel, Dordrecht, Holland, 1983.

M. Fitting. First order modal tableaux. Journal of Automated Reasoning,
4:191-213, 1988.

M. Fitting. Destructive modal resolution. Journal of Logic and Computation,
1(1):83-97, 1990.

Alan M. Frisch and Richard B. Scherl. A general framework for modal deduc-
tion. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. 2nd Conference on
Principles of Knowledge Representation and Reasoning. Morgan-Kaufmann,
1991.

J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theo-
rem Proving. John Wiley and Sons, 1987.

G. Gentzen. Unterschungen iiber das logische schliessen. Mathematische
Zeitschrift, 39:176-210 and 405-431, 1935. English translation: Investigations
into logical deduction, in The Collected Papers of Gerhard Gentzen, edited
by M. E. Szabo, pp 68-131, North-Holland, 1969.

lan Gent. Analytic Proof Systems for Classical and Modal Logics of Restricted
Quantification. PhD thesis, Dept. of Computer Science, University of War-
wick, Coventry, England, 1991.

Paul C. Gilmore. A proof method for quantification theory. I.B.M. Journal
of Research and Development, 4:28-35, 1960.

J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

C. Geissler and K. Konolige. A resolution method for quantified modal logics
of knowledge and belief. In J. Halpern, editor, Proceedings Theoretical Aspects
of Reasoning about Knowledge, 1986.

R. I. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes
Number 7, CSLI Stanford, 1987.

G. Gough. Decision procedures for temporal logics. Master’s thesis, Dept. of
Computer Science, University of Manchester, England, 1984,

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proc. 7th Conference on Principles of Programming Languages,
pages 165-173, 1980.

Andrzej Grzegorczyk. Some relational systems and the associated topological
spaces. Fundamenta Mathematicae, 60:223-231, 1967.

William Hanson. Termination conditions for modal decision procedures (ab-
stract only). Jornal of Symbolic Logic, 31:687-688, 1966.

149

[Han66b] William H. Hanson. On some alleged decision procedures for S4. Journal of
Symbolic Logic, 31:641-643, 1966.

[HC68] G. E. Hughes and M. J. Cresswell. Introduction to Modal Logic. Methuen,
London, 1968.

[HC84] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen,
London, 1984,

[Hen49] Leon Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14:159-156, 1949.

[Hin55]) K. J. J. Hintikka. Form and content in quantification theory. Acta Philosoph-
ica Fennica, 8:3-55, 1955.

[Hin63] K. J. J. Hintikka. The modes of modality. Acta Philosophica Fennica, Pro-
ceedings of a colloquium on modal and many-valued logics 1962, 16:65-81,
1963.

[HM85] J. Y. Halpern and Y. Moses. A guide to the modal logics of knowledge and
belief: Preliminary draft. In Proc. ILJCAI pages 480-490, 1985.

[JR87] P. Jackson and H. Reichgelt. A general proof method for first-order modal
logic. In 9th International Joint Conference on Artificial Intelligence, pages
942-944, 1987.

[JR88] P. Jackson and H. Reichgelt. A general proof method for modal predicate
logic without the Barcan formula. In Proc. AAAI pages 177-181, 1988.

[Kam68] Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, Dept. of Philosophy, University of California, USA, 1968.

[Kanb7] S. Kanger. Provability in Logic. Stockholm Studies in Philosophy, University
of Stockholm, Almqvist and Wiksell, Sweden, 1957.

[Kap66] D. Kaplan. Review of S. A. Kripke. Semantical analysis of modal logic I.
Normal modal propositional calculi. Zeitschrift fiir mathematische Logik und
Grundlagen der Mathematik, vol 9, (1963), pp-67-96. Journal of Symbolic
Logic, 31:120-122, 1966.

[Kle52] S. C. Kleene. Permutability of inferences in Gentzen’s calculi LK and LJ.
Memoirs of the American Mathematical Society, 10:1-26, 1952.

[K1e90] C. S. Klein. Exploiting OR-Parallelism in Prolog Using Multiple Sequential
Machines. PhD thesis, Computer Laboratory, University of Cambridge, Eng-
land, 1990.

[Kri59] Saul Kripke. A completeness theorem in modal logic. Journal of Symbolic
Logic, 24(1):1-14, March 1959.

[Kri63a] S. Kripke. Semantical considerations on modal logic. Acta Philosophica Fen-
nica, Proceedings of a colloguium on modal and many-valued logics 1962,
16:83-94, 1963.

150

[Kri63b] Saul Kripke. Semantical analysis of modal logic I: Normal modal propositional
calculi. Zestschrift fur Mathematik Logik und Grundlagen der Mathematische,
9:67-96, 1963.

[Kri65] S. Kripke. Semantical analysis of modal logic IT: Non-normal modal proposi-
tional calculi. In Symposium on the Theory of Models, pages 206-220. North-
Holland, Amsterdam, 1965.

[Lew20] C. I. Lewis. Strict implication: An emendation. The Journal of Philosophy,
17:300-302, 1920.

[Lif89] Vladimir Lifschitz. What is the inverse method. Journal of Automated Rea-
soning, 5:1-23, 1989.

[LS77] E. J. Lemmon and D. Scott. An Introduction To Modal Logic. American
Philosophical Quarterly, Monograph Series, Basil Blackwell, Oxford, 1977.

[Mak73] David Makinson. A warning about the choice of primitive operators in modal
logic. Jornal of Philosophical Logic, 2:193-196, 1973.

[Mat55] K. Matsumoto. Reduction theorem in Lewis’s sentential calculi. Mathematica
Japonica, 3:133-135, 1955,

[McA88] G. L. McArthur. Reasoning about knowledge and belief: a survey. Compu-
tational Intelligence, 4(3):223-242, 1988,

[McD82] D. McDermott. Nonmonotonic logic II: Nonmonotonic modal theories.
JACM, 29:33-57, 1982.

[Min] G. E. Minc. See G. E. Mints.

[Min70] G. E. Mints. Cut-free calculi of the S5 type. In Studies in constructive math-
ematics and mathematical logic, Part Il, Seminars in Mathematics, pages
115-120. Steklov Institute, USSR, 1970. English translation from the Amer-
ican Mathematical Society.

[Min90a] G. E. Mints. Gentzen-type systems and resolution rules part I: Propositional
logic. Proc. COLOG 88, 417:198-231, 1990.

[Min90b] G. E. Mints. Gentzen-type systems and resolution rules part II: Predicate
logic. Proc. Logic Colloguim, 1990.

[Moo85] R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25:272-279, 1985,

[Mor76] C. G. Morgan. Methods for automated theorem proving in nonclassical logics.
IEEE Transactions on Computers, C-25(8):852-862, 1976.

[MT48] J. C. C. McKinsey and Alfred Tarski. Some theorems about the sentential
calculi of Lewis and Heyting. Journal of Symbolic Logic, 13:1-15, 1948.

151

[Oh190] H-J. Ohlbach. Semantics based translation methods for modal logics. Tech-
nical Report SEKI Report SR-90-11, Universitit Kaiserslautern, Postfach,
3049, D-6750, Kaiserslautern, Germany, 1990.

[OM57a] M. Ohnishi and K. Matsumoto. Corrections to our paper ‘Gentzen method
in modal calculi I’. Osaka Mathematical Journal, 10:147, 1957.

[OM57b] M. Ohnishi and K. Matsumoto. Gentzen method in modal calcul; 1. Osaka
Mathematical Journal, 9:113-130, 1957.

[OM59] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi II. Osaka
Mathematical Journal, 11:115-120, 1959.

[Orc89] Terttu Orci. Clause graph theorem proving in modal temporal logic Q. Tech-
nical Report UMINF-169.89, University of Umea, S-901 87 Umea, Sweden,
1989.

[PHV60] Dag Prawitz, D. Hakan, and Neri Vogera. A mechanical proof procedure and
its realization in an electronic computer. JA CM, 7:102-128, 1960.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of 18th IEEFE
Annual Symposium on the Foundations of Computer Science, 1977.

[PraB0] Dag Prawitz. An improved proof procedure. T, heoria, 26:109-139, 1960.

[Pra79] V. R. Pratt. Process logic: Preliminary report. In Proc. 6th Annual ACM
Symposium on Principle Of Programming Languages, pages 93-100, January
1979.

[Pri57] A. Prior. Time and Modality. Oxford University Press, 1957.
[Qui6l] W. V. Quine. From a logical pount of view. Cambridge, Massachussetts, 1961.
[Qui76] W. V. Quine. The Ways of Paradox. Cambridge, Massachussetts, 1976.

[Rau79] W. Rautenberg. Klassicshe und Nichtklassicshe Aussagenlogik. Vieweg, Wies-
baden, 1979.

[Rau83] W. Rautenberg. Modal tableau calculi and interpolation. JPL, 12:403-423,
1983.

[Rau85] W. Rautenberg. Corrections for modal tableau calculi and interpolation by
W. Rautenberg, JPL 12 (1983). Journal of Philosophical Logic, 14:229, 1985.

[Rau90] W. Rautenberg. Personal communication, December 5th, 1990.

[Rob65] A. Robinson. A machine oriented logic based on the resolution principle.
Journal of the ACM, 12:23-41, 1965.

[Rob79] J. A. Robinson. Logic: Jorm and function (the mechanization of deductive
reasoning). Edinburgh University Press, 1979.

152

[SC85] A.P. Sistlaand E. M. Clarke. The complexity of propositional linear temporal
logics. JACM, 32(3):733-749, 1985.

[Seg71] Krister Segerberg. An essay in classical modal logic (3 vols.). Technical
Report Filosofiska Studier, nr 13, Uppsala Universitet, Uppsala, 1971.

[Shv89] Grigori F. Shvarts. Gentzen style systems for K45 and K45D. In A, R. Meyer
and M. A. Taitslin, editors, Logic at Botik ’89, Symposium on Logical Foun-
dations of Computer Science, LNCS 363, pages 245-256. Springer-Verlag,
1989.

[Shv90] Grigori F. Shvarts. Autoepistemic modal logics. In Rohit Parikh, editor,
Theoretical Aspects About Reasoning About Knowledge, pages 97-109, 1990.

[Sla77] Ralph L. Slaght. Modal tree constructions. Notre Dame Journal of Formal
Logic, 18(4):517-526, 1977.

[Smu68a) R. Smullyan. First order Logic. Springer-Verlag, 1968.

[Smu68b] Raymond Smullyan. Uniform Gentzen systems. Journal of Symbolic Logic,
33:549-559, 1968.

[Sob64] Boleslaw Sobociski. Family K of the non-Lewis modal systems. Notre Dame
Journal of Formal Logic, 5:313-318, 1964,

[Sub89] V. S. Subrahmanian. Algebraic properties of the space of multivalued and
paraconsistent logic programs. In 9th Conf. Foundations of Software Tech-
nology and Theoretical Computer Science, LNCS 405, pages 56-67. Springer-
Verlag, 1989.

[Sun77] G. Sundholm. A completeness proof for an infinitary tense-logic. Theoria,
43:47-51, 1977,

[SV80] G. Sambin and S. Valentini. A modal sequent calculus for a fragment of
arithmetic. Studia Logica, 34:245-256, 1980.

[SV82] G. Sambin and S. Valentini. The modal logic of provability: the sequential
approach. Journal of Philosophical Logic, 11:311-342, 1982.

[Sza69) M. E. Szabo, editor. The collected papers of Gerhard Gentzen, pages 68-131.
North-Holland, Amsterdam, 1969.

[Sza86] A. Szalas. Concerning the semantic consequence relation in first-order tem-
poral logic. Theoretical Computer Science, 47:329-334, 1986.

[Sza87] A. Szalas. A complete axiomatic characterization of first-order temporal logic
of linear time. Theoretical Computer Science, 54:199-214, 1987.

[TMMS88] P. B. Thistlewaite, M. A. McRobbie, and B. K. Meyer. Automated Theorem
Proving in Non Classical Logics. Pitman, 1988.

[Urg81] A. Urquhart. Decidability and the finite model property. Journal of Philo-
sophical Logic, 10:367-370, 1981.

153

[Val83] S. Valentini. The modal logic of provability: Cut-elimination. Journal of
Philosophical Logic, 12:471-476, 1983.

[Val86] S. Valentini. A syntactic proof of cut elimination for GLiin. ZML, 32:137-144,
1986.

[van80] J. F. A. K. van Benthem. Some kinds of modal incompleteness. Studia Logica,
34:125-141, 1980.

[van86] J. F. A. K. van Benthem. Review of ‘A Companion To Modal Logic’. Journal
of Symbolic Logic, 51:824-826, 1986.

[vB78] J. F. A. K. van Benthem and W. Blok. Transitivity follows from Dummett’s
axiom. Theoria, 44:117-118, 1978.

[vB83] J. F. A. K. van Benthem. The Logic of Time: a model-theoretic investiga-
tion into the varieties of temporal ontology and temporal discourse. Synthese
library; vol. 156, Dordrecht: Reidel, 1983.

[Ven85] G. Venkatesh. A decision method for temporal logic based on resolution.
In 5th Conf. Foundations of Software Technology and Theoretical Computer
Science, LNCS 206, pages 272-289. Springer-Verlag, 1985.

[VS83] S. Valentini and U. Solitro. The modal logic of consistency assertions of Peano
arithmetic. ZMIL, 29:25-32, 1983.

[Wal87] L. A. Wallen. Automated Proof Search in Non-Classical Logics: Efficient
Proof Methods for Modal and Intuitionistic Logics. PhD thesis, University of
Edinburgh, 1987.

[Wal89] L. A. Wallen. Automated Deduction in Nonclassical Logics: Efficient Matriz
Proof Methods for Modal and Intuitionistic Logics. MIT Press, 1989.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72-99, 1983.

[Wol87] Pierre Wolper. On the relation of programs and computations to models of
temporal logic. In Proc. Workshop on Temporal Logic in Specification, LNCS
398, pages 75-122, 1987.

[Zem73) J. J. Zeman. Modal Logic: The Lewis-Modal Systems. Oxford University
Press, 1973.

154

Index

R, 23

R-cluster, 31

R, 138

R, 138

S6T(C), 117
CL(X), 54

LC, 57

Fml, 19

<, 31

=, 25

£L(X), 54

=<, 60

Fr, 21

card(X), 53
deg(P), 52
deg(X), 53
mdeg(P), 53
mdeg(X), 53
mdegmaz(X), 53
CL, 53
CL-consistent, 54
CL-saturated, 55, 72
CL-tableau for X, 54
L-frames, 32
L-models, 32
L-satisfiability, 32
L-satisfiable, 48
L-unsatisfiable, 48
L-valid, 48

LS, 48
S-provable, 39
S-theorem, 39
SL, 48

SPC, 40

8§54, 45

abstract consistency properties, 14
accessible, 23

alternative argument, 101
alternative names, 23, 24

155

alternative sets of tableau, 125
alternative tableau, 125
analytic cut, 92, 131
analytical superformula property, 55
antecedent, 38
antisymmetry, 31
associated set, 50
asymmetry, 31
atomic formula, 19
automated deduction, 4
auxiliary relation, 124
axiom names, 22, 23
axiom schema, 21
axiomatic basis, 21
axiomatic completeness, 13
axiomatic derivation, 21
axiomatic proof, 21
axiomatic system, 20
axiomatisation, 21
axioms

2, 23

3, 22, 23

4, 23

5, 23

B, 23

Dum, 23

D, 23

Fun, 138

G, 23

Grzy, 121

G?"Zz, 121

Grzs, 121

Grz, 23

G, 23

Ind, 138

IK,, 138

K, 21, 23

L, 22, 23

Mix, 138

M, 23

R, 23

T, 23

X, 36

Zbr, 23

Zem, 23

Z, 23
axioms of L, 21

basic sequent, 40

belief, 2

Beth’s definability lemma, 140
Beth-tableaux, 52

blunt tack, 32

branch, 39

building up rules, 8, 13

canonical models, 13
cardinality, 53
characterised by, 28
characteristic axioms, 26
antisymmetric R, 27
asymmetric R, 27
connected R, 27
euclidean R, 26
intransitive R, 27
irreflexive R, 27
reflexive R, 26
serial R, 26
symmetric R, 26
transitive R, 26
weakly-connected R, 26
clausal normal form, 1
closed branch, 39
closed tableau, 54
cluster, 30
R cluster, 31
degenerate, 31
final, 31
first, 31
initial, 31
last, 31
nondegenerate, 31
proper, 31
simple, 31
compact logics, 143
compactness, 142
complete, 29
complete with respect to C, 28

156

completeness, 6, 28

completeness of CL, 57, 75

completeness of CS4, 60

completeness of SL, 48

conclusion, 38

conditions on R
antisymmetry, 27
asymmetry, 27
connected-ness, 27
convergence, 136
euclidean-ness, 26
intransitivity, 27
irreflexivity, 27
reflexivity, 26
seriality, 26
symmetry, 26
transitivity, 26
weak-connectedness, 26
weak-directedness, 136

connected, 32

consistency, 11

constrained tableau systems, 124

contraction, 43, 94

convergent frames, 136

Curry, H. B., 133

cut elimination, 47

cut rule, 43

cut-elimination, 15

cut-elimination theorem, 37

decidability, 14

decidable, 30

decision procedures, 60
deducibility, 9

deducibility relations, 14, 65
degenerate cluster, 31
degree, 52

denominators, 53
derivation, 39

determined by, 28
deterministic decision procedure, 14
downward saturated, 11
dynamic logics, 2

eliminating thinning, 62, 93, 143
embedding of S5 into K45, 87
embedding of S5 into S4, 82

endsequent, 39

eventuality, 76

filtration, 142

filtration method, 18
filtrations, 13

final cluster, 31

finite frame property, 29
finite model property, 14, 29, 30, 48, 57
finitely axiomatisable, 30
first cluster, 31

first order definability, 28
Fitting’s systems, 80
Fitting, M., 131

formula, 19

forward systems, 4
frame, 23

Gent, L. P., 127

Gentzen systems, 5

global logical consequence, 10
goal directed, 37

goal directed systems, 5

Hanson’s rules, 88
Hanson, W., 129
Hauptsatz, 37
Hilbert systems, 4

immediate predecessor, 31
immediate successor, 31
incomplete, 29
incompleteness of Rautenberg’s systems,
93
inference rules
MP, 21
RN, 21
USs, 21
initial cluster, 31
instance, 21
interchange, 42
interpolation theorem, 140, 142
intuitions, 68
invertible, 41

Kanger, S., 126, 133
knowledge, 2

known equivalences, 24
Kripke semantics, 5

Kripke tree constructions, 127

157

Kripke, S., 125

last cluster, 31
leaf, 39
Lemmon names, 22
Lemmon notation, 22
linear order, 32
linear temporal logics, 138
local logical consequence, 10
logic defined by LC, 57
logic defined by SL, 48
logical consequence, 9
logical rules, 40
logics

B, 24

CTL, 140

D4.3, 22, 24

D4, 24

DX, 138

D, 24

G.3, 24

GLjin, 24

GL, 24

Go, 24

Grz.3, 24

Grz, 24

G, 24

K4.3W, 22, 24

K4.37, 24

K4.3, 22, 24

K45D, 24

K45, 24

K4DLZ, 24

K4DL, 24

K4GL, 24

K4G, 24

K4L, 24

K4, 24

KGL, 24

KT4L, 24

KW, 24

K, 21, 24

M, 24

PC, 21

S4.14, 24

S4.1, 22, 24

S4.3.1, 24

54.3, 24
S4.4, 137
S4Dum, 24
S4Grz.3, 24
S4Grz, 24
S4MDum, 24
S4M, 24
S4Zem, 24
S4, 24

S5, 24

T, 24

material implication, 1, 19
maximal consistent, 13
maximal consistent sets, 18
maximum modal degree, 53
Mints, G. E., 133

modal degree, 53

modal logic, 1

modal sequent systems, 44
modalised formula, 88
model, 23

model graph, 57

modes, 2

modus ponens, 20

names of axioms, 26
names of logics, 24
naming convention, 22
necessity, 6

next operator, 138
non-monotonic logics, 2
nondegenerate cluster, 31

nondeterministic decision procedures, 14

normal modal logic, 22
numerator, 53

Ohnishi and Matsumoto, 133

once off, 8
once off rules, 13

parametric formulae, 38
possibility, 6

possible worlds, 5
Post-complete, 9
precedes, 31

premisses, 38

primitive notation, 49

primitive propositions, 19
principal formulae, 38
proper cluster, 31

reachable, 23

refutation procedures, 7
resolution, 1

rule of detachment, 20

rule of necessitation, 20

rule of uniform substitution, 20

satisfiability, 25
saturated
downward, 11
upward, 13
semi-analytic cut, 81, 131
semi-decidable, 30
sequent, 38
sequent calculus, 39
sequent completeness, 11
sequent proof, 39
sequent rule, 38
sequent rules
(Aziom), 40
(0 —: D), 11
(O0—-:T), 11
(=—), 40
(A =), 40
(= —), 40
(V =), 40
(—:sfcT), 71
(—:sfe), T1
(—O:5), 71
(»0:B), 71
0:@), 171
0:Grz), 71
(— O: Ind), 139
0:K), 71
0O: K4), 71
0:54), 71
(— O:54.14), 113
(—0O:84.3), 97
(— O:54.3.1), 106
(—=), 40
(— A), 40
(—), 40
(— V), 40
(Contraction), 42

(Cut), 42
(Interchange), 42
(Weakening), 42
sequent system, 39
sequent systems, 37
sharp tack, 32
Shvarts’ systems, 83
side formulae, 38
simple cluster, 31
Smullyan-tableaux, 52, 64
sound with respect to C, 28
soundness, 6, 28
soundness of CL, 56
soundness of C54, 58
soundness of SL, 48
static rules, 68
strict implication, 2
strict linear frames, 137
strict linear order, 32
strict subformula property, 41
strict subformulae, 20
strict-saturation, 55
strong completeness, 9
strongly complete, 9
structural rules, 42
subformula principle, 12
subformula property, 8, 41, 54, 92
subformula-complete, 75
subformulae, 20
subordinate frames, 58
substitutional instance, 20
succedent, 38
successor relation, 30
symmetry, 92
syntactic cut elimination, 134, 141
system for I, 20

tableau calculi
CS5r, 81
CB, T2
¢, 80
CD4, 72
CG,, 123
CGrz, 12
CG, 72
CK45, 91
CIK45D", 92

159

CKA45D', 87
CK45D, 83
CK45, 83
CK4, 72
CK, 72
CL, 53
CPC, T2
CS4', 88
CS4.14, 113
CS54.3.1, 104
C54.3, 96
CS4, 54, 72
CS¥, 90
CS5, 72
CT, 72
tableau completeness, 11
tableau rule, 53
tableau rules
(0, 62
(0), 54
(45), 84

(

(

(S4), 54, 70
($4.14), 113
(4.3, 102
(54.3), 96
(S4.3.1), 104
(S4R), 137
(55), 90
(T), 54, 70
(n), 54

(=), 54

(v), 54

(r), 81, 132
(), 54
(sfe), 70
(sfel'), 70

contraction, 94

tableau systems, 52
tack

blunt, 32

sharp, 32
temporal logics, 2
theorem, 21
theorem proving, 4
theory tableaux, 127
thinning, 43
time, 2
transitional rules, 68
translational methods, 2, 127
tree, 30
tree tableau systems, 124
true in a world, 25
truth, 25

unification, 1
universal relation, 31
upward saturated, 13

valid in a class, 25
valid in a frame, 25
valid in a model, 25
validity, 25

validity of an axiom, 25

weak completeness, 9
weak linear order, 32
weakening, 43

weakly complete, 9
weakly-directed, 136
well-formed formula, 19

Zeman, J. J., 130, 134

160

