Technical Report R

Number 256

Computer Laboratory

MCPL programming manual

Martin Richards

May 1992

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1992 Martin Richards

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

MCPL Programming Manual

by

Martin Richards
mr@uk.ac.cam.cl

Computer Laboratory
University of Cambridge
18 May 1992

Abstract

MCPL is a systems programming language having much in common with BCPL
but augmented by the pattern matching ideas of both ML and Prolog. Unlike ML,
MCPL is typeless, runs using a contiguous runtime stack and has no builtin garbage
collector, but it does make extensive use of ML-like pattern matching. The low
level aspects of the language resemble those of BCPL and C. For efficiency, MCPL
uses its own function calling sequence, however a convenient mechanism for mixing
MCPL and C programs is provided.

Notable features of MCPL are its pattern matching facilities and the simple way
in which data structures are handled.

This document gives a complete definition of the language and includes, at the
end, several examples programs to demonstrate its capabilities.

1 Introduction

The concepts underlying MCPL originates from my experience of using BCPL[1] for
the past 25 years and from lessons learnt from using and teaching languages such as
ML[2], Prolog[3] and C[4]. Indeed the name MCPL incorporates the letter ML, C
and P in recognition of these languages. It is designed to be easy to learn and use,
and easy to combine with C programs. Its simplicity results from the typlessness
nature of the language causing all expressions to yield values 32 bits long. Even
though normal vectors elements have this size, an operator is provided to allow
convenient access to strings of packed characters.

As an introductory example, consider the following program:

GET "mcpl.h"

FUN start : =>
printf "Enter three lengths: "
LET a, b, ¢ = readn(), readn(), read()
printf ("\nLengths entered: %d %d %d4d", a, b, c)
printf("\nThis is %s triangle\n",
sort_of_triangle(a,b,c))

FUN sort_of_triangle

: a, b<a, c => sort_of_triangle(b, a, ¢)

:a, b, c <b => sort_of_triangle(a, c, b)

// At this point we know that a <= b <= ¢

: a, b, c => c>a+b -> '"not a",
a=c => "an equilateral",
a=b | b=c¢ ~-> "an isosceles",
ck¥c=akxa+bxb -> "a right angled",

"a scalene"

The directive GET "mcpl.h" is like the C #include directive and causes a file of
standard declarations to be included in the program. Function definitions are intro-
duced by the word FUN, which is followed by the function name and a list of pattern
match items that successively test the function arguments. The function start has
an empty pattern indicating that it is a parameterless function, and, as can be seen,
it will output a message, read three numbers and then output two messages about
the triangle entered.

The function sort_of_triangle returns a string that depends on its three
arguments. When the second argument is less than the value of the first, the first
match item succeeds and causes sort_of_triangle to be re-entered with these two
arguments swapped. The second match performs a similar test on the second and
third arguments, and so, by the time the third match item is reached the arguments
a, b and c are in sorted order. The compiler notices that both calls are tail recursive,
and optimises them accordingly. Indeed, the first call would be further optimised to

1

jump to the second match item since after swapping a and b the first match cannot
succeed.

The absence of types avoids the need to clutter programs and forces program-
mers to represent data simply. My experience is that, in the majority of applications,
data can be represented satisfactorily by means of integers, strings, bit patterns and
pointers to vectors composed of these kinds of objects. Although some say that lack
of compile time type checking makes programs difficult to debug, I have not found
this to be the case in practice. Indeed, there are many situations where the absence
of types is a great advantage — it does, for instance, greatly simplify the pattern
matching mechanism that forms so significant part of the language.

2 Language Overview

An MCPL program is made up of one or more separately compiled modules, each
consisting of a list of declarations that define the constants, static data and func-
tions belonging to the module. Within functions it is possible to declare dynamic
variables and vectors that exist only as long as they are required. The language
is designed so that these dynamic quantities can be allocated space on a simple
runtime stack. The addressing of these quantities is relative to the base of the stack
frame (or activation record) belonging to the current function activation. For this to
be efficient, dynamic vectors have sizes that are known at compile time. Functions
may be called recursively and their arguments are called by value. Input and output
is provided by means of library functions. :

The main syntactic components of MCPL are: expressions, commands, patterns
and declarations. These are described in the next few sections. In general, the
purpose of an expression is to compute a value, while the purpose of a command is
normally to change the value of one or more variables. However, there is overlap
between the two, since expressions can have side effects, and some commands can
have results.

2.1 Comments

There are two form of comments. One starts with the symbol // and extends up to
but not including the end-of-line character, and the other starts with the symbol /*
and ends at the next occurrence of */. A comment is treated as if it were a single
space character. Comments may not occur in the middle of multi-character symbols
such as identifiers or string constants.

3 Expressions

Expressions are composed of names, constants and expression operators and may
be grouped, if necessary, using parentheses. The precedence and associativity of the

different expression constructs is given in Section 3.9.

3.1 Names and Constants

Syntactically a name is of a sequence of letters, digits and underlines starting with
a letter. If the name starts with a capital letter, it denotes a constant that must
have been declared within a previous MANIFEST declaration. If it starts with a lower
case letter then it corresponds to a local variable, a static variable, a function or
an external entry point, depending on how it was declared. The value of a name is
always a 32 bit pattern whose interpretation depends on context.

Decimal numbers consist of a sequence of digits, while binary, octal or hexadec-
imal hexadecimal are represented, repectively, by #b, #o0 or #x followed by digits of
the appropriate sort. The o may be omitted in octal numbers. Underlines may be
inserted within numbers to improve their readability. For instance, the following are
valid numbers:

1234

1.234_456
#b_1011_1100_0110
#0377

#x_BC6

The constants TRUE and FALSE have values -1 and 0, respectively, which are the
conventional MCPL representations of the two truth values. Whenever a boolean
test is made, this is performed by a comparison with FALSE (=0).

Numbers may also be represented by character constants, which consist of a
single quote (’) followed by zero to four characters, followed by a second single
quote. The characters are packed into 8 bit bytes to form a 32 bit value, padded
on the left, if necessary, with zeroes. The rightmost character of the constant is
the least significant byte of the result. The normal ASCII character set is used
augmented by escape sequences as follows:

\n A single character interpreted by the system as end-of-
line.

\p A newpage character.

\s A space character.

\b- " A backspace character.

\t A tab character.

\"¢ The control character ¢, for any appropriate c.

\ddd The single character with number ddd (one or more dec-
imal digits denoting an integer in the interval [0,255]).

\n "

\))

\\ \

\f..f\ This sequence is ignored, where f..f stands for a se-
quence of one or more formatting characters.

3

The formatting characters are space, tab, newline and newpage.

A string constant consists of a sequence of zero or more characters enclosed
within quotes ("). Both string and character constants use the character escape
mechanism described above. The value of a string is a pointer to the place in
memory where the characters are packed. A zero byte is appended to mark the end
of the string. This makes MCPL and C strings compatible.

A question mark (?7) may be used as a constant with undefined value. It can be
used in statements such as:

sendpkt (P_notinuse, rdtask, ?, 7, Read, buf, size)
LET op, a, b, ptr = token, 7, 7, [3,7,7,7]

3.2 Vectors and Tables

An expression of the form:
[EO,..., En]

returns a pointer to n+1 consecutive locations of dynamic memory initialised with the
values of the expressions E0, .. ,En. The space is allocated when control passes into
the current dynamic scope (see Section 7 on Scope and Extent). It is released when
execution leaves the current dynamic scope. The pointer behaves like a vector with
bounds 0 and n, and its elements can be accessed using the subscripting operator
!, described below. The initialising expressions EO, ..,En may, of course, contain
dynamic vectors, tables and strings, and so an expression such as:

[->, [’=", [1d, "x"], [Numb, 011,
[(Numb, 07,
[Id, “"abc"]

1

is legal. However, remember that the space for this dynamic structure only remains
allocated as long as control remains within the current dynamic scope.

Uninitialised dynamic vectors of words or characters can be created by expres-
sions of the form: VEC K or CVEC K, respectively, where K is a manifest constant
expression (see Section 3.10) giving the upper bound. The lower bound is always
zero. The space for a dynamic vector is only allocated while control is within the
current dynamic scope (see Section 7).

A static vector can be created using an expression of the following form:
TABLE [SKO ,..., SKn]

where SKO, .., SKn are static constant expressions (see Section 3.11). The space for
a static vector is allocated for the lifetime of the program.

4

3.3 Function Calls

A function call is syntactically an expression followed by an argument list. Some
example calls are as follows:

newline()

mk3(Mult, x, y)
printf "Hello\n"
£[1,2,3]

(fntab!i) (p, [a, bl)

An empty argument list must to be specified explicitly using empty parentheses ().
Multiple arguments must be enclosed in parentheses, but a single argument does not
need them, provided it is a name, a number, a string, TRUE, FALSE or an initialised
dynamic vector. The last example illustrates a call in which the function is specified
by an expression.

If a function is called using a name that was declared to be a C function by an
EXTERNAL declaration, then the C calling sequence is used passing the arguments as
specified by the EXTERNAL declaration (see Section 6.1). All other calls use the MCPL
calling sequence. If a function is defined in the scope of an EXTERNAL declaration
of the same name, then the function is accessible from other modules, and if it was
specified by an EXTERNAL declaration to be a C function then it will be compatible
with the C calling sequence. This scheme allows for. convenient mixing of C and
MCPL programs.

If a function call occurs in the context of an expression then it is assumed to
return a 32 bit result.

3.4 DPostfixed Expression Operators

Expressions of the form: E++, E+++, E~- or E--- cause the location specified by
E to be incremented or decremented by one or four. The result of the expression
is its original value, before modification. The operator ++ increments by one, +++
increments by four, -- decrements by one and --- decrements by four. In addition
to working with integers, the operators ++ and -- adjust byte pointers to point to
adjacent bytes, and +++ and --- adjust word pointers to point to adjacent words.
It is thus assumed, in MCPL, that pointers to adjacent bytes are integers that differ
by one, and pointers to adjacent words differ by four.

3.5 Prefixed Expression Operators

Expressions of the form: ++E, +++E, --E or ~-~E cause the location specified by E
to be incremented or decremented by one or four. The result of the expression is its
value after modification. As with the post fixed operators, ++ increments by one,
+++ increments by four, -~ decrements by one and --~- decrements by four, and they
work as expected with pointers.

An expression of the form !E returns the contents of the 32 bit memory location
pointed to by the value of E, and an expression of the form %E returns an unsigned
integer equal to the 8 bit byte pointed to by the value of E.

An expression of the form QE returns a pointer to the 8 bit or 32 bit memory
location specified by E. E must be a variable name or an expression with leading
operator ! or %.

Expressions of the form: +E, -E, "E, ABS E or NOT E return the result of ap-
plying the given prefixed operator to the value of the expression E. The operator
+ returns the value unchanged, - returns the integer negation, ~ returns the bit-
wise complement of the value, ABS returns the absolute value, and NOT returns the
boolean complement of the value.

3.6 Infixed Expression Operators

An expression of the form E1!E2 evaluates E1 and E2 to yield respectively a pointer,
p say, and an integer, n say. The value returned is the 32 bit contents of the n**
word relative to p.

An expression of the form E1%E2 evaluates E1 and E2 to yield a pointer, p say,
and an integer, n say. The expression returns a 32 bit unsigned result equal to the
byte at position n relative to p.

An expressions of the form E1<<E2 (or E1>>E2) evaluates E1 and E2 to yield a
bit pattern, w say, and an integer, n say, and returns the result of shifting w to the
left (or right) by n bit positions. Vacated positions are filled with zeroes.

Expressions of the form: E1#E2, E1/E2, E1 MOD E2, E1&E2, E1 XOR E2, return
the result of applying the given operator to the values of the two operands. The
operators are, respectively, integer multiplication, integer division, remainder af-
ter integer division, bitwise AND, bitwise exclusive OR, integer addition, integer
subtraction, and bitwise OR.

An expression of the form: E relop E relop ... relop E where each relop
is one of =, "=, <=, >=, < or > returns TRUE if all the individual relations are satisfied
and FALSE, otherwise. The operands are evaluated from left to right, and evaluation
stops as soon as the result can be determined. No operand is evaluated more than
ornce.

An expressions of the form: E1 AND E2 or E1 OR E2 returns the boolean value
obtained by applying the given operator to the boolean values of E1 and E2. If the
result can be determined from E1 alone, then E2 is not evaluated.

An expression of the form: E1->E2,E3 first evaluates E1, and, if this yields
FALSE, it returns the value of E3, otherwise it return the value of E2.

3.7 VALOF Expressions

An expression of the form VALOF C, where C is a command, is evaluated by execut-
ing the command C. On encountering a command of the form RESULT E within C

6

execution terminates, returning the value of E as the result of the VALOF expression.
The command C is in a new dynamic scope (see Section 7).

3.8 MATCH and EVERY Expressions

A MATCH expression has the following form:

MATCH args
: P ,.., P=>Clist

: P ,.., P=>Clist

It consists of the word MATCH followed by an argument list, followed by zero or more
match items (described in Section 5). The argument list is syntactically the same
as the argument list of a function call and consists of either a single argument (a
name, a number, a string, TRUE, FALSE or an initialised dynamic vector), or it is
a list of arguments enclosed in parentheses. These arguments are evaluated and
placed in consecutive stack locations before passing control to the first match item.
If all the patterns of this item match successfully, control passes to its command list,
otherwise control passes to the next match item. Execution of the MATCH expression
is complete when execution of the selected command list finishes. If the last executed
command yields a result, this is returned as the result of the MATCH expression.

If no match items are successful, a PATERR exception is raised (see Section 4.5).

An EVERY expression is syntactically identical to a MATCH expression with the
word MATCH replaced by the word EVERY. It has the same meaning except that, when
the execution of the selected command sequence is complete, control is passed to
the next match item. Thus, the command lists of all successful match items are
executed. An EVERY expression does not yield a result.

3.9 Expression Precedence

A lexical token that can start an expression or a pattern cannot denote an infixed
or postfixed operator when occuring as the first token of a line. This rule applies to
the tokens: !, %, +, ++, ++4, =, ==, ——= = ~= <= >= < and >, and its purpose is to
allow most semicolons in command sequences to be omitted.

Table 1 specifies the precedence of the various expression constructs. The prce-
dence values are in the range 0 to 14, with the higher values signifying greater
binding power. The letters L and R denote the associativity of the operators. For
instance, the dyadic operator ! is left associative and so v!i!j is equivalent to
(v!i)!j, while b1->x,b2->y,z is equivalent to bi->x, (b2->y,z).

14L | Names, Literals, Function calls

(), [E,..,E], TABLE [X,..,K]
18 | ++ 4+ - —-- Postfixed
12 | ++ +4++ =-= === ~ 4 =~ ABS Prefixed
1L % Dyadic
10 |v 4 @ Prefixed
9L [<< >> Dyadic operators
8L |* / MOD & ‘
7L | XOR
6L |+ - |
5 = "= <K= >= < > Extended Relations
4 NOT Truth value operators
3L | AND
2L | OR
1R | ->, Conditional expression
0 VEC CVEC VALOF MATCH EVERY

Table 1

Notice that these precedence values imply that

! £ x means !
! p +++ means !
1 @ x means ! (@ x)
''v ! i ! j means ! ((vii)!j)
@ v!ii! j means @ ((v!i)!j)

@ "abc" ¥ i means @ ("abc" Y% i)
x<<1 + y>>1 means (x<<1) + (y>>1)
“x =y means (°x) =y

NOT x=y means NOT (x=y)

3.10 Manifest Constant Expressions

A manifest constant expression is an expression that can be evaluated at compile
time to yield an integer. It may only contain manifest constant names, numbers and
character constants, TRUE, FALSE, 7, the operators ~, ABS, <<, >>, &, MOD, *, /, XOR,
+, =, |, the relational operators, NOT, AND, OR, and conditional expressions. Manifest
expressions are used in MANIFEST declarations, FOR commands and as the operand
of VEC or CVEC.

3.11 Static Constant Expressions

A static constant expression may be used to specify initial value of a static location.
It may be a string, a static vector, a function, the address of a static variable or a
manifest constant expression. Within a static constant expression, the constructs

[SKO,..,SKn], VEC K and CVEC K, where SKi and K denote static constant expres-
sions and manifest constant expressions, respectively, are allowed and create static
vectors.

4 Commands

The primary purpose of commands is for their side effects on the values of variables,
for input /output operations, and for controlling the flow of control.

4.1 Assignments

A command of the form L := E causes a location specified by the expression L to
be updated by the value of expression E. Some example assignments are as follows:

cg_x := 1000

vii = x+1

'ptr := nk3(op, a, b)
strik := ch

%strp := ’A?

Syntactically, L must be either a the variable name or an expression whose leading
operator is ! or %. If it is a name, it must have been declared as a static or dynamic
variable. External and function names do not denote updatable variables. If L has
leading operator !, then its evaluation (given in Section 3.6) leads to a memory
location which is the one that is updated by the assignment. If the % operator is
used then the appropriate 8 bit location is updated by the least significant 8 bits of
the value of E.

A simultaneous assignment has the following form:
Li,..,Ln := E1,..,En

Here the locations to update and the values of the right hand side expressions are all
determined before the assignments are performed. Thus the assignment x,y := y,x
will swap the values of x and y, and the assignment i,v%i := i+1,ch will use the
original value of i as the subscript of v. The assignments are however performed in
undefined order and so

may set x to either 1 or 2.

If the same value is to be assigned to several locations then an assignment of
the following form can be used.

Li,..,Ln ALL:= E '

The following assignments

LET Vi1,..,Vn = E1,..,En
LET Vi,..,Vn ALL= E

where V1, . .,Vn are variable names, cause dynamic locations for the variables to be
allocated when control enters the current dynamic scope (see Section 7). They are
otherwise equivalent to the assignments:

vi,..,Vn := E1,..,En
Vi,..,Vn ALL:= E

respectively.
An assignment of the form:

Li,..,Ln op:= E1,..,En

where op:= is one of: <<:=, >>:=, &:=, *:= /:= MOD:=, XOR:=, |:=, +:= or -:=
is evaluated as follows. First, the left hand side locations and the values of the
right hand side expressions are determined, then the assignments are performed.
Each assignment updates a location with the result obtained by applying the given
operator to the previous contents of the location and the value given by the right
hand side. The assignment order is undefined.

4.2 Conditional Commands

The syntax of the three conditional commands is as follows:

IF E DO C1
UNLESS E DO C2
TEST E THEN Ct ELSE C2

where E denotes an expression and C1 and C2 denote commands. To execute a
conditional command the expression E is first evaluated. If it yields a non zero value
and C1 is present then C1 is executed. If it yields zero and C2 is present, C2 is
executed.

4.3 Repetitive Commands

The syntax of the repetitive commands is as follows:

10

WHILE E DO C

UNTIL E DO C

C REPEAT

C REPEATWHILE E

C REPEATUNTIL E

FOR vid = E1 TO E2 DO C

FOR vid = E1 TO E2 BY K DO C

The WHILE command repeated executes the command C so long as E yields a non
zero value. The UNTIL command executes C until E is zero. The REPEAT command
executes C indefinitely. The REPEATWHILE and REPEATUNTIL commands first execute
C then behave, respectively, like WHILE E DO C or UNTIL E DO C.

The FOR command first initialises its control variable (vid) to the value of E1,
and evaluates the end limit specified by E2. Until vid moves beyond the end limit,
the command C is executed and vid increment by the step length given by K which
must be a manifest constant expression (see Section 3.10). If BY K is omitted BY 1
is assumed. A FOR command starts a new dynamic scope (see Section 7) and the
control variable vid is allocated a location in this new scope, as are all other dynamic
variables and vectors within the FOR command.

4.4 Flow of Control

The following commands affect the flow of control.

RESULT
RESULT E
EXIT
EXIT E
RETURN
RETURN E
LOOP
BREAK
GOTO Args

RESULT causes evaluation of the current VALOF expression to complete. If the ex-
pression E is present, its value becomes the result of the VALOF expression.

RETURN causes evaluation of the current function to terminate, returning the
value of E, if present.

LOOP causes control to jump to the point just after the end of the body of the
smallest textually enclosing repetitive command (see Section 4.3). For a REPEAT
command, this will cause the body to be executed again. For a FOR command,
it causes a jump to where the control variable is incremented, and for the other

repetitive command it causes a jump to the place where the controlling expression
is re-evaluated.

11

BREAK causes a jump to the point just after the smallest enclosing repetitive
command.

EXIT causes evaluation of the command list of the smallest enclosing match
item to complete. If the expression E is present, its value becomes the result if
appropriate. Match items are described in Section 5 and are used in the following
four match constructs: MATCH expressions, EVERY expressions, HANDLE commands
and functions.

The GOTO command takes an argument list which is syntactically similar to the -
argument list of a function call (see Section 3.3). The arguments are evaluated
and assigned to the argument locations belonging to the smallest enclosing match
construct. Control is then passed to its first match item.

4.5 Exception Handling

An expression of the form:
RAISE Args

causes an exception to be raised. The argument list is syntactically similar to the
argument list of a function call but may only contain at most three arguments.
These arguments are assigned to the argument locations belonging to the currently
active exception handler and then control is passed to its first match item. This
transfer of control may involve returning from one or more function activations.
If none of the match items of the current handler are successful, then the same
arguments are passes to the handler one level further out. By convention, the first
exception argument is an integer specifying the exception, with zero reserved for the
match exception (PATERR), and other small numbered exceptions reserved for use
by standard library functions.

An exception handler is declared by a construct of the following form:

C HANDLE : Plist => Clist
: Plist => Clist

It executes the command C in an environment in which the exceptions will be
matched against the given list of match items. On completing the command the
previous exception environment is restored.

A simple example of how exceptions can be used is demonstrated by the follow-
ing fragment of program.

MANIFEST

Id=1, Num, Mult, Div, Pos, Neg, Plus, Minus,
Lookup=100, Eval

12

FUN lookup

:n, 0 => RAISE(Lookup, n)
: n, [=n, val, ?] => val

:n, [7, 7, el => lookup(n, e)

FUN eval
: [Id, x], e => lookup(x, e)
[(Num, k], 7=k
[Pos, x], e => eval(x, e)
[Neg, x], e => - eval(x, e)
Mult,x,y], e => eval(x, e) * eval(y, e)
(Div,x,y], e => eval(x, e) / eval(y, e)
[Plus,x,y], e => eval(x, e) + eval(y, e)
: [Minus,x,yl, e => eval(x, e) - eval(y, e)
7, 7?7 => RAISE Eval

FUN start : =>

LET exp = [Mult, [Num,23], [Plus,[Id,’a’],[Id,’b’]1]]
LET env = [’a’,36,[’b’,19,0]]
printf("Result is %d\n", eval(exp, env))

HANDLE
: Lookup, id => printf ("Id Yc not declared", id)
: Eval => printf "Unknown operator in eval"

4.6 Sequences and Compound Commands

It is often useful to be able to execute commands in a sequence, and this can be done
by writing the commands one after another, separated by semicolons. Syntactically,
the semicolon is only needed if there is any ambiguity about where one command
ends and the next begins. The semicolon can always be omitted if the second
command starts on a new line. For this to work, expression and pattern operators
which can be both prefixed operators and infixed or postfixed may only occur as
the first token on a line with its prefixed meaning (see Section 3.9). Remember also
from Section 3.3 that the start of a function argument list must be on the same line
as the end of the expression specifying the function.

It is sometimes necessary to group a sequence of commands to behave syntac-
tically as a single command. Curly brackets ({}) are used for this purpose.

An expression is allowed wherever a command is permitted, and is evaluated at
the same time that such a command would be. This is useful for invoking functions
and executing the pre- and post-incrementing and decementing expressions. The
result of any such expression is thrown away unless it is the last position of a
sequence,

Empty commands are allowed.

13

5 Patterns

Pattern matching is one of the most important facilities provided within MCPL
since it allows both a mechanism for multiway selection and a means of associating
variable names with locations in memory. Patterns are used in function definitions,
the MATCH and EVERY constructs, and in the exception handling mechanism. Within
each of these constructs, the user may supply a list of match items. Each match
item has the following syntactic form:

¢ Plist => Clist

where Plist is a list of zero or more patterns separated by commas and Clist is a
sequence of commands, optionally separated by semicolons. At the moment control
is passes to a match item, there is a list of argument values laid out in consecutive
locations of memory. The patterns in the pattern list are matched against these
arguments in left to right order. If all matches are successful then control passes to
the given command sequence.

A pattern can be an explicit numerical constant (e.g. 1234 or ’A’) or a range
(e.g- 0..9 0or ’A’..’Z*) or an alternation of constants or ranges (e.g. 2 | 3 | 5 |
10..20). An argument matches such a pattern if

(a) it equalls the number,
(b) it lies within the given range
or (c) it is matched by one of the alternations.

Manifest names may be used within patterns wherever numbers are allowed.

The patterns TRUE and FALSE match the corresponding values in the current
argument, and a question mark (?) or empty pattern will match any argument
value.

A pattern consisting of a variable name always matches successfully and is
treated as a declaration of the name, causing it to be attached to the corresponding
argument location. The scope of the name is the entire pattern list and associated
command sequence.

An argument which is a pointer can be matched by a pattern of the following
form:

[Plist]

where Plist is a list of patterns separated by commas. If this pattern occurs,
the corresponding argument is assumed to be a valid pointer into memory. The
consecutive locations pointed to are matched in turn by the patterns in P1ist, This
construct can be nested to any depth.

A pattern may consist of a relational operator (=, "=, <=, >=, < or >) followed
by an expression. The corresponding argument is compared with the value of the
expression to determine the success of the match.

14

A pattern consisting of one of the assignment operator (:=, <<:=, >>:=, &:=,
%:=, /:=, MOD:=, XOR:=, |:=, +:= or -:=) followed by an expression is always
successful. It has the side effect that, if the entire pattern matches succesfully, the
assignment is performed with the implied left hand operand, just prior to executing
the corresponding command sequence.

If two patterns are justaposed, then both are matched against the same argu-
ment location. For instance, in

: sum, coins[val <=sum] => .

coins matches the second argument, which must be a pointer to a memory location
which is given the name val and which must be less than or equal to the first
argument (sum).

6 Declarations

Declarations are used to declare external names, manifest constants, static variables
and to define functions, and they may only occur at the outermost level of a program.
It is thus not possible to declare a function, for instance, within another function.
The four kind of declaration are described below.

6.1 External Declarations

An external declaration consists of the word EXTERNAL followed by a list of names
that are possibly qualified by type information. All external names start with lower
case letters. The following example declaration:

EXTERNAL muldiv, printf/vpi, calloc/puu

declares the external names muldiv, printf and calloc. Since muldiv is unqual-
ified, it is declared to be an external MCPL function, while the qualified names
printf and calloc are taken to be external C functions. A qualifier consists of a
slash (/) followed by a sequence of lower case letters possibly terminated by an un-
derline (_), and it specifies the type of the external C function. Each letter denotes
a data type, as follows:

The type void.

A pointer type.

The type short.

The type int.

The type unsigned int.

The type long int.

- This can occur as the last character of a qualifier to
indicate that the function takes a variable number of
arguments, compatible with the ... mechanism in C.

HEg R nDd <

15

The first letter of a qualifier specifies the result type of the function and the re-
maining letters specify the types of the first few arguments. If an MCPL call of a
C function supplies more arguments than the specification declares then the extra
arguments are assumed to be of type long int.

If an MCPL function is declared in the scope of an external declaration for the
same name then the function is declared as an external entry point and can be called
from other modules. If the external declaration specifies a C function type, then the
MCPL function is compiled to be compatible with the C calling sequence.

6.2 Manifest Declarations

A MANIFEST declaration has the following form:
MANIFEST Ni=Ki ,..., Nn=Kn

where N1, . . ,Nn are constant identifiers (see Section 3.1) and K1, . . ,Kn are manifest
constant expressions (see Section 3.10). It may only occur at the outermost level
of a program. Each name is declared to have the constant value specified by the
corresponding manifest expression. If a value specification (=Ki) is omitted, the a
value one larger than the previously defined manifest constant is implied, and if =K1
is omitted, then =0 is assumed. Thus, the declaration:

MANIFEST A,B,C=10,D,E=C+100

declares A, B, C, D and E to have manifest values 0, 1, 10, 11 and 110, respectively.

6.3 Static Declarations

A static declaration consists of the word STATIC followed by a list of names, each
possibly initialised by a static constant expressions (see Section 3.11). For example,
the following declaration:

STATIC a=541, b, c=[123,"Hi"]
declares the static variables a, b and c. The initial value given to a is 541. The
initial value of b is given by default to be 0 and the initial value of c is the value of

the static expression [123,"Hi"], that is, a vector of two elements initialised with
the integer 123 and a pointer to the string "Hi".

6.4 Function Definitions

A function definition has the following form:

16

FUN name : P ,.., P => Clist
: P ,.., P=>Clist

It consists of the word FUN followed by the name of the function (which must start
with a lower case letter), followed by zero or more match items (described in Sec-
tion 5). When a function is called, the arguments are placed in consecutive stack
locations and control is passed to the first match item. If all the patterns of this
item successfully match their corresponding arguments then control is passed to its
command list, otherwise control passes to the next match item. After executing
the selected command list, control returns back to the call. If the last executed
command yields a result then this is returned as the result of the function.

If no match items are successful, a PATERR exception is raised (see Section 4.5).
Notice that functions defined without match items automatically generate a PATERR
exceptions when called.

Since functions have no dynamic free variables the calling overhead is small
and it is permissible to pass them as arguments to other functions, assign them to
variables or return them as function results. They are also allowed in static constat
expressions.

7 Scope and Extent Rules

All identifiers used in a program must have a declaration and must be used only
within the scope of that declaration. The scope of an identifier is the textual region
of program for its declaration is valid, and this depends on the kind of declaration.

MANIFEST identifiers are syntactically distinct from all other identifiers and can
be considered separately. The scope of a MANIFEST identifier starts from the place
that it is declared and extends to the end of the program. It is thus necessary to
declare manifests before they are used. It is permissible to use a manifest identifier
in the same MANIFEST declaration provided its use occurs later in the declaration
list.

Identifiers declared by EXTERNAL declarations are regarded as being declared
right at the start of the program, and have a scope that extends throughout the
entire program. All identifiers declared by function declarations are regarded as
declared immediately after the externals and so have a similar scope. The scope of
a static identifier extends from its declaration to the end of the program, and so, as
with manifests, such variables must be declared before they are used.

All other variables are dynamic, being allocated space within the stack frame
of a function. The scope of such a variable is the dynamic scope associated with the
place in the program where the variable is declared. Space is allocated for a variable
when control passes into its dynamic scope, and it is freed when control leaves the
scope.

A dynamic scope is the region of program that

17

1. starts at the colon (:) of a match item and extends to the end of its command
sequence,

2. starts just after the symbol => of a match item and extends to the end of the
command sequence,

3. is the body of a VALOF expression, or

4. ‘extends from the word FOR to then end of the body of the FOR command.

Thus, the scope of an indentifier declared within a pattern extends forwards and
backwards to include the entire pattern and command sequence of the current match
item, and the scope of identifiers declared by a LET declaration extends forwards
and backwards to include the whole of the smallest enclosing dynamic scope, which
usually starts at the nearest =>, VALOF or FOR symbol.

Dynamic scopes also determine the dynamic lifetime (or extent) of local vectors
declared by VEC, CVEC or [E, ..,E]. Space for such vectors is allocated when control
passes into the current dynamic scope, and is freed when control leaves this scope.

8 Modules and the Interface with C

An MCPL program may start with a declaration of the following form:
MODULE name

where name is a variable name starting with a lower case letter. This declares name
to be an externally accessible pointer to the start of the loaded module. This pointer
may be used to gain access to some implementation dependent data held at the start
of the module, such as its size, its name, its date of compilation etc.

If an MCPL program calls a function whose name was declared by an EXTERNAL
declaration to be a C function, then the C calling sequence is used, passing the
arguments as prescribed by the EXTERNAL declaration. If a function is declared in
the scope of an EXTERNAL declaration then it can be called from other modules. If the
EXTERNAL declaration declared it to be a C function, it is compiled to be compatible
with the C calling sequence. EXTERNAL names that have not been specified to be C
functions have values that are either entry points to MCPL functions (possibly in
other modules) or pointers to external static variables. Access to the values of such
a variable requires an indirection (using either ! or %).

18

9 Example Programs

9.1 Coins

The following program prints out how many different ways a sum of money can be
composed from coins of various denominations.

GET “mcpl.h"

FUN ways

: 0, ? =>1
: 7, [o] =>o0

: sum, coins[>sum] => ways(sum, @ coins!1l)
: sum, coins[val] => ways(sum, @ coins!l) + ways(sum-val, coins)

FUN t : sum =>
printf("Sum = %3d, Ways = %4d\n",
sum, ways(sum, [50, 20, 10, 5, 2, 1, 0])
)

FUN start : => t 0; t 1; t 65; t 11; t 20; t 100

9.2 Primes

The following program prints out a table of all primes less than 1000, using the sieve
method.

GET "mcpl.h"
MANIFEST Upb = 999

FUN start : =>
printf '"\nTable of prime numbers\n\n"
LET count, isprime = 0, VEC Upb
FOR i = 2 TO Upb DO isprime!i := TRUE
FOR p = 2 TO Upb IF isprime!p DO
{ LET i = p¥p
UNTIL i>Upb DO isprime!i, i := FALSE, i+p
printf (" %4i3", n)
IF ++count MOD 10 = 0 DO newline()
}
printf "\nEnd of output\n"

19

9.3 Queens

The following program calculates the number of ways eight queens can be placed on
a chess board without any two occupying the same row, column or diagonal.

GET "mcpl.h"
STATIC count = 0

FUN try
7, #xFF, 7 => count++
: 1d, row, rd => LET poss = “(1d | row | rd) & #xFF
UNTIL poss=0 DO
{ LET bit = poss & -poss
poss -:= bit
try((1dlbit)<<i, rowl|bit, (rdlbit)>>1)
}
FUN start
: => try(0, 0, 0)
printf("\nNumber of solutions is %d\n", count)

9.4 Fridays

The following program prints a table of how often the 13%* day of the month lies on
each day of the week over a 400 year period.

GET "mcpl.h"

MANIFEST Mon = 0, Sun

fi
N
g
[i]
o
ke s |
o
o'
]
[
|
®
O
()
[
[y

STATIC

count = [0,0,0,0,0,0,0], days = 0,

daysinmonth = [31, O, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],

dayname = ["Monday", "Tuesday", "Wednesday"," Thursday",
"Friday", "Saturday", "Sunday"]

FUN febdays : year => year MOD 400 = 0 -> 29,
year MOD 100 = 0 -> 28,
year MOD 4 =0 -> 29,
28

FUN start : =>
FOR year = 1973 TO 1973 + 399 DO
{ daysinmonth!Feb := febdays year
FOR month = Jan TO Dec DO { LET day13 = (days+12) MOD 7
(countidayi13) ++

20

days +:= daysinmonth!month
¥

}
FOR day = Mon TO Sun DO
printf (" %3d %ss\n", count!day, dayname!day)

9.5 Prover

This program is a very free translation of the LISP version of the Wang Algorithm
given in the LISP 1.5 book. It checks whether formulae in propositional logic are
tautologies. The program includes both a parser for the expression and a prover
function pr to test whether it is always true.

GET "mepl.h"
MANIFEST

Id, Not, And, Or, // Expression node operators
Syntax=100 // Syntax exception

STATIC

str, strp, chl, ch2, ch3, token, spacep

FUN member : 7, 0 => FALSE
: x, [7, =x] => TRUE
: x, [ys, 7] => member(x, ys)

FUN add : x, xs => member(x, xs) -> xs, mk2(x, xs)

FUN pr
¢ 7, 0, 7 0 => FALSE

L)
: al, 0, ar, [[Not,x], er]l => pr(al, [x,0], ar, cr)
: al, 0, ar, [[And,x,y], cr] => pr(al, 0, ar, [x,cr])
AND
pr(al, 0, ar, [y,cr])
v al, 0, ar, [[Or,x,y], cr]l => pr(al, 0, ar, [x,[y,crl], x))
: al, 0, ar, [[Id,x], cr] => member(x, al)
OR
pr(al, 0, add(x,ar), cr)

:al, [[Not,x],cl], ar, cr => pr(al, cl, ar, [x,crl)

21

U
v

: al, [[And,x,y]l,cll, ar, cr pr(al, [x,[y,cll], ar, cr)

U
v

pr(al, [x,cl], ar, cr)
AND
pr(al, [y,cl], ar, cr)

: al, [[0r,x,yl,cl], ar, cr

member (x,ar)
OR
pr(add(x,al), cl, ar, cr)

i
v

: al, [[1d,x],cl], ar, cr

// A .., 2 --> [I4, °A’],.., [14, ’2’]

// °x -=> [Not, x]

/l x&y --> [And,x,y]
/Il x 1y --> [0r,x,y]

/x>y > "xly

/]l <>y =-=> (x->y)& (y->x

FUN rch : => chil, ch2, ch3 := ch2, ch3, stristrp
UNLESS ch3=0 DO strp++

FUN parse : s => str, strp := s, 0
rch(); rch(); rch()
nexp 0

FUN lex : => MATCH (chi, ch2, ch3)
* 2| \n’ => rch(); lex()

(Y S 4 | ;() l :): | 1~ | '8 | ;I:)
ch => rch(); ch
=, 0> => rch(); rch(); ’->’

)<}’ r

» ’>7 => rch(); rch(); rch(); ’<->’
=> RAISE Syntax

FUN prim : => MATCH token
*A’, .72 => LET a = mk2(Id, token)
lex()
a
' => LET a = nexp 0
UNLESS token=’)’ RAISE Syntax
lex()
a
» => mk2(Not, nexp 3)
=> RAISE Syntax

FUN nexp : n => lex(); exp n

22

FUN exp : n =>
LET a = prim()
{ MATCH (token, n)
'&’, <3 => a := mk3(And, a, nexp 3)
Y[, <2 => a := mk3(0r , a, nexp 2)
’=>7, <1 => a := mk3(0r, mk2(Not, a), nexp 1)
12¢->?, <1 => LET b = nexp 1
a := mk3(And, mk3(0r, mk2(Not, a), b),
mk3(0r, mk2(Not, b), a)

)
: => RETURN a
} REPEAT

FUON try : e =>
spacep := @ (VEC 10000) 10000
{ TEST pr(0, 0, 0, [parse e, 0])
THEN printf("%s is TRUE\n", e)
ELSE printf("%s is FALSE\n", e)
} HANDLE : Syntax => printf "Bad syntax\n"

FUN mkl : x => !spacep := x; spacep—--
FUN mk2 : x, y => nkl y; mkl x
FUN mk3 : x, y, z => mkl z; mki y; mkl x

// Propositional examples supplied by Larry Paulson
// and modified by MR

FUN start : =>
printf "associative laws of & and | \n"
try "(P & Q) &R <> P & (Q & R)"
try "(P 1 Q | R <> P | (Q | R)"

printf "distributive laws of & and | \n"
try "(P& Q) IR <> ® I R)&(@Q]| R"
try "(P 1 Q) &R <> (P &R) | (Q & R)"

printf "Laws involving implication \n"
try "(PIQ -> R) <-> (P->R) & (Q->R)"

try "(P & Q -> R) <> (P-> (Q->R))"

try "(P -> Q & R) <-> (P->Q) & (P->R)"

printf "Classical theorems \n"
try "P | Q -> P | "P & Q"

23

try "(P->Q)&(“P->R) ~-> (P&Q | R)"

try "P & Q | P& R <-> (P->Q) & ("P->R)"
try "(P->Q) | (P->R) <> (P ->Q | R)"
try "(P<->Q) <-> (Q<->P)"

/* Sample problems from F.J. Pelletier, Seventy-Five
Problems for Testing Automatic Theorem Provers,
J. Automated Reasoning 2 (1986), 191-216.

*/

printf "Problem 5 \n"
try "((PIQ->(PIR)) -> (PI(Q->R))"

printf "Problem 9 \n"
try "(PIQ & (P 1 @ & (P | "Q)) -> ~(C~P | Q)"

printf "Problem 12. Dijkstra’s law \n"
try "((P <=> Q) <-> R) -> (P <> (Q <-> R))"

printf "Problem 17"
try "(P & (Q->R) --> 8) <-> ((°PIQlS) & (“P|~RIS))"

printf "False goals \n"

try "(P | @ => R) <> (P -> (Q->R))"

try "(P->Q) <-> (Q -> ~p)¢

try " “(P->Q) -> (Q<~>P)"

try "((P->Q) -> Q) ~-> P

try "((P I D & CP I Q& (P Q) > ~CP | Q"

printf "Indicates need for subsumption \n"
try "((P & (Q<->R))<->8) <-> ((*PlQls) & (“P|~RI8))*

24

9.6 Eval

The following program is a simple parser and evaluator for lambda expressions.

GET "mcpl.h"

MANIFEST Id=1, Num, Times, Div, Pos, Neg, Plus, Minus,
Eq, Cond, Lam, Ap,
Syntax=1, Lookup, Eval

STATIC str, strp, ch, nch, token, spacep

FUN lookup : 7, 0 => RAISE Lookup
: n, [=n,val,?] => val
: n, [?7,7,e] => lookup(n, e)
FUN eval
: [I4, x], => lookup(x, e)
[Num, k], => k
[Pos, x], => eval(x, e)
[Neg, x], => - eval(x, e)

=> eval(x, e) * eval(y, e)
eval(x, e) / eval(y, e)
=> eval(x, e) + eval(y, e)

[Times,x,y],
[Div,x,y],
(Plus,x,y],

@ 0 0 0O O O O O O 0
|
v

[Minus,x,y], => eval(x, e) - eval(y, e)-
(Eq,x,y], => eval(x, e) = eval(y, e)
[Cond,b,x,y], e => eval(b, e) ~-> eval(x, e), eval(y, e)
(Lam,x,body], e => mk3(x, body, e)
(Ap,x,y], => { MATCH eval(x, e)
: [bv, body, env] =>
eval (body,mk3(bv,eval(y,e),env))
}
: 7, ? => RAISE Eval
// Construct Corresponding Tree
//a,.., z --> [Id, ’a’] ,.., [Id, ’z’]
// dddd --> [Num, dddd]
/Il xy --> [A4p, x, y]
/]l x xy --> [Times, x, y]
// x/y --> [Div, x, y]
/l x+y --> [Plus, x, yl
/l x -y --> [Minus, x, y]
/l x =y --> [Eq, x, y]
//'b->zx,y --> [Cond, b, x, y]
/l Liy --> [Lam, i, yJ

25

FUN rch :

FUN parse :

FUN lex :

‘al, . 0z,
0 1q2
0’..°9°,

: Num =>

)L) =

;() =>

Y4 =>
1o =

FUN nexp

=> ch := nch

nch := stristrp++
UNLESS nch=0 DO strp++

s => str, strp := s, 0
rch(); rch(); nexp 0

=> MATCH (ch, nch)
))!;\n)’

>(; l)))

? => rch(); lex()

l) %) | ;/) | 1y I J] I 1 | »
? => token := ch; rch()

7 => token, lexval := Id, ch; rch()
7 => token, lexval := Num, ch-’0’

{ rch()
MATCH ch
20,797
HE => RETURN

} REPEAT

’>? => token := ’->’; rch()
? => RAISE Syntax

il

: => MATCH token

LET a = mk2(Id, lexval)
lex()

a

LET a = mk2(Num, lexval)
lex()

a

lex()

UNLESS token=Id RAISE Syntax
LET bv = lexval

mk3(Lam, bv, nexp 0)

LET a = nexp 0

UNLESS token=’)’ RAISE Syntax
lex()

a

mk2(Pos, nexp 3)

mk2(Neg, nexp 3)

RAISE Syntax

' n=>lex(); expn

26

H

> lexval := 10xlexval+ch-’0’

FUN exp : n =>
LET a = prim()
{ MATCH (token, n)
(> | Num | Id,

? => a := nk3(Ap, a, nexp 6)
'#%’, <6 => a := nk3(Times, a, nexp 5)
’/?, <6 => a := mk3(Div, a, nexp 5)
'+7, <4 => a := nk3(Plus, a, nexp 4)
’-7, <4 => a := mk3(Minus, a, nexp 4)
’=?, <8 => a := mk3(Eq, a, nexp 3)
’=>?, <1 =>LET b = nexp 0

UNLESS token=’,’ RAISE Syntax
a := mk4(Cond, a, b, nexp 0)
: ?, 7 => RETURN a
} REPEAT

FUN mkl : a => l---gpacep := a; spacep
FUN mk2 : a, b => mk1(b); mki(b)

FUN mk3 : a, b, ¢ => mki(c); mki(b); mki(a)
FUN mk4 : a, b, ¢, 4 => mk1(d); mki(c); mk1(b); mki(a)

FUN wrs : s => printf("%s\n", s)
FUN wrn : n => printf("%d\n", n)

FUN try : e => wrs e
spacep := @ (VEC 10000) 110000

wrn (eval(parse e, 0))
HANDLE : Syntax => printf "Bad syntax"

¢ Lookup => printf "Bad lookup”
: Eval => printf "Bad eval"

FUN start : =>

try "1=2 -> 1234, 3%4+100" // Answer 112
try "(Lx x+1) ((Lx x) (Ly y) 99)" // Answer 100
try "(Ls Lk s k k) \

\ (LfLglx fx (gx))\

\ (Lx Ly x) \

\ (Lx x) \

\ a9 // Answer 99

27

9.7 Fast Fourier Transform

The following program is a simple demonstration of the algorithm for the fast fourier
transform. Instead of using complex numbers, it uses integer arithmetic modulo
65537 with an appropriate N** root of unity.

GET “mcpl.h"
MANIFEST
Modulus = #x10001, // 2%¥16 + 1
// Omega = #x00003, N = #x10000,
// Omega = #x0ADF3, N = #x01000,
Omega = #x096ED, N = #x00400,
// Omega = #x08000, N = #x00010,
// Omega = #xOFFF1, N = #x00008,
// Omega and N are chosen so that: Omega¥*N = 1
Upb = N-1,
MSB = N>>1,
LSB =1
STATIC v = VEC Upb, w = VEC Upb
FUN start : =>
FOR i = 0 TO Upb DO v!i := i
pr(v, 15)
// Prints the original data
// 0 1 2 3 4 5 6 7
// 8 9 10 11 12 13 14 15
dofft v
pr(v, 15)
// Prints the transformed data
// 65017 26645 38448 37467 30114 19936 15550 42679
// 39624 42461 43051 65322 18552 37123 60445 26804
invfft v
pr(v, 15)
// prints -- Original data
// 0 1 2 3 4 5 6 7
// 8 9 10 1 12 13 14 15

28

FUN dofft
v => wlo =1 // Nth roots of unity
FOR i = 1 TO Upb DO w!i := mul(w!(i-1), Omega)
f£ft(N, v, 0, MSB)
reorder(v, v, MSB, LSB)
FUN invfft
v oE>wlo =1 // inverse Nth roots of unity
FOR i = 1 TO Upb DO w!i := ovr(w!(i-1), Omega)
f£ft(N, v, 0, MSB)
reorder(v, v, MSB, LSB)
FOR i = 0 TO Upb DO v!i := ovr(v!i, N)
FUN reorder
p, <p, 0, 7 => RETURN
[x], [yl, o =X,y :=y, x
P» g, a, b => LET a1, bl = a>>1, b<<i
reorder(@pla, @q!b, al, bl)
reorder(p, q, al, bl)
FUN £f% : nn, v, pp, msb =>
LET n, p = nn>>1, pp>>1
FOR i = 0 TO n-1 DO butterfly(ev!i, @v'(1+n) w!p)
IF n=1 RETURN
fft(n, Qv!o0, p, msb)
fft(n, Qv'!n, msb+p, msb)
FUN butterfly
[x], [yl, wk => LET t = mul(y, wk)
x, y := add(x, t), sub(x, t)
FUN pr : v, upb => FOR i = 0 TO upb DO

{ printf("%5d ", v!i)

IF i MOD 8 = 7 DO printf "\n"
}
printf "\n"

29

1, m, ?,7=>nmn

0, m, ?, 1 => m-n

a, m, b >a, n => dv(a, m, b MOD a, mx(b/a)+n)
a, m, b, n => dv(a MOD b, n*(a/b)+m, b, n)

FUON inv : x => dv(x, 1, Modulus-x, 1)
FUN ovr : x, y => mul(x, inv(y))
FON mul : 0, 7?7 => 0
px, v o=> (x£1)=0 -> mul(x>>1, add(y,y)),
add(y, mul(x>>1, add(y,y)))

FUN add : x, y => LET a = x+y
0<=a<Modulus -> a, a-Modulus

FUN sub : x, y => add(x, Modulus-y)

9.8 Turing

The following program simulates the execution of a Turing Machine running a Tur-
ing program that is designed to multiply two numbers together in unary. The call:
turing("A11", ’B’, "111A") will run the machine with the reading head posi-
tioned over the character B and with a given initial setting of the left and right
portions of the tape. After several steps it will print:

A111111[A]

indicating the the head is positioned on the right hand A, with the answer represented
by the six 1s.

GET "mcpl.h"

MANIFEST Upb = 5000

STATIC ltape, rtape, spacep
FUN prb
: 0 => RETURN

[0, ch] => wrch ch
[chs, ch] => prb chs; wrch ’ ’; wrch ch

30

FUN

prf
0 => RETURN
[0, ch] => wrch ch

[chs, ch]l => wrch ch; wrch ’ ?; prf chs

FUN pr : x, ¢, y => prb x; printf("[%cl", c); prf y; newline()
FUN right : => MATCH rtape
: 0 => ltape := mk2(ltape, c)
[link, ch] => LET oldch = ch
ltape,rtape,link,ch := rtape,link,ltape,c
oldch
FUN left : ¢ => MATCH ltape
: 0 => rtape := mk2(rtape, c)
[link, ch] => LET oldch = ch
rtape,ltape,link,ch := ltape,link,rtape,c
oldch
FUN halt : c => pr(ltape, ¢, rtape)
FUN turing : lstr, ch, rstr =>
LET i =0
ltape, rtape ALL:= 0
UNTIL lstr)%i=0 DO i++
UNTIL i=0 DO ltape := mk2(ltape, lstr)--i)
UNTIL rstrki=0 DO rtape := mk2(rtape, rstrii++)
s0 ch
FUN s0 : 1’ => s1 (right ’0’)
¢ ’A’ => s2 (right ’ ?)
i ¢ => 50 (left ¢)
FUN s1 : ’A’ => s3 (left ’A°)
'X? => s1 (right '1’)
: ¢ => sl (right ¢)
FUN s2 : A’ => g5 (right TA%)
: 7 => 52 (right ’ ?)
FUN s3 : ’B’ => g0 (left ’B?)
17 => s4 (right ’X?)
: ¢ = 83 (left ¢)
FUN s4 : ’ ? => g3 (left 'X’)
: ¢ =>s4 (right c)
FUN s6 : ? ? => halt ’A’

'X? => s5 (right ’1’)
¢ =>sb (right c)

31

FUN mk2 : x, y => !---spacep =¥y
|---spacep := x
spacep

FUN start : => spacep := @ (VEC Upb)!Updb
printf "Turing entered\n"
turing("Ai1", "B", "111A")

10 References

[1] Richards,M. and Whitby-Strevens, C. BCPL: the Lan-
guage and its Compiler, Cambridge University Press,
1979.

2] Paulson, L.C., ML for the Working Programmer, Cam-
bridge University Press, 1991.

(3] Harbison, S.P. and Steele,G.L., C - A Reference Man-
ual, Prentice-Hall, 1987.

[4] Clocksin, W.F. and Mellish, C.S. Programming in Pro-
log, Springer-Verlag, 1981.

32

